

TYPO3 4.3 Multimedia
Cookbook

Over 50 great recipes for effectively managing
multimedia content to create an organized website
in TYPO3

Dan Osipov

 BIRMINGHAM - MUMBAI

TYPO3 4.3 Multimedia Cookbook
Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010

Production Reference: 1210110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-48-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Dan Osipov

Reviewers
Karsten Dambekalns

Mario Rimann

Mathias Schreiber

Acquisition Editor
Rashmi Phadnis

Development Editor
Reshma Sundaresan

Technical Editor
Kavita Iyer

Copy Editor
Ajay Shanker

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Poorvi Nair

Proofreader
Andie Scothern

Graphics
Nilesh R. Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Dan Osipov has over 12 years of web development, graphic design, as well as system
architecture and application development experience. He has worked on various
multipurpose sites, including e-commerce, educational, informational, and dynamic
news sites. For the last 4 years, he has worked in the media industry, designing and
maintaining an online presence for journals and newspapers.

At the moment of writing, Dan was employed at Calkins Media, where he worked on using
TYPO3 as the CMS system powering high traffic, dynamic news sites, like phillyBrubs.
com and Timesonline.com. He is also a member of the Digital Asset Management team,
focused on the development of the DAM extension for TYPO3.

I would like to thank the Phillyburbs team, as their needs served as an
inspiration for a lot of the material in this book. I would like to thank the
TYPO3 community at large for "inspiring people to share". Last, but not least,
I would like to thank my family for their understanding and support.

About the Reviewers

Karsten Dambekalns, born in 1977, learned the basics of web technology the hard
way – by looking at other websites' HTML source. This happened after having learned
BASIC and Assembler on a good old Commodore C128.

Karsten discovered PHP in 1999 and and was caught by TYPO3's immense possibilities
in 2002. Later, he joined the TYPO3 Association and today is part of the TYPO3 5.0 and
FLOW3 development team.

In 2000, he founded his own Internet company together with a friend from university,
which he left behind in 2008 to become a freelancer working fully on the development of
TYPO3. Karsten also speaks at conferences and writes articles about topics around PHP
and TYPO3.

Karsten mostly lives in Germany with his wife Līga, their three kids, and a nameless
Espresso machine.

Mario Rimann, born in 1982 in Zürich, Switzerland, started his journey through the IT
jungle back in the early 90s. After his primary education as a service technician for office
equipment like printers, copy machines, fax machines, and computers, he moved to
his first job as a system administrator at a school. After collecting some years of IT
and "people-skills", Mario moved onto the European headquarters of a company running
a big website in the nightlife business, later he had his own company, and is now again a
regular employee.

While being employed at the above-mentioned school, he made his first contact with
TYPO3. In the beginning, it was mainly a hobby—which evolved to be the main part of
his own company. In 2006 and 2007, he organized the first two international TYPO3
Developer Days, which took place in Switzerland.

Right now, Mario is employed as a project manager and developer at a mid-sized
web-agency in central Switzerland that specializes in TYPO3 and Magento.

Alongside his job, Mario also helps out in several TYPO3 projects.

You can contact him at mario@rimann.org.

Mathias Schreiber has been working in the Web industry since 1995, developing
websites with database-driven content for several large companies throughout Europe.
He has been a part of the TYPO3 community since early 2002. Ever since then, he has
been close to the core development and also hosted early developer meetings in 2004.

He did more than 100 training sessions in Germany and Switzerland spreading the word
about TYPO3 and has trained most of today's successful TYPO3 companies.

In 2004, he founded wmdb Systems together with Peter Kühn, Diana Beer, and Bodo
Eichstaedt and since then he maintains large TYPO3 projects for many well-known
companies from Europe.

For two years, he has been part of the 12 so called active members of the TYPO3
Association but resigned from his duties to focus on his company and family.

Today, you can find him on almost any TYPO3 event there is—training snowboard-
beginners at the TYPO3 Snowboard tours, mentoring bug-fixing sessions on the TYPO3
Developer days, or sharing ideas on the TYPO3 Conference.

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

Introduction	 8
Setting up a web server on Debian	 9
Setting up a multithreaded environment	 12
Setting up a web server on Windows	 14
Creating a scalable architecture	 16
Setting up an NFS share	 18
Setting up TYPO3	 19
Installing needed extensions	 23
Creating a template for a site	 25

Chapter 2: Managing Digital Assets	 31
Setting up a file structure	 31
Setting up a filemount	 35
Setting up rights for backend users	 36
Setting up FTP access	 39
Setting up a category tree	 42
Creating a frontend upload form	 44
Debugging code	 51
Creating frontend user groups	 53
Creating frontend users	 54

Chapter 3: Operating with Metadata in Media Files	 57
Inserting metadata into images	 58
Extracting metadata from images	 59
Inserting metadata into audio	 64

ii

Table of Contents

Extracting metadata from audio	 65
Extracting metadata from PDF	 66

Chapter 4: Rendering Images	 69
Rendering images using content elements	 70
Embedding images in RTE	 72
Rendering images using TypoScript	 78
Rendering links to files using <media> tags	 79
Creating a gallery using ce_gallery	 83
Rendering metadata from a DAM object	 87

Chapter 5: Rendering Video and Audio	 89
Rendering video using media content object	 89
Rendering audio using media content object	 93
Rendering audio and video using media TypoScript object	 94
Rendering audio and video using content elements and
rgmediaimages extension	 96
Extending the media content object for more rendering options	 101
Using custom media player to play video	 106
Connecting to Flash Media Server to play video	 113

Chapter 6: Connecting to External APIs	 117
Introduction	 117
Getting files from Amazon S3	 118
Uploading files to S3	 121
Creating a bucket in S3	 123
Uploading DAM files to S3	 125
Getting recent Flickr photos	 128
Uploading files to Flickr	 130
Uploading DAM files to Flickr	 132
Reading list of movies from YouTube API	 137
Authenticating requests to YouTube API	 140
Showing video list with frontend plugin	 141

Chapter 7: Creating Services	 149
Extracting metadata from OpenOffice documents	 149
Processing audio using a service	 156
Converting a video to FLV upon import	 162
Converting audio using services	 165
Building an audioConversion service	 180

iii

Table of Contents

Chapter 8: Automating Processes	 185
Adding FTP access to the media repository	 185
Indexing downloaded files	 194
Setting up indexing rules	 197
Categorizing files by geolocation	 204

Index	 207

Preface
TYPO3 is one of the world's leading open source content management systems, written in
PHP, which can be used to create and customize your website. Along with text content, you
can display high quality images, audio, and video to your site's visitors by using TYPO3. It is
essential to manage various types of multimedia files in content management systems for
both editors and the users on the frontend of the site.

This book gives you the step-by-step process for organizing an effective multimedia system.
It also gives solutions to commonly encountered problems, and offers a variety of tools for
dealing with multimedia content. The author's experience in large-scale systems enables him
to share his effective solutions to these problems.

What this book covers
Chapter 1, Getting Started introduces the reader to TYPO3, and helps set up a basic website;
where the material in this chapter alone is not enough, the user is directed to other resources
to fill in the gaps of knowledge in order to proceed further.

Chapter 2, Managing Digital Assets introduces the reader to the concept of digital asset
management. Accounts for various groups of users (editors, administrators, web users) are
created and assigned permissions. We also create a first extension that allows web users to
upload files into the system.

Chapter 3, Operating with Metadata in Media Files expands upon the digital asset
management idea, and cover file metadata, which can be used to classify files. The chapter
covers various types and formats of metadata, and how it can be extracted in TYPO3.

Chapter 4, Rendering Images covers how images can be included on a TYPO3-driven website
using content elements and a TYPO3 script. It also covers how to embed images in Rich Text
Editor. You will learn to render links to media files, create a gallery, and render metadata using
a DAM object.

Preface

2

Chapter 5, Rendering Video and Audio explains how you will render audio and video using
media content object, TypoScript Object, content elements, and rgmediaimages extension.
You will play video using a custom media player and Flash Media Server. We will also create
new plugins for rendering audio files.

Chapter 6, Connecting to External APIs shows how external services, specifically Amazon S3,
Flickr, and YouTube, can be leveraged to expand the system. We pull in files from YouTube and
Flickr. We also use Amazon S3 to provide us with limitless storage.

Chapter 7, Creating Services covers services and hooks—powerful concepts in TYPO3, which
allow individual sites to add different processing capabilities depending on the system. We
use services to parse metadata, and convert files.

Chapter 8, Automating Processes describes how some processes and workflows could be
automated; making the computer do all the hard work, while the editor oversees the process.

What you need for this book
In order to get the most from this book, there are some expectations of prior knowledge
and experience. It is assumed that the reader has a good understanding of TYPO3, which
can be achieved by reading the introductory tutorials—Inside TYPO3, TYPO3 Core API, and
Modern Template Building guide—essential to understand how TYPO3 works. Basic TypoScript
knowledge is required as well.

Who this book is for
This book is for anyone who is looking for effective systems for managing and operating with
multimedia content. You will find this book interesting if you are running, or starting websites
rich in multimedia content.

This book assumes some prior knowledge of TYPO3, which is available either from the official
documentation, or other books on this topic.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

<IfModule mod_fcgid.c>
 AddHandler fcgid-script .fcgi
 SocketPath /var/lib/apache2/fcgid/sock

Preface

3

 IPCConnectTimeout 60
 IPCCommTimeout 256
 BusyTimeout 256
 ProcessLifeTime 256
</IfModule>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

class tx_myext_ftpDownload extends tx_scheduler_Task {
 public function execute() {

 $connection = ftp_connect('ftp.software.ibm.com');
 if (!$connection)

Any command-line input or output is written as follows:

Shell> apt-get install apache2-mpm-prefork libapache2-mod-php5 php5-gd
php5-mysql mysql-server-5.0

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

Preface

4

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/8488_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started

Recently, the Internet has shifted from being a provider of mostly textual information to a rich
media platform; delivering high quality audio, video, and more. This shift was pioneered by
sites such as YouTube, Flickr, Last.fm, Facebook, and others. The availability of broadband
and faster connection speeds, throughout the world, has aided this shift. This change has
brought new challenges to content providers, as they now need to organize and deliver to the
customer not only textual content, but all other forms of media. While textual information can
be easily manipulated, multimedia objects are a lot harder to work with.

Traditional Content Management Systems (CMS) have focused on organizing and
manipulating textual information, but modern systems have more support for multimedia. In
this book, we will discover how to manage various forms of rich media content in TYPO3—one
of the world's leading open source CMSs.

In this chapter, we will cover:

ff Setting up a web server on Debian

ff Setting up a multithreaded environment

ff Setting up a web server on Windows

ff Creating a scalable architecture

ff Setting up an NFS share

ff Setting up TYPO3

ff Installing needed extensions

ff Creating a template for a site

Getting Started

8

Introduction
Welcome to this book about the vast world of TYPO3 Multimedia! In this book, we will
cover various topics that relate to manipulating multimedia objects in the TYPO3 content
management system.

In this chapter, we will lay down some expectations for the rest of the book, and set up
the environment that we will use for most of the examples used throughout the book.

Expectations and prerequisites
In order to get the most from this book, there are some expectations of prior knowledge and
experience. It is assumed that the reader has a good understanding of TYPO3, which can be
achieved by reading the introductory tutorials—Inside TYPO3, TYPO3 Core API, and Modern
Template Building guide—essential to understanding how TYPO3 works. Basic TypoScript
knowledge is required as well.

We will write several extensions in this book; however, we will omit a lot of the details about
extension writing, focusing rather on the specifics of the extension. If you're new to extension
development in TYPO3, you should look for resources on the subject on www.typo3.org.
TYPO3: Extension Development, Dmitry Dulepov, Packt Publishing is an excellent book that
covers all of the prerequisites and much more.

There are multiple ways to achieve anything in TYPO3. The best solution depends on the
situation, and generally requires some compromises. This book cannot illustrate the best
solution to every problem, but attempts to show various possibilities and approaches to
problem solving using practical examples.

Most examples assume you have administrator access to the installation. If you are an editor
or a designer, and have a restricted access to the system, you should skip the examples that
pertain to developers, or ask your system administrator to provide you appropriate access.

Note on IDE
While all of the examples presented in this book can be completed using standard tools such
as a web browser and a text editor, I highly recommend using an Integrated Development
Environment (IDE) if you're serious about web development. IDE would save you time, boost
your productivity, and provide insight into your application that is simply not possible with
standard tools.

There are a variety of PHP IDEs available for various platforms and budgets. Popular
products include Komodo IDE, Zend Studio, NetBeans, and Eclipse with PDT plugin.
My weapon of choice is NuSphere PhpED, and you may see examples and screenshots
throughout the book that make use of the PhpEd platform. The examples can be transposed
to the IDE you're using, but this may require looking in the manual or searching online for
the detailed description.

Chapter 1

9

Setting up a web server on Debian
Before we start anything else, we need to set up a web server. The most common setup for
TYPO3 is based on a LAMP stack (Linux, Apache, MySQL, and PHP), although other setups
are supported as well. Next, we will install all the components required by TYPO3 on a Debian
Linux server.

Paths may vary depending on system and setup options.

Getting ready
Setting up a Debian server is very easy, because all the packages you need are available
through APT (Advanced Packaging Tool). Make sure that the package lists are up-to-date
by running:

Shell> apt-get update

How to do it...
Issue the following command while logged in as root:

Shell> apt-get install apache2-mpm-prefork libapache2-mod-php5 php5-gd
php5-mysql mysql-server-5.0

At the time of writing, the latest stable version of Apache on
Debian (Lenny) is 2.2.9, while PHP is 5.2.6, and MySQL is 5.0.51a.
These versions meet the requirements of our system, and don't
have any known bugs that prevent TYPO3 from working correctly.

How it works...
APT makes software maintenance easy, as all packages can be upgraded or removed through
simple commands. You could install the packages from source, but it would make subsequent
upgrades difficult. With APT, you can run the following to update the package cache
information and upgrade your system:

Shell> apt-get update

Shell> apt-get upgrade

Getting Started

10

One could also use the short notation of this:
apt-get update && apt-get upgrade

It's highly recommended to do this on a regular basis to apply any security patches. But be
careful—upgrades could break some functionality!

Make sure you have a backup/failover plan in
place before performing any upgrades.

There's more...
We can also install some other components to add additional functionality to our system.

ImageMagick
This line will install ImageMagick on your system.

Shell> apt-get install imagemagick

This installs ImageMagick—a powerful graphic processing program. TYPO3 works with GD
and ImageMagick, and you can enable the use of ImageMagick in the Install Tool.
As ImageMagick is an external program (unlike GD, which is a PHP extension), it is
more efficient and feature-rich when it comes to image processing. Therefore, it's highly
recommended that you install and enable it.

An alternative to ImageMagick is GraphicsMagick—a fork of ImageMagick with a more stable
API. GraphicsMagick is also more efficient, and performs better than ImageMagick, especially
on multi-core processors. No changes to TYPO3 are required to work with GraphicsMagick,
and it can be utilized as soon as it is installed by using the following command:

Shell> apt-get install graphicsmagick

To verify that everything is functioning correctly, you can go into TYPO3 Install Tool
(available when you install TYPO3 as described in recipe Setting up TYPO3), and select
Image Processing to check the configuration, then run some tests, as shown on the
following screenshot:

Chapter 1

11

Apache commands
Apache provides a few tools that significantly simplify maintenance tasks. Here are some
useful commands:

Shell> a2enmod module_name
Shell> a2dismod module_name

The first command line (shown above) enables a module while the second command line
disables a module (example: mod_rewrite).

Shell> a2ensite site_name
Shell> a2dissite site_name

The first command line enables a website configuration file while the second command line
disables a website configuration file (example: default).

Always put different site configurations in separate files. This way you can be
sure that disabling a site configuration will only disable that website, and will
not have any adverse effects on the other sites hosted on the server.

Shell> apache2ctl start
Shell> apache2ctl stop
Shell> apache2ctl restart

Getting Started

12

The commands you just saw are used to start, stop, or restart the server respectively. Make
sure to restart the server after configuration changes, as they will not take effect (alternatively,
you can reload the server).

There are many other resources online to help you set up and optimize the web server.
One such resource that also gives some information specific to TYPO3 is
http://www.installationwiki.org/Typo3.

See also
ff Setting up a multithreaded environment
ff Creating a scalable architecture
ff Setting up an NFS share

Setting up a multithreaded environment
TYPO3 is an enterprise content management system, so it is thread safe—meaning two
instances of the script can be executed simultaneously, and they will run in parallel without
interfering with each other. Therefore, Apache can be set up with mod_fcgid and PHP
processes will be allowed to run in parallel.

This setup is not recommended if you have a server with only one or
two core processor.

How to do it...
1.	 Install components of the server:

Shell> apt-get install libapache2-mod-fcgid apache2-mpm-worker
php5-cgi
Shell> a2enmod actions
Shell> a2enmod fcgid

2.	 Replace contents of /etc/apache2/mods-available/fcgid.conf with:
<IfModule mod_fcgid.c>
 AddHandler fcgid-script .fcgi
 SocketPath /var/lib/apache2/fcgid/sock
 IPCConnectTimeout 60
 IPCCommTimeout 256
 BusyTimeout 256
 ProcessLifeTime 256
</IfModule>

3.	 Modify site configuration, by default located in /etc/apache2/sites-
available/default

Chapter 1

13

4.	 Add the following to the virtual host definition:
Alias /fcgi-bin/ /var/www/fcgi-bin.d/
Action php-fcgi /fcgi-bin/php-fcgi-wrapper

5.	 Add the following lines to the directory definition for /var/www/:
AddHandler fcgid-script .php
FCGIWrapper /usr/bin/php-cgi .php

6.	 While there, modify the Options, adding +ExecCGI. Your final site configuration
should look like this:
<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 Alias /fcgi-bin/ /var/www/fcgi-bin.d/
 Action php-fcgi /fcgi-bin/php-fcgi-wrapper
 DocumentRoot /var/www/
 <Directory /var/www/>
 AddHandler fcgid-script .php
 FCGIWrapper /usr/bin/php-cgi .php
 Options Indexes FollowSymLinks MultiViews +ExecCGI
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

Refer to the Apache manual for descriptions of some of the options listed
above, as well as other configuration options.

7.	 Create the executable link to PHP CGI module:
Shell> mkdir /var/www/fcgi-bin.d
Shell> ln –s /usr/bin/php5-cgi /var/www/fcgi-bin.d/php-fcgi-wrapper

How it works...
apache2-mpm-worker package, downloaded in the first command line call, is designed to
run several threads simultaneously. PHP CGI binary is installed in the same statement.

We then enable the fcgid Apache module, and adjust its configuration. Most installations
need to increase the timeout; otherwise, you will be looking at an Internal Server Error if
the page rendering takes too long. To further complicate the diagnosis, timeouts are not
recorded in logs. We increase the values of IPCConnectTimeout, IPCCommTimeout, and
BusyTimeout, along with the ProcessLifeTime. Depending on your configuration, you may
need to increase these values further.

Getting Started

14

Now, when a request comes in to Apache, the PHP CGI process will be launched to handle it.
With multiple simultaneous requests, multiple processes will be launched, and run parallel to
each other, handling individual requests.

If you have multiple clients using this server, they can have separate PHP
processes, and not interfere with each other (for security purposes). You can
find more information on configuring this set up at http://typo3.org/
development/articles/using-php-with-mod-fcgid/.

See also
ff Creating a scalable architecture

ff Setting up an NFS share

Setting up a web server on Windows
TYPO3 runs on a Windows server with IIS. This setup is less common, but supported. Most
examples in this book assume you're running a Linux server.

If you want a development environment on your local computer running Windows, you can
set up WAMP server. It is an all-in-one installer that can set up all the necessary components
in minutes. Obviously, it will not be optimized for performance, but it will be enough to start
experimenting with TYPO3. Just download the installation package, and run the executable
file. It will guide you through the steps needed to complete the installation.

Download WAMP distribution at http://www.wampserver.com/en.

An alternative to WAMP is XAMPP—another package containing Apache, MySQL, PHP, and Perl.
Unlike WAMP, XAMPP is not specific to Windows platforms, and could be installed on a Mac,
Linux, or Solaris system as well.

Find out more about XAMPP at http://www.apachefriends.org/
en/xampp.html.

Chapter 1

15

How to do it...
1.	 Go to Control Panel | Add or Remove Programs | Add/Remove Windows

Components, and check the box next to Internet Information Services (IIS) as
shown in the following screenshot. Have your original installation CD handy, as you
will probably be asked for it to complete the installation.

2.	 Download the TYPO3 source and dummy package, and extract them into
C:\Intepub\wwwroot.

3.	 Download the installer binary package from http://php.net, and run it. Select
the IIS CGI or Fast CGI module, and make sure that you install the complete package
(including extensions).

4.	 Restart the web server, and proceed with TYPO3 installation.

Getting Started

16

How it works...
Windows web environment is powered by Internet Information Services (IIS). This component
is available in most Windows systems, but not installed by default. In Step 1, we install this
missing component. Once the installation is complete, our server is functional and capable of
serving files over the Web.

At this point, if you browse to a PHP file on the server through a browser, you should see the
PHP source code. The problem is it is not executing—that is because PHP is not yet installed,
and IIS doesn't know how to handle PHP files. We solve this problem in Step 3.

Additional instructions for configuring PHP to run on IIS are available in the PHP manual:
http://www.php.net/manual/en/install.windows.php

There's more...
We've just installed the processing side of the application. We can use a DB on another
server, or install MySQL.

Installing MySQL database on Windows
MySQL can be installed on Windows very easily. Just download the MSI Installer file and run it.
The install wizard will take you through the steps needed to install the database.

TYPO3 can be configured to use other databases besides MySQL, including PostgreSQL,
MS SQL, Oracle, and others. This support is provided by DBAL (Database Abstraction Layer)
extension, so install it if you intend to use one of these products instead of MySQL.

See also
ff Setting up TYPO3

Creating a scalable architecture
In the previous examples, we've installed the database server on the same physical machine
as the web server. Although a small website will perform just fine on a single server, larger
sites will hit performance bottlenecks caused by limited capacity. A common industry solution
to this problem is to place the web server on a different physical server from the database.
This allows accommodation of future traffic increases by adding more processing servers.

As mentioned before, TYPO3 is thread-safe, so the processes running on one server will not
interfere with processes on the other servers.

Chapter 1

17

How to do it...
Once you have moved your database to a different server, you need to point TYPO3 to the
new DB host. If you haven't installed TYPO3 yet, refer to the next recipe. Otherwise, select
the Admin Tools | Install module in the TYPO3 backend, or if you don't have access to the
backend yet, go to http://example.com/typo3/install/ (replacing example.com with
the domain name of your site).

Resolving missing ENABLE_INSTALL_TOOL file error
You may get an error, stating that the Install Tool has been locked due to
missing ENABLE_INSTALL_TOOL file. This file is a security precaution,
preventing anyone from potentially accessing system settings. If this file
is present, it is removed after one hour of inactivity for the same reason.
But there are several ways to recreate it. If you're logged in to the
backend, the easiest way to create the file is to go to User tools |
User settings – [admin], and under Admin functions tab, click the
button Create Install Tool Enable File:

If you don't have access to the backend, you can create the file manually
using the following command line or a file explorer:
Shell> touch /var/www/typo3conf/ENABLE_INSTALL_TOOL

Once you have gained access to the Install Tool, go to Basic configuration, and adjust the
database access information.

Getting Started

18

There's more...
You can now scale horizontally, by adding more processing servers accessing the same
database. In this setup, storage becomes a problem. Luckily, most static files needed by
TYPO3 are stored in the fileadmin folder that can be mounted from an external resource,
such as Network Attached Storage (NAS). See the next recipe Setting up an NFS share to
see how this can be accomplished.

Storage

Web servers

DB

We have now arrived at a highly scalable set up. Should the traffic to the application increase,
extra nodes—either web servers or database servers—can be added. This also allows for
failover in case of hardware or software failure. These setups are more complex and are
outside the scope of this book.

See also
ff Setting up an NFS share

Setting up an NFS share
In the Creating a scalable architecture recipe, we arrived at a server architecture to support a
website. That architecture required a separate storage, linked to processing servers over the
network. In this recipe, we will cover how you could set up such NAS on a Debian Linux server
with no special hardware.

How to do it...
1.	 Run the following command to install all the required components for Network File

System (NFS) sharing:
Shell> apt-get install nfs-kernel-server nfs-common portmap

Chapter 1

19

2.	 Edit /etc/exports file, and add the following line:
/var/www/fileadmin 10.0.0.0/24(rw)

3.	 Run the following command to make the changes effective:
Shell> exportfs –a

How it works...
You can fine tune the line in /etc/exports to fit your needs. Pay particular attention
to access if you want your files to be secure. You could list individual servers as a
comma-separated list, and give them explicit permissions to the shared folder.

The folder fileadmin will now be shared by other computers on the network, and could
be accessed by several web servers in our scalable architecture. Changes to the TYPO3
code—such as installing extensions or changing configuration values—will still need to be
done independently on each server, but all media files can be stored on the NFS share.

There's more...
In the following section we will see how we can mount a Network File System.

Mounting an NFS
You need to install similar tools—nfs-kernel-server, nfs-common, portmap—to mount the
network file system correctly. Run the following command as a root user:

Shell> apt-get install nfs-common

After that, mount the shared folder on a different server with the following command:

Shell> mount –t nfs hostname:/nfs_folder /var/www/fileadmin

See also
ff Creating a scalable architecture

Setting up TYPO3
We now have a web server running; so, we can install TYPO3.

How to do it...
1.	 Download the latest stable release, and a dummy package from http://typo3.org.

2.	 Read INSTALL.txt.

Getting Started

20

3.	 Extract all files to /var/www.

To ease upgrades in the future, or to run several TYPO3-driven sites from
the same code base, you should extract the TYPO3 source package into
a separate directory from the dummy package. For example, you could
create a directory src under /var/www, and create a folder for each
version of TYPO3 that you plan on using. Also, under /var/www, create a
folder for each site you want to have on this server, and extract the dummy
package into each folder. Next, create symbolic links for folders misc,
t3lib, and typo3 in the site folders, linking to the source package.

ff misc:

 ln –s /var/www/src/typo3-4.3.0/misc /var/www/
mysite/misc

ff t3lib:

 ln –s /var/www/src/typo3-4.3.0/t3lib /var/www/
mysite/t3lib

ff typo3:

 ln –s /var/www/src/typo3-4.3.0/typo3 /var/www/
mysite/typo3

When a new version is released, simply create a new folder for it,
and change the links. If you realize that the new version is incompatible,
you can quickly restore links to the old version.

4.	 Launch 1-2-3 installer. If you have a fresh new installation, simply go to
http://example.com/typo3/index.php, and it will redirect you to
the installer.

5.	 Enter your database information in Step 1. If you installed the database on
the same host as the web server, enter localhost under address.

Chapter 1

21

6.	 In Step 2, select an empty database where you would like the TYPO3 data
to be stored, or create a new database. Make sure the database you choose
to use is empty.

7.	 In the final step, TYPO3 will import the default data schema and records it needs
to operate. You should now be able to log in to the TYPO3 backend.

If the backend user account has not been created, you can access the Install
Tool, and go to Database Analyzer to create the new backend user account.

How it works...
There are several ways to download the latest version of TYPO3 source and the dummy
package. The best way to access both is to go to http://typo3.org/ and click on
Download. The source package contains all the TYPO3 core files needed for the system, while
the dummy package helps create the needed directories and files specifically for your site.

Before you proceed with uploading the files to the web server, you must read the instructions
in INSTALL.txt. Installation instructions change often and there may be components of the
web server that are required in the future. Installation documentation covers all the nuances
of installing the specific version you have just downloaded.

Getting Started

22

There's more...
After you have finished installing, explore the Install Tool fully, as it contains a full array of
options you need to configure your system. Go to http://example.com/typo3/install
to launch the Install Tool (replacing example.com with the domain name of your site).

ff Basic Configuration runs a basic check of file permissions and server settings, and
will report if there are any problems. Make sure to go through any issues, as they're
likely to impact operations. You can also change database information here.

ff Database Analyzer will check the integrity of your database schema. Click COMPARE
under Update required tables to see if the database needs to be upgraded. Make
sure that you do this after every TYPO3 source or extension upgrade. You can also
delete all data, or import it again.

ff Update Wizard should be used when you upgrade your TYPO3 source version—for
example from 4.3 to 4.4.

ff Image Processing will run a series of tests to check the ImageMagick, GD, or
GraphicsMagick configuration.

ff All Configuration gives an overview of all the system configuration variables available
in the system. Go through all the options, and adjust the value to fit your system.

ff typo3temp/ gives statistics and lets you perform operations on temporary files
created by TYPO3.

ff Clean up database lets you clear cached image sizes.

ff phpinfo() gives a standard PHP status report.

ff Edit files in typo3conf/ allows some basic edit operations on files in the
typo3conf directory.

ff About gives some general information about the use of the script, in greater detail
than just described.

There is an excellent installation guide available from http://dmitry-dulepov.com/e-
books/typo3-installation-and-upgrade.html. It covers setup instructions, as well
as steps that need to be taken to optimize and secure the new installation.

See also
ff Installing needed extensions

ff Creating a template for a site

Chapter 1

23

Installing needed extensions
Most of the power of TYPO3 comes from extensions. In fact, much of the system you have
just installed is powered by extensions—these come packaged with the source, and are called
system extensions, or simply sysext. You can find them under the typo3/sysext folder.
These extensions have been deemed necessary for most installations, and many come
preloaded by default. There are more extensions available through the TYPO3 Extension
Repository (TER), and they can be installed as local extensions, and will reside under the
typo3conf/ext folder. You can get a complete list at http://typo3.org/extensions.

As we will be dealing a lot with multimedia, we should install the Digital Asset Manager (DAM)
extension. Its extension key is dam. While you can run a website without it perfectly well, a lot
of the information provided in subsequent chapters will assume that you have a lot of media
objects, and need an efficient way of organizing them. DAM is designed to do just that.

There are several ways to install extensions in TYPO3. Next, we will cover how you can install
extensions using the Extension Manager—which is the simplest way to install extensions. For
other possibilities, refer to the There's more... section further ahead. You may choose different
options depending on the situation, so you should be familiar with all methods.

