TYPO3

Extension Development

Developer’s guide to creating feature-rich extensions using the
TYPO3 API

TYPO3 Extension Development

Developer's guide to creating feature-rich extensions
using the TYPO3 API

Dmitry Dulepov

PUBLISHING
BIRMINGHAM - MUMBAI

TYPO3 Extension Development

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author(s), Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2008
Production Reference: 1190908

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847192-12-7
www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

[FM-2]

Author
Dmitry Dulepov

Reviewer

Ingo Renner

Acquisition Editor
Adil Ahmed

Development Editor

Nikhil Bangera

Technical Editor

Dhiraj Bellani

Copy Editor
Sumathi Sridhar

Credits

Project Manager
Abhijeet Deobhakta

Project Coordinator

Rajashree Hamine

Indexers
Rekha Nair

Monica Ajmera

Proofreader

Angie Butcher
Production Coordinators
Aparna Bhagat

Rajni Thorat

Cover Designer

Editorial Team Leader Aparna Bhagat

Mithil Kulkarni

[FM-3]

About the Author

Dmitry Dulepov is a TYPO3 core team member and developer of several popular
extensions (such as RealURL, TemplaVoila, comments, ratings, and others). He is
known by his active support of the TYPO3 community through TYPO3 mailing

lists. In 2008 Dmitry won the contest to appear on the first TYPO3 playing cards. He
runs a popular blog where he regularly publishes original tips and articles about
various TYPO3 features. In addition to his continuous TYPO3 core and extension
development, Dmitry provides support for the TYPO3 translation team on behalf of
the core team.

The author would like to thank everyone who helped with the book.
This includes but is not limited to:

. Packt Publishing, for their very prompt answering of
every question and giving helpful comments.

. Ingo Renner, who reviewed the book and made really
good additions, notes, and corrections.

. My colleagues from Netcreators BV, especially to Ben van 't
Ende, who always said that the book is important and
Michiel Roos, who gave me some ideas during our work
together on a TYPO3 project.

. My wife and kids, who understood the importance of this
work and supported me in this work; my cats, who reminded
me to make breaks and stretch by jumping on my knees in
the least expected moments.

. To the TYPO3 community, who helped me to understand
typically met issues with TYPO3 extension development.

The author is sure that the book will be useful to the reader and
hopes to see more great extensions from the readers of the
book soon.

[FM-4]

About the Reviewer

Ingo Renner has been active in the TYPO3 project for about five years now. He
started contributing to the project with a table-less template for the popular news
extension "tt_news" Since then he has been active in many other areas including
the content rendering group, digital asset management project, and the core team.
Besides that, he's also known as a co-development leader for tt_news, current
maintainer of tt_address, and lead developer for TYPO3's blog extension TIMTAB. In
2007, he joined the core team and was suddenly charged with the role of the release
manager for TYPO3 4.2 - TYPO3's recent release. In March 2008, he graduated from
the University of Applied Sciences, Darmstadt, with a Master of Science in

Computer Science.

Ingo is a freelancer specialized in TYPO3 core development and always looking for
interesting projects to improve the TYPO3 core.

[FM-5]

Table of Contents

Preface 1
Chapter 1: About TYPO3 API 5
Overview of TYPO3 API 5
PHP Classes and Files 6
t3lib_ 7
tslib_ 7
tx_ 8
UX_ 8
user_ 9
How Data Is Stored in TYPO3 9
Common TYPO3 API 10
Database API 1
Extension Management 15
Helper Functions (t3lib_div) 16
GET/POST Functions 16
String Functions 17
Array Functions 17
XML Processing 18
File, Directory, and URL Functions 19
Debug Functions 20
System Functions 20
TYPO3-Specific Functions 21
TYPOS3 File References 22
Language Support 23
Reference Index 25
Hooks 26
Backend API 26
TCEforms 27
TCEmain 28
Record Manipulation 28

Table of Contents

Clearing Cache 31
Frontend API 32
TSFE 32
Content Objects 34
Plugin API 34
Summary 34
Chapter 2: Anatomy of TYPO3 Extension 35
TYPO3 Extension Categories 35
Category: Frontend 36
Category: Frontend plugins 36
Category: Backend 36
Category: Backend module 37
Category: Services 37
Category: Examples 37
Category: Templates 37
Category: Documentation 37
Category: Miscellaneous 38
Extension Files 38
Common Files 38
ext_emconf.php 38
ext_conf_template.txt 44
ext_tables.php 46
ext_tables.sql 49
ext_tables_static+adt.sql 50
ext_localconf.php 50
ext_icon.gif 51
tca.php 51
class.ext_update.php 53
Frontend Plugin Files 54

pi Files 55
TypoScript Templates 55
Backend Module and its Files 56
Module Function Files 57
Documentation Files 58
Summary 58
Chapter 3: Planning Extensions 59
Why is Planning Important? 59
How to Plan 60
Gathering Requirements 61
Implementation Planning 61
Documentation Planning 62

Lii]

Table of Contents

TYPO3-Specific Planning 62
Extension Keys 62
Database Structure 63

Field Names 63
Indexes 66
Database Relations 66

Planning Our Extension 67

Requirements 67
Functionality 67
Usability and Expandability 68
Technical 68

Extension key 69

Frontend Plugins 69

Backend Module 69

Other Classes 70

Extension Database Structure 70

Documentation 72

Summary 72

Chapter 4: Generating Extensions 73

Why Generation? 73

Preparing for Generation 73

Generation Steps 74
Entering an Extension key 75
Entering Extension Information 75
Set Up Languages 77
Creating New Database Tables 77
Extending Existing Tables 85
Creating Frontend Plugins 86
Creating Backend Modules 89
Integrating into Existing Modules 90
Adding Clickmenu Items 90
Creating Services 90
Static TypoScript Code 90
Adding TSConfig 92
Generating the Extension 92

Adjusting Extensions 94
Clean Up 94
Changing Fields 94
Hide Tables 94

Summary 95

[iii]

Table of Contents

Chapter 5: Frontend Plugin: An In-Depth Study 97
Frontend Plugins: The Basics 97
Concepts 97
Plugin Configuration 100
TypoScript Configuration 100
Flexform Configuration 100
Templating 105
Localization 107
Being Localization-Aware 107
Localizing Strings 107
Fetching Localized Records 108
Character Set Handling 109
Caching 110
Caching in TYPO3 110
Cached and Non-Cached Output 111
Using cHash 112
Two Things to Avoid 113
no_cache=1 113
set_no_cache() 113
Advanced: Embedding USER_INT into USER 113
Summary 114
Chapter 6: Programming Frontend Plugins 115
Review and Update Generated Files 115
Frontend Plugin Files 115
class.tx_feuserlist_pi1.php 116
locallang.xml 118
Other Related Files 119
TypoScript Files 119
ext_localconf.php 119
ext_tables.php 120
Non-Reviewed Files 120
Clean Up Extension 120
Programming the Plugin 121
General Workflow 121
Adding Files 121
Templates 121
Flexform Configuration 122

elD 123
Defining Functions 123
Initializing an Extension 124
Checking the Environment 125
Loading Configuration 126
Modifying the Flexform Data Source 127

[iv]

Table of Contents

Dispatching Calls 131
Using Templates 131
Template Basics 131
Using Templates 133
Creating a Single view 134
Creating a Template 134
Adding stdWrap for Fields 136
Programming Single View 137
Creating a List View 140
Creating a Template 140
Modifying the TypoScript Template 141
Programming List View 143
What is Missing in the List View 149
Creating Search 149
Including Styles and Scripts 149
Adding a Search Box to the Template 151
Adding a Search Condition 152
What About Cache? 152
Creating JavaScript for Autocomplete 153
Creating PHP Code for Autocomplete 155
Adding Hooks 157
What Can Be Optimized? 160
Summary 161
Chapter 7: Programming Backend Modules 163
Planning a Backend Module 163
Functionality of a Backend Module 163
Frontend Classes 164
Database Structure 165
Adjusting the Database 165
ext_tables.sql 166
ext_tables.php 166
tca.php 169
Columns 169
Types 172
Palettes 173
Implementing a Frontend Hook 175
Backend Modules: The Basics 180
What Is a Backend Module? 180
Module Functions 180
Backend Module Files 181
Backend API 182
t3lib_BEfunc 182
t3lib_ TCEmain 183
t3lib_TCEforms 184

[v]

Table of Contents

t3lib_htmimail 185
t3lib_refindex 185
$BE_USER 185
Implementing a Backend Module 185
Files and Classes 186
A Note about Backend HTML 186
Implementing the Main Class 187
Implementing the List of Last Logins 188
Implementing Monthly View 192
Implementing a List of Active Users 194
Implementing Page Statistics 197
Summary 200
Chapter 8: Finalizing Extensions 201
Overview 201
Updating Code Files 201
Checking the Code 201
Using extdeveval to Beautify your Code 203
Script Documentation 203
Adding a Function Index 204
Reformatting the Code 205
Writing Documentation (Extension Manual) 205
Documentation Template 205
Template Structure 207
Styles in the Template 208
Images in the Documentation 208
Writing Documentation 208
Making Documentation Available 209
Uploading Extensions to TER 210
Summary 211

Index 213

[vi]

Preface

This is the first book in English to cover TYPO3 extension development in detail. The
author is a member of the TYPO3 core team and developer of many popular TYPO3
extensions. Both novice and experienced TYPO3 programmers can use this book to
build the extension they need following best practices and saving a lot of time that
would otherwise have been spent pouring though the documentation.

The book is structured so that following the chapters in order builds aTYPO3
extension from the ground up. Experienced developers can use individual chapters
independently to get only the information that they need.

Each chapter is divided so that the first part contains a description and discussion
of the topic covered followed by a coding example with an explanation of how
principles and techniques from the first part are followed in the code.

The reader is encouraged not only to read the book but also to look into the
discussed classes and actually code the extension while reading the book.

What This Book Covers

Chapter 1 gives an overview of the TYPO3 APl and tells about the most important
classes in TYPO3.

Chapter 2 describes files in the TYPO3 extension, what role they play and how to
use them.

Chapter 3 focuses on planning. Planning makes extensions better. It makes the
project successful.

Chapter 4 walks the reader through the process of extension generation. All options
are explained, several issues are pointed out, and useful tips provided.

Preface

Chapter 5 focuses on the Frontend plugin theory. It also provides a lot of tips to make
extensions effective.

Chapter 6 is dedicated to practical progamming. The reader will see how to make
list, search, and single views, use AJAX from the Frontend plugin, and create useful
TypoScript for the plugin.

Chapter 7 focuses on the Backend module programming.

Chapter 8 describes how to write documentation for the extension and polish the code
before releasing it to TER.

What You Need for This Book

The author assumes that the reader has the following knowledge:

e PHP programming
The reader is expected to have some experience with PHP and knowledge
about PHP classes in general. No prior TYPO3 programming experience
is needed.

e TYPO3 as an administrator
Basic knowledge of TYPO3, TypoScript, and TYPO3 extension idea.

e TYPO3 documentation
The reader should know what is TSRef, TSConfig, TYPO3 Core API. The
reader should be able to find these documents in the Documentation section
of the http://typo3.org/ website.

e Basic knowledge about phpDoc.

Who is This Book For

This book is for PHP developers who want to develop a TYPO3 extension. It assumes
the reader has experience with PHP, XML, and HTML. No prior knowledge about
TYPO3 extension programming or the TYPO3 APl is presumed.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " Notice how param1 is passed as a value
first and then as an array by using a dot."

[2]

Preface

A block of code will be set as follows:

plugin.tx_myext_pi1 = USER
plugin.tx_myext_pi1 {
userFunc = tx_myext_pil->main

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

plugin.tx_myext_pi1 = USER

plugin.tx_myext_pi1 {
includeLibs = EXT:myext/pi1/class.tx_myext_pil.php
userFunc = tx_myext_pil->main

}

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"To finish this step, press the Update... button”.

Warnings or important notes appear in a box like this.

a1

Q Tips and tricks appear like this.

Reader Feedback

Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

[31]

Preface

Customer Support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book

Visit http://www.packtpub.com/files/code/2127_Code.zip to directly
download the example code.

[The downloadable files contain instructions on how to use them.]

Errata

Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of

this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering

the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide the
location address or website name immediately so we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

[4]

About TYPO3 API

Let's get a picture of TYPO3 API before we start to talk about extension creation.
There are a lot of files, functions, and function groups in TYPO3 API. Beginners can
easily miss the function they should use in a particular part of the code.

This chapter is going to discuss TYPO3 API. We will not go into the details, but will
provide pointers to where developers can look. The best way to read this chapter is
to keep a copy of each discussed PHP file and read function description inside that
file along with the description mentioned in the book.

After completing this chapter, the reader will have a general picture of TYPO3 API,
and will be able to find the necessary functions in the API.

Overview of TYPO3 API

TYPO3 is a large system with lots of PHP classes. Trying to learn each class in order
to learn the APl is time consuming, and will not provide an understanding of the
system as a whole. It is much easier to logically split the system into blocks and look
at the API from this perspective.

As seen from the user experience, TYPO3 has two main parts: the Frontend (or FE)
and the Backend (or BE). Website visitors see the FE of TYPO3. Website editors create
and modify the website content from the BE of TYPO3.

The TYPO3 API can be divided approximately the same way: FE APl and BE API.

The FE APl includes classes to create website output, while the BE APl includes
classes for content manipulation and other functionality to help editors do their work
in an effective way. Extensions can extend existing or add new APIs to the system.
One of the best examples is TemplaVoila. It adds point-and-click templates to the
TYPO3 BE and flexible content elements to the FE.

About TYPO3 API

However, there is one more part, which is not visible to website visitors or editors
but used by both FE and BE API. There is no name for it in TYPO3. In this book,

we will call it the Common API. An example of such an APl is the database API.

It would be wrong to use different database layers for BE and FE (otherwise
programmers would have to learn more APIs and would tend to use the one most
convenient instead of the one "assigned" to Backend or Frontend). So, TYPO3 has
only one layer that works with the database. All system classes and extensions are
expected to use this APl to access and retrieve data from the database.

While we can logically separate the TYPO3 API into three parts, it should be noted
that most TYPO3 classes and functions have a very long history. They are constantly
updated, but their age is still visible. Most classes are in the same file system
directory (t3lib), and it is hard to tell where the class really belongs just by looking
at its name. However, this applies only to the file system. Generally, these classes
include functions for a single API group only. So logically, they are well-designed
and separated from other groups.

The TYPO3 core team makes every effort to keep the API clear, logical, and
effective. Extension developers can learn a lot about TYPO3 by looking into the
implementation of the TYPO3 API while programming extensions. This is really a
good way to become a TYPO3 professional.

In the following sections, we will look at each API group and certain classes inside
them. Due to the large number of API classes, it is not possible to cover them all. It
would take the whole book alone to cover them all. So, we are going to cover only
those classes that extension developers will most likely meet or use during extension
development. We are going to start with the most basic and universal classes and
move on to more specialized classes. Note that this chapter will provide only an
overview of the API, and not a detailed description of each function. We will look
deeper into many of these classes later in the book.

But first, we need to discuss certain basic issues about TYPO3 from a
developer's view.

PHP Classes and Files

There are certain conventions concerning file and class naming in TYPO3. They
must be used in extensions too and knowing these conventions helps to locate
files quickly.

Each class file starts with class. and is followed by a class name in lower case. The
file ends with a .php extension. There are certain exceptions to this rule, and they
will be described in this book. These exceptions exist due to historical reasons, and
no new class may become an exception.

[6]

Chapter 1

Classes have a certain prefix that declares where they belong in the TYPO3 class
hierarchy. The following system prefixes are defined:

e t3lib_
e tslib_
o tx_
° ux_
e user_

Each prefix corresponds to a "library" if it ends with "lib_", and to a "namespace"
otherwise. "Library" is just a way to say that a "namespace" belongs to TYPO3. In
other words, library classes are TYPO3 classes. Extensions cannot introduce new
library classes.

t3lib_

t3lib stands for "TYPO3 library". This name is historical, and everyone just calls it

t3lib (tee-three-lib). t3lib is the largest collection of classes in TYPO3. It includes most
Common, FE, and BE classes. It is easy to say that a class belongs to t3lib by looking
at its name. Here are some examples:

e t3lib_DB

e t3lib_div
e t3lib_TCEmain

We will look at some t3lib classes later in this chapter.

tslib_

tslib stands for "TypoScript Library’, The name has historical reasons as well and
everyone calls this library tslib (tee-es-lib). It is located in the typo3/sysext/cms/
tslib directory (inside the cms system extension). Most of these classes are already
included when code runs in FE. So there is no need to include them explicitly

in extensions.

The library classes are responsible for the rendering of the website and most of
the FE logic. The base class for FE plugins (modules that extend TYPO3 Frontend
functionality) is also located here.

[71

About TYPO3 API

We will discuss tslib classes in the Frontend API section.
Here is a list of some classes in tslib:

e ftslib_fe
This is the main FE class in TYPO3. It represents a page that a website visitor
sees in the browser. There is only one instance of this class in TYPO3 FE, and
it is available as and generally referred as "TSFE".

e tslib_cobj
This is one of the exclusions to generic naming rule mentioned earlier. This
class is located in the file named class.tslib_content.php, but the class
name is different. This class implements content objects. Content objects
is a TYPO3 way of generating different types of content. There are many
content objects, for example, TEXT, IMAGE, or HMENU. They are the same
content objects as found in TypoScript. FE plugins from extensions are USER
or USER_INT content objects. Instances of this class can either be created
directly (see later in this chapter), or by calling .

e tslib_fetce
This is an attempt to bring some BE functions (such as clear_cacheCmd) to
the FE. While this class exists, it is not really updated and should not be used.

e tslib_feuserauth
This is an internal class that authenticates website visitors ("Frontend users").
This class is created and used by TSFE. An instance of this class is always
available as .

o tslib_pibase
This is a base class for FE plugins. We will cover it in detail in Chapter 5.

tx

This namespace is reserved for extensions ("tx" stands for "TYPO3 Extensions"). All
extension classes must begin with tx_ (with the exception of "ux" classes).

ux

This namespace is reserved for XCLASSes. XCLASS is a way to subclass a class in
TYPO3 and make use of the subclass instead of the parent class in a way that is
transparent to all the other classes in the system. Normally, XCLASSes are provided
by extensions. XCLASSes take the class and file name of the parent class but prepend
it with ux_, as in class.ux_tslib_fe.php or class.ux_t3lib_tcemain.php.

[8]

Chapter 1

While XCLASSes may seem the easiest way to modify system behavior, they should
be avoided and used only if there is absolutely no other way to change system
behavior. The fundamental limitations of XCLASSes is that there can be only one
XCLASS for a given class in the system. If two extensions try to XCLASS the same
class, only the last one will succeed.

user_

This namespace is reserved for PHP functions outside of a class. TYPO3 will refuse
to call any function outside of a class that is not prefixed with user_. If an extension
key has this prefix, it means that the extension is private. Such extensions cannot be
sent to the TYPO3 Extension Repository. Typically, such extensions are created for
testing purposes.

How Data Is Stored in TYPO3

TYPO3 uses a database (typically MySQL) and the file system to store data. The file
system keeps configuration files, some cache files, images, and uploaded files. The
database stores pages, content elements, and lots of system data (such as TypoScript
templates, logs, and so on).

All (to be precise most, but for our purpose, all) tables in TYPO3 roughly follow the
same structure. They have a set of predefined (reserved) fields. TYPO3 will not work
properly if one or more of the required fields is missing. Examples of predefined
fields are uid (unique identifier of the record), pid (id of the page where this record
is located), crdate (record creation time), tstamp (last update time), cruser_id

(uid of the Backend user, who created this record). A table may also contain other
reserved fields. If it does, TYPO3 will automatically provide additional functionality
for the table. The best examples of such fields are deleted (indicates whether a
record is deleted), starttime (indicates when a record becomes visible in the

FE), endtime (indicates when a record stops being visible), and hidden (indicates
whether a record is hidden). There are other fields, which will be discussed later. All
these fields are managed by the system, and extensions usually do not change them.

TYPO3 comes with several default tables. These main tables are:

e pages and pages_language_overlay
The pages table stores page data (uid, title, and so on), while the pages_
language_overlay table stores translations of the page data.

e tt_content
This table stores information about content elements. This is usually one of
the largest tables in the system.

[o]

About TYPO3 API

e Dbe *
This table stores information related to BE users.
e cache_*

This table stores cache data.
o fe *

This table stores information related to FE users.
e sys *

This tables stores various system data.
o fx_*

This table stores tables from extensions.

If an extension provides a new table, it must ensure that the table name has a certain
format. The table name must start with tx_, followed first by the extension key
without underscores and next by an underscore, and the table name. For example, an
extension with the extension key my_ext can have the following valid table names:

e tx_myext_data
e tx_myext_elements

The following table names are not valid:

e data

e myext_data

e my_ext_data

e data_my_ext

e tx_my_ext_data

We will discuss tables in more detail when we generate extensions later in this book.
At the moment, it is important to remember two things:

e There are certain naming conventions for tables.
e Each table must have a certain set of fields.

Common TYPO3 API

As explained earlier, all TYPO3 API functions can be divided into three groups. The
Common API group contains classes that are common in the other two groups, FE
and BE API. These classes are essential for extension developers because they are
either "most used" or "most must-be-used". We will examine these classes in the later
sections. Since this chapter is called "About TYPO3 API", its purpose is to provide

an overview, and not a fully detailed description. You can use this chapter as a
guideline and learn more by looking at the source code of the discussed classes.

[10]

Chapter 1

Database API

Database APl is the most independent class of all the TYPO3 API classes. It contains
functions to manipulate data in the MySQL database. The class name is t3lib_DB.
There is no TYPO3-specific functionality, only a set of convenient methods to
access the database. The instance of this class is available, both in FE and BE, as
SGLOBALS['TYPO3_DB'.

All core classes and all extensions must work with the TYPO3 database by using
t3lib_DB. This ensures that the database is accessed correctly. Using MySQL PHP
functions directly is strongly discouraged and may, in certain cases, interfere with
TYPO3 database access, or even break the TYPO3 database.

Besides convenient methods, t3lib_DB has another purpose. Since this is an API
class, it can be XCLASSed to provide access to other databases transparent to the rest
of TYPO3. This is what the extension DBAL does.

Here is an example of how the TYPO3 database can be accessed using t3lib_DB:

// Select number of non-deleted pages
$res = SGLOBALS['TYPO3_DB'l->exec_SELECTquery(
'COUNT(¥) AS t, 'pages,
'deleted=0");
if (Sres 1==false) {
// Fetch array with data
Srow = SGLOBALS['TYPO3_DB'l->sql_fetch_assoc($res);
if (Srow !==false) {
SnumberOfDeletedPages = Srow['t"];
}

// Free resultset (or memory leak will happen)
SGLOBALS['TYPO3_DB'->sql_free_result(Sres);

}

As you can see, these functions look very similar to MySQL PHP functions. This
similarity is not accidental. The default database for TYPO3 is MySQL, and the
database APl is modeled using MySQL PHP functions.

Generally, all functions can be divided into several groups.

The first group consists of functions that generate various SQL queries. Functions
accept certain parameters (such as field names, table name, SQL WHERE condition,
and so on) and return a properly constructed SQL query. This is good for extensions
that need compatibility with different database types. However, it should be noted
that these functions cannot always be used, especially if the query is complex, such
as with SQL JOIN constructs, and so on. Functions in this group are:

e function INSERTquery($table,array $fields_values,
$no_quote_fields=FALSE)

[11]

About TYPO3 API

e function UPDATEquery($table,Swhere,array $fields_values,
$no_quote_fields=FALSE)

e function DELETEquery($table,Swhere)

e function SELECTquery($select_fields,$from_table,Swhere_clause,$
groupBy=",SorderBy=",$limit=")

The next group is similar to the first group. It consists of functions that build and
execute queries. Most functions in this group are built around functions belonging
to the first group. Here you may ask a question: why does the first group exist then?
The answer is simple. Sometimes, you want to get a query first, log it somewhere,
and then execute it. In that case, you may want to use functions from the first group.

Here is a list of functions from the second group:

e function exec_INSERTquery(Stable,array $fields_values,
$no_quote_fields=FALSE)

e function exec_UPDATEquery(Stable,Swhere,array $fields_values,
$no_quote_fields=FALSE)

e function exec_DELETEquery($table,Swhere)

e function exec_SELECTquery($select_fields,Sfrom_table,Swhere_cla
use,$groupBy="SorderBy="S$limit=")

e function exec_SELECT_mm_query($select,$local_table,
$mm_table,$foreign_table,SwhereClause=",5groupBy=",
SorderBy=",5limit=")

e function exec_SELECT_queryArray(SqueryParts)

e function exec_SELECTgetRows($select_fields,$from_table,Swhere_c
lause,$groupBy=",SorderBy=",$limit="SuidIndexField=")

The last three functions may raise questions. Two of them are rarely used. The
exec_SELECT_mm_query function is a TYPO3 way to execute a query on tables with
many-to-many relations. The exec_SELECT_queryArray function executes a SELECT
SQL query, taking parameters from the passed array. This function is rarely used.
The last one will perform a SELECT SQL query, fetch rows, and return them in an
array. This function should be used with caution; if the result is big, it may exhaust
PHP memory easily. But for some results, it is the most convenient way to fetch data
from the database.

[12]

Chapter 1

The next group includes functions to fetch the result, get the number of rows, and
so on. They are identical to the corresponding MySQL PHP functions. They are so
trivial that we will not discuss them much, only list them here for the sake
of completeness:

e function sgl_query($query)

e function sql_error()

e function sgl_num_rows(S$res)

e function sql_fetch_assoc($res)

e function sql_fetch_row($res)

e function sql_free_result(Sres)

e function sql_insert_id()

e function sql_affected_rows()

e function sql_data_seek(Sres,$seek)

e function sql_field_type(Sres,$pointer)

One important note for extension authors: do not forget to call the

sql_free_result() function! Though the PHP manual says that MySQL resources

are automatically released when the script terminates, in practice, this does not
always happen (especially, if persistent connections are enabled). Moreover, if DBAL
is enabled, automatic freeing of resources may not always work. It is always better to
clean them up in the code.

The last group of functions are the utility functions. While we are looking at it as the
last group, functions in this group are used (or must be used) all the time. This group
includes functions to escape database parameters and to do query manipulation.
Hereis a list:

e function fullQuoteStr($str, Stable)

e function fullQuoteArray(Sarr, $table, SnoQuote=FALSE)

e function quoteStr($str, $table)

e function escapeStrForLike(Sstr, Stable)

e function cleanIntArray($arr)

e function cleanIntList(Slist)

e function stripOrderBy(S$str)

e function stripGroupBy(S$str)

e function splitGroupOrderLimit($str)

e function listQuery($field, Svalue, $table)

e function listQuery($searchWords, $fields, $table)

[13]

About TYPO3 API

The fullQuoteStr() function is possibly the most used (or again — the most "must-
be-used") function in this group. It escapes all special characters in the string and
additionally wraps the string in quotes in a manner compatible with the current
database. Therefore, extension developers should use this function for both escaping
and quoting parameters, and not use any "home-made" solution. This is a good
security-related function. Other functions do more or less the same but in more
specialized way. The "strip" and "split" functions are specific for some TYPO3 core
calls (but can be called by extensions too).

Now, we are ready to see more complex examples of database API functions. Notice
that this example is focused on the database APl only. You should not use this code

in the extension because it lacks certain calls to other APIs, is not effective from the

point of view of database performance, and uses echo (TYPO3 uses other ways of

showing generated content). But this example gives a good idea of how to use the
database API.

/**

* Retrieves all news written by the given author
*

*@param string $SauthorName Author name
* @return array A list of news items for author
*/

function findNewsByAuthor($authorName) {
Sres = SGLOBALS['TYPO3_DB'->exec_SELECTquery('uid,title'
'tt_news),
'author=".
SGLOBALS['TYPO3_DB'->fullQuoteStr(
SauthorName, 'tt_news"));
Snews = array();
while (false |==
(Srow = SGLOBALS['TYPO3_DB']->sql_fetch_assoc($res))) {
Snews[Srow['uid']] = Srow['title']
}
SGLOBALS['TYPO3_DB'->sql_free_result(Sres);
return Snews;
}
/**
* Marks all news written by the given author as deleted
*
* @param string SauthorName
* @return void
*/
function deleteNewsForAuthor($author) {
Snews = findNewsForAuthor(Sauthor);
S$fields = array('deleted’ => 1);
foreach (Snews as Suid => Stitle) {

[14]

Chapter 1

echo 'Deleted news item with id=". Suid ."' (.
Stitle .")'. chr(10);
SGLOBALS['TYPO3_DB'->UPDATEquery('tt_news),
'uid=". SGLOBALS['TYPO3_DB']->fullQuoteStr(
Suid, 'tt_news'), $fields);
if (SGLOBALS['TYPO3_DB']->sql_affected_rows() == 0) {
echo 'The above news item was already deleted’;
}
}
}

Extension Management

Extension management is a class with functions that provides various levels of
information about extensions. This class is not to be confused with TYPO3
Extension Manager.

The Extension management class is named t3lib_extMgm. The functions that
developers are likely to use are:

e function isLoaded($key,$exitOnError=0)
Checks if an extension is loaded. Useful if the extension uses functionality of
another extension.

e function extPath(Skey,$script=")
Returns the absolute path to the script $script in the extension identified
by $key. The $script variable contains a path relative to the extension
directory. This can be used in the require_once PHP function.

e function extRelPath(Skey)
Returns a path to the extension directory relative to the /typo3 directory.
This can be used for <a>, , <link>, or <script> tags to include the
extension's files in Backend scripts.
e function siteRelPath($key)
Returns a path to the extension directory relative to the site root. It is used for

the same purpose as extRelPath,
but in the FE.

Here are some code examples:

Sextkey = 'templavoila’;

require_once(t3lib_extMgm::extPath($extkey,
'pil/class.tx_templavoila_pil.php");

// From Backend:

Slink = '<a href="". t3lib_extMgm::extRelPath($extkey) .
'mod1/index.php">Reload";

// From Frontend

$link = '<img src="". t3lib_extMgm::siteRelPath($extkey) .
'res/image.gif" />';

[15]

About TYPO3 API

There are also other functions to use form extensions, but we will discuss them in
detail when we meet them because they have very specific usage.

Helper Functions (t3lib_div)

There is a class in TYPO3 that contains the largest collection of various public
functions (138 at the time of writing). This class is probably the most used one in
TYPO3.The class name is t3lib_div. It is located in t3lib/class.t3lib_div.php.

All functions in this class are divided into several groups. Most popular functions will
be described in the forthcoming sections. They all need to be called statically (using
t3lib_div:funcName() syntax). The t3lib_div function is always included and

available in any extension. There is no need to include this file in your own scripts.

If you think you need a generic function, it is good to check if t3lib_div already has
it, before writing your own.

GET/POST Functions

The Get and Post functions should be used in TYPO3 extensions to obtain values of
request variables. While PHP contains variables such as $_GET and $_POST that can

be used in scripts, TYPO3 coding guidelines require one to use TYPO3 functions to
obtain values of request parameters. TYPO3 runs on many different web servers,

and some of them have different ways of passing parameters to PHP scripts. Using
TYPO3 functions ensures that the script always gets the parameter, regardless of the
web server. The TYPO3 core team will fix the core if a new platform is found causing
troubles with script parameters. This way extensions become independent of the
differences in web server implementation. Extension authors can concentrate on their
code instead of making workarounds for web servers.

The following functions are defined:

e function _GP(Svar)

This function retrieves the value from POST and, if not found, from GET
request parameters.

e function _GET(Svar=NULL)
Retrieves value from GET request parameter.
e function _POST(Svar=NULL)

Retrieves value from POST
request parameter.

[16]

Chapter 1

function _GETset(SinputGet,Skey=")
Sets the value of GET request parameter. There is no equivalent for POST.

function GParrayMerged($var)

Many TYPO3 modules pass parameters in URLs as arrays. If PHP finds
something like tx_extkey_pil[param]=123 in the URL, tx_extkey_pi1

will be an array with a key named param and value, 123. This function will
merge such an array for POST and GET, with POST taking preference, and
returning this array.

