Quick answers to common problems

TYPO3 4.3
Multimedia Cookbook

Over 50 great recipes for effectively managing mulimedia content
to create an organized web site in TYPO3

Dan Osipov L.wm]

TYPO3 4.3 Multimedia
Cookbook

Over 50 great recipes for effectively managing
multimedia content to create an organized website
in TYPO3

Dan Osipov

PUBLISHING

BIRMINGHAM - MUMBAI

TYPO3 4.3 Multimedia Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010

Production Reference: 1210110

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847198-48-8
www . packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail . com)

Credits

Author
Dan Osipov

Reviewers
Karsten Dambekalns

Mario Rimann

Mathias Schreiber

Acquisition Editor
Rashmi Phadnis

Development Editor
Reshma Sundaresan

Technical Editor
Kavita lyer

Copy Editor
Ajay Shanker

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Poorvi Nair

Proofreader
Andie Scothern

Graphics
Nilesh R. Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Dan Osipov has over 12 years of web development, graphic design, as well as system
architecture and application development experience. He has worked on various
multipurpose sites, including e-commerce, educational, informational, and dynamic
news sites. For the last 4 years, he has worked in the media industry, designing and
maintaining an online presence for journals and newspapers.

At the moment of writing, Dan was employed at Calkins Media, where he worked on using
TYPO3 as the CMS system powering high traffic, dynamic news sites, like phillyBrubs.
com and Timesonline.com. He is also a member of the Digital Asset Management team,
focused on the development of the DAM extension for TYPO3.

I would like to thank the Phillyburbs team, as their needs served as an
inspiration for a lot of the material in this book. | would like to thank the
TYPO3 community at large for "inspiring people to share". Last, but not least,
I would like to thank my family for their understanding and support.

About the Reviewers

Karsten Dambekalns, born in 1977, learned the basics of web technology the hard
way - by looking at other websites' HTML source. This happened after having learned
BASIC and Assembler on a good old Commodore C128.

Karsten discovered PHP in 1999 and and was caught by TYPO3's immense possibilities
in 2002. Later, he joined the TYPO3 Association and today is part of the TYPO3 5.0 and
FLOW3 development team.

In 2000, he founded his own Internet company together with a friend from university,
which he left behind in 2008 to become a freelancer working fully on the development of
TYPO3. Karsten also speaks at conferences and writes articles about topics around PHP
and TYPO3.

Karsten mostly lives in Germany with his wife Liga, their three kids, and a nameless
Espresso machine.

Mario Rimann, born in 1982 in Zirich, Switzerland, started his journey through the IT

jungle back in the early 90s. After his primary education as a service technician for office
equipment like printers, copy machines, fax machines, and computers, he moved to

his first job as a system administrator at a school. After collecting some years of IT

and "people-skills", Mario moved onto the European headquarters of a company running
a big website in the nightlife business, later he had his own company, and is now again a
regular employee.

While being employed at the above-mentioned school, he made his first contact with

TYPO3. In the beginning, it was mainly a hobby—which evolved to be the main part of
his own company. In 2006 and 2007, he organized the first two international TYPO3

Developer Days, which took place in Switzerland.

Right now, Mario is employed as a project manager and developer at a mid-sized
web-agency in central Switzerland that specializes in TYPO3 and Magento.

Alongside his job, Mario also helps out in several TYPO3 projects.

You can contact him at marioerimann.org.

Mathias Schreiber has been working in the Web industry since 1995, developing

websites with database-driven content for several large companies throughout Europe.
He has been a part of the TYPO3 community since early 2002. Ever since then, he has
been close to the core development and also hosted early developer meetings in 2004.

He did more than 100 training sessions in Germany and Switzerland spreading the word
about TYPO3 and has trained most of today's successful TYPO3 companies.

In 2004, he founded wmdb Systems together with Peter Kiihn, Diana Beer, and Bodo
Eichstaedt and since then he maintains large TYPO3 projects for many well-known
companies from Europe.

For two years, he has been part of the 12 so called active members of the TYPO3
Association but resigned from his duties to focus on his company and family.

Today, you can find him on almost any TYPO3 event there is—training snowboard-
beginners at the TYPO3 Snowboard tours, mentoring bug-fixing sessions on the TYPO3
Developer days, or sharing ideas on the TYPO3 Conference.

Table of Contents

Preface 1
Chapter 1: Getting Started 7
Introduction 8
Setting up a web server on Debian 9
Setting up a multithreaded environment 12
Setting up a web server on Windows 14
Creating a scalable architecture 16
Setting up an NFS share 18
Setting up TYPO3 19
Installing needed extensions 23
Creating a template for a site 25
Chapter 2: Managing Digital Assets 31
Setting up a file structure 31
Setting up a filemount 35
Setting up rights for backend users 36
Setting up FTP access 39
Setting up a category tree 42
Creating a frontend upload form 44
Debugging code 51
Creating frontend user groups 53
Creating frontend users 54
Chapter 3: Operating with Metadata in Media Files 57
Inserting metadata into images 58
Extracting metadata from images 59

Inserting metadata into audio 64

Table of Contents

Extracting metadata from audio 65
Extracting metadata from PDF 66
Chapter 4: Rendering Images 69
Rendering images using content elements 70
Embedding images in RTE 72
Rendering images using TypoScript 78
Rendering links to files using <media> tags 79
Creating a gallery using ce_gallery 83
Rendering metadata from a DAM object 87
Chapter 5: Rendering Video and Audio 89
Rendering video using media content object 89
Rendering audio using media content object 93
Rendering audio and video using media TypoScript object 94
Rendering audio and video using content elements and
rgmediaimages extension 96
Extending the media content object for more rendering options 101
Using custom media player to play video 106
Connecting to Flash Media Server to play video 113
Chapter 6: Connecting to External APIs 117
Introduction 117
Getting files from Amazon S3 118
Uploading files to S3 121
Creating a bucket in S3 123
Uploading DAM files to S3 125
Getting recent Flickr photos 128
Uploading files to Flickr 130
Uploading DAM files to Flickr 132
Reading list of movies from YouTube API 137
Authenticating requests to YouTube API 140
Showing video list with frontend plugin 141
Chapter 7: Creating Services 149
Extracting metadata from OpenOffice documents 149
Processing audio using a service 156
Converting a video to FLV upon import 162
Converting audio using services 165
Building an audioConversion service 180

Chapter 8: Automating Processes

Table of Contents

185

Adding FTP access to the media repository
Indexing downloaded files

Setting up indexing rules

Categorizing files by geolocation

Index

185
194
197
204

207

Preface

TYPOS3 is one of the world's leading open source content management systems, written in
PHP, which can be used to create and customize your website. Along with text content, you
can display high quality images, audio, and video to your site's visitors by using TYPO3. It is
essential to manage various types of multimedia files in content management systems for
both editors and the users on the frontend of the site.

This book gives you the step-by-step process for organizing an effective multimedia system.
It also gives solutions to commonly encountered problems, and offers a variety of tools for
dealing with multimedia content. The author's experience in large-scale systems enables him
to share his effective solutions to these problems.

What this book covers

Chapter 1, Getting Started introduces the reader to TYPO3, and helps set up a basic website;
where the material in this chapter alone is not enough, the user is directed to other resources
to fill in the gaps of knowledge in order to proceed further.

Chapter 2, Managing Digital Assets introduces the reader to the concept of digital asset
management. Accounts for various groups of users (editors, administrators, web users) are
created and assigned permissions. We also create a first extension that allows web users to
upload files into the system.

Chapter 3, Operating with Metadata in Media Files expands upon the digital asset
management idea, and cover file metadata, which can be used to classify files. The chapter
covers various types and formats of metadata, and how it can be extracted in TYPO3.

Chapter 4, Rendering Images covers how images can be included on a TYPO3-driven website
using content elements and a TYPO3 script. It also covers how to embed images in Rich Text
Editor. You will learn to render links to media files, create a gallery, and render metadata using
a DAM object.

Preface

Chapter 5, Rendering Video and Audio explains how you will render audio and video using
media content object, TypoScript Object, content elements, and rgmediaimages extension.
You will play video using a custom media player and Flash Media Server. We will also create
new plugins for rendering audio files.

Chapter 6, Connecting to External APIs shows how external services, specifically Amazon S3,
Flickr, and YouTube, can be leveraged to expand the system. We pull in files from YouTube and
Flickr. We also use Amazon S3 to provide us with limitless storage.

Chapter 7, Creating Services covers services and hooks—powerful concepts in TYPO3, which
allow individual sites to add different processing capabilities depending on the system. We
use services to parse metadata, and convert files.

Chapter 8, Automating Processes describes how some processes and workflows could be
automated; making the computer do all the hard work, while the editor oversees the process.

What you need for this book

In order to get the most from this book, there are some expectations of prior knowledge

and experience. It is assumed that the reader has a good understanding of TYPO3, which

can be achieved by reading the introductory tutorials—Inside TYPO3, TYPO3 Core API, and
Modern Template Building guide—essential to understand how TYPO3 works. Basic TypoScript
knowledge is required as well.

Who this book is for

This book is for anyone who is looking for effective systems for managing and operating with
multimedia content. You will find this book interesting if you are running, or starting websites
rich in multimedia content.

This book assumes some prior knowledge of TYPO3, which is available either from the official
documentation, or other books on this topic.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

<IfModule mod_ fcgid.c>
AddHandler fcgid-script .fcgi
SocketPath /var/lib/apache2/fcgid/sock

—21

Preface

IPCConnectTimeout 60
IPCCommTimeout 256
BusyTimeout 256
ProcesgssLifeTime 256
</IfModule>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

class tx myext ftpDownload extends tx scheduler Task {
public function execute() {

$connection = ftp connect('ftp.software.ibm.com') ;
if (!$Sconnection)

Any command-line input or output is written as follows:
Shell> apt-get install apache2-mpm-prefork libapache2-mod-php5 php5-gd
php5-mysql mysqgl-server-5.0

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com

Preface

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for the book

~ Visithttp://www.packtpub.com/files/code/8488 Code.zip to
directly download the example code.

The downloadable files contain instructions on how to use them.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http: //www.packtpub.com/support, selecting your book,
clicking on the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Getting Started

Recently, the Internet has shifted from being a provider of mostly textual information to a rich
media platform; delivering high quality audio, video, and more. This shift was pioneered by
sites such as YouTube, Flickr, Last.fm, Facebook, and others. The availability of broadband
and faster connection speeds, throughout the world, has aided this shift. This change has
brought new challenges to content providers, as they now need to organize and deliver to the
customer not only textual content, but all other forms of media. While textual information can
be easily manipulated, multimedia objects are a lot harder to work with.

Traditional Content Management Systems (CMS) have focused on organizing and
manipulating textual information, but modern systems have more support for multimedia. In
this book, we will discover how to manage various forms of rich media content in TYPO3—one
of the world's leading open source CMSs.

In this chapter, we will cover:

» Setting up a web server on Debian

» Setting up a multithreaded environment
» Setting up a web server on Windows

» Creating a scalable architecture

» Setting up an NFS share

» Setting up TYPO3

» Installing needed extensions

» Creating a template for a site

Getting Started

Introduction

Welcome to this book about the vast world of TYPO3 Multimedia! In this book, we will
cover various topics that relate to manipulating multimedia objects in the TYPO3 content
management system.

In this chapter, we will lay down some expectations for the rest of the book, and set up
the environment that we will use for most of the examples used throughout the book.

Expectations and prerequisites

In order to get the most from this book, there are some expectations of prior knowledge and
experience. It is assumed that the reader has a good understanding of TYPO3, which can be
achieved by reading the introductory tutorials—Inside TYPO3, TYPO3 Core API, and Modern
Template Building guide—essential to understanding how TYPO3 works. Basic TypoScript
knowledge is required as well.

We will write several extensions in this book; however, we will omit a lot of the details about
extension writing, focusing rather on the specifics of the extension. If you're new to extension
development in TYPO3, you should look for resources on the subject on www . typo3.org.
TYPO3: Extension Development, Dmitry Dulepov, Packt Publishing is an excellent book that
covers all of the prerequisites and much more.

There are multiple ways to achieve anything in TYPO3. The best solution depends on the
situation, and generally requires some compromises. This book cannot illustrate the best
solution to every problem, but attempts to show various possibilities and approaches to
problem solving using practical examples.

Most examples assume you have administrator access to the installation. If you are an editor
or a designer, and have a restricted access to the system, you should skip the examples that
pertain to developers, or ask your system administrator to provide you appropriate access.

Note on IDE

While all of the examples presented in this book can be completed using standard tools such
as a web browser and a text editor, | highly recommend using an Integrated Development
Environment (IDE) if you're serious about web development. IDE would save you time, boost
your productivity, and provide insight into your application that is simply not possible with
standard tools.

There are a variety of PHP IDEs available for various platforms and budgets. Popular
products include Komodo IDE, Zend Studio, NetBeans, and Eclipse with PDT plugin.

My weapon of choice is NuSphere PhpED, and you may see examples and screenshots
throughout the book that make use of the PhpEd platform. The examples can be transposed
to the IDE you're using, but this may require looking in the manual or searching online for
the detailed description.

—e1]

Chapter 1

Setting up a web server on Debian

Before we start anything else, we need to set up a web server. The most common setup for
TYPO3 is based on a LAMP stack (Linux, Apache, MySQL, and PHP), although other setups
are supported as well. Next, we will install all the components required by TYPO3 on a Debian
Linux server.

[Paths may vary depending on system and setup options.]
Getting ready

Setting up a Debian server is very easy, because all the packages you need are available
through APT (Advanced Packaging Tool). Make sure that the package lists are up-to-date
by running;:

Shell> apt-get update

How to do it...

Issue the following command while logged in as root:

Shell> apt-get install apache2-mpm-prefork libapache2-mod-php5 php5-gd
php5-mysqgl mysqgl-server-5.0

. Atthe time of writing, the latest stable version of Apache on
% Debian (Lenny) is 2.2.9, while PHP is 5.2.6, and MySQL is 5.0.51a.
s These versions meet the requirements of our system, and don't
have any known bugs that prevent TYPO3 from working correctly.

APT makes software maintenance easy, as all packages can be upgraded or removed through
simple commands. You could install the packages from source, but it would make subsequent
upgrades difficult. With APT, you can run the following to update the package cache
information and upgrade your system:

Shell> apt-get update
Shell> apt-get upgrade

Getting Started

One could also use the short notation of this:
A apt-get update && apt-get upgrade

It's highly recommended to do this on a regular basis to apply any security patches. But be
careful—upgrades could break some functionality!

1
‘\Q Make sure you have a backup/failover plan in

place before performing any upgrades.

There's more...

We can also install some other components to add additional functionality to our system.

ImageMagick
This line will install ImageMagick on your system.

Shell> apt-get install imagemagick

This installs ImageMagick—a powerful graphic processing program. TYPO3 works with GD
and ImageMagick, and you can enable the use of ImageMagick in the Install Tool.

As ImageMagick is an external program (unlike GD, which is a PHP extension), it is

more efficient and feature-rich when it comes to image processing. Therefore, it's highly
recommended that you install and enable it.

An alternative to ImageMagick is GraphicsMagick—a fork of ImageMagick with a more stable

API. GraphicsMagick is also more efficient, and performs better than ImageMagick, especially

on multi-core processors. No changes to TYPO3 are required to work with GraphicsMagick,
and it can be utilized as soon as it is installed by using the following command:

Shell> apt-get install graphicsmagick

To verify that everything is functioning correctly, you can go into TYPO3 Install Tool
(available when you install TYPO3 as described in recipe Setting up TYPO3), and select
Image Processing to check the configuration, then run some tests, as shown on the
following screenshot:

Chapter 1

.| Current configuration

ImageMagick enabled: 0
ImageMagick path: ()
ImageMagick path/LZW: ()
Version 5/GraphicsMagick flag:

GDLib enabled: 1

GDLib using PNG:

GDLib 2 enabled: 1

IMS effects enabled: 0 (Blurring/Sharpening with IM 54)
Freetype DPI: 72 (Should be 96 for Freetype 2)

Mask invert: (Should be set for some IM versions approx. 5.4+)

File Formats: gif,jpg,jpeq,png

@ Testmenu

Click each of these links in turn to test a topic. Please be aware that each test may take several seconds!:
1: Reading image formats
2: Writing GIF and PNG
3: Scaling images
4: Combining images
S: GD library functions

Apache commands

Apache provides a few tools that significantly simplify maintenance tasks. Here are some
useful commands:

Shell> a2enmod module name
Shell> a2dismod module name

The first command line (shown above) enables a module while the second command line
disables a module (example: mod_rewrite).

Shell> a2ensite site name
Shell> a2dissite site name

The first command line enables a website configuration file while the second command line
disables a website configuration file (example: default).

- Always put different site configurations in separate files. This way you can be
sure that disabling a site configuration will only disable that website, and will
’ not have any adverse effects on the other sites hosted on the server.

Shell> apache2ctl start
Shell> apache2ctl stop
Shell> apache2ctl restart

s

Getting Started

The commands you just saw are used to start, stop, or restart the server respectively. Make
sure to restart the server after configuration changes, as they will not take effect (alternatively,
you can reload the server).

There are many other resources online to help you set up and optimize the web server.
One such resource that also gives some information specific to TYPO3 is
http://www.installationwiki.org/Typo3.

» Setting up a multithreaded environment
» Creating a scalable architecture
» Setting up an NFS share

Setting up a multithreaded environment

TYPO3 is an enterprise content management system, so it is thread safe—meaning two
instances of the script can be executed simultaneously, and they will run in parallel without
interfering with each other. Therefore, Apache can be set up with mod_fcgid and PHP
processes will be allowed to run in parallel.

1
‘Q This setup is not recommended if you have a server with only one or

two core processor.

How to do it...

1. Install components of the server:

Shell> apt-get install libapache2-mod-fcgid apache2-mpm-worker
php5-cgi

Shell> a2enmod actions

Shell> a2enmod fcgid

2. Replace contents of /etc/apache2/mods-available/fcgid. conf with:

<IfModule mod fcgid.c>
AddHandler fcgid-script .fcgi
SocketPath /var/lib/apache2/fcgid/sock
IPCConnectTimeout 60
IPCCommTimeout 256
BusyTimeout 256
ProcegsLifeTime 256

</IfModule>

3. Modify site configuration, by default located in /etc/apache2/sites-
available/default

Chapter 1

4. Add the following to the virtual host definition:

Alias /fcgi-bin/ /var/www/fcgi-bin.d/
Action php-fcgi /fcgi-bin/php-fcgi-wrapper

5. Add the following lines to the directory definition for /var/www/:

AddHandler fcgid-script .php
FCGIWrapper /usr/bin/php-cgi .php

6. While there, modify the Options, adding +ExecCGI. Your final site configuration
should look like this:
<VirtualHost *:80>
ServerAdmin webmaster@localhost
Alias /fecgi-bin/ /var/www/fcgi-bin.d/
Action php-fcgi /fcgi-bin/php-fcgi-wrapper
DocumentRoot /var/www/
<Directory /var/www/>
AddHandler fcgid-script .php
FCGIWrapper /usr/bin/php-cgi .php
Options Indexes FollowSymLinks MultiViews +ExecCGI
AllowOverride None
Order allow,deny
allow from all
</Directory>
</VirtualHost>

1
‘Q Refer to the Apache manual for descriptions of some of the options listed

above, as well as other configuration options.

7. Create the executable link to PHP CGI module:

Shell> mkdir /var/www/fcgi-bin.d
Shell> 1ln -s /usr/bin/php5-cgi /var/www/fcgi-bin.d/php-£fcgi-wrapper

apache2-mpm-worker package, downloaded in the first command line call, is designed to
run several threads simultaneously. PHP CGl binary is installed in the same statement.

We then enable the fcgid Apache module, and adjust its configuration. Most installations
need to increase the timeout; otherwise, you will be looking at an Internal Server Error if

the page rendering takes too long. To further complicate the diagnosis, timeouts are not
recorded in logs. We increase the values of IPCConnectTimeout, IPCCommTimeout, and
BusyTimeout, along with the ProcessLifeTime. Depending on your configuration, you may
need to increase these values further.

[}

Getting Started

Now, when a request comes in to Apache, the PHP CGI process will be launched to handle it.
With multiple simultaneous requests, multiple processes will be launched, and run parallel to
each other, handling individual requests.

If you have multiple clients using this server, they can have separate PHP
M . . .
~ processes, and not interfere with each other (for security purposes). You can
find more information on configuring this set up at http://typo3.org/
development/articles/using-php-with-mod-£fcgid/.

» Creating a scalable architecture
» Setting up an NFS share

Setting up a web server on Windows

TYPO3 runs on a Windows server with IIS. This setup is less common, but supported. Most
examples in this book assume you're running a Linux server.

If you want a development environment on your local computer running Windows, you can
set up WAMP server. It is an all-in-one installer that can set up all the necessary components
in minutes. Obviously, it will not be optimized for performance, but it will be enough to start
experimenting with TYPO3. Just download the installation package, and run the executable
file. It will guide you through the steps needed to complete the installation.

Q Download WAMP distribution at http://www.wampserver.com/en.

An alternative to WAMP is XAMPP—another package containing Apache, MySQL, PHP, and Perl.
Unlike WAMP, XAMPP is not specific to Windows platforms, and could be installed on a Mac,
Linux, or Solaris system as well.

\
‘\Q Find out more about XAMPP at http://www.apachefriends.org/

en/xampp.html.

How to do it...

1. Go to Control Panel | Add or Remove Programs | Add/Remove Windows
Components, and check the box next to Internet Information Services (1IS) as
shown in the following screenshot. Have your original installation CD handy, as you
will probably be asked for it to complete the installation.

Chapter 1

% Add or Remove Programs

&

Change or
Remaove
Programs

Add Mew
Programs

=

AddiRemove
windows
Components

@

Sek Program
Access and
Defaults

Currently installed programs:

[l show updates
Windows Components Wizard

Windows Components
You can add or remove components of Windows XP.

Sort by: [Mamg

E Us

Ta add ar remave a component, click the checkbox, A shaded box means that only
part of the component will be inztalled. To zee what's included in a component, click

Details.

Compohents:

ﬂlntemet Explarer O0ME &)
%Intemet Information Services [115] 135 MB |
O :gl IManagement and Monitoring Tools 20MBE —
[=2 Meszage Queuing 00Me

1 " WS F e on7Me ¥

Description: Includes Windows Accessones and Utilities for your computer.

Tatal dizk zpace required: BE.5 MB -
Details...
S ElE e e 4130 4 MB =2

,_ < Back “ et - I,_ Cancel]

2. Download the TYPO3 source and dummy package, and extract them into
C:\Intepub\wwwroot.

3. Download the installer binary package from http://php.net, and run it. Select
the IIS CGlI or Fast CGI module, and make sure that you install the complete package
(including extensions).

4. Restart the web server, and proceed with TYPO3 installation.

]

Getting Started

Windows web environment is powered by Internet Information Services (lIS). This component
is available in most Windows systems, but not installed by default. In Step 1, we install this
missing component. Once the installation is complete, our server is functional and capable of
serving files over the Web.

At this point, if you browse to a PHP file on the server through a browser, you should see the
PHP source code. The problem is it is not executing—that is because PHP is not yet installed,
and IS doesn't know how to handle PHP files. We solve this problem in Step 3.

Additional instructions for configuring PHP to run on IIS are available in the PHP manual:
http://www.php.net/manual/en/install.windows.php

There's more...

We've just installed the processing side of the application. We can use a DB on another
server, or install MySQL.

Installing MySQL database on Windows

MySQL can be installed on Windows very easily. Just download the MSI Installer file and run it.
The install wizard will take you through the steps needed to install the database.

TYPO3 can be configured to use other databases besides MySQL, including PostgreSQL,
MS SQL, Oracle, and others. This support is provided by DBAL (Database Abstraction Layer)
extension, so install it if you intend to use one of these products instead of MySQL.

» Setting up TYPO3

Creating a scalable architecture

In the previous examples, we've installed the database server on the same physical machine
as the web server. Although a small website will perform just fine on a single server, larger
sites will hit performance bottlenecks caused by limited capacity. A common industry solution
to this problem is to place the web server on a different physical server from the database.
This allows accommodation of future traffic increases by adding more processing servers.

As mentioned before, TYPO3 is thread-safe, so the processes running on one server will not
interfere with processes on the other servers.

6]

How to do it...

Chapter 1

Once you have moved your database to a different server, you need to point TYPO3 to the
new DB host. If you haven't installed TYPO3 yet, refer to the next recipe. Otherwise, select
the Admin Tools | Install module in the TYPO3 backend, or if you don't have access to the
backend yet, go to http://example.com/typo3/install/ (replacing example.com with

the domain name of your site).

Wl button Create Install Tool Enable File:

Resolving missing ENABLE_INSTALL_TOOL file error

You may get an error, stating that the Install Tool has been locked due to
missing ENABLE INSTALL_ TOOL file. This file is a security precaution,
preventing anyone from potentially accessing system settings. If this file
is present, it is removed after one hour of inactivity for the same reason.
But there are several ways to recreate it. If you're logged in to the
backend, the easiest way to create the file is to go to User tools |
User settings - [admin], and under Admin functions tab, click the

User Settings - [admin]

Personal data Startup Edit & Advanced functions

l Admin functions

l

Simulate backend user

-

Install Tool Access | Craate Install Toal Enabla Fila |

using the following command line or a file explorer:

If you don't have access to the backend, you can create the file manually

Shell> touch /var/www/typo3conf/ENABLE INSTALL TOOL

Once you have gained access to the Install Tool, go to Basic configuration, and adjust the

database access information.

[}

Getting Started

There's more...

You can now scale horizontally, by adding more processing servers accessing the same
database. In this setup, storage becomes a problem. Luckily, most static files needed by
TYPO3 are stored in the fileadmin folder that can be mounted from an external resource,
such as Network Attached Storage (NAS). See the next recipe Setting up an NFS share to
see how this can be accomplished.

Storage \

Web servers

We have now arrived at a highly scalable set up. Should the traffic to the application increase,
extra nodes—either web servers or database servers—can be added. This also allows for
failover in case of hardware or software failure. These setups are more complex and are
outside the scope of this book.

» Setting up an NFS share

Setting up an NFS share

In the Creating a scalable architecture recipe, we arrived at a server architecture to support a
website. That architecture required a separate storage, linked to processing servers over the
network. In this recipe, we will cover how you could set up such NAS on a Debian Linux server
with no special hardware.

How to do it...

1. Run the following command to install all the required components for Network File
System (NFS) sharing:

Shell> apt-get install nfs-kernel-server nfs-common portmap

]

Chapter 1

2. Edit /etc/exports file, and add the following line:
/var/www/fileadmin 10.0.0.0/24 (rw)

3. Run the following command to make the changes effective:
Shell> exportfs -a

You can fine tune the line in /etc/exports to fit your needs. Pay particular attention
to access if you want your files to be secure. You could list individual servers as a
comma-separated list, and give them explicit permissions to the shared folder.

The folder £i1eadmin will now be shared by other computers on the network, and could
be accessed by several web servers in our scalable architecture. Changes to the TYPO3
code—such as installing extensions or changing configuration values—will still need to be
done independently on each server, but all media files can be stored on the NFS share.

In the following section we will see how we can mount a Network File System.

Mounting an NFS

You need to install similar tools—nfs-kernel-server, nfs-common, portmap—to mount the
network file system correctly. Run the following command as a root user:

Shell> apt-get install nfs-common
After that, mount the shared folder on a different server with the following command:

Shell> mount -t nfs hostname:/nfs folder /var/www/fileadmin

» Creating a scalable architecture

Setting up TYPO3

We now have a web server running; so, we can install TYPO3.

How to do it...

1. Download the latest stable release, and a dummy package from http://typo3.org.
2. Read INSTALL. txt.

[}

Getting Started

3. Extract all files to /var/www.

To ease upgrades in the future, or to run several TYPO3-driven sites from
the same code base, you should extract the TYPO3 source package into

a separate directory from the dummy package. For example, you could
create a directory src under /var/www, and create a folder for each
version of TYPO3 that you plan on using. Also, under /var/www, create a
folder for each site you want to have on this server, and extract the dummy
package into each folder. Next, create symbolic links for folders misc,
t31ib, and typo3 in the site folders, linking to the source package.

» misc:
ln -s /var/www/src/typo3-4.3.0/misc /var/www/
mysite/misc
» t3lib:
ln -s /var/www/src/typo3-4.3.0/t31lib /var/www/
mysite/t31lib
> typo3:
ln -s /var/www/src/typo3-4.3.0/typo3 /var/www/
mysite/typo3

When a new version is released, simply create a new folder for it,
and change the links. If you realize that the new version is incompatible,
you can quickly restore links to the old version.

4. Launch 1-2-3 installer. If you have a fresh new installation, simply go to
http://example.com/typo3/index.php, and it will redirect you to
the installer.

5. Enter your database information in Step 1. If you installed the database on
the same host as the web server, enter localhost under address.

Type in your database parameters here:

Username:
Password:
Host:

=]

Chapter 1

6. In Step 2, select an empty database where you would like the TYPO3 data
to be stored, or create a new database. Make sure the database you choose
to use is empty.

Database
You have two options:

1: Select an existing EMPTY database:

Any existing tables which are used by TYPO3 will be overwritten in Step 3.
So make sure this database is empty:

typod -

2: Create new database (recommended):
Enter the desired name of the database here:

7. Inthe final step, TYPOS3 will import the default data schema and records it needs
to operate. You should now be able to log in to the TYPO3 backend.

1
‘Q If the backend user account has not been created, you can access the Install

Tool, and go to Database Analyzer to create the new backend user account.

There are several ways to download the latest version of TYPO3 source and the dummy
package. The best way to access both is to goto http://typo3.org/ and click on
Download. The source package contains all the TYPO3 core files needed for the system, while
the dummy package helps create the needed directories and files specifically for your site.

Before you proceed with uploading the files to the web server, you must read the instructions
in INSTALL. txt. Installation instructions change often and there may be components of the
web server that are required in the future. Installation documentation covers all the nuances
of installing the specific version you have just downloaded.

Getting Started

There's more...

After you have finished installing, explore the Install Tool fully, as it contains a full array of
options you need to configure your system. Go to http://example.com/typo3/install
to launch the Install Tool (replacing example.com with the domain name of your site).

» Basic Configuration runs a basic check of file permissions and server settings, and
will report if there are any problems. Make sure to go through any issues, as they're
likely to impact operations. You can also change database information here.

» Database Analyzer will check the integrity of your database schema. Click COMPARE
under Update required tables to see if the database needs to be upgraded. Make
sure that you do this after every TYPO3 source or extension upgrade. You can also
delete all data, or import it again.

» Update Wizard should be used when you upgrade your TYPO3 source version—for
example from 4.3 to 4.4.

» Image Processing will run a series of tests to check the ImageMagick, GD, or
GraphicsMagick configuration.

» All Configuration gives an overview of all the system configuration variables available
in the system. Go through all the options, and adjust the value to fit your system.

» typo3temp/ gives statistics and lets you perform operations on temporary files
created by TYPO3.

» Clean up database lets you clear cached image sizes.
» phpinfo() gives a standard PHP status report.

» Edit files in typo3conf/ allows some basic edit operations on files in the
typo3conf directory.

» About gives some general information about the use of the script, in greater detail
than just described.

There is an excellent installation guide available from http://dmitry-dulepov.com/e-
books/typo3-installation-and-upgrade.html. It covers setup instructions, as well
as steps that need to be taken to optimize and secure the new installation.

See also

» Installing needed extensions
» Creating a template for a site

Chapter 1

Installing needed extensions

Most of the power of TYPO3 comes from extensions. In fact, much of the system you have
just installed is powered by extensions—these come packaged with the source, and are called
system extensions, or simply sysext. You can find them under the typo3/sysext folder.
These extensions have been deemed necessary for most installations, and many come
preloaded by default. There are more extensions available through the TYPO3 Extension
Repository (TER), and they can be installed as local extensions, and will reside under the
typo3conf/ext folder. You can get a complete listat http://typo3.org/extensions

As we will be dealing a lot with multimedia, we should install the Digital Asset Manager (DAM)
extension. Its extension key is dam. While you can run a website without it perfectly well, a lot
of the information provided in subsequent chapters will assume that you have a lot of media
objects, and need an efficient way of organizing them. DAM is designed to do just that.

There are several ways to install extensions in TYPO3. Next, we will cover how you can install
extensions using the Extension Manager—which is the simplest way to install extensions. For
other possibilities, refer to the There's more... section further ahead. You may choose different
options depending on the situation, so you should be familiar with all methods.

How to do it...

1. Go to Admin Tools | Extension Manager.

1
‘\Q If you've just installed the system, the Extension Manager is not configured

for automatic extension retrieval. If it is already set up, skip to Step 7.

2. Inthe top-most selection box, choose Settings to go to the settings submodule.

Terminology

. A quick note about terminology: All options in the left frame of the backend
% menu are called modules. Some modules may have submodules—those
o~ are usually available in selection boxes at the top of the content frame.
Refer to TYPO3 official documentation for an overview of the structure of
the backend.

3. Under Security Settings, check the box if you want access to extensions that have
not been reviewed. If you leave the box unchecked, and are unable to find some
mentioned extensions, this would probably be the reason.

4. If you plan on uploading extensions to TER, then under User Settings,
enter your TYPO3 account information. You can sign up for a free account at
http://typo3.org.

Getting Started

5.

© ® N O

Under Mirror list, select the mirror that is closest to you, or leave the recommended
setting of random.

Scroll to the bottom and click Update to save your changes.
Go back to the submodule selector and choose Import Extensions.
In the List or look up all extensions box, type in dam.

In the list that appears, choose the Media (DAM) extension, and choose the
Import button.

. You will be notified of any Dependency Error that you can ignore or resolve.

Extension Manager
Extension: Hedia {DAM) (dam)

/DEPENDENCY ERROR

The extension "static_info_tables" was not available in the system. Please import it from
the TYPOZ2 Extension Repository.
] Import now (opens a new window)

Ignore this extension requirement

Try again

The Extension Manager will perform all the necessary database updates.

Extension Manager
Extension: Hedia {DAM) (dam)

(i) Installing Hedia (DAM): DATABASE NEEDS TO BE UPDATED

Before the extension can be installed the database needs to be updated with new tables or fields.
Please select which operations to perform:

Add fields

select/deselect all

ALTER TABLE be_groups ADD tx_dam_mountpoints tinytesxt;

ALTER TABLE be_users ADD t_dam_mountpoints tinytest;

ALTER TABLE tt_content ADD tx_dam_images int{(11) unsigned NOT NULL default '0';
ALTER TABLE tt_content ADD tx_dam_files int{11) unsigned NOT NULL default '0';
ALTER TABLE tt_content ADD ce_flaxform mediumtext;

Add tables

select/deselect all

CREATE TABLE tx_dam [
uid int{11) NOT NULL auto_increment,
pid int{11) NOT NULL default '0’,
tstamp int{11) unsigned NOT NULL default '0',
crdate int{11) unsigned NOT NULL default '0',
cruser_id int{11) unsigned NOT NULL default '0',
parent_id int{11) NOT NULL default '0',
deletad tinyint(4) unsigned NOT NULL default '0',

=

Chapter 1

There's more...