How to do it...
1.	 Go to Admin Tools | Extension Manager.

If you've just installed the system, the Extension Manager is not configured
for automatic extension retrieval. If it is already set up, skip to Step 7.

2.	 In the top-most selection box, choose Settings to go to the settings submodule.

Terminology
A quick note about terminology: All options in the left frame of the backend
menu are called modules. Some modules may have submodules—those
are usually available in selection boxes at the top of the content frame.
Refer to TYPO3 official documentation for an overview of the structure of
the backend.

3.	 Under Security Settings, check the box if you want access to extensions that have
not been reviewed. If you leave the box unchecked, and are unable to find some
mentioned extensions, this would probably be the reason.

4.	 If you plan on uploading extensions to TER, then under User Settings,
enter your TYPO3 account information. You can sign up for a free account at
http://typo3.org.

Getting Started

24

5.	 Under Mirror list, select the mirror that is closest to you, or leave the recommended
setting of random.

6.	 Scroll to the bottom and click Update to save your changes.

7.	 Go back to the submodule selector and choose Import Extensions.

8.	 In the List or look up all extensions box, type in dam.

9.	 In the list that appears, choose the Media (DAM) extension, and choose the
Import button.

10.	 You will be notified of any Dependency Error that you can ignore or resolve.

The Extension Manager will perform all the necessary database updates.

Chapter 1

25

There's more...
In the following section we will cover other methods of importing extensions—from T3X files
and code repositories.

Importing T3X files
Extensions are distributed and can be downloaded as files with T3X extension. You can
download the files through the TER. Once you have the file, it can be imported through the
Import Extensions submodule of the extension manager. The rest of the steps are the same
as above.

Checking out unstable extensions
In between stable releases, unstable versions can be exported from repositories. These
versions contain bug fixes and new features, but may not be fully tested, and therefore contain
some problems. Here is how the latest revision of DAM can be checked out from the repository.
Create a new folder under typo3conf/ext/dam, and in it, run the following command:

Shell > svn co https://svn.typo3.org/TYPO3v4/Extensions/dam/dam/trunk

This command assumes you have Subversion installed. If you don't,
you will get an error. Subversion client can be installed through APT:
Shell> apt-get install subversion

If you're using Windows, you can use Tortoise SVN that is a graphical
interface to the Subversion client. It integrates seamlessly into Windows
Explorer and most commands can be accessed through right-click context
menu. Go to http://tortoisesvn.net/ to find out more about
Tortoise SVN.

The rest of the steps for installation are the same as above.

Creating a template for a site
Our goal is to have a website for people to visit, and as such that website needs a frontend
template where content will be displayed (TYPO3 can be used for other applications as well).

Getting ready
We will create a very basic template, which will allow us to see the results of the work in
TYPO3 on the page. On a real project, you will probably be given a template by a designer.

Getting Started

26

Make sure to create a template directory under fileadmin, and create a file
mainTemplate.html with the following contents:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Site template</title>
</head>
<body>
<!-- ###DOCUMENT_BODY### begin -->
<div id="container">
 <div id="leftContent">
<!-- ###LEFT_COLUMN### -->
 Left Column Content
<!-- ###LEFT_COLUMN### -->
 </div>
 <div id="centerContent">
<!-- ###CENTER_COLUMN### -->
 Center Column Content
<!-- ###CENTER_COLUMN### -->
 </div>
 <div id="rightContent">
<!-- ###RIGHT_COLUMN### -->
 Right Column Content
<!-- ###RIGHT_COLUMN### -->
 </div>
 <div id="borderContent">
<!-- ###BORDER_COLUMN### -->
 Border Column Content
<!-- ###BORDER_COLUMN### -->
 </div>
</div>
<!-- ###DOCUMENT_BODY### end -->
</body>
</html>

Also, create a new CSS file in the same directory, called mainStyle.css with the
following content:

#container {
 width: 100%;
 height: 100%;
}

#leftContent {
 float: left;
 width: 200px;
 display: inline;

Chapter 1

27

}

#centerContent {
 float: left;
 width: 500px;
 display: inline;
}

#rightContent {
 float: right;
 width: 200px;
}

#borderContent {
 float: right;
 width: 200px;
}

Case Sensitivity
Make sure you follow case sensitivity, as TypoScript code is case sensitive,
and it doesn't see mainStyle.css as the same as mainstyle.css.
Come up with a convention for yourself. If you know all your names, follow
camelCase, you will save yourself a lot of double checking and headaches
when something doesn't work.

How to do it...
1.	 In the Template module, browse to the page you would like to be the root of the site.

Create a new root template.

2.	 In the Includes tab, include the styles.content (default) static template.

Any page can be the root of a new site, even if it's within an already
defined page tree structure. By default, templates propagate through the
tree, but a new template record can be set as root:

Getting Started

28

3.	 In the setup field, add the following code:
page = PAGE
page.typeNum = 0
page.10 = TEMPLATE
page.10 {
 template = FILE
 template.file = fileadmin/templates/mainTemplate.html

workOnSubpart = DOCUMENT_BODY
 subparts.LEFT_COLUMN < styles.content.getLeft
 subparts.RIGHT_COLUMN < styles.content.getRight
 subparts.BORDER_COLUMN < styles.content.getBorder
 subparts.CENTER_COLUMN < styles.content.get
}
page.includeCSS.mainStyle = fileadmin/templates/mainStyle.css

How it works...
There is a lot that happens in just a few lines. Let's refresh your TypoScript knowledge.

page=PAGE creates a new top-level page object, and page.typeNum=0 assigns a page type
of 0 that is the default. So, when you go to the page with no type argument, this page object
will be used.

Other type numbers can be used to display content in a different form.
For example, different type value can render a page for mobile device,
for print, or even as XML for external applications, such as RSS feeds.

In the earlier code, page.10=TEMPLATE defines a content object at position 10 in the
content object array. When the page is rendered, the content objects are each rendered in
numerical order. Page.10 is defined as a TEMPLATE content object, so it will take an HTML
template file, and process it. Lines template=FILE and template.file=fileadmin/
templates/mainTemplate.html define the location of the template file that will be
loaded. workOnSubpart=DOCUMENT_BODY tells the page object to use the DOCUMENT_
BODY subpart section of the template.

At this time, the template file will be loaded and output as it is. However, the following lines
replace the respective subparts with output from each column:

page.10 {
 subparts.LEFT_COLUMN < styles.content.getLeft
 subparts.RIGHT_COLUMN < styles.content.getRight
 subparts.BORDER_COLUMN < styles.content.getBorder
 subparts.CENTER_COLUMN < styles.content.get
}

Chapter 1

29

This is possible because we included the styles.content static template.

What will happen now is TYPO3 will get a list of all content elements in each column, and
render them, that is, it will convert content into HTML. It will then place the resulting HTML
code in place of the subparts.

The design in mainTemplate.html is very simple—just HTML. We want to apply some
styling to that structure. Line page.includeCSS.mainStyle=fileadmin/templates/
mainStyle.css includes our CSS file, which does just that.

There's more...
For more information about templates, you should read a detailed guide to templating
in TYPO3: http://typo3.org/documentation/document-library/tutorials/
doc_tut_templselect/current/ (Modern Template Building). We will briefly go through
a few more features.

Markers vs. Subparts
In the mainTemplate.html file, we have used four subparts. This lets us preview the file,
and see exactly where the content will go once it is rendered. Subparts are defined by a
unique marker, enclosed in HTML comment tags, and surrounding some text, as in:

<div><!-- ###TEMPLATE_SUBPART### --> Code that will be replaced <!--
###TEMPLATE_SUBPART### --></div>

Sometimes, you just want content to be inserted into a specific point, in such a case, you can
use a marker. A marker is similar to a subpart, but exists by itself and doesn't reside in an
HTML comment:

<div>###TEMPLATE_MARKER###</div>

Subparts are also used by extensions, where the subparts contain markers. This may not be
clear at this point, but after working with a few templates you will grasp the difference.

Including JavaScript
To include JavaScript files, add the following lines to TypoScript:

page.includeJS.someCode = fileadmin/templates/someCode.js

See TypoScript Reference (TSref) for more options: http://typo3.org/
documentation/document-library/references/doc_core_tsref/current/

2
Managing Digital

Assets

In this chapter, we will cover:

ff Setting up a file structure

ff Setting up a filemount

ff Setting up rights for backend users

ff Setting up FTP access

ff Setting up a category tree

ff Creating a frontend upload form

ff Debugging code

ff Creating frontend user groups

ff Creating frontend users

We will also look at digital asset management, why you may need it, and how to use it
in TYPO3.

Setting up a file structure
When starting a new site, one needs to decide on the file structure that will be used. The
specific directory tree will probably depend on the application and the type of information
stored in those folders. But, there are certain ways by which TYPO3 can help you sort files,
which should give you a guide as to how you should lay out the file tree.

Managing Digital Assets

32

Getting ready
First, you need to decide on the approach to the file structure.

ff By user
This is a common layout that's used in multiuser environments. Filemounts can be set
up to limit the user to just a specific folder. We will examine how this can be done in
the recipe Setting up rights for backend users.

ff By user group
This is similar to the previous setup, but more functional in team environments,
where several users might share a job function. Filemounts can be set up for a group
(content editor, publisher, videographer, and so on), and assigned to several users,
who would then share access to files.

ff By date
If you have a lot of time-relevant content, storing by date makes sense. Then,
selecting something from a specific day, month, or year becomes much easier using
selections in DAM.

ff By file type
DAM can sort files by file type; so, your file tree should not focus on file types.
However, you can separate the content by type—photos, videos, documents, and so
on. Furthermore, you can break down the categories by specific topics that the files
apply to. Note that specific topics can also be assigned to a file by use of categories,
which we will cover later in this chapter.

How to do it...
Once you decide on the file structure you are going to use, you need to create the appropriate
folders. We will use this structure for the next few examples. Folders can be created within
TYPO3 and files can be uploaded through the same interface as well. In the following
screenshot, you can see three icons—they are for New folder, Upload, and New file.

Chapter 2

33

1.	 Click the New folder button in the upper left-hand corner of the Media | File module.
In the text field, enter the folder name.

2.	 Click Save.

3.	 Click the Upload file button, or select the Upload sub-module from
Media | File module.

4.	 Select the file or files that you want to upload. Note the folder name in the upper
right-hand corner—this is where the uploaded files will be moved to.

5.	 Click Upload.

There's more...
There are multiple options you can use to upload files onto the system.

Uploading multiple files
An alternative way to upload files is through a module, which can be accessed under
Media | File | Upload. This module allows for multiple files to be selected for uploading.

If you want to allow the new files to overwrite the existing files, check the Overwrite existing
files checkbox. If it remains unchecked and there is a filename conflict, the new file will be
appended a number to distinguish it from the item with the same filename.

Managing Digital Assets

34

Uploading through traditional file module
If you do not have DAM installed, you will have access to the traditional file module. It gives
you access to the same functionality, letting users create new folders and upload files:

Click the Upload files button to upload one or more files into the current location. Click on
the New icon to go to a form, which gives you an option to create new folders, among other
possibilities, as shown in the following screenshot:

See also

ff Setting up rights for backend users

Chapter 2

35

Setting up a filemount
Filemounts limit a user to just a specific folder tree under the fileadmin directory. This is
good for security purposes, as well as general usability in a multiuser environment. Instead of
browsing through all the files available in the system, the user can be directed to just the files
he/she needs to manipulate.

Getting ready
To set up filemounts, you must have a directory structure in place. For the recipe that follows,
we will assume that we decided on a "by user" tree (see recipe Setting up file structure).

How to do it...
1.	 Use the List module and go to the root page of the site (PID: 0, usually the topmost

node).

2.	 Click the Create New Record button.

3.	 Choose Filemount. You should see the following screen:

4.	 Fill in the required Label field. The Label field allows you to name the filemount
to something you would remember, and could pick out from a list and know where
it points.

Managing Digital Assets

36

5.	 Fill in the required Path field. The path refers to the file system path to the directory
you want to set as the top level for the filemount.

Examples for the path
/var/www/fileadmin/joe

D:\www\fileadmin\susan

The path can be absolute, like the examples above, or relative to
the fileadmin directory. Check an appropriate Base radio button
depending on the path you provide.

There's more...
To use a filemount, just edit a backend user or backend user group.

See also

ff Setting up rights for backend users
ff Setting up file structure
ff Setting up FTP access

Setting up rights for backend users
In this recipe, we will create a backend user, who will be able to log into TYPO3 and have
limited rights, which would allow him or her to do his/her job without causing any deliberate or
accidental damage to the system.

Getting ready
To limit a user to his/her folder, he/she must have a configured filemount. Make sure you have
completed the Setting up a filemount recipe, and have correctly set up at least one filemount.

How to do it...
1.	 Under the Admin tools | User Admin module, click the button to create a new user.

2.	 Under the General tab, fill in the required fields—Username and Password.

3.	 Enter the user's name and e-mail address.

4.	 Under the Access Rights tab, select the modules that you would like the user or user
group to see in the left frame.

Chapter 2

37

5.	 Under DB Mounts, select the top page of the branch to which the user should
have access.

Managing Digital Assets

38

6.	 Under DB Mounts, make sure to also select the Media SysFolder that was created by
DAM extension, as that is where the media records will be stored.

7.	 Under File Mounts, select the filemount you created previously for the user (or if you
decided to set up the filemounts differently, choose the correct filemount combination
for the user).

You can select several filemounts if they apply to the user—use Ctrl + click on
a PC or Command and click on a Mac.

8.	 Under Fileoperation permissions, select if the user should have the right to upload,
copy, move, delete, rename, create new, and edit existing files (first option), unzip files
(second option), create new, edit, move, delete, or rename directories (third option),
copy directories (fourth option), or delete directories recursively (fifth option).

There's more...
Feel free to browse other options in the form and read the Help menu or the official
documentation to see what they do. Under the Mounts and Workspaces tab are some
options related to workspaces, which we will not focus on. If you have DAM installed, you will
also get an option to set up DAM Mounts, giving the user rights to specific categories, media
types, file statuses, and indexing dates (see the previous screenshot). Some other options
that can be limited for specific users include display options (for example: maximum number
of thumbnails in a list), file types that the user is able to upload, and much more. A lot of
these options need to be set through the TSconfig field under the Options tab.

Backend user groups
If you have several users sharing the same basic set of rights, you can set up a backend
user group, and add the user to the group. Backend groups can be set up the same way as
individual users.

If you're setting up a user group, under the Access Rights tab, you can also specify which
tables the users have rights to view and modify, as well as which exclude fields they have
rights for. Exclude fields are set for tables, but users can be restricted from seeing and
modifying them. You can give users explicit rights to these fields.

If a backend user has one or several groups, you can either select to mount DB mounts, file
mounts, both, or neither from the groups. This can be done in the Mount from groups field of
Mounts and Workspaces tab of the individual user.

Chapter 2

39

Setting up FTP access
There are times when you need to allow FTP access to your users. There are plenty of FTP
daemons to make it easy. However, you would have to set up individual users, and configure
their restricted access. It is much better to leverage the backend user configuration already in
TYPO3, and use it to provide basic FTP access to the same files accessible in the backend.

Getting ready
We will use Pure-FTPd daemon to provide FTP access. The steps below assume you are on a
Debian system, and Pure-FTPd is available in package repositories. If its not, you would need
to compile it from source.

How to do it...
1.	 Install Pure-FTPd, along with the MySQL authentication module.
 Shell> apt-get install pure-ftpd-common pure-ftpd-mysql

2.	 Open the MySQL configuration file (by default in /etc/pure-ftpd/db/mysq.
conf). Edit the following values:

�� MYSQLServer: Point it to your MySQL server IP, or localhost

�� MYSQLUser: DB username

�� MYSQLPassword: DB password

�� MYSQLDatabase: Name of the DB that TYPO3 is using

�� MYSQLCrypt: "md5"

�� MYSQLGetPW: SELECT password FROM be_users WHERE
username="\L" AND LEFT(username, 1) != '_' AND
deleted=0

�� MYSQLDefaultUID: Web server user ID

�� MYSQLDefaultGID: Web server group ID

�� MYSQLGetDir:
SELECT CONCAT('/path/to/fileadmin',file.path) AS Dir
FROM be_users as user
JOIN be_groups as ugroup ON user.usergroup=ugroup.uid
JOIN sys_filemounts as file ON user.file_mountpoints=file.
uid OR ugroup.file_mountpoints=file.uid
WHERE user.username="\L" LIMIT 1

3.	 Replace /path/to/fileadmin with an actual path to the fileadmin directory on
your server.

Managing Digital Assets

40

4.	 Create a new file /etc/pure-ftpd/conf/ChrootEveryone with content 'yes'.

5.	 Restart the Pure-FTPd daemon:
 Shell> /etc/init.d/pure-ftpd restart

6.	 Attempt to log in into FTP with one of the backend user credentials.

How it works...
When the user requests the FTP server and provides authentication values, Pure-FTPd will
connect to the MySQL database, and issue queries to authenticate the user and, if successful,
determine the starting directory. In the configuration file, we set some parameters to define
this process. When the user is authenticated, the FTP daemon will establish connection with
the MySQL database that we defined, select the TYPO3 database as we instructed, and issue
the following query:

SELECT password FROM be_users WHERE username="\L" AND LEFT(username,
1) != '_' AND deleted=0

\L in this expression will be replaced with the username entered by the user and the query
will return the password stored in the database for this user. We prevent usernames starting
with underscores because those are usually used for system accounts, and user records that
have been deleted. Password returned by this query will be encrypted, so we tell Pure-FTPd to
encrypt the password used in the input prior to making the comparison.

If the user has been authenticated, we need to determine which directory they need access
to. That is done by the second query:

SELECT CONCAT('/path/to/fileadmin',file.path) AS Dir
FROM be_users as user
JOIN be_groups as ugroup ON user.usergroup=ugroup.uid
JOIN sys_filemounts as file ON user.file_mountpoints=file.uid OR
ugroup.file_mountpoints=file.uid
WHERE user.username="\L" LIMIT 1

This will find one filemount from either this user's account, or the group account, and place
the user into that directory upon login. This query also assumes filemount paths are relative to
the fileadmin directory.

All file operations need to be made by the web server user—so that Apache can operate with
them without running into permission issues. You can also modify specific permissions of new
files and folders created through FTP.

Chapter 2

41

Any files uploaded through FTP will not be indexed by the DAM. To have them
indexed after they're uploaded, you can use the dam_cron extension to
index all the new files on a schedule. See Indexing downloaded files recipe in
Chapter 8 for more information

There's more...
There are a lot more options you can customize, based on your setup and business needs.

Debugging
If something is wrong in the configuration, the end user will not see any information as to
what went wrong—he/she will simply be denied access. This makes it seem like there is an
authentication issue, while it could be anywhere in the configuration. Luckily, Pure-FTPd logs
all actions in the syslog, so you can refer to it for more information that should point you to the
root of the problem. Syslog on Debian system is located in /var/log/syslog.

Different hosts
The FTP server doesn't have to be located on your processing server—in fact, it's better for
security purposes to move it to a different host. The server can still access the same files, if
you mount the fileadmin directory from an NFS share (see Setting up an NFS Share recipe
in Chapter 1).

More options
There are other options that can be set. The manual covers them thoroughly, so refer to
it for more information: http://download.pureftpd.org/pub/pure-ftpd/doc/
README.MySQL.

See also

ff Setting up a filemount
ff Setting up an NFS share
ff Indexing downloaded files

Managing Digital Assets

42

Setting up a category tree
Files can be sorted by categories. This provides another layer of classification for media
assets, allowing them to be organized and grouped without changing their physical location. A
common setup is to arrange the physical storage as we have—by user or by user group in order
to make rights assignment easy, but setup a category tree by subject of the media content, to
group similar files together. Here is an example:

Getting ready
Category support is built in to DAM, but to ease category management you should install the
extension dam_catedit. This extension provides full management capability optimized for
DAM categories. We've covered how to install extensions in Chapter 1 in recipe Installing
needed extensions, so refer back to it for a detailed description.

Once you have installed the extension, the Categories module will appear under Media.

How to do it...
1.	 Go to the Media | Categories module.

2.	 If there are no categories in the system yet, you will see only a top entry Categories.
Click on it to bring up a context window, with the option to create a New subcategory.
If there are already categories in the tree, click on any category to create a
New subcategory.

Chapter 2

43

3.	 Fill in the form, making sure to enter a Title, as that's the only required field.
Check that the Parent category is selected correctly.

4.	 Save and close.

There's more...
Our recipe covered the creation of a category tree, but there are more uses for categories.
Let's briefly touch on a few.

Associations
A file can only be in one folder, but the same file can be assigned to multiple categories. This
creates enormous potential for media organization. Files can be classified according to their
subjects. They can also be selected and sorted based on the categories assigned.

Photo galleries
Many photo gallery plugins use DAM categories as albums. We will configure one such gallery
in Chapter 4. Other extensions use the same principle, and require a well-structured category
tree to have a photo gallery based on images in the DAM.

More options
Other options available in the form include a Description field, Subtitle, Keywords, and access
information. These fields are self-descriptive, and are described in the extension manual.

Managing Digital Assets

44

See also

ff Creating a gallery using ce_gallery

Creating a frontend upload form
In this recipe, we will create a simple extension, which would add a form to the website, and
let users upload files. Files will be indexed by the DAM.

Getting ready
We will create the extension from scratch, and if you want to follow along, make sure to install
Kickstarter to create the framework. Otherwise, you can download the finished extension—but
make sure to review the How it works... section to understand what happens in the code.

How to do it...
1.	 Under the Extension Manager, select Create new Extension. If you don't see the

option, Kickstarter has not been installed.

2.	 Under General Info, click the plus icon (+), and fill in the basic information. Name the
extension User Upload.

3.	 Under Dependencies, enter dam. When the extension is installed, Extension
Manager will check the presence of DAM, and proceed only if DAM is present and
installed. Likewise, Extension Manager will not allow DAM to be uninstalled as long as
our extension is still installed.

4.	 Click the plus icon next to Frontend Plugins. Check the box that generates the
uncached USER_INT object. Leave other options as default.

5.	 Click the plus icon next to the Static TypoScript code, and name it user_upload.
Enter the code from file static/default/setup.txt of extension dam_user_
upload, which can be downloaded from the book site.

6.	 Click View result, and write the generated files to the default directory.
7.	 Edit ext_emconf.php, look for the parameter uploadfolder in the $EM_CONF[$_

EXTKEY] array, and set it to 1.

Chapter 2

45

8.	 Replace the contents of pi1/class.tx_damuserupload_pi1.php with contents
of its namesake from dam_user_upload.t3x, downloaded from the book site
(http://www.packtpub.com/files/code/8488_Code.zip).

9.	 Create the file class.tx_damuserupload_feindexing.php in the root of the
extension with contents of its namesake from dam_user_upload.t3x, downloaded
from the book site.

10.	 Create a new folder in the extension directory and name it res. Resource files
(templates, images, JavaScript, CSS) should go here. Create a new file template.
html with contents of its namesake from dam_user_upload.t3x, downloaded
from the book site.

11.	 Install the newly created extension.
12.	 In the Page module, create a new page, and create a new content element on it of

type General Plugin.

13.	 Select User Upload under the list of plugins. Preview the page, and you should see
a form on the page. If you fill it out correctly, it will upload your file to fileadmin/
uploads/tx_damuserupload.

How it works...
We will go over each function to see what they do, and how they work.

main()
When a plugin is present on the page, the main function of the tx_damuserupload_pi1
class is called when the page is rendered. The $conf parameter passed to the function
contains the TypoScript configuration array, in our case from plugin.tx_damuserupload_
pi1. What happens from that point on is up to the plugin. At the end, the main function
should return the HTML output, which will be inserted into the page at the point where the
plugin was called.

Remember markers and subparts? This is one of the instances where they
come into play. The HTML output of a plugin is most likely going to replace a
marker or a subpart—if called from TypoScript, or if the plugin was included in
the Page module. Regardless, the plugin output is unlikely to be on a page by
itself, and needs to be within a larger template. Markers and subparts, which
are substituted by TYPO3 make it possible.

Managing Digital Assets

46

Let's examine the code line by line as it is executing.

Our plugin will be a USER_INT object, so it will not be cached with a page, but included every
time. Therefore, we set the class variable to indicate this:

$this->pi_USER_INT_obj = 1;

We do this because the form substitutes some values based on the user who is logged in. If
you look in ext_localconf.php, you will see this line:

t3lib_extMgm::addPItoST43($_EXTKEY, 'pi1/class.tx_damuserupload_pi1.
php', '_pi1', 'list_type', 0);

It adds the plugin information to the static template, so that when the plugin is called to
render on a page, TYPO3 knows where to look for the code. Note that the last parameter is set
to 0. The function definition states that if the last parameter--$cached--is set as USER, content
object (cObject) is created, otherwise, a USER_INT object is created. We are creating a USER_
INT object, so that is the reason for its value.

Kickstarter took care of everything for us in this case, but it's important
to understand what it did in case you want to make some changes later.

Next, we check for the presence of POST parameters sent to the script. If they are not present,
it means that we need to show the user a form for uploading files. If they are present, then the
form was submitted and we need to process it.

if (t3lib_div::_POST()) {
 $input = t3lib_div::_POST('tx_damuserupload_pi1');
 $content .= $this->uploadFile($input['title'], $input['author'],
$input['description']);
 }
else {
 $content .= $this->getForm();
}

Chapter 2

47

Always use TYPO3's API function for accessing GET and POST parameters!
These functions are a first line of defense against malicious values sent to
the script. Use t3lib_div::_GET() to access GET variables, t3lib_
div::_POST() to access POST variables, and t3lib_div::_GP() to get
a value from either POST or GET, with preference to POST values.
That being said, you should always perform the necessary checks before
using the values in your application, especially, if they are sent to the
database. If the parameter should be a number, use t3lib_testInt()
to see if it is indeed a number or PHP intval() function to convert into an
integer. If the parameter should be a number within a certain range, use the
t3lib_div::intInRange() function. If the input is a string, make sure
it's quoted by using the $GLOBALS['TYPO3_DB']->fullQuoteStr()
function to escape the value.
See t3lib/class.t3lib_div.php and t3lib/class.t3lib_
db.php for the descriptions of these and other useful functions.

getForm()
The getForm function takes a template file, replaces a few markers, and returns the HTML
output ready to be returned to the browser. For more information about how markers and
subparts work, refer back to recipe Creating a template for a site from Chapter 1.

First, we get the template file content:

$templateFile = $this->cObj->fileResource($this-
 >conf['templateFile']);

Path to the template file is stored in $this->conf['templateFile'], which corresponds
to plugin.tx_damuserupload_pi1.templateFile. This value could be different for
different websites, different pages in the page tree, or even different elements on the page.
Using the TypoScript value allows for maximum flexibility of the plugin.

We then extract the subpart ###FORM### out of the entire template. Variable $template
now contains the HTML within the subpart tags.

$template = $this->cObj->getSubpart($templateFile, '###FORM###');

The function then proceeds to replace the markers within the $template with content.

$markers['###LINKBACK###'] = $this->pi_getPageLink($GLOBALS['TSFE']-
 >id);
$markers['###MAXFILESIZE###'] = t3lib_div::getMaxUploadFileSize() *
 1024;
$markers['###AUTHOR###'] = $GLOBALS['TSFE']->fe_user->user['name'];
$markers['###EXTENSIONS###'] = str_replace('.', '', $this-
 >conf['allowedExtensions']);

Managing Digital Assets

48

We use the pi_getPageLink function (available from the tslib_pibase class) to
get the link to the current page. We get the maximum allowed upload size through the
t3lib_div::getMaxUploadFileSize() function, and convert it into bytes by
multiplying the result by 1024. If a user is logged in to the frontend, then the user's name
is available in the $GLOBALS['TSFE']->fe_user->user['name'] variable. Otherwise,
the variable will be empty. Finally, we display a list of allowed extensions, which again could
vary depending on the use of the plugin, and could be set in TypoScript.

Finally, we substitute the markers with content, and return the resulting HTML:

return $this->cObj->substituteMarkerArrayCached($template, $markers);

uploadFile()
The uploadFile function processes the form results, handling file upload and indexing.

First, we gather information about the location of the file:

// Relative directory for user uploads
$relativeDirectory = $GLOBALS['TYPO3_CONF_VARS']['BE']['fileadminDir']
 . 'uploads/tx_damuserupload/';
// Full directory to user uploads
$uploadDirectory = t3lib_div::getIndpEnv('TYPO3_DOCUMENT_ROOT') .
 t3lib_div::getIndpEnv('TYPO3_SITE_PATH') . $relativeDirectory;

$GLOBALS['TYPO3_CONF_VARS']['BE']['fileadminDir'] contains the path to the
fileadmin folder—usually just fileadmin/, but the value can be different in different
installations. Our folder is under fileadmin/uploads/tx_damuserupload—this is where
the uploaded file should be moved. The folder is created when the extension is installed, and
the value $EM_CONF['dam_user_upload']['uploadfolder'] controls that behaviour.
See Step 7 in How to do it... section for more information.

Next, we perform basic checks to see that everything is ready for file operations:

if(!is_dir($uploadDirectory)) {

checks that the upload directory exists—and wasn't deleted after it was created.

else if(!is_writable($uploadDirectory)) {

checks that the directory is writable by the server. If it's not, we will not be able to move the
uploaded file there.

else if(!in_array(strtolower(strrchr(basename($_FILES['tx_
 damuserupload_pi1_file']['name']), '.')),
 t3lib_div::trimExplode(',', $this->conf['allowedExtensions'],
 TRUE))) {

checks that the uploaded file has an extension we have explicitly allowed to be uploaded.

Chapter 2

49

For better security, check the file MIME type, and make sure it matches
the used extension. We will leave this change as an exercise for the user.

