Codelgniter Web Application
Blueprints

Develop full-featured dynamic web applications using the
powerful Codelgniter MVC framework

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Codelgniter Web Application
Blueprints

Develop full-featured dynamic web applications using
the powerful Codelgniter MVC framework

Rob Foster

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Codelgniter Web Application Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Production reference: 1140115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-709-3

www . packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Rob Foster

Reviewers
Aafrin

Alexandros Dallas
Sharafat Ibn Mollah Mosharraf

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Nikhil Karkal

Content Development Editor
Rohit Kumar Singh

Technical Editor
Taabish Khan

Copy Editors
Stuti Srivastava

Laxmi Subramanian

Project Coordinator
Mary Alex

Proofreaders
Samuel Redman Birch

Stephen Copestake
Ameesha Green

Clyde Jenkins

Indexer
Rekha Nair

Graphics
Sheetal Aute

Valentina D'silva

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Rob Foster has been working in the field of web development for almost 10 years,
working for various IT sectors. He has interests in Codelgniter, Laravel, and iOS
programming.

While not hunched over a computer ruining his eyesight, he enjoys drinking good
quality wine, appreciates varieties of fine cheese, and has a liking for a pair of
comfortable, elastic slacks!

Rob has also written Codelgniter 2 Cookbook, Packt Publishing, and was a technical
editor for SUSE Linux 10 Bible, Wiley.

I would like to thank Lucy once again for putting up with all those
weekends spent not outside in the lovely summer but inside or for
being otherwise bored while I worked on the book —sadly, no Skyrim
to entertain you this time as that's still in Chloe's garage but you're
gunning for top marks on those Bejeweled type games so, er, best of
luck with that!

Thank you, Rohit at Packt for all your kind help, Taabish for your
help with the technical editing — your keen eye for detail caught the
errors I missed —and all the reviewers and other editors who helped
with this book.

Lastly, thank you friends and family for putting up with me.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Aafrin is a self-taught programmer from a cyber security and digital forensic
background. He has been actively developing and prototyping web applications
since 2003. He codes in various programming languages, including C++, Java, PHP,
ASP, VB, VB.NET, and has also worked with frameworks such as EXT]S, CakePHP,
Codelgniter, and Yii. In his free time, he blogs at http://www.aafrin.comand
researches on computer security and computer forensics.

Alexandros Dallas studied Applied Informatics in Management and Economy
and is now a software test engineer based in Athens.

He has a solid software development background in using PHP, mostly with
Codeigniter, and Java. Whenever possible, he spends his time contributing to open
source projects. He is well aware of RESTFul Web Services concepts and libraries,
such as Jersey and Dropwizard, and has experience in the development, integration,
and testing of web APIs.

Alexandros has authored RESTFul Web Services with Dropwizard, Packt Publishing
(https ://www.packtpub.com/web-development /restful -web-services-
dropwizard).

www.it-ebooks.info

http://www.it-ebooks.info/

Sharafat Ibn Mollah Mosharraf graduated from the University of Dhaka in
Computer Science and Engineering. He is currently working as a senior software
engineer at Therap Services, LLC. He has expertise and experience in architecting,
designing, and developing enterprise applications in Java, PHP, Android, and
Objective-C. He loves researching as well as training people on state-of-the-art
technologies for the purpose of designing, developing, securing, and maintaining
web and mobile applications. He also provides coaching for various teams
participating in national software development contests. His areas of interest

include user experience, application security, application performance, and designing
scalable applications. He loves passing his free time with his family and friends.

I'd like to thank the author for writing such a wonderful book on
advanced Codelgniter applications. I'd also like to thank Mary Alex,
the project coordinator of the book. It was a pleasure to work with
her. Last but not least, I would like to thank my wife, Sadaf Ishaq, for
bearing with me while I dedicated my busy time reviewing the book.
It's always been great to have you by my side!

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more

For support files and downloads related to your book, please visit www . PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

@ PACKTL 1

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface

Chapter 1: Introduction and Shared Project Resources

1
7
Common resources 8
Twitter Bootstrap 8
8
8
9

Headers and footers
Downloading Codelgniter
Codelgniter on newer versions of PHP

Installing Twitter Bootstrap 10
Removing index.php from the address bar 12
Installing and using Sparks 12
Creating a shared header and footer view 14
Common language items 16
Creating the MY_Controller file 17
Autoloading common system resources 18
Security considerations 18
Moving the system folder 18
Error messages 19
Query binding 20
Summary 20
Chapter 2: A URL Shortener 21
Design and wireframes 22
File overview 23
Creating the database 24
Adjusting the routes.php file 26
Creating the model 27
Creating views 29
Creating the view file—views/create/create.php 30
Creating the view file—views/nav/top_nav.php 31

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Creating controllers 32
Creating the controller file—controllers/create.php 32
Creating the controller file—controllers/go.php 34

Creating the language file 37

Putting it all together 38
Creating a shortened URL 38
Retrieving a URL 38

Summary 39

Chapter 3: Discussion Forum 41

Design and wireframes 42
The View All Discussions page 44
The View Discussion/Add Comment page 45
The New Discussion page 46
The admin Dashboard page 47
File overview 48

Creating the database 50

Adjusting the config.php file 54

Adjusting the routes.php file 55

Creating the models 55
Creating the model file — models/discussions_model.php 55
Creating the model file — comments_model.php 60
Creating the model file — admin_model.php 63

Creating views 66
Discussions 67
Comments 68
New discussion 70
The top_nav file 72
The login view 73
The login_header file 74
Dashboard 75
The signin.css file 77

Creating the controllers 78
The discussions controller 79
The comments controller 82
The admin controller 88

Creating the language file 92

Putting it all together 93
A user creates a discussion forum 93
A user comments on a discussion forum 94

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

A user dislikes a comment and flags it for moderation 95
A moderator reviews comments awaiting moderation 96
Summary 97
Chapter 4: Creating a Photo-sharing Application 99
Design and wireframes 100
The create item 101
The do_upload item 102
The go item 102
File overview 103
Creating the database 104
Adjusting the config.php and autoload.php files 105
Adjusting the routes.php file 106
Creating the model 106
Creating the views 109
Creating the controllers 111
Creating the language file 119
Putting it all together 119
Summary 121
Chapter 5: Creating a Newsletter Signup 123
Introduction 123
Design and wireframes 124
The Home — index() and Signup — index() items 125
Settings/Unsubscribe — settings() 126
File overview 127
Creating the database 128
Adjusting the routes.php file 129
Creating the model 129
Creating the views 132
Creating the controllers 134
Creating the language file 138
Putting it all together 139
User subscribes 139
User updates their settings 140
User unsubscribes 140
Summary 141
Chapter 6: Creating an Authentication System 143
Introduction 144
Design and wireframes 144
Me — editing details 146

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Viewing all users 147
Creating users 148
Editing the user details 148
Deleting a user 149
Sign in 150
Register 150
File overview 151
Creating the database 154
Adjusting the config.php file 157
Adjusting the routes.php file 158
Creating the models 158
Creating the views 164
Creating the controllers 179
Creating the language file 204
Putting it all together 206
User registration 206
Ensuring correct access 207
Summary 207
Chapter 7: Creating an E-Commerce Site 209
Introduction 209
Design and wireframes 210
Home — index() 211
Add to cart — add() 212
Cart — display_cart() 213
User Details — user_details() 214
File overview 215
Creating the database 216
Adjusting the config.php file 220
Adjusting the routes.php file 221
Creating the model 222
Creating the views 225
Creating the controllers 230
Creating the language file 237
Putting it all together 238
Filtering a search 238
Adding to cart 239
Altering the product quantity 240
Summary 241

www.it-ebooks.info

[iv]

http://www.it-ebooks.info/

Table of Contents

Chapter 8: Creating a To-do List 243
Introduction 243
Design and wireframes 244

View All/Create 245
Delete 246
File overview 246
Creating the database 247
Adjusting the config.php file 249
Adjusting the routes.php file 250
Creating the model 250
Creating views 253
Creating the controller 257
Creating the language file 261
Putting it all together 262
User adds a task 262
User changes the task status 263
Summary 264

Chapter 9: Creating a Job Board 265
Introduction 265
Design and wireframes 266

Job/Search 267
Detail/Apply 268
Create 268
File overview 269
Creating the database 270
Adjusting the config.php file 274
Adjusting the routes.php file 275
Creating the model 276
Creating views 279
Creating the controller 289
Creating the language file 298
Putting it all together 299
User creates a job advert 299
User looks at a job 300
User searches for a job 300
User applies for a job 301
Summary 302
Index 303

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book comprises eight projects. These projects are deliberately made with
extension and modification in mind, that is, as much as possible, I've tried to build
each project in such a way that you can apply your own requirements easily and
you don't have to study the code for weeks on end to work out how it functions.

Following each chapter as they currently are will give you a perfectly functioning
project, of course, but there is always room to expand and should you choose to
extend and add functionality, you can do so easily.

Conversely, each project can be disassembled and specific sections of code can be
lifted out and used in completely different projects that are totally separate to this
book. I've done this in several ways —as much as possible, the code is kept verbose
and simple. The code is kept in small, manageable blocks; I've tried to keep all
code as close to the examples of code used in the Codelgniter documentation

(so hopefully, it will follow a familiar flow and appearance).

I've also tried to document each project. The beginning of each chapter will contain
wireframes, sitemaps, file tree layouts, and data dictionaries of every table in each
project, and in the code itself, I have added explanations of the code.

I try to discuss why something is there rather than just a stale explanation of what
something is; this is done in the hope that explaining why something is there will
help you understand how relevant the code is to whatever change or amendment
you might have in mind.

What this book covers

Chapter 1, Introduction and Shared Project Resources, introduces you to this book

and documents an initial development environment —installing Twitter Bootstrap,
installing Codelgniter, and developing a few shared common resources used by all
chapters throughout the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 2, A URL Shortener, talks about creating an application that allows a user to
enter a URL. The application will encode this URL and generate a new, shorter URL
with a unique code appended to it— this will then be saved to a database. This URL
will be offered to the user for them to distribute and use. Once it is clicked on, the
application we will develop will look at the URL, find the unique code in that URL,
and look for it in the database. If found, the application will load the original URL
and redirect the user to it.

Chapter 3, Discussion Forum, talks about creating an application that will allow users
to create an initial question or proposition. This question will be displayed on a type
of notice board; this is the beginning of a discussion thread. Other users are able to
click on these users' discussions and reply to them should they wish.

Chapter 4, Creating a Photo-sharing Application, talks about creating a small application
that will allow a user to upload an image. A unique URL is then generated and saved
to the database along with details of the uploaded file. It is offered to the user for
them to distribute. Once the URL is clicked on, the uploaded image is fetched from
the filesystem and displayed to the user.

Chapter 5, Creating a Newsletter Signup, contains a project that allows a user to register
to a database of contacts, in this case, a database of newsletter signups. The user

can amend their settings (the settings can be anything you wish: the type of e-mail
content they wish to receive or whether they wish to receive HTML or text-only
e-mails). The application even supports unsubscribing from future newsletters.

Chapter 6, Creating an Authentication System, contains an application to manage users
in a system you might develop and is perhaps the largest chapter in the book. A
simple CRUD environment is supplied, allowing you to add, edit, and delete users.
In turn, users can register themselves and even reset their password should they
forget it.

Chapter 7, Creating an E-Commerce Site, talks about a small but concise e-commerce
application that utilizes Codelgniter's Cart class to support a simple shop. Users can
filter products via different categories, add products to their cart, amend items in the
carts (adjust item quantities), or remove items from their cart altogether.

Chapter 8, Creating a To-do List, talks about creating an application that allows a user
to create tasks that they need to complete. Tasks can be given a due date, that is, a
kind of deadline date. The tasks are displayed in an HTML table. The rows of late
tasks are given a red background color to indicate their importance. Complete tasks
can be set as done and are indicated as being done by being struck through. Finally,
tasks can be deleted to remove old and unwanted items.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 9, Creating a Job Board, talks about creating a job board. Users are encouraged
to post an advert on the job board by filling in an HTML form. The contents of the
form are validated and added to a database of current available jobs. Other users
looking for work can search for these jobs. These users can search through all jobs

or enter a search query to see whether a specific job exists.

What you need for this book

The following is what you need:

* You'll need a computer and an *AMP environment (MAMP, WAMP, LAMP,
and so on)

* A copy of the Codelgniter framework

Who this book is for

In short, this book is anyone; you don't have to have previous Codelgniter
experience —however, this will obviously help. That said, this book isn't really
aimed at the beginner, but that is by no means a barrier; don't forget, Codelgniter
is an easy-to-use framework and can be picked up quite easily.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Create or open a .htaccess file."

A block of code is set as follows:

$this->load->model ('Urls model') ;
if ($res = Sthis->Urls model-s>save url ($data)) {

$page data['success fail'] = 'success';
$page data['encoded url'] = $res;

} else {
$page datal['success fail'] = 'fail’';

}

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

if ($this->form validation->run() == FALSE) ({
// Set initial values for the view
$page data = array('success fail' => null,
'encoded url' => false);

Any command-line input or output is written as follows:

user@server:/path/to/codeigniter$ php tools/spark install -v1.0.0
example-spark

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Enter
the following command and click on OK."

& Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit -errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Shared
Project Resources

What is this chapter for? I hope to use this first chapter to act as a primer for all
other chapters and projects in the book. I would like you to use the introduction as
a common resource containing all of the resources shared by the projects in the book.

The introduction will cover the installation of third-party software, libraries, helpers,
and so on, that are required by the projects in the later chapters. By keeping these
resources in this chapter, the projects aren't swamped with repetitive code and the
project code can be kept as clean and concise as possible.

In this chapter, we will cover the following topics:

* Anoverview of the book

* Downloading Codelgniter

* Downloading and installing Twitter Bootstrap

* Creating common header and footer files used for all projects
* Installing Sparks

e Common language items

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Shared Project Resources

Common resources

The common resources used in this book are discussed in upcoming sections.

Twitter Bootstrap

Every project in the chapters in this book uses Twitter Bootstrap. We will download
Bootstrap and find a good place for it in our filesystem. We will then create the header
and the footer files. All projects in the book will call these header and footer files (using
the Codelgniter function $this->load->view () to display views). However, these
projects will not actually contain the code for the header and footer —only the working
code between the header and footer (what you might think of as the stuff in between
the <body> and </body> tags) will be detailed in each project.

Headers and footers

The menus will be different for individual projects. In the header file, we will include
the code to display the menu, but the actual HTML contents for the menu will be
included in each project's chapter. The footer file contains the closing HTML markup
for each page.

Downloading Codelgniter

We'll need a copy of Codelgniter to start with. This book isn't really aimed at

the beginner, so the chances are reasonably high that you already have a copy of
Codelgniter installed or at least know your way around enough to skip this part;
however, it does make sense to briefly go through the installation of Codelgniter
so that we have something to talk about in later chapters!

First things first, go to https://ellislab.com/codeigniter/user-guide/
installation/downloads.html. You'll see something similar to what is shown

in the following screenshot. This is the Codelgniter download page. At the time

of writing, the current Codelgniter version is 2.2.0; this is why the screenshot says
Current version next to version 2.2.0; however, whichever version is the latest when
you're reading this book is the version you want to use.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Click on the Current version link, and Codelgniter will begin to download.

&> Downloading Codelgniter

- C nttps://ellislab.com/codeigniter/user-guide/instaliation/downloads.html T=
Codelgniter User Guide Version 2.2.0 Table of Contents Page
Codelgniter Home » User Guide Home + Downloading Codeigniter Search User Guide [o

Downloading Codelgniter

= Codelgniter V 2,2.0 (Current version)
Codelgniter V 2.1.4
= Codelgniter V 2.1.3
4 Codelgniter V 2.1.2

Once it's downloaded, navigate to where you have saved the file; this will be a
compressed archive. Unpack it and move the contents of that file to a folder within
your web root.

Specific details of routing, configuration, and database use are in each chapter
(these details are specific to that particular chapter).

Codelgniter on newer versions of PHP

You may experience errors if you run Codelgniter on newer versions of PHP.
There is a hack for this that is explained at https://ellislab.com/forums/
viewthread/244510/. A poster called milan.petrak has described a work around.
It can be summed up as follows:

1. Open the /path/to/codeigniter/system/core/common.php file and find
the line 257.
2. Find the following line:
$ config[0] =& S$Sconfig;
with
return $_config[0];
return $ config[0] =& $config;

3. Save the common.php file.

This will likely be permanently fixed in later releases of Codelgniter, but for now,
this is the fix.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Shared Project Resources

Installing Twitter Bootstrap

Twitter Bootstrap is a frontend HTML5 framework that allows anyone to easily
construct reliable interfaces. At the time of writing, the version of Bootstrap
used is version 3.1.1.

We will use Twitter Bootstrap throughout this book to provide the framework for
all view files and templates. We will look at how to download Twitter Bootstrap and
how to install it in the Codelgniter filesystem.

Firstly, we will need to download the Twitter Bootstrap files. To do that, perform the
following steps:

1. Open your web browser and go to the Bootstrap download link at
http://getbootstrap.com/getting-started. You'll see something
similar to what is shown in the following screenshot:

+ [getbootstrap.com (]

Download

Bootstrap has a few easy ways to quickly get started, each one appealing to a different skill
level and use case. Read through to see what suits your particular needs.

Bootstrap Source code Sass
Compiled and minified CSS, JavaScript, Source Less, JavaScript, and font files, ststrap ported from Less to Sass for
and fonts. No docs or original source files along with our docs. Requires a Loss oasy inclusion in Rails, Compass, or
are included. compiler and some sotup. Sass-only projects.
Download Bootstrap | Download source Download Sass
Curmantly v3.1.1.
Bootstrap CDN
The folks over at MaxCON graciously previde CON support for Beotstrap's CSS and JavaSeript. Just use thess Bootetrap CON links.

<1ink styleshest® hre ¢ fnetdns, bootst rapcdn. com/boot Stran/3, 1. 1/css/boot St ran. min. cas s

<link "styleshest” "/ /netdna. bootst rapedn, com/boot st rap/3. 1. 1/css/bootstrap-theme, mir

Install with Bower

2. Find the Download Bootstrap link and click on it (as indicated in the
preceding screenshot); the download will start automatically.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Once the download is finished, go to its location on your machine and unpack the
archived file. Inside the unpacked file, you should see something similar to what is

shown in the following structure:

bootstrap/

— css/

— bootstrap-theme.css

— bootstrap-theme.css.map
— bootstrap-theme.min.css
L— bootstrap.css

L bootstrap.css.map

L bootstrap.min.css

is/

— bootstrap.js

L— bootstrap.min.js

fonts/

T

— glyphicons-halflings-regular.
— glyphicons-halflings-regular.
— glyphicons-halflings-regular.
L— glyphicons-halflings-regular.

eot
svg
ttf
woff

Move the bootstrap folder to your Codelgniter installation so that the file hierarchy

looks like the following:

/path/to/web/root/
— application/
L— views/
— common
— header.php
— footer.php
system/
bootstrap/
index.php
license.txt

TTTT

In the preceding tree structure, the application and system directories are to
do with Codelgniter, as are the index.php and license.txt files; however, the
bootstrap directory contains the contents of your Bootstrap download.

I have also indicated the location of the common header.php and footer.php files.
These files are used throughout the book and act as a wrapper for every other

view file.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Shared Project Resources

Removing index.php from the address

bar

It is possible to remove index.php from the web browser address bar when
Codelgniter is running. This can be done by following these steps:

1. Create or open a .htaccess file. If a . htaccess file does not already exist,

you can create one using the following:

o

Linux/Mac: Open a terminal window and type the following:
touch /path/to/CodeIgniter/.htaccess

o

Windows: Create a text file in your Codelgniter root, naming it file.
htaccess. Hold down the Windows key and then press R to open the
Run dialogue. Enter the following command and click on OK:

ren "C:\path\to\CodeIgniter\file.htaccess" .htaccess

Once your .htaccess file is opened, write the following lines at the top
of the file:

<IfModule mod rewrite.c>

RewriteEngine on

RewriteCond $1 !”(index\.php|images|robots)\.txt)
RewriteRule *(.*)$ index.php/$1 [L]

</IfModule>

Installing and using Sparks

For a long time, you had to search the Internet and download code from various
places —blogs, code repositories, and so on—to find and use extensions, libraries,
and other useful snippets of code for Codelgniter. Useful installations for
Codelgniter were spread across the Internet; as such, they might have been hard to
locate. Sparks acts as a single point of reference for extensions of Codelgniter. It's
simple to install and use and contains thousands of useful add-ons for Codelgniter:

If you are using a Mac or Linux, then the command-line interface is open to
you. Using the terminal application on your system, navigate to the root of
your Codelgniter application and enter the following line:

php -r "$(curl -fsSL http://getsparks.org/go-sparks)"

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

If your installation was successful, you should see something similar to
the following;:

user@server:/path/to/codeigniter$ php -r "$(curl -£fsSL http://
getsparks.org/go-sparks) "

Pulling down spark manager from http://getsparks.org/static/
install/spark-manager-0.0.9.zip ...

Pulling down Loader class core extension from http://getsparks.
org/static/install/MY Loader.php.txt ...

Extracting zip package ...
Cleaning up ...
Spark Manager has been installed successfully!

Try: "“php tools/spark help”

* If you are using Windows, then you will need to download Sparks and
unpack it manually; to do that, follow these instructions or check out the
instructions on the GetSparks website for the latest version:

1. Create a folder called tools in the top level (root) or in your
Codelgniter directory.
Go to http://getsparks.org/install

Go to the Normal Installation section and download the
Sparks package.

Unpack the download into the tools folder you created in step 1.

Download the Loader class extension from http://getsparks.org/
static/install/MY Loader.php.txt.

6. Rename the file MY Loader.php.txt to MY Loader.php and move
it to the application/core/MY Loader.php location in your
Codelgniter instance.

Now that Sparks is installed in your Codelgniter instance, you can begin to install
extensions and packages.

To install a package from Sparks, type the following in the command-line window:

php tools/spark install [Package Version] Spark Name

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Shared Project Resources

Here, Package Version is the specific version of the Spark you wish to install.

You are not required to state the version and, if you it out, Sparks will download the
latest version by default. Spark Name is the name of the Spark you wish to install;
for example, to install example-spark (version 1.0.0), which comes with the default
installation, type the following in the command-line window:

php tools/spark install -v1.0.0 example-spark

If the installation was successful, you should see something similar to the following;:

user@server:/path/to/codeigniter$ php tools/spark install -v1.0.0
example-spark

[SPARK] Retrieving spark detail from getsparks.org

[SPARK] From Downtown! Retrieving spark from Mercurial repository at
https://url/of/the/spark/repo

[SPARK] Spark installed to ./sparks/example-spark/1.0.0 - You're on
fire!

Creating a shared header and footer view

Every project throughout this book will use the common header and footer files that
we will create here; navigation menus will be different for each project and, as such,
we will build these in the project's chapter themselves. But for now, let's look at the
common header and footer files:

1. Create the header.php file at /path/to/codeigniter/application/
views/common/ and add the following code to it:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width,
initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<link rel="shortcut icon" href="<?php echo
base url ('bootstrap/ico/favicon.ico'); ?>">

<title><?php echo $this->lang-

>line ('system system name'); ?></titlex>
<!-- Bootstrap core CSS -->
[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

<link href="<?php echo base url
('bootstrap/css/bootstrap.min.css'); ?>"
rel="gtylesheet">

<!-- Bootstrap theme -->

<link href="<?php echo base url
('bootstrap/css/bootstrap-theme.min.css'); ?>"
rel="gtylesheet">

<!-- Custom styles for this template -->

<link href="<?php echo base url
('bootstrap/css/theme.css');?>" rel="stylesheet">

<!-- HTML5 shim and Respond.js IE8 support of HTML5
elements and media queries -->

<!--[1if 1t IE 9]>

<script src="https://oss.maxcdn.com/libs/
html5shiv/3.7.0/html5shiv.js"></script>

<script src="https://oss.maxcdn.com/libs/
respond.js/1.4.2/respond.min.js"></script>
<! [endif]-->
</head>

<body role="document">
<!-- END header.php -->

<div class="container theme-showcase" role="main">

The preceding view file contains the HTML for the head of a document. This
is to say that this HTML is used throughout the book for every project, and
it contains the HTML markup for everything from the opening html tag,
opening and closing head tags, and the opening body tag.

Create the footer.php file at /path/to/codeigniter/application/
views/common/ and add the following code to it:

</div> <!-- /container --»>

<link href="<?php echo base_ url ('bootstrap/css/bootstrap.min.
css'); ?>" rel="stylesheet">

<!-- Bootstrap core JavaScript
== -->
<!-- Placed at the end of the document so the pages
load faster -->

<script src="https://ajax.googleapis.com/ajax/
libs/jquery/1.11.0/jquery.min.js"></script>

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Shared Project Resources

<script src="<?php echo base url

('bootstrap/js/bootstrap.min.js') ;?>"></script>
<script src="<?php echo base url
('bootstrap/js/docs.min.js') ;?>"></script>
</body>

</html>

The preceding block of code contains the HTML markup for the footer view
file used for every project throughout this book.

Common language items

In each project throughout the book, we will create a specific language file containing
specific language items that are relevant to that particular project. However, there are
also common language elements that we won't repeat in each project (as there's no
need); thus, we can have them here instead.

The language items mostly cover screen elements such as general navigation, general
error and success messages, and CRUD actions (edit, delete, and so on).

With that in mind, let's go ahead and create the base language file that will serve as a
template for the chapters in this book.

Create the en_admin_lang.php file at /path/to/codeigniter/application/
language/english/ and add the following code to it:

// Common form elements

$lang['common form elements next'] = "Next...";
$lang['common form elements save'] = "Save...";
$lang['common form elements cancel'] = "Cancel";
$lang['common form elements go'l = "Go...";
$lang['common form elements go back'] = "Go back";
$lang['common form elements submission error'] = "There were

errors with the form:";
$lang['common form elements success notifty'] = "Success:";
$lang['common form elements error notifty']l = "Error:";

ang ['common_form_elements_actions = ctions";
$lang [’ _form el ts_acti '] "Actions"

ang ['common_form_elements_action_edi = it";
$1 [£ el ts_action_edit'] "Edit"

ang ['common_form_elements_action_delete = elete";
$1 [£ el ts_action_delete'] "Delete"

an common_form elements_active = ctive";
$lang[" _form el ts_active'l "Active™

ang ['common_form_elements_inactive = nactive";
$lang [’ _form el ts_inactive'l "Inactive"

ang ['common_form_elements_seccessful_change = our changes have
$1 [' _f el ts_ ful_ch '] "y h h
been saved";

ang ['common_form_elements_seccessfu elete = e item has
$1 [' _f el ts_ ful_delete'] "The it h

been deleted";

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

$lang['common form elements yes'] = "Yes";
$lang['common form elements no'l = "No";
$lang['common form elements to'l = "to";
$lang['common form elements from'] = "from";
$lang['common form elements history'l = "History";

The preceding language items are mostly for HTML forms and tables of data, such as
the text for the Submit, Edit, Delete, and History buttons. Also included are general
error or success messages. Feel free to add to them if you wish.

Creating the MY_Controller file

All projects in this book make use of the MY_controller file; this is the same for
all projects.

Create the MY Controller.php file at /path/to/codeigniter/application/core/
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class MY Controller extends CI Controller {

function _ construct ()

{
parent::_ construct();
Sthis->load->helper('form') ;
$this—>load—>helper('url')~
Sthis->load->helper ('security') ;
Sthis->load->helper ('language') ;
// Load language file
$this->lang->load('en admin', 'english');

}

As you can see, we load helpers that are common to all projects, such as the form
helper and the 1anguage helper, among others. The language file is also loaded here.

All the controllers in the project extend from this MY _Controller file rather than the
default CI_Controller file.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Shared Project Resources

Autoloading common system resources

We also are autoloading various resources such as support for database access and
session management. We need to specify that we're using these resources.

Open the autoload.php file from /path/to/codeigniter/application/config/
in your text editor and find the following line:

Sautoload['libraries'] = array();

Replace this line with the following;:

Sautoload['libraries'] = array('database', 'session');

This will ensure that the resources that are required in order to access the database
and to manage sessions are always with us.

Security considerations

Whatever you are programming, your two main priorities are security and
maintainability; this is to say that your application should be as secure as is necessary
and should be written in such a way that someone else can easily program and extend
on what you're doing. I can't discuss maintainability — that's up to you—but I can give
you guidance on Codelgniter and security.

However, I should say that no security is 100 percent foolproof. Even banks and
security agencies that spend hundreds of millions on systems still get hacked, so
what chance do we have? Well, the best we can do is try to reduce the opportunity
that someone might do something that could compromise our code or database.

Moving the system folder

You should move your system folder out of your web root. This is to make it as hard
as possible for anything other than the web server to access. Take a look at the line in
the main index.php file:

$system path = 'system';
Make sure that you amend the preceding line to this:
$system path = '../system';

So, if we moved the system folder out of the web root one level higher, we would
use the. ./ convention, prepending it to system.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Error messages

Obviously you don't want to actually display error messages to the outside world.
Over time, everyone will gain an understanding of the architecture of your site and
where its weaknesses are, especially if you allow SQL errors to be displayed in a
production environment.

For this reason, you should change the environment variable in the main index.php
file from development to production. This will suppress the reporting errors; 404
and 500 errors will still be caught and displayed normally but SQL errors and other
similar errors will be suppressed.

For this, look at the following code in the index. php file:

define ('ENVIRONMENT', 'development');
/*

* Different environments will require different levels of error
reporting.

* By default development will show errors but testing and live will
hide them.

*/

if (defined('ENVIRONMENT'))

{

switch (ENVIRONMENT)
case 'development':
error_ reporting(E_ALL) ;
break;

case 'testing':

case 'production':
error_reporting(0) ;

break;

default:
exit ('The application environment is not set correctly.');

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction and Shared Project Resources

Look at the line in bold (the first line). This line has set Codelgniter to run in
development mode; to change to anything else (specifically, a live mode), change
the line in bold to the following;:

define ('ENVIRONMENT', 'production') ;

All errors will now be suppressed.

Query binding
Query binding is a good idea; it makes your queries easier to read; queries that use

the Codelgniter binding are automatically escaped, leading to more secure queries.
The syntax is simple; for example, consider the following query:

Squery = "SELECT * FROM “users~ WHERE user email = ? AND user level =
?Il;

Look at the end of the query; you can see that we use a question mark where we
would normally use a variable; this is something that would normally look like this:

Squery = "SELECT * FROM “users~ WHERE user email = $user email AND
user level = suser level";

How does Codelgniter know what the question mark means, and how does
Codelgniter put the correct value in the query? Take a look at this second line:

$this->db->query(Squery, array(Suser email, Suser level)) ;

This is how it matches the value to the correct question mark. We use the $this-
>db->query () Codelgniter function, passing to it two arguments. The first is the
$query variable (containing the actual query), and the second is an array. Each
position in the array matches the position of the question marks in the SQL string.

Summary

Now, you will discover that we are ready to start the book and are all set to tackle
each chapter.

Remember that the code for each chapter is available at the Packt website, as is the
SQL for each chapter; this will save you from having to type in all this stuff.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

There are quite a few URL shorteners out there on the Internet; however, there's
always room for a little fun and sometimes people or companies require their own
solutions rather than just using an external provider. The project in this chapter covers
just that— developing a URL shortener in Codelgniter that can be used by anyone.

To make this app, we'll need to do a few things: we'll create two controllers, one to
create a shortened URL and one to redirect a shortened URL to its actual location on
the Web.

We'll create language files to store text, creating a foundation for multiple language
support should you wish to implement it.

We will also make amends to the config/routes.php file —this is to ensure that the
shortened URL is as short as it can be.

However, this app, along with all the others in this book, relies on the basic setup
we did in Chapter 1, Introduction and Shared Project Resources; although you can take
large sections of the code and drop it into pretty much any app you may already
have, bear in mind that the setup we did in Chapter 1, Introduction and Shared Project
Resources, acts as a foundation for this chapter.

In this chapter, we will cover the following topics:

* Design and wireframes

* Creating the database

* Adjusting the routes.php file
* Creating the model

* Creating the views

* Creating the controllers

* Putting it all together

So without further ado, let's get on with it.

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

Design and wireframes

Before we start building, we should always take a look at what we plan to build.

Firstly, a brief description of our intent: we plan to build an app that will display a
simple form to the user. The user will be encouraged to enter a URL into the form
and submit that form.

A unique code will be generated and associated with the URL entered by the user.
This URL and unique code will be saved to a database.

A new URL will be shown to the user containing the unique code we just generated.
That unique code will be appended to the URL of the app we're building. Should
the user (or anyone else) click on that link, the app will look up the unique code in
the database. If the unique code exists, it will redirect the user to the original URL
associated with that unique code.

So, let's take a look at some wireframes to help us understand what this might look
like on screen:

Codelgniter Blueprints-URL Shortener

=l AN | &

Logo or Name Create

URL Shortener
Enter your URL below

[|

74

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This is the first page that the user will see. The user is invited to enter a URL into the
textbox and hit the Go button.

The page will be submitted and code will be generated. Both this code and the
original URL will be saved to the database. The user will then see the new URL
we've just created for them. They can copy that URL to their clipboard (for pasting
into an e-mail and so on) or click on it there and then if they wish. This is shown in
the following screenshot:

Codelgniter Blueprints-URL Shortener

<G> X4y | &

Logo or Name Create

URL Shortener
Enter your URL below

3

Your URL is: http://www.domain.com/url_code

7

File overview

We're going to create six files for this application, as follows:

* /path/to/codeigniter/application/models/urls model.php: This
file provides access to the database and allows us to create the url code,
save the record to the database, and also retrieve the original URL from
the database.

e /path/to/codeigniter/application/views/create/create.php: This
file provides us with our interface, the user facing form, and any messages
needed to inform the user of their actions or the system's actions.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

* /path/to/codeigniter/application/views/nav/top nav.php: This file
provides a navigation bar at the top of the page.

* /path/to/codeigniter/application/controllers/create.php: This
file performs validation checks on the URL inputted by the user, calls any
helpers, and so on.

e /path/to/codeigniter/application/controllers/go.php: This file
provides support for shortened URLs. It gets the unique code parameter
from the URI (first segment), sends it to the Urls_model, and redirects the
user to the associated url address if it exists.

* /path/to/codeigniter/application/language/english/en admin
lang.php: This file provides language support for the application.

The file structure of the preceding six files is as follows:

application/

— controllers/

| — create.php

| F— go.php

— models/

| F— urls model.php

— views/create/

| — create.php

— views/nav/

| — top nav.php

— language/english/
— en admin lang.php

Downloading the example code

W You can download the example code files from your account at
~ http://www.packtpub.com for all the Packt Publishing books you
Q have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Creating the database

Okay, you should have already set up Codelgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is specifically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world —the
code can easily be applied to other situations.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Firstly, we'll build the database. Copy out the following MySQL code into
your database:

CREATE DATABASE “urls™;
USE “urls™;

CREATE TABLE “urls”™ (
“url id® int(11) NOT NULL AUTO_INCREMENT,
“url code” varchar(10) NOT NULL,
“url address” text NOT NULL,
“url created at” timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
PRIMARY KEY (“url_id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO INCREMENT=1 ;

M You don't have to call the database urls if you don't want to. Feel
Q free to rename to something else if you wish; just be sure to update
the config/database. php file accordingly.

Let's take a look at what each item in the database means:

Elements Description

url id This is the primary key.

url code This contains the unique code generated by the save_url ()
function of urls model .php. This is the code that is appended to
the shortened URL.

url_address This is the actual URL the user entered in the form in the create.

php view file. It will be the URL that the user is redirected to.

url_created_at | This is the MySQL timestamp created when the record was added.
It is necessary so that we have an idea of when a record was created;
also, it gives us a method of clearing old records from the database
using a cron script should you wish.

We'll also need to make amends to the config/database.php file—namely setting
the database access details, username password, and so on.

Open the config/database.php file and find the following lines:

Sdb['default'] ['hostname'] = 'localhost';
Sdb['default'] ['username'] = 'your username';
Sdb['default'] ['password'] = 'your password';
Ssdb['default'] ['database'] = 'urls';

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

Edit the values in the preceding lines. Ensure you substitute those values with the
ones that are more specific to your setup and situation —so enter your username,
password, and so on.

Adjusting the routes.php file

We want short URLs —in fact the shorter the better. The user clicking on a URL
would be better served if the URL were as short as possible; for that reason, it would
be a good idea if we removed certain things from the URL to make it shorter — for
example, the controller name and function name. We will use Codelgniter's routing
functionality to achieve this. This can be done as follows:

1. Open the config/routes.php file for editing and find the following lines
(near the bottom of the file):

$route['default controller'] = "welcome";
Sroute['404_override'] = '';

2. Firstly, we need to change the default controller. Initially, in a Codelgniter
application, the default controller is set to welcome. However, we don't need
that; instead we want the default controller to be create. So, consider the
following line:

$route['default controller'] = "welcome";

Replace it with the following code:

Sroute['default controller'] = "create";

3. We will also need to set up a route rule for the go controller. We will need
to remove the controller and function names (usually the first and second
parameters in the URI). The following are two lines of code (highlighted in
bold); add these two lines below the 404 _override route, so that the file now
looks like the following;:

$route['default controller'] = "create";
Sroute['404_override'] = '';

$route['create'] = "create/index";
$route['(:any)'] = "go/index";

Now, the eagle-eyed among you will have looked at that last line and seen the
(:any) type; some of you may have wondered what all that was about.

Codelgniter supports a simple type of regex that makes routing for unknown URLs
much easier. The (:any) type says to Codelgniter that any URI pattern not otherwise
defined (we're also defining create) is to be routed to go/index.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Creating the model

The Urls_model contains three functions; obviously it contains our __construct ()
function but we're not focusing on that at the moment as it's not doing anything
except referencing its parent.

Instead, let's look at the two functions save url () and fetch url (). As their names
suggest, one saves information to the database and the other fetches information
from it. For now, let's go and create the code and we'll discuss in detail what each
function does later:

Create the urls_model.php model file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Urls model extends CI Model
function _ construct () {
parent:: construct () ;

}

function save url ($data) {
/*
Let's see if the unique code already exists in
the database. If it does exist then make a new
one and we'll check if that exists too.
Keep making new ones until it's unique.
When we make one that's unique, use it for our url

*/

do {
Surl code = random string('alnum', 8);
$this->db->where('url code = ', $url code);

Sthis->db->from('urls') ;
$num = S$this->db->count all results();
} while ($num >= 1);

S$query = "INSERT INTO “urls”™ (“url code”, ~“url address™) VALUES

(2,2) ";

Sresult = $this->db->query($query, array(surl code, $data['url
address'])) ;

if ($result)
return $url code;
} else {

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

return false;

}
}

function fetch url (Surl code) ({
$query = "SELECT * FROM “urls™ WHERE “url code™ = ? ";
Sresult = $this->db->query(Squery, array(surl code)) ;
if ($result) {
return Sresult;
} else {
return false;

}
}
}

Let's take a look at save url (). Notice the PHP construct do. . .while; it looks
something like the following:

do {
// something
} while ('..a condition is not met') ;

So that means do something while a condition is not met.

Now, with that in mind, think about our problem. We have to associate the URL that
the user has entered in the form with a unique value. We will use this unique value
to represent the real URL.

Now there's no point using a sequential number (1, 2, 3, ... 1000) as our unique value
as someone can come along and iterate up through the numbers and get access to
everyone's URLs. This may not be such a dreadful security risk as presumably all
pages are accessible from the Internet anyway, but it's still not a good idea. So the
unique value must not only be unique, it must be random and not easily guessed by
passersby. Also, this unique value must only exist once in the database.

To ensure this, we will have to check if the unique value already exists and, if it does
exist, make a new unique code and check in the database again.

So, let's look at the do while construct in the save url () function in a bit more
detail. The following is the code:

do {
$url code = random string('alnum', 8);

$this->db->where('url code = ', $url code);
Sthis->db->from('urls') ;
$num = $this->db->count all results();

} while ($num>= 1);

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

We use Codelgniter's string helper and its random_string () function (make sure
you include the string helper using $this->load->helper ('string'); in your
controllers' constructor). The random string () function will create (as the name
suggests) a random string of characters that we will use for our unique code.

In this case, we're asking random_string () to give us a string of characters made up
of numbers and uppercase and lowercase letters; that string should be no more that 8
digits in length.

We then look into the database to see if the code random string () has made for
us already exists. We'll use the $this->db->count_all_results () ; Codelgniter
function to count up the number of matching results.

If the unique string already exists, then the number returned by $this->db->count_
all_results () ; will be equal to 1 (as it already exists). If this happens, we will loop
back to the beginning of the do while construct and start again by generating a

new code.

We keep doing this until we find a code that does not exist in the database. When
we do, we break out of the do while loop and save that unique code, along with the
original URL to the database.

Now let's look at fetch url (). We want to see if there is a record in the database
that corresponds to the $url_code entered by the user (in this case, they have clicked
on a URL). The fetch_url () function accepts $url_code as a function argument
passed to it by the controller and looks for it in the database. If it is found, the entire
record (table row) is returned to the controller; if not, it returns false. The controller
handles the false result accordingly (it displays an error).

Creating views

We're going to create two view files in this section, as follows:

* /path/to/codeigniter/application/models/views/create/create.php

* /path/to/codeigniter/application/models/views/nav/top nav.php

Don't forget that the navigation file (views/nav/top_nav.php) is unique to each
chapter in this book.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

Creating the view file—views/create/create.php

The create.php file is the view file that the user creating the shortened URL will
see; it contains the HTML form the user will enter the original URL into and any
interactive elements such as error or success messages.

Create the create/create.php view file and add the following code to it:

<div class="page-header">

<hl><?php echo $this->lang->line('system system name'); ?></
hils>
</div>
<p><?php echo $this->lang->line('encode instruction 1'); ?></p>
<?php if (validation errors()) : ?>

<?php echo validation errors(); ?>
<?php endif ; ?>

<?php if ($success fail == 'success') : ?>
<div class="alert alert-success">

<?php echo $this->lang->line('common form elements
success _notifty'); ?> <?php echo $this->lang->line ('encode
encode _now_success'); ?>

</div>
<?php endif ; ?>

<?php if ($success fail == 'fail') : ?>
<div class="alert alert-danger"s>
<?php echo $this->lang->line('common form elements

error_notifty'); ?> <?php echo $this->lang->line('encode_
encode _now_error'); °?>
</div>

<?php endif ; ?>

<?php echo form open('create') ; ?>
<div class="row"s>
<div class="col-1lg-12">
<div class="input-group">
<input type="text" class="form-control" name="url

address" placeholder="<?php echo $this->lang->line('encode type url
here'); ?>">

<button class="btn btn-default" type="submit"><?php
echo $this-s>lang->line('encode encode now'); ?></buttons

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

</div><!-- /input-group -->
</divs<!-- /.col-1lg-6 -->
</divs><!-- /.row -->
<?php echo form close() ; ?>

<?php if ($encoded url == true) : ?>
<div class="alert alert-info">
<?php echo $this->lang->line('encode encoded url') ;
?> </strongs>
<?php echo anchor ($encoded url, $encoded url) ; ?>
</div>
<?php endif ; ?>

Creating the view file-views/nav/top nav.php

Each project in this book has its own navigation bar at the top of the page. This
chapter is no exception although the actual navigation options for this project are
limited — mostly because the app we're building only really does one thing. So create
the nav/top_nav.php view file and add the following code to it:

<!-- Fixed navbar -->

<div class="navbarnavbar-inverse navbar-fixed-top" role="navigation"s
<div class="container">

<div class="navbar-header">

<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse">

Toggle navigation</spans>

</spans>

</buttons>

<?php echo $this->lang->line('system
system name'); ?>

</div>

<div class="navbar-collapse collapse">

<ul class="navnavbar-nav">

<1li class="active"><?php echo anchor('create', 'Create') ; ?>

</div><!--/.navbar-collapse -->

</div>

</div>

<div class="container theme-showcase" role="main">

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

Creating controllers

There are two controllers in this project. The first one create is responsible for
displaying the initial form to the user and validating the input. The second one go
will redirect the user to the original URL.

Don't forget that the controllers extend the core/MY_Controller.php file and
inherit the helpers loaded there.

Creating the controller file—controllers/create.
php

The create controller in this project is responsible for the initial contact with the
user; that is to say, it loads the view file views/create.php (that displays the form to
the user) and processes the input—validation and more. We'll look at it in a second,
but first let's create the controller:

Create the controller file create.php and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Create extends MY Controller {
function _ construct () {
parent:: construct();
Sthis->load->helper('string') ;
$this->load->library('form validation') ;
Sthis->form validation->set error delimiters('<div

class="alert alert-danger">', '</div>"');
}
public function index() {
Sthis->form validation->set rules('url address', $this->

lang->line('create url address'),
'required|min_length[1] |max_length[1000] |trim');

if ($this->form validation-srun() == FALSE) ({
// Set initial values for the view
S$page data = array('success_ fail' => null,
'encoded_url' => false);

Sthis->load->view ('common/header') ;
S$this->load->view('nav/top nav') ;
Sthis->load->view('create/create', $page_data) ;

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Sthis->load->view ('common/footer') ;
} else {
// Begin to build data to be passed to database
$data = array(
'url address' => $this->input->
post ('url address'),

)i

$this->load->model ('Urls model') ;

if ($res = $this->Urls model->save url ($data)) {
$page datal['success fail'] = 'success';
$page data['encoded url'] = $res;
} else {
// Some sort of error, set to display error
message
$page datal['success fail'] = 'fail’';

// Build link which will be displayed to the user
S$page_datal'encoded url'l = base url() . '/' . Sres;

Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
Sthis->load->view('create/create', $page data);
Sthis->load->view ('common/footer') ;

}

So, the create controller does the following things for us:

* Form validation, where it checks to see if the input is what we expect

e Packaging up the url_address ready for the Urls_model

* Handling any error and success messages
Let's go through the controller by taking a look at what happens when the controller
is loaded. As we're using Codelgniter's form validation processes, you'll be aware

that ($this->form validation->run() == FALSE) will trigger the view files to be
displayed, as shown here:

if ($this->form validation-s>run() == FALSE) ({
// Set initial values for the view
$page data = array('success fail' => null,
'encoded url' => false);
[33]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

$this->load->view('common/header') ;
$this->load->view('nav/top nav') ;
$this->load->view('create/create', $page data);
$this->load->view('common/footer') ;

} else {

Before we display the view files, we set some variable values for the view file
create/create.php. These values govern how the success and error messages
are displayed. These are stored in the $page_data array (see the bold text in the
preceding code).

Assuming there were no errors from the form validation, we grab the url_address
from the post array and package it into an array, as follows:

$data = array(
'url address' => $this->input-s>post('url address'),

)i

We then load the Urls_model and send the $data array to the save url () function
of Urls model:

$this->load->model ('Urls model') ;

if ($res = $this->Urls model-s>save url ($data)) {
$page datal['success fail'] = 'success';
$page data['encoded url'] = $res;

} else {
$page datal['success fail'] = 'fail’';

}

I have removed the comments to make it more legible
s for this explanation.

When successful, the model will return the url code that we store in
$page datal['encoded url'].

This is then passed the create/create.php view file, which will display a success
message to the user and their now shortened URL.

Creating the controller file—controllers/go.php

The go controller is the other end of the process. That is to say, the create.php
controller creates the shortened URL and saves it to the database, and the go.php
controller is responsible for taking a URL, finding the $url_code in the uri segments,
looking in the database to see if it exists, and, if so, redirecting the user to the actual
web address associated with it. Sounds simple, and in truth it is.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Create the go . php controller file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Go extends MY Controller ({
function _ construct () {
parent:: construct();
Sthis->load->helper('string') ;

public function index() {
if (!$this->uri-s>segment (1)) ({
redirect (base url());
} else {
Surl code = $this->uri->segment (1) ;

$this->load->model ('Urls model') ;
Squery = $this->Urls model->fetch url ($url code) ;

if ($query->num rows() == 1) ({
foreach ($Squery->result() as Srow) {
Surl address = S$Srow->url address;

redirect (prep url(surl address)) ;

} else {
S$page _data = array('success_ fail' => null,
'encoded_url' => false);
Sthis->load->view ('common/header') ;

S$this->load->view('nav/top nav') ;

Sthis->load->view('create/create', S$page data);

(
(
(
(

Sthis->load->view ('common/footer') ;

}
The go controller really only gets going after the following lines:

if (!$this->uri-s>segment (1))
redirect (base url());
} else {

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

The preceding lines check to see if there is a 1st segment in the URL. Normally, the
first and second segments are taken up by the controller and function name (as the
order in the URL usually goes controller/function/parameter). However, as we want
the URL to be short (or at least that's the idea), we're taking our unique code from the
first parameter. Think of it as shifting what would normally be in the third parameter
to the left. So, two levels higher up means that what was in the third segment is now
at the first.

How do we do this? How do we have a parameter (our unique code) as the 1st
parameter instead of the controller name? Where did the controller and function
names go and why does it still work when they're removed?

We alter the routes. php file, of course; this is explained earlier in this chapter.

Anyway, let's return to our code. If there is no item in the URL, then there isn't really
anything for this controller to do. Thus, we'll redirect the user to the base_url ()
function, which will load the default controller (set as autoload.php); in this case,
the default controller is the create.php file.

Now, assuming that there was a 1st parameter, we'll move on to the next part of the
controller, the bit that works out the $url_code, as shown in the following code:

Surl code = $this->uri->segment (1) ;
$this->load->model ('Urls model') ;
Squery = $this->Urls model->fetch url ($Surl code) ;

if ($query->num rows() == 1) ({
foreach (Squery->result() as Srow) {
Surl address = Srow->url address;

}

redirect (prep url(surl address)) ;
} else {

Take a look at the preceding code. We grab the 1st uri segment and assign it to the
$url code variable. We need to check if this code exists in the database, so we load
the Urls_model and call the fetch_url () function of Urls_model, passing to it
Surl code.

The fetch_url () method will look in the database for a record corresponding to the
value in $url_code. If nothing is found, it'll return false, causing the controller to
load the create/create.php view.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

However, if a record is found, fetch_url () returns the Active Record object. We
now loop over the object, picking out the url_address, and storing it as the local
variable $url_ address, as shown here:

foreach ($query-s>result() as $Srow) {
Surl address = Srow->url address;

}

Now, we have the original URL in the $url_address variable. We simply pass this
directly to the redirect () Codelgniter function, which will, as the name suggests,
redirect the user to the original URL.

Notice the use of the prep_url () Codelgniter function from within the redirect ()
function. This can be done as follows:

redirect (prep_ url(surl_ address)) ;

The prep_url () function will ensure that there is http:// at the beginning of the
URL, if it does not already have it

Creating the language file

Taking text out of the HTML or storing text in other files such as controllers can
make maintaining applications or adding multiple languages a nightmare. Keeping
languages in a separate dedicated file is always a good idea. With that in mind, we
will create a language file for this app.

Create the language file en_admin_lang.php and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;
// General
$lang['system system name'] = "URLs a Swinger";
// Encode
$lang['encode instruction 1']= "Enter a URL in the text box below and
we'll shorten it";
$lang['encode encode now']= "Shorten Now";
$lang['encode encode now success']= "Your URL was successfully
shortened - check it out below";
$lang['encode encode now error']= "We could not shorten your url, see
below for why";
$lang['encode type url here']= "Write the URL here";
$lang['create url address'] = "Write the URL here";
$lang['encode encoded url'l= "Hey look at this, your shortenedurl
ig:";

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

A URL Shortener

Putting it all together

Now that we have made all the amendments to configuration files, created the
database, and created all the files necessary for the app to work (controllers, models,
views, and so on) let's run through a few scenarios briefly, just to make sure we
know how the app functions.

Creating a shortened URL

Let's consider an example where Lucy visits the URL Shortener app and the create
controller is called by Codelgniter, displaying the create/create.php view file.
The following is the sequence of events:

1.
2.

Lucy enters a URL in the text input and clicks on Shorten Now.

Upon submitting the form, the controller validates the URL. The URL is
successfully validated and the validation returns no errors.

The URL entered by Lucy is then sent to the save_url () function of Urls_
model that creates a unique code. The save url() function uses the PHP
construct do while and an Active Record database query to create a unique
code that doesn't already exist in the database.

Once a code has been created that doesn't already exist, it is saved to the
database along with a MySQL timestamp.