In the following section we will cover other methods of importing extensions—from T3X files
and code repositories.

Importing T3X files

Extensions are distributed and can be downloaded as files with T3X extension. You can
download the files through the TER. Once you have the file, it can be imported through the
Import Extensions submodule of the extension manager. The rest of the steps are the same
as above.

Checking out unstable extensions

In between stable releases, unstable versions can be exported from repositories. These
versions contain bug fixes and new features, but may not be fully tested, and therefore contain
some problems. Here is how the latest revision of DAM can be checked out from the repository.
Create a new folder under typo3conf/ext/dam, and in it, run the following command:

Shell > svn co https://svn.typo3.org/TYPO3v4/Extensions/dam/dam/trunk

This command assumes you have Subversion installed. If you don't,
you will get an error. Subversion client can be installed through APT:

\! Shell> apt-get install subversion
-~

If you're using Windows, you can use Tortoise SVN that is a graphical
interface to the Subversion client. It integrates seamlessly into Windows
Explorer and most commands can be accessed through right-click context
menu. Goto http://tortoisesvn.net/ to find out more about
Tortoise SVN.

The rest of the steps for installation are the same as above.

Creating a template for a site

Our goal is to have a website for people to visit, and as such that website needs a frontend
template where content will be displayed (TYPO3 can be used for other applications as well).

Getting ready

We will create a very basic template, which will allow us to see the results of the work in
TYPO3 on the page. On a real project, you will probably be given a template by a designer.

=]

Getting Started

Make sure to create a template directory under £ileadmin, and create a file
mainTemplate.html with the following contents:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Site template</title>
</head>
<body>
<!-- ###DOCUMENT BODY### begin -->
<div id="container">
<div id="leftContent">

<!-- ###LEFT_COLUMN### -->
Left Column Content
<!-- ###LEFT_COLUMN### -->
</div>
<div id="centerContent"s>
<!-- ###CENTER_COLUMN### -->
Center Column Content
<!-- ###CENTER_COLUMN### -->
</div>
<div id="rightContent">
<!-- ###RIGHT COLUMN### -->
Right Column Content
<!-- ###RIGHT COLUMN### -->
</div>
<div id="borderContent"s>
<!-- ###BORDER_COLUMN### -->
Border Column Content
<!-- ###BORDER_COLUMN### -->
</div>
</div>
<!-- ###DOCUMENT_ BODY### end -->
</body>
</html>

Also, create a new CSS file in the same directory, called mainStyle.css with the
following content:

#container {
width: 100%;
height: 100%;

}

#leftContent {
float: left;
width: 200px;
display: inline;

=]

}

#centerContent {
float: left;
width: 500px;
display: inline;

}

#rightContent
float: right;
width: 200px;

}

#borderContent {
float: right;
width: 200px;

Case Sensitivity

Make sure you follow case sensitivity, as TypoScript code is case sensitive,
~ . f . .

<:¥ and it doesn't see mainStyle.css as the same asmainstyle.css.

Come up with a convention for yourself. If you know all your names, follow
camelCase, you will save yourself a lot of double checking and headaches
when something doesn't work.

How to do it...

Chapter 1

1. Inthe Template module, browse to the page you would like to be the root of the site.

Create a new root template.
2. Inthe Includes tab, include the styles.content (default) static template.

Any page can be the root of a new site, even if it's within an already
defined page tree structure. By default, templates propagate through the
tree, but a new template record can be set as root:

Template [29] - NEW SITE, based on standard

Constants [¥] Setup

e

Getting Started

3. Inthe setup field, add the following code:

page = PAGE

page.typeNum = 0

page.1l0 = TEMPLATE

page.10 {
template = FILE
template.file = fileadmin/templates/mainTemplate.html
workOnSubpart = DOCUMENT BODY
subparts.LEFT COLUMN < styles.content.getLeft
subparts.RIGHT COLUMN < styles.content.getRight
subparts.BORDER _COLUMN < styles.content.getBorder
subparts.CENTER COLUMN < styles.content.get

}

page.includeCSS.mainStyle = fileadmin/templates/mainStyle.css

There is a lot that happens in just a few lines. Let's refresh your TypoScript knowledge.

page=PAGE creates a new top-level page object, and page . typeNum=0 assigns a page type
of 0 that is the default. So, when you go to the page with no type argument, this page object
will be used.

M Other type numbers can be used to display content in a different form.
Q For example, different type value can render a page for mobile device,
for print, or even as XML for external applications, such as RSS feeds.

In the earlier code, page . 10=TEMPLATE defines a content object at position 10 in the
content object array. When the page is rendered, the content objects are each rendered in
numerical order. Page . 10 is defined as a TEMPLATE content object, so it will take an HTML
template file, and process it. Lines template=FILE and template.file=fileadmin/
templates/mainTemplate.html define the location of the template file that will be
loaded. workOnSubpart=DOCUMENT BODY tells the page object to use the DOCUMENT _
BODY subpart section of the template.

At this time, the template file will be loaded and output as it is. However, the following lines
replace the respective subparts with output from each column:

page.10
subparts.LEFT COLUMN < styles.content.getLeft
subparts.RIGHT COLUMN < styles.content.getRight
subparts.BORDER_COLUMN < styles.content.getBorder
subparts.CENTER_COLUMN < styles.content.get

Chapter 1

This is possible because we included the styles.content static template.

What will happen now is TYPO3 will get a list of all content elements in each column, and
render them, that is, it will convert content into HTML. It will then place the resulting HTML
code in place of the subparts.

The design in mainTemplate.html is very simple—just HTML. We want to apply some
styling to that structure. Line page . includeCSS.mainStyle=fileadmin/templates/
mainStyle.css includes our CSS file, which does just that.

There's more...

For more information about templates, you should read a detailed guide to templating

in TYPO3: http://typo3.org/documentation/document-library/tutorials/
doc_tut_templselect/current/ (Modern Template Building). We will briefly go through
a few more features.

Markers vs. Subparts

Inthe mainTemplate.html file, we have used four subparts. This lets us preview the file,
and see exactly where the content will go once it is rendered. Subparts are defined by a
unique marker, enclosed in HTML comment tags, and surrounding some text, as in:

<div><!-- ###TEMPLATE_SUBPART### --> Code that will be replaced <!--
H###TEMPLATE SUBPARTH### --></div>

Sometimes, you just want content to be inserted into a specific point, in such a case, you can
use a marker. A marker is similar to a subpart, but exists by itself and doesn't reside in an
HTML comment:

<div>###TEMPLATE MARKER###</div>
Subparts are also used by extensions, where the subparts contain markers. This may not be

clear at this point, but after working with a few templates you will grasp the difference.

Including JavaScript
To include JavaScript files, add the following lines to TypoScript:

page.includeJS.someCode = fileadmin/templates/someCode.js

See TypoScript Reference (TSref) for more options: http://typo3.org/
documentation/document-library/references/doc_core tsref/current/

s

Managing Digital
Assets

In this chapter, we will cover:

» Setting up a file structure

» Setting up a filemount

» Setting up rights for backend users
» Setting up FTP access

» Setting up a category tree

» Creating a frontend upload form

» Debugging code

» Creating frontend user groups

» Creating frontend users

We will also look at digital asset management, why you may need it, and how to use it
in TYPO3.

Setting up a file structure

When starting a new site, one needs to decide on the file structure that will be used. The
specific directory tree will probably depend on the application and the type of information
stored in those folders. But, there are certain ways by which TYPO3 can help you sort files,
which should give you a guide as to how you should lay out the file tree.

Managing Digital Assets

Getting ready

First, you need to decide on the approach to the file structure.

>

By user

This is a common layout that's used in multiuser environments. Filemounts can be set
up to limit the user to just a specific folder. We will examine how this can be done in
the recipe Setting up rights for backend users.

By user group

This is similar to the previous setup, but more functional in team environments,
where several users might share a job function. Filemounts can be set up for a group
(content editor, publisher, videographer, and so on), and assigned to several users,
who would then share access to files.

By date

If you have a lot of time-relevant content, storing by date makes sense. Then,
selecting something from a specific day, month, or year becomes much easier using
selections in DAM.

By file type

DAM can sort files by file type; so, your file tree should not focus on file types.
However, you can separate the content by type—photos, videos, documents, and so
on. Furthermore, you can break down the categories by specific topics that the files
apply to. Note that specific topics can also be assigned to a file by use of categories,
which we will cover later in this chapter.

How to do it...

Once you decide on the file structure you are going to use, you need to create the appropriate

folders.

We will use this structure for the next few examples. Folders can be created within

TYPO3 and files can be uploaded through the same interface as well. In the following
screenshot, you can see three icons—they are for New folder, Upload, and New file.

List -

2 records found.

Filename Type

user_upload

=

Chapter 2

1. Click the New folder button in the upper left-hand corner of the Media | File module.
In the text field, enter the folder name.

2. Click Save.

Click the Upload file button, or select the Upload sub-module from
Media | File module.

4. Select the file or files that you want to upload. Note the folder name in the upper
right-hand corner—this is where the uploaded files will be moved to.

5. Click Upload.

There are multiple options you can use to upload files onto the system.

Uploading multiple files

An alternative way to upload files is through a module, which can be accessed under
Media | File | Upload. This module allows for multiple files to be selected for uploading.

I

Upload -

. [l
5 files » Overerite existing files

e

|
|
|
|
|
(

Maximum upload size: 2.0 M)

Upload files

If you want to allow the new files to overwrite the existing files, check the Overwrite existing
files checkbox. If it remains unchecked and there is a flename conflict, the new file will be
appended a number to distinguish it from the item with the same filename.

Managing Digital Assets

Uploading through traditional file module

If you do not have DAM installed, you will have access to the traditional file module. It gives
you access to the same functionality, letting users create new folders and upload files:

uploads
Temporary files

2574952693 _f542562ac8_b.jpg

T

T31¥TS5T4 a.inn

Click the Upload files button to upload one or more files into the current location. Click on
the New icon to go to a form, which gives you an option to create new folders, among other
possibilities, as shown in the following screenshot:

New file or folder

Mumber of folders: 1w

| Create folders || cancel |

CREATE NEW TEXTFILE

[*.tx<t, *.html, *.htm, *.css, *.tmpl. *.js. *.s5gl. *.xml. *.csv, *.phpsh, *.inc]

| Create file || Cancel |

» Setting up rights for backend users

Chapter 2

Setting up a filemount

Filemounts limit a user to just a specific folder tree under the £ileadmin directory. This is
good for security purposes, as well as general usability in a multiuser environment. Instead of
browsing through all the files available in the system, the user can be directed to just the files
he/she needs to manipulate.

Getting ready

To set up filemounts, you must have a directory structure in place. For the recipe that follows,
we will assume that we decided on a "by user" tree (see recipe Setting up file structure).

How to do it...

1. Use the List module and go to the root page of the site (PID: 0, usually the topmost
node).

2. Click the Create New Record button.

Choose Filemount. You should see the following screen:

=8 Filemount NEW - [FID: 0] [No title]

Disable:

Label:

Path:

B Base:

@ absolute (root) /
@ relative ../ fileadmin/

‘-‘-‘

Show secondary options (palettes)

4. Fillin the required Label field. The Label field allows you to name the filemount
to something you would remember, and could pick out from a list and know where
it points.

s

Managing Digital Assets

5. Fill in the required Path field. The path refers to the file system path to the directory
you want to set as the top level for the filemount.

Examples for the path

N /var/www/fileadmin/joe

-~y
D:\www\fileadmin\susan
The path can be absolute, like the examples above, or relative to
the fileadmin directory. Check an appropriate Base radio button
depending on the path you provide.

There's more...

To use a filemount, just edit a backend user or backend user group.

See also

» Setting up rights for backend users
» Setting up file structure
» Setting up FTP access

Setting up rights for backend users

In this recipe, we will create a backend user, who will be able to log into TYPO3 and have
limited rights, which would allow him or her to do his/her job without causing any deliberate or
accidental damage to the system.

Getting ready

To limit a user to his/her folder, he/she must have a configured filemount. Make sure you have
completed the Setting up a filemount recipe, and have correctly set up at least one filemount.

How to do it...

1. Under the Admin tools | User Admin module, click the button to create a new user.
2. Under the General tab, fill in the required fields—Username and Password.
3. Enter the user's name and e-mail address.

4. Under the Access Rights tab, select the modules that you would like the user or user
group to see in the left frame.

Chapter 2

a Backend user NEW - [PTD: 0] [Ne title]

General [Access Rights Mounts and Workspaces Options Access
Workspace permissions:
Edit Live (Online)
Edit Draft (Offline)
Create new workspace projects

DB Mounts

LR

Page
B Mount froem groups:
DB Mounts
File Mounts

@ File Mounts

Important: Hold down the CTRL key while
toggling elements in this list!

& Filecperation permissions:

Files: Upload,Copy,Move, Delate, Renamea, New, Edit
Files: Unzip

Directory: Move,Delate, Rename, New

Directory: Copy

Directory: Delete recursively (rm -Rf)

Salected: Items:

--‘Categnrl'ﬁ
&3 Media types

ﬁstatus

% Indaxing date

3 X K1 DY

Show secondary options (palettes)

5. Under DB Mounts, select the top page of the branch to which the user should

have access.

Eis

Managing Digital Assets

6. Under DB Mounts, make sure to also select the Media SysFolder that was created by
DAM extension, as that is where the media records will be stored.

7. Under File Mounts, select the filemount you created previously for the user (or if you
decided to set up the filemounts differently, choose the correct filemount combination
for the user).

1
‘Q You can select several filemounts if they apply to the user—use Ctrl + click on

a PC or Command and click on a Mac.

8. Under Fileoperation permissions, select if the user should have the right to upload,
copy, move, delete, rename, create new, and edit existing files (first option), unzip files
(second option), create new, edit, move, delete, or rename directories (third option),
copy directories (fourth option), or delete directories recursively (fifth option).

There's more...

Feel free to browse other options in the form and read the Help menu or the official
documentation to see what they do. Under the Mounts and Workspaces tab are some
options related to workspaces, which we will not focus on. If you have DAM installed, you will
also get an option to set up DAM Mounts, giving the user rights to specific categories, media
types, file statuses, and indexing dates (see the previous screenshot). Some other options
that can be limited for specific users include display options (for example: maximum number
of thumbnails in a list), file types that the user is able to upload, and much more. A lot of
these options need to be set through the TSconfig field under the Options tab.

Backend user groups

If you have several users sharing the same basic set of rights, you can set up a backend
user group, and add the user to the group. Backend groups can be set up the same way as
individual users.

If you're setting up a user group, under the Access Rights tab, you can also specify which
tables the users have rights to view and modify, as well as which exclude fields they have
rights for. Exclude fields are set for tables, but users can be restricted from seeing and
modifying them. You can give users explicit rights to these fields.

If a backend user has one or several groups, you can either select to mount DB mounts, file
mounts, both, or neither from the groups. This can be done in the Mount from groups field of
Mounts and Workspaces tab of the individual user.

NED

Chapter 2

Setting up FTP access

There are times when you need to allow FTP access to your users. There are plenty of FTP
daemons to make it easy. However, you would have to set up individual users, and configure
their restricted access. It is much better to leverage the backend user configuration already in
TYPO3, and use it to provide basic FTP access to the same files accessible in the backend.

Getting ready

We will use Pure-FTPd daemon to provide FTP access. The steps below assume you are on a
Debian system, and Pure-FTPd is available in package repositories. If its not, you would need
to compile it from source.

How to do it...

1. Install Pure-FTPd, along with the MySQL authentication module.

Shell> apt-get install pure-ftpd-common pure-ftpd-mysql

2. Open the MySQL configuration file (by default in /etc/pure-ftpd/db/mysq.
conf). Edit the following values:

[m]

[m]

[m]

MYSQLServer: Point it to your MySQL server IP, or localhost
MYSQLUser: DB username

MYSQLPassword: DB password

MYSQLDatabase: Name of the DB that TYPO3 is using
MYSQLCrypt: "md5"

MYSQLGetPW: SELECT password FROM be users WHERE
username="\L" AND LEFT (username, 1) != ' ' AND
deleted=0

MYSQLDefaultUID: Web server user ID
MYSQLDefaultGID: Web server group ID
MYSQLGetDir:

SELECT CONCAT ('/path/to/fileadmin',file.path) AS Dir

FROM be users as user

JOIN be groups as ugroup ON user.usergroup=ugroup.uid
JOIN sys filemounts as file ON user.file mountpoints=file.
uid OR ugroup.file mountpoints=file.uid

WHERE user.username="\L" LIMIT 1

3. Replace /path/to/fileadmin with an actual path to the fileadmin directory on
your server.

s

Managing Digital Assets

4. Create a new file /etc/pure-ftpd/conf/ChrootEveryone with content 'yes'.
5. Restart the Pure-FTPd daemon:

Shell> /etc/init.d/pure-ftpd restart
6. Attemptto log in into FTP with one of the backend user credentials.

When the user requests the FTP server and provides authentication values, Pure-FTPd will
connect to the MySQL database, and issue queries to authenticate the user and, if successful,
determine the starting directory. In the configuration file, we set some parameters to define
this process. When the user is authenticated, the FTP daemon will establish connection with
the MySQL database that we defined, select the TYPO3 database as we instructed, and issue
the following query:

SELECT password FROM be users WHERE username="\L" AND LEFT (username,
1) != '_' AND deleted=0

\L in this expression will be replaced with the username entered by the user and the query
will return the password stored in the database for this user. We prevent usernames starting
with underscores because those are usually used for system accounts, and user records that
have been deleted. Password returned by this query will be encrypted, so we tell Pure-FTPd to
encrypt the password used in the input prior to making the comparison.

If the user has been authenticated, we need to determine which directory they need access
to. That is done by the second query:

SELECT CONCAT('/path/to/fileadmin', file.path) AS Dir

FROM be users as user

JOIN be groups as ugroup ON user.usergroup=ugroup.uid

JOIN sys_filemounts as file ON user.file mountpoints=file.uid OR
ugroup.file mountpoints=file.uid

WHERE user.username="\L" LIMIT 1

This will find one filemount from either this user's account, or the group account, and place
the user into that directory upon login. This query also assumes filemount paths are relative to
the £ileadmin directory.

All file operations need to be made by the web server user—so that Apache can operate with
them without running into permission issues. You can also modify specific permissions of new
files and folders created through FTP.

=)

Chapter 2

. Any files uploaded through FTP will not be indexed by the DAM. To have them
~ indexed after they're uploaded, you can use the dam_cron extension to
Q index all the new files on a schedule. See Indexing downloaded files recipe in
Chapter 8 for more information

There are a lot more options you can customize, based on your setup and business needs.

Debugging

If something is wrong in the configuration, the end user will not see any information as to
what went wrong—he/she will simply be denied access. This makes it seem like there is an
authentication issue, while it could be anywhere in the configuration. Luckily, Pure-FTPd logs
all actions in the syslog, so you can refer to it for more information that should point you to the
root of the problem. Syslog on Debian system is located in /var/log/syslog.

Different hosts

The FTP server doesn't have to be located on your processing server—in fact, it's better for
security purposes to move it to a different host. The server can still access the same files, if
you mount the £ileadmin directory from an NFS share (see Setting up an NFS Share recipe
in Chapter 1).

More options

There are other options that can be set. The manual covers them thoroughly, so refer to
it for more information: http://download.pureftpd.org/pub/pure-£ftpd/doc/
README . My SQL.

» Setting up a filemount
» Setting up an NFS share
» Indexing downloaded files

@l

Managing Digital Assets

Setting up a category tree

Files can be sorted by categories. This provides another layer of classification for media
assets, allowing them to be organized and grouped without changing their physical location. A
common setup is to arrange the physical storage as we have—by user or by user group in order
to make rights assignment easy, but setup a category tree by subject of the media content, to
group similar files together. Here is an example:

E--%Categuries
i Animals
=T} Landscapes
i.{Tf Forests
‘T Mountains

‘T Lakes

Getting ready

Category support is built in to DAM, but to ease category management you should install the
extension dam_catedit. This extension provides full management capability optimized for
DAM categories. We've covered how to install extensions in Chapter 1 in recipe Installing
needed extensions, so refer back to it for a detailed description.

Once you have installed the extension, the Categories module will appear under Media.

How to do it...

1. Go tothe Media | Categories module.

2. If there are no categories in the system yet, you will see only a top entry Categories.
Click on it to bring up a context window, with the option to create a New subcategory.
If there are already categories in the tree, click on any category to create a
New subcategory.

|
New subcategory =

----- {1 Unreviewed User Madia

: Reload the tree from server

=

Chapter 2

3. Fillin the form, making sure to enter a Title, as that's the only required field.
Check that the Parent category is selected correctly.

[Media Category NEW - [FID: 72] Medis

Title:

Subtitle:

Navigation title:

| |

Description:

Keywords (,):

Parent category:
Selectad: Items:

Photogallery IE| -~ eT
[T Sally Maxson

[T Kevin Lorenzi

[l

4. Save and close.

Our recipe covered the creation of a category tree, but there are more uses for categories.
Let's briefly touch on a few.

Associations

A file can only be in one folder, but the same file can be assigned to multiple categories. This
creates enormous potential for media organization. Files can be classified according to their
subjects. They can also be selected and sorted based on the categories assigned.

Photo galleries

Many photo gallery plugins use DAM categories as albums. We will configure one such gallery
in Chapter 4. Other extensions use the same principle, and require a well-structured category
tree to have a photo gallery based on images in the DAM.

More options

Other options available in the form include a Description field, Subtitle, Keywords, and access
information. These fields are self-descriptive, and are described in the extension manual.

&1

Managing Digital Assets

See also

» Creating a gallery using ce_gallery

Creating a frontend upload form

In this recipe, we will create a simple extension, which would add a form to the website, and
let users upload files. Files will be indexed by the DAM.

Getting ready

We will create the extension from scratch, and if you want to follow along, make sure to install
Kickstarter to create the framework. Otherwise, you can download the finished extension—but
make sure to review the How it works... section to understand what happens in the code.

How to do it...

1. Under the Extension Manager, select Create new Extension. If you don't see the
option, Kickstarter has not been installed.

2. Under General Info, click the plus icon (+), and fill in the basic information. Name the
extension User Upload.

3. Under Dependencies, enter dam. When the extension is installed, Extension
Manager will check the presence of DAM, and proceed only if DAM is present and
installed. Likewise, Extension Manager will not allow DAM to be uninstalled as long as
our extension is still installed.

4. Click the plus icon next to Frontend Plugins. Check the box that generates the
uncached USER INT object. Leave other options as default.

Frontend Plugins
Create frontend plugins. Plugins are web applications running on the website itself (not in the backend of TYPOZ2). The default gued

shop, rating feature etc. are examples of plugins.

Enter a title for the plugi
|User Upload| | [English]

By default plugins are generated as cachable USER cObjects. Check this chaeckbox to generate an uncached USER_INT cObject.

5. Click the plus icon next to the Static TypoScript code, and name it user_upload.
Enter the code from file static/default/setup. txt of extension dam user
upload, which can be downloaded from the book site.

6. Click View result, and write the generated files to the default directory.

7. Editext emconf.php, look for the parameter uploadfolder in the SEM_CONF [$
EXTKEY] array, and set it to 1.

=

Chapter 2

8. Replace the contents of pil/class.tx_damuserupload pil.php with contents
of its namesake from dam user upload.t3x, downloaded from the book site
(http://www.packtpub.com/files/code/8488 Code.zip).

9. Create the file class.tx_damuserupload feindexing.php in the root of the
extension with contents of its namesake from dam_user upload.t3x, downloaded
from the book site.

10. Create a new folder in the extension directory and name it res. Resource files
(templates, images, JavaScript, CSS) should go here. Create a new file template.
html with contents of its namesake from dam_user upload.t3x, downloaded
from the book site.

11. Install the newly created extension.
12. In the Page module, create a new page, and create a new content element on it of
type General Plugin.

13. Select User Upload under the list of plugins. Preview the page, and you should see
a form on the page. If you fill it out correctly, it will upload your file to fileadmin/
uploads/tx_damuserupload.

@ 2574952693_f542562acd_b.jpg PG 02-10-09 13.7 K R d? Q B @ o
Bl @ 194-LIVE_posSos_osbijardine2.em... 1PG 20-11-03 303 R OB DmRa

We will go over each function to see what they do, and how they work.

main()

When a plugin is present on the page, the main function of the tx_damuserupload pil
class is called when the page is rendered. The $Sconf parameter passed to the function
contains the TypoScript configuration array, in our case from plugin.tx damuserupload
pil. What happens from that point on is up to the plugin. At the end, the main function
should return the HTML output, which will be inserted into the page at the point where the
plugin was called.

Remember markers and subparts? This is one of the instances where they
X come into play. The HTML output of a plugin is most likely going to replace a
~ marker or a subpart—if called from TypoScript, or if the plugin was included in
Q the Page module. Regardless, the plugin output is unlikely to be on a page by
itself, and needs to be within a larger template. Markers and subparts, which
are substituted by TYPO3 make it possible.

Managing Digital Assets

Let's examine the code line by line as it is executing.

Our plugin will be a USER__INT object, so it will not be cached with a page, but included every
time. Therefore, we set the class variable to indicate this:

$this->pi USER_INT obj = 1;

We do this because the form substitutes some values based on the user who is logged in. If
you look in ext localconf .php, you will see this line:

t31lib_extMgm::addPItoST43 ($_EXTKEY, 'pil/class.tx damuserupload pil.
php', ' pil', 'list type', 0);

It adds the plugin information to the static template, so that when the plugin is called to
render on a page, TYPO3 knows where to look for the code. Note that the last parameter is set
to 0. The function definition states that if the last parameter-$cached-is set as USER, content
object (cObject) is created, otherwise, a USER_INT object is created. We are creating a USER _
INT object, so that is the reason for its value.

Kickstarter took care of everything for us in this case, but it's important
s to understand what it did in case you want to make some changes later.

Next, we check for the presence of POST parameters sent to the script. If they are not present,
it means that we need to show the user a form for uploading files. If they are present, then the
form was submitted and we need to process it.

if (£31lib div:: POST()) {
$input = t3lib_div:: POST('tx damuserupload pil');
Scontent .= Sthis->uploadFile(Sinput['title'], Sinput['author'],

$input ['description']) ;
}
else {
Scontent .= S$this->getForm() ;

}

=)

Chapter 2

Always use TYPO3's API function for accessing GET and POST parameters!
These functions are a first line of defense against malicious values sent to
the script. Use t31ib_div:: GET () to access GET variables, t31ib_
div:: POST () toaccess POST variables, and t31ib div:: GP () to get
a value from either POST or GET, with preference to POST values.

That being said, you should always perform the necessary checks before
using the values in your application, especially, if they are sent to the

% database. If the parameter should be a number, use t31ib testInt ()

T~ to see if itis indeed a number or PHP intval () function to convert into an

integer. If the parameter should be a number within a certain range, use the
t31lib_div::intInRange () function. If the input is a string, make sure
it's quoted by using the SGLOBALS [' TYPO3 DB'] ->fullQuoteStr()
function to escape the value.

See t31lib/class.t31lib _div.phpand t31lib/class.t31lib_
db . php for the descriptions of these and other useful functions.

getForm()

The getForm function takes a template file, replaces a few markers, and returns the HTML
output ready to be returned to the browser. For more information about how markers and
subparts work, refer back to recipe Creating a template for a site from Chapter 1.

First, we get the template file content:

StemplateFile = $this->cObj->fileResource(sthis-
>conf ['templateFile']) ;

Path to the template file is stored in $this->conf ['templateFile"'], which corresponds
to plugin.tx_damuserupload pil.templateFile. This value could be different for
different websites, different pages in the page tree, or even different elements on the page.
Using the TypoScript value allows for maximum flexibility of the plugin.

We then extract the subpart ###FORM### out of the entire template. Variable Stemplate
now contains the HTML within the subpart tags.

Stemplate = $this->cObj->getSubpart ($StemplateFile, '###FORM###') ;
The function then proceeds to replace the markers within the $template with content.

Smarkers ['###LINKBACK###'] = Sthis->pi getPageLink ($GLOBALS['TSFE'] -

>id) ;
Smarkers ['###MAXFILESIZE###'] = t31lib div::getMaxUploadFileSize () *
1024;
Smarkers [' ##H#AUTHORH###'] = SGLOBALS['TSFE']->fe user-suser|['name'];
Smarkers ['###EXTENSIONS###'] = str replace('.', '', S$this-

>conf ['allowedExtensions']) ;

@1

Managing Digital Assets

We use the pi_getPageLink function (available from the tslib pibase class) to

get the link to the current page. We get the maximum allowed upload size through the
t31lib div::getMaxUploadFileSize () function, and convert it into bytes by
multiplying the result by 1024. If a user is logged in to the frontend, then the user's name

is available in the SGLOBALS['TSFE'] ->fe user->user['name'] variable. Otherwise,
the variable will be empty. Finally, we display a list of allowed extensions, which again could
vary depending on the use of the plugin, and could be set in TypoScript.

Finally, we substitute the markers with content, and return the resulting HTML:

return $this->cObj->substituteMarkerArrayCached($template, S$markers) ;

uploadFile()
The uploadFile function processes the form results, handling file upload and indexing.

First, we gather information about the location of the file:

// Relative directory for user uploads
SrelativeDirectory = SGLOBALS['TYPO3 CONF VARS'] ['BE'] ['fileadminDir']
'uploads/tx_damuserupload/'; B B
// Full directory to user uploads
SuploadDirectory = t31lib_div::getIndpEnv ('TYPO3_DOCUMENT ROOT')
t31lib_div::getIndpEnv ('TYPO3_SITE PATH') . SrelativeDirectory;

SGLOBALS['TYPO3 CONF_VARS'] ['BE'] ['fileadminDir'] contains the path to the
fileadmin folder—usually just £ileadmin/, but the value can be different in different
installations. Our folder is under £ileadmin/uploads/tx_damuserupload—this is where
the uploaded file should be moved. The folder is created when the extension is installed, and
the value $EM_CONF ['dam_user upload'] ['uploadfolder'] controls that behaviour.
See Step 7 in How to do it... section for more information.

Next, we perform basic checks to see that everything is ready for file operations:
if (1is_dir ($uploadDirectory)) ({

checks that the upload directory exists—and wasn't deleted after it was created.
else if (!is writable ($uploadDirectory)) {

checks that the directory is writable by the server. If it's not, we will not be able to move the
uploaded file there.

else if(!in array(strtolower (strrchr (basename ($_FILES['tx
damuserupload pil file'] ['name']), '.')),
t31lib div::trimExplode(',', s$this->conf['allowedExtensions'],
TRUE))) {

checks that the uploaded file has an extension we have explicitly allowed to be uploaded.

=

Chapter 2

For better security, check the file MIME type, and make sure it matches
s the used extension. We will leave this change as an exercise for the user.

In case any of the conditions are not met, an error message is sent to the browser. If
everything is set, we proceed to choose a name for the uploaded file:

$1i = 0;
do {
Si++;
Sfilename = t3lib div::shortMD5($i . SGLOBALS['TSFE']->fe user-
>user ["uid"] . $_FILES['tx_damuserupload_pil_file']['name'])_. v
$_FILES['tx damuserupload pil file'] ['name'];

}

while (file_exists($relativeDirectory . $filename)) ;

We use a hash to make the filename unique. In case the file already exists, we repeat the
process using a different hash until we find an unused filename.

Finally, we move the file from its temporary location to the upload directory, and index it:

if (move uploaded file($ FILES['tx damuserupload pil file'] ['tmp_
name'], SuploadDirectory . $filename))
$uid = Sthis->indexFile($relativeDirectory . $filename, S$title,
$author, $description) ;

S$content .= 'Success: The file <i>' . basename($_FILES['tx_
damuserupload pil file']['name']) . '</i> has been uploaded.';
}
indexFile()

Here, we initialize the indexing class, and run the indexing process. Indexing is needed to
create a DAM record associated with the file.

$pid = tx dam db::getPid() ;
$time = $SGLOBALS['EXEC TIME'];

We gather two parameters from the indexing function—the PID of the page where the record
will be stored (can be easily found using tx _dam db: :getPid ()), and the time when the
record was created.

. Typical function to use to get the Unix timestamp in PHP is time () . However,
% when used repeatedly, it causes a small performance drop. TYPO3 stores the
i time the script started executing in a global variable SGLOBALS [' EXEC_
TIME'], which is much faster to access than the time ().

@]

Managing Digital Assets

We then instantiate the indexing class and run the indexing function:

$index = t31lib_div::makelInstance ('tx damuserupload feindexing') ;
$index->init () ;

$index->initEnabledRules () ;

$index->setRunType ('auto') ;

Smeta = $index->indexFile($Spath, S$time, pid, stitle, Sauthor,
Sdescription) ;

Use t31ib div::makeInstance () function instead of PHP new keyword
to instantiate classes. This allows extensions to extend classes using XCLASS
and have the extended class used instead of the original.

TYPO3 4.3 also supports singletons—meaning that regardless of how many
. times a class is instantiated, the same instance is returned every time. This
% saves a lot of memory in cases where the object doesn't need to have its own
~ identity. To declare the class as singleton, it needs to implement the t31ib
Singleton interface:

class tx myClass implements t31lib_Singleton {

Unfortunately, DAM's tx_dam_indexing class only works with a backend user logged in.

As we are creating a form that will be used by frontend users, we need to rewrite some of the
default functionality. Class tx damuserupload feindexing extends tx dam indexing,
and replaces the function indexFile with a simplified version. We will not go into it in detail,
but the only major changes are the function parameters which are stored in the fields list:

Smeta['fields'] ['title'] = !empty(Stitle) ? S$title : Smeta['fields']
[rtitle'];

Smeta['fields'] ['creator'] = !empty($Sauthor) ? S$author
Smeta['fields'] ['creator'];

Smeta['fields'] ['description'] = l!empty($Sdescription) ? $description

Smeta['fields'] ['description'];
And the record is created directly in the database, bypassing the TYPO3 Core Engine (TCE):

function insertUpdateData ($meta) {
Smeta = tx dam db::cleanupRecordArray('tx dam',6 S$meta);
unset (smeta['uid']) ;
Sres = $GLOBALS['TYPO3 DB']->exec_ INSERTquery ('tx dam', S$meta);
return $GLOBALS['TYPO3 DB']->sqgl insert id($res) ;

Chapter 2

There's more...