String Functions

There are several functions in this group that perform common tasks:

function fixed_lgd_cs($string,Schars)

This function will crop a string and append three dots to the string. The
$chars variable indicates the length. If the value is negative, it will crop that
amount of characters from the end of the string. This function will work well
only if SGLOBALS['LANG'] (see section about localization) is set. So it is gen-
erally limited to BE scripts usage.

function testInt($var)

This function checks if the passed variable is an integer. Variables in PHP can
be freely converted between types. For example, '2'+'3' gives 5. This func-
tion will return true for 3 and '3', but not for '3x". Thus, it is very conven-

ient to validate some parameters (like database identifiers).

function isFirstPartOfStr($str,SpartStr)
The name of this function is self-explanatory.
function validEmail(Semail)

This function checks if the passed email has the correct syntax. It does not
check whether that domain is valid or whether the mail account exists.

Array Functions

Array functions manipulate array data. Here is the list of the most useful functions:

function implodeArrayForUrl($name,StheArray,$str=",$skipBlank=0,
SrawurlencodeParamName=0)

This function creates a URL query string from the passed array. Keys become
parameter names, values become parameter values. If $Sname is not empty,
each parameter becomes a value in the array with this name (see description
of GParrayMerged above). The $str variable must be blank (TYPO3 uses it
internally when calling this function recursively).

[17]

About TYPO3 API

e function array_merge_recursive_overrule($arr0,5arr1,SnotAddKeys=0,
SincludeEmtpyValues=true)
This function recursively merges two arrays. The second array overrides
the first. If SnotAddKeys is set, key/value pairs from the second array are
ignored if the corresponding key does not exist in the first array.

e function csvValues(Srow,Sdelim=},$quote="")
Creates a comma-separated string of values and takes care of new line
characters. The result can be imported into a spreadsheet application. Note
that it works on a single row of data and should be called as many times as
there are rows. Useful for dumping data into CSV files.

XML Processing

There are only two very specific functions that we will mention here. They are used
to convert XML to a PHP array, and vice versa.

e function array2xml($array, $NSprefix="Slevel=0,$docTag="phparray,
$spacelnd=0, Soptions=array(),SstackData=array())
This function converts a PHP array into XML. We will not describe it in detail
here. but recommend that you refer to the documentation inside this function
to see all possible options (there are too many of them).

e function xml2array($string,SNSprefix=",$reportDocTag=FALSE)
Converts an XML string into an array.

Before using these functions, you should remember that PHP arrays cannot have
multiple values with the same key. So, if there are repeating nodes in your XML, you
have to add an attribute named index to them. This attribute becomes a key. Here is
an example:

<data>
<node index="1"><value>value 1</value></node>
<node index="2"><value>value 2</value></node>
<node index="3"><value>value 3</value></node>
</data>

Running xml2array produces the following PHP array:

Array
(
[11=> Array
(

[value] => value 1

)
[2] => Array
(

[18]

Chapter 1

[value] => value 2
)
[3]=> Array
(

[value] => value 3
)
)

Without the index attribute, the array becomes:

Array
(
[node] => Array
(

[value] => value 3

)

File, Directory, and URL Functions

These functions perform the most common tasks for file, directory, and URLs. Here
is the list:

e function getURL(Surl, SincludeHeader=0)

This function fetches a URL and returns the result. This function must be
used instead of fopen() or file_get_contents() because PHP functions
may be disabled by security settings on the server. However, getURL may use
other methods to fetch the content of the URL.

e function writeFileToTypo3tempDir($filepath,$Scontent)
This function writes a file to the TYPO3 temporary directory.

e function getFilesInDir($Spath,$SextensionList=",
$prependPath=0,Sorder=")

e function getAllFilesAndFoldersinPath($fileArr,Spath,
SextList=",SregDirs=0,S$recursivityLevels=99)

e function fixWindowsFilePath(StheFile)

e function locationHeaderUrl($path)
This function takes a path and returns a correct URL to be used for redirec-
tion using the header() PHP function.

[19]

About TYPO3 API

Debug Functions

These functions dump passed variables. Note that the web IP address of website
visitors must be included in the devIPmask parameter in the TYPO3 Install tool, so
that these functions can be used for urgent debugging on a live site!

function print_array($Sarray_in)
function debug(Svar="",$brOrHeader=0)

function debug_trail()
Returns stack trace with entries separated by //.

function debugRows(Srows,$header=")

System Functions

These are general-purpose functions. They do not fit into any other group. Therefore
we list them here:

function getThisUrl()

function linkThisScript($getParams=array())

Returns a link to this script. All the parameters are preserved. It is possible to
override the parameters by passing an array with new name/value pairs.
function linkThisUrl(Surl,$getParams=array())

This function is similar to the previous function except that it returns a link
to the URL.

function getindpEnv($getEnvName)

This function is the way TYPO3 gets server variables such as HTTP_HOST or
REMOTE_ADDR. TYPO3 runs on many platforms and under many web servers.
Not all these servers return parameters in the same way. This function takes
care of the differences, and will always return a server parameter, regardless
of the server software. It must be used instead of $_SERVER and $_ENV PHP
variables. In addition, this function can return values of TYPO3-defined
variables. Here is a list of these variables:

® TYPO3_HOST_ONLY
Host name
° TYPO3_PORT
Port (blank if 80, taken from host value)
° TYPO3_REQUEST_HOST
[scheme]://[host][:[port]]
® TYPO3_REQUEST_URL
[scheme]://[host][:[port]l[path]?[query]
® TYPO3_REQUEST_SCRIPT
[scheme]://[host][:[port]l[path_script]

[20]

Chapter 1

° TYPO3_REQUEST_DIR
[scheme]://[host][:[port]][path_dir]
° TYPO3_SITE_URL
[scheme]://[host][:[port]][path_dir] of the TYPO3 website
Frontend
° TYPO3_SITE_SCRIPT
[script / Speaking URL] of the TYPO3 website
° TYPO3_DOCUMENT_ROOT
Absolute path of root of documents: TYPO3_DOCUMENT_
ROOT.SCRIPT_NAME = SCRIPT_FILENAME (typically)
° TYPO3_SSL
Returns TRUE if this session uses SSL/TLS (https)

TYPO3-Specific Functions

There are a lot of functions here that also fall into categories we have already seen.
However, the functions discussed earlier are universal. They do not depend on
TYPO3 variables and can generally be reused outside TYPO3. Functions from this
group take TYPO3 into account. There are lots of them. We list only the ones that are
likely to be used in extensions:

function validPathStr(StheFile)

function tempnam($filePrefix)

Creates a temporary file in the typo3temp/ directory.
function loadTCA($table)

Loads the table configuration array (TCA). We will discuss the TCA later in
this book.

function callUserFunction($funcName,&$params,&Sref,
ScheckPrefix="user_'$silent=0)

Calls the user function. The function name has a certain format (see "TYPO3
File References" section that follows).

function &getUserObj(SclassRef,ScheckPrefix="user_}$silent=0)
Instantiates a class and returns its instance.
function &makelnstance($className)

Creates an instance of the class, given its name. This function must be used
instead of the new PHP operator. It takes care of proper XCLASS handling.
Use this function even for your internal classes!

[21]

About TYPO3 API

e function makelnstanceClassName(SclassName)

Checks if XCLASS is available for any given class and returns either the

class or XCLASS name. It is useful when instantiating an object with param-
eters for the constructor. For example, function devLog($msg, $extKey,
$severity=0, $dataVar=FALSE) logs messages to the developer log. By

default, it does nothing. Requires logging extension (such as cc_devlog or
rimp_filedevlog) and SYS_DLOG enabled in TYPO3 Install tool. It is useful

in recording a sequence of events on a production server. Beware of perform-
ance decline!

TYPOS3 File References

TYPO3 has a special syntax to refer files or classes and functions inside files.
Typically, it is used for extensions. This syntax is similar to a URL. Check the
following code fragment:

$Sparams = array();

Sresult = t3lib_div::callUserFunction(
'EXT:myext/subdir/class.tx_myext_class.php:'.
"tx_myext_class->main’, $params, $this);

The callUserFunction function will read the function name as follows:

e EXT means that the function has an extension.
e Extension key follows the EXT: prefix until the first slash.
e Everything until the colon is the file path.

e Ifthereisa->sequence, then the function is a method of the class. The class
will be instantiated using t3lib_div:makelnstance() and a method of
the class will be called. The class name must start with tx_or ux_ or user_.
If there is no -> sequence, then it is a function without a class, and its name
must start with user_. If the class or function name does not start with a
proper prefix, then callUserFunction will refuse to call them.

The getUserObj function is similar to the callUserFunction function except that

it does not have a function part, but a class name. It returns a class instance and the
extension can call methods of this class. Name restrictions apply to getUserObj

as well.

[22]

Chapter 1

Language Support

TYPO3 supports many languages and works very well with them. It has a set of
functions and classes that provide access to localized (translated) strings. These
strings are stored in XML files. Extensions need not care about finding the right
language or parsing XML because TYPO3 has a very good API for it. While using

this API, all strings from XML can be referenced by their index. The index is also

a string, but it stays non-localized. A string changes, but its index does not. So it is
always possible to find the value of the string by its index. To give a short example,
the "Click here" string may have a "click_here" index (the code example at the end of
this section will make it clearer).

Usually, localization is one of the areas that lacks a developer's attention. It is much
easier to hard-code strings in the PHP code than to write them to an XML file and
add an extra line to load that string. But supporting translations is one thing that
makes a good extension. Do not postpone the creation of language files. Do it
properly from the beginning; do not hard-code. Write a string to an XML file and use
the API to get its value.

What happens if an extension is not translated to another language (partially or
fully)? The labels in the default language (English) will be used instead.

The class that implements localization support for strings is an old class and, as
many old classes, it is an exception to the naming rule described earlier in this
chapter. The class name is language and it is located in typo3/sysext/lang (system
extension lang). In the BE, it is usually available as SGLOBALS['LANG']. In the FE, it
is not available directly, but there are similar ways to get localized strings.

The following methods are the most used ones:

e function init(Slang,$altPath=")

This function initializes the language class for the given language code.
Languge code is TYPO3-specific. The special code value default refers to the
English language. You will rarely need to use this function. Generally, it is
enough to know that you have to call this function if for any reason you need
to create an instance of the language class yourself. But if you really have

to, it means that you are doing something nontrivial, and you should be an
experienced extension writer to use this function.

e function getLL(Sindex,$hsc=0)

This function returns a label by its string index. Labels must be included us-
ing the includeLLFile function (see below).

[23]

About TYPO3 API

e function getLLL(Sindex,SLOCAL_LANG,$hsc=0)

Does the same as getLL, but uses the SLOCAL_LANG argument to search for
the string.

e function sL(Sinput,$hsc=0)

This function is the most complex but also the most powerful among all
the functions in this class. It accepts string reference in a special format and
returns the string. The string reference format is similar to the format
described earlier in the section named "TYPO3 File References’, but it must
be prepended with the LLL: prefix, for example, LLL:EXT:lang/local-
lang_general.xml:LGL.image. This reference tells TYPO3 to load a string
identified by LGL.image index from the file named locallang_general.xml

in lang extension. The $hsc parameter allows automatic application of the
htmlspecialchars PHP function to the returned string.

e function includeLLFile($fileRef,$setGlobal=1,
$mergelocalOntoDefault=0)

This function loads information from a language file into a global variable for
use with the getLL function. It accepts EXT: file referencing format for files as
well as the absolute path.

e function readLLfile($fileRef)

This function reads a language file and returns labels for the current language
to the caller. It also accepts the EXT: syntax for $fileRef.

Here is a full code example:

require_once(t3lib_extMgm::extPath('lang; 'lang.php"));
$lang = t3lib_div:makelnstance('language’);

/* @var $lang language */

$lang->init('default’);

$fileRef = "'EXT:lang/locallang_general.xml’;

$labell = Slang->sL(LLL:" . $fileRef . .LGL.image");

SLL = Slang->readLLfile($fileRef);

$label2 = Slang->getLLL('LGL.image] SLL);
$lang->includeLLFile($fileRef);

$label3 = $lang->getLL('LGL.image");

All three labels are identical in this example.

[24]

Chapter 1

Reference Index

TYPOS3 stores data in the database. Often, data records refer to other data records or
files in the file system. If a data record is deleted and it has a reference to a file, the
file stays in the file system. If another data record refers to the deleted data record,
there will be a dead link.

To prevent these kinds of problems, TYPO3 maintains a separate list of references
between data records and files in the system. This is called the "reference index". The
class name is t3lib_refindex.

When data records are created, modified, or deleted in Backend using TCEmain
(described in the Backend API section below), the system will update the reference
index automatically. FE is different; TCEmain does not work there. FE plugins

usually insert data directly into the database using the database APl described earlier
in this book. So, extension developers have to take care and update the reference
index manually. Unfortunately, very few extensions do. Originally, the reference
index was developed for BE usage, but its dependency on BE functions is minimal
and solved by including class.t3lib_befunc.php in the FE plugin.

When the reference index is used, the system will show a number of references to
the current record in the List module, and a clean-up script will be able to detect
hanging files and remove them.

We are interested in the following function:
e function updateReflndexTable($table,$uid,$testOnly=FALSE)

This function will examine the record and update the reference index. Here are some
code examples:

require_once(PATH_t3lib . 'class.t3lib_befunc.php’);
require_once(PATH_t3lib . 'class.t3lib_refindex.php’);

$fields = array(
// Fill array with fields
)i
SGLOBALS['TYPO3_DB'l->exec_INSERTquery('tx_myext_table
Sfields);
$uid = SGLOBALS['TYPO3_DB'l->sql_insert_id();
$refindex = t3lib_div::imakelnstance('t3lib_refindex’);
/* @var Srefindex t3lib_refindex */
$refindex->updateReflndexTable('tx_myext_table, Suid);

This is all that has to be done to update the reference index. The @var comment helps
modern PHP IDEs show code assist for the variable.

[25]

About TYPO3 API

Hooks

Hooks in TYPO3 are special functions that the system calls while it performs some
actions. Using hooks, extensions can modify a process in the middle, observe system
state, pre- and post-process data, and do many other things.

Typically, a hook function is defined either as a regular function with user_ prefix
or as a class prefixed with tx_extkey_. Hooks are registered in the extension's
ext_localconf.php file (see Chapter 2) in the following way:

SGLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']
['cms/layout/class.tx_cms_layout.php']
['list_type_Info'l['extkey_pi1'l[l =
'EXT:extkey/class.tx_extkey_cms_layout.php
‘tx_extkey_cms_layout->getExtensionSummary’;

This particular hook will provide additional information to the page module to
display near the extension's instance.

Backend API

This part of the APl is used in the Backend. It is not well known to developers
because TYPO3 lacks documentation about this part of the API. We will cover the
major parts of the Backend API code in this section.

[26]

Chapter 1

TCEforms

TCEforms is visually familiar to anyone who has used TYPO3.

B S =8 st B

Path: /Welcomelll/Gallery/ [] [pid: 288]

Page [288] - Gallery

General Metadata Resources Access Optlons Extended
B Type:
[standard B

& Hide page:

& Hide in menu:

| I:]|{:]|

& Pagetitie:
[Gallery |e&r

& Subtitle:

© Navigation title:
Ol |

[show secondary optlons (palettes)

(2

From a developer's viewpoint, TCEforms is an automated way of presenting the
content of a database table to the user in a form suitable for editing. TCEforms reads
the table configuration array (or TCA) for the table and builds controls dynamically
according to the information in the TCA. The TCA for each TYPO3 core table is

stored in the TYPO3 core. Extensions provide additional TCA entries for each
extension table. If a TCA entry is not provided for the table, the TYPO3 Install tool
will complain about it.

[27]

About TYPO3 API

TCEforms is the most complex TYPO3 class you can use from. Its APl was never
meant for external use, but it is still possible to do it. Though this will not be
described in this book, developers can figure it out by looking at the file typo3/mod/
user/ws/workspaceforms.php. This file makes use of TCEforms to create custom
rendering of workspace records.

TCEmain

TCEmain is the TYPO3 record processor. It handles the following tasks:

e Record creation, deletion, updation, copying, and moving
e (Clearing the cache
e \ersion creation, updating, and publishing

Though this list does not contain all the functions, the class contains over 100 functions
and nearly 5500 lines of code. The class name for TCEmain is t3lib_TCEmain.

Most extension developers are interested in the first two entries from the list above.
We will review these in the later sections.

Record Manipulation
Record manipulation happens through two functions:

e process_datamap()
e process_cmdmapl()

These functions do not take any parameters. Parameters must be passed to
TCEmain's start() function. If both functions need to be executed, then process_
datamap() should be called first.

The process_datamap() function takes care of record creation and updates. The
process_cmdmap() function moves, deletes, undeletes, localizes, and creates
versions for records.

Both functions expect their data to be in a certain format. As often in TYPO3, data
consists of arrays.

The process_cmdmap() function uses the following format for data:

$datamap = array(
StableName => array(
SrecordUid => array(
SfieldName => $fieldValue
)
)
)i

[28]

Chapter 1

Here, $tableName is the database table name. There can be any number of tables in
the $datamap. The $recordUid variable is the unique identifier of the record (uid
field in the database table). If $recordUid is a string and starts from NEW (followed
by a random string), then a new record will be created in the database. $fieldName
is a database field name (uid cannot be passed as a field). The $fieldValue variable

is an unescaped (raw) field value. The process_cmdmap() function has additional
useful features. For example, it is possible to create a page and its content elements at
once. The SrecordUid variable for the pages table will start with NEW, and pid field
for each content element should have the same identifier. TCEmain will substitute
pid values automatically. But do not try it with other fields, it will not work as it
does with pid. You can also insert a record before another record. In this case, pid
field should be a negative value of the other record's uid attribute.

After a record is created, it is possible to obtain record uid values from TCEmain.
TCEmain's substNEWwithIDs attribute is an array where keys are NEW-style
identifiers, and values are uid values for new database records.

The process_cmdmap() function has similar data format:

Scmdmap = array(
StableName => array(
SrecordUid => array(
Scommand => Scommand_data
)
)
);

The next table shows values for $command and the format of $command_data.

Command Command data format

Move uid of the page where the record will be moved
copy uid of the page where the record will be copied
localize uid of the record from the sys_language table
version Complex;.beyond the purpose of this book.
delete empty

undelete empty

The following code example will create a page with a single text element and delete
this page with the element.

require_once(PATH_t3lib . 'class.t3lib_tcemain.php’);
Spid ='NEW' . uniqid(");
Scontent_uid = 'NEW' . uniqid(");

[29]

About TYPO3 API

Ststamp = time();
// Datamap for page and content
$datamap = array(
'pages’ => array(
Spid => array(
'pid'=> 1,
'title' =>
SGLOBALS['LANG']->getLL('my_page_title'),
'hidden' => 0,

// Next line says that page is "Standard"

'doktype'=> 1,

'crdate’ => Ststamp,

"tstamp' => Ststamp,

// Next line says what user created the page

‘cruser_id' => SGLOBALS['BE_USER']->user['uid"],

// Set some permissions. See TSConfig document

'perms_userid' =>
SGLOBALS['BE_USER']->user['uid'],

'perms_groupid' => 0, // No group
'perms_user' => 31, // See TSConfig
'perms_group' => 27,

'perms_everyone' => 0,
)
)
'tt_content' => array(
$content_uid => array(

'pid' => $pid,

'header' =>
SGLOBALS['LANG']->getLL('content_title"),
'CType' => 'text,

'bodytext' => 'Hello, TYPO3!,
'crdate’ => Ststamp,
"tstamp' => Ststamp,
'cruser_id' =>
SGLOBALS['BE_USER']->user['uid'],
‘colPos'=>0
)
)
)i
// Create TCEmain instance
Stce = t3lib_divimakelnstance('t3lib_TCEmain');
/* @var Stce t3lib_TCEmain */
Stce->start(Sdatamap, null);
Stce->process_datamap();

[30]

Chapter 1

if (count($tce->errorLog) = 0) {
// Stce->errorLog is an array of error messages

}

// Prepare cndmap to delete created records.

// BE user must have 'recursive delete' enabled

// for this example!

Scmdmap = array();

foreach (Stce->substNEWwithIDs as $Snew => Suid) {
// Stce->substNEWwithIDs_table is like
// Stce->substNEWwithIDs but contains
// table names
Scmdmap[Stce->substNEWwithIDs_table[$Snew]][$uid] =
array('delete' =>");

}

Stce = t3lib_divimakelnstance('t3lib_TCEmain');

/* @var Stce t3lib_TCEmain */

Stce->start(null, Scmdmap);

Stce->process_cmdmap();

if (count($tce->errorLog) = 0) {
// Process error messages

}

Clearing Cache

If an extension's work affects the content of the page in the FE, the extension must
take care of clearing cache for the page. For example, if an extension generates new
content, modifies existing content, or creates a record that should be displayed on the
page, the page cache has to be cleared.

TCEmain is strictly BE code. But cache pages are written in the way that allows one
to use them from FE as well.

There are several functions that can be used to clear cache. As extension developers,
we are mostly interested in one. It is named clear_cacheCmd. This function accepts a
single parameter. For our purpose, it should be page uid value.

A code example:

require_once(PATH_t3lib . 'class.t3lib_tcemain.php’);
// Create TCEmain instance

Stce = t3lib_divimakelnstance('t3lib_TCEmain');

/* @var Stce t3lib_TCEmain */
Stce->clear_cacheCmd(123);

If more than one page has to be cleared, it has to be done in a loop.

[31]

About TYPO3 API

Frontend API

This part of the APl is used in the Frontend. The number of files is relatively small,
but the number of functions is very large. We will review only major functions.

TSFE

TSFE (historically stands for "TypoScript Frontend") is the main FE class. It is
sometimes called "page" object among developers. This class contains methods that
determine page ID, parse TypoScript templates, execute templates, process output
and cache it. Also, TSFE is responsible for managing FE user object. TSFE

is located in the class tslib_fe (exercise: see if you can guess the path to the

file name).

Normally, extensions do not call TSFE methods but use some TSFE class attributes.
We will describe the most important attributes here:

e additionalHeaderData

This is an array where FE plugins can add HTML tags that should appear
between <head> and </head> on the page. It is a good practice to start with
tx_yourextkey_ prefix. Do not add inline <script> (<script> tag without

src attribute) here!

e additionalJavaScript

An array where FE plugins may add
inline JavaScript, if necessary. It is a good practice to start with
tx_yourextkey_ prefix.

e config

This is an array. It is the only member with the config key corresponding
to the parsed config object from the current TypoScript setup. This array
contains merged entries from config and page.config.

e fe_user

An object of the class, tslib_feUserAuth, which represents a FE user. The
user attribute of this class contains a record from the fe_users table. If FE
user is logged in, SGLOBALS['TSFE']->fe_user->user['uid'] will be set,

and t3lib_div:testint will return true for it.

e id
This is the current page ID. It is very often used in FE plugins as
SGLOBALS['TSFE']->id.

[32]

Chapter 1

lang

This attribute is the current language code (string value). This is not the same
as the ISO language code. It is TYPO3 code to be used with language files.
The value default means English. A full list of codes can be found in
typo3/sysext/setup/mod/locallang.xml as a set of lang_* entries.

page
This is a record from the pages table that corresponds to the current page.
If the page is loaded in a nondefault language, this record will have that

language applied (all fields like title or navigation title will be taken from
pages_language_overlay and applied to this record).

pSetup

This is a parsed TypoScript setup for the plugin. This is useful in certain
cases. For example, you may want to examine the setup of another plugin. It
is a parsed TypoScript array.

register

This is an array of registers (see LOAD_REGISTER in TSRef). FE plugins can set
registers, and they will be available to other objects on the page (plugins or
TypoScript objects from TypoScript setup). The key is register name, value is
register value.

rootLine

This is an array of records from the pages table that represents the path to the
current page from the root of the website.

sys_language_content

This is a uid field value for the record in the sys_language table. TYPO3
will select content from the tt_content table with sys_language_uid that
matches this value.

sys_language_uid

This is a uid field value for the record in the sys_language table. It
corresponds to config.sys_language_uid in TypoScript setup.
sys_language_mode

See config.sys_language_mode in TSRef.

[33]

About TYPO3 API

Content Objects

Content objects display information on the page. All content object types are
described in TSRef and they are implemented by the class named tslib_cObj, which
is located in typo3/sysext/cms/tslib/class.tslib_content.php. A quick look

at this class reveals familiar names such as TEXT, HTML, USER, or stdWrap.

This class is used very often in FE plugins. It has lots of very well-documented
methods. We will describe many of them in due course when we have to use them in
our real extension.

Plugin API

Last but not the least in its importance is the tslib_pibase class. This is a base

class for the FE plugins. While it is not mandatory to use it, most plugins do because
this class provides many helpful methods. We will discuss this class in detail

in Chapter 5 of the book. For now, we should know that this class provides the
following function groups:

e Link generation
These functions allow plugins to create links with plugin parameters in them.

e Handling of localized labels
These functions help to retrieve translated labels from the language files.

e Frontend editing
These functions help to add FE editing capabilities to plugins (rarely
used by plugins).

o Database queries
These functions do specialized database queries. Most of them are
equivalents of the t3lib_DB functions.

e Flexform handling functions
Flexform is a TYPO3 way of having forms inside forms. They are often used
for plugin configuration. These functions initialize flexform data and extract
information from flexforms.

Summary

In this chapter, we had a very brief overview of TYPO3 API. TYPO3 APl is large, and

it contains functions that cover almost every need of a typical extension developer.
We will actively use TYPO3 APl in our own extension in the forthcoming chapters of
this book.

[34]

Anatomy of TYPO3
Extension

This chapter describes TYPO3 extensions from the developer's point of view. After
reading this chapter, the reader will have basic knowledge of extension structure,
files, and how extensions interact with TYPO3. This knowledge is necessary for
extension planning and implementation.

TYPO3 Extension Categories

AlITYPO3 extensions are classified into several predefined categories. These
categories do not actually differentiate the extensions. They are more like hints for
users about extension functionality. Often, it is difficult for the developer to decide
which category an extension should belong to. The same extension can provide PHP
code that fits into many categories. An extension can contain Frontend (FE) plugins,
Backend (BE) modules, static data, and services, all at once. While it is not always

the best solution to make such a monster extension, sometimes it is necessary. In this
case, the extension author should choose the category that best fits the extension's
purpose. For example, if an extension provides a reservation system for website
visitors, it is probably FE related, even if it includes a BE module for viewing
registrations. If an extension provides a service to log in users, it is most likely a
service extension, even if it logs in FE users. It will be easier to decide where the
extension fits after we review all the extension categories in this chapter.

Choosing a category for an extension is mandatory. While the TYPO3 Extension
Manager can still display extensions without a proper category, this may change
and such extensions may be removed from TER (TYPO3 Extension Repository) in
the future.

The extension category is visible in several places. Firstly, extensions are sorted and
grouped by category in the Extension Manager. Secondly, when an extension is
clicked in the Extension Manager, its category is displayed in the extension details.

Anatomy of TYPO3 extension

If an extension's category is changed from one to another, it does not affect extension
functionality. The Extension Manager will show the extension in a different category.
So, categories are truly just hints for the user. They do not have any significant
meaning in TYPO3.

So, why do we care and talk about them? We do so because it is one of those things
that make a good extension. If an extension developer starts making a new extension,
they should do it properly from the very beginning. And one of the first things to do
properly is to decide where an extension belongs.

So, let's look into the various extension categories in more detail.

Category: Frontend

Extensions that belong to the Frontend category provide functionality related to
the FE. It does not mean that they generate website output. Typically, extensions
from the FE category extend FE functionality in other ways. For example, they can
transform links from standard /index.php?id=12345 to /news/new-typo3-book-
is-out.htm. Or, they can filter output and clean it up, compress, add or remove
HTML comments, and so on. Often, these extensions use one or more hooks (see
Chapter 1) in the FE classes. For example, TSFE (see Chapter 1) has hooks to process
submitted data, or to post-filter content (and many others).

Examples of FE extensions are source_optimization and realurl.

Category: Frontend plugins

Frontend plugins is possibly the most popular extension category. Extensions from
this category typically generate content for the website. They provide new content
objects, or extend existing types of content objects (see Chapter 1).

Typical examples of extensions from the Frontend plugins category are tt_news,
comments, ratings, etc.

Category: Backend

Extensions from the Backend category provide additional functionality for TYPO3
Backend. Often, they are not seen inside TYPO3 BE, but they still do some work.
Examples of such extensions are various debugging extensions (such as rimp_
filedevlog) and extensions that add or change the pop-up menu in the BE (such
as extra_page_cm_options system extension). This category is rarely used because
extensions belonging to it are very special.

[36]

Chapter 2

Category: Backend module

Extensions from this category provide additional modules for TYPO3 BE. Typical
examples are system extensions such as beuser (provides Tools | Users module) or
tstemplate (provides Web | Template module).

Category: Services

Services extend core TYPO3 functionality. Most known and most popular service
extensions are authentication services. TYPO3 Extension Repository contains
extensions to authenticate TYPO3 users over phpBB, vBulletine, or LDAP

user databases.

Services are somewhat special and will not be covered in this book. Extension
developers who are interested in the development of services should consult
appropriate documentation on the typo3.org website.

Category: Examples

Extensions from this category provide examples. There are not many, and are
typically meant for beginners or for those who want to learn a specific feature of
TYPOS3, or features that another TYPO3 extension provides.

Category: Templates

Extensions from this category provide templates. Most often, they have preformatted
HTML and CSS files in order to use them with the templateautoparser extension

or map with TemplaVoila. Sometimes, they also contain TypoScript templates, for
example, tmpl_andreas01 and tmpl_andreas09 extensions. Once installed, they

provide pre-mapped TemplaVoila templates for any website, making it easy to have

a website up and running within minutes.

Category: Documentation

Documentation extensions provide TYPO3 documentation. Normally, TYPO3

extensions contain documentation within themselves, though sometimes, a
document is too big to be shipped with extensions. In such cases, it is stored

separately. There is an unofficial convention to start an extension key for such
extensions with the doc_ prefix (that is, doc_indexed_search).

[37]

Anatomy of TYPO3 extension

Category: Miscellaneous

Everything else that does not fit into any other category goes here; typical
examples are skins. But do not put your extension here if you just cannot decide
where it fits. In all probability, it should go into one of the other categories,

not into Miscellaneous.

Extension Files

TYPO3 extensions consist of several files. Some of these files have predefined
names, and serve a predefined purpose. Others provide code or data but also follow
certain naming conventions. We will review all the predefined files in this chapter
and see what purpose they serve. We will look into the files according to their
logical grouping.

While reading this section, you can take any extension from the typo3conf/ext/
directory at your TYPO3 installation and check the contents of each discussed file.
Some files may be missing if the extension does not use them. There is only one
file which is mandatory for any TYPO3 extension, ext_emconf.php. We will start
examining files starting from this one.

Common Files

All files from this group have predefined names, and TYPO3 expects to find certain
information in them. Hacking these files to serve another purpose or to have a
different format usually results in incompatibility with other extensions or TYPO3
itself. While it may work in one installation, it may fail in others. So, avoid doing
anything non-standard with these files.

ext_emconf.php

This is the only required file for any TYPO3 extension. And this is the only file
that should be modified with great care. If it is corrupt, TYPO3 will not load
any extension.

This file contains information on the TYPO3 Extension Manager. This information

tells the Extension Manager what the extension does, provides, requires, and conflicts
with. It also contains a checksum for each file in the extension. This checksum

is updated automatically when the extension is sent to TER (TYPO3 Extension
Repository). The server administrator can easily check if anyone has hijacked the
extension files by looking into the extension details in the Extension Manager. The
modified files are shown in red. Here is a tip. If you (as an extension developer) send
your own extension directly to the customer (bypassing TER upload), or plan to use

[38]

Chapter 2

it on your own server, always update the ext_emconf.php file using the
Backup/Delete function of the Extension Manager. This will ensure that TYPO3
shows up-to-date data in the Extension Manager.