The app then displays a success message to Lucy, informing her that the
URL was saved correctly. It also displays the URL for her to either click on
or (more likely) copy-and-paste elsewhere.

Retrieving a URL

Let's consider an example where Jessica receives an e-mail from Lucy containing the
shortened URL. The following is the sequence of events:

1.
2.

Jessica opens the e-mail and clicks on the URL in that e-mail.

Her computer opens a browser and takes her to our app. As the create
controller is not the 1st uri segment, the go controller is run (we set this in
the routes.php file).

The go controller loads the Urls_model, passing it the url_code (that was
in the first segment of uri). The fetch url () function of Urls_model looks
in the database for the code and, if found, it returns the actual web address
associated with that code to the go controller.

The go controller redirects the browser to the URL supplied by the model.

Jessica is happy as she can look at the cute cat video Lucy sent her! Awww!

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Summary

So there you are! We've got ourselves a fairly good URL shortener application.

It's certainly not feature-rich or the most advanced, but it works and is ready to be
expanded upon should you wish. Perhaps you could add user accounts or payment
for advanced features?

It currently uses Twitter Bootstrap for the frontend so it probably could do with an
individual face-lift, a different style, look and feel, but it's currently user-friendly and
responsive to mobile devices.

In the next chapter, we will create a discussion forum, allowing someone to create
a discussion and then letting people comment and reply.

A simple admin moderation system will be provided to help prevent any untoward
shenanigans such as naked pictures of celebrities or signals intelligence being posted
up, or something like that—unless of course you're into that sort of thing, in which
case I hear that the Ecuadorian embassy in London do a terribly good lunch; you
might get fed up of it after a few months, though!

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

A discussion forum can be quite a useful resource to have on internal company
projects or to allow clients to interact on projects, for example.

Discussion forums are a great way to create a community around a particular
subject or topic, acting as a type of wiki. They are a store of knowledge of something
or a record of a discussion, containing a history of changes of ideas and concepts and
recording the evolution of thinking around a topic or subject. They can also be used
to talk about cats.

To create this app, we'll create three controllers: one to handle discussions,
one to handle comments, and one to handle any admin functionality that we
might need, such as moderating comments and discussions.

We'll create a language file to store text, allowing you to have multiple language
support, should that be required.

We will make amendments to the config. php file to allow for encryption support,
which is necessary for sessions and password support.

We'll create all the necessary view files and even a . css file to help Bootstrap
with some of the views.

This app, along with all the others in this book, relies on the basic setup we did

in Chapter 1, Introduction and Shared Project Resources, although you can take large
sections of the code and drop it into pretty much any app you might already have;
please keep in mind that the setup done in the first chapter acts as the foundation
for this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

It is worth mentioning the limits of the application. This application contains the
most basic discussion forum functionality. We create users on our way; however,
there is no user management — to include that would be a large extension of the
application code and slightly out of scope of a discussion forum.

Users are created when someone creates a comment or discussion using an e-mail
address that is not currently stored in the users table. A password is generated for
them and a hash is created based on that password.

As this application creates a password for them automatically, you might wish to
tell them what that password is — perhaps by sending them an e-mail. However,
you might not wish them to be able to log in at all. It's up to you— the functionality
is there should you wish to expand upon it.

In this chapter, we will cover:

* Design and wireframes
* Creating the database

* Creating the models

* Creating the views

* Creating the controllers
* Putting it all together

So, without further ado, let's get on with it.

Design and wireframes

As always, before we start building, we should take a look at what we plan to build.

Firstly, we need to give a brief description of our intent; we plan to build an app that
will let a user view any pre-existing discussion pages and then allow that user to
comment on a page if they wish. The user can also create new discussions and other
users can comment on them.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Let's take a look at a site map:

Home

(2)
View All
Discussions

3
View Discussion/
Add Comment

@

New Discussion

©)

Admin Login

©

Moderator Dashboard

Now, let's go over each item and get a brief idea of what it does:

Home: Imagine this as the index — the routing start point. The user will
visit the Home page and will be redirected to point 2 (the View All
Discussions page).

View All Discussions: This will display all discussions in a list format.

We'll have some filtering going on as well (the most recent first, most popular
next, and so on). The user will be able to click on a discussion title and be
redirected to the View Discussion page.

View Discussion/Add Comment: This page displays the initial comment
(written by the person who created the discussion) and all subsequent
comments and contributions added by other users. A user is able to join in
a discussion by filling in a form at the bottom of the View Discussion page.

New Discussion: A user can create a new discussion. This discussion will
then appear on the View All Discussions page as a new discussion.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

We now begin to look at the admin-only functions (largely, discussion and comment
moderation), which are as follows:

* Admin Login: This is just a simple login script. It is separate from the one
used in Chapter 6, Creating an Authentication System.

* Moderator Dashboard: This displays all discussions and comments awaiting
moderation and options in a list format, in order to allow or reject them.

Now that we have a fairly good idea of the structure and form of the site, let's take
a look at some wireframes of each page.

The View All Discussions page

The following screenshot shows a wireframe of point 2 (the View All Discussions
page) in the preceding diagram. The user is able to see all current discussions, the
initial text written by the discussion creator (this acts as a brief introduction to the
discussion subject), the total number of comments so far, the methods to sort the
discussions into newest/oldest, and so on.

Codelgniter Blueprints-Discussion Forum

<> XN D

Forum Home New Discussion Login

Sort Newest Asc/Desc

Discussion Title

This is a paragraph of text. It is the initial text written by the person
who created the discussion

Discussion Title

This is a paragraph of text. It is the initial text written by the person
who created the discussion

Discussion Title

This is a paragraph of text. It is the initial text written by the person
who created the discussion

v

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The View Discussion/Add Comment page

The following screenshot shows a wireframe from point 3 (the View Discussion/Add
Comment page). You can see that this page displays the initial discussion text and all
the replies. At the bottom of the list of replies, there is a form that allows the user to
join the discussion. There is also a New Discussion link at the top; this will take the
user to point 4 (the New Discussion page).

Notice the flag link next to each comment title. If a user clicks this, then the comment
is immediately flagged for review by the admin. For example, let's say someone wrote
something about a famous Hollywood actor or, something loony such as spaceships
that might be considered potentially libelous; this comment can be flagged for review.
If it is considered safe, it can be set as such; however, if it is not considered safe, it can
be removed to prevent the writer of the comment from being followed everywhere

by people in vans, turning up at their work, talking to their neighbors, and so on—a
purely hypothetical, non-real-world, and completely made up example of something
that has never happened ever, not even once.

Codelgniter Blueprints-Discussion Forum

G X N G)

Forum Home New Discussion Login

Discussion Title

This is a paragraph of text. It is the initial text written by the person
who created the discussion.

Comment Title flag
O This is a paragraph of text. It is the written by a person
who contributed to the discussion.

Comment Title flag
O This is a paragraph of text. It is the written by a person
who contributed to the discussion.

Comment Title flag
O This is a paragraph of text. It is the written by a person
who contributed to the discussion.

[Your Name] [Your Email

Your Comment...

uome

74

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

The New Discussion page

The following screenshot shows a wireframe from point 4 (the New Discussion
page). You can see the form where the user can create a new discussion. The user is
invited to enter the discussion title, their name, and the initial discussion text. Once
the user has entered all relevant information into the form, they press the Go button,
and the form is validated by the create () discussion controller function.

Codelgniter Blueprints-Discussion Forum

Ao X 4N @)

Forum Home New Discussion Login

Create discussion below

Your Name Your Email
| | | |

Discussion Title

Discussion Intro Text

oo

//

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The admin Dashboard page

The following screenshot shows you the admin dashboard from point 6
(the Moderator Dashboard page). From this area, the admin can view any
discussions and comments that have been flagged and moderate them,
approving them or agreeing with the flag and deleting them.

Codelgniter Blueprints-Discussion Forum

==Y AN D

Forum Home New Discussion Login
Dashboard

Discussions

ComrEit A Actions

Discussion Title
Discussion Body Text
Discussion Title
Discussion Body Text
Discussion Title
Discussion Body Text

Allow | Block
Allow | Block

Allow_| Block

Comments
Comment A Actions
Comment Body Text Allow | Block
Comment Body Text Allow | Block
Comment Body Text Allow_| Block

//

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

File overview

We're going to create 15 files for this application; these files are as follows:

/path/to/codeigniter/application/models/discussions_model.php:
This file provides read/write access to the database table discussions.

/path/to/codeigniter/application/models/comments model.php:
This file provides read/write access to the database table comments.

/path/to/codeigniter/application/models/admin model . php:
This file provides read / write access to the database, enabling an admin
to moderate discussions and comments.

/path/to/codeigniter/application/views/discussions/new.php:
This file provides an interface to display a form, allowing the user to create a
new discussion; it also displays any error or success messages to the user.

/path/to/codeigniter/application/views/discussions/view.php:
This file provides us with an interface, allowing the user to view all active
discussions. It also provides filtering interface options (for example, sorting).

/path/to/codeigniter/application/views/comments/view.php: This
file provides us with an interface to display an individual discussion with all
the comments other users have written to the user. There is also a form at the
bottom of this view file that allows the user to join the discussion by creating
a comment. Any validation or success messages related to adding a comment
will be displayed in this view file as well.

/path/to/codeigniter/application/views/admin/dashboard.php: This
file displays a list of comments and/or discussions that require moderating.

/path/to/codeigniter/application/views/admin/login.php: This file
provides a login form for admins.

/path/to/codeigniter/application/views/nav/top nav.php: This file
provides a navigation bar at the top of the page.

/path/to/codeigniter/application/controllers/discussions.php:
The discussions controller manages the creation of new discussions and
displays a list of discussions to normal users.

/path/to/codeigniter/application/controllers/comments.php: The
comments controller manages the creation of new comments and links them
to discussions. It also displays a list of comments to normal users.

/path/to/codeigniter/application/controllers/admin.php: The
admin controller handles the logging in of admins, the display of discussions
and comments awaiting moderation, and the moderation of those discussions
and comments.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

* /path/to/codeigniter/application/language/english/en admin_
lang.php: This file provides language support for the application.

* /path/to/codeigniter/application/views/common/login header.php:
This file contains specific HTML markup to display the login form correctly.

* /path/to/codeigniter/bootstrap/css/signin.css: Thisis a css script
containing specific css code to display the login form correctly.

The file structure of the preceding 15 files is as follows:

application/

— controllers/

— discussions.php
— comments.php

— admin.php

models/

— comments model.php
l_
l_
views/discussions/
l_
l_
iews/comments/

b— view.php
views/admin/

— login.php

— dashboard.php

— views/nav/

| — top nav.php

b— views/common/

| — login header.php
— language/english/

| — en admin lang.php

discussions model.php
admin model.php

view.php
new.php

<

I N

bootstrap/

— css/

— signin.css

Note the last item in the list: signin.css. This sits in the bootstrap/css/ folder,
which is at the same level as Codelgniter's application folder. We installed Twitter
Bootstrap in Chapter 1, Introduction and Shared Project Resources. In this chapter, we
will go through placing the bootstrap folder at this folder level and location.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

Creating the database

Okay, you should have already set up Codelgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is specifically built with the setup from the first chapter in
mind. However, it's not the end of the world if you haven't — the code can easily be

applied to other situations.

Firstly, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE 'discuss_ forum';
USE 'discuss_ forum';

DROP TABLE IF EXISTS 'ci sessions';

CREATE TABLE 'ci sessions' (
'session_id' varchar (40) COLLATE utf8 bin NOT NULL DEFAULT '0',

'ip address' varchar(16) COLLATE utf8 bin NOT NULL DEFAULT '0',
'user agent' varchar(120) COLLATE utf8 bin DEFAULT NULL,
'last_activity' int(10) unsigned NOT NULL DEFAULT '0',
'user data' text COLLATE utf8 bin NOT NULL,
PRIMARY KEY ('session id'),
KEY 'last activity idx' ('last activity')

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8 bin;

DROP TABLE IF EXISTS 'comments';

CREATE TABLE 'comments' (
'cm_id' int (11) NOT NULL AUTO_INCREMENT,

'ds_id' int(11) NOT NULL,

'cm_body' text NOT NULL,
'cm_created at' timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,

'usr_id' int(11) NOT NULL,
'em_is active' int (1) NOT NULL,
PRIMARY KEY ('cm_id')

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

DROP TABLE IF EXISTS 'discussions';

CREATE TABLE 'discussions' (
'ds_id' int(11) NOT NULL AUTO_INCREMENT,
'usr_id' int(11) NOT NULL,
'ds_title' varchar(255) NOT NULL,

'ds_body' text NOT NULL,
'ds_created at' timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,

'ds_is active' int (1) NOT NULL,

PRIMARY KEY ('ds_id')
) ENGINE=InnoDB AUTO INCREMENT=1 DEFAULT CHARSET=utf8;

DROP TABLE IF EXISTS 'users';

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

CREATE TABLE 'users' (
'usr id' int(11) NOT NULL AUTO_ INCREMENT,
'usr name' varchar (25) NOT NULL,
'usr hash' varchar(255) NOT NULL,
'usr email' varchar(125) NOT NULL,
'usr created at' timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
'usr is active' int (1) NOT NULL,
'usr level' int (1) NOT NULL,
PRIMARY KEY ('usr_id')
) ENGINE=InnoDB AUTO_ INCREMENT=1 DEFAULT CHARSET=utf8;

M You don't have to call the database discuss_forumif you don't
want to. Feel free to rename it to something else if you wish; just be
sure to update config/database . php accordingly.

You'll see that the first table that we create is ci_sessions; we need this in order to
allow Codelgniter to manage sessions, specifically, logged-in users. However, this

is just the standard session table that is available from Codelgniter User Guide, so I'll
not include a description of the table as it's not technically specific to this application.
However if you're interested, there's a description at http://ellislab.com/
codeigniter/user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table and see what it means. The following
table describes the comments table:

Table: comments

Element Description

cm_id This is the primary key.

ds_id This is the foreign key from the discussions table; it links
the comments table to the discussions table. The link is
discussions.ds_id = comments.cm id.

cm_body This is the body text of a comment.

cm_created_at | This is the MySQL timestamp that is created when the record is
created.

usr_id This is the foreign Key from the users table. A user is created when
someone enters an e-mail address (when creating a discussion or
comment) that doesn't already exist in the users table.

cm_is_active | This indicates whether the comment is active (1) or inactive (0);
inactive means that a comment is not displayed in a forum but is
displayed to an admin in the admin dashboard for moderation.

[51]

www.it-ebooks.info

http://ellislab.com/codeigniter/user-guide/libraries/sessions.html
http://ellislab.com/codeigniter/user-guide/libraries/sessions.html
http://www.it-ebooks.info/

Discussion Forum

The following table describes the discussions table:

Table: discussions

Element Description
ds_id This is the primary key.
usr_id This is the foreign key from the users table. A user is created

when someone enters an e-mail address (when creating a
discussion or comment) that doesn't already exist in the users table.

ds_title This is the title of a discussion forum.

ds_body This is the body element of a discussion forum; it is the initial
text—usually a question — that the creator of a discussion writes
to entice people to comment.

ds_created_at | This is the MySQL timestamp that is created when the record
is created.

ds_is_active This indicates whether the discussion forum is active (1) or
inactive (0); inactive means that a discussion is not displayed

on the page but is displayed to an admin in the admin dashboard
for moderation.

The following table describes the users table:

Table: users

Element Description

usr_id This is the primary key.

usr name This is the username of an individual once they're in the
database.

usr_hash This is the hashed value of their password. The password is

generated in the new comment () function of comments model
and the create () function of discussions model and

is passed to the $this->encrypt->shal () Codelgniter
function to create a hash. The hash is stored in the database
inusers.usr hash; however, the password is not stored

(as you would expect).

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Table: users

Element Description

usr_email This is the e-mail of the person writing a comment or creating a
discussion forum. The application will look in the users table to
see whether the e-mail already exists. If it does, the primary key
(usr_1id) for that record is assigned to a comment or discussion
forum. If the e-mail does not already exist, then a row is created
in the users table and the primary key is then assigned to the
comment or discussion.

usr_created_at | This is the MySQL timestamp that is created when the record
is created.

usr_is_active | This indicates whether the user is active (1) or inactive (0).
Currently, there is no functionality to handle active or inactive
users; this is something you can implement yourself should
you wish.

usr_level This indicates the permission level of the user. Standard users are
given the integer value 1, and admins (that is, those who can log
in) are given the integer value 2. There is no functionality to use
this usr_level element; however, it is there should you wish to
expand upon it.

At this early stage, it's important to discuss the concept of users in this application.
We're not really going to employ any detailed user management, and users will only
be created when someone enters their e-mail address when they add a comment or
create a discussion. We're creating users here because it'll be easy for you to extend
this functionality in your own time to manage users, should you wish.

We'll also need to make amendments to the config/database. php file—namely
setting the database access details, username password, and so on. The steps are
as follows:

1. Open the config/database.php file and find the following lines:

Sdb['default'] ['hostname'] = 'localhost';
Sdb['default'] ['username'] = 'your username';
Sdb['default'] ['password'] = 'your password';
Sdb['default'] ['database'] = 'urls';

2. Edit the values in the preceding lines, ensuring you replace these values
with values that are more specific to your setup and situation. Enter your
username, password, and so on.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

Adjusting the config.php file
There are a few things in this file that we'll need to configure to support sessions

and encryption. So, open the config/config.php file and make the changes
described in this section.

We will need to set an encryption key. Both sessions as well as Codelgniter's
encryption functionality require an encryption key to be set in the $config array,
so perform the following steps:

1. Find the following line:

Sconfig['encryption key'] = H

Change it to the following;:

Sconfig['encryption key'l = 'a-random-string-of-alphanum-
characters';

o Now, don't actually change this value to literally a-random-string-
~ of-alphanum-characters obviously, but change it to, er, a random
Q string of alphanum characters — if that makes sense. Yeah, you
know what I mean.

2. Find the following lines:

$config['sess cookie name'] = 'ci session';
Sconfig['sess expiration'] = 7200;
$config['sess expire on close'] = FALSE;

$config['sess_encrypt cookie'] = FALSE;
Sconfig['sess use database'] = FALSE;
$config['sess table name'] = 'ci sessions';
Sconfig['sess match ip'] = FALSE;
$config['sess match useragent'] = TRUE;
Sconfig['sess time to update'] = 300;

Change them to the following:

Sconfig['sess_cookie name'] = 'ci session';
Sconfig['sess expiration'] = 7200;
Sconfig['sess_expire on close'] = TRUE;

Sconfig['sess_encrypt cookie'] = TRUE;
Sconfig['sess use database'] = TRUE;
Sconfig['sess_table name'] = 'ci_sessions';
Sconfig['sess match ip'] = TRUE;
Sconfig['sess match useragent'] = TRUE;
Sconfig['sess_time_to_update'] = 300;

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Adjusting the routes.php file

We want to redirect the user to the discussions controller rather than the default
Codelgniter welcome controller. To do this, we will need to amend the default
controller setting in the routes. php file to reflect this, which can be done as follows:

1. Open the config/routes.php file for editing and find the following lines
(near the bottom of the file):

Sroute['default controller'] = "welcome";
$route['404_override']l = '';

2. Firstly, we need to change the default controller. Initially in a Codelgniter
application, the default controller is set to welcome; however, we don't need
this. We want the default controller to be discussions instead. So, find the
following line:

Sroute['default controller'] = "welcome";

Change it to the following;:

Sroute['default controller'] = "discussions";

Creating the models

We're going to create three models for this application; these are as follows:

* discussions_model.php: This helps in managing interactions with the
discussions table

* comments_model.php: This helps in managing interactions with the
comments table

* admin_model.php: This helps in managing interactions with the users table

Creating the model file — models/
discussions_model.php

The discussions model.php model file has three functions; these are fetch
discussions (), fetch discussion(),and flag(). The fetch discussions ()
function fetches many discussions, the fetch_discussion() function fetches a
single discussion, and the flag () function sets a discussion as one that requires
moderation by an admin.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

The steps to create this model file are as follows:

Create the /path/to/codeigniter/application.models/discussion model.php
file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Discussions model extends CI Model {
function _ construct () {
parent:: construct();

}

Let's first look at the fetch discussions () function. The fetch discussions ()
function will return the result of a database query to the discussions controller's
index () function. It takes two arguments that are set to null by default. These are
$filter and $direction, and they are used to add filtering and sorting to the
query string.

The following query will only return active discussions — that is, any discussions
whose ds_is_active value is not set to 0. The flag () function of discussions
model (discussed later) sets a discussion to inactive:

function fetch discussions($filter = null, $direction =
null) {
Squery = "SELECT * FROM 'discussions', 'users'
WHERE 'discussions'.'usr_ id' =
'users'.'usr_ id'
AND 'discussions'.'ds is active' != '0' ";

If the £ilter variable is initially null, then we will need to order the results to
ascending. In the following code, we test whether $filter equals null; if not,
$dir = 'ASC' sets the direction to ascending. If, however, $filter is not null,
then we go into the PHP if statement and look at the value of $direction. We
perform a PHP switch case procedure to quickly ascertain whether the value of
$direction is ASC or DESC, writing the value of $dir to AscC or DESC accordingly:

if ($filter != null) {

if ($filter == 'age') {
$filter = 'ds_created at';
switch ($direction) {
case 'ASC':
$dir = 'ASC';
break;

case 'DESC':

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Sdir = 'DESC';
break;
default:
$dir = 'ASC';
}
}

} else {
$dir = 'ASC';

}

Next, the query is executed and its return value is analyzed. If the query was
successful, then $result is returned to the index () function of the discussions
controller. The index () function of the discussions controller then stores

this query result in the $page_data['query'] array item and passes it to the
discussions/view.php view file. This is shown here:

Squery .= "ORDER BY 'ds created at' " . $dir;
$result = $this->db->query(Squery, array($dir));

if ($result) ({
return Sresult;
} else {
return false;
}
}

function fetch discussion($ds_id) ({

Squery = "SELECT * FROM 'discussions', 'users' WHERE
'ds_id' = ?
AND 'discussions'.'usr id' = 'users'.'usr_id'";

return S$result = $this->db->query($query, array($ds_id)) ;

}

Now, let's look at the create ($data) function. The function takes an array

(named $data) as its only argument. The $data array contains the following items:
* usr_email: This is populated from the form in views/discussions/new.php
* usr_id: This is populated by the model itself by looking in the database
* usr_name: This is populated from the form in views/discussions/new.php
* ds_title: This is populated from the form in views/discussions/new.php

* ds_body: This is populated from the form in views/discussions/new.php

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

We want to associate this discussion forum with a user. Although we don't really
manage users in this application, we still want to do this as it might be useful for us
in the future. To associate a discussion with a user, we'll need to find an existing user
ID (users.usr_id) or create a new user and assign that ID instead.

This function begins by looking at the users table to see whether the e-mail address
in $data['usr_email'] already exists in the database. If it does, then usr_id is
pulled out of the users table and written to $data['usr_id']; this will be stored
until we update to the discussions table:

function create($data)
// Look and see if the email address already exists in the users
// table, if it does return the primary key, if not create them
// a user account and return the primary key.
Susr email = $data['usr_email'];
$query = "SELECT * FROM 'users' WHERE 'usr email' = ? ";
$result = $this->db->query(squery,array(Susr _email)) ;

if ($result->num rows() > 0) ({
foreach ($result-sresult() as $rows) (
$data['usr _id'] = $rows->usr_id;
}
} else {

If the e-mail address doesn't exist in the users table, then a record is created.
A password is generated using the random_string () Codelgniter function.
The password is stored in the $password variable and is passed to the shal
Codelgniter function to generate a hash string:

$password = random string('alnum',6 16);
Shash = $this-s>encrypt->shal ($Spassword) ;

The $hash value along with usr_email and usr_name, submitted by the user,
is added to the $user_data array. Also added to the $user_data array are some
admin flags such as usr_is_active and usr_level.

The usr_is_active flag is set to 1 by default; this can be set to any other value you
wish should you want to add user management functions. The usr_level flag is set
to 1 by default; this can be set to any other value you wish should you want to add
user management functions:

Suser data = array('usr email' => $data['usr email'],
'usr name' => $data['usr name'l],
'usr_is active' => '1',
'usr_ level' => '1',

'usr_hash' => shash) ;

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The $user data array is inserted to the database. Should you wish, you could send
the user an e-mail containing their password; this will only be because you want
to add user management functionality. The newly created user ID is returned by
$this->db->insert id() and stored in $data['usr_id']. This is shown here:

if ($this->db->insert ('users', $Suser data)) ({
$data['usr_id'] = $this->db->insert id();
// Send email with password???
}
}

Once the user ID is stored in the $data array, we create a new array,
$discussion_data. The $discussion_data array contains all the data
required for the creation of a discussion, as follows:

* ds_title: This is populated from the form in views/discussions/new.php
* ds_body: This is populated from the form in views/discussions/new.php
* usr_id: This is populated by a database lookup

* ds_is_active: This is set when we create the $discussion_data array

Once the $discussion_data array is created, we write the record to the
discussion table:

$discussion data = array('ds_title' => $datal['ds_title'],
'ds_body' => $datal['ds body'l,
'usr_id' => $datal'usr_id'],
'ds_is_active' => '1');

If the insertion was successful, we return TRUE; if it wasn't successful, we return FALSE.

This model also contains the flag () function. The flag () function uses an

UPDATE command to set the ds_is active column to 0. This means that the
discussion will not be displayed to users, as the fetch_discussions () function

of discussions_model will only return discussions that have ds_is_active set to 1.
This is shown here:

if ($this->db->insert('discussions', $discussion data)) {
return S$this->db->insert id();

} else {
return false;

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

The flag () function accepts one argument — that is, the primary key of the
discussion passed by the discussions controller. When the user clicks on the flag
link next to a discussion title in the views/discussions/view.php file, the flag ()
function of the discussions controller is called. The third uri segment in the flag
link is the primary key of the discussion.

We use Codelgniter's Active Record functionality to update the discussions record in
the database, setting ds_is_active to 0. Setting ds_is_active to 0 will immediately
prevent the discussion from being viewed in views/discussions/view.php and
make it appear in the admin section for moderation:

function flag($ds_id)
$this->db->where('ds_id', $ds_id) ;
if ($this->db->update('discussions', array('ds_is active' =»>
0))) |
return true;
} else {
return false;
}
}
}

Creating the model file — comments_model.
php

The comments model .php model file contains three functions; these are fetch
comments (), new_comment (), and £lag(). The fetch comments () function fetches
all comments that belong to a discussion forum and are active. The new_comment ()
function adds a comment to the database associated with a discussion forum by
means of a foreign key. Finally, the £1ag () function will set a comment as one that
requires moderation.

Create the /path/to/codeigniter/application/models/comments model .php
file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Comments model extends CI Model ({
function _ construct () {
parent:: construct();

}

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

There are three functions in this model. These are as follows:

* fetch comments (): This fetches all active comments that are associated
with the current discussion from the comments table .

* new comments (): This creates a new record in the comments table.
The comment is associated with users.usr _id and discussions.ds_id.

* flag(): This sets a comment as being flagged for moderation by setting
comments.cm_is active to 0.

The fetch_comments () function accepts one argument— $ds_id—that is the
primary key of the discussion in the database. We take this primary key and look
in the database for comments belonging to that discussion, and users belonging to
the comments, as shown here:

function fetch comments($ds_id) {

Squery = "SELECT * FROM 'comments', 'discussions', 'users'
WHERE 'discussions'.'ds_ id' = ?
AND 'comments'.'ds id' = 'discussions'.'ds id'
AND 'comments'.'usr id' = 'users'.'usr_ id'
AND 'comments'.'cm is active' = '1'

ORDER BY 'comments'.'cm created at' DESC "

Sresult = $this->db->query($query, array(s$ds_id));

These comments are then returned as an Active Record database result object.
Or, the Boolean value false is returned if an error occurred, as shown here:

if ($result)
return Sresult;
} else {
return false;

}

The new_comment () function takes one argument, the $data array. This is populated
in the comments controller, as shown here:

function new_ comment ($data) {
// Look and see if the email address already exists in the
users
// table, if it does return the primary key, if not create
them
// a user account and return the primary key.

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

First off, we check whether the e-mail address used by the person who is
commenting already exists in the database; we do this as we might want to add
functionality to ban particular users later, delete posts from specific users, or
even develop functionality to allow users to log in and view their previous posts:

Susr email = $data['usr_email'];
$query = "SELECT * FROM 'users' WHERE 'usr email' = ? ";
$result = $this->db->query(sSquery,array(Susr_email)) ;

if ($result->num rows() > 0) ({

If we arrive here in the code, then the e-mail address is obviously already in the
database, so we grab the users' primary key and store it in $data['usr_id']; later,
we will save it to the comment:

foreach (Sresult->result() as Srows) {
$data['usr id'] = $rows->usr id;
}

} else {

If we get here, then the user doesn't exist, so we create them in the users table,
returning the primary key using the $this->d->insert_id () Codelgniter function:

$password = random string('alnum',6 16);
Shash = $this->encrypt->shal ($Spassword) ;

Suser data = array('usr email' => $data['usr email'],
'usr name' => $data['usr name'l],
'usr_is active' => '1',
'usr_ level' => '1',

'usr_hash' => shash) ;

if ($this->db->insert ('users', Suser data)) {
S$data['usr id'] = $this->db->insert id();

$comment data = array('cm body' => $datal['cm body'],
'ds_id' => sdatal'ds_id'],

'cm_is active' => '1"',
'usr id' => $datal'usr_id']);
[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Now we save the comment to the comments table using the Codelgniter Active
Record function $this->db->insert (). This is shown here:

if ($this->db->insert ('comments', $comment data)) {
return $this->db->insert id();

} else {
return false;

}

function flag($cm_id) ({
$this->db->where('cm _id', $cm_id) ;
if ($this->db->update('comments', array('cm is active' =>
'0'))) A
return true;
} else {
return false;
}
}
}

Creating the model file — admin_model.php

There are four functions in the admin_model.php model, and these are as follows:

* dashboard fetch comments (): This fetches comments from the databases
that have been flagged for moderation.

* dashboard fetch discussions (): This fetches discussions from the
databases that have been flagged for moderation.

* update_comments (): This updates a comment based on the decision of
the moderator, changing the value of cm_is_active to 1 if the comment
is approved or deleting it if is unapproved.

* update_discussions (): This updates a discussion based on the decision
of the moderator, changing the value of cm_is_active to 1 if approved
or deleting it if is unapproved. If a discussion is deleted, then all comments
associated with that discussion will also be deleted.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

Ckeatethe/path/to/codeigniter/application/models/admin_model.php
file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Admin model extends CI_Model {
function _ construct () {
parent:: construct();

}

The following function will fetch all comments for moderation from the database.
Comments are for moderation if comments.cm is active is set to 0. The database
is queried and all comments for moderation are returned to the admin controller.
This result will eventually be looped over in the views/admin/dashboard.php file:

function dashboard fetch comments() {
Squery = "SELECT * FROM 'comments', 'users'
WHERE 'comments'.'usr id' = 'users'.'usr_id'
AND 'cm is active' = '0' ";

Sresult = $this->db->query ($query) ;

if ($result) {
return Sresult;
} else {
return false;

}

The following function will fetch all discussions for moderation from the

database. Discussions are for moderation if discussions.ds _is_active is set to 0.
The database is queried and all discussions for moderation are returned to the
admin controller. This result will eventually be looped over in the views/admin/
dashboard.php file:

function dashboard fetch discussions() {
Squery = "SELECT * FROM 'discussions', 'users'
WHERE 'discussions'.'usr id' = 'users'.'usr id'
AND 'ds is_active' = '0' ";

Sresult = Sthis->db->query(Squery) ;

if ($result)

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

return Sresult;
} else {
return false;

function does_user exist (Semail) {
$this->db->where('usr email', S$email);
Squery = $this->db->get ('users');
return $query;

}

The following function is called by the admin controller function when an
admin is moderating comments. If a comment is deemed to be fine, then
comments.cm_is_active is updated and set to 1. However, if it is not fine,
then the comment is deleted from the comments table:

function update comments($is_active, $id) {

if ($is_active == 1) {
$query = "UPDATE 'comments' SET 'cm is active' = ? WHERE
'cem_id' = ? " ;
if ($this->db->query($query,array($is_active, $id))) {

return true;
} else {
return false;

}

} else {
$query = "DELETE FROM 'comments' WHERE 'cm id' = ? " ;
if ($this->db->query($query,array($id)))
return true;
} else {

return false;

}

The following function is called by the admin controller function when an admin

is moderating discussions. If a discussion is deemed to be fine, then discussions.
ds_is_active is updated and set to 1. However, if it is not fine, then the discussion
is deleted from the discussions table. Any comments belonging to that discussion
are also deleted from the comments table:

function update discussions($is_active, $id) ({
if ($is_active == 1) {

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

$query = "UPDATE 'discussions' SET 'ds is active' = ?
WHERE 'ds_id' = 2 " ;
if ($this->db->query($query, array($is active,$id))) {

return true;
} else {
return false;

}
} else {
$query = "DELETE FROM 'discussions' WHERE 'ds id' = ?
if ($this->db->query($query,array($id)))
$query = "DELETE FROM 'comments' WHERE 'ds_id' = ?
if ($this->db->query($query,array($id)))
return true;
}
} else {

return false;

Creating views

There are six view files in this application, and these are as follows:

* discussions/view.php: This displays all active discussions

* discussions/new.php: This displays a form to the user, allowing them to
create a discussion

* comments/view.php: This displays all active comments within a discussion
* nav/top_nav.php: This contains the top navigation links

* admin/login.php: This displays a login form for the user; don't forget to add
the signin.css script, which you can find later in this chapter

* common/login_ header.php: The views/admin/login.php view requires

different resources from the rest of the application, which is supported by
this header

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Discussions

The discussions/view.php view file displays a list of all active discussions as well
as sorting options.

Create the /path/to/codeigniter/views/discussions/view.php file and add the
following code to it:

SORT: <?php echo anchor('discussions/index/sort/age/' . (($dir
== 'ASC') ? 'DESC' : 'ASC'), 'Newest '
((8dir == 'ASC') ? 'DESC' : 'ASC'));?>

<table class="table table-hover">
<thead>
<tr>
<th><?php echo $this->lang->line('discussions_title') ;
?></th>
</tr>
</thead>
<tbody>

<?php foreach ($query-s>result() as S$result) : ?>
<tr>
<td>
<?php echo anchor ('comments/index/'.Sresult-
>ds_1id, $result->ds title) . ' '
$this->lang->line ('comments created by')
$result->usr name; °?>

<?php echo anchor ('discussions/flag/'.Sresult-

>ds_id,
$this->lang->line('discussion flag')) ; °?>

<?php echo $result->ds body ; ?>
</td>

</tr>
<?php endforeach ; ?>

</tbody>
</table>

Take a look at the first few lines. We open with a Codelgniter anchor () statement.
Let's take a closer look at the code for the link:

SORT: <?php echo anchor('discussions/index/sort/age/' . (($dir ==
'ASC') ? 'DESC' : 'ASC'), 'Newest ' . (($dir == 'ASC') ? 'DESC'
'ASC')) ;?>

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

Let's break this down into smaller sections:

anchor ('discussions/index/age/sort/' .:This sets the link for the
discussions controller, index () function, and sorting by age (the created
date—discussions.ds_created_at), but what is the direction? Well...

((8dir == 'ASC') ? 'DESC' : 'AscC'),:The value of $dir comes from the
index () function of the discussions controller. It is the current direction of
the sort. We then use a PHP ternary operator to switch between the directions.
It's a bit like an if / else statement but is more compact. It works like this: if a
variable is equal (or not equal) to a variable, then execute A, otherwise execute B. For
example, as an if/ else statement, the code would be as follows:

if ($dir == 'AsSC') {
return 'DESC';
} else {

return 'ASC';

}

So, the second part of the link will flip-flop between Asc and DESC depending
on the value held in $dir. Now, let's look at the rest.

'Newest ' . (($dir == 'ASC') ? 'DESC' : 'ASC'));?>:Thisis the
text that users will see as their link. You can see that we again make use of
the ternary operator to display the text, flipping between Newest Asc and
Newest DESC.

The rest of the view is fairly undramatic; all we do is loop over the database result
from the discussions' index () function, displaying all active discussions as we go.

Comments

The comments view displays a list of all valid comments to the user for a
selected discussion.

Create the /path/to/codeigniter/application/views/comments/view.php file
and add the following code to it:

<!-- Discussion - initial comment -->
<?php foreach ($discussion query->result() as $discussion result)
?>
<h2>

<?php echo $discussion result->ds_title; ?>

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<small><?php echo $this->lang->line('comments created by')

$discussion result->usr name . S$this->lang-
>line ('comments created at') . $discussion result-
>ds_created_at; ?></smalls>
</h2>
<p class="lead"><?php echo $discussion result->ds body; ?></p>
<?php endforeach ; ?>
<!-- Comment - list of comments -->
<?php foreach ($comment query->result() as $comment result) : ?>

<1li class="media">

<img class="media-object" src="<?php echo base url() ;
?>img/profile.svg" />

<div class="media-body">
<h4 class="media-heading"><?php echo $comment result-
>usr _name . anchor ('comments/flag/'.sScomment result->ds id

'/' . $comment result->cm id, $this->lang-
>line ('comments flag')) ; ?></h4>
<?php echo $comment result->cm body ; ?>
</div>
</1li>
<?php endforeach ; ?>
<!-- Form - begin form section -->

<p class="lead"><?php echo $this->lang-

>line ('comments form instruction') ;?></p>
<?php echo validation errors(); ?>
<?php echo form open('comments/index', 'role="form"') ; 2>

<div class="form-group col-md-5">
<label for="comment name"><?php echo $this->lang-
>line ('comments_ comment name') ;?></labels
<input type="text" name="comment name" class="form-control"
id="comment name" value="<?php echo
set value ('comment name'); ?>">
</div>
<div class="form-group col-md-5">
<label for="comment email"><?php echo $this->lang-
>line ('comments comment email');?></label>
<input type="email" name="comment email" class="form-
control" id="comment email" value="<?php echo
set value ('comment email'); ?>">

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

</div>
<div class="form-group col-md-10">
<label for="comment body"><?php echo $this->lang-
>line ('comments_ comment body') ;?></labels
<textarea class="form-control" rows="3" name="comment body"
id="comment body"><?php echo set value('comment body') ;
?></textarea>
</div>
<div class="form-group col-md-11">
<button type="submit" class="btn btn-success"><?php echo

$this->lang->line ('common form elements go');?></button>
</div>
<?php echo form hidden('ds id',6 s$ds id) ; ?>
<?php echo form close() ; ?>

Note the following line in the form:

<button type="submit" class="btn btn-success"><?php echo $this-
>lang->line('common_ form elements go');?></button>

You will see that we use a line from the lang file that is not in the code example;
this is because the common_form elements_go line is to be found in Chapter 1,
Introduction and Shared Project Resources.

New discussion

The New Discussion view displays a form to the user and any validation error
messages that might need to be conveyed.

Create the /path/to/codeigniter/application/views/discussions/new.php
file and add the following code to it:

<!-- Form - begin form section -->

<p class="lead"><?php echo $this->lang->line('discussion form
instruction') ;?></p>

<?php echo validation errors(); ?>
<?php echo form open('discussions/create', 'role="form"') ; ?>
<div class="form-group col-md-5">
<label for="usr name"><?php echo $this->lang-
>line ('discussion_usr name') ;?></label>

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<input type="text" name="usr name" class="form-control"
id="usr name" value="<?php echo set value('usr name');

?>">
</div>
<div class="form-group col-md-5">

<label for="usr email"><?php echo $this->lang-
>line('discussion usr email');?></label>

<input type="email" name="usr email" class="form-control"

id="usr email" value="<?php echo set value('usr email');

?>">
</div>
<div class="form-group col-md-10">

<label for="ds title"><?php echo $this->lang-
>line ('discussion_ds_title');?></label>

<input type="text" name="ds title" class="form-control"
id="ds_title" value="<?php echo set value('ds title');

?>">
</div>
<div class="form-group col-md-10">

<label for="ds body"><?php echo $this->lang-
>line('discussion ds body') ;?></label>

<textarea class="form-control" rows="3" name="ds body"

id="ds_ body"><?php echo set value('ds body') ;
?></textarea>

</div>

<div class="form-group col-md-11">

<button type="submit" class="btn btn-success"><?php echo

$this->lang->line ('common form elements go');?></buttons>
</div>
<?php echo form close() ; ?>

Note the following line in the form:

<button type="submit" class="btn btn-success"><?php echo $this-

>lang->line ('common form elements go');?></buttons>

You will see that we use a line from the lang file that is not in the code example;
this is because the common_form elements_go line is to be found in Chapter 1,

Introduction and Shared Project Resources.

We provide options to the user to create a new discussion. We display form

elements for them to enter their username, e-mail, discussion title, and the text

of their discussion.

The form is submitted to the create () function of the discussion controller,

where is it validated with any validation errors being displayed.

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

The top_nav file

Every project in this book has its own navigation file, and this is no exception.
The top_nav file is standard Bootstrap navigation code; however, there are
a few Codeigniter anchor () functions that provide the URL links and text.

Ckeatethe/path/to/codeigniter/application/views/common/top_nav.php
file and add the following code to it:

<!-- Fixed navbar -->
<div class="navbar navbar-inverse navbar-fixed-top"
role="navigation">
<div class="container"s>
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-
toggle="collapse" data-target=".navbar-collapse">
Toggle navigation

</button>
<?php echo $this->lang-
>line ('system system name'); ?>
</div>

<div class="navbar-collapse collapse">
<ul class="nav navbar-nav'"s>

<li <?php if ($this->uri->segment(l) == '') {echo
'class="active"';} ; ?>><?php echo anchor('/',
S$this->lang->line('top_nav_view discussions')) ;
?></1lis>

<1li <?php if (Sthis->uri-s>segment(l) == 'discussions')
{echo 'class="active"';} ; ?>><?php echo
anchor ('discussions/create', $this->lang-
>line('top_nav_new discussion')) ; ?></1li>

</uls>

<ul class="nav navbar-nav navbar-right"s>
<?php echo anchor('admin/login', $this->lang-

>line ('top_nav_login')) ; ?>
</uls>
</div><!--/.nav-collapse -->
</div>
</divs>

<div class="container theme-showcase" role="main">

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The login view

The login view displays the form and any errors to the admin user when he/she

wants to log in.

Create the /path/to/codeigniter/application/views/admin/login.php file

and add the following code to it:

<?php if (isset($login fail)) : ?>
<div class="alert alert-danger"><?php echo $this->lang-
>line ('admin login error') ; ?></divs>
<?php endif ; ?>
<?php echo validation errors(); ?>

<div class="container">
<?php echo form open('admin/login', 'class="form-signin"
role="form"') ; ?>
<h2 class="form-signin-heading"><?php echo $this->lang-
>line('admin login header') ; ?></h2>

<input type="email" name="usr email" class="form-control"

placeholder="<?php echo $this->lang-
>line('admin login email') ; ?>" required autofocuss>

<input type="password" name="usr password" class="form-
control" placeholder="<?php echo S$this->lang-
>line('admin login password') ; ?>" requireds>

<button class="btn btn-1lg btn-primary btn-block"
type="submit"><?php echo $this->lang-
>line('admin login signin') ; ?></buttons>

<?php echo form close() ; ?>
</div>

There's not too much to get into here — everything is as you would expect.
We display a form to the user, giving them text fields to enter their e-mail

address and password, and errors are displayed above the form.

The form is submitted to the login () function of the admin controller, which

will handle the technical process of logging the user in. If the login is successful,

the user is directed to the dashboard () function of the admin controller.

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

The login_header file

The admin/login. php file requires different files and resources from the rest of the
discussion forum application. For this reason, we're going to create a header file
that's specific to the login page.

Create the /path/to/codeigniter/application/common/login_header.php file
and add the following code to it:

< !DOCTYPE html>
<html lang="en"»>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge'>
<meta name="viewport" content="width=device-width, initial-
scale=1">
<meta name="description" content="">
<meta name="author" content="">
<link rel="shortcut icon" href="<?php echo
base_url ('bootstrap/ico/favicon.ico'); ?>">

<title><?php echo $this->lang->line('system system name') ;
?></title>

<!-- Bootstrap core CSS -->

<link href="<?php echo base url
('bootstrap/css/bootstrapfmin.css'); ?>" rel="stylesheet">

<!-- Bootstrap theme -->

<link href="<?php echo base_url('bootstrap/css/bootstrap-
theme.min.css'); ?>" rel="stylesheet">

<!-- Custom styles for this template -->
<link href="<?php echo base_url
('bootstrap/css/signin.css') ;?>" rel="stylesheet">

<!-- Just for debugging purposes. Don't actually copy this
line! -->
<!--[if 1t IE 9]><script src="../../assets/js/ie8-responsive-

file-warning.js"></script><! [endif]-->

<!-- HTML5 shim and Respond.js IE8 support of HTML5 elements
and media queries -->
<!--[if 1t IE 9]>
[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<script src="https://oss.maxcdn.com/libs/html5shiv/
3.7.0/html5shiv.js"></script>

<script src="https://oss.maxcdn.com/libs/respond.js/
1.4.2/respond.min.js"></script>
<![endif]-->
</head>

<body>

Dashboard

The dashboard view is able to display to the admin user (in this case, a moderator)
all discussion forums and comments that are awaiting moderation. These are
displayed in a table in a list format, each item having two options for the moderator:
Allow and Disallow.

Clicking on Allow will set the active status of the discussion (discussions.ds_is_
active) or comment (comments.cm_is_active) to 1, making them appear once
more for general users to see. However, Disallow will delete them from the database.
If it is a discussion forum being disallowed, then all comments associated with that
discussion will also be deleted.

Create the /path/to/codeigniter/application/views/admin/dashboard.php
file and add the following code to it:

<hl id="tables" class="page-header">Dashboard</hl>

<table class="table">

<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Email</th>
<td>Actions</td>
</tr>
</theads>
<tbody>
<?php if ($Sdiscussion query->num rows() > 0) : ?>
<?php foreach ($discussion query->result() as S$row)
?>
<tr>
<td><?php echo S$row->ds_id ; ?></td>
<td><?php echo S$row->usr name ; ?></td>
[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

<td><?php echo S$row-s>usr email ; ?></td>
<td><?php echo anchor ('admin/update_ item/
ds/allow/"'.

$row->ds_id, $this->lang->line ('
admin dash _allow'))

' ' . anchor ('admin/update item/ds/disallow/'.

Srow->ds_id, $this->lang->line ('
admin_dash disallow')) ; ?>
</td>
</tr>
<trs>
<td colspan="3"><?php echo $row->ds title;
?></td>
<td></td>
</tr>
<tr>
<td colspan="3"><?php echo $row->ds body;
?></td>
<td></td>
</tr>
<?php endforeach ; ?>
<?php else : ?>

<tr>

<td colspan="4">No naughty forums here, horay!</td>

</tr>
<?php endif; ?>
</tbody>
</table>

<table class="table">

<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Email</th>
<td>Actions</td>
</tr>
</thead>
<tbody>
<?php if (Scomment guery->num rows() > 0) : ?>

<?php foreach ($comment query-s>result() as $row)
<tr>
<td><?php echo $row->cm_id ; ?></td>

?>

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<td><?php echo S$row->usr name ; ?></td>
<td><?php echo S$row-s>usr email ; ?></td>
<td><?php echo anchor ('admin/update_item/
cm/allow/"'.
$row->cm_id, $this->lang->line ("'
admin dash _allow'))
' ' . anchor ('admin/update item/cm/disallow/'.
$row->cm_id, $this->lang->line ('
admin_dash disallow')) ; ?>
</td>
</tr>
<tr>
<td colspan="3"><?php echo $row->cm body;
?></td>
<td></td>
</tr>
<?php endforeach ; ?>
<?php else : ?>
<tr>
<td colspan="4">No naughty comments here,
horay!</td>
</tr>
<?php endif; ?>
</tbody>
</table>

The signin.css file

The signin.css file is required to display the login form correctly; this is the same
signin.css file as the one that is available from the Twitter Bootstrap resource.

Create the /path/to/codeigniter/bootstrap/css/signin.css file and add the
following code to it:

body {
padding-top: 40px;
padding-bottom: 40px;
background-color: #eee;

}

.form-signin {
max-width: 330px;
padding: 15px;

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

margin: 0 auto;
}
.form-signin .form-signin-heading,
.form-signin .checkbox {
margin-bottom: 10px;
}

.form-signin .checkbox {
font-weight: normal;
}

.form-signin .form-control {
position: relative;
height: auto;
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;
padding: 10px;
font-size: 16px;
}
.form-signin .form-control:focus {
z-index: 2;
}

.form-signin input [type="email"] {
margin-bottom: -1px;
border-bottom-right-radius: 0;
border-bottom-left-radius: 0;

}

.form-signin input [type="password"] {
margin-bottom: 10px;
border-top-left-radius: 0;
border-top-right-radius: 0;

}

Creating the controllers

We're going to create three controllers for this application. These are as follows:

* discussions.php: This fetches discussions from the discussions table
in the database and allows the user to create a new discussion

* comments.php: This fetches comments from the comments table in the
database and allows the user to join a discussion by adding a comment
to a discussion forum

* admin.php: This contains basic admin functions, login functionalities,
and moderation options

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The discussions controller

The discussions.php controller is responsible for the display of all valid
discussions, processing the creation of new discussions and flagging any discussion
for moderation. The discussions controller contains three functions, and these are
as follows:

* index(): This displays all valid discussions
* create(): This creates a new discussion, handling any form validation

* flag(): This processes a discussion for moderation by calling the f1ag ()
function of discussions_model.php, setting discussions.ds_is_active
too

Create the /path/to/codeigniter/application/controllers/discussions.php
file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Discussions extends MY_Controller (
function _ construct()
parent:: construct();
Sthis->load->helper('string') ;
Sthis->load->library ('encrypt') ;
$this->load->model ('Discussions_model') ;
S$this->load->library('form validation') ;
$this->form validation->set_error delimiters('<div
class="alert alert-danger"s', '</divs>');

public function index() {
if ($this-s>uri-s>segment (3))
Sfilter = sthis->uri->segment (4) ;
Sdirection = Sthis->uri->segment (5) ;
S$page_data['dir'] = S$Sthis->uri->segment(5);
} else {
Sfilter = null;
Sdirection = null;
S$page_data['dir']

'ASC!';

$page_datal['query']l = $this->Discussions_model
->fetch discussions ($filter, $direction) ;

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
$this->load->view('discussions/view', $page data);
Sthis->load->view ('common/footer') ;

public function create() {
public function create() {
Sthis->form validation->set rules('usr name',6 $this->lang-

>line('discussion usr name'),
'required|min_length([1] |max_length[255] ') ;
Sthis->form validation->set rules('usr email', S$this-
>lang->line('discussion usr email'),
'required|min_length([1] |max_length[255]"');

$this->form validation->set rules('ds title', $this->lang-

>line('discussion ds title'),
'required|min_length([1] |max_length[255] ') ;

$this->form validation->set rules('ds body', s$this->lang-

>line('discussion ds body'),
'required|min_length([1] |max_length[5000] ") ;

if ($this->form validation-s>run() == FALSE) ({
Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav') ;
$this->load->view('discussions/new') ;
Sthis->load->view ('common/footer') ;
} else {
$data = array('usr name' => $this->input-
>post ('usr_name'),
'usr email' => $this->input-
>post ('usr_email'),
'ds_title' => $this->input-
>post ('ds_title'),
'ds_body' => $this->input-
>post ('ds_body"')
)

if ($ds_id = $this->Discussions model->create ($data))

redirect ('comments/index/'.$ds_id) ;
} else {

// error

// load view and flash sess error

{

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

public function flag() {
$ds_id = $this->uri->segment (3) ;

if ($this->Discussions model->flag($ds_id)) ({
redirect ('discussions/"') ;

} else {
// error

// load view and flash sess error

}

Taking each function one by one, we'll begin with index (). The index () function
is responsible for displaying all active discussions to the user.

The code begins by checking to see whether there is a value in the third uri
segment or not.

If there is a value present, then this indicates that the user has pressed the sort's
ascending or descending link; we'll discusses this in a moment but, for now,
we'll assume that there is no value in the third segment.