One useful extension of this concept is a workflow. An uploaded item can be attached to a
workflow, and backend users will have to take action on it. An example application of this is
having a backend user approve a file before it is shown on the site. Take a look at extensions
sys_workflows and sys_todos, available from the TER.

Another extension you can use is fileupload. It works the same way, but doesn't use DAM
for indexing.

See also

» Creating frontend users
» Debugging code

Debugging code

In the Creating a frontend upload form recipe, we went through the execution of the script
line by line. When writing your own code, you would probably want the same benefit, giving
you the ability to go through execution line by line, and seeing exactly what is happening. This
functionality is provided by debuggers.

There are several debuggers available for PHP for any platform. Most debuggers are bundled
with an IDE, so that you can use them together. For example, NuSphere PhpEd comes with
DBG debugger, which we will make use of in this recipe.

Getting ready

This recipe assumes you have NuSphere PhpEd installed on your Windows computer. If you
don't—skip ahead to the There's more... section for general tips on using debuggers, which
you can then apply to a debugger of your choice.

For more information about NuSphere PhpEd, go to
s http://www.nusphere.com/.

How to do it...

1. GotoC:\Program Files\nusphere\phped\debugger\server (or equivalent
installation path).

2. Select the directory based on your web server (for example, if you're using WAMP, go
to Windows\x86), and select the extension for your version of PHP.

i

Managing Digital Assets

3. Copy the d11 file to the PHP extensions folder (in a default WAMP installation,

C:\wamp\bin\php\php5.x.x\ext).
4. Enable the extension by adding the following lines to php . ini:

extension=php dbg.dll
[debugger]
debugger.enabled=0n
debugger.profiler enabled=0n

Instructions for other platforms and other debuggers and systems are similar. Refer to the
installation manual for specific steps on how to get the debugger working on your system.

Once installed, you can run the code through the debugger and set breakpoints where

execution should pause, giving you an overview of the state of all variables.

One powerful function that the DBG debugger enables is the DebugBreak () ;. When placed
anywhere within a program, it causes the execution to pause, and jumps into the IDE for
debugging. This is extremely useful when you want to debug a state of the application (such
as TYPO3) that requires authentication, complex parameters, or session variables. The

following screenshot shows how to place DebugBreak () ; in between code:

=TT ’
48 =] function main({$content, sconf) {
49 » (this-»conf = $fconf;
50 e $this-»pi USER_INT obj = 1; // Configuring so cEching 1s not
Ll
52 mpe
a3
54 F4 If form has been submitted, process it.
55 [if (t3lib div:: POST()} |
26 = f#inout = t3lib diw:: POST({'"tx damuseruvload oil'i:
LI T
Source |Preview
|L0:3Is
| debugbreak()
Mame Value T
= conf array (4 ele...
userFunc "tw_damuserupload_pil-=main™ string
templateFile "EXT:dam_user_upload/res/template. html™ string
indudeLibs "typo3conffext/dam_user_upload/pilfdass.tx_d... string
allowedExtensions ".jpa, .jpeq, .gif, .tiff" string
—| Locals | Globals ﬁﬂ, Watch |[C] Immediate |[E] call Stack Breakpoints

Chapter 2

When the execution stops on a breakpoint, we can get an overview of all the variables
available—both local to our class and function, and global to the script. You can even change
the value of any variable to a different value "on the fly". You can examine the call stack—the
path the execution took to reach the breakpoint. Furthermore, you can go back in the stack to
trace the variables to their initialization or instantiation, or step forward and observe the state
of the application change with every line of code. The following screenshot shows how a

Call Stack looks for our extension dam_user upload we created in recipe Creating a
frontend upload form:

Location Description
C» dass.be_... t_damuserupload_pil-=main() -
internal f... call_user_func_array()
dass. tsli... tslib_cObj-=calliserFuncton()
dass. t=li... tslib_cObj->USER()
dass. tsli... tslib_fe-=INTincScript_process()
dass. tsli... tslib_fe-=INTincSaript) il
Localz Globals EL watch |CJ Immediate |E Call Stadk | Breakpoints

Debuggers can be installed on hosts other than your localhost, allowing you to use
development environments closely matching your final production environment to debug
your code.

Creating frontend user groups

Most websites have registration that gathers users' information and gives them access to
certain functionality of the site—such as commenting, rating, or purchasing products. But
suppose you would like to have several different groups of users, perhaps with different access
rights? TYPO3 allows that—in fact, user groups are just another record that can be created.

How to do it...

1. Inthe Web | Page module, click on the parent page icon, and select New.

Managing Digital Assets

2. Inthe page wizard, select SysFolder as the page type (also known as record
storage page).

General [Metadata Resources Options

D { Standard

PAGE
[Standard

[Backend User Section

:]™
LINK
- (O —
E Mount Paoint

23 Link to external URL

SPECIAL

T Recyder

N
= Visual menu separator |

3. Switch to Web | List module, and in the newly created SysFolder, create a new
record of type Website usergroup.

4. Fill in the group title that you would like to use to identify the group. For a description
of the other options, refer to the official documentation.

See also

» Creating frontend users

Creating frontend users

Frontend users are also just records in TYPO3, just like everything else. However, you don't
want to create the frontend users manually, especially if you have a large site with a lot of
users. Luckily, there are extensions that make this operation easy to perform. We will install
the extension sr_feuser register and configure it to register users.

=

Chapter 2

How to do it...

1. Installthe sr feuser register extension. Refer to the Chapter 1 recipe Installing
needed extensions for a reminder of how the extension can be installed.

2. Insert a static template. Modify the template record for the site, and under the
Includes tab choose to include FE User Registration static TypoScript, either CSS-
styled or old-style.

3. Insert the plugin on a page. Refer to the manual for possible codes. The plugin will
render with the default template, which you have the option to change.

There's more...

In the previous recipe, Creating frontend user groups, we created several user groups. But
how would users register into the various groups? This is actually simple—it only requires
several pages with different instances of the plugin. Depending on which page the users use
to register, they will be registered into different user groups. You would probably want to limit
access to the different pages to prevent unauthorized access. You could also write a custom
extension to change the user's user groups based on some parameters, but we will leave it as
an exercise for you, the reader.

See also

» Creating frontend user groups

s

Operating with
Metadata in Media
Files

As great as modern technology is, computers are not yet able to look inside media files to
describe them. Although there is some advancement, such as facial recognition technology,
we still have to rely on metadata to describe files. In this chapter, we will learn about the
major types of metadata, how it can be inserted in files, and how it can be extracted and used
for content management in TYPO3.

In this chapter, we will cover:

» Inserting metadata into images

» Extracting metadata from images
» Inserting metadata into audio

» Extracting metadata from audio

» Extracting metadata from PDF

Operating with Metadata in Media Files

Inserting metadata into images

A lot of the images already have metadata. Most digital cameras record their settings at the
time of capture (such as ISO setting, white balance, resolution, as well as camera model,
firmware version, and more); along with image specific information (shutter speed, aperture,
focal distance, use of flash, and so on). If an image is created using a software package,

it usually saves some settings of its own, like software name, version, license key holder
information, and more. So when you open an image, don't be surprised if it already has plenty
of metadata in it.

How to do it...

In this section, you will see how we can insert metadata in Windows as well as Photoshop.

In Windows

To view the metadata stored in an image, and modify it if necessary, right-click on a file and
select Properties. Under the Details tab, you will see all the available fields:

2] IMG_5527.jpg Properties [

| General | Sec:..lr'rty| Details | Previous Versions | Offine F|Ies|

13

Property Value

Description
Title Add a title
Subject
Rating
Tags
Comments

m

Origin
Authors
Date taken 8/12/2007 2:36 FM
Program name
Date acquired
Copyright

Image
Image D
Dimensions 4368 x 2512
Width 4368 pixels
Height 2912 pixels

Uncaned =l rmnnb dicoe VAN A

Remove Properties and Personal Information

0K || Cancel Apply

NED

Chapter 3

In Photoshop

Open the image, and under File menu, choose File Info You will be presented with the
following screen:

=
CRW 6397jpg = J— X
i Description Description ®
Tlustrator N
Adobe Stock Photos Document Title: El
IPTC Contact -
IPTC Image Author: | Dan Osipov -
‘ IPTC Content
[|PTC Status Author Title: [-]
Camera Data 1 L
Camera Data 2 Description: A E|
Categories
History
DICOM e
Origin L .
Advanced Description Writer: El
Keywords: A El
l la Commas can be used to separate keywords
P——
Copyright Notice: I
-
Copyright Info URL: El
Go To URL...
Created: 7/15/2006 4:29:30 PM
Modified: ©/26/2006 6:50:12 PM
Powered By Application:
me' Format: imagefipeg

f OK] [Reset

You now have access to all the fields of the metadata.

Extracting metadata from images

Extracting metadata from images, when they are uploaded, is very easy. Extension
cc_metaexif in combination with DAM handles all the work for you.

How to do it...

1. Install cc_metaexif. Extension cc_metaexif is a service extension that is
executed when new files are uploaded. It parses the metadata stored in the EXIF
and IPTC sections of the image file, and stores this data in the DAM record associated
with the image file.

s

Operating with Metadata in Media Files

2. To test how the extension is working, upload an image with modified metadata.
You should see the metadata used in DAM fields, such as Title, Description, and
Copyright owner.

View Item

Media [3] - Strange Bug

COverview] Metrics I Copyright l Extra data l Usage]

Titla:
EI Strange Bug
IMAGE File name:
IMG_2508a.jpg
File path:
fileadmiinfjim
291224368 px, 6.1 M,

Title:

|5tra nge Bug |

Keywords [,):
[bug,wings,grass,insect |

This insect was found near a lake in Delaware Water Gap

If you click on the Extra data tab, you will get access to raw data as it was
imported from the file. Most of it probably didn't match any of the DAM
fields, so remained unparsed. You can still make use of it by writing custom
extensions that can manipulate this data and make use of it for your
particular purpose. We will cover this later on in the book.

View Item

@ Media [2] - Strange Bug

Crvarview Metrics Copyright Extra data

EXIF L
UndefinedTag-0x882A array

Exif_IFD_Painter 208

ExposureTime 17125

FMumber 56/10

ExposureProgram 2

1S0OSpeedRatings 500

ExifWarsion 0221

DateTimeOriginal
DateTimeDigitized

2007:06:24 11:22:11
2007:06:24 11:22:11

ShutterSpeedValues 6365784,/1000000
ApertureValue 4970854/1000000
ExposureBiasValus 0/1
MaxApertureValue 3625/1000
MeataringMaode 5

Flash 9

FocalLength i80/1

ColorSpace 65535
ExiflmageWidth 2912
Exiflmagelength 4368
FocalPlaneXResolution 4268000/1415
FocalPlaneYResolution 2912000/942

FocalPlaneResolutionUnit 2
IPTC
caption

byline Dan Osipowv

This insect was found near a lake in Delaware Water Gap

Chapter 3

Operating with Metadata in Media Files

Services are called upon a specific action. In this case, the service is called when a new file
is indexed. It's only executed if the file is of a specific type, and if the system is capable of

certain actions.

Let's look at how cc_metaexif works in detail. Open ext tables.php in the extension
folder. You can see that it defines three services. We'll examine the middle one:

t3lib extMgm::addService ($ EXTKEY, 'metaExtract'
/* sv type */, 'tx ccmetaexif sv2' /* sv key */,
array (

)i

'title' => 'EXIF extraction',
'description' => 'Extract EXIF data from images'.
'by PHP function "exif read data".',

'subtype' => 'image:exif',

'available' => function exists('exif read data'),
'priority' => 60,
'quality' => 50,

IOSI => ll,
'exec!' => '"',

'classFile' =»>
t31lib extMgm::extPath ($ EXTKEY) .

'sv2/class.tx_ccmetaexif sv2.php',
'className' => 'tx ccmetaexif sv2',

The file ext _tables.php is called upon TYPO3 initialization, so this code is executed
before any request is handled. The addService function of class t31ib_ extMgmis
called, and it adds the declared service to the service listings array, so that it can be
called later. This type of service is metaExtract, which is utilized by the DAM, and the
service key is tx_ccmetaexif sv2. The last parameter is the configuration for the
service, which is of most interest to us.

Service keys must start with tx_ or user_.

&

Chapter 3

The title and description fields are self explanatory. subtype is not specifically defined,
but is analyzed by each specific service type. In this case, it can either be a media type or a
list of file extensions to parse. available field contains a simple check for availability of the
service. Common uses are to check for the existence of a PHP function.

Parameters priority and quality define the precedence for a service. Here is what the
TYPO3 official documentation says about the two parameters:

The priority is used to define a call order for services. The default priority is 50. The
service with the highest priority is called first. The priority of a service is defined

by its developer, but may be reconfigured. It is thus very easy to add a new service
that comes before or after an existing service, or to change the call order of already
registered services.

The quality should be a measure of the worthiness of the job performed by the
service. There may be several services who can perform the same task (e.g.
extracting meta data from a file), but one may be able to do that much better than
the other because it is able to use a third-party application. However if that third-
party application is not available, neither will this service. In this case TYPO3 can
fall back on the lower quality service which will still be better than nothing. Quality
varies between 0-100.

Fields os and exec can be used to restrict the service to a certain operating system, or a
system that can execute a specific external program. os can be set to either UNIX for *nix
systems, WIN for Windows, or left blank for no restriction. exec can contain an absolute path
to a program, or just a program name.

There's more...

In this section we will see how to change the priority of services and how to install exiftags
program required by the tx ccmetaexif sv3 service.

Service priority

Suppose you want to change the priority of one of the services. Perhaps, the exiftags program
exists on your system, but it's very resource hungry for one reason or another, and you would
like to lower the priority of the service. Add the following to typo3conf/localconf .php:

$TYPO3 CONF VARS['T3 SERVICES'] ['metaExtract']l ['tx ccmetaexif sv3']
['priority']l = 20;

If you would like to turn off the service that gets the IPTC data, insert the following:

$TYPO3 CONF VARS['T3 SERVICES'] ['metaExtract']l ['tx ccmetaexif svl']
['enable'] = false;

(&5}

Operating with Metadata in Media Files

Exiftags
tx ccmetaexif sv3 service depends on the external program exiftags. This program can
be installed to make use of that service.

Shell> apt-get install exiftags

Also, refer to the official TYPO3 documentation for a description of services APl and
more options.

» Processing audio using a service
» Converting video into FLV upon import

» Converting audio using services

Inserting metadata into audio

The most common format for audio metadata is ID3. There are two versions in use today, and
you will probably see references to them as ID3v1 and ID3v2. Most software packages are
able to read both.

. Audio metadata can sometimes be used to describe the characteristics
% of the audio stream used by audio players and decoders. We do not use
i this definition. Instead, we refer to the information about the file—similar to
metadata in images.

How to do it...

Most music players give an option to modify the ID3 tags. You can also edit it in Windows,
much in the same way as image metadata:

Chapter 3

2| 04 Puccini, Giacomo - Manon Lescaut - Intermezzo.mp3 Pu
| General | Security| Details | Previous Versions | Offine FI|E5|
Property Walue i |
Description
Title Manon Lescaut - Intermezzo
Subtitle
Rating 3
Comments
Media
Artists Puccini, Giacomao E_
Album artist Puccini, Giacomao
Album Great String Classics
Year
4
Genre
Length 000456
Audio
Bit rate 320kbps
Origin
Publisher -
Remove Properties and Personal Information

[ok J[canesdl || fopl

Extracting metadata from audio

In Chapter 7, we will create a service that will handle audio files and extract ID3 tags. If you've
jumped ahead and created the service already, here is how you can utilize it. As always, there
are several methods for accomplishing anything, and you can jump to the There's more...
section to see another extension that extracts the ID3 metadata.

How to do it...

1. |Install the cc_meta_ audio extension. Refer to Chapter 1 for information on how
to do that. Alternatively, you can skip ahead to Chapter 7 and follow the recipe for
creating this extension.

2. Upload an audio file. Verify that ID3 tags exist in the file, and upload it. The service
will be executed automatically upon file indexing.

]

Operating with Metadata in Media Files

To double-check, upload an audio file with ID3 tag, and check that they all
show up in the Extra data tab of the file info:

View Item

@ Media [10] - Puccini, Giacomo - Manon Lescaut - Inter...

Copyright Extra data

title Manon Lescaut - Intermezzo
artist Puccini, Giacomo
album Great String Classics

track 04

band Puccini, Giacomo

There's more...

Another extension that allows the extraction of audio and video metadata is ma_meta_
audiovideo. This extension depends on an external program mplayer, which we can
install using APT:

Shell> apt-get install mplayer

See also

» Processing audio using a service

Extracting metadata from PDF

By now, you probably see a pattern regarding embedding and extracting metadata in various
file types. We will cover one more format—PDF, which is a format most often used for
documents shared on the Web. You are likely to read this book in its PDF version, and even if
you don't, it is available in PDF format. The PDF contains some metadata that is standard for
all files of the type—title, description, author, date of creation, and more. This metadata can
be embedded when the file is created in Adobe Acrobat or other application capable of writing
PDF files.

Chapter 3

How to do it...

1. |Install the cc_metaexec extension.

2. Install pdfinfo. This utility can be installed on both Windows and Linux machines.
We will install it on a Debian server using APT:

Shell > apt-get install xpdf

This command will install pdf info, along with other related tools.

¢ In Debain, the pdfinfo tool is hidden inside a different package. This
may be the case for your operating system as well. You may need to search
’ package descriptions and lists to see where pdfinfo could be hiding.

3. You can now check if the program is functioning properly, and TYPO3 can make
use of it. Go to Media | Tools | Services Info submodule. You will see a list of all
external services that DAM can make use of, and whether they are installed and
available or not.

Services: Types: 05: External: Awail.:

metaExtract (Service Type)
Read meta data from files.

IPTC extraction image:iptc ‘/
[tx_ccmetaexif_svi]

Gat IPTC data from files by PHP function "iptcparse".

EXIF extraction image:exif o
[tx_ccmetaexif sv2]

Extract EXIF data from images by PHP function "exif_read_data".

EXIF extraction image:exif exiftags g
[tx_ccmetaexif sv3]

Extract EXIF data from images using external program "exiftags”.

PDF meta extraction pdf pdfinfo ‘/
[tx_ccmetaexec_sv2]

Extract meta data from PDF files using external pregram "pdfinfa".

4. Once installed, it will take care of extracting metadata from PDF files that are
uploaded or indexed by DAM.

Rendering Images

In this chapter, we will cover:

» Rendering images using content elements

» Embedding images in RTE

» Rendering images using TypoScript

» Rendering links to files using the <media> tags
» Creating a gallery using ce_gallery

» Rendering metadata from a DAM object

Rendering Images

Rendering images using content elements

Content elements offer a variety of ways for editors to include images. We will examine these
here. Here is a typical selection menu that editor is presented with:

New content element

Please select the type of page content you wish to create:

Typical page content

r Regular text element

A regular text element with header and bodytext fields.

Text with image

Any number of images wrapped right around = regular text element.

F I:' Images only

Any number of images aligned in columns and rows with a caption.

p Bullet list
A single bullet list.

Table
A simple table with up to 8 columns.

Special elements

Filelinks
Makes = list of files for download.

F Media

Inserts a media element like a Flash animation, audic file or video clip.

P Sitemap
2| Creates a sitemap of the website.

¢ 3| Plain HTML
WML| \With this element you can insert raw HTML cade on the page.

F E‘ Divider

This element inserts a visual divider, which is by default a horizontal line.

Form elements

= Mail form
A mail form allowing website users to submit responses.

r Search form

Draws a search form and the searchresult if a search is perfformed.

2| o Login form

= | Login/logout form used to password protect pages allowing only authorised

A great way to start is to assemble pages from the Regular text element and the Text with
image elements.

Getting ready

Make sure Content (default) is selected in Include static, and the CSS Styled Content
template is included in the Include static (from extensions) field of the template record of the
current page or any page above it in the hierarchy (page tree). To verify, go to the Template
module, select the appropriate page, and click edit the whole template record.

[

Chapter 4

How to do it...

1. Create the Text with image element.
2. Under the Text tab, enter the text you want to appear on the page.

Al

S You can use the RTE (Rich Text Editor) to apply formatting, or
disable it. We will cover RTE in more detail later in this chapter.

3. Under the Media tab, select your image settings. If you want to upload the image,
use the first field. If you want to use an existing image, use the second field.

General Text Media Access

NIB)]
_|=
GIF JPG JPEG PNG
C\Usersidan\Pictures\3524353788_ac05238253 jg
[+]
[
_|E
ArMedia
GIF JPG JPEG PNG

4 In tast, laft
-

=

Columns: Mo rows: Border:

1.3 0@ DO

4. Under Position, you are able to select where the image will appear in relation to
the text.

Rendering Images

When the page is rendered in the frontend, the images will be placed next to the text you
entered, in the position that you specify. The specific look will depend on the template that
you are using.

There's more...

An alternative to the Text with images is an Images only content element. This element
gives you similar options, except limits the options to just a display of images. The rest of
the options are the same.

You can also resize the image, add caption, alt tags for accessibility and search

engine optimization, and change default processing options. See the official TYPO3
documentation for details of how these fields work, (http://typo3.org/documentation/
document-library/).

See also

» Render video and audio using content elements and rgmediaimages extension

Embedding images in RTE

Rich Text Editor is great for text entry. By default, TYPO3 ships with htmlArea RTE as a system
extension. Other editors are available, and can be installed if needed.

Images can be embedded and manipulated within the RTE. This provides one place for
content editors to use in order to arrange content how they want it to appear at the frontend
of the site. In this recipe, we will see how this can be accomplished. The instructions apply
to all forms that have RTE-enabled fields, but we will use the text content element for a
simple demonstration.

Chapter 4

Getting ready

In the Extension Manager, click on htmlArea RTE extension to bring up its options. Make sure
that the Enable images in the RTE [enablelmages] setting is enabled. If you have a recent
version of DAM installed (at least 1.1.0), make sure that the Enable the DAM media browser
[enableDAMBrowser] setting is unchecked. This setting is deprecated, and is there for
installations using older versions of DAM.

How to do it...

1. Create a new Regular text element content element.

2. Inthe RTE, click on the icon to insert an image as shown in the following screenshot:

e: | Mo text style

i[a]iQ J;éﬂ

3. Choose a file, and click on the icon to insert it into the Text area. You should see the
image as it will appear at the frontend of the site.

Block style: | No block lst',fle El Text styla: | No text style
i BT X X i[paragraph D=0 i iy

I NARE: A CEBID:@

—HEE - :

“The first fall of snow is not
only an event, it is @ magical event”™

Rendering Images

4. Save and preview. The output should appear similar to the following screenshot:

@ Muttimedia - Mozilla Firefox & e i e e [E=SREER
File Edit View History Bookmarks Tools Help
| || Multimedia |+ |-

“The first fall of snow is not
anly an event, it is a magical evenit”

Done 4" B YSlow 01375 s3Fox

When you insert an image through the RTE, the image is copied to uploads folder, and
included from there. The new file will be resampled and sized down, so, it usually occupies
less space and is downloaded faster than the original file. TYPO3 will automatically determine
if the original file has changed, and update the file used in the RTE—but you should still be
aware of this behaviour.

Furthermore, if you have DAM installed, and you have included an image from DAM, you
can see the updated record usage. If you view the record information, you should see the
Content Element where the image is used:

Owverview Copyright Usage Extra data
Page Content Element Content field Type of reference
DSnow “The first fall of snow is not... Text Insertad media

7

Chapter 4

There's more...

There are a few other things you can do in RTE with the images. We will cover:

» Other modes of inclusion
» Resizing images
» Setting maximum dimensions of images

» Using TinyMCE for embedding images

Other modes of inclusion

When you bring up the Insert Image wizard, it has three or more tabs (depending on the
extensions you have installed). We've included the image using the default New Magic
Image tab. Let's see what the other tabs do.

New Plain Image

Plain image inserts the image directly, without creating a copy. If you resize the image in
RTE, it will be resized in HTML, but the original file will stay intact. This is different from the
resampling behaviour of the Magic Image.

Drag 'n' Drop

Drag 'n' Drop allows you to choose an image in the wizard, and drag it into the RTE. Once you
release the mouse button, the image will be inserted into text where your cursor was placed.

Upload

Upload tab appears if you have the DAM extension installed. The tab provides a convenient
place to upload images to the server, and include them in the RTE right away, without a need
to browse to other modules. This wizard is DAM compatible, so any files that are uploaded will
be indexed by the DAM.

Rendering Images

Current Image

If you select an image in the RTE, and then click on the Insert Image button, you will get
the Insert Image wizard with a new tab—Current Image. Here, you can modify some image
properties, or replace the image using the other tabs.

Current Image MNew Magic New Plain Drag'n'Drop Upload
Image Image

Width: 244

Height: 153

Border: I:‘

Float: Right -
Top padding:

Right padding:

Bottom padding:

Left padding:

Title:

Alternate tesxt:

Click-enlarge: I:‘
Update

Resizing images
Images can be resized easily within the RTE. To resize an image, click on it, then click and
drag one of the corners, or a side to size the image down or up:

B i sub Fup | = Ll T 5 — o = F Eal
o@@E@:iMA:IO ‘9 i@
i HIEE

"The first fall of snow is not
oy an event, it is a magical eveet”

T M N
| &
; -

7@

Chapter 4

Setting maximum dimensions of images

You can set maximum dimension constraints for all the images added to the RTE. To do so,
add the following to Page TSconfig:

RTE.default.buttons.image.options.magic.maxWidth = 640
RTE.default.buttons.image.options.magic.maxHeight = 480

Using TinyMCE for embedding images

Another popular RTE that TYPO3 supports is TinyMCE. It can be enabled by uninstalling
rtehtmlarea and installing the t inyrte extension. Although the interface looks different,
the possibilities for image embedding are the same. You can click a button in the toolbar,

which brings up a popup window allowing you to select the image you want—as shown in the
following screenshots:

General

(-
-
I~y
=1
2
x
“u
[
(1]
Il
]

u | & Ga @B 03 @48 ¢
ZiE|EEg e o o[E] HEH @
SO B @ F v losertsModity Image

Styles - | Faragraph - | Font family - | Font size - |é' bz

Sitemap befare resubmitting.

Mew Magic Image New Plain Image Upload Image

- Folder tree rImages

tx_damuserupload
fZ08de741850_751Germany_Nazi_...
L| 2662400 pixels

»

3 fileadmins 0 ‘

A DTemporary filas

= Duploads
@3 15f5929f9_sitemap_error.jpg
S48x336 pixels

rgmedia

m

& tx_damuserupload
- = ploa .
Sitel fZj4abafecibb_721656.jpg

Z00x260 pixels

Incq (57464652f5_IMG_2425.1PG | &
2 o 768x512 pixels
@505528960;_75lGermany_Nazi_...
266x400 pixels

j7a883422e5_071116_jefferson...
- 208x298 pixels

- Display thumbnail

]

Rendering Images

Rendering images using TypoScript

All the content objects available can be created using TypoScript. We will look at the IMAGE
content object. Despite its simplicity, there are various situations, in which it is useful. For
example, you might need to render an image on several pages, but don't want to include it
in the template because it is dynamic. Using TypoScript, you can use conditionals to control
which image is rendered, wrap the image in a link, and more. Here, we will first create a
simple image, and then see what other options can be given.

How to do it...

Modify the template on any page.

Add the following code to the setup field, substituting page . 12 with the path to
the object or marker where you want the image to appear:

page.l2 = IMAGE
page.12 {
file = fileadmin/image.jpg

}

3. Save, clear cache (if necessary), and preview the page.

Content objects take certain parameters as an input, and provide HTML as output. In this
case, the input is just a path to a file, but it could be more involved—for examples, see the
There's more... section.

M Check the chapter in TSRef about IMAGE object:
<::§ http://typo3.org/documentation/document-library/
references/doc_core tsref/4.3.0/view/1/7/#1d2519243.

There are more options besides file that can be passed to the object.

@

Chapter 4

Adding alternative text to images
Alternative text (alt tag) can be added to the image using:

page.l2.altText = Alternative text
Likewise, a title tag can be added simply by:
page.l2.titleText = Title text
Of course, the values don't have to be hardcoded in, but can come from anywhere in the
system by applying stdwrap properties.
Wrapping the image in a link
One useful option is having the image as a link. This can be easily done using stdWrap:

page.12.stdWrap.typolink {
parameter.data = 123

}

where 123 is the page ID that you want to link to.

Executing from an extension

Much like the media object, covered in Chapter 5 the IMAGE object can be created from an
extension, using the following code:

$cObj->cImage (sfile, S$Sconf);

Here, $file is the path to the file (which will be resolved by TYPO3, and converted or resized
if necessary) and $conf is the configuration array for the image object.

» Rendering audio and video using media TypoScript object

Rendering links to files using <media> tags

Imagine, for a second, a dark world of web development without content management
systems. You have a simple website with some text and links to files to be downloaded. Now,
imagine that you need to move the files into a different folder. You would have to go through
each page, and update the links to point to the new location of the file.

Rendering Images

In DAM, the physical file is separate from the record describing the file. Thanks to this
separation, the pages can link to the DAM record, instead of the physical file. If the file is
moved, only the DAM record will need to be updated (which happens automatically if you
move the file within DAM modules), and all links will automatically update. We will now
explore how the <media> HTML tag can be used to take advantage of this feature.

Getting ready

Make sure both DAM and htmlArea RTE extensions are installed. In the Extension Manager
click on the DAM extension to get an overview of enable configuration. Make sure that the
media tag option is enabled.

media tag [mediatag]

This adds the tag <media> to RTE content processing and frontend rendering. This is needed to create
files links using DAM references. Additional page TSconfig may be needed to enable the media tag. Se=e
the manual for more information.

How to do it...

1. Create a new Regular text element on a page.
2. Enter the HTML mode in the RTE:

General Text Access
Block style: | No block style

aragraph

<> @

You are in TEXT MODE. Use the [<>] buf

<media 1390=*Link to image</media>

3. Typein <media 1234>Link text</medias, replacing 1234 with the UID of
the DAM record, and link the text with the text you want to appear inside the link.

(&)

Chapter 4

You can find the UID of the record in the information panel.

@ Media [1590] - asdf2
“_——

Overview Metrics Copyright Extra data Usage

RGE

% Hor. size: Vert. size:
e 78 | |52

Width: Height: Unit:

271 | =1 mm

Hor. resolution: Wert, resolution:

72 | [=

4. Save and preview.

The advantage of the <media> tag is that instead of linking to a file, you're linking to a DAM
record. The record, in turn, points to the physical file—so if you move the files around, all links
will be updated automatically.

It may be possible that after enabling all the options in the Extension Manager, the <media>
tags are encoded by RTE, and appear in the frontend unparsed. In that case, you need to
enter the following options in Page TSconfig:

// Add txdam media to RTE processing rules
RTE.default.proc.overruleMode = ts_css, txdam media

// Use same RTE processing rules in FE
RTE.default.FE.proc.overruleMode = ts_css, txdam media

// RTE processing rules for bodytext column of tt_ content table
RTE.config.tt content.bodytext.proc.overruleMode = ts_css,txdam media
RTE.config.tt content.bodytext.types.text.proc.overruleMode = ts_
css, txdam media

RTE.config.tt content.bodytext.types.textpic.proc.overruleMode = ts_
css, txdam media

s

Rendering Images

Accessing Page TSconfig
To access Page TSconfig, right-click on a page in the page tree, and choose
Edit page properties:

Root
[show
Edit
Mew
I: Info
[] Copv
|: Cut
|: Maore options...
[Hide
[Visibility settings

Edit page properties

ﬂ]ﬁﬁ)@ ¥ @I~

/Undg

Alternatively, you can browse to the page in the Page module, and click
the Edit page properties button either in the module body, or in the
docheader—the bar across the top of the module housing the

control buttons.
3 S AE]
Columns Edit page proper‘ties

Pagecontent

| Edit page properties | | Mowve page | [

From there, the Page TSConfig is available under the Options tab:

General Metadata Resocurces Cptions Access

&

/4 RTE processing rules for |
RTE. ig.Lf_content. . B am_me
.kt content. .types.text. ts_g
LI_content.pbodytext. types. textpic. proc. overruleMaode = 1
addToList(media]

1| n k

Chapter 4

Creating a gallery using ce_gallery

There are multiple galleries available for TYPO3. Each has its own advantages, and an entire
book can be dedicated to comparing the various extensions. We will install and configure only
one as an example. ce_gallery has an advantage that it is very easy to set up and customize,
and relies completely on DAM for content and organization.

Getting ready

Make sure you have the extensions DAM and dam_catedit installed. Create a root category,
and a few categories under it. Assign a few JPG images to each category. Refer to the Chapter
2 recipe Setting up a category tree for more information about categories.

How to do it...

Install ce_gallery. Accept database and filesystem changes.

In a template record, include the static template Photogallery (CSS) (ce_gallery).
Add a Plugin content element of type Photogallery to a page

In the General tab, uncheck the Slimbox (pmkslimbox needed) checkbox.

o NP

In the Categories tab, select the root category and check the box that says Recursive:

General Plugin Access

ao
a8 Photogallery IEI

General Thumbnails Detail view Categories

Categories:

Selectad: Items:
Test 1l % = I%Categories
IE‘ - E Test
I Testz
[Test=
Fecursive:
Directly jump to first album if there is just one
(]

&)

Rendering Images

6. Save and preview. The output should appear similar to the following screenshot:

@ ce_gallery - Mozilla Firefox S .@&u

File Edit View Histery Bookmarks Tools Help

I’J __| ce_gallery I - EI
page: 1 2 > ==
Test3

w slideshow back to overview

731X4436 al
(Fullscreen)

| 731X4420 al 731X4403 al |
| (Fullscreen) (Fullscreen) 1
P B

" & YSlow 88245 S3rox

ce_gallery treats DAM categories as albums, which in turn, contain pictures. If you want to add
more photos to an album, just assign them to a category, and clear cache on the page where
you added the Photogallery plugin.

Chapter 4

There's more...

In this section, we will see how to use Slimbox for displaying images and utilize batch process
while creating a gallery.

Using Slimbox for displaying images

To make use of the Slimbox, you need to install the extension pmks1imbox. Once it is
installed, include the static template it provides in the page template. When this is done, edit
the Photogallery content element, and check the Slimbox (pmkslimbox needed) checkbox
that we had unchecked earlier. Now, instead of linking to another page to display the image,
the image will be loaded into the same page using AJAX. For example, this is how your image
will look when someone clicks on the thumbnail:

|8 ce gallery - Mozilla Firefox R e .
File Edit View History Bookmarks Tools Help

| ce_gallery

7314283 a1 CLOSE X

Page & of

Utilizing batch processing
If you have several photos that you want to assign to a category, you can use DAM's batch
operations. Here is what you can do:

Rendering Images

Build your selection: You can use the various controls provided by DAM to choose files from
multiple folders, of different types, or you can even search the metadata.