In case any of the conditions are not met, an error message is sent to the browser. If
everything is set, we proceed to choose a name for the uploaded file:

$i = 0;
do {
 $i++;
 $filename = t3lib_div::shortMD5($i . $GLOBALS['TSFE']->fe_user-
>user["uid"] . $_FILES['tx_damuserupload_pi1_file']['name']) . '_' .
 $_FILES['tx_damuserupload_pi1_file']['name'];
}
while(file_exists($relativeDirectory . $filename));

We use a hash to make the filename unique. In case the file already exists, we repeat the
process using a different hash until we find an unused filename.

Finally, we move the file from its temporary location to the upload directory, and index it:

if(move_uploaded_file($_FILES['tx_damuserupload_pi1_file']['tmp_
 name'], $uploadDirectory . $filename)) {
 $uid = $this->indexFile($relativeDirectory . $filename, $title,
 $author, $description);
 $content .= 'Success: The file <i>' . basename($_FILES['tx_
 damuserupload_pi1_file']['name']) . '</i> has been uploaded.';
}

indexFile()
Here, we initialize the indexing class, and run the indexing process. Indexing is needed to
create a DAM record associated with the file.

$pid = tx_dam_db::getPid();
$time = $GLOBALS['EXEC_TIME'];

We gather two parameters from the indexing function—the PID of the page where the record
will be stored (can be easily found using tx_dam_db::getPid()), and the time when the
record was created.

Typical function to use to get the Unix timestamp in PHP is time(). However,
when used repeatedly, it causes a small performance drop. TYPO3 stores the
time the script started executing in a global variable $GLOBALS['EXEC_
TIME'], which is much faster to access than the time().

Managing Digital Assets

50

We then instantiate the indexing class and run the indexing function:

$index = t3lib_div::makeInstance('tx_damuserupload_feindexing');
$index->init();
$index->initEnabledRules();
$index->setRunType('auto');
$meta = $index->indexFile($path, $time, $pid, $title, $author,
 $description);

Use t3lib_div::makeInstance() function instead of PHP new keyword
to instantiate classes. This allows extensions to extend classes using XCLASS
and have the extended class used instead of the original.
TYPO3 4.3 also supports singletons—meaning that regardless of how many
times a class is instantiated, the same instance is returned every time. This
saves a lot of memory in cases where the object doesn't need to have its own
identity. To declare the class as singleton, it needs to implement the t3lib_
Singleton interface:
class tx_myClass implements t3lib_Singleton {

…

}

Unfortunately, DAM's tx_dam_indexing class only works with a backend user logged in.
As we are creating a form that will be used by frontend users, we need to rewrite some of the
default functionality. Class tx_damuserupload_feindexing extends tx_dam_indexing,
and replaces the function indexFile with a simplified version. We will not go into it in detail,
but the only major changes are the function parameters which are stored in the fields list:

$meta['fields']['title'] = !empty($title) ? $title : $meta['fields']
 ['title'];
$meta['fields']['creator'] = !empty($author) ? $author :
 $meta['fields']['creator'];
$meta['fields']['description'] = !empty($description) ? $description :
 $meta['fields']['description'];

And the record is created directly in the database, bypassing the TYPO3 Core Engine (TCE):

function insertUpdateData($meta) {
 $meta = tx_dam_db::cleanupRecordArray('tx_dam', $meta);
 unset($meta['uid']);
 $res = $GLOBALS['TYPO3_DB']->exec_INSERTquery('tx_dam', $meta);
 return $GLOBALS['TYPO3_DB']->sql_insert_id($res);
}

Chapter 2

51

There's more...
One useful extension of this concept is a workflow. An uploaded item can be attached to a
workflow, and backend users will have to take action on it. An example application of this is
having a backend user approve a file before it is shown on the site. Take a look at extensions
sys_workflows and sys_todos, available from the TER.

Another extension you can use is fileupload. It works the same way, but doesn't use DAM
for indexing.

See also

ff Creating frontend users
ff Debugging code

Debugging code
In the Creating a frontend upload form recipe, we went through the execution of the script
line by line. When writing your own code, you would probably want the same benefit, giving
you the ability to go through execution line by line, and seeing exactly what is happening. This
functionality is provided by debuggers.

There are several debuggers available for PHP for any platform. Most debuggers are bundled
with an IDE, so that you can use them together. For example, NuSphere PhpEd comes with
DBG debugger, which we will make use of in this recipe.

Getting ready
This recipe assumes you have NuSphere PhpEd installed on your Windows computer. If you
don't—skip ahead to the There's more... section for general tips on using debuggers, which
you can then apply to a debugger of your choice.

For more information about NuSphere PhpEd, go to
http://www.nusphere.com/.

How to do it...
1.	 Go to C:\Program Files\nusphere\phped\debugger\server (or equivalent

installation path).

2.	 Select the directory based on your web server (for example, if you're using WAMP, go
to Windows\x86), and select the extension for your version of PHP.

Managing Digital Assets

52

3.	 Copy the dll file to the PHP extensions folder (in a default WAMP installation,
C:\wamp\bin\php\php5.x.x\ext).

4.	 Enable the extension by adding the following lines to php.ini:
extension=php_dbg.dll
[debugger]
debugger.enabled=On
debugger.profiler_enabled=On

There's more...
Instructions for other platforms and other debuggers and systems are similar. Refer to the
installation manual for specific steps on how to get the debugger working on your system.

Once installed, you can run the code through the debugger and set breakpoints where
execution should pause, giving you an overview of the state of all variables.

One powerful function that the DBG debugger enables is the DebugBreak();. When placed
anywhere within a program, it causes the execution to pause, and jumps into the IDE for
debugging. This is extremely useful when you want to debug a state of the application (such
as TYPO3) that requires authentication, complex parameters, or session variables. The
following screenshot shows how to place DebugBreak(); in between code:

Chapter 2

53

When the execution stops on a breakpoint, we can get an overview of all the variables
available—both local to our class and function, and global to the script. You can even change
the value of any variable to a different value "on the fly". You can examine the call stack—the
path the execution took to reach the breakpoint. Furthermore, you can go back in the stack to
trace the variables to their initialization or instantiation, or step forward and observe the state
of the application change with every line of code. The following screenshot shows how a
Call Stack looks for our extension dam_user_upload we created in recipe Creating a
frontend upload form:

Debuggers can be installed on hosts other than your localhost, allowing you to use
development environments closely matching your final production environment to debug
your code.

Creating frontend user groups
Most websites have registration that gathers users' information and gives them access to
certain functionality of the site—such as commenting, rating, or purchasing products. But
suppose you would like to have several different groups of users, perhaps with different access
rights? TYPO3 allows that—in fact, user groups are just another record that can be created.

How to do it...
1.	 In the Web | Page module, click on the parent page icon, and select New.

Managing Digital Assets

54

2.	 In the page wizard, select SysFolder as the page type (also known as record
storage page).

3.	 Switch to Web | List module, and in the newly created SysFolder, create a new
record of type Website usergroup.

4.	 Fill in the group title that you would like to use to identify the group. For a description
of the other options, refer to the official documentation.

See also

ff Creating frontend users

Creating frontend users
Frontend users are also just records in TYPO3, just like everything else. However, you don't
want to create the frontend users manually, especially if you have a large site with a lot of
users. Luckily, there are extensions that make this operation easy to perform. We will install
the extension sr_feuser_register and configure it to register users.

Chapter 2

55

How to do it...

1.	 Install the sr_feuser_register extension. Refer to the Chapter 1 recipe Installing
needed extensions for a reminder of how the extension can be installed.

2.	 Insert a static template. Modify the template record for the site, and under the
Includes tab choose to include FE User Registration static TypoScript, either CSS-
styled or old-style.

3.	 Insert the plugin on a page. Refer to the manual for possible codes. The plugin will
render with the default template, which you have the option to change.

There's more...

In the previous recipe, Creating frontend user groups, we created several user groups. But
how would users register into the various groups? This is actually simple—it only requires
several pages with different instances of the plugin. Depending on which page the users use
to register, they will be registered into different user groups. You would probably want to limit
access to the different pages to prevent unauthorized access. You could also write a custom
extension to change the user's user groups based on some parameters, but we will leave it as
an exercise for you, the reader.

See also

ff Creating frontend user groups

3
Operating with

Metadata in Media
Files

As great as modern technology is, computers are not yet able to look inside media files to
describe them. Although there is some advancement, such as facial recognition technology,
we still have to rely on metadata to describe files. In this chapter, we will learn about the
major types of metadata, how it can be inserted in files, and how it can be extracted and used
for content management in TYPO3.

In this chapter, we will cover:

ff Inserting metadata into images

ff Extracting metadata from images

ff Inserting metadata into audio

ff Extracting metadata from audio

ff Extracting metadata from PDF

Operating with Metadata in Media Files

58

Inserting metadata into images
A lot of the images already have metadata. Most digital cameras record their settings at the
time of capture (such as ISO setting, white balance, resolution, as well as camera model,
firmware version, and more); along with image specific information (shutter speed, aperture,
focal distance, use of flash, and so on). If an image is created using a software package,
it usually saves some settings of its own, like software name, version, license key holder
information, and more. So when you open an image, don't be surprised if it already has plenty
of metadata in it.

How to do it...
In this section, you will see how we can insert metadata in Windows as well as Photoshop.

In Windows
To view the metadata stored in an image, and modify it if necessary, right-click on a file and
select Properties. Under the Details tab, you will see all the available fields:

Chapter 3

59

In Photoshop
Open the image, and under File menu, choose File Info You will be presented with the
following screen:

You now have access to all the fields of the metadata.

Extracting metadata from images
Extracting metadata from images, when they are uploaded, is very easy. Extension
cc_metaexif in combination with DAM handles all the work for you.

How to do it...
1.	 Install cc_metaexif. Extension cc_metaexif is a service extension that is

executed when new files are uploaded. It parses the metadata stored in the EXIF
and IPTC sections of the image file, and stores this data in the DAM record associated
with the image file.

Operating with Metadata in Media Files

60

2.	 To test how the extension is working, upload an image with modified metadata.
You should see the metadata used in DAM fields, such as Title, Description, and
Copyright owner.

Chapter 3

61

If you click on the Extra data tab, you will get access to raw data as it was
imported from the file. Most of it probably didn't match any of the DAM
fields, so remained unparsed. You can still make use of it by writing custom
extensions that can manipulate this data and make use of it for your
particular purpose. We will cover this later on in the book.

Operating with Metadata in Media Files

62

How it works...
Services are called upon a specific action. In this case, the service is called when a new file
is indexed. It's only executed if the file is of a specific type, and if the system is capable of
certain actions.

Let's look at how cc_metaexif works in detail. Open ext_tables.php in the extension
folder. You can see that it defines three services. We'll examine the middle one:

t3lib_extMgm::addService($_EXTKEY, 'metaExtract'
 /* sv type */, 'tx_ccmetaexif_sv2' /* sv key */,
 array(

 'title' => 'EXIF extraction',
 'description' => 'Extract EXIF data from images'.
 'by PHP function "exif_read_data".',

 'subtype' => 'image:exif',

 'available' => function_exists('exif_read_data'),
 'priority' => 60,
 'quality' => 50,

 'os' => '',
 'exec' => '',

 'classFile' =>
 t3lib_extMgm::extPath($_EXTKEY).
 'sv2/class.tx_ccmetaexif_sv2.php',
 'className' => 'tx_ccmetaexif_sv2',
)
);

The file ext_tables.php is called upon TYPO3 initialization, so this code is executed
before any request is handled. The addService function of class t3lib_extMgm is
called, and it adds the declared service to the service listings array, so that it can be
called later. This type of service is metaExtract, which is utilized by the DAM, and the
service key is tx_ccmetaexif_sv2. The last parameter is the configuration for the
service, which is of most interest to us.

Service keys must start with tx_ or user_.

Chapter 3

63

The title and description fields are self explanatory. subtype is not specifically defined,
but is analyzed by each specific service type. In this case, it can either be a media type or a
list of file extensions to parse. available field contains a simple check for availability of the
service. Common uses are to check for the existence of a PHP function.

Parameters priority and quality define the precedence for a service. Here is what the
TYPO3 official documentation says about the two parameters:

The priority is used to define a call order for services. The default priority is 50. The
service with the highest priority is called first. The priority of a service is defined
by its developer, but may be reconfigured. It is thus very easy to add a new service
that comes before or after an existing service, or to change the call order of already
registered services.

The quality should be a measure of the worthiness of the job performed by the
service. There may be several services who can perform the same task (e.g.
extracting meta data from a file), but one may be able to do that much better than
the other because it is able to use a third-party application. However if that third-
party application is not available, neither will this service. In this case TYPO3 can
fall back on the lower quality service which will still be better than nothing. Quality
varies between 0-100.

Fields os and exec can be used to restrict the service to a certain operating system, or a
system that can execute a specific external program. os can be set to either UNIX for *nix
systems, WIN for Windows, or left blank for no restriction. exec can contain an absolute path
to a program, or just a program name.

There's more...
In this section we will see how to change the priority of services and how to install exiftags
program required by the tx_ccmetaexif_sv3 service.

Service priority
Suppose you want to change the priority of one of the services. Perhaps, the exiftags program
exists on your system, but it's very resource hungry for one reason or another, and you would
like to lower the priority of the service. Add the following to typo3conf/localconf.php:

$TYPO3_CONF_VARS['T3_SERVICES']['metaExtract']['tx_ccmetaexif_sv3']
 ['priority'] = 20;

If you would like to turn off the service that gets the IPTC data, insert the following:

$TYPO3_CONF_VARS['T3_SERVICES']['metaExtract']['tx_ccmetaexif_sv1']
 ['enable'] = false;

Operating with Metadata in Media Files

64

Exiftags
tx_ccmetaexif_sv3 service depends on the external program exiftags. This program can
be installed to make use of that service.

Shell> apt-get install exiftags

Also, refer to the official TYPO3 documentation for a description of services API and
more options.

See also
ff Processing audio using a service

ff Converting video into FLV upon import

ff Converting audio using services

Inserting metadata into audio
The most common format for audio metadata is ID3. There are two versions in use today, and
you will probably see references to them as ID3v1 and ID3v2. Most software packages are
able to read both.

Audio metadata can sometimes be used to describe the characteristics
of the audio stream used by audio players and decoders. We do not use
this definition. Instead, we refer to the information about the file—similar to
metadata in images.

How to do it...
Most music players give an option to modify the ID3 tags. You can also edit it in Windows,
much in the same way as image metadata:

Chapter 3

65

Extracting metadata from audio
In Chapter 7, we will create a service that will handle audio files and extract ID3 tags. If you've
jumped ahead and created the service already, here is how you can utilize it. As always, there
are several methods for accomplishing anything, and you can jump to the There's more...
section to see another extension that extracts the ID3 metadata.

How to do it...
1.	 Install the cc_meta_audio extension. Refer to Chapter 1 for information on how

to do that. Alternatively, you can skip ahead to Chapter 7 and follow the recipe for
creating this extension.

2.	 Upload an audio file. Verify that ID3 tags exist in the file, and upload it. The service
will be executed automatically upon file indexing.

Operating with Metadata in Media Files

66

To double-check, upload an audio file with ID3 tag, and check that they all
show up in the Extra data tab of the file info:

There's more...
Another extension that allows the extraction of audio and video metadata is ma_meta_
audiovideo. This extension depends on an external program mplayer, which we can
install using APT:

Shell> apt-get install mplayer

See also
ff Processing audio using a service

Extracting metadata from PDF
By now, you probably see a pattern regarding embedding and extracting metadata in various
file types. We will cover one more format—PDF, which is a format most often used for
documents shared on the Web. You are likely to read this book in its PDF version, and even if
you don't, it is available in PDF format. The PDF contains some metadata that is standard for
all files of the type—title, description, author, date of creation, and more. This metadata can
be embedded when the file is created in Adobe Acrobat or other application capable of writing
PDF files.

Chapter 3

67

How to do it...
1.	 Install the cc_metaexec extension.

2.	 Install pdfinfo. This utility can be installed on both Windows and Linux machines.
We will install it on a Debian server using APT:

 Shell > apt-get install xpdf

This command will install pdfinfo, along with other related tools.

In Debain, the pdfinfo tool is hidden inside a different package. This
may be the case for your operating system as well. You may need to search
package descriptions and lists to see where pdfinfo could be hiding.

3.	 You can now check if the program is functioning properly, and TYPO3 can make
use of it. Go to Media | Tools | Services Info submodule. You will see a list of all
external services that DAM can make use of, and whether they are installed and
available or not.

4.	 Once installed, it will take care of extracting metadata from PDF files that are
uploaded or indexed by DAM.

4
Rendering Images

In this chapter, we will cover:

ff Rendering images using content elements

ff Embedding images in RTE

ff Rendering images using TypoScript

ff Rendering links to files using the <media> tags

ff Creating a gallery using ce_gallery

ff Rendering metadata from a DAM object

Rendering Images

70

Rendering images using content elements
Content elements offer a variety of ways for editors to include images. We will examine these
here. Here is a typical selection menu that editor is presented with:

A great way to start is to assemble pages from the Regular text element and the Text with
image elements.

Getting ready
Make sure Content (default) is selected in Include static, and the CSS Styled Content
template is included in the Include static (from extensions) field of the template record of the
current page or any page above it in the hierarchy (page tree). To verify, go to the Template
module, select the appropriate page, and click edit the whole template record.

Chapter 4

71

How to do it...
1.	 Create the Text with image element.
2.	 Under the Text tab, enter the text you want to appear on the page.

You can use the RTE (Rich Text Editor) to apply formatting, or
disable it. We will cover RTE in more detail later in this chapter.

3.	 Under the Media tab, select your image settings. If you want to upload the image,
use the first field. If you want to use an existing image, use the second field.

4.	 Under Position, you are able to select where the image will appear in relation to
the text.

Rendering Images

72

How it works...
When the page is rendered in the frontend, the images will be placed next to the text you
entered, in the position that you specify. The specific look will depend on the template that
you are using.

There's more...
An alternative to the Text with images is an Images only content element. This element
gives you similar options, except limits the options to just a display of images. The rest of
the options are the same.

You can also resize the image, add caption, alt tags for accessibility and search
engine optimization, and change default processing options. See the official TYPO3
documentation for details of how these fields work, (http://typo3.org/documentation/
document-library/).

See also

ff Render video and audio using content elements and rgmediaimages extension

Embedding images in RTE
Rich Text Editor is great for text entry. By default, TYPO3 ships with htmlArea RTE as a system
extension. Other editors are available, and can be installed if needed.

Images can be embedded and manipulated within the RTE. This provides one place for
content editors to use in order to arrange content how they want it to appear at the frontend
of the site. In this recipe, we will see how this can be accomplished. The instructions apply
to all forms that have RTE-enabled fields, but we will use the text content element for a
simple demonstration.

Chapter 4

73

Getting ready
In the Extension Manager, click on htmlArea RTE extension to bring up its options. Make sure
that the Enable images in the RTE [enableImages] setting is enabled. If you have a recent
version of DAM installed (at least 1.1.0), make sure that the Enable the DAM media browser
[enableDAMBrowser] setting is unchecked. This setting is deprecated, and is there for
installations using older versions of DAM.

How to do it...
1.	 Create a new Regular text element content element.

2.	 In the RTE, click on the icon to insert an image as shown in the following screenshot:

3.	 Choose a file, and click on the icon to insert it into the Text area. You should see the
image as it will appear at the frontend of the site.

Rendering Images

74

4.	 Save and preview. The output should appear similar to the following screenshot:

How it works...
When you insert an image through the RTE, the image is copied to uploads folder, and
included from there. The new file will be resampled and sized down, so, it usually occupies
less space and is downloaded faster than the original file. TYPO3 will automatically determine
if the original file has changed, and update the file used in the RTE—but you should still be
aware of this behaviour.

Furthermore, if you have DAM installed, and you have included an image from DAM, you
can see the updated record usage. If you view the record information, you should see the
Content Element where the image is used:

Chapter 4

75

There's more...
There are a few other things you can do in RTE with the images. We will cover:

ff Other modes of inclusion

ff Resizing images

ff Setting maximum dimensions of images

ff Using TinyMCE for embedding images

Other modes of inclusion
When you bring up the Insert Image wizard, it has three or more tabs (depending on the
extensions you have installed). We've included the image using the default New Magic
Image tab. Let's see what the other tabs do.

New Plain Image
Plain image inserts the image directly, without creating a copy. If you resize the image in
RTE, it will be resized in HTML, but the original file will stay intact. This is different from the
resampling behaviour of the Magic Image.

Drag 'n' Drop
Drag 'n' Drop allows you to choose an image in the wizard, and drag it into the RTE. Once you
release the mouse button, the image will be inserted into text where your cursor was placed.

Upload
Upload tab appears if you have the DAM extension installed. The tab provides a convenient
place to upload images to the server, and include them in the RTE right away, without a need
to browse to other modules. This wizard is DAM compatible, so any files that are uploaded will
be indexed by the DAM.

Rendering Images

76

Current Image
If you select an image in the RTE, and then click on the Insert Image button, you will get
the Insert Image wizard with a new tab—Current Image. Here, you can modify some image
properties, or replace the image using the other tabs.

Resizing images
Images can be resized easily within the RTE. To resize an image, click on it, then click and
drag one of the corners, or a side to size the image down or up:

Chapter 4

77

Setting maximum dimensions of images
You can set maximum dimension constraints for all the images added to the RTE. To do so,
add the following to Page TSconfig:

RTE.default.buttons.image.options.magic.maxWidth = 640
RTE.default.buttons.image.options.magic.maxHeight = 480

Using TinyMCE for embedding images
Another popular RTE that TYPO3 supports is TinyMCE. It can be enabled by uninstalling
rtehtmlarea and installing the tinyrte extension. Although the interface looks different,
the possibilities for image embedding are the same. You can click a button in the toolbar,
which brings up a popup window allowing you to select the image you want—as shown in the
following screenshots:

Rendering Images

78

Rendering images using TypoScript
All the content objects available can be created using TypoScript. We will look at the IMAGE
content object. Despite its simplicity, there are various situations, in which it is useful. For
example, you might need to render an image on several pages, but don't want to include it
in the template because it is dynamic. Using TypoScript, you can use conditionals to control
which image is rendered, wrap the image in a link, and more. Here, we will first create a
simple image, and then see what other options can be given.

How to do it...
1.	 Modify the template on any page.

2.	 Add the following code to the setup field, substituting page.12 with the path to
the object or marker where you want the image to appear:
page.12 = IMAGE
page.12 {
 file = fileadmin/image.jpg

}

3.	 Save, clear cache (if necessary), and preview the page.

How it works...
Content objects take certain parameters as an input, and provide HTML as output. In this
case, the input is just a path to a file, but it could be more involved—for examples, see the
There's more... section.

Check the chapter in TSRef about IMAGE object:
http://typo3.org/documentation/document-library/
references/doc_core_tsref/4.3.0/view/1/7/#id2519243.

There's more...
There are more options besides file that can be passed to the object.

Chapter 4

79

Adding alternative text to images
Alternative text (alt tag) can be added to the image using:

page.12.altText = Alternative text

Likewise, a title tag can be added simply by:

page.12.titleText = Title text

Of course, the values don't have to be hardcoded in, but can come from anywhere in the
system by applying stdWrap properties.

Wrapping the image in a link
One useful option is having the image as a link. This can be easily done using stdWrap:

 page.12.stdWrap.typolink {
 parameter.data = 123
 }

where 123 is the page ID that you want to link to.

Executing from an extension
Much like the media object, covered in Chapter 5 the IMAGE object can be created from an
extension, using the following code:

$cObj->cImage($file, $conf);

Here, $file is the path to the file (which will be resolved by TYPO3, and converted or resized
if necessary) and $conf is the configuration array for the image object.

See also

ff Rendering audio and video using media TypoScript object

Rendering links to files using <media> tags
Imagine, for a second, a dark world of web development without content management
systems. You have a simple website with some text and links to files to be downloaded. Now,
imagine that you need to move the files into a different folder. You would have to go through
each page, and update the links to point to the new location of the file.

Rendering Images

80

In DAM, the physical file is separate from the record describing the file. Thanks to this
separation, the pages can link to the DAM record, instead of the physical file. If the file is
moved, only the DAM record will need to be updated (which happens automatically if you
move the file within DAM modules), and all links will automatically update. We will now
explore how the <media> HTML tag can be used to take advantage of this feature.

Getting ready
Make sure both DAM and htmlArea RTE extensions are installed. In the Extension Manager
click on the DAM extension to get an overview of enable configuration. Make sure that the
media tag option is enabled.

How to do it...
1.	 Create a new Regular text element on a page.

2.	 Enter the HTML mode in the RTE:

3.	 Type in <media 1234>Link text</media>, replacing 1234 with the UID of
the DAM record, and link the text with the text you want to appear inside the link.

Chapter 4

81

You can find the UID of the record in the information panel.

4.	 Save and preview.

How it works...
The advantage of the <media> tag is that instead of linking to a file, you're linking to a DAM
record. The record, in turn, points to the physical file—so if you move the files around, all links
will be updated automatically.

There's more...
It may be possible that after enabling all the options in the Extension Manager, the <media>
tags are encoded by RTE, and appear in the frontend unparsed. In that case, you need to
enter the following options in Page TSconfig:

 // Add txdam_media to RTE processing rules
RTE.default.proc.overruleMode = ts_css,txdam_media

 // Use same RTE processing rules in FE
RTE.default.FE.proc.overruleMode = ts_css,txdam_media

 // RTE processing rules for bodytext column of tt_content table
RTE.config.tt_content.bodytext.proc.overruleMode = ts_css,txdam_media
RTE.config.tt_content.bodytext.types.text.proc.overruleMode = ts_
css,txdam_media
RTE.config.tt_content.bodytext.types.textpic.proc.overruleMode = ts_
css,txdam_media

Rendering Images

82

Accessing Page TSconfig
To access Page TSconfig, right-click on a page in the page tree, and choose
Edit page properties:

Alternatively, you can browse to the page in the Page module, and click
the Edit page properties button either in the module body, or in the
docheader—the bar across the top of the module housing the
control buttons.

From there, the Page TSConfig is available under the Options tab:

Chapter 4

83

Creating a gallery using ce_gallery
There are multiple galleries available for TYPO3. Each has its own advantages, and an entire
book can be dedicated to comparing the various extensions. We will install and configure only
one as an example. ce_gallery has an advantage that it is very easy to set up and customize,
and relies completely on DAM for content and organization.

Getting ready
Make sure you have the extensions DAM and dam_catedit installed. Create a root category,
and a few categories under it. Assign a few JPG images to each category. Refer to the Chapter
2 recipe Setting up a category tree for more information about categories.

How to do it...
1.	 Install ce_gallery. Accept database and filesystem changes.

2.	 In a template record, include the static template Photogallery (CSS) (ce_gallery).

3.	 Add a Plugin content element of type Photogallery to a page

4.	 In the General tab, uncheck the Slimbox (pmkslimbox needed) checkbox.

5.	 In the Categories tab, select the root category and check the box that says Recursive:

Rendering Images

84

6.	 Save and preview. The output should appear similar to the following screenshot:

How it works...
ce_gallery treats DAM categories as albums, which in turn, contain pictures. If you want to add
more photos to an album, just assign them to a category, and clear cache on the page where
you added the Photogallery plugin.

Chapter 4

85

There's more...
In this section, we will see how to use Slimbox for displaying images and utilize batch process
while creating a gallery.

Using Slimbox for displaying images
To make use of the Slimbox, you need to install the extension pmkslimbox. Once it is
installed, include the static template it provides in the page template. When this is done, edit
the Photogallery content element, and check the Slimbox (pmkslimbox needed) checkbox
that we had unchecked earlier. Now, instead of linking to another page to display the image,
the image will be loaded into the same page using AJAX. For example, this is how your image
will look when someone clicks on the thumbnail:

Utilizing batch processing
If you have several photos that you want to assign to a category, you can use DAM's batch
operations. Here is what you can do:

Rendering Images

86

Build your selection: You can use the various controls provided by DAM to choose files from
multiple folders, of different types, or you can even search the metadata.

Once you have the selection built, select Process from the submodule selector. Under
the Categories field, select the category you want to add the objects to. If the objects are
assigned to other categories, and you don't want to lose that connection, check the box next
to the Categories field, and the new category will be added to whatever categories the objects
are already assigned to. Click Process when you're done.

Chapter 4

87

See also

ff Setting up a category tree

Rendering metadata from a DAM object
We'll use some very basic TypoScript and see how metadata stored in DAM records can be
rendered on a page, along with the media objects, or even in them. This is commonly used for
inserting accessibility tags (alt and title) into images.

How to do it...
1.	 Create a Template on the page.

2.	 In the setup field, add the following, replacing page.17 with a path to the object
you want to place the content in, and replacing 1234 with the UID for a DAM record,
whose caption you would like to display:
page.17 = TEXT
page.17.data = DB:tx_dam:1234:caption

3.	 Save and preview.

How it works...
Data property is available wherever stdWrap is applied. So, you can display any of the
metadata available in the DAM record, almost anywhere. Furthermore, because stdWrap
properties are recursive, you can apply further processing to the values.

For more information about stdWrap, see the section of TSRef:
http://typo3.org/documentation/document-library/
references/doc_core_tsref/4.3.0/view/1/5/#id2360021.

In this case, we are using the data property to fetch a record from the database. The syntax
for doing so is DB:table:UID:field. So, in the example above, we are taking the caption
field of record with the UID 1234 from tx_dam table.

Refer to ext_tables.sql in the extension directory for a complete
database schema.

Rendering Images

88

TypoScript is extremely powerful, so you should read into the details to see what else you can
do with it.

There's more...
We can use this method to add a caption to an image, added through TypoScript.

page.16 = IMAGE
page.16.altText.data = DB:tx_dam:1585:caption

See also

ff Rendering images using TypoScript

5
Rendering Video and

Audio

In this chapter, we will cover:

ff Rendering video using media content object

ff Rendering audio using media content object

ff Rendering audio and video using media TypoScript object

ff Rendering audio and video using content elements and rgmediaimages extension

ff Extending the media content object for more rendering options

ff Using custom media player to play video

ff Connecting to Flash Media Server to play video

Rendering video using media
content object

One of the new features in TYPO3 4.3 is a new multimedia content object. In this recipe, we
will make use of this object to render a video. This method can be used to embed videos in
the frontend of the site, allowing visitors to play them from within the page without requiring
them to download the file and open it in an external application.