As there is no value present, we set $filter and $direction to NULL, but we set
$page_datal['dir'] to Asc (short for ascending). This is set because, initially, the
discussion forums are displayed in descending order of their created date; however,
the sorting link needs to be written in the opposite direction from what is currently
being displayed. Setting $page_data['dir'] to ASC (ascending) will enable the
URL in the sort link to be ready for us should we need to click it.

We then ask the fetch discussions () function of discussions model.php to
get all active discussions, passing to it two variables as arguments: $filter and
$direction. These are set to null by default. The fetch discussions () function
will know not to apply these filters.

The direction of the sort link will flip-flop between ascending and descending —always
being the opposite of what is currently displayed. This flip-flopping is done in the view
file (this might not be the best place for it if you're being strict, but I thought that this
was a location that you would find obvious, so there you go).

M Check out the code and explanation for the discussions/view.php
Q view file earlier in this chapter for a full explanation of how the
flip-flopping functions.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

Let's now look at the create () function; we initially set the validation rules
and check to see whether the form has been submitted (or has been submitted
with errors). Assuming that it has been submitted without errors, we save the
post data in the $data array:

$data = array('usr name' => $this->input->post('usr name'),
'usr _email' => $this->input->post('usr email'),
'ds_title' => $this->input->post('ds_title'),
'ds_body' => $this->input->post('ds body'));

Once all the form elements are packaged into the $data array, we send it off to the
create () function of discussions model to write to the database.

If the insert operation was successful, the model will return the primary key of the
new discussion but will return false if there was an error.

We test the return value of the insert operation. If the insert was successful, we
redirect the user to the index () function of the comments controller, passing to it the
$ds_id value that was returned by the model. The user can then see their discussion,
which is ready to be commented on:

if ($ds_id = $this->Discussions model->create ($data)) {
redirect ('comments/index/'.$ds_1id) ;
} else {

If there was an error, then we have no new primary key, so we can't redirect the user.
This has been left blank in this project; you can implement your own policy for this
behavior; perhaps you can send them an e-mail informing them about this or write
an error to the screen.

The comments controller

The comments controller manages all matters related to the flagging (for moderation)
and creation of comments on discussions from users. The comments controller has
two functions, and these are as follows:

* index(): This displays all comments for a specific discussion forum and
handles the submission — that is, the validation of a user's comment.

* flag(): This allows a user to flag a comment for moderation by the admin.
The comments.cm_is_active value in the database is set to 0 for the
specific comment.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Create the /path/to/codeigniter/application/controllers/comments.php file

and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Comments extends MY Controller {
function _ construct () {
parent:: construct();
Sthis->load->helper('string') ;
$this->load->library('form validation') ;
$this->load->model ('Discussions model!') ;
$this->load->model ('Comments model') ;

$this->form validation->set error delimiters('<div
class="alert alert-danger">', '</div>');

public function index()
if ($this-sinput-spost())
$ds_id = $this->input->post('ds_id');
} else {
$ds_id = $this->uri->segment (3) ;

$page data['discussion query'] = S$this->Discussions model-

>fetch discussion(sds_id) ;

$page data['comment query'] = $this->Comments model-
>fetch comments ($ds_id) ;

$page data['ds_id'] = s$ds_id;

$this->form validation->set rules('ds_id', $this->lang-
>line ('comments comment hidden id'),
'required|min_length[1] |max_length[11]') ;

$this->form validation->set rules('comment name', S$this-

>lang->line ('comments comment name'),
'required|min_length[1] |max_length[25] ') ;

$this->form validation->set rules('comment email',6 S$this-

>lang->line ('comments comment email'),
'required|min_length[1] |max_ length[255]"') ;

$this->form validation->set rules('comment body', $this-

>lang->line ('comments comment body'),
'required|min_length[1] |max length[5000]"') ;

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

if ($this->form validation-s>run() == FALSE) ({
Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
S$this->load->view('comments/view', $page data) ;
Sthis->load->view ('common/footer') ;
} else {
$data = array('cm body' => $this->input-
>post ('comment body'),
'usr email' => $this->input-
>post ('comment email'),
'usr name' => $this->input-
>post ('comment name'),
'ds_id' => $this->input->post('ds_id')
)

if ($this->Comments model-s>new comment ($data)) {
redirect ('comments/index/'.$ds_id) ;

} else {
// error

// load view and flash sess error

public function flag() {
$cm_id = $this->uri->segment (4) ;
if ($this->Comments model->flag($cm_id)) {
redirect ('comments/index/'.$this->uri->segment (3)) ;
} else {
// error
// load view and flash sess error

}

Let's start with the index () function. The index () function will begin by displaying
all comments for a specific discussion. To do this, it needs to know what discussion
to look at. So, let's go a step back. The discussions controller will display a list of
active discussions.

The following is a section of code from discussions/view.php that we looked at in
greater detail earlier. This code will loop through a set of database results, displaying
each active discussion in table rows.

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Check out the line highlighted in bold:

<!-- Comment - list of comments -->
<?php foreach ($comment query->result () as $comment result) : ?>
<1li class="media">

<img class="media-object" src="<?php echo base url() ;
?>img/profile.svg" />

<div class="media-body">
<h4 class="media-heading"><?php echo $comment result->
usr_name . anchor ('comments/flag/'.$comment result->ds_id .

'/' . $comment result->cm id, $this->lang-
>line ('comments flag')) ; ?></h4>
<?php echo $comment result->cm body ; ?>
</divs>
</1li>
<?php endforeach ; ?>

This line displays the URL that enables the user to view the discussion and any
comments associated with it by clicking on a discussion title link, which looks like
the following;:

comments/index/id-of-discussion

We can pass id-of-discussion as the third parameter of the link to the index ()
function of the comments controller. This is where we pick up the story. The index ()
function of the comments controller checks whether there is a third uri segment

(if not, then it is possible that the form to create a comment has been submitted

and would not exist in the uri segment).

It will grab the ID of the discussion and store it as the $ds_id variable:

if ($this-sinput-spost())
$ds_id = $this->input->post('ds_id');
} else {

$ds_id = $this->uri->segment (3) ;

}

We then define some validation rules for Codelgniter to apply to the Add A
Comment form at the bottom of the comments/view.php file.

The comments/view.php file contains not only a foreach () loop to display the
current comments on the selected discussion, but also a form with a name and
e-mail text field and a body text area. This is where the user can enter their name,
e-mail, and comment text and then submit the comment.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

There is also a hidden field, named ds_id, that contains the primary key of the
selected discussion. We need it in the form as a hidden element as, when the form
is submitted, the third uri segment will disappear. Having the discussion ID as a
hidden form element will allow index () to maintain a relationship between the
comment and the discussion when the new comment form is submitted.

Assuming that there were no errors with the form and it is submitted without the
need to report anything requiring the user's attention, the index () function attempts
to write the comment to the comments table in the database.

Before we do that, however, we need to package all our data into an array that will
be passed to Comments_model. Take a look at the following code:

$data = array('cm body' => $this->input->post ('comment body'),
'usr _email' => $this->input->post ('comment email'),
'usr name' => $this->input->post ('comment name'),
'ds_id' => $this->input->post('ds _id')
)i

Here, you can see that we've got all the post elements including ds_id (highlighted
in bold). This is now ready to be sent to the new_comment () model function for
insertion into the database:

if ($this->Comments model->new_ comment ($data)) {
redirect ('comments/index/'.$ds_id) ;

} else {
// error

// load view and flash sess error

}

The new_comment () model function will return true on a successful insertion and
false otherwise. If it was successful, then we redirect the user to the comments
controller's index () function and pass $ds_id as the third parameter where the
index () function will begin, displaying all active comments associated with the
selected discussion.

Now, let's move on to the flag () function. The flag () function will enable the user
to indicate that a comment requires moderation by an admin.

Stepping back to the discussions controller, the discussions controller will
display a list of active discussions.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The following is a section of code from comments/view.php that we looked at in

greater detail earlier. This code will loop through a set of database results, displaying
each active comment in a table of rows:

<!-- Comment - list of comments -->
<?php foreach ($comment query->result () as $comment result) : ?>
<li class="media">

<img class="media-object" src="<?php echo base url()
?>img/profile.svg" />

7

<div class="media-body">

<h4 class="media-heading"><?php echo $comment result->
usr_name . anchor ('comments/flag/'.$comment result->ds_id

'/' . $comment result->cm id, $this->lang-
>line ('comments flag')) ; ?></h4>
<?php echo $comment result->cm body ; ?>
</divs>
</1li>
<?php endforeach ; ?>

Take a look at the line highlighted in bold:

anchor ('comments/flag/'.$comment result->ds id . '/’
Scomment_result->cm_id, $this->lang->1line('comments_flag'))

This line contains a Codelgniter anchor () statement with the comments/flag/id-of-
comment URL. It is this line of code that creates the flag link next to each comment.

Look at the third and fourth parameters. The third parameter is the discussion ID
(discussions.ds_id) and the fourth is the comment ID (comments.cm_id); both are
used in the f1ag () function of comments_model. The code for this looks as follows:

public function flag() {
$cm_id = $this->uri->segment (4) ;
if ($this->Comments model->flag(scm_id)) {
redirect ('comments/index/"'.S$this->uri->segment (3)) ;
} else {
// error
// load view and flash sess error

}

If the insert operation returns true, then we redirect the user to the comments
controller's index () function along with the discussion forum ID.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

The admin controller

The admin controller contains all the functions required to run the moderation of
comments and discussions and to log users in. It contains the following functions:

* index(): Every controller needs an index function and this is it.
The index () function will check whether a user is logged in and
redirect them elsewhere if not.

* login(): The login() function handles the process of logging a user into
the system.

* dashboard (): This is responsible for displaying all comments and
discussions that require moderation.

* update_item(): This is responsible for applying the decision of the
moderator, whether to approve or delete a comment or discussion.

Create the /path/to/codeigniter/application/controllers/admin.php file
and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Admin extends MY Controller {
function _ construct()
parent:: construct();
Sthis->load->helper('string') ;
S$this->load->library('form validation') ;
$this->load->model ('Admin_model') ;
$this->form validation->set_error delimiters('<div
class="alert alert-danger"s', '</divs>');

public function index() {
if ($this->session->userdata('logged in') == FALSE) ({
redirect ('admin/login') ;

redirect ('admin/dashboard') ;

public function login()
Sthis->form validation->set rules('usr email', S$this-
>lang->line('admin login_email'),
'required|min_length[1l] |max length[255]');

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

$this->form validation->set rules('usr password', S$this-
>lang->line('admin login password'),
'required|min_length[1] |max_length[25] ') ;

if ($this->form validation-s>run() == FALSE) ({
S$this->load->view('common/login header') ;
$this->load->view('nav/top nav');
$this->load->view('admin/login') ;
Sthis->load->view ('common/footer!') ;

} else {
Susr email = $this->input->post('usr email');
Susr password = $this->input->post ('usr password') ;

$query = $this->Admin model->
does user exist (Susr email) ;

if ($query->num rows() == 1) { // One matching row
found
foreach ($query-s>result() as $row)
// Call Encrypt library
Sthis->load->library('encrypt') ;

// Generate hash from a their password
$hash = $this->encrypt->shal ($usr password) ;

// Compare the generated hash with that in the
database
if ($hash != $row-susr hash) ({
// Didn't match so send back to login
$page datal['login fail'] = true;
S$this->load->view('common/login header') ;
$this->load->view('nav/top nav');
Sthis->load-
>view('admin/login', Spage_data) ;
Sthis->load->view ('common/footer') ;
} else {
Sdata = array(
'usr id' => $row->usr id,
'usr email' => $row->usr_ email,
'logged _in' => TRUE
) ;

// Save data to session

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

$this->session->set userdata($data) ;
redirect ('admin/dashboard') ;

public function dashboard()
if ($this->session->userdata('logged in') == FALSE) ({
redirect ('admin/login') ;

S$page datal['comment query'l = $this->Admin model-
>dashboard fetch comments() ;

S$page data['discussion query']l = $this->Admin model-
>dashboard fetch discussions();

Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
$this->load->view ('admin/dashboard', $page data) ;
Sthis->load->view ('common/footer') ;

public function update item() {
if ($this->session->userdata('logged in') == FALSE) ({
redirect ('admin/login') ;

if ($this->uri-s>segment (4) == 'allow') {
$is active = 1;
} else {
$is active = 0;
}
if ($this-suri-s>segment(3) == 'ds') {
Sresult = $this->Admin model->update discussions
(sis_active, s$this->uri->segment(5));
} else {
Sresult = $this->Admin model->update comments

(sis_active, s$this->uri->segment(5));

redirect ('admin') ;

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Let's tackle this by first looking at the index () function. As the admin controller is
only to be used by those logged in, the index () function will check to see whether
an item called logged_in exists in the session. If 1ogged_in is equal to FALSE, then it
means that the user is not logged in, so they are redirected to the 1ogin () function.

This is very simple and we won't spend more time on it; however, a more
complicated function is login (). The login () function is responsible for —as
the name suggests — managing the login process for the admin moderator.

The first thing 1ogin () does is define form validation rules for the usr_email and
usr_pwd form elements. These will govern how the data submitted by the user in
the admin/login.php view file is validated.

We immediately test to see whether the form has been submitted:

if ($this->form validation-s>run() == FALSE) ({

If the form hasn't been submitted, we'll load the view files to display the login form
and wait for a response from the user.

However, if it has been submitted, then the form is validated against the validation
criteria; if it passes validation, we try to work out whether the user exists in the
database currently:

$query = S$this->Admin model->does user exist (Susr email) ;
if ($query-snum rows() == 1) ({

If exactly one matching e-mail address has been found, then we will try to work
out whether the users' password is correct. We load the Codelgniter library using
$this->load->library ('encrypt') and generate a hash from the password
that the user supplied in the login form:

$hash = sthis->encrypt->shal (susr_password) ;

We then compare that hash with the hash stored in the database belonging to
the user:

if ($hash != $row->usr hash) ({

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

If it does not match, then we load the login form and display an error message.
However, if it does match, then the user must have typed the correct password;
so we log them in by creating a Codelgniter session for them:

Sdata = array(
'usr_id' => S$Srow->usr id,
'usr _email' => $row->usr email,
'logged in' => TRUE

)i

// Save data to session
Sthis->session->set userdata($data) ;
redirect ('admin/dashboard') ;

The user is then redirected to the dashboard. The dashboard will display any
comments and discussions that are required for moderation.

Creating the language file

As with all the projects in this book, we're making use of the language file to serve
text to users. This way, you can enable multiple region/multiple language support.

Create the /path/to/codeigniter/application/language/english/en admin_
lang.php file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

// General

$lang['system system name'] = "Forum";

// Top Nav

$lang['top nav_view discussions'] = "Home";
$lang['top nav_new discussion'] = "New Discussion";
$lang['top nav_login'] = "Login";

// Discussions
$lang['discussions title'] = "Discussions";
$lang['discussions num comments'] = 'Comments';

// Comments
$lang['comments form instruction'] = "Join in, add your comment
below.";

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

$lang['comments flag']

' [Flagl ';
'Created by ';

7

$lang['comments created by']

at !':

7

$lang['comments created at']

$lang['comments comment name'] = 'Your name';

$lang['comments comment email'] = 'Your email';

$lang['comments comment body']l = 'Comment';

// Discussions
$lang['discussion form instruction'] = "Create your own discussion,
fill in the form below";

= ' [Flag]l';

'Your name';

$lang['discussion flag']

$lang['discussion usr name']

$lang['discussion usr email'] = 'Your email';

$lang['discussion ds title'] = 'Discussion title';

$lang['discussion ds body'] 'Your question, point etc';

// Admin - login

$lang['admin login header'] "Please sign in";

$lang['admin login email'] = "Email";
$lang['admin login password'] = "Password";
$lang['admin login signin'l] = "Signin...";
$lang['admin login error'] = "Whoops! Something went wrong - have
another go!";

$lang['admin dash allow'] = "Allow";

$lang['admin dash disallow'] = "Disallow";

Putting it all together

Now that we've created each file and resource necessary for the app, let's run
through a few scenarios so that we can get a good idea of how it all works together.

A user creates a discussion forum

Let's consider an example where David visits the discussion forum in his browser.
The following is the sequence of steps:

1. David clicks on the New Discussion link in the top navigation bar.
2. Codelgniter loads the create () function in the discussions controller.
3. The create () function displays the discussions/new.php view file,

which displays a form to users, enabling them to enter their name,
e-mail, discussion title, and discussion body text.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

4. David presses the Go button to submit the form. The form is submitted to the
discussion controller's create () function.

5. The discussion controller's create () function validates the form. Assuming
there were no errors, the create () function packages the post data into an
array and sends it to the create () function of discussions_model.

6. The create () model function looks in the users database table to see
whether the e-mail address already exists. If it does, the primary key of the
user is returned and added to the Active Record insertion for the discussion.
However, if the e-mail address doesn't exist, then the model function creates
it. Instead, the primary key of this insertion is returned.

7. A password is created and a hash is generated from it. However, the
password is not stored and David is not told what it is; this is perhaps a
functionality you might not wish for, but you can easily add code to send
David his password in an e-mail, should you wish.

A user comments on a discussion forum

Let's consider an example where Ed visits the discussion forum in his browser.
The following is the sequence of events:

1. Codelgniter loads the default controller —in this case, the discussion
controller.

2. The discussion controller uses the fetch discussions () function of
discussions_model to get the latest discussions from the discussions
database table and passes them to the discussions/view.php view file
where they are displayed.

3. Ed likes the sound of one of the discussion forums and clicks on the name
of the forum.

4. Codelgniter loads the comments controller's index () function.
The index () function takes the third uri segment (the discussion forum
ID—discussions.ds_id) and passes it to the fetch_comments () function
of comments model.

The comments are displayed in the comments/view.php view file.

Ed reads the comment history and decides that the world would benefit
from his opinion.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

7. Ed scrolls to the bottom of the page where the form to add a comment is
present. Ed enters his name, e-mail, and comment and clicks on Go.

8. The form is submitted to the create () function of comments. The create ()
function will validate the form. Assuming there were no errors, the create ()
function packages the post data into an array and sends it to the create ()
function of comments model.

9. The create () model function looks in the users database table to see
whether the e-mail address already exists. If it does, the primary key of the
user is returned and added to the Active Record insertion for the comment.
However, if the e-mail address doesn't exist, then the model function creates
it. Instead, the primary key of this insertion is returned.

10. A password is created and a hash is generated from it. However, the password
is not stored and Ed is not told what it is; this is perhaps a functionality you
might not wish for, but you can easily add code to send Ed his password in an
e-mail, should you wish.

11. Ed is redirected to the discussion forum where he can see his comment.

A user dislikes a comment and flags it for
moderation

Let's consider an example where Nigel is looking through a discussion and
sees a comment that he feels is necessary for moderation. The sequence of steps
is as follows:

Outraged, he presses the flag link next to the comment.

Codelgniter loads the £1ag () function of comments. The URL that is used
to access this is comments/flag/id-of-discussion/id-of -comment.

3. Codelgniter passes id-of - comment to the flag () function of
comments model, which will set comments.cm is active to 0. This removes
the comment from the discussion and places it in the moderation dashboard.

4. If the update of the comment was successful, Codelgniter will redirect Nigel
to the discussion he was looking at.

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion Forum

A moderator reviews comments awaiting
moderation

Let's consider an example where Nick logs in to his admin account. The sequence of
steps is as follows:

1.
2.

10.

11.
12.

13.

The admin controller loads the dashboard () function.

The dashboard () function loads a list of comments and discussions waiting
for moderation.

Nick sees the full text of comments and discussions along with two options:
Allow and Disallow.

Nick sees that there are two comments that require moderation.

Nick reads the first comment and decides that it is fine; he clicks on the
Allow link. The structure of the link is admin/update_item/cm/allow/id-
or-comment.

Codelgniter loads the update_item() function of admin.

The update_item() function gets the type of thing that needs to be updated
(comment: cm and discussion: ds); in this case, Nick is updating a comment
to the first segment in uri, which is cm. The second uri segment is allow and
the third uri segment is the ID of the comment (comments.cm_id).

The update_comments () function of admin model is called, setting
comments.cm_is_active to 1. This allows the comment to be displayed
once more.

Nick also notices the one remaining comment waiting for moderation.
He reads the comment and decides that it's probably not the best comment
and he wishes to remove it.

He clicks on the Disallow link. The structure of the link is admin/update
item/cm/disallow/id-or-comment.

Codelgniter loads the update_item() function of admin.

The update_item() function gets the type of thing that needs to be updated
(comment: cm and discussion: ds); in this case, Nick is updating a comment
to the first segment in uri, which is cm. The second uri segment is disallow
and the third uri segment is the ID of the comment (comments.cm_id).

The update comments () function of admin _model is called. As $is_active
is set to 0, we will not allow the comment to be displayed but will delete it.
A PHP if/else statement works out the value of $is_active, the else section
is executed, and a MySQL DELETE command is called, deleting the comment
from the database permanently.

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Summary

We have done a lot in this chapter; we've created many files and there's a lot to

take in. However, this project gives you the base system for a discussion forum.

You might wish to add user management (particularly when it comes to sending the
user their password), assuming you want people to log in? What would they do once
they are logged in? These are for you to define, but you now have the base system;
this allows you to build more.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing
Application

There are quite a few image-sharing websites around at the moment. They all share
roughly the same structure: the user uploads an image and that image can be shared,
allowing others to view that image. Perhaps limits or constraints are placed on the
viewing of an image, perhaps the image only remains viewable for a set period of
time, or within set dates, but the general structure is the same. And I'm happy to
announce that this project is exactly the same.

We'll create an application allowing users to share pictures; these pictures are
accessible from a unique URL. To make this app, we will create two controllers:
one to process image uploading and one to process the viewing and displaying
of images stored.

We'll create a language file to store the text, allowing you to have support for
multiple languages should it be needed.

We'll create all the necessary view files and a model to interface with the database.

However, this project along with all the others in this book relies on the basic setup
we did in Chapter 1, Introduction and Shared Project Resources, although you can take
large sections of the code and drop it into pretty much any project you may already
have. Keep in mind that the setup done in the first chapter acts as a foundation for
this chapter.

In this chapter, we will cover:

* Design and wireframes
* Creating the database

* Creating the models

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

* Creating the views
* Creating the controllers

* Putting it all together

So without further ado, let's get on with it.

Design and wireframes

As always, before we start building, we should take a look at what we plan to build.

First, a brief description of our intent: we plan to build an app to allow the user to
upload an image. That image will be stored in a folder with a unique name. A URL
will also be generated containing a unique code, and the URL and code will be
assigned to that image. The image can be accessed via that URL.

The idea of using a unique URL to access that image is so that we can control access
to that image, such as allowing an image to be viewed only a set number of times,
or for a certain period of time only.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

@ ®

create go

@

do_upload

So that's the site map. The first thing to notice is how simple the site is. There are
only three main areas to this project. Let's go over each item and get a brief idea of
what they do:

* create: Imagine this as the start point. The user will be shown a simple form
allowing them to upload an image. Once the user presses the Upload button,
they are directed to do_upload.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

* do_upload: The uploaded image is validated for size and file type. If it
passes, then a unique eight-character string is generated. This string is then
used as the name of a folder we will make. This folder is present in the main
upload folder and the uploaded image is saved in it. The image details
(image name, folder name, and so on) are then passed to the database model,
where another unique code is generated for the image URL. This unique
code, image name, and folder name are then saved to the database.

The user is then presented with a message informing them that their image
has been uploaded and that a URL has been created. The user is also
presented with the image they have uploaded.

* go: This will take a URL provided by someone typing into a browser's
address bar, or an img src tag, or some other method. The go item will look
at the unique code in the URL, query the database to see if that code exists,
and if so, fetch the folder name and image name and deliver the image back
to the method that called it.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at the wireframes of each page.

The create item

The following screenshot shows a wireframe for the create item discussed in the
previous section. The user is shown a simple form allowing them to upload an image.

Web Application Blueprints

<j |:> X 4} [nttp:/www.domain.con | (q)

Image Share Upload

Image Share

Upload your image to share it

74

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

The do_upload item

The following screenshot shows a wireframe from the do_upload item discussed in
the previous section. The user is shown the image they have uploaded and the URL
that will direct other users to that image.

Web Application Blueprints

<:| |:> X {} |http://www.domain.com/create/do_upload | (Q)

Image Share Upload

Image Share

Hey look at this, here’s your image x6pxLEEo

74

The go item

The following screenshot shows a wireframe from the go item described in the
previous section. The go controller takes the unique code in a URL, attempts to find
it in the database table images, and if found, supplies the image associated with it.
Only the image is supplied, not the actual HTML markup.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Web Application Blueprints

<j E> X {} |http://www.domain.com/H2289LA/2.jpg| (Q)

74

File overview

This is a relatively small project, and all in all we're only going to create seven files,
which are as follows:

/path/to/codeigniter/application/models/image model.php:

This provides read/write access to the images database table. This model
also takes the upload information and unique folder name (which we
store the uploaded image in) from the create controller and stores this
to the database.

/path/to/codeigniter/application/views/create/create.php: This
provides us with an interface to display a form allowing the user to upload
a file. This also displays any error messages to the user, such as wrong file
type, file size too big, and so on.

/path/to/codeigniter/application/views/create/result .php: This
displays the image to the user after it has been successfully uploaded, as well
as the URL required to view that image.

/path/to/codeigniter/application/views/nav/top nav.php: This
provides a navigation bar at the top of the page.

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

/path/to/codeigniter/application/controllers/create.php: This
performs validation checks on the image uploaded by the user, creates

a uniquely named folder to store the uploaded image, and passes this
information to the model.

/path/to/codeigniter/application/controllers/go.php: This
performs validation checks on the URL input by the user, looks for the
unique code in the URL and attempts to find this record in the database.
If it is found, then it will display the image stored on disk.

/path/to/codeigniter/application/language/english/en admin
lang.php: This provides language support for the application.

The file structure of the preceding seven files is as follows:

application/
— controllers/

— create.php
F— go.php

F— models/

— image model.php

b— views/create/

b— create.php
— result.php

— views/nav/

— top nav.php

— language/english/

— en admin lang.php

Creating the database

Okay, you should have already set up Codelgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources; if you have not, then you should
know that the code in this chapter is specifically built with the setup from Chapter
1, Introduction and Shared Project Resources, in mind. However, it's not the end of
the world if you haven't. The code can easily be applied to other projects and
applications you may have developed independently.

First, we'll build the database. Copy the following MySQL code into your database:

CREATE DATABASE “imagesdb™;
USE ~“imagesdb™;

DROP TABLE IF EXISTS “images”;
CREATE TABLE “images™ (
“img id> int(11) NOT NULL AUTO INCREMENT,

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

“img url code” varchar(10) NOT NULL,

“img url created at” timestamp NOT NULL DEFAULT
CURRENT_TIMESTAMP,

“img image name”~ varchar (255) NOT NULL,
“img dir name® varchar(8) NOT NULL,
PRIMARY KEY (“img id")

) ENGINE=InnoDB AUTO_ INCREMENT=1 DEFAULT CHARSET=utf8;

Right, let's take a look at each item in every table and see what they mean:

Table: images

Element Description
img id This is the primary key.
img_url_code This stores the unique code that we use to identify the image

in the database.
img_url_created_at | This is the MySQL timestamp for the record.

img_image_name This is the filename provided by the Codelgniter upload
functionality.
img_dir_name This is the name of the directory we store the image in.

We'll also need to make amends to the config/database.php file, namely setting
the database access details, username, password, and so on.

Open the config/database.php file and find the following lines:

Sdb['default'] ['hostname'] = 'localhost';
$db['default'] ['username'] = 'your username';
$db['default'] ['password'] = 'your password';
$db['default'] ['database'] = 'imagesdb';

Edit the values in the preceding code ensuring you substitute those values for the
ones more specific to your setup and situation —so enter your username, password,
and so on.

Adjusting the config.php and autoload.
php files

We don't actually need to adjust the config.php file in this project as we're not

really using sessions or anything like that. So we don't need an encryption key
or database information.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

So just ensure that you are not autoloading the session in the config/autoload.
php file or you will get an error, as we've not set any session variables in the config/
config.php file.

Adjusting the routes.php file

We want to redirect the user to the create controller rather than the default
Codelgniter welcome controller. To do this, we will need to amend the default
controller settings in the routes. php file to reflect this. The steps are as follows:

1. Open the config/routes.php file for editing and find the following lines
(near the bottom of the file):

$route['default controller'] = "welcome";
$route['404 override']l = '';

2. First, we need to change the default controller. Initially, in a Codelgniter
application, the default controller is set to welcome. However, we don't
need that, instead we want the default controller to be create, so find the
following line:

$route['default controller'] = "welcome";

Replace it with the following lines:

Sroute['default controller'] = "create";
Sroute['404 override']l = '';

3. Then we need to add some rules to govern how we handle URLs coming in
and form submissions.

Leave a few blank lines underneath the preceding two lines of code (default
controller and 404 override) and add the following three lines of code:

Sroute['create'] = "create/index";
Sroute[' (:any)'] = "go/index";
Sroute['create/do _upload'] = "create/do_upload";

Creating the model

There is only one model in this project, image_model . php. It contains functions
specific to creating and resetting passwords.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Create the /path/to/codeigniter/application/models/image model.php file
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Image model extends CI_Model {
function _ construct () {
parent:: construct();

}

function save image ($data) {

do {
$img url code = random_string('alnum', 8);
$this->db->where('img url code = ', $img url code) ;

Sthis->db->from('images') ;
$num = $this->db->count_all results();
} while ($num >= 1);

Squery = "INSERT INTO “images~ (“img url code~,
“img image name”, “img dir name~) VALUES (?,?,?) ";
$result = $this->db->query($query, array(s$img url code,
$data['image name'], $data['img dir name']));

if ($result) {

return $img url code;
} else {

return flase;

function fetch image ($img _url code) {
Squery = "SELECT * FROM ~images~ WHERE “img url code™ = ? ";

7

$result = $this->db->query(squery, array($img url code)) ;

if ($result) {
return Sresult;
} else {
return false;

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

There are two main functions in this model, which are as follows:

* save_image (): This generates a unique code that is associated with
the uploaded image and saves it, with the image name and folder name,
to the database.

* fetch_image (): This fetches an image's details from the database according
to the unique code provided.

Okay, let's take save_image () first. The save_image () function accepts an array
from the create controller containing image_name (from the upload process) and
img_dir name (this is the folder that the image is stored in).

A unique code is generated using a do..while loop as shown here:
$img url code = random_string('alnum', 8);

First a string is created, eight characters in length, containing alpha-numeric characters.
The do..while loop checks to see if this code already exists in the database, generating
a new code if it is already present. If it does not already exist, this code is used:

do {
$img url code = random string('alnum', 8);
$this->db->where('img url code = ', $img url code) ;

Sthis->db->from('images') ;
$num = S$this->db->count all results();
} while ($num >= 1);

This code and the contents of the $data array are then saved to the database using
the following code:

Squery = "INSERT INTO “images™ ("img url code™, “img image name~,
“img dir name~) VALUES (?,?,?) ";

Sresult = $this->db->query($Squery, array($img url code,
$data['image name'], $datal['img dir name']));

The $img_url_code is returned if the INSERT operation was successful, and false if
it failed. The code to achieve this is as follows:

if ($result)

return $img url code;
} else {

return false;

}

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Creating the views

There are only three views in this project, which are as follows:

/path/to/codeigniter/application/views/create/create.php:
This displays a form to the user allowing them to upload an image.

/path/to/codeigniter/application/views/create/result .php: This
displays a link that the user can use to forward other people to the image, as
well as the image itself.

/path/to/codeigniter/application/views/nav/top nav.php: This
displays the top-level menu. In this project it's very simple, containing a
project name and a link to go to the create controller.

So those are our views, as I said, there are only three of them as it's a simple project.
Now, let's create each view file.

1.

Create the /path/to/codeigniter/application/views/create/create.
php file and add the following code to it:
<div class="page-header">
<hl><?php echo $this->lang->line('system system name') ;
?></hl>

</div>

<p><?php echo $this->lang->line('encode instruction 1');
?></p>

<?php echo validation errors(); ?>
<?php if (isset ($success) && $success == true) : ?>

<div class="alert alert-success">
<?php echo $this->lang->line ('

common_form elements success notifty'); ?></strongs
<?php echo $this->lang->
line('encode_ encode now_success'); ?>

</div>

<?php endif ; 2>

<?php if (isset($fail) && $fail == true) : ?>
<div class="alert alert-danger">
<?php echo $this->lang->line("'

common_form elements error notifty'); ?> </strongs>
<?php echo S$this->lang->line('encode_encode_now_error
)i ?>

<?php echo $fail ; ?>

</div>

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

<?php endif ; ?>

<?php echo form open multipart ('create/do upload');?>
<input type="file" name="userfile" size="20" />

<input type="submit" value="upload" />

<?php echo form close() ; ?>

<?php if (isset(Sresult) && Sresult == true) : ?>

<div class="alert alert-info">
<?php echo $this->lang->line ('

encode upload url'); ?>
<?php echo anchor ($result, S$Sresult) ; ?>
</div>

<?php endif ; ?>

This view file can be thought of as the main view file; it is here that the user
can upload their image. Error messages are displayed here too.

2. Create the /path/to/codeigniter/application/views/create/result.
php file and add the following code to it:

<div class="page-header">
<hl><?php echo $this->lang->line('system system name') ;
?></hl>

</div>

<?php if (isset(Sresult) && Sresult == true) : ?>
<?php echo $this->lang->line ("'
encode_encoded url'); ?> </strongs>
<?php echo anchor ($result, S$Sresult) ; ?>

<img src="<?php echo base url() . 'upload/'
$img dir name . '/' . $file name ;?>" />
<?php endif ; ?>

This view will display the encoded image resource URL to the user (so they
can copy and share it) and the actual image itself.

3. Create the /path/to/codeigniter/application/views/nav/top nav.php
file and add the following code to it:

<!-- Fixed navbar -->
<div class="navbar navbar-inverse navbar-fixed-top"
role="navigation">
<div class="container">
<div class="navbar-header">

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<button type="button" class="navbar-toggle" data-
toggle="collapse" data-target=".navbar-collapse">

Toggle navigation</spans>
</spans>

</spans>

</buttons>
<?php echo $this-
>lang->line ('system system name'); ?>
</div>

<div class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li class="active"><?php echo anchor ('create',

'Create') ; ?>

</div><!--/.nav-collapse -->
</div>
</div>

<div class="container theme-showcase" role="main">

Creating the controllers

We're going to create two controllers in this project, which are as follows:

This view is quite basic but still serves an important role. It displays an
option to return to the index () function of the create controller.

/path/to/codeigniter/application/controllers/create.php: This
handles the creation of unique folders to store images and performs the
upload of a file.

/path/to/codeigniter/application/controllers/go.php: This fetches
the unique code from the database, and returns any image associated with
that code.

These are two of our controllers for this project, let's now go ahead and create them.

Create the /path/to/codeigniter/application/controllers/create.php file
and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access

allowed') ;

class Create extends MY Controller {

function _ construct () {

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

parent:: construct();
$this->load->helper (array('string')) ;
$this->load->library('form validation') ;
$this->load->library('image 1lib'");
$this->load->model ('Image model') ;
Sthis->form validation->set error delimiters('<div
class="alert alert-danger">', '</div>');

public function index() {
$page data = array('fail' => false,
'success' => false);
Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
Sthis->load->view('create/create', $page data);
Sthis->load->view ('common/footer') ;

public function do upload() {
Supload_dir = '/filesystem/path/to/upload/folder/';

do {
// Make code
$code = random string('alnum', 8);

// Scan upload dir for subdir with same name
// name as the code
$dirs = scandir ($upload dir);

// Look to see if there is already a
// directory with the name which we
// store in $code
if (in_array($code, $dirs)) { // Yes there is
$img dir name = false; // Set to false to begin again
} else { // No there isn't
$img dir name = $code; // This is a new name

}
} while ($img dir name == false);

if (!mkdir(Supload dir.$img dir name))
$page data = array('fail' => s$this->lang->
line('encode upload mkdir error'),
'success' => false);
Sthis->load->view ('common/header') ;

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

$this->load->view('nav/top nav');
Sthis->load->view('create/create', $page data);
Sthis->load->view ('common/footer!') ;

}

Sconfig['upload path'] = $upload dir.$img dir name;

Sconfig['allowed types'] = 'gif|jpg|jpeg|png';
$config['max size'] = '10000';

$config['max width'] = '1024"';

$config['max height'] = '768';

Sthis->load->library('upload', S$config);

if (! $this->upload->do_upload()) {
$page data = array('fail' => $this->upload->
display errors(),
'success' => false);
Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');

Sthis->load->view('create/create', $page data) ;
Sthis->load->view ('common/footer') ;
} else {

$image data = $this->upload->data() ;

$page datal['result']l = $this->Image model->save image (
array ('image name' => $image data['file name'],
'img dir name' => $img dir name)) ;

Spage data['file name'] = $image data['file name'];

$page data['img dir name'] = $img dir name;

if ($page data['result'] == false) {

// success - display image and link
$page data = array('fail' => s$this->lang->
line('encode upload general error'));

Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
Sthis->load->view('create/create', $page data);
Sthis->load->view ('common/footer!') ;

} else {
// success - display image and link
Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
Sthis->load->view('create/result', $page data) ;
Sthis->load->view ('common/footer') ;

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

Let's start with the index () function. The index () function sets the fail and
success elements of the $page_data array to false. This will suppress any initial
messages from being displayed to the user. The views are loaded, specifically the
create/create.php view, which contains the image upload form's HTML markup.

Once the user submits the form in create/create.php, the form will be submitted
to the do_upload () function of the create controller. It is this function that will
perform the task of uploading the image to the server.

First off, do upload () defines an initial location for the upload folder. This is stored
in the supload dir variable.

Next, we move into a do..while structure. It looks something like this:

do {
// something
} while ('..a condition is not met');

So that means do something while a condition is not being met. Now with that in mind,
think about our problem —we have to save the image being uploaded in a folder.
That folder must have a unique name. So what we will do is generate a random
string of eight alpha-numeric characters and then look to see if a folder exists with
that name. Keeping that in mind, let's look at the code in detail:

do {
// Make code
$code = random_ string('alnum', 8);

// Scan uplaod dir for subdir with same name
// name as the code
$dirs = scandir ($upload dir) ;

// Look to see if there is already a

// directory with the name which we

// store in Scode

if (in_array($code, $dirs)) { // Yes there is
$img dir name = false; // Set to false to begin again

} else { // No there isn't
$img dir name = $code; // This is a new name

}

} while ($img dir name == false);

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

So we make a string of eight characters, containing only alphanumeric characters,
using the following line of code:

$code = random string('alnum', 8);

We then use the PHP function scandir () to look in $upload dir. This will store all
directory names in the $dirs variable, as follows:

$dirs = scandir($upload dir);

We then use the PHP function in_array () to look for the value in $code in the list
of directors from scandir ().

If we don't find a match, then the value in $code must not be taken, so we'll go with
that. If the value is found, then we set $img_dir_ name to false, which is picked up
by the final line of the do..while loop:

} while ($img dir name == false);

Anyway, now that we have our unique folder name, we'll attempt to create it. We
use the PHP function mkdir (), passing to it $upload_dir concatenated with $img
dir_name. If mkdir () returns false, the form is displayed again along with the
encode_upload mkdir error message set in the language file, as shown here:

if (!mkdir ($upload dir.$img dir name)) {
$page data = array('fail' => s$this->lang->
line('encode upload mkdir error'),
'success' => false);
Sthis->load->view ('common/header') ;
S$this->load->view('nav/top nav') ;

Sthis->load->view('create/create', S$page data);

(
(
(
(

Sthis->load->view ('common/footer') ;

}

Once the folder has been made, we then set the configuration variables for the
upload process, as follows:

Sconfig['upload path'] = $upload dir.$img dir name;
$config['allowed types'] = 'gif|jpg|jpeg|png';
$config['max size'] = '10000';
Sconfig['max width'] = '1024"';
Sconfig['max_height'] = '768"';

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

Here we are specifying that we only want to upload .gif, .jpg, .jpeg, and .png
files. We also specify that an image cannot be above 10,000 KB in size (although you
can set this to any value you wish —remember to adjust the upload_max_filesize
and post_max_size PHP settings in your php . ini file if you want to have a really
big file).

We also set the minimum dimensions that an image must be. As with the file size,
you can adjust this as you wish.

We then load the upload library, passing to it the configuration settings, as
shown here:

Sthis->load->library('upload', S$config) ;

Next we will attempt to do the upload. If unsuccessful, the Codelgniter function
$this->upload->do_upload () will return false. We will look for this and reload
the upload page if it does return £alse. We will also pass the specific error as a
reason why it failed. This error is stored in the fail item of the $page_data array.
This can be done as follows:

if (! $this->upload->do_upload()) {
$page data = array('fail' => s$this->upload-
>display errors(),

'success' => false);
$this->load->view ('common/header') ;
$this—>load—>view('nav/top_nav');
$this->load->view('create/create', S$page data);
$this->load->view ('common/footer') ;

} else {

If, however, it did not fail, we grab the information generated by Codelgniter from
the upload. We'll store this in the $image_data array, as follows:

$image_data = $this->upload->data();

Then we try to store a record of the upload in the database. We call the save_image
function of Image_model, passing to it file_name from the $image_data array, as
well as $img_dir name, as shown here:

Spage _datal['result']l = $this->Image model->
save image (array('image name' => $image data['file name'],
'img dir name' => $img dir name)) ;

We then test for the return value of the save image () function; if it is successful,
then Image_model will return the unique URL code generated in the model. If it is
unsuccessful, then Image model will return the Boolean false.

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

If false is returned, then the form is loaded with a general error. If successful, then
the create/result.php view file is loaded. We pass to it the unique URL code (for
the link the user needs), and the folder name and image name, necessary to display
the image correctly.

Create the /path/to/codeigniter/application/controllers/go.php file and
add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Go extends MY Controller ({
function _ construct () {
parent:: construct();
Sthis->load->helper('string') ;

public function index()

if (!$this->uri-s>segment (1))
redirect (base url());
} else {
$image code = $this->uri->segment (1) ;

$this->load->model ('Image model') ;
$query = $this->Image model->fetch image ($image code) ;

if ($query-snum rows() == 1) ({
foreach ($query-sresult() as $row)
$img image name = $row->img image name;
$img dir name = $row->img dir name;

}

Surl address = base url() . 'upload/' . $img dir name .'/'
$img_image_ name;
redirect (prep_ url(surl_ address)) ;
} else {
redirect ('create');

}

The go controller has only one main function, index (). It is called when a user clicks
on a URL or a URL is called (perhaps as the src value of an HTML img tag). Here we
grab the unique code generated and assigned to an image when it was uploaded in
the create controller.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

This code is in the first value of the URI. Usually it would occupy the third
parameter —with the first and second parameters normally being used to specify

the controller and controller function respectively. However, we have changed this
behavior using Codelgniter routing. This is explained fully in the Adjusting the routes.
php file section of this chapter.

Once we have the unique code, we pass it to the fetch_image () function of
Image model:

$image code = $this->uri->segment (1) ;
$this->load->model ('Image model') ;
Squery = $this->Image model->fetch image ($image code) ;

We test for what is returned. We ask if the number of rows returned equals exactly 1.
If not, we will then redirect to the create controller.

Perhaps you may not want to do this. Perhaps you may want to do nothing if the
number of rows returned does not equal 1. For example, if the image requested is
in an HTML img tag, then if an image is not found a redirect may send someone
away from the site they're viewing to the upload page of this project —something
you might not want to happen. If you want to remove this functionality, remove the
following lines in bold from the code excerpt:

$img dir name = $row->img dir name;

}

Surl address = base url() . 'upload/' . $img dir name .'/'
$img image name;
redirect (prep url(surl address)) ;
} else {
redirect ('create');

Anyway, if the returned value is exactly 1, then we'll loop over the returned database
object and find img_image name and img_dir name, which we'll need to locate the
image in the upload folder on the disk. This can be done as follows:

foreach ($query-sresult() as $row)
$img image name = $row->img image name;
$img dir name = $row->img dir name;

}

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We then build the address of the image file and redirect the browser to it, as follows:

Surl address = base url() . 'upload/' . $img dir name .'/'
$img image name;
redirect (prep url(surl address)) ;

Creating the language file

As with all the projects in this book, we're making use of the language file to serve
text to users. In this way, you can enable multiple region/multiple language support.

Create the /path/to/codeigniter/application/language/english/en admin_
lang.php file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

// General

$lang['system system name'] = "Image Share";

// Upload

$lang['encode instruction 1'] = "Upload your image to share it";

$lang['encode upload now'] = "Share Now";

$lang['encode upload now success'] = "Your image was uploaded, you
can share it with this URL";

$lang['encode upload url'] = "Hey look at this, here's your
image:";

$lang['encode upload mkdir error'] = "Cannot make temp folder";

$lang['encode upload general error'] = "The Image cannot be saved

at this time";

Putting it all together

Let's look at how the user uploads an image. The following is the sequence of events:

1. Codelgniter looks in the routes.php config file and finds the following line:

Sroute['create'] = "create/index";
It directs the request to the create controller's index () function.

2. The index () function loads the create/create.php view file that displays
the upload form to the user.

3. The user clicks on the Choose file button, navigates to the image file they
wish to upload, and selects it.

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Photo-sharing Application

4.

The user presses the Upload button and the form is submitted to the create
controller's index () function.

The index () function creates a folder in the main upload directory to store
the image in, then does the actual upload.

On a successful upload, index () sends the details of the upload (the new
folder name and image name) to the save_image () model function.

The save_model () function also creates a unique code and saves it in the
images table along with the folder name and image name passed to it by the
create controller.

The unique code generated during the database insert is then returned to the
controller and passed to the result view, where it will form part of a success
message to the user.

Now, let's see how an image is viewed (or fetched). The following is the sequence
of events:

1.

A URL with the syntax www.domain.com/226KgfYH comes into the
application — either when someone clicks on a link or some other call (<img
src=""5).

Codelgniter looks in the routes . php config file and finds the following line:

Sroute[' (:any) '] = "go/index";

As the incoming request does not match the other two routes, the preceding
route is the one Codelgniter applies to this request.

The go controller is called and the code of 226KgfYH is passed to it as the 1st
segment of uri.

The go controller passes this to the fetch_image () function of the Image
model . php file. The fetch_image () function will attempt to find a matching
record in the database. If found, it returns the folder name marking the saved
location of the image, and its filename.

This is returned and the path to that image is built. Codelgniter then redirects
the user to that image, that is, supplies that image resource to the user that
requested it.

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Summary

So here we have a basic image sharing application. It is capable of accepting a
variety of images and assigning them to records in a database and unique folders in
the filesystem. This is interesting as it leaves things open to you to improve on. For
example, you can do the following:

You can add limits on views. As the image record is stored in the database,
you could adapt the database. Adding two columns called img_count and
img_count_limit, you could allow a user to set a limit for the number of
views per image and stop providing that image when that limit is met.

You can limit views by date. Similar to the preceding point, but you could
limit image views to set dates.

You can have different URLs for different dimensions. You could add
functionality to make several dimensions of image based on the initial
upload, offering several different URLs for different image dimensions.

You can report abuse. You could add an option allowing viewers of images
to report unsavory images that might be uploaded.

You can have terms of service. If you are planning on offering this type of
application as an actual web service that members of the public could use,
then I strongly recommend you add a terms of service document, perhaps
even require that people agree to terms before they upload an image.

In those terms, you'll want to mention that in order for someone to use

the service, they first have to agree that they do not upload and share any
images that could be considered illegal. You should also mention that you'll
cooperate with any court if information is requested of you.

You really don't want to get into trouble for owning or running a web
service that stores unpleasant images; as much as possible you want to make
your limits of liability clear and emphasize that it is the uploader who has
provided the images.

In the next chapter, we will create a newsletter signup system. You'll be able to get
people to sign up and have their details in a database. People will be allowed to
unsubscribe and opt-in and opt-out of various settings.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

A newsletter signup is quite a handy application; you can adapt it quite easily

to fit most applications without much fuss. It enables you to have a database of
subscribers and manage them, editing their settings and removing them from the
database should they choose to unsubscribe.

In this chapter, we will cover:

* Design and wireframes
* Creating a database

* Creating models

* Creating views

* Creating controllers

* Putting it all together

Introduction

In this project, we will create an application that will allow users to sign up for a
newsletter. A form will be displayed, inviting a user to enter their e-mail address,
and then it will define a couple of settings to submit that form. It will also let
subscribers alter their settings and even unsubscribe entirely.

To create this app, we will create one controller. This will handle all parts of the
project: subscribing, editing settings, and unsubscribing,.

We'll create a language file to store text, allowing you to have multiple language
support should that be required.

We'll create all the necessary view files and a model to interface with the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

However, this app, along with all the others in this book, relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources. Although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the first chapter acts as a foundation for
this chapter.

So, without further ado, let's get on with it.

Design and wireframes

As always, before we start building, we should take a look at what we plan to build.

First, let's look at a brief description of our intent: we plan to build an app that will
allow people to sign up for a database of contacts that will be used as a newsletter
signup database. We will enable users to subscribe by registering their e-mail
address and some options. These will be saved in a database.

We will also enable people to amend their settings and even unsubscribe should they
wish to.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

@

Home (index)
| |
© ©

Signup (index()) Setting/Unsubscribe (settings())

So, that's the site map; the first thing to notice is how simple the site is. There are
only three main areas in this project. Let's go over each item and get a brief idea of
what they do:

* Home: This is the initial landing area. The index () function is responsible
for displaying a form to the user, inviting them to subscribe.

* Signup: This processes the validation of the form input and passes that data
(if validated successfully) to the add () model function.

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

* Settings/Unsubscribe: This accepts the users' e-mail address as the third
and fourth uri parameters and displays a form to the subscriber. This form
contains the settings assigned to the e-mail address supplied. The user is able
to amend these settings and unsubscribe should they wish to.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at some wireframes of each page.

The Home — index() and Signup — index()
items

The following screenshot shows you a wireframe from point 1 (the Home (index())
item) and point 2 (the Signup (index ()) item) in the preceding diagram. The user

is shown a textbox named signup email in the HTML and two checkboxes named
signup optl and signup opt2 in the HTML.

These options are just an example; they can be removed or amended
\ should you wish. They are intended to act as a filter to the newsletters.
~ For example, you could include frequency options giving weekly,
Q monthly, or quarterly options. When you come to send your newsletters,
you would only send the subscriber a newsletter based on those options —
as I say, you can change them, add more, or have none if you wish.

The user can enter their e-mail address as shown in the following screenshot, apply
any options they might wish to add, and submit the form. The form is submitted

to the signup controller's index () function, which will then validate that data. On
passing the validation, the add () function of Signup_model will create the record in
the signups database table.

Web Application Blueprints

<:| |:> X {} |http://www.domain.com/ | (Q)

Signup Home

’Your Email ‘

[0 Option 1
[J Option 2

74

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

Settings/Unsubscribe — settings()

The following screenshot shows you a wireframe from point 3 (the Settings/
Unsubscribe (settings ()) item) in the site map diagram. The user is presented
with a form that is pre-populated with their settings.

Web Application Blueprints

<:| |:> X {} |singup/settings/name/domain.com | (Q)

Signup Home

| name@domain.com |

[J Option 1
[Option 2
[0 Unsubscribe

74

We were able to fetch the correct details because of the URL. The user's e-mail
address is in the URL as the third and fourth segments.

The page is loaded when a user clicks on an unsubscribe link — perhaps in an e-mail.
The URL for this link would take the http://www.domain.com/signup/settings/
name/domain.com format.

You'll notice that we don't use the http://www.domain.com/signup/settings/
name@domain.com format.

In the second URL, you can see the @ character; in the first, you can see that character
replaced with a forward slash. In effect, we have turned the first part of the e-mail
address (everything before @) into the third uri parameter, and the fourth parameter
of the uri comes from the second part of the e-mail address (everything after @).

For security reasons, we are unable to use the @ character in the URL, so we cannot
have http://www.domain.com/signup/settings/name@domain.com as the URL.
This is default Codelgniter behavior: certain characters are disallowed from URLs in
an effort to reduce the chances of malicious scripts or commands being run.

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

File overview

This is a relatively small project, and all in all, we're only going to create six files.
These are as follows:

/path/to/codeigniter/application/models/signup model.php: This
provides read/write access to the database.