List

Path: fMedia/ @fpl’d.

5 records found.

Show: 2qg

-

P Title &
® F 731x4273 a1 AL RsIRT
2 [F 731xaz98 a1 FAONORsDRT
= [F 731x4403 a1 UGN OREsIRT
E [F 731x44z0 a1 WA ESDRE
x [F] 731x4503 a1 AILIORZD@T

“E‘ Field Selactar

4 Select:
X Folder tree
= Exclude:
2 media

2 media

Revert to previous selection

il fileadmin/Photos/

[B) 721x4az6 a1

[E] 7z1xazez a1

Once you have the selection built, select Process from the submodule selector. Under

the Categories field, select the category you want to add the objects to. If the objects are
assigned to other categories, and you don't want to lose that connection, check the box next
to the Categories field, and the new category will be added to whatever categories the objects
are already assigned to. Click Process when you're done.

Process -

Path: .../ Md

Location city:

Content language:

-

Categories:
[?} Selected: Items:
Test3 5 % = %Categories
= -1 Test
B [Testz
<[O Test=

Clear Form | | Process

Chapter 4

» Setting up a category tree

Rendering metadata from a DAM object

We'll use some very basic TypoScript and see how metadata stored in DAM records can be
rendered on a page, along with the media objects, or even in them. This is commonly used for
inserting accessibility tags (alt and title) into images.

How to do it...

Create a Template on the page.

In the setup field, add the following, replacing page . 17 with a path to the object
you want to place the content in, and replacing 1234 with the UID for a DAM record,
whose caption you would like to display:

page.1l7 = TEXT
page.l7.data = DB:tx dam:1234:caption

3. Save and preview.

Data property is available wherever stdWrap is applied. So, you can display any of the
metadata available in the DAM record, almost anywhere. Furthermore, because stdWrap
properties are recursive, you can apply further processing to the values.

M For more information about stdWrap, see the section of TSRef:
Q http://typo3.org/documentation/document-library/
references/doc_core tsref/4.3.0/view/1/5/#1d2360021.

In this case, we are using the data property to fetch a record from the database. The syntax
for doing so is DB:table:UID: field. So, in the example above, we are taking the caption
field of record with the UID 1234 from tx_dam table.

1
‘\Q Refer to ext _tables. sql in the extension directory for a complete

database schema.

7}

Rendering Images

TypoScript is extremely powerful, so you should read into the details to see what else you can
do with it.

There's more...

We can use this method to add a caption to an image, added through TypoScript.

page.l6 = IMAGE
page.l6.altText.data = DB:tx dam:1585:caption

See also

» Rendering images using TypoScript

Rendering Video and
Audio

In this chapter, we will cover:

» Rendering video using media content object

» Rendering audio using media content object

» Rendering audio and video using media TypoScript object

» Rendering audio and video using content elements and rgmediaimages extension
» Extending the media content object for more rendering options

» Using custom media player to play video

» Connecting to Flash Media Server to play video

Rendering video using media

content object

One of the new features in TYPO3 4.3 is a new multimedia content object. In this recipe, we
will make use of this object to render a video. This method can be used to embed videos in
the frontend of the site, allowing visitors to play them from within the page without requiring
them to download the file and open it in an external application.

Rendering Video and Audio

Getting ready

We will render a video in MPG format. Other formats can be rendered just as easily as well, so
you can give it a try using the same procedure. Be sure to upload a video into the fileadmin
folder. See the There's more... section to see how to render a video from a URL.

Make sure your template record includes the CSS Styled Content static template, otherwise,
you will get an error:

ERROR: Content Element type "media" has no rendering definition!

How to do it...

1. Create a New content element, and select Media type from the Special elements

5]

section as shown in the following screenshot:

Special elements
Filelinks

"B [mMakes a list of files for download.

Inserts a media element like a Flash animation, audio file or video clip.

l'T‘I m Sitemap
Creates a sitemap of the websita.

(] . Plain HTML
HTML| With this element you can insert raw HTML code on the page.
] Divider
This element inserts a visual divider, which is by default a horizontal line.

{ :E:I

2. Under relative Path of Media File or URL, either enter a path to the file, or select the

link icon (_). The following screenshot is seen; browse and select the required file:

[Fi|e] External URL
Current Link: fileadmin /MOV00520.fhv

Folder Tree: Files:
fileadmin
=1 fileadmin/ MO EI []movoosso.fiv
-{fll Temporary files .. BMOVD0580_01.MPG
F-{Ejuploads [+

Target: - Update

Cpen in window: Wwidth + x Height =

Chapter 5

3. Leave the rest of the options as default. Save and preview the page. The output

should appear similar to the following screenshot:

Itimedia - Mozilla Firefos

File Edit View History Bookmarks Tools Help

[Multimedia [=] -l

E
< m | »

Done #‘ E YSlow S3Fox .

There's more...

Quite a few options of the media element can be customized for different outputs.

General Media Access

Plugin Options:

Media Cptions
relative Path of Media File or URL

Use Player [only for Shaockwave Flash)

Media Type

Media Width

[]

Meadia Height

[]

Render Type
Auto

b pToggle all

Add new: Media Pararnetar | Custom Pararneters

i

Rendering Video and Audio

» Use Player (only for Shockwave Flash): Some videos on the Internet already come
with their own embeddable player. If you have entered such a video's URL, you can
uncheck the box Use Player (only for Shockwave Flash), otherwise, leave it checked.

» Maedia Type: Select the type of the media file you want to display.

» Media Width/Media Height: Type in the dimensions of the media object that should
render. Dimensions are not constrained by the original file scale.

» Render Type: Select how the file should be rendered. If you're rendering a file, leave
this at Auto, and TYPO3 will automatically choose the right method based on the
file extension. If you're rendering a URL, be sure to set a specific rendering type. Use
Shockwave Flash Browser Plugin for audio files, and other formats that can be
played by an internal SWF player. Use QuickTime Browser Plugin for MOV files. Use
HTML Embed Element for external files, such as YouTube videos, which come with
their own player.

The Additional Parameters field gives the ability to customize the player by adding more
parameters. They will be included in the HTML code for the player. Specific parameters
depend on the player you're using. There are two kinds of parameters you can add: media and
custom. Media parameters that can be selected are described below. Each media parameter
can be set to On, Off, or a Value Entry, with the value going into the input field below.

Parameter Value type Description

Autoplay On/Off Start playing the movie/audio when the page is loaded,
without waiting for user input.

Loop On/Off Restart movie/audio after reaching the end.

Quality Value Entry Any value between 0 and 100, 100 corresponding to the
highest quality of playback.

Preview Video On/Off Display preview of the video file in the media object.

Allow ScriptAccess On/Off Allow JavaScript present on the page to access the media

container and operate it.
Allow FullScreen On/Off Allow the movie to be resized to take up the entire screen.

In addition, custom parameters can be entered into a text field. These can be used to control
custom players, as they accept anything you type in without verification.

[

Chapter 5

Embedding external videos

Media object can be used to embed external videos, such as videos hosted on YouTube.
Simply enter the video URL in the relative Path of Media File or URL field, and uncheck the
Use Player (only for Shockwave Flash) checkbox.

Snowboarding Philadelphia Museum of Art
* R Ok k h

2

» Rendering audio using media content object

» Rendering audio and video using media TypoScript object

» Extending the media content object for more rendering options
» Using custom media player to play video

Rendering audio using media content object

We will now add an audio file to a page, using the same media object. This gives you the
ability to embed audio with full controls for playback right into your web page.

Rendering Video and Audio

How to do it...

1. Create a New content element of type Media.

2. Inthe relative Path of Media File or URL field, use the wizard to browse for your
audio file.

3. Under Media Type, select Audio.
4. Save and preview. The output should appear similar to the following screenshot:

Latin Guitar oo0:00:28
{ == M

» Rendering video using media content object

» Rendering audio and video using media TypoScript object
» Extending the media content object for more rendering options.
» Using custom media player to play video

Rendering audio and video using media

TypoScript object

Let's now use TypoScript to perform the actions outlined in the recipe Rendering video using
media content object. This is useful in cases when you want to include an object on several
pages, and still be administrated in one place, or if the position in the template is strange, and
content editors are unable to get to it using the Page module.

Getting ready

We will assume that you have the template for the site set up, and you have a marker in the
template that you want to replace.

Chapter 5

How to do it...

1.
2.

Edit the Template record.
Add the following lines to the setup field (modifying the path to the marker and path
to the file):

page.1l0.marks.VIDEO < tt content.media.20
page.1l0.marks.VIDEO.file = fileadmin/movie.mpg
page.l0.marks.VIDEO.renderType = gt

Clear all cache and preview the page. The output should appear similar to the
following screenshot:

imﬁmedia - Morilla Firefo»

File Edit View History Bookmarks Tools Help

[Multimedia [=] -

< | m | »
Done #‘ E YSlow S3Fox

tt content.media.20 is a TypoScript array that contains the definition of a MEDIA type
object. The first line copies the configuration into the VIDEO marker. The subsequent lines
modify the default configuration, and customize it—the same way a form does.

[55]-

Rendering Video and Audio

There's more...

All other options of the media object can be controlled through TypoScript. Look in the
TypoScript Object Browser for all options and settings:

g-[20] = MEDIA

B [flexParams]
@-[alternativeContent] = TEXT
..... [type] = video

----- [renderType] = auto

..... [allowEmptyUrl] = 0

G- [fileExtHandlar]
E-[mimeConf]

gJ-[swfobject] = SWFOBIECT

-[flexParams]
[-[alternativeContent]

..... [layout] = ###SWFOBIECT###
g-[video]

{.[player] = typo3/contrib/flashmedia/flvplayer...
i...[defaultwidth] = 600
i.[defaultHaight] = 400
default]

@E-[mapping]

[-[audio]

-[stdWrap]

E-Iatobject] = QTOBIECT

A [stdWrapl

Rendering audio and video using content

elements and rgmediaimages extension

Various extensions modify and build upon default TYPO3 behavior (as we have seen already).
In this recipe, we will make use of the rgmediaimages extension to add videos to the Text with
image content element. This is a classic example of extending default TYPO3 behavior and
adding more functionality to the system.

Getting ready

We assume you have already installed the rgmediaimages extension. If not, use the
information in the Chapter 1 recipe Installing needed extensions to install it now.

Chapter 5

How to do it...

1. Inthe Template module, modify the template for the page (click edit the whole
template record).

2. Inthe Includes tab, under the Include static (from extensions) field, select the
Media files & images (rgmediaimages) template, as shown in the following
screenshot, and save.

Include static (from extensions):

Salected: Items:

C55 Styled Content (css_styled_content] &
CS55 Styled Content TYPOZ v3.8 (css_styl
CSS Styled Content TYPOZ2 v2.9 (css_styl
CS55 Styled Content TYPOZ2 v4.2 (css_styl
Clickenlarge Rendering (rtehtmlarea)
default (dam_user_upload)

Media files & images (rgmediaimages)

Media files B images [rgmediaimages) =

3 2/ 3

3. Inthe Page module, create a new Text with image content element on the page.
Under the Text tab, enter any text you would like.

5. Under the Media tab, select the files you would like to include. The selection is no
longer limited to just images, so you can select movies and audio files.

General Taxt Madia Access

2574952693_fS42562acE_b.jpg NIB] .
MOV00SE0_01.flv = @254952593_f5425523c5_b.3pg
Desafinado.mp3

i MOVO0S580_01.flv

GIF IPG JPEG PNG FLV SWF RTMP MP2 RGG I@ @Dﬁafinadn.mpz

| | Browse |

6. Enter maximum width and height values to restrict the content. These values are
required in some circumstances—see the extension manual for more information.

o7}

Rendering Video and Audio

7. Save and preview. The output should appear similar to the following screenshot:

_ __
PERIEE=E S T

File Edit View History Bookmarks Tools Help
J [} Text with Media I +

[Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ornare lacinia
ladipiscing. Ut porta erat sit amet sapien pulvinar vitae dapibus arcu
Ibibendum. In pretium tincidunt est non bibendum. Nulla suscipit, nunc sed
ladipiscing interdum, metus velit fringilla augue, ut sagittis purus est eget elit.
hasellus auctor auctor sem in elementum. Nullam in velit nunc. Quisque

isis placerat magna_ non lobortis libero elementum at. Suspendisse

a suscipit ipsum sed lctus. Nullam a lectus neque, vel viverra puras.
ullam in est id arcu imperdiet ultricies. Suspendisse sed mi a quam ultrices
eugiat. Etiam nec viverra felis.

SEN

tiam lacinia massa sit amet neque condimentum scelerisque. Duis
ondimentum pulvinar ullamcorper. Nunc tincidunt massa id orci rthoncus
ommodo. Donec elementum quam consectetur libero elementum sit amet
jaculis sapien cursus. Sed posuere massa non purus ullamcorper facilisis.
Suspendisse ac justo sem. Nunc dignissim ultricies magna, ut porta ante

tus nec. Praesent gravida porta est, et elementum felis rutrum ac.

aesent convallis hendrerit mauris, nec lacinia ipsum iaculis nec. Ut mauris
eros, ullamcorper a egestas sed, faucibus at ligula. Vivamus porta ultricies

is ac pharetra. Vestibulum vulputate purus ut nunc sagittis condimentum.
ec leo lacus, mollis a tempor ac, tristique vitae ante. In sollicitudin ipsum | *| W | o0:02 o012 | W | ol |
sit amet leo condimentum in fermentum ipsum cursus. Nunc sed vulputate o n Dessfinado 0o:00:24 g

—_
est. |

is pretivm arcu quis diam condimentum sed molestie enim tincidunt. Mauris scelerisque elit sit amet dolor dignissim vel consectetur I
cu feugiat. Etiam risus erat, enismod eget interdum ut, elementum id arcu. Quisque sed lorem odio. Sed vitae elit velit, a lacinia dui.
Curabitur semper tempus nisl, et viverra sem aliquet sed. Etiam elit velit, dapibus nec venenatis in. cursus vel purus. Mauris non justo in

s " Tom b e Bt et 2l St e b e e et A A b b b b

af I | 4
Transferring data from localhost... ‘*‘ E YSlow el

rgmediaimages has a few other configuration options that you can set.

5]

Chapter 5

Customizing FLV and MP3 output

An individual item's display can be customized within the object. Scroll down to Alternative
Text field, and type in the options that will be sent to the JW FLV player. Each line corresponds
to each file, and settings are separated by commas as shown in the following screenshot:

showStop:1l,autoStart: 1, width: 250

showEqualizer:1,uselPixelOut:0

Alternatively, you can click on the icon to the right to launch the wizard, which will give you a
form for customization as shown in the following screenshot.

IWIZARD FOR THE EXTENSION RGMEDIAIMAGES

#1: 2574952692_f542562ac8_b.ipg
Default

File |

#2: MOVOOD530_01.flw
Default

File [

The colors
Display appearance

Controlbar appearance

Show Navigation m
Show Stop m
Show Digits true -
Show Download false -

Playback behaviour

#3: Desafinado.mp3
Default

File

The colors

Display appearance

s

Rendering Video and Audio

You can also modify the parameters that are used throughout the site, or within a certain
section of the page tree. These are constants, and can be modified in the Constant Editor
under the Template module as shown in the following screenshot:

Constant Editor -

Template tools

EDIT CONSTANTS FOR TEMPLATE:

E‘+ext

Category: RGMEDIAIMAGES (25) -

Enable features

Use the SWFObject [plugin.rgmeadizimages.useSwfObjact]
Instead of the embed

&1

Use 1Pixelout [plugin.rgmediaimages.uselPixelOut]
Instead of the JW FLV for mp2 files

&1

Show download button [plugin.rgmediaimages.showDownload]
Set this to 1 to show a downloadbutton in the controlbar.

& [Empty]

Show digits in the controlbar [plugin.rgmediaimages.showDigits]

For more information, as well as a complete reference to the plugin settings, refer to
the extension manual.

Embedding YouTube videos
rgmediaimages can be used to embed external videos, such as videos from YouTube. Here are
the steps to do it:

1. Upload dummy . rgg file from extension's resource folder (rgmediaimages/res/
dummy . rgg) into any folder under fileadmin.

1
‘\Q If you can't find the file, create an empty text document,

and rename it dummy . rgg.

100

Chapter 5

2. Select the file in the Images field of the Text with images content element.

General Text Media Access

[e
dummy.rgg P ED

GIF IPG JPEG PNG FLV SWF RTMP MP2 RGG

| [Browse_ |

3. Under Alternative Text field, enter £ile: followed by the URL of the clip. For example:
file:http://www.youtube.com/watch?v=alY73sPHKxw.

1
‘Q Alternatively, you can enter the information through the wizard,

launched by clicking on the icon to the right of the Alternative Text field.

4. Save and preview.

» Installing needed extensions

Extending the media content object for more

rendering options

While the media object is really powerful, occasionally, you may need a specialized method for
rendering files. Luckily, the object is extensible. In this recipe, we will create a new plugin for
rendering audio files.

Getting ready

As we will be creating a new extension, make sure Kickstarter is installed.

We will be using SoundManager 2 JavaScript code as an example. You can integrate any
other audio or video plugin into the media object. To learn more about SoundManager 2,
visit http://www.schillmania.com/projects/soundmanager2/.

Rendering Video and Audio

How to do it...

ok

~

102

Go to the Extension Manager module, then Create new Extension.

Enter your extension key, and be sure to register the key, so no one else uses it. For
this extension, you can enter soundmanager?2.

M If you're creating an extension that will only be used in your installation,
Q and will not be released to TYPO3 Extension Repository (TER), use a
user_ prefix in the extension key.

Click on the plus icon (+) next to the General info to edit the basic required
information about the extension.

Click View result, and write the output to the default location.

Download the latest release of SoundManager2 from the site:
http://www.schillmania.com/projects/soundmanager2/.

M At the time this book was written, the latest version was 2.95a.20090717.
Q This is likely to change. Be sure to review how SoundManager works, and
verify that the plugin code issues correct calls to its API.

Edit ext _emconf . php, add the following element in the depends array:
'typo3' => '4.3.0-0.0.0",
Create ext localconf . php file and add the following:

<?php
if (!defined ('TYPO3 MODE')) ({
die ('Access denied.');

// Register Hooks

STYPO3 CONF_VARS['SC OPTIONS'] ['tslib/hooks/class.tx cms_
mediaitems.php'] ['customMediaRenderTypes'] [$_EXTKEY] = 'EXT:'
$_EXTKEY . '/class.tx soundmanager2.php:tx soundmanager2';
$TYPO3_CONF_VARS['SC_OPTIONS'] ['tslib/hooks/class.tx_cms_
mediaitems.php'] ['customMediaRender'] [$ EXTKEY] = 'EXT:' . $
EXTKEY . '/class.tx_soundmanager2.php:tx_soundmanager2';

?>

Create class.tx_soundmanager?2 .php With the content from the code pack
available with the book.

Chapter 5

We will now go through all the files, and see how they make our extension run.

ext_localconf.php

This file is loaded when TYPO3 is initializing, and it's a perfect spot to place all our hook
definitions.

// Register Hooks

STYPO3 CONF _VARS['SC OPTIONS'] ['tslib/hooks/class.tx_cms_mediaitems.
php']l ['customMediaRenderTypes'] [$ EXTKEY] = 'EXT:' . $ EXTKEY . '/
class.tx soundmanager2.php:tx soundmanager2';

STYPO3 CONF _VARS['SC OPTIONS'] ['tslib/hooks/class.tx_cms_mediaitems.
php'] ['customMediaRender'] [$_EXTKEY] = 'EXT:' . $ EXTKEY . '/class.
tx soundmanager2.php:tx soundmanager2';

S$TYPO3 CONF _VARS['SC OPTIONS'] ['tslib/hooks/class.tx _cms_mediaitems.
php'] ['customMediaRenderTypes'] holds an array of class references. Any class
referenced would implement the function customMediaRenderTypes, which is called by
the media content element flexform when the record is being created or edited. Same is

true for the STYPO3_ CONF_VARS['SC_OPTIONS'] ['tslib/hooks/class.tx_cms_
mediaitems.php'] ['customMediaRender'] array, which holds the list of classes
implementing the customMediaRender function. We implement these functions in the same
class tx_soundmanager2, stored in class.tx soundmanager2.php.

class. tx_soundmanager2.php
Let's look at the detailed implementation of the two functions we just mentioned.

customMediaRenderTypes()

This function is passed two parameters—$params and Sconf.

$conf contains the full TypoScript configuration of the media object—we will not need it at
this time. $Sparams contains an array of render types—including the default ones.

We add an item to the list, with the name ' SoundManager 2' and ID 'soundmanager2'.

Sparams['items'] [] = array(
0 => 'SoundManager 2',
1 => 'soundmanager2'

)i

M Because both arrays are passed by reference, we don't need to return
Q anything from the function. But be careful, if you inadvertently change
any of the values, the media object might fail to work as desired.

Rendering Video and Audio

customMediaRender()

This function is called when the media content object is rendered on the frontend. It will
be called for all media content objects displayed on an installation where the extension is
installed, so the first thing that the function does is verifies that the render type selected
matches the render type it's designed to handle:

if ($renderType == 'soundmanager2') {

M Alternatively, the customMediaRender function can modify the default
Q behavior of other render types; however, this is not recommended, as it can
cause interference and unpredictable results.

If render type is indeed selected as desired, we proceed to create the HTML code that will be
displayed on the page.
First, we create some parameters:

// Unique id for a sound.
$soundID = t3lib div::shortMD5($Sconf['file'], 6);
// Check if volume is defined - if not - define it.
Sconf [' soundmanager2'] ['volume'] =

Sconf ['soundmanager2'] ['volume'] ?

Sconf [' soundmanager2'] ['volume'] : '50';

The second line indicates that the default starting volume could be set in TypoScript using:
tt content.media.20.soundmanager2.volume = 80;

Next, we include the soundmanager 2 JavaScript library. As this library needs to be included
in the <head> section of HTML, we use the TSFE additionalHeaderData to place it
there—if it wasn't placed there by another media object already:

SGLOBALS ['TSFE'] ->additionalHeaderData['tx soundmanager2'] =
'<script type="text/javascript" src="'
$scriptPath . '"s</script>' . "\n";

The script path depends on another setting:

tt content.media.20.soundmanager2.minify = 1;

104

Chapter 5

If set, a compressed version of the library is included—making it download and run faster
in the browser, but removing some of the debugging options we would find useful during
development. We decide on which script to include with the following:

if ($conf['soundmanager.'] ['minify'])
$scriptPath = $SGLOBALS['TSFE']->tmpl->
getFileName ('EXT: soundmanager2/res/script/
soundmanager2-nodebug-jsmin.js') ;
} else {
$scriptPath = $SGLOBALS['TSFE']->tmpl->
getFileName ('EXT:soundmanager2/res/script/soundmanager2.js') ;

}
Finally, we create the JavaScript code to create a Sound object, and play it upon page load.
We then wrap it in standard JavaScript tags, and return it to the media content object, which
in turn includes it into the page.

$contentJS .= "soundManager.onload = function() {
// SM2 ig ready to go!
var sound " . $soundID . " = soundManager.createSound ({
id: 's" . $soundID . "',
url: '" . Sconf['file'] . "',
volume: " . $conf ['soundmanager2'] ['volume'] "
1)
J AV

SGLOBALS ['TSFE'] ->additionalHeaderData['tx soundmanager2']
t31lib_div::wrapJdS($Scontentds) ;
$content = 'sound " . $soundID . ".play();';

return t31lib div::wrapJdS($content) ;

M See SoundManager 2 documentation for more information on how
Q the JavaScript code works, as well as more options that can be used
to manipulate it.

» Rendering audio using media content object

Rendering Video and Audio

Using custom media player to play video

Much like we did with audio, we will now create an extension to embed FLV player and render
a custom video. You can use the same approach to embed any other custom video player to
play your movies.

Q For more information about FLV player, visit http://flvplayer.com/.

Getting ready

Make sure you have read and understood Extending the media content object for more
rendering options recipe covered earlier. This recipe follows the same steps, using slightly
different code. You should have created an extension skeleton in Kickstarter.

How to do it...

1. Create ext localconf.php if it doesn't exist, and add the following content:

<?php
if (!defined ('TYPO3_MODE')) {

die ('Access denied.');

// Register Hooks

$TYPO3_CONF_VARS['SC_OPTIONS'] ['tslib/hooks/class.tx_cms_
mediaitems.php'] ['customMediaRenderTypes'] [$_EXTKEY] = 'EXT:'
$_EXTKEY . '/class.tx_webflvplayer.php:tx webflvplayer';
STYPO3 CONF_VARS['SC OPTIONS'] ['tslib/hooks/class.tx _cms_
mediaitems.php'] ['customMediaRender'] [$ EXTKEY] = 'EXT:' . $_
EXTKEY . '/class.tx_webflvplayer.php:tx webflvplayer';
STYPO3_CONF_VARS['SC OPTIONS'] ['tslib/hooks/class.tx_cms_
mediaitems.php'] ['customMediaParams'] [$ EXTKEY] = 'EXT:' . $_
EXTKEY . '/class.tx _webflvplayer.php:tx webflvplayer';

?>

2. Copy the file class.tx _webflvplayer.php from the code pack downloaded
from the book's site.

3. Create a new Media element. Enter a URL to an FLV file you want to display.

106

Chapter 5

Q FLV player requires a URL to be entered.

Check the Use Player checkbox.
5. Under Render Type, you should see FLV Player. Select it.

6. If you add a new media parameter, you should see a new option Background color
(in hexadecimal), which you can select, and enter the value in the Value input field:

Option

Backaground color (in hexadecimal) § -r]
AutoPlay

Loop

Quality

Preview Video

Allow ScriptAccess

Allow Fullscreen

Background color (in hexadecimal)

Add new: [GlMedia Parameter | [GaCustom Pa

7. Save and preview. You should see a player like this on the page:

FL PLAYER o

4

QULIVY

00:03 /00:15 i

Rendering Video and Audio

Let's take a look at the extension, and dissect what each function does.

ext_localconf.php

This file contains our hook registers. References to the tx_webflvplayer class are added
to all three hooks that the media object provides.

class.tx_webflvplayer.php
This is where the magic happens, so let's look at it in detail, function by function.

customMediaRenderTypes()
This function adds FLV player to the Render Type select box.

Sparams['items'] [] = array(
0 => 'FLV Player',
1 => 'web flvplayer'

)i

customMediaParams()
This function adds the Background color option into the Media Parameter select box:

Sparams['items'] [] = array(
0 => 'Background color (in hexadecimal) ',
1 => 'bgColor!'

)i

1
‘Q Any options added in this function will be available in the Media Parameter

select box regardless of the selected render type.

customMediaRender()
This is the main function of our class. It will be executed for every media content element, so
we first need to verify that the Render Type has been selected as FLV Player:

if ($renderType == 'web flvplayer') ({

web flvplayer is the value we've given to the choice in the

customMediaRenderTypes () function. Next, we set some variables—options controlling
the player's appearance and functionality. We set some defaults in case the parameters were
not set in the content element configuration.

108

Chapter 5

The next order of business is to go through the media parameters and custom parameters,
and change the default values based on whether the options have been set:

if (is_array($conf['parameter.'] ['mmMediaOptions']
['mmMediaOptionsContainer'])) ({
foreach ($conf['parameter.'] ['mmMediaOptions"']
['mmMediaOptionsContainer'] as $mediaOption) {
switch ($mediaOption['mmParamName']) {
case 'allowFullScreen':
SallowFullScreen = ($SmediaOption['mmParamSet'] == 1)
? 'true' : 'false';
break;
case 'allowScriptAccess':
SallowScriptAccess =
($SmediaOption['mmParamSet'] == 1) ?
SmediaOption['mmParamValue'] : 'false';
break;
case 'quality':
Squality = $mediaOption['mmParamValue'l];
break;
case 'bgColor':
SbgColor = $mediaOption['mmParamValue'l];

}

Media parameters are stored in the $conf ['parameter. '] ['mmMediaOptions']
['mmMediaOptionsContainer'] array. Each elementis in turn an array that has the
parameter name (mmParamName), value (mmParamValue), and the value of the on/off switch
(mmParamSet). What we do with these values is completely upto the extensions—so, we use a
switch statement to process every element and set our variables, to which we assigned their
default values previously.

Next, we parse out the custom parameters. As these are entered into a text field, presumably
they're just HTML tags, so we compile them into a string:

if (is_array($conf['parameter.'] ['mmMediaOptions']

['mmMediaCustomParameterContainer'])) {

foreach ($conf['parameter.'] ['mmMediaOptions"']
['mmMediaCustomParameterContainer'] as $mediaOption) {
ScustomParameters .= $mediaOption['mmParamCustomEntry'] . "\n";

}

Finally, we create the player HTML code, using object and param HTML tags, and
substituting our variables where appropriate. We then return the HTML content.

Rendering Video and Audio

There's more...

There are a few other things we can do to improve the extension.

Utilizing templates

We can take the HTML code completely out of this extension, placing it into a template file,
which could be changed by the user. Let's do that:

1.

Create a new folder res, in itan HTML file £1v_player.html, with the following
content:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/
flash/swflash.cab#version=9,0,0,0" width="640" height="375"
id="FlvPlayer" align="middle">

<param name="allowScriptAccess" value="###ALLOW_SCRIPT ACCESS###"
/>

<param name="allowFullScreen" value="###ALLOW_FULL_SCREEN###" />
<param name="movie" value="http://flvplayer.com/free-flv-player/
FlvPlayer.swf" />

<param name="quality" value="###QUALITY###" />

<param name="bgcolor" value="###BGCOLOR###" />

###CUSTOM PARAMETERS###<param name="FlashVars" value="flvpFolderLo
cation=http://flvplayer.com/free-flv-player/flvplayer/&flvpVideoSo
urce=###FILE###&f1vpWidth=###WIDTH###&f1vpHeight =###HEIGHTH###&Ef1vp
InitVolume=50&flvpTurnOnCorners=true&flvpBgColor=###BGCOLOR###" />
<embed src="http://flvplayer.com/free-flv-player/FlvPlayer.

swf" flashvars="flvpFolderLocation=http://flvplayer.com/free-
flv-player/flvplayer/&flvpVideoSource=###FILE###&E1vpWidth=H###
WIDTH###&f1vpHeight =###HEIGHT###&f1lvpInitVolume=50&f1vpTurnOnC
orners=true&f1vpBgColor=###BGCOLOR###" quality="###QUALITYH###"
bgcolor="###BGCOLOR###" width="H###WIDTH###" height="H##H#HEIGHTH###"
name="FlvPlayer" align="middle" allowScriptAccess="###ALLOW
SCRIPT ACCESS###" allowFullScreen="###ALLOW FULL SCREEN###"
type="application/x-shockwave-flash" pluginspage="http://www.
adobe.com/go/getflashplayer" />

###ALTERNATIVE CONTENT###

</object>

Change the customMediaRender () function in class.tx _webflvplayer.php
to the following:
function customMediaRender ($renderType, $conf) {
if ($renderType == 'web_flvplayer') {
// Initialize cObject
$cObj = t3lib div::makelInstance('tslib cObj');

// Set some parameters

Chapter 5

Smarkers ['#H##FILE###'] = Sconf['file'];

Smarkers ['H#H#H#WIDTHH###'] = isset (Sconf['width']) ?
Sconf ['width'] : 640;

Smarkers ['##H#HEIGHTH#H##'] = isset (sSconf['height']) ?
Sconf ['height'] : 480;

Smarkers ['###ALLOW _FULL_ SCREEN###'] = 'true';

Smarkers [' ###ALLOW_SCRIPT ACCESSH###'] = 'sameDomain';

Smarkers ['###QUALITY###'] = 'high';

Smarkers ['###BGCOLOR###'] = 'FFFFFF';

$markers ['###CUSTOM PARAMETERS#H###'] = '';

Smarkers [' ###ALTERNATIVE CONTENT### '] $cObj->stdWrap
(Sconf ['alternativeContent'],
Sconf ['alternativeContent.']) ;

// Go through the parameters

if (is_array($conf['parameter.'] ['mmMediaOptions']
['mmMediaOptionsContainer'])) ({
foreach ($conf['parameter.'] ['mmMediaOptions']

['mmMediaOptionsContainer'] as $mediaOption) {
switch ($mediaOption['mmParamName']) {
case 'allowFullScreen':

Smarkers ['###ALLOW_FULL_SCREEN###'] =
($SmediaOption['mmParamSet'] == 1) ? 'true' : 'false';
break;
case 'allowScriptAccess':

Smarkers ['###ALLOW SCRIPT ACCESS#H##'] =

(SmediaOption['mmParamSet'] == 1) ?
SmediaOption['mmParamValue'] : 'false';
break;

case 'quality':

Smarkers ['###QUALITY###'] = SmediaOption['mmParamValue'l] ;
break;
case 'bgColor':

Smarkers ['###BGCOLOR###'] = S$mediaOption['mmParamValue'];
}
}
}
if (is_array($conf['parameter.'] ['mmMediaOptions']
['mmMediaCustomParameterContainer'])) {

Rendering Video and Audio

foreach ($conf['parameter.'] ['mmMediaOptions']
['mmMediaCustomParameterContainer'] as S$mediaOption)

Smarkers [' ###CUSTOM_PARAMETERS###'] .= smediaOption
['mmParamCustomEntry'] . "\n";

}
}

StemplateFile = isset ($conf['web flvplayer']) ?
Sconf ['web flvplayer']l : t3lib extMgm::extPath
('web_flvplayer') . 'res/flv player.html';
Stemplate = $cObj->fileResource (StemplateFile) ;

// Gather the HTML content for the player

Scontent = $cObj->substituteMarkerArray
(Stemplate, S$markers) ;

return Scontent;

}
Download the extension web_flvplayer2 from the code pack, and compare it to your result.
What did we change? Now, all the parameters are compiled into an array, and the keys of the
array are markers. The template file now has markers that can be replaced by the values from

the array. This way we effectively separated all presentation (HTML code) from the business
logic (PHP code).

Furthermore, we have made our extension more configurable. Now, to change the template,
either for the whole site, or for part of the page tree, a user would need to add the following
line to the setup field of the template record:

tt_content.media.20.web flvplayer = /path/to/template.html

The template file can be stored in £fileadmin, and can be modified by backend users without
admin access.

Commercial players

We've used the free player for demonstration. Commercial player can be used as well, with
some slight modifications. We'll leave it to the reader to figure out the changes that need to
be made.