Here is an example of a ext_emconf.php file from the smoothuploader extension:

<?php
B g g e s
Extension Manager/Repository config file for ext: ¢
"smoothuploader”
Auto generated 29-02-2008 12:36
Manual updates:
Only the data in the array - anything else is removed by ¢
next write.
"version" and "dependencies" must not be touched!
B g g e e s
SEM_CONF[$_EXTKEY] = array(
'title' => 'SmoothGallery Uploader,
'description’' => 'Uploads images to SmoothGallery,,
'category' => 'plugin;,
'author' => 'Dmitry Dulepov [Netcreators],
'author_email' => 'dmitry@typo3.org,
'shy'=>",
'dependencies' => 'rgsmoothgallery,
'conflicts'=>",
"priority' =>",
'module’=>",
'state’ => 'beta,
'internal' =>",
'uploadfolder' => 0,
'createDirs' =>",
'modify_tables' => 'tx_rgsmoothgallery_image,
'clearCacheOnload' => 0,
'lockType'=>",
'author_company' => 'Netcreators BV,
'version'=>'0.3.0,
‘constraints' => array(
'depends' => array(
‘rgsmoothgallery' =>"1.1.1-,
),
'conflicts' => array(
),
'suggests' => array(
),

[39]

Anatomy of TYPO3 extension

)I
)i

>

md5_values_when_last_written' =>'a:12:{s:9:...;}"
'suggests' => array(

The variable _md5_values_when_last_written is shortened in the listing above.

The following fields are used in the $EM_CONF array:

Field name Field description

title Extension title. This is visible in the Extension Manager and
TYPO3 Extension Repository.

description Description of the extension.

category Category to which the extension belongs (discussed earlier in this
chapter).

author Extension author's name.

author_email Extension author's e-mail.

author_company

shy

dependencies
conflicts
priority

module

state

Extension author's company.

If set to 1, the extension will be hidden if Display shy extensions
is not checked in the Extension Manager. There are no valid
reasons to make extensions shy. This flag is usually set for system
extensions that appear in every TYPO3 installation. It just makes
the Extension Manager less crowded.

Obsolete; should not be used.
Obsolete; should not be used.

This field is used for prioritizing extensions in certain cases. Leave
it untouched.

Lists extension's Backend modules. Left menu uses this field to
find information about modules.

Can be one of the following values:

- alpha
Initial development, not ready for release, some functions
may work, has bugs.

e beta
Ready for testing, may have bugs.

[40]

Chapter 2

Field name

Field description

internal

uploadfolder

createDirs

modify_tables

clearCacheOnlLoad

lockType

- stable
Extension is mature, can be used in production.
» experimental

Extension may change TYPO3 behavior in an unusual
way or may do something unusual.

It is important to change state appropriately during extension
development. It is very common to see beta extensions that are
used for years on many production sites. Unfortunately, this is
typical in the open source software world; products stay beta for
ages and never become ready. Do not follow this practice; set
your extension's state to stable after you fix major bugs, and get
positive feedback from users. stable does not mean you have

to stop developing it. It means that other people may use it

in production.

Set if this extension is internal for TYPO3. May not be used by any
custom extension.

Obsolete, but still used. This declares the name of the directory,
related to TYPO3 web root, where files will be uploaded.

Currently, this serves only informational purposes because actual
upload directories are declared for each database table in the table
configuration array ($TCA). We will talk about it when we discuss
ext_tables.php and tca.php.

Comma delimited list of directories to be created during extension
installation. Directories must be relative to TYPO3 web root
directory.

Comma delimited list of tables modified by this extension. System
tables or tables from other extensions can be modified by placing
certain SQL into the ext_tables.sql file. Each table name

follows certain naming conventions. If an extension modifies

a table with a non matching name but does not list it in this
property, the Extension Manager will show naming errors.

If set, clears cache when the extension is installed. Useful only
for extensions that modify website output immediately after
installation (such as HTML clean-up extensions or content
compressors). Do not set if not necessary.

This field allows to "lock" extensions to a certain type of
installation (global, local, or system). Generally, this field should
never be modified. Modification may cause problems with the
installation of the extension.

[41]

Anatomy of TYPO3 extension

Field name

Field description

version

constraints

This indicates the extension version. Normally modified by the
Extension Manager when the extension is uploaded to TER.
However, if the extension is private, the version should be
modified manually each time the extension leaves the developer's
computer.

Version follows the PHP versioning pattern. It consists of three
digits, each representing a change in one of the following things:
« major version (also called release version)
+ minor version
« bug fix version
The first number is updated when the extension has a major
change in behavior, such as major feature added, completely
rewritten code, and so on.

The second number is updated when the extension is developed,
or some minor features are introduced.

The last number is updated when the new version only fixes bugs.

This element consists of three sub-elements, all having an identical
structure. Each sub-element is an array, where the array key is an
extension key, and its value is zero, one, or two version numbers.
A zero version number means that the constraint applies to any
version of the extension while one and two numbers mean that
the constraint applies to a version range. Two version numbers
separated by a dash imply "from version - to version" (inclusive)
and for one number, the versions of the extension to which the
constraint applies depend on the position of the version number
and the dash. Examples:

e 'extkey'=>"

Applies to any version of the extension with an extension
key extkey

e 'extkey'=>'1.0.0-'

Means that the constraint applies to the extension with
version number 1.0.0 and higher

e 'extKey'=>'1.0.0'
Means that all versions prior and including 1.0.0 are
caught by this constraint

« 'extkey'=>'0.5.0-1.0.0'

Means that the constraint works for versions from 0.5.0 to
1.0.0 (both inclusive)

[42]

Chapter 2

Field name Field description

There are three types of constraints:
« depends

The Extension Manager will require listed
extensions to be installed before the current
extension can be installed. Generally, it means
that the current extension uses listed extensions in
some way.

- conflicts

The Extension Manager will not allow installation
of this extension if it is installed from this constraint.
A version check in this constraint works in TYPO3
version 4.1.7 and higher.

+ suggests

The Extension Manager will prompt for the
installation of the extensions listed in this constraint,
but will not insist on doing so. This constraint is
useful when an extension extends many extensions
all at once. For example, the comments_ic

extension extends tt_news and commerce with an
ability to close comments individually for each item.
It suggests these two extensions for installation.
Notice that it gives an error if these two extensions
are placed into the depends constraint because then
comments_ic may not be used only with tt_news

(the Extension Manager will require commerce

as well!)

suggests Obsolete; do not use.

[43]

Anatomy of TYPO3 extension

ext_conf_template.txt

This file contains the definitions of installation-wide system settings for the
extension. Each setting is a name/value combination. Names and values are
separated by an "equal to" sign. The spaces in name and value are stripped. Here is
how such a configuration looks in the Extension Manager:

CONFIGURATION:
(Notice: You may need to dear the cache after configuration of the extension. This is required If the extension adds
TypoScript depending on these settings.)

Image upload folder [uploadFolder]

Speclfy the name of the Image upload folder. Default |s fuploads/tx_srfeuserreglster.

[uploads/tx_srfeuserreglster |

Allowed image types [ImageTypes]
Speclfy the |lst of acceptable flle extenslons for the front end user Images. Default |s png, jpg, jpeg, glf, tIf, tIff.

[ena, ipa, jpea, alf, tif, tiFf |

Maximun image size [ImageMaxSize]
Speclfy the maximum slze of uploaded Image flles, In number of KB's. Default Is 250.

B50JRange: o-

Enable features

Use Flexforms [useFlexforms]
Enable the use of Flexforms In the backend. Extenslon fh_|lbrary verslon 0.0.4+ must be Installed. Default Is 1.

=

Update

Each name/value pair can be prepended with a special comment. A comment
defines data type, title, and description for each name/value pair. Here is
an example:

cat=basic/enable; type=string; label=Database URLconnection string:
mnoGoSearch connection URL

dbaddr = mysql://user:pass@host/dbname?dbmode=blob&LiveUpdates=yes

The first line is a special comment. It also consists of name/value pairs, separated by
a semicolon. The value from this file serves as a default value.

[44]

Chapter 2

The same syntax is used for TypoScript constants.

Name

Value

cat

Format is "category/subcategory: title" (title is usually omitted). This
field is used to group settings. It is possible to have, for example,
database settings separate from rendering settings. Valid values for
categories are:

basic
Any general options, most likely to be changed. Mandatory
database configuration is an example.

menu
Configuration for menu. This is rarely used for extension
installation, but sometimes used for TypoScript constants.
page

Page-related options. Also, typically used for constants, not for
extension installation.

advanced
Advanced options go here.

Categories may have subcategories. Available subcategories are:

enable

Used for options that enable or disable primary functions of a
template.

dims

Dimensions of all kinds; pixels, widths, heights of images,
frames, cells, and so on.

file

Files such as background images, fonts, and so on.

typo

Typography and related constants (rarely used).

color

Color setup (rarely used).

links

Usually used for link targets.

language

Language related settings.

[45]

Anatomy of TYPO3 extension

Name Value
type A field will be rendered according to its type. Valid field types are:
e string
This is a default type. It is just a string with no conversion or
validation.
e int
Integer number (or 0 if a noninteger is entered).
e int+
Positive integer number (or 0 if a noninteger is entered).
- color

HTML color (with color selector control).

« file[extension-list]
File selector, will allow selection of only the files with extensions

from the list.
e wrap

HTML to wrap around content.
+ boolean

Rendered as a checkbox, and has two state values.
« options[option-list]

A comma-delimited list (without spaces!) as

label/value pairs.

label Label and description, separated by a colon

These settings are saved by the Extension Manager and can be accessed
programmatically:

$sysconf = unserialize(SGLOBALS['TYPO3_CONF_VARS'I['EXT']
['extConf']['extkey']);
if ($sysconf['enable') {

These settings are used when they are system-wide. Anything which is
site-dependent should go into the TypoScript setup for FE plugins (see the
following section).

ext_tables.php

This file performs three functions:

. Declares extension tables.

« Declares fields for system or other extension tables extended by
this extension.

« FE plugins and BE modules are registered with TYPO3 in this file.

[46]

Chapter 2

The table definitions look quite simple. This information adds the definition of a
new table to the TYPO3 global variable named $TCA (TCA stands for "Table
Configuration Array").

The variable $TCA is one of the most important variables in TYPO3. It is an array
where keys are database table names, and values are arrays of certain structure that
define how fields in the database should look in TYPO3 BE forms, and also which
fields have special meaning.

Each table definition in $TCA consists of several sections but ext_tables.php
declares only one section, named ctrl. This saves a lot of memory if the table is not
being used in a particular execution because table definitions may be really huge.
TYPO3 includes all ext_tables.php files from all extensions. Thus, all tables are
known to TYPOS3. If necessary, TYPO3 will load a full table definition using the
dynamicConfigFile property from the ctrl section.

Additionally, the ctrl section contains other important fields such as table name,
table icon, and a list of fields that serve a special purpose.

Here is an example of a table definition from ext_tables.php:

STCA['tx_ratings_iplog'l = array(
'ctrl' => array (
'title' => 'LLL:EXT:ratings/locallang_db.xml:tx_ratings_
iplog;,
'label' =>'reference,
'tstamp' =>"tstamp),
'crdate’ =>'crdate),
'cruser_id' => 'cruser_id,,
'default_sortby' =>'ORDER BY crdate DESC,
'dynamicConfigFile' => t3lib_extMgm::extPath($_EXTKEY).tca.
php,
'iconfile' => t3lib_extMgm::extRelPath($_EXTKEY) .
'icon_tx_ratings_iplog.gif’,
)
)i

Information on ctrl and other sections can be found in the TYPO3 Core API
document on the typo3.org website.

[47]

Anatomy of TYPO3 extension

Tables are extended in a similar way. But instead of defining the ctrl section, new
columns are defined and added to the existing tables using TYPO3 functions. We
will talk more about column definition syntax in the section about tca.php. Here we
will just see one example:

// New columns
StempColumns = array(
"tx_ratings_enable' => array(
‘'exclude'=> 1,
'label' => 'LLL:EXT:ratings/locallang_db.xml:tt_news.tx_
ratings_enable;,
‘config' => array(
'type' =>'check,
'items' =>array(
array(",")
)
'default’ =>"1"

)
)i
t3lib_div:loadTCA('tt_news');
t3lib_extMgm::addTCAcolumns('tt_news, $tempColumns, 1);
t3lib_extMgm::addToAlITCAtypes('tt_news, < 'tx_ratings_
enable;;1-1-1Y);

Here, one new column is defined for the tt_news table. The definition is set to
StempColumns. The column is set to type check, which means that an additional
checkbox will be displayed in the tt_news item. All configuration options for check
and other column types are explained in the TYPO3 Core APl document.

The last three lines add the above definition to the TCA. The first line loads the full
TCA definition for the tt_news table. This is necessary because the ext_tables.

php file includes only the ctrl section for each table. The next line actually adds a
new column definition to the table. The third line tells TYPO3 where to display this
new column. In this particular case, it just added the new column to the end of the
existing fields. It is possible to put columns before or after the existing fields too.
See the documentation for t3lib_extMgm::addToAllITCAtypes in the source code

for more information.

The FE plugin addition looks like this:

t3lib_extMgm::addPlugin(array(
'LLL:EXT:ratings/locallang_db.xml:tt_content.list_type_pi1}
S_EXTKEY.'_pi1), 'list_type");

[48]

Chapter 2

Usually, this code is generated automatically when a new extension is created. The
first parameter is an array. It associates the plugin with a human-readable name

of the plugin. The second parameter tells TYPO3 about the type of the plugin.
Normally, it is list_type but it can also have another value (for example, site maps).

ext_tables.sql

This file includes database table definitions written in SQL. TYPO3 extensions may
define their own tables or extend existing system or other extension tables. These two
cases are different and require different SQL statements.

If an extension defines its own tables, syntax of such a definition should exactly

be the same as produced by the SHOW CREATE TABLE SQL statement in the MySQL
console. (Even if the actual database is Oracle or MSSQL, definitions must have
MySQL syntax). No additional spaces (or missing spaces) and no position change
for field modifiers is allowed. This limitation exists due to the fact that TYPO3

parses SQL to see if it needs to update the table structure. The only parts that can be
removed are the CHARACTER SET, ENGINE, and COLLATE directives. The following
example shows a table definition from the ratings extension. It has ENGINE set to
InnoDB to ensure high concurrency of data.

#

Table structure for table 'tx_ratings_data'

#

CREATE TABLE tx_ratings_data (
uid int(11) NOT NULL auto_increment,
pid int(11) DEFAULT '0' NOT NULL,
tstamp int(11) DEFAULT '0' NOT NULL,
crdate int(11) DEFAULT '0' NOT NULL,
cruser_id int(11) DEFAULT '0' NOT NULL,
reference text NOT NULL,
rating int(11) DEFAULT '0' NOT NULL,
vote_count int(11) DEFAULT '0' NOT NULL,
PRIMARY KEY (uid),
KEY parent (pid),
KEY reference (reference(16))

) ENGINE = InnoDB;

Another case is table modification. Normally, such changes are made with ALTER
TABLE SQL statements, but TYPO3 uses another way, partial table definitions. Here is
an example from the same ratings extension:

#

Table structure for table 'tt_news'

#

CREATE TABLE tt_news (

tx_ratings_enable int(1) DEFAULT '1' NOT NULL,
)i

[49]

Anatomy of TYPO3 extension

It looks like a normal CREATE TABLE statement except that it does not have all the
fields required by TYPO3 (such as uid and pid) and has a comma after the definition
of the tx_ratings_enable field. So technically, such SQL is neither valid nor does it
represent a valid TYPO3 table. But it tells TYPO3 that the Extension Manager should
merge the tt_news table definition from some other extension with this definition
and update the table to show the result of the merge, if necessary.

No other SQL statements can appear in this file.

ext_tables_static+adt.sql

This file is very similar to ext_tables.sql except that it has table creation statements
for static tables and may have data definition statements (SQL INSERT statements).

Static tables contain information that does not change. For example, the static_info_
tables extension contains static tables with language codes, taxes, currencies, country
names, character sets, and so on. This information never changes while TYPO3 is
running (though it may be updated if the tax rate changes). So, it is inserted statically.

The table definition statements do not differ from those in ext_tables.sql.

The data definition statements are simple SQL INSERT statements. They must insert
all fields (including automatically incrementing uid field), and must not use MySQL
extended INSERT syntax. The easiest way to create proper statements is to add data
to the database manually and use the mysqldump program with c -n -d -compact
-extended-insert=FALSE options to export data.

ext_localconf.php

This file usually contains hook definitions and registers TypoScript from the FE
plugins with TYPO3. Here is an example from the irfaq extension:

// Add plugin's TypoScript

t3lib_extMgm::addPItoST43(S_EXTKEY, 'pil/class.tx_irfaq_pil.php,

'_pil} 'list_type, 1);

// TCEmain hooks for managing related entries

SGLOBALS ['TYPO3_CONF_VARS'I['SC_OPTIONS']
['t3lib/class.t3lib_tcemain.php']
['processDatamapClass']['irfaq'l =

'EXT:irfaq/class.tx_irfaq_tcemain.php:tx_irfag_tcemain’;

SGLOBALS ['TYPO3_CONF_VARS'I['SC_OPTIONS']
['t3lib/class.t3lib_tcemain.php']
['processCmdmapClass']['irfaq’] =
'EXT:irfag/class.tx_irfagq_tcemain.php:tx_irfaq_tcemain’;

Notice how TYPO3 file references are used in hook declaration.

[50]

Chapter 2

ext_icon.gif

This is an icon to show in the Extension Manager, to the left of extension title. An
icon should be a 16x16 pixels, nonanimated, transparent GIF. Many extensions
use 18x16 pixels because it looks better in the Extension Manager. But the TYPO3
Extension Repository expects a 16x16 pixels image and will stretch it to this size.

tca.php

This file contains complete TCA definitions for each table. It is included when code
calls the t3lib_div:loadTCA function with a table name. TYPO3 then looks in the

ctrl section in $TCA for this table. It locates the dynamicConfigFile property and
loads the corresponding file.

Let's see what this file looks like. We will look at the ratings extension again. The
following example is long and it shows three columns with
their definitions.

STCA['tx_ratings_data'] = array(
'ctrl' => STCA['tx_ratings_data']['ctrl'],
‘columns' => array (
'reference’ => array(
'exclude'=>1,
'label' => 'LLL:EXT:ratings/locallang_db.xml:tx_ratings_
data.reference,
‘config' => array(
'type' => 'group;
'internal_type' =>'db,
‘allowed' =>"*!
'size' => 1,
‘minitems' => 1,
'maxitems' => 1,
)
),
'rating' => array(
‘exclude'=>1,
'label' => 'LLL:EXT:ratings/locallang_db.xml:tx_ratings_
data.rating;,
‘config' => array(
'‘type' =>'input;

'size'’ =>'4,
'max’ =>'4,
‘eval' =>'int,

‘checkbox' =>'0;,

range’ => array(

'upper' =>'1000,
'lower' =>"'10"

[51]

Anatomy of TYPO3 extension

)
'default'=>0
)
)
'vote_count' => array(
'exclude' => 1,
'label' => 'LLL:EXT:ratings/locallang_db.xml:tx_ratings_
data.vote_count,,
‘config' => array (
'type' =>'input,

'size' =>'4)
'max’ =>'4)
‘eval' =>'int,

‘checkbox' =>'0;,
‘range’ => array (
'upper' =>"'1000,
'lower' =>"'10'

)

'default'=>0

)
),
'types' => array(
'0' => array(
'showitem' => 'reference;;;1-1-1,
rating, vote_count')
),
)i

First, the original ctrl section is set to $TCA. There is no need to duplicate it from
ext_tables.php. It is easier to set it to the existing value. Next is the columns

section. It contains definitions for each column. Definitions are explained in the
TYPO3 Core APl document, and the reader is encouraged to look up what each
definition in the example means. Notice that each field type has its own set of
properties. For example, input type has an eval property, which may trim the

field value or convert it to a date. This property does not exist for other field types.
Always look for properties in the TYPO3 Core APl document. Specifying a property
with a hope that it will work is useless if the property is not defined in the TYPO3
Core APl document.

One important feature of TCA is its record types. One field in the table can be
designated as a type field. When the type field changes, the BE form for the record
is reloaded, and another set of fields is shown. Type fields are defined in the ctrl
section using the type property. The value of the type field (usually integer) is
mapped to keys in the types section of the table definition in TCA (see previous
example). If there is no type field for the table, the default value 0 is used as type.

[52]

Chapter 2

The types section in the TCA definition for the table shows which fields are available
in the form, and in which order. Again, "TYPO3 Core API" describes how this section
looks. In the simplest case, it just lists fields. It is very important to remember that a
field will not be shown in the form if it is not included in the types definition.

Another interesting feature of TCA is the display of conditions and the
requestUpdate fields.

As we saw earlier, the type field can change the look of the form. But sometimes it is
not enough, and some fields can be shown or hidden depending on the value of the
other fields. The displayCond property exists, and the field can be shown or hidden
depending on the condition. Conditions may be set depending on the other fields in
the same record, extension status (installed or not), record status (new or not). Newer
TYPO3 versions may introduce other conditions.

The requestUpdate fields are similar to the type field because they cause the form

to reload when the value of the field changes. They do not have anything similar to

the types section in TCA, but conditions may use the value of these fields to show or
hide other fields. This allows us to create truly dynamic and rich forms. There is only
one thing to bear in mind: do not become obsessed with the technical possibilities and
forget to think about the user who is going to work with forms! All these technical
possibilities are made for better user satisfaction, but they must be used with care. It is
easy to create a form that will change too often and irritate users. So, just be careful!

class.ext_update.php

If this file is present in the extension, the Extension Manager will add a new function
to the list of functions available for the extension. The function is named UPDATE!.
When a user chooses the function, the Extension Manager will load the file and

pass control to the class. The class can propose updates to the user and perform
these updates when the user confirms them. For example, this class may convert
the extension's database structure from old to new, or change values of fields

using complex logic. This file is so rarely used that most extension developers are
completely unaware of this feature.

[53]

Anatomy of TYPO3 extension

The class in this file must be named ext_update. It must include at least the
following two public methods:

° access

The Extension Manager calls this method when a user clicks on the
extension title in the Extension Manager and asks for details. If the method
returns true, the Extension Manager will add an additional item to the list of
functions. The item will be named "UPDATE!".

r= =

FlEla ol @
=

| 2} Edlt In Kickstarter :

Informatlon

Edit flles

" Backup/ Delete
Dump DB

Upload to TER
UPDATE!

Edlt In Klckstarter

This method is typically used to check if an update should be performed
at all. The method name is historical but misleading because the Extension
Manager is visible only to "admin" users, and admin users always have
access to everything.

. main

This method generates content. Typically, it is a list of things to update and
an HTML form with a button to confirm these updates. When a user clicks
the button, ext_update performs the necessary updates.

Frontend Plugin Files

FE plugins generate custom content for websites. Typical examples of FE plugins are
photo galleries, guestbooks, news systems, and reports.

FE plugins in TYPO3 do not have many requirements from the TYPO3 side. Plugins
must follow TYPO3 naming conventions (see Chapter 1 of this book) and must
return content instead of outputting it directly. The simplest FE plugin file will
contain a function, whose name starts with user_. The function will accept two
arguments and will return a string (generated HTML content). While it is possible
to make plugins this way, plugins are typically made as classes that extend a special
system class (tslib_pibase). The tslib_pibase class provides many convenient

methods for FE plugins such as localization handling, parameter gathering, and
link generation.

[54]

Chapter 2

pi Files

Typically, FE plugins are located in subdirectories prefixed by pi and followed by

a number inside the extension (for example, pi1, pi2, etc). The numbers are not
significant and do not have to be consecutive. However, plugin class name typically
reflects the directory in its name (for example, pil/class.tx_extkey_pil.php).

There can be other files in the pi directory. There can be additional class files, which
must follow naming conventions as usual (for example, class tx_myext_myclass

in class.tx_myext_myclass.php). External files can be included in the lib/

subdirectory (unofficial convention). Templates are typically included in the res/
subdirectory inside the pi directory, which is in the extension's directory.

TypoScript Templates

Often, FE plugins require certain TypoScript to be set. Such TypoScript may include
references to templates or page IDs where records are stored. The TypoScript files are
named constants.txt and setup.txt, and can be located either in the extension's
directory, or in another subdirectory. If one of the files is empty, it is usually omitted.
This saves some parsing time for TYPO3.

Files from the extension's directory are loaded by TYPO3 automatically and made
available automatically everywhere in the FE. However, this slows down the FE and
currently it is recommended that you put TypoScript files into a separate directory
and include them manually in the main TypoScript setup of the website through the
Web>Template module. Administrators will choose to edit the whole template record
in that module and use Include static (from extensions) to include the extension's
template in the main template.

To register an extension's TypoScript templates with TYPO3, the following code is
included into the extension's ext_tables.php file:

t3lib_extMgm::addStaticFile($S_EXTKEY, 'static/Ratings/,
'Ratings’);

Here, the first parameter uses the variable that TYPO3 has automatically set to

the value of the extension key before the inclusion of ext_tables.php. The next
parameter is the relative path to the directory where constants.txt and setup.txt

are located. The last parameter is the title of the template as shown in "Include static
(from extensions)". This title is usually not localized (and it is in English!) because it

is normally referred to by this name in the extension's manual.

[55]

Anatomy of TYPO3 extension

Backend Module and its Files

Backend modules are usually located in the subdirectories prefixed by mod and
followed by a number. A Backend module's mandatory file is named conf.php. It
contains a description of the module. Here is an example of such a file:

<?php
// DO NOT REMOVE OR CHANGE THESE 3 LINES:
define(TYPO3_MOD_PATH,
\./typo3conf/ext/loginusertrack/mod1/");
$SBACK_PATH ="'./../.././typo3/}
SMCONF['name'] = 'web_txloginusertrackM1";

SMCONF['access'] = 'user,group’;

SMCONF['script'] = 'index.php';

SMLANG['default']['tabs_images'l['tab'] = 'moduleicon.gif';

SMLANG['default''ll_ref] =
'LLL:EXT:loginusertrack/mod1/locallang_mod.php';

>

First, three code lines define paths to the module. They are updated by the Extension
Manager when the extension is installed. The next line defines who can access the
module. It can have one of the following values:

. user
Access can be granted to the BE users on an individual basis.

- group
Access can be granted to the BE user groups.
s user,group
Access can be granted to BE users and/or groups. This is a typical setting.

« admin
This indicates that the module is available only for admin users.

There is one important constraint. If the module resides in another module (for
example, in User Tools or Admin Tools), and the user has no access to the parent
module, then the current module will be not be accessible either. For example, if
the module is placed inside the Tools module, it does not make sense to make it
accessible to BE users and/or groups by mentioning user,group in the conf.php
file. This is because the Tools module is accessible only to admin users.

[56]

Chapter 2

The module name declares where the module is located. The part before the
underscore is the parent's module name. For a top-level module, there is no
underscore in the module name. However, introducing new top level modules
should be avoided.

The line with the script property in $MCONF defines a file to be called when this
module is accessed through TYPO3 module menu. Typically, it is index.php, which
sometimes allows calling the module directly from the browser's address bar.

The remaining two lines define the icon and label for the module in the left
module menu.

The module script defines a class that follows naming conventions. Typically,
it is tx_extkey_module1. The number in the end corresponds to the number of
mod directories.

Module Function Files

Some modaules allow you to add functions. An example of such a module is
Web>Functions or Web>Info. Functions are selected in the top selector box of
the module.

Additional module functions from extensions are placed in directories prefixed
with modfunc, and followed by a number. The class name follows certain naming
conventions. Typically, it is named tx_extkey_modfunc1, and is located in the file,
class.tx_extkey_modfuncl.php. A class must have a method named main without
parameters, which returns the module function's content.

Module functions are registered with modules using code that looks similar to
this code:

if (TYPO3_MODE =="'BE') {
t3lib_extMgm:insertModuleFunction(

'tools_em),

"tx_kickstarter_modfunc1),

t3lib_extMgm::extPath($_EXTKEY) .
'modfunci/class.tx_kickstarter_modfunc1.php)
'LLL:EXT:kickstarter/locallang_db.xml:
moduleFunction.tx_kickstarter_modfunc1');

[571]

Anatomy of TYPO3 extension

The first parameter of t3lib_extMgm:insertModuleFunction tells the module

where to insert this new function. The next parameter is the function's class

name. The third parameter is the function's file path, and the last parameter is the
function's name from the module menu. All entries inside Web | Info are made from
the additional functions shown in the following figure.

11T T oflle| @

Pagetree overview

Pagetree overview
Locallzatlon overnslew oj

tt_news category n1aruﬂ§ér
Indexed search
Indexed search statlstics

Documentation Files

Normally, there is a single documentation file in an extension. It is always named
manual.sxw and located in the doc/ subdirectory in the extension's directory.

Manuals must follow a certain format to be visible on the typo3.org website in

the Documentation section. They must be OpenOffice 1.0 files, and must use the
template available from the Documentation section of the typo3.org website under
the title, Documentation template. There are instructions in this template about
using styles and images. They must be followed for proper documentation.

Summary

In this section, we learned about extension files and extension classes. Now, the
reader will have a basic knowledge of the extension structure and the extension
components. In the forthcoming chapters, we will take a deeper look into extensions,
and at coding our own extensions.

[58]

Planning Extensions

In this chapter, we will discuss why planning an extension is important, and how to
plan an extension. Planning issues related to web development are covered in depth
in many specialized books. Here, we will cover planning only with regard to TYPO3
extensions. By the end of the chapter, we will plan our own extension that we will
develop until the end of this book.

Why is Planning Important?

Most open source developers see planning as a boring task. Why plan if one can just
go and code? The answer is as simple as the question: The "Go and code" approach
does not let us create truly optimal code. Portions of code have to be changed while
other portions are written. They often lead to redundant code or uninitialized
variables, partially covered conditions, and wrong return results. Code gets a "do

not touch" reputation because changing anything renders the whole project unstable.
Often the code works, but the project is more a failure than a success because it
cannot be extended or re-used.

Another reason for planning is the ease of bug fixing and the costs associated with
it. Open source developers often do not think about it until they start selling their
services or work to commercial companies.

As shown by recent studies, the cost of problem fixing grows rapidly toward the end
of the project. The cost is minimal when development has not started yet, and the
person in charge just collects requirements. When requirements are collected and

a programmer (or a team of programmers) starts to think how to implement these
requirements, a change of requirements, or fixing a problem in the requirements still
does not cost much. But it may already be difficult for developers if they came to a
certain implementation approach after reviewing requirements. Things become worse
at the development stage. Imagine that the selected approach was wrong and it was
uncovered close to the end of development. Lots of time is lost, and work may have

Planning Extensions

to start from the beginning. Now imagine what happens if the project is released to
the customer and the customer says that the outcome of the project does not work
as expected (something was implemented differently (as compared to expectations),
or something was not implemented at all). The cost of fixing is likely to be high and
overshoot the budget. Next, imagine what would happen if problems occurred when
a project went live.

After reading the previous paragraph, some developers may ask how the situation
applies to noncommercial development, as there is a false perception that there are
no costs associated with it (at least, no direct costs). But, the costs exist! And often
they are much more sensitive than financial costs. The cost in non-commercial
development is reputation. If a developer's product does not work well or does not
work at all or it has obvious flaws, the general opinion about the developer may
become bad ("cannot trust his code"). Developers will also have troubles improving
because often they do not understand what has gone wrong. But the answer is near.
Do not rush! Plan it well! You may even think of something about the future code,
and then start coding only when the picture is clear.

Planning is an important part of software development. While freelancers can

usually divide their time freely between planning and implementation, many
corporate developers often do not have such freedom. And even worse, many
managers still do not see planning as a necessary step in software development. This
situation is well explained in The parable of the two programmers, which readers of this
book are encouraged to read in full.

When it comes to TYPO3, planning is more important than an average
application. TYPO3 is very complex, and its implementation is also complex.
Without planning, programmers will most likely have to change their already
written code to fix unforeseen problems therefore, good planning for TYPO3
extensions is extremely important.

But let us move on and see how to plan an extension.

How to Plan

There are several stages in planning. Typically, each stage answers one or more
important questions about development. TYPO3 developers should think about at
least three stages:

e Gathering requirements

e Implementation planning

e Documentation planning

[60]

Chapter 3

Of course, each project is unique and has other stages. But these three stages
generally exist in every project.

Gathering Requirements

The first thing that a developer needs to know is what his/her extension will do.
While it sounds pretty obvious, not many extension authors know exactly what
functionality the extension has in the end. It evolves over time, and often the initial
idea is completely different from the final implementation. Predictably, neither the
original nor the final is done well.