Rendering Video and Audio

90

Getting ready
We will render a video in MPG format. Other formats can be rendered just as easily as well, so
you can give it a try using the same procedure. Be sure to upload a video into the fileadmin
folder. See the There's more... section to see how to render a video from a URL.

Make sure your template record includes the CSS Styled Content static template, otherwise,
you will get an error:

ERROR: Content Element type "media" has no rendering definition!

How to do it...
1.	 Create a New content element, and select Media type from the Special elements

section as shown in the following screenshot:

2.	 Under relative Path of Media File or URL, either enter a path to the file, or select the

link icon (). The following screenshot is seen; browse and select the required file:

Chapter 5

91

3.	 Leave the rest of the options as default. Save and preview the page. The output
should appear similar to the following screenshot:

There's more...
Quite a few options of the media element can be customized for different outputs.

Rendering Video and Audio

92

ff Use Player (only for Shockwave Flash): Some videos on the Internet already come
with their own embeddable player. If you have entered such a video's URL, you can
uncheck the box Use Player (only for Shockwave Flash), otherwise, leave it checked.

ff Media Type: Select the type of the media file you want to display.

ff Media Width/Media Height: Type in the dimensions of the media object that should
render. Dimensions are not constrained by the original file scale.

ff Render Type: Select how the file should be rendered. If you're rendering a file, leave
this at Auto, and TYPO3 will automatically choose the right method based on the
file extension. If you're rendering a URL, be sure to set a specific rendering type. Use
Shockwave Flash Browser Plugin for audio files, and other formats that can be
played by an internal SWF player. Use QuickTime Browser Plugin for MOV files. Use
HTML Embed Element for external files, such as YouTube videos, which come with
their own player.

The Additional Parameters field gives the ability to customize the player by adding more
parameters. They will be included in the HTML code for the player. Specific parameters
depend on the player you're using. There are two kinds of parameters you can add: media and
custom. Media parameters that can be selected are described below. Each media parameter
can be set to On, Off, or a Value Entry, with the value going into the input field below.

Parameter Value type Description
Autoplay On/Off Start playing the movie/audio when the page is loaded,

without waiting for user input.
Loop On/Off Restart movie/audio after reaching the end.
Quality Value Entry Any value between 0 and 100, 100 corresponding to the

highest quality of playback.
Preview Video On/Off Display preview of the video file in the media object.
Allow ScriptAccess On/Off Allow JavaScript present on the page to access the media

container and operate it.
Allow FullScreen On/Off Allow the movie to be resized to take up the entire screen.

In addition, custom parameters can be entered into a text field. These can be used to control
custom players, as they accept anything you type in without verification.

Chapter 5

93

Embedding external videos
Media object can be used to embed external videos, such as videos hosted on YouTube.
Simply enter the video URL in the relative Path of Media File or URL field, and uncheck the
Use Player (only for Shockwave Flash) checkbox.

See also

ff Rendering audio using media content object
ff Rendering audio and video using media TypoScript object
ff Extending the media content object for more rendering options
ff Using custom media player to play video

Rendering audio using media content object
We will now add an audio file to a page, using the same media object. This gives you the
ability to embed audio with full controls for playback right into your web page.

Rendering Video and Audio

94

How to do it...
1.	 Create a New content element of type Media.
2.	 In the relative Path of Media File or URL field, use the wizard to browse for your

audio file.
3.	 Under Media Type, select Audio.
4.	 Save and preview. The output should appear similar to the following screenshot:

See also

ff Rendering video using media content object
ff Rendering audio and video using media TypoScript object
ff Extending the media content object for more rendering options.
ff Using custom media player to play video

Rendering audio and video using media
TypoScript object

Let's now use TypoScript to perform the actions outlined in the recipe Rendering video using
media content object. This is useful in cases when you want to include an object on several
pages, and still be administrated in one place, or if the position in the template is strange, and
content editors are unable to get to it using the Page module.

Getting ready
We will assume that you have the template for the site set up, and you have a marker in the
template that you want to replace.

Chapter 5

95

How to do it...
1.	 Edit the Template record.

2.	 Add the following lines to the setup field (modifying the path to the marker and path
to the file):
page.10.marks.VIDEO < tt_content.media.20
page.10.marks.VIDEO.file = fileadmin/movie.mpg
page.10.marks.VIDEO.renderType = qt

3.	 Clear all cache and preview the page. The output should appear similar to the
following screenshot:

How it works...
tt_content.media.20 is a TypoScript array that contains the definition of a MEDIA type
object. The first line copies the configuration into the VIDEO marker. The subsequent lines
modify the default configuration, and customize it—the same way a form does.

Rendering Video and Audio

96

There's more...
All other options of the media object can be controlled through TypoScript. Look in the
TypoScript Object Browser for all options and settings:

Rendering audio and video using content
elements and rgmediaimages extension

Various extensions modify and build upon default TYPO3 behavior (as we have seen already).
In this recipe, we will make use of the rgmediaimages extension to add videos to the Text with
image content element. This is a classic example of extending default TYPO3 behavior and
adding more functionality to the system.

Getting ready
We assume you have already installed the rgmediaimages extension. If not, use the
information in the Chapter 1 recipe Installing needed extensions to install it now.

Chapter 5

97

How to do it...
1.	 In the Template module, modify the template for the page (click edit the whole

template record).

2.	 In the Includes tab, under the Include static (from extensions) field, select the
Media files & images (rgmediaimages) template, as shown in the following
screenshot, and save.

3.	 In the Page module, create a new Text with image content element on the page.

4.	 Under the Text tab, enter any text you would like.

5.	 Under the Media tab, select the files you would like to include. The selection is no
longer limited to just images, so you can select movies and audio files.

6.	 Enter maximum width and height values to restrict the content. These values are
required in some circumstances—see the extension manual for more information.

Rendering Video and Audio

98

7.	 Save and preview. The output should appear similar to the following screenshot:

There's more...
rgmediaimages has a few other configuration options that you can set.

Chapter 5

99

Customizing FLV and MP3 output
An individual item's display can be customized within the object. Scroll down to Alternative
Text field, and type in the options that will be sent to the JW FLV player. Each line corresponds
to each file, and settings are separated by commas as shown in the following screenshot:

Alternatively, you can click on the icon to the right to launch the wizard, which will give you a
form for customization as shown in the following screenshot.

Rendering Video and Audio

100

You can also modify the parameters that are used throughout the site, or within a certain
section of the page tree. These are constants, and can be modified in the Constant Editor
under the Template module as shown in the following screenshot:

For more information, as well as a complete reference to the plugin settings, refer to
the extension manual.

Embedding YouTube videos
rgmediaimages can be used to embed external videos, such as videos from YouTube. Here are
the steps to do it:

1.	 Upload dummy.rgg file from extension's resource folder (rgmediaimages/res/
dummy.rgg) into any folder under fileadmin.

If you can't find the file, create an empty text document,
and rename it dummy.rgg.

Chapter 5

101

2.	 Select the file in the Images field of the Text with images content element.

3.	 Under Alternative Text field, enter file: followed by the URL of the clip. For example:
file:http://www.youtube.com/watch?v=a1Y73sPHKxw.

Alternatively, you can enter the information through the wizard,
launched by clicking on the icon to the right of the Alternative Text field.

4.	 Save and preview.

See also

ff Installing needed extensions

Extending the media content object for more
rendering options

While the media object is really powerful, occasionally, you may need a specialized method for
rendering files. Luckily, the object is extensible. In this recipe, we will create a new plugin for
rendering audio files.

Getting ready
As we will be creating a new extension, make sure Kickstarter is installed.

We will be using SoundManager 2 JavaScript code as an example. You can integrate any
other audio or video plugin into the media object. To learn more about SoundManager 2,
visit http://www.schillmania.com/projects/soundmanager2/.

Rendering Video and Audio

102

How to do it...
1.	 Go to the Extension Manager module, then Create new Extension.

2.	 Enter your extension key, and be sure to register the key, so no one else uses it. For
this extension, you can enter soundmanager2.

If you're creating an extension that will only be used in your installation,
and will not be released to TYPO3 Extension Repository (TER), use a
user_ prefix in the extension key.

3.	 Click on the plus icon (+) next to the General info to edit the basic required
information about the extension.

4.	 Click View result, and write the output to the default location.

5.	 Download the latest release of SoundManager2 from the site:
http://www.schillmania.com/projects/soundmanager2/.

At the time this book was written, the latest version was 2.95a.20090717.
This is likely to change. Be sure to review how SoundManager works, and
verify that the plugin code issues correct calls to its API.

6.	 Edit ext_emconf.php, add the following element in the depends array:
'typo3' => '4.3.0-0.0.0',

7.	 Create ext_localconf.php file and add the following:
<?php

if (!defined ('TYPO3_MODE')) {

 die ('Access denied.');

}

// Register Hooks

$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_
mediaitems.php']['customMediaRenderTypes'][$_EXTKEY] = 'EXT:' .
$_EXTKEY . '/class.tx_soundmanager2.php:tx_soundmanager2';

$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_
mediaitems.php']['customMediaRender'][$_EXTKEY] = 'EXT:' . $_
EXTKEY . '/class.tx_soundmanager2.php:tx_soundmanager2';

?>

8.	 Create class.tx_soundmanager2.php with the content from the code pack
available with the book.

Chapter 5

103

How it works...
We will now go through all the files, and see how they make our extension run.

ext_localconf.php
This file is loaded when TYPO3 is initializing, and it's a perfect spot to place all our hook
definitions.

// Register Hooks
$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_mediaitems.
php']['customMediaRenderTypes'][$_EXTKEY] = 'EXT:' . $_EXTKEY . '/
class.tx_soundmanager2.php:tx_soundmanager2';
$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_mediaitems.
php']['customMediaRender'][$_EXTKEY] = 'EXT:' . $_EXTKEY . '/class.
tx_soundmanager2.php:tx_soundmanager2';

$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_mediaitems.
php']['customMediaRenderTypes'] holds an array of class references. Any class
referenced would implement the function customMediaRenderTypes, which is called by
the media content element flexform when the record is being created or edited. Same is
true for the $TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_
mediaitems.php']['customMediaRender'] array, which holds the list of classes
implementing the customMediaRender function. We implement these functions in the same
class tx_soundmanager2, stored in class.tx_soundmanager2.php.

class. tx_soundmanager2.php
Let's look at the detailed implementation of the two functions we just mentioned.

customMediaRenderTypes()

This function is passed two parameters—$params and $conf.
$conf contains the full TypoScript configuration of the media object—we will not need it at
this time. $params contains an array of render types—including the default ones.
We add an item to the list, with the name 'SoundManager 2' and ID 'soundmanager2'.

 $params['items'][] = array(
 0 => 'SoundManager 2',
 1 => 'soundmanager2'
);

Because both arrays are passed by reference, we don't need to return
anything from the function. But be careful, if you inadvertently change
any of the values, the media object might fail to work as desired.

Rendering Video and Audio

104

customMediaRender()

This function is called when the media content object is rendered on the frontend. It will
be called for all media content objects displayed on an installation where the extension is
installed, so the first thing that the function does is verifies that the render type selected
matches the render type it's designed to handle:

if ($renderType == 'soundmanager2') {
…
}

Alternatively, the customMediaRender function can modify the default
behavior of other render types; however, this is not recommended, as it can
cause interference and unpredictable results.

If render type is indeed selected as desired, we proceed to create the HTML code that will be
displayed on the page.

First, we create some parameters:

// Unique id for a sound.
$soundID = t3lib_div::shortMD5($conf['file'], 6);
// Check if volume is defined - if not - define it.
$conf['soundmanager2']['volume'] =
 $conf['soundmanager2']['volume'] ?
 $conf['soundmanager2']['volume'] : '50';

The second line indicates that the default starting volume could be set in TypoScript using:

tt_content.media.20.soundmanager2.volume = 80;

Next, we include the soundmanager 2 JavaScript library. As this library needs to be included
in the <head> section of HTML, we use the TSFE additionalHeaderData to place it
there—if it wasn't placed there by another media object already:

$GLOBALS['TSFE']->additionalHeaderData['tx_soundmanager2'] =
'<script type="text/javascript" src="'
 . $scriptPath . '"></script>' . "\n";

The script path depends on another setting:

tt_content.media.20.soundmanager2.minify = 1;

Chapter 5

105

If set, a compressed version of the library is included—making it download and run faster
in the browser, but removing some of the debugging options we would find useful during
development. We decide on which script to include with the following:

if ($conf['soundmanager.']['minify']) {
 $scriptPath = $GLOBALS['TSFE']->tmpl->
 getFileName('EXT:soundmanager2/res/script/
 soundmanager2-nodebug-jsmin.js');
} else {
 $scriptPath = $GLOBALS['TSFE']->tmpl->
 getFileName('EXT:soundmanager2/res/script/soundmanager2.js');
}

Finally, we create the JavaScript code to create a Sound object, and play it upon page load.
We then wrap it in standard JavaScript tags, and return it to the media content object, which
in turn includes it into the page.

$contentJS .= "soundManager.onload = function() {
 // SM2 is ready to go!
 var sound_" . $soundID . " = soundManager.createSound({
 id: 's" . $soundID . "',
 url: '" . $conf['file'] . "',
 volume: " . $conf['soundmanager2']['volume'] . "
 });
}\n";

$GLOBALS['TSFE']->additionalHeaderData['tx_soundmanager2'] .=
 t3lib_div::wrapJS($contentJS);
$content = 'sound_" . $soundID . ".play();';

return t3lib_div::wrapJS($content);

See SoundManager 2 documentation for more information on how
the JavaScript code works, as well as more options that can be used
to manipulate it.

See also

ff Rendering audio using media content object

Rendering Video and Audio

106

Using custom media player to play video
Much like we did with audio, we will now create an extension to embed FLV player and render
a custom video. You can use the same approach to embed any other custom video player to
play your movies.

For more information about FLV player, visit http://flvplayer.com/.

Getting ready

Make sure you have read and understood Extending the media content object for more
rendering options recipe covered earlier. This recipe follows the same steps, using slightly
different code. You should have created an extension skeleton in Kickstarter.

How to do it...
1.	 Create ext_localconf.php if it doesn't exist, and add the following content:

<?php

if (!defined ('TYPO3_MODE')) {

 die ('Access denied.');

}

// Register Hooks

$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_
mediaitems.php']['customMediaRenderTypes'][$_EXTKEY] = 'EXT:' .
$_EXTKEY . '/class.tx_webflvplayer.php:tx_webflvplayer';

$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_
mediaitems.php']['customMediaRender'][$_EXTKEY] = 'EXT:' . $_
EXTKEY . '/class.tx_webflvplayer.php:tx_webflvplayer';

$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/hooks/class.tx_cms_
mediaitems.php']['customMediaParams'][$_EXTKEY] = 'EXT:' . $_
EXTKEY . '/class.tx_webflvplayer.php:tx_webflvplayer';

?>

2.	 Copy the file class.tx_webflvplayer.php from the code pack downloaded
from the book's site.

3.	 Create a new Media element. Enter a URL to an FLV file you want to display.

Chapter 5

107

FLV player requires a URL to be entered.

4.	 Check the Use Player checkbox.

5.	 Under Render Type, you should see FLV Player. Select it.

6.	 If you add a new media parameter, you should see a new option Background color
(in hexadecimal), which you can select, and enter the value in the Value input field:

7.	 Save and preview. You should see a player like this on the page:

Rendering Video and Audio

108

How it works...
Let's take a look at the extension, and dissect what each function does.

ext_localconf.php
This file contains our hook registers. References to the tx_webflvplayer class are added
to all three hooks that the media object provides.

class.tx_webflvplayer.php
This is where the magic happens, so let's look at it in detail, function by function.

customMediaRenderTypes()

This function adds FLV player to the Render Type select box.

 $params['items'][] = array(
 0 => 'FLV Player',
 1 => 'web_flvplayer'
);

customMediaParams()

This function adds the Background color option into the Media Parameter select box:

 $params['items'][] = array(
 0 => 'Background color (in hexadecimal)',
 1 => 'bgColor'
);

Any options added in this function will be available in the Media Parameter
select box regardless of the selected render type.

customMediaRender()

This is the main function of our class. It will be executed for every media content element, so
we first need to verify that the Render Type has been selected as FLV Player:

if ($renderType == 'web_flvplayer') {

web_flvplayer is the value we've given to the choice in the
customMediaRenderTypes() function. Next, we set some variables—options controlling
the player's appearance and functionality. We set some defaults in case the parameters were
not set in the content element configuration.

Chapter 5

109

The next order of business is to go through the media parameters and custom parameters,
and change the default values based on whether the options have been set:

if (is_array($conf['parameter.']['mmMediaOptions']
 ['mmMediaOptionsContainer'])) {
 foreach ($conf['parameter.']['mmMediaOptions']
 ['mmMediaOptionsContainer'] as $mediaOption) {
 switch ($mediaOption['mmParamName']) {
 case 'allowFullScreen':
 $allowFullScreen = ($mediaOption['mmParamSet'] == 1)
 ? 'true' : 'false';
 break;
 case 'allowScriptAccess':
 $allowScriptAccess =
 ($mediaOption['mmParamSet'] == 1) ?
 $mediaOption['mmParamValue'] : 'false';
 break;
 case 'quality':
 $quality = $mediaOption['mmParamValue'];
 break;
 case 'bgColor':
 $bgColor = $mediaOption['mmParamValue'];
 }
 }
}

Media parameters are stored in the $conf['parameter.']['mmMediaOptions']
['mmMediaOptionsContainer'] array. Each element is in turn an array that has the
parameter name (mmParamName), value (mmParamValue), and the value of the on/off switch
(mmParamSet). What we do with these values is completely upto the extensions—so, we use a
switch statement to process every element and set our variables, to which we assigned their
default values previously.

Next, we parse out the custom parameters. As these are entered into a text field, presumably
they're just HTML tags, so we compile them into a string:

if (is_array($conf['parameter.']['mmMediaOptions']
 ['mmMediaCustomParameterContainer'])) {
 foreach ($conf['parameter.']['mmMediaOptions']
 ['mmMediaCustomParameterContainer'] as $mediaOption) {
 $customParameters .= $mediaOption['mmParamCustomEntry'] . "\n";
 }
}

Finally, we create the player HTML code, using object and param HTML tags, and
substituting our variables where appropriate. We then return the HTML content.

Rendering Video and Audio

110

There's more...
There are a few other things we can do to improve the extension.

Utilizing templates
We can take the HTML code completely out of this extension, placing it into a template file,
which could be changed by the user. Let's do that:

1.	 Create a new folder res, in it an HTML file flv_player.html, with the following
content:
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/
flash/swflash.cab#version=9,0,0,0" width="640" height="375"
id="FlvPlayer" align="middle">
<param name="allowScriptAccess" value="###ALLOW_SCRIPT_ACCESS###"
/>
<param name="allowFullScreen" value="###ALLOW_FULL_SCREEN###" />
<param name="movie" value="http://flvplayer.com/free-flv-player/
FlvPlayer.swf" />
<param name="quality" value="###QUALITY###" />
<param name="bgcolor" value="###BGCOLOR###" />
###CUSTOM_PARAMETERS###<param name="FlashVars" value="flvpFolderLo
cation=http://flvplayer.com/free-flv-player/flvplayer/&flvpVideoSo
urce=###FILE###&flvpWidth=###WIDTH###&flvpHeight=###HEIGHT###&flvp
InitVolume=50&flvpTurnOnCorners=true&flvpBgColor=###BGCOLOR###" />
<embed src="http://flvplayer.com/free-flv-player/FlvPlayer.
swf" flashvars="flvpFolderLocation=http://flvplayer.com/free-
flv-player/flvplayer/&flvpVideoSource=###FILE###&flvpWidth=###
WIDTH###&flvpHeight=###HEIGHT###&flvpInitVolume=50&flvpTurnOnC
orners=true&flvpBgColor=###BGCOLOR###" quality="###QUALITY###"
bgcolor="###BGCOLOR###" width="###WIDTH###" height="###HEIGHT###"
name="FlvPlayer" align="middle" allowScriptAccess="###ALLOW_
SCRIPT_ACCESS###" allowFullScreen="###ALLOW_FULL_SCREEN###"
type="application/x-shockwave-flash" pluginspage="http://www.
adobe.com/go/getflashplayer" />
###ALTERNATIVE_CONTENT###
</object>

2.	 Change the customMediaRender() function in class.tx_webflvplayer.php
to the following:
 function customMediaRender($renderType, $conf) {
 if ($renderType == 'web_flvplayer') {
 // Initialize cObject
 $cObj = t3lib_div::makeInstance('tslib_cObj');

 // Set some parameters

Chapter 5

111

 $markers['###FILE###'] = $conf['file'];
 $markers['###WIDTH###'] = isset($conf['width']) ?
 $conf['width'] : 640;
 $markers['###HEIGHT###'] = isset($conf['height']) ?
 $conf['height'] : 480;

 $markers['###ALLOW_FULL_SCREEN###'] = 'true';
 $markers['###ALLOW_SCRIPT_ACCESS###'] = 'sameDomain';
 $markers['###QUALITY###'] = 'high';
 $markers['###BGCOLOR###'] = 'FFFFFF';
 $markers['###CUSTOM_PARAMETERS###'] = '';
 $markers['###ALTERNATIVE_CONTENT###'] = $cObj->stdWrap
 ($conf['alternativeContent'],
 $conf['alternativeContent.']);

 // Go through the parameters
 if (is_array($conf['parameter.']['mmMediaOptions']
 ['mmMediaOptionsContainer'])) {
 foreach ($conf['parameter.']['mmMediaOptions']
 ['mmMediaOptionsContainer'] as $mediaOption) {
 switch ($mediaOption['mmParamName']) {
 case 'allowFullScreen':

 $markers['###ALLOW_FULL_SCREEN###'] =
 ($mediaOption['mmParamSet'] == 1) ? 'true' : 'false';
 break;
 case 'allowScriptAccess':

 $markers['###ALLOW_SCRIPT_ACCESS###'] =
 ($mediaOption['mmParamSet'] == 1) ?
 $mediaOption['mmParamValue'] : 'false';
 break;
 case 'quality':

 $markers['###QUALITY###'] = $mediaOption['mmParamValue'];
 break;
 case 'bgColor':

 $markers['###BGCOLOR###'] = $mediaOption['mmParamValue'];
 }
 }
 }
 if (is_array($conf['parameter.']['mmMediaOptions']
['mmMediaCustomParameterContainer'])) {

Rendering Video and Audio

112

 foreach ($conf['parameter.']['mmMediaOptions']
 ['mmMediaCustomParameterContainer'] as $mediaOption)
{
 $markers['###CUSTOM_PARAMETERS###'] .= $mediaOption
 ['mmParamCustomEntry'] . "\n";
 }
 }

 $templateFile = isset($conf['web_flvplayer']) ?
 $conf['web_flvplayer'] : t3lib_extMgm::extPath
 ('web_flvplayer') . 'res/flv_player.html';
 $template = $cObj->fileResource($templateFile);

 // Gather the HTML content for the player
 $content = $cObj->substituteMarkerArray
 ($template, $markers);
 return $content;
 }
 }

Download the extension web_flvplayer2 from the code pack, and compare it to your result.

What did we change? Now, all the parameters are compiled into an array, and the keys of the
array are markers. The template file now has markers that can be replaced by the values from
the array. This way we effectively separated all presentation (HTML code) from the business
logic (PHP code).

Furthermore, we have made our extension more configurable. Now, to change the template,
either for the whole site, or for part of the page tree, a user would need to add the following
line to the setup field of the template record:

tt_content.media.20.web_flvplayer = /path/to/template.html

The template file can be stored in fileadmin, and can be modified by backend users without
admin access.

Commercial players
We've used the free player for demonstration. Commercial player can be used as well, with
some slight modifications. We'll leave it to the reader to figure out the changes that need to
be made.

See also

ff Rendering video using media content object
ff Extending the media content object for more rendering options

Chapter 5

113

Connecting to Flash Media Server to
play video

Flash Media Server (FMS) is an amazing piece of software from Adobe that provides streaming
and interactivity to the Web. Audio and video could be streamed in different resolutions, with
limited buffering. Furthermore, Flash Media Server allows to stream live video!

We will not dig into the internal configuration of Flash Media Server, as that would require a
book on its own. All the control elements for the client is packaged into a SWF file that can be
deployed to the Web. In this recipe, we will look at how the code can be embedded in TYPO3
to communicate with a Flash Media Server.

How to do it...
1.	 Create an HTML element on the page.

2.	 Add the following code (you can copy it from the introductory page of the FMS
installation). Replace the URLs to point to your Flash Media Server.
<object width='640' height='377' id='videoPlayer'
name='videoPlayer' type='application/x-shockwave-flash'
classid='clsid:d27cdb6e-ae6d-11cf-96b8-444553540000' ><param
name='movie' value='http://localhost/swfs/videoPlayer.swf' />
<param name='quality' value='high' /> <param name='bgcolor'
value='#000000' /> <param name='allowfullscreen' value='true' />
<param name='flashvars' value= '&videoWidth=0&videoHeight=0&dsC
ontrol=manual&dsSensitivity=100&serverURL=http://localhost/vod/
sample2_1000kbps.f4v&DS_Status=true&streamType=vod&autoStart=true
&videoWidth=0&videoHeight=0&dsControl=manual&dsSensitivity=100&se
rverURL=dynamicStream.smil&DS_Status=true&streamType=vod&autoStart
=true&videoWidth=0&videoHeight=0&dsControl=manual&dsSensitivity=10
0&serverURL=http://localhost/vod/sample2_1000kbps.f4v&DS_Status=tr
ue&streamType=vod&autoStart=true&videoWidth=0&videoHeight=0&dsCont
rol=manual&dsSensitivity=100&serverURL=dynamicStream.smil&DS_Statu
s=true&streamType=vod&autoStart=true&videoWidth=0&videoHeight=0&d
sControl=manual&dsSensitivity=100&serverURL=http://localhost/vod/
sample2_1000kbps.f4v&DS_Status=true&streamType=vod&autoStart=true
'/><embed src='http://localhost/swfs/videoPlayer.swf' width='640'
height='377' id='videoPlayer' quality='high' bgcolor='#000000'
name='videoPlayer' allowfullscreen='true' pluginspage='http://www.
adobe.com/go/getflashplayer' flashvars='&videoWidth=0&videoHeigh
t=0&dsControl=manual&dsSensitivity=100&serverURL=http://localhost/
vod/sample2_1000kbps.f4v&DS_Status=true&streamType=vod&autoStart=t
rue&videoWidth=0&videoHeight=0&dsControl=manual&dsSensitivity=100&
serverURL=dynamicStream.smil&DS_Status=true&streamType=vod&autoSta
rt=true&videoWidth=0&videoHeight=0&dsControl=manual&dsSensitivity=
100&serverURL=http://localhost/vod/sample2_1000kbps.f4v&DS_Status=
true&streamType=vod&autoStart=true&videoWidth=0&videoHeight=0&dsCo

Rendering Video and Audio

114

ntrol=manual&dsSensitivity=100&serverURL=dynamicStream.smil&DS_Sta
tus=true&streamType=vod&autoStart=true&videoWidth=0&videoHeight=0&
dsControl=manual&dsSensitivity=100&serverURL=http://localhost/vod/
sample2_1000kbps.f4v&DS_Status=true&streamType=vod&autoStart=true'
type='application/x-shockwave-flash'> </embed></object>

You can copy this code from the introductory page of the FMS installation.

3.	 Save and preview, the output can be seen in the the following screenshot:

How it works...
The HTML element simply includes the HTML code on the page. In this case, we're including
an SWF movie from the FMS server. All the work of communicating with the FMS is done by
the Flash SFW we have included.

There's more...
You can include the same code in other places besides the HTML content element.

Embedding Flash in RTE
Flash movies, including those driven by Flash Media Server can be embedded in Rich Text
Editor as well. To be able to do that, you need to first add the object, embed, and param
HTML tags to the list of tags the RTE is allowed to preserve—otherwise, they will be stripped
out. Add this to Page TSconfig:

RTE.default.proc.allowTags := addToList(object,param,embed)
RTE.default.proc.entryHTMLparser_db.allowTags :=
addToList(object,param,embed)

Chapter 5

115

Then, enter RTE's HTML mode, and paste the same HTML code in:

See also

ff Embedding images in RTE
ff Rendering video using the media content object

6
Connecting to
External APIs

In this chapter, we will cover:

ff Getting files from Amazon S3

ff Uploading files to S3

ff Creating a bucket in S3

ff Uploading DAM files to S3

ff Getting recent Flickr photos

ff Uploading files to Flickr

ff Uploading DAM files to Flickr

ff Reading a list of movies from the YouTube API

ff Authenticating requests to the YouTube API

ff Showing a video list with a frontend plugin

Introduction
One of the great features of the Web 2.0 world is the connectivity. Most online services and
applications provide Application Programming Interfaces (API) that expose their data and
functionality. As an application developer, you have access to these APIs, and can utilize
them to provide functionality that you would otherwise have a tough time implementing. This
chapter covers general approaches to working with public APIs, using Amazon S3, Flickr, and
YouTube as examples.

Connecting to External APIs

118

Getting files from Amazon S3
Amazon S3 is the distributed file system that can be used over the Web. It's nearly limitless
in terms of storage capacity, it's cheap, and you pay only for what you use. S3 has recently
become very popular for these reasons.

Getting ready
Before we get started, you need to understand some of the basic features of S3, in order to
create an application that makes the best use of the system. There are two resources under
S3—buckets and objects. Objects are files, while buckets hold collections of objects. Buckets
can be public or private, with Access Control Lists (ACLs) for finer permissions control.
Objects can be accessed through the browser by URIs. Objects can also have complex names,
making up for the lack of folders.

To learn more about S3 and sign up for the account, go to
http://aws.amazon.com/.

We will be using the Amazon S3 PHP class for all our interfacing with the S3 service. You can
download it from http://code.google.com/p/amazon-s3-php-class/.

Feel free to read through example files to see how the file should be used, but the only file we
really need is S3.php.