See also

» Rendering video using media content object
» Extending the media content object for more rendering options

Chapter 5

Connecting to Flash Media Server to

JEVAYT [T

Flash Media Server (FMS) is an amazing piece of software from Adobe that provides streaming
and interactivity to the Web. Audio and video could be streamed in different resolutions, with
limited buffering. Furthermore, Flash Media Server allows to stream live video!

We will not dig into the internal configuration of Flash Media Server, as that would require a
book on its own. All the control elements for the client is packaged into a SWF file that can be
deployed to the Web. In this recipe, we will look at how the code can be embedded in TYPO3
to communicate with a Flash Media Server.

How to do it...

Create an HTML element on the page.

Add the following code (you can copy it from the introductory page of the FMS
installation). Replace the URLs to point to your Flash Media Server.

<object width='640' height='377' id='videoPlayer'
name='videoPlayer' type='application/x-shockwave-flash'
classid='clsid:d27cdbée-ae6d-11cf-96b8-444553540000' ><param
name='movie' value='http://localhost/swfs/videoPlayer.swf' />
<param name='quality' value='high' /> <param name='bgcolor'
value="#000000' /> <param name='allowfullscreen' value='true' />
<param name='flashvars' value= '&videoWidth=0&videoHeight=0&dsC
ontrol=manual&dsSensitivity=100&serverURL=http://localhost/vod/
sample2 1000kbps.f4v&DS Status=true&streamType=vod&autoStart=true
&videoWidth=0&videoHeight=0&dsControl=manual&dsSensitivity=100&se
rverURL=dynamicStream.smil&DS Status=true&streamType=vod&autoStart
=true&videoWidth=0&videoHeight=0&dsControl=manual&dsSensitivity=10
0&serverURL=http://localhost/vod/sample2 1000kbps.f4v&DS Status=tr
ue&streamType=vod&autoStart=true&videoWidth=0&videoHeight=0&dsCont
rol=manual&dsSensitivity=100&serverURL=dynamicStream.smil&DS Statu
s=true&streamType=vod&autoStart=true&videoWidth=0&videoHeight=0&d
sControl=manual&dsSensitivity=100&serverURL=http://localhost/vod/
sample2 1000kbps.f4v&DS Status=true&streamType=vod&autoStart=true
'/><embed src='http://localhost/swfs/videoPlayer.swf' width='640"
height='377' id='videoPlayer' quality='high' bgcolor='#000000"
name='videoPlayer' allowfullscreen='true' pluginspage='http://www.
adobe.com/go/getflashplayer' flashvars='&videoWidth=0&videoHeigh
t=0&dsControl=manual&dsSensitivity=100&serverURL=http://localhost/
vod/sample2 1000kbps.f4v&DS_ Status=true&streamType=vod&autoStart=t
rue&videoWidth=0&videoHeight=0&dsControl=manual&dsSensitivity=100&
serverURL=dynamicStream.smil&DS Status=true&streamType=vod&autoSta
rt=true&videoWidth=0&videoHeight=0&dsControl=manual&dsSensitivity=
100&serverURL=http://localhost/vod/sample2 1000kbps.f4v&DS Status=
true&streamType=vod&autoStart=true&videoWidth=0&videoHeight=0&dsCo

Rendering Video and Audio

ntrol=manual&dsSensitivity=100&serverURL=dynamicStream.smil&DS_ Sta
tus=true&streamType=vod&autoStart=true&videoWidth=0&videoHeight=0&
dsControl=manual&dsSensitivity=100&serverURL=http://localhost/vod/
sample2 1000kbps.f4v&DS Status=true&streamType=vod&autoStart=true'
type='application/x-shockwave-flash'> </embed></objects>

You can copy this code from the introductory page of the FMS installation.

3. Save and preview, the output can be seen in the the following screenshot:

The HTML element simply includes the HTML code on the page. In this case, we're including
an SWF movie from the FMS server. All the work of communicating with the FMS is done by
the Flash SFW we have included.

You can include the same code in other places besides the HTML content element.

Embedding Flash in RTE

Flash movies, including those driven by Flash Media Server can be embedded in Rich Text
Editor as well. To be able to do that, you need to first add the object, embed, and param
HTML tags to the list of tags the RTE is allowed to preserve—otherwise, they will be stripped
out. Add this to Page TSconfig

RTE.default.proc.allowTags := addToList (object,param, embed)
RTE.default.proc.entryHTMLparser db.allowTags :=
addToList (object, param, embed)

Then, enter RTE's HTML mode, and paste the same HTML code in:

Chapter 5

{ Block style: [No block style []] Text style: [[]
i B J x. % [Noblock format[-] } i= i=
fo%wia i@
iEiIEiEEE ks T Hed-E@E
S —

FY

videoHeight=0BdsControl=manual&dsSensitivity=100EserverUR L=http://localhost
fvod/samplez_1000kbps.f4vEDS_Status=truebstreamType=vodBautoStart=truef
videoWidth=08videoHeight=0BdsControl=manualidsSensitivity=1008&
serverURL=dynamicStream.smil&DS_Status=truebstream Type=vodBautoStart=truek
videoWidth=0BvideoHeight=0BdsControl=manualBdsSensitivity=100EserverUR L=http:
flocalhost/vod/sample?_1000kbps.f4vEDS_Status=truebstreamType=vodBautoStart=truek
videoWidth=08videoHeight=0BdsControl=manualidsSensitivity=1008&
serverURL=dynamicStream.smil&DS_Status=truebstream Type=vodBautoStart=truek
videoWidth=0BvideoHeight=0BdsControl=manualBdsSensitivity=100EserverUR L=http:
flocalhost/vod/sample2_1000kbps.f4vEDS_Status=truebstreamType=vodBautoStart=true'
/=<embed src="http://localhost/swis/videoPlayer.swf' width="'640"' height='377"'

i er' quality="high' bgcolor="'#000000' name="vi

-

=i "bHm fHussase mdobo coarmfanfoatflarbalaeae! flacbaene-—'0

See also

>

>

Embedding images in RTE

Rendering video using the media content object

Connecting to
External APIs

In this chapter, we will cover:

» Getting files from Amazon S3

» Uploading files to S3

» Creating a bucket in S3

» Uploading DAM files to S3

» Getting recent Flickr photos

» Uploading files to Flickr

» Uploading DAM files to Flickr

» Reading a list of movies from the YouTube API
» Authenticating requests to the YouTube API

» Showing a video list with a frontend plugin

Introduction

One of the great features of the Web 2.0 world is the connectivity. Most online services and
applications provide Application Programming Interfaces (API) that expose their data and
functionality. As an application developer, you have access to these APIs, and can utilize
them to provide functionality that you would otherwise have a tough time implementing. This
chapter covers general approaches to working with public APIs, using Amazon S3, Flickr, and
YouTube as examples.

Connecting to External APIs

Getting files from Amazon S3

Amazon S3 is the distributed file system that can be used over the Web. It's nearly limitless
in terms of storage capacity, it's cheap, and you pay only for what you use. S3 has recently
become very popular for these reasons.

Getting ready

Before we get started, you need to understand some of the basic features of S3, in order to
create an application that makes the best use of the system. There are two resources under
S3—buckets and objects. Objects are files, while buckets hold collections of objects. Buckets
can be public or private, with Access Control Lists (ACLs) for finer permissions control.
Objects can be accessed through the browser by URIs. Objects can also have complex names,
making up for the lack of folders.

To learn more about S3 and sign up for the account, go to
s http://aws.amazon.com/.

We will be using the Amazon S3 PHP class for all our interfacing with the S3 service. You can
download it from http://code.google.com/p/amazon-s3-php-class/.

Feel free to read through example files to see how the file should be used, but the only file we
really need is S3 . php.

The class requires eURL to be installed. Here is how you can check if it is installed, and
working, on your TYPO3 site:

1. Go to Admin tools | Install module.

If you get an error stating that the Install Tool is locked,
M go to User tools | User setting, and click Create Install
Q Tool Enable File. See Resolving missing ENABLE_INSTALL _
TOOL file error tip in Creating scalable architecture recipe in
Chapter 1 for more information.

2. Chose option phpinfo().
3. Look for cURL support—it should be enabled.

curl

cURL support enabled
cURL Information libcurl/7.16.0 OpenS5L/0.9.8g zlib/1.2.3

4.

Chapter 6

If not, you can install it using APT on a Debian System:
Shell> apt-get install php5-curl

The following steps assume you already have an extension ready, and are adding S3 support
into the existing code. Thus, we will not get into details of the steps needed to create a new
extension. Assuming everything is ready, you can proceed to listing the files.

How to do it...

1.

In a PHP file, add the following before the declaration of the class:

require once ('S3.php');

Verify that the path to S3 . php is correct, and if not, modify it to point to the
correct location.

In a function where you would like to get the list of files, add the following code:

$s3 = new S3('access code', 'secret code');
Sbuckets = $s3->listBuckets|();
foreach ($buckets as $bucketName) {
if (($contents = $s3->getBucket ($bucketName)) !== false)
foreach ($contents as $objectName => $object) ({
Sobjects [SbucketName . '/' . $objectName] = S$object;

Sobjects [SbucketName . '/' . S$objectName] ['bucket'] =
SbucketName;

}

Replace 'access code' with your actual access code—you can find this information
in Amazon—under your Account | Security Credentials. Do the same for the string
'secret code'.

To print the results, use the following code:

foreach ($objects as $object)
print r(sobject) ;

}

It will result in an output similar to:

Array
(
[name] => S3.php
[time] => 1253554887
[size] => 49961
[hash] => 2f3d98f42e66f6db6el9e9cac3f65chc
[bucket] => s3test4ab7b8fcd484e

Connecting to External APIs

All the hard work is being done by the S3 class, so the first thing we did was include it, and
then instantiate the object:

$s3 = new S3('access code', 'secret code');

If you get a certificate error, there is a problem in communicating to S3 via

secure HTTP. Change the instantiation line to:
Ss3 = new S3('access code', 'secret code', FALSE);

where the last parameter tells S3 class not to use the HTTPS protocol.

Next, we listed all the buckets we have in S3:
Sbuckets = $s3->listBuckets|();

this line returns an array of bucket names. If you only want to list files in a particular bucket,
use the name of the bucket instead of a loop:

$bucketName = 'MyTestBucket';
if (($contents = $s3->getBucket ($bucketName)) !== false) (
foreach ($contents as $objectName => $object) ({
Sobjects [$bucketName . '/' . SobjectName] = $object;
Sobjects [$SbucketName . '/' . SobjectName] ['bucket'] =
SbucketName;

}

Next, we get the contents of each bucket. Sometimes, S3 may not return anything—either
because the bucket is inaccessible due to security policy, or it was just created, and hasn't
replicated to all nodes yet.

If we do have content in the bucket, the list of files is placed in the $contents variable. We
loop over the variable, and reassign it to a different array, along with the bucket name. At the
end, $Sobjects contains a full listing of files, along with their size in bytes, time uploaded as a
UNIX timestamp, and hash of the file content.

Of course, there are a lot more options for listing objects, which become necessary in large
object lists.

120

Chapter 6

Searching for objects

If you want to only see objects whose name starts with a certain string, you can pass the
second parameter to the function:

Scontents = $s3->getBucket ($SbucketName, 'MyVideos/2009');

A common workaround that deals with the absence of categories in S3 is to

\l create object names that reflect their position in the hierarchy. For example:

Q MyVideos/2009/January/24 /Mountain.avi.

Then, objects in certain pseudo directories can be found using the prefix as
shown above.

Finding common prefixes
You can find out what the common prefixes among the files are to aid you in searching.

$contents = $s3->getBucket ($bucketName, NULL, NULL, NULL, '/', TRUE);

Working with large object lists

If you have a large set of objects stored in S3, the listing operation may take a lot of time. It's
possible to limit the number of results returned using markers and limits.

Scontents = $s3->getBucket (SbucketName, NULL, 'S3.php', 25);

The marker is the file after which the results should start.

» Uploading files to S3

» Creating a bucket in S3

» Uploading DAM files to S3

» Creating a scalable architecture

Uploading files to S3

If you just set up your S3 account, then the recipe Getting files from Amazon S3 will not
produce an output. Use the following instructions to set up uploading into S3.

Getting ready

Check the Getting ready section under the recipe Getting files from Amazon S3.

Connecting to External APIs

How to do it...

1. Get a path to the file you want to upload, and the bucket you want to upload it to.
2. Run the following command:

$s3->putObject (S3::inputFile($file), S$SbucketName,
baseName ($file), S3::ACL_PUBLIC_ READ) ;

The putObject function encapsulates all the hard negotiations with S3. The function
calculates the file size, MD5 checksum of the content, content type, and other information,
and sends it along with the file to S3.

The file will now be accessible through the browser at http://s3.amazonaws .com/
BucketName/filename, and anyone can download it.

You can utilize the other options during object creation.

Sending additional information in file headers
Additional headers can be sent with the file. If you want to send any information along with the
file, pass a fifth parameter to the function, which would be an array of values:

$s3->putObject (S3::inputFile($file), S$bucketName,
baseName ($file), S3::ACL_PUBLIC READ,
array('latitude' => '39.92', 'longitude' => '-81.40"');

Assigning object permissions
We created a publicly readable file. Our other options are:

Constant name Description

S3::ACL_PRIVATE Only the owner has full control of the file.

S3::ACL_PUBLIC_READ Owner has full control; general public has read
permissions (including accessing the file through a
browser).

S3::ACL_PUBLIC_READ WRITE Owner has full control; general public has both read

and write permissions, letting them overwrite the file.

S3::ACL_ AUTHENTICATED READ Owner has full control; users who have
authenticated their request can read the file.

122

Chapter 6

Deleting an object

Eventually, you may want to delete the object you've uploaded. That can be done with the
following function call:

$s3->deleteObject (SbucketName, SobjectName) ;

See also

» Getting files from Amazon S3
» Creating a bucket in S3
» Uploading DAM files to S3

Creating a bucket in S3

The best analogy for a bucket is a disk drive or volume. Normally, buckets are created
manually, and code is configured to assign uploaded files to the buckets. You can still create a
new bucket with code fairly easily.

Getting ready

Check the Getting ready section under the recipe Getting files from Amazon S3.

How to do it...

1. Come up with a unique bucket name. Use the PHP unigid function:

SbucketName = uniqgid ('MyBucket') ;

2. Add the following code:

if ($s3->putBucket ($bucketName, S3::ACL PUBLIC READ)) {
// Bucket successfully created, proceed

}

Bucket names are shared among all the users of S3, so once a name is used, it's reserved
exclusively by the owner. Furthermore, bucket names become part of a URL. For these
reasons, the name must be unique. If the URL doesn't matter much, then a random string
works best.

Connecting to External APIs

The putBucket function effectively encapsulates the details, accepting only bucket name
and permission level. Amazon creates the specified bucket, and makes it accessible to
the general public. Any files in the bucket can be downloaded through a URL of the form:
http://s3.amazonaws.com/BucketName/filename.

The bucket name should be unique, so try to append a random string to whatever name you
choose.If the bucket cannot be created for one reason or another, an error will be thrown by
the S3 class. If you don't want such an error to interrupt the flow of your script, be sure to wrap
all S3 operations in a try/catch block such as this:

try {

if ($s3->putBucket ($bucketName, S3::ACL_PUBLIC READ)) {
// Bucket successfully created, proceed

}
} catch (Exception $e) ({
// Do something with the error

}

There's more...

In this section, we will see how to create buckets in different locations, how to set permissions
for a bucket, and how to delete a bucket.

Creating buckets in different locations
Amazon can create buckets in two locations—US and EU. US bucket is the default one, but if you
want to create a bucket in Europe, you need to call the function with the following parameters:

$s3->putBucket ($bucketName, S3::ACL_PUBLIC READ, 'EU');

Setting permissions for a bucket

We created a publicly readable bucket. There are other options though, and they are the same
as object permissions:

Constant name Description

S3::ACL_PRIVATE Only the owner has full control of the file.

S3::ACL PUBLIC READ Owner has full control; general public has read
permissions (including accessing the bucket through
a browser).

S3::ACL PUBLIC READ WRITE Owner has full control; general public has both read

and write permissions, letting them overwrite the file.

S3::ACL_ AUTHENTICATED READ Owner has full control; users who have authenticated
their request can read the file.

Chapter 6

Deleting a bucket
When you're done with a bucket, you can delete it using the following function:

$s3->deleteBucket (SbucketName) ;

Remove all objects first before deleting a bucket.

» Getting files from Amazon S3
» Uploading files to S3
» Uploading DAM files to S3

[You can only delete empty buckets—ones that do not contain any objects.]
a8

Uploading DAM files to S3

Now that we know how to operate with buckets and objects in S3, let's adjust dam user
upload, which is covered in Chapter 2, in the recipe Creating frontend upload form, to
upload the files to S3.

Getting ready

We will describe the changes that need to be made to the dam_user upload extension—
it's up to you if you want to create a brand new extension, or modify the existing one. We'll
assume the new extension is called s3_upload in the steps outlined below.

How to do it...

1. Create a directory 1ib, and copy the S3.php library into it.
2. Include the S3 library in pil/class.tx_s3upload pil.php:
require once (t3lib_ extMgm::extPath('s3 upload').'lib/S3.php');
3. Most of our functionality is modular, so we just need to replace the function
uploadFile with:

function uploadFile(Stitle, S$author, $description) {

if (!$this->conf['accessCode'])
return 'Error: S3 access code was not defined in
TypoScript';
}
if (!$this->conf['secretCode'])

Connecting to External APIs

126

return 'Error: S3 secret code was not defined in
TypoScript';
}
if (!$this->conf['bucket']) {
return 'Error: Upload bucket not defined in TypoScript';

// Instantiate the object

$83 = new S3($this->conf['accessCode'], S$Sthis-
>sconf ['secretCode']) ;

// Find a unique name

$i = 0;
do {
Si++;
SobjectName = t31lib div::shortMD5($i . S$GLOBALS['TSFE'] -
>fe user-suser["uid"] . $ FILES['tx damuserupload
pil:file']['name']) . '_'_. $_FILEST'tx_damuserupioad_

pil file'] ['name'];
}
while ($s3->getObjectInfo ($this->conf ['bucket'],
$objectName)) ;

// Set object metadata into headers:
Sheaders = array(
'title' => S$title,
'author' => S$Sauthor,
'description' => $description

)i

// Upload the file
if ($s3->putObject (S3::inputFile($ FILES['tx damuserupload
pil file'] ['tmp name']),
Sthis->conf ['bucket'], $objectName, S3::ACL PUBLIC READ,
$headers))

Scontent .= S$this->pi getLL('successful upload') ;
} else {
Scontent .= $this->pi getLL('failed upload') ;
}
$content .= 'pi
getPageLink ($GLOBALS['TSFE'] ->id) . '">'
S$this->pi getLL('back to form') . '';

return Scontent;

Chapter 6

4. Set the following TypoScript options in the setup field of the template, replacing the
values with your access information:

plugin.tx s3upload pil.accessCode = your-code
plugin.tx s3upload pil.secretCode = your-code

plugin.tx s3upload pil.bucket = your-bucket

5. The rest of the steps for including the plugin on the page are the same as in the
Chapter 2 recipe, Creating frontend upload form.

Our procedure is very similar to dam_user upload, but this time we upload the file directly
to S3. First, we check that we have all the needed values—S3 access and secret codes,

as well as the bucket name where we will upload the files. These settings should be set in
TypoScript, and if they are not, we print an error message.

Next, we find a unique object name, using the same procedure as in dam_user upload, but
this time using an S3 function instead of PHP's file exists (). Once we obtain a unique
object name, we proceed with the upload.

There's more...

There are a few opportunities for improvement in this extension. Let's look at one.

Setting unique flexform options for each plugin instance

Instead of including options in TypoScript, these settings can be unique for each instance of a
plugin. To make it possible, a plugin needs to have a flexform.

Another common approach is to make the flexform settings optional, with a fallback to
TypoScript settings. That way specific settings can be customized for each instance of a
plugin, but those that are not set will default to values from TypoScript.

Refer to official TYPO3 documentation for a thorough description of flexforms.

See also

» Getting files from Amazon S3

» Uploading files to S3

» Creating a bucket in S3

» Creating a frontend upload form

Connecting to External APIs

Getting recent Flickr photos

The Flickr API is very powerful and gives access to just about everything a user can do
manually. You can write scripts to automatically download latest pictures from a photostream,
download photos or videos tagged with a certain keyword, or post comments on photos. In
this recipe, we will make use of the phpFlickr library to perform some basic listing functions
for photos in Flickr.

Getting ready

Before you start, you should sign up for a free Flickr account, or use an existing one. Once you
have the account, you need to sign up for an API key. You can go to Your Account, and select
the Extending Flickr tab. After filling in a short form, you should be given two keys—API key
and secret key. We will use these in all Flickr operations.

We will not go through the steps required for integration into extensions, and will leave
this exercise to the reader. The code we present can be used in both frontend plugins and
backend modules.

As was previously mentioned, we will be using the phpFlickr library.
Gotohttp://phpflickr.com/ to download the latest version of the library and read
the complete documentation.

How to do it...

1. Include phpFlickr, and instantiate the object (modify the path to the library, and
replace api-key with your key):
require once ("phpFlickr.php") ;
SflickrService = new phpFlickr('api-key');
2. Get a list of photos for a specific user:
$photos = $flickrService->people getPublicPhotos('7542705@N08") ;
3. If the operation succeeds, $photos will contain an array of 100 (by default) photos
from the user. You could loop over the array, and print a thumbnail with a link to the
full image by:
foreach ($photos['photos'] ['photo'] as $photo) ({
$imgURL = $flickrService->buildPhotoURL ($Sphoto, 'thumbnail');

print '<a href="http://www.flickr.com/photos/"'
S$photo['owner'] . '/' . $photo['id'] . '">!
'
';

128

Chapter 6

The Flickr APl is exposed as a set of REST services, which we can issue calls to. The tough
work of signing the requests and parsing the results is encapsulated by phpFlickr, so
we don't have to worry about it. Our job is to gather the parameters, issue the request, and
process the response.

In the example above, we got a list of public photos from a user 7542705@N08. You may
not know the user ID of the person you want to get photos for, but Flickr API offers several
methods for finding the ID:

SuserID = $flickrService->people findByEmail ($Semail) ;
SuserID = $flickrService->people findByUsername (Susername) ;

If you have the user ID, but want to get more information about the user, you can do it with the
following calls:

// Get more info about the user:
$flickrService->people getInfo($userID) ;

// Find which public groups the user belongs to:
$flickrService->people getPublicGroups ($userlID) ;
// Get user's public photos:
$flickrService->people getPublicPhotos ($userlID) ;

We utilize the people getPublicPhotos method to get the user's photostream.
The returned array has the following structure:

Array
(
[photos] => Array
(
[page] =>1
[pages] => 8
[perpage] => 100
[total] => 770
[photo] => Array
(
[0] => Array
(
[id] => 3960430648
[owner] => 7542705@N08
[secret] => 9c4087aae3
[server] => 3423
[farm] => 4
[title] => One Cold Morning
[ispublic] => 1

Connecting to External APIs

[isfriend] => 0
[isfamily] => 0

)

We loop over the Sphotos ['photos'] ['photo'] array, and for each image, we build a URL
for the thumbnail using the buildPhotoURL method, and a link to the image page on Flickr.

There's more...

There are lots of other things we can do, but we will only cover a few basic operations.

Error reporting and debugging

Occasionally, you might encounter an output you do not expect. It's possible that the Flickr
API returned an error, but by default, it's not shown to the user. You need to call the following
functions to get more information about the error:

SerrorCode = $flickrService->getErrorCode () ;
SerrorMessage = $flickrService->getErrorMsg() ;

Downloading a list of recent photos
You can get a list of the most recent photos uploaded to Flickr using the following call:

$recentPhotos = $flickrService->photos getRecent() ;

See also

» Uploading files to Flickr
» Uploading DAM files to Flickr

Uploading files to Flickr

In this recipe, we will take a look at how to upload files to Flickr, as well as how to access
other authenticated operations. Although many operations don't require authentication, any
interactive functions do. Once you have successfully authenticated with Flickr, you can upload
files, leave comments, and make other changes to the data stored in Flickr that you wouldn't
be allowed to do without authentication.

130

Chapter 6

Getting ready

If you followed the previous example, you should have everything ready to go. We'll assume
you have the $flickrService object instantiated already.

How to do it...

1. Before calling any operations that require elevated permissions, the service needs to
be authenticated. Add the following code to perform the authentication:
Sfrob = t3lib div:: GET('frob');
if (empty($frob)) {
SflickrService-sauth('write', false);
} else {
$flickrService->auth getToken ($frob) ;
}
2. Call the function to upload the file:
$flickrService->sync upload($filePath) ;

3. Once the file is uploaded, it will appear in the user's photostream.

Flickr applications can access any user's data if the user authorizes them. For security
reasons, users are redirected to Yahoo! to log into their account, and confirm access for your
application. Once your application is authorized by a user, a token is stored in Flickr, and can
be retrieved at any other time.

$flickrService->auth () requests permissions for the application. If the application is
not yet authorized by the user, he/she will be redirected to Flickr. After giving the requested
permissions, Flickr will redirect the user to the URL defined in the API key settings.

The redirected URL will contain a parameter frob. If present, sflickrService->auth
getToken ($Sfrob) ; is executed to get the token and store it in session. Future calls within
the session lifetime will not require further calls to Flickr. If the session is expired, the token
will be requested from Flickr service, transparent to the end user.

At this point, the application is authenticated, and can access methods, such as
sync_upload.

Successful authentication allows you to access other operations that you would not be able to
access using regular authentication.

Connecting to External APIs

Gaining permissions

There are different levels of permissions that the service can request. You should not request
more permissions than your application will use.

API call Permission level

$flickrService->auth('read', false); Permissions to read users'files, sets,
collections, groups, and more.

$flickrService-sauth('write', Permissions to write (upload, create
false) ; new, and so on).
$flickrService->auth('delete', Permissions to delete files, groups,
false) ; associations, and so on.

Choosing between synchronous and asynchronous upload
There are two functions that perform a file upload:

$flickrService->sync upload($filePath) ;
$flickrService->async upload(sfilePath) ;

The first function continues execution only after the file has been accepted and
processed by Flickr. The second function returns after the file has been submitted,
but not necessarily processed.

Why would you use the asynchronous method? Flickr service may have a large queue of
uploaded files waiting to be processed, and your application might timeout while it's waiting.
If you don't need to access the uploaded file right after it was uploaded, you should use the
asynchronous method.

» Getting recent Flickr photos
» Uploading DAM files to Flickr

Uploading DAM files to Flickr

In this recipe, we will make use of our knowledge of the Flickr APl and the phpFlickr
interface to build a Flickr upload service into DAM. We will create a new action class, which
will add our functionality into a DAM file list and context menus.

132

Chapter 6

Getting ready

For simplicity, we will skip the process of creating the extension. You can download the
extension dam_flickr upload and view the source code. We will examine it in more detail
in the How it works... section.

How to do it...

1. Sign up for Flickr, and request an API key if you haven't already done so.

2. After you receive your key, click Edit key details

Key: Secret:
el — . — A —— -
App Title: TYPO3

Issued: 6 hours ago
Status: Active
Auth mode: Web (hitp/it 1t34-3a3ftypo3conflext’/dam_flickr_uploadimodi/index.php)

Integration of Flickr semvices into TYPO3 content management system

Edit key details Usage statistics for this key

3. Fillin the application title and description as you see fit. Under the call back URL,
enter the web path to the dam_flickr upload/modl/index.php file. For
example, if your domain is http://domain.com/, TYPO3 is installed in the root
of the domain, and you installed dam_flickr upload in the default local location
under typo3conf, then enter http://domain.com/typo3conf/ext/dam
flickr upload/modl/index.php

1
‘\Q You're likely to experience trouble with the callback URL if you're doing it

on a local installation with no public URI.

4. Installdam flickr upload.Inthe Extension Manager, under the extension
settings, enter the Flickr APl key and the secret key you have received.

Connecting to External APIs

5. Go to the Media | File module, and click on the control button next to a file.

List -

[fileadmin/]: user_upload/

4 records found.

Show: 20 o

4 Files, 6.2 Mbytes

Filename Type Date Size RW
& TEMP 02-08-09 RW
@ 721X8256_al.jpg PG 27-09-09 248 K RW
MOVO0580.MPG MPG 20-09-09 1.3 M RW
a Prod-adv-api-dg-20090331.pdf PDF 10-08-09 4.7 M RW

6. Alternatively, select Send to Flickr in the context menu, which appears if you click on

the file icon, as seen in the following screenshot:

Filename

& TEMP
/2 show

a
Info @
]
2
i

Rename

Replace file

Delate L
IE‘ Send to Flickr e

7. A new window will open, and redirect you to Flickr, asking you to authorize the
application for accessing your account. Confirm the authorization by clicking the OK,

I'LL AUTHORIZE IT button.

@= TYPO3J wants to link to your Flickr account.

By authorizing this link, you'll allow TYPO3 to:
+# Access your Flickr account (including private content)
+ Upload, Edit, and Replace photos and videos in your account

+ Interact with other members' photos and videos (comment, add
notes, favorite)

TYPO3 will not have permission to:

3 Delete photos and videos from your account

OK, 'LL AUTHORIZE IT TeRp TALSS

This is a third-party senvice. If you don't trust it with access to your account, then you should not authorize it.

What's g
Flickr encol
to build co
with, but yq
third partie|

Want to K
Awealth o
the Flickr §

8. The file will be uploaded, and placed into your photostream on Flickr.

9. Subsequent uploads will no longer need explicit authorization. A window will come up,

and disappear after the file has been successfully uploaded.

Chapter 6

Let's examine in detail how the extension works. First, examine the file tree. The root contains
the now familiar ext tables.php and ext conf template.txt files.The Res directory
contains icons used in the DAM. The Lib directory contains the phpFlickr library. The Mod1l
directory contains the module for uploading.

ext_conf_template.txt

This file contains the global extension configuration variables. The two variables defined in this
file are the Flickr API key and the Flickr secret key. Both of these are required to upload files.

ext_tables.php

As was mentioned previously, ext tables.php is a configuration file that is loaded when
the TYPO3 framework is initializing.

tx dam::register action ('tx dam action flickrUpload', 'EXT:dam
flickr upload/class.tx_dam flickr upload action.php:&tx dam flickr
upload action flickrUpload') ;

This line registers a new action in DAM. Actions are provided by classes extending the
tx _dam_actionbase class, and define operations that can be performed on files and
directories. Examples of actions include view, cut, copy, rename, delete, and more. The

second parameter of the function defines where the action class is located.

SGLOBALS ['TYPO3 CONF VARS'] ['EXTCONF'] ['dam flickr upload']
['allowedExtensions'] = array('avi', 'wmv', 'mov', 'mpg', 'mpeg',
!3gpil ljpgl’ !jpegl’ !tiffl’ !gif!l lpngl);

We define an array of file types that can be uploaded to Flickr. This is not hardcoded in the

extension, but stored in ext tables.php, so that it can be overwritten by extensions
wanting to limit or expand the functionality to other file types.

class.tx_dam_flickr_upload_action.php
This file defines the action class.

var $typesAvailable = array('control’, ‘context’);

The $StypesAvailable array defines the context in which the functionality can be used.
In this case, we are allowing it to be used in Control setting (in the file list), and in the
context menu. Other options include icon, button, globalcontrol, and multi. Refer to the
DAM manual and source code to see how these can be used.

function isPossiblyValid($type, $iteminfo = NULL, $env = NULL)

This function returns TRUE if the rendering type is present in typesAvailable. Otherwise, it
returns FALSE, and the action is made unavailable in the context.

Connecting to External APIs

function isValid($type, $iteminfo = NULL, $env = NULL)

This function is called for each individual file, and performs a check to see if the
functionality should be enabled for the file. In our case, we check if the file extension is one
of the allowed extensions:

$valid = in array(strtolower ($this->itemInfo['file extension']),
SGLOBALS [' TYPO3 CONF_VARS'] ['"EXTCONF'] [' dam_flickr_upload' 1
['allowedExtensions']) ? TRUE : FALSE;

If the function returns TRUE, the action will be enabled for the specific file.

function geticon($addAttribute = ")

The icon used by the action depends on if the action is enabled or disabled. If it is disabled,
we show it visually by rendering a grayed out icon.

function getLabel()
This function returns a short label for the action.

function _getCommand|)

This function returns a JavaScript action that is executed when the user clicks on the icon. In
our case, it opens a new window, calling mod1/index . php with parameters corresponding to
the file we chose to upload.

mod1/index.php

This module establishes a connection with Flickr through the phpFlickr library,
authenticates the request, and uploads the file.

init()
Init () function initializes the class, and checks for the presence of the Flickr API key and
the secret key. It also saves the parameters that have been passed in with the module call.

auth()

This function performs Flickr authentication, as described in the recipe above. As the request
could be redirected to Flickr for further authentication, this function saves the parameters
passed into the module in the backend user session. It is done using the functions of the

BE_ USER object: setAndSaveSessionData function to save, and getSessionData to
retrieve the information.

main()

Assuming everything else went well, the main function simply calls the sync_upload
function of the phpFlickr library to upload the file synchronously and report any errors.
Another way the file can be uploaded is by using the async_upload function, which sends
the request to Flickr, and proceeds without waiting for Flickr to index and store the file.

136

Chapter 6

See also

» Getting recent Flickr photos
» Uploading files to Flickr

Reading list of movies from YouTube API

Working with the YouTube API is very similar to Flickr. We will use the Zend_Gdata library,
which we can place in the 1ib directory. Let's now take a look at a simple task of pulling up
the recent videos posted today.

1
‘\Q Zend_Gdata is part of the Zend Framework, but can be downloaded

separately from http://framework.zend.com/download/gdata.

Getting ready

We will only cover the essential code. It's up to the reader to place the code wherever
appropriate, and make sure all the needed libraries are included. For an example, look at
Showing video list using frontend plugin recipe further on in this chapter.

Before you start, make sure that the path to the directory holding the zend library is in your
PHP include path.

How to do it...