In the other case, when extension features are collected, though planned and
implemented according to plan, they usually fit well together.

So, the very first thing to do when creating an extension is to find out what that
extension should do. This is called gathering requirements.

For noncommercial extensions, gathering requirements simply means writing down
what each extension should do. For example, for a news extension, it may be:

e Show list of news sorted by date

e Show list of latest news

e Show news archive

e Show only a small amount of text in news list view

As we have seen, gathering requirements looks easier than it actually is. The process,
however, may become more complex when an extension is developed for an
external customer.

Alan Cooper, in his famous About Face book, shows how users, architects, and
developers see the same product. From the user's perspective, it looks like a perfect
circle. An architect sees something closer to an octagon. A developer creates
something that looks like a polygon with many segments connected at different
degrees. These differences always exist and each participating party is interested in
minimizing them. A developer must not be afraid of asking questions. The cleaner
picture he/she has, the better he will understand the customer's requirements.

Implementation Planning

When the requirements are gathered, it is necessary to think which blocks an
extension will have. It may be blocks responsible for data fetching, presentation,
conversion, and so on. In the case of TYPO3 extension implementation, planning
should result in a list of Frondend (FE) plugins, Backend (BE) modules, and
standalone classes. The purpose of each plugin, module, and/or class must be clear.

[61]

Planning Extensions

When thinking of FE plugins, caching issues must be taken into account. While

most of the output can be cached to improve TYPO3 performance, forms processing
should not be cached. Some extensions completely prevent caching of the page
when processing forms. But there is a better approach, a separate FE plugin from the
noncached output.

BE modules must take into account the ease of use. Standard BE navigation is not
very flexible, and this must be taken into account when planning BE modules.

Certain functionalities can be moved to separate classes. This includes common
functions, and any public APIs that an extension provides to the other extensions.
Hooks or "user functions" are usually placed in separate classes depending on the
functional zone or hooked class.

Documentation Planning

A good extension always comes with documentation. Documentation should also
be planned. Typically, manuals for extensions are created using standard templates,
which have standard sections defined. While this simplifies documentation

writing for extension developers, they still have to plan what they will put into
these sections.

TYPO3-Specific Planning

There are several planning issues specific to TYPO3. Developers must take care of
them before the actual development.

Extension Keys

Each extension must have a unique key. Extension keys can be alphanumeric
and contain underscore characters. It may not start with a digit, the letter u, or
the test_ prefix. However, not every combination of these symbols makes a good
extension key.

An extension key must be descriptive but not too long. Having personal or company
prefixes is not forbidden but is not recommended. Underscores should be avoided.
Abbreviations should be avoided as well, because they often do not make sense for
other users.

[62]

Chapter 3

Examples of good extension keys are:

e news
e comments
e usertracker
e loginbox

Examples of bad extension keys are:

e news_extension

e mycorp_ustr

e myverygoodextensionthatdoesalotofthings
e mvgetdalot

e john_ext

div2007

Database Structure

Most TYPO3 extensions use a database to load and/or store their own data.
Changing the data structure during application development may seriously slow
down development, or may even cause damage to data if some data is already
entered into the system. Therefore, it is extremely important to think about an
extension's data structure well in advance. Such thinking requires knowledge about
how TYPO3 database tables are organized.

Tables in TYPO3 database must have certain structures to be properly managed by
TYPO3. If a table does not fulfill TYPO3 requirements, users may see error messages
in the BE (especially in Web | List module), and data may become corrupted.

Every record in every TYPO3 table belongs to a certain page inside TYPO3.TYPO3
has a way to identify which page the record belongs to.

Field Names

TYPO3 requires each table to have two fields with predefined names:

e uid
This is a unique record identifier. It must be an auto incremented
integer field.

e pid

This field identifies which page the record belongs to. If this field is zero, it
indicates that the page belongs to the "root level" (Globe icon in the TYPO3
page tree).

[63]

Planning Extensions

There are other fields (optional), whose names can be changed by configuration of
the table. But typically, they are kept the same in every table:

crdate
Holds a record's creation date and time as Unix time stamp value.

tstamp
Holds a record's last modification date and time as Unix time
stamp value.

deleted

If set to a nonzero value, the record is considered deleted (neither shown in
the BE, nor available in the FE). Deleted records stay in the database and can
be recovered by certain extensions. If this field is not defined, records are
truly deleted from the database.

hidden
If set to a nonzero value, the record is hidden (not shown in the FE).

starttime
Date and time when a record becomes available (shown in the FE) as Unix
time stamp.

endtime
Date and time when a record stops being available (shown in the FE) as Unix
time stamp.

cruser_id
The uid value of the Backend user who created this record. Typically zero if
the record is created by the FE plugin.

fe_group

An FE user can access the record only if the user belongs to one or more
groups from this list. Meaning of "access" depends on the application, but
usually it means that the record is completely inaccessible to users outside
these groups.

[18n_parent
Related to localization of records.

118n_diffsource

Related to localization of records.
sys_language_uid

Related to localization of records.

[64]

Chapter 3

Several other fields are optional, but their names are reserved by TYPO3. They are
related to workspace and version handling:

e t3ver_oid

e t3ver_id

e t3ver_wsid

e t3ver_label

e t3ver_state

e t3ver_stage

e t3ver_count

e t3ver_tstamp
e t3ver_move_id
e t3_origuid

Other field names are free to use.

Depending on the purpose of the field and its data type inside TYPO3, fields in the
database table usually belong to one of the following types:

TYPO3 data type Database type
Input field varchar
tinytext
int
Text area (including RTE) text
Check box Int
Radio button
Select box (simple values) Int
Select box (database relation) varchar
Database relation varchar

Read-only
Custom field

int (sometimes possible, but not recommended)

text
varchar

int

text

One question that extension developers often ask is why simple int fields are not
recommended for database relations. The answer lies in the way TYPO3 stores
references to records. Typically, it is the uid value of another record but it can also
have a table name prepended (such as tt_content_10). TYPO3 understands both
formats, and the second format makes it possible to use one field to relate to records
in different tables. Obviously, the int field may not hold all this information.

[65]

Planning Extensions

When an extension is generated, a database table structure is generated along with
other files. Therefore, if extension functions are planned properly, only minimal
modifications may be needed during the development process.

Indexes

Indexes are the most successful but tricky aspects of databases. Database indexes
help to select data faster. This topic is very large and we can discuss it only at a very
basic level.

By default, TYPO3 generates two indexes: one for uid and another for pid columns.
The first one selects a record by its unique identifier, while the second speeds up
queries for the Web | List module.

Developers should add queries that help their extensions fetch data faster. Here are
some tips for creating better indexes.

Many indexes on separate fields do not help. MySQL uses one index at a time.
Therefore, if a query consists of many fields, one or more fields should be added to
the index. However, if the index is too large, MySQL may choose to ignore it and
scan the whole table for the records. Therefore, an index should not consist of more
than three to four fields.

Fields in the index should be listed in the same order as they are listed in the query.
This helps MySQL choose a proper index.

If a query uses sorting, the sorting field should be included as the last field of the
index. If it is not at the end of the index, it is likely that MySQL will ignore the index.

Any text or varchar field should have length specification in the index to minimize
the index length.

The EXPLAIN MySQL statement will help a developer identify how indexes are used.
It should be used on a real set of data because it uses data to evaluate the query.

Database Relations
There are three types of database relations in TYPO3:

e Traditional relations
e Many-to-many relations (MM)

e Inline relational record editing (IRRE)

[66]

Chapter 3

Traditional relations appeared first in TYPO3. They can hold one-way and (from

one table to another only) two-way references. When traditional relations are used,
relations to another table are stored in the referring table as a number (the uid of the
record in another table) or as a table name with an underscore character and the uid
value. The latter syntax allows reference to any record in the system.

Many-to-many (MM) relations use a separate table to store relations between two
tables. Such relations are always two-way relations. A special field is still present

in both of the referred tables, but it holds a number of relations for quick checking
references. While this method is fully supported by TYPO3, it is rarely used. It
requires additional queries and more work on maintaining references and ensuring
that there are no dead ends. The other disadvantage of MM relations is that it is

hard to understand references with only a quick glance at the data. It requires
certain concentration on several database fields in MM tables, which makes it harder
to debug problems with relations. But otherwise, MM relations are better than
traditional relations. Computer science prefers this relation type to all the others.

Inline relational record editing (IRRE) appears last. It allows us to edit related
records as a part of the main record. There are many ways to store data when IRRE
is used. The whole IRRE subject is huge, complex and may not fit this book. We
recommend anyone interested in IRRE to search for IRRE documentation on the
typo3.org website.

When it comes to practice, extension developers usually use traditional relations.
These relations are the fastest and easiest and are tested by years of successful work.

Planning Our Extension

In this section, we will plan the extension that we are going to create in this book.
We will create a "FE user list and statistics" extension. Let's look at what this
extension will do.

Requirements

Let's start by defining some requirements for our extension.

Functionality

The extension must perform the following tasks:

e Show a list of Frontend users in the Frontend

° Thelist of fields must be customizable by the extension user
with the following fields visible by default:

[67]

Planning Extensions

e Userlogin name
e Userreal name
e Registration date

e Lastvisit

o

Use pagination if the list is long

o

Link record in the list to show single user information
e Show single user information with a customizable set of fields

e Show Frontend user list in the Backend

o

Allow simple filtering by user name

o

Provide editing capabilities for records

e Show user statistics in the BE:

o

How many times a user has logged in

o

When a user logged in the last time

o

How much time a user has spent on the site

o

What pages a user has visited, and how many times

Statistics parts will be modeled using the existing loginusertrack extension, but
will be written from scratch because that extension is too old and does not use the
new TYPO3 API.

Usability and Expandability

e The FE appearance must be easily customizable by website developers (both
CSS and HTML)

e Extension should allow for adding new functions easily in future

e Extension should use both TypoScript and user-friendly FlexForm
configuration

e Extension must be fully localizable

Technical
e Extension must work properly with cache.
e Extension must have developer's documentation and comments in the code.

e Extension will not consider query string when recording page statistics. Only
the page ID is recorded.

[68]

Chapter 3

Extension key

We will use feuserstat as an extension key. Such a key has several advantages:

e |tis short but not too short
e [tlooks similar to an extension title

e It gives the user an idea of what the extension is about

To register an extension key, we created an account at the typo3.org website and
registered a new key in the Extension key subsection of the Extensions section of
the website. This key is now registered by the author of the book. The reader should
not attempt to register it. Such attempts will fail. However, the user can use user_
feuserstart key if he/she wants to repeat all the coding himself/herself. Notice that
the table and class names will change.

Frontend Plugins

Our extension is going to have one FE plugin. This plugin will perform
two functions:

e Display user list

e Display single user information

The plugin will be cacheable. It will have clearly separate, reasonably sized methods.
We should avoid code duplicates and write code so that it can be re-used by
future functions.

One question that developers sometimes have to solve is how many plugins to make.
For example, here, list and single views are placed in a single plugin. This increases
the size of the PHP class and makes maintenance a little harder (solely because of
the larger file). If list and single view go to separate plugins, they will be easier to
maintain, but any common function will have to go to yet another common class,
and the number of plugins will double. Two plugins will make a list of plugins in
TYPO3 longer. Therefore, many extension authors choose to have a single plugin and
several modes in it.

Yet another alternative to the many plugins is to make a separate class for each view.

Always consider these opportunities while planning plugins.

Backend Module

Our extension will have one BE module. It will perform functions from
the requirements.

[69]

Planning Extensions

Other Classes

The extension needs a hook to catch when the following events happen in
the system:

e Userisloggedin

e Userislogged out

e User visits a page

We will research to find out which hooks we should use.

Extension Database Structure

Since we are going to work with FE users, we will use the fe_users standard
TYPO3 table. We will not modify this table in any way. All our data will be stored in
separate tables.

First, we need to store session information for users, such as session start, session
end, and the number of visits during this session. Additionally, we will store the first
and the last page visited during this session.

Next, for each session, we will record the number of hits per page. We will ignore
query parameters for the page. It is important that we mention it here because it
means we thought about this limitation at the planning stage. Query parameters may
alter page content, and we choose to ignore them.

Records from both tables should be stored on the same page where FE user records
are stored.

So, we will have two tables in the database. Let us plan them a little more.

The first table should have the following fields:

Field name Field type Description
uid int Standard TYPO3 field that uniquely identifies a record.
pid int Standard TYPO3 field that identifies the page where

the records are located.

fe_user int This is the database relation to the fe_users table.
We choose the integer field because we will reference
only one table. We will need to specifically tell TYPO3
not to prefix a number to the table name.

[70]

Chapter 3

Field name Field type Description

session_start int This is the Unix time stamp value of the time when the
session starts.

session_end int This is the Unix time stamp value of the time when the
session ends. We will update this value each time the
user visits a page. Thus, the last value automatically
becomes the time of the session end.

hits int The number of page hits for this session.

first_page int This is the database related to the pages table. It
shows the page ID where the session started (user
logged in).

last_page int This is the database related to the pages table. It

shows the page ID where the session ended (user
logged out or closed browser). It will be updated the
same way as the session_end field.

The second table will have these fields:

Field name Field type Description

uid int Standard TYPOS3 field that uniquely identifies a record.

pid int Standard TYPO3 field that identifies the page where
the records are located.

crdate int Unix time stamp indicating the time when the record
was created.

tstamp int Record's last updated Unix time stamp. This may seem
to be overhead (because statistics are not meant to be
modified). But this field will allow us to detect if any
one changes statistics manually.

fe_user int This is a reference to the fe_users table.

sesstat_uid int This is a reference to the first table. Since it is the int

field, we will tell TYPO3 not to prepend a number to
the table name.

We could use session ID as well, but it is preferable to
have a relation between these two fields. TYPO3 will
show users how many records from the second table
are associated with the session recorded in the first
table. We will have to maintain a reference index on
the second table.

[71]

Planning Extensions

Field name Field type Description

page_uid int This is a relation to the pages table. It refers to a
visited page.

hits int This field shows the number of hits for this page

during a session.

Some readers may ask why we have hits field in both the tables. Can't we just have

it in the second table, and use SQL SUM function to get a cumulative value? Yes, we
can. But the SUM function is expensive in SQL when there are lots of records to select
from therefore, we will use a dedicated field in the first table to count the number of
visits per page.

Another issue we should take care of is to protect these tables from manual
modifications by the BE users.

We also recognize that the chosen database structure does not allow us to trace user
navigation across the site.

We will not define database indexes now. We will define them when we build
queries. The table names will be defined when we generate the extension.

Documentation

Besides normal extension description, the extension manual should include
information on clearing the page cache to ensure that the list shows updated
information when a new user record is added to the list.

Summary

In this chapter, we have seen how important extension planning is. We reviewed
some basic principles of extension planning, saw TYPO3-specific issues, and talked
about database structure. We also planned our own extension, which we will
develop later in this book.

[72]

Generating Extensions

In this chapter, we will create a skeleton for our extension. Later, it will be adjusted
to better fit our needs. After completing this chapter, the reader should be able to
generate new extensions easily.

Why Generation?

TYPO3 extensions can be created manually. We already know which files are needed
and which functions should be called to add Frontend plugins or Backend modules.
So, why should we generate an extension instead of simply typing it out?

Although typing is perfectly valid, it is slow. It requires one to concentrate on the
content. Typing errors are likely unless the extension developer uses a modern PHP
IDE (such as Zend Studio). It is easy to forget something if an extension has several
modules and tables.

Extension generation has several other advantages over the manual creation of
extensions. Firstly, a developer can really concentrate on the extension details, not on
putting these details into various files. Secondly, generation process ensures that all
files are created, all modules are added, and all links between tables are established
properly. And thirdly, it simply saves a lot of time for the developers.

Preparing for Generation

Generation of an extension is performed inside TYPO3 BE by another extension
named Kickstarter (extension key: kickstarter). This extension should be
downloaded and installed to TYPO3 like any other extension (through the TYPO3
Extension Manager). Once installed, a new item named Make new extension
appears in the Extension Manager functions:

Generating Extensions

TYPO3 W \
v Web
[4 Page Install extenslons x|
= Loaded extenslons
[Page | Install extenslons
W Import extenslons
it Translatlon handling
List Settings
6 Info | Check for extenslon updates Detalls =l
Make new extension B ot
Access 3 :
v, Functlons AVAILABLE EXTENSIONS - GROUPED BY: CATEGORY
HY versioning

The official version of Kickstarter is updated rarely. Assuming that the current
directory is the TYPO3 root directory, a newer (but possibly unstable) version can be
obtained from SourceForge SVN using the following SVN command within a

shell prompt:

svn co https://typo3xdev.svn.sourceforge.net/svnroot/typo3xdev/tx_
kickstarter/trunk typo3conf/ext/kickstarter

The author of this book uses the SVN version of Kickstarter because it has several
bug fixes, is more compatible with TYPO3 coding conventions, and uses the most
recent TYPO3 API.

Generation Steps

Extension generation consists of several steps. Some of them are optional, while
some are mandatory. There is always a start step that must be performed before any
other. Failing to do it will result in an incorrectly generated extension. This section
will describe each step in detail. But first, we need to get familiar with the Kickstarter
user interface. It is recommended to perform each step while reading.

The Kickstarter user interface is fairly simple. It consists of the steps on the left side
of the screen and information area on the right. When a new step is reached on the
left, the information area on the right changes. Kickstarter looks like this when Make
new extension is selected in TYPO3 Extension Manager:

[74]

Chapter 4

KICKSTARTER WIZARD

General info

Setup languages

New Databaze Tables

Extend existing Tables
Frontend Plugins

Backend Modules

Integrate In existing Modules
Clickmenu tems

Services

Static TypoScript code
TSconfig

el b

Enter extension key:

Make sure to enter the right
extenslon key from the
beginning here! You can reglster
one here.

Entering an Extension key

This step must be performed first, and it is extremely important to generate an
extension correctly. If you performed any other step, there is no way to go back and
change the extension key; you will have to start everything from the beginning.
Kickstarter caches information as soon as you start performing the steps. So, if you
created a plugin and then decided to change the key, the plugin class name will not
be updated with a new key and you will get an error in the generated extension.

To enter an extension key, navigate to the input field below the steps, enter an
extension key (feuserstat in our case) and click the Update... button.

The Total form button below Update... shows a complete form for all the steps at one
time. It will be very long and not too useful.

Entering Extension Information

The next step is to enter extension information. To do this, click on the black plus
icon to the right of the General info step.

[751]

Generating Extensions

The following fields are available:

Field Description

Title This is the extension's title as shown by TYPO3 Extension Repository
(TER) and TYPO3 Extension Manager (EM).

Description This is the extension's description as shown by TER and EM.

Category This is the extension's category. In our case, the extension included both

the Frontend plugin and Backend module. There is no category for
this case so we just arbitrarily choose Frontend plugins.

State This is a state of the extension. We will keep it as Alpha (Very initial
development) for now.

Dependencies As there are no dependencies on other extensions in our extension, we
will leave this field blank.

Author Name Extension author name.

Author email Extension author email ID.

We will fill the above explained fields as shown in the following screenshot:

General info
Enter general Information about the extension here: Title, description, category, author...

Title:
|Fruntend User Manager and Statlstics |

Description:
|Ehu-ws llst of Frontend users and statlstl

Catagory:
IFrontend Plugine |

State
| Alpha (Very Inltlal development) |

Dependencies ([comma list of extkeys):

Author Name:
|Dm|tr1_.r Dulepov |

Author email:
[dmitry@typo3.org |

Update...

To finish this step, press the Update... button.

[76]

Chapter 4

Set Up Languages

This section shows how to set up additional languages. This is useful when you
want to add nondefault (non-English) labels to an extension. However, note that it
is discouraged to have labels for a nondefault language directly in an extension. All
such labels should be extracted and packaged as a part of TYPO3 language packs
when an extension is released to TER. For information on moving language labels
to TYPO3 language packs, see the TYPO3 Wiki at http://wiki.typo3.org/index.
php/Translation.

This is how this step looks in Kickstarter:

Setup languages

Select the system languages you want to use In your extenslon. English Is
TYPO3's default language, therefore you don't need to select It amymore.

Select which languages to setup:

Albanlan
Arablc
Bahasa Malaysla

|

Bosnlan

Brazlllan Portuguese
Bulgarian

Catalan

Chinese (SImpl})
Chinese (Trad)
Croatlan

!

Danlsh
Dutch
Ecperanto
Estonlan

To add languages, simply check the appropriate checkboxes and click the
Update... button.

Creating New Database Tables

This is one of the most important steps. Here, we will define database tables for

the extension. In this step, we will click on the black plus icon, once for each table.
We will create two tables for our extension. But first we will talk about options that
this step provides for creating tables. Since there are a lot of options, we will discuss
them in groups.

[771]

Generating Extensions

The first group of options provides generic information about the table: title,
description, hidden and deleted flags, start and stop time, Frontend groups, and so
on. This is how these options look:

Mew Database Tables

Add database tables which can be edited Inslde the backend. These tables wlll be added to the global TCA array In
TYPO3.

Tablename:

tx_feusermng |
Notice: Use characters a-z0-9 only. Only lowercase, no Spaces.
This becomes the table name In the database.

Title of the table:
| | (English]

Edit Fields

+ Add "Deleted" fleld (What Is this?)
« Add "Hldden" flag (What Is this?)

Hide:

e

[Add "Starttime" (What Is this?)
Start:

o |

|_nr.||:| "Endtime" (What |s this?)
Stop:

o |

|_MI|:I "Apcess group” (What Is this?)

'.ﬁ.crf:ess:

|

If an extension developer has selected additional languages in the second step, there
will be additional input fields (one per language) below the Title of the table field.

All options (except the last one) on this screen have already been discussed in the
previous chapters. The Deleted field is set to 1 in the database when a record is
deleted. The Hidden field hides a record in the Frontend. Starttime and endtime
define a period when a record is visible (empty means no limit on the side). The last
option on this screenshot (named Access group) adds a field to the table that stores
relations, the fe_groups table. This allows us to restrict access to data from this table
for certain visitors. This field will be visible in the BE form, and the corresponding
additions to the SQL WHERE statement will be available in the Frontend plugins
automatically through the API function (tslib_cObj:enableFields). We will see

how to use all these access fields in Chapter 5 and 6.

[78]

Chapter 4

Note that Kickstarter will generate start and end times as the palette attached to the
Hidden field. Palettes usually do not appear on the screen unless an editor presses
the icon to the right of the corresponding field.

The next group of options is shown in the following image:

Enabled locallzatlon features {What |s this?)
Enable versloning (What Is this?)
Manual ordering of records (What Is thls?)
If "Manual ordering” |s not set, order the table by this fleld:
[crdate] =]
Descending

& Id", if any:
I[m‘me] x| (What Is this?)

Label-fleld:
| [none] | (What Is this?)

| Default (white) :[Default lcon (What Is this?)
Allowed on pages:
|_ Allow records from this table to be created on regular pages.

Allowed in "Insert Records” field In content elements:
|_ Allow records from this table to be linked to by content elements.

Add "Save and new" button In forms:
|_ Wil add an additlonal save-button to forms by which you can save the Item and Instantly create the next.

Here, Kickstarter combines several logically different options. The first two define
the behavior of the table, while the rest define its visual presentation.

If localization is enabled for the table, it becomes possible to store translations of the
table's records inside the same table using a set of special fields. Generally, these
fields say which record is the main one and which ones are language dependent.
There are certain other fields, but we will not discuss TYPO3 localization details here.
This topic is so large that it could easily take an entire chapter. Those who want to
read more about localization should read the Frontend localization guide document
on the typo3.org website. We, however, will have a short discussion about selecting
records for the current Frontend language in Chapter 5.

The Enable versioning box allows us to add versioning support for a table.
Versioning support is another tricky part of TYPO3. While it is used by many
in production, it is still considered to be of beta quality. We will not use it in
our extension.

Manual ordering of records allows BE users to order records manually, for example,
pages or content elements. If this box is not checked, automatic sorting is applied to
records (it defaults to record creation time).

[79]

Generating Extensions

Type-field is another powerful but tricky feature of TYPO3 tables. Each table may
have such a field. This field defines what a record truly is. For example, the tt_news
extension defines three types for news items: normal news, link to an internal page,
and link to an external page. A form may show different set of fields depending on
the Type-field. This is often better than making separate tables for slightly different
data. Additionally, the type fields allow to show different icons for records in

the List module. If a developer uses the type field, he/she must remember that
Kickstarter will generate default table configuration, where all fields are available. It
is the developer's responsibility to review the types configuration for the table later
and adjust the displayed field set. More information on type fields and how to use
them can be found in the TYPO3 Core APl document on the typo3.org website.

A developer can specify which field should present a record in the List module using
Label-field. TYPO3 treats the value of this field as a "personal name" of the record.
Sometimes, it is not possible to set one field (or any field at all) as a label field. In this
case, an extension developer should read the ['ctrl] section under the $TCA array
reference heading from the TYPO3 Core APl document. This section explains how

to combine several fields into a label field or write a custom PHP function to return
the label.

The default icon selector can be left as it is. Typically, developers find or create icons
for their tables at some point in development. Values in these fields are meant only to
generate some stock icons for table records.

The Allowed on pages option will allow records from this table to be created

on normal pages. For records such as statistics or logs, this option should not be
selected. However, for records such as news or products, this option should be
selected. TYPO3 will refuse to create records for the table in the BE on regular pages,
if this option is not checked.

The next option, Allowed in "Insert Records" field in content elements, is rarely
used. It allows us to insert records from this table as content elements.

The option to Add "Save and new" button in forms is very useful for records that
should be added one after another. A good example is news articles — one often has
to fill more than one news item. If this box is checked, an additional icon appears in
the BE form for the record:

Path: fWelcomel!l/General record .../ [pid: 2]

Feed Import [B] - http://typo3bloke.net/atom.xml

B ATOM/RSS Feed URL:

|http:p‘,ityp03blnke. net/atom.xml |

[80]

Chapter 4

Now, go to the field descriptions. Initially, the form for field description consists of

three fields:
MEW FIELD:
Fleld name:
Fleld title: [Engllish]
Fleld type: ;||~v*_ Is Exclude-fleld [What Is this?)

Field name is the name of the field in a database. Notice that Kickstarter will not
check if a field name is a reserved SQL keyword. So, if a developer attempts to use
"index" or "date" as a database field name, MySQL will throw errors while creating a
table. This Kickstarter behavior may be fixed in future.

Field title is a string visible in the BE form for the field. Make sure to put a colon as
the last character. If additional languages were selected on the corresponding step,

this field will have additional fields below it for each selected language.

Field type defines what information will be stored in this field. This is not SQL
field type but TYPOS3 type field. It is very important to select the type properly here
because Kickstarter will generate lots of code lines depending on this selection.

The available field types are listed in the following table.

Field type Description SQL types

String input Creates a simple string. Any character can tinytext
be entered.

String input, advanced Creates a string but allows us to impose certain text
limitations (no space, alpha numeric) and apply
conversions (trim, integer) to the string in the varchar
BE form.

Text area Creates a text area. Name of the type says how text

Text area with RTE
Text area, no wrapping

exactly the text area will be created.

[81]

Generating Extensions

Field type

Description

SQL types

Checkbox single

Checkbox, 4 boxes in a
row

Checkbox, 10 boxes in
two rows (max)

Link

Date

Date and time

Integer, 10-100

Selector box

Creates a checkbox or a set of checkboxes.
These three options are here only to simplify a
developer's work. They allow us to make initial
arrangements for checkboxes that developers
can alter as they need.

Notice that "max" in the last option applies

to this option only, not to the number of
checkboxes that TYPO3 may have. However,

a developer must check the length of the
integer field in the ext_table.sql after extension
generation. By default, it is int(11), which
means that this field can hold up to 11 check
boxes (1 bit = 1 checkbox).

Links field. This is just a string field in the
database but TYPO3 provides a special control
for it (with link wizard) and makes certain
conventions on this field depending on the link
type (internal page, external link, email, file,
and so on)

These fields are similar and differ only in how
TYPO3 BE shows them. There is no "time" type,
but a developer can easily add it if necessary
after studying how "date" fields are defined.

Date and time fields are stored as Unix time
stamps in the database.

This is a simple integer field. Again, as with
checkboxes, 10-100 is the artificial limitation
here. It is made only to show a developer how
to impose range limitations on integers. It can
easily be changed by editing the tca.php file
after extension generation.

This is a simple selector box of values. This

field is typically used for type fields (see

above about type fields). Kickstarter will allow
the developer to enter up to 10 values and
generates numerical indexes for values. If a
developer wants string indexes, he can modify
tca.php and ext_tables.sql later on to use string
values as indexes. In this case, SQL field type
should be changed to varchar or text.

int

varchar

int

int

int

[82]

Chapter 4

Field type

Description SQL types

Radio buttons

Database relation

Inline relation

This type represents a set of radio buttons. The int
number of selected buttons (counting from 0) is
stored in the database.

This type represents the database relation text
inside TYPO3. It is possible to create relations

between an extension's own tables and a table

in the system.

If two tables are related to each other, then
create the first table with a relation field and
leave the relation empty. Next, create the
second table and fill its relation information
properly. Now, go back to the first table and
select the second table instead of the empty
value in the earlier created field.

While creating this field, pay attention to the
following moments.

When deciding what to use (selector box or
relations control), think about the number of
items. A Selector box with hundred items is
not a good solution, an element browser will
definitely be better. However, if a user should
select from a list of web site languages, a
selector box is better than an element browser.

The number of items in the relation should

be specified according to the extension needs.
There are extensions that need only one item,
but give the option to select many. This
confuses editors.

Itis possible to add additional control to add,
edit, or list records. While they look good,
controls should not be added only because they
look good. There should be a definite use case
to have these controls in the form.

Inline relations are tricky and Kickstarter has Many fields
certain bugs in the implementation of inline of intand
relations. Use this type only if you know how varchar type

inline relations work.

Warning: At the time of writing this book, this
choice was available only in the SVN version of
Kickstarter, and its implementation has certain
bugs. Do not use this option unless you feel
capable of fixing errors with IRRE structures
manually.

[83]

Generating Extensions

Field type

Description

SQL types

Files

Flex

Not editable, only
displayed

[Passthroughl]

File control is similar to database relations. An
extension developer can choose which files
to include, how many files to allow, and the
maximum file size.

This field type is for experienced extension
developers. It is used to create a flexform.
Flexform is a TYPO3 way to have one form
inside another form. Flexforms store value in
a single database field in an XML format. The
t3lib_divixml2array() function should be used
to convert XML to a PHP array.

Information about flexforms can be found in the
TYPO3 Core APl document on the typo3.org
website. We will discuss flexforms and create

a simple flexform while developing Frontend
plugin later in this book.

A value from the database will be passed to
the htmlspecialchars() PHP function and

then directly to the form. This field is generated
but should not be changed by an editor in the
BE. A similar effect can be achieved with String
input fields by setting the readOnly property
for these fields in $TCA (see TYPO3 Core API).
The input field has an advantage because they
can be shown as dates (for example).

This is for the field that should be created in the
database but not shown in the form.

text

text

text

text

After modifying the field data, press the Update... button to save field changes. It
is possible to modify one field and create another at the same time. Kickstarter will
save all changes in the form when Update... is pressed.

We already discussed which fields we will have in Chapter 3. Now, let's see how we
can configure them in Kickstarter.

The first table will be named tx_feuserstat_sessions. The title for the table will

be Frontend user sessions. It will have the following fields:

Field

ConfigurationTitle

fe_user

session_start

Database relation to the fe_users table with element browser,
single item in the control.
String input, advanced. We make it required, 15 symbols in size.
Field evaluates to date and time.

[84]

Chapter 4

Field ConfigurationTitle

session_end String input, advanced. We make it required, 15 symbols in size.
Field evaluates to date and time.

hits Integer value, 10-100. We will remove limits later.

first_page Database reference to the pages table with element browser, single
element in the control.

last_page Database reference to the pages table with element browser, single

element in the control.

Note that normally table titles should be singular. This is due to the fact that the List
module will use the table name when a new record is created. In our case, it does
not make a big difference because our tables will be hidden in the BE. Therefore, we
name them logically.

There are no hidden, deleted, starttime, endtime, or Frontend group fields in
the table. We will also mark the table as read-only later so that no one is able to
change the statistics.