The class requires cURL to be installed. Here is how you can check if it is installed, and
working, on your TYPO3 site:

1.	 Go to Admin tools | Install module.

If you get an error stating that the Install Tool is locked,
go to User tools | User setting, and click Create Install
Tool Enable File. See Resolving missing ENABLE_INSTALL_
TOOL file error tip in Creating scalable architecture recipe in
Chapter 1 for more information.

2.	 Chose option phpinfo().

3.	 Look for cURL support—it should be enabled.

Chapter 6

119

4.	 If not, you can install it using APT on a Debian System:
Shell> apt-get install php5-curl

The following steps assume you already have an extension ready, and are adding S3 support
into the existing code. Thus, we will not get into details of the steps needed to create a new
extension. Assuming everything is ready, you can proceed to listing the files.

How to do it...
1.	 In a PHP file, add the following before the declaration of the class:

require_once('S3.php');

2.	 Verify that the path to S3.php is correct, and if not, modify it to point to the
correct location.

3.	 In a function where you would like to get the list of files, add the following code:
$s3 = new S3('access code', 'secret code');
$buckets = $s3->listBuckets();
foreach ($buckets as $bucketName) {
 if (($contents = $s3->getBucket($bucketName)) !== false) {
 foreach ($contents as $objectName => $object) {
 $objects[$bucketName . '/' . $objectName] = $object;
 $objects[$bucketName . '/' . $objectName]['bucket'] =
 $bucketName;
 }
 }
}

4.	 Replace 'access code' with your actual access code—you can find this information
in Amazon—under your Account | Security Credentials. Do the same for the string
'secret code'.

5.	 To print the results, use the following code:
foreach ($objects as $object) {
 print_r($object);
}

6.	 It will result in an output similar to:
Array

(
 [name] => S3.php
 [time] => 1253554887
 [size] => 49961
 [hash] => 2f3d98f42e66f6db6e19e9cac3f65cbc
 [bucket] => s3test4ab7b8fcd484e
)

Connecting to External APIs

120

How it works...
All the hard work is being done by the S3 class, so the first thing we did was include it, and
then instantiate the object:

$s3 = new S3('access code', 'secret code');

If you get a certificate error, there is a problem in communicating to S3 via
secure HTTP. Change the instantiation line to:

$s3 = new S3('access code', 'secret code', FALSE);

where the last parameter tells S3 class not to use the HTTPS protocol.

Next, we listed all the buckets we have in S3:

$buckets = $s3->listBuckets();

this line returns an array of bucket names. If you only want to list files in a particular bucket,
use the name of the bucket instead of a loop:

$bucketName = 'MyTestBucket';
if (($contents = $s3->getBucket($bucketName)) !== false) {
 foreach ($contents as $objectName => $object) {
 $objects[$bucketName . '/' . $objectName] = $object;
 $objects[$bucketName . '/' . $objectName]['bucket'] =
 $bucketName;
 }
}

Next, we get the contents of each bucket. Sometimes, S3 may not return anything—either
because the bucket is inaccessible due to security policy, or it was just created, and hasn't
replicated to all nodes yet.

If we do have content in the bucket, the list of files is placed in the $contents variable. We
loop over the variable, and reassign it to a different array, along with the bucket name. At the
end, $objects contains a full listing of files, along with their size in bytes, time uploaded as a
UNIX timestamp, and hash of the file content.

There's more...
Of course, there are a lot more options for listing objects, which become necessary in large
object lists.

Chapter 6

121

Searching for objects
If you want to only see objects whose name starts with a certain string, you can pass the
second parameter to the function:

$contents = $s3->getBucket($bucketName, 'MyVideos/2009');

A common workaround that deals with the absence of categories in S3 is to
create object names that reflect their position in the hierarchy. For example:
MyVideos/2009/January/24/Mountain.avi.
Then, objects in certain pseudo directories can be found using the prefix as
shown above.

Finding common prefixes
You can find out what the common prefixes among the files are to aid you in searching.

$contents = $s3->getBucket($bucketName, NULL, NULL, NULL, '/', TRUE);

Working with large object lists
If you have a large set of objects stored in S3, the listing operation may take a lot of time. It's
possible to limit the number of results returned using markers and limits.

$contents = $s3->getBucket($bucketName, NULL, 'S3.php', 25);

The marker is the file after which the results should start.

See also

ff Uploading files to S3
ff Creating a bucket in S3
ff Uploading DAM files to S3
ff Creating a scalable architecture

Uploading files to S3
If you just set up your S3 account, then the recipe Getting files from Amazon S3 will not
produce an output. Use the following instructions to set up uploading into S3.

Getting ready

Check the Getting ready section under the recipe Getting files from Amazon S3.

Connecting to External APIs

122

How to do it...
1.	 Get a path to the file you want to upload, and the bucket you want to upload it to.

2.	 Run the following command:
$s3->putObject(S3::inputFile($file), $bucketName,

 baseName($file), S3::ACL_PUBLIC_READ);

How it works...
The putObject function encapsulates all the hard negotiations with S3. The function
calculates the file size, MD5 checksum of the content, content type, and other information,
and sends it along with the file to S3.

The file will now be accessible through the browser at http://s3.amazonaws.com/
BucketName/filename, and anyone can download it.

There's more...
You can utilize the other options during object creation.

Sending additional information in file headers
Additional headers can be sent with the file. If you want to send any information along with the
file, pass a fifth parameter to the function, which would be an array of values:

$s3->putObject(S3::inputFile($file), $bucketName,
 baseName($file), S3::ACL_PUBLIC_READ,
 array('latitude' => '39.92', 'longitude' => '-81.40');

Assigning object permissions
We created a publicly readable file. Our other options are:

Constant name Description
S3::ACL_PRIVATE Only the owner has full control of the file.
S3::ACL_PUBLIC_READ Owner has full control; general public has read

permissions (including accessing the file through a
browser).

S3::ACL_PUBLIC_READ_WRITE Owner has full control; general public has both read
and write permissions, letting them overwrite the file.

S3::ACL_ AUTHENTICATED_READ Owner has full control; users who have
authenticated their request can read the file.

Chapter 6

123

Deleting an object
Eventually, you may want to delete the object you've uploaded. That can be done with the
following function call:

$s3->deleteObject($bucketName, $objectName);

See also

ff Getting files from Amazon S3
ff Creating a bucket in S3
ff Uploading DAM files to S3

Creating a bucket in S3
The best analogy for a bucket is a disk drive or volume. Normally, buckets are created
manually, and code is configured to assign uploaded files to the buckets. You can still create a
new bucket with code fairly easily.

Getting ready

Check the Getting ready section under the recipe Getting files from Amazon S3.

How to do it...
1.	 Come up with a unique bucket name. Use the PHP uniqid function:

$bucketName = uniqid('MyBucket');

2.	 Add the following code:
if ($s3->putBucket($bucketName, S3::ACL_PUBLIC_READ)) {

 // Bucket successfully created, proceed

}

How it works...
Bucket names are shared among all the users of S3, so once a name is used, it's reserved
exclusively by the owner. Furthermore, bucket names become part of a URL. For these
reasons, the name must be unique. If the URL doesn't matter much, then a random string
works best.

Connecting to External APIs

124

The putBucket function effectively encapsulates the details, accepting only bucket name
and permission level. Amazon creates the specified bucket, and makes it accessible to
the general public. Any files in the bucket can be downloaded through a URL of the form:
http://s3.amazonaws.com/BucketName/filename.

The bucket name should be unique, so try to append a random string to whatever name you
choose.If the bucket cannot be created for one reason or another, an error will be thrown by
the S3 class. If you don't want such an error to interrupt the flow of your script, be sure to wrap
all S3 operations in a try/catch block such as this:

try {
...
 if ($s3->putBucket($bucketName, S3::ACL_PUBLIC_READ)) {
 // Bucket successfully created, proceed
 }
} catch (Exception $e) {
 // Do something with the error
}

There's more...
In this section, we will see how to create buckets in different locations, how to set permissions
for a bucket, and how to delete a bucket.

Creating buckets in different locations
Amazon can create buckets in two locations—US and EU. US bucket is the default one, but if you
want to create a bucket in Europe, you need to call the function with the following parameters:

$s3->putBucket($bucketName, S3::ACL_PUBLIC_READ, 'EU');

Setting permissions for a bucket
We created a publicly readable bucket. There are other options though, and they are the same
as object permissions:

Constant name Description
S3::ACL_PRIVATE Only the owner has full control of the file.
S3::ACL_PUBLIC_READ Owner has full control; general public has read

permissions (including accessing the bucket through
a browser).

S3::ACL_PUBLIC_READ_WRITE Owner has full control; general public has both read
and write permissions, letting them overwrite the file.

S3::ACL_ AUTHENTICATED_READ Owner has full control; users who have authenticated
their request can read the file.

Chapter 6

125

Deleting a bucket
When you're done with a bucket, you can delete it using the following function:

$s3->deleteBucket($bucketName);

You can only delete empty buckets—ones that do not contain any objects.
Remove all objects first before deleting a bucket.

See also

ff Getting files from Amazon S3
ff Uploading files to S3
ff Uploading DAM files to S3

Uploading DAM files to S3
Now that we know how to operate with buckets and objects in S3, let's adjust dam_user_
upload, which is covered in Chapter 2, in the recipe Creating frontend upload form, to
upload the files to S3.

Getting ready
We will describe the changes that need to be made to the dam_user_upload extension—
it's up to you if you want to create a brand new extension, or modify the existing one. We'll
assume the new extension is called s3_upload in the steps outlined below.

How to do it...
1.	 Create a directory lib, and copy the S3.php library into it.

2.	 Include the S3 library in pi1/class.tx_s3upload_pi1.php:
require_once(t3lib_extMgm::extPath('s3_upload').'lib/S3.php');

3.	 Most of our functionality is modular, so we just need to replace the function
uploadFile with:
 function uploadFile($title, $author, $description) {

 if (!$this->conf['accessCode']) {

 return 'Error: S3 access code was not defined in
 TypoScript';

 }

 if (!$this->conf['secretCode']) {

Connecting to External APIs

126

 return 'Error: S3 secret code was not defined in
 TypoScript';
 }
 if (!$this->conf['bucket']) {
 return 'Error: Upload bucket not defined in TypoScript';
 }

 // Instantiate the object
 $s3 = new S3($this->conf['accessCode'], $this-
 >conf['secretCode']);

 // Find a unique name
 $i = 0;
 do {
 $i++;
 $objectName = t3lib_div::shortMD5($i . $GLOBALS['TSFE']-
 >fe_user->user["uid"] . $_FILES['tx_damuserupload_
 pi1_file']['name']) . '_' . $_FILES['tx_damuserupload_
 pi1_file']['name'];
 }
 while($s3->getObjectInfo($this->conf['bucket'],
 $objectName));

 // Set object metadata into headers:
 $headers = array(
 'title' => $title,
 'author' => $author,
 'description' => $description
);

 // Upload the file
 if($s3->putObject(S3::inputFile($_FILES['tx_damuserupload_
 pi1_file']['tmp_name']),
 $this->conf['bucket'], $objectName, S3::ACL_PUBLIC_READ,
 $headers)) {
 $content .= $this->pi_getLL('successful_upload');
 } else {
 $content .= $this->pi_getLL('failed_upload');
 }

 $content .= 'pi_
 getPageLink($GLOBALS['TSFE']->id) . '">' .
 $this->pi_getLL('back_to_form') . '';
 return $content;

 }

Chapter 6

127

4.	 Set the following TypoScript options in the setup field of the template, replacing the
values with your access information:
plugin.tx_s3upload_pi1.accessCode = your-code

plugin.tx_s3upload_pi1.secretCode = your-code

plugin.tx_s3upload_pi1.bucket = your-bucket

5.	 The rest of the steps for including the plugin on the page are the same as in the
Chapter 2 recipe, Creating frontend upload form.

How it works...
Our procedure is very similar to dam_user_upload, but this time we upload the file directly
to S3. First, we check that we have all the needed values—S3 access and secret codes,
as well as the bucket name where we will upload the files. These settings should be set in
TypoScript, and if they are not, we print an error message.

Next, we find a unique object name, using the same procedure as in dam_user_upload, but
this time using an S3 function instead of PHP's file_exists(). Once we obtain a unique
object name, we proceed with the upload.

There's more...
There are a few opportunities for improvement in this extension. Let's look at one.

Setting unique flexform options for each plugin instance
Instead of including options in TypoScript, these settings can be unique for each instance of a
plugin. To make it possible, a plugin needs to have a flexform.

Another common approach is to make the flexform settings optional, with a fallback to
TypoScript settings. That way specific settings can be customized for each instance of a
plugin, but those that are not set will default to values from TypoScript.

Refer to official TYPO3 documentation for a thorough description of flexforms.

See also

ff Getting files from Amazon S3
ff Uploading files to S3
ff Creating a bucket in S3
ff Creating a frontend upload form

Connecting to External APIs

128

Getting recent Flickr photos
The Flickr API is very powerful and gives access to just about everything a user can do
manually. You can write scripts to automatically download latest pictures from a photostream,
download photos or videos tagged with a certain keyword, or post comments on photos. In
this recipe, we will make use of the phpFlickr library to perform some basic listing functions
for photos in Flickr.

Getting ready
Before you start, you should sign up for a free Flickr account, or use an existing one. Once you
have the account, you need to sign up for an API key. You can go to Your Account, and select
the Extending Flickr tab. After filling in a short form, you should be given two keys—API key
and secret key. We will use these in all Flickr operations.

We will not go through the steps required for integration into extensions, and will leave
this exercise to the reader. The code we present can be used in both frontend plugins and
backend modules.

As was previously mentioned, we will be using the phpFlickr library.
Go to http://phpflickr.com/ to download the latest version of the library and read
the complete documentation.

How to do it...
1.	 Include phpFlickr, and instantiate the object (modify the path to the library, and

replace api-key with your key):
require_once("phpFlickr.php");

$flickrService = new phpFlickr('api-key');

2.	 Get a list of photos for a specific user:
$photos = $flickrService->people_getPublicPhotos('7542705@N08');

3.	 If the operation succeeds, $photos will contain an array of 100 (by default) photos
from the user. You could loop over the array, and print a thumbnail with a link to the
full image by:
foreach ($photos['photos']['photo'] as $photo) {

 $imgURL = $flickrService->buildPhotoURL($photo, 'thumbnail');

 print '<a href="http://www.flickr.com/photos/' .
 $photo['owner'] . '/' . $photo['id'] . '">' .

 '
';

}

Chapter 6

129

How it works...
The Flickr API is exposed as a set of REST services, which we can issue calls to. The tough
work of signing the requests and parsing the results is encapsulated by phpFlickr, so
we don't have to worry about it. Our job is to gather the parameters, issue the request, and
process the response.

In the example above, we got a list of public photos from a user 7542705@N08. You may
not know the user ID of the person you want to get photos for, but Flickr API offers several
methods for finding the ID:

$userID = $flickrService->people_findByEmail($email);
$userID = $flickrService->people_findByUsername($username);

If you have the user ID, but want to get more information about the user, you can do it with the
following calls:

// Get more info about the user:
$flickrService->people_getInfo($userID);
// Find which public groups the user belongs to:
$flickrService->people_getPublicGroups($userID);
// Get user's public photos:
$flickrService->people_getPublicPhotos($userID);

We utilize the people_getPublicPhotos method to get the user's photostream.
The returned array has the following structure:

Array
(
 [photos] => Array
 (
 [page] => 1
 [pages] => 8
 [perpage] => 100
 [total] => 770
 [photo] => Array
 (
 [0] => Array
 (
 [id] => 3960430648
 [owner] => 7542705@N08
 [secret] => 9c4087aae3
 [server] => 3423
 [farm] => 4
 [title] => One Cold Morning
 [ispublic] => 1

Connecting to External APIs

130

 [isfriend] => 0
 [isfamily] => 0
)
 […]
)
)
)

We loop over the $photos['photos']['photo'] array, and for each image, we build a URL
for the thumbnail using the buildPhotoURL method, and a link to the image page on Flickr.

There's more...
There are lots of other things we can do, but we will only cover a few basic operations.

Error reporting and debugging
Occasionally, you might encounter an output you do not expect. It's possible that the Flickr
API returned an error, but by default, it's not shown to the user. You need to call the following
functions to get more information about the error:

$errorCode = $flickrService->getErrorCode();
$errorMessage = $flickrService->getErrorMsg();

Downloading a list of recent photos
You can get a list of the most recent photos uploaded to Flickr using the following call:

$recentPhotos = $flickrService->photos_getRecent();

See also

ff Uploading files to Flickr
ff Uploading DAM files to Flickr

Uploading files to Flickr
In this recipe, we will take a look at how to upload files to Flickr, as well as how to access
other authenticated operations. Although many operations don't require authentication, any
interactive functions do. Once you have successfully authenticated with Flickr, you can upload
files, leave comments, and make other changes to the data stored in Flickr that you wouldn't
be allowed to do without authentication.

Chapter 6

131

Getting ready
If you followed the previous example, you should have everything ready to go. We'll assume
you have the $flickrService object instantiated already.

How to do it...
1.	 Before calling any operations that require elevated permissions, the service needs to

be authenticated. Add the following code to perform the authentication:
 $frob = t3lib_div::_GET('frob');

 if (empty($frob)) {

 $flickrService->auth('write', false);

 } else {

 $flickrService->auth_getToken($frob);

 }

2.	 Call the function to upload the file:
$flickrService->sync_upload($filePath);

3.	 Once the file is uploaded, it will appear in the user's photostream.

How it works...
Flickr applications can access any user's data if the user authorizes them. For security
reasons, users are redirected to Yahoo! to log into their account, and confirm access for your
application. Once your application is authorized by a user, a token is stored in Flickr, and can
be retrieved at any other time.

$flickrService->auth() requests permissions for the application. If the application is
not yet authorized by the user, he/she will be redirected to Flickr. After giving the requested
permissions, Flickr will redirect the user to the URL defined in the API key settings.

The redirected URL will contain a parameter frob. If present, $flickrService->auth_
getToken($frob); is executed to get the token and store it in session. Future calls within
the session lifetime will not require further calls to Flickr. If the session is expired, the token
will be requested from Flickr service, transparent to the end user.

At this point, the application is authenticated, and can access methods, such as
sync_upload.

There's more...
Successful authentication allows you to access other operations that you would not be able to
access using regular authentication.

Connecting to External APIs

132

Gaining permissions
There are different levels of permissions that the service can request. You should not request
more permissions than your application will use.

API call Permission level
$flickrService->auth('read', false); Permissions to read users' files, sets,

collections, groups, and more.
$flickrService->auth('write',
false);

Permissions to write (upload, create
new, and so on).

$flickrService->auth('delete',
false);

Permissions to delete files, groups,
associations, and so on.

Choosing between synchronous and asynchronous upload
There are two functions that perform a file upload:

$flickrService->sync_upload($filePath);
$flickrService->async_upload($filePath);

The first function continues execution only after the file has been accepted and
processed by Flickr. The second function returns after the file has been submitted,
but not necessarily processed.

Why would you use the asynchronous method? Flickr service may have a large queue of
uploaded files waiting to be processed, and your application might timeout while it's waiting.
If you don't need to access the uploaded file right after it was uploaded, you should use the
asynchronous method.

See also

ff Getting recent Flickr photos
ff Uploading DAM files to Flickr

Uploading DAM files to Flickr
In this recipe, we will make use of our knowledge of the Flickr API and the phpFlickr
interface to build a Flickr upload service into DAM. We will create a new action class, which
will add our functionality into a DAM file list and context menus.

Chapter 6

133

Getting ready
For simplicity, we will skip the process of creating the extension. You can download the
extension dam_flickr_upload and view the source code. We will examine it in more detail
in the How it works... section.

How to do it...
1.	 Sign up for Flickr, and request an API key if you haven't already done so.

2.	 After you receive your key, click Edit key details

3.	 Fill in the application title and description as you see fit. Under the call back URL,
enter the web path to the dam_flickr_upload/mod1/index.php file. For
example, if your domain is http://domain.com/, TYPO3 is installed in the root
of the domain, and you installed dam_flickr_upload in the default local location
under typo3conf, then enter http://domain.com/typo3conf/ext/dam_
flickr_upload/mod1/index.php

You're likely to experience trouble with the callback URL if you're doing it
on a local installation with no public URI.

4.	 Install dam_flickr_upload. In the Extension Manager, under the extension
settings, enter the Flickr API key and the secret key you have received.

Connecting to External APIs

134

5.	 Go to the Media | File module, and click on the control button next to a file.

6.	 Alternatively, select Send to Flickr in the context menu, which appears if you click on
the file icon, as seen in the following screenshot:

7.	 A new window will open, and redirect you to Flickr, asking you to authorize the
application for accessing your account. Confirm the authorization by clicking the OK,
I'LL AUTHORIZE IT button.

8.	 The file will be uploaded, and placed into your photostream on Flickr.

9.	 Subsequent uploads will no longer need explicit authorization. A window will come up,
and disappear after the file has been successfully uploaded.

Chapter 6

135

How it works...
Let's examine in detail how the extension works. First, examine the file tree. The root contains
the now familiar ext_tables.php and ext_conf_template.txt files.The Res directory
contains icons used in the DAM. The Lib directory contains the phpFlickr library. The Mod1
directory contains the module for uploading.

ext_conf_template.txt
This file contains the global extension configuration variables. The two variables defined in this
file are the Flickr API key and the Flickr secret key. Both of these are required to upload files.

ext_tables.php
As was mentioned previously, ext_tables.php is a configuration file that is loaded when
the TYPO3 framework is initializing.

tx_dam::register_action ('tx_dam_action_flickrUpload', 'EXT:dam_
flickr_upload/class.tx_dam_flickr_upload_action.php:&tx_dam_flickr_
upload_action_flickrUpload');

This line registers a new action in DAM. Actions are provided by classes extending the
tx_dam_actionbase class, and define operations that can be performed on files and
directories. Examples of actions include view, cut, copy, rename, delete, and more. The
second parameter of the function defines where the action class is located.

$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['dam_flickr_upload']
['allowedExtensions'] = array('avi', 'wmv', 'mov', 'mpg', 'mpeg',
'3gp', 'jpg', 'jpeg', 'tiff', 'gif', 'png');

We define an array of file types that can be uploaded to Flickr. This is not hardcoded in the
extension, but stored in ext_tables.php, so that it can be overwritten by extensions
wanting to limit or expand the functionality to other file types.

class.tx_dam_flickr_upload_action.php
This file defines the action class.

var $typesAvailable = array('control', 'context');

The $typesAvailable array defines the context in which the functionality can be used.
In this case, we are allowing it to be used in Control setting (in the file list), and in the
context menu. Other options include icon, button, globalcontrol, and multi. Refer to the
DAM manual and source code to see how these can be used.

function isPossiblyValid($type, $itemInfo = NULL, $env = NULL)

This function returns TRUE if the rendering type is present in typesAvailable. Otherwise, it
returns FALSE, and the action is made unavailable in the context.

Connecting to External APIs

136

function isValid($type, $itemInfo = NULL, $env = NULL)

This function is called for each individual file, and performs a check to see if the
functionality should be enabled for the file. In our case, we check if the file extension is one
of the allowed extensions:

$valid = in_array(strtolower($this->itemInfo['file_extension']),
$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['dam_flickr_upload']
['allowedExtensions']) ? TRUE : FALSE;

If the function returns TRUE, the action will be enabled for the specific file.

function getIcon($addAttribute = '')

The icon used by the action depends on if the action is enabled or disabled. If it is disabled,
we show it visually by rendering a grayed out icon.

function getLabel()

This function returns a short label for the action.

function _getCommand()

This function returns a JavaScript action that is executed when the user clicks on the icon. In
our case, it opens a new window, calling mod1/index.php with parameters corresponding to
the file we chose to upload.

mod1/index.php
This module establishes a connection with Flickr through the phpFlickr library,
authenticates the request, and uploads the file.

init()

Init() function initializes the class, and checks for the presence of the Flickr API key and
the secret key. It also saves the parameters that have been passed in with the module call.

auth()

This function performs Flickr authentication, as described in the recipe above. As the request
could be redirected to Flickr for further authentication, this function saves the parameters
passed into the module in the backend user session. It is done using the functions of the
BE_USER object: setAndSaveSessionData function to save, and getSessionData to
retrieve the information.

main()

Assuming everything else went well, the main function simply calls the sync_upload
function of the phpFlickr library to upload the file synchronously and report any errors.
Another way the file can be uploaded is by using the async_upload function, which sends
the request to Flickr, and proceeds without waiting for Flickr to index and store the file.

Chapter 6

137

See also

ff Getting recent Flickr photos
ff Uploading files to Flickr

Reading list of movies from YouTube API
Working with the YouTube API is very similar to Flickr. We will use the Zend_Gdata library,
which we can place in the lib directory. Let's now take a look at a simple task of pulling up
the recent videos posted today.

Zend_Gdata is part of the Zend Framework, but can be downloaded
separately from http://framework.zend.com/download/gdata.

Getting ready
We will only cover the essential code. It's up to the reader to place the code wherever
appropriate, and make sure all the needed libraries are included. For an example, look at
Showing video list using frontend plugin recipe further on in this chapter.

Before you start, make sure that the path to the directory holding the Zend library is in your
PHP include path.

How to do it...
1.	 Load the required files:

require_once 'Zend/Loader.php';

Zend_Loader::loadClass('Zend_Gdata_YouTube');

Zend_Loader::loadClass('Zend_Gdata_App_Exception');

2.	 Set search parameters and send the request to YouTube:
// Initialize class

$youTubeService = new Zend_Gdata_YouTube();

$query = $youTubeService->newVideoQuery();

// Set search keyword/phrase

$query->setQuery('keyword');

// Set start index

$query->setStartIndex(0);

// Set maximum number of results

$query->setMaxResults(10);

Connecting to External APIs

138

// Set search types

$query->setFeedType('most viewed');

// Set search time

$query->setTime('all_time');

// Issue a query

$feed = $youTubeService->getVideoFeed($query);

3.	 Parse the resulting data:
foreach ($feed as $videoEntry) {

 echo 'Video: ' . $videoEntry->getVideoTitle() . "\n";
 echo 'Video ID: ' . $videoEntry->getVideoId() . "\n";
 echo 'Updated: ' . $videoEntry->getUpdated() . "\n";
 echo 'Description: ' . $videoEntry->getVideoDescription() .
 "\n";
 echo 'Category: ' . $videoEntry->getVideoCategory() . "\n";
 echo 'Tags: ' . implode(", ", $videoEntry->getVideoTags()) .
 "\n";
 echo 'Watch page: ' . $videoEntry->getVideoWatchPageUrl() .
 "\n";
 echo 'Flash Player Url: ' . $videoEntry->getFlashPlayerUrl() .
 "\n";
 echo 'Duration: ' . $videoEntry->getVideoDuration() . "\n";
 echo 'View count: ' . $videoEntry->getVideoViewCount() . "\n";
 echo 'Rating: ' . $videoEntry->getVideoRatingInfo() . "\n";
 echo 'Geo Location: ' . $videoEntry->getVideoGeoLocation() .
 "\n";
 echo 'Recorded on: ' . $videoEntry->getVideoRecorded() . "\n";

 foreach ($videoEntry->mediaGroup->content as $content) {
 if ($content->type === "video/3gpp") {
 echo 'Mobile RTSP link: ' . $content->url . "\n";
 }
 }

 echo "Thumbnails:\n";
 $videoThumbnails = $videoEntry->getVideoThumbnails();

 foreach($videoThumbnails as $videoThumbnail) {
 echo $videoThumbnail['time'] . ' - ' . $videoThumbnail['url'];
 echo ' height=' . $videoThumbnail['height'];
 echo ' width=' . $videoThumbnail['width'] . "\n";
 }

}

Chapter 6

139

How it works...
The Zend_Gdata objects encapsulate much of the functionality, providing us convenient
objects for working with the results. We provide our parameters, mainly the time span, sorting,
limits on the results, and a keyword to search by, and the YouTube API returns a list of videos
matching the criteria.

The $feed variable is an object of the Zend_Gdata_YouTube_VideoFeed class, which in
turn is a collection of objects of the Zend_Gdata_YouTube_VideoEntry class. The latter
has easy getter methods that we can use to get the information we need—such as video ID,
title, description, category, thumbnail, and more.

There's more...
The API offers other options for narrowing down the selection of videos for a list. You can
select the videos by placing restriction such as filters.

Filters
There are of course more filters than the ones we used. Here are some more functions you
can use to set limits on results:

API call Description
setAuthor($value) Sets the list of the authors.
setCategory($value) Sets the array of categories.
setFormat($value) Sets the parameter to return videos of a specific

format.
setLocation($value) Sets the location parameter for the query.
setLocationRadius($value) Sets the location-radius parameter for the query.
setMaxResults($value) Sets the number of results to be returned.
setOrderBy($value) Sets the value of the order by parameter.
setSafeSearch($value) Sets the safeSearch parameter to either 'none',

'moderate' or 'strict'.
setStartIndex($value) Sets the start index for the search results.
setTime($value) Sets the time period over which this query should

apply ('today', 'this_week', 'this_month', or 'all_time').
setUploader($value) Sets the value of the uploader parameter.
setVideoQuery($value) Sets the formatted video query (vq) URL param value.

Connecting to External APIs

140

See also

ff Authenticating requests to YouTube API
ff Showing video list with frontend plugin

Authenticating requests to YouTube API
Authentication with YouTube is very similar to authentication with Flickr covered in the
Uploading DAM files to Flickr recipe, so we will skip on the details. It follows the same
pattern of token pass back.

Getting ready

Make sure you have all the required classes already loaded (see Step 1 of How to do it... in
the recipe Reading list of movies from YouTube API). In addition to the other two classes,
load the Authentication library:

Zend_Loader::loadClass('Zend_Gdata_AuthSub');

How to do it...
1.	 First, you need to generate a URL to send the user to YouTube to provide

authentication. The URL can be generated using the following method:
$scope = 'http://gdata.youtube.com';
$secure = false;
$session = true;
$returnURL = 'http://'. $_SERVER['HTTP_HOST']
 . $_SERVER['PHP_SELF'];
$url = Zend_Gdata_AuthSub::getAuthSubTokenUri($returnURL,
 $scope, $secure, $session);

2.	 Upon the user's return from YouTube, the request will contain a GET parameter with
the token.
$token = t3lib_div::_GET('token');
if (isset($token)) {
 try {
 $sessionToken = Zend_Gdata_AuthSub::getAuthSubSessionToken
 ($token);
 } catch (Zend_Gdata_App_Exception $e) {
 }

 $_SESSION['sessionToken'] = $sessionToken;
}

Chapter 6

141

How it works...
After the URL is generated, the user needs to click it, and provide his or her credentials
to YouTube. YouTube will confirm that the user wants to give our application access to his or
her data.