1. Load the required files:
require once 'Zend/Loader.php';
Zend Loader: :loadClass ('Zend Gdata_ YouTube') ;
Zend_Loader: :loadClass ('Zend Gdata App Exception');

2. Set search parameters and send the request to YouTube:
// Initialize class
$youTubeService = new Zend Gdata YouTube() ;
Squery = $SyouTubeService->newVideoQuery () ;
// Set search keyword/phrase
Squery->setQuery ('keyword') ;
// Set start index
Squery->setStartIndex(0) ;
// Set maximum number of results

Squery->setMaxResults (10) ;

Connecting to External APIs

138

// Set search types

Squery->setFeedType ('most viewed') ;

// Set search time
Squery->setTime ('all time');

// Issue a query

Sfeed = $youTubeService->getVideoFeed (Squery) ;

Parse the resulting data:
foreach ($feed as $videoEntry) ({

echo 'Video: ' . S$videoEntry->getVideoTitle() . "\n";

echo 'Video ID: ' . $videoEntry->getVideoId() . "\n";

echo 'Updated: ' . $videoEntry->getUpdated() . "\n";

echo 'Description: ' . $videoEntry->getVideoDescription ()
"\1’1",‘

echo 'Category: ' . $videoEntry->getVideoCategory() . "\n";

echo 'Tags: ' . implode(", ", $videoEntry->getVideoTags ())
"\1’1",‘

echo 'Watch page: ' . $videoEntry->getVideoWatchPageUrl ()
"\1’1",‘

echo 'Flash Player Url: ' . $videoEntry->getFlashPlayerUrl ()
"\1’1",‘

echo 'Duration: ' . $videoEntry->getVideoDuration() . "\n";

echo 'View count: ' . $videoEntry->getVideoViewCount () . "\n";

echo 'Rating: ' . $videoEntry->getVideoRatingInfo() . "\n";

echo 'Geo Location: ' . $videoEntry->getVideoGeoLocation ()
"\1’1",‘

echo 'Recorded on: ' . $videoEntry->getVideoRecorded() . "\n";

foreach ($videoEntry-s>mediaGroup->content as $content)
if ($content->type === "video/3gpp") ({
echo 'Mobile RTSP link: ' . $content->url . "\n";
}
}

echo "Thumbnails:\n";
$videoThumbnails = S$videoEntry->getVideoThumbnails() ;

foreach ($videoThumbnails as $videoThumbnail) {

echo $videoThumbnail['time'] . ' - ' . $videoThumbnail['url'];
echo ' height=' . $videoThumbnail['height'];
echo ' width=' . $videoThumbnail ['width'] . "\n";

Chapter 6

The zend_Gdata objects encapsulate much of the functionality, providing us convenient
objects for working with the results. We provide our parameters, mainly the time span, sorting,
limits on the results, and a keyword to search by, and the YouTube API returns a list of videos
matching the criteria.

The sfeed variable is an object of the Zend Gdata_ YouTube VideoFeed class, which in
turn is a collection of objects of the Zzend Gdata_ YouTube VideoEntry class. The latter
has easy getter methods that we can use to get the information we need—such as video ID,
title, description, category, thumbnail, and more.

There's more...

The API offers other options for narrowing down the selection of videos for a list. You can
select the videos by placing restriction such as filters.

Filters

There are of course more filters than the ones we used. Here are some more functions you
can use to set limits on results:

API call Description

setAuthor ($value) Sets the list of the authors.

setCategory ($value) Sets the array of categories.

setFormat (Svalue) Sets the parameter to return videos of a specific
format.

setLocation (svalue) Sets the location parameter for the query.

setLocationRadius (Svalue) Sets the location-radius parameter for the query.

setMaxResults (Svalue) Sets the number of results to be returned.

setOrderBy (Svalue) Sets the value of the order by parameter.

setSafeSearch ($value) Sets the safeSearch parameter to either 'none’,
'moderate’ or 'strict'.

setStartIndex ($Svalue) Sets the start index for the search results.

setTime ($value) Sets the time period over which this query should
apply (‘today', 'this_week', 'this_month', or 'all_time').

setUploader ($value) Sets the value of the uploader parameter.

setVideoQuery ($value) Sets the formatted video query (vq) URL param value.

Connecting to External APIs

See also

» Authenticating requests to YouTube API
» Showing video list with frontend plugin

Authenticating requests to YouTube API

Authentication with YouTube is very similar to authentication with Flickr covered in the
Uploading DAM files to Flickr recipe, so we will skip on the details. It follows the same

pattern of token pass back.

Getting ready

Make sure you have all the required classes already loaded (see Step 1 of How to do it... in
the recipe Reading list of movies from YouTube API). In addition to the other two classes,
load the Authentication library:

Zend_Loader: :1loadClass ('Zend Gdata_AuthSub') ;

How to do it...

1. First, you need to generate a URL to send the user to YouTube to provide
authentication. The URL can be generated using the following method:

$scope = 'http://gdata.youtube.com';
$secure = false;
Ssession = true;
SreturnURL = 'http://'. $_ SERVER['HTTP_HOST']
$ SERVER(['PHP SELF'];
Surl = Zend Gdata AuthSub::getAuthSubTokenUri ($returnURL,
Sscope, $secure, $session);

2. Upon the user's return from YouTube, the request will contain a GET parameter with
the token.
Stoken = t31lib div:: GET('token');
if (isset (Stoken)) {

try {
$sessionToken = Zend Gdata_ AuthSub::getAuthSubSessionToken
(Stoken) ;

} catch (Zend Gdata App Exception Se) {

}

$ SESSION['sessionToken'] = $sessionToken;

140

Chapter 6

After the URL is generated, the user needs to click it, and provide his or her credentials
to YouTube. YouTube will confirm that the user wants to give our application access to his or
her data.

YU“- ‘ Search ¥ & Sign Out

Home Videos Channels Shows Subscriptions History Upload

Authorize Access to Your Account

localhost: This website is registered with Google to make authorization requests, but has not been configured to send requests securely. We localhost

recommend that you continue the process only if you trust the following destination localhost
hitp:/localioSt, e = 5 S———————— e ————— D ||

Allow Access H Deny Access i

You[TH)

Broadcast Yourself™
YouTube

hitp:iigdata youtube.com

Assuming the user clicks yes, they will be redirected back to our application, where we will
accept the token and store it in the user's session.

Once you have successfully authenticated with YouTube, you can perform various actions that
you couldn't do before. For example, you can post comments, manipulate playlists, tag videos,
and most importantly, upload videos. The Zend Gdata package provides enough information
to get you started. As an exercise, try to recreate the dam_flickr upload extension, butto

upload a video to YouTube!

See also

» Reading list of movies from YouTube API
» Showing video list with frontend plugin
» Uploading DAM files to Flickr

Showing video list with frontend plugin

In this example, we will take everything we've learned in Reading list of movies from
YouTube APl and Authenticating requests to YouTube API recipes, and put it together to
create a frontend plugin, which would display a list of YouTube videos.

Connecting to External APIs

Getting ready

We will be creating a new plugin, so make sure Kickstarter is installed. We will not go into
much detail in plugin creation.

How to do it...

1. In Extension Manager, select Create new Extension submodule. If the option
is missing, Kickstarter has not been installed. We will call the extension
youtube connector

2. Under General Info, enter the basic extension information.

3. Click the plus icon (+) next to the Frontend Plugins, and call the plugin Youtube.

The name of the plugin shows up in the plugin select box. If an installation
contains a lot of plugins, it may get confusing for the editors as to which
plugin they should use. Be creative in selecting a short name that uniquely
identifies your plugin.

1 General | Plugin | Access
~\Q
[ﬂ

E E‘r’outuhe iv|

PE Upload Form
'j Video and audio files
EE Photogallery

Check the box to create an uncached USER_INT plugin.
Click View result, and write to the location specified.
In the extension folder, create a new directory, and call it 1ib.

Copy the folder zend from the library directory of the zend_Gdata package into 1ib.

O N o o k&

In ext localconf.php, add:

// Add Zend library to include path:
$zendPath = t31ib_ extMgm::extPath($_EXTKEY) . 'lib/';
set _include path(get include path() . PATH SEPARATOR . $zendPath) ;

142

Chapter 6

9. Create a new folder res. In it, create a file template.html. Fill it with the
following content:

<!-- ###TEMPLATE### start-->
<table width="100%" id="youtube_connector"s>
<!-- ###VIDEOHH## -->
<tr>
<td><img sro="###VIDEO
THUMBNAIL###" /></td>
<td>###VIDEO TITLE###
<p class="videoDescription">###VIDEO DESCRIPTION###</p>
<p class="videoCategory">Category: ###VIDEO
CATEGORY###</p>
<p class="videoTags">Tags: <!-- ###VIDEO TAGSH###
-->###VIDEO TAGH### <!-- ###VIDEO_ TAGSH##
--></p>
</td>
</tr>
<!-- ###VIDEOHH## -->
</table>
<!-- ###TEMPLATE### end-->

10. Replace the contents of pil/class.tx youtubeconnector pil.php with the
content from the youtube connector extension that can be downloaded from the
book's site (http://www.packtpub.com/files/code/8488 Code.zip).

11. Add the plugin to a page, and preview it. Try passing in a few parameters to narrow
down list results:

=g rF T i T i o ol

Apple's "Get a Mac" ad: "Tetter Tottering”

http:/www macdailynews.com To go from Windows XP to Wilndow
customer satisfaction: Apple's Mac.

Category: Tech

Tags: apple jobs mac ipod iphone app store itunes machook imag
CheapvD & CampingKev vs. Windows 7 Whopper

P "ﬂ Celebrating the launch of Windows 7 in Japan, the Windows 7 Whop

L

g Category: People

Tags: burger king whopper cheapyd cheapassgamer cagcast jap
Seven Whopper Patties for Windows 7

Connecting to External APIs

All the hard work is handled by the Zend_Gdata objects. But, we need to load it into our
script. The framework expects the folder containing the zend_Gdata objects to be in the
include path in PHP. We could require the administrators to add the appropriate directory to
php.ini, but this is error prone, and makes the job of administrators harder. Instead, we
add the appropriate directory to the include path at runtime, while the TYPO3 framework is
initializing. We added this to ext localconf.php:

// Add Zend library to include path:
$zendPath = t31lib extMgm::extPath($_EXTKEY) . 'lib/';
set include path(get include path() . PATH SEPARATOR . $zendPath) ;

This does exactly what we just described. First, it resolves the path to the 1ib folder (under
which the zend directory resides), based on where the extension was installed. Then, it
appends the include path with the location.

When we look at the plugin, one of the first lines loads the Zend class loader:

require once 'Zend/Loader.php';
The script now knows where to find the file because we have told PHP where to look for files.
Now, let's look at what happens in the rest of the plugin.

main()

After we set some default parameters (these are generated by the Kickstarter), we load the
classes we will need later:

Zend Loader: :loadClass ('Zend Gdata_ YouTube') ;
Zend Loader: :loadClass ('Zend Gdata AuthSub') ;
Zend Loader: :loadClass ('Zend Gdata App Exception');

Next, we initialize some variables based on the parameters passed to the plugin through GET
variables or TypoScript:

Sthis->init (Sconf) ;
Finally, we get the content and return it to be printed on the screen:

Scontent = $this->renderContent () ;
return S$this->pi wrapInBaseClass ($Scontent) ;

init()
We start our initialization with gathering the GET parameters sent to the page that pertains
to us.

$input = $this->piVars;

Chapter 6

The parameters will be automatically available to us through the class variable.We then
go through each parameter, typically checking the input value and using it if present,
otherwise using the TypoScript value. If the TypoScript value is not set, we use a default.
This allows for maximum flexibility, where the plugin output can be controlled by a
combination of parameters passed through the URL and TypoScript. Let's walk through an
example of setting the search type:

Sthis->searchType = isset ($Sinput['searchType']) ? S$input['searchType']
Sconf ['searchType'];
if (!$this->searchType ||
lin array (Sthis->searchType, $this->validSearchTypes)) {
Sthis->searchType = 'most viewed'; // Provide a default

}

First, we check if $input ['searchType'] is set. This is the value sent through the
GET parameters in a URL, like http://example.com/index.php?id=21&tx_
youtubeconnector_ pil [searchType] =top%20rated. If it is not set, we use the
TypoScript value, passed to the plugin, like plugin.tx youtubeconnector pil.
searchType = top rated

Neither of these needs to be present. Furthermore, parameters passed could be misspelled,
or could even be an attempt to break our application. So, we run a final check to make sure
we have a value and it's present in the expected values array:

var $validSearchTypes = array('top rated', 'most viewed',
'recently featured', 'mobile');

If it's not, we give it a default value of most viewed.

renderContent|)
In this function, we connect to YouTube using Zend Gdata classes, and ask for

a data feed using our defined parameters to customize it. We pass the resulting data feed to
renderFeed function.

renderFeed|)
The function starts by analyzing and extracting the template:

Stemplate = $this->cObj->fileResource (Sthis->templateFile);

StopTemplate = $Sthis->cObj->getSubpart (Stemplate,
"HH#HTEMPLATE### ') ;

$videoRow = $this->cObj->getSubpart ($topTemplate,
"H#H#VIDEOH### ') ;

StagRow = $Sthis->cObj->getSubpart ($videoRow,
"H###VIDEO TAGSH##');

Connecting to External APIs

Sthis->templateFile contains the location of the template file. It is set in our init ()
function, and can be defined in TypoScript. If the TypoScript value is missing, a default is used
instead. The file is broken into appropriate subparts. Now, each variable contains a template,
with markers and subparts that need to be replaced by data.

We go through each video in the video feed, extracting all the information we could possibly
want. To make sure that we have a fresh start with each new video, we reset the $markers
and Ssubparts arrays:

foreach ($feed as $entry)
Smarkers = array();
$subparts = array();

}

Each $entry is an object, which has methods that let us easily pull the information we want,
and place it into a marker array. We use the htmlspecialchars function on values to
convert any HTML entities:

Smarkers ['###VIDEO TITLE###'] = htmlspecialchars($entry->
getVideoTitle());

Smarkers [' ###VIDEO_UPDATED###'] = htmlspecialchars (Sentry->
getUpdated()) ; B

Smarkers ['###VIDEO DESCRIPTION###'] = htmlspecialchars ($Sentry->
getVideoDescriptIon());

Smarkers ['###VIDEO CATEGORY###'] = htmlspecialchars($Sentry->
getVideoCategory?));

Smarkers ['###VIDEO URL###'] = $Sentry->getVideoWatchPageUrl () ;

The list of tags is an array, so we treat it as such. We have a template for how each tag should
be rendered, so we substitute the marker with the tag value, and append it to the list:

$videoTags = Sentry->getVideoTags () ;
foreach ($videoTags as $videoTag)
$subparts ['###VIDEO TAGSH###'] .=
$this->cObj->substituteMarker ($StagRow,
'###VIDEO_TAGH###', SvideoTag);

}

We substitute the video template with the data we have acquired, and append it to a running
list. Note how both markers and subparts (tags) are substituted here:

$videoList .= $this->cObj->substituteMarkerArrayCached ($videoRow,
Smarkers, S$subparts) ;

Finally, we substitute the list into the template, and return it. It will be placed at the location
where the plugin was inserted on the page.

146

Chapter 6

There's more...

This was just an introduction to the YouTube API, and to really have a functional application,
you would utilize other features.

Displaying video

The plugin redirects the user to www . youtube . com to view the video. Of course, as a
webmaster you want to keep the user on your site as long as possible. So, it makes sense to
render the YouTube video in your template on your site. YouTube API provides enough data
to show the video and related fields. We can even use the Media content element, which we
covered in Chapter 5, to render the video.

Sending parameters to plugins

A recommended way of sending parameters in TYPO3 is to have them in an array, with the
plugin class as the name. For example, to send a search term to our plugin on page 21, the
URL would be http://example.com/index.php?id=21&tx youtubeconnector
pil [searchTerm] =windows.

A page in TYPO3 can have a number of different plugins, expecting a number of parameters.
Passing parameters in this fashion prevents conflicts between plugins, and keeps them
relatively isolated. Furthermore, the parameters will be automatically available to us through
the class variable pivars.

See also

» Reading list of movies from YouTube API
» Authenticating requests to YouTube API

Creating Services

In this chapter, we will cover:

» Extracting metadata from OpenOffice documents
» Processing audio using a service

» Converting a video into FLV upon import

» Converting audio using services

» Building an audioConversion service

Extracting metadata from OpenOffice

documents

Chapter 3 Operating with Metadata in Media Files recipes described how services work to
extract metadata embedded in various files. There are times when no extractor exists for the
file format that you need. In this case, you can write a service to extract that metadata from
the files.

We will now cover how to extract metadata that is stored in popular OpenOffice documents.
These files can be created in Writer, and have the extension . odt. This extension will also
work for other files created by the OpenOffice suite, including . ods from Calc, and . odp
from Impress.

[To learn more about OpenOffice, go to http://www.openoffice.org.]

Creating Services

This is just one of the multitudes of services you can create. For example, you could create
a service to extract the contents of a text file from various formats, or to handle user
authentication, both frontend and backend.

Furthermore, you can utilize services in your own extensions, decoupling functionality from
the core logic of the extension, and providing a freedom of implementation for the future.

Getting ready

To start, make sure you have Kickstarter and DAM extensions installed. Refer to the Installing
needed extensions recipe in Chapter 1 for specific instructions. We will use the Kickstarter to
create a framework for the extension, and then we will fill it up with code. You can follow the
same procedures to create services for other tasks.

The metadata extractor will also rely on the ZIP support present in the PHP installation. Make
sure you get the following output for phpinfo() to confirm that the needed support exists:

zip
Zip enabled
Extension Version $1d: php_zip.c,v 1.1.2.38.2.29 2009,/02/24 23:55:14 iliaa Exp $
Zip version 1.9.1
Libzip version 0.9.0

To test how our service is working, we need a test document with metadata. Use OpenOffice
Writer to create a sample file. Click on File and choose Properties. Fill in some fields under
the Description tab. Click OK, and save the document.

| General | Description |Custam Properties | Internet | Statistics |

Title pome test title |
Subject | Some subject |
Keywords | some keyword, keywaord2 |

Comments This is a comment o

=

[ok || cancel || Help |[Reset

L F

150

Chapter 7

How to do it...

1. Go to the Admin tools | Extension Manager module, then the Create new Extension
submodule.

2. Enter your extension key, and make sure to register the key so that no one else uses
it. For this extension, you can enter meta_openoffice.

3. Click on the plus icon (+) next to General info to edit the basic required information
about the extension.

4. Fill in the extension title, as the users will see it in the Extension Manager, and enter
a brief description. For Category, select Services.

5. Under the list of dependencies, enter dam.

6. Click on the plus icon (+) next to Services. Fill the form as shown in the
following screenshot:

KICKSTARTER WIZARD

Frontend Plugins

Backend Modules

Integrate in existing Modules
Clickmenu items:

Services

Lk =0 I I

Enter extension kay:
meta_openoffice

Update...
atal farm

2w I

<[
i

£

=

/L as file

Pri nt WOP comments

Services

Create a Services class. With a Services extension you can extend TYPO3 (or an
axtension which use Services) with functionality, without any changes to the code which
use that service.

Title:
Open Office metadata extract

Description:
Extracts metadata from Open Office

Service type:
mataExtract
Enter here the key to define which type of service this should ba.
Examples: "textExtract", "metaExtract".
Sub type(s) (comma list):
odt,ods,odp,odb,odf
Possible subtypes are defined by the service type.
You have read the service type documentation.
Example: using subtypes for file types (doc, txt, pdf, ...} the service might work for.

Priority:
default {50) -
50 = medium priority.
The priority of services can be changed by admin configuration.
Quality:
80
The numbering of the quality is defined by the service type.
You have read the service type documentation.
The default quality range is 0-100.

Operating System dependency:
no special dependency -

External program(s) (c list):

Program(s) neaded to run this service (eg. "perl").

Creating Services

7. Click View result to see which files will be created. Write the files to the location

you specify.
KICKSTARTER WIZARD
General info Filename: Size: DOverwrite:
Open Office metadata ff Changelog 83
Setup languages f README.xt 80 View
. . =
New Database Tables e st scon:gif L3
axt_localconf.php 535 WView

Extend existing Tables L

- + doc/wizard_form.dat 1.0 K
Frontend Plugins doc/wizard_form.html 8.2 K
Backend Modules =+

swl/class.tx_metaopenoffice_svl.php 2.7 K Wiew
Integrate in existing Modules L o

Clickmenu items o Update result

Services +
Author name: Dan Osipov

Open Office metadata extract T Author email: dosipov@phillyburbs.com

Static TypoScript code o
Write to location:

TSconfi +
a Local: typoZSconf/ext/meta_openoffice/ (empty)

Enter extension key:

meta_openoffice
Update...

Total form

View result

/L as file

Print WOP comments

8. Replace the file class.tx metaopenoffice svl.php with the file from the
code pack (http://www.packtpub.com/files/code/8488 Code.zip).

9. Install the extension.
1
1

o

. Upload the test file described in the Getting ready section above into DAM.

[

. Check the DAM record. It should contain the metadata from the OpenOffice document:

152

Chapter 7

[]
T
a1
0
=

@ Media [1612] - Some test title

Ovarview l Copyright l Usage l Extra data

— Title:
!% Some test title
APPLICATION File name:
test_05.odt
Filza path:

fileadmin/uploads/

Title:

[Some test title |

Keywords (,):

|5|:|rr'|e kayword, keyword2 |

Description:

This is a comment

Data:

|\

Creation date: Modified date:

[18-11-2009 |[E [18-11-2009 |[F

In this recipe, we created a service to read metadata from OpenOffice documents, and store
it in a DAM record, accessible to TYPO3. First, let's examine the way OpenOffice embeds
metadata in its documents. There is public information about the OpenOffice format that
provides enough information for us to know how to extract the data.

* An easy to follow presentation on the topic can be found at:
http://marketing.openoffice.org/ocoocon2008/programme/

friday 1475.pdf.

Creating Services

The service we created is loaded into the TYPO3 framework in ext localconf .php. Here is
the code that makes TYPO3 aware of the service if the extension is installed:

t31lib_extMgm::addService ($_EXTKEY, 'metaExtract',
'tx metaopenoffice svl',
array (

'title' => 'Open Office metadata extract',
'description' => 'Extracts metadata from '
'Open Office (ODT, ODS, and others) files',
'subtype' => 'odt,ods,odp,odb,odf"',
'available' => TRUE,

'priority' => 50,

'quality' => 80,

'os! => '',

'exec!' => '',

'classFile' => t3lib_extMgm: :extPath ($_EXTKEY)
'svl/class.tx metaopenoffice svl.php',
'className' => 'tx metaopenoffice_svl',

)i

t3lib_extMgm: :addService is described in the Extracting metadata from images recipe
in Chapter 3, but we'll go through it again briefly. The first parameter sent to the function is the
extension key, which is available in the variable $_EXTKEY in ext localconf .php. The
second parameter is the service type, in this case metaExtract. The third parameter is the
service key that uniquely identifies our service. The fourth parameter is an array describing
the service.

Most elements in the array are self explanatory, but there are a few that should be focused
on. subtype lists file extensions that can be processed by this service. priority of the
service determines the order in which it is called. We leave it at 50, which is default. If an
installation has several similar services, it can reconfigure the priority based on the quality of
result that each service provides. quality value determines the value of the result. We make
it higher than the default 50 because most of the metadata contained within the OpenOffice
document can be scrubbed by our service. There are no special requirements for operating
system (os) or external programs (exec), so these values are empty.

We now turn to the meat of our service— doing the extraction when a qualifying file is
uploaded. A basic summary of the OpenOffice format tells us that the format is zipped, with
the metadata embedded as XML. So, we need to unzip the file, and parse the XML inside of it.
Let's see how we can do this.

init()

The init () function initializes the service class, and returns a Boolean indicating its
availability. This is a final check before running the service, so, we need to verify that the

PHP installation has ZIP support enabled. A good indicator of this is an availability of function
zip open (), which should be globally available if PHP is compiled with ZIP support:

Chapter 7

function init () {
Savailable = parent::init();

if (!function exists('zip open')) {
// No ZIP support in this PHP installation
Savailable = FALSE;

}

return Savailable;

}

process()

The process function actually processes the file (imagine that!), and extracts the metadata,
returning an array of DAM fields, which will form the DAM record. First, we gather our
parameters, and find the path to the input file:

// Get the file that we need to work on
if ($inputFile = $this->getInputFile())

Assuming we do have a valid path to the file we want to extract metadata from, we initialize an
XML reader, and open the file as a compressed stream. This is why we use a URI-like path to
thefile: zip://path/to/file.odt#meta.xml.

Sreader = new XMLReader () ;
// Read the Open Office file as a compressed strem
Sreader->open('zip://' . $inputFile . '#meta.xml') ;

It will open the file, uncompressing it on the fly, and read the meta .xml file. Our job now is to
go through it, element by element, compiling an array of metadata:

// Go through the XML elements

while ($reader->read()) {

if ($reader->nodeType == XMLREADER: :ELEMENT) {

// We have an XML schema element

Selement = Sreader->name;
} else {

if ($reader->nodeType == XMLREADER: :END ELEMENT

&& $reader-s>name == 'office:meta')
break;

}

// We don't have a value

if (!trim($reader-s>value))
continue;

1

// We have a value - we need to keep it in an array
if ($element == 'meta:keyword')
Smeta[Selement] [] = Sreader->value;

Creating Services

} else {
Smeta[Selement] = Sreader->value;
1

}

Array $meta now contains all the metadata from the file. We now need to map it to the

DAM fields, and this is done by the next function. process () returns any errors that were
encountered to indicate either a success or failure, letting the service engine decide what to
do next.

parseMetaData()

This function uses a simple switch statement on each element of the array, assigning the
matching value to appropriate DAM fields. At the end, the entire metadata array is saved in
the DAM record, so that it is available under the Extra data tab, and is also available for any
extensions that may utilize it.

foreach ($metaData as $key =>$value) (
switch ($key) {
case 'dc:title':
sfields['title'] = Svalue;
break;

case 'meta:keyword':

Sfields['keywords'] = implode(',',6 S$value);
break;
case 'meta:generator’':
Sfields['file creator']l = $value;
break;

}

Sfields['meta'] ['openoffice'] = $metaData;

» Extracting metadata from audio
» Extracting metadata from images
» Processing audio using a service
» Installing needed extensions

Processing audio using a service

We will now follow a few simple steps to create a service that will be called when an audio or
video file is uploaded.

156

Chapter 7

Getting ready

To start, make sure you have the Kickstarter and DAM extensions installed. We will use the
Kickstarter to create a framework for the extension, and then we will fill it up with code.

How to do it...

1.
2.

Go to the Admin tools | Extension Manager module, then Create new Extension.

Enter your extension key, and be sure to register the key, so no one else uses it. For
this extension, you can enter cc_meta_audio.

Click on the plus icon (+) next to the General info to edit the basic required
information about the extension.

Fill in the extension title, as the users will see it in the Extension Manager, and enter
a brief description. For Category, select Services.

Under the list of dependencies, enter dam, getid3.

Click the plus icon (+) next to services, to create a new service class. Fill it in as
shown in the following screenshot (for an explanation of the fields, see the How it
Works... section under the Extracting metadata from images recipe).

[Extension Manager
: EAudin (cc_meta_audio)
KICKSTARTER WIZARD
Generalinfo Services
Audio Metadata Extractor T Create a Services class. With a Services extension you can extend TYPOZ (or an extension which use Services) with functionality, without any changes to the
code which use that sarvica.
Setup languages +
New Database Tables &= Title:
Extend existing Tables +
Frontend Plugins & Description:
Backend Modules L
Integrate in existing Modules 4
Clickmenu items o Service type:
2 =
S Enter here the key to define which type of service this should be.
Audio Extractor g Examples: "textExtract", "metabxtract".
Static TypoScript code sk Sub type(s) (comma list):
" +
Possible subtypes are defined by the service type.
You have read the service type documentation.
Ei i Example: using subtypes for file types (doc, tt. pdf. ...) the service might work for.
Update... Priority:
default (50) =
50 = medium priority.
The priority of services can be changed by admin configuration.
Quality:
DAL= fo]
; The numbering of the quality is defined by the service type.
Derint wop commant= You have read the service type documentation.
The default quality range is 0-100.
Operating System dependency:
no spacial dependency
External ram(s) (comma list):
Program(s) nesdad to run this service (=g. "parl”).
Update...
o
7. That's it! Click View result to see what the files will ook like, and write the files

to a location that you specify. You can now fill in the created files with your code

and test how it executes. To finish this task, download the complete source code of
class.tx_ccmetaaudio_svl.php from (http://www.packtpub.com/files/
code/8488 Code.zip) and replace the created file.

Creating Services

In this recipe, we built a service that extracts metadata embedded in audio files, and stores it
in a DAM record. We will now go through the file svl/class.tx_ccmetaaudio svl.php
and see how it works.

Include a getid3 class

This service will fill in a DAM record with metadata, so we need to ensure that DAM is
installed. We will also use the getid3 library, available in TYPO3 as the get 1d3 extension.
Alternatively, we could have included the entire library in our extension, but creating a
dependency allows us to keep our code simple, and easy to understand, and reduces
duplication in case a user already needs the get 1d3 extension for other purposes.

For more information about the getid3 parser, see: http://getid3.
s sourceforge.net/.

This line at the top of the file includes the necessary get 1d3 class:

require once (t31lib_extMgm: :extPath('getid3'")
'classes/getid3.php') ;

Notice the t31ib_extMgm: : extPath function call. There are several locations where the
getid3 extension could be installed, and we don't want to guess. The function figures out the
correct path, so all we need to worry about is the path to the correct file within the extension.

init()

The init () function is called when the class is initialized, and runs a final check to
make sure the service can be called. It must return a Boolean TRUE if the class should be
called further.

function init () {
Savailable = parent::init();

if ($available)

if (!t3lib_extMgm::isLoaded('getid3')) ({
Savailable = FALSE;

return Savailable;

158

Chapter 7

process()

The process () function is the main function of the class. The content of the file could
potentially be passed to the function, which is why we have the lines:

// If we were passed some content,
// we need to write it to a file first
if (Scontent) ({

Sthis->setInput (Scontent, sStype);

}

Most of the time, however, the file information will already be set, and can be retrieved
by calling:

SinputFile = S$this->getInputFile() ;

Whatever metadata we collect needs to be stored as an array in $this->out['fields'],
where the keys of the array correspond to the TCA fields of the DAM record. We will fill in some
of the fields further down.

If we do have the file information, we can instantiate the class getID3, and get the metadata
from the file:

$getID3 = new getID3;

// BAnalyze file and store returned data
// in $metaData
SmetaData = $getID3->analyze ($SinputFile) ;

$metaData now contains an array of information about the file. We need to transform it from
the structure returned by getid3 to a structure understood by DAM and TYPO3. That's what the
function processMetaData ($metadata) does.

Sthis->out['fields'] = Sthis->processMetaData (SmetaData) ;
In order to signal success of operation, there are a few error capturing methods:

// See if there are any errors
if (is_array($metaData['error'])) {
$this->errorPush (T3_ERR SV _GENERAL,
implode (', ', SmetaData['error'l));
}
This creates a general error, if it is set. Of course, if there were no file given, we want to issue
a different error:

$this->errorPush(T3_ERR SV _NO_INPUT, 'No or empty input.');

Creating Services

Finally, we need to return the last error to the object calling the service to let it know if we
have experienced any issues:

return $this->getLastError() ;

If there were no error, getLastError () returns TRUE, indicating that the output of the
service can, and should be used.

processMetaData()

As previously mentioned, processMetaData () transforms getid3 tags into DAM fields.
$data['tags_html'] contains the metadata we're most interested in.

foreach ($datal'tags _html'] as $tagType) {
foreach ($tagType as $tagKey => $tagValue)
switch ($tagKey) ({
case 'title':
if (isset ($tagTypel'artist'])) {
Sfields['title'] = implode(' & ',

StagType['artist']) . ' - ' . implode(' & ',
StagValue) ;
} else {
Sfields['title'] = implode(' & ', S$StagValue) ;

}
SextraID3Fields['title'] = implode(' & ',
StagValue) ;
break;
case 'comment':
Sfields['description'] = implode(' & ',
StagValue) ;
SextraID3Fields['comment'] =
$fields['description'];
break;
default:
SextraID3Fields [$StagKey] = implode(' & ',
StagValue) ;

}

The reason we use the implode () function, is that the $tagvalue could be an array,
containing several values (for example, two or more artists). We need to account for this
possibility, and merge them into a string. If it's a string, it will be returned unmodified.

160

Chapter 7

Ideally, you would want to check the data type of the variable, and handle
it accordingly. For example:

Sfields['title']l = is_array(sStagValue) ? implode(' &
', StagValue) : $tagValue;

We left it out for the sake of simplicity.

After we have finished transforming, we keep the extra fields that don't directly match any of

the DAM fields:

Sfields['meta'] ['id3'] = SextralID3Fields;
Sfields['meta'] ['audio'] = SextraAudioFields;
Sfields['meta'] ['video'] = SextraVideoFields;

This way extensions can make use of this data, even if it is not directly usable by the DAM.
The metadata is visible in the Extra data tab of a DAM record.

View Item

Media [1565] - MOV00520 01

Overview Copyright Usage Extra data
Additional meta data:

AUDIO A
dataformat mp2 B
channals 1

sample_rate 32000

bitrate 32000

bitrate_mode cbr

lossless

channelmaode mana

compression_ratio 0.0625

dataformat_0 mp2
channals_0 1
sample_rate 0 32000
bitrate_0 32000

bitrate_mode_0 cbr
lossless 0O
channelmaode_0 mono

compression_ratio_00.0625

VIDED

dataformat mpeag
resolution_x 320
resolution_y 240
frame_rate 25

bitrate_mode vhbr
pixel_aspect_ratio 1

lossless I

bits_per_ sample 24

Creating Services

See also

» Extracting metadata from OpenOffice documents
» Extracting metadata from audio
» Extracting metadata from images

Converting a video to FLV upon import

One of the most popular formats for videos online is FLV. FLV stands for Flash Video, and
integrates easily with the Adobe Flash Player and other SWF players, which has led to its
success.

At this time, most video capture is done using other formats—predominantly AVI, but also
MPG and MOV. In this tutorial, we will create an extension that will convert uploaded videos
into FLV format.

Getting ready

We assume that DAM is installed for this extension.

The first step in approaching this kind of problem is to find a suitable place to hook into.
The best place for this task is in class.tx_dam tce extfilefunc.php:

foreach ($TYPO3 CONF_VARS['EXTCONF'] ['dam'] ['fileTriggerClasses']
as SclassKey => $classRef) {
if (is_object($obj = &t31lib div::getUserObj ($classRef))) {
if (method exists($obj, 'filePostTrigger')) {

Sobj->filePostTrigger (Saction,
Sthis->log['cmd'] [Saction] [$id]) ;

}

We will now create a class to utilize this hook.

How to do it...

1. Install FFmpeg.

162

Chapter 7

We will be using FFmpeg to do the conversion, so make sure that you install it.
~ If your system already has FFmpeg configured, you can skip this section.
APT should install a stable version for us:

Shell> apt-get install ffmpeg

2. Create a new extension, with only General info data. Alternatively, you can place the
functionality into an existing extension, but we will keep it modular.
3. Modify ext localconf.php, adding the call to the hook:
require once (t31lib_extMgm: :extPath ($_EXTKEY)
'class.tx flvConverter.php');
$GLOBALS [' TYPO3_CONF_VARS'] ['EXTCONF'] ['dam']

['fileTriggerClasses'] [] = 'tx flvConverter';

4. Create thefile class.tx flvConverter.php and fill it with content from the
code pack given in (http://www.packtpub.com/files/code/8488 Code.zip).