The second table will be named tx_feuserstat_pagestats. The title is Page
statistics, and the table will have the following configuration:

Field Title Configuration

fe_user Frontend user: Database relation to the fe_users table with element
browser, single item in the control.

sesstat_ Session: Database relation to the tx_feuserstat_sessions table

uid with element browser, single item in the control.

page_uid Visited page: Database relation to the pages table with element browser,

single item in the control.
hits Visits: Integer value is 10-100. We will remove the limits later.

This table will also have no deleted, hidden, or other access related fields. This
table will also be marked as read-only to prevent manipulation of statistics.

Extending Existing Tables

Sometimes it is necessary to extend existing tables. For example, some extensions
add custom fields to content elements (such as extension rgmediaimages) or to

the tt_news table (such as ratings extension). While it is possible to have such

data separately, it is much easier and more practical to add it to the existing tables.
Additions, for example, allow to edit these fields together with the extended record,
which would not be possible if fields were created as a separate table.

[85]

Generating Extensions

Kickstarter allows to extend existing tables. It proposes to choose tables first. A table
must exist in the TYPO3 database already. The rest is similar to creating a new table;
all the same field types, the same workflow.

There is one special thing though. All extended tables must be listed in the
modify_tables option of the ext_emconf.php file. Kickstarter does not put

extended tables into this entry automatically, and it has to be done manually by the
extension developer. If not done, the Extension Manager will complain about it:

Code warnings:
[developer-relevant)

e Gt o
(developer-relevant) L)

Flles changed?

While this is not critical for extension functioning, it makes a bad impression
on the extension. Do not forget to add modified tables to modify_tables in
ext_emconf.php!

We will not have any extended tables in our extension.

Creating Frontend Plugins

The Frontend plugin step will allow us to create several plugins if necessary. We
planned only one plugin for our extension.

All options in this step are important to get the Frontend plugin created correctly.
Here is how the top part of this step looks:

Frontend Plugins

Create frontend pluglns. Plugins are web applleatlons running on the webslte
Itself (not In the backend of TYPO3). The default guestbook, message board,
shop, rating feature etc. are examples of pluglins.

Entér a title for the plugin:
| | [English)

|_B1_,r default plugins are generated as cachable USER cObjects. Check this
checkbox to generate an uncached USER_INT cObject.

|_Er|ﬂble this optlon If you want the TypoScript code to be set by default.
Otherwlse the code wlll go Into a statlc template flle which must be Included In
the template record (It's NOT recommended to set this optlon].

[86]

Chapter 4

The title of the plugin will be visible in the BE when an editor inserts the plugin as a
content element to the page. Therefore, it should be descriptive but not too long. It
will be shown in the selector box of the tt_content item:

[@ Pagecontent [618] - [No title]

ATOM/RSS FrontEnd Importer | »|

News
ré Commenting system
@ Ratings
| Indexed search
smoothGallery
SmoothGallery Uploader

Aﬁnss Frl:iri'eE'rid'IEﬁ"ﬁ" rter

We will use Frontend user list as the plugin title.

The next option affects the performance of the TYPO3 website. Frontend plugins can
be cacheable or noncacheable. Cacheable plugins are faster; their output is saved to
the database with the rest of the page content once, and later all website visitors see
this cached copy. So, no PHP code of the plugin needs to be executed. This works
fine for static or rarely changing data.

Some plugins show information depending on user input, or generate quickly
changing data (real time stock reports, web server performance statistics, and so on).
There is no point in caching this output. So, such plugins should not be cacheable.

Caching should also be avoided for many (but not all) plugins that process user
input. For example, if a plugin validates information before adding it to the database,
it may produce error messages, which should not be cached. Such plugins do not

do much processing unless the form is submitted, so it is perfectly fine to make
them noncacheable.

Yet another case when the plugins have to be noncacheable is when they gather
information about user visits. For example, the ttnews_reads extension has a plugin
that is inserted before the tt_news single view plugin. It does not produce any
output, but augments the view counter for each viewed news item. As this plugin
has to be executed each time a news item is displayed, it must not be cacheable.

[87]

Generating Extensions

So, the question of caching is very important for a Frontend plugin. The general rule
is, if a developer can make it cacheable while keeping all functionalities, then the
plugin should be cacheable.

In our case, we will have a search box in the user list mode. However, there will be
no validation and error messages from this search box. It will simply act as a filter.
Therefore, we should probably use caching. But how can we use caching if a user is
allowed to type anything in the search box? Based on the above information, such
input should not be cached.

Fortunately, TYPO3 may cache various copies of data depending on user input.
While it does not make any sense to cache error messages, caching such inputs
makes perfect sense. Therefore, we will choose a cacheable plugin. We will see later
how we can ensure proper caching for our plugin. There is certain cost associated
with it, but this cost is not large when compared to the performance impact of a
noncacheable plugin.

The next option adds the TypoScript template permanently to TYPO3. This should
be avoided because it forces TYPO3 to parse more TypoScript and makes TYPO3
performance worse.

Next, there is a set of choices for the Frontend plugin type. Depending on the
selected options, Kickstarter will generate different codes for the plugin and call
different TYPO3 functions to add the plugin to TYPO3. These options are well
described in Kickstarter. It is possible to create a normal plugin (this is the most
typical choice), text box (obsolete), menu/sitemap (Google sitemap extensions use
this), totally new content element, header type, process tag in RTE, or to simply
include the library.

The normal Frontend plugin can have an option to be included in the new content
element wizard.

News
Versatlle news system for TYPO3

Commenting system
Commenting system for pages and records (news, Images, etc)

Ratings
Modern AJAX-based ratlng system

SmoothGallery - Gallery and Slideshow
A flexlble gallery and slldeshow to show Images from directorles, records and
from Inslde a content element

[88]

Chapter 4

Generally, this option should not be set. However, if an extension is made for a
specific customer (not a public extension), it is preferable to set this option because
it will be easier for the customer to use it. However, we will not set this option for
our plugin.

One special plugin case is "totally new content element”. It is very similar to a normal
plugin but it allows a developer to define a custom content object in TypoScript. By
default, all normal plugins are USER or USER_INT objects. Defining new types makes
the following possible in TypoScript setup:

page.10 = FLASH
page.10.source = /fileadmin/myfile.swf
page.10.clickTag = http://domain.com/

Here, a new content object of type FLASH is defined. All properties are specific to this
object. TYPO3 will call the plugin passing all objects' TypoScript properties. Also, the
plugin will be shown as a separate content element type. These are really the only
differences from a normal plugin.

We will use the first choice for our plugin: Add to 'Insert Plugin' list in
Content Elements.

Creating Backend Modules

This step generates BE modules. As with Frontend plugins, it is possible to generate
more than one module by clicking the plus icon more than once.

BE modules can be generated as main modules (examples are Web, File, User Tools,
Admin Tools) or as submodules (examples are Web | Page and User | Setup). It is

not recommended to create main modules because too many of them will make the
TYPO3 menu very long.

While deciding where to create a submodule, think what the module will need.
If it needs a page ID, it should go to the Web module. If it works with files and
directories, it should be a part of the File module. If it does not need page ID or
the current directory, it should go to the User (available to anyone) or the Tools
(admin-only) module.

Our module needs a page ID because it will show statistics only for Frontend user
records at a specific page. Therefore, we will place it in the Web module after

the Info submodule. We will call our BE module "Frontend user statistics". Its
description will be "Shows Frontend user session and page view statistics". A shorter
description can be "FE statistics".

[89]

Generating Extensions

Integrating into Existing Modules

This step allows us to integrate a new module into an existing module. We could
choose to do so and use Web | Info as our parent module. But for the purpose of the
book, we will make it a separate module.

Adding Clickmenu Items

This step allows us to add an item to a TYPO3 click menu. A click menu appears when
an editor clicks on the icons in the BE. Its contents depend on the context. Kickstarter
will generate code that adds a menu item and a handler for the menu item.

As usual, this should be used with care. Too many menu items will not be
appreciated by the editors.

Creating Services

This step allows us to create services. We discussed services in the previous chapters.
Itis a rare that a new service is needed, and we will not cover services in this book.
Therefore, we will skip this step completely. Developers interested in services can
find the documentation about services in the Documentation section of the typo3.
org website. There are also several extensions that implement services. They can be
used as examples.

Static TypoScript Code

This step allows us to enter plugin TypoScript configuration. There are two parts of
TypoScript code: Constants and Setup. Constants can be easily edited with TYPO3
Constant Editor in Web | Template module and it is strongly recommended to
define the constants for the most commonly used TypoScript setup parameters.

The TypoScript template title will be Frontend user list, and we will start filling the
TypoScript parameters from the Setup part. We will add constants later.

First, we need to define the plugin. Plugin names are generated by appending
several parts to one string:

e plugin.tx_
e extension key without underscores

o _piX suffix, where X is the number of plugins starting from 1

[90]

Chapter 4

Therefore, our Frontend plugin will appear in the setup as plugin.tx_feuserstat_

pi1. It will have USER type and we will add several basic TypoScript properties to it.
More properties can be added later, if necessary. We will enter the following in the
Setup part:

plugin.tx_feuserstat_pi1 = USER
plugin.tx_feuserstat_pi1 {

uid of the page where Frontend user records are stored

usersPid = {$plugin.tx_feuserstat_pi1.usersPid}

uid of the page where single view is located

singlePid = {$plugin.tx_feuserstat_pi1.singlePid}

uid of the page where list view is located

listPid = {Splugin.tx_feuserstat_pi1.listPid}

Template file to use

templateFile = {$Splugin.tx_feuserstat_pi1.templateFile}
}

Lines with # are comments.

First, we should have a place to save our records. Since there can be many sitesin a
single TYPO3 installation, we will want to collect statistics for each site separately.
Therefore, we need a "storage" page.

For the same reason, we also need to know where the Frontend users are placed in
TYPO3. So, we have a configuration for Frontend user storage.

Our plugin will have a list of single views, and these views may be placed on
different pages. We definitely need a link to a single view from the list view and we
may want to create a backward link. So, we have two more configuration settings for
the list and single page ID values.

The last option declares the location of the template file for our plugin. We will
provide a default template, but a website designer may want to replace our template
with his own. We will make it easy by allowing him/her to place the template file

into fileadmin/ and tell our plugin about it through this configuration setting.

The USER_INT plugins must have one more line in the TS setup declaring where the
plugin is located. The reason for this is simple: USER_INT plugins are included by
TYPO3 directly, bypassing normal TypoScript processing. Without this additional part,
TYPO3 will not be able to find the plugin. If our plugin was USER_INT, we would have
added the following to the TypoScript setup of the plugin on the third line:

includeLibs = EXT:feuserstat/pi1/class.tx_feuserstat_pil.php

Now, we have a setup section and we should fill the constants.

[o1]

Generating Extensions

Constants are similar to setups, except that they have initial values and special
comments. Comments declare how a constant editor will show constants to a user.
The syntax of such comments was described in Chapter 2.

We enter the following in constants:

plugin.tx_feuserstat_pi1 {

cat=feuserstat; type=int+; label=User storage page:
uid of the page where Frontend user records are stored

usersPid =

cat=feuserstat; type=int+; label=Single view page:
uid of the page where single view is located

singlePid =

cat=feuserstat; type=int+; label=List view page:
uid of the page where list view is located

listPid =

cat=feuserstat; type=string; label=Template file

templateFile = EXT:feuserstat/res/pi1_template.html
}

Most of the values are empty because we cannot predict page uid values. We supply
a default value for the plugin template as a reference to the file inside the extension.
Note that the comment for the template file does not have the second part for the
label. It is obvious what this setting means without further explanation.

Adding TSConfig

Sometimes, extensions need to alter BE behavior in a certain way. For example,

an extension developer may want to hide one or more extension tables or provide
default TSConfig for his/her own modules. This step allows us to enter TSConfig
code that is appended to default code for the user and the page.

Information about TSConfig syntax and features can be found in the TSConfig
document in the Documentation section of the typo3.org website.

We will not have any additions to TSConfig in our extension.

Generating the Extension

Now, we are ready to generate our extension. Clicking the View result button shows
us the following overview:

[92]

Chapter 4

Fllenama: Sire: Overwrite
Changelog S0 3
README. bt BD Wiew [+
ext_|con.glf 124 F
ext_|ocalconf.php 158 Wiew [+
ext_tables.php 0.9 K View [+
ext_tables.sqgl 399 View [«
lcon_tx_feusermgr.glf 135 F
locallang_db.xml 381 View [«
tca. php 1.0 K View [+
doc/wlzard_form.dat 21K
doc/wizard_form.html 48 K
modl/clear.glf 45 o
modi/conf.php 358 View [+
modi1/Index.php 6.8 K View [+
mod1/locallang.xml 455 Wiew [+
mod1/|ocallang_mod.xml 275 View [+
mod1/modulelcon.glf B2 o2
pli/class.tx_feusermgr_pll.php 2.8 K View [+
pl1/locallang.xmil 558 WView [+
Author name: Dmlitry Dulepov

Author emall: dmitry@typo3.org

Write to location:

ILD-EE|: typo3confext/feusermgr/ (empty) ;| WRITE |

We will uncheck the README.txt option because this file does not contain anything
useful and click Update result. Next, we click the WRITE button. Kickstarter will
write extension files to the disk. Make sure that a web server user can write into the
shown location before clicking WRITE.

We just finished generating our extension! Now let's see what we have got and we
will adjust some generated code.

[93]

Generating Extensions

Adjusting Extensions

After generation, we will make adjustments to our generated extension according to
our needs.

Clean Up

Firstly, if we are sure that we generated the extension correctly, we should go
and remove two files named wizard_form.dat and wizard_form.html from the

doc/ subdirectory. These files contain Kickstarter information. It is possible to use
Kickstarter to reconfigure extension. However, any manual changes in files will be
completely lost.

Changing Fields
The next thing to do is to change tca.php to remove limits from the integer

fields. The following lines should be removed from both the generated tables in the
hits column:

'range' => array (
'upper' =>"'1000,
'lower' =>"'10"

)V

Next, we update the fe_user field in both the tables, first_page and last_page in
the first table, sesstat_uid and page_uid in the second table and minitems should
be set to 1.

Now, we need to optimize SQL fields. We do so by changing ext_tables.sgl. We
will change fe_user, first_page, last_page, sesstat_uid, and page_uid fields
from text to int(11) DEFAULT '0' NOT NULL.

Hide Tables

Now, we need to hide our tables to prevent anyone from changing statistics. To hide
our tables, we open ext_tables.php and add the following line:

'hideTable' => true,

This line should be added twice (once for each table) after this line:

'default_sortby' =>'ORDER BY crdate),

This concludes our changes to the generated extension.

[94]

Chapter 4

Summary

In this chapter, we learned about extension generation and generated an extension
that we will develop through this book. Now, we know a lot about extensions and
how to generate them in an optimal way. We know how to use TYPO3 data types
effectively and how to adjust generated fields after generation.

In the forthcoming chapters, we will look deeper into the extension parts and
continue with practical extension development.

[95]

Frontend Plugin: An
In-Depth Study

Frontend plugin is the most popular extension component type in TYPO3 extension
development. Frontend plugins can do many things: they can create content, modify
existing content, log statistics, and so on. They are simple to write; only a few lines
are needed to create the simplest Frontend plugin. But creating a good plugin
requires certain knowledge. This chapter discusses Frontend plugins in detail. It also
discusses many other functions to use with Frontend plugins.

Frontend Plugins: The Basics

This section will describe the basics of the Frontend plugins. The main goal of this
section is to give the reader an overview and basic understanding of what Frontend
plugins are, how they work, and what they look like. The details are discussed later
in this chapter.

Concepts

A Frontend plugin is a class or a function that runs as a part of the page content
generation process. Typically, Frontend plugins produce some visible content, but
they can also be silent and do other tasks.

The simplest possible Frontend plugin looks like this:

function user_myext_plugin() {
return 'Hello world!’;

}

Frontend Plugin: An In-Depth Study

To call such a plugin, use the following TypoScript:

includeLibs.myext_plugin = EXT:myext/user_myext_plugin.php
page.10 = USER
page.10.userFunc = user_myext_plugin

The first line includes the PHP file with a plugin code. The second line defines that
the plugin type is USER. There are several types of plugins. USER is the most common
and it means that the plugin's output is cached by TYPO3. Caching issues will be
covered later in this chapter. The third line tells TYPO3 which function to execute for
this plugin. The function name must start with user_, otherwise, TYPO3 will not call
it. For classes, the corresponding prefix is tx_.

While it is possible to create Frontend plugins this way (and sometimes it is even
more optimal to call PHP code this way), typically, Frontend plugins are created as
classes. The advantages of using classes are:

e C(lasses can have functions to split long code into logical, easily readable, and
maintainable chunks.

e C(Classes can encapsulate data inside class instances and use this data in
class functions.

e C(Classes can derive from other classes and reuse their methods.

The Kickstarter extension generates Frontend plugins as classes derived from the
tslib_pibase class. The generated class looks approximately like this (assuming
myext as an extension key):

class tx_myext_pi1 extends tslib_pibase {
// Default plugin variables:
var $prefixld = "tx_myext_pil’;
var $scriptRelPath = "pil/class.tx_myext_pil.php’;
var $extKey = 'myext’;
var $pi_checkCHash = true;

/**

*The main method of the Plugin

*

* @param string $content: The Plugln content

* @param array $conf: The Plugln configuration
* @return The content that is displayed on the website

*/

function main(Scontent, $conf) {
Sthis->conf = Sconf;
Sthis->pi_setPiVarDefaults();
Sthis->pi_loadLL();
$content = 'Dummy content’;
return $this->pi_wraplnBaseClass($content);

}

}

[98]

Chapter 5

There are additional lines in the generated file but there is no need to look at them
now. First of all, let's see what Kickstarter generates.

Kickstarter creates a class named tx_myext_pi1 and places it into a directory named
pi1 inside the extension. This class is derived from the tslib_pibase class. The
tslib_pibase class should be treated as an abstract class, and should never be
instantiated directly. It is possible that the future versions of TYPO3 will add the
abstract keyword to the tslib_pibase definition.

The tslib_pibase class contains functions that Frontend plugins frequently
use: loading localized strings, creating links, and fetching flexform
configuration information.

To work correctly, the tslib_pibase class requires three class variables to be set
correctly. They are set on the first three lines inside the plugin's class.

The last class variable generated by Kickstarter is named $pi_checkCHash. It
instructs TYPO3 to validate cHash , which is a special URL parameter inside the
tslib_pibase constructor. The cHash parameter is related to the caching of the page
that has parameters. It is discussed in a separate section of this chapter due to its
extreme importance for Frontend plugins.

Next comes the definition of the plugin's main() function. While plugins are not
required to use this name, it has traditionally been used, and it is recommended to
follow this tradition.

The function assigns the plugin configuration to a class variable, sets default
plugin variables from TypoScript (rarely used), and loads localized strings from
the locallang.xml file onto the plugin's directory. Now, the plugin can use the
$Sthis->pi_getLL('string_id") function to load localized strings. We will discuss
localization again, later in this chapter, as it is important.

The last line of main() contains a call to pi_wrapInBaseClass, which wraps output
of the extension into div tags with CSS class derived from the extension key (tx-
myext-pi1 in our example). It is important to keep this call because it provides a
generic and useful way to style the whole plugin.

This plugin can be executed from TypoScript in the following way:

page.10 = USER
page.10.userFunc = tx_myext_pil->main

This will call the main() function of the plugin. TYPO3 usually passes an empty
string to the $content parameter (the first one) and values from TypoScript setup in
$conf (the second one).

[99]

Frontend Plugin: An In-Depth Study

Plugin Configuration

There are two ways to configure a plugin. TypoScript configuration is always
available to the plugin, regardless of how it is inserted into the page (either through
TypoScript or through an Insert plugin option on content element record). The
Flexform configuration is available only when the plugin is inserted using the Insert
plugin option.

TypoScript Configuration

It is possible to pass configuration values to the extension from TypoScript:

page.10 = USER

page.10{
userFunc = tx_myext_pil->main
param = value

}

With this piece of TypoScript, the main() function will receive the $conf parameter,
which is an array with two keys, userFunc and param. The corresponding values are
tx_myext_pi1->main and value.

If an extension developer entered TypoScript code in the Kickstarter as we had
discussed in Chapter 4, it is possible to reuse the entered code:

page.10 < plugin.tx_myext_pil = USER
page.10.param = value

In this case, the plugin receives all the configuration values from its default
TypoScript setup (made with Kickstarter) and possibly the modified value of param.

Flexform Configuration

Flexform is a good way to let a plugin present complex configuration forms without
creating many additional fields in the database. TYPO3 stores flexform data in a
single, already existing database field in an XML format. Here is what flexform looks
like (example from the comments extension):

[100]

Chapter 5

@ Plugin Options:

[General] Advanced | Antl-spam
Mode:

[“Comment listing ”

Triggering preflx:

[tx_ttnews

Store records at page:

General record storage E‘E
[]
(]
=]
(]

Page
Template flle:
|EXT:comments/res/pl1_template. html |,

Unfortunately, Kickstarter does not generate a flexform and the code to process it
yet. It has to be done manually.

To use a flexform in the plugin, it has to be initialized first:
Sthis->pi_initPIflexForm();

This line should be placed somewhere after the following line:
$this->pi_loadLL();

When the flexform is initialized, it is possible to get the value from the flexform using
the following code:

$value = Sthis->pi_getFFvalue(
$this->cObj->datal['pi_flexform'],
$paramName, $sheetName);

The $sheetName variable can be omitted if there is only one sheet in the flexform.
Each sheet is rendered as a tab in the user interface. For example, the previous
screenshot has three tabs and three sheets in the flexform definition.

Itis good practice to define defaults in the TypoScript and allow editors to modify
them using a flexform. For example:

$value = Sthis->conf['storagePid'];
$ffValue = Sthis->pi_getFFvalue(
$this->cObj->datal'pi_flexform'],

[101]

Frontend Plugin: An In-Depth Study

'storagePid’);
if ($ffValue) {
Svalue = $ffValue;
}

To create a configuration for flexform (called "flexform data source"), an XML file
should be created in the extension directory. It is suggested to place it in the same
directory where the Frontend plugin resides. Here is an example of such a file
(from ratings extension):

<T3DataStructure>
<meta>
<langDisable>1</langDisable>
<langChildren>0</langChildren>
</meta>
<ROOT>
<type>array</type>
<el>
<storagePid>
<TCEforms>
<label>LLL:EXT:ratings/pi1/locallang.xml:
tt_content.tx_ratings_pil.storage.page</label>
<config>
<type>group</type>
<internal_type>db</internal_type>
<allowed>pages</allowed>
<prepand_tname>0</prepand_tname>
<multiple>0</multiple>
<minitems>0</minitems>
<maxitems>1</maxitems>
<size>1</size>
</config>
</TCEforms>
</storagePid>
<templateFile>
<TCEforms>
<label>LLL:EXT:ratings/pi1/locallang.xml:
tt_content.tx_ratings_pil.template_file</label>
<config>
<type>input</type>
<eval>trim,required</eval>
<default>
EXT:ratings/res/pi1_template.html</default>
<wizards type="array">
<_PADDING>2</_PADDING>

[102]

Chapter 5

<link type="array”">
<type>popup</type>
<title>Link</title>
<icon>link_popup.gif</icon>
<script>browse_links.php?
mode=wizard&act=file</script>
<params type="array”>
<blindLinkOptions>
page,url,mail,spec</blindLinkOptions>
</params>
<JSopenParams>
height=300,width=500,status=0,menubar=0,scrollbars=1</JSopenParams>
</link>
</wizards>
</config>
</TCEforms>
</templateFile>
</el>
</ROOT>
</T3DataStructure>

This flexform defines two fields: storagePid and templateFile. Tags inside a field
definition correspond to the field definitions in $TCA. The $TCA field definitions are
described in the TYPO3 Core APl document. For example, the templateFile field

is of type input. Looking at TYPO3 Core API for input fields will show properties
such as eval or default and will explain their meaning. Thus, it is possible to create
new flexform fields by referring to the TYPO3 Core API.

If a flexform has several sheets, the data source changes a little:

<T3DataStructure>
<meta>
<langDisable>1</langDisable>
</meta>
<sheets>
<sDEF>
<ROOT>
<TCEforms>
<sheetTitle>
LLL:EXT:irfag/lang/locallang_db.xml:
tx_irfaqg.pi_flexform.sheet_general</sheetTitle>
</TCEforms>
<type>array</type>
<el>

[103]

Frontend Plugin: An In-Depth Study

</el>
</ROOT>
</sDEF>
<sCATEGORIES>
<ROOT>
<TCEforms>
<sheetTitle>
LLL:EXT:irfag/lang/locallang_db.xml:
tx_irfag.pi_flexform.sheet_categories</sheetTitle>
</TCEforms>
<type>array</type>
<el>
</el>
</ROQOT>
</sCATEGORIES>
<SSEARCH>
<ROOT>
<TCEforms>
<sheetTitle>
LLL:EXT:irfag/lang/locallang_db.xml:
tx_irfag.pi_flexform.sheet_search</sheetTitle>
</TCEforms>
<type>array</type>
<el>
</el>
</ROOT>
</sSEARCH>
</sheets>
</T3DataStructure>

In this case, field definitions are moved inside sheets. Sheets identifiers must start
with the letter s and will preferably be in upper case. These identifiers will be used
as the third parameter of the pi_getFFvalue() function.The sheetTitle tag defines
the title for the sheet in the Backend.

To include the flexform in the plugin, the ext_tables.php file should be modified to
include the following lines:

STCA['tt_content']['types'I['list']['subtypes_addlist']
[S_EXTKEY.'_pi1'l="pi_flexform’;

t3lib_extMgm::addPiFlexFormValue($_EXTKEY . '_piT,
'FILE:EXT:'. $_EXTKEY . 'pi1/flexform_ds.xml');

Do not forget to clear the configuration cache in the Backend to apply these changes.

[104]

Chapter 5

Templating

One feature of a successful website is its unique look. A website designer should be
able to modify the website appearance according to the website's purpose. It means
that the plugin output should be modifiable as well. This is achieved by making the
plugin output using templates.

TYPO3 has built-in support for templates. A template is a normal HTML file where
data and text strings are replaced with special markers. A marker usually looks like
this: ###MARKER###. There are two types of markers:

e Plain marker (replaces the marker by data)

e Subsection marker (replaces everything between two markers by data)

Here is an example of a template:

<!DOCTYPE html PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<title>Sample template</title>
</head>
<body>
<h1>Results template</h1>
<I-- ###RESULTS### begin -->
<div class="tx_myext_results">
H#H#HTEXT_RESULTS##:
<I-- ###RESULT_SUB### begin -->

###FIELD_TITLE##4#: ###FIELD_VALUE###
<!-- ###RESULT_SUB### end -->
</div>
<I-- ###RESULTS### end -->
</body>
</html>

Here, ###RESULTS### is a template for a part of the Frontend output. The plugin
will extract it from the file and use it to format the output. ###TEXT_RESULTS###
will be replaced with a simple label from the language file. The plugin will extract
###RESULT_SUB### as a subsection and use it repeatedly for each field to

produce output.

[105]

Frontend Plugin: An In-Depth Study

Here is sample code that uses this template:

// Get template content
StemplateCode = $this->cObj->fileResource(
Sthis->conf['templateFile']);
// Extract part surrounded by ###RESULTS###
SresultsTemplate = $this->cObj->getSubpart($StemplateCode,
"HHHRESULTS#4##");
// Extract part surrounded by ###RESULT_SUB###
$resultSub = $this->cObj->getSubpart($templateCode,
"HHH#RESULT_SUB###');
$fieldList=";
// Loop through fields and create a list of them for Frontend
foreach ($fields as Stitle => $value) {
SfieldList .= Sthis->cObj->substituteMarkerArray(
SresultSub, array(
"HHHFIELD_TITLE###' =>
htmlispecialchars(Stitle),
"HH##FIELD_VALUE###' =>
htmlspecialchars($value),
);
}
// Compile output
Soutput = Sthis->cObj->substituteMarkerArrayCached(
SresultsTemplate, array(
"HHHTEXT_RESULTS###' =>
$this->pi_getLL('text_results'),
), array(
"###RESULTS_SUB###' => SfieldList,
);

$this->cObj is an instance of the tslib_cObj class, which is created by TYPO3 for
the plugin automatically.

Itis possible to extract information using markers from any part of the file. For
example, the following code adds data inside a page's <head> tag:

$subPart = $this->cObj->getSubpart(StemplateCode,
"###HEADER_ADDITIONS###");
// Ensure that header part is added only once to the page
// even if plugin is inserted to the page more than once
Skey = Sthis->prefixld . '_'. md5($subPart);
if (lisset(SGLOBALS['TSFE']->additionalHeaderData[$key])) {
SGLOBALS['TSFE']->additionalHeaderData[$key] =
Sthis->cObj->substituteMarkerArray($subPart, array(
"$##SITE_REL_PATH###' =>
t3lib_extMgm::siteRelPath($this->extKey),
);

[106]

Chapter 5

The corresponding template would be:

<IDOCTYPE html PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd”>
<html>
<head>
<title>Sample template</title>
<!-- ###HEADER_ADDITIONS### begin -->
<link rel="stylesheet”
href="###SITE_REL_PATH###res/pil.css” />
<!-- ###HEADER_ADDITIONS### end -->
</head>
<body>

This will include the corresponding header additions when the plugin is included
on the page. A website designer will be able to provide a template using a plugin
configuration and customize the template according to the website's needs.

Localization

Localization is one of the important topics in TYPO3.TYPO3 is being used all over
the world and users prefer to see it in their own language. The same applies to
extensions. This section covers issues related to localization.

Being Localization-Aware

Different countries use different formats for numbers and dates. While TYPO3
includes configuration parameters for date and time, it is better to make such
parameters configurable in an extension. It is preferable to use sprintf() for
formatting numbers. Formatting dates is more complex because there are two
choices: the date() and the strftime() functions. Localization-aware plugins

should use the strftime() function because it has much better localization support
than the date() function. In particular, it can show months and days according to
the current language and locale.

Localizing Strings
A plugin should not have hard-coded strings. All strings should be in the locallang.
xml file. This ensures that the plugin can be translated into other languages.

[107]

Frontend Plugin: An In-Depth Study

One important issue with localized strings is how such strings should be placed into
the file. For example, consider the following string on a website:

Page 1 of 10

The wrong approach would be to create this code:

Scontent = $this->pi_getLL('page’) .
ScurrentPage .
$this->pi_getLL('of") .
$totalPages;

This code works fine with English, but most likely, it will not be usable with other
languages. Other languages may have a different word order or even different
ways of showing page information. The right way would be to create a string in
locallang.xml that looks like this:

Page %1$d of %25d

Note that the string not only has format specifiers but also positions of arguments.
These can also change in other languages.

Corresponding PHP code is:

$content = sprintf($this->pi_getLL('page_info’),
$currentPage, $totalPages);

It is even shorter and more readable.
Another important issue is which characters are allowed as string identifiers.

Kickstarter generates identifiers with a dot in them. Such identifiers work fine in the
Backend, but they should not be used in the Frontend. A string from locallang.xml
can be overridden using TypoScript, where the dot is a reserved character. Therefore,
do not use a dot in string identifiers that will be used in the Frontend. Use the
underscore character instead.

Fetching Localized Records

Sometimes, records contain language dependent data as well. Kickstarter is able
to generate tables so that they will contain overlaid records. In this case, records
should be obtained from the database using an additional SQL condition
(sys_language_uid=0).

[108]

Chapter 5

After fetching, the record in the default language should be overlaid with a language
record. Here is the code:

SoverlaidRow = SGLOBALS['TSFE']->sys_page->getRecordOverlay(
$table, $row, Slanguage,
SGLOBALS['TSFE']->config['config']
['sys_language_overlay');

The behavior of the function depends on the system configuration for translation.
The CONFIG section TSRef document describes possible localization settings in
more detail. The reader may be also interested in the Frontend localization guide
document, which fully documents all aspects of localization handling in TYPO3. The
whole topic is again too large to discuss in this book.

The $row variable passed to the function must contain the full record from the table
(that is, selected with * as the field list). Note that the returned result may be empty
if there is no record in the specified language. $language is a numeric language ID
from the sys_languages table.