/path/to/codeigniter/application/views/signup/signup.php: This
displays a small form to the user, inviting them to enter their e-mail address
and to check two checkboxes: Option 1 and Option 2. You can amend these
options, adding more or removing them completely. The options are there to
help the person who is signing up define what information they want from
the application.

/path/to/codeigniter/application/views/signup/settings.php: This
displays a small form to the user, showing their current settings with the
application.

/path/to/codeigniter/application/views/nav/top_ nav.php: This
provides a navigation bar at the top of the page.
/path/to/codeigniter/application/controllers/signup.php: This
contains all functions necessary to sign up new subscribers and amend their
account details. This controller also handles any unsubscribe requests.

/path/to/codeigniter/application/language/english/en admin
lang.php: This provides language support for the application.

The file structure of the preceding six files is as follows:

application/
— controllers/

— signup.php

— models/

— signup_model.php

— views/signup/

— signup.php
— settings.php

— views/nav/

— top nav.php

— language/english/

— en admin lang.php

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

Creating the database

Okay, you should have already set up Codelgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is specifically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However it's not the end of the world if you
haven't; the code can easily be applied to other situations.

First, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE ~“signupdb”;
USE DATABASE ~“signupdb;

CREATE TABLE “signups™ (
“signup id~ int(11) NOT NULL AUTO_ INCREMENT,
“signup email” varchar (255) NOT NULL,
“signup optl” int (1) NOT NULL,
“signup opt2” int (1) NOT NULL,
“signup active® int (1) NOT NULL,
“signup created at® timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
PRIMARY KEY (“signup_ id")
) ENGINE=InnoDB AUTO_ INCREMENT=1 DEFAULT CHARSET=utf8;

Right, let's take a look at each item in the table and see what it means:

Table: signups

Element Description

signup id This is the primary key.

signup_email This shows you the users' e-mail addresses.
signup_optl This stores the users option for option 1 in the views/

signup/signup.php file.

signup_opt2 This stores the users option for option 2 in the views/
signup/signup.php file.

signup_active This is a sort of soft delete. It's not currently supported in the
application in this chapter, but is there should you wish to use
it.

signup_created_at | Thisis a MySQL timestamp for the date on which the row was
created in the table.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We'll also need to make amends to the config/database.php file, namely, setting
the database access details, username password, and so on:

1. Open the config/database.php file and find the following lines:

Sdb['default'] ['hostname'] = 'localhost';
Sdb['default'] ['username'] = 'your username';
Sdb['default'] ['password'] = 'your password';
Sdb['default'] ['database'] = 'signupdb';

2. Edit the values in the preceding lines, ensuring you substitute these values
with ones more specific to your setup and situation —so enter your username,
password, and so on.

Adjusting the routes.php file

We want to redirect the user to the signup controller rather than the default
Codelgniter welcome controller. To do this, we will need to amend the default
controller setting in the routes.php file.

Open the config/routes.php file to edit and find the following lines (near the
bottom of the file):

Sroute['default controller'] = "welcome";
Sroute['404 override']l = '';

First, we need to change the default controller. Initially, in a Codelgniter application
the default controller is set to welcome. However, we don't need this, instead we
want the default controller to be signup. So, find the following line:

$route['default controller'] = "welcome";
Replace the preceding line with the following;:

Sroute['default controller'] = "signup";
Sroute['404 override']l = '';

Creating the model

There is only one model in this project— signup_model . php that contains functions
that are specific to adding a subscriber to the database, amending their settings and
processing the removal of a subscriber should they unsubscribe.

This is our one and only model for this project. Let's briefly go over each function
in it to give us a general idea of what it does, and then we will go into more details
of the code.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

There are four main functions in this model, which are as follows:

* add(): This accepts one argument: the $data array sent by the signup
controller's index () function when a user successfully submits the form in
views/signup/signup.php. The add () function takes the array and using
the $this->db->insert () Codelgniter Active Record function, it inserts the
user's signup data in the signups table.

* edit (): This accepts one argument: the $data array sent by the signup
controller's settings () function. This function is called only if the user is
editing their settings rather than unsubscribing. The edit () function will
update a user's profile.

* delete(): This accepts one argument: the $data array sent by the signup
controller's settings () function. This function is called only if the user is
unsubscribing rather than editing their settings. The function will return
true if the delete was successful and false if not.

* get_settings (): This accepts one argument: the $data array sent by
the signup controller's settings () function. The settings form needs to
be populated with the correct data for the required e-mail address, and
get_settings () supplies this information.

That's a quick overview, so let's create the model and discuss how it functions.

Create the /path/to/codeigniter/application/models/signup model .php file
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Signup model extends CI Model ({
function _ construct () {
parent:: construct();

}

The following code snippet adds a subscriber to the database using the $this->db-
>insert () Codelgniter Active Record function. This function is called by the signup
controller's index () function. It accepts an array called $data; this array is the
validated form input submitted by the user in the views/signup/signup.php form.
On successfully writing to the database, it will return true; it will return false if an
error occurs:

public function add($data) {
if ($this->db->insert('signups', $data)) {
return true;
} else {

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

return false;

}
}

The following code snippet performs an update procedure on the signups database
table using the $this->db->update () Codelgniter Active Record function. It accepts
an array called $data. This array is the validated form input submitted by the user in
the views/signup/settings.php form. On a successful update, it will return true;
it will return false if an error occurs:

public function edit ($data) ({
$this->db->where('signup email', S$datal'signup email']);
if ($this->db->update('signups', s$data)) {
return true;
} else {
return false;
}
}

The following code snippet performs a delete procedure on the signups database
table using the $this->db->delete () Codelgniter Active Record function. It accepts
an array called $data. This array is the validated form input submitted by the user

in the views/signup/settings.php form and contains the subscribers' e-mail
addresses only. On a successful deletion, it will return true; it will return false

if an error occurs:

public function delete($data)
$this->db->where('signup email', $datal'signup email']);

if ($this->db->delete('signups')) {
return true;
} else {

return false;

}
}

The following code snippet performs a select procedure on the signups database

table using the $this->db->get () Codelgniter Active Record function. It accepts a
variable called $email. This is the formatted e-mail address of the subscriber. This
function returns a subscriber's database record. It is required by the signup controller's
settings () function in order to pre-populate form items. On a successful selection, it
will return a database result object; it will return false if an error occurs:

public function get settings($email) ({
$this->db->where('signup email', S$email) ;
Squery = S$this->db->get('signups');

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

if ($query)
return $query;
} else {
return false;

}

As you can see, the model is fairly straightforward and concise, so let's now take a
look at the views.

Creating the views

There are three views in this project, and these are as follows:

* /path/to/codeigniter/application/views/signup/signup.php:
This displays a form to the user, allowing them to sign up their e-mail
address to the project.

* /path/to/codeigniter/application/views/signup/settings.php:
This displays a form to the user, allowing them to amend their preferences
and also unsubscribe should they wish.

* /path/to/codeigniter/application/views/nav/top nav.php: This
displays the top-level menu. In this project, this file is very simple, and as
such it just contains a link to return to the index () function.

This is a good overview of the views. Now let's go over each one, build the code,
and discuss how they function:

1. Create the /path/to/codeigniter/application/views/signup/signup.
php file and add the following code to it:
<div class="row row-offcanvas row-offcanvas-right"s>

<div class="col-xg-12 col-sm-9">
<div class="row">

<?php echo validation errors(); ?>

<?php echo form open('/signup') ; ?>

<?php echo form input ($signup email); ?>

<?php echo form checkbox($signup optl) . $this->lang-
>line ('signup optl'); ?>

<?php echo form checkbox ($signup opt2) . $this->lang-
>line ('signup opt2'); ?>

<?php echo form submit('', $this->lang->line('common form
elements go'), 'class="btn btn-success"') ; ?>

<?php echo form close() ; ?>

</div>
[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

</div>
</div>

The preceding HTML contains the form to enable a user to sign up to the
application. The form also displays any validation errors.

Create the /path/to/codeigniter/application/views/signup/
settings.php file and add the following code to it:

<div class="row row-offcanvas row-offcanvas-right"s>
<div class="col-xs-12 col-sm-9">
<div class="row">

<?php echo validation errors(); ?>

<?php echo form open('/signup/settings') ; ?>

<?php echo form input ($signup email); ?>

<?php echo form checkbox($signup optl) . $this->lang-
>line ('signup optl'); ?>

<?php echo form checkbox($signup opt2) . $this->lang-
>line ('signup opt2'); ?>

<?php echo form checkbox ($signup unsub) . S$this-
>lang->line('signup unsub'); ?>

<?php echo form submit('', $this->lang-»>
line('common form elements go'), 'class="btn btn-
success"') ; ?>

<?php echo form close() ; ?>
</div>
</div>
</div>

The preceding HTML contains the form to enable the subscriber to edit their
settings or unsubscribe completely. The data for the form is fetched by the
get_settings () function of signup model.

Create the /path/to/codeigniter/application/views/nav/top nav.php
file and add the following code to it:

<!-- Fixed navbar -->
<div class="navbar navbar-inverse navbar-fixed-top"
role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-
toggle="collapse" data-target=".navbar-collapse">
Toggle navigation

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

</buttons>
<a class="navbar-brand" href="<?php echo base url() ;
?>"><?php echo $this->lang->line('
system_system name'); ?>
</div>
<div class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li class="active"><?php echo anchor ('signup',

$this->lang->line('nav_home')) ; ?></lis

</div><!--/.nav-collapse -->
</div>
</div>

<div class="container theme-showcase" role="main">

Creating the controllers

We're going to create only one controller in this project, which is /path/to/
codeigniter/application/controllers/signup.php.

Let's go over this controller now, look at the code, and discuss how it functions.

Create the /path/to/codeigniter/application/controllers/signup.php file
and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Signup extends MY Controller ({

function _ construct () {
parent:: construct () ;
Sthis->load->helper('form') ;
Sthis->load->helper('url');
$this->load->model ('Signup model') ;
$this->load->library('form validation') ;
Sthis->form validation->set error delimiters('<div

class="alert alert-danger">',6 '</divs>"');

public function index ()

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This function creates a subscriber in the database, so the first thing we need to do is
set the form validation rules:

// Set validation rules
$this->form validation->set rules('signup email', s$this->lang-
>line ('signup emailemail'), 'required|valid email|
min length[1l] |[max_length[125] |is unique [signups.signup email] ') ;
$this->form validation->set rules('signup emailoptl', $this->lang-
>line('signup emailoptl'), 'min_length[l]|max_length[1]');
$this->form validation->set rules('signup emailopt2', $this->lang-
>line('signup emailopt2'), 'min_length[l]|max_length[1]');

// Begin validation
if ($this->form validation->run() == FALSE) ({

If the form was submitted with errors, or if this is the first load instance of the
function, then we will arrive at the following code. We define the following settings
for the form elements in the views/signup/signup.php file:

$data['signup email'] = array('name' => 'signup email',6 'class'
=> 'form-control', 'id' => 'signup email',6 'value' =>
set _value('signup email', ''), 'maxlength' => '100', 'size' =»>
'35', 'placeholder' => s$this->lang->line('signup email')) ;

$data['signup optl']l = array('name' => 'signup optl', 'id' =>
'signup optl', 'value' => 'l', 'checked' => FALSE, 'style' =»>
'margin:10px') ;

$data['signup opt2']l = array('name' => 'signup opt2', 'id' =>
'signup opt2', 'value' => 'l', 'checked' => FALSE, 'style' =»>

'margin:10px') ;
Sthis->load->view ('common/header') ;
S$this->load->view('nav/top nav', $data);

Sthis->load->view('signup/signup', S$data);

(
(
(
Sthis->load->view ('common/footer') ;

} else {

However, if there were no errors with the validation, we will arrive at the following
code. We package the data from the form elements into an array called $data and
send it to the add () function of signup_model. This will perform the task of writing
the subscriber to the database:

$data = array('signup email' => $this->input-
>post ('signup email'),
'signup optl' => $this->input-
>post ('signup optl'),
'signup opt2' => $this->input-
>post ('signup opt2'),

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

'signup active' => 1);

if ($this->Signup model->add($data)) ({

echo $this->lang->line('signup success');
} else {

echo $this->lang->line('signup error');

}
}

The following function is responsible for updating a subscriber's settings, or
handling an unsubscribe request. Before it can do either of these things, it needs the
users' e-mail address. The e-mail address is supplied when a subscriber clicks on a
link (such as an unsubscribe link in an e-mail):

public function settings() {

// Set wvalidation rules

Sthis->form validation->set rules('signup email', $this->lang-
>line ('signup _email'), 'required|valid email|min
_length[1] |max_length[125] ") ;

$this->form validation->set rules('signup optl', $this->lang-
>line ('signup optl'), 'min length[1] |max length[1]');

$this->form validation->set rules('signup opt2', $this->lang-
>line ('signup opt2'), 'min length[1] |max length[1]');

Sthis->form validation->set rules('signup unsub', $this->lang-
>line ('signup unsub'), 'min_length[1] |max length[1]');

// Begin validation
if ($this->form validation-s>run() == FALSE) ({

If validation was unsuccessful, or the form is being accessed for the first time, then
we arrive at the following code. The first thing we try to do is get the details of

the subscriber so that we can display the correct settings in the form. We pass the
third and fourth parameters of the uri segment to the get_settings () function
of signup_model. We join them by writing the @ symbol between the two uri
segments, remembering that we cannot accept @ symbols in the URL for security
reasons. This can be done as follows:

Squery = $this->Signup model->get settings($this->uri->segment (3)

'@' . S$this->uri->segment (4)) ;
if ($query->num rows() == 1) ({
foreach (Squery->result() as Srow) {

$signup optl = Srow->signup optl;
$signup opt2 = Srow->signup opt2;

} else {
redirect ('signup') ;
}

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The get_settings () function of signup model will look in the signups table and
return a result object.

First, we test to see whether the number of records found is exactly 1. Anything else
and there's a problem: either more than one record exists in the database belonging
to the same e-mail address, or no e-mail address was found at all, in which case we
redirect the users to the index () function.

Anyway, if exactly one record was found, we then loop over the result object with a
foreach loop and put the values that we will use to populate the form options into
local variables: $signup optl and $signup opt2.

We then define the settings for our form elements, passing $signup_email,
$signup_optl and $signup_opt2 as well as settings for the unsubscribe checkbox
to them:

$data['signup email'] = array('name' => 'signup email', 'class' =>
'form-control', 'id' => 'signup email',6 ‘'value' =>
set _value('signup email', s$this->uri->segment(3) . '@' . $this-
>uri->segment (4)), 'maxlength' => '100', 'size' => '35',
'placeholder' => $this->lang->line('signup email')) ;

$data['signup optl'] = array('name' => 'signup optl', 'id' =>
'signup optl', 'value' => 'l', 'checked' => ($signup optl == 1)
? TRUE : FALSE, 'style' => 'margin:10px');

$data['signup opt2'] = array('name' => 'signup opt2', 'id' =>
'signup opt2', 'value' => 'l', 'checked' => ($signup opt2 == 1)
? TRUE : FALSE, 'style' => 'margin:10px');

$data['signup unsub'] = array('name' => 'signup unsub',6 'id' =>
'signup unsub', 'value' => 'l', 'checked' => FALSE, 'style' =>

'margin:10px') ;
These form element settings are then sent to the views/signup/settings.php file:

Sthis->load->view ('common/header') ;

S$this->load->view('nav/top nav', $data);

Sthis->load->view('signup/settings', $data);

(
(
(
Sthis->load->view ('common/footer') ;

} else {

If the form is submitted without errors, then we arrive at the following code. The first
thing we do is work out whether the user has indicated that they wish to unsubscribe.
This is done by looking for the value of the signup_unsub form checkbox. If this has
been checked by the user, then there is no need to update their settings. Instead, we
delete the user by calling the delete () function of signup_model:

if ($this->input-s>post('signup unsub') == 1) ({
$data = array('signup email' => $this->input-»>
post ('signup email')) ;

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

if ($this->Signup model->delete($data))
echo $this->lang->line('unsub_ success') ;
} else {
echo $this->lang->line('unsub_error') ;

}

} else {

However, if they haven't indicated that they want to unsubscribe by checking the
form checkbox named signup_unsub, then we would want to update their details.
We package up the values of the form inputs into an array called $data and make it
ready to write to the database using the edit () function of signup_model:

$data = array('signup email' => $this->input-»>
post ('signup email'),
'signup optl' => $this->input-
>post ('signup optl'),
'signup opt2' => $this->input-
>post ('signup opt2'));
if ($this->Signup model-sedit ($data)) ({
echo $this->lang->line('setting success');
} else {
echo $this->lang->line('setting error');

So, that was the signup controller. As you saw, it's a small, concise script that I'm
sure you will be able to amend and extend as you wish.

Creating the language file

As with all the projects in this book, we're making use of the language file to serve
text to users. This way, you can enable multiple region/multiple language support.
Let's create the language file.

Create the /path/to/codeigniter/application/language/english/en admin_
lang.php file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

s// General
$lang['system system name'] = "Signup";

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

// nav

$lang['nav_home'] = "Home";

// index ()

$lang['singup instruction'] = "";
$lang['signup email'] = "Your Email";
$lang['signup optl'] = "Option 1";
$lang['signup opt2'] = "Option 2";

$lang['signup unsub'] "Unsubscribe";

—

$lang['signup success'] = "You have signed up";

$lang['signup error']

"There was an error in signing up";

$lang['setting success'] = "Your settings have been amended";

$lang['setting error'] = "There was an error in amending your
settings";

$lang['unsub success'] = "You have been unsubscribed";

$lang['unsub _error'] = "There was an error in unsubscribing you";

Putting it all together

Okay, here are a few examples that will help put everything together.

User subscribes

The sequence of events taking place when a user subscribes are as follows:
1. The user visits the application and Codelgniter routes them to the
signup controller.

2. The index () function in the signup controller displays the views/signup/
signup.php view file.

3. The user views the form in the browser, enters their e-mail address, and
submits the form with no validation errors.

4. The index () function packages the users' input into an array called $data
and passes it to the add () function of Signup_model.

5. The add () function performs an Active Record insert to write the users'
subscription to the signups database table.

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Newsletter Signup

User updates their settings

The following events take place when a user wants to update settings:

1.
2.
3.

10.
11.

12.

13.

The user clicks on a link in an e-mail they have been sent.
The URL routes them to the signup controller's settings () function.

The settings () function takes the third and fourth parameters of the URL,
joins the third and fourth segments with an @ character, and passes this
"rebuilt" e-mail address to the signup controller's get _settings () function.

The get_settings () function looks in the database for a matching record,
and if exactly one record is found, it returns it as a database result object to
the settings () function.

Now that the settings () function has a matching record, it takes various
items from the result object and assigns them to local variables.

These are then used to prepopulate the form items in the views/signup/
settings.php file.

The user sees the form displayed with whichever settings the records are
filled in.

The user wishes to check Option 1 but leave Option 2 unchecked. The user
clicks on the checkbox of Option 1.

The user submits the form, the form is submitted to the signup controller's
settings () function, and is validated successfully with no errors.

As there are no errors, the second part of the validation test (the rest) is run.

The value of the form element signup unsub is checked. As the user is not
unsubscribing, this will not equal 1.

As signup_unsub does not equal 1, the edit () function of signup_model is
passed an array called $data. This $data array contains the contents of the
posted form data.

The edit () function then performs a Codelgniter Active Record update
operation on the $data array.

User unsubscribes

When a user wants to unsubscribe, the following events take place:

1.
2.

The user clicks on a link in an e-mail they have been sent.

The URL routes them to the signup controller's settings () function.

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

10.
11.

12.

13.

The settings () function takes the third and fourth parameters of the URL,
joins the third and fourth segments with an @ character, and passes this
"rebuilt" e-mail address to the signup controller's get _settings () function.

The get_settings () function looks in the database for a matching record,
and if exactly one record is found, it returns it as a database result object to
the settings () function.

Now that the settings () function has a matching record, it takes various
items from the result object and assigns them to local variables.

These are then used to pre-populate the form items in the views/signup/
settings.php file.

The user sees the form displayed with whichever settings the records are
filled in.

The user wishes to unsubscribe from the service.

The user checks Unsubscribe and submits the form. The form is submitted
to the signup controller's settings () function and is validated successfully
with no errors.

As there are no errors, the second part of the validation test (the rest) is run.

The value of the form element signup unsub is checked. This equals 1 as the
user is unsubscribing.

As signup_unsub equals 1, the delete () function of signup model is
passed an array called $data. This $data array contains the subscribers'
e-mail address.

The delete () function then performs a Codelgniter Active Record delete
operation on the $data array.

Summary

In this project, you'll have the foundations of a useful signup application. As always,
there are a few things you can do to expand upon the functionality, which do are
as follows:

Add more options that a user might apply to their subscription
Add HTML/ plaintext settings (and only send them what they've asked for)

Add a signup sunset clause: allow someone to sign up for a certain time and
once that time is arrived at, stop sending them newsletters.

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication
System

Codelgniter doesn't come with a user authentication system out of the box
(urgh, that phrase), but nevertheless it doesn't. If you want to manage users and
sessions, there are several options open to you. You can install an auth Spark,
or you can develop your own solution —which is what we will do here.

One of the irritations I have with other "third-party" plugins (whatever their
purpose) is that the code is almost always difficult, making maintenance and
integration difficult. This authentication system is as simple as I can make it,
and hopefully, it will be easy for you to adapt and extend it for your purposes.

The authentication system provided in this chapter will allow you to create and
manage users, password resets, user e-mail notifications, user logins, and so on.

In this chapter, we will cover the following topics:

* Design and wireframes
* Creating the database

* Creating the models

* Creating the views

* Creating the controllers

* Putting it all together

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Introduction

To create this app, we will create five controllers: one to handle signing in to
sessions, one to handle admin functions (CRUD operations), one for user password
management, one to allow a user to register, and one to offer functionality to a user
once they are logged in.

We'll also create a language file to store text, allowing you to have multiple language
support should that be required.

We will make amends to the config. php file to allow for encryption support
necessary for sessions and password support.

We'll create all the necessary view files and even a CSS file to help Bootstrap with
some of the views.

However, this app along with all the others in this book, relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources; although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the first chapter acts as a foundation for
this chapter.

So without further ado, let's get on with it.

Design and wireframes

As always, before we start building, we should as always take a look at what we plan
to build.

Firstly, a brief description of our intent: we plan to build an app that will provide the
following functions:

* Anadmin can manage all users within the system and also allow individual
users to edit and update their own data.

* Users can reset passwords if they have forgotten them; e-mails confirming
this will be sent to these users

* New users are able to register and become part of the system; a password
will be generated and sent to them in an e-mail

We will also look at how to implement code to check for a users' access level.
You can use this code in your projects to limit users from specific controllers
and controller functions.

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

To get a better idea of what's happening, let's take a look at the following site map:

OO

Signin ForgotPassword Register

me users

[| | | |

©)

Edit My Details View All Create Edit Delete

© © @

So, that's the site map; now, let's go over each item and get a brief idea of what

it does:

Signin: Imagine this as the start point. The user will be able to sign in at this
point. Depending on the value in users.usr_access_level, they will either
be directed to me or users controllers. The me controller is a place for normal
users to edit and update their details, while the users controller offers a
place for an admin to manage all users.

Me: This currently displays a form to the user; however, consider this area
a dashboard area for users who are not admins. Admins have their users.
usr_access_level value set to 1. Currently, the me controller will load the
index function, which will allow the user to edit their details —speaking of
which, let's see the next block.

Edit My Details: This will display a form to the current user. The form will
allow the user to change and save their contact data.

Users: The users controller handles admin functions such as all CRUD
operations for users, password resets, and password scramble (for all users).

View All: This lists all users and their current status in the database. The
users are displayed in a table. Those users who are active (users.usr_is_
active = 1)have no background color to their row, while users who are
inactive (users.usr_is_active = 0)have an orange background color.

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Create: As the name suggests, this will display the users/new_user view
that contains a form, allowing an admin to create a user within the system.

Edit: This displays a form similar to the previous one, except that it is
prepopulated with details of the current logged in user. This is loaded
when the admin presses the Edit link in the View All page.

Delete: This displays a confirmation page, asking the admin to confirm
whether they wish to delete the user. This is loaded when the admin presses
the Edit link in the View All page.

Forgot Password: This displays a form to the user. The user is invited to
enter their e-mail address in a form text field and press Submit. If the e-mail
address exists in the database, then an e-mail is sent to the e-mail address
with a URL in the body. This URL is the reset URL for this auth system.
Appended to the URL is a unique code that is used by the system to verify
that a password reset request is genuine.

Register: This displays a form to the user, inviting them to enter their first
name, last name, and e-mail address. Once successfully submitted (there
were no validation errors), the new user is added to the system and an e-mail
is sent to the new user informing them of their password; their password was
generated automatically by the system on their registration.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at some wireframes of each page.

Me - editing details
The following screenshot shows you a wireframe from the Edit My Details item

discussed in the site map. The normal user (not an admin user) can view their
details in an HTML form and by pressing Save, they can then update these details.

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Web Application Blueprints

CID> X4 | | G)
Users New Logout
My Details
Frist Name Prefilled
Last Name Prefilled
Email Prefilled
Address 1 Prefilled
Address 2 Prefilled
Postcode Prefilled
Change Password
4

Viewing all users

The following screenshot shows you a wireframe from the View All item in the site
map. The admin user is able to see all users within the system in a table grid. Users
are listed and have Edit and Delete options, which the admin user can use.

Web Application Blueprints

D> X4} |] GO
Users Ne Logout
First Name Last Name Email Action
First Name 1 | Last Name 1 | first.last@one Edit Delete
First Name 2 | Last Name 2 | first.last@two Edit Delete
First Name 3 | Last Name 3 | first.last@three Edit Delete
First Name 4 | Last Name 4 | first.last@four Edit Delete
First Name 5 | Last Name 5 | first.last@five Edit Delete
4

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Creating users

The following screenshot shows you a wireframe from point 6 (the Create User item)
in the site map. It displays a form that contains text fields, allowing an admin to
enter a user's details. Notice that user access levels can be set here; level 1 is treated
in the system as an admin, so the user will be able to have admin rights assigned to
them, whereas higher numbers are normal users. Currently, only level 2 (as a normal
user) is understood by the system; the dropdown has as many as five levels —you
can apply these in your adaptation of this project as you see fit or even add more
should you wish. Setting the user as active (users.usr_is_active = 1) or inactive
(users.usr_is_active = 0) will restrict the user at login. An active user will have
their login request processed by the signin script, whereas an inactive user won't.

Web Application Blueprints

‘alpS FAY | G

Users New Logout
New User

Last Name [

Adoress 1 [

P E—

postoode [

Access Level [1]v]
OActive O In active

Save | or Cancel

N

Editing the user details

The form to edit user details is similar to the New User functionality discussed in the
previous section. It is accessed through point 5 (the View Users functionality) of the
site map when an admin user clicks on the Edit link (in the /views/users/view_
all_users.php view file) next to a person's name. The interesting difference here is
the Other Options panel with the Reset Password Email option. This will reset the
user's password and send them an e-mail informing them of their new password.

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Web Application Blueprints

CIE> X4 | | G
Users N Logout
Edit User
FristName []

S —

P —

S —

Access Level [1]v]

O Active O In active
4

Deleting a user

This is a final confirmation page that asks for permission to delete a user. It is

accessed through point 5 (the View Users functionality) in the site map. An admin
clicks on the Edit link to view the Edit User page. Clicking on Delete will remove
the user from the users table, whereas cancel will return the admin to point 5

(the View Users item).

Web Application Blueprints

AT X G} |] GO
Users New Logout
Confirm delete?

Are you sure you want to delete Firsthame Lastname?
or Cancel
2

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Sign in

The following screenshot shows you the plan for the signing-in page. The user can
enter their username and password and press the Login button. Validation errors are
displayed above the form (however, validation errors are not shown in the following
screenshot). There is also a link for someone to initiate a process to reset password.
The Forgot Password link will display a new form, allowing that person to enter an
e-mail address.

Web Application Blueprints

A0 X4 | | @)

Username

Password

Forgot Password

N

Register

The register functionality allows a nonuser to register with the system. The potential
user is prompted to enter their first name, last name, and e-mail address. We use
their first and last name in a welcome e-mail that will be sent to the e-mail address
entered at this stage.

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Web Application Blueprints

@i ® FAN | &)

Register...
First Name
Last Name

Email

Register

N

File overview

We're going to create quite a few files for this project, 23 files in all, and they are
as follows:

/path/to/codeigniter/application/core/MY Controller.php:

This acts as a parent class to child classes such as the users. php controller.
It provides common resources such as commonly used helpers, libraries,
and error delimiters.

/path/to/codeigniter/application/models/password model.php: This
provides read/write access to the database — particularly around the users
table —focusing on password specific operations.

/path/to/codeigniter/application/models/signin model.php: This
provides methods that are specific to the sign-in process.

/path/to/codeigniter/application/models/users_model.php: This
provides methods that are specific to the users table.

/path/to/codeigniter/application/model/register model.php: This
provides methods that assist in a user being added to the users table without
an admin creating them first.

/path/to/codeigniter/application/views/nav/top_nav.php:
This provides a navigation bar at the top of the page.

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

/path/to/codeigniter/application/language/english/en admin
lang.php: This provides language support for the application.

/path/to/codeigniter/application/views/users/new_user.php:ThE
allows an admin to create a new user. The user is saved to the users table.

/path/to/codeigniter/application/views/users/view all users.
php: This allows an admin to view a list of all users in the users table.

/path/to/codeigniter/application/views/users/delete user.php:
This allows an admin to delete a user.

/path/to/codeigniter/application/views/users/edit_user.phprhE
allows an admin to edit the details of a user.

/path/to/codeigniter/application/views/users/forgot password.
php: This allows someone who is not logged in to reset their password. This
view contains a simple form that asks a user to enter their e-mail address. An
e-mail is sent to this address with a unique code. This code is used to ensure
that the change password request is genuine.

/path/to/codeigniter/application/views/users/me.php: This allows a
user who is not an admin to edit their details.

/path/to/codeigniter/application/views/users/new_password.php:
This allows a user who is not logged in to enter a new password.

/path/to/codeigniter/application/views/users/register.php: This
allows someone who is not already a user (a record in the users table) to
sign in and generate a new row in the users table.

/path/to/codeigniter/application/views/users/signin.php: This
shows a simple login form.

/path/to/codeigniter/application/views/users/change password.
php: This allows someone who is signed in to reset their password.

/path/to/codeigniter/application/views/email scripts/welcome.
txt: This contains simple welcome text.

/path/to/codeigniter/application/views/email scripts/new
password. txt: This contains a simple instruction to click on a link to open
the password/new_password controller function

/path/to/codeigniter/application/views/email scripts/reset
password. txt: This contains a simple message that informs a user that their
password has been changed.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The file structure of the preceding 23 files is shown here:

application/

— core/

| — MY Controller.php
— controllers/

me . php
password.php
register.php
signin.php

TTTTT

users.php

models/

password model.php
register model.php
signin model.php

TTTT

users_model.php
iews/users/
new_user.php
view_all users.php
delete user.php
edit user.php
forgot password.php
me . php
new_password.php
register.php
signin.php

TTTTTTTTTT

change password.php

<

iews/email scripts/
welcome. txt
new_password. txt

1T 1

TTT

reset password.txt
— views/nav/

| — top nav.php

b— views/common/

| — login header.php
— language/english/

| — en admin lang.php
bootstrap/

— css/

— signin.css

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Note the last item in the list, which is signin. css. This sits in the bootstrap/css/
folder, which is at the same level as Codelgniter's application folder. We installed
Twitter Bootstrap in Chapter 1, Introduction and Shared Project Resources. In this
chapter, we will go through how to place the bootstrap folder at the proper folder
level and location.

Creating the database

Okay, you should have already set up Codelgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is specifically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world if you
haven't —the code can easily be applied to other situations.

Firstly, we'll build the database. Copy the following MySQL code into your database:

CREATE DATABASE “user auth™;
USE “user_auth™;

CREATE TABLE “ci_sessions™ (
“session_id® varchar (40) COLLATE utf8 bin NOT NULL DEFAULT '0',
“ip address® varchar(l16) COLLATE utf8 bin NOT NULL DEFAULT '0',
“user_agent” varchar (120) COLLATE utf8_bin DEFAULT NULL,
“last_activity”™ int(10) unsigned NOT NULL DEFAULT '0O',
“user_data” text COLLATE utf8_bin NOT NULL,
PRIMARY KEY (“session_id"),
KEY “last_activity idx™ (Tlast_activity’)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8 bin;

CREATE TABLE “users (
“usr_id® int(11) NOT NULL AUTO_ INCREMENT,
“acc_id® int(11) NOT NULL COMMENT 'account id',
“usr_ fname”~ varchar(125) NOT NULL,
“usr_lname” varchar(125) NOT NULL,
“usr_uname~ varchar(50) NOT NULL,
“usr_email” varchar(255) NOT NULL,
“usr_hash®™ varchar(255) NOT NULL,
“usr_addl® varchar (255) NOT NULL,
“usr_add2® varchar (255) NOT NULL,
“usr_add3” varchar(255) NOT NULL,
“usr_town city” varchar(255) NOT NULL,
“usr_ zip pcode” varchar(10) NOT NULL,
“usr_access_level” int(2) NOT NULL COMMENT 'up to 99',

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

“usr is active® int (1) NOT NULL COMMENT 'l (active) or 0
(inactive) ',
“usr created at” timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
“usr pwd change code” varchar (50) NOT NULL,
PRIMARY KEY (“usr_id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO INCREMENT=1 ;

You'll see that the first table we create is ci_sessions. We need this to allow
Codelgniter to manage sessions, specifically logged in users. However, it is just the
standard session table available from Codelgniter User Guide, so I'll not include a
description of that table as it's not technically specific to this application. However,
if you're interested, there's a description at http://ellislab.com/codeigniter/
user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table and see what it means:

Table: users

Element Description
usr_id This is the primary key.
acc_id Should you wish to associate users with specific accounts (or group users

together under a sort of umbrella), acc_id (for account ID) can be a
hook that enables you to do that. You'll need to create an accounts table
to do this, however.

usr_fname

This is the user's first name.

usr_ lname

This is the user's last name.

usr_ uname

This is the an option for a username.

usr_email

This is the user's e-mail address.

usr_hash

This is a hash of the user's password. The value in users.usr_hash

is generated in two ways. The first is when someone manually changes
their password (perhaps by the "forgot password" process). The $this-
>encrypt->shal ($this->input->post ('usr_passwordl')) ;
Codelgniter function contains the new password from the user.

The second way a password is created is when a password is generated
by the system and is e-mailed to the user, for example, when an admin
creates a new user manually. This way, the admin doesn't know what the
password of the new user is.

To achieve this, Codelgniter uses the same shal () encryption function;
however, instead of a password being supplied from a user through
$POST, it is made by creating a random string and passing it to shal (),
as shown here:

Spassword = random string('alnum',6 8);

Shash = S$this-sencrypt->shal ($password) ;

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Table: users

Element Description

usr_addl This is the first line of a person's address.

usr_add2 This is the second line of a person's address.

usr_add3 This is the third line of a person's address.

usr_town_ This is the town or city of their address.

city

usr_zip_ This is the postal code or zip code of the person's address.

pcode

usr_ This is the indicates the permission level of the user. The permission level

access_ can govern what actions a user is allowed to perform.

level

usr_is_ This is the indicates whether the user is active (1) or inactive (0)—

active inactive means that a user cannot log in.

usr_ This is the MySQL timestamp that is created when the record is created.

created_at

usr_pwd_ This is a unique code that's generated when a person wishes to change

change their password. This unique code is generated and sent in an e-mail to

code the user who wishes to change their password. The code is appended
to a URL in the body of the e-mail. The user clicks on this link and is
redirected to the auth system. The system looks at that code to check
whether it is valid and matches the e-mail. If it matches, the user can
follow onscreen instructions to create a new password for them.

We'll also need to make amends to the config/database.php file, namely setting
the database access details, username password, and so on.

Open the config/database.php file and find the following lines:

Sdb['default'] ['hostname']
Sdb['default'] ['username']
$db['default'] ['password']
Sdb['default'] ['database']

'localhost';

'your username';

'your password';

'user auth';

Edit the values in the preceding lines, ensuring you substitute these values with
ones that are more speciﬁc to your setup and situation; so, enter your username,
password, and so on.

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Adjusting the config.php file
There are a few settings in this file that we'll need to configure to support sessions and

encryption. So, open the config/config.php file and make the following changes:

1. We will need to set an encryption key; both sessions and Codelgniter's
encryption functionalities require an encryption key to be set in the $config
array, so find the following line:

$config['encryption key']l = '';
Then, change it to the following:
Sconfig['encryption key'l = 'a-random-string-of-alphanum-

characters';

Now, obviously don't actually change this value to literally
\\J . .
~ a-random-string-of-alphanum-characters but change it to,
er, a random string of alphanum characters instead —if that
makes sense? Yeah, you know what I mean.

2. Next, find the following lines:

$config['sess cookie name'] = 'ci session';
Sconfig['sess expiration'] = 7200;
Sconfig['sess expire on close'] = FALSE;

$config['sess_encrypt cookie'] = FALSE;
Sconfig['sess use database'] = FALSE;
$config['sess table name'] = 'ci sessions';
Sconfig['sess match ip'] = FALSE;
$config['sess match useragent'] = TRUE;
Sconfig['sess time to update'] = 300;

Then, change it to the following;:

Sconfig['sess_cookie name'] = 'ci session';
Sconfig['sess expiration'] = 7200;
Sconfig['sess_expire on close'] = TRUE;
Sconfig['sess_encrypt cookie'] = TRUE;
Sconfig['sess use database'] = TRUE;
Sconfig['sess_table name'] = 'ci_sessions';

Sconfig['sess match ip'] = TRUE;
Sconfig['sess match useragent'] = TRUE;
Sconfig['sess_time_to_update'] = 300;

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Adjusting the routes.php file

We want to redirect the user to the signin controller rather than default Codelgniter
welcome controller. We will need to amend the default controller settings in the
routes . php file to reflect this:

1. Open the config/routes.php file for editing and find the following lines
(near the bottom of the file):

Sroute['default controller'] = "welcome";
$route['404_override']l = '';

2. Firstly, we need to change the default controller. Initially in a Codelgniter
application, the default controller is set to welcome; however, we don't
need this; instead, we want the default controller to be signin. So, find the
following line:

Sroute['default controller'] = "welcome";

Replace it with the following:

Sroute['default controller'] = "signin";

Creating the models

There are four models in this project, which are as follows:

* models/password _model.php: This contains functions that are specific to
creating and resetting passwords.

* models/register model.php: This contains functions that are specific to
registering a user.

* models/signin model.php: This contains functions that are specific to
signing a user into the system.

* models/users_model.php: This contains the main bulk of the model
functions for this project, specifically CRUD operations to be performed on
users and various other admin functions.

So that's an overview of the models for this project; now, let's go and create
each model.

Create the /path/to/codeigniter/application/models/password model.php
file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

class Password model extends CI_Model ({
function _ construct () {
parent:: construct();

}

The does_code_match () function will check whether the code supplied in the URL
matches that in the database. If it does, it returns true or false if it doesn't. This is
shown here:

function does code match($code, $email) {
Squery = "SELECT COUNT (*) AS “count’
FROM “users”
WHERE “usr pwd change code™ = ?
AND “usr_email™ = ? ";

Sres = Sthis->db->query($Squery, array(scode, Semail));
foreach ($Sres->result() as Srow) {
Scount = Srow->count;

}

if ($count == 1) {
return true;

} else {
return false;

}
}
}

Create the /path/to/codeigniter/application/models/register model.php
model file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Register model extends CI Model {
function _ construct()
parent:: construct () ;

}

public function register user ($data) {
if ($this->db->insert('users', $data)) {
return true;
} else {
return false;

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

The register model contains just one function, which is register user().
It simply uses the Codelgniter Active Record insert () class to insert the contents
of the $data array into the users table.

Create the /path/to/codeigniter/application/models/users_model.php model
file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Users model extends CI Model {

function _ construct () {
parent:: construct();
function get all users() {

return $this->db->get ('users');

function process create user($data) {
if ($this->db->insert ('users', $data))
return S$this->db->insert id();
} else {
return false;

function process update user(id, sdata) {
$this->db->where('usr_id', $id);
if ($this->db->update('users', $data))
return true;
} else {
return false;

function get user details($id) {
$this->db->where('usr_id', $id);
Sresult = Sthis->db->get('users');

if ($result)
return Sresult;
} else {
return false;

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

function get user details by email ($email) {
$this->db->where('usr email', $email);
Sresult = Sthis->db->get('users');

if ($result) {
return Sresult;
} else {
return false;
}
}

function delete user ($id) {
if (sthis->db->delete('users', array('usr_id' => $id))) {
return true;
} else {
return false;
}
}

Let's look at the make_code () function. This function creates a unique code and
saves it to the user's record. This code is sent out at the end of a URL in an e-mail
to the user. If this code in the URL matches the code in the database, then chances
are that it's a genuine password change as it is unlikely that someone would have
accurately guessed the code.

Notice the PHP construct do..while —it looks something like this:

do {
// something
} while ('..a condition is met');

So, this means do something while a condition is met. With that in mind, think about our
problem; we have to assign users.usr_pwd_change code with a value that doesn't
exist in the database already. The code should be a unique value to ensure that
someone else doesn't have his or her password changed by mistake.

We use the do..while construct as a means to create code that is unique in the
database by first creating the code and then looking through the users table for
another occurrence of that code. If it is found, then the number of rows returned will
be greater or equal to one. Then, another code is generated and another search for the
users table happens.

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

This will repeat until a code that cannot be found in the users table is generated.
This unique code is then returned as surl_code:

function make code () ({
do {
Surl_code = random_string('alnum',6 8);
$this->db->where ('usr_pwd change code = ', surl code);

Sthis->db->from('users') ;
$num = $this->db->count_all results();
} while ($num >= 1);

return $url_ code;

}

function count results($email) {
$this->db->where('usr_email', S$email);
Sthis->db->from('users') ;
return $this->db->count _all results() ;

}

The following update_user_password () function accepts an array of data
containing the user's primary key and a new password. The array is provided the
new_password () function of password_model. The user's ID (users.usr_id)is
from the session (as they're logged in) and the new password is from the form that
new_password () loads (views/users/new_password.php):

function update user password($data) {
$this->db->where('usr_id', s$datal['usr_id']l);
if ($this->db->update('users', $data))
return true;
} else {
return false;

function does_ code match($data, $email) {
Squery = "SELECT COUNT (*) AS “count’
FROM “users”
WHERE “usr pwd change code™ = ?

AND “usr email™ = ? ";
Sres = Sthis->db->query($Squery, array(sdatal['code'], S$email));
foreach (Sres->result() as Srow) {
Scount = Srow->count;
[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

if ($count == 1) {
return true;
} else {

return false;

function update user code ($data) {
$this->db->where('usr email', $data['usr email'l);
if ($this->db->update('users', $data))
return true;
} else {
return false;

}

Create the /path/to/codeigniter/application/models/signin model.php
model file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Signin model extends CI_Model ({
function _ construct () {
parent:: construct();

public function does user exist ($email) {
$this->db->where('usr_email', S$email);
Squery = $this->db->get ('users');
return $query;

}

This model contains only one function other than __ construct (), that s,
does_user_ exist (Semail). This function takes an e-mail address submitted
by the user from the sign-in view and returns the active record query.

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

The query is evaluated in the signin controller with the Codelgniter database
function num_rows ():

$query = $this->Signin model->does user exist ($usr email) ;
if ($query-snum rows() == 1) ({

If there is a single match, then the signin controller loops over the Active Record
result and attempts to log the user in.

Creating the views

There are quite a few view files and e-mail template files in this project—in fact,
we're going to create 10 view files, three e-mail scripts, and one header file each
specific to logging in and amending a navigation file. Right, let's get to it.

The following are the standard view files used in this project:

* path/to/codeigniter/application/views/users/new_user.php: This
displays a form to the admin user, allowing them to create a user. The new
user is sent an e-mail that welcomes them to the system and informs them of
their password. The e-mail scriptis /views/email scripts/welcome.txt.

®* path/to/codeigniter/application/views/users/view all users.php:
This displays a list of users currently in the system. Admin users are able to
edit or delete a user.

®* path/to/codeigniter/application/views/users/delete user.php:
This displays a confirmation page to the admin user. This is displayed
if the admin user presses Delete in the view all users/php view. The
confirmation page asks whether the admin user really wishes to delete the
selected user.

* path/to/codeigniter/application/views/users/edit user.php: This
displays a form to the admin user. This is displayed if the admin user presses
Editin the view all users.php view. The form is similar to the new user.
php file, except that there is a panel where the admin user can send an e-mail
to the user to reset their password.

®* path/to/codeigniter/application/views/users/forgot password.
php: This displays a form to anyone asking for an e-mail address. If
this e-mail address is in the system, an e-mail will be sent to them with
instructions on how to reset their password.

* path/to/codeigniter/application/views/users/me.php: This displays
a form to the current logged in user. The form is similar to edit_user.php.
It allows the current logged in user to edit and amend their account details.

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

path/to/codeigniter/application/views/users/new password.php:
This displays a form to anyone, inviting then to enter their e-mail address —
the code generated earlier from the forgotten password process is already a
hidden form element. The code and e-mail address are compared, and if the
code matches, a new password is generated for the user.

path/to/codeigniter/application/views/users/register.php: This
displays a form to the user, allowing them to enter their first and last names
and e-mail addresses. They are then added to the database and a password
is generated for them. This password is sent to them in an e-mail along with
a welcome message. The text for this e-mail is in /views/email_scripts/
welcome. txt.

path/to/codeigniter/application/views/users/signin.php: This
displays a form. The form allows a user (normal or admin) to sign in to the
system with their username and password; remember that their password
isn't stored in the users table, only a hash of that password is stored. To
support this hashing, we'll need to alter the encryption key in the config file.
We discussed this in the Adjusting the config.php file section of this chapter.
path/to/codeigniter/application/views/users/change password.
php: This displays a form to anyone who is logged in. The form allows a user
(normal or admin) to change their password.

The following are the e-mail scripts used in this application:

path/to/codeigniter/application/views/email scripts/welcome.txt:
This contains the text for the welcome e-mail that is sent to a new user when
they are either added by an admin from the new_user.php form or when they
create an account themselves with the form in the register.php view.
path/to/codeigniter/application/views/email scripts/new
password. txt: This file contains the text informing the user of a

password change.
path/to/codeigniter/application/views/email scripts/reset
password. txt: This contains a URL that a user can click on to begin the reset
password process. The URL contains a unique code that the system uses to
ensure that it is a genuine password change request.

The following are the login header and navigation views:

path/to/codeigniter/application/views/common/login header.php:
The css requirements of the login form are different from that of the standard
/views/common/header . php view. Specifically, it needs the signin.css file.

path/to/codeigniter/application/views/nav/top_nav.php: This
contains navigation options that allow admins and normal users to open
various pages, and it also contains a logout link that allows a user to
terminate their session.

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Right, these were the view files, both standard HTML and TXT files for e-mails,
and so on. Let's go over each file in turn and create them.

Create the /path/to/codeigniter/application/views/users/register.php file
and add the following code to it:

<div class="container">

<?php echo validation errors(); ?>
<?php echo form open('register/index', 'role="form" class="form-
signin"') ; ?>

<h2 class="form-signin-heading"><?php echo $this->lang->
line ('register page title'); ?></h2>

<input type="text" class="form-control" name="usr fname"
placeholder="<?php echo $this->lang->
line('register first name'); ?>" autofocus>

<input type="text" class="form-control" name="usr lname"
placeholder="<?php echo $this->lang->
line('register last name'); ?>" >

<input type="email" class="form-control" name="usr email"
placeholder="<?php echo $this->lang->line('register email') ;

?>" >
<?php echo form submit ('submit', 'Register', 'class="btn btn-
lg btn-primary btn-block"'); ?>
</form>

</div>

This displays a form to a potential user in the system. It requires the user to enter a
first name, last name, and an e-mail address. The form is submitted to register/
index, which will validate the data inputted by the user. If there were no errors, then
the user is added to the users table, a password is generated for them, and a hash is
generated and stored as users.usr_hash and e-mailed to them. The e-mail template
is welcome. txt, which is given next.

Ckeatethe/path/to/codeigniter/application/views/email_scripts/
welcome. txt file and add the following code to it:

Dear %usr_fname% %usr_ lname%,
Welcome to the site. Your password is:
$password%

Regards,
The Team

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This is the text for the welcome e-mail sent to users when they register. Notice that
there are three strings of text enclosed in a percent sign (%). These are strings of text
that will be identified by the signup process and replaced using the str_replace ()
PHP function with their true values. For example, assume that I register with the site.
My name is Robert Foster and my e-mail might be rob- foster@edomain.com. The
e-mail sent to rob-foster@edomain.com would look like the following:

Dear Robert Foster,
Welcome to the site. Your password is:

<this-is-the-passwords>

Regards,
The Team

Ckeatethe/path/to/codeigniter/application/views/users/forgot_
password. php file and add the following code to it:

<?php if (isset($login fail)) : ?>
<div class="alert alert-danger"s><?php echo $this->lang->
line('admin login error') ; ?></divs>
<?php endif ; ?>

<?php echo validation errors(); ?>
<?php echo form open('password/forgot password',6 'class="form-
signin" role="form"') ; °?>

<h2 class="form-signin-heading"><?php echo $this->lang->
line ('forgot pwd header') ; ?></h2>
<p class="lead"><?php echo $this->lang->

line ('forgot pwd instruction') ;?></p>

<?php echo form input (array('name' => 'usr email', 'class' =>
'form-control', 'placeholder' => $this->lang->
line('admin login email'),'id' => 'email', 'value' =>
set value('email', ''), 'maxlength' => '100', 'size' =>
'50', 'style' => 'width:100%')); ?>

<button class="btn btn-1lg btn-primary btn-block"
type="submit"><?php echo $this->lang->

line ('common_form elements_go') ; ?></buttons>

<?php echo form close() ; ?>

</div>

The forgot_password.php view file provides a short form to any user to begin
the process of resetting their password. The user can enter their e-mail address
and press the Go button. The form is submitted to the password controller's
forgot password () function, where it is validated.

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

If the e-mail address passes validation, then the forgot_password () function checks
to see whether the e-mail address exists in the users table. If it exists, then a unique
code is generated and stored in users.usr_pwd_change_code. If the code does not
exist, then the user is just redirected to the forgot_password () function to try again.

This code is also appended to a URL and sent in the body of an e-mail to the user.
The user is instructed to click on the link in the e-mail that will direct them to the
password controller's new password () function. The new password () function will
load the users/new password.php view file, which will ask the user to enter their
e-mail address.

This e-mail address is validated and new password () will look in the users table

to see whether the e-mail address exists. If it exists, it will check to see whether the
value of the code in the URL matches the value stored in users.usr pwd change
code. If it does, then it is likely to be genuine and a new password is generated. This
password is e-mailed to the user. A hash is created using the password and stored in
users.usr_ hash.

Create the /path/to/codeigniter/application/views/users/signin.php file
and add the following code to it:

<?php if (isset($login fail)) : 2>
<div class="alert alert-danger"><?php echo $this->lang->
line('admin login error') ; ?></divs>
<?php endif ; ?>
<?php echo validation errors(); ?>
<?php echo form open('signin/index', 'class="form-signin"
role="form"') ; ?>
<h2 class="form-signin-heading"><?php echo $this->lang->
line('admin login header') ; ?></h2>

<input type="email" name="usr email" class="form-control"
placeholder="<?php echo $this->lang->
line('admin login email') ; ?>" required autofocus>

<input type="password" name="usr password" class="form-
control" placeholder="<?php echo $this->lang->
line('admin login password') ; ?>" requireds>

<button class="btn btn-1g btn-primary btn-block"
type="submit"><?php echo $this->lang->
line('admin login signin') ; ?></buttons>

<?php echo anchor ('password', $this->lang->
line('signin forgot password')); ?>

<?php echo form close() ; ?>
</divs>

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The signin view is quite simple: a standard sign-in interface. The user can enter
their e-mail address and password to sign in. Validation errors are echoed above the
form if there were any errors, and a Forgot Password link allows the user to use a
method to begin the process of resetting their password.

The error messages are contained in a div element with the alert alert-danger
Bootstrap class; I prefer a big red error message rather than one of those limp-wristed
orange jobbies; however, you can change it to something softer, such as alert

alert-warning.