5. Upload a test file, and check that the FLV equivalent is created.

Most of the conversion process is done by FFmpeg, and is completely transparent to us. For
more information about FFmpeg, goto http://ffmpeg.org/.

ext_localconf.php
This file is included when the framework is initializing. Our call to the hook is declared

at that time, so when a file is uploaded, the hook initializes our class and calls the
filePostTrigger function.

class.tx_flvConverter.php

This is the main file of the extension, as far as conversion is concerned. Let's examine what
each function does.

filePostTrigger

This function is executed by the hook mentioned above. The first thing it checks is if the action
is upload—meaning the file is being uploaded—and file information is set. Empty upload file
will still trigger the function execution, but $id array will be empty. Other options for action are
delete, copy, move, rename, newfolder, newfile, editfile, and unzip.

M An interesting exercise would be to implement actions for other
Q actions—for example moving the FLV when the original is moved,
and deleting it when the original is removed. We'll leave it to the reader.

Creating Services

The function then calls the t31ib basicFileFunctions::getTotalFileInfo function,
which returns an array with basic information about the file including timestamp, size, type,
permissions, and more. If the file is of the allowed type, the function calls the compileExec
function, executes the command it returns, and passes the output to processOutput.

compileExec

compileExec creates the command that will be issued to the host system to convert the file.
It takes a few options into account, and those can be configured in the Extension Manager.

The options are controlled by the ext _conf template. txt file. This file has a specific
syntax, which TYPO3 understands and creates the needed fields in the Extension Manager,
storing the settings in localconf . php.

cat=basic/enable; type=string; label=Audio Frequency
audioFrequency = 22050

The settings are then available in $GLOBALS [' TYPO3 CONF VARS'] ['EXT']
['extConf'] ['flv_converter'] as a serialized string, which we unserialize and store in
Sthis->config.

Although we don't expect these options to contain quotes, or other strange characters, we
pass them through the PHP escapeshellarg () function to make sure the command we
create is shell safe.

processOutput
processOutput makes use of two functions to log the results. As the hook doesn't let us
return any output to the user, we're forced to log it.

t31lib div::sysLog is a system log used by TYPO3, which can be configured by the user to
go into an external file, sent through e-mail, or written to an operating system, or PHP log.

t31lib div::devLog is a log that can be controlled by extensions. We log the entire
output of the command line to it. See Debugging the extension in There's more... for more
information on how to acess the log.

There's more...

In this section, we will see how to debug the extension, clear cache, and look more closely at
file conversions.

Debugging the extension

How do you debug if the file was not converted as planned? Install a dev1og extension, and
check the log after uploading a file. The log will contain the output of the command, and you
can see where the problem is.

You can also use an IDE with the PHP debugger to make sure your code is executing properly.
Refer to the Chapter 2 recipe Debugging code.

164

Chapter 7

More on file conversions

FFmpeg offers a wide variety of options, to perform almost any format conversion you might
need. For example, use the following command to convert MPG video into AVI:

ffmpeg -i inputVideo.mpg outputVideo.avi

Of course, this is not all you can do with FFmpeg,. You can also use it to resize the video,
create different bitrate versions of videos for your users, generate a thumbnail, or sequence of
thumbnails from a video, and more.

Clearing cache

To speed up execution, TYPO3 combines the ext localconf.php and ext tables.php
files into a single file. This increases performance because TYPO3 doesn't have to browse
through the extension folders, including each file one at a time.

However, this means that any changes made to these files will not take effect until the
temporary files are removed. You can easily do this using the Clear configuration cache
option under the cache menu:

ey o LY

& Clear all caches

7
y

;.,-f- Clear page content cache
* Clear configuration cache
&% Clear RTE Cache

You can also turn off file caching in the Install Tool. The setting is $TYPO3 CONF_
VARS['EXT'] ['extCache'], and you can set it to 0 to prevent these configuration files
from being cached.

» Converting audio using services
» Debugging code

Converting audio using services

Now, we will combine our experience from the Extracting metadata from OpenOffice
documents recipe earlier in this chapter, as well as what we learned in the last chapter to
create a service that would convert audio files upon import.

We will create an extensible system for conversions, providing only a few converters at first,
but allowing many more to be provided by extensions, which will use—you guessed it—services!

Creating Services

For the user interface part, we will use Ext JS, which is available for use in TYPO3 backend
since TYPO3 4.3. If you haven't heard about Ext JS, it is a JavaScript library, designed to make
powerful User Interface (Ul) layouts easy to create.

M For more information about Ext JS, goto http://www.extjs.com/.
Q To learn how to use it effectively, | recommend a book Learning Ext JS,
Shea Frederick, Colin Ramsay, and Steve 'Cutter' Blades, Packt Publishing.

Getting ready

We will be creating a new extension, so make sure Kickstarter is installed. This recipe will skip
the details of how an extension is created, focusing instead on the important aspects. Refer
to previous recipes (Extracting metadata from OpenOffice documents, Processing audio
using a service) to get the detailed steps for extension creation.

The service we will create will use Mplayer, which is available in most package repositories
and can be easily installed under Debian:

Shell> apt-get install mplayer

If you don't have access to Mplayer, you can use this opportunity to create a service that can
use other methods for conversion.

How to do it...

1. Download the extension audio conversion from the code pack.
2. Install the extension.

3. Inthe Media | File module, click on an audio file icon, and choose Convert.

53; Desafinado.mp3
Show Q
& Info ﬁ
Renamea m
1256
Replace file i
Delate i
m| f Conwvert ¢

4. Choose a conversion type, and click Convert.

166

Chapter 7

There is a lot that happens here, so let's go through it step by step. Instead of taking

the usual approach used in this book, we will look at the plugin creation process from

the very start, mimicking the path that you will have to take in analyzing problems and coming
up with solutions.

Our task is to create a simple way for users to convert audio files to different formats within
TYPO3. The system needs to be flexible enough, so that new conversions can be easily added
at any point in the future. Conversions also need to work on different systems, regardless of
the operating system, or installed software.

There are two major components to the task—the backend processing and the user interface.
We need an optimal solution for both. Some tasks require you to prioritize one over the other,
and implementation will vary based on which one is more important. That is not the case

here, so we decide to use services for the backend processes, and Ext JS interface for the UL.

We will start with the Ul, and work our way back to the backend. As we have chosen Ext JS as
a framework for our interface, we already have a concept in mind. We've seen how easy it is
to perform operations on files in DAM in the Uploading DAM files to Flickr recipe, when we
added a control button allowing us to upload images and videos to Flickr. That button opened
a new window, which sometimes required authentication. We want to use the same concept
here, but want to avoid the unnecessary pop up.

We now come up with the user interaction component. In this case, it is very simple, but you
should definitely draw a diagram for anything more complex. A user clicks on an audio file to
bring up a context menu and selects a conversion option. An Ext JS dialog opens up, giving
the user the choice of file types to which to convert. After choosing a type, the user clicks
the Convert button, and waits for the file to be converted. The new file is saved in the same
location as the old, but with a different extension, corresponding to the file type.

[E! Mﬂn:du.ap:‘_! 12-{' Convert To: *

Show - . |
g Info o " Eonvert To: 15
Rename B, - |
= Replace file — 'S Cancal | | Conver |
EH Calata | | 8

l~Chasing_Shadovws.mp3

Cancel Convert

Close the popup Convert file
Save to same location as input

Creating Services

Please remember, that this is a simple demonstration exercise. In the real
. world, file conversion is never this easy, as each format has its own quirks
~> and options, which may require a lot of knowledge and experience to be taken
Q advantage of. In addition, each format brings its own specific advantages,
which need to be leveraged by optimizing the parameters based on the
intended final use of the file.

We start coding by mocking up an HTML page, which would serve as a testing ground for
building the user interface:

<html>

<head>

<title>Conversion UI</title>

<link rel="stylesheet" type="text/css" href="ext-3.0.0/resources/css/
ext-all.css" />

<script src="ext-3.0.0/adapter/ext/ext-base.js"></script>
<script src="ext-3.0.0/ext-all-debug.js"></script>
</head>

<body>

</body>

</html>

The blank file just has all the components of Ext JS loaded, and it's ready for coding. We start
by creating the familiar Ext . onReady wrapper in the <heads>:

<script language="JavaScript"s>
Ext.onReady (

function() {}

) ;

</script>

If it looks unfamiliar—don't worry! Follow along, and if something is unclear, refer to Ext JS
documentation. It's a lot more intuitive than some other JavaScript libraries.

The first thing we want to display to the user is a window. So, we add some code to the
onReady function:

Ext .onReady (
function() {
var conv = new Ext.Window ({
title: 'Convert To:',
id: 'convwin',
width: 300,
height: 100,
renderTo: document.body,
frame: true,
}) .show () ;

168

Chapter 7

If you save and preview the HTML page, you will see an empty, draggable window inside
the browser:

Convert To: [j

That's exactly what we were trying to do! Now, let's add some content to it. Let's add a form
with two buttons:

var conv = new Ext.Window ({
title: 'Convert To:',
id: 'convwin',
width: 300,
height: 100,
renderTo: document.body,
frame: true,

items: [

new Ext.FormPanel ({
labelwWidth: 75,
url:'form.php',
frame: false,
width: 285,
defaults: {width: 200},
buttons: [{

text: 'Cancel’,

A

text: 'Convert',
H
hH
1
}) .show () ;

Preview the file, and there will now be two buttons in our window:

Convert To: (%]

Cancel || Convert |

Creating Services

Great! However, our buttons don't do anything yet. Let's add a select box:

new Ext.FormPanel ({
labelWidth: 75,
url:'form.php',
frame: false,
width: 285,
defaults: {width: 200},
buttons: [{
text: 'Cancel',
b g

text: 'Convert',

new Ext.form.ComboBox ({
fieldLabel: 'Convert To',
name: 'type',
editable: false,
displayField: 'name’',
mode: 'local',
forceSelection: true,
triggerAction: 'all',
allowBlank: false,

.

1

3]

Of course, an empty select box will not do us much good, so let's add a local store with a few
options. These can be selected, and will serve as the choices for our conversion process.
Eventually, we would want this list to be automatically populated.

new Ext.form.ComboBox ({

fieldLabel: 'Convert To',
name: 'type',
editable: false,
displayField: 'name',
mode: 'local',
forceSelection: true,
triggerAction: 'all',
allowBlank: false,

store: new Ext.data.SimpleStore ({

fields: ['key', 'mame'],

170

Chapter 7

data: [
['wav', 'WAV'],
['mp3', 'MP3']

.
1

Once you add this in, the select box will be populated by items from our array.

Convert To: [%]

Convert To: || -

WAV
MP3

At this point, it's a good idea to share this file with your designer, your team,
~ your superior, or your client, to get their take on the Ul. Any input that will be

Q provided at this early stage will help to avoid costly changes at the end of
the development process.

We just quickly went through the process that may take you a lot of time at first, before
you're familiar with all the options you can use in an interface. Even then, you may want
to experiment with different layouts to see which one works best. Be patient, and you will
achieve a great result.

Meanwhile, we've finalized the user interface, so it is time to integrate it into TYPO3. We've
created the extension, and placed the resulting JS code (with a few changes, some of which
we will highlight soon) into the res folder. So now, we need to add the button to the context
menu. We add this line to ext _tables.php to register the action in DAM:

tx_dam::register action ('tx dam action audioConversion', 'EXT:audio
conversion/class.tx audio conversion.php:&tx audio conversion') ;

And, we create the corresponding class:

class tx_audio conversion extends tx dam actionbase {

/**

* Defines the types that the object can render
* @var array

*/

var StypesAvailable = array('icon', 'context');

Creating Services

/**
* Returns a command array for the current type
*
* @return array Command array
* @access private
*/
function _getCommand() {
$file = tx dam::file relativeSitePath(
S$this->itemInfo['file path absolute']
$this->itemInfo['file name']) ;

$onClick = "TYPO3.DAM.ConversionWindow('" . $file
")in;
if ($this->type === 'context') ({
Scommands ['onclick'] = $SonClick.' return hideCM();';
} else {
Scommands ['onclick'] = 'return '.S$onClick;
}

return S$Scommands;

}

You may notice that we call a JavaScript function onClick = TYPO3.DAM.
ConversionWindow () —so that the window we designed only comes up when we click
the Convert button in the context menu. We placed the function in its own namespace,
to avoid conflicts:

Ext .namespace ('TYPO3 .DAM') ;
TYPO3.DAM.Base = function() {};
TYPO3 .DAM.ConversionWindow = function(file) {

}
If we test the functionality now, we will get a JavaScript error. That's because the Ext JS library

hasn't been loaded yet. TYPO3 provides an easy way to include Ext JS, along with the TYPO3
theme and adapters (which we will not use at this time):

$Sthis->doc->getPageRenderer () ->loadExtJs (TRUE, TRUE) ;

where $Sthis->doc is an object of template class. Unfortunately, we don't have access to
this object from anywhere within the tx_audio_ conversion class, and there is no place to
hook into in order to load the libraries.

172

Chapter 7

TYPO3 provides one last method for modifying existing classes—XCLASS. This is not a
preferred method, and should only be used as the last resort. XCLASSed class replaces the
original class, and is called in all instances. We want to XCLASS the file modfunc_file
list/class.tx dam file list.php from DAM. If you look on the bottom of the class,
you will find an XCLASS inclusion:

if (defined('TYPO3 MODE') && $TYPO3 CONF_VARS [TYPO3 MODE] ['XCLASS']
['ext/dam/modfunc_list list/class.tx dam list list.php'l])
{
include_once ($TYPO3 CONF_VARS [TYPO3 MODE]
['XCLASS'] ['ext/dam/modfunc list list/
class.tx dam list list.php']);

}

This means that the last XCLASS declaration loaded is used. If several extensions attempt to
XCLASS the same file, only one will succeed. This is the primary reason for avoiding XCLASS.

In this case, it looks like we have no other choice, so we create an XCLASS declaration in
ext localconf.php:

// XCLASS DAM file list module

$GLOBALS [' TYPO3 CONF_VARS'] ['BE'] ['XCLASS'] ['ext/dam/modfunc_file
list/class.tx dam file list.php']

= t31lib_extMgm::extPath($_EXTKEY) . 'class.ux tx dam file list.
php';

And, we create the XCLASSIng class:

class ux_tx dam file list extends tx_dam file list ({
function main()
global $BACK PATH;

$this->pObj->doc->getPageRenderer () ->loadExtJs (TRUE,
TRUE) ;
$this->pObj->doc->JScodeLibArray['tx audioconversion'] =
'<script type="text/javascript" src="'
t31lib_div::resolveBackPath ($BACK PATH
t31lib_extMgm: :extRelPath('audio_conversion'))
'res/tx_audioconversion.js"></script>';

return parent::main() ;

Creating Services

All this does is include the files we need, and return the content generated by the parent class
method. Our class extends the original tx_dam file 1list class, so all functions available
there are inherited by our object. XCLASSing can also be used to modify the output of certain
functions and classes.

02~ Convert To: (%]
il Convert To: | |V|
15

25 l Cancel]l Convert J

28

01-Chasing_Shadows.mp2

Now, we're able to get the plugin in the DAM file module, and it loads the window. Our Ul is
working as planned. Perfect! It is time to move on to the backend work.

If you look in the Ext JS declaration, we issue calls to ajax.php, and include a strange
parameter ajaxID. This is a standard protocol for issuing AJAX calls in the backend of TYPO3.
We have two calls that we need to handle—one to load the file types we can convert the audio
file into, the other to perform the conversion.

K For a detailed explanation of how AJAX calls work in the backend of TYPO3,

~ refer to TYPO3 Core APIl: http://typo3.org/documentation/

CIK document—library/core—documentation/doc_core_
api/4.2.0/view/3/9/.

We first register our two calls in ext localconf . php:

SGLOBALS ['TYPO3 CONF _VARS'] ['BE'] ['AJAX'] ['tx audio_conversion::conve
rsionService']

= t3lib_extMgm: :extPath($_EXTKEY) . 'class.tx_audio_conversion_
service.php:tx audio_conversion service->convert';
SGLOBALS ['TYPO3 CONF _VARS'] ['BE'] ['AJAX'] ['tx audio_
conversion: :conversionTypes']

= t3lib_extMgm: :extPath($_EXTKEY) . 'class.tx_audio_conversion_
service.php:tx_audio_conversion_service->listTypes';

And, we have to create the class to handle the AJAX calls:

class tx_audio conversion_ service
public function listTypes ($params, &$ajaxObj)

$ajaxObj->setContentFormat ('json') ;
$ajaxObj->setContent (S$Sresult) ;

Chapter 7

public function convert ($params, &$ajaxObj)

$ajaxObj->setContentFormat ('json') ;
$ajaxObj->setContent ($Sresult) ;

}

Let's implement 1istTypes function—it should get an array of file types the file can be
converted to.

/**
* Get the list of types that a file could be converted to
*
* @param array Parameter array from the AJAX object
* @param array AJAX object
* @return void
*/
public function listTypes (Sparams, &$ajaxObj)
try {
$this->init (t31ib div:: GET('tx audioconversion file'));
Stypes = $this->getTypes() ;
foreach ($types as $type)
Sresult['types'] []1 = array(
'id' => S$Stype,
'ConversionType' => strtoupper ($Stype)
)i
}
} catch (Exception $e) {
Sresult = array(
'success' => false,
'errors' => array(
'msg' => S$Se->getMessage ()
)
) ;
}
SajaxObj->setContentFormat ('json') ;
SajaxObj->setContent ($result) ;
}
/**

* Return an array of file types that the file can be ocnverted to
* Gather the types from all the services we have in the system

Creating Services

*
* @return array List of extensions
*/
private function getTypes()
Stypes = array();

if (is_array ($GLOBALS['T3 SERVICES'] ['audioConversion'])) {
foreach ($GLOBALS['T3 SERVICES'] ['audioConversion']
as S$key => $info) {
SrequireFile =
t31lib div::getFileAbsFileName ($info['classFile']) ;
t31lib div::requireOnce ($requireFile) ;
Sobj = t31lib div::makeInstance($info['className']) ;
Stypes = array merge ($types,
Sobj->getTypes (Sthis->fileInfo['fileext'])) ;

return Stypes;

/**
* Initialize the class, gather all parameters,
* throw exception if something is wrong

* @param string File which we want to convert
* @return void
*/
private function init ($file) {

Sthis->file = $file;

Sthis->fileInfo = t31lib basicFileFunctions::getTotalFileInfo($this-
>file);

Sthis->fileInfo['abs path'] = t3lib div::getFileAbsFileName ($this-
>file) ;

if (!is_file($this->fileInfo['abs path'])) {

throw new Exception('File not found');
}
if (1t31lib div::isAllowedAbsPath($this->fileInfo['abs path']l)) {

throw new Exception('File location not allowed');

176

Chapter 7

As you can see, we first gather the information about the file we were passed, and make sure
the file is in the web-readable space (otherwise, it would be too easy to break our application).
Then, we call the function getTypes () to gather all services of type audioConversion
(which, we created just for this purpose), and see which formats they can convert to, given the
current file format.

All information we want to return (including errors, if such occur during the processing) is
stored in an array. At the end of the execution, we tell the AJAX class that we want to return
this information as a JSON (JavaScript Object Notation) string, which Ext JS can handle easily
and efficiently.

We now turn to the most interesting part of this program—the conversion. At this point, you
can get a list of file types that the file can be converted to—assuming you already created
a service, so that when a type is selected, we need to do the conversion. We create the
implementation in the tx_audio conversion service class:

/**
* Perform the conversion

*

* @param array Parameter array from the AJAX object
* @param array AJAX object
* @return void
*/
public function convert ($params, &S$ajaxObj)
try {

$this->init (t31ib div:: GET('tx audioconversion file'));
$conversionType = strtolower (t3lib div:: GET('type'));

// Security check
if (!in_array($conversionType, $this->getTypes())) {
throw new Exception('File Type not allowed') ;

// Do the conversion
$success = S$this->getServices ($SconversionType) ;

if ($success) {
Sresult = array(
'success' => true,
'msg' => 'Successfully converted'
)i
} else {
Sresult = array(
'success' => false,
'errors' => array(

Creating Services

'msg' => 'No suitable service was found to do the
conversion'

)i
!

} catch (Exception $e) {

Sresult = array(
'success' => false,
'errors' => array(

'msg' => Se->getMessage ()

) ;
}
SajaxObj->setContentFormat ('json') ;
SajaxObj->setContent ($result) ;

/**
* Go through the services to find the one willing to do the conversion
*
* @param string File extension which we want to convert to
* @return bool Success or failure of conversion
*/
private function getServices ($conversionType)
SexcludeServices = array();
while ($serviceObj =
t31lib div::makeInstanceService ('audioConversion', '*',
$excludeServices))
$serviceObj->setInputFile($this->fileInfo['abs path'],
Sthis->fileInfo['realFileext']) ;

if (!$serviceObj->checkConversion (
$this->fileInfo['realFileext'], $conversionType)) {
// Service not suitable for us, add to "ignore" list
SexcludeServices[] = SserviceObj->getServiceKey () ;
continue;

if ($serviceObj-sprocess('','',array())) {
// Processed successfully!
return TRUE;
} else {
SexcludeServices[] = SserviceObj->getServiceKey () ;

178

Chapter 7

// No valid service for the conversion found
return FALSE;

}

We go through the same security checks as before, and finally, get to the part where we

find out what services we have available to us. t31ib_div::makeInstanceService
returns only one service object that it considers to be best-suited for the task—based on

the environment variables and the subtype we pass in through the second parameter. In
this case, we don't use subtypes, so we pass a ' * ' string to match all the services of this
type. Our services should have a checkConversion function, which will make the final
call given specific file types, whether it's willing to do the conversion or not. If it is not, we
add the service key to the list of services to ignore, and try to get the best service again. We
perform this cycle, until either we find a service that will do the job, or we run out of services.
The actual work of converting the file from one format to the other is left up to the individual
services, and we cover it in the next recipe, Building an audioConversion service.

There's more...

We decided to go through each service until we find the best one. A more popular approach
is to let TYPO3 do all the hard work of choosing the right service—which it does based on the
availability of required functions and programs, as well as priority and quality levels set by the
services. In that case, you can use the subtypes to limit the selection of services.

Using service subtypes

Services can define subtypes, which would simplify our code for calling a service. Specific
subtypes vary based on the job at hand, and can reflect the file type, file contents, method of
operation, and more. If you can make use of subtypes in your service definition, the code to
perform service operations becomes much simpler. For example, here is the code from the
tx_dam_indexing class, which uses a service to extract metadata from the file:

// find a service for that file type

if (!is_object ($serviceObj = t31lib div::makeInstanceService ('metaExtra
ct', $fileType))) {
// f£ind a global service for that media type
$serviceObj = t31lib div::makeInstanceService('metaExtract',

$mediaType."':*');
}
if (is_object ($serviceOb]j)) {
SserviceObj->setInputFile ($Spathname, $fileType) ;
Sconf ['meta'] = Smeta;
if ($serviceObj->process('', '', S$Sconf) > 0 AND
(is_array($svmeta = $serviceObj->getOutput()))) {

Creating Services

S$meta = t3lib div::array merge recursive overrule (Smeta,
Ssvmeta) ;

}

SserviceObj-> destruct();
unset ($serviceObj) ;

}

As you can see, DAM allows TYPO3 core to find the best service for the job, and only asks it for
the relevant output.

See also

» Building an audioConversion service

» Extracting metadata from OpenOffice documents
» Uploading DAM files to Flickr

» Processing audio using a service

Building an audioConversion service

In the previous recipe, Converting audio using services, we built a system that will convert
audio files to a variety of formats using services. By itself, the system doesn't do anything, and
relies on services to do the actual file conversion. We will now create an example service.

Getting ready

We will place the new service in the audio conversion extension. If you've previously
downloaded the extension, it should have the service we're about to create. Feel free to skip
ahead to the How it works... section.

If you're creating your own service, make sure that you place it in a separate extension, and
listaudio conversion under dependencies.

How to do it...

1. Define the service in ext localconf .php:

t31lib_extMgm::addService ($_EXTKEY, 'audioConversion' /* sv type
/, 'tx_audioconversion svl' / sv key */,
array (

'title' => 'WAV',
'description' => 'Converts to WAV',

180

Chapter 7

'subtype' => '',

'available' => TRUE,
'priority' => 50,
'quality' => 50,

'os' => 'unix',

'exec' => 'mplayer',

'classFile' => t31lib extMgm::extPath($_EXTKEY) .'svl/
class.tx audioconversion svl.php',

'className' => 'tx audioconversion svl',

)i
2. Create the service in class.tx_audioconversion svl.php:
class tx_audioconversion svl extends t3lib svbase
var $prefixId = 'tx_audioconversion_ svl';
var S$scriptRelPath =

'svl/class.tx_audioconversion svl.php';

var $extKey = 'audio conversion';
var $validFromExtensions = array('mp3', 'mpg');
/**

* Return the types we have available for conversion

* @param string File type, from which to do

* the conversion

* @return array Array of file types, to

* which conversion can be made

*/

function getTypes ($from) {
if (in array(strtolower ($from),
$this->validFromExtensions)) ({

return array('wav');

/**

* Do the final check for conversion to make sure

Creating Services

182

* the service is capable of making it.
*
* @param string Make conversion from this file type
* @param string Make conversion to this file type
*/
function checkConversion ($from, $to)

if ($to == 'wav' && in array($from,

$this->validFromExtensions)) {

return TRUE;

return FALSE;

/**
* Initialize class, and return if its available

*

* @return bool Availability
*/
function init () {

Savailable = parent::init();

return Savailable;

/**

* Process the conversion

* @param string Content which should be processed.

* @param string Content type

* @param array Configuration array

* @return boolean Success or failure of conversion
*/

function process ($content='"', Stype='"', Sconf=array()) {

// If we were passed some content, we need to
// write it to a file first (unlikely scenario)
if (Scontent) ({

Sthis->setInput (Scontent, S$Stype);

Chapter 7

// Get the file that we need to work on
if ($inputFile = Sthis->getInputFile()) {
// Save the file to the same location,
// same filename, but different extension.
// WARNING: This will overwrite the file if
// it exists, or fail if the file is protected.

SoutFile = substr($inputFile, 0, strlen($SinputFile) -

strlen($this->inputType)) . 'wav';
// Build command
Sexec = 'mplayer -quiet -vo null -vc dummy'

' -af volume=0,resample=44100:0:1"
' -ao pcm:waveheader:file=""'
escapeshellarg(SoutFile) . 'm ™!
escapeshellarg($inputFile) . '"';
// Execute command
exec (Sexec . ' 2>&l', Soutput);
// Write a log of what happened
t31lib_div::devLog(implode ("\n", S$output),
'audio conversion', 1);
}
else {
Sthis->errorPush (T3_ERR_SV_NO_INPUT,

'No or empty input.');

return $this->getLastError() ;

Most of the information we learned about services before, still applies here. There are
a few extra functions though, which are not present in the default framework file created by
the Kickstarter.

getTypes|()
This function returns an array of audio types that the file can be converted to. This function is
called during the compilation of file types in tx_audio conversion service->listTypes.

Creating Services

checkConversion()

This function is called at the conversion stage, and is the final check to make sure file types
are handled by the service. If this function returns TRUE, then the process function will be
utilized to perform the conversion.

process()

The process function is relatively straightforward, and is very similar to the FLV conversion
function (see Converting video to FLV upon import earlier in this chapter). Here, we build

a command line call to mplayer program, and write the output to the devlog. As we have
mplayer listed under the 'exec' section of the service information array we use during the
definition in ext localconf .php, TYPO3 will verify that mplayer is a program that can be
executed. If it is not available, the service will be automatically disabled during runtime, and
will not be used.

» Converting audio using services
» Extracting metadata from audio
» Converting video to FLV upon import

184

Automating
Processes

In this final chapter, we will cover some tasks that large systems may encounter, which should
be automated. After all, that's what computers were designed for—the automation of tasks
that previously required manual labour.

In this chapter, we will cover:

» Adding FTP access to the media repository
» Indexing downloaded files
» Setting up indexing rules

» Categorizing files by geolocation

Adding FTP access to the media repository

In the next few recipes, we will cover some FTP-related tasks, starting with the basic job of
downloading files through FTP. This procedure can be used to synchronize files from a remote
location with your website.

In this recipe, we will connect to ftp.software. ibm. com, which allowed anonymous
access at the time of writing, and download the annual report.

Automating Processes

Getting ready

Make sure PHP is configured with FTP support. If you go to the Install Tool module phpinfo(),
you should see this output:

ftp

FTP support enabled

We will assume all directory paths exist—so if they don't, either change the values in the code,
or create the necessary local folders (specifically ibm under £ileadmin).

How to do it...

Create a plug-in, module, or a CLI script with the following code:

$connection = ftp connect ('ftp.software.ibm.com') ;

Semail = !empty ($SGLOBALS['BE_USER'] ['user'] ['email']) ?
SGLOBALS['BE _USER'] ['user'] ['email'] : 'fooeexample.org';
$login = ftp login($connection, 'anonymous', S$email);
$SlocalDirectory = dirname ($_SERVER['SCRIPT FILENAME']) . '/'
$GLOBALS ['BACK _PATH'] . '../'
SGLOBALS ['TYPO3 CONF VARS'] ['BE'] ['fileadminDir'] . ' ibm/';
SremoteDirectory = '/annualreport/2008/';
$list = ftp nlist ($connection, S$remoteDirectory);

foreach ($list as SremoteFile) {
// Difference between servers:
// some prepend directory in the ftp nlist,
// others don't. Must check

if (strpos ($remoteFile, '/') === false) ({

SremoteFile = S$remoteDirectory . '/' . $SremoteFile;
}
$localFile = $localDirectory . basename (SremoteFile) ;
$Ssuccess = ftp get ($connection, $localFile,

SremoteFile, FTP_ BINARY) ;

}

ftp close($connection) ;

186

Chapter 8

We'll break the code down, line by line.
All connections to FTP servers must first be opened, and then closed at the end.

Sconnection = ftp connect ('ftp.software.ibm.com') ;

ftp close($connection) ;
Once we've established the connection, we need to log in to the server:
$login = ftp login($connection, 'anonymous', S$email);

In this case, we're logging into a server that allows anonymous access, so standard
authentication is username anonymous, and an e-mail address as the password. We use the
e-mail of a backend user as the password, as that field is not mandatory, we fall back to a
generic non-existent e-mail address.

If we were able to log in successfully, then we can download a list of files in a specific
directory:

$list = ftp nlist ($connection, S$remoteDirectory);
Finally, we're able to download the files:

$success = ftp get ($connection, $localFile,
SremoteFile, FTP_BINARY) ;

This will save the remote file into the location specified by the $1ocalFile. In this case,
the folder contains PDF files, so we download them with a binary mode. The alternative is to
use FTP_ASCII for text data.

There is one more line that requires some explanation—it's the $1localDirectory variable.
Here, we compile the absolute path to the folder where we will store the downloaded files, in a
way that works across sites and platforms:

$localDirectory = dirname ($_SERVER['SCRIPT FILENAME']) . '/'
SGLOBALS [BACK PATH' | LA
SGLOBALS [TYPO3_ CONF_VARS' J['BE'] ['fileadminDir'] . 'ibm/';

dirname ($_SERVER['SCRIPT FILENAME']) returns the absolute path to the directory,
where the current script is running (for example: /var/www/typo3conf/ext/my ext/
mod1). We append the $GLOBALS [' BACK_PATH'], which is the path from the root of the
site to the typo3 directory. From there, we need to step one level back, and go into the
fileadmin directory (which can be configured in the Install Tool). Now, we can append our
folder where we want to save data, and our path is complete.

Automating Processes

The path we end up with probably looks like this:
/var/www/typo3conf/ext/my ext/modl/../../../../
typo3/../fileadmin/ibm

Some systems have trouble interpreting the "../" steps back. TYPO3 offers an
easy API function to take them out of the file path:

~<::g $localDirectory = t3lib_div::resolveBackPath($localDi
rectory) ;

To be completely strict, we should also use a backward slash if we're
running on a Windows server. We can use the TYPO3_0OS constant, which
is set to WIN in a Windows environment, and adjust the directory separator
appropriately. But based on experience, forward slash usually works well on
Windows servers. -

There's more....

We will now examine some things that we can do to expand upon this functionality.

Throwing exceptions

Any connection can fail for a variety of reasons—the server could be down, a network
component along the way might be busy, or anything else. Therefore, it's recommended
that we check that we have indeed established a connection:

$connection = ftp connect ('ftp.software.ibm.com') ;
if (!$connection) {
throw new Exception('Connection to ftp.software.ibm.com failed');

}
Authentication can fail too, so we should provide some error checking after this step:

$login = ftp login($connection, 'anonymous', S$email);
if (!%login) ({
throw new Exception('Authentication to ftp.software.ibm.com'
'failed') ;
}
File listing can fail too. The directory might be missing from the server, the connection could

be dropped in the middle—nothing involving remote servers is reliable. So, before we use the
file list in a foreach loop, we should check that it is an array:

$list = ftp nlist ($connection, S$remoteDirectory) ;
if (is_array($list)) {
foreach ($list as SremoteFile) {

188

Chapter 8

} else {
throw new Exception ('File listing failed');

}

What if we fail to download the desired file? This can happen for a variety of reasons—if the
file is large the connection could timeout, the server might get overloaded or simply go down
while someone is doing a reboot. We store the result of the operation in a variable called
$success. Can you guess what we can do with it? The name says it all! In fact, try reading the
next block of code aloud—it sounds very natural.

$success = ftp get($connection, $localFile, $remoteFile,
FTP_BINARY) ;

if (!$success) {
throw new Exception('Failed to download ' . SremoteFile);

}

You would need to insert a try/catch block up the stack to catch the exception, and allow
the program to exit gracefully, rather than with a PHP catchable fatal error.

try {
// Do FTP work..
} catch (Exception $e) ({
// Log the exception, and proceed with the execution
t31lib_div::sysLog($e->getMessage () /*message*/,
'my extension', 3 /*severity level*/);

}

This is the best way to handle errors, and TYPO3 4.3 provides an exception handler to make
the error handling even more useful and user-friendly.

Downloading by date

If you run the task at regular intervals, you wouldn't want to download everything on the
server, but only new or updated files. The easiest way to go about this is to delete the files
once you download them. However, this is not always feasible, as you might be accessing a
shared server, or may not have enough permissions to delete files.