Character Set Handling

TYPO3 is able to work with different character sets. Frontend plugins must produce
output in the proper character set. If all strings come from locallang.xml, it is

usually not a problem. Therefore, strings should not be hard-coded in templates, but
should come from the language file. It is a good habit to use ###TEXT_SOMETHING###
for static strings.

TYPO3 has several different character set settings that affect the Frontend. They are
listed in the following table:

Character set variable Description

$TYPO3_CONF_VARS['BE'] The character set for the Backend. All data entered

['forceCharset'] in Backend is stored in the database using this
character set.

SGLOBALS['TSFE']-> The default character set for the Frontend output.

defaultCharSet Used only if none of the other variables is set.

SGLOBALS['TSFE']-> The character set used to render the Frontend output.

renderCharset Usually, identical to the Backend character set to

avoid character set conversions. Many extensions will
not work properly if their value is different from the
Backend character set.

SGLOBALS['TSFE]-> The character set of the page as seen by a user. TYPO3
metaCharset automatically converts a page from renderCharset
to metaCharset after rendering.

[109]

Frontend Plugin: An In-Depth Study

While TYPO3 tries to make the character set processing transparent for plugins, there
is at least one case when a plugin should be aware of the character sets.

If a plugin shows formatted data from the database, it may need to shorten strings.
The normal PHP substr() function does not work with all character sets. TYPO3

has its own class to "fix" PHP 's shortcomings when proper character handling

is necessary.

The following code shows how to crop lines in the Frontend plugins properly:

SGLOBALS['TSFE']->csConvObj->crop(
$GLOBALS['TSFE']->renderCharset, $string,
$numberOfChars, *..);

This code crops $string to a number of characters identified by $SnumberOfChars
and appends three dots after the string. It uses renderCharset to be compatible with
the rest of the Frontend rendering.

Caching

Caching is an extremely important topic in TYPO3. If an extension does not work
properly with cache, it may slow down pages significantly. Therefore, cache related
issues should always be considered by extension developers while developing
Frontend plugins.

Caching in TYPO3

TYPO3 caches all pages by default. Caching means that the page content is generated
once and stored to the database. When a user visits the same page again, TYPO3

does not have to generate all the menus, process all the content objects, or call the
Frontend plugins once again. It simply takes the page content from the database

and sends it to the website visitor. Caching is able to speed up page rendering about
10-20 times.

While caching, TYPO3 must take care of many issues. For example, a page can be
available in many languages. There can be Frontend users logged in. A page may
have parameters such as the news article ID. All these issues affect caching.

A page can be cached either to the database or to the external files. TYPO3 decides it
using configuration value, which is the same for every site in the current installation.
How pages are cached makes no difference to plugins.

If pages are not cached, this will seriously affect the performance of TYPO3 websites.
Extensions must not prevent whole page caching under any condition.

[110]

Chapter 5

Cached and Non-Cached Output

What happens if a developer needs to create a plugin that must produce different
output at each page reload? It means that the code must be executed every time the
page is shown to a user. How this can be achieved without preventing page cache?

TYPO3 makes it possible for extensions to produce noncacheable output. In this case,
TYPO3 creates normal cacheable content for the rest of the page but does not execute
noncached plugins. Instead, TYPO3 inserts special markers to the cached output.

Each time the page is fetched from the cache, TYPO3 instantiates a plugin and
executes its code. So, the page gets dynamically generated content all the time.

While the idea sounds attractive, noncached plugins should be used only when
necessary. They still affect performance.

How does TYPO3 determine whether a plugin should be cached or not? Typically, a
plugin is either a USER or a USER_INT object. The first one is cached, while the second
is not.

Noncached plugins have certain limitations. They are executed when the rest of the
page is already generated. So, noncached plugins cannot add data inside the <head>
tag, cannot change page title and cannot transfer data to noncached plugins. They
also do not have access to fully parsed TypoScript setup inside $TSFE. But these
limitations are usually not too important.

Yet another small, but important difference between cached and noncached plugins
is their configuration. Since TYPO3 does not have parsed TypoScript setup when
executing noncached plugins, it must know how to load a noncached plugin.
Typically, a cached plugin is configured like this:

plugin.tx_myext_pi1 = USER
plugin.tx_myext_pi1 {
userFunc = tx_myext_pil->main

}
Whereas noncached plugins are configured like this:

plugin.tx_myext_pi1 = USER

plugin.tx_myext_pi1 {
includeLibs = EXT:myext/pil1/class.tx_myext_pil.php
userFunc = tx_myext_pil->main

}

The line in bold tells TYPO3 where userFunc is located. If this line is missing, the
noncached plugin will not be loaded and will not produce any output. In other
words, it will be silently ignored by TYPO3.

[111]

Frontend Plugin: An In-Depth Study

Using cHash

What happens if extension output is based on the parameters? For example, the
news system must accept the news item ID and generate content based on this ID.
Obviously, if a page is cached for one ID, it will be just returned from the cache for
another ID.

One solution would be to create a noncached plugin. This is how such tasks were
solved in the past by many plugins. However, there is a better solution.

TYPO3 allows us to cache pages using page parameters. This is made possible
through cHash, which stands for content hash.

cHash is a checksum of the page parameters. When TYPO3 sees cHash in the list

of parameters, it takes all other parameters and computes the checksum. If the
checksum matches, it fetches the cached content that matches the page ID and the
cHash value. When the news article ID changes, cHash will change as well, and
TYPO3 will fetch a proper cached version of the page.

Can cHash be faked? It cannot unless the attacker can view the content of the
typo3conf/localconf.php file. This file contains the value of the security key that
is used in cHash computation.

How can a developer create code that uses cHash? This can be done either directly
by using the typoLink function of tslib_cObj, or by using the pi_link family of
functions from the tslib_pibase class. Here is a code example showing the use

of typoLink:

$conf = array(
'parameter' => $GLOBALS['TSFE']->id,
'useCacheHash' => true,
'additionalParams’ => '&tx_myext_pi1[param]=123,
)i
SlinkedText = $this->cObj->typoLink('my link’, Sconf);
$link = $this->cObj->lastTypoLinkUrl;

When using the pi_link functions, an extension must ensure that $pi_USER_INT_
obj is set to false and $pi_cacheCHash is set to true. Here is a code example:

Stext = Sthis->pi_linkTP('my link text’, array(
'tx_myext[param]' => 123,
), true);

This generates linked text. There are other functions in tslib_pibase that create
justa link or allow us to reuse and override some URL parameters. They are useful
in many cases, but the typoLink example is the most universal. All tslib_pibase
functions are just wrapped around typoLink.

[112]

Chapter 5

Two Things to Avoid

When it comes to caching while developing Frontend plugins, there are two things to
be avoided at all costs:

no_cache=1

This URL parameter is often improperly used when an extension submits some
information to itself. A page is not cached and the USER plugin executes and
processes submission. While it prevents page caching, it does so only when a
submission happens, so it does not look too bad. But it should be avoided. For such
cases, a page should contain the USER_INT plugin. Even if it does not produce any
output, it can still process submissions and generate error messages.

set_no_cache()

There is a function in $TSFE that can be used to prevent caching. That function
should never ever be used from extensions.

Advanced: Embedding USER_INT into USER

If an extension already uses no_cache=1 or set_no_cache() and it cannot be split
into cached and noncached plugins due to compatibility reasons, it is still possible
to make a proper plugin. The idea behind this technique is to embed the USER_INT
plugin inside the USER plugin. Technically, it is done in the following way:

$content = 'My USER plugin content’;

$cObj = t3lib_div::makelnstance('tslib_cObj');

/* @var $cObj tslib_cObj */

$cObj->start(array());

$Sconf = $SGLOBALS['TSFE']->tmpl->setup

['plugin.]['tx_myext_pi2.];

Sconfl'includeLibs'] =
'EXT:myext/pi2/class.tx_myext_pi2.php’;

$content .= $cObj->cObjGetSingle('USER_INT, $conf);

$content .= 'Rest of my USER plugin content’;

The code fragment given here produces noncached content inside cached content.
Using this technique, it is easy to convert existing extensions from using no_cache=1
to using noncached plugins.

[113]

Frontend Plugin: An In-Depth Study

Summary

In this chapter, we looked into the details of the Frontend plugin programming. In
the next chapter, we will use these techniques to create a Frontend plugin.

It must be noted here that Frontend plugins are usually not made in the form of

a single function. Normally, they are classes, and typically extend a class named
tslib_pibase. Having a class allows us to implement complex logic using many
functions and to keep working on data as class attributes. The example above should
be really treated as an example, not as a recommendation on creating plugins. A
proper plugin must be a class!

[114]

Programming Frontend
Plugins

In this chapter, we will learn more about Frontend plugins and create our own
plugin. We will learn best practices and certain tricks that come handy when creating
really good plugins. We will also review and become familiar with eID-one of the
most mysterious parts of TYPO3.

There will be a lot of code fragments in this chapter (but not complete files). In this
book, these fragments are formatted for better presentation. The real code may be
formatted differently. The reader is encouraged to get a copy of the code from Packt
Publishing's website and look into the actual files while reading.

Some extra functionality is left for the reader to finish or implement better. Since
we will only learn plugin coding, our purpose in this chapter is to show how to
do it properly. Often nice features are simplified to give more space for
implementation details.

Review and Update Generated Files

Kickstarer generated several Frontend plugin files for us and added several code
lines to ensure proper configuration of the plugin. Let's see what exactly was
generated and how it is related to the plugin. We will also adjust certain lines to
better fit our needs.

Frontend Plugin Files

Frontend plugin files are located in the pi1 directory of our extension. Kickstarter
generated two files: class.tx_feuserlist_pi1.php and locallang.xml. The

first file contains the plugin code, while the second contains language strings for
the plugin.

Programming Frontend Plugins

class.tx_feuserlist_pi1.php

This is the file that TYPO3 will include as part of the Frontend plugin execution
process. As we already know from the previous chapters, according to TYPO3
coding guidelines, the file will contain the tx_feuserlist_pi1 PHP class.

Each class file starts with GPL license. It must appear in every TYPO3 related code
file. Next goes a special comment, which looks like this:

/**
* [CLASS/FUNCTION INDEX of SCRIPT]
*

* Hint: use extdeveval to insert/update function index above.
*/

The extdeveval extension can generate a listing of all functions inside the file.

An example of such a listing can be seen in the core files. It shows the function
name, parameters, and the line number. It would be useful to quickly look up the
parameters of the function. While generating such listings, extdeveval will look
for the marker from the second line in the code above. Often programmers add
Subversion or CVS markers (such as $1d$) to this part of the file.

Next goes the require_once PHP call to include the tslib_pibase class - the base
class of the plugin class.

Next, Kickstarter generates the plugin class prefixed by a PHPDoc comment. The
class contains four class attributes (variables):

Name Type Description

Sprefixid string This is a prefix for plugin parameters in URLs. This
variable is required by tslib_pibase and its use is
highly recommended in the code because it simplifies code
copying and reusing in other plugins.

By default, the value of this attribute is equal to the plugin

class name.

$scriptRelPath string This is a relative path to the plugin's PHP file (the file
where this class is located). It is also used by
tslib_pibase.

SextKey string Extension key; also used by tslib_pibase.

$pi_checkCHash boolean This attribute is described in the previous chapter. It is

used for caching pages whose content depends on the URL
parameters. It is created and set to true by default for all
USER (cached) plugins.

[116]

Chapter 6

Variables are followed by the main() function. This function is defined in the TypoScript
setup as the entry point of the plugin. The function accepts two parameters:

Name Type Value

$content string Normally empty but can be set if the plugin is called by
another plugin

$conf array TypoScript configuration array. For example, consider

the following TypoScript:

plugin.tx_mext_pil = USER
plugin.tx_myext_pi1 {
userFunc = tx_myext_pil->main
param1 = valuel
param1 {
param2 = value2
}
}
Plugin will receive this TypoScript as follows:
$conf = array(
'userFunc' =>
"tx_myext_pil->main,,
‘param1'=>'valuel,
‘param1. => array(
'‘param2' => 'value2,
)
)i
Notice how param1 is passed as a value first and then as
an array by using a dot.

The generated function contains a sample implementation. The first three lines are
usually kept in every implementation:

$this->conf = $conf;
$this->pi_setPiVarDefaults();
$this->pi_loadLL();

The first line must always be present in the plugin and must be one of the first lines
executed by the plugin. tslib_pibase (plugin's base class) depends on this value.

The next line calls a function that checks the TypoScript setup for the _DEFAULT_PI_
VARS array property and sets the values of $this->piVars from this array, if it is set.
Normally, $this->piVars contains parameters passed to the plugin in the URL (in

the form of tx_extkey_pil[param]=value). This function can provide defaults if

the parameter is not set in the URL. We will see it later in this chapter.

[117]

Programming Frontend Plugins

The last line loads translated strings from the locallang.xml file. It allows the use
of the $this->pi_getLL() function to obtain such strings. This is necessary because
the SLANG object is not available in the Frontend by default. Additionally, this
function checks if translations are overlaid from the TypoScript by using the
_LOCAL_LANG array property.

The rest of the code contains sample plugin output, which we will replace during
development.

locallang.xml

This is an XML file with translated strings. By default, it contains sample strings. The
file uses UTF-8 encoding and looks like this:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<T3locallang>
<meta type="array">
<type>module</type>
<description>Language labels for plugin "tx_feuserstat_
pi1"</description>
</meta>
<data type="array">
<languageKey index="default" type="array">
<label index="list_mode_1">Mode 1</label>
<label index="list_mode_2">Mode 2</label>
<label index="list_mode_3">Mode 3</label>
<label index="back">Back</label>
<label index="submit_button_label">Click here to submit
value</label>
</languageKey>
</data>
</T3locallang>

Strings are added inside languageKey as label entries.The index attribute of
languageKey tells which language is used for this section. The term default implies
English, while other languages typically use codes such as de for German or fr for
French. Do not put labels in your native language into the default section. This
violates TYPO3 conventions. They must be in English!

During development, an extension may have strings for various languages inside
locallang.xml. This is also true for private (non-public) extensions. However, if

an extension is distributed publicly, all labels (except for the default language)
should be extracted to language packs and distributed through the translation
service of TYPO3 Extension Manager. To extract labels, an extension should be
installed on the translation server. Then an extension can also be translated into
other languages. More information about translation is available in TYPO3 wiki at
http://wiki.typo3.org/.

[118]

Chapter 6

Other Related Files

Other files are located outside the plugin directory, but they also participate in the
Frontend plugin work and should therefore be observed. They seriously affect the
plugin's work.

TypoScript Files

TypoScript files are placed inside the static directory in the extension. Kickstarter
generates only one subdirectory inside the static directory, which is derived

from the TypoScript template name entered in the corresponding Kickstarter step.
Developers can add other subdirectories, but they must also register new templates
in the ext_tables.php file as shown in the following ext_tables.php description.

Kickstarter generated the frontend_user_list subdirectory for our extension. This
file contains constants.txt and setup.txt with the text that we entered during
extension generation.

ext_localconf.php

This file is very short:

<?php
if ({defined (TYPO3_MODE)) {
die (‘Access denied.);

}

t3lib_extMgm::addPItoST43(S_EXTKEY,
'pi1/class.tx_feuserstat_pil.php,'_pit,
list_type} 1);

>

The first three lines prevent direct file execution from the browser window if
someone types the URL of the file in the browser window.

The remaining code creates default TypoScript for the plugin. Strictly speaking, it

is not necessary, but it allows your extension to be called (and report configuration
errors) even if the extension's TypoScript code is not included in the main TypoScript
template of the web site. We will use this functionality in our plugin.

[119]

Programming Frontend Plugins

ext_tables.php

The abridged version of ext_tables.php is shown here:

<?php
if ({defined (TYPO3_MODE") {
die (‘Access denied.);

}

t3lib_extMgm::addStaticFile($_EXTKEY,
'static/frontend_user_list/, 'Frontend user list');
t3lib_div::loadTCA('tt_content’);
STCA['tt_content]['types']['list']['subtypes_excludelist']
[S_EXTKEY._pi1'] ='layout,select_key';
t3lib_extMgm::addPlugin(array(
'LLL:EXT:feuserstat/locallang_db.xml:tt_content.list_type_pil'
, S_EXTKEY .'_pi1"), 'list_type');
>

The call to t3lib_extMgm::addStaticFile() registers the extension's TypoScript

code with TYPO3. Now, the "Frontend user list" will be available in the "Include
static (from extensions)" while editing the TypoScript setup. It should be added to
the main TypoScript template for proper functioning of the plugin.

The next two lines modify the web form look of the plugin. Firstly, the table
configuration array is loaded for the tt_content table. Next, two old fields are
excluded from the list of displayed fields. Modern extensions do not use these fields,
so Kickstarter generates this code automatically.

The remaining code adds the plugin into the list of plugins in the web form for
content elements. This list is seen when a user uses "Insert plugin" type for content
element items.

Non-Reviewed Files

There are some other files that were generated but not reviewed so far. They
contain functionality for our Backend module and will be reviewed in detail in the
next chapter.

Clean Up Extension

Before we proceed to programming, we need to make certain adjustments to the
generated extension and add new files and directories.

[120]

Chapter 6

At the time of writing this book, the Kickstarter extension did not fully follow

TYPO3 coding guidelines. Therefore, the extension has to be adjusted to follow
these guidelines closer. This may not be the fact when the reader reads this book
because Kickstater could already be fixed. Nevertheless, we will see what needs to be
changed in the generated code.

Here is a list of nonconforming items produced by Kickstarter:

e Using double quotes instead of single
e Missing spaces around the string concatenation operator (dot)
e Missing spaces after commas

e Lineslonger than 80 characters

While these items do not affect functionality, they should be cleaned up because code
must use consistent coding style.

Programming the Plugin

In this section, we will create our plugin and related code.

General Workflow

We will follow the top-down principle in development. We will start with big blocks
and then go into details. We will use small functions that call other small functions to
perform isolated functions. This creates cleaner applications that are much easier to
debug, and it is much faster to fix or re-implement any functionality, if necessary.

Adding Files

Before we proceed with implementation, we need to create several additional files.
We will use these files later during implementation. Generally, if a feature is used,

it is better to have a skeleton of such files created in the very beginning. Later,
information can be simply added there when necessary. There will be no need to be
distracted from the main development course to create these files from scratch.

Templates

We will use templates in the Frontend plugins. Designers will be able to either
customize the default template or create a new one based on the default.

[121]

Programming Frontend Plugins

First, we create a directory named res in the root directory of the extension. Next, we
create three files there:

e pil_template.html
e pil.css
e piljs

The last two files will be empty for now. The first file is the simplest HTML
file possible:

<html>

<head>

<title>pi1 plugin template file</title>

</head>

<body>

</body>

</html>

We will add template data to this file later.

Flexform Configuration

Modern templates have two means of configuration: TypoScript configuration and
Flexform configuration. The first one can be seen as base configuration. It can be
used when a plugin is inserted into a page through TypoScript, or when it is inserted
using the Page module. Flexform configuration is limited to plugins inserted as
records to the page (usually using the Page module).

Though TypoScript configuration is enough in most cases, users may feel more
comfortable if a plugin provides configuration also through flexforms.

Flexform configuration is stored in an XML format data source or DS, for short. We
will create the smallest file and add entries there when we program the plugin. Here
is the file:

<?xml version="1.0" encoding="UTF-8"?>
<T3DataStructure>
<meta>
<langDisable>1</langDisable>
<langChildren>0</langChildren>
</meta>
<ROOT>
<type>array</type>
<el>
</el>
</ROOT>
</T3DataStructure>

This file should be placed in pi1/flexform_ds.xml.

[122]

Chapter 6

elD

The elD is TYPO3's way of quickly providing response to certain types of

queries without invoking the whole TYPO3 Frontend. It is used by the TYPO3
enlarge-on-click feature, which is useful, for example, in the AJAX applications. Since
this feature is very powerful but lacks documentation, we will use it in our extension
for learning purposes. The same task can be performed without elD, but our main
purpose is to learn extension programming.

The elD file is a normal PHP class named tx_feuserstat_elD. We will place it

inside the extension's directory and name it class.tx_feuserstat_eid.php. The
content of the file is not shown here due to its size. But it is a typical TYPO3 class
with GPL at the top and XCLASS declaration at the bottom. You will find it in the
code companion supplied with this book.

In addition to the class, we need to register it in ext_localconf.php:

// elD
SGLOBALS['TYPO3_CONF_VARS'['FE'['elD_include']
['feuserstat’] =
'EXT:feuserstat/class.tx_feuserstat_eid.php';

Do not forget to clear the configuration cache after adding these lines to make
them effective.

Defining Functions

Our plugin will logically consist of several areas:

e Initialization, which includes the following:
° Checking for correct environment

° Loading configuration

e Single view for fe_user records
e Paged list view
e Search
The search function will call elD to load data for a Google-like autocomplete feature.

While it is not strictly necessary, it is a good way to show how elD works. The search
form itself will be a part of the list view.

[123]

Programming Frontend Plugins

Since logical areas are identified, we can create empty functions in the class inside
pil/class.tx_feuserstat_pil.php:

/**

* Initializes plugin configuration.

*

* @return string Generated HTML

*/

protected function init() {

}

/**

* Shows single user card.

*

* @return string Generated HTML

*/

protected function singleView() {
return";

}

/**

* Shows user list.

*

* @return string Generated HTML

*/

protected function listView() {
return";

}

Here, we use PHP5 features, making methods protected to prevent uncontrolled calls
from outside the class and type hinting for function parameters whenever possible
according to PHP syntax. While it may seem to be useless to use type hinting in a
protected function, it is a good habit to use type hinting anywhere. If using code
hinting becomes automatic to a developer, it may prevent many strange errors later.

Now, after we build a skeleton for development, we start development! We will start
with the first logical thing: initialization of the extension.

Initializing an Extension

Initialization of an extension consists of two parts:

e Checking the environment and making sure that the extension can work.

e Preparing parameters and setting defaults if parameters are not set explicitly.

These two tasks are usually the first that a plugin does.

[124]

Chapter 6

Checking the Environment

Checking the environment ensures that an extension can work properly. Typically,
an extension requires some options to be set. Defaults are normally set through
TypoScript. However, it is easy to forget to include the TypoScript template from an
extension to the main website template. In this case, all default options will not be
available. This is to be checked during initialization.

The other things to be checked depend on the extension's logic. It may be page
availability to the current user or in the current context, Frontend user status (logged
in or not) or anything else that you can think of. The more checks a plugin contains,
the fewer are the chances of unseen errors and instability.

We start with checking whether the TypoScript template for our plugin has been
included in the main template of the site. We check whether usersPid is set in

the $conf parameter. If not, we return an error message (here and later added or
modified code lines are in bold):

public function main($Scontent, $conf) {
Sthis->conf = $conf;
Sthis->pi_setPiVarDefaults();
Sthis->pi_loadLL();
// Check environment
if (lisset($Sconfl'usersPid'])) {
return $this->pi_wraplInBaseClass(

Sthis->pi_getLL('no_ts_template'));
}
$content=";
return $this->pi_wraplnBaseClass($content);

}

While this check may seem insignificant, it really does work. It is amazing how many
people forget to add plugin's TypoScript template to the website template. They will
thank you for the provided hint.

To show an error message, we also add the corresponding string to pi1/
locallang.xml.

Other TypoScript parameters may be empty, but we can substitute good defaults
for them.

[125]

Programming Frontend Plugins

Loading Configuration

The next step in development is to load configuration values. Since we are going to
use two ways of configuration (TypoScript and Flexform), we need to merge values.
For that, we will create a new function:

/**
* Fetches configuration value given its name.
* Merges flexform and TS configuration values.
*
* @param string $param Configuration value name
* @return string Parameter value
¥/
protected function fetchConfigurationValue($param) {
Svalue = trim($Sthis->pi_getFFvalue(
Sthis->cObj->datal'pi_flexform'], $param));
return $value ? $value : Sthis->conf[Sparam];

}

The $this->cObj->data function contains the tt_content record, which is a record

of our plugin. When the Backend user saves the configuration, flexform is converted
to XML and saved to the database field named pi_flexform. The pi_getFFvalue
function extracts a value from a flexform array. The XML inside the pi_flexform
database field is transformed into an array by calling the pi_initPIflexform

function, which will be the first thing to do in the plugin’s init function.

The fetchConfigurationValue function returns a value from flexform if it is set.
Otherwise, it returns a value from TypoScript.

Next, we have the init function working:

protected function init() {

Sthis->pi_initPIflexForm();

// Get values

Sthis->conf['usersPid'] =
intval($this->fetchConfigurationValue('usersPid");

Sthis->conf['singlePid'] =
intval($this->fetchConfigurationValue('singlePid");

Sthis->confT'listPid'] =
intval($this->fetchConfigurationValue('listPid");

Sthis->conf['templateFile'l =
$this->fetchConfigurationValue('templateFile");

// Set defaults if necessary

if (1$this->conf['usersPid']) {
SGLOBALS['TT']->setTSlogMessage(

'‘Warning: usersPid is not setin'.

[126]

Chapter 6

Sthis->prefixid .
" plugin. No users will be shown!, 2);
}
if (1Sthis->conf['singlePid") {
$this->conf['singlePid'] = SGLOBALS['TSFE']->id;
}
if (1$Sthis->conf['listPid"]) {
Sthis->conf['listPid'] = SGLOBALS['TSFE']->id;
}
if (ISthis->conf['templateFile') {
$this->conf['templateFile'l =
'EXT:'. Sthis->extKey . '/res/pi1_template.html’;
}
// Load template code
Sthis->templateCode =
$this->cObj->fileResource(
Sthis->conf['templateFile']);

}

Firstly, the function initializes flexform. Next, it fetches all the parameters converting
all the page uid values to integers. Doing it once allows us to use these values in SQL
queries without additional intval calls.

Next, the function sets default values if real values are not provided. We only
skip usersPid here because we cannot give any reasonable default. But we set

the logging message to the admin panel to show the warning about it. Note that
we do not hard-code the plugin name but use $this->prefixld. The code is not
plugin-dependent anymore. Using $this->prefixld helps to copy/paste such code
into other extensions when necessary.

The last part loads the HTML file into a class attribute. The $this->cObj-

>fileResource function understands several ways to specify the path to a file
(including EXT: syntax) and returns the file content for most files (for image files, this
function returns tag).

The last thing we must do to finish initialization is to add a call to init into the
main function.

Modifying the Flexform Data Source

Now, we need to modify the flexform data source file to add new fields there. While
adding fields, a developer should refer to the TYPO3 Core APl document, which is
available at http://typo3.org/. The syntax of flexform DS roughly corresponds to

the syntax of $TCA field definitions.

[127]

Programming Frontend Plugins

We add four fields to the data source. They correspond to the fields in the plugin's
TypoScript setup. Fields will have the same names as the TypoScript values to be
compatible with the plugin initialization functions. Fields are added between <el>
and </el> XML tags.

The first field is usersPid:

<usersPid>
<TCEforms>
<label>LLL:EXT:feuserstat/locallang_db.xml:
pi1_flexform.usersPid</label>
<config>
<type>group</type>
<internal_type>db</internal_type>
<allowed>pages</allowed>
<prepend_tname>0</prepend_tname>
<minitems>0</minitems>
<maxitems>1</maxitems>
<size>1</size>
</config>
</TCEforms>
</usersPid>

Looking at TYPO3 Core API reveals the following:

e Thelabelis stored in the language file named locallang_db.xml in the
extension's directory.

e The field's type is group.
e The field contains a single (maxitems is 1) reference to the pages table.

e The control will be one line high.

The next two fields are singlePid and listPid. They are almost identical to
usersPid (except for the label):

<singlePid>
<TCEforms>
<label>LLL:EXT:feuserstat/locallang_db.xml:
pil1_flexform.singlePid</label>
<config>
<type>group</type>
<internal_type>db</internal_type>
<allowed>pages</allowed>
<prepend_tname>0</prepend_tname>
<minitems>0</minitems>
<maxitems>1</maxitems>

[128]

Chapter 6

<size>1</size>
</config>
</TCEforms>
</singlePid>
<listPid>
<TCEforms>
<label>LLL:EXT:feuserstat/locallang_db.xml:
pi1_flexform.listPid</label>
<config>
<type>group</type>
<internal_type>db</internal_type>
<allowed>pages</allowed>
<prepend_tname>0</prepend_tname>
<minitems>0</minitems>
<maxitems>1</maxitems>
<size>1</size>
</config>
</TCEforms>
</listPid>

The last field is the templateFile:

<templateFile>
<TCEforms>
<label>LLL:EXT:feuserstat/locallang_db.xml:
pi1_flexform.templateFile</label>
<config>
<type>input</type>
<eval>trim</eval>
<wizards type="array">
<_PADDING>2</_PADDING>
<link type="array">
<type>popup</type>
<title>Link</title>
<icon>link_popup.gif</icon>
<script>browse_links.php?
mode=wizard&act=file</script>
<params type="array">
<blindLinkOptions>page,url,mail,spec
</blindLinkOptions>
</params>
<JSopenParams>height=300,width=500,
status=0,menubar=0,scrollbars=1</JSopenParams>

[129]

Programming Frontend Plugins

</link>
</wizards>
</config>
</TCEforms>
</templateFile>

Note how the Template file field is created in the flexform. Traditionally, TYPO3
used upload fields for the template file. While this still can be used, it is not flexible
enough. Typically, it is easier for a website designer or website owner to place the
template file in the subdirectory of the fileadmin/ directory. If the file is updated,

it can be uploaded directly to the folder without changing the plugin instances on
several pages.

The field has a wizard icon to the right of the input field. The wizard is a standard
TYPO3 window where a file can be selected. All irrelevant options are hidden by the
wizard configuration.

The only remaining task now is to tell TYPO3 to use the flexform. We do it in ext_
tables.php:

STCA['tt_content]['types']['list']['subtypes_excludelist']
[$_EXTKEY.'_pi1'] ='layout,select_key,pages'’;

STCA['tt_content]['types'I['list']['subtypes_addlist']
[S_EXTKEY.'_pil1'l = "pi_flexform;

t3lib_extMgm::addPiFlexFormValue($_EXTKEY ."_pil,
'FILE:EXT:' . $_EXTKEY . '/pi1/flexform_ds.xml');

Here is what the flexform configuration looks like in the Backend:

General Plugln Access
Plugin:

| Frontend user |Ist

Plugin Options:
Page where user records are stored:

| =
Page

Page where single view |s located:

| &
Page

Page where |lst view |s |ocated:

| &
Page

Template flle:

I &

[130]

Chapter 6

Dispatching Calls

Now, after we finished initialization, we will create dispatching code to direct
control flow to the appropriate function according to the current plugin mode. This
is very simple:

public function main($Scontent, $Sconf) {
$this->conf = $conf;
Sthis->pi_setPiVarDefaults();
Sthis->pi_loadLL();
// Check environment
if (lisset($confl'usersPid'])) {
return $this->pi_wraplInBaseClass(
Sthis->pi_getLL('no_ts_template"));
}
// Init
Sthis->init();
if (t3lib_div:testint(Sthis->piVars['showUid'])) {
Scontent = Sthis->singleView();

}

else {
Scontent = Sthis->listView();

}

return $this->pi_wraplnBaseClass($content);

}

We use t3lib_div:testint, which returns true if and only if a parameter is a valid
integer. The showUid function is traditionally used to pass the uid value of the single
item to be shown.

Now, we are ready to proceed to the implementation of single and list views. But
first we need to talk about using templates in a single view and a list view.

Using Templates

In this section, we will discuss how to use templates to provide customizable output
for the website.

Template Basics

Templates make your plugins customizable. Anyone can provide his or her unique
look to your plugin. This offers great flexibility to website creators, who can truly use
the plugin in the context of the website.

[131]

Programming Frontend Plugins

A plugin template is usually a reqular HTML file (though you can have text
templates for mail or XML templates for RSS). Template files contain special tokens
called markers. These markers are usually words in upper-case surrounded by three
hash marks (###).