Ckeatethe/path/to/codeigniter/application/views/users/view_all_users.
php file and add the following code to it:

<h2><?php echo $page heading ; ?></h2>
<table class="table table-bordered"s>

<theads>
<tr>
<th>#</th>

<th>First Name</th>
<th>Last Name</ths>

<th>Email</th>
<td>Actions</td>
</tr>
</theads>
<tbody>
<?php if ($query->num rows() > 0) : ?>
<?php foreach ($query-s>result() as Srow)
<tr>
<td><?php echo $row-susr id ; ?></tds
<td><?php echo $row—>usr_fname ; ?></td>
<td><?php echo $row-s>usr lname ; ?></td>
<td><?php echo $row->usr email ; ?></td>
<td><?php echo anchor ('users/edit user/'.

?>

$row->usr_ id, sthis->lang->

line('common form elements action edit'))

' ' . anchor ('users/delete user/'.
$row->usr_ id, sthis->lang->

line('common form elements action delete'))

</td>
</tr>
<?php endforeach ; ?>
<?php else : ?>

<tr>

<td colspan="5" class="info">No users here!</td>

</tr>

1

?>

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

<?php endif; ?>
</tbody>
</table>

The view_all_users.php view file displays all users within the system in a table at
any one time. Only admin users are able to see this list.

The table has options for editing and deleting, allowing the user to edit a user
(loading the users controller's edit_user () function) and delete a user (loading the
users controller's delete_user () function).

Create the /path/to/codeigniter/application/views/users/new user.php file
and add the following code to it:

<?php echo validation errors() ; ?>
<div class="page-header">
<hl><?php echo $page heading ; ?></hl>
</div>
<p class="lead"><?php echo $this->lang->
line ('usr form_instruction edit');?></p>
<div class="span8">
<?php echo form open('users/new user', 'role="form" class="form"')
;5 ?>

<div class="form-group">

<?php echo form error('usr fname'); °?>
<label for="usr fname"><?php echo $this->lang-»>
line ('usr fname');?></label>
<?php echo form input ($usr fname); ?>
</div>

<div class="form-group">

<?php echo form error('usr lname'); °?>
<label for="usr lname"><?php echo $this->lang->
line ('usr lname');?></label>
<?php echo form input ($usr lname); ?>
</div>

<div class="form-group">

<?php echo form error('usr uname'); °?>
<label for="usr uname"><?php echo $this->lang->
line ('usr uname') ;?></label>
<?php echo form input ($usr uname); ?>
</div>

<div class="form-group">
<label for="usr email"><?php echo $this->lang->

line('usr email');?></label>
<?php echo form input ($usr email); ?>
[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

</div>
<div class="form-group"s>

<label for="usr confirm email"><?php echo $this->lang->

line ('usr confirm email');?></label>
<?php echo form input ($usr confirm email); ?>
</div>

<div class="form-group"s>
<label for="usr addl"><?php echo $this->lang->
line ('usr_addl') ;?></label>
<?php echo form input ($usr addl); ?>
</div>

<div class="form-group"s>
<label for="usr add2"><?php echo $this->lang->
line ('usr_add2') ;?></label>
<?php echo form input ($usr add2); ?>
</div>

<div class="form-group"s>
<label for="usr add3"><?php echo $this->lang->
line ('usr_add3') ;?></label>
<?php echo form input ($usr add3); ?>
</div>

<div class="form-group">
<label for="usr town city"><?php echo $this->lang->
line ('usr town city');?></label>
<?php echo form input ($usr town city); ?>
</div>

<div class="form-group">
<label for="usr zip pcode"><?php echo $this->lang->
line ('usr zip pcode');?></label>
<?php echo form input ($usr zip pcode); ?>
</div>

<div class="form-group"s>
<label for="usr access level"><?php echo $this->lang->

line ('usr_access_level') ;?></label>
<?php echo form dropdown('usr access level',
Susr access level, 'large'); °?>
</div>

<div class="form-group"s>

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

<label for="usr is active"><?php echo $this->lang->

line('usr is active');?></label>

<input type="radio" name="usr is active" value="<?php echo
set _value('usr_is active') ; ?>" /> Active

<input type="radio" name="usr is active" value="<?php echo
set_value('usr is active') ; ?>" /> Inactive

</divs>

<div class="form-group">
<button type="submit" class="btn btn-success"><?php echo
$this->lang->line ('common form elements go');?></button>
or <? echo anchor ('users', $this->lang->
line ('common form elements_cancel'));?>

</div>
<?php echo form close() ; ?>
</div>
</div>

The new_user.php view file displays a form to an admin user, allowing them to
create a user in the system. The form is submitted to the users controller's new_
user () function. Validation errors are displayed above the form. On a successful
submission (no validation errors), the new_user () function will create a password
for the user and a hash value based on the password. The password will be sent
to the user in an e-mail. The text of this e-mail is in the /views/email scripts/
welcome.txt file.

Create the /path/to/codeigniter/application/views/users/edit user.php
file and add the following code to it:

<div class="page-header">
<hl><?php echo $page heading ; ?></hl>

</div>
<p class="lead"><?php echo $this->lang->
line ('usr form_instruction edit');?></p>

<div class="span8">
<?php echo form open('users/edit user', 'role="form"
class="form"') ; °?>
<div class="form-group">

<?php echo form error('usr fname'); °?>
<label for="usr fname"><?php echo $this->lang->
line ('usr fname');?></label>
<?php echo form input ($usr fname); ?>
</div>

<div class="form-group">
<?php echo form error('usr lname'); °?>

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<label for="usr lname"><?php echo $this->lang->

line('usr lname');?></label>
<?php echo form input ($usr lname); ?>
</div>
<div class="form-group">
<?php echo form error('usr uname'); ?>
<label for="usr uname"><?php echo $this->lang->
line ('usr uname');?></label>
<?php echo form input ($usr uname); ?>
</div>
<div class="form-group"s>
<?php echo form error('usr email'); ?>
<label for="usr email"><?php echo $this->lang->
line('usr email');?></label>
<?php echo form input ($usr email); ?>
</div>
<div class="form-group"s>
<?php echo form error('usr confirm email'); °?>
<label for="usr confirm email"><?php echo $this->lang->
line ('usr confirm email');?></label>
<?php echo form input ($usr confirm email); ?>
</div>

<div class="form-group">
<?php echo form error('usr addl'); °?>

<label for="usr addl"><?php echo $this->lang->
line ('usr_addl') ;?></label>

<?php echo form input ($usr addl); ?>
</div>
<div class="form-group">

<?php echo form error('usr add2'); °?>

<label for="usr add2"><?php echo $this->lang->
line ('usr_add2');?></label>

<?php echo form input ($usr add2); ?>
</div>
<div class="form-group"s>

<?php echo form error('usr add3'); °?>

<label for="usr add3"><?php echo $this->lang->
line ('usr_add3') ;?></label>
<?php echo form input ($usr add3); ?>
</div>
<div class="form-group"s>
<?php echo form error('usr town city'); 2>
<label for="usr town city"><?php echo $this->lang->
line ('usr town city');?></label>
<?php echo form input ($usr town city); ?>

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

</div>
<div class="form-group">
<?php echo form error('usr zip pcode'); ?>
<label for="usr zip pcode"><?php echo $this->lang->
line ('usr zip pcode');?></label>
<?php echo form input ($usr zip pcode); ?>
</div>
<div class="form-group">
<?php echo form error('usr access level'); ?>
<label id="usr access level" for="usr access level"><?php
echo $this-s>lang->line('usr access level');?></label>
<?php echo form dropdown ('usr access level',
Susr access_ level options, $usr access level); ?>
</div>
<div class="form-group"s>
<?php echo form error('usr is active'); ?>
<label for="usr is active"><?php echo $this->lang->
line('usr is active');?></label>
<input type="radio" name="usr is active" <?php if
($usr_is active == 1) { echo 'checked' ;} ?> /> Active
<input type="radio" name="usr is active" <?php if
($usr is active == 0) { echo 'checked' ;} ?> /> Inactive
</div>

<?php echo form hidden($id); ?>

<div class="form-group">

<button type="submit" class="btn btn-success"><?php echo
$this->lang->line ('common form elements go');?></button>
or <? echo anchor ('users', $this->lang->
line ('common form elements_cancel'));?>

</div>
<?php echo form close() ; ?>
</div>

<?php echo anchor ('users/pwd _email/'.$id['usr_id'], 'Send
Password Reset Email') ; ?>

</div>

The edit_user.php view file displays a form to an admin user, allowing them to
edit a user in the system. The form is accessed when an admin user clicks on Edit
from the views/users/list_all users.php view file. The form is submitted to
the users controller's edit_user () function. Validation errors are displayed above
the form.

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Create the /path/to/codeigniter/application/views/users/me.php file and
add the following code to it:

<?php echo validation errors() ; ?>
<div class="page-header">
<hl><?php echo $page heading ; ?></hl>
</div>
<p class="lead"><?php echo $this->lang->
line ('usr form instruction');?></p>

<div class="span8">
<?php echo form open('me/index', 'role="form"') ; ?>
<div class="form-group"s>
<?php echo form error('usr fname'); ?>
<label for="usr fname"><?php echo $this->lang->
line ('usr_ fname') ;?></label>
<?php echo form input ($usr fname); ?>
</div>
<div class="form-group"s>
<?php echo form error('usr lname'); ?>
<label for="usr lname"><?php echo $this->lang->
line ('usr_ lname') ;?></label>
<?php echo form input ($usr lname); ?>
</div>
<div class="form-group"s>
<?php echo form error('usr uname'); ?>
<label for="usr uname"><?php echo $this->lang->
line ('usr_uname') ;?></label>
<?php echo form input ($usr uname); °?>

</div>

<div class="form-group"s>
<label for="usr email"><?php echo $this->lang->
line ('usr_email') ;?></label>
<?php echo form input ($usr email); °?>
</div>
<div class="form-group"s>
<label for="usr confirm email"><?php echo $this->lang->
line ('usr confirm email');?></labels>
<?php echo form input (Susr_confirm email); °?>

</div>

<div class="form-group"s>
<label for="usr addl"><?php echo $this->lang->
line ('usr_addl') ;?></label>

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

<?php echo form input ($usr addl); ?>
</div>
<div class="form-group">
<label for="usr add2"><?php echo $this->lang->
line ('usr_add2') ;?></label>
<?php echo form input ($usr add2); ?>
</div>
<div class="form-group">
<label for="usr add3"><?php echo $this->lang->
line ('usr_add3') ;?></label>
<?php echo form input ($usr add3); ?>
</div>
<div class="form-group">
<label for="usr town city"><?php echo $this->lang->
line ('usr town city');?></label>
<?php echo form input ($usr town city); ?>
</div>
<div class="form-group"s>
<label for="usr zip pcode"><?php echo $this->lang->

line ('usr zip pcode');?></label>
<?php echo form input ($usr zip pcode); ?>
</div>

<?php echo form hidden($id); ?>

<div class="form-group"s>
<button type="submit" class="btn btn-success"><?php echo

$this->lang->line ('common form elements go');?></button>
or <? echo anchor ('users', $this->lang->
line ('common form elements_cancel'));?>
</div>
<?php echo form close() ; ?>
</div>
<?php echo anchor ('me/pwd email/'.$id, 'Reset Email') ; ?>

Again, like the forms in new_user and edit_user views, this form is similar;
however, it includes a Reset Email link, which will run the me controller's pwd
email () function to create a new password and e-mail it to the current user. The
password isn't stored in the database; only a hash value is stored (users.usr_hash).

Create the /path/to/codeigniter/application/views/users/register.php file
and add the following code to it:

<div class="container"s>
<?php echo validation errors(); ?>

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<?php echo form open('register/index', 'role="form" class="form-

signin"') ; ?>

<h2 class="form-signin-heading"><?php echo $this->lang->
line ('register page title'); ?></h2>

<input type="text" class="form-control" name="usr fname"
placeholder="<?php echo $this->lang->
line('register first name'); ?>" required autofocus>

<input type="text" class="form-control" name="usr lname"
placeholder="<?php echo $this->lang->
line('register last name'); ?>" requireds>

<input type="email" class="form-control" name="usr email"
placeholder="<?php echo $this->lang->line('register email') ;
?>" requireds>

<?php echo form submit ('submit', 'Register', 'class="btn btn-
lg btn-primary btn-block"'); ?>
</form>
</div>

The register.php view file displays a form to a person wishing to become a user
within the system. The user is invited to enter a first name and last name as well as
their e-mail address. They then press the Register button.

The form is submitted to the register controller's index () function. The index ()
function will perform validation, and any errors are displayed above the form.

Assuming that there were no errors and the form was submitted without problems,
the index () function will attempt to write them to the users table. A password is
generated and sent to the user in the form of an e-mail. The contents of the e-mail
are stored in the views/email scripts/welcome.txt view file.

Create the /path/to/codeigniter/application/views/users/signin.php file
and add the following code to it:

<?php if (isset($login fail)) : 2>
<div class="alert alert-danger"><?php echo $this->lang->
line('admin login error') ; ?></divs>
<?php endif ; ?>
<?php echo validation errors(); ?>
<?php echo form open('signin/index', 'class="form-signin"
role="form"') ; ?>

<h2 class="form-signin-heading"><?php echo $this->lang->
line('admin login header') ; ?></h2>

<input type="email" name="usr email" class="form-control"
placeholder="<?php echo $this->lang->
line('admin login email') ; ?>" required autofocusx>

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

<input type="password" name="usr password" class="form-
control" placeholder="<?php echo $this->lang->
line('admin login password') ; ?>" requireds>

<button class="btn btn-1lg btn-primary btn-block"
type="submit"><?php echo $this->lang->

line ('admin login signin') ; ?></buttons

<?php echo anchor ('password', $this->lang->
line ('signin forgot password')); 2>
<?php echo form close() ; ?>

</div>

The signin.php view file displays a form to a user. The user is invited to enter
their e-mail address and password. The form is submitted to the signin controller's
index () function, which will validate the input, and assuming there were no errors,
attempt to process the sign-in request.

Only users who are active can sign in (users.usr_is_active = 1)and admin
users (users.usr_accss_level = 1) will see options that are only available to
admins. The normal users (users.usr_access_level = 2)will be directed to the
me controller.

1
‘\Q You can, of course, adapt this behavior to any other controller. Instructions

on how to do this are discussed in the Ensuring correct access section.

Ckeatethe/path/to/codeigniter/application/views/users/change_
password. php file and add the following code to it:

<?php if (isset($login fail)) : ?>
<div class="alert alert-danger"><?php echo $this->lang->
line('admin login error') ; ?></divs>

<?php endif ; ?>

<?php echo validation errors(); ?>
<?php echo form open('me/change password', 'class="form-signin"
role="form"') ; ?>

<h2 class="form-signin-heading"><?php echo $this->lang->
line ('forgot pwd header') ; ?></h2>
<p class="lead"><?php echo $this->lang->

line ('forgot pwd instruction') ;?></p>
<table border="0">
<tr>

<td><?php $this->lang->line('signin new pwd email') ;
?></td>
</tr>

<tr>

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<td><?php echo form input ($usr new pwd 1); ?></td>
</tr>
<tr>
<td><?php echo form input ($usr new pwd 2); ?></td>
</tr>
</table>
<button class="btn btn-1lg btn-primary btn-block"
type="submit"><?php echo $this->lang->

line ('common form elements go') ; ?></button>

<?php echo form close() ; ?>
</div>

This view file displays an HTML form to the user, allowing them to enter two
new passwords for their account. The form is submitted to the me controller's

change_password () function, which validates the two passwords supplied and
checks whether they match each other, apart from various other validation checks.
If validation is passed, then a hash is created from the supplied passwords and that
hash is saved to the user's record in the database.

Creating the controllers

In this project, there are six controllers, which are as follows:

/core/MY_Controller.php: This is the parent controller class that contains

common resources.

/controllers/password.php: This contains functions that allow the user to

request a new password.

/controllers/me.php: This provides a location for a normal (that is, not an

admin) user to alter their account settings: name, e-mail, and so on.

/controllers/register.php: This contains functions that allow a new user

to sign up and have their details recorded in the users table.

/controllers/signin.php: This provides a method for users to log in to

their account and to start a session.

/controllers/users.php: This provides functions for an admin to manage

users who have signed up and whose records are in the users table.

These are our six controllers (one to extend and five that are extended); let's go over
each one and create them.

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Ckeatethe/path/to/codeigniter/application/core/MY_Controller.php
controller file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access

allowed') ;
class MY Controller extends CI_Controller
function _ construct () {
parent:: construct();

}
}

Sthis->load->helper('form') ;

$this->load->helper('url');

$this->load->helper ('security') ;

$this->load->helper ('language') ;

$this->load->library('session') ;

$this->load->library('form validation') ;

$this->form validation->set error delimiters('<div
class="alert alert-warning" role="alert"s>',6 '</div>');

$this->lang->load('en_admin', 'english');

The core/MY_Controller.php controller acts as an overarching parent controller
for all controllers that require the user to be logged in before they're accessed.

Create the /path/to/codeigniter/application/controllers/password.
php controller file and add the following code to it. As this controller need not be
accessed by a logged-in user, we're not extending it with the MY_controller, but
only the default CI_controller:

<?php if (!defined('BASEPATH')) exit ('No direct script access

allowed') ;
class Password extends CI_Controller {
function _ construct () {
parent:: construct();

}

$this->load->library('session') ;

Sthis->load->helper('form') ;

Sthis->load->helper('file');

$this->load->helper ('url');

$this->load->helper ('security') ;

$this->load->model ('Users model') ;

$this->lang->load('en_admin', 'english');

$this->load->library('form validation') ;

Sthis->form validation->set_error_delimiters('<div class="bs-
callout bs-callout-error"s>', '</divs');

public function index()

}

redirect ('password/forgot password') ;

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The Reset Password page provides a form to the user, allowing them to enter
their e-mail address. Once the user has submitted the form, a code is generated
and prepended to a URL link. This link is sent in an e-mail to the e-mail address
provided. The unique code in the URL is used by the password controller's next
function, which is new_password (), but we'll go into that later.

First, we define the validation rules for the form in the users/forgot password.
php view file, as shown here:

public function forgot password() {
Sthis->form validation->set rules('usr email', $this->lang-»>
line('signin new pwd email'),
'required|min length[5] |max length[125] |valid email');

If the form is being viewed for the first time or has failed the preceding validation
rules, then the $this->form _validation() Codelgniter function returns FALSE,
loading the users/forgot_password.php view file:

if ($this->form validation->run() == FALSE) ({
S$this->load->view('common/login header') ;
S$this->load->view('users/forgot password') ;
$this->load->view ('common/footer') ;

If the user's e-mail passes validation, then we will try to generate a unique code and
send them an e-mail:

} else {
$email = $this->input->post('usr email');
$num res = $this->Users model->count results($email) ;

First, we look to see whether the e-mail address supplied in the form actually exists
in the database. If not, then $num_res will not equal 1. If this is the case, then we
redirect the user to the forgot password () function. If, however, it exists, then we
continue to process the request with an if statement:

if ($num res == 1) {

We call the make _code () function of Users_model, which will generate a unique
code for us and return it as the $code variable. This $code variable is added to the
$data array and sent to the update_user code () function of Users_model, which
will write the unique code that was just generated to users.usr_pwd_change_code
in preparation for the new_password () function shown here (new_password () is run
when the user clicks on the URL in the e-mail we will soon send them):

$code = sthis->Users model->make code() ;
$data = array(
'usr pwd change code' => $code,

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

'usr_email' => S$email

)i

if ($this->Users model->update user code ($data)) { // Update okay,
so send email

Sresult = $this->Users model->get user details by email ($email) ;
foreach ($result-sresult() as $row)

Susr fname = $Srow->usr fname;

Susr lname = $row->usr lname;

}

Right, the code has been created and saved to the correct account in the database,
and we're now ready to start with the e-mail. Let's define the link that will go in the
e-mail. For this example, it is http://www.domain.com/password/new_password/
UNIQUE-CODE-HERE; however, you'll need to change this to reflect the path and
domain on your servers:

$link = "http://www.domain.com/password/new password/".Scode;

Now we need to load the reset_password. txt file. This file contains the template
text for the body of the e-mail we'll send. Again, you'll need to change the file

path of this file to that on your system. We pass the filename to the read_file()
Codelgniter function that will open the file and return its contents. The contents of
this file, that is, the text in the file, is stored as a string in the $file variable:

$path = '/path/to/codeigniter/application/views/
email scripts/reset password.txt';
$file = read file($path);

Using the str_replace () PHP function, we'll replace the variables in the $file
variable with the correct values:

$file = str replace('%usr fname%', $Susr fname, $file);
$file = str replace('%usr lname%', $Susr lname, $file);
echo $file = str replace('%link%', $link, s$file);

Now we're ready to send the e-mail to the user. We're using PHP's mail () function
to send the e-mail for us. If the e-mail was sent, then we will redirect the user to the
sign-in page. If not, then we just reload the function:

if (mail (semail, sthis->lang->
line('email subject_reset password'),s$file, 'From:
me@domain.com')) {
redirect ('signin') ;

}

} else {

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

// Some sort of error happened, redirect user back to form
redirect ('password/forgot password') ;
}
} else { // Some sort of error happened, redirect user back to
form
redirect ('password/forgot password') ;

}
}
}

The new password () function is accessed when a user clicks on the URL in the e-mail
they were sent during the execution of the previous function — forgot_password ().
It displays a form to the user, allowing them to enter their new password.

First we define the validation rules for the form in the users/new password.php
view file:

public function new password () {

Sthis->form validation->set rules('code', $this->lang->
line('signin new pwd code'),
'required|min_length([4] |max_length[8]');

Sthis->form validation->set rules('usr email', $this->lang->
line('signin new pwd email'),
'required|min length[5] |max length[125]"');

Sthis->form validation->set rules('usr passwordl', S$this->
lang->line('signin new pwd _email'),
'required|min length[5] |max length[125]"');

S$this->form validation->set rules('usr password2', S$this->
lang->line('signin new pwd _email'),
'required|min_length[5] |max length[125] |
matches [usr passwordl] ') ;

if ($this->input->post()) {
$data['code'] = xss clean($this->input->post('code')) ;
} else {

S$data['code'] xss_clean($this->uri->segment (3)) ;

}

If the form is being viewed for the first time or has failed the preceding validation
rules, then the $sthis->form validation() Codelgniter function returns FALSE,
loading the users/new_password.php view file. The view file contains three form
elements: one for a user's email and two for their new password:

if ($this->form validation-s>run() == FALSE) ({
$datal'usr_email'] = array('name' => 'usr email',
'class' => 'form-control', 'id' => 'usr email', 'type'
=> 'text', 'value' => set value('usr_email', ''),
'maxlength’ => '100', 'size' => '35', 'placeholder' =>

$this->lang->line('signin new pwd email'));

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

$data['usr passwordl'] = array('name' => 'usr passwordl',
'class' => 'form-control', 'id' => 'usr passwordl',6 'type'
=> 'password', 'value' => set value('usr passwordl', ''),
'maxlength' => '100', 'size' => '35', 'placeholder' =>
$this->lang->line('signin new pwd pwd')) ;

$data['usr password2'] = array('name' => 'usr password2',
'class' => 'form-control', 'id' => 'usr password2',6 'type'
=> 'password', 'value' => set value('usr password2', ''),
'maxlength' => '100', 'size' => '35', 'placeholder' =>

$this->lang->line('signin new pwd confirm')) ;

Sthis->load->view('common/login header', s$data);
$this->load->view('users/new_password', $data);
Sthis->load->view ('common/footer', $data) ;

} else {

If the form has passed validation, then we will try to match the code in the URL with
an account using the e-mail address as a search term:

// Does code from input match the code against the email
$email = xss_clean($this->input->post('usr _email'));

If the does _code match () function of Users model returns a false value, then
there is no record in the database that has the e-mail address and code that matches
the e-mail address supplied in the form and the code in the URL. If that's the case,
we redirect them to the forgot_password () function to start the process again. If,
however, it matches, then this is obviously a genuine request:

if (!$this->Users model->does code match($data, $email)) { //
Code doesn't match
redirect ('users/forgot password') ;
} else { // Code does match

As this is most likely a genuine request and the e-mail and unique code have
matched, let's create a hash value from the supplied password:

Shash = sthis-sencrypt->shal($this->input->post ('usr passwordl')) ;
We can store this hash in the $data array along with the supplied e-mail:

$data = array(
'usr _hash' => s$hash,
'usr email' => $email

)i

Now let's take this e-mail and hash and pass to the update_user password ()
function of Users model:

if ($this->Users model-s>update user password($data)) ({

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Now that the user has updated their password, let's send them an e-mail
confirming this:

$link = 'http://www.domain.com/signin';
$result = $this->Users model->get user details by email ($email) ;

foreach ($result-sresult() as $row)
Susr fname = Srow->usr fname;
$usr lname = $Srow->usr lname;

}

We need to load the new_password. txt file. This file contains the template text for
the body of the e-mail we'll send. Again, you'll need to change the file path of this
file to that on your system. We pass the filename to the read file () Codelgniter
function that will open the file and return its contents. The contents of this file, that
is, the text in the file, is stored as a string in the $file variable:

S$path = '/ path/to/codeigniter/application/views/email scripts/
new_password.txt';
$file = read file($path);

Using the str_replace () PHP function, we'll replace the variables in the $file
variable with the correct values. Once this e-mail is sent, we redirect them to the
signin controller where they can log in using their new password:

$file = str replace('%usr fname%', $Susr fname, $file);
$file = str replace('%usr lname%', $Susr lname, $file);
$file = str replace('%password%', spassword, $file);
$file = str replace('%link%', $link, $file);
if (mail (Semail, S$this->lang->line('
email subject new password'),$file, 'From:
me@domain.com')) {

redirect ('signin');

Create the /path/to/codeigniter/application/controllers/me.php controller
file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Me extends CI_Controller ({

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

The me controller is to be used by users who are not admins —in other words, users
whose value of users.usr_access level is set to 2 or above.

This project allows the user to change their details, name, e-mail address, and so on.
However, you can adapt the me controller to display any number of things. Or, using
the following code in the __ construct () function of another controller, you can
provide functions for specific levels of users:

if (($this->session->userdata('logged in') == FALSE) ||
(1$this->session->userdata('usr access_level') >= 2)) {
redirect ('signin') ;

}

We will go through this in more detail later on in the Putting it all together section
of this chapter; however, let's quickly mention it here anyway. The preceding code
checks to see whether the user is logged in and then checks the users' access level
(users.usr_access_level).

If the users.usr_access_level value is not greater than or equal to 2 (which is the
level of a normal user), then it will redirect them to signin or signout —in other
words, it will log them out and terminate their session.

By adjusting the value that is compared (for example 1, 2, 3, and so on), you can
ensure that users with a specific value can only access this controller:

function _ construct () {
parent:: construct();
Sthis->load->helper('form') ;
Sthis->load->helper('url');
Sthis->load->helper('security') ;
Sthis->load->helper('file'); // for html emails
Sthis->load->helper ('language') ;

S$this->load->model ('Users model') ;
Sthis->load->library('session') ;

// Load language file

$this->lang->load('en _admin', 'english');
$this->load->library('form validation') ;

Sthis->form validation->set error delimiters('<div class="alert

alert-warning" role="alert">', '</divs>');
if (($this->session->userdata('logged _in') == FALSE) ||
(!$this->session->userdata('usr access level') >= 2)) {

redirect ('signin/signout') ;

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The index () function allows a normal user to update their details in the database.
First, we set our validation rules for the form:

public function index()

// Set validation rules

$this->form validation->set rules('usr fname', $this->lang->
line('usr_fname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr lname', $this->lang->
line('usr_lname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr uname', $this->lang->
line ('usr_uname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr email', $this->lang->
line('usr_email'), 'required|min length[1l] |max_length[255] |
valid email!');

$this->form validation->set rules('usr confirm email', $this->
lang->line ('usr_confirm email'), 'required|min_lengthl[1] |
max_length[255] |[valid email |matches [usr_email]');

$this->form validation->set rules('usr addl',6 s$this->lang->
line('usr_addl'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr add2',6 s$this->lang->
line('usr_add2'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr add3',6 s$this->lang->
line('usr_add3'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr town city', $this->lang-»>
line('usr_town city'), 'required|min length[1]
|max_length[125] ') ;

$this->form validation->set rules('usr zip pcode',6 $this->lang-»>
line('usr_zip pcode'), 'required|min length[1] |
max length[125]"');

$data['id'] = $this->session->userdata('usr_id');

$data['page heading'] = 'Edit my details';
// Begin validation

If the form is being viewed for the first time or has failed the preceding validation
rules, then the $this->form validation () Codelgniter function returns FALSE,
loading the users/me.php view file:

if ($this->form validation->run() == FALSE) { // First load, or
problem with form

Here, we define the setting for the HTML form items to be displayed in the users/
me . php view file. As we are editing a user who is already logged in, we'll need to
grab their details from the database in order to prepopulate the form elements.

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

We call the get_user details () function of Users_model, passing to it the user ID
fetched from the session:

$query = $this->Users model->get user details($datal['id']);
foreach ($query-s>result() as $row)

Susr fname = Srow->usr fname;
Susr lname = $Srow->usr lname;
$usr uname = $Srow->Usr_ uname;
Susr_email = $row->usr_email;

Susr addl = S$row->usr_addl;
Susr add2 = S$row->usr_add2;
Susr_add3 = $row->usr_add3;
Susr_town_city = $row->usr_town_city;
Susr_zip_pcode = $row->usr_zip pcode;

}

Once we have fetched the users details and saved them to local variables, we apply
them to the form items. To do this, we use the set_value () Codelgniter function,
the first parameter being the name of the form element (for example, <input
type="text" name="this-is-the-name" />)and the second parameter being the
actual value of the form element:

$data['usr fname'] = array('name' => 'usr fname', 'class' =>
'form-control', 'id' => 'usr fname', 'value' =>
set value('usr fname', S$usr fname), 'maxlength' => '100"',
'size' => '35');

$data['usr lname'] = array('name' => 'usr lname', 'class' =>
'form-control', 'id' => 'usr lname', 'value' =>
set _value('usr lname', $usr lname), 'maxlength' => '100"',
'size' => '35');

$data['usr uname'] = array('name' => 'usr uname', 'class' =>
'form-control', 'id' => 'usr uname', 'value' =>
set _value('usr uname', $usr_uname), 'maxlength' => '100"',
'size' => '35');

$data['usr email'] = array('name' => 'usr email', 'class' =»>
'form-control', 'id' => 'usr email', 'value' =>
set value('usr email', S$Susr email), 'maxlength' => '100"',
'size' => '35');

$data['usr confirm email'] = array('name' =>
'usr confirm email', 'class' => 'form-control', 'id' =>
'usr confirm email', 'value' => set value('usr confirm email',
Susr email), 'maxlength'’ => '100', 'size' => '35');

$data['usr addl'] = array('name' => 'usr _addl', 'class' =>
'form-control', 'id' => 'usr addl', 'value' =>
set value('usr addl',6 $usr addl), 'maxlength' => '100"',
'size' => '35');

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

$data['usr add2'] = array('name' => 'usr _add2', 'class' =>
'form-control', 'id' => 'usr_add2', 'value' =>
set_value('usr_add2', susr_add2), 'maxlength'’ => '100",
'size' => '35');

$data['usr add3'] = array('name' => 'usr _add3', 'class' =>
'form-control', 'id' => 'usr add3', 'value' =>
set value('usr add3', s$usr add3), 'maxlength' => '100"',
'size' => '35');

$data['usr town city']l = array('name' => 'usr town city',
'class' => 'form-control', 'id' => 'usr town city',6 ‘'value' =>
set value('usr town city', S$usr town city), 'maxlength' =>
'100', 'size' => '35');

$data['usr zip pcode']l = array('name' => 'usr zip pcode',
'class' => 'form-control', 'id' => 'usr zip pcode',6 'value' =>
set value('usr zip pcode', S$usr zip pcode), 'maxlength' =>
'100', 'size' => '35');

Sthis->load->view ('common/header', $data) ;
$this->load->view('nav/top nav', s$data);
$this->load->view('users/me', $data);
Sthis->load->view ('common/footer', $data) ;

} else { // Validation passed, now escape the data

Now that validation has passed, we'll save the posted data to the $data array in
preparation to save it to the process_update_user () function of Users_model:

$data = array(

'usr fname' => $this->input->post('usr fname'),
'usr lname' => $this->input->post('usr lname'),
'usr uname' => $this->input->post('usr uname'),
'usr email' => $this->input->post('usr email'),

'usr addl' => S$this->input->post('usr addl'),
'usr add2' => $this->input->post ('usr add2'),
'usr add3' => $this->input->post ('usr add3'),
'usr town city' => $this-s>input-s>post('usr town city'),
'usr zip pcode' => $this->input->post('usr zip pcode')

)i

if ($this->Users model-s>process update user (id, sdata)) {
redirect ('users') ;

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

The me controller also contains the change password () function. This allows the
user who is accessing the controller to change their password. Once accessed, the /
views/users/change_password.php view file displays a simple form that asks for
a new password. Once the form is submitted and validated successfully, a hash is
created using the new password provided and saved to the logged-in user's record:

public function change password() {
$this->load->library('form validation') ;

Sthis->form validation->set rules('usr new pwd 1', $this->
lang->line('signin new pwd pwd'),
'required|min length[5] |max _length[125]"');

Sthis->form validation->set rules('usr new pwd 2', $this->
lang->line('signin new pwd confirm'), 'required|
min length([5] |max_length[125] |matches [usr new pwd 1]');

if ($this->form validation-s>run() == FALSE) ({
$data['usr new pwd 1'] = array('name' => 'usr new pwd 1',
'class' => 'form-control', 'type' => 'password',6K 'id' =>
'usr new pwd 1', 'value' => set value('usr new pwd 1',
'), 'maxlength' => '100', 'size' => '35', 'placeholder'
=> $this->lang->line('signin new pwd pwd')) ;
$data['usr new pwd 2'] = array('name' => 'usr new pwd 2',
'class' => 'form-control', 'type' => 'password',K 'id' =>
'usr new pwd 2', 'value' => set value('usr new pwd 2',
'), 'maxlength' => '100', 'size' => '35', 'placeholder'
=> $this->lang->line('signin new pwd confirm')) ;
$data['submit_path'] = 'me/change password';
Sthis->load->view('common/login header', s$data);

Sthis->load->view('users/change password', $data);
Sthis->load->view ('common/footer', $data) ;
} else {
Shash = $this-sencrypt->shal ($Sthis->input->
post ('usr new pwd 1'));

Sdata = array(
'usr hash' => shash,
'usr id' => $this->session->userdata('usr_id')

) ;

if ($this->Users model->update user password($data)) {
redirect ('signin/signout') ;

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Create the /path/to/codeigniter/application/controllers/register.php
controller file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Register extends CI_Controller {
function _ construct () {
parent:: construct();
Sthis->load->helper('form') ;
$this->load->helper ('url');
$this->load->helper ('security') ;
$this->load->model ('Register model') ;
$this->load->library('encrypt');
$this->lang->load('en_admin', 'english');
$this->load->library('form validation') ;

Sthis->form validation->set_error_delimiters('<div class="alert
alert-warning" role="alert">', '</div>');

}

The index () function displays a small form to a new user. This form allows them to
enter basic information such as the e-mail address and name. Once the user presses
the Register button and for form is successfully validated, the user is sent a welcome
e-mail and is added to the database.

First, we set the validation rules for the form in views/users/register.php:

public function index() {

// Set validation rules

Sthis->form validation->set rules('usr fname', $this->lang-»>
line('first name'), 'required|min length[1l] |max_length[125]"') ;

Sthis->form validation->set rules('usr lname', $this->lang-»>
line('last name'), 'required|min length[1l] |max_length[125]"');

Sthis->form validation->set rules('usr email', $this->lang-»>
line('email'), 'required|min length[1] |max_length[255] |

valid email |is unique [users.usr_emaill');

// Begin validation

if ($this->form validation->run() == FALSE) { // First load, or
problem with form
Sthis->load->view('common/login header') ;
Sthis->load->view('users/register') ;
Sthis->load->view ('common/footer') ;

} else {

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Once the form is successfully validated, we create an e-mail for them. This is done by
using the random_string () Codelgniter function. We generate an eight-character
string of alphanumeric digits. This is stored in the $password variable—we'll need
this to create the hash (which will be stored in users.usr_hash) and to send it to the
user in an e-mail (otherwise they won't know what their password is):

// Create hash from user password
S$password = random string('alnum', 8);

After we create their password, we create a hash value of it. This is done by passing
S$password to sthis->encrypt->shal():

Shash = $this->encrypt->shal ($Spassword) ;

Now, we save everything to the $data array in preparation of writing to the
database. This is done by calling the register_user () function of Register_model
and passing it the $data array:

Sdata = array(
'usr fname' => $this->input->post('usr fname'),
'usr lname' => $this->input->post('usr lname'),
'usr _email' => $this->input->post('usr email'),
'usr is_active' => 1,
'usr_access_level' => 2,
'usr_hash' => s$hash

)i

If the register user () function returns true, then we send the user an e-mail,
otherwise we send them back to the register controller:

if ($this->Register model->register user(sdata)) {

$file = read file('../views/email scripts/welcome.txt');

$file = str replace('%usr fname%', $data['usr fname'],
Sfile) ;

$file = str replace('%usr lname%', $data['usr lname'],
Sfile) ;

$file = str replace('%password%', s$password, $file);
redirect ('signin') ;

} else {
redirect ('register') ;

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Create the /path/to/codeigniter/application/controllers/signin.php
controller file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Signin extends CI_Controller ({
function _ construct () {
parent:: construct();
$this->load->library('session') ;
Sthis->load->helper('form') ;
$this->load->helper ('url');
$this->load->helper ('security') ;
$this->lang->load('en_admin', 'english');
$this->load->library('form validation') ;
$this->form validation->set error delimiters('<div
class="alert alert-warning" role="alert">',6 '</div>');

}

The index () function displays a form to the user, allowing them to enter their e-mail
address and password. It also handles any validation from the sign-in form.

First off, the index () function checks to see whether the user is already logged
in—after all, there's no point in someone trying to log in when they're already logged
in. So, we check for the value of the logged in userdata item. If this exists and
equals TRUE, then they must already be logged in. If this is the case, then we work
out their user level to see whether they are a normal user or an admin. If they are an
admin, they're redirected to the admin area, that is, the users controller; if they are
not an admin user, they are redirected to the me controller:

public function index() {
if ($this->session->userdata('logged in') == TRUE) {
if ($this->session->userdata('usr_access level') == 1) {
redirect ('users') ;
} else {
redirect ('me') ;

}

} else {

If they get to this point in the code, then they are not logged in, which means that we
have to display a form so they can log in. Now, we define the validation rules for the
sign-in form:

// Set validation rules for view filters

$this->form validation->set rules('usr email', $this->lang->
line('signin email'), 'required|valid email|
min length[5] |max length[125]"');

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

$this->form validation->set rules('usr password',6 S$this->
lang->line('signin password'), 'required]|
min length[5] |max_length[30]');

if ($this->form validation->run() == FALSE) ({
Sthis->load->view('common/login header') ;
$this->load->view('users/signin') ;
Sthis->load->view ('common/footer') ;

} else {

Assuming that the validation has passed, we store their e-mail and password in local
variables, load Signin_model, and call the does_user_exist () function, passing to
it the e-mail address supplied by the user. If anything other than one record is found,
then the form redirects to the signin controller for the user to try again:

Susr email = $this->input->post('usr email');
$password = $this->input->post ('usr password') ;

$this->load->model ('Signin model') ;
$query = $this->Signin model->does user exist ($usr email) ;

If, however, exactly one record is found, then we will try to log them in:

if ($query-s>num rows() == 1) { // One matching row found
foreach (Squery->result() as Srow) {
// Call Encrypt library
Sthis->load->library('encrypt') ;

We generate a hash from the password supplied by the user and compare it to the
hash value in the database result object returned by the does_user exist () call:

// Generate hash from a their password
Shash = $this->encrypt->shal (Spassword) ;

if ($row->usr is active != 0) { // See if the user is active or not
// Compare the generated hash with that in the database
if ($hash != $row->usr hash) ({

If the user gets to this part in the code, then it means that the hash values didn't
match, so we'll display the sign-in view with an error message:

// Didn't match so send back to login
$data['login fail'] = true;
Sthis->load->view('common/login header') ;
Sthis->load->view('users/signin', $data);
$this->load->view ('common/footer') ;

} else {

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

However, if the user gets here then the hash values match, the password supplied
by the user must be correct. So, we package a few items into the $data array, which
they will find useful once they are logged in:

Sdata = array(
'usr_id' => $row->usr id,
'acc_id' => $row->acc_id,
'usr email' => $row->usr_ email,
'usr access_level' => $row->usr access_ level,
'logged_in' => TRUE
)i

Then, create a session for them with $this->session->set userdata():

// Save data to session
$this->session->set userdata(sdata) ;

Finally, we work out what controller to redirect them to. If they are an admin user
(users.usr_access_level = 1), they will be directed to users; if they are a normal
user (users.usr_access_level = 2), they will be directed to the me controller;
however, if users.usr_access_level is anything other than 1 or 2, then they are
also directed to the me controller by default:

if ($datal['usr access level'] == 2) {

redirect ('me') ;

} elseif ($datal'usr access level'] == 1) {
redirect ('users') ;

} else {
redirect ('me') ;

}

}

} else {
// User currently inactive
redirect ('signin') ;

What comes up must come down, or something like that; anyway. what's logged in
must be logged out (dreadful!) anyway — signout () is a quick function that destroys
the session and redirects the user to the signin controller.

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

The signin controller is called when a user (admin or otherwise) clicks on the
Logout link in the top_nav.php view. Once redirected, the signin controller
will recognize they are no longer logged in and display the sign-in form:

public function signout () {
Sthis->session->sess destroy() ;
redirect ('signin');

}

Create the /path/to/codeigniter/application/controllers/users.php

controller file and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access

allowed') ;

class Users extends MY Controller (

function _ construct () {
parent:: construct();
Sthis->load->helper('file'); // for html emails
$this->load->model ('Users model') ;
$this->load->model ('Password model') ;

if (($this->session->userdata('logged _in') == FALSE) ||
(sthis->session->userdata('usr_access level') != 1)) {
redirect ('signin') ;
}
}

Okay, the first thing to notice is the __construct () function. We test the user's
access level (users.usr_access_level)—if it is not equal to 1 at least, then they
are not an admin user —so, we redirect them out of the controller:

public function index()
$data['page heading'] = 'Viewing users';
$data['query'] = S$this->Users model->get all users() ;

}

$this->load->view ('common/header', $data);
S$this->load->view('nav/top nav', S$data);
$this->load->view('users/view _all users', S$data);
$this->load->view ('common/footer', $data);

Now, let's take a look at the preceding function. The index () function loads the
get_all_users () function of Users_model that, as the name suggests, gets all users
in the users table. The result of this is stored in the $data array's query item and is
then passed to the views/users/view_all_ users.php view file. This view file will
display all users in a table format with two options for editing and deleting.

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The new_user () function handles the creation of users within the system. Initially,
the new_user () function sets the validation rules:

public function new user() {

// Set wvalidation rules

$this->form validation->set rules('usr fname', $this->lang->
line('usr_fname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr lname', $this->lang->
line('usr_lname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr uname', $this->lang->
line('usr_uname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr email', $this->lang->
line('usr_email'), 'required|min length[1l] |max_length[255] |
valid email|is unique [users.usr_email]');

$this->form validation->set rules('usr confirm email', $this->
lang->line('usr_confirm email'), 'required|min_length[1] |
max_length[255] |[valid email |matches [usr_email]');

$this->form validation->set rules('usr addl',6 s$this->lang->
line('usr_addl'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr add2',6 s$this->lang->
line('usr_add2'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr add3',6 s$this->lang->
line('usr_add3'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr town city',6 $this->lang-»>
line('usr_town_city'), 'required|min length[1] |
max length[125]"');

$this->form validation->set rules('usr zip pcode',6 $this->lang-»>
line('usr_zip pcode'), 'required|min length[1] |
max length[125]"');

Sthis->form validation->set_rules('usr_access_level', $this->
lang->line('usr_access _level'), 'min length[1] |
max length[125]"');

Sthis->form validation->set_rules('usr_is_active', $this->lang->
line('usr_is active'), 'min length[1] |max length[1] |
integer|is natural') ;

$data['page heading'] = 'New user';
// Begin validation

After we set the validation rules (shown in the preceding code), we then test for the
return value of $this->form validation (). If it's the first time the page is accessed
or any form item fails validation, then FALSE is returned, and the following code

is run. Here, we define the settings for the HTML form elements displayed in the
views/users/new_user.php view:

if ($this->form validation->run() == FALSE) { // First load, or
problem with form

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

$data['usr fname'] = array('name' => 'usr fname', 'class' =>
'form-control', 'id' => 'usr fname', 'value' =>
set value('usr fname', ''), 'maxlength' => '100', 'size' =>
'35');

$data['usr lname'] = array('name' => 'usr lname', 'class' =>
'form-control', 'id' => 'usr lname', 'value' =>
set value('usr lname', ''), 'maxlength' => '100', 'size' =>
'35');

$data['usr uname'] = array('name' => 'usr uname', 'class' =>
'form-control', 'id' => 'usr uname', 'value' =>
set value('usr uname', ''), 'maxlength' => '100', 'size' =>
'35');

$data['usr email'] = array('name' => 'usr email', 'class' =>
'form-control', 'id' => 'usr email', 'value' =>
set value('usr email', ''), 'maxlength' => '100', 'size' =>
'35');

$data['usr confirm email'] = array('name' =>
'usr confirm email', 'class' => 'form-control',K 'id' =>
'usr confirm email', 'value' => set value('usr confirm email’,
'), 'maxlength' => '100', 'size' => '35');

$data['usr addl'] = array('name' => 'usr _addl', 'class' =>
'form-control', 'id' => 'usr addl', 'value' =»>
set value('usr addl', ''), 'maxlength’' => '100', 'size' =>
'35');

$data['usr add2'] = array('name' => 'usr _add2', 'class' =>
'form-control', 'id' => 'usr add2', 'value' =>
set value('usr add2', ''), 'maxlength’' => '100', 'size' =>
'35');

$data['usr add3'] = array('name' => 'usr _add3', 'class' =>
'form-control', 'id' => 'usr add3', 'value' =>
set value('usr add3', ''), 'maxlength’' => '100', 'size' =>
'35');

$data['usr town city']l = array('name' => 'usr town city',
'class' => 'form-control', 'id' => 'usr town city',6 ‘'value' =>
set value('usr town city', ''), 'maxlength' => '100', 'size'
=> '35");

$data['usr zip pcode']l = array('name' => 'usr zip pcode',
'class' => 'form-control', 'id' => 'usr zip pcode',6 ‘'value' =>
set value('usr zip pcode', ''), 'maxlength' => '100', 'size'
=> '35"');

$data['usr access level'l = array(l=>1, 2=>2, 3=>3, 4=>4, 5=>5);

Sthis->load->view ('common/header', $data) ;
$this->load->view('nav/top nav', sdata);
$this->load->view('users/new_user', $data);
Sthis->load->view ('common/footer', $data) ;

} else { // Validation passed, now escape the data

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Assuming that the form data has passed validation, we begin to create a password
for the user. We use the random_string () Codelgniter function to generate an
alphanumeric string of characters 8 digits in length.

We then generate a hash from this password using the $this->encrypt->shal()
Codelgniter function, as shown in the following snippet. Later on in the code, we
send the password to the user in an e-mail:

$password = random string('alnum', 8);
Shash = $this-s>encrypt->shal ($Spassword) ;

We save the form input and $hash to the $data arrays:

Sdata = array(

'usr fname' => $this->input->post('usr fname'),
'usr lname' => $this->input->post('usr lname'),
'usr uname' => $this->input->post('usr uname'),
'usr email' => $this->input->post('usr email'),

'usr _hash' => shash,

'usr addl' => $this->input->post('usr addl'),

'usr add2' => $this->input->post ('usr add2'),

'usr add3' => $this->input->post ('usr _add3'),

'usr town city' => $this->input-s>post('usr town city'),

'usr zip pcode' => $this->input->post('usr zip pcode'),
'usr access_level' => $this->input->post('usr access level'),
'usr is active' => $this->input->post('usr is active')

) ;

Once it is stored in the $data array, we attempt to save the hash to the database with
the process create user () function of Users_model:

if ($this->Users model->process create user ($data)) {
$file = read file('../views/email scripts/welcome.txt');
$file = str replace('%usr fname%', $data['usr fname'l],
$file) ;
$file = str replace('%usr lname%', $data['usr lname'],
$file) ;
$file = str replace('%password%', Spassword, $file);

redirect ('users') ;
} else {

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

Should the admin user choose to edit a user's details, they can click on Edit

against the user's name when they're viewing the full user list, as described earlier
for the index () function. If they do press Edit, then the edit_user () function is
called — this is a basic function that uses the form validation functionality to validate
the user's details should the form be submitted.