Assuming the user clicks yes, they will be redirected back to our application, where we will
accept the token and store it in the user's session.

There's more...
Once you have successfully authenticated with YouTube, you can perform various actions that
you couldn't do before. For example, you can post comments, manipulate playlists, tag videos,
and most importantly, upload videos. The Zend_Gdata package provides enough information
to get you started. As an exercise, try to recreate the dam_flickr_upload extension, but to
upload a video to YouTube!

See also

ff Reading list of movies from YouTube API
ff Showing video list with frontend plugin
ff Uploading DAM files to Flickr

Showing video list with frontend plugin
In this example, we will take everything we've learned in Reading list of movies from
YouTube API and Authenticating requests to YouTube API recipes, and put it together to
create a frontend plugin, which would display a list of YouTube videos.

Connecting to External APIs

142

Getting ready
We will be creating a new plugin, so make sure Kickstarter is installed. We will not go into
much detail in plugin creation.

How to do it...
1.	 In Extension Manager, select Create new Extension submodule. If the option

is missing, Kickstarter has not been installed. We will call the extension
youtube_connector.

2.	 Under General Info, enter the basic extension information.

3.	 Click the plus icon (+) next to the Frontend Plugins, and call the plugin Youtube.

The name of the plugin shows up in the plugin select box. If an installation
contains a lot of plugins, it may get confusing for the editors as to which
plugin they should use. Be creative in selecting a short name that uniquely
identifies your plugin.

4.	 Check the box to create an uncached USER_INT plugin.

5.	 Click View result, and write to the location specified.

6.	 In the extension folder, create a new directory, and call it lib.

7.	 Copy the folder Zend from the library directory of the Zend_Gdata package into lib.

8.	 In ext_localconf.php, add:
// Add Zend library to include path:
$zendPath = t3lib_extMgm::extPath($_EXTKEY) . 'lib/';
set_include_path(get_include_path() . PATH_SEPARATOR . $zendPath);

Chapter 6

143

9.	 Create a new folder res. In it, create a file template.html. Fill it with the
following content:
<!-- ###TEMPLATE### start-->
<table width="100%" id="youtube_connector">
 <!-- ###VIDEO### -->
 <tr>
 <td><img src="###VIDEO_
 THUMBNAIL###" /></td>
 <td>###VIDEO_TITLE###
 <p class="videoDescription">###VIDEO_DESCRIPTION###</p>
 <p class="videoCategory">Category: ###VIDEO_
 CATEGORY###</p>
 <p class="videoTags">Tags: <!-- ###VIDEO_TAGS###
 -->###VIDEO_TAG### <!-- ###VIDEO_TAGS###
 --></p>
 </td>
 </tr>
 <!-- ###VIDEO### -->
</table>
<!-- ###TEMPLATE### end-->

10.	 Replace the contents of pi1/class.tx_youtubeconnector_pi1.php with the
content from the youtube_connector extension that can be downloaded from the
book's site (http://www.packtpub.com/files/code/8488_Code.zip).

11.	 Add the plugin to a page, and preview it. Try passing in a few parameters to narrow
down list results:

Connecting to External APIs

144

How it works...
All the hard work is handled by the Zend_Gdata objects. But, we need to load it into our
script. The framework expects the folder containing the Zend_Gdata objects to be in the
include path in PHP. We could require the administrators to add the appropriate directory to
php.ini, but this is error prone, and makes the job of administrators harder. Instead, we
add the appropriate directory to the include path at runtime, while the TYPO3 framework is
initializing. We added this to ext_localconf.php:

// Add Zend library to include path:
$zendPath = t3lib_extMgm::extPath($_EXTKEY) . 'lib/';
set_include_path(get_include_path() . PATH_SEPARATOR . $zendPath);

This does exactly what we just described. First, it resolves the path to the lib folder (under
which the Zend directory resides), based on where the extension was installed. Then, it
appends the include path with the location.

When we look at the plugin, one of the first lines loads the Zend class loader:

require_once 'Zend/Loader.php';

The script now knows where to find the file because we have told PHP where to look for files.

Now, let's look at what happens in the rest of the plugin.

main()

After we set some default parameters (these are generated by the Kickstarter), we load the
classes we will need later:

Zend_Loader::loadClass('Zend_Gdata_YouTube');
Zend_Loader::loadClass('Zend_Gdata_AuthSub');
Zend_Loader::loadClass('Zend_Gdata_App_Exception');

Next, we initialize some variables based on the parameters passed to the plugin through GET
variables or TypoScript:

$this->init($conf);

Finally, we get the content and return it to be printed on the screen:

$content = $this->renderContent();
return $this->pi_wrapInBaseClass($content);

init()

We start our initialization with gathering the GET parameters sent to the page that pertains
to us.

$input = $this->piVars;

Chapter 6

145

The parameters will be automatically available to us through the class variable.We then
go through each parameter, typically checking the input value and using it if present,
otherwise using the TypoScript value. If the TypoScript value is not set, we use a default.
This allows for maximum flexibility, where the plugin output can be controlled by a
combination of parameters passed through the URL and TypoScript. Let's walk through an
example of setting the search type:

$this->searchType = isset($input['searchType']) ? $input['searchType']
 : $conf['searchType'];
if (!$this->searchType ||
 !in_array($this->searchType, $this->validSearchTypes)) {
 $this->searchType = 'most viewed'; // Provide a default
}

First, we check if $input['searchType'] is set. This is the value sent through the
GET parameters in a URL, like http://example.com/index.php?id=21&tx_
youtubeconnector_pi1[searchType]=top%20rated. If it is not set, we use the
TypoScript value, passed to the plugin, like plugin.tx_youtubeconnector_pi1.
searchType = top rated

Neither of these needs to be present. Furthermore, parameters passed could be misspelled,
or could even be an attempt to break our application. So, we run a final check to make sure
we have a value and it's present in the expected values array:

var $validSearchTypes = array('top rated', 'most viewed',
 'recently featured', 'mobile');

If it's not, we give it a default value of most viewed.

renderContent()

In this function, we connect to YouTube using Zend_Gdata classes, and ask for
a data feed using our defined parameters to customize it. We pass the resulting data feed to
renderFeed function.

renderFeed()

The function starts by analyzing and extracting the template:

$template = $this->cObj->fileResource($this->templateFile);
$topTemplate = $this->cObj->getSubpart($template,
 '###TEMPLATE###');
$videoRow = $this->cObj->getSubpart($topTemplate,
 '###VIDEO###');
$tagRow = $this->cObj->getSubpart($videoRow,
 '###VIDEO_TAGS###');

Connecting to External APIs

146

$this->templateFile contains the location of the template file. It is set in our init()
function, and can be defined in TypoScript. If the TypoScript value is missing, a default is used
instead. The file is broken into appropriate subparts. Now, each variable contains a template,
with markers and subparts that need to be replaced by data.

We go through each video in the video feed, extracting all the information we could possibly
want. To make sure that we have a fresh start with each new video, we reset the $markers
and $subparts arrays:

foreach ($feed as $entry) {
 $markers = array();
 $subparts = array();
 …
}

Each $entry is an object, which has methods that let us easily pull the information we want,
and place it into a marker array. We use the htmlspecialchars function on values to
convert any HTML entities:

$markers['###VIDEO_TITLE###'] = htmlspecialchars($entry->
 getVideoTitle());
$markers['###VIDEO_UPDATED###'] = htmlspecialchars($entry->
 getUpdated());
$markers['###VIDEO_DESCRIPTION###'] = htmlspecialchars($entry->
 getVideoDescription());
$markers['###VIDEO_CATEGORY###'] = htmlspecialchars($entry->
 getVideoCategory());
$markers['###VIDEO_URL###'] = $entry->getVideoWatchPageUrl();
…

The list of tags is an array, so we treat it as such. We have a template for how each tag should
be rendered, so we substitute the marker with the tag value, and append it to the list:

$videoTags = $entry->getVideoTags();
foreach ($videoTags as $videoTag) {
 $subparts['###VIDEO_TAGS###'] .=
 $this->cObj->substituteMarker($tagRow,
 '###VIDEO_TAG###', $videoTag);
}

We substitute the video template with the data we have acquired, and append it to a running
list. Note how both markers and subparts (tags) are substituted here:

$videoList .= $this->cObj->substituteMarkerArrayCached($videoRow,
$markers, $subparts);

Finally, we substitute the list into the template, and return it. It will be placed at the location
where the plugin was inserted on the page.

Chapter 6

147

There's more...
This was just an introduction to the YouTube API, and to really have a functional application,
you would utilize other features.

Displaying video
The plugin redirects the user to www.youtube.com to view the video. Of course, as a
webmaster you want to keep the user on your site as long as possible. So, it makes sense to
render the YouTube video in your template on your site. YouTube API provides enough data
to show the video and related fields. We can even use the Media content element, which we
covered in Chapter 5, to render the video.

Sending parameters to plugins
A recommended way of sending parameters in TYPO3 is to have them in an array, with the
plugin class as the name. For example, to send a search term to our plugin on page 21, the
URL would be http://example.com/index.php?id=21&tx_youtubeconnector_
pi1[searchTerm]=windows.

A page in TYPO3 can have a number of different plugins, expecting a number of parameters.
Passing parameters in this fashion prevents conflicts between plugins, and keeps them
relatively isolated. Furthermore, the parameters will be automatically available to us through
the class variable piVars.

See also

ff Reading list of movies from YouTube API
ff Authenticating requests to YouTube API

7
Creating Services

In this chapter, we will cover:

ff Extracting metadata from OpenOffice documents

ff Processing audio using a service

ff Converting a video into FLV upon import

ff Converting audio using services

ff Building an audioConversion service

Extracting metadata from OpenOffice
documents

Chapter 3 Operating with Metadata in Media Files recipes described how services work to
extract metadata embedded in various files. There are times when no extractor exists for the
file format that you need. In this case, you can write a service to extract that metadata from
the files.

We will now cover how to extract metadata that is stored in popular OpenOffice documents.
These files can be created in Writer, and have the extension .odt. This extension will also
work for other files created by the OpenOffice suite, including .ods from Calc, and .odp
from Impress.

To learn more about OpenOffice, go to http://www.openoffice.org.

Creating Services

150

This is just one of the multitudes of services you can create. For example, you could create
a service to extract the contents of a text file from various formats, or to handle user
authentication, both frontend and backend.

Furthermore, you can utilize services in your own extensions, decoupling functionality from
the core logic of the extension, and providing a freedom of implementation for the future.

Getting ready

To start, make sure you have Kickstarter and DAM extensions installed. Refer to the Installing
needed extensions recipe in Chapter 1 for specific instructions. We will use the Kickstarter to
create a framework for the extension, and then we will fill it up with code. You can follow the
same procedures to create services for other tasks.

The metadata extractor will also rely on the ZIP support present in the PHP installation. Make
sure you get the following output for phpinfo() to confirm that the needed support exists:

To test how our service is working, we need a test document with metadata. Use OpenOffice
Writer to create a sample file. Click on File and choose Properties. Fill in some fields under
the Description tab. Click OK, and save the document.

Chapter 7

151

How to do it...
1.	 Go to the Admin tools | Extension Manager module, then the Create new Extension

submodule.

2.	 Enter your extension key, and make sure to register the key so that no one else uses
it. For this extension, you can enter meta_openoffice.

3.	 Click on the plus icon (+) next to General info to edit the basic required information
about the extension.

4.	 Fill in the extension title, as the users will see it in the Extension Manager, and enter
a brief description. For Category, select Services.

5.	 Under the list of dependencies, enter dam.

6.	 Click on the plus icon (+) next to Services. Fill the form as shown in the
following screenshot:

Creating Services

152

7.	 Click View result to see which files will be created. Write the files to the location
you specify.

8.	 Replace the file class.tx_metaopenoffice_sv1.php with the file from the
code pack (http://www.packtpub.com/files/code/8488_Code.zip).

9.	 Install the extension.

10.	 Upload the test file described in the Getting ready section above into DAM.

11.	 Check the DAM record. It should contain the metadata from the OpenOffice document:

Chapter 7

153

How it works...
In this recipe, we created a service to read metadata from OpenOffice documents, and store
it in a DAM record, accessible to TYPO3. First, let's examine the way OpenOffice embeds
metadata in its documents. There is public information about the OpenOffice format that
provides enough information for us to know how to extract the data.

An easy to follow presentation on the topic can be found at:
http://marketing.openoffice.org/ooocon2008/programme/
friday_1475.pdf.

Creating Services

154

The service we created is loaded into the TYPO3 framework in ext_localconf.php. Here is
the code that makes TYPO3 aware of the service if the extension is installed:

t3lib_extMgm::addService($_EXTKEY, 'metaExtract',
 'tx_metaopenoffice_sv1',
 array(
 'title' => 'Open Office metadata extract',
 'description' => 'Extracts metadata from ' .
 'Open Office (ODT, ODS, and others) files',
 'subtype' => 'odt,ods,odp,odb,odf',
 'available' => TRUE,
 'priority' => 50,
 'quality' => 80,
 'os' => '',
 'exec' => '',
 'classFile' => t3lib_extMgm::extPath($_EXTKEY) .
 'sv1/class.tx_metaopenoffice_sv1.php',
 'className' => 'tx_metaopenoffice_sv1',
)
);

t3lib_extMgm::addService is described in the Extracting metadata from images recipe
in Chapter 3, but we'll go through it again briefly. The first parameter sent to the function is the
extension key, which is available in the variable $_EXTKEY in ext_localconf.php. The
second parameter is the service type, in this case metaExtract. The third parameter is the
service key that uniquely identifies our service. The fourth parameter is an array describing
the service.

Most elements in the array are self explanatory, but there are a few that should be focused
on. subtype lists file extensions that can be processed by this service. priority of the
service determines the order in which it is called. We leave it at 50, which is default. If an
installation has several similar services, it can reconfigure the priority based on the quality of
result that each service provides. quality value determines the value of the result. We make
it higher than the default 50 because most of the metadata contained within the OpenOffice
document can be scrubbed by our service. There are no special requirements for operating
system (os) or external programs (exec), so these values are empty.

We now turn to the meat of our service— doing the extraction when a qualifying file is
uploaded. A basic summary of the OpenOffice format tells us that the format is zipped, with
the metadata embedded as XML. So, we need to unzip the file, and parse the XML inside of it.
Let's see how we can do this.

init()

The init() function initializes the service class, and returns a Boolean indicating its
availability. This is a final check before running the service, so, we need to verify that the
PHP installation has ZIP support enabled. A good indicator of this is an availability of function
zip_open(), which should be globally available if PHP is compiled with ZIP support:

Chapter 7

155

function init() {
 $available = parent::init();

 if (!function_exists('zip_open')) {
 // No ZIP support in this PHP installation
 $available = FALSE;
 }

 return $available;
}

process()

The process function actually processes the file (imagine that!), and extracts the metadata,
returning an array of DAM fields, which will form the DAM record. First, we gather our
parameters, and find the path to the input file:

// Get the file that we need to work on
if ($inputFile = $this->getInputFile()) {
...

Assuming we do have a valid path to the file we want to extract metadata from, we initialize an
XML reader, and open the file as a compressed stream. This is why we use a URI-like path to
the file: zip://path/to/file.odt#meta.xml.

$reader = new XMLReader();
// Read the Open Office file as a compressed strem
$reader->open('zip://' . $inputFile . '#meta.xml');

It will open the file, uncompressing it on the fly, and read the meta.xml file. Our job now is to
go through it, element by element, compiling an array of metadata:

// Go through the XML elements
while ($reader->read()) {
 if ($reader->nodeType == XMLREADER::ELEMENT) {
 // We have an XML schema element
 $element = $reader->name;
 } else {
 if ($reader->nodeType == XMLREADER::END_ELEMENT
 && $reader->name == 'office:meta') {
 break;
 }
 // We don't have a value
 if (!trim($reader->value)) {
 continue;
 }

 // We have a value - we need to keep it in an array
 if ($element == 'meta:keyword') {
 $meta[$element][] = $reader->value;

Creating Services

156

 } else {
 $meta[$element] = $reader->value;
 }
 }
}

Array $meta now contains all the metadata from the file. We now need to map it to the
DAM fields, and this is done by the next function. process() returns any errors that were
encountered to indicate either a success or failure, letting the service engine decide what to
do next.

parseMetaData()

This function uses a simple switch statement on each element of the array, assigning the
matching value to appropriate DAM fields. At the end, the entire metadata array is saved in
the DAM record, so that it is available under the Extra data tab, and is also available for any
extensions that may utilize it.

foreach ($metaData as $key =>$value) {
 switch ($key) {
 case 'dc:title':
 $fields['title'] = $value;
 break;
...
 case 'meta:keyword':
 $fields['keywords'] = implode(',', $value);
 break;
 case 'meta:generator':
 $fields['file_creator'] = $value;
 break;
 }
}

$fields['meta']['openoffice'] = $metaData;

See also

ff Extracting metadata from audio
ff Extracting metadata from images
ff Processing audio using a service
ff Installing needed extensions

Processing audio using a service
We will now follow a few simple steps to create a service that will be called when an audio or
video file is uploaded.

Chapter 7

157

Getting ready
To start, make sure you have the Kickstarter and DAM extensions installed. We will use the
Kickstarter to create a framework for the extension, and then we will fill it up with code.

How to do it...
1.	 Go to the Admin tools | Extension Manager module, then Create new Extension.
2.	 Enter your extension key, and be sure to register the key, so no one else uses it. For

this extension, you can enter cc_meta_audio.
3.	 Click on the plus icon (+) next to the General info to edit the basic required

information about the extension.
4.	 Fill in the extension title, as the users will see it in the Extension Manager, and enter

a brief description. For Category, select Services.
5.	 Under the list of dependencies, enter dam, getid3.
6.	 Click the plus icon (+) next to services, to create a new service class. Fill it in as

shown in the following screenshot (for an explanation of the fields, see the How it
Works... section under the Extracting metadata from images recipe).

7.	 That's it! Click View result to see what the files will look like, and write the files
to a location that you specify. You can now fill in the created files with your code
and test how it executes. To finish this task, download the complete source code of
class.tx_ccmetaaudio_sv1.php from (http://www.packtpub.com/files/
code/8488_Code.zip) and replace the created file.

Creating Services

158

How it works...
In this recipe, we built a service that extracts metadata embedded in audio files, and stores it
in a DAM record. We will now go through the file sv1/class.tx_ccmetaaudio_sv1.php
and see how it works.

Include a getid3 class

This service will fill in a DAM record with metadata, so we need to ensure that DAM is
installed. We will also use the getid3 library, available in TYPO3 as the getid3 extension.
Alternatively, we could have included the entire library in our extension, but creating a
dependency allows us to keep our code simple, and easy to understand, and reduces
duplication in case a user already needs the getid3 extension for other purposes.

For more information about the getid3 parser, see: http://getid3.
sourceforge.net/.

This line at the top of the file includes the necessary getid3 class:

require_once(t3lib_extMgm::extPath('getid3') .
 'classes/getid3.php');

Notice the t3lib_extMgm::extPath function call. There are several locations where the
getid3 extension could be installed, and we don't want to guess. The function figures out the
correct path, so all we need to worry about is the path to the correct file within the extension.

init()

The init() function is called when the class is initialized, and runs a final check to
make sure the service can be called. It must return a Boolean TRUE if the class should be
called further.

 function init() {
 $available = parent::init();

 if ($available) {
 if (!t3lib_extMgm::isLoaded('getid3')) {
 $available = FALSE;
 }
 }

 return $available;
 }

Chapter 7

159

process()

The process() function is the main function of the class. The content of the file could
potentially be passed to the function, which is why we have the lines:

 // If we were passed some content,
 // we need to write it to a file first
 if ($content) {
 $this->setInput ($content, $type);
 }

Most of the time, however, the file information will already be set, and can be retrieved
by calling:

$inputFile = $this->getInputFile();

Whatever metadata we collect needs to be stored as an array in $this->out['fields'],
where the keys of the array correspond to the TCA fields of the DAM record. We will fill in some
of the fields further down.

If we do have the file information, we can instantiate the class getID3, and get the metadata
from the file:

 $getID3 = new getID3;

 // Analyze file and store returned data
 // in $metaData
 $metaData = $getID3->analyze($inputFile);

$metaData now contains an array of information about the file. We need to transform it from
the structure returned by getid3 to a structure understood by DAM and TYPO3. That's what the
function processMetaData($metadata) does.

$this->out['fields'] = $this->processMetaData($metaData);

In order to signal success of operation, there are a few error capturing methods:

 // See if there are any errors
 if (is_array($metaData['error'])) {
 $this->errorPush(T3_ERR_SV_GENERAL,
 implode(', ', $metaData['error']));
 }

This creates a general error, if it is set. Of course, if there were no file given, we want to issue
a different error:

$this->errorPush(T3_ERR_SV_NO_INPUT, 'No or empty input.');

Creating Services

160

Finally, we need to return the last error to the object calling the service to let it know if we
have experienced any issues:

return $this->getLastError();

If there were no error, getLastError() returns TRUE, indicating that the output of the
service can, and should be used.

processMetaData()

As previously mentioned, processMetaData() transforms getid3 tags into DAM fields.
$data['tags_html'] contains the metadata we're most interested in.

foreach ($data['tags_html'] as $tagType) {
 foreach ($tagType as $tagKey => $tagValue) {
 switch ($tagKey) {
 case 'title':
 if (isset($tagType['artist'])) {
 $fields['title'] = implode(' & ',
 $tagType['artist']) . ' - ' . implode(' & ',
 $tagValue);
 } else {
 $fields['title'] = implode(' & ', $tagValue);
 }
 $extraID3Fields['title'] = implode(' & ',
 $tagValue);
 break;
 case 'comment':
 $fields['description'] = implode(' & ',
 $tagValue);
 $extraID3Fields['comment'] =
 $fields['description'];
 break;
 default:
 $extraID3Fields[$tagKey] = implode(' & ',
 $tagValue);
 }
 }
}

The reason we use the implode() function, is that the $tagValue could be an array,
containing several values (for example, two or more artists). We need to account for this
possibility, and merge them into a string. If it's a string, it will be returned unmodified.

Chapter 7

161

Ideally, you would want to check the data type of the variable, and handle
it accordingly. For example:
$fields['title'] = is_array($tagValue) ? implode(' &
', $tagValue) : $tagValue;

We left it out for the sake of simplicity.

After we have finished transforming, we keep the extra fields that don't directly match any of
the DAM fields:

 $fields['meta']['id3'] = $extraID3Fields;
 $fields['meta']['audio'] = $extraAudioFields;
 $fields['meta']['video'] = $extraVideoFields;

This way extensions can make use of this data, even if it is not directly usable by the DAM.
The metadata is visible in the Extra data tab of a DAM record.

Creating Services

162

See also

ff Extracting metadata from OpenOffice documents
ff Extracting metadata from audio
ff Extracting metadata from images

Converting a video to FLV upon import
One of the most popular formats for videos online is FLV. FLV stands for Flash Video, and
integrates easily with the Adobe Flash Player and other SWF players, which has led to its
success.

At this time, most video capture is done using other formats—predominantly AVI, but also
MPG and MOV. In this tutorial, we will create an extension that will convert uploaded videos
into FLV format.

Getting ready
We assume that DAM is installed for this extension.

The first step in approaching this kind of problem is to find a suitable place to hook into.
The best place for this task is in class.tx_dam_tce_extfilefunc.php:

foreach($TYPO3_CONF_VARS['EXTCONF']['dam']['fileTriggerClasses']
 as $classKey => $classRef)	 {
 if (is_object($obj = &t3lib_div::getUserObj($classRef)))	 {
 if (method_exists($obj, 'filePostTrigger')) {
 $obj->filePostTrigger($action,
 $this->log['cmd'][$action][$id]);
 }
 }
}

We will now create a class to utilize this hook.

How to do it...
1.	 Install FFmpeg.

Chapter 7

163

We will be using FFmpeg to do the conversion, so make sure that you install it.
If your system already has FFmpeg configured, you can skip this section.
APT should install a stable version for us:
Shell> apt-get install ffmpeg

2.	 Create a new extension, with only General info data. Alternatively, you can place the
functionality into an existing extension, but we will keep it modular.

3.	 Modify ext_localconf.php, adding the call to the hook:
require_once(t3lib_extMgm::extPath($_EXTKEY) .

'class.tx_flvConverter.php');

$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['dam']
['fileTriggerClasses'][] = 'tx_flvConverter';

4.	 Create the file class.tx_flvConverter.php and fill it with content from the
code pack given in (http://www.packtpub.com/files/code/8488_Code.zip).

5.	 Upload a test file, and check that the FLV equivalent is created.

How it works...
Most of the conversion process is done by FFmpeg, and is completely transparent to us. For
more information about FFmpeg, go to http://ffmpeg.org/.

ext_localconf.php
This file is included when the framework is initializing. Our call to the hook is declared
at that time, so when a file is uploaded, the hook initializes our class and calls the
filePostTrigger function.

class.tx_flvConverter.php
This is the main file of the extension, as far as conversion is concerned. Let's examine what
each function does.

filePostTrigger

This function is executed by the hook mentioned above. The first thing it checks is if the action
is upload—meaning the file is being uploaded—and file information is set. Empty upload file
will still trigger the function execution, but $id array will be empty. Other options for action are
delete, copy, move, rename, newfolder, newfile, editfile, and unzip.

An interesting exercise would be to implement actions for other
actions—for example moving the FLV when the original is moved,
and deleting it when the original is removed. We'll leave it to the reader.

Creating Services

164

The function then calls the t3lib_basicFileFunctions::getTotalFileInfo function,
which returns an array with basic information about the file including timestamp, size, type,
permissions, and more. If the file is of the allowed type, the function calls the compileExec
function, executes the command it returns, and passes the output to processOutput.

compileExec
compileExec creates the command that will be issued to the host system to convert the file.
It takes a few options into account, and those can be configured in the Extension Manager.

The options are controlled by the ext_conf_template.txt file. This file has a specific
syntax, which TYPO3 understands and creates the needed fields in the Extension Manager,
storing the settings in localconf.php.

 # cat=basic/enable; type=string; label=Audio Frequency
audioFrequency = 22050

The settings are then available in $GLOBALS['TYPO3_CONF_VARS']['EXT']
['extConf']['flv_converter'] as a serialized string, which we unserialize and store in
$this->config.

Although we don't expect these options to contain quotes, or other strange characters, we
pass them through the PHP escapeshellarg() function to make sure the command we
create is shell safe.

processOutput
processOutput makes use of two functions to log the results. As the hook doesn't let us
return any output to the user, we're forced to log it.

t3lib_div::sysLog is a system log used by TYPO3, which can be configured by the user to
go into an external file, sent through e-mail, or written to an operating system, or PHP log.

t3lib_div::devLog is a log that can be controlled by extensions. We log the entire
output of the command line to it. See Debugging the extension in There's more... for more
information on how to acess the log.

There's more...
In this section, we will see how to debug the extension, clear cache, and look more closely at
file conversions.

Debugging the extension
How do you debug if the file was not converted as planned? Install a devlog extension, and
check the log after uploading a file. The log will contain the output of the command, and you
can see where the problem is.

You can also use an IDE with the PHP debugger to make sure your code is executing properly.
Refer to the Chapter 2 recipe Debugging code.

Chapter 7

165

More on file conversions
FFmpeg offers a wide variety of options, to perform almost any format conversion you might
need. For example, use the following command to convert MPG video into AVI:

ffmpeg –i inputVideo.mpg outputVideo.avi

Of course, this is not all you can do with FFmpeg. You can also use it to resize the video,
create different bitrate versions of videos for your users, generate a thumbnail, or sequence of
thumbnails from a video, and more.

Clearing cache
To speed up execution, TYPO3 combines the ext_localconf.php and ext_tables.php
files into a single file. This increases performance because TYPO3 doesn't have to browse
through the extension folders, including each file one at a time.

However, this means that any changes made to these files will not take effect until the
temporary files are removed. You can easily do this using the Clear configuration cache
option under the cache menu:

You can also turn off file caching in the Install Tool. The setting is $TYPO3_CONF_
VARS['EXT']['extCache'], and you can set it to 0 to prevent these configuration files
from being cached.

See also

ff Converting audio using services
ff Debugging code

Converting audio using services
Now, we will combine our experience from the Extracting metadata from OpenOffice
documents recipe earlier in this chapter, as well as what we learned in the last chapter to
create a service that would convert audio files upon import.

We will create an extensible system for conversions, providing only a few converters at first,
but allowing many more to be provided by extensions, which will use—you guessed it—services!

Creating Services

166

For the user interface part, we will use Ext JS, which is available for use in TYPO3 backend
since TYPO3 4.3. If you haven't heard about Ext JS, it is a JavaScript library, designed to make
powerful User Interface (UI) layouts easy to create.

For more information about Ext JS, go to http://www.extjs.com/.
To learn how to use it effectively, I recommend a book Learning Ext JS,
 Shea Frederick, Colin Ramsay, and Steve 'Cutter' Blades, Packt Publishing.

Getting ready
We will be creating a new extension, so make sure Kickstarter is installed. This recipe will skip
the details of how an extension is created, focusing instead on the important aspects. Refer
to previous recipes (Extracting metadata from OpenOffice documents, Processing audio
using a service) to get the detailed steps for extension creation.

The service we will create will use Mplayer, which is available in most package repositories
and can be easily installed under Debian:

Shell> apt-get install mplayer

If you don't have access to Mplayer, you can use this opportunity to create a service that can
use other methods for conversion.

How to do it...
1.	 Download the extension audio_conversion from the code pack.