There are two types of markers:

e Plain markers

e Subsection markers

Here is an example:

<|-- ###LISTH### begin -->
###CONTENT###
<|-- ###LISTH### end -->

###LIST### is a subsection marker. ###CONTENT### is a plain marker. Plain markers
are replaced with a single string. Subsection markers are trickier. They are also
replaced as a whole and can be used for many purposes, for example:

e To repeat subsection content many times (for example, news items).

e Toremove subsection content completely if necessary (for example, error
subsection if there are no errors).

e To mark the beginning and the end of a subsection for the view (for example,
one subsection for List and another for Single view).

How do we identify subsection markers? Firstly, they are usually placed inside
comments. This is not truly an identifying sign because nothing prevents a template
designer from commenting a plain marker. But a subsection marker always has

a pair. And often a marker is followed by the begin and end keywords. These
keywords are not mandatory. TYPO3 does not use them at all, but they help to locate
the beginning and end of the section. Additionally, TYPO3 is smart enough to ignore
anything else inside the comment tag. For example:

<|-- ###LISTH### begin
This is the template for the LIST view. It can contain the
following markers:
CONTENT Marks content
->
###CONTENTH##
<I-- ###LISTH##H# end -->

Just make sure that you do not put another marker to the comment (that is, do not
surround a marker name with hashes).

[132]

Chapter 6

Using Templates

We have already seen functions that use templates in the previous chapters. They
belong to the tslib_cObj class. The general workflow is as follows:

1. Obtain a subpart of the current plugin mode using $this->cObj-
>getSubpart.

2. Create an array with markers, where keys are markers and values
are data values.

3. For each subpart, fetch the subpart, perform steps 1 and 2 for the subpart
(in the loop, if necessary), and save output in a separate array.

4. Pass all data to $this->cObj->substituteMarkerArrayCached.

Let's see the code example. We will use the following template:

<html>

<head>

<title>Test</title>

</head>

<body>

<|-- ###LISTH### begin -->
H#H#HTEXT_ITEMS###:

<1 ###ITEM### begin -->

<|i>#H#HTEXTH#H##

<l-- ###|ITEM### end -->

<l-- ###LIST#H## end -->

</body>

</html>

The following code processes this template:

// Get main template

Stemplate = $this->cObj->getSubpart(Sthis->templateCode,
HHHLISTHEH),

// Create marker array

$Smarkers = array(

"HHHTEXT_ITEMS###' => Sthis->pi_getLL('items_in_the_list"),

)i

// Get template for the subpart

$subTemplate = $this->cObj->getSubpart(Stemplate,
HHHITEM#H#);

// Create item list

SitemList=";

for ($i=1;$i < 10; Si++) {

[133]

Programming Frontend Plugins

SitemList = Sthis->substitureMarker($subTemplate,
HHHTEXTH##, Si);
}
// Create array for subpart markers
$subMarkers = array(
"#HHITEM### => SitemList,
)i
// Create full output
return Sthis->cObj->substituteMarkerArrayCached(
$this->template, Smarkers, $subMarkers);

The reader should be aware that substituteMarkerArrayCached caches the data

into the cache_hash database table. This may be undesirable for plugins that

call this function frequently and pass different data to it each time. Calling this
function may create a lot of unused records in the database. The alternative is to call
substituteSubpart in a loop.

Now that we know how to use templates, we proceed to look at creating a
single view.

Creating a Single view

Creating a single view is simpler than creating a list view. We will assume that a
single view can display almost every column (except password or other columns that
make no sense to be displayed).

Creating a Template

To simplify template structure, we will create a table-based design for a template. In
real life, you probably should use a CSS-based layout.

A template should be easily adjustable if new fields are added. Preferably, no code
changes are required if the fe_users table is changed. For that, we will use markers
such as ###TEXT_NAME### and ###FIELD_NAME###. Any new field can be added to a
template in the same way as a standard field. To ensure proper display, we will use
stdWrap for each field in the code. Therefore, no change of the code will be required,
only the template and TypoScript adjustment.

Here is what we add to res/pi1_template.html:

<h1>Single view</h1>
<I-- ###SINGLE_VIEW### begin -->
<div class="tx_feuserstat_single">
<table>
<tr><td rowspan="5">

[134]

Chapter 6

###IMAGE#4##
</td><td class="tx_feuserstat_label">
##H#TEXT_USERNAME#4##
</td><td class="tx_feuserstat_value">
###FIELD_USERNAME###
</td></tr>
<tr><td class="tx_feuserstat_label">
#H#H#TEXT_NAME###
</td><td class="tx_feuserstat_value">
###FIELD_NAME###
</td></tr>
<tr><td class="tx_feuserstat_label">
HH#H#TEXT_CRDATE###
</td><td class="tx_feuserstat_value">
###FIELD_CRDATE#4##
</td></tr>
<tr><td class="tx_feuserstat_label">
HH#HTEXT_TSTAMP##4#
</td><td class="tx_feuserstat_value">
###FIELD_TSTAMP###
</td></tr>
<tr><td class="tx_feuserstat_label">
#H#H#TEXT_EMAIL###
</td><td class="tx_feuserstat_value">
###FIELD_EMAIL###
</td></tr>
</table>
</div>
<!-- ###SINGLE_VIEW### end -->
<h1>Single view when user is not found</h1>
<I-- ###SINGLE_VIEW_NO_USER### begin -->
##H#TEXT_USER_NOT_FOUND###
<!-- ###SINGLE_VIEW_NO_USER### end -->

There are two subparts: one for a "normal” single view and one for the case when the
user is not found. While it is very tempting to save time and just output a

single string in case the user is not found, it is always better to provide extra
customization capabilities. Coding extra subsection will take another 3-5 minutes

as compared to outputting a simple string, but an extension will only benefit from
another subsection.

[135]

Programming Frontend Plugins

Adding stdWrap for Fields

stdWrap is a powerful way to alter presentation of the value, or render it completely
differently. Our plugin will provide an excellent example of using stdWrap for

such purposes. The Frontend user record will be the data for stdwrap. We add the
following to static/frontend_user_list/setup.txt:

stdWraps for fields in single view
singleView {
field: image
image_stdWrap {
setContentToCurrent =1
cObject = IMAGE
cObject {
file {
import = uploads/pics/
import.current =1
width = 150m
height = 150m
}
imageLinkWrap =1
imageLinkWrap {
enable =1
JSwindow =1
}
}
ifEmpty.dataWrap (
<div class="tx_feuserstat_pi1_no_image">
{LLL:EXT:feuserstat/pi1/locallang.xml:no_image}
</div>

field: email

email_stdWrap {
ifisFalse.current = 1
typolink.parameter.dataWrap = mailto:{field:email}

}

field: crdate

crdate_stdWrap {
strftime = %c

}

field: tstamp

tstamp_stdWrap {
strftime = %c

}

}

[136]

Chapter 6

Here, we defined stdWrap for the image, email, crdate, and strftime fields. The
image field will be wrapped with a link to open a larger image on click. Email will
automatically get protection if config.spamProtectEmailAddresses is set. Note

how it becomes automatic through the use of stdWrap; simply using typolink in
stdWrap does the magic!

Date fields are formatted using a preferred representation of date and time for the
current locale. This means that the plugin will automatically use a proper date
format when the page language is changed.

Programming Single View
Single view shows one of these two views: user record, or the "not found" screen. So,
the plan for the function is:

e Fetch the record.
e [ftherecord is fetched successfully, display the data.

e Iftherecordis not found, show the "not found" screen.

To fetch the record, we will use a function from the t3lib_db class named
exec_SELECTgetRows. This function is good for fetching a small set of records.
However, avoid fetching many records or records with a large amount of data. It
may exhaust PHP memory.

We will select the uid and pid fields. uid identifies the record, and pid will limit

the query to the proper site. If there are several sites in the same database, each with
a separate Frontend user set, it will be good to ensure that only proper users are
displayed. You can think about it as a security measure. Always think about such
small but important issues when programming TYPO3 code.

The call is simple:

$Srows = SGLOBALS['TYPO3_DB']->exec_SELECTgetRows('*,
'fe_users),
'uid=". intval($this->piVars['showUid") .
"AND".
'pid=". intval($this->conf['usersPid']) .
$this->cObj->enableFields('fe_users'));

The only addition here is a call to $this->cObj->enableFields('fe_users'). It
will ensure that the hidden, disabled, or time-limited records are not selected.

Also note that we have intval calls in the code. The value of the showUid variable
was sanitized in the init function, but we still use intval here. It never hurts to
have more security precautions.

[137]

Programming Frontend Plugins

Next, we code the easiest part, the "not found" message. It is typically better to have
the smaller part first in the if statements. So, we code it like this:

Scontent=";
if (count(Srows) == 0) {
Stemplate = $this->cObj->getSubpart($this->templateCode,
"###SINGLE_VIEW_NO_USER###");
$content = $this->cObj->substituteMarker($Stemplate,
"HHHTEXT_USER_NOT_FOUND###,
$this->pi_getLL('user_not_found'));
}

Next, we code the long part, the normal view. Here, we will use a small trick. Since
we do not modify the code each time an extension adds a field to the fe_users table,
we need a way to find the labels for fields. The easiest way is to fetch labels from
$TCA. It contains labels for each column. For some columns (namely for crdate and
tstamp), we will provide our own labels. So, first we try to fetch our own label. If our
own label is not there, we use the $TCA label.

Additionally, we need to exclude some sensitive fields. This will include password
and BE-related fields.

Here is the next part of the code:

else {

Smarkers = array();
// Load fe_users table information into $STCA. We need
// this because we will extract labels from $TCA
t3lib_div:loadTCA('fe_users");
// Labels in STCA are usually in 'LLL:EXT:... format
// We need language object to "decode" them
Slang = t3lib_div::makelnstance('language’);
/¥ @var Slang language */
$lang->init(SGLOBALS['TSFE']->lang);
// Next we need a new instance of tslib_cObj because
// we will pass user record as data to this cObject
$cObj = t3lib_div::makelnstance('tslib_cObj');
$cObj->start(Srows[0], 'fe_users');
/* @var $cObj tslib_cObj */
// Now create marker for each field
foreach (Srows[0] as $field => Svalue) {

// Skip some sensitive fields

if (It3lib_div:inList('password,uc, .

[138]

Chapter 6

'user_not_found,lockToDomain,TSconfig), $field)) {
// Get label
$label = $this->pi_getLL('field_". $field);
if (ISlabel) {
// No local label, fetch it from STCA
Slabel = $lang->sL(SGLOBALS[' TCA'['fe_users']
['columns'][$field]['label']);
}
// Fill markers
$fieldUpper = strtoupper($field);
Smarkers['###TEXT_'. $fieldUpper . '###'] = Slabel;
Smarkers['###FIELD_' . $fieldUpper . '###'] =
$cObj->stdWrap(htmlspecialchars($value),
Sthis->conf['singleView.]
[$field.'_stdWrap.]);
}
}
// Get template for the subpart
Stemplate = $Sthis->cObj->getSubpart(Sthis->templateCode,
"###SINGLE_VIEW###');
// Create output
$content = $this->cObj->substituteMarkerArray(Stemplate,
Smarkers);

}

return $content;

Note the use of htmlispecialchars. While it could be used through stdWrap, it is

better to use it in the code directly to ensure that the field content is shown properly
in the Frontend. The disadvantage of this method is that it does not allow HTML
fields in fe_user record. If that becomes a problem, the plugin can be changed to use
generic stdWrap when stdWrap for the field is not set. This, however, requires extra
htmlSpecialChars for each specific stdWrap. So, using htmispecialchars in the

code is a good compromise.

This completes the development of a single view.

[139]

Programming Frontend Plugins

Creating a List View

We will have approximately the same number of steps for a list view as we had for
a single view. In addition, we will make a separate function to obtain the SQL WHERE
condition. This will help us to easily manage paging and search functionality.

Creating a Template

This template is more complex than the one created for the single view. It contains
subparts along with plain markers.

There will be two subparts: the list item and the pager. The list item subpart is
duplicated as many times as there are items. The pager subpart allows us to remove
the pager when necessary.

We follow the same idea with the stdWrap processing for fields as for a single view.
Here is what we have in the template:

<div class="tx_feuserstat_list">
<table class="tx_feuserstat_list_users">
<tr><th>
###TEXT_NUMBER###
</th><th>
##H#TEXT_USERNAME#4##
</th><th>
#H#H#TEXT_NAME###
</th><th>
H##H#TEXT_CRDATE###
</th><th>
HH#HTEXT_TSTAMP##4#
</th><th>
HH#H#TEXT_LASTLOGIN###
</th></tr>
<l-- ###LIST_ITEM### begin -->
<tr><td>
###NUMBER###
</td><td>
###FIELD_USERNAME###
</td><td>
###FIELD_NAME###
</td><td>
###FIELD_CRDATE#4##
</td><td>
###FIELD_TSTAMP###
</td><td>

[140]

Chapter 6

###FIELD_LASTLOGIN##4#
</td></tr>
<!-- ###LIST_ITEM### end -->
</table>
<I-- ###PAGER### begin -->
<table class="tx_feuserstat_list_pager">
<tr><td>
###LINK_PREV###
</td><td>
###CURRENT_PAGE###
</td><td>
###LINK_NEXTH###
</td></tr>
</table>
<!-- ###PAGER### end -->
</div>
<l-- ###LIST### end -->

The template is quite simple, and does not need to be explained in detail. This
happened because our ideas were clear from the beginning, and the extension
developed in a logical way.

Again, in real life, a developer should use CSS-based design, and should avoid tables.
But this book is not about CSS. So we create the simplest working template possible.

Another thing that you can do well with your plugins is a page browser. Our
implementation is the minimal possible one. It shows only two links (the previous
and the next page) and the current page number. Obviously, it is not enough for
a good looking and fully functional page browser. But the reader may want to
implement a better page browser themselves as an exercise.

Modifying the TypoScript Template

TypoScript gets several adjustments. For a list view, we need to add the stdWrap
field definitions. Additionally, we will add the page size option. It can be edited
through the Constant Editor.

To change constants, we modify static/frontend_user_list/constants.txt. We
add the following entries before the closing curly bracket:

cat=feuserstat: List view; type=int+; label=Page size:
Number of items displayed on a single page in the list view
pageSize =10

cat=feuserstat: List view; type=string; label=Sort by:

[141]

Programming Frontend Plugins

A valid field from fe_users table for sorting items. Incorrect field
name field will cause empty output

sortField = username

And we add the following in setup.txt:

listViews {
pageSize = {Splugin.tx_feuserstat_pil.pageSize}
sortField = {$plugin.tx_feuserstat_pi1l.sortField}
username_stdWrap {
typolink.parameter < plugin.tx_feuserstat_pil.singlePid
typolink.parameter.ifEmpty.dataWrap = {TSFE:id}
typolink.additionalParams.dataWrap = &tx_feuserstat_
pi1[showUid]={field:uid}
}
email_stdWrap {
if.isFalse.current =1
typolink.parameter.dataWrap = mailto:{field:email}
}
crdate_stdWrap {
strftime = %x
}
tstamp_stdWrap {
strftime = %x
}
lastlogin_stdWrap {
strftime = %x
}
}

The pageSize option is populated from the constant we created in constants.txt.
This option is not likely to change through flexform. So we leave it in TypoScript.
The same applies to the sortField option.

Next, there are five stdWrap definitions. Date formatting is changed for a preferable
date (without time) representation of the current locale to shorten the column on
the page. The email stdWrap is identical to the one from the single view. The user
name field is wrapped with a link to the single view of the current record. Often,
plugin authors tend to hardcode such links to a certain field, but this method lacks
flexibility. For example, a website owner may want to link a completely different
field. Here, stdWrap comes of use. It can transform the field representation easily,
and without any code changes.

[142]

Chapter 6

Programming List View

Since a list view contains more markers, subsections, and repeating elements, it is
more complex than a single view. While it is possible to code everything in a single

long function, we will split it into several functions. It not only enhances readability

but also provides better modularity. If necessary, code in a small function can be
adjusted or rewritten without any side effect on other parts of the code. Always try

to split your functions into smaller logical pieces!

The plan for the list view is as follows:

Prepare (fetch and calculate) page-related parameters.
Fetch a template.

Create header for the list.

Create list rows.

Create pager.

Assemble everything for the output.

This looks simple enough and easy to implement. It always helps to have a plan
when a function is more complex rather than just outputting "Hello world!".

The code naturally comes from the plan:

protected function listView() {
// Get list parameters
$pageSize = t3lib_div:testint(
$this->conf['listView.]['pageSize") ?
intval($this->conf['listView.]['pageSize']) :
10;

$page = max(1, intval($this->piVars['page'));

// Get template for LIST view

Stemplate = $this->cObj->getSubpart($this->templateCode,

"HHHLISTH#H);

// Get plain markers

Smarkers = Sthis->listViewGetHeaderMarkers();

// Get rows

SsubParts['###LIST_ITEM###'] =
Sthis->listViewGetRows(Stemplate, Spage, SpageSize);

// Create pager

SsubParts['###PAGER###'] =
Sthis->listViewGetPager(Stemplate, Spage, SpageSize);

// Compile output

$content = $this->cObj->substituteMarkerArrayCached(

Stemplate, Smarkers, SsubParts);
return $content;

}

[143]

Programming Frontend Plugins

First, we fetch page parameters. We need to find what the page size is (how many
data rows we are about to show) and what the current page number is. Both these
parameters affect how many items we select, the starting item, and also what
each page browser shows. As usual, we try to substitute reasonable defaults if the
parameters are not set. This never hurts, but often helps if a website owner made a
mistake and mistyped the parameter.

The current page is fetched from $this->piVars['page'l. In the page URL, this
parameter will look like tx_feuserstat_pil[pagel=7. However, this parameter is

not always supplied or can be supplied incorrectly (for example, tx_feuserstat_
pil[pagel=oops). Therefore, we need to validate it, and provide a default value if
necessary. intval helps to convert input to integer value and max creates a default
value if the parameter was not supplied.

Next in the code, we fetch the template subpart for the list view. Since it is used in
more than one function, it is good to fetch it here.

Next, we call three functions to follow our plan: fetch header markers, create list
rows, and create pager. Everything looks simple so far. Note the names we have for
the functions. The first part of the name is always listView, which tells where the
function belongs. This is one of the small details that make good code.

The last two lines combine the output of three functions into the list view.

Now, when we have a high-level list view function, let's "drill down" and create
other functions.

The listViewGetHeaderMarkers function will behave like the corresponding part of
the single view. However, here we do not have a database row yet, so we have to loop
over the $TCA fields to fetch strings. This creates a little problem because some fields
are not defined in $TCA. For them, we fill fetch titles manually. Here is the code:
protected function listViewGetHeaderMarkers() {
// Prepare
t3lib_div::loadTCA('fe_users');
Slang = t3lib_div:makelnstance('language’);
/* @var $lang language */
Slang->init(SGLOBALS['TSFE']->lang);
// Fill some header markers. Here we will use all
// registered TCA fields plus
// two date fields to add header markers
Smarkers = array(
HHHTEXT_NUMBER###' => Sthis->pi_getLL('text_number'),
"HHHTEXT_CRDATE###' =>
$this->pi_getLL('field_crdate’),
HHATEXT_TSTAMP###' =>

[144]

Chapter 6

$this->pi_getLL(‘field_tstamp'),
"HHHTEXT_LASTLOGIN###' =>
$this->pi_getLL('field_lastlogin'),
);
// Create markers
foreach (array_keys(
SGLOBALS['TCA]['fe_users']['columns']) as $field) {
$str = $this->pi_getLL('field_'. $field);
if (1$str) {
$str = Slang->sL(SGLOBALS['TCA'['fe_users']
['columns'][$field]['label);
}
Smarkers['###TEXT_'. strtoupper($field) . '###'] =
$Sstr;
}
return $markers;

}
Next, we create a function that generates data rows. It is called listViewGetRows.

Inside this function, we need to select a certain number of user records. Selection
should start from a certain item, which implies that we need to sort items to

have consistent results. In the code, we will use a sorting field configured in the
TypoScript setup. We must take care of the case when this field is mistyped. SQL
query will not return result, and we will return empty content. But we will provide a
log message to the Frontend admin panel about it.

When showing fields, we must avoid showing the same set of fields that we excluded
in the single view. Since the duplicating approach is bad, we extract this value into
the protected class attribute named protectedFields. Could this be foreseen?
Probably, yes. But optimization tips do not always come into one's mind while
thinking about an extension. So, if a tip suddenly pops up during development,
either record it somewhere (not to forget!) or implement it straight away.

In addition to fields, we will provide a record number. This is not the same as
the record's uid value, because some uid values may be missing (user deleted
or disabled).

Now it is clear how we are going to implement the function. Let's do it. Here is
the code:

protected function listViewGetRows($Stemplate, $page,
$pageSize) {
// Get parameters for database call
$sort = Sthis->conf['listView!]['sortField'] ?

[145]

Programming Frontend Plugins

Sthis->conf['listView.]['sortField"] :
'username ASC';
$number = ($page - 1)*$pageSize;
// Prepare all necessary objects and arrays
$cObj = t3lib_div::makelnstance('tslib_cObj'");
$subTemplate = $this->cObj->getSubpart($Stemplate,
"HH#LIST_ITEM##4");
/* @var $cODbj tslib_cObj */
// Get data from database
Sres = SGLOBALS['TYPO3_DB'l->exec_SELECTquery("*,
'fe_users',
$this->getListWhere() .
$this->cObj->enableFields('fe_users'),
", $sort, Snumber . . SpageSize);
// Collect data
Scontent=";
// Must check if we got result. We could get null due to
// the wrong sort field!
if (1Sres) {
SGLOBALS['TT']->setTSlogMessage(
'SQL query for user records in list view has'.
'failed in"'. Sthis->prefixid .
" plugin. No users will be shown!, 2);
}
else {
while (false == (Sar =
SGLOBALS['TYPO3_DB']->sql_fetch_assoc($res))) {
// Prepare for stdWrap
$cObj->start(Sar, 'fe_users");
// Loop through fields applying stdWrap
$subMarkers = array(
'###ENUMBER###' => ++Snumber,
)i
foreach (Sar as Sfield => Svalue) {
if (It3lib_div:inList(Sthis->protectedFields,
$field)) {
SsubMarkers['###FIELD '.
strtoupper(Sfield) . "###'] =
$cObj->stdWrap(htmlspecialchars($value),
Sthis->conf['listView.]
[$field .'_stdWrap.]);
}
}
// Add row to output

[146]

Chapter 6

Scontent .=
$this->cObj->substituteMarkerArray($subTemplate,
SsubMarkers);
}
// Free database result
SGLOBALS['TYPO3_DB']->sql_free_result(Sres);
}
return $content;

}

Again, it is important to point out comments inside the function. Comments help us
to understand the code. Make it a habit to write comments in your code. It takes a
few extra seconds, but you will appreciate that you did it if you have to look at the
code after a few months. Your ideas will be clearer to you if you record them

as comments.

The function above calls the getListWhere function. As mentioned earlier, we use

a dedicated function to create an SQL WHERE condition because we do not want to
clutter the code of the listvViewGetRows with complex SQL logic. Later, we will add
search statements to this function. For now, the function is extremely simple:

function getListWhere() {
return 'pid=". intval($this->conf['usersPid");

}
The last function is listViewGetPager, where we do the following:

o Check whether we need pager at all and remove it if not necessary.
e Checkif we need a link to the previous page and act accordingly.
e Create page numbers.

e Checkif we need a link to the next page and act accordingly.

This sounds like a good implementation plan. Let's proceed:

protected function listViewGetPager(Stemplate, Spage,
$pageSize) {
// Check if we need page at all
list(Srow) = SGLOBALS['TYPO3_DB']->exec_SELECTgetRows(
'COUNT(*) AS t,
'fe_users),
Sthis->getListWhere() .
$this->cObj->enableFields('fe_users'));
if (Srow['t'] < SpageSize) {
// Remove pager completely
return ';

[147]

Programming Frontend Plugins

}

// Prepare

Smarkers = array(
"###CURRENT_PAGE###' => $page,

);

if (Spage == 1) {
// No previous page
Smarkers['###LINK_PREV###']=";

}

else {

Smarkers['###LINK_PREV###'] =
Sthis->pi_linkTP_keepPlvars(
Sthis->pi_getLL('link_prev"),
array('page' => $page - 1), true);

}

if (Srow['t'] <= $page*$pageSize) {
// No next link
Smarkers['###LINK_NEXT###'7=";

}

else {

Smarkers['###LINK_NEXT###'] =
Sthis->pi_linkTP_keepPlvars(
Sthis->pi_getLL('link_next"),
array('page' => $page + 1), true);

}
$subTemplate = $this->cObj->getSubpart($Stemplate,
"###PAGER###');
return $this->cObj->substituteMarkerArray(
SsubTemplate, Smarkers);
}
Here, we used t3lib_db::exec_SELECTgetRows again because we needed a quick,
small, and simple result. This function returns an association array, so we made ta
shortcut to COUNT(*). Note that we use getListWhere again because the pager will
be used for displaying search results as well.

Next, we create page links. Here, we use a very convenient function named
pi_linkTP_keepPlvars. This function will generate a link to the existing URL
parameters of all the plugins from $this->piVars. It uses the first parameter as

the text to link to. The second parameter tells the function which plugin parameters
should be changed. We place the page parameter here. The last function parameter
is a cache indicator. We obviously want cache, so we set it to true (by default, it is
historically set to false in function definition). There are other functions like this (we
have seen them in the previous chapters). At this moment, the reader is encouraged
to look at what other function or functions we could use at this place in the code.

[148]

Chapter 6

Since we are doing a sample implementation for learning purposes, we do not create
a fancy looking universal page browser. In a better page browser, the next and
previous links could be graphical or text (maybe through stdWrap) and the number
of pages to show before and after the current page would be configurable.

But now we are done with the list view! Our plugin is more than half finished!

What is Missing in the List View

There are certain things that are missing in the list view. They can be implemented in
the later plugin versions. Here are a few examples:

e Show a message when there are no users to show. This is important for a
search view or if the page number is too high. Currently, we just show an
empty list.

e Better pager. This was mentioned already.

e Thereis no styling.

The reader should feel capable of implementing these features now. It is good
practice to implement them because there are small technical challenges in all
these features.

Creating Search

Search functionality will contain a box at the top of the list view. In order to
demonstrate the elD TYPO3 feature and its usage for plugins, we will also add an
autocomplete feature to this box.

Including Styles and Scripts

The search box will use JavaScript and CSS styles for autocomplete. While adjusting
our plugin, we added JavaScript and CSS files to the res directory of the extension.
Now it is time to make them work.

Historically, plugins include CSS code through the _CSS_DEFAULT_STYLE TypoScript
property in the plugin's TypoScript. The advantage of that is that these styles can
be changed from the TypoScript setup or extracted to external files by TYPO3
automatically. However, there are certain disadvantages of this approach. And the
disadvantages come as follow ups to the advantages.

[149]

Programming Frontend Plugins

The disadvantages are:

o TypoScript becomes less readable.
e TypoScript becomes much longer (higher parsing times, worse performance).

o |f CSS styles are extracted to an external file, they will be loaded by TYPO3
regardless of the plugin's presence on the page (causes slower page
rendering). Imagine if you have 10-20 plugins with long CSS or JavaScript
blocks. Do you need them all on every page? Probably not.

e (SSand JavaScript are logically separated from the template, which makes
them harder to modify and test.

There is a better technique, which (to the author's best knowledge) was first used in
the comments extension.

The idea is to use a subpart inside the template's <head> tag to add references to the
CSS and JavaScript files directly to the template. Then, the plugin can extract the
subpart, substitute a path marker with a known path to the files, and add the results
to the TSFE for display on the page. A developer can possibly put any additional
code onto the page (javascripts, more CSS files, and so on). We will see how it works
when we implement the search functionality.

This works well with USER plugins. It will also work for USER_INT plugins, but

some caution should be taken. The USER_INT plugins are executed after the page
generation is finished, or when the page is fetched from the cache. TSFE changes
will appear on the screen only if they were added when the page was generated for
caching. If the page is taken from cache, altering TSFE will not have any effect. What
is the consequence of this fact? The USER_INT plugins must provide the same set of
CSS/JavaScript for any of its functions on the same page. The page will be cached
at the first user visit. Even if the next visit causes a different USER_INT rendering,

any changes to the CSS/JavaScript will not appear on the screen. However, the
CSS/JavaScript from the first visit will! Again, this happens only for the USER_INT
plugins, and this should be remembered when working with these type of plugins.

How does inclusion look in practice? We shall start with template modification.

<head>

<title>pi1 plugin template file</title>

<!-- ###HEADER_PARTS### begin -->

<script type="text/javascript"
src="###SITE_REL_PATH###res/pil.js"></script>

<link rel="stylesheet" type="text/css"
href="###SITE_REL_PATH###res/pil.css" />

<!-- ###HEADER_PARTS### end -->

</head>

[150]

Chapter 6

The added part is given in bold. This does not allow testing of styles inline. The same

<script> and <link> tags can be added outside the section without ###SITE_REL_
PATH### to allow such testing.

How do we use it in the code? Here is a new function that accomplishes it:

function addHeaderParts() {
Skey ='EXT:'. $this->extKey . md5(Sthis->templateCode);
if (lisset(SGLOBALS['TSFE']->additionalHeaderData[$key])) {
SheaderParts = $this->cObj->getSubpart(
Sthis->templateCode, '###HEADER_PARTS###');
if (SheaderParts) {
$headerParts = $this->cObj->substituteMarker(
SheaderParts, '###SITE_REL_PATH###'
t3lib_extMgm::siteRelPath($this->extKey));
$SGLOBALS['TSFE']->additionalHeaderData[$Skey] =
$headerParts;
}
}
}

This function should be called from main after init is called. Alternatively, it could
be placed directly inside init. Now, the plugin's related CSS and JavaScript will
appear only on the pages where the plugin is located.

Adding a Search Box to the Template

We need the following additional code inside the ###LIST### template subpart:

<|-- ###LISTH### begin -->
<div class="tx_feuserstat_list">
<form name="tx_feuserstat_list_search"
id="tx_feuserstat_list_search"
action="###ACTION###" method="get">
<label for="tx_feuserstat_pil[search]">
HHHTEXT_SEARCH###
</label>
<input type="text" name="tx_feuserstat_pi1[search]"
autocomplete="off"
id="tx_feuserstat_pi1_search"
value="###SEARCH_TERMS###" />
<input type="submit" name="tx_feuserstat_pi1[submit]"
value="###TEXT_SUBMITBTN###" />
</form>
<table class="tx_feuserstat_list_users">
<tr><th>

[151]

Programming Frontend Plugins

There are four new markers. Firstly, the ###ACTION### marker will contain the page
address where the search has to be submitted. We will use the same page for search
as that used for the list view (current page). In real life, the search page ID should be
configurable through TypoScript and flexform, because website owners may want to
have search results on differently styled or organized pages.

Next, there is a label marker (###TEXT_SEARCH###), a search terms marker
(###SEARCH_TERMS###), and a marker for button text (###TEST_SUBMITBTN###).

Adding a Search Condition

The search condition is added to the getListWhere function. We will search the
username and name fields. Search will start from the beginning of the name. The
function transforms to:

function getListWhere() {

Swhere ="pid=". intval($this->conf['usersPid");

if (($search = trim(Sthis->piVars['search'l))) {
Ssearch = SGLOBALS['TYPO3_DB']->fullQuoteStr(

$search . '%)’ 'fe_users');
Swhere .="' AND (username LIKE ' . $search .
"ORname LIKE'. $search.");
}
return Swhere;

}

What About Cache?

Now, we hit a significant problem. Our plugin is USER (cached). It requires cHash
because it accepts parameters. But we cannot calculate cHash for search because a user
enters a random search string. So, we have a problem with caching. What do we do?

The simplest solution is to add a hidden field to the HTML template. The field is
named no_cache and its value is 1. It will prevent page cache for the next request.
This is typically how the problem of user submission is solved. But this solution is
bad (as shown in the previous chapter of this book) because it disables caching for
the whole page and seriously decreases performance.

Another temptation is to convert the plugin to USER_INT. This is certainly a solution.
However, converting the plugin from cached to noncached because of the search
function, does not look right.

[152]

Chapter 6

How do we solve it? We can solve this problem if we remember why we have the
problem. It happens because of the missing cHash when we search. So, if we search
without a cHash, we need non-cached output from the plugin. If we search with a
cHash, we need cached output.

How do we implement it? It is easy using TypoScript conditions and a small piece of
PHP code in the plugin.