Initially, we begin by defining the form validation rules:

public function edit user() ({

// Set wvalidation rules

$this->form validation->set rules('usr id', $this->lang->
line('usr_id'), 'required|min_length[1] |max length[125]');

$this->form validation->set rules('usr fname', $this->lang->
line('usr_fname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr lname', $this->lang->
line('usr_lname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr uname', $this->lang->
line ('usr_uname'), 'required|min length[1l] |max_length[125]');

$this->form validation->set rules('usr email', $this->lang->
line('usr_email'), 'required|min length[1l] |max_length[255] |
valid email!');

$this->form validation->set rules('usr confirm email', $this->
lang->line('usr_confirm email'), 'required|min_length[1] |
max_length[255] |valid email |matches [usr_email]');

$this->form validation->set rules('usr addl',6 s$this->lang->
line('usr_addl'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr add2',6 s$this->lang->
line('usr_add2'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr add3',6 s$this->lang->
line('usr_add3'), 'required|min length[1l] |max_length[125] ') ;

$this->form validation->set rules('usr town city',6 $this->lang-»>
line('usr_town city'), 'required|min length[1] |
max length[125]"');

$this->form validation->set rules('usr zip pcode',6 $this->lang-»>
line('usr_zip pcode'), 'required|min length[1] |
max length[125]"');

Sthis->form validation->set_rules('usr_access_level', $this->
lang->line ('usr_access _level'), 'min length[1] |
max length[125]"');

Sthis->form validation->set_rules('usr_is_active', $this->lang->
line('usr_is active'), 'min length[1] |max length[1] |
integer|is natural');

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The user's primary key (users.usr_id)is appended to the Edit link and passed to the
edit_user () function. This is used to look up the user in the users table. The get
user_details($id) function of Users_model takes one parameter — the value of $id
(as passed in the Edit link or posted using $_posT if the form is submitted) —and looks
for the user. Once found, the details of the query are written to local variables and
saved to the $data array. This, in turn, is passed to the edit_user.php view where it
is used to populate the form items with the correct data:

if ($this->input-spost())

$id = $Sthis->input->post ('usr_id');
} else {

$id = sthis->uri->segment (3) ;

$data['page heading'] = 'Edit user';
// Begin validation

After we set the validation rules, we test for the return value of $this->form
validation (). If it's the first time the page is accessed or any form item fails
validation, then FALSE is returned, and the following code is run. Here, we define
the settings for the HTML form elements displayed in the views/users/edit_user.
php view:

if ($this->form validation->run() == FALSE) { // First load, or
problem with form
$query = $this->Users model->get user details($id);

foreach ($query-s>result() as $row)
Susr_id = s$row->usr_id;
Susr fname = Srow->usr fname;
$usr lname = $Srow->usr lname;
$usr uname = $Srow->Usr_ uname;
Susr_email = $row->usr_email;

Susr addl = S$row->usr_addl;
Susr add2 = Srow->usr_add2;
Susr_add3 = $row->usr_add3;
Susr_town_city = $row->usr_town_city;
Susr_zip_pcode = $row->usr_zip pcode;

Susr_access_level = $row->usr_access_level;
Susr_is_active = $row->usr_1is_active;
[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

We build the HTML form elements here, defining their settings in the $data array,
as shown in the following code:

$data['usr fname'] = array('name' => 'usr fname', 'class' =>
'form-control', 'id' => 'usr_fname', 'value' =>
set_value('usr_fname', $usr_fname), 'maxlength’ => '100",
'size' => '35');

$data['usr lname'] = array('nmame' => 'usr lname', 'class' =>
'form-control', 'id' => 'usr_lname', 'value' =>
set value('usr lname', $Susr_lname), 'maxlength' => '100"',
'size' => '35');

$data['usr_uname'] = array('name' => 'usr_uname', 'class' =>
'form-control', 'id' => 'usr_uname',6 'value' =>
set_value('usr_uname', $usr_uname), 'maxlength’ => '100",
'size' => '35');

$data['usr email'] = array('name' => 'usr email', 'class' =>
'form-control', 'id' => 'usr email', 'value' =>
set value('usr email', Susr_email), 'maxlength’ => '100"',
'size' => '35');

$data['usr confirm email'] = array('name' =>
'usr confirm email', 'class' => 'form-control', 'id' =>
'usr_confirm email', 'value' => set_value('usr_confirm email',
Susr email), 'maxlength’ => '100', 'size' => '35');

$data['usr addl'] = array('name' => 'usr_addl', 'class' =>
'form-control', 'id' => 'usr addl', 'value' =>
set_value('usr_addl', susr_addl), 'maxlength' => '100",
'size' => '35');

$data['usr add2'] = array('name' => 'usr_add2', 'class' =>
'form-control', 'id' => 'usr add2', 'value' =>
set_value('usr_add2', susr_add2), 'maxlength' => '100",
'size' => '35');

$data['usr add3'] = array('name' => 'usr_add3', 'class' =>
'form-control', 'id' => 'usr_add3', 'value' =>
set_value('usr_add3', susr_add3), 'maxlength' => '100",
'size' => '35');

$data['usr _town city'] = array('name' => 'usr town city',
'class' => 'form-control', 'id' => 'usr town city',6 ‘'value' =>
set _value('usr town city', S$usr town city), 'maxlength'’ =>
'100', 'size' => '35');

$data['usr zip pcode'] = array('name' => 'usr zip pcode',
'class' => 'form-control', 'id' => 'usr zip pcode',6 'value' =>
set _value('usr zip pcode', S$usr zip pcode), 'maxlength' =>
'100', 'size' => '35');

$data['usr access level options'] = array(l=>1, 2=>2, 3=>3,
4=>4, 5=>5);

$data['usr_access level']l = array('value' =>
set value('usr access level', ''));

$data['usr_is_active'] = Susr_is_active;

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

$data['id']l = array('usr id' => set value('usr id', S$usr_id));

Sthis->load->view ('common/header', $data) ;
$this->load->view('nav/top nav', s$data);
$this->load->view('users/edit user', $data);
Sthis->load->view ('common/footer', $data) ;

} else { // vValidation passed, now escape the data

Assuming that the form input passed validation, we save the new user information
to the $data array:

$data = array(

'usr fname' => $this->input->post('usr fname'),
'usr lname' => $this->input->post('usr lname'),
'usr uname' => $this->input->post('usr uname'),
'usr email' => $this->input->post('usr email'),

'usr addl' => S$this->input->post('usr addl'),

'usr add2' => $this->input->post ('usr add2'),

'usr add3' => $this->input->post ('usr add3'),

'usr town city' => $this-s>input-s>post('usr town city'),
'usr zip pcode' => $this->input->post('usr zip pcode'),

'usr access level' => $this->input->post('usr access level'),
'usr is active' => $this->input-s>post('usr is active')

)i

Once everything is added to the $data array, we try to update the user's details
using the process_update_user () function of Users_model:

if ($this->Users model-s>process update user (id, sdata)) {
redirect ('users') ;

}

By pressing the Delete link in the views/users/view_all_users.php file, the

users controller's delete user () function is called. Like the edit user () function,
delete user () uses theusers_usr_id primary key appended to the end of the
Delete link URL and passes it to the delete_user ($id) function of Users_model. This
model function takes one parameter —the $id (as passed in the Delete link or posted
using $_POST if the form is submitted) —and deletes the user from the users table:

public function delete user ()
// Set wvalidation rules
$this->form validation->set rules('id', $this->lang->
line('usr_id'), 'required|min_length[1] |max_length[11] |
integer|is natural');

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

if ($this-sinput-spost())

$id = $this->input->post('id');
} else {

$id = Sthis->uri-s>segment (3) ;

$data['page heading'] = 'Confirm delete?';

if ($this->form validation->run() == FALSE) { // First load,
or problem with form
$datal'query'] = s$this->Users model->get user details($id);
Sthis->load->view ('common/header', $data) ;
$this->load->view('nav/top nav', s$data);
S$this->load->view('users/delete user', sdata);
Sthis->load->view ('common/footer', $data) ;

} else {
if ($this->Users model->delete user ($id)) {

redirect ('users') ;

public function pwd_email () {
$id = Sthis->uri->segment (3) ;
send email ($data, 'reset');
redirect ('users') ;

Creating the language file

As with all the projects in this book, we're making use of the language file to serve
text to users. This way, you can enable multiple region/multiple language support.

Create the /path/to/codeigniter/application/language/english/en admin
lang.php file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;
// General
$lang['system system name'] = "Auth System";
// Top Nav
$lang['top nav_users'] = "Users";
[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

$lang['top nav new'] = 'New';

$lang['top nav_signin'] = "Login";

$lang['top nav_signout'] = "Logout";

// Login

$lang['signin email'] = "Email";

$lang['signin password'] = "Password";

$lang['admin login header'] = "Please sign in";

$lang['admin login email'] = "Email";

$lang['admin login password'] = "Password";

$lang['admin login signin'l] = "Signin...";

$lang['admin login error'] = "Whoops! Something went wrong - have
another go!";

$lang['forgot pwd header'] = 'Reset Password...';

$lang['forgot pwd instruction'] = 'Enter your email in the box

below and if your email is in the database we will send you a
new password' ;

$lang['signin forgot password'] = "Forgot Password?";

// Register
$lang['register page title']

"Register...";
$lang['register first name'] = "First Name";
$lang['register last name'] = "Last Name";
$lang['register email']l = "Email";

// Emails
$lang['email subject new password'] = "Your new password.";
$lang['email subject reset password'] = "Reset your password.";

// New/Edit User

$lang['usr form instruction new'] = "New User Details";
$lang['usr form instruction edit'] = "Edit User Details";
$lang['usr id'] = "ID";

$lang['usr fname'] = "First name";

$lang['usr lname'] = "Last Name";

$lang['usr uname'] = "Username";

$lang['usr email'] = "Email";

$lang['usr confirm email'] = "Confirm Email";
$lang['usr addl'] = "Address 1";

$lang['usr add2'] = "Address 2";

$lang['usr add3'] = "Address 3";

$lang['usr town city']l = "Town/City";
$lang['usr_ zip pcode'] = "Zip/Postal Code";

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Authentication System

$lang['usr access level']l = "User Access Level";
$lang['is _active']l = "User is active?";

// Forgot password

$lang['forgot pwd success heading']l = "Email Sent:";

$lang['forgot pwd success msg'] = "An email has been sent to the
address provided.";

// New password

$lang['signin new pwd instruction'] = "Reset your password";

$lang['signin new pwd email'] = "Your email";

$lang['signin new pwd pwd'] = "Password";

$lang['signin new pwd confirm'] = "Confirm password";

$lang['signin new pwd code'] = "Code";

// Delete

$lang['delete confirm message'] = "Are you sure you want to delete
the user: ";

Putting it all together

Okay, so that's the code. Now, let's take a look at some ways in which it can be
used — this will help us get a good idea about how it all interacts with each other.

User registration

The following is the sequence of steps:
* A user opens the register controller in their browser and is prompted
to enter their first name, last name, and e-mail address

* The user submits the form and the form is posted to the index ()
register function

¢ The register controller saves the user's details to the users table and
generates a password for them

e This is sent to them in an e-mail and is sent to the email address
submitted earlier

* The user can then log back in to the system and amend their details as
they wish

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Ensuring correct access

It is possible to allocate controllers and even certain functions to be accessed by users
with a specific access level only. We touched on this earlier in the chapter; however,
we're going to discuss it here as well.

Look at the following code snippet, specifically, the parts in bold:

if (($this->session->userdata('logged_in') == FALSE) ||
($this->session->userdata('usr _access level') != 1)) {
redirect ('signin') ;

}

This function can be placed into any controller or function as you wish; doing so will
protect this code block from access to users without the correct access level. The first
part checks whether a user is logged in (that is, if a session exists), but the second
comparison looks at the user access level set at the sign-in. By adjusting the value
checked for, you can tailor access to specific users, user groups, or access levels.

Summary

So there you are —a simple auth system using Twitter Bootstrap as a frontend. It
should be simple to adapt and amend to suit your needs but still enable you to do
the basics.

In the next chapter we will look at creating a simple e-commerce site that will allow
you to have a simple shop and a look at options on how you can extend it.

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce
Site

This is a small, concise e-commerce application. There's no admin CMS to manage
products (it would have been too much to write about in this chapter), but there is an
easy-to-use (and importantly for you easy to adapt) process to display products and
let customers order them.

In this chapter, we will cover:

* Design and wireframes
* Creating the database

* Creating models

* Creating views

* Creating controllers

* Putting it all together

Introduction

In this project, we will create a simple shopping cart. This application will allow
customers to view products, filter products by category, and add products to their cart.

It will also let customers alter their shopping cart by removing items or changing the
quantity of these items.

Finally, there is a customer details form that allows their personal details to be saved
against an order for processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

To create the web application for this project, we will create one controller; this will
handle the display of products, amend the quantities of products in the cart, and also
handle the processing of orders.

We'll create a language file to store text, which will allow you to have multiple
language support should that be required.

We'll create all the necessary view files and a model to interface with the database.

However, this app along with all the others in this book relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources; although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the first chapter acts as a foundation for
this chapter.

So without further ado, let's get on with it.

Design and wireframes

As always, before we start building, we should take a look at what we plan to build.

Firstly, we will provide a brief description of our intent. We plan to build an app that
will allow people to view products as an online shop. They can sort these products
by category. Add products to a cart and enter their details to create an order. A
special code called order fulfilment_code is generated (saved in the database

in orders.order_ fulfilment_code). This code will allow you to track any order
through a payment system.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

®

Home (index())

|

o iean

Add to car: (add()) Cart (display_cart())

®

Proceed to checkpout
(user_details())

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

So that's the site map — the first thing to notice is how simple the site is. There are
only four main areas to this project. Let's go over each item and get a brief idea of
what it does:

Home: This is the initial landing area. The index () function displays
products to view and also displays categories with which a user can filter the
products to see items related to that category. So, by clicking on the Books
category, they will see only products that are assigned the category as books.

Add to cart: This processes the addition of a product to the user's cart. The
number of items in a cart is presented in the navigation bar at all times.

Cart: This displays a list of items in the cart as well as an option to increase or
decrease the number of each items in that cart.

Proceed to checkout: This displays a form to the users, inviting them to enter
their information. Once they press Go, their order and details are added to
the database for processing.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at some wireframes of each page.

Home - index()

The following screenshot shows you a wireframe from point 1 (the Home (index ())
item) in the site map. Initially, the user is shown a list of products. This list is not
filtered. On the right-hand side of the wireframe is a list of categories (as found in
the categories table). The user is able to click on these categories to filter the results
they view on the left-hand side, and clicking on All Categories clears the filter

once more.

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

Beneath each product is the Add to cart button, which allows the user to add a
particular product to their cart.

Web Application Blueprints

<O 5> X 4 [rwmmcomancom @)

Shop Home Cart(())

Product Title Product Title All Categories

This is a product This is a product Shirts

description description

29.99 29.99 Footware

Add to cart Add to cart Books
Beauty
Software

Product Title Product Title Computers

This is a product This is a product -

description description Kitchen Ware

29.99 29.99 Luggage

Add to cart Camping
Sports

74

Add to cart — add()

The following screenshot shows you a user clicking and adding a product to their
cart. This is done by clicking on an Add to cart button below a particular product.
Clicking on this button will call the shop controller's add () function, which will then
call the Codelgniter cart class' $this->cart->insert () function, which will add

the product to the cart.

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Web Application Blueprints

<a> X {} [nttp://wnww.domain.com | (a)

Shop Home Cart(0)

Product Title Product Title All Categories

This is a product This is a product Shirts

description description

29.99 29.99 Footware
Beauty
Software

Product Title Product Title Computers

This is a product This is a product -

description description Kitchen Ware

29.99 29.99 Luggage

Add to cart Add to cart Camping
Sports

74

Cart — display_cart()

The following screenshot shows you a wireframe from point 3 (the Cart display_
cart () item) in the site map. The user is presented with a list of items currently in
the cart. The display_cart () function is accessed in two ways —either by clicking
on the Cart link in the top navigation menu or immediately after clicking on Add to
cart under a product displayed in point 1 (the Home index () item) in the site map.
Adjusting the value in the text box under Quantity and pressing the Update Cart
button will increase or decrease the number of that product in the cart.

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

Pressing Proceed to check out will call the user_details () function from point 4
(the Proceed to checkout item) in the site map.

Web Application Blueprints

<:| |:> X {} |http://www.domain.com | (Q)
Shop Home Cart(())

(Proceed to chectout

Quantity Description Item Price Sub-Total
Running Shoes 50.00 50.00
Total 50.00

Update cart

4

User Details — user_details()

The following screenshot shows you a wireframe from point 4 (the Proceed to
checkout user details () item) in the site map. The user is presented with a form
in which they can add their contact and delivery details for the order. Once the
user enters their details and presses Go, their order (content of the cart) and contact
details are written to the orders and customer tables, which are joined in the

orders table by the customer ID.

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Web Application Blueprints

<:| |:> X {} [nttp:/www. domail.comy | (Q)

Shop Home Cart(1)

|First Name

|Emai|

|
|Last Name |
|
|

|Conﬁrm Email

Payment Address

Delivery Address

Yy

File overview

This is a relatively small project, and all in all, we're only going to create seven files;
these are as follows:

* /path/to/codeigniter/application/models/shop model.php:
This provides read/write access to the database.

* /path/to/codeigniter/application/views/shop/display products.
php: This displays a list of products to the user, allows them to add a
product to the cart, and filters products by categories —as defined in the
categories table.

* /path/to/codeigniter/application/views/shop/display cart.php:
This displays the contents of the cart to the user. There are form options to
amend product quantities and proceed to the checkout.

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

/path/to/codeigniter/application/views/shop/user details.php:
This displays a form to the user, allowing them to enter their contact details
for their order fulfillment. User information is stored in the customer table,
which is joined to the orders table—in the orders table —by the customer
table's primary key.

* /path/to/codeigniter/application/views/nav/top nav.php: This
provides a navigation bar at the top of the page.

* /path/to/codeigniter/application/controllers/shop.php: This
contains all the necessary functions to display products, add products to a
cart, amend that cart, and process the customer details.

/path/to/codeigniter/application/language/english/en admin
lang.php: This provides language support for the application.

The file structure of the preceding seven files is as follows:

application/

— controllers/

| — shop.php

F— models/

| — shop model.php
b— views/shop/

| — display products.php
| — display cart.php
| — user details.php
— views/nav/

| — top nav.php

— language/english/

| — en admin lang.php

Creating the database

Okay, you should have already set up Codelgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is specifically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world if you
haven't; the code can easily be applied to other situations.

First, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE “shopdb™;
USE DATABASE ~“shopdb™;

CREATE TABLE “categories™ (

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

“cat_id® int(11) NOT NULL AUTO INCREMENT,
“cat _name” varchar (50) NOT NULL,
“cat_url name”~ varchar(15) NOT NULL,
PRIMARY KEY (“cat_id")
) ENGINE=InnoDB AUTO_ INCREMENT=11 DEFAULT CHARSET=latinl;

INSERT INTO ~categories™ VALUES

(1, 'Shirts', 'shirts'), (2, 'Footware', 'footware'), (3, 'Books"', '
books'), (4, 'Beauty', 'beauty'), (5, 'Software', 'software'), (6,
Computers', 'computers'), (7, 'Kitchen Ware', 'kitchenware'),

(8, 'Luggage', 'luggage'), (9, 'Camping', 'camping'), (10, 'Sports"', '
sports') ;

CREATE TABLE “ci sessions™ (
“session_id® varchar(40) COLLATE utf8 bin NOT NULL DEFAULT '0',
“ip address® varchar(l16) COLLATE utf8 bin NOT NULL DEFAULT '0',
“user agent” varchar(120) COLLATE utf8 bin DEFAULT NULL,
“last_activity®™ int(10) unsigned NOT NULL DEFAULT '0',
“user data” text COLLATE utf8 bin NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8 bin;

CREATE TABLE ~customer”™ (
“cust_id” int(11) NOT NULL AUTO INCREMENT,
“cust_ first name® varchar(125) NOT NULL,
“cust last name”~ varchar(125) NOT NULL,
“cust_email® varchar (255) NOT NULL,
“cust created at® timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
“cust_address” text NOT NULL COMMENT 'card holder address',
PRIMARY KEY (“cust_id")
) ENGINE=InnoDB AUTO_ INCREMENT=1 DEFAULT CHARSET=latinl;

CREATE TABLE ~orders™ (
“order id® int (11) NOT NULL AUTO INCREMENT,
“cust_id” int(11) NOT NULL,
“order details”™ text NOT NULL,
“order subtotal”™ int(11) NOT NULL,
“order created at” timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
“order closed™ int (1) NOT NULL COMMENT 'O = open, 1 = closed',
“order fulfilment code” varchar (255) NOT NULL COMMENT 'the
unique code sent to a payment provider',
“order delivery address” text NOT NULL,
PRIMARY KEY (“order_ id")
) ENGINE=InnoDB AUTO_ INCREMENT=1 DEFAULT CHARSET=latinl;

CREATE TABLE “products™ (

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

“product id® int (11) NOT NULL AUTO_ INCREMENT,
“product name”~ varchar (255) NOT NULL,
“product code” int (11) NOT NULL,
“product description® varchar (255) NOT NULL,
“category id® int(11) NOT NULL,
“product price” int(11) NOT NULL,
PRIMARY KEY (product_id")
) ENGINE=InnoDB AUTO_ INCREMENT=14 DEFAULT CHARSET=latinl;

INSERT INTO “products™ VALUES (1, 'Running Shoes',6 423423, 'These are
some shoes',2,50), (2, 'Hawaiian Shirt',34234,'This is a shirt’
,1,25), (3, 'Slippers',23134, 'Nice comfortable slippers',2,4),
(4,'Shirt',2553245, 'White Office Shirt',1,25), (5, 'CodeIgniter
Blueprints', 5442342, 'Some excellent projects to make and do (in
CodeIgniter) - it\'s good value too!',3,25), (6,'0Office Suite’
,34234123, 'Writer, Calc, Presentation software',5,299), (7, 'Anti-
Virus',324142, 'Get rid of those pesky viruses from your
computer',5,29), (8, 'Operating System',12341, 'This can run your
computer',5,30), (9, 'Web Browser',42412, 'Browse the web with a
web browser (that\'s what they\'re for)',5,5), (10, 'Dinner
set',3241235,'6 dinner plates, 6 side plates, 6 cups',7,45),

(11, 'Champagne Glasses',6 1454352, 'Crystal glasses to drink fizzy
French plonk from ',7,45), (12, 'Toaster', 523234, 'Capable of
toasting 4 slices at once!',7,35), (13, 'Kettle',6 62546245, 'Heat
water with this amazing kettle',7,25);

Don't panic; all SQL code is available online from this book's support
page on the Packt website.

_\lQ Now take a look at that last bit of SQL code; it's quite big and fiddly.
You'll see that the first table we create is ci_sessions. We need this to allow
Codelgniter to manage sessions, specifically, a customer's cart. However, this is just
the standard session table available from the Codelgniter User Guide, so I'll not include
a description of that table as it's not technically specific to this application. However,
if you're interested, there's a description at http://ellislab.com/codeigniter/
user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table and see what it means. First we will
see the categories table.

Table: categories

Element Description

cat_id This is the primary key

cat_name This is the name of the category, and it is displayed as a title in the
right-hand side category filter list in the views/shop/display
products.php file

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Table: categories

Element

Description

cat_url name

This is the short version of the cat _name element; it is used as the
third parameter of the URL when a user clicks on a category in the
right-hand side category filter list in the views/shop/display
products.php file

Now take a look at the products table:

Table: products

Element

Description

product_id

This is the primary key

product name

This is the name of the product

product code

This is a place where you can store your internal reference
code for the product

product_description | This is the description of the product

category id

This is the category that the product belongs to, and it is the
primary key of the categories table

product price

This is the price of the product

Next we will see the customer table:

Table: customer

Element

Description

cust_id

This is the primary key

cust first name

This is the customer's first name

cust_last name

This is the customer's last name

cust_email

This is the customer's e-mail address

cust_created_at

This is the MySQL timestamp of the date on which the row was
created in the database

cust_address

This is the customer address (payment address)

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

Finally, let's see the orders table:

Table: orders

Element Description
order id This is the primary key
cust_id This is the primary key of the customer from the

customer table

order details

This is a serialized dump of the cart table populated by
the serialize ($Sthis->cart->contents()) line

order subtotal

This is the value of the order

order created_at

This is the MySQL timestamp of the date the row that
was created in the database

order closed

The default value is 0 but can be 1. 0; it indicates that this
is a new order, and 1 is that the order has been fulfilled

order fulfilment code

This is the value of the $payment code generated in the
shop controller's user details () function, and it can
be used to track the order through a payment system

order_delivery address

This is the delivery address of the order

We'll also need to make amends to the config/database.php file, namely setting
the database access details, username password, and so on.

Open the config/database.php file and find the following lines:

Sdb['default'] ['hostname'] = 'localhost';
Sdb['default'] ['username'] = 'your username';
Sdb['default'] ['password'] = 'your password';
Sdb['default'] ['database'] = 'shopdb';

Now edit the values in the preceding lines, ensuring you substitute these values with
ones more specific to your setup and situation; so, enter your username, password,

and so on.

Adjusting the config.php file
There are a few things in this file that we'll need to configure to support sessions and
encryption. So open the config/config.php file and make the following changes:

1. We will need to set an encryption key; both sessions and Codelgniter's
encryption functionality require a encryption key to be set in the $config
array, so find the following line:

Sconfig['encryption key'l = '';

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Replace it with the following:

Sconfig['encryption key'l = 'a-random-string-of-alphanum-
characters';

u Now obviously, don't actually change the value to literally
~ a-random-string-of-alphanum-characters; instead, change it to, er, a
Q random string of alphanum characters — if that makes sense? Yeah,
you know what I mean.

2. Find these lines:

Sconfig['sess cookie name'] = 'ci session';
Sconfig['sess expiration'] = 7200;
Sconfig['sess expire on close'] = FALSE;

Sconfig['sess_encrypt cookie'l] = FALSE;
Sconfig['sess use database'] = FALSE;
Sconfig['sess table name'] = 'ci sessions';
Sconfig['sess match ip'] = FALSE;
Sconfig['sess match useragent'] = TRUE;
Sconfig['sess time to update'] = 300;

Replace the lines with the following;:

Sconfig['sess_cookie name'] = 'ci_session';
Sconfig['sess_expiration'] = 7200;
Sconfig['sess_expire on close'] = TRUE;
Sconfig['sess_encrypt cookie'] = TRUE;
Sconfig['sess_use database'] = TRUE;
Sconfig['sess_table name'] = 'ci_ sessions';
Sconfig['sess match ip'] = TRUE;
Sconfig['sess_match useragent'] = TRUE;
Sconfig['sess_time to update'] = 300;

Adjusting the routes.php file

We want to redirect the user to the shop controller rather than the default
Codelgniter welcome controller. We will need to amend the default controller setting
in the routes. php file to reflect this:

1. Open the config/routes.php file for editing and find the following lines
(near the bottom of the file):

Sroute['default controller'] = "welcome";
Sroute['404 override']l = '';

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

2. Firstly, we need to change the default controller. Initially in a Codelgniter

application, the default controller is set to welcome; however, we don't
need that. Instead, we want the default controller to be shop. So, find the
following line:

$route['default controller'] = "welcome";

Change it to the following;:

Sroute['default controller'] = "shop";
Sroute['404 override']l = '';

Creating the model

There is only one model in this project— shop_model . php — which contains functions
that are specific to searching and writing products to the database.

This is our one and only model for this project; let's briefly go over each function
in it to give us a general idea of what it does, and then we will go into more detail
in the code.

There are five main functions in this model, which are as follows:

get_product_details (): This accepts one argument — the $product_id—of
the product being added to the cart and returns a database result object that
contains information about a specific product. This model function is used
by the shop controller's add () function to fetch the correct details about a
product before it is added to the cart.

get_all products (): This accepts no argument. This model function
will return a list of products (as defined in the products table) to the shop
controller's index () function.

get_all_products_by_category name (): This accepts one argument —
$cat_url name (defined in the database as categories.cat_url name). This
function is called if a user has clicked on a category filter link (displayed on the
right-hand side of the wireframe in the Home - index() section of this chapter).

get_all_categories (): This fetches categories from the categories table.
It is used to populate the categories list (displayed on the right-hand side of
the wireframe in the Home - index() section of this chapter).

save_cart_to_database (): This accepts two arguments: $cust_data and
$order_data. The $cust_data is data submitted by the user in point 4 (the
Proceed to checkout user_details () item) in the site map, and sorder_
data is the contents of their cart. The customer data is added to the customer
table and the primary key that's generated is used as a foreign key in the
orders table.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

That was a quick overview, so let's create the model and discuss how it functions.

Create the /path/to/codeigniter/application/models/shop model.php file
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Shop model extends CI Model
function _ construct () {
parent:: construct();
Sthis->load->helper('url');

public function get product details ($product_id) ({
$this->db->where ('product id', S$product_ id) ;
Squery = $this->db->get ('products') ;
return Squery;

}

The preceding get_product_details () function returns a list of all products. This
function is called by the shop controller's index () function if the user hasn't filtered
any results, that is, they haven't clicked on a category link in the views/shop/
display products.php file:products () {

$a
public function get all uery = $this->db->get ('products') ;
return Squery;

}

The preceding get_all_products () function returns a list of products with a filter
applied. This function is called by the shop controller's index () function if the user
has filtered the products by a category, that, they have clicked on a category link in
the views/shop/display products.php file:

public function get all products by category name($cat url name =
null) {

if ($cat_url name) {
$this->db->where('cat _url name', $cat_url name) ;
Scat query = $this->db->get('categories');

foreach ($cat query->result() as S$row) {

Scategory id = Srow->cat_ id;

}

$this->db->where('category id', $category id);

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

}

Squery = $this->db->get ('products') ;
return $query;

}

The preceding get_all products_by category name () function returns a list of
all categories in the categories table. This model function is called from the shop
controller's index () function to supply data to the product categories list on the
right-hand side of the views/shop/display_ products.php file:

public function get all categories($cat_url name = null) ({
if ($cat_url name) {
$this->db->where('cat url name', $cat url name) ;

}

Squery = $this->db->get ('categories');
return $query;

}

The preceding get_all categories () function returns a list of all categories in the
categories table. This list is used in the views/shop/display products.php file
where a foreach loop iterates over the database object and displays the categories to
the user. A user can then click on a category and filter their results.

Now, take a look at the following snippet:

public function save cart to database($cust data, $order data) {
S$this->db->insert ('customer', $cust data);
Sorder datal['cust_id'] = $this->db->insert_ id();
if ($this->db->insert('orders', s$order data)) {
return true;
} else {
return false;
}
}
}

The preceding save_cart_to_database () function saves an order to the database;
it converts the data in a cart, along with the data entered by the user in the views/
shop/user details.php file

As you can see, the model is fairly straightforward and concise, so let's now take a
look at the views.

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Creating the views

There are four views in this project, and these are as follows:

* /path/to/codeigniter/application/views/shop/display products.
php: This displays a list of products to the user and allows them to add
products to their cart and also filter products.

* /path/to/codeigniter/application/views/shop/display cart.
php: This displays all products in the user's cart, allows them to alter the
quantities of products in their cart, and also gives an option to move to the
checkout stage. This is a customized version of the cart template available
from the Codelgniter documentation.

* /path/to/codeigniter/application/views/shop/user details.php:
This displays a form to the user, allowing them to enter information about
their order, such as their contact details and delivery address.

* /path/to/codeigniter/application/views/nav/top nav.php: This
displays the top-level menu. In this project, this is very simple, containing a
project name and link to go to the shop™ controller and a link named Cart;
there is a variable positioned next to the word Cart, displaying the value
(0 by default); however, this is in fact the number of items in the cart at any
one time. If there were seven items in the cart, the link would say Cart (7).

That was a good overview of the views; now let's go over each one, build the code,
and discuss how they function.

Create the /path/to/codeigniter/application/views/shop/display
products.php file and add the following code to it:

<div class="row row-offcanvas row-offcanvas-right"s>

<div class="col-xs-12 col-sm-9">
<div class="row">
<?php foreach ($query-s>result() as Srow) : ?>
<div class="col-6 col-sm-6 col-1g-4">

<h2><?php echo S$row-s>product name ; ?></h2>

<p>£ <?php echo $row->product price ; ?></p>
<p><?php echo $row->product description ; ?></p>

<?php echo anchor ('shop/add/'.s$row->product id, S$this->

lang->line('index add to cart'), 'class="btn btn-
default"') ; ?>
</div>
<?php endforeach ; ?>
</div>
</div>
[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

The preceding block of code outputs a list of products and displays them with a
description (products.product_description), price (products.product_price),
and link to add to cart.

A foreach loop is used to iterate over the products in $query. The $query value is
populated by data returned by the get_all products () function of Shop_model;
or, if the user has filtered by a category (explained in the following HTML), then
$query is populated by the get_all products_by category name () function of
Shop model:

<div class="col-xs-6 col-sm-3 sidebar-offcanvas" id="sidebar"
role="navigation">
<div class="list-group"s>

<?php echo anchor (base url(), $this->lang->
line('index all categories'), 'class="list-group-item"')
?>

<?php foreach ($cat query->result() as $row) : ?>
<?php echo anchor ('shop/index/'.sSrow->cat _url name, $row->

cat _name, 'class="list-group-item"') ; ?>
<?php endforeach ; ?>
</div>
</div>
</div>

The preceding block of code outputs a list of categories that the user can use to filter
results. We use a foreach loop to iterate over the $cat_query array. This array is
supplied by the get_all_categories () function of Shop_model.

Create the /path/to/codeigniter/application/views/shop/display cart.php
file and add the following code to it:

<?php echo anchor ('shop/user details', $this->lang->
line('display cart proceed to checkout'), 'type="button" class="btn

btn-primary btn-1g"') ; ?>

<?php echo form open('shop/update cart'); ?>

<table class="table">

<tr>
<th><?php echo $this->lang->line('display cart quantity') ; 2>
</th>
<th><?php echo $this->lang->line('display cart description') ;
?></th>
<th><?php echo $this->lang->line('display cart item price') ;
?></th>

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

<th><?php echo $this->lang->line('display cart sub total') ;
?></th>
</tr>

This view is responsible for displaying the contents of the cart to the user and also
allowing the user to adjust item quantities in the cart.

Look at the following line of code; with it, we create the $i variable. This variable
is incremented in the foreach loop. We use the $i variable to give the product
quantity textbox a unique name, that is, 1, 2, 3, 4, and so on:

<?php $i = 1; ?>

This foreach loop iterates over each item in the Codelgniter cart class's $this-
>cart-s>contents () function. Each iteration is treated as the $item variable:

<?php foreach ($Sthis->cart->contents() as S$items): ?>

<?php echo form hidden($i . '[rowid]', S$items['rowid']); ?>
<tr>
<td><?php echo form input (array('name' => $i . '[qgty]l"',
'value' => S$items['gty'], 'maxlength' => '3', 'size' =>
'51)); ?></td>
<td>

<?php echo $items['name']; ?>

<?php if (Sthis->cart->has options($items['rowid']) ==

TRUE) : ?>
<p>
<?php foreach ($this->cart->product options($items
['rowid']) as $option name => $option value): ?>

<?php echo Soption name; ?>: <?php
echo $option value; ?>

<?php endforeach; ?>
</p>

<?php endif; ?>

</td>

<td><?php echo $this->cart->format number ($items|['price']) ;
?></td>

<td>£ <?php echo $this->cart->format number ($items
['subtotal']); ?></td>

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

</tr>
<?php S$i++; ?>
<?php endforeach; ?>

<tr>
<td colspan="2"> </td>
<td>Total</td>
<td>£<?php echo $this->cart->format number ($this->cart->
total()); ?></td>
</tr>

</table>

After the foreach loop, we display a button to the user. The following code is for the
button that will submit the form along with any adjusted item quantities:

<p><?php echo form submit('', $this->lang->line
('display cart update cart'), 'class="btn btn-success"'); ?></p>
<?php echo form close() ; ?>

Create the /path/to/codeigniter/application/views/shop/user details.php
file and add the following code to it:

<div class="row row-offcanvas row-offcanvas-right"s>
<div class="col-xs-12 col-sm-9">
<div class="row">
<?php echo validation errors(); ?>
<?php echo form open('/shop/user details') ; ?>
<?php echo form input ($first name); ?>

<?php echo form input ($last name); ?>

<?php echo form input ($email); ?>

<?php echo form input ($email confirm); ?>

<?php echo form textarea ($payment address); ?>

<?php echo form textarea($delivery address); ?>

<?php echo form submit('', $this->lang->line
('common form elements go'), 'class="btn btn-success"')
?>

<?php echo form close() ; ?>
</div>
</div>
</div>

The preceding block of code creates a form into which the user can enter contact
details necessary for fulfilling their order.

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Create the /path/to/codeigniter/application/views/nav/top nav.php file and
add the following code to it:

<!-- Fixed navbar -->
<div class="navbar navbar-inverse navbar-fixed-top"
role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle=
"collapse" data-target=".navbar-collapse">
Toggle navigation</spans>
</spans>
</spans>

</buttons>
<a class="navbar-brand" href="<?php echo base url() ; ?>">
<?php echo $this—>lang—>line('system_system:name’); ?>
</div>

<div class="navbar-collapse collapse">
<ul class="nav navbar-nav'"s>
<1li class="active"><?php echo anchor('shop', S$this->lang->
line ('nav_home')) ; ?>
<?php echo anchor('shop/display cart', ($items > 0) ?
$this->lang->line('nav_cart_count') . '(' . $items . ')°
: $this->lang->line('nav_cart count') .'(0)') ; ?>

</div><!--/.nav-collapse -->
</div>
</div>

<div class="container theme-showcase" role="main">

The preceding block of code creates the navigation menu at the top of the page.
Take a look at the code in bold, shown again here (restructured):

<lis
<?php
echo anchor ('shop/display cart',
($items > 0) ? Sthis->lang->line('nav_cart_count')
'(' . Sitems . ')' : Sthis->lang->line
('mav_cart count').'(0)"') ;
?>
</1lis

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

The preceding block of code displays the word Cart along with a value in brackets.
This value is initially set to 0 (zero). However, this value is in fact the quantity of
items in the cart—if no items are in the cart, that number will be zero by default.

To start with, we use a PHP ternary operator to switch between displaying zero and
the actual number of items in the cart. If the number of items is greater than zero,
then there must be some items in the cart. So, we display that number of items,
otherwise we display zero.

The word Cart is set in the language file, but what about the value of the number of
cart items? Where does that come from?

The number of items in the cart is calculated from several functions in the shop
controller, which are index (), update cart () and user details (). Let's take

a look at just one of these (as they all work the same) and see how it works in the
index () function; check out the following code segment from the index () function:

$cart contents = $this->session->userdata('cart contents');
$data['items'] = S$cart contents['total items'];

Sthis->load->view ('common/header') ;
S$this->load->view('nav/top nav', $data);

We fetch the contents of the cart stored in the cart contents session item and store
it in the $cart_contents variable (to keep it simple).

The Codelgniter cart class automatically keeps a running total of the number of all
items currently in the cart and conveniently stores it in the total_items item in the
$cart_contents array.

We then assign $data['items'] the value of total_items (which should be the
number of items in the cart) and send it to the nav/top_nav.php view file where is it
displayed next to the word Cart.

Creating the controllers

We're going to create only one controller in this project, which is /path/to/
codeigniter/application/controllers/shop.php.

Let's go over that controller now, look at the code, and discuss how it functions.

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Create the /path/to/codeigniter/application/controllers/shop.php file and
add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Shop extends MY Controller {

function _ construct () {
parent:: construct();
Sthis->load->library('cart') ;
Sthis->load->helper('form') ;
$this->load->helper ('url');
$this->load->helper ('security') ;
$this->load->model ('Shop model') ;
$this->load->library('form validation') ;
Sthis->form validation->set_error_delimiters('<div class=

"alert alert-danger"s>', '</divs>');

public function index()

We want to display the correct products and as such, we need to test whether the
user has clicked on one of the filter links on the right-hand side of the views/shop/
display_ products.php file. We test for the presence of a third uri parameter.

If the third parameter does not exist, then we can safely assume the user does not
want any filtering. So we call the get_all_products () function of Shop_model.

If a third parameter exists, then the user must be filtering their results. So we call
the get_all products by category name ($this->uri-s>segment (3)) function,
passing to it the third parameter.

The third parameter comes from the categories.cat_url_name column in the
database, which is written out in the views/shop/display_products.php file by
a foreach loop.

The loop iterates over the cat_query database object, which is populated by the
get_all categories () function of Shop model, as shown here:

if (!$this->uri-s>segment(3)) ({

$datal'query'] = $this->Shop model->get all products() ;
} else {

$data['query'] = $this->Shop model->

get _all products by category name($this->uri->segment(3)) ;

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

As mentioned in the preceding paragraph, the get_all categories () function of
Shop_model is called, returning its result to $data['cat_query']. Inthe views/
shop/display_ products.php file, it is iterated over with a foreach loop to create
a list of categories:

$data['cat _query']l = $this->Shop model->get all categories();

Now we fetch the number of items in the cart from the cart contents session

item. A full explanation of this is in the Creating the views section of this chapter,
specifically in the explanation for the /path/to/codeigniter/application/views/
nav/top nav.php view file:

$cart contents = $this->session->userdata('cart contents');
$data['items'] = Scart contents['total items'];

$this->load->view ('common/header') ;
S$this->load->view('nav/top nav', S$data);
$this->load->view('shop/display products', $data);
$this->load->view ('common/footer') ;

}

The following add () function adds an item to the cart. It is called from the views/
shop/display products.php file when a user clicks on Add to cart. The third
parameter of the link in Add to cart is the product ID (products.product_id).
We grab the product ID from the URI (it's the third segment) and pass it to the
get_product details ($product id) function of Shop model. This will return
the product details in the $query variable. We loop over $query, pulling out the
individual details for the product and saving them to the $data array:

public function add() {
S$product_id = $this->uri->segment (3);
Squery = $this->Shop model->get product details ($product_ id);

foreach ($query->result () as Srow) {
$data = array(
rid! => $row->product_ id,
'qty!' => 1,
'price' => $row->product price,
'name' => $row—>product_name,

)i
}

We save the $data array to the cart using the Codelgniter cart class's $this->cart-
>insert () ; function:

Sthis->cart->insert (Sdata) ;

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We then fetch a list of all categories and the new number of items in the cart and
send them to the nav/top nav.php view file.

The shop/display_cart.php view file will loop over the contents of the cart using
the Codelgniter cart class's $this->cart->contents () function:

$data['cat _query']l = $this->Shop model->get all categories();
$cart contents = $this->session->userdata('cart contents');
$data['items'] = Scart contents['total items'];

$this->load->view ('common/header') ;
S$this->load->view('nav/top nav', S$data);
S$this->load->view('shop/display cart', sdata);
$this->load->view ('common/footer') ;

}

The update cart () function is called when the user clicks on the Update Cart
button in the views/shop/display cart.php file. When it is called, it loops over
the input posted from the form in views/shop/display cart.php and saves it to
the $data array; let's take a look:

public function update cart () {
$data = array();
$1i = 0;

First we create an array called $data in which we can store the adjusted cart

data (we'll use this later). Then, we create a $1i variable; we'll use this to create

a multidimensional array, incrementing the value of $i on every iteration of the
loop —with $i keeping the rowid value (the ID of the product in the cart) and gty
value linked and related to each other.

We loop over the posted data (from the form in views/shop/display cart.php),
treating each iteration of the loop as $item.

Each sitemhas a rowid element (the position of the product in the cart) and gty,
which is the adjusted product quantity:

foreach($this->input->post () as $item) {
Sdata[$i] ['rowid!'] = Sitem['rowid'];
$data[$i]l ['gty'] = Sitem['qty'];
Sit++;
}
[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

Now that the cart data has been looped over and any quantity adjustments made,
we'll use the Codelgniter cart class's $this->cart->update () function to update
the cart. We then redirect the user using the redirect () function to the shop
controller's display cart () function, which will report the new values to the user:

Sthis->cart->update ($data) ;
redirect ('shop/display cart');

}

The actual iteration over the cart data is done in the views/shop/display cart.php
view file, but the display_cart () function exists to offer a specific way to view items
in the cart. Calling this function loads the views/shop/display_cart.php view:

public function display cart() {
$data['cat _query'l = $this->Shop model->get all categories();
$cart contents = $this->session->userdata('cart contents');
$data['items'] = S$cart contents['total items'];
Sthis->load->view ('common/header') ;
S$this->load->view('nav/top nav', $data);
S$this->load->view('shop/display cart', $data);

(

Sthis->load->view ('common/footer') ;

public function clear cart () {
Sthis->cart->destroy() ;
redirect ('index') ;

}

The user_details () function is responsible for displaying a form to the user,
allowing them to enter their contact details, validating those details, and converting
their cart to an order. Let's look in detail at how this works.

First off, we start by setting the validation rules for the form submission:

public function user details() {

// Set validation rules

Sthis->form validation->set rules('first name',6 $this->lang->
line('user details placeholder first name'),
'required|min length[1] |max_length[125]');

Sthis->form validation->set rules('last name', $this->lang-»>
line('user details placeholder last name'),
'required|min length[1] |max_length[125]');

Sthis->form validation->set rules('email', s$this->lang->
line('user details placeholder email'),

'required|min length[1] |max length[255] |valid email');

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

$this->form validation->set rules('email confirm',6 $this-»>
lang->line('user details placeholder email confirm'),
'required|min_length([1] |max_length[255] |valid email |
matches [email] ') ;

$this->form validation->set rules('payment address',6 $this-»>
lang->line('user details placeholder payment address'),
'required|min_length([1] |max_length[1000]') ;

$this->form validation->set rules('delivery address', $this-»>
lang->line('user details placeholder delivery address'),
'min_length[1] |max length[1000]');

If this is the initial page load or there were errors with the submission of the form,
then the $this->form validation->run () function will return FALSE. If either of
these happens, then we will begin to build the form elements, defining the settings
for each form item:

if ($this->form validation-s>run() == FALSE) ({

$data['first name'] = array('name' => 'first name', 'class' =>
'form-control', 'id' => 'first name',6 ‘'value' =>
set value('first name', ''), 'maxlength' => '100', 'size' =>
'35', 'placeholder' => $this->lang->
line('user details placeholder first name'));

$data['last name'] = array('name' => 'last name', 'class' =>
'form-control', 'id' => 'last name', 'value' =>
set value('last name', ''), 'maxlength' => '100', 'size' =»>
'35', 'placeholder' => $this->lang->
line('user details placeholder last name')) ;

Sdatal['email'] = array('name' => 'email', 'class' => 'form-
control', 'id' => 'email', 'value' => set value('email',6 ''),
'maxlength' => '100', 'size' => '35', 'placeholder' =>
$this->lang->line('user details placeholder email')) ;

$data['email confirm'] = array('name' => 'email confirm',
'class' => 'form-control', 'id' => 'email confirm',6 ‘'value' =>
set value('email confirm', ''), 'maxlength' => '100', 'size'
=> '35', 'placeholder' => $this->lang->
line('user details placeholder email confirm')) ;

$data['payment address'] = array('name' => 'payment address',
'class' => 'form-control', 'id' => 'payment address', 'value'
=> set value('payment address', ''), 'maxlength' => '100',
'size' => '35', 'placeholder' => S$this->lang->
line('user details placeholder payment address')) ;
$data['delivery address'] = array('name' => 'delivery address',
'class' => 'form-control', 'id' => 'delivery address', 'value'
=> set value('delivery address', ''), 'maxlength' => '100',
'size' => '35', 'placeholder' => S$this->lang->
line('user details placeholder delivery address'));

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

Now we fetch the number of items in the cart from the cart contents session item.

A full explanation of this is in the Creating the views section of this chapter under the
explanation for the /path/to/codeigniter/application/views/nav/top_nav.php
view file. After we have the contents of the cart for the Cart link in the navigation bar,
we'll load the views/shop/user_details.php file, which will do the job of displaying
the form:

$cart contents = $this->session->userdata('cart contents');
$data['items'] = Scart contents['total items'];
$this->load->view ('common/header') ;
S$this->load->view('nav/top nav', S$data);
S$this->load->view('shop/user_ details', sdata);
$this->load->view ('common/footer') ;

} else {

If, however, there were no errors with the form when it was submitted, then we will
arrive at the following code. We define two arrays —one called $cust_data, which
will store the information submitted by the user in the form in the views/shop/user_
details.php file and the other called $order details, which will store a serialized
dump of the cart. So, the following block of code saves the users' form data:

Scust_data = array(

'cust first name' => $this->input->post('cust first name'),
'cust_last name' => $this->input->post('cust last name'),
'cust_email'=> $this->input->post('cust _email'),
'cust_address' => $this->input->post ('payment address')) ;

The $payment_code value acts as a type of hook that you can use for payment
processing. For example, most payment processing systems support the addition

of a code—usually a string of text and/or numbers that are generated by the shop
application, saved to the database, and sent off to the payment provider. After the
payment, a webhook script will receive a signal from the payment processing system
containing a success or error message (the success or error of the attempted payment
from the customer's bank account), along with the code. This way, you can ensure
that the correct order has been paid for (or not); anyway, $payment_code is the
following method in the current project:

$payment code = mt_rand() ;

The following block of code saves the cart data to the sorder_data array. The
contents of the cart are fetched from the cart by the Codelgniter cart class's $this-
>cart->contents () function. The retuned array is passed to the serialize () PHP
function and is written to $order data['order details':

$order data = array(
'order details' => serialize($this->cart->contents()),

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

'order delivery address' => $this->input-»>
post ('delivery address'),

'order closed' => '0',

'order fulfilment code' => $payment code,

'order delivery address' => $this->input-»>

post ('payment address')) ;

Now that the customer's contact details and order details are in arrays, we can start
to save them to the database. We call the save cart to database () function of
Shop_model, passing to it the $cust_data and $order_data array.

The save cart to database () function of Shop model first saves the customer to
the customer table, returning the primary key of the insert and using that primary
key as the foreign key value that goes in orders.cust_id:

if ($this->Shop model->save cart to database($Scust data,
Sorder data)) {
echo $this->lang->line('user details save success');

} else {
echo $this->lang->line('user details save error');

}

Creating the language file

As with all the projects in this book, we're making use of the language file to serve
text to users. This way, you can enable multiple region/multiple language support.
Let's create the language file.

Create the /path/to/codeigniter/application/language/english/en admin_
lang.php file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

// General
$lang['system system name'] = "Shop";

// nav
$lang['nav_cart count'] = "Cart ";

$lang['nav_home'] = "Home";

// index ()

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

$lang['index all categories'] = "All categories";
$lang['index add to cart'] = "Add to cart";

// display cart ()

$lang['display cart proceed to checkout'] = "Proceed to checkout";
$lang['display cart quantity'l = "Quantity";
$lang['display cart description'] = "Description";
$lang['display cart item price'l = "Item Price";
$lang['display cart sub total'] = "Sub-Total";
$lang['display cart update cart'] = "Update Cart";

// user_details()

$lang['user details placeholder first name'] = "First Name";

$lang['user details placeholder last name'] = "Last Name";

$lang['user details placeholder email'] = "Email";

$lang['user details placeholder email confirm'] = "Confirm Email";

$lang['user details placeholder payment address'] = "Payment
Address";

$lang['user details placeholder delivery address'] = "Delivery
Address";

$lang['user details save success'] = "Order and Customer saved to
DB";

$lang['user details save error'] = "Could not save to DB";

Putting it all together

Okay, here are a few examples that will help put everything together.

Filtering a search

When you filter a search, the following events take place:

1. The user visits the site and Codelgniter routes them to the shop controller.
The shop controller loads the index () function

2. The index () function recognizes that there is no third parameter in the URL,
so it calls the get_all products () function of Shop model.

3. The index () function loads the get _all categories () function of Shop
model, passing the retuned result to $data['cat_query']. This is passed
to the views/shop/display products.php file, which—using a foreach
loop —echoes out the categories.

4. The user clicks on a category in the list. The URL calls the index () function,
but this time with a third parameter.

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The index () function recognizes this third parameter and loads the get _
all_products_by category name () function of Shop_model, passing it the
third uri segment.

The get_all products by category name () function of Shop model then
looks in the categories table for a category whose categories.cat_url_
name value matches that supplied in the third parameter and returns the
primary key of the category.

It then looks in the products table for all products whose products.
category_id value matches the primary key of the category found in just
the previous step using get_all_products_by category_name () and then
returns the query to the shop controller's index () function, where it is sent
to the views/shop/view products.php file.

Adding to cart

The sequence of events to add items to a cart is as follows:

1.

The user visits the site and Codelgniter routes them to the shop controller.
The shop controller loads the index () function

The index () function recognizes that there is no third parameter in the URL,
so it calls the get_all products () function of Shop model.

Using a foreach loop, the views/shop/display_products.php file iterates
over the result object from get_all_products () and displays each product
in turn.

The user clicks on the Add to cart button
Codelgniter calls the shop controller's add () function

The add () function grabs the product ID from the third uri segment and
sends it to the get _product details () function of Shop model.

The get_product details () function looks in the products table for the
product whose primary key matches that in the argument passed to it and
returns it to the $query variable.

Using a foreach loop, we iterate over $query, fetching the details of the
product, such as product_name and product_price, and saving them to an
array called $data, which we will add to the cart. We also set the gty value
to 1 (as they're only adding one item).

Using the Codelgniter cart class's $this->cart->insert () function, we
add the product to the cart by passing it the $data array.

10. We then direct the user to display_cart () to make any amends should

they wish.

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an E-Commerce Site

Altering the product quantity

The user can access the cart in one of these two ways:

By clicking on Cart in the navigation bar at the top of the page

By being directed there automatically once they add an item to their cart

We'll pick up the story assuming that the user has used either of these methods
(as they both drop us here):

1.
2.

9.

10.
11.

Codelgniter calls the display cart () shop function.

The bulk of the work in displaying the cart occurs in the views/shop/
display cart.php file, which is a modified version of the template found
in the Codelgniter documentation.

A variable called $1i is created and given the value of 1; this will increment
as the loop iterates.

Using a foreach loop, we iterate ever the Codelgniter cart class's $this-
>cart-s>contents () function. For each iteration, we call $item.

An iteration writes the details of each product to an HTML table.

An HTML text input is created called $1, so if the current iteration is 1, then
the name of the textbox will be 1, and if the current iteration is 4, the name of
the textbox will be 4.

There are three items in the cart (three rows). Each row shows that there is
one item of each of the three products in the cart. The user wishes to change
the quantities of the product in the third row.

The user selects the value of the textbox named 3 and replaces the value in
that textbox with the number 2 (which means that the user wishes to buy one
item of product 1, one item of product 2, and two items of product 3).

The user presses the Update Cart button.
Codelgniter calls the update_cart () shop function.

The update_cart () function adjusts the quantity of the third product in
the cart.

For a detailed breakdown, check out the explanation in the Creating the controllers
section of this chapter —look for the update_cart () function description.

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Summary

In this project, you saw the beginnings of a great shop platform. As always, there are
a few things you can do to expand upon the functionality, which are as follows:

Product CMS: This project doesn't come with a CMS to manage products or
categories — this is simply because adding such a functionality would have
been far too big a topic to cover. However, perhaps you could add some sort
of functionality to govern products, adding new ones, deleting old ones, and
so on.

Product images: You could add a column to the products table where an
image file name can be stored and then echo out that value in an HTML tag. You will, of course, need to add a folder somewhere in the
filesystem to store the images.

Product pages: You could add a link to the product title, opening a new page
and displaying detailed information about that product, such as color, size,
weight, "what's in the box", and so on. Of course, you'll need to add extra
columns to the products table to support the new information, but this can
be done quite easily.