2.	 Install the extension.

3.	 In the Media | File module, click on an audio file icon, and choose Convert.

4.	 Choose a conversion type, and click Convert.

Chapter 7

167

How it works...
There is a lot that happens here, so let's go through it step by step. Instead of taking
the usual approach used in this book, we will look at the plugin creation process from
the very start, mimicking the path that you will have to take in analyzing problems and coming
up with solutions.

Our task is to create a simple way for users to convert audio files to different formats within
TYPO3. The system needs to be flexible enough, so that new conversions can be easily added
at any point in the future. Conversions also need to work on different systems, regardless of
the operating system, or installed software.

There are two major components to the task—the backend processing and the user interface.
We need an optimal solution for both. Some tasks require you to prioritize one over the other,
and implementation will vary based on which one is more important. That is not the case
here, so we decide to use services for the backend processes, and Ext JS interface for the UI.

We will start with the UI, and work our way back to the backend. As we have chosen Ext JS as
a framework for our interface, we already have a concept in mind. We've seen how easy it is
to perform operations on files in DAM in the Uploading DAM files to Flickr recipe, when we
added a control button allowing us to upload images and videos to Flickr. That button opened
a new window, which sometimes required authentication. We want to use the same concept
here, but want to avoid the unnecessary pop up.

We now come up with the user interaction component. In this case, it is very simple, but you
should definitely draw a diagram for anything more complex. A user clicks on an audio file to
bring up a context menu and selects a conversion option. An Ext JS dialog opens up, giving
the user the choice of file types to which to convert. After choosing a type, the user clicks
the Convert button, and waits for the file to be converted. The new file is saved in the same
location as the old, but with a different extension, corresponding to the file type.

Creating Services

168

Please remember, that this is a simple demonstration exercise. In the real
world, file conversion is never this easy, as each format has its own quirks
and options, which may require a lot of knowledge and experience to be taken
advantage of. In addition, each format brings its own specific advantages,
which need to be leveraged by optimizing the parameters based on the
intended final use of the file.

We start coding by mocking up an HTML page, which would serve as a testing ground for
building the user interface:

<html>
<head>
<title>Conversion UI</title>
<link rel="stylesheet" type="text/css" href="ext-3.0.0/resources/css/
ext-all.css" />
<script src="ext-3.0.0/adapter/ext/ext-base.js"></script>
<script src="ext-3.0.0/ext-all-debug.js"></script>
</head>
<body>
</body>
</html>

The blank file just has all the components of Ext JS loaded, and it's ready for coding. We start
by creating the familiar Ext.onReady wrapper in the <head>:

<script language="JavaScript">
Ext.onReady(
function() {}
);
</script>

If it looks unfamiliar—don't worry! Follow along, and if something is unclear, refer to Ext JS
documentation. It's a lot more intuitive than some other JavaScript libraries.

The first thing we want to display to the user is a window. So, we add some code to the
onReady function:

Ext.onReady(
function() {
 var conv = new Ext.Window({
 title: 'Convert To:',
 id: 'convwin',
 width: 300,
 height: 100,
 renderTo: document.body,
 frame: true,
 }).show();
}
);

Chapter 7

169

If you save and preview the HTML page, you will see an empty, draggable window inside
the browser:

That's exactly what we were trying to do! Now, let's add some content to it. Let's add a form
with two buttons:

var conv = new Ext.Window({
 title: 'Convert To:',
 id: 'convwin',
 width: 300,
 height: 100,
 renderTo: document.body,
 frame: true,

items: [
 new Ext.FormPanel({
 labelWidth: 75,
 url:'form.php',
 frame: false,
 width: 285,
 defaults: {width: 200},
 buttons: [{
 text: 'Cancel',
 },{
 text: 'Convert',
 }]
 })
]
}).show();

Preview the file, and there will now be two buttons in our window:

Creating Services

170

Great! However, our buttons don't do anything yet. Let's add a select box:

new Ext.FormPanel({
 labelWidth: 75,
 url:'form.php',
 frame: false,
 width: 285,
 defaults: {width: 200},
 buttons: [{
 text: 'Cancel',
 },{
 text: 'Convert',
 }]

items: [

 new Ext.form.ComboBox({

 fieldLabel: 'Convert To',

 name: 'type',

 editable: false,

 displayField: 'name',

 mode: 'local',

 forceSelection: true,

 triggerAction: 'all',

 allowBlank: false,

 }),

]

})

Of course, an empty select box will not do us much good, so let's add a local store with a few
options. These can be selected, and will serve as the choices for our conversion process.
Eventually, we would want this list to be automatically populated.

new Ext.form.ComboBox({
fieldLabel: 'Convert To',
 name: 'type',
 editable: false,
 displayField: 'name',
 mode: 'local',
 forceSelection: true,
 triggerAction: 'all',
 allowBlank: false,
				
store: new Ext.data.SimpleStore({

 fields: ['key', 'name'],

Chapter 7

171

 data: [

 ['wav', 'WAV'],

 ['mp3', 'MP3']

]

 }),

}),

Once you add this in, the select box will be populated by items from our array.

At this point, it's a good idea to share this file with your designer, your team,
your superior, or your client, to get their take on the UI. Any input that will be
provided at this early stage will help to avoid costly changes at the end of
the development process.

We just quickly went through the process that may take you a lot of time at first, before
you're familiar with all the options you can use in an interface. Even then, you may want
to experiment with different layouts to see which one works best. Be patient, and you will
achieve a great result.

Meanwhile, we've finalized the user interface, so it is time to integrate it into TYPO3. We've
created the extension, and placed the resulting JS code (with a few changes, some of which
we will highlight soon) into the res folder. So now, we need to add the button to the context
menu. We add this line to ext_tables.php to register the action in DAM:

tx_dam::register_action ('tx_dam_action_audioConversion', 'EXT:audio_
conversion/class.tx_audio_conversion.php:&tx_audio_conversion');

And, we create the corresponding class:

class tx_audio_conversion extends tx_dam_actionbase {

 /**
 * Defines the types that the object can render
 * @var array
 */
 var $typesAvailable = array('icon', 'context');

 …

Creating Services

172

 /**
 * Returns a command array for the current type
 *
 * @return array Command array
 * @access private
 */
 function _getCommand() {
 $file = tx_dam::file_relativeSitePath(
 $this->itemInfo['file_path_absolute'] .
 $this->itemInfo['file_name']);
 $onClick = "TYPO3.DAM.ConversionWindow('" . $file .

 	 "');";

 if ($this->type === 'context') {
 $commands['onclick'] = $onClick.' return hideCM();';
 } else {
 $commands['onclick'] = 'return '.$onClick;
 }

 return $commands;
 }
}

You may notice that we call a JavaScript function onClick = TYPO3.DAM.
ConversionWindow()—so that the window we designed only comes up when we click
the Convert button in the context menu. We placed the function in its own namespace,
to avoid conflicts:

Ext.namespace('TYPO3.DAM');
TYPO3.DAM.Base = function() {};
TYPO3.DAM.ConversionWindow = function(file) {
…
}

If we test the functionality now, we will get a JavaScript error. That's because the Ext JS library
hasn't been loaded yet. TYPO3 provides an easy way to include Ext JS, along with the TYPO3
theme and adapters (which we will not use at this time):

$this->doc->getPageRenderer()->loadExtJs(TRUE, TRUE);

where $this->doc is an object of template class. Unfortunately, we don't have access to
this object from anywhere within the tx_audio_conversion class, and there is no place to
hook into in order to load the libraries.

Chapter 7

173

TYPO3 provides one last method for modifying existing classes—XCLASS. This is not a
preferred method, and should only be used as the last resort. XCLASSed class replaces the
original class, and is called in all instances. We want to XCLASS the file modfunc_file_
list/class.tx_dam_file_list.php from DAM. If you look on the bottom of the class,
you will find an XCLASS inclusion:

if (defined('TYPO3_MODE') && $TYPO3_CONF_VARS[TYPO3_MODE]['XCLASS']
['ext/dam/modfunc_list_list/class.tx_dam_list_list.php'])
{
 include_once($TYPO3_CONF_VARS[TYPO3_MODE]
 ['XCLASS']['ext/dam/modfunc_list_list/
 class.tx_dam_list_list.php']);
}

This means that the last XCLASS declaration loaded is used. If several extensions attempt to
XCLASS the same file, only one will succeed. This is the primary reason for avoiding XCLASS.

In this case, it looks like we have no other choice, so we create an XCLASS declaration in
ext_localconf.php:

// XCLASS DAM file list module
$GLOBALS['TYPO3_CONF_VARS']['BE']['XCLASS']['ext/dam/modfunc_file_
list/class.tx_dam_file_list.php']
 = t3lib_extMgm::extPath($_EXTKEY) . 'class.ux_tx_dam_file_list.
php';

And, we create the XCLASSing class:

class ux_tx_dam_file_list extends tx_dam_file_list {
 function main() {
 global $BACK_PATH;

 $this->pObj->doc->getPageRenderer()->loadExtJs(TRUE,
 TRUE);
 $this->pObj->doc->JScodeLibArray['tx_audioconversion'] =
 '<script type="text/javascript" src="' .	
 t3lib_div::resolveBackPath($BACK_PATH .
 t3lib_extMgm::extRelPath('audio_conversion')) .
 'res/tx_audioconversion.js"></script>';

 return parent::main();
 }
}

Creating Services

174

All this does is include the files we need, and return the content generated by the parent class
method. Our class extends the original tx_dam_file_list class, so all functions available
there are inherited by our object. XCLASSing can also be used to modify the output of certain
functions and classes.

Now, we're able to get the plugin in the DAM file module, and it loads the window. Our UI is
working as planned. Perfect! It is time to move on to the backend work.

If you look in the Ext JS declaration, we issue calls to ajax.php, and include a strange
parameter ajaxID. This is a standard protocol for issuing AJAX calls in the backend of TYPO3.
We have two calls that we need to handle—one to load the file types we can convert the audio
file into, the other to perform the conversion.

For a detailed explanation of how AJAX calls work in the backend of TYPO3,
refer to TYPO3 Core API: http://typo3.org/documentation/
document-library/core-documentation/doc_core_
api/4.2.0/view/3/9/.

We first register our two calls in ext_localconf.php:

$GLOBALS['TYPO3_CONF_VARS']['BE']['AJAX']['tx_audio_conversion::conve
rsionService']
 = t3lib_extMgm::extPath($_EXTKEY) . 'class.tx_audio_conversion_
service.php:tx_audio_conversion_service->convert';
$GLOBALS['TYPO3_CONF_VARS']['BE']['AJAX']['tx_audio_
conversion::conversionTypes']
 = t3lib_extMgm::extPath($_EXTKEY) . 'class.tx_audio_conversion_
service.php:tx_audio_conversion_service->listTypes';

And, we have to create the class to handle the AJAX calls:

class tx_audio_conversion_service {
 public function listTypes($params, &$ajaxObj) {
 …
 $ajaxObj->setContentFormat('json');
 $ajaxObj->setContent($result);
 }
…

Chapter 7

175

 public function convert($params, &$ajaxObj) {
 …
 $ajaxObj->setContentFormat('json');
 $ajaxObj->setContent($result);
 }
}

Let's implement listTypes function—it should get an array of file types the file can be
converted to.

/**
* Get the list of types that a file could be converted to
*
* @param array Parameter array from the AJAX object
* @param array AJAX object
* @return void
*/
public function listTypes($params, &$ajaxObj) {
 try {
 $this->init(t3lib_div::_GET('tx_audioconversion_file'));
 $types = $this->getTypes();

 foreach ($types as $type) {
 $result['types'][] = array(
 'id' => $type,
 'ConversionType' => strtoupper($type)
);
 }

 } catch (Exception $e) {
 $result = array(
 'success' => false,
 'errors' => array(
 'msg' => $e->getMessage()
)
);
 }
 $ajaxObj->setContentFormat('json');
 $ajaxObj->setContent($result);
}

/**
* Return an array of file types that the file can be ocnverted to
* Gather the types from all the services we have in the system

Creating Services

176

*
* @return array List of extensions
*/
private function getTypes() {
 $types = array();

 if (is_array($GLOBALS['T3_SERVICES']['audioConversion'])) {
 foreach ($GLOBALS['T3_SERVICES']['audioConversion']
 as $key => $info) {
 $requireFile =
 t3lib_div::getFileAbsFileName($info['classFile']);
 t3lib_div::requireOnce($requireFile);
 $obj = t3lib_div::makeInstance($info['className']);
 $types = array_merge($types,
 $obj->getTypes($this->fileInfo['fileext']));
 }
 }

 return $types;
}

/**
* Initialize the class, gather all parameters,
* throw exception if something is wrong
*
* @param string File which we want to convert
* @return void
*/
private function init($file) {
 $this->file = $file;
 $this->fileInfo = t3lib_basicFileFunctions::getTotalFileInfo($this-
>file);
 $this->fileInfo['abs_path'] = t3lib_div::getFileAbsFileName($this-
>file);
 if (!is_file($this->fileInfo['abs_path'])) {
 throw new Exception('File not found');
 }
 if (!t3lib_div::isAllowedAbsPath($this->fileInfo['abs_path'])) {

 throw new Exception('File location not allowed');

 }

}

Chapter 7

177

As you can see, we first gather the information about the file we were passed, and make sure
the file is in the web-readable space (otherwise, it would be too easy to break our application).
Then, we call the function getTypes() to gather all services of type audioConversion
(which, we created just for this purpose), and see which formats they can convert to, given the
current file format.

All information we want to return (including errors, if such occur during the processing) is
stored in an array. At the end of the execution, we tell the AJAX class that we want to return
this information as a JSON (JavaScript Object Notation) string, which Ext JS can handle easily
and efficiently.

We now turn to the most interesting part of this program—the conversion. At this point, you
can get a list of file types that the file can be converted to—assuming you already created
a service, so that when a type is selected, we need to do the conversion. We create the
implementation in the tx_audio_conversion_service class:

/**
* Perform the conversion
*
* @param array Parameter array from the AJAX object
* @param array AJAX object
* @return void
*/
public function convert($params, &$ajaxObj) {
 try {
 $this->init(t3lib_div::_GET('tx_audioconversion_file'));
 $conversionType = strtolower(t3lib_div::_GET('type'));

 // Security check
 if (!in_array($conversionType, $this->getTypes())) {
 throw new Exception('File Type not allowed');
 }

 // Do the conversion
 $success = $this->getServices($conversionType);

 if ($success) {
 $result = array(
 'success' => true,
 'msg' => 'Successfully converted'
);
 } else {
 $result = array(
 'success' => false,
 'errors' => array(

Creating Services

178

 'msg' => 'No suitable service was found to do the
conversion'
)
);
 }
 } catch (Exception $e) {
 $result = array(
 'success' => false,
 'errors' => array(
 'msg' => $e->getMessage()
)
);
 }
 $ajaxObj->setContentFormat('json');
 $ajaxObj->setContent($result);
}

/**
* Go through the services to find the one willing to do the conversion
*
* @param string File extension which we want to convert to
* @return bool Success or failure of conversion
*/
private function getServices($conversionType) {
 $excludeServices = array();
 while ($serviceObj =
 t3lib_div::makeInstanceService('audioConversion', '*',
 $excludeServices)) {
 $serviceObj->setInputFile($this->fileInfo['abs_path'],
 $this->fileInfo['realFileext']);

 if (!$serviceObj->checkConversion(
 $this->fileInfo['realFileext'], $conversionType)) {
 // Service not suitable for us, add to "ignore" list
 $excludeServices[] = $serviceObj->getServiceKey();
 continue;
 }

 if ($serviceObj->process('','',array())) {
 // Processed successfully!
 return TRUE;
 } else {
 $excludeServices[] = $serviceObj->getServiceKey();
 }

Chapter 7

179

 }

 // No valid service for the conversion found
 return FALSE;
}

We go through the same security checks as before, and finally, get to the part where we
find out what services we have available to us. t3lib_div::makeInstanceService
returns only one service object that it considers to be best-suited for the task—based on
the environment variables and the subtype we pass in through the second parameter. In
this case, we don't use subtypes, so we pass a '*' string to match all the services of this
type. Our services should have a checkConversion function, which will make the final
call given specific file types, whether it's willing to do the conversion or not. If it is not, we
add the service key to the list of services to ignore, and try to get the best service again. We
perform this cycle, until either we find a service that will do the job, or we run out of services.
The actual work of converting the file from one format to the other is left up to the individual
services, and we cover it in the next recipe, Building an audioConversion service.

There's more...
We decided to go through each service until we find the best one. A more popular approach
is to let TYPO3 do all the hard work of choosing the right service—which it does based on the
availability of required functions and programs, as well as priority and quality levels set by the
services. In that case, you can use the subtypes to limit the selection of services.

Using service subtypes
Services can define subtypes, which would simplify our code for calling a service. Specific
subtypes vary based on the job at hand, and can reflect the file type, file contents, method of
operation, and more. If you can make use of subtypes in your service definition, the code to
perform service operations becomes much simpler. For example, here is the code from the
tx_dam_indexing class, which uses a service to extract metadata from the file:

 // find a service for that file type
if (!is_object($serviceObj = t3lib_div::makeInstanceService('metaExtra
ct', $fileType))) {
 // find a global service for that media type
 $serviceObj = t3lib_div::makeInstanceService('metaExtract',

 $mediaType.':*');

}
if (is_object($serviceObj)) {
 $serviceObj->setInputFile($pathname, $fileType);
 $conf['meta'] = $meta;
 if ($serviceObj->process('', '', $conf) > 0 AND
 (is_array($svmeta = $serviceObj->getOutput()))) {

Creating Services

180

 $meta = t3lib_div::array_merge_recursive_overrule($meta,
 $svmeta);
 }
 $serviceObj->__destruct();
 unset($serviceObj);
}

As you can see, DAM allows TYPO3 core to find the best service for the job, and only asks it for
the relevant output.

See also

ff Building an audioConversion service

ff Extracting metadata from OpenOffice documents
ff Uploading DAM files to Flickr

ff Processing audio using a service

Building an audioConversion service
In the previous recipe, Converting audio using services, we built a system that will convert
audio files to a variety of formats using services. By itself, the system doesn't do anything, and
relies on services to do the actual file conversion. We will now create an example service.

Getting ready
We will place the new service in the audio_conversion extension. If you've previously
downloaded the extension, it should have the service we're about to create. Feel free to skip
ahead to the How it works... section.

If you're creating your own service, make sure that you place it in a separate extension, and
list audio_conversion under dependencies.

How to do it...
1.	 Define the service in ext_localconf.php:

t3lib_extMgm::addService($_EXTKEY, 'audioConversion' /* sv type
/, 'tx_audioconversion_sv1' / sv key */,

 array(

 'title' => 'WAV',

 'description' => 'Converts to WAV',

Chapter 7

181

 'subtype' => '',

 'available' => TRUE,

 'priority' => 50,

 'quality' => 50,

 'os' => 'unix',

 'exec' => 'mplayer',

 'classFile' => t3lib_extMgm::extPath($_EXTKEY).'sv1/
 class.tx_audioconversion_sv1.php',

 'className' => 'tx_audioconversion_sv1',

)

);

2.	 Create the service in class.tx_audioconversion_sv1.php:
class tx_audioconversion_sv1 extends t3lib_svbase {

 var $prefixId = 'tx_audioconversion_sv1';

 var $scriptRelPath =

 'sv1/class.tx_audioconversion_sv1.php';

 var $extKey = 'audio_conversion';

 var $validFromExtensions = array('mp3', 'mpg');

 /**

 * Return the types we have available for conversion

 *

 * @param string File type, from which to do

 * the conversion

 * @return array Array of file types, to

 * which conversion can be made

 */

 function getTypes($from) {

 if (in_array(strtolower($from),

 $this->validFromExtensions)) {

 return array('wav');

 }

 }

 /**

 * Do the final check for conversion to make sure

Creating Services

182

 * the service is capable of making it.

 *

 * @param string Make conversion from this file type

 * @param string Make conversion to this file type

 */

 function checkConversion($from, $to) {

 if ($to == 'wav' && in_array($from,

 $this->validFromExtensions)) {

 return TRUE;

 }

 return FALSE;

 }

 /**

 * Initialize class, and return if its available

 *

 * @return bool Availability

 */

 function init() {

 $available = parent::init();

 return $available;

 }

 /**

 * Process the conversion

 *

 * @param string Content which should be processed.

 * @param string Content type

 * @param array Configuration array

 * @return boolean Success or failure of conversion

 */

 function process($content='', $type='', $conf=array()) {

 // If we were passed some content, we need to

 // write it to a file first (unlikely scenario)

 if ($content) {

 $this->setInput ($content, $type);

 }

Chapter 7

183

 // Get the file that we need to work on

 if ($inputFile = $this->getInputFile()) {

 // Save the file to the same location,

 // same filename, but different extension.

 // WARNING: This will overwrite the file if

 // it exists, or fail if the file is protected.

 $outFile = substr($inputFile, 0, strlen($inputFile) –

 strlen($this->inputType)) . 'wav';

 // Build command

 $exec = 'mplayer -quiet -vo null -vc dummy' .

 ' -af volume=0,resample=44100:0:1' .

 ' -ao pcm:waveheader:file="' .

 escapeshellarg($outFile) . '" "' .

 escapeshellarg($inputFile) . '"';

 // Execute command

 exec($exec . ' 2>&1', $output);

 // Write a log of what happened

 t3lib_div::devLog(implode("\n", $output),

 'audio_conversion', 1);

 }

 else {

 $this->errorPush(T3_ERR_SV_NO_INPUT,

 'No or empty input.');

 }

 return $this->getLastError();

 }

}

How it works...
Most of the information we learned about services before, still applies here. There are
a few extra functions though, which are not present in the default framework file created by
the Kickstarter.

getTypes()

This function returns an array of audio types that the file can be converted to. This function is
called during the compilation of file types in tx_audio_conversion_service->listTypes.

Creating Services

184

checkConversion()

This function is called at the conversion stage, and is the final check to make sure file types
are handled by the service. If this function returns TRUE, then the process function will be
utilized to perform the conversion.

process()

The process function is relatively straightforward, and is very similar to the FLV conversion
function (see Converting video to FLV upon import earlier in this chapter). Here, we build
a command line call to mplayer program, and write the output to the devlog. As we have
mplayer listed under the 'exec' section of the service information array we use during the
definition in ext_localconf.php, TYPO3 will verify that mplayer is a program that can be
executed. If it is not available, the service will be automatically disabled during runtime, and
will not be used.

See also

ff Converting audio using services
ff Extracting metadata from audio
ff Converting video to FLV upon import

8
Automating
Processes

In this final chapter, we will cover some tasks that large systems may encounter, which should
be automated. After all, that's what computers were designed for—the automation of tasks
that previously required manual labour.

In this chapter, we will cover:

ff Adding FTP access to the media repository

ff Indexing downloaded files

ff Setting up indexing rules

ff Categorizing files by geolocation

Adding FTP access to the media repository
In the next few recipes, we will cover some FTP-related tasks, starting with the basic job of
downloading files through FTP. This procedure can be used to synchronize files from a remote
location with your website.

In this recipe, we will connect to ftp.software.ibm.com, which allowed anonymous
access at the time of writing, and download the annual report.

Automating Processes

186

Getting ready
Make sure PHP is configured with FTP support. If you go to the Install Tool module phpinfo(),
you should see this output:

We will assume all directory paths exist—so if they don't, either change the values in the code,
or create the necessary local folders (specifically ibm under fileadmin).

How to do it...
Create a plug-in, module, or a CLI script with the following code:

$connection = ftp_connect('ftp.software.ibm.com');

$email = !empty($GLOBALS['BE_USER']['user']['email']) ?
 $GLOBALS['BE_USER']['user']['email'] : 'foo@example.org';

$login = ftp_login($connection, 'anonymous', $email);

$localDirectory = dirname($_SERVER['SCRIPT_FILENAME']) . '/' .

 $GLOBALS['BACK_PATH'] . '../' .

 $GLOBALS['TYPO3_CONF_VARS']['BE']['fileadminDir'] . 'ibm/';

$remoteDirectory = '/annualreport/2008/';

$list = ftp_nlist($connection, $remoteDirectory);

foreach ($list as $remoteFile) {

 // Difference between servers:

 // some prepend directory in the ftp_nlist,

 // others don't. Must check

 if (strpos($remoteFile, '/') === false) {

 $remoteFile = $remoteDirectory . '/' . $remoteFile;

 }

 $localFile = $localDirectory . basename($remoteFile);

 $success = ftp_get($connection, $localFile,

 	 $remoteFile, FTP_BINARY);

}

ftp_close($connection);

Chapter 8

187

How it works...
We'll break the code down, line by line.

All connections to FTP servers must first be opened, and then closed at the end.

$connection = ftp_connect('ftp.software.ibm.com');
…
ftp_close($connection);

Once we've established the connection, we need to log in to the server:

$login = ftp_login($connection, 'anonymous', $email);

In this case, we're logging into a server that allows anonymous access, so standard
authentication is username anonymous, and an e-mail address as the password. We use the
e-mail of a backend user as the password, as that field is not mandatory, we fall back to a
generic non-existent e-mail address.

If we were able to log in successfully, then we can download a list of files in a specific
directory:

$list = ftp_nlist($connection, $remoteDirectory);

Finally, we're able to download the files:

$success = ftp_get($connection, $localFile,
 $remoteFile, FTP_BINARY);

This will save the remote file into the location specified by the $localFile. In this case,
the folder contains PDF files, so we download them with a binary mode. The alternative is to
use FTP_ASCII for text data.

There is one more line that requires some explanation—it's the $localDirectory variable.
Here, we compile the absolute path to the folder where we will store the downloaded files, in a
way that works across sites and platforms:

$localDirectory = dirname($_SERVER['SCRIPT_FILENAME']) . '/' .
 $GLOBALS['BACK_PATH'] . '../' .
 $GLOBALS['TYPO3_CONF_VARS']['BE']['fileadminDir'] . 'ibm/';

dirname($_SERVER['SCRIPT_FILENAME']) returns the absolute path to the directory,
where the current script is running (for example: /var/www/typo3conf/ext/my_ext/
mod1). We append the $GLOBALS['BACK_PATH'], which is the path from the root of the
site to the typo3 directory. From there, we need to step one level back, and go into the
fileadmin directory (which can be configured in the Install Tool). Now, we can append our
folder where we want to save data, and our path is complete.

Automating Processes

188

The path we end up with probably looks like this:
/var/www/typo3conf/ext/my_ext/mod1/../../../../
typo3/../fileadmin/ibm

Some systems have trouble interpreting the "../" steps back. TYPO3 offers an
easy API function to take them out of the file path:
$localDirectory = t3lib_div::resolveBackPath($localDi
rectory);

To be completely strict, we should also use a backward slash if we're
running on a Windows server. We can use the TYPO3_OS constant, which
is set to WIN in a Windows environment, and adjust the directory separator
appropriately. But based on experience, forward slash usually works well on
Windows servers.

There's more....
We will now examine some things that we can do to expand upon this functionality.

Throwing exceptions
Any connection can fail for a variety of reasons—the server could be down, a network
component along the way might be busy, or anything else. Therefore, it's recommended
that we check that we have indeed established a connection:

$connection = ftp_connect('ftp.software.ibm.com');
if (!$connection) {
 throw new Exception('Connection to ftp.software.ibm.com failed');
}

Authentication can fail too, so we should provide some error checking after this step:

$login = ftp_login($connection, 'anonymous', $email);
if (!$login) {
 throw new Exception('Authentication to ftp.software.ibm.com'
 'failed');
}

File listing can fail too. The directory might be missing from the server, the connection could
be dropped in the middle—nothing involving remote servers is reliable. So, before we use the
file list in a foreach loop, we should check that it is an array:

$list = ftp_nlist($connection, $remoteDirectory);
if (is_array($list)) {
foreach ($list as $remoteFile) {
 …
 }

Chapter 8

189

} else {
 throw new Exception ('File listing failed');
}

What if we fail to download the desired file? This can happen for a variety of reasons—if the
file is large the connection could timeout, the server might get overloaded or simply go down
while someone is doing a reboot. We store the result of the operation in a variable called
$success. Can you guess what we can do with it? The name says it all! In fact, try reading the
next block of code aloud—it sounds very natural.

$success = ftp_get($connection, $localFile, $remoteFile,
 FTP_BINARY);

if (!$success) {
 throw new Exception('Failed to download ' . $remoteFile);
}

You would need to insert a try/catch block up the stack to catch the exception, and allow
the program to exit gracefully, rather than with a PHP catchable fatal error.

try {
 // Do FTP work…
} catch (Exception $e) {
 // Log the exception, and proceed with the execution
 t3lib_div::sysLog($e->getMessage() /*message*/,
 'my_extension', 3 /*severity level*/);
}

This is the best way to handle errors, and TYPO3 4.3 provides an exception handler to make
the error handling even more useful and user-friendly.

Downloading by date
If you run the task at regular intervals, you wouldn't want to download everything on the
server, but only new or updated files. The easiest way to go about this is to delete the files
once you download them. However, this is not always feasible, as you might be accessing a
shared server, or may not have enough permissions to delete files.

In this case, you would need to find the date on which the file was uploaded to the server, and
decide whether to skip it or download it. We will skip the decision logic, as it may differ based
on the application—you may want to keep a record of the last run time, or schedule your task
and download everything that was changed in between runs. We'll just take a look at how to
determine the file date:

$rawFileList = ftp_rawlist($connection, '.', TRUE);

Automating Processes

190

ftp_rawlist accepts three parameters:

ff The FTP stream, created using ftp_open

ff Path to the remote directory for which we want to get a list

ff Boolean, which determines if the call should be recursive—include files in
subdirectories

So, the call above is asking for a recursive list of files from the top directory. After it runs,
$rawFileList will contain an array of lines of output that will need to be parsed into
individual fields. Here is a function that can be used:

function parseFTPList($array) {
 foreach($array as $line) {
 $struc = array();
 $current = preg_split("/[\s]+/",$line,9);

 $struc['perms'] = $current[0];
 $struc['number'] = $current[1];
 $struc['owner'] = $current[2];
 $struc['group'] = $current[3];
 $struc['size'] = $current[4];
 $struc['month'] = $current[5];
 $struc['day'] = $current[6];
 $struc['time'] = $current[7];
 $struc['year'] = $current[8];
 $struc['name'] = $current[9];
 $struc['raw'] = $line;

 // fix for a bug where time replaces year...
 if (stripos($struc['year'], ':')) {
 // In this case assume current year
 $struc['year'] = date('Y');
 }

 $structure[$struc['name']] = $struc;
 }
 return $structure;
}

Output from different servers might vary slightly, and the function might
provide incoherent results. Be sure to test it, using either a debugger (see
the recipe Debugging code), or print_r statements on the output to verify
that the output is indeed accurate.