In this case, you would need to find the date on which the file was uploaded to the server, and
decide whether to skip it or download it. We will skip the decision logic, as it may differ based
on the application—you may want to keep a record of the last run time, or schedule your task
and download everything that was changed in between runs. We'll just take a look at how to
determine the file date:

SrawFileList = ftp rawlist ($connection, '.', TRUE);

Automating Processes

ftp rawlist accepts three parameters:

» The FTP stream, created using ftp_open
» Path to the remote directory for which we want to get a list

» Boolean, which determines if the call should be recursive—include files in
subdirectories

So, the call above is asking for a recursive list of files from the top directory. After it runs,
$SrawFileList will contain an array of lines of output that will need to be parsed into
individual fields. Here is a function that can be used:

function parseFTPList ($array)
foreach ($array as $line)
$struc = array() ;
$current = preg split("/[\s]+/",$line,9);

$struc['perms'] = S$current[0];
Sstruc['number'] = $Scurrent[l];
Sstruc(['owner'] = $Scurrent[2];
$struc['group'] = S$current[3];
Sstruc(['size'] = Scurrent [4];
Sstruc['month'] = $Scurrent[5];
$Sstruc(['day'] = Scurrent [6] ;
Sstruc(['time'] = S$current [7];
$struc['year'] = Scurrent [8];
Sstruc['name'] = S$current [9];
Sstruc(['raw'] = $line;

// fix for a bug where time replaces year...
if (stripos($strucl'year'], ':')) {
// In this case assume current year
$struc['year'] = date('Y');

}

Sstructure [$struc['name']] = $struc;

}

return $structure;

R Output from different servers might vary slightly, and the function might
~ provide incoherent results. Be sure to test it, using either a debugger (see
Q the recipe Debugging code), or print _r statements on the output to verify
that the output is indeed accurate.

190

Chapter 8

Once the raw file list is parsed through the function, you will have a nice structured array with
all the elements you need. From here, you can use the existing date elements, or even find the
Unix timestamp of the file:

$structuredFilelList = parseFTPList ($rawFileList) ;
foreach ($structuredFileList as $file) (
$dateString = $file['month'] . '-' . $file['day'] . '-'
sfile['year'] . ' ' . $file['time'];
Stimestamp = strtotime($dateString) ;

Using scheduler for scheduled tasks

We wrote this script as a demonstration, but a common task is to periodically check the FTP
server for new files. We can create a CLI (Command Line Interface) task that we can launch
using a scheduler system extension at a specified interval.

Create a task file with the following content (name it appropriately for your extension, for
example tx_myext ftpDownload):

class tx myext ftpDownload extends tx scheduler Task {
public function execute() {

$connection = ftp connect ('ftp.software.ibm.com') ;

if (!$connection)
throw new Exception('Connection to'

'ftp.software.ibm.com failed') ;

}

Semail = !empty (SGLOBALS['BE USER'] ['user'] ['email']) ~?
SGLOBALS['BE_USER'] ['user'] ['email']
'no@email.com';

$login = ftp login($connection, 'anonymous', S$email);

if (!$login)
throw new Exception('Authentication to'

'ftp.software.ibm.com failed') ;

}

$localDirectory = dirname ($_SERVER['SCRIPT FILENAME'])

'/' . $GLOBALS['BACK PATH'] . '../' .
$GLOBALS['TYPOB_CONF_VARS']['BE']['fileadminDir']
"ibm/';

SremoteDirectory = '/annualreport/2008/';

$list = ftp nlist($connection, S$remoteDirectory) ;

if (is_array($list))

foreach ($list as $remoteFile) ({
// Difference between servers: some prepend
// directory in the ftp nlist, others don't.
// Must check
if (strpos ($remoteFile, '/') === false) {
SremoteFile = $remoteDirectory . '/'

Automating Processes

SremoteFile;

}

$localFile = $localDirectory
basename (SremoteFile) ;
$success = ftp get ($connection, $localFile,
SremoteFile, FTP_BINARY) ;
if (!$success) {
throw new Exception('Failed to download '
SremoteFile) ;
}
}
} else {
throw new Exception ('File listing failed');
}

ftp close($connection) ;
return TRUE;

}

Add this to ext localconf . php to make the scheduler aware of the presence of the task:

SGLOBALS ['TYPO3 CONF VARS'] ['SC OPTIONS'] ['scheduler'] ['tasks'] ['tx
myext ftpDownload'] = array(

'extension' => $ EXTKEY,

'title! => 'LLL:EXT:' . $ EXTKEY
'/locallang.xml: ftpDownload.name',

'description' => 'LLL:EXT:' . $ EXTKEY
'/locallang.xml:ftpDownload.description',

'additionalFields' => '!

)i

You will now see the task listed in the scheduler Information submodule:

Information -

Information

This is the list of all available tasks in this TYPOZ installation. Click on the icon at the far right to directly create a new scheduled task of the chosen type.

P e ————————————— S ———————————
FTP Dovmload myext Dovmload media files through FTP

Scheduler test task scheduler The Scheduler test task just sends a mail to a given email address. It is designed to be used for testing purposes.

Scheduler sleep task scheduler This task does nothing but put PHP to sleep for a number of seconds. It is designed to test multiple executions.

192

Chapter 8

And you can create a new task, and schedule it to run at a specified interval:

Scheduled tasks -

Scheduled tasks

ADD TASK
Disable
Class FTP Download (myext) -
Type Recurring -
Start (HH:MM DD-MM-YYYY) 02:46 29-12-2009
End (HH:MM DD-MM-YYYY)
Frequency (seconds or cron 2500
command)
Allow Parallel Execution

Server time

All dates and times in the Scheduler are measured according to the server's time, as the Scheduler is run purely on the server-sida.|
Current server time is 23-12-09 02:46 UTC (UTC, GMT +00:00].

1
‘\Q For more information about the scheduler,

refer to the scheduler extension manual.

Checking out other FTP functions

Just about anything you can do with an FTP client, you can do through PHP. Check out the full
function listing here:

http://us.php.net/manual/en/book.ftp.php.

See also

» Indexing downloaded files
» Debugging code

Automating Processes

Indexing downloaded files

Once you download the needed files, you would want to have them indexed by DAM. In the
Chapter 2 recipe Creating a frontend upload form we already indexed files uploaded from
the frontend, and in this recipe, we will index files in the backend (which is much easier!)

Indexing creates DAM records for files, extracting metadata in the process (using services).
When files are uploaded through DAM, this process is triggered automatically, but when we
download (or upload) files ourselves, we need to remember to ask DAM to index the new files.

Getting ready

We will design the code to work with and without DAM installed. Once again, we skip the steps
needed for the rest of the code, and just focus on the heart of the matter. You can use this in
various contexts, such as backend modules or CLI scripts.

How to do it...

Add the following code:
/**

* Indexes a single file.

*

* @param string Path to the file on the server

* @param integer Time of record creation

* @param integer Page, where record will be stored
* @return integer UID of the indexed file.

*/

function indexFile ($path, $time = NULL, $pid = NULL) ({
// Set the page where the record will be stored
Spid = isset ($pid) ? $pid : tx dam db::getPid() ;
// Set time when the record will be created
if (Stime == null)
$time = SGLOBALS['EXEC TIME'];
// Create indexing object
$index = t31lib div::makeInstance('tx dam indexing') ;
$index->init () ;
Sindex->initEnabledRules() ;
S$index->setRunType ('auto') ;
Smeta = $index->indexFile ($Spath, S$time, $pid);

return Smetal['fields'] ['uid'];

Chapter 8

Call the code with the desired parameters, for example:
if (t3lib extMgm::isLoaded('dam')) {
$damUID = indexFile ($pathToFile) ;

}

We are using DAM functions to perform the indexing, which is completely abstract to us. We
initialize the class, followed by initialization of indexing rules. Rules allow you to customize
some default behaviours of the indexing process. See the recipe Setting up indexing rules
and refer to the DAM manual for a complete description.

Then, we initialize the tx dam_ indexing class, and set the run type to auto.

Run type value is written to the log, and to the file record.

It should be a four letter key that you can identify in case you

need to find out how the file was indexed.

Finally, we call the indexFile function, and our file is indexed. We get the file metadata, as
it was saved in the file record from that function, and store it in the $meta variable. You can
then manipulate the variable, or proceed with your program.

Before calling the function, we check if DAM is installed—if it's not, we don't need to index the
file (in fact, it wouldn't work):

if (t31lib_extMgm::isLoaded('dam')) {

}

This is a standard way of adding cross-extension functionality, without adding the extension to
the list of dependencies.

There are systems that allow FTP access to the fileadmin directory (see Setting up FTP
access recipe in Chapter 2). The files that are uploaded through FTP will not be indexed, but
you can index all new files on a schedule using the extension dam cron.

Automating Processes

Using dam_cron

If you have an automatic process outside of TYPO3 downloading files, or you allow FTP access
to the admin folder, files will stay unindexed. New versions of DAM will auto index files when
you go to a directory, but this requires human action. We can also set up dam_cron to index
files on a schedule:

1. |Install the latest version of dam_cron.

2. Enable the cron script in the extension settings:

Enable features

Enable Cron Script [=nable]
If not set the cron script will just exit if called.

3. Configure an indexing rule in Media | Tools | Cron Job. Go through the four steps to
set up an indexing configuration—specifically, the starting point, fields, initial values,
and more. After the last step, you will be prompted to save the configuration.

1
‘Q Remember the location of the file where you save it—you will need to

use it in the task setup.

Cron Job - Path: .../Media/ &) [pid: 1]

With this wizard similar to the indexing wizard you can define and save a setup for a
stand-alone indexing script usable for cron jobs.

INDEXING START POINT

1 Nexct

Choose a folder where the indexing should begin.

Filename Type Date Size RW
excludeFromUpdates.jpg IPG 30-10-09 65 K RW
fgoogle.jpg IPG 20-10-09 238 K RW
fgoogle2.jpg IPG 30-10-09 119 K RW

196

Chapter 8

4. Create a new backend user with a username _cli txdamcronml, and a random
password. Make sure to give the user access to all DAM modules and tables, and add
the Media SysFolder under DB mounts.

\ If you have an installation with several cron jobs, or you foresee them in the
~ future, | highly recommend creating a backend user group, exclusively for
Q cron job users. This would greatly simplify rights management, and frequently
save you headaches from trying to figure out permission errors in the logs.

5. Finally, set up a cron call to the CLI script, with the indexing rules parameter.
For example:

/usr/bin/php /var/www/typo3conf/ext/dam cron/cron/dam_ indexer.
php --setup=/var/www/dam/uploads/tx damcron/example.xml

\ Refer to the dam_cron manual for more information on how it needs to
~ be set up in different environments. It ships with the extension, but is also
Q available here: http://typo3.org/documentation/document -
library/extension-manuals/dam cron/1.0.2/view/.

See also

» Setting up indexing rules

» Setting up FTP access

» Categorizing files by geolocation
» Creating a frontend upload form

Setting up indexing rules

We already mentioned briefly the indexing rules that can be set up in the Indexing
downloaded files recipe; however, we will now go into more detail about how they can be set
up, and what you can use them for.

Getting ready

Make sure both the extensions DAM and dam_index are installed.

Automating Processes

How to do it...

1. Go to Media | Tools | Indexing Setup.

2. Inthe file tree, select the folder that you would like to be the starting point for
indexing. Click Next.

3. In Step 2, check the option Dry run.
4. Skip Step 3 and 4.
5. Inthe last step, copy the XML from the textbox.

»

m

=fileadmin/</numIndesx=|

6. Edit page properties on the Media SysFolder, and in the TSconfig field,
enter the following;:

tx dam.indexing.defaultSetup (
<phparray>

</phparray>
)
Substituting the XML that you got in the last step.

Files uploaded through the Media | File module are indexed one by one. Media | Indexing
module provided by the dam_index extension, allows multiple files—even entire folders and
subfolders to be indexed at once.

We have just walked through a series of steps to create a configuration that the indexing
process will use. However, there are a lot more options that we can set.

198

Chapter 8

We will now cover the steps that we have skipped, and what we could do with their help.

Setting more options in Step 2
Step 2 gives a lot of options to customize the result of the indexing process:

Indexing Setup + Path: fMedia/ & [pid-
OPTIONS
2 =
Options:

Index sub folders

Categorize files from folder names
Existing categories will be applied to files if a category has the same name as the filas folder.

Use fuzzy folder/category comparison.
Create categories based on foldertree if not zlready present.

Reindexing
Reindex files and update meta data.

@ Only get meta data which is still missing.

() Overwrite current meta data with data from file. Will overwrite the meta data but preserve those where's no data available from the file
itself.
() Overwrite all current meta data with data from file.

Force to make a title from file name

A title for the media item will be used from extracted meta data of the filas when available. This function force to generate a title from the
file name.

Dry run
Do not actually insert any data into the DAM; just print what would happen.

Delete allindex data - FOR TESTING ONLY!

Index sub folders

Enable this setting if you want to index files recursively—in the current folder, and all
subfolders. If disabled, only the files in the folder you selected in Step 1 will be indexed.

Categorize files from folder names

Enable this option to assign categories to DAM records, based on the file tree. If you already
have a category tree that loosely matches the folder tree you're about to index, enable the
fuzzy folder/category comparison. If you don't have a category tree, and would like to create
one to match the folder tree, check the second option.

Automating Processes

Reindexing

If the files have already been indexed, but you would like to index them again, check this
option. If you believe the files have new metadata that is not present in the DAM record, select
the first option to only get metadata that is missing. Select the second option to overwrite the
metadata in the record with the data from the file, but preserve the data in the record that is
no longer present in the file. Select the third option if you would like to completely replace the
DAM record with metadata from the file.

Force to make a title from file name

Normally, DAM will choose certain well known metadata fields to create the file title. If you
enable this option, however, DAM will be forced to create a title from the file name, even if
there is suitable metadata to create a title.

Dry run

When indexing, this option will force the module to print all the metadata and records that
would be created, without actually creating them. This option is extremely useful when you're
trying to check your rules as they apply to a certain set or subset of data. You can run indexing
on a production system without affecting your operations.

Delete all index data

This option will clear all indexing data from the system prior to running an index. It should
generally be avoided, as it will delete all the existing records and their relations.

Setting indexing field predefinition in Step 3

This step lets you set some specific values. If you check the checkbox next to a field, whatever
input is received during indexing for that field will not make it into the record. Instead, it will
use any value that you enter in the text field.

200

Indexing Setup

INDEXING FIELD PREDEFINITION

3 [Back |

Preset meta descriptions for files.
The content may be replaced by meta content from the filas themsealves.

O

O

Check the fields you want to set fixed.
The input will then not be replaced.

Title:

Keywords (,):

Description:

Caption:

Al Text (www):

Source/Original location:

Source f Original location description:

Ident key (sku):

Creator:

Publisher:

Copyright: |

Instruction/Usage:

Creation date:

Modified date:

Location description:

Location country:

-

Location city:

Content language:

-
Categories:
Salactad: Itams:

E..Elcateguries

= ﬁ Photogallery

i A ﬂ Photogallery
E Penguins
E Steslars
.75 Sally Maxson

B[EEIE

Chapter 8

201

Automating Processes

Indexing setup summary in Step 4

This last step gives an overview of everything you have selected, and gives you one last
chance to change it before proceeding with creating the rule set:

Indexing Setup

INDEXING SETUP SUMMARY
4 _Fanish |

Set Ophtions:

Meta data preset:
Title:

Keywords [):

Description:

a

Caption:

Al Text [www):

Source/ Original location:

Source/Original location description:

Ident key (sku):

Creator:

Publisher:

Copyright:

OO0 00 O00OGa O

Instruction /Usage:

Setting more TSconfig options
There are a few more TSconfig options you could set.

tx_dam.indexing.skipFileTypes

This setting allows you to skip files of certain types from being indexed. Just enter a list of file
extensions to prevent them from being indexed.

202

Chapter 8

tx_dam.indexing.auto

If this is enabled (set to 1), files will be auto indexed. Auto indexing will happen when you
browse to a folder containing unindexed files using the Media | File module.

tx_dam.indexing.autoMaxInteractive

This setting is only relevant if auto indexing is turned on. Indexing is an intensive task, using a
lot of processing power and time. This setting places a limit on how many files can be indexed
at a time. So, if a directory contains thousands of unindexed files, only a few will be indexed at
atime.

tx_dam.indexing.replaceFile.reindexingMode

When replacing a file with another file, you can choose to either keep the DAM record from
the previous file, or index the new file, and replace the information in the record with the data
from the new file.

tx_dam.indexing.editFile.reindexingMode
This is same as the setting above, but applies when the file is edited within DAM.

tx_dam.indexing.uselnternalMimelList

This uses internal MIME type to file type conversion list. In new versions of DAM, this list can
be accessed and modified in Media | Tools | Media types.

tx_dam.indexing.useMimeContentType
This uses PHP function mime content type to determine whether a file is of MIME type.

tx_dam.indexing.useFileCommand

If MIME type couldn't be found using the previous two methods, this option lets DAM find file
of MIME type using a call to the operating system (Linux only).

Q Refer to the DAM extension manual for more options and their descriptions.

See also

» Categorizing files by geolocation
» Indexing downloaded files

203

Automating Processes

Categorizing files by geolocation

DAM offers even more rules that can be used to modify the DAM record before it enters the
database. Suppose your site deals with a lot of photographs, submitted by editors from all
over the world. Images have good metadata describing the location of the shot, stored in
IPTC tags. In this recipe, we will create a rule to add a category to these images based on the
location where they were taken.

We will also use a different method for extending TYPO3—we will not create an extension,
but rather make all the needed changes in the local instance. This makes sense in cases of
specialized snippets of code that are not easily reusable, or are simply unique in their nature.

Getting ready

We will use the embedded metadata specifying the country and city to select an appropriate
category. To fully test this code, you need to have a category tree with several countries, and
their corresponding cities, and the files with embedded metadata that matches these locations.

How to do it...

1. Inlocalconf.php (under typo3conf folder), add the following code:

$SGLOBALS ['TYPO3 CONF _VARS'] ['EXTCONF'] ['dam']
['indexRuleClasses'] ['dam location rule'] =
'fileadmin/class.tx_damlocationrule.php:&user damlocationrule';

2. Create anewfile fileadmin/class.tx damlocationrule.php with the
following content:

<?php
class user_ damlocationrule {
var SwriteDevLog;
var $setup = array(
'enabled' => TRUE
)i

public function preIndexing() {
// Nothing to do

}

public function postIndexing(&$infolList)
// Nothing to do

}

public function processMeta (&$meta, &$path, &$indexObj)
SparentUIDres =

204

Chapter 8

$GLOBALS ['TYPO3_DB'] ->exec_SELECTquery ('uid',
'tx dam cat', 'title='
SGLOBALS ['TYPO3 DB'] ->fullQuoteStr (
Smeta['fields'] ['loc country'],
'tx dam cat'));
SparentUIDRec =
SGLOBALS ['TYPO3 DB'] ->sqgl fetch assoc($parentUIDres) ;
SparentUID = intval ($parentUIDRec['uid']);
if ($parentUID)
$categoryRes= $GLOBALS['TYPO3 DB']->exec

SELECTquery('uid', 'tx dam cat',
'title=' . S$GLOBALS['TYPO3 DB'] -
>fullQuoteStr ($meta['fields'] ['loc_city'],
'tx dam cat') . ' AND pid=' . S$parentUID) ;

$categoryRec = S$GLOBALS['TYPO3 DB']->sqgl fetch
assoc ($categoryRes) ;
Smeta['fields'] ['category'] .=
intval ($categoryRec['uid']) . ',';

o

return Smeta;

This class is loaded into a rule set that is used by DAM during indexing. The function
processMeta is executed after the metadata has been extracted from the file, but before
it has been written to the DAM record. In this function, we query the database for categories
matching our specification.

This simple classification can be extended to cover a variety of scenarios. Here are a few more
tools for your arsenal:

Post processing

Another rule function is executed after the record has been inserted into the database. To
make use of this hook, implement postProcessMeta function in your class. For example:

public function postProcessMeta (&$meta, &Spath, &$indexObj)

205

Automating Processes

Creating new categories

As an alternative to creating the categories yourself, you can create them "on demand".
When a file with a specific location comes in, and there is no category for it, such a category
could be created with some default values and assigned to the DAM record. We leave the
implementation of this as an exercise for the reader.

» Setting up indexing rules
» Indexing downloaded files

206

Symbols
<media> HTML tag 80

A

Access Control Lists (ACLs) 118
addService function 62
Amazon S3
about 118
bucket, creating 123
DAM files, uploading 125-127
features 118
files, getting from 119, 120
files, uploading 121, 122
resources 118
Amazon S3 PHP class 118
Apache commands 11,12
APl 117
Application Programming Interfaces. See API
audio
converting, service used 165-179
processing, service used 156-158
rendering, media content object used 93
audio and video
rendering, content elements used 96, 97
rendering, media TypoScript object
used 94-96
rendering, rgmediaimages extension used
96, 97
audio_conversion extension 166
audioConversion service
building 180-183
checkConversion() 184
getTypes() 183
process() 184
audio metadata

Index

about 64
versions 64
auth() function 136

backend users groups 38
bucket, S3
creating 123
creating, in EU 124
creating, in US 124
deleting 125
permissions, setting 124
working 123, 124

C

category tree

about 42

associations 43

example 42

photo galleries 43

preparing, for set up 42

setting up 42,43
cc_meta_audio extension 65
cc_metaexif 59
ce_gallery

about 83

installing 83
class.tx_dam_flickr_upload_action.php 135

function _getCommand() 136

function getlcon() 136

function getLabel() 136

function isPossiblyValid() 135

function isValid() 136

var $typesAvailable = array() 135
class.tx_flvConverter.php, FFmpeg

about 163
compileExec 164
filePostTrigger 163
processOutput 164
class. tx_soundmanager2.php
customMediaRender() 104
customMediaRenderTypes() 103
class.tx_webflvplayer.php 108
customMediaParams() 108
customMediaRender() 108, 109
customMediaRenderTypes() 108
code
debugging 51,-53
compileExec 164
content elements 70
cURL 118
customMediaParams() function 108
custom media player
templates, utilizing 110-112
video, playing 106, 107, 108
customMediaRender() function 104-109
customMediaRenderTypes() function 103,
108

D

DAM files
uploading, to Flickr 132, 133
uploading, to S3 125-127
dam_flickr_upload extension
about 133

class.tx_dam_flickr_upload_action.php 135

ext_conf_template.txt 135
ext_tables.php 135
installing 133
mod1/index.php 136
working 134, 135
dam_index extension 198
dam_user_upload 125

DBAL (Database Abstraction Layer) extension

16
Debian server
settingup 9
working 9, 10
debuggers 51
digital asset management
category tree, setting up 42

208

code, debugging 51
filemount, setting up 35
file structure, setting up 31
frontend upload form, creating 44
frontend user groups, creating 53
frontend users, creating 54
FTP access, setting up 39
rights, setting up 36
Digital Asset Manager (DAM) extension 23
docheader 82
downloaded files
indexing 194, 195
indexing, dam_cron used 196, 197

exiftags 64

ext_conf_template.txt 135

extension key 154

ext_localconf.php 103, 108

ext_tables.php 135

exxtensions, TYPO3
installing 23, 24

F

FFmpeg
cache, clearing 165
class.tx_flvConverter.php 163
debugging 164
ext_localconf.php 163
file conversions 165
installing 162, 163

filemount
about 35
preparing, for set up 35
setting up 35

filePostTrigger 163, 164

files
categorizing, by geolocation 204, 205
getting from Amazon S3 118
new categories, creating 206
post processing 205
uploading, to Amazon S3 121
uploading, to Flickr 130

file structure
approaches, for set up 32
multiple files, uploading 33

multiple files, uploading via traditional file

module 34
setting up 31, 32, 33
Flash
embedding, in RTE 114
Flash Media Server. See FMS
Flickr
DAM files, uploading 132, 133
files, uploading 130, 131
Flickr API
about 128
debugging 130
error reporting 130
recent photos, downloading 130
working 129, 130
Flickr applications
asynchronous upload, selecting 132
permissions, gaining 132
synchronous upload, selecting 132
working 131
Flickr photos
getting 128
FMS
about 113
Flash, embedding in RTE 114
video, playing 113, 114
frontend plugin
creating 141
init() parameter 144
main() parameter 144
renderContent() function 145
renderFeed() function 145, 146
frontend upload form
creating 44, 45
getForm() 47
indexFile() 49
main() 45
uploadFile() 48
working 45
frontend user groups
creating 53, 54
frontend users
creating 54
FTP access
about 39
adding, to media repository 185-187
debugging 41

downloading, by date 189, 191
exceptions, throwing 188, 189
FTP functions, checking out 193

scheduler, using for scheduled tasks 191,

192
setting up 39, 40
working 40

function _getCommand() 136
function geticon() 136
function getLabel() 136
function isPossiblyValid() 135
function isValid() 136

G

gallery

batch processing, utilizing 85, 86
creating, ce_gallery used 83, 84
Slimbox, using for displaying images 85

getForm() function

about 47
working 47

getid3 class

about 158

init() function 158
process() function 159
processMetaData() 160

Globally recognized avatars. See Gravatars
GraphicsMagick 10

IMAGE content object

about 78

alternative text, adding to images 79
extension, executing from 79

image, wrapping in link 79

working 78

ImageMagick

about 10
installing 10

images
rendering, content elements used 70, 71

rendering, TypoScript used 78

images, RTE

current image, modes of inclusion 76
drag n drop, modes of inclusion 75
embedding 72-4

209

embedding, TinyMCE used 77
maximum dimension constraints, setting 77
modes, of inclusion 75
plain image, modes of inclusion 75
resizing 76
upload image, modes of inclusion 75
indexFile() function
about 49
working 49, 50
indexing rules
setting up 197-199
indexing setup
about 197
indexing field predefinition, setting 200
summary 202
TSconfig options, setting 202
indexing setup, options
about 199
categorize files from folder names 199
delete all index data 200
dry run 200
force to make a title from file name 200
index sub folders 199
reindexing 200
init() function 136, 154
Internet Information Services (1IS) 16

J

JavaScript
including 29

K
Kickstarter 44

L

links
rendering to files, <media> tags used 79-82

main() function 136
about 45
working 45, 46
marker 29
media content object

210

class. tx_soundmanager2.php 103
extending 101
ext_localconf.php 103
working 103
media element
customizing options 91, 92
media parameters
allow fullscreen 92
allow scriptaccess 92
autoplay 92
loop 92
preview video 92
quality 92
metadata
extracting, from audio 65, 66
extracting, from images 59, 60
extracting, from OpenOffice documents
149-154
extracting, from PDF 66, 67
inserting, into audio 64
inserting, into images 58
rendering, from DAM object 87
metaExtract
about 62
service priority 63
working 62, 63
modl1/index.php
about 136
auth() 136
init() 136
main() 136
mplayer 184
MS SQL 16
multithreaded environment
settingup 12, 13
working 13
MySQL 16

Network Attached Storage (NAS) 18
NFS
mounting 19
NFS share
setting up 18, 19
working 19
NuSphere PhpEd 51

0

object creating options, Amazon S3
additional information, sending in file headers
122
object, deleting 123
object permissions, assigning 122
object listing options, Amazon S3
about 120
common prefixes, finding 121
common prefixes, working with 121
objects, searching 121
OpenOffice 149
OpenOffice documents
metadata, extracting from 149-154
Oracle 16

P

parseMetaData() function 156
Photoshop

metadata, inseting into images 59
pmkslimbox 85
PostgreSQL 16
postProcessMeta function 205
process function 155, 156
processMeta function 205
processOutput 164
Pure-FTPd 39
putBucket function 124
putObject function 122

resources, Amazon S3
buckets 118
objects 118
rgmediaimages extension
about 96
configuration options 98
rgmediaimages extension, configuration
options
FLV and MP3 output, customizing 99, 100
YouTube videos, embedding 100
Rich Text Editor. See RTE
rights, for backend users
setting up 36, 38
RTE

about 72
images, embedding 72-74

S

s3_upload extension
about 125
improving options 127
working 127
s3_upload extension, improving options
unique Flexform options, setting 127
scalable architecture
creating 16, 17
service key 154
service subtypes 179
service type 154
sr_feuser_register 54
stdWrap properties 87
Subparts 29
sysext 23

T

t3lib_extMgm-addService 154
T3X extensions
T3X files, importing 25
unstable extensions, checking out 25
template
creating 25, 28
working 28
thread safe 12
TSconfig options
setting 202
tx_dam.indexing.auto 203
tx_dam.indexing.autoMaxInteractive 203
tx_dam.indexing.editFile.reindexingMode 203
tx_dam.indexing.replaceFile.reindexingMode
203
tx_dam.indexing.skipFileTypes 202
tx_dam.indexing.useFileCommand 203
tx_dam.indexing.uselnternalMimeList 203
tx_dam.indexing.useMimeContentType 203
tt_content.media.20 95
TYPO3
about 12
Install Tool, launching 22
local extensions 23
needed extensions, installing 23

mn

setting up 19, 20, 21
system extensions 23
working 21
TYPO3 content management system
expectations 8
Integrated Development Environment (IDE) 8
Note on IDE 8
prerequisites 8
TYPO3 Extension Repository (TER) 23
TYPO3 Multimedia! 8

U
uploadFile() function
about 48
working 48, 49
Vv
var $typesAvailable = array() 135
video

converting, to FLV 162-165

external videos, embedding 93

playing, custom media player used 106-108
playing, FMS used 113, 114

rendering, media content object used 89-92

W

weblog. See blog
website, TYPO3

template, creating 25-28
Windows

metadata, inseting into images 58
Windows web server

settingup 14, 15

working 16

212

X
XCLASS 173

Y

YouTube API
about 137
filters 139
frontend plugin, creating 142, 143
frontend plugin, working 144
movie list, reading 137, 138
parameters, sending to plugins 147
request, authenticating 140, 141
restrictions 139
URL, generating 140
video, displaying 147
video list, displaying with frontend plugin

141-143

working 141
working with 137

y 4

Zend_Gdata library
about 137
working 139

Thank you for buying

TYPO3 4.3 Multimedia
PUBLISHING = Cookbook

Packt Open Source Project Royalties

When we sell a book written on an Open Source project, we pay a royalty directly to that project.
Therefore by purchasing TYPO3 4.3 Multimedia Cookbook, Packt will have given some of the
money received to the TYPO3 project.

In the long term, we see ourselves and you—customers and readers of our books—as part of the
Open Source ecosystem, providing sustainable revenue for the projects we publish on. Our aim at
Packt is to establish publishing royalties as an essential part of the service and support a business
model that sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub. com.

PUBLISHING

Building Websites with TYPO3

A practical guide to getting your TYPO:!
and running fast

PACKT

Building Websites with
TYPO3

ISBN: 978-1-847191-11-3 Paperback: 208 pages

A practical step-by-step tutorial to creating your TYPO3
website

1. A practical step-by-step tutorial to creating your
TYPO3 website

2. Install and configure TYPO3

3. Master all the important aspects of TYPO3,
including the backend, the frontend, content
management, and templates

4. Gain hands-on experience by developing an
example site through the book

TYPO3

Enterprise Content Management

TYPO3: Enterprise Content

Management
ISBN: 978-1-904811-41-1 Paperback: 624 pages

The Official TYPO3 Book, written and endorsed by the
core TYPO3 Team

1. Easy-to-use introduction to TYPO3

2. Design and build content rich extranets and
intranets

3. Learn how to manage content and administrate
and extend TYPO3

Please check www.PacktPub.com for information on our titles

PUBLISHING

Extension Development

PACKT

TYPO3 Extension
Development
ISBN: 978-1-847192-12-7 Paperback: 232 pages

Developer's guide to creating feature rich extensions
using the TYPO3 API

1. Covers the complete extension development
process from planning and extension generation
through development to writing documentation

2. Includes both front-end and back-end
development

3. Describes TYPO3 areas not covered in the official
documentation (such as using AJAX and elD)

4. Hands on style, lots of examples, and detailed
walkthroughs

Joomlal 1.5 Multimedia

Joomla! 1.5 Multimedia
ISBN: 978-1-847197-70-2 Paperback: 357 pages

Build media-rich Joomla! web sites by learning to embed
and display Multimedia content

1. Build a livelier Joomla! site by adding videos,
audios, images and more to your web content

2. Install, configure, and use popular Multimedia
Extensions

3. Make your web site collaborate with external
resources such as Twitter, YouTube, Google, and
Flickr with the help of Joomla! extensions

4. Follow a step-by-step tutorial to create a feature-
packed media-rich Joomla! site

Please check www.PacktPub.com for information on our titles

	TYPO3 4.3 Multimedia Cookbook (2010) (ATTiCA)
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Setting up a web server on Debian
	Setting up a multithreaded environment
	Setting up a web server on Windows
	Creating a scalable architecture
	Setting up an NFS share
	Setting up TYPO3
	Installing needed extensions
	Creating a template for a site

	Chapter 2: Managing Digital Assets
	Setting up a file structure
	Setting up a filemount
	Setting up rights for backend users
	Setting up FTP access
	Setting up a category tree
	Creating a frontend upload form
	Debugging code
	Creating frontend user groups
	Creating frontend users

	Chapter 3: Operating with Metadata in Media Files
	Inserting metadata into images
	Extracting metadata from images
	Inserting metadata into audio
	Extracting metadata from audio
	Extracting metadata from PDF

	Chapter 4: Rendering Images
	Rendering images using content elements
	Embedding images in RTE
	Rendering images using TypoScript
	Rendering links to files using <media> tags
	Creating a gallery using ce_gallery
	Rendering metadata from a DAM object

	Chapter 5: Rendering Video and Audio
	Rendering video using media
	content object
	Rendering audio using media content object
	Rendering audio and video using media
	TypoScript object
	Rendering audio and video using content
	elements and rgmediaimages extension
	Extending the media content object for more
	rendering options
	Using custom media player to play video
	Connecting to Flash Media Server to
	play video

	Chapter 6: Connecting to External APIs
	Introduction
	Getting files from Amazon S3
	Uploading files to S3
	Creating a bucket in S3
	Uploading DAM files to S3
	Getting recent Flickr photos
	Uploading files to Flickr
	Uploading DAM files to Flickr
	Reading list of movies from YouTube API
	Authenticating requests to YouTube API
	Showing video list with frontend plugin

	Chapter 7: Creating Services
	Extracting metadata from OpenOffice
	documents
	Processing audio using a service
	Converting a video to FLV upon import
	Converting audio using services
	Building an audioConversion service

	Chapter 8: Automating Processes
	Adding FTP access to the media repository
	Indexing downloaded files
	Setting up indexing rules
	Categorizing files by geolocation

	Index