BOGOFF: Verb, British slang —an encouragement from one person to
another to leave! Depart! Never to be seen again!

Well, not quite, but you could add a Buy One Get One Free (erm, not sure
about the last F) option. You could add logic so that if a certain number of
products are selected, a discount is applied.

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

This is a good little project; it's something nearly everyone might need in their day-
to-day work: a to-do list. This project will give you a small application to create tasks
and set them as complete. There's also a good level of scope for you to expand on the
project and really make it your own.

In this chapter, we will cover the following topics:

* Design and wireframes
* Creating the database

* Creating the model

* Creating views

* Creating the controller

* Putting it all together

Introduction

Right; in this project, we will create an application that allows users to create tasks
and view these tasks as a list. Tasks can also have a due date; late tasks will appear in
red so that you know it's important to execute that task as soon as possible.

To create this app, we will create one controller; this will handle the displaying of
tasks, creating these tasks, setting these tasks as done or still to do, and handling the
deletion of these tasks.

We'll create a language file to store the text, allowing you to have multiple language
support should that be required.

We'll create all the necessary view files and a model to interface with the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

However, this app along with all the others in this book, relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources; although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the first chapter acts as a foundation for
this chapter.

So without further ado, let's get on with it.

Design and wireframes

As always, before we start building, we should take a look at what we plan to build.

Firstly, a brief description of our intent: we plan to build an app that will allow
people to add tasks that they need to do. It will also allow users to view these tasks
as a list and set them as done. They can also delete old or unneeded tasks should
they wish.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

(D)

View All

3)| O é)|

Create Done/Not Done Delete

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

So that's the site map; the first thing to notice is how simple the site is. There are
only four main areas to this project. Let's go over each item and get a brief idea of
what it does:

View All: This displays a form to create a task and also displays all tasks
in a list

Create: This processes the creation of tasks saved to the database
Done/Not Done: This sets a task to either done or to-do

Delete: This removes the task from the database

Now that we have a fairly good idea of the structure and form of the site, let's take
a look at some wireframes of each page.

View All/Create

The following screenshot shows you a wireframe from point 1 (the View All item)
and point 2 (the Create item) of the preceding site map. Initially, the user is shown a
list of tasks. They are able to click on the It's Done or Still Todo button to go to point
3 (the Done/Not Done item) shown in the site map.

Web Application Blueprints

<] E:> X ﬁ [http://www.domain.com/ N CHED)

To do list
|Choose meeting room booking |
Done by [3rd][w] [August [v] [2015]v]
Fix washing machine To Do Delete
Go food shooping Done Delete
Call dentist - cancel appointment Done Delete
Book holiday Done Delete
4
[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

Delete

The following screenshot shows you a wireframe from point 4 (the Delete item) in
the site map. The user views the task description (tasks.task_desc) and is given
the option to delete (to process the deletion of the task from the database) or cancel to
return to point 1 (the View All item) of the site map.

Web Application Blueprints

‘S FAY | G

To do list

Confirm delete?

Are you sure you want to delete Task Description?

or Cancel

N

File overview

This is a relatively small project, and all in all, we're only going to create six files;
these are as follows:

* /path/to/codeigniter/application/models/tasks_model .php:
This provides read/write access to the tasks database table.

* /path/to/codeigniter/application/views/tasks/delete.php: This
displays a form to the user, asking them to confirm the deletion of a task.

e /path/to/codeigniter/application/views/tasks/view.php: This is the
view for the tasks controller's index () function. It displays a list of tasks to
the user.

* /path/to/codeigniter/application/views/nav/top nav.php:
This provides a navigation bar at the top of the page.

* /path/to/codeigniter/application/controllers/tasks.php:
This contains three main functions: index (), apply () and create ().

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

* /path/to/codeigniter/application/language/english/en admin_
lang.php: This provides language support for the application.

The file structure of the preceding six files is as follows:

application/

— controllers/

| — tasks.php

F— models/

| — tasks model.php
— views/tasks/

| b— view.php

| — delete.php

— views/nav/

| — top nav.php

— language/english/

| — en admin lang.php

Creating the database

Okay, you should have already setup Codelgniter and Bootstrap, as described in
Chapter 1, Introduction and Shared Project Resources. If not, then you should know that
the code in this chapter is specifically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world if you
haven't —the code can easily be applied to other situations.

Firstly, we'll build the database. Copy the following MySQL code to your database:

CREATE DATABASE “tasksdb™;
USE DATABASE “tasksdb™;

CREATE TABLE “ci sessions™ (
“session_id® wvarchar (40) COLLATE utf8 bin NOT NULL DEFAULT '0',
“ip address™ varchar(16) COLLATE utf8 bin NOT NULL DEFAULT '0',
“user agent” varchar(120) COLLATE utf8 bin DEFAULT NULL,
“last_activity®™ int(10) unsigned NOT NULL DEFAULT '0O',
“user data” text COLLATE utf8 bin NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=utfs8 COLLATE:uth_bin;

CREATE TABLE “tasks™ (
\task_id\ int (11) NOT NULL AUTO_INCREMENT,
“task desc” varchar(255) NOT NULL,
“task due date” datetime DEFAULT NULL,
“task created at® timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
“task status” enum('done', 'todo') NOT NULL,
PRIMARY KEY (\task_id\)
) ENGINE=InnoDB AUTO_ INCREMENT=1 DEFAULT CHARSET=utfs8;

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

M Now, take a look at that last bit of SQL code, it's quite big and fiddly.
Q Don't panic; all SQL code is available online from this book's support
page on the Packt website.

You'll see that the first table we create is ci_sessions, which we need to allow
Codelgniter to manage sessions, specifically logged-in users. However, this is just the
standard session table available from the Codelgniter User Guide, so I'll not include a
description of that table as it's not technically specific to this application. However,

if you're interested, there's a description at http://ellislab.com/codeigniter/
user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table, and see what it means:

Table: tasks

Element Description

task_id This is the primary key.

task_desc There is no title field or body to our tasks as such—only a brief
description of what needs to be done; this is that description.

task_due_date This is the date by which the task needs to be done. If a task

is late, we will color the background of the table row red to
indicate that a particular task remains to be done and is late.

task_created_at | assuch MySQL timestamp of the date on which the row was
created in the database.

task status This indicates whether the task still remains to be done or not.
This is an enum field with the two values: done and todo. If
a task is set to done, then we will use the <strike> HTML
markup to strike through the text; if, however, is it set to todo
(as it is by default), then the task isn't struck through and
remains to be done.

We'll also need to make amends to the config/database.php file, namely setting
the database access details, username password, and so on.

Open the config/database.php file and find the following lines:

Sdb['default'] ['hostname'] = 'localhost';
Sdb['default'] ['username'] = 'your username';
Sdb['default'] ['password'] = 'your password';
Sdb['default'] ['database'] = 'tasksdb';

Edit the values in the preceding lines, ensuring you substitute these values with ones
more specific to your setup and situation; so, enter your username, password, and
SO on.

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Adjusting the config.php file
There are a few things in this file that we'll need to configure to support sessions and
encryption. So, open the config/config.php file and make the following changes:

1.

We will need to set an encryption key —both sessions and Codelgniter's
encryption functionality require an encryption key to be set in the $config
array, so find the following line:

$config['encryption key']l = '';
Replace the preceding line with the following;:

Sconfig['encryption key'l = 'a-random-string-of-alphanum-
characters';

\ Now obviously, don't actually change the preceding value to literally
~ a-random-string-of-alphanum-characters but change it to, er, a random
Q string of alphanum characters instead —if that makes sense? Yeah, you
know what I mean.

2. Find the following lines:

$config['sess cookie name'] = 'ci session';
Sconfig['sess expiration'] = 7200;
Sconfig['sess expire on close'] = FALSE;

Sconfig['sess_encrypt cookie'] = FALSE;
Sconfig['sess use database'] = FALSE;
$config['sess table name'] = 'ci sessions';
Sconfig['sess match ip'] = FALSE;
$config['sess match useragent'] = TRUE;
Sconfig['sess time to update'] = 300;

Replace the preceding line with the following;:

Sconfig['sess_cookie name'] = 'ci session';
Sconfig['sess expiration'] = 7200;
Sconfig['sess_expire on close'] = TRUE;
Sconfig['sess_encrypt cookie'] = TRUE;
Sconfig['sess use database'] = TRUE;
Sconfig['sess_table name'] = 'ci_sessions';

Sconfig['sess match ip'] = TRUE;
Sconfig['sess match useragent'] = TRUE;
Sconfig['sess_time_to_update'] = 300;

[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

Adjusting the routes.php file

We want to redirect the user to the tasks controller rather than the default
Codelgniter welcome controller. To do this, we will need to amend the default
controller settings in the routes. php file:

1. Open the config/routes.php file for editing and find the following lines
(near the bottom of the file):

Sroute['default controller'] = "welcome";
$route['404_override']l = '';

2. First, we need to change the default controller. Initially in a Codelgniter
application, the default controller is set to welcome; however, we don't
need this —instead, we want the default controller to be tasks. So find the
following line:

Sroute['default controller'] = "welcome";

Change it to the following;:

Sroute['default controller'] = "tasks";
Sroute['404 override']l = '';

Creating the model

There is only one model in this project, tasks_model.php, that contains functions
that are specific to searching and writing tasks to the database.

This is our one and only model for this project. Let's briefly go over each function
in it to give us a general idea of what it does, and then we will go into more detail
in the code.

There are five main functions in this model, which are as follows:

* get_tasks (): This serves two functions: firstly, to display all tasks — for
example, when a user first visits the site and when a user enters a new task
in the form.

* change_task_status (): This changes the tasks.task_status value in the
database from either todo or done. A task that is set to done appears struck
through in the list, whereas tasks that are set to todo are not struck through
and are displayed normally; this way, a user can easily work out what is
done and not done.

* save task (): This saves a task to the database when a user submits the form
from point 3 (the Create item) of the site map.

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

* get_task(): This fetches an individual task from the tasks table.

* delete(): This deletes a task from the tasks table.
That was a quick overview, so let's create the model and discuss how it functions.

Create the /path/to/codeigniter/application/models/tasks model.php file
and add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Tasks model extends CI Model {
function _ construct () {
parent:: construct();

}

The get_tasks () function takes no argument. It returns all tasks from the database
and returns it to the tasks controller's index () function. The tasks/view.php view
file will loop over the database result object and display tasks in an HTML table:

function get tasks() ({
Squery = "SELECT * FROM “tasks™ ";

Sresult = $this->db->query($query) ;
if ($result) {
return Sresult;
} else {
return false;
}
}

The change_task_status () function changes the status of a task from either todo
or done.

It takes two arguments: $task_id and $save_data. The $task_idand $save data
values are passed from the tasks controller's status () function.

The value of $task_id is set when the user clicks on either It's Done or Still Todo
in the views/tasks/view.php view file; the fourth parameter of the uri segment of
either option is the primary key (tasks.task_id) of the task in the tasks table and
by using the Codelgniter function $this->uri->segment (4), we grab the value and
store in a $task_id local variable.

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

The $save_data value is populated in the tasks controller. It contains only one item,
task_status, that is populated in the status () function with the third parameter of
the uri segment:

function change task status($task id, $save data) {
$this->db->where('task id', $task id);
if ($this->db->update('tasks', $save data)) {
return true;
} else {
return false;
}
}

The save_task () function accepts one argument—an array of data. This data is
supplied by the tasks controller's index () function. The function will save a task
to the tasks table, returning true if successful and false if an error occurs:

function save task($save data) {
if ($this->db->insert('tasks', $save data)) ({
return true;
} else {
return false;
}
}

The get_task () function takes one argument— $task_id (that is, the primary key of
the task in the database). It is supplied by the tasks controller's delete () function,
which uses it to supply information about the task in the delete confirmation form.

The user clicks on Delete in the views/tasks/view.php file, the third parameter of
which is the task's primary key. The tasks controller's delete () function will then
grab that ID from the URI with the $this->uri->segment (3) Codelgniter function.
This ID is passed to the get_task () model function, which will return the details of
the task in the database or false if no ID was found:

function get task(s$id) {
$this->db->where('task _id', $id);
Sresult = $Sthis->db->get('tasks');
if ($result) {
return Sresult;
} else {
return false;
}
}

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The delete () function performs an operation on the database to remove a task.
It accepts one argument — the ID of the task, which is the primary key of that task:

function delete($id)
$this->db->where('task id', $id);
Sresult = Sthis->db->delete('tasks');
if ($result) {
return true;
} else {
return false;

Creating views

There are three views in this project, which are as follows:

* /path/to/codeigniter/application/views/tasks/view.php: This
displays a list of current tasks to the user as well as a form that allows the
user to create new tasks.

* /path/to/codeigniter/application/views/tasks/delete.php: This
displays a confirmation message to the users, asking them to confirm
whether they really want to delete the task.

* /path/to/codeigniter/application/views/nav/top nav.php: This
displays the top-level menu. In this project, this is very simple; it contains
a project name and link to go to the tasks controller.

These are our three view files. Now let's go over each one, build the code, and
discuss how they function.

Create the /path/to/codeigniter/application/views/tasks/view.php file
and add the following code to it:

<div class="page-header">
<?php echo form open('tasks/index') ; ?>
<div class="row">
<div class="col-1lg-12">
<?php echo validation errors() ; ?>
<div class="input-group">
<input type="text" class="form-control" name="
task_desc" placeholder="<?php echo $this->lang->
line('tasks_add task desc'); ?>">

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

<button class="btn btn-default" type="submit"><?php

echo $this->lang->line('tasks_add task'); ?>
</button>

</div><!-- /input-group -->
</div><!-- /.col-1g-6 -->
</divs<!-- /.row -->

<div class="row">
<div class="form-group">
<div class="col-md-2">

<?php echo form error('task due d'); °?>

<select name="task due d" class="form-control"s>
<option></option>
<?php for ($i = 1; $1i <= 30; Si++) : ?>

<option value="<?php echo $i ; ?>"><?php echo
date('jS', mktime($i,0,0,0, $i, date('Y"))) ;
?></option>
<?php endfor ; ?>
</select>

</div>

<div class="col-md-2">

<?php echo form error('task due m'); ?>

<select name="task due m" class="form-control"s>
<option></option>
<?php for ($i = 1; $1i <= 12; Si++) : ?>

<option value="<?php echo $i ; ?>"><?php echo
date('F', mktime(0,0,0,$i, 1, date('Y'))) ;
?></option>
<?php endfor ; ?>
</select>

</div>

<div class="col-md-2">

<?php echo form error('task due y'); ?>
<select name="task due y" class="form-control"s>
<option></option>
<?php for ($i = date("Y",strtotime(date("Y"))); $i
<= date("Y",strtotime (date("Y").' +5 year'));
Si++) : ?>

<option value="<?php echo $i;?>"><?php echo
$i;?></option>
<?php endfor ; ?>
</select>

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

</div>
</div>
</div>
<?php echo form close() ; ?>
</div>

The preceding block of code is the form that the user can use to create a new task.
Also in this block is the validation error code (validation errors()) where we will
display any errors with the data submitted form the form:

<table class="table table-hover"s>

<?php foreach ($query->result() as Srow) : ?>
<?php if (date("Y-m-d",mktime(0, 0, 0, date('m'), date('d'),
date('y'))) > $row->task due date) {echo ' <tr class="list-
group-item-danger"s>';} ?>
<?php if ($row->task due date == null) {echo ' <tr>';} 2>
<td width="80%"><?php if ($row->task status == 'done') {echo
'<strike>'.$row->task desc.'</strike>' ;} else {echo Srow->

task desc;} 2>

</td>
<td width="10%">
<?php if (Srow->task status == 'todo') {echo anchor ('
tasks/status/done/'.Srow->task _id, 'It\'s Done');} ?>
<?php if (Srow->task status == 'done') {echo anchor ('
tasks/status/todo/'.S$row->task _id, 'Still Todo');} ?>
</td>

<td width="10%"><?php echo anchor ('tasks/delete/'.S$row->
task_id, $this->lang->line

('common_form elements_action delete')) ; ?>
</td>
</tr>
<?php endforeach ; ?>
</table>

The preceding table echoes out any tasks in the database. The actions are also in this
block, that is, the PHP ternary operator that switches the status from It's Done to
Still Todo and the Delete link.

Create the /path/to/codeigniter/application/views/tasks/delete.php file
and add the following code to it:

<h2><?php echo $page heading ; ?></h2>
<p class="lead"><?php echo $this->lang->
line ('delete confirm message');?></p>
<?php echo form open('tasks/delete'); ?>
<?php if (validation errors()) : ?>

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

<h3>Whoops! There was an error:</h3>
<p><?php echo validation errors(); ?></p>
<?php endif; ?>
<?php foreach ($query->result() as Srow) : ?>
<?php echo $row->task desc; ?>

<?php echo form submit ('submit', s$this->lang->
line('common form elements action delete'), 'class="btn
btn-success"'); ?>

or <?php echo anchor('tasks', $this->lang->
line ('common form elements_cancel'));?>
<?php echo form hidden('id', S$row->task id); ?>
<?php endforeach; ?>
<?php echo form close() ; ?>

The preceding block of code contains the form that asks the user to confirm whether
they really wish to delete the task.

Create the /path/to/codeigniter/application/views/nav/top nav.php file and
add the following code to it:

<!-- Fixed navbar -->
<div class="navbar navbar-inverse navbar-fixed-top" role="navigation"s>
<div class="container"s>
<div class="navbar-header">

<button type="button" class="navbar-toggle" data-
toggle="collapse" data-target=".navbar-collapse">

Toggle navigation</spans>

</buttons>
<?php echo anchor ('tasks', S$this->lang->
line('system system name'), 'class="navbar-brand"') ; ?>
</div>

<div class="navbar-collapse collapse">
<ul class="nav navbar-nav navbar-right"s

</div><!--/.nav-collapse -->
</div>
</div>

<div class="container theme-showcase" role="main">

This view is quite basic but still serves an important role. It displays an option to
return to the tasks controller's index () function.

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Creating the controller

We're going to create only one controller in this project, which is /path/to/
codeigniter/application/controllers/tasks.php.

Let's go over that controller now, look at the code, and discuss how it functions.

Create the /path/to/codeigniter/application/controllers/tasks.php file
and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

class Tasks extends MY Controller {

function _ construct () {

parent:: construct();
Sthis->load->helper('string') ;
Sthis->load->helper('text');
S$this->load->model ('Tasks_model') ;
$this->load->library('form validation') ;
Sthis->form validation->set_error_delimiters('<div

class="alert alert-danger">',6 '</divs>"');

}

The index () function performs a couple of tasks: displaying a list of tasks and
handling the form submission (validation, error checking, and so on).

Initially, we set the validation rules for the form, as follows:

public function index() {
Sthis->form validation->set rules('task desc', $this->lang-»>
line ('tasks_task _desc'), 'required|min length([1] |

max_ length[255]"');
Sthis->form validation->set rules('task due d',6 $this->lang-»>
line('task due d'), 'min length[1] |max_length([2]');
Sthis->form validation->set rules('task due m', $this->lang-»>
line('task due m'), 'min length[1] |max_length([2]');
Sthis->form validation->set rules('task due y', $this->lang-»>
line('task due y'), 'min length[4] |max_length([4]');

If there were errors in the form or if it is the first time the page is accessed, then we'll
build the form elements, defining their settings and be ready to draw them in the view:

if ($this->form validation-srun() == FALSE) ({

Spage datal['job title']l = array('name' => 'job title',6 'class'
=> 'form-control', 'id' => 'job title', 'value' => set value
("job_title', ''), 'maxlength' => '100', 'size' => '35');

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

$page datal['task desc'] = array('name' => 'task desc',6 'class'
=> 'form-control', 'id' => 'task desc', 'value' => set value
('task desc', ''), 'maxlength' => '255', 'size' => '35');
Spage data['task due d'] = array('name' => 'task due d', 'class'
=> 'form-control', 'id' => 'task due d', 'value' => set value
('task due d', ''), 'maxlength' => '100', 'size' => '35');
S$page data['task due m'] = array('name' => 'task due m', 'class'
=> 'form-control', 'id' => 'task due m', 'value' => set value
('task due m', ''), 'maxlength' => '100', 'size' => '35');
S$page datal['task due y'] = array('name' => 'task due y', 'class'
=> 'form-control', 'id' => 'task due y', 'value' => set value
('task due y', ''), 'maxlength' => '100', 'size' => '35');

Next, we'll fetch all tasks in the database and store them in the $page datal['query']
array. We will send this array to the tasks/view.php file where it will be looped over
using foreach ($query->result as $row) —where each task will be written outin a
table along with the It's Done, Still Todo, and Delete options:

$page datal'query'] = $this->Tasks model->get tasks();

Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
$this->load->view('tasks/view', S$page data);
Sthis->load->view ('common/footer') ;

} else {

If there were no errors with the form, then we try to create the task in the database.
First, we look to see whether the user has tried to set a due date for the task. We do
this by looking for the date fields in the post array.

We require all three (day, month, and year) items to create a due date, so we check

to see whether all three have been set. If all three are set, then we build a string that
will be the date. This is saved in the $task due date variable. If all three date items
haven't been set (perhaps only two were), then we just set the $task_due_date value
to null:

if ($this->input->post('task due y') && $this->input->

post ('task due m') && $this-s>input-spost('task due d')) {
Stask due date = $this->input->post('task due y') .'-'. $this->
input->post('task due m') .'-'. $this->input-»>
post ('task due d');
} else {

$task due date = null;

}

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We then create an array to pass to the save_task () function of Tasks_model. The
$save_data array contains the task description, any date that might have been applied
(or null value), and a default value for task_status; this is initially set to todo:

$save_data = array(

'task desc' => $this->input->post('task _desc'),
'task due date' => $task due date,
'task status' => 'todo'

) ;

The $save_data array is then sent to the save_task () function of Tasks_model.
This function will return true if the save operation was successful or false if there
was an error. Whatever the outcome, we'll set a message using the sthis->session-
>set_flashdata () Codelgniter function with a success message or an error message
(the content for these messages is in the language file) and redirect to the tasks
controller's index () function, which will display all tasks (and hopefully, the one
just created) to the user:

if ($this->Tasks model->save task($save data)) {
$this->session->set flashdata('flash message', $this->lang->
line('create success_okay'));
} else {

$this->session->set flashdata('flash message', $this->lang->
line('create success_fail'));
}

redirect ('tasks');
!
!

The status () function is used to change a task status from done to todo. If you
hover over either the It's Done or Still Todo links, you'll see the URI. The format will
look something like http://www.domain.com/tasks/status/todo/1 (if the task is
set to done in the database) or http://www.domain.com/tasks/status/done/1 (if
the task is set to todo in the database). The third parameter is always the opposite

to whatever is the current status of the task, so if a task is set to done, the URI will
display todo, and if it is set to todo, the URI will display done.

The fourth parameter is the primary key (in the preceding example, this is 1).

When the user clicks on either It's Done or Still Todo, the status () function
grabs the third and fourth parameters and sends them to the status () function
of Tasks _model:

public function status() {
Spage _datal['task status'] = $this->uri->segment (3);
Stask id = $this->uri->segment (4) ;

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

We take the third and fourth parameters and send them to the change task_
status () function of Tasks model. The change task status () function will
return true if the update was successful or false if there was an error. We set a
message to the user using the $this->session->set_flashdata () Codelgniter
function and redirect to the tasks controller's index () function:

if ($this->Tasks model->change task status(sStask id,
$page data)) {

Sthis->session->set flashdata('flash message', $this->lang-»>
line('status_change success'));
} else {
Sthis->session->set flashdata('flash message', $this->lang-»>

line('status_change fail'));
}

redirect ('tasks');

}

The delete () function does two things. It displays information about the task to the
user so that they are able to decide whether they really want to delete the task, and
it also processes the deletion of that task should it be confirmed by the user. First off,
we set the validation rules for the form. This is the form that the user uses to confirm
the deletion:

public function delete() {
$this->form validation->set rules('id', $this->lang->
line('task id'), 'required|min_length[1l] |max_length[11] |
integer|is natural');

Because the function can be accessed by the user by clicking on Delete or submitting
the form, the task ID can be supplied either from the URI (in the case of Delete) or in
a hidden form element in the form. So, we check whether the form is being posted or
accessed for the first time and grab the ID from either post or get:

if ($this-sinput-spost())

$id = $this->input->post('id');
} else {

$id = Sthis->uri->segment (3) ;

}

$data['page heading'] = 'Confirm delete?';
if ($this->form validation->run() == FALSE) ({

We then send the ID to the get_task () function of Tasks model, which will return
the details of the task as a database object. This is saved in $data['query'] and sent
to the tasks/delete.php view file, where the user is asked to confirm whether they
wish to really delete the task:

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

$datal'query'] = s$this->Tasks model->get task($id);
Sthis->load->view ('common/header', $data) ;
$this->load->view('nav/top nav', s$data);
$this->load->view('tasks/delete', $data);
Sthis->load->view ('common/footer', $data) ;

} else {

If there were no errors with the form submission, then we call the delete () function
of Tasks model so that the task is deleted:

if ($this->Tasks model->delete($id)) ({
redirect ('tasks') ;

Creating the language file

As with all the projects in this book, we're making use of the language file to serve
text to users. This way, you can enable multiple region/multiple language support.
Let's create the language file.

Create the /path/to/codeigniter/application/language/english/en admin_
lang.php file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

// General

$lang['system system name'] = "Todo";

// Tasks - view.php

$lang['tasks add task']l = "Add";
$lang['tasks_add task desc'] = "What have you got to do?";
$lang['tasks task desc'] = "Task Description";
$lang['tasks_set_done'] = "Mark as done";
$lang['tasks_set_todo'] = "Mark as todo";
$lang['task due d'] = "Due Day";
$lang['task due m'] = "Due Month";
$lang['task due y'] = "Due Year";
$lang['status_change success'] = "Task updated";
$lang['status_change fail'] = "Task not updated";
[261]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

Putting it all together

Okay, here are a few examples that will help put everything together.

User adds a task

The sequence of events in order to add a task is as follows:

1.
2.

The user visits the site and Codelgniter routes them to the tasks controller.

The tasks controller loads (by default) the index () function. The index ()
function checks whether the form validation is false:

if ($this->form validation-s>run() == FALSE) ({

As this is the first load and the form has not been submitted, it will equal
false. The index () function then defines the settings for the task_desc text
field, calls the get tasks () function of Tasks_model (which returns all tasks
from the database), and then loads the view files, passing the database object
to the views/tasks/view.php file.

The user enters the Chase meeting room booking string, selects a date
three days into the future, and clicks on Add to submit the form.

The form is submitted and index () validates the task desc form elements
and the three date dropdowns' values. The validation is now passed.

The three date fields are strung together to form a date string to be entered
into the database and saved as $task_due date:

Stask due date = $this->input-s>post('task due y') .'-'. $this-
>input->post ('task due m') .'-'. $this->input->
post ('task due d');

These $task_due_date and task_desc values are saved to an array called
$save_data. Also saved is a default value for the task status field in the
tasks table. This value is set to todo.

After a successful save operation to the database. the user is redirected to
index (), where their new task is displayed.

[262]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

User changes the task status

The events performed while a user changes the task status are as follows:

1.
2.

10.

The user visits the site and Codelgniter routes them to the tasks controller.

The tasks controller loads (by default) the index () function. The index ()
function checks whether the form validation is false:

if ($this->form validation-srun() == FALSE) ({

As this is the first load and the form has not been submitted, it will equal
false. The index () function then defines the settings for the task desc text
field, calls the get_tasks () function of Tasks_model (which returns all tasks
from the database), and then loads the view files, passing the database object
to the views/tasks/view.php file.

The user sees the task "Chase meeting room booking" and (knowing that this
task is done) clicks on It's Done.

Codelgniter loads the status () task function.

The status () function takes the third (todo or done) and fourth (the task's
primary key) parameters of the URI and sets them to the $page_datal"
task_status'] and $task_id local variables.

These two variables are sent to the change task_status () function of
Tasks_model.

The change task status () function takes the $task id value and the new
status and performs an Active Record update on this task, returning true or
false values if successful or if an error occurred.

The status () function looks at the return value and sets a session flash
message accordingly: a success message if successful and an error if not.

The user is then redirected to index (), where they can see the updated
task status.

[263]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a To-do List

Summary

So. this is a fairly small application — perhaps one of the smallest in the book —but it's
by no means not useful. You can use this to-do list as a really easy way to manage any
tasks you might have on your plate; however, there's always room for improvement.
There are a few things that you can do to add greater functionalities to the project, and
these might include the following;:

Adding a sorting feature: You could add sorting functions to only display
late (overdue), done, or still-to-do tasks.

Adding a category: You could add a dropdown to the form that creates

the tasks. This dropdown could (for example) have the colors Red, Green,
Blue, Yellow, Orange, and so on. A task can be assigned a color and this
color could be displayed in the table that displays each task. You could use
the Bootstrap label markup; for example, the span warning label (Warning)would give you a great
block of color —change the word warning, though!

Adding progress and progress bar: You could add an HTML dropdown with
set percentage values: 25 percent, 50 percent 75 percent, 100 percent, and so
on, which allow you to define how much of the task has been completed.

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

There are some quite complex job boards out there and some that are woefully
designed. There are some that I can think of that simply don't work as you would
think they should and some that don't function properly at all. I'm sure they all have
a heap of VC funding and probably turn some sort of profit, so it is beyond me why
they don't manage to get it together and make something that actually works; the
thing is that it's not actually that difficult a thing to do.

The job board in this project is small and concise, but there is scope to expand
upon — if you skip ahead to the Summary section, you'll see some things you can
add to make it more feature-rich, but I'm sure you have your own.

In this chapter, we will cover the following topics:

* Design and wireframes
* Creating the database

* Creating the model

* Creating views

* Creating the controller

* Putting it all together

Introduction

So what are we going to do for this project anyway? We'll create an application
that allows users to create job adverts that will be displayed on a "board". Users
can search for specific terms and some results will be returned.

Other users can create adverts that will be displayed in these boards.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

To create this app, we will create one controller; this will handle the display of jobs,
creation of new jobs, and applying for jobs.

We'll create a language file to store text, allowing you to have multiple language
support should that be required.

We'll create all the necessary view files and a model to interface with the database.

However, this app along with all the others in this book relies on the basic setup we
did in Chapter 1, Introduction and Shared Project Resources; although you can take large
sections of the code and drop it into pretty much any app you might already have,
please keep in mind that the setup done in the first chapter acts as a foundation for
this chapter.

So without further ado, let's get on with it.

Design and wireframes

As always, before we start building, we should take a look at what we plan to build.

Firstly, a brief description of our intent: we plan to build an app that will allow
people to browse job adverts in the form of a job board.

People will be able to create job adverts that will appear on search listings. Others
will be allowed to apply for these advertised jobs, and applications are sent in an
e-mail to the advertiser with details of the job and applicant.

Anyway, to get a better idea of what's happening, let's take a look at the following
site map:

@ ©

Jobs/Search Create

2

Detail/Apply

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

So that was the site map; the first thing to notice is how simple the site is. There are
only three main areas to this project. Let's go over each item and get a brief idea of
what it does:

* Jobs/Search: Imagine this as the start point. The user is presented with a list
of active jobs available on the site. The user is able to view the job details
and apply (taking them to point 2 of the site map), or click on Create on the
navigation bar and go to point 3 (the Create item) of the site map.

* Detail/Apply: The user is presented with the details of the job advertised,
such as the start date, location and the job description, and advertiser's
contact details. There is also a form below the job details that allows a user
to apply for the job. Details of the application are sent in an e-mail to the job
advertiser (jobs.job_advertiser_email).

* Create: This will display a form to the user, allowing them to create a job
advert. Once that advert is created, it will be displayed in search listings.

Now that we have a fairly good idea of the structure and form of the site, let's take a
look at some wireframes of each page.

Job/Search

The following screenshot shows you a wireframe from point 1 (the Create item)
in the site map. Initially, the user is shown a list of current jobs. The job title and
description are shown. The description is kept at a set length — that of the first 50
words of a job description. They are able to click on the job title or an Apply link
to go to point 2 (the Detail / Apply item) of the site map.

Web Applications Blueprints

<:| |:> X {} |http://www.domaincom/ | (Q)
Job Board Create
‘Search H Search ‘

Job Title Created Date

Job Description Rate Apply

Job Title Created Date

Job Description Rate Apply

Job Title Created Date

Job Description Rate Apply

Job Title Created Date

Job Description Rate Apply

Job Title Created Date

Job Description Rate Apply

Job Title Created Date

Job Description Rate Apply

74

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

Detail/Apply

The following screenshot shows you a wireframe from point 2 (the Detail/ Apply
item) in the site map. The user views the detailed description of the job advertised
and a form that enables the user to enter their details and send off an application for
the job —the details of this application are e-mailed to the job advertiser.

Web Applications Blueprints

<:| |:> X {} [nttp://www.domain.comy | (Q)

Job Board Create

Codelgniter Developer
Posted by Lucy Welsh on 2015-09-17

Start Date 2015-10-01
Location London
Type Contract

This is the job description. This is the job description. This is the job

description. This is the job description. This is the job description. This is the

job description. This is the job description. This is the job description. This is
the job description. This is the job description. This is the job description.
This is the job description. This is the job description. This is the job

Fill out the form below to apply for Codelgniter Developer

Your name

l |

Your email

l |

Your phone number

l |

Covernote

or Cancel

/

Create

The following screenshot shows you a wireframe from point 3 (the Create item)
of the site map. Any user can post a job advert. This displays a form to the user,
allowing them to enter the details of their job advert and save it to the database.

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Web Applications Blueprints

<:] E> X {} Ihttp://www.domain.com/ I ‘O\)

Job Board Create

Enter the information about your job advert below...
Job Title

Description

Job Type
[Full Time [v]

Category
[IT-computing [v]

Location
[London [v]

Start date
[18 [w] [April [w] [2015 [v]

Rate

[

Sunset date
[01 [w] [May [w] [2015 [v]
Your name

Your email

Your phone

l l
or Cancel

/

File overview

This is a relatively small project, and all-in-all, we're only going to create seven files;
these are as follows:

* /path/to/codeigniter/application/models/jobs model.php: This
provides read/write access to the jobs database table.

* /path/to/codeigniter/application/views/jobs/apply.php: This
provides us an interface that allows the user to view a job advert's details
and also a form that allows any user to apply for a job.

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

/path/to/codeigniter/application/views/jobs/create.php: This
displays a form to the user, allowing the user to create a job advert.

/path/to/codeigniter/application/views/jobs/view.php: This is the
view for the jobs controller's index () function. It displays the search form
and lists any results.

/path/to/codeigniter/application/views/nav/top nav.php:
This provides a navigation bar at the top of the page.

/path/to/codeigniter/application/controllers/jobs.php:
This contains three main functions: index (), apply () and create ().

/path/to/codeigniter/application/language/english/en admin
lang.php: This provides language support for the application.

The file structure of the preceding seven files is as follows:

application/

— controllers/

| }— jobs.php

— models/

| — jobs_model.php
— views/create/

| — create.php

| F— apply.php

| — view.php

— views/nav/

| — top nav.php
— language/english/
| — en admin lang.php

Creating the database

Okay, you should have already set up Codelgniter and Bootstrap as described in
Chapter 1, Introduction and Shared Project Resources; if not, then you should know that
the code in this chapter is specifically built with the setup from Chapter 1, Introduction
and Shared Project Resources, in mind. However, it's not the end of the world if you
haven't —the code can easily be applied to other situations.

First, we'll build the database. Copy the following MySQL code to your database:
CREATE DATABASE ~jobboarddb™;

USE ~jobboarddb™;

DROP TABLE IF EXISTS “categories”;
CREATE TABLE “categories™ (

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

“cat_id® int(11) NOT NULL AUTO INCREMENT,
“cat _name” varchar (25) NOT NULL,
PRIMARY KEY (“cat_id")
) ENGINE=InnoDB AUTO_ INCREMENT=5 DEFAULT CHARSET=utf8;

INSERT INTO ~categories™ VALUES (1,'IT'), (2, 'Legal'), (3, 'Management'),
(4, 'Purchasing') ;

DROP TABLE IF EXISTS “ci sessions™;

CREATE TABLE “ci sessions™ (
“session id® varchar(40) COLLATE utf8 bin NOT NULL DEFAULT '0',
“ip address® varchar(l16) COLLATE utf8 bin NOT NULL DEFAULT '0',
“user agent” varchar(120) COLLATE utf8 bin DEFAULT NULL,
“last_activity®™ int(10) unsigned NOT NULL DEFAULT '0',
“user data” text COLLATE utf8 bin NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8 bin;

DROP TABLE IF EXISTS ~jobs™;

CREATE TABLE ~jobs™ (
“job_id® int(11) NOT NULL AUTO INCREMENT,
“job_title” varchar(50) NOT NULL,
“job_desc™ text NOT NULL,
“cat_id® int(11) NOT NULL,
“type id® int(11) NOT NULL,
“loc_id® int(11) NOT NULL,
“job_start date” datetime NOT NULL,
“job_rate® int (5) NOT NULL,
“job_advertiser name~ varchar (50) NOT NULL,
“job_advertiser email” varchar(50) NOT NULL,
“job_advertiser phone” varchar(20) NOT NULL,
“job_sunset date® datetime NOT NULL,
“job _created at” timestamp NULL DEFAULT CURRENT TIMESTAMP,
PRIMARY KEY (~job_id")

) ENGINE=InnoDB AUTO_ INCREMENT=4 DEFAULT CHARSET=utf8;

INSERT INTO ~“jobs~ VALUES (1, 'PHP Developer', 'PHP Developer
required for a large agency based in London. Must have MVC
experience\n',l,l,l,'2014—09—24 00:00:00',400, 'Rob Foster',
'rob@bluesuncreative.com', '01234123456','2015-09-26 00:00:00"',
'2014-09-17 09:00:18"'), (2, 'CodeIgniter Developer', 'Small London
agency urgently requires a CodelIgniter developer to work on
small eCommerce project.',1,1,1,'0000-00-00 00:00:00",

350, 'Lucy', 'lucy@londonagencycomain.com', '01234123456', '2015-09-
26 00:00:00','2014-09-17 11:22:19'"), (3, 'Flash Developer', 'Paris
based agency requires Flash Developer to work on new built

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

project',1,1,2,'0000-00-00 00:00:00"',
350, 'Brian', 'brian@frenchdesignagenct.fr', '01234123456"', '2015-
09-26 00:00:00','2014-09-17 11:23:39");

DROP TABLE IF EXISTS ~locations™;

CREATE TABLE “locations™ (
“loc_id® int(11) NOT NULL AUTO INCREMENT,
“loc_name” varchar (25) NOT NULL,
PRIMARY KEY (“loc_id")
) ENGINE=InnoDB AUTO_ INCREMENT=5 DEFAULT CHARSET=utf8;

INSERT INTO ~locations™ VALUES (1, 'England'), (2, 'France'), (3, 'Germany'
), (4, 'Spain') ;

DROP TABLE IF EXISTS “types’;
CREATE TABLE “types™ (
“type id® int(11) NOT NULL AUTO INCREMENT,
“type name” varchar(25) NOT NULL,
PRIMARY KEY (“type id")
) ENGINE=InnoDB AUTO_ INCREMENT=4 DEFAULT CHARSET=utf8;

INSERT INTO “types~ VALUES (1, 'Contract'), (2,'Full Time'), (3, 'Part
Time') ;

M Now, take a look at that last bit of SQL code, it's quite big and fiddly.
Q Don't panic, all SQL code is available online from this book's support
page on the Packt website.

You'll see that the first table we create is ci_sessions. We need this to allow
Codelgniter to manage sessions, specifically, logged-in users. However, this is just
the standard session table available from Codelgniter User Guide, so I'll not include a
description of that table as it's not technically specific to this application. However,
if you're interested, there's a description at http://ellislab.com/codeigniter/
user-guide/libraries/sessions.html.

Right, let's take a look at each item in each table, and see what it means. First, we will
take a look at the categories table:

Table: categories

Element Description

cat_id This is the primary key.

cat name This stores the name of the category.
[272]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Next up, we will see the types table:

Table: types

Element Description

type id This is the primary key.

type name This stores the name of the type.

Now, let's see the 1ocations table:

Table: locations

Element Description
loc id This is the primary key.
loc_name This stores the name of the location.

Finally, we will see the jobs table:

Table: jobs

Element Description

job_id This is the primary key.

job_title This is the title of the position advertised.

job_desc This is the general job specification for the position
advertised.

cat_id This is foreign key from the categories table,
indicating the category of the position —IT, Management,
Manufacturing, Health Care, and so on

type_id This is the foreign key from the types table, indicating the
type of the position—full time, part time, contract, and so
on

loc_id

This is the foreign key from the locations table,
indicating the location that the position is to be based in.

job_start date

This is the starting date of the position advertised.

job rate

This is the money offered (remuneration) —salary, day rate,
and so on.

job_advertiser name

This is the name of the person advertising the position
so that the applicant knows who to contact to chase their
application.

job_advertiser email

This is the contact e-mail of the person who is advertising
the position. It is to this e-mail address that an application
is sent. The application is sent when a user fills in and
submits the form in views/jobs/apply.php.

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

Table: jobs

Element Description

job_advertiser_phone | This is the phone number of the person advertising the

position. This is included if the applicant wishes to call the
job advertiser.

job_sunset_date This is the date at which the job will no longer be displayed

in searches. This is required as jobs will not be advertised
forever and applying a date that limits the time jobs can
be applied for prevents people from applying for jobs that
have either been filled or no longer exist.

job_created_at This is the MySQL timestamp that's applied when a new

record is added to the database.

We'll also need to make amends to the config/database.php file, namely setting
the database access details, username password and so on.

Open the config/database.php file and find the following lines:

Sdb['default'] ['hostname'] = 'localhost';
Sdb['default'] ['username'] = 'your username';

Sdb['default'] ['password']

'your password';

Sdb['default'] ['database'] = 'jobboarddb';

Edit the values in the preceding lines, ensuring you substitute these values with
ones more specific to your setup and situation; so, enter your username, password,
and so on.

Adjusting the config.php file
There are a few things in this file that we'll need to configure to support sessions and
encryption. So, open the config/config.php file and make the following changes.

1.

We will need to set an encryption key; both sessions and Codelgniter's
encryption functionality require an encryption key to be set in the $config
array, so find the following line:

Sconfig['encryption key']l = ;
Change it to the following;:

Sconfig['encryption key']l = 'a-random-string-of-alphanum-
characters';

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Now obviously, don't actually change this value to literally
~ a-random-string-of-alphanum-characters but change it to, er, a

Q random string of alphanum characters instead —if that makes sense?
Yeah, you know what I mean.

2. Find these lines:

Sconfig['sess cookie name'] = 'ci session';
Sconfig['sess expiration'] = 7200;
Sconfig['sess expire on close'] = FALSE;

Sconfig['sess encrypt cookie'l] = FALSE;
Sconfig['sess use database'] = FALSE;
Sconfig['sess table name'] = 'ci sessions';
Sconfig['sess match ip'] = FALSE;
Sconfig['sess match useragent'] = TRUE;
Sconfig['sess time to update'] = 300;

Change them to the following:

Sconfig['sess_cookie name'] = 'ci_session';
Sconfig['sess_expiration'] = 7200;
Sconfig['sess_expire on close'] = TRUE;
Sconfig['sess_encrypt cookie'] = TRUE;
Sconfig['sess_use database'] = TRUE;
$config['sess_table name'] = 'ci_ sessions';
Sconfig['sess match ip'] = TRUE;
Sconfig['sess_match useragent'] = TRUE;

Sconfig['sess_time to update'] = 300;

Adjusting the routes.php file

We want to redirect the user to the jobs controller rather than the default
Codelgniter welcome controller. To do this, we will need to amend the default
controller setting in the routes.php file:

1. Open the config/routes.php file for editing and find the following lines
(near the bottom of the file):

Sroute['default controller'] = "welcome";
Sroute['404 override']l = '';

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

2. First, we need to change the default controller. Initially in a Codelgniter
application, the default controller is set to welcome; however, we don't
need this —instead, we want the default controller to be jobs. So, find the
following line:

$route['default controller'] = "welcome";

Replace it with the following:

Sroute['default controller'] = "jobs";
Sroute['404 override']l = '';

Creating the model

There is only one model in this project—jobs_model.php— that contains functions
that are specific to searching and writing job adverts to the database.

This is our one and only model for this project, so let's create the model and discuss
how it functions.

Create the /path/to/codeigniter/application/models/jobs model.php file and
add the following code to it:

<?php if (! defined('BASEPATH')) exit('No direct script access
allowed') ;

class Jobs model extends CI Model
function _ construct () {
parent:: construct();

}

function get jobs ($search string) {

if ($search string == null) {
Squery = "SELECT * FROM ~jobs~ WHERE DATE (NOW()) <
DATE (T job_sunset date™) ";
} else {
Squery = "SELECT * FROM ~“jobs”™ WHERE “job title™ LIKE

'%$$search string%'
OR “job_desc™ LIKE '$%$search string%' AND
DATE (NOW()) < DATE(job_ sunset date™)";

Sresult = Sthis->db->query(Squery) ;
if ($result)

return Sresult;
} else {

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

return false;

function get job($job_id) {

Squery = "SELECT * FROM ~jobs”~, “categories™, “types”,
“locations™ WHERE
“categories®. cat _id® = “jobs~. cat id~ AND

“types”T. type i1dT = “jobs™. type id® AND
“locations™. loc_id™ = “jobs™. loc_id® AND
“job _id~ = ? AND

DATE (NOW()) < DATE(job_ sunset date™) ";

$result = $this->db->query($query, array($job id));
if ($result)

return Sresult;
} else {

return flase;

function save job($save data) {
if ($this->db->insert('jobs', $save data)) {
return S$this->db->insert id();
} else {
return false;

function get categories() {
return $this->db->get ('categories');

function get types() ({
return $this->db->get ('types');

function get locations() {
return $this->db->get ('locations') ;

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

There are six main functions in this model, which are as follows:

* get_jobs (): This serves two functions: firstly, displaying all jobs — for
example, when a user first visits the site —and secondly, when a user enters a
search term, the query is then changed to look for the specific search term in
job_title and job desc.

* get_job(): This fetches the details of a specific job advert for point 2
(the Details/ Apply item) of the site map.

* save_job (): This saves a job advert to the database when a user submits the
form from point 3 (the Create item) of the site map.

* get_categories (): This fetches categories from the categories table. It is
used to populate the categories dropdown for the create process.

* get_types (): This fetches types from the types table. It is used to populate
the types dropdown for the create process.

* get locations (): This fetches locations from the 1ocations table. It is used
to populate the locations dropdown for the create process.

Taking the get_jobs () function first, as mentioned, this function has two purposes:

* To return all results, that is, to list all jobs

* To return results (jobs) that match a user's search

When a user visits the site, they are routed to jobs/index. This will cause the get
jobs () model function to search the database. On this initial visit, the $search
string variable will be empty (as the user isn't searching for anything). This will
cause the first part of the if statement to be run, basically returning every valid job.

However, if the user is searching for something, then the $search_string variable
will not be empty; it will contain the search term the user entered in the views/
jobs/view.php form.

This will cause the second part of the if statement to run, adding $search_term to
the database query:

function get jobs($search string) ({

if ($search string == null) {
Squery = "SELECT * FROM ~jobs~ WHERE DATE (NOW()) <
DATE (T job_sunset date™) ";
} else {
$query = "SELECT * FROM ~“jobs”™ WHERE “job title™ LIKE

'%$$search string%'
OR “job_desc™ LIKE '$%$search string%' AND
DATE (NOW()) < DATE(job_ sunset date™)";

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Sresult = S$this->db->query($query) ;
if ($result)

return S$result;
} else {

return false;

}
}

Both queries will only return results whose sunset date has not passed. The
jobboarddb.job_sunset_date field contains a date on which the job advert
will stop being displayed in search terms.

Next, we'll look at the get_job () function. This function is passed the $job_id
value from the jobs controller. The jobs controller gets the ID of the job advert from
$this->uri->segment (3) when the user clicks on the Apply link in views/jobs/
view.php.

The get_job () function simply returns all the data for point 2 (the Details/ Apply
item) of the site map.

It joins the categories, types, and locations tables to the jobs table in order to
ensure that the correct category, type, and location is displayed in the views/jobs/
apply.php view along with the specific job advert details.

We then move down to the save_job () function. This accepts an array of data from
the jobs controller. The jobs controller's create () function sends the $save data
array to the save_job () model function. The $save_data array contains the input
from the form in the views/jobs/create.php view file.

On a successful save, the primary key of the insert is returned.

Now we will cover the three functions— categories (), get types () and
get_locations () —at the same time (as they do pretty similar things). These three
functions fetch all categories, types, and locations from their respective tables. These
functions are called by the jobs controller's create () function to ensure that the
dropdowns are populated with the correct data.

Creating views

There are four views in this project, and these are as follows:

* /path/to/codeigniter/application/views/jobs/view.php:
This displays a list of current jobs to the user.

e /path/to/codeigniter/application/views/jobs/create.php: This view
allows the job advertiser to enter the job advert details. The form submits to
the jobs controller's create () function.

[279]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

* /path/to/codeigniter/application/views/jobs/apply.php: This
displays a form to the user allowing them to enter information to apply
for the job. It also displays validation errors.

* /path/to/codeigniter/application/views/nav/top nav.php: This
displays the top-level menu. In this project, this is very simple as it contains
a project name and link to go to the jobs controller.

These are our four view files. Now, let's go over each one, build the code, and discuss
how it functions.

Create the /path/to/codeigniter/application/views/jobs/view.php file and
add the following code to it:

<div class="page-header">
<hls>
<?php echo form open('jobs/index') ; ?>
<div class="row">
<div class="col-1lg-12">
<div class="input-group">
<input type="text" class="form-control" name="
search _string" placeholder="<?php echo $this->lang->
line('jobs _view search'); ?>">

<button class="btn btn-default" type="submit"><?php
echo $this->lang->line('jobs_view_search') ;
?></buttons>

</div><!-- /input-group -->
</divs><!-- /.col-1g-6 -->
</div><!-- /.row -->
<?php echo form close() ; ?>
</hls>

</div>

<table class="table table-hover"s>

<?php foreach ($query-s>result() as $row) : ?>
<tr>
<td><?php echo anchor ('jobs/apply/'.S$row->job id, S$row->
job_title) ; ?>
<?php echo word limiter ($row->job desc,
50) ; ?>
</td>

<td>Posten on <?php echo Srow->job created at ; ?>
Rate
is £<?php echo $row->job rate ; ?>
</td>

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<td><?php echo anchor ('jobs/apply/'.S$row->job id, $this-»>

lang->line('jobs view apply')) ; 2>
</td>
</tr>
<?php endforeach ; ?>
</table>

This view serves two functions:

* To display a simple search form at the top of the page. This is where a user
can search for jobs that match a search term.

* To display a list of jobs in an HTML table. These are the current active jobs
in the database. A job is considered active if the job's sunset date (jobs.job_
sunset_date) has not passed.

The search form is submitted to the jobs controller's index () function—this
controller function will pass the search term to the get _jobs ($search term)
function of Jobs_model. It will be added to the database query; this query will
look in jobs.job title and jobs.job desc for text that matches the term.