Chapter 8

191

Once the raw file list is parsed through the function, you will have a nice structured array with
all the elements you need. From here, you can use the existing date elements, or even find the
Unix timestamp of the file:

$structuredFileList = parseFTPList($rawFileList);
foreach ($structuredFileList as $file) {
 $dateString = $file['month'] . '-' . $file['day'] . '-' .
 $file['year'] . ' ' . $file['time'];
 $timestamp = strtotime($dateString);
…
}

Using scheduler for scheduled tasks
We wrote this script as a demonstration, but a common task is to periodically check the FTP
server for new files. We can create a CLI (Command Line Interface) task that we can launch
using a scheduler system extension at a specified interval.

Create a task file with the following content (name it appropriately for your extension, for
example tx_myext_ftpDownload):

class tx_myext_ftpDownload extends tx_scheduler_Task {
 public function execute() {

 $connection = ftp_connect('ftp.software.ibm.com');
 if (!$connection) {
 throw new Exception('Connection to' .
 'ftp.software.ibm.com failed');
 }
 $email = !empty($GLOBALS['BE_USER']['user']['email']) ?
 $GLOBALS['BE_USER']['user']['email'] :
 'no@email.com';
 $login = ftp_login($connection, 'anonymous', $email);
 if (!$login) {
 throw new Exception('Authentication to' .
 'ftp.software.ibm.com failed');
 }
 $localDirectory = dirname($_SERVER['SCRIPT_FILENAME']) .
 '/' . $GLOBALS['BACK_PATH'] . '../' .
 $GLOBALS['TYPO3_CONF_VARS']['BE']['fileadminDir'] .
 'ibm/';
 $remoteDirectory = '/annualreport/2008/';
 $list = ftp_nlist($connection, $remoteDirectory);
 if (is_array($list)) {
 foreach ($list as $remoteFile) {
 // Difference between servers: some prepend
 // directory in the ftp_nlist, others don't.
 // Must check
 if (strpos($remoteFile, '/') === false) {
 $remoteFile = $remoteDirectory . '/' .

Automating Processes

192

 $remoteFile;
 }
 $localFile = $localDirectory .
 basename($remoteFile);
 $success = ftp_get($connection, $localFile,
 $remoteFile, FTP_BINARY);
 if (!$success) {
 throw new Exception('Failed to download ' .
 $remoteFile);
 }
 }
 } else {
 throw new Exception ('File listing failed');
 }

 ftp_close($connection);
 return TRUE;

 }
}

Add this to ext_localconf.php to make the scheduler aware of the presence of the task:

$GLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']['scheduler']['tasks']['tx_
myext_ftpDownload'] = array(
 'extension' => $_EXTKEY,
 'title' => 'LLL:EXT:' . $_EXTKEY .
 '/locallang.xml:ftpDownload.name',
 'description' => 'LLL:EXT:' . $_EXTKEY .
 '/locallang.xml:ftpDownload.description',
 'additionalFields' => ''
);

You will now see the task listed in the scheduler Information submodule:

Chapter 8

193

And you can create a new task, and schedule it to run at a specified interval:

For more information about the scheduler,
refer to the scheduler extension manual.

Checking out other FTP functions
Just about anything you can do with an FTP client, you can do through PHP. Check out the full
function listing here:

http://us.php.net/manual/en/book.ftp.php.

See also

ff Indexing downloaded files
ff Debugging code

Automating Processes

194

Indexing downloaded files
Once you download the needed files, you would want to have them indexed by DAM. In the
Chapter 2 recipe Creating a frontend upload form we already indexed files uploaded from
the frontend, and in this recipe, we will index files in the backend (which is much easier!)

Indexing creates DAM records for files, extracting metadata in the process (using services).
When files are uploaded through DAM, this process is triggered automatically, but when we
download (or upload) files ourselves, we need to remember to ask DAM to index the new files.

Getting ready
We will design the code to work with and without DAM installed. Once again, we skip the steps
needed for the rest of the code, and just focus on the heart of the matter. You can use this in
various contexts, such as backend modules or CLI scripts.

How to do it...
Add the following code:

/**

 * Indexes a single file.

 *

 * @param string Path to the file on the server

 * @param integer Time of record creation

 * @param integer Page, where record will be stored

 * @return integer UID of the indexed file.

 */

function indexFile($path, $time = NULL, $pid = NULL) {

 // Set the page where the record will be stored

 $pid = isset($pid) ? $pid : tx_dam_db::getPid();

 // Set time when the record will be created

 if($time == null)

 $time = $GLOBALS['EXEC_TIME'];

 // Create indexing object

 $index = t3lib_div::makeInstance('tx_dam_indexing');

 $index->init();

 $index->initEnabledRules();

 $index->setRunType('auto');

 $meta = $index->indexFile($path, $time, $pid);

 return $meta['fields']['uid'];

}

Chapter 8

195

Call the code with the desired parameters, for example:

if (t3lib_extMgm::isLoaded('dam')) {

 $damUID = indexFile($pathToFile);

}

How it works...
We are using DAM functions to perform the indexing, which is completely abstract to us. We
initialize the class, followed by initialization of indexing rules. Rules allow you to customize
some default behaviours of the indexing process. See the recipe Setting up indexing rules
and refer to the DAM manual for a complete description.

Then, we initialize the tx_dam_indexing class, and set the run type to auto.

Run type value is written to the log, and to the file record.
It should be a four letter key that you can identify in case you
need to find out how the file was indexed.

Finally, we call the indexFile function, and our file is indexed. We get the file metadata, as
it was saved in the file record from that function, and store it in the $meta variable. You can
then manipulate the variable, or proceed with your program.

Before calling the function, we check if DAM is installed—if it's not, we don't need to index the
file (in fact, it wouldn't work):

if (t3lib_extMgm::isLoaded('dam')) {
 …
}

This is a standard way of adding cross-extension functionality, without adding the extension to
the list of dependencies.

There's more...

There are systems that allow FTP access to the fileadmin directory (see Setting up FTP
access recipe in Chapter 2). The files that are uploaded through FTP will not be indexed, but
you can index all new files on a schedule using the extension dam_cron.

Automating Processes

196

Using dam_cron
If you have an automatic process outside of TYPO3 downloading files, or you allow FTP access
to the admin folder, files will stay unindexed. New versions of DAM will auto index files when
you go to a directory, but this requires human action. We can also set up dam_cron to index
files on a schedule:

1.	 Install the latest version of dam_cron.

2.	 Enable the cron script in the extension settings:

3.	 Configure an indexing rule in Media | Tools | Cron Job. Go through the four steps to
set up an indexing configuration—specifically, the starting point, fields, initial values,
and more. After the last step, you will be prompted to save the configuration.

Remember the location of the file where you save it—you will need to
use it in the task setup.

Chapter 8

197

4.	 Create a new backend user with a username _cli_txdamcronm1, and a random
password. Make sure to give the user access to all DAM modules and tables, and add
the Media SysFolder under DB mounts.

If you have an installation with several cron jobs, or you foresee them in the
future, I highly recommend creating a backend user group, exclusively for
cron job users. This would greatly simplify rights management, and frequently
save you headaches from trying to figure out permission errors in the logs.

5.	 Finally, set up a cron call to the CLI script, with the indexing rules parameter.
For example:
/usr/bin/php /var/www/typo3conf/ext/dam_cron/cron/dam_indexer.
php --setup=/var/www/dam/uploads/tx_damcron/example.xml

Refer to the dam_cron manual for more information on how it needs to
be set up in different environments. It ships with the extension, but is also
available here: http://typo3.org/documentation/document-
library/extension-manuals/dam_cron/1.0.2/view/.

See also

ff Setting up indexing rules
ff Setting up FTP access
ff Categorizing files by geolocation
ff Creating a frontend upload form

Setting up indexing rules
We already mentioned briefly the indexing rules that can be set up in the Indexing
downloaded files recipe; however, we will now go into more detail about how they can be set
up, and what you can use them for.

Getting ready
Make sure both the extensions DAM and dam_index are installed.

Automating Processes

198

How to do it...
1.	 Go to Media | Tools | Indexing Setup.
2.	 In the file tree, select the folder that you would like to be the starting point for

indexing. Click Next.
3.	 In Step 2, check the option Dry run.
4.	 Skip Step 3 and 4.
5.	 In the last step, copy the XML from the textbox.

6.	 Edit page properties on the Media SysFolder, and in the TSconfig field,
enter the following:
tx_dam.indexing.defaultSetup (
<phparray>
 ...
</phparray>
)

Substituting the XML that you got in the last step.

How it works...
Files uploaded through the Media | File module are indexed one by one. Media | Indexing
module provided by the dam_index extension, allows multiple files—even entire folders and
subfolders to be indexed at once.

We have just walked through a series of steps to create a configuration that the indexing
process will use. However, there are a lot more options that we can set.

Chapter 8

199

There's more...
We will now cover the steps that we have skipped, and what we could do with their help.

Setting more options in Step 2
Step 2 gives a lot of options to customize the result of the indexing process:

Index sub folders
Enable this setting if you want to index files recursively—in the current folder, and all
subfolders. If disabled, only the files in the folder you selected in Step 1 will be indexed.

Categorize files from folder names
Enable this option to assign categories to DAM records, based on the file tree. If you already
have a category tree that loosely matches the folder tree you're about to index, enable the
fuzzy folder/category comparison. If you don't have a category tree, and would like to create
one to match the folder tree, check the second option.

Automating Processes

200

Reindexing
If the files have already been indexed, but you would like to index them again, check this
option. If you believe the files have new metadata that is not present in the DAM record, select
the first option to only get metadata that is missing. Select the second option to overwrite the
metadata in the record with the data from the file, but preserve the data in the record that is
no longer present in the file. Select the third option if you would like to completely replace the
DAM record with metadata from the file.

Force to make a title from file name
Normally, DAM will choose certain well known metadata fields to create the file title. If you
enable this option, however, DAM will be forced to create a title from the file name, even if
there is suitable metadata to create a title.

Dry run
When indexing, this option will force the module to print all the metadata and records that
would be created, without actually creating them. This option is extremely useful when you're
trying to check your rules as they apply to a certain set or subset of data. You can run indexing
on a production system without affecting your operations.

Delete all index data
This option will clear all indexing data from the system prior to running an index. It should
generally be avoided, as it will delete all the existing records and their relations.

Setting indexing field predefinition in Step 3
This step lets you set some specific values. If you check the checkbox next to a field, whatever
input is received during indexing for that field will not make it into the record. Instead, it will
use any value that you enter in the text field.

Chapter 8

201

Automating Processes

202

Indexing setup summary in Step 4
This last step gives an overview of everything you have selected, and gives you one last
chance to change it before proceeding with creating the rule set:

Setting more TSconfig options
There are a few more TSconfig options you could set.

tx_dam.indexing.skipFileTypes
This setting allows you to skip files of certain types from being indexed. Just enter a list of file
extensions to prevent them from being indexed.

Chapter 8

203

tx_dam.indexing.auto
If this is enabled (set to 1), files will be auto indexed. Auto indexing will happen when you
browse to a folder containing unindexed files using the Media | File module.

tx_dam.indexing.autoMaxInteractive
This setting is only relevant if auto indexing is turned on. Indexing is an intensive task, using a
lot of processing power and time. This setting places a limit on how many files can be indexed
at a time. So, if a directory contains thousands of unindexed files, only a few will be indexed at
a time.

tx_dam.indexing.replaceFile.reindexingMode
When replacing a file with another file, you can choose to either keep the DAM record from
the previous file, or index the new file, and replace the information in the record with the data
from the new file.

tx_dam.indexing.editFile.reindexingMode
This is same as the setting above, but applies when the file is edited within DAM.

tx_dam.indexing.useInternalMimeList
This uses internal MIME type to file type conversion list. In new versions of DAM, this list can
be accessed and modified in Media | Tools | Media types.

tx_dam.indexing.useMimeContentType
This uses PHP function mime_content_type to determine whether a file is of MIME type.

tx_dam.indexing.useFileCommand
If MIME type couldn't be found using the previous two methods, this option lets DAM find file
of MIME type using a call to the operating system (Linux only).

Refer to the DAM extension manual for more options and their descriptions.

See also

ff Categorizing files by geolocation
ff Indexing downloaded files

Automating Processes

204

Categorizing files by geolocation
DAM offers even more rules that can be used to modify the DAM record before it enters the
database. Suppose your site deals with a lot of photographs, submitted by editors from all
over the world. Images have good metadata describing the location of the shot, stored in
IPTC tags. In this recipe, we will create a rule to add a category to these images based on the
location where they were taken.

We will also use a different method for extending TYPO3—we will not create an extension,
but rather make all the needed changes in the local instance. This makes sense in cases of
specialized snippets of code that are not easily reusable, or are simply unique in their nature.

Getting ready
We will use the embedded metadata specifying the country and city to select an appropriate
category. To fully test this code, you need to have a category tree with several countries, and
their corresponding cities, and the files with embedded metadata that matches these locations.

How to do it...
1.	 In localconf.php (under typo3conf folder), add the following code:

$GLOBALS['TYPO3_CONF_VARS']['EXTCONF']['dam']
['indexRuleClasses']['dam_location_rule'] =
 'fileadmin/class.tx_damlocationrule.php:&user_damlocationrule';

2.	 Create a new file fileadmin/class.tx_damlocationrule.php with the
following content:
<?php
class user_damlocationrule {
 var $writeDevLog;
 var $setup = array(
 'enabled' => TRUE
);

 public function preIndexing() {
 // Nothing to do
 }

 public function postIndexing(&$infoList) {
 // Nothing to do
 }

 public function processMeta(&$meta, &$path, &$indexObj) {
 $parentUIDres =

Chapter 8

205

 $GLOBALS['TYPO3_DB']->exec_SELECTquery('uid',
 'tx_dam_cat', 'title=' .
 $GLOBALS['TYPO3_DB']->fullQuoteStr(
 $meta['fields']['loc_country'],
 'tx_dam_cat'));
 $parentUIDRec =
 $GLOBALS['TYPO3_DB']->sql_fetch_assoc($parentUIDres);
 $parentUID = intval($parentUIDRec['uid']);
 if ($parentUID) {
 $categoryRes= $GLOBALS['TYPO3_DB']->exec_
 SELECTquery('uid', 'tx_dam_cat',
 'title=' . $GLOBALS['TYPO3_DB']-
 >fullQuoteStr($meta['fields']['loc_city'],
 'tx_dam_cat') . ' AND pid=' . $parentUID);
 $categoryRec = $GLOBALS['TYPO3_DB']->sql_fetch_
 assoc($categoryRes);
 $meta['fields']['category'] .=
 intval($categoryRec['uid']) . ',';
 }

 return $meta;
 }

}
?>

How it works...
This class is loaded into a rule set that is used by DAM during indexing. The function
processMeta is executed after the metadata has been extracted from the file, but before
it has been written to the DAM record. In this function, we query the database for categories
matching our specification.

There's more...
This simple classification can be extended to cover a variety of scenarios. Here are a few more
tools for your arsenal:

Post processing
Another rule function is executed after the record has been inserted into the database. To
make use of this hook, implement postProcessMeta function in your class. For example:

public function postProcessMeta(&$meta, &$path, &$indexObj) {
…
}

Automating Processes

206

Creating new categories
As an alternative to creating the categories yourself, you can create them "on demand".
When a file with a specific location comes in, and there is no category for it, such a category
could be created with some default values and assigned to the DAM record. We leave the
implementation of this as an exercise for the reader.

See also

ff Setting up indexing rules
ff Indexing downloaded files

Index
Symbols
<media> HTML tag 80

A
Access Control Lists (ACLs) 118
addService function 62
Amazon S3

about 118
bucket, creating 123
DAM files, uploading 125-127
features 118
files, getting from 119, 120
files, uploading 121, 122
resources 118

Amazon S3 PHP class 118
Apache commands 11, 12
API 117
Application Programming Interfaces. See API
audio

converting, service used 165-179
processing, service used 156-158
rendering, media content object used 93

audio and video
rendering, content elements used 96, 97
rendering, media TypoScript object

used 94-96
rendering, rgmediaimages extension used

96, 97
audio_conversion extension 166
audioConversion service

building 180-183
checkConversion() 184
getTypes() 183
process() 184

audio metadata

about 64
versions 64

auth() function 136

B
backend users groups 38
bucket, S3

creating 123
creating, in EU 124
creating, in US 124
deleting 125
permissions, setting 124
working 123, 124

C
category tree

about 42
associations 43
example 42
photo galleries 43
preparing, for set up 42
setting up 42, 43

cc_meta_audio extension 65
cc_metaexif 59
ce_gallery

about 83
installing 83

class.tx_dam_flickr_upload_action.php 135
function _getCommand() 136
function getIcon() 136
function getLabel() 136
function isPossiblyValid() 135
function isValid() 136
var $typesAvailable = array() 135

class.tx_flvConverter.php, FFmpeg

208

about 163
compileExec 164
filePostTrigger 163
processOutput 164

class. tx_soundmanager2.php
customMediaRender() 104
customMediaRenderTypes() 103

class.tx_webflvplayer.php 108
customMediaParams() 108
customMediaRender() 108, 109
customMediaRenderTypes() 108

code
debugging 51,-53

compileExec 164
content elements 70
cURL 118
customMediaParams() function 108
custom media player

templates, utilizing 110-112
video, playing 106, 107, 108

customMediaRender() function 104-109
customMediaRenderTypes() function 103,

108

D
DAM files

uploading, to Flickr 132, 133
uploading, to S3 125-127

dam_flickr_upload extension
about 133
class.tx_dam_flickr_upload_action.php 135
ext_conf_template.txt 135
ext_tables.php 135
installing 133
mod1/index.php 136
working 134, 135

dam_index extension 198
dam_user_upload 125
DBAL (Database Abstraction Layer) extension

16
Debian server

setting up 9
working 9, 10

debuggers 51
digital asset management

category tree, setting up 42

code, debugging 51
filemount, setting up 35
file structure, setting up 31
frontend upload form, creating 44
frontend user groups, creating 53
frontend users, creating 54
FTP access, setting up 39
rights, setting up 36

Digital Asset Manager (DAM) extension 23
docheader 82
downloaded files

indexing 194, 195
indexing, dam_cron used 196, 197

E
exiftags 64
ext_conf_template.txt 135
extension key 154
ext_localconf.php 103, 108
ext_tables.php 135
exxtensions, TYPO3

installing 23, 24

F
FFmpeg

cache, clearing 165
class.tx_flvConverter.php 163
debugging 164
ext_localconf.php 163
file conversions 165
installing 162, 163

filemount
about 35
preparing, for set up 35
setting up 35

filePostTrigger 163, 164
files

categorizing, by geolocation 204, 205
getting from Amazon S3 118
new categories, creating 206
post processing 205
uploading, to Amazon S3 121
uploading, to Flickr 130

file structure
approaches, for set up 32
multiple files, uploading 33

209

multiple files, uploading via traditional file
module 34

setting up 31, 32, 33
Flash

embedding, in RTE 114
Flash Media Server. See FMS
Flickr

DAM files, uploading 132, 133
files, uploading 130, 131

Flickr API
about 128
debugging 130
error reporting 130
recent photos, downloading 130
working 129, 130

Flickr applications
asynchronous upload, selecting 132
permissions, gaining 132
synchronous upload, selecting 132
working 131

Flickr photos
getting 128

FMS
about 113
Flash, embedding in RTE 114
video, playing 113, 114

frontend plugin
creating 141
init() parameter 144
main() parameter 144
renderContent() function 145
renderFeed() function 145, 146

frontend upload form
creating 44, 45
getForm() 47
indexFile() 49
main() 45
uploadFile() 48
working 45

frontend user groups
creating 53, 54

frontend users
creating 54

FTP access
about 39
adding, to media repository 185-187
debugging 41

downloading, by date 189, 191
exceptions, throwing 188, 189
FTP functions, checking out 193
scheduler, using for scheduled tasks 191,

192
setting up 39, 40
working 40

function _getCommand() 136
function getIcon() 136
function getLabel() 136
function isPossiblyValid() 135
function isValid() 136

G
gallery

batch processing, utilizing 85, 86
creating, ce_gallery used 83, 84
Slimbox, using for displaying images 85

getForm() function
about 47
working 47

getid3 class
about 158
init() function 158
process() function 159
processMetaData() 160

Globally recognized avatars. See Gravatars
GraphicsMagick 10

I
IMAGE content object

about 78
alternative text, adding to images 79
extension, executing from 79
image, wrapping in link 79
working 78

ImageMagick
about 10
installing 10

images
rendering, content elements used 70, 71
rendering, TypoScript used 78

images, RTE
current image, modes of inclusion 76
drag n drop, modes of inclusion 75
embedding 72-4

210

embedding, TinyMCE used 77
maximum dimension constraints, setting 77
modes, of inclusion 75
plain image, modes of inclusion 75
resizing 76
upload image, modes of inclusion 75

indexFile() function
about 49
working 49, 50

indexing rules
setting up 197-199

indexing setup
about 197
indexing field predefinition, setting 200
summary 202
TSconfig options, setting 202

indexing setup, options
about 199
categorize files from folder names 199
delete all index data 200
dry run 200
force to make a title from file name 200
index sub folders 199
reindexing 200

init() function 136, 154
Internet Information Services (IIS) 16

J
JavaScript

including 29

K
Kickstarter 44

L
links

rendering to files, <media> tags used 79-82

M
main() function 136

about 45
working 45, 46

marker 29
media content object

class. tx_soundmanager2.php 103
extending 101
ext_localconf.php 103
working 103

media element
customizing options 91, 92

media parameters
allow fullscreen 92
allow scriptaccess 92
autoplay 92
loop 92
preview video 92
quality 92

metadata
extracting, from audio 65, 66
extracting, from images 59, 60
extracting, from OpenOffice documents

 149-154
extracting, from PDF 66, 67
inserting, into audio 64
inserting, into images 58
rendering, from DAM object 87

metaExtract
about 62
service priority 63
working 62, 63

mod1/index.php
about 136
auth() 136
init() 136
main() 136

mplayer 184
MS SQL 16
multithreaded environment

setting up 12, 13
working 13

MySQL 16

N
Network Attached Storage (NAS) 18
NFS

mounting 19
NFS share

setting up 18, 19
working 19

NuSphere PhpEd 51

211

O
object creating options, Amazon S3

additional information, sending in file headers
122

object, deleting 123
object permissions, assigning 122

object listing options, Amazon S3
about 120
common prefixes, finding 121
common prefixes, working with 121
objects, searching 121

OpenOffice 149
OpenOffice documents

metadata, extracting from 149-154
Oracle 16

P
parseMetaData() function 156
Photoshop

metadata, inseting into images 59
pmkslimbox 85
PostgreSQL 16
postProcessMeta function 205
process function 155, 156
processMeta function 205
processOutput 164
Pure-FTPd 39
putBucket function 124
putObject function 122

R
resources, Amazon S3

buckets 118
objects 118

rgmediaimages extension
about 96
configuration options 98

rgmediaimages extension, configuration
options

FLV and MP3 output, customizing 99, 100
YouTube videos, embedding 100

Rich Text Editor. See RTE
rights, for backend users

setting up 36, 38
RTE

about 72
images, embedding 72-74

S
s3_upload extension

about 125
improving options 127
working 127

s3_upload extension, improving options
unique Flexform options, setting 127

scalable architecture
creating 16, 17

service key 154
service subtypes 179
service type 154
sr_feuser_register 54
stdWrap properties 87
Subparts 29
sysext 23

T
t3lib_extMgm--addService 154
T3X extensions

T3X files, importing 25
unstable extensions, checking out 25

template
creating 25, 28
working 28

thread safe 12
TSconfig options

setting 202
tx_dam.indexing.auto 203
tx_dam.indexing.autoMaxInteractive 203
tx_dam.indexing.editFile.reindexingMode 203
tx_dam.indexing.replaceFile.reindexingMode

203
tx_dam.indexing.skipFileTypes 202
tx_dam.indexing.useFileCommand 203
tx_dam.indexing.useInternalMimeList 203
tx_dam.indexing.useMimeContentType 203

tt_content.media.20 95
TYPO3

about 12
Install Tool, launching 22
local extensions 23
needed extensions, installing 23

212

setting up 19, 20, 21
system extensions 23
working 21

TYPO3 content management system
expectations 8
Integrated Development Environment (IDE) 8
Note on IDE 8
prerequisites 8

TYPO3 Extension Repository (TER) 23
TYPO3 Multimedia! 8

U
uploadFile() function

about 48
working 48, 49

V
var $typesAvailable = array() 135
video

converting, to FLV 162-165
external videos, embedding 93
playing, custom media player used 106-108
playing, FMS used 113, 114
rendering, media content object used 89-92

W
weblog. See blog
website, TYPO3

template, creating 25-28
Windows

metadata, inseting into images 58
Windows web server

setting up 14, 15
working 16

X
XCLASS 173

Y
YouTube API

about 137
filters 139
frontend plugin, creating 142, 143
frontend plugin, working 144
movie list, reading 137, 138
parameters, sending to plugins 147
request, authenticating 140, 141
restrictions 139
URL, generating 140
video, displaying 147
video list, displaying with frontend plugin

 141-143
working 141
working with 137

Z
Zend_Gdata library

about 137
working 139

Thank you for buying
TYPO3 4.3 Multimedia
Cookbook

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that project.
Therefore by purchasing TYPO3 4.3 Multimedia Cookbook, Packt will have given some of the
money received to the TYPO3 project.

In the long term, we see ourselves and you—customers and readers of our books—as part of the
Open Source ecosystem, providing sustainable revenue for the projects we publish on. Our aim at
Packt is to establish publishing royalties as an essential part of the service and support a business
model that sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

Building Websites with
TYPO3
ISBN: 978-1-847191-11-3 Paperback: 208 pages

A practical step-by-step tutorial to creating your TYPO3
website

1.	 A practical step-by-step tutorial to creating your
TYPO3 website

2.	 Install and configure TYPO3

3.	 Master all the important aspects of TYPO3,
including the backend, the frontend, content
management, and templates

4.	 Gain hands-on experience by developing an
example site through the book

TYPO3: Enterprise Content
Management
ISBN: 978-1-904811-41-1 Paperback: 624 pages

The Official TYPO3 Book, written and endorsed by the
core TYPO3 Team

1.	 Easy-to-use introduction to TYPO3

2.	 Design and build content rich extranets and
intranets

3.	 Learn how to manage content and administrate
and extend TYPO3

Please check www.PacktPub.com for information on our titles

TYPO3 Extension
Development
ISBN: 978-1-847192-12-7 Paperback: 232 pages

Developer's guide to creating feature rich extensions
using the TYPO3 API

1.	 Covers the complete extension development
process from planning and extension generation
through development to writing documentation

2.	 Includes both front-end and back-end
development

3.	 Describes TYPO3 areas not covered in the official
documentation (such as using AJAX and eID)

4.	 Hands on style, lots of examples, and detailed
walkthroughs

Joomla! 1.5 Multimedia
ISBN: 978-1-847197-70-2 Paperback: 357 pages

Build media-rich Joomla! web sites by learning to embed
and display Multimedia content

1.	 Build a livelier Joomla! site by adding videos,
audios, images and more to your web content

2.	 Install, configure, and use popular Multimedia
Extensions

3.	 Make your web site collaborate with external
resources such as Twitter, YouTube, Google, and
Flickr with the help of Joomla! extensions

4.	 Follow a step-by-step tutorial to create a feature-
packed media-rich Joomla! site

Please check www.PacktPub.com for information on our titles

	TYPO3 4.3 Multimedia Cookbook (2010) (ATTiCA)
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Setting up a web server on Debian
	Setting up a multithreaded environment
	Setting up a web server on Windows
	Creating a scalable architecture
	Setting up an NFS share
	Setting up TYPO3
	Installing needed extensions
	Creating a template for a site

	Chapter 2: Managing Digital Assets
	Setting up a file structure
	Setting up a filemount
	Setting up rights for backend users
	Setting up FTP access
	Setting up a category tree
	Creating a frontend upload form
	Debugging code
	Creating frontend user groups
	Creating frontend users

	Chapter 3: Operating with Metadata in Media Files
	Inserting metadata into images
	Extracting metadata from images
	Inserting metadata into audio
	Extracting metadata from audio
	Extracting metadata from PDF

	Chapter 4: Rendering Images
	Rendering images using content elements
	Embedding images in RTE
	Rendering images using TypoScript
	Rendering links to files using <media> tags
	Creating a gallery using ce_gallery
	Rendering metadata from a DAM object

	Chapter 5: Rendering Video and Audio
	Rendering video using media
	content object
	Rendering audio using media content object
	Rendering audio and video using media
	TypoScript object
	Rendering audio and video using content
	elements and rgmediaimages extension
	Extending the media content object for more
	rendering options
	Using custom media player to play video
	Connecting to Flash Media Server to
	play video

	Chapter 6: Connecting to External APIs
	Introduction
	Getting files from Amazon S3
	Uploading files to S3
	Creating a bucket in S3
	Uploading DAM files to S3
	Getting recent Flickr photos
	Uploading files to Flickr
	Uploading DAM files to Flickr
	Reading list of movies from YouTube API
	Authenticating requests to YouTube API
	Showing video list with frontend plugin

	Chapter 7: Creating Services
	Extracting metadata from OpenOffice
	documents
	Processing audio using a service
	Converting a video to FLV upon import
	Converting audio using services
	Building an audioConversion service

	Chapter 8: Automating Processes
	Adding FTP access to the media repository
	Indexing downloaded files
	Setting up indexing rules
	Categorizing files by geolocation

	Index