Create the /path/to/codeigniter/application/views/jobs/create.php file
and add the following code to it:

<?php if (Sthis->session->flashdata('flash message')) : ?>
<div class="alert alert-info" role="alert"><?php echo $this->
session->flashdata('flash message');?></div>

<?php endif ; ?>

<p class="lead"><?php echo $this->lang->line

('job_create form instruction 1');?></p>

<div class="span8">

<?php echo form open('jobs/create', 'role="form" class="form"')
?>

<div class="form-group"s>
<?php echo form error('job title'); ?>
<label for="job title"><?php echo $this->lang->
line('job title');?></label>
<?php echo form input ($job title); ?>
</div>

<div class="form-group">
<?php echo form error('job desc'); ?>
<label for="job desc"><?php echo $this->lang->
line ('job_desc') ;?></label>
<?php echo form textarea($job desc); ?>
</div>

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

The type dropdown is populated by the get_types () function in Jobs_model.
It returns a result object that we loop over, allowing the user to select the type:

<div class="form-group"s>
<?php echo form error('type id'); ?>
<label for="type id"><?php echo $this->lang->
line('type') ;?></label>
<select name="type id" class="form-control"s

<?php foreach (S$types->result() as $row) : ?>
<option value="<?php echo $row->type id ; ?>"><?php echo $row-
>type name ; ?></options B
<?php endforeach ; ?>
</select>

</div>

The category dropdown is populated by the get_categories () function in
Jobs_model. It returns a result object that we loop over, allowing the user to
select the category:

<div class="form-group">
<?php echo form error('cat _id'); 2>
<label for="cat id"><?php echo $this->lang->
line('cat') ;?></label>
<select name="cat_ id" class="form-control">
<?php foreach ($Scategories->result() as Srow) : ?>
<option value="<?php echo $row->cat_id ; ?>"><?php echo $row->
cat _name ; ?></options>
<?php endforeach ; ?>
</select>
</divs>

The location dropdown is populated by the get_locations () function in
Jobs_model. It returns a result object that we loop over, allowing the user to
select the location:

<div class="form-group"s>
<?php echo form error('loc_id'); ?>
<label for="loc id"><?php echo $this->lang->
line('loc') ;?></label>

<select name="loc_ id" class="form-control">

<?php foreach ($locations->result() as Srow) : ?>
<option value="<?php echo $row->loc_id ; ?>"><?php echo
S$row->loc_name ; ?></optionx>
<?php endforeach ; ?>
</select>
</div>
[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<label for="sunset d"><?php echo $this->lang->line
('job_start date') ;?></label>
<div class="row">
<div class="form-group">
<div class="col-md-2">
<?php echo form error('startd'); °?>
<select name="startd" class="form-control"s>
<?php for ($i = 1; $i <= 30; $i++) : ?>
<?php if (date('j', time()) == $i) : ?>
<option selected value="<?php echo $i ; ?>"><?php
echo date('jS', mktime($i,0,0,0, $i, date('Y'))) ;
?></option>
<?php else : ?>

<option value="<?php echo $i ; ?>"><?php echo date
('jS', mktime($i,0,0,0, $i, date('Y'))) ; 2>
</options>

<?php endif ; ?>
<?php endfor ; °?>
</select>
</div>

<div class="col-md-2">
<?php echo form error('startm'); °?>
<select name="startm" class="form-control"s>
<?php for ($i = 1; $1i <= 12; $i++) : ?>
<?php if (date('m', time()) == $i) : ?>
<option selected value="<?php echo $i ; ?>"><?php
echo date('F', mktime(0,0,0,%$1, 1, date('Y"))) ;
?></option>
<?php else : ?>

<option value="<?php echo $i ; ?>"><?php echo date
('"F', mktime(0,0,0,$1i, 1, date('Y"))) ; ?>
</options>

<?php endif ; ?>
<?php endfor ; °?>
</select>
</div>

<div class="col-md-2">

<?php echo form error('starty'); ?>

<select name="starty" class="form-control"s>

<?php for ($i = date("Y",strtotime(date("Y"))); $i <=
date ("Y",strtotime (date("Y").' +3 year')); S$i++) : ?>

<option value="<?php echo $i;?>"><?php echo $i;?>
</options>

[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

<?php endfor ; ?>
</select>
</div>
</div>
</div>

<div class="form-group">
<?php echo form error('job rate'); ?>
<label for="job rate"><?php echo $this->lang->line
('job_rate') ;?></labels>
<?php echo form input ($job rate); ?>
</div>

<div class="form-group"s>

<?php echo form error('job advertiser name'); ?>
<label for="job advertiser name"><?php echo $this->lang->
line ('job advertiser name');?></label>
<?php echo form input ($job advertiser name); ?>
</div>

<div class="form-group">

<?php echo form error('job advertiser email'); ?>
<label for="job advertiser email"><?php echo $this->lang->
line ('job_advertiser email');?></labels>
<?php echo form input ($job advertiser email); ?>
</div>

<div class="form-group"s>

<?php echo form error('job advertiser phone'); ?>
<label for="job advertiser phone"><?php echo $this->lang->
line ('job_advertiser phone');?></label>
<?php echo form input ($job advertiser phone); ?>
</div>

<label for="sunset d"><?php echo $this->lang->line
('job_sunset date') ;?></label>
<div class="row">
<div class="form-group">
<div class="col-md-2">
<?php echo form error('sunset d'); °?>
<select name="sunset d" class="form-control">
<?php for ($i = 1; $i <= 30; $i++) : ?>
<?php if (date('j', time()) == $i) : ?>

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<option selected value="<?php echo $i ; ?>"><?php
echo date('jS', mktime($i,0,0,0, $i, date('Y'))) ;
?></option>
<?php else : ?>

<option value="<?php echo $i ; ?>"><?php echo date
('jS', mktime($i,0,0,0, $i, date('Y'))) ; 2>
</options>

<?php endif ; ?>
<?php endfor ; °?>
</select>
</div>

<div class="col-md-2">

<?php echo form error('sunset m'); ?>
<select name="sunset m" class="form-control">
<?php for ($i = 1; $i <= 12; $i++) : ?>
<?php if (date('m', time()) == $i) : ?>
<option selected value="<?php echo $i ; ?>"><?php

echo date('F', mktime(0,0,0,$i, 1, date('Y'))) ;
?></option>
<?php else : ?>

<option value="<?php echo $i ; ?>"><?php echo date
('"F', mktime(0,0,0,$1i, 1, date('Y'"))) ; ?>
</options>

<?php endif ; ?>
<?php endfor ; ?>
</select>
</div>

<div class="col-md-2">

<?php echo form error('sunset y'); ?>

<select name="sunset y" class="form-control">

<?php for ($i = date("Y",strtotime(date("Y"))); $i <=
date ("Y",strtotime (date("Y").' +3 year')); S$i++) : ?>
<option value="<?php echo $i;?>"><?php echo $i;?>

</options>
<?php endfor ; °?>
</select>
</div>
</div>

</div>

<?php echo $this->lang->line
('job_sunset date help') ; ?></divs>
<div class="form-group"s>

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

<button type="submit" class="btn btn-success"><?php echo
$this->lang->line ('common form elements go');?></button>
or <? echo anchor('jobs', $this->lang->
line ('common form elements_cancel'));?>
</div>
<?php echo form close() ; ?>
</div>
</div>

Any error messages related to the validation process —such as a missing form field
that's required —are also displayed in this view file next to the form field, triggering
an error. To do this, we use the form_error () Codelgniter validation function.

Create the /path/to/codeigniter/application/views/jobs/apply.php file and
add the following code to it:

<?php if (Sthis->session->flashdata('flash message')) : ?>
<div class="alert alert-info" role="alert"s><?php echo $this->
session->flashdata('flash message');?></div>
<?php endif ; ?>

<div class="row">
<div class="col-sm-12 blog-main"s>
<div class="blog-post">

<?php foreach ($query->result() as Srow) : ?>
<h2 class="blog-post-title"><?php echo $row->job title ;
?></h2>
<p class="blog-post-meta">Posted by <?php echo $row->
job advertiser name . ' on ' . Srow->job created at ;
?></p>
<table class="table">
<tr>
<td>Start Date
</td>
<td><?php echo $row->job start date ; ?>
</td>
<td>Contact Name
</td>
<td><?php echo $row->job advertiser name ; ?>
</td>
</tr>
<tr>
<td>Location
</td>
<td><?php echo $row->loc name ; ?>
</td>

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<td>Contact Phone
</td>
<td><?php echo $row->job advertiser phone ; °?>
</td>

</tr>

<tr>
<td>Type
</td>
<td><?php echo $row->type name ; ?>
</td>
<td>Contact Email
</td>
<td><?php echo $row->job advertiser email ; °?>
</td>

</tr>

</table>
<p><?php echo $row->job desc ; ?></p>
<?php endforeach ; ?>
</div>
</div>
</div>

<p class="lead"><?php echo $this->lang->line
('apply instruction 1') . $job title ;?></p>

<div class="spanl2">

<?php echo form open('jobs/apply', 'role="form" class="form""')
?>

<div class="form-group">

<?php echo form error('app name'); °?>

<label for="app name"><?php echo $this->lang->line
('app_name') ;?></labels>

<?php echo form input ($app name); ?>

</div>

<div class="form-group"s>

<?php echo form error('app email'); ?>

<label for="app email"><?php echo $this->lang->line
('app_email') ;?></label>

<?php echo form input ($app email); ?>

</div>

<div class="form-group">
<?php echo form error('app phone'); ?>
<label for="app phone"><?php echo $this->lang->line
('app_phone') ;?></label>

[287]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

<?php echo form input ($app phone); ?>
</div>

<div class="form-group">
<?php echo form error('app cover note'); ?>
<label for="app cover note"><?php echo $this->lang->line
('app_cover note') ;?></labels>
<?php echo form textarea($app cover note); ?>
</div>

<input type="hidden" name="job id" value="<?php echo $this->
uri->segment (3) ; ?>" />

<div class="form-group"s>
<button type="submit" class="btn btn-success"><?php echo
$this->lang->line ('common form elements go');?></button>
or <? echo anchor('jobs', $sthis->lang->line
('common_form elements cancel'));?>
</div>
<?php echo form close() ; ?>
</div>
</div>

Take a look at the top of the view file, specifically, the code in the foreach ($query-
>result () as $row) loop that displays the details of the job. It is arranged as an
HTML table, clearly separating the main points of the job advert, such as the start
date, job location, and contact details. The only thing that's not in the table is the
job description.

Below the foreach () loop is an HTML form that allows the user to enter their
contact details and a small cover note explaining their interest in the role. The form
is submitted when the user clicks on Go.

There is a hidden field element called job_id, and it looks like this:

<input type="hidden" name="job id" value="<?php echo $this->uri-»>
segment (3) ; ?>" />

This hidden field that's populated with the ID of the job advert ensures that when
the form is submitted, the jobs/apply () function can query the database with the
correct ID and fetch the correct e-mail address (jobs.job_advertiser email)
associated with the job, and using PHP's mail () function, it will send an e-mail to
the job advertiser with the applicants details.

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Create the /path/to/codeigniter/application/views/nav/top nav.php file and
add the following code to it:

<!-- Fixed navbar -->
<div class="navbar navbar-inverse navbar-fixed-top" role
="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-
toggle="collapse" data-target=".navbar-collapse">
Toggle navigation</spans>
</spans>
</spans>

</buttons>
<a class="navbar-brand" href="<?php echo base url() ;
?>"><?php echo $this->lang->line
('system system name'); ?>
</div>
<div class="navbar-collapse collapse">
<ul class="nav navbar-nav'"s>
<1li class="active"><?php echo anchor ('jobs/create',

'Create') ; ?></1li>

</div><!--/.nav-collapse -->
</div>
</div>

<div class="container theme-showcase" role="main">

This view is quite basic but still serves an important role. It displays an option to
return to the jobs controller's index () function.

Creating the controller

We're going to create only one controller in this project, which is /path/to/
codeigniter/application/controllers/jobs.php.

There is only one controller in this project, so let's go over it now. We will look at the
code and discuss how it functions.

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

There are three main functions in this controller, and these are as follows:

* index(): This displays the initial list of job adverts to the user. It also
displays the search box and displays any results that might be returned.

* create(): This displays a form to the any user, allowing the users create
ajob advert.

* apply(): This is accessed if the user clicks on the Apply button or the
job title.

Create the /path/to/codeigniter/application/controllers/jobs.php file
and add the following code to it:

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed') ;

class Jobs extends MY Controller ({

function _ construct () {

parent:: construct();
Sthis->load->helper('string') ;
Sthis->load->helper('text');
$this->load->model ('Jobs model') ;
$this->load->library('form validation') ;
Sthis->form validation->set error delimiters('<div

class="alert alert-danger">',6 '</divs>"');

}

Looking at index () first, you'll see that one of the first things this function does is
call the get_jobs () function of Jobs_model, passing to it the search string. If no
search string was entered by the user in the search box, then this post array item will
be empty, but that's okay because we test for it in the model.

The result of this query is stored in $page_data['query'], which is ready to be
passed to the views/jobs/view.php file, where a foreach () loop will display each
job advert:

public function index()
$this->form validation->set rules('search string',6 $this->lang-»>
line ('search string'), 'required|min length[1] |
max_ length[125]");
$page data['query'] = s$this->Jobs model->get jobs(s$this->input-»>
post ('search string')) ;

[290]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

We set the validation rules for search_string. If this is the first time the page is
viewed or if the validation fails, then $this->form validation () will return a
false value:

if ($this->form validation-s>run() == FALSE) ({
$page _datal['search string'l = array('name' => 'search string',
'class' => 'form-control', 'id' => 'search string',6 'value' =>
set _value('search string', S$this->input->post
('search string')), 'maxlength'’ => '100', 'size' => '35');

To display a list of jobs to the user, we call the get_jobs () function of Jobs_model,
passing to it any search string entered by the user and storing the database result
object in the $page_data array's item query. We pass the $page_data array to the
views/jobs/view.php file:

Spage datal'query'] = $this->Jobs model->get jobs(sSthis->
input->post ('search string')) ;
Sthis->load->view ('common/header') ;

S$this->load->view('nav/top nav') ;
Sthis->load->view('jobs/view', S$page data);
(

Sthis->load->view ('common/footer!') ;
} else {
Sthis->load->view ('common/header') ;

S$this->load->view('nav/top nav') ;

Sthis->load->view

(
(
('jobs/view', $page data);
(

Sthis->load->view ('common/footer') ;

}

The create () function is a little more meaty; initially, we set out the form validation
rules —nothing really interesting to see there —but just after, we call three model
functions: get _categories (), get_types (), and get locations (), the results of
which are stored in their own $save_data array items, as follows:

S$page _datal['categories'] = $this->Jobs model->get categories();
Spage datal['types'] = $this->Jobs model->get types();
$page _data['locations'] = $this->Jobs model->get locations();

We'll loop over these results in the view/jobs/create.php file and populate the
HTML select dropdowns.

Anyway, after this, we check whether the form has been submitted and if so,
whether it's submitted with errors. We build the form elements, specifying each
element's settings and sending them in the $page_data array to the views/jobs/
create.php view.

[291]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

If there were no errors after the form was submitted, we package up all the post
inputs and send them to the save_job () function of Jobs_model.

If the save operation worked, we'll set a success message flash data, indicating to the
user that their job has been saved so that they know it will now appear in searches.
However, if it hasn't, we'll return an error message:

public function create() {

Sthis->form validation->set rules('job title', $this->lang-»>
line('job_title'), 'required|min length[1l] |max_length[125]"');

$this->form validation->set rules('job desc',6 $this->lang->
line('job_desc'), 'required|min length[1l] |max_length[3000]"') ;

Sthis->form validation->set rules('cat id', $this->lang->
line('cat_id'), 'required|min length[1l] |max_length[11]');

Sthis->form validation->set rules('type id', $this->lang->
line('type_id'), 'required|min length[1] |max_length[11]');

Sthis->form validation->set rules('loc_id', $this->lang->
line('loc_id'), 'required|min_ length[1l] |max_length[11]');

Sthis->form validation->set rules('start d', $this->lang-»>
line('start_d'), 'min_length[l]|max_length[2]');

Sthis->form validation->set rules('start m', $this->lang-»>
line('start m'), 'min_length[l]|max_length[2]');

Sthis->form validation->set rules('start y', S$this->lang-»>
line('start_y'), 'min_length[l]|max_length[4]');

$this->form validation->set rules('job rate',6 $this->lang->
line('job_rate'), 'required|min length[1l] |max_length[6]"') ;

$this->form validation->set rules('job advertiser name', S$this->
lang->line('job_advertiser name'), 'required|
min length[1] |max_length[125]"') ;

Sthis->form validation->set rules('job advertiser email',6 $this-
>lang->line('job advertiser email'), 'min_length[1]|
max_length[125]"');

Sthis->form validation->set rules('job advertiser phone',6 $this-
>lang->line('job advertiser phone'), 'min_length[1]|

max_ length[125]"');
$this->form validation->set rules('sunset d',6 $this->lang->
line('sunset d'), 'min_length[l]|max_1ength[2]');
$this->form validation->set rules('sunset m', $this->lang->
line('sunset m'), 'min_length[l]|max_1ength[2]');
$this->form validation->set rules('sunset y', $this->lang->
line('sunset y'), 'min_length[l]|max_1ength[4]');

Spage _datal['categories'] = $this->Jobs model->get categories();
Spage datal['types'] = $this->Jobs model->get types();

S$page _data['locations'] = $this->Jobs model->get locations();

if ($this->form validation-s>run() == FALSE) ({

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

$page data['job title'] = array('name' =>
'job_title', 'class' => 'form-control',6 'id' => 'job_ title',
'value' => set value('job title', ''), 'maxlength' =>
'100', 'size' => '35');

$page datal['job desc'] = array('name' =>
'job _desc', 'class' => 'form-control', 'id' => 'job desc',
'value' => set value('job desc', ''), 'maxlength’' =>
'3000', 'rows' => '6', 'cols' => '35');

$page datal['start d'] = array('name' =>
'start d', 'class' => 'form-control', 'id' => 'start 4d',
'value' => set_value('start_d', ''), 'maxlength' => '100",
'size' => '35');

$page datal['start m'] = array('name' =>
'start_m', 'class' => 'form-control',K 'id' => 'start_m',
'value' => set_value('start_m', ''), 'maxlength' => '100"',
'size' => '35');

$page datal['start y'] = array('name' =>
'start y', 'class' => 'form-control', 'id' => 'start y',
'value' => set value('start y', ''), 'maxlength' => '100"',
'size' => '35');

$page datal['job rate'] = array('name' =>
'job_rate', 'class' => 'form-control', 'id' => 'job rate',
'value' => set value('job rate', ''), 'maxlength’' =>
'100', 'size' => '35');

$page datal['job advertiser name'] = array('name' =>
'job_advertiser name', 'class' => 'form-control',6 'id' =>
'job_advertiser name', 'value' => set value(
'job_advertiser name', ''), 'maxlength' => '100', 'size'
=> '35"');

$page data['job advertiser email'l = array('name' =>
'job_advertiser email', 'class' => 'form-control', 'id' =»>
'job_advertiser email', 'value' => set value(
'job_advertiser email', ''), 'maxlength' => '100', 'size'
=> '35");

$page data['job advertiser phone'l = array('name' =>
'job_advertiser phone', 'class' => 'form-control', 'id' =»>
'job_advertiser phone', 'value' => set value(
'job_advertiser phone', ''), 'maxlength' => '100', 'size'
=> '35"');

$page datal['sunset d'] = array('name' =>
'sunset _d', 'class' => 'form-control', 'id' => 'sunset d',
'value' => set value('sunset d', ''), 'maxlength’' =>
'100', 'size' => '35');

$page datal['sunset m'] = array('name' =>
'sunset m', 'class' => 'form-control', 'id' => 'sunset m',
'value' => set value('sunset m', ''), 'maxlength’' =>
'100', 'size' => '35');

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

S$page datal['sunset y'] = array('name' =>
'sunset y', 'class' => 'form-control', 'id' => 'sunset y',
'value' => set value('sunset y', ''), 'maxlength’' =>

'100', 'size' => '35');

Sthis->load->view ('common/header') ;
$this->load->view('nav/top nav');
Sthis->load->view('jobs/create', $page data);
Sthis->load->view ('common/footer') ;

} else {

At this point, the data has passed validation and is stored in the $save_data array in
preparation for saving it to the database:

$save _data = array(
'job_title' => $this->input->post('job title'),
'job _desc' => $this->input->post('job desc'),
'cat_id' => $this->input-spost('cat id'),
'type id' => $this->input->post('type id'),
'loc_id' => $this->input-s>post('loc_id'),
'job_start date' => $this->input-spost('start y') .'-'.$this->
input-s>post('start m').'-'.$this->input->post('start d'),
'job_rate' => $this->input->post('job rate'),
'job_advertiser name' => $this->input->
post ('job_ advertiser name'),
'job_advertiser email' => $this->input-»>
post ('job advertiser email'),
'job_advertiser phone' => $this->input-»>
post ('job advertiser phone'),
'job_sunset date' => $this->input->post('sunset y') .'-'.$this->
input->post ('sunset m').'-'.$this->input->post('sunset d'),

)i

The $save_data array is then sent to the save_job () function of Jobs_model, which
will use set_flashdata () to generate a confirmation message if the save operation
was successful or an error message if it failed:

if ($this->Jobs model-s>save job($save data)) ({
Sthis->session->set flashdata('flash message', $this->lang->
line ('save_success_okay')) ;
redirect ('jobs/create/');
} else {
Sthis->session->set flashdata('flash message', $this->lang->
line('save success_ fail'));
redirect ('jobs');

[294]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Finally, we arrive at the apply () function. This is a little simpler. Like create (), we
start off by defining our form item validation rules, and then we check whether the
form is being posted (submitted) or not. We do this because the job ID can be passed
to it in two ways.

The first way is using $this->uri->segment (3). The ID is passed to the apply ()
function via the third uri segment if a user clicks on the Apply link or the job title in
the views/jobs/view.php file.

The second way is $this->input->post ('job_id'). The ID is passed to the

apply () function via the post array if the form has been submitted. There is a hidden
form element in the views/jobs/view.php file named job_id, the value of which is
populated with the actual ID of the job being viewed:

public function apply() {
Sthis->form validation->set rules('job id', $this->lang->

line('job_title'), 'required|min length[1l] |max_length[125]"');
$this->form validation->set rules('app name',6 $this->lang->
line('app_name'), 'required|min_length[1]|max_length[125]');
Sthis->form validation->set rules('app email', $this->lang-»>
line('app_email'), 'required|min_ length[1l] |max_length[125]"');
Sthis->form validation->set rules('app phone', $this->lang-»>
line('app_phone'), 'min_length[l]|max_length[125]');
Sthis->form validation->set rules('app cover note', $this->lang-
>line ('app cover note'), 'required|min length[1] |

max_length[3000] ") ;

if ($this-s>input-spost())

The ID is stored in the $page_data array's job_id item and passed to the get_job ()
function of Jobs_model:

S$page _datal['job id'l
} else {
S$page _datal['job id'l

}

Sthis->input->post ('job_id') ;

Sthis->uri->segment (3) ;

$page _datal'query'] = $this->Jobs model->
get_ job($page datal['job id'l);

We then test to see whether anything is returned. We use the num_rows ()
Codelgniter function to see whether there are any rows in the returned database
object. If there aren't, then we just set a flash message saying that the job is no
longer available.

[295]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

It might be that in the time between the user clicking on the Apply link and the time
when they actually submit their application, the job advert has become unavailable;
that is, its job_sunset_date has passed, or someone might have manually typed a
random ID and it just so happens that that ID doesn't exist. Anyway, whatever the
reason, if no results are returned, a flash message is shown to the user. If, however, it
is been found, we pull out the data from the database and store it as local variables:

if ($page datal'query']-s>num rows() == 1) ({
foreach ($page datal'query']l-sresult() as Srow)
$page data['job title'] = S$row->job title;

$page data['job id'l = $row->job id;

$job_advertiser name = $row->job advertiser name;
$job_advertiser email = $row->job advertiser email;
!
} else {

$this->session->set flashdata('flash message', $this->lang->
line('app_job no longer exists'));
redirect ('jobs') ;

}

We then move on to the form validation process. If this is the initial page view or if
there were errors with the submit, then $this->form validation->run() will have
retuned FALSE; if so, then we build our form items, defining their settings:

if ($this->form validation-s>run() == FALSE) ({

S$page _datal['job id'l = array('name' => 'job id', 'class'
=> 'form-control', 'id' => 'job_ id', 'value' =»>
set _value('job id', ''), 'maxlength' => '100', 'size' =>
'35');

S$page datal['app name'] = array('name' => 'app name',
'class' => 'form-control', 'id' => 'app name', 'value' =>
set value('app name', ''), 'maxlength' => '100', 'size' =>
'35');

Spage datal['app email'] = array('name' => 'app email',
'class' => 'form-control', 'id' => 'app email', 'value' =>
set _value('app email', ''), 'maxlength' => '100', 'size' =>
'35');

S$page _datal['app phone'] = array('name' => 'app phone',
'class' => 'form-control', 'id' => 'app phone', 'value' =>
set_value('app phone', ''), 'maxlength' => '100', 'size' =>
'35');

Spage datal['app cover note'] = array('name' => 'app cover note',
'class' => 'form-control', 'id' => 'app cover note', 'value'
=> set _value('app cover note', ''), 'maxlength' => '3000"',
'rows' => '6', 'cols' => '35');

Sthis->load->view ('common/header') ;

[296]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

$this->load->view('nav/top nav');
Sthis->load->view('jobs/apply', $page _data) ;
Sthis->load->view ('common/footer') ;

If there was no error with the submit, then we will build an e-mail to be sent to the
advertiser of the job; this e-mail will be sent to the e-mail address contained in jobs.
job_advertiser email.

} else {

We substitute the variables in the e-mail using the str_replace () ; PHP function,
replacing the variables with the details pulled from the database or form submit,
such as the applicant's contact details and cover note:

$body = "Dear %job_advertiser name%,\n\n";

$body .= "%app name% is applying for the position of
%$job_title%,\n\n";

$body .= "The details of the application are:\n\n";

$body .= "Applicant: %app name$%,\n\n";

$body .= "Job Title: $%$job_title%,\n\n";

S$body .= "Applicant Email: %app email$%,\n\n";

$body .= "Applicant Phone: %app phone%, \n\n";

$body .= "Cover Note: $%app_ cover note%,\n\n";

$body = str replace('%job_advertiser name%', $job advertiser name,
Sbody) ;

$body = str replace('%app name%', S$this->input->post('app name'),
$body) ;

$body = str replace('%job title%', $page datal['job title'],
Sbody) ;

$body = str replace('%app email%', $this->input->
post ('app _email'), S$body);

$bod = str replace('%app phone%', $this->input->

t ('app_phone'), sbody) ;
$bod = str replace('%app cover note%', S$this->input->
t ('app_cover note'), s$body) ;

If the e-mail is sent successfully, we send a flash message to the applicant, informing
them that their application has been sent as shown in the following code; this isn't
the same as a validation error. Validation errors have been handled earlier and we
wouldn't be this far into the processing of the form if validating had not been passed.
Really, what we're saying is if the e-mail had not been sent correctly — perhaps

mail () failed for some reason—the application would not have been sent. This is
what we are indicating:

if (mail($job advertiser email, 'Application for '
$page _datal'job_title']l, s$body)) {
Sthis->session->set flashdata('flash message', $this->
lang->line('app success_okay')) ;

[297]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

} else {
$this->session->set flashdata('flash message', $this->
lang->line('app success fail'));

redirect ('jobs/apply/'.S$page datal['job id'l);

Creating the language file

As with all the projects in this book, we're making use of the language file to serve
text to users. This way, you can enable multiple region/multiple language support.
Let's create the language file.

Create the /path/to/codeigniter/application/language/english/en admin_
lang.php file and add the following code to it:

<?php if (!defined('BASEPATH')) exit ('No direct script access
allowed') ;

// General

$lang['system system name'] = "Job Board";

// Jobs - view.php
$lang['jobs view apply'] = "Apply";
$lang['jobs view search'] = "Search";

// Jobs - create.php
$lang['job_create form instruction 1'] = "Enter the information
about your job advert below...";

$lang['job title']l = "Title";

$lang['job desc'] = "Description";

Slang['type'l = "Job type";

$lang['cat'] = "Category";

$lang['loc'] = "Location";

$lang['job_start date']l = "Start date";

$lang['job rate'] = "Rate";

$lang['job advertiser name'] = "Your name (or company name)";
$lang['job advertiser email'] = "Your email address";
$lang['job advertiser phone'] = "Your phone number";
$lang['job sunset date'] = "Sunset date";

[298]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

$lang['job sunset date help'] = "Your job advert will be live up
to this date, after which it will not appear in searches and
cannot be applied for";

$lang['save success okay'] "Your advert has been saved";

"Your advert cannot be saved at this

$lang['save success fail']
time";

// Jobs - Apply

$lang['apply instruction 1'] = "Fill out the form below to apply
for ";

$lang['app name'] = "Your name ";

$lang['app email'] = "Your email ";

$lang['app phone']l = "Your phone number ";

$lang['app cover note'] = "Cover note ";

$lang['app success okay'l = "Your application has been sent ";

$lang['app success fail'l = "Your application cannot be sent at

this time ";
$lang['app job no longer exists'] = "Unfortunately we are unable
to process your application as the job is no longer active";

Putting it all together

Okay, here are a couple of examples that will help put everything together.

User creates a job advert

Let's see how the process of creating a job advert exactly works:

1. The user visits the site and is presented with a list of jobs, a search box, and a
navigation bar.

2. The user wishes to create a new job so they click on the Create link contained
in the views/nav/top nav.php file.

3. Codelgniter loads the jobs controller's create () function.

The create () function displays the form in the views/jobs/create.php
view file. There are three HTML dropdown form elements that allow the user
to choose a job type, category, and location. These dropdowns are populated
by the get_types (), get_categories () and get_locations () functions of
Jobs_model, respectively.

5. The user fills in the form and clicks on Go to submit the form.

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

6.

The form is submitted to the jobs controller's create () function; it is
validated and passed.

The jobs controller's create () function sends the validated form input
to the save job () function of Jobs model where it is saved to the jobs
database table.

User looks at a job

Now we will see how does a user looks at a job:

1.

The user visits the site and is presented with a list of jobs, a search box,
and a navigation bar.

The user clicks on the job title of the first job in the list.
Codelgniter loads the jobs controller's apply () function.

The apply () function looks at the third segment in the URI (this is the job_
id value passed in the URL of the job title in the previous step) and passes
this to the get_job () function in Jobs_model.

The get_job () function pulls the details of the job from the database and
returns a database result object to the jobs controller.

The jobs controller sends the database result object to the views/jobs/
apply.php view file where a foreach () loop runs over the object, echoing
out the details of the job.

User searches for a job

The flow of steps followed when a user searches for a job is as follows:

1.

The user visits the site and is presented with a list of jobs, a search box,
and a navigation bar.

The user types the word CodeIgniter into the search box and hits the
Enter key.

The Codelgniter framework then calls the jobs controller's index () function.

The index () function calls the get_jobs function of Jobs_model and passes
to it the search_string post item:

$page data['query'] = $this->Jobs model->get jobs (sthis->
input->post ('search string')) ;

[300]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The get_jobs () function of Jobs_model recognizes that there is a search
string as input and runs the correct database query, looking at jobs.job_
title and jobs.job_desc to see whether a string of text matches the user's
search string.

A job advert is found to match.

The result object is returned to the views/jobs/view.php file, where a
foreach () loop runs over the result object, displaying the summary details
of the job.

The user is free to click on the Apply link to study the details further or apply
for the job.

User applies for a job

When a user wants to apply for a job, the following steps are performed:

1.

The user visits the site and is presented with a list of jobs, a search box
and navigating bar.

The user clicks on the job title of the first job in the list.
Codelgniter loads the jobs controller's apply () function.

The apply () function looks at the third segment in the URI (this is the
job_id value passed in the URL of the job title in the previous step) and
passes this to the get_job () function in Jobs_model.

The get_job () function pulls the details of the job from the database and
returns a database result object to the jobs controller.

The jobs controller sends the database result object to the views/jobs/
apply.php view file where a foreach () loop runs over the object, echoing
out the details of the job.

The user enters their details in the form below the job description and
clicks on Go.

The form is submitted to the jobs controller's apply () function where it is
validated; once passed, the jobs controller queries the get_job () function
of Jobs_model to find the jobs.job advertiser email and jobs.job
advertiser name values in order to e-mail the application to the advertiser.

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Job Board

Summary

So, here we have a basic job board application; it is capable of allowing people to
create jobs, displaying those jobs, searching for jobs, and it also allows people to
apply for these jobs. However, there are still areas of improvement and scope to add
greater functionality; perhaps you could do the following;:

Add e-mail confirmation for the applicant. You could add a functionality to
the jobs/apply () function to send a confirmation e-mail to the applicant
when they apply for a job.

Limit the number of applications. You could add a functionality to limit the
number of job applications per job; logic would be needed to calculate which
came first: the sunset date or the application limit.

You could paginate the results. Currently, all active jobs are displayed in the
jobs/index () function. You might wish to add pagination to this, limiting
the number of jobs per page to a set number — 25 per page, for example.

You can have detailed search options. You could add a more complex search,
perhaps a dropdown specifying locations or job types, and so on.

You can delete old job adverts. You could create a small Cron script, deleting
jobs that are beyond their sunset date (jobs.job_sunset_date). This would
reduce the database to a more reasonable size and ensure that only jobs that
are active are kept there.

So there we are, then —we're at the end! What have we learned... erm, well, you
should have a whole bunch of projects to be ready to work with —best of all, they're
all really simple, so you can easily expand upon them and build more features and
functions as you require; at the very least, you should have a base platform on which
you can build any number of applications.

Be sure to check out the Codelgniter website (http://www.codeigniter.com/) for
regular updates and new releases. Don't forget that the code in this book is available
online from the Packt website, so you don't have to painfully copy from page to
screen, and the SQL for each project is there too.

Right — that's it, the end!

[302]

www.it-ebooks.info

http://www.codeigniter.com/
http://www.it-ebooks.info/

Symbols

$data array
ds_body 57
ds_title 57
usr_email 57
usr_id 57
usr_name 57

$discussion_data array
ds_body 59
ds_is_active 59
ds_title 59
usr_id 59

A

add() function, e-commerce site 212
address bar
index.php, removing from 12
admin controller
about 88-91
dashboard() function 88
index() function 88
login() function 88
update_item() function 88
admin Dashboard page 47
admin_model.php file
creating 63-65
dashboard_fetch_comments() function 63
dashboard_fetch_discussions() function 63
update_comments() function 63
update_discussions() function 63

Index

authentication system

about 144

config.php file, adjusting 157
controllers, creating 179
correct access, ensuring 207
Create 146

database, creating 154
Delete 146

design 144

Edit 146

Edit My Details 145

files 151

Forgot Password 146
language file, creating 204
Me 145, 146

models, creating 158
Register 146

register functionality 150
routes.php file, adjusting 158
Signin 145

signing-in page 150
summarizing 206

user, deleting 149

user details, editing 148
user registration 206

Users 145

users, creating 148

View All 145

View all users 147

views, creating 164
wireframes 144

www.it-ebooks.info

http://www.it-ebooks.info/

autoload.php files, photo sharing
application
adjusting 105

B

base_url() function 36
Bootstrap
URL 10

C

change_task_status() function 250, 251
Codelgniter
downloading 8,9
URL 8
comments controller
about 82-87
flag() function 82
index() function 82
comments_model.php file
creating 60-63
fetch_comments() function 61
flag() function 61
new_comments() function 61
comments table, elements
cm_body 51
cm_created_at 51
cm_id 51
cm_is_active 51
ds_id 51
usr_id 51
comments view
creating 68-70
common language items 16
common resources
about 8
headers and footers 8
Twitter Bootstrap 8
common system resources
autoloading 18
config.php file

adjusting, for authentication system 157

adjusting, for discussion forum 54
adjusting, for e-commerce site 220
adjusting, for job board 274

adjusting, for photo sharing application 105
adjusting, for to-do list 249
controller file
create.php controller file, creating 32-34
go.php controller file, creating 34-37
controllers
admin controller, creating 88-91
comments controller, creating 82-87
controller file, creating 32-36
creating 32,78
discussions controller, creating 79-82
controllers, authentication system
creating 179-203
me.php 179
MY _Controller.php 179
password.php 179
register.php 179
signin.php 179
users.php 179
controllers, e-commerce site
creating 230
controllers, job board
apply() function 290
create() function 290
creating 289-297
index() function 290
controllers, newsletter signup
creating 134-138
controllers, photo sharing application
create.php 111
creating 111-118
go.php 111
controllers, to-do list
creating 257-261
create item 100, 101
Create, job board 268
create.php controller file
creating 32-34

D

dashboard_fetch_comments() function 63
dashboard_fetch_discussions() function 63
dashboard view

creating 75

[304]

www.it-ebooks.info

http://www.it-ebooks.info/

database fetch_discussions() function 55

creating, for e-commerce site 216-219 flag() function 55
creating, for job board 270-274 discussions controller
creating, for newsletter signup 128, 129 about 79-82
creating, for photo sharing application 104 create() function 79
creating, for to-do list 247, 248 flag() function 79
creating 24, 25, 50-53 index() function 79
url_address 25 discussions table, elements
url_code 25 ds_body 52
url_created_at 25 ds_created_at 52
url_id 25 ds_id 52

delete() function 141, 251 ds_is_active 52

design, photo sharing application 100 ds_title 52

design, URL shortener 22,23 usr_id 52

Detail/Apply, job board 268 discussions view

discussion forum creating 67, 68
about 41 display_cart() function 213
admin Dashboard 47 do_upload item 101, 102
comment, disliking by user 95
comment, moderating 95 E

comments awaiting moderation,
reviewing 96

controllers, creating 78

creating, by user 93

database, creating 50-53

design 42-44

file overview 48, 49

Home 43

implementing 93

language file, creating 92

models, creating 55)

New Discussion 43, 46 files 21_5

user comments 94 Home 1tem 211

View All Discussions 43, 44 items, adding to cart 239

View Discussion/ Add Comment 43, 45 language filg, creating 237
views, creating 66 model, creating 222-224

wireframes 42-44 Proceed to checkout 211
discussion forum, admin-only functions product qua'ntlty, fﬂte?mg 240

Admin Login 44 routes.php file, adjusting 221, 222

Moderator Dashboard 44 search, f1.1t.er1n§3§38
discussions_model.php file Summarizing -

creating 55-59 user_details() item 214

fetch_discussion() function 55 Vi?WS’ creating 225-230
wireframes 210, 211

e-commerce site
add() function 212
Add to cart item 211
Cart item 211
config.php file, adjusting 220, 221
controllers, creating 231-236
creating 209, 210
database, creating 216-220
design 210, 211
display_cart() function 213

[305]

www.it-ebooks.info

http://www.it-ebooks.info/

edit() function 140

elements, categories table
cat_id 218, 272
cat_name 218, 272
cat_url name 219

elements, customer table
cust_address 219
cust_created_at 219
cust_email 219
cust_first name 219
cust_id 219
cust_last_name 219

elements, jobs table
cat_id 273
job_advertiser_email 273
job_advertiser_name 273
job_advertiser_phone 274
job_created_at 274
job_desc 273
job_id 273
job_rate 273
job_start_date 273
job_sunset_date 274
job_title 273
loc_id 273
type_id 273

elements, locations table
loc_id 273
loc_name 273

elements, newsletter signup
signup_active 128
signup_created_at 128
signup_email 128
signup_id 128
signup_optl 128
signup_opt2 128

elements, orders table
cust_id 220
order_closed 220
order_created_at 220
order_delivery_address 220
order_details 220
order_fulfilment_code 220
order_id 220
order_subtotal 220

elements, photo sharing application
img_dir_name 105
img_id 105
img_image_name 105
img_url_code 105
img_url_created_at 105
elements, products table
category_id 219
product_code 219
product_description 219
product_id 219
product_name 219
product_price 219
elements, tasks table
task_created_at 248
task_desc 248
task_due_date 248
task_id 248
task_status 248
elements, types table
type_id 273
type_name 273
elements, users table
acc_id 155
usr_access_level 156
usr_add1 156
usr_add?2 156
usr_add3 156
usr_created_at 156
usr_email 155
usr_fname 155
usr_hash 155
usr_id 155
usr_is_active 156
usr_lname 155
usr_pwd_change_code 156
usr_town_city 156
usr_uname 155
usr_zip_pcode 156
error messages 19, 20

F

fetch_comments() function 61
fetch_discussion() function 56

[306]

www.it-ebooks.info

http://www.it-ebooks.info/

fetch_discussions() function 56

fetch_url() function 27, 29, 36

files, authentication system
about 151,152
change_password.php 152
delete_user.php 152
edit_user.php 152
en_admin_ lang.php 152
forgot_password.php 152
me.php 152
MY _Controller.php 151
new_password.php 152
new_user.php 152
password_model.php 151
register_model.php 151
register.php 152
reset_password.txt 152
signin_model.php 151
signin.php 152
top_nav.php 151
users_model.php 151
view_all_users.php 152
welcome.txt 152

files, discussion forum
overview 48, 49

files, e-commerce site
display_cart.php 215
display_products.php 215
en_admin_lang.php 216
shop.php 216
shop_model.php 215
top_nav.php 215,216
user_details.php 216

files, job board
apply.php 269
create.php 270
en_admin_lang.php 270
jobs.php 270
jobs_model.php 269
top_nav.php 270

files, newsletter signup
settings.php 127
signup.php 127

signup_model.php 127
top_nav.php 127

files, photo sharing application
create.php 103, 104
en_admin_lang.php 104
go.php 104
image_model.php 103
top_nav.php 103

files, to-do list
delete.php 246
en_admin_lang.php 247
tasks.php 246
tasks_model.php 246
top_nav.php 246
view.php 246

files, URL shortener
create.php 23,24
en_admin_lang.php 24
go.php 24
overview 23,24
top_nav.php 24
urls_model.php 23

flag() function 56, 61

G

get_all_categories() function 222
get_all_products_by_category_name()
function 222

get_all_products() function 222
get_product_details() function 222
get_settings() function 140, 141
GetSparks

URL 13
get_task() function 251, 252
get_tasks() function 250, 251
go controller 38
go item 101, 102
go.php controller file

creating 34-37

H

headers and footers 8
Home
index() function 124, 125, 211

[307]

www.it-ebooks.info

http://www.it-ebooks.info/

image

uploading, by user 119, 120
index() function 114, 139
index.php

removing, from address bar 12
items

adding, to cart 239

J

job board
about 265
config.php file, adjusting 274
controller, creating 289
Create 267, 268
creating 266
database, creating 270
design 266, 267
Detail/ Apply 267, 268
files 269
job advert, creating 299
job, applying by user 301
job, searching by user 300, 301
Jobs/Search 267
job, viewing by user 300
language file, creating 298
model, creating 276
routes.php file, adjusting 275
summarizing 299
views, creating 279
wireframes 266, 267

L

language file
creating, for authentication system 204
creating, for discussion forum 92
creating, for e-commerce site 237
creating, for job board 298
creating, for newsletter signup 138, 139
creating, for photo sharing application 119
creating, for to-do list 261
creating, for URL shortener 37

Loader class extension
URL 13
login_header file
about 74
creating 74
login view
creating 73

make_code() function 161
model, authentication system
creating 158-164
password_model.php 158
register_model.php 158
signin_model.php 158
users_model.php 158
model, discussion forum
admin_model.php file, creating 63-65
comments_model.php file, creating 60-63
creating 55
discussions_model.php file, creating 55-59
model, e-commerce site
creating 222-224
get_all_categories() function 222
get_all_products_by_category_name()
function 222
get_all_products() function 222
get_product_details() function 222
save_cart_to_database() function 222
model, job board
creating 276-279
get_categories() function 278
get_job() function 278
get_jobs() function 278
get_locations() function 278
get_types() function 278
save_job() function 278
model, newsletter signup
add() function 130
creating 129-132
delete() function 130
edit() function 130
get_settings() function 130

[308]

www.it-ebooks.info

http://www.it-ebooks.info/

model, photo sharing application
creating 106-108
fetch_image() function 108
save_image() function 108
model, URL shortener
creating 27-29
model, to-do list
change_task_status() function 250
creating 250-253
delete() function 251
get_task() function 251
get_tasks() function 250
save_task() function 250
MY_Controller file
creating 17

N

nav/top_nav.php view file
creating 31
new_comments() function 61
New Discussion page 46
New Discussion view
creating 70,71
newsletter signup
about 123
controllers, creating 134
creating 123
database, creating 128
design 124
files 127
language file, creating 138
model, creating 129
routes.php file, adjusting 129
views, creating 132
wireframes 124

P

photo sharing application
design 100
files 103
wireframes 100
prep_url() function 37

product quantity
altering 240

Q

query binding 20
R

random_string() function 29
register functionality, authentication
system 150

adjusting, for authentication system 158
adjusting, for discussion forum 55
adjusting, for e-commerce site 221
adjusting, for job board 275
adjusting, for newsletter signup 129
adjusting, for photo sharing application 106
adjusting, for to-do list 250
adjusting, for URL shortener 26

S

save_cart_to_database() function 222
save_task() function 250, 252
save_url() function 27, 38
search

filtering 238
security considerations

about 18

error messages 19, 20

query binding 20

system folder, moving 18
settings() function 140
Settings/Unsubscribe

settings() function 125, 126
setting updates, for user 140
shared header and footer view

creating 14, 15
shortened URL

creating 38
signin.css file

about 77

creating 77
signing-in page, authentication system 150

[309]

www.it-ebooks.info

http://www.it-ebooks.info/

Signup

index() function 124, 125
Sparks

installing 12,13

sing 12,13
system folder

moving 18

T

to-do list
about 243
config.php file, adjusting 249
controller, creating 257
Create 245
database, creating 247
Delete 245, 246
design 244
Done/Not Done 245
files 246
language file, creating 261
model, creating 250-253
routes.php file, adjusting 250
summarizing 262
task, adding 262
task status, changing 263
View All 245
View All/Create 245
views, creating 253
wireframes 244

top_nav file
creating 72

Twitter Bootstrap
about 8
installing 10, 11

U

update_comments() function 63
update_discussions() function 63
URL
retrieving 38
user_details() function 214, 234
users, authentication system
creating 148
deleting 149

details, editing 148
viewing 147
users table, elements
usr_created_at 53
usr_email 53
usr_hash 52
usr_id 52
usr_is_active 53
usr_level 53
usr_name 52
user subscribes, events 139
user unsubscribes, events 140, 141

\'

View All Discussions page 44

View Discussion/Add Comment page 45

view files, discussion forum
comments 68-70
creating 29, 66
dashboard 75
discussions 67, 68
login.php 66
login_header.php 66
login_header file 74
login view 73
new.php 66
New Discussion view 70, 71
view.php 66
signin.css file 77
top_nav.php 66
top_nav file 72
view file, creating 30, 31
views files, URL shortener
create.php view file, creating 30
creating 30, 31
top_nav.php view file, creating 31
views, authentication system
change_password.php 165
creating 164-179
delete_user.php 164
e-mail scripts 165
edit_user.php 164
login header 165
me.php 164

[310]

www.it-ebooks.info

http://www.it-ebooks.info/

navigation views 165 views, newsletter signup

new_password.php 165 creating 133
new_user.php 164 settings.php 132
register.php 165 signup.php 132
signin.php 165 top_nav.php 132
users forgot_password.php 164 views, photo sharing application
view_all_users.php 164 create.php 109
views, e-commerce site creating 109-111
creating 225-227 result.php 109
display_cart.php 225 top_nav.php 109
display_products.php 225 views, to-do list
top_nav.php 225 creating 253-256
user_details.php 225 delete.php 253
views, job board top_nav.php 253
creating 279-288 view.php 253
top_nav.php 280
view.php 279 w

wireframes, photo sharing application 100
wireframes, URL shortener 22,23

[311]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Codelgniter Web Application Blueprints

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Codelgniter 2
Cookbook

Codelgniter 2 Cookbook
ISBN: 978-1-78216-230-8 Paperback: 306 pages

Over 80 recipes to help you create Codelgniter-powered
applications and solve common coding problems

1. Customizable code that can be used in your
own applications right away.

2. Recipes that will help you solve your
Codelgniter issues efficiently and effectively.

3. Each recipe comes with a full code example,
and where necessary, the model and view files
are included too.

Programming with
Codelgniter MVC

Programming with Codelgniter

MvC
ISBN: 978-1-84969-470-4 Paperback: 124 pages

Build feature-rich web applications using the
Codelgniter MVC framework

1. Build feature-rich web applications using
the Codelgniter MVC framework.

2. Master the concepts of maximum simplicity,
separation, flexibility, reusability, and
performance efficiency.

3. A quick guide to programming using the
Codelgniter MVC framework.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Codelgniter 1.7 Professional

Development
ISBN: 978-1-84951-090-5 Paperback: 300 pages

Become a Codelgniter expert with professional tools,
techniques, and extended libraries

1. Learn expert Codelgniter techniques and move
beyond the realms of the user guide.

Codel gn iter 1.7 2. Create mini applications that teach you a
Professional Development technique and allow you to easily build extras
on top of them.

3. Create Codelgniter libraries to minimize code
bloat and allow for easy transitions across
multiple projects.

Codelgniter 1.7
ISBN: 978-1-84719-948-5 Paperback: 300 pages

Improve your PHP coding productivity with the free,
compact, open source, MVC Codelgniter framework!

1. Clear, structured tutorial on working with
Codelgniter for rapid PHP application
development.

2. Careful explanation of the basic concepts of
Codelgniter and its MVC architecture.

3. Use Codelgniter with databases, HTML forms,
files, images, sessions, and e-mail.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction and Shared Project Resources
	Common resources
	Twitter Bootstrap
	Headers and footers

	Downloading CodeIgniter
	CodeIgniter on newer versions of PHP

	Installing Twitter Bootstrap
	Removing index.php from the address bar
	Installing and using Sparks
	Creating a shared header and footer view
	Common language items
	Creating the MY_Controller file
	Autoloading common system resources
	Security considerations
	Moving the system folder
	Error messages
	Query binding

	Summary

	Chapter 2: A URL Shortener
	Design and wireframes
	File overview

	Creating the database
	Adjusting the routes.php file
	Creating the model
	Creating views
	Creating the view file–views/create/create.php
	Creating the view file–views/nav/top_nav.php

	Creating controllers
	Creating the controller file–controllers/create.php
	Creating the controller file–controllers/go.php

	Creating the language file
	Putting it all together
	Creating a shortened URL
	Retrieving a URL

	Summary

	Chapter 3: Discussion Forum
	Design and wireframes
	The View All Discussions page
	The View Discussion/Add Comment page
	The New Discussion page
	The admin Dashboard page
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the models
	Creating the model file – models/
discussions_model.php
	Creating the model file – comments_model.php
	Creating the model file – admin_model.php

	Creating views
	Discussions
	Comments
	New discussion
	The top_nav file
	The login view
	The login_header file
	Dashboard
	The signin.css file

	Creating the controllers
	The discussions controller
	The comments controller
	The admin controller

	Creating the language file
	Putting it all together
	A user creates a discussion forum
	A user comments on a discussion forum
	A user dislikes a comment and flags it for moderation
	A moderator reviews comments awaiting moderation

	Summary

	Chapter 4: Creating a Photo Sharing Application
	Design and wireframes
	The create item
	The do_upload item
	The go item
	File overview

	Creating the database
	Adjusting the config.php and autoload.php files
	Adjusting the routes.php file
	Creating the model
	Creating the views
	Creating the controllers
	Creating the language file
	Putting it all together
	Summary

	Chapter 5: Creating a Newsletter Signup
	Introduction
	Design and wireframes
	The Home – index() and Signup – index() items
	Settings/Unsubscribe – settings()
	File overview

	Creating the database
	Adjusting the routes.php file
	Creating the model
	Creating the views
	Creating the controllers
	Creating the language file
	Putting it all together
	User subscribes
	User updates their settings
	User unsubscribes

	Summary

	Chapter 6: Creating an Authentication System
	Introduction
	Design and wireframes
	Me – editing details
	View all users
	Creating users
	Editing the user details
	Deleting a user
	Sign in
	Register
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the models
	Creating the views
	Creating the controllers
	Creating the language file
	Putting it all together
	User registration
	Ensuring correct access

	Summary

	Chapter 7: Creating an E-Commerce Site
	Introduction
	Design and wireframes
	Home – index()
	Add to cart – add()
	Cart – display_cart()
	User Details – user_details()
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the model
	Creating the views
	Creating the controllers
	Creating the language file
	Putting it all together
	Filtering a search
	Adding to cart
	Altering product quantity

	Summary

	Chapter 8: Creating a To-do List
	Introduction
	Design and wireframes
	View All/Create
	Delete
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the model
	Creating views
	Creating the controller
	Creating the language file
	Putting it all together
	User adds a task
	User changes the task status

	Summary

	Chapter 9: Creating a Job Board
	Introduction
	Design and wireframes
	Job/Search
	Detail/Apply
	Create
	File overview

	Creating the database
	Adjusting the config.php file
	Adjusting the routes.php file
	Creating the model
	Creating views
	Creating the controller
	Creating the language file
	Putting it all together
	User creates a job advert
	User looks at a job
	User searches for a job
	User applies for a job

	Summary

	Index