First, we add the following to TypoScript at the end of setup.txt:

[globalString = GP:tx_feuserstat_pi1|search = /.+/] &&
[globalString = GP:cHash = /A$/]
plugin.tx_feuserstat_pi1 = USER_INT

[global]
The first two lines in the code example above must be actually on
e asingle line.

This makes our plugin USER_INT when the search string is not empty and there is no
cHash. Easy!

Next, we have to create a constructor inside tx_feuserstat_pi1 to reset
$Sthis->pi_checkCHash if we are running as USER_INT:

function __construct() {
if (empty(SGLOBALS['TSFE'->cHash)) {
// Might be USER_INT case
$piVars = t3lib_div::GParrayMerged(S$this->prefixid);
if ($piVars['search']) {
$this->pi_checkCHash = false;
}
}
parent:tslib_pibase();
}

This fixes cache problems for our extension.

The technique demonstrated in this section is not common. But it shows that many
problems can be solved in a better way than in the obvious way. When a developer
hits the problem, he /she should not rush with the first obvious solution. Maybe
there is a better solution available.

Creating JavaScript for Autocomplete

For JavaScript autocomplete, we will use Prototype and Scriptaculous frameworks
supplied with TYPO3. This is the easiest way, and does not need any standalone
libraries other than those provided by TYPO3 already.

[153]

Programming Frontend Plugins

We will not go deep into the details on this JavaScript. If the reader wants to know
more about it, detailed examples can be found on Scriptaculous website. Both the
JavaScript and styles are very close to those in the official examples.

The JavaScript is as follows:

function tx_feuserstat_pi1_init(ctrlld, acld, pid) {
document.observe('dom:loaded; function() {
new Ajax.Autocompleter(ctrlld, acld, 'index.php), {
parameters: 'elD=feuserstat&pid="+ pid,
paramName: 'search’
D
1
}

A template also needs changes. First, Prototype and Scriptaculous should be added:

<!-- ###HEADER_PARTS### begin -->

<script type="text/javascript" src="typo3/contrib/prototype/
prototype.js"></script>

<script type="text/javascript" src="typo3/contrib/
scriptaculous/scriptaculous.js"></script>

<script type="text/javascript" src="typo3/contrib/
scriptaculous/controls.js"></script>

<script type="text/javascript" src="###SITE_REL_PATH###res/pil.js"></
script>

<link rel="stylesheet" type="text/css" href="###SITE_REL_PATH#ttres/
pil.css" />

<!-- ###HEADER_PARTS### end -->

Next, we modify the search form:

<form name="tx_feuserstat_list_search"
id="tx_feuserstat_list_search" action="###ACTION###"
method="get">
<label for="tx_feuserstat_pil[search]">
HHH#TEXT_SEARCH###
</label>
<input type="text" name="tx_feuserstat_pi1[search]"
id="tx_feuserstat_pi1_search" autocomplete="off"
value="###SEARCH_TERMS###" />
<div id="tx_feuserstat_pil1_autoc"></div>
<input type="submit" name="tx_feuserstat_pi1[submit]
value="###TEXT_SUBMITBTN###" />
<script type="text/javascript">
tx_feuserstat_pil_init("tx_feuserstat_pil_search,
'tx_feuserstat_pil_autoc, ###PID###)
</script>
</form>

"

[154]

Chapter 6

We need the ###PID### marker because we must pass it to our server-side
AJAX part for proper user filtering. We create this marker in the
listViewGetHeaderMarkers function:

Smarkers = array(
HHHTEXT_NUMBER###' => Sthis->pi_getLL('text_number'),
"HHHTEXT_CRDATE##4#' =>
$this->pi_getLL('field_crdate’),
"HHHTEXT_TSTAMP###' =>
Sthis->pi_getLL('field_tstamp"),
"HHHTEXT_LASTLOGIN###' =>
Sthis->pi_getLL('field_lastlogin'),
"HHHTEXT_SEARCH##4#' =>
Sthis->pi_getLL('text_search’),
"HHHTEXT_SUBMITBTN##4#' =>
Sthis->pi_getLL('text_submitbtn'),
"HHHACTION###' =>
$this->pi_getPageLink($GLOBALS['TSFE'->id),
"###SEARCH_TERMS###' =>
htmlspecialchars(Sthis->piVars['search']),
"#HH#PID###' => intval($this->conf['usersPid'),
);

CSS changes are directly copied from the Scriptaculous tutorial, so we do not show
them here.

This completes the JavaScript and CSS changes for adding autocomplete. Now, we
should create a server-side script that provides autocomplete data.

Creating PHP Code for Autocomplete

We have a dummy file and PHP class for the AJAX call. The file is named
tx_feuserstat_elD and located in class.tx_feuserstat_eid.php.

elD scripts are scripts inside TYPO3 framework that have access to most basic
TYPOS3 services (such as database or t3lib_extMgm). Most of the TYPO3 framework
is not initialized and classes like tslib_cObj are not available.

elD scripts are much faster than regular TYPO3 pages. However, they are much
trickier to program. As we will see, even a simple database query requires additional
code to emulate tslib_cObj:enableFields functionality. This is one of the

reasons why elD scripts are not very common.

[155]

Programming Frontend Plugins

Our elD class will have only the function named main. Its purpose is to

fetch a maximum of 100 records of matching users and return them in the
Scriptaculous-compatible format (which, in this case, is an unordered HTML list).
The function must be called by us in the same file. TYPO3 simply includes elD script
file and assumes that output will be provided.

We create the following code after the XCLASS declaration in the file:

$SOBE = t3lib_divi:makelnstance('tx_feuserstat_elD');
$SOBE->main();

It is important to place this code after the XCLASS declaration to ensure that
XCLASSing still works.

Next, we create the main function:

function main() {
// Connect database
tslib_eidtools::connectDB();
// Get query parameters
Spid = intval(t3lib_div::_GP('pid");
$search = trim(t3lib_div::_GP('search);
// Get content
Scontent=";
if ($pid && strlen($search) >= 3) {
// Prepare & execute search, 100 items max
Sqgsearch = SGLOBALS['TYPO3_DB']->fullQuoteStr(
$search .'%) 'fe_users');
Sres = SGLOBALS['TYPO3_DB'l->exec_SELECTquery(
'username,name;,
'fe_users', 'pid=". $pid .
" AND (username LIKE". $gsearch .
"OR name LIKE". $gsearch.')'.
t3lib_BEfunc:deleteClause('fe_users') .
t3lib_BEfunc::BEenableFields('fe_users'),
"', 100);
Sresult = array();
while (false == (Sar =
SGLOBALS['TYPO3_DB'->sql_fetch_assoc($res))) {
// Record only matching values
foreach ($Sar as $value) {
if (stristr($value, $search) == false) {
Sresult[] = Svalue;
}
}

}
SGLOBALS['TYPO3_DB'->sql_free_result(Sres);

[156]

Chapter 6

// Sort results and create content
if (count(Sresult)) {
sort(Sresult);
Scontent = ''.
implode(', Sresult) . '";
}
}
// Output result
echo '"'. Scontent . '";

}

First, we connect to the database. Remember that TYPO3 does not do that
automatically for elD scripts. Next, we get query parameters and check if we have at
least three symbols to search for. It does not make sense to search for fewer symbols.

Next, we perform the search. Here comes the interesting part. Since we do not have
tslib_cObj::enableFields here, we have to "invent" some other way to achieve

the same effect. Fortunately, we can use Backend functions. This is not really a clean
way, but currently there is no other way at all for elD. Note that we have to call two
separate BE functions to do the same job that tslib_cObj::enableFields does.

To use these functions, the top of the file has to contain the following lines:

* Hint: use extdeveval to insert/update function index above.

¥/

require_once(PATH_t3lib . 'class.t3lib_befunc.php’);
require_once(PATH_t3lib . 'stddb/tables.php’);
require_once(t3lib_extMgm::extPath(‘'cms) 'ext_tables.php"));
/**

* Handles AJAX request from tx_feuserstat_pi1 plugin

¥/

class tx_feuserstat_elD {

Additionally, we manually include the $TCA definition scripts (TYPO3 does not do it
for elD either).

Now, search can be tried with autocomplete.

Adding Hooks

Itis generally a good idea to give fellow programmers a chance to extend your
extension even further. Often such a task can be done by providing hooks.

Hooks are functions that are registered with the extension and called by extensions
at the appropriate moments of code execution with the appropriate purpose.

[157]

Programming Frontend Plugins

Hooks are registered in the ext_localconf.php file:

STYPO3_CONF_VARS['EXTCONF']['feuserstat']
['extraltemMarkers'][$_EXTKEY] =
'EXT:'. S_EXTKEY .
'/class.tx_myext_hooks.php:tx_myext_hooks->hookFunc’;

The plugin will loop over each entry and call the corresponding function using
t3lib_div:callUserFunc.

We will have two hooks in our plugin for adding or changing markers:

e Hook for the single and list view.

e Hook for the plain markers in the list view.

Each hook will pass an array of parameters to the hook function. This array will
consist of the following elements:

Name Type Description

markers array Array with markers. Hook can either add
or change markers and must return the
modified array.

pObj tx_feuserstat_pi1 Reference to the calling class.

The advantage of passing parameters this way is that new parameters can be easily
added in future without creating compatibility problems with existing hooks.

The hook function will access and modify markers in the following way:

function hookFunc(array $params, tx_feuserstat_pi1 &5pObj) {
Smarkers = &Sparams['markers'];
Smarkers[###TX_MYEXT_UNIXTIME###'] = time();
return $Smarkers;

}

Note that the hook function here uses a marker name that includes the hook's
extension key. This is a good way to prevent marker name conflicts.

First, we add the hook to singleView:

Smarkers['###FIELD_'. $fieldUpper . '###'] =
$cObj->stdWrap(htmlspecialchars($value),
$this->conf['singleView!]

[$field . "_stdWrap.]);
}
}
// Call hooks

[158]

Chapter 6

if (isset(SGLOBALS['TYPO3_CONF_VARS'I['EXTCONF]
[Sthis->extKey]['extraltemMarkers')) {
foreach (SGLOBALS['TYPO3_CONF_VARS']
['EXTCONF][Sthis->extKey]
['extraltemMarkers'] as SuserFunc) {
$params = array(
'markers' => Smarkers,
'pObj' => &Sthis,
)i
Smarkers = t3lib_div:callUserFunction(
SuserFunc, $params, Sthis);
}
}
Stemplate = $this->cObj->getSubpart(
$this->templateCode, '###SINGLE_VIEW###');
$content = $this->cObj->substituteMarkerArray(
Stemplate, Smarkers);

The same piece of code is added to listViewGetRows:

foreach (Sar as $field => $value) {
if (It3lib_div:inList(Sthis->protectedFields,
$field)) {
SsubMarkers['###FIELD '.
strtoupper(Sfield) . "###'1 =
$cObj->stdWrap(htmlspecialchars($value),
$this->conf['listView!][$field .
"_stdWrap.]);
}
}
// Call hooks
if (isset(SGLOBALS['TYPO3_CONF_VARS'I['EXTCONF']
[Sthis->extKey]['extraltemMarkers'])) {
foreach (SGLOBALS['TYPO3_CONF_VARS']
['EXTCONF[Sthis->extKey]
['extraltemMarkers'] as SuserFunc) {
$params = array(
'markers' => $Smarkers,
'pObj' => &Sthis,
)i
Smarkers = t3lib_div:callUserFunction(
SuserFunc, $params, Sthis);
}
}
// Add a row to output
$content .= $this->cObj->substituteMarkerArray(
$subTemplate, SsubMarkers);

[159]

Programming Frontend Plugins

The Hook for the plain markers is added to listViewGetHeaderMarkers:

// Create markers
foreach (array_keys(SGLOBALS['TCA'['fe_users']
['columns']) as $field) {
$str = Sthis->pi_getLL('field_'. $field);
if (1Sstr) {
$str = Slang->sL(SGLOBALS['TCA']['fe_users']
['columns'l[$field]['label']);
}
Smarkers[###TEXT_'. strtoupper($field) . "###'] =
$Sstr;
}
// Call hooks
if (isset(SGLOBALS['TYPO3_CONF_VARS'I['EXTCONF]
[Sthis->extKey]['extraGlobalMarkers')) {
foreach (SGLOBALS['TYPO3_CONF_VARS']
['EXTCONF'[$this->extKey]
['extraGlobalMarkers'] as SuserFunc) {
$Sparams = array(
'markers' => Smarkers,
'pObj' => &Sthis,
)i
Smarkers = t3lib_div::callUserFunction(
SuserFunc, $params, Sthis);
}
}

return $markers;

This completes the hook creation. Now, any extension can add or change our
markers, which enhances the plugin's flexibility significantly.

What Can Be Optimized?

After creating the plugin, it is good to look into the code and see what could be
optimized. Our code is simple, and there is not much room for optimization.

One thing that we could do is to create a constructor for the class, make $lang a class
attribute, and move its creation there ($lang is always used in both list and single
views). Would this be an optimization? Yes and no. It is true that it is created in both
functions. However, in the list view, it is used only for header labels. Having it as

a class attribute is an additional memory overhead. So currently, we keep it local.
However, we could still do better by making a separate function for creating $lang.
This is left for the reader as another exercise.

[160]

Chapter 6

Another optimization is to enhance error reporting by using the t3lib_div::
devLog function in addition to $GLOBALS['TT']->setTSlogMessage. It never hurts

to provide better logging. For that, we should create another dedicated logging
function and call it instead of calling $GLOBALS['TT']->setTSlogMessage. Inside
such a function, we should call $GLOBALS['TT']->setTSlogMessage and
t3lib_div::devLog. We leave this exercise to the reader.

Summary

In this chapter, we learned how to create a Frontend plugin. We learned how to
create configuration, different views, and how to handle cache issues. We also
programmed an elD script, which is one of the lesser known aspects of TYPO3.
Now the reader can create his own Frontend plugins.

[161]

Programming Backend
Modules

In this chapter, we will learn how to program Backend modules. In addition, we will
create several classes that gather information displayed by a Backend module. These
classes will be hooks to TYPO3 TSFE objects (page object). This is the final chapter on
programming in the book.

Planning a Backend Module

As usual, we will plan before implementation. The advantages of planning have
already been discussed in the previous chapters, and we will take this topic up again.

Functionality of a Backend Module

Kickstarter generated a sample Backend module for us. The module is available
under the Web main module in the left menu. We will show the following
information in the module:

e Fixed number of latest logins. For each login, we will show the following:

° Date and time of the login

° How much time a user spends on the site

° User real name (name column in the fe_users table)

° User login name (username column in the fe_users table)

° The number of pages visited

Programming Backend Modules

e Monthly view shows all logins for up to the last 12 months. Each month shows:
° User real name
° User login name

o

Number of logins in the current month

e Active users report shows active users for the given period of time. We show:
° Userlogin name
° User name
° User email (clickable, linked to "mailto" for this user)
° Lastlogin time

e |nactive users (same view as for Active users)

Our module does the same work that a very old TYPO3 extension named
loginusertrack does. That extension still works, but it was written a long time

ago and uses methods that are now discouraged as it creates problems for TYPO3.
We will make a completely fresh implementation of this module using only the
recommended methods and approaches.

Frontend Classes

To show information, we need to gather it first. We need a place that is called every
time a user visits a page. Since TYPO3 normally fetches a cached version of the page,
we must find a hook that is called for both cached and noncached versions.

The hook works globally (for any web page in the page tree). Sometimes, it is not
necessary. Moreover, the INSERT and UPDATE queries may lower the performance

of the website a little. So, we should provide a way to enable and disable our
functionality. We will do it by using a new config.tx_feuserstat_enable

TypoScript option. By default, it is disabled, and the administrator needs to enable it
explicitly by setting the value of the option to 1.

The place to search for a hook calling point is typo3/sysext/cms. We start

looking from index_ts.php. This is the file, which calls various TSFE functions

to create output. After examining the various called methods, it seems that the
checkDataSubmission method of TSFE is the best one — it has a hook and it is

always called. Also, this function can access the TypoScript setup, which we need
due to the use of the config.tx_feuserstat_enable TypoScript option. Not every
function can access TypoScript but this function can. Without this option, we could
use a hook in the initFEUser function. While the checkDataSubmission hook was
intended for a different purpose, there is nothing wrong in using it for our purposes.
So, we will use this place to record Frontend user statistics.

[164]

Chapter 7

Database Structure
To record statistics, we need two database tables. The first page will record

information about user sessions. The second table will record the number of hits for
each page visited during the session.

In the first table, we need the following fields:

User uid value (link to fe_users table)
Session start time

Time when the last page was hit
Number of hits for the session

Enter page

Exit page

Entries in this table will correspond to our own "user sessions". The second table will
contain a link to this table and other fields:

"Session" uid (the link to the first table)

User uid value. We could fetch it from the first table by joining two tables,
but this would add extra overhead to SQL queries. So, it is much better to
store the user uid here too.

Visited page id
Number of hits for this page

These two tables were created for us by Kickstarter when we generated the
extension. So, there is very little we need to do.

Adjusting the Database

Let's review the generated code and decide if we need to change anything.

The table information is spread among three files. We start from the SQL definitions
and continue to the TYPO3 definitions.

[165]

Programming Backend Modules

ext_tables.sql

The first file is ext_tables.sql. It contains SQL definitions for our new tables.

Kickstarter generated SQL statements that are generally suitable for most cases.
However, generated statements are not optimal. Kickstarter used text and tinytext
fields where we could use the int fields. This will minimize the database size and let
us receive the database query results faster. So, we change field definitions according
to the following:

Table name Field name Old type New type
tx_feuserstat_sessions fe_user text int(11) DEFAULT '0'
NOT NULL
first_page text int(11) DEFAULT '0'
NOT NULL
last_page text int(11) DEFAULT '0'
NOT NULL
tx_feuserstat_ fe_user text int(11) DEFAULT '0'
pagestats NOT NULL
sesstat_uid text int(11) DEFAULT '0'
NOT NULL
page_uid text int(11) DEFAULT '0'
NOT NULL

Additionally, we remove the following three fields in each table:

e crdate
e cruser_id
e tstamp

We do not need these fields.

ext_tables.php

This file contains the TCA declaration for our tables. TCA stands for Table
Configuration Array. TYPO3 uses TCA to determine various characteristics of the
table. For example, TYPO3 can find answers to the following questions from the TCA:

e What s the table name (shown in Web | List module)?

e How many items are to be shown in the Web | List module?
e Which field is to be used as a "label" field?

e Should the table be shown at all?

e Can the table be modified?

[166]

Chapter 7

e (Canthe table be placed on any page or only on some page types?

o What are the table fields?

e How do we show each field (for example, as plain input or selector box)?

e How should we group the fields?

e Should any other table be updated automatically when this table is updated?

This list is incomplete. It shows only most common uses of TCA. TYPO3 can extract
much more information from the TCA when necessary.

The complete description of the TCA can be found in the TYPO3 Core APl document
available at the Documentation section of the http://typo3.org/ website.

TCA declaration is different from TCA definition. Declaration includes only the ctrl
section of TCA. Definition includes the full TCA.

TCA definitions can be very long and take a lot of memory. There can be hundreds of
extensions in the system, each defining additional tables. Having TCA definitions in
the memory for every extension is not a very effective approach. Therefore, TYPO3
requires only a small part of the TCA to be included for each table. The rest of the
TCA can be loaded, if necessary, on demand.

TCA is divided into several sections. Each section is just an array. For example, a
typical TCA looks like this:

STCA['tx_myext_table'] = array(

‘ctrl' => array(

)I

‘columns’ => array(

)I

'types' => array(

)i

Here, ctrl, columns, and types are sections. To declare the TCA, an extension
author needs to create a ctrl section in ext_tables.php and point to where the rest
of the TCA is located (usually in tca.php).

[167]

Programming Backend Modules

Let's

see how tx_feuserstat_sessions is declared. The ext_tables.php file

contains the following code:

STCA['tx_feuserstat_sessions'] = array (

‘ctrl' => array (
'title' =>"LLL:EXT:feuserstat/locallang_db.xml:

tx_feuserstat_sessions!,

)i
Here,

'label’ =>"uid,

'tstamp' => 'tstamp),

'‘crdate’ =>'crdate!,

'cruser_id"' => 'cruser_id'

'default_sortby' => "ORDER BY crdate”,

'dynamicConfigFile' => t3lib_extMgm::extPath(S_EXTKEY).
"tca.php)

"iconfile' => t3lib_extMgm::extRelPath($_EXTKEY) .
'icon_tx_feuserstat_sessions.gif’,

)I

we can see several options:

Title declaration, which is normally a reference to locallang_db.xml.

Label declaration, set to uid field because we do not have any other useful
field to represent the record.

Four lines that refer to deleted fields (crdate, etc).

The dynamicConfigFile option to tell TYPO3 where the rest of the
TCA is located.

Table icon path. This icon will be displayed next to the table title when
creating new records in the Backend for the table.

We need to remove four lines that refer to the deleted fields for both the tables. We
also add two more options to each table:

'readOnly' => true,
'hideTable' => true

These two options will hide the table from the Backend and prevent its modification

if the

table is forcefully shown through TSConfig. We do not want anyone to

manipulate statistics.

[168]

Chapter 7

tca.php

This file defines the rest of the TCA. When the file is included, the TCA for this
extension is overridden completely. Therefore, TCA needs to include the previously
defined ctrl section. Next, other sections are defined. The only other mandatory
sections are columns and types. columns define which columns are present in the
database and how to present them in Backend forms. types defines the order of the
columns, and how to group them. Additional fields can be specified in the

palettes section.

Columns

Al TCA column types are described in the TYPO3 Core APl document. Let's see
some examples. The TYPO3 Core APl document should be open. Keep looking up
properties there, while we discuss various TCA properties.

Here is how the fe_users column is defined:

'fe_user' => array(
'exclude'=>1,
'label' => 'LLL:EXT:feuserstat/locallang_db.xml:tx_
feuserstat_sessions.fe_user,
‘config' => array(
'type' => 'group)
'internal_type' => 'db,
'allowed' => 'fe_users,
'size'=>1,
'minitems' => 0,
'maxitems' => 1,
)
)

What do we see here? It is an exclude field. Exclude fields can be protected
("excluded") from being edited by users. Since our table is hidden in the Backend and
made read-only, we can remove this declaration.

Next comes label. It will be displayed above the field in the Backend form and in
the exclude field list in the user record.

After label, we see the config array. The first property in the config array is type.

It defines the field type. The TYPO3 Core APl document describes which properties

a developer can use for each type. If a property is listed for one type and not listed
for another, it will not work in another type. This is an important thing to remember.
Mailing lists show that developers often try to reuse options from other types. It does
not work. Only use listed properties!

[169]

Programming Backend Modules

In the case of the fe_user field of our table, the type is defined as group. Checking

the TYPO3 Core APl document reveals that the group fields are either database
relations, file relations, or folder relations. And some options are again different if
the field is for the database or for the file. This different field set situation is unique to
the group field type only. All other types have "stable" sets of fields.

The fe_user field has internal_type set to db. So, when we define such fields, we
look for "db-only" or common options in the TYPO3 core APl document. We ignore
options for file internal_type.

The only db-specific option here is allowed. Looking at the TYPO3 Core API
document reveals that it defines a table list. Records from these tables can be
referenced in this field. In our case, it is only the fe_users table. Since we have only
one table and one relation, we can do certain optimizations here. As you should
remember, the group fields can store database relations in two formats: with table
name and without. The first format is used when allowed lists more than one table.
The SQL definition requires a string field for relations where multiple tables can be
referenced. For single table and single value relations, it is enough and more optimal
to have integer fields in

the database.

We have already changed ext_tables.sgl to use an integer field for fe_user. Now

we need to tell TYPO3 to avoid the long relation syntax. In other words, TYPO3
should not prepend the table name to record uid. We do it by adding a new option
to the column definition:

‘config' => array(
'type' => 'group;
'internal_type' =>'db,
‘allowed' => 'fe_users),
'prepend_tname' => false,
'size'=>1,
'minitems' => 0,
'maxitems' => 1,

)

The remaining three options define how the Backend form will show the field. It is
not important in our case because we hide the tables but we should still have correct
settings. It is just a good style to code everything properly.

The size of the control is set to 1 because we have a single item always. Next, TCA
says that minitems is 0 and maxitems is 1.While maxitems is correct, minitems is

not. We change minitems to become 1. We can immediately do the same for the
first_page and last_page fields.

[170]

Chapter 7

The next two fields are session_start and session_end. They define when a

session has started and finished respectively. We could easily keep the crdate and
tstamp fields for this purpose, but it will not be obvious in the code why they are
used and when.

Both these fields have the eval property. This property is one of those which
developers try to use with the other types. At the moment of writing this book, the
eval property worked only with the input and text types. eval sets our two fields

to the required date/time. The full list of evaluations is available in the TYPO3 Core
APl document. Developers can also provide their own evaluations by writing PHP
functions and registering them with TYPO3. See the TYPO3 Core APl document for
more information.

Our two date fields miss a default value. This causes a problem in TYPOS3 if fields

are not defined as required, do not have default value and have any date or time
evaluations. TYPO3 refuses to save empty date/time fields when all these conditions
are met. So, always either specify a default value (zero will do) or make this field a
required field.

Next comes the hits field. It has a long declaration, and we will need to make
several adjustments here.

First, there are size and max properties. The first property defines the size of the
input field. The second defines how many characters can be entered. Usually, size
should be set to max plus two characters because of browser bugs. We therefore
change size to 6.

Next is the checkbox property. It can be either empty, or should have a value.

If it is empty, unchecking the checkbox in the form will remove the value in the
input control. Checking the checkbox will not restore the value. But if the value of
checkbox is not empty, checking the checkbox causes this value to appear in the
control. We change the value to 1.

Next goes the range specification. Kickstarter generates 10 and 1000 as a range to
provide an example. We need to remove upper range definition completely and
set lower to 1.

The last property for this field is default. According to the TYPO3 Core API
document, it gives a default value for the field. We set it to 1 instead of 0.

Similar updates should be made in the second table for every field. Try performing
them yourself, and compare your changes to the description above or to the
downloaded code for this chapter. If something is different, think why and correct
mistakes (if any).

[171]

Programming Backend Modules

Types

types is a powerful property, but tricky to configure. Many developers leave it as it
is. Often, it is possible to create a much better representation of data in the Backend
forms by adjusting types.

The types section consists of an array of arrays. The number of arrays inside this
section depends on the presence of the type field in the record. The type field
defines how the Backend form will look. The most known example is a content
element type. When the content element is changed, the form is reloaded and a
different set of fields is shown.

The type field is defined in the ctrl section of TCA (check the TYPO3 Core API
document on how to define the type field). Each value of the type field is a key in
the types section. If the type field is missing in the database, 0 is assumed to be the
value of the type field. This value points to an array with another key/value pair.
The key there is always the showitem. Value is what interests us the most here.

The value is a comma-separated list of field definitions. In the simplest case, field
definition is just a field name or --div-- (separator).

Each field definition can contain further information separated by a semicolon. The
simplest is --div--; the string after the semicolon is a label for this separator (or a
reference to the label in the language file). If dividersToTabs is activated in the ctrl
section of the table, this separator becomes a tab with a given label.

With nondivider fields, there can be up to four additional pieces of data. All of them
are optional. These pieces are:

e Alternative label
No one uses it these days. It supports only the old "language-split" syntax
which is already obsolete. This syntax requires pipe-separated strings in
different languages, a certain order and mixed character encodings. In other
words, avoid it.

e Palette number
When the option to show palettes is checked, additional fields appear below
this field. See the next section on palettes.

e Special configuration
This can be used to disable wrap on the text element or to convert a text area
into the RTE text field. See the TYPO3 Core API | Special Configuration
options section.

[172]

Chapter 7

e Form style codes
In the early TYPO3 days, it defined how form fields are grouped and coded
by color. Currently, colors are defined by Backend skin, and grouping is the
only one that is really used.

Typically, values such as 1-1-1 or 2-2-2 are seen in form style codes. This
allows us to visually separate some items from others without creating large
separators by --div--. Again, the TYPO3 Core APl document will provide a

lot of historical and practical information about these values.

Palettes

Palettes are very similar to types. They are shown below the field that refers to

the corresponding palette, and they do not have additional information as regular
fields. Typically, start/stop time and Frontend user group go to the palette, which is
attached to the "Hidden" flag.

The following screenshot shows record configuration with palettes disabled
(Yet Another Feed Importer TYPO3 extension by the author of this book):

[5) Feed Import [8] - TYPO3Bioke

& Feed URL:

| http://typo3bloke.net/atom.xml |@1

& Disable
[Jesr

& Import interval:

[+1 second |I§1

£ Feed Importer:
Create new feed Importer configuration

[JShow secondary optlons [palettes)

[173]

Programming Backend Modules

The next screenshot shows the same record but with palettes open:

[5) Feed Import [8] - TYPO3Bloke

& Feed URL:

|http: //typo3bloke. net/ atom.xml |

Feed tltle:
[TYPO3BIoke | @)

& Disable

D|

Start: Stop:

B] B[]

B Import Interval:

|+1 second |
Last Imported on: Local date/time of last Imported Item:
[17:24 1B-06-2008 | [15:25 17-06-2008 |
(2 @

& Feed Importer:

Create new feed iImporter configuration

#show secondary optlons (palettes)

This concludes our review of TCA.

[174]

Chapter 7

Implementing a Frontend Hook

The Frontend hook class file goes into the extension's directory. The file is named
class.tx_feuserstat_hooks.php. According to coding conventions, the class

name becomes tx_feuserstat_hooks. There will be only one hook inside but we
name the file (and the class) in plural to enable adding more hooks if necessary in
future versions.

When adding this class, GPL and XCLASS declarations should be added manually.
Make sure you do this first thing after creating a new class for TYPO3.

Now, we create a dummy function for the hook. The function name has to be
checkDataSubmission because it is hard-coded like this in the TSFE.

The TSFE provides a reference to itself as a parameter to the hook function. The same
reference is available as $GLOBALS['TSFE']. For better clarity, we will use the global
variable and will skip the function parameter completely.

Next, we need to register the hook. We do it by adding the following code to
ext_localconf.php:

SGLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']
['tslib/class.tslib_fe.php']
['checkDataSubmission'][$_EXTKEY] = 'EXT:'. $_EXTKEY .
'/class.tx_loginusertrack_tsfehook.php:'.
"tx_loginusertrack_tsfehook’;

In general, the way to register a hook can be found where the hook is called. For
example, in the TSFE, the hook is called in the following way:

// Hook for processing data submission to extensions:
if (is_array($this->TYPO3_CONF_VARS['SC_OPTIONS']
['tslib/class.tslib_fe.php'l['checkDataSubmission'])) {
foreach($this->TYPO3_CONF_VARS['SC_OPTIONS']
['tslib/class.tslib_fe.php'l['checkDataSubmission'] as
$_classRef) {
$_procObj = &t3lib_div::getUserObj($_classRef);
$_procObj->checkDataSubmission($this);
}
}

(The code above is reformatted to fit the book layout)

[175]

Programming Backend Modules

The hook will perform one of the following tasks:

e [fauserisjustlogged in, we create a new session record.

e Ifuser haslogged in previously, we update session data.

In both the cases, we also insert or update information about page hits. We also need
to store information about the current session inside the user object (available until
logged out).

We start implementation by defining three empty functions inside our hook class:

public function checkDataSubmission() {
}

function createSession() {

}

function updateSession() {

}

As usual, we break implementation into small observable units. It helps to keep code
clean, maintainable, and to help fix an error much faster and easier. We also add as
many comments as needed to understand what is going on. The implementation

of the checkDataSubmission checks if user tracking is enabled, and if the user

is logged in. If both the conditions are met, it checks if the user is just logged in.

If yes, it calls createSession, otherwise it calls updateSession. Here is how we
implement this function:

public function checkDataSubmission() {
// Check if statistics are enabled
if (SGLOBALS['TSFE']->config
['config]['tx_feuserstat_enable') {
// Check if user is logged in
if (is_array(SGLOBALS['TSFE']->fe_user->user)) {
// If user is just logged in, then create the
// session. Otherwise update it.
if (t3lib_div::GPvar('logintype') == 'login’) {
$this->createSession();
}else{
Sthis->updateSession();
}
}
}
}

The createSession function creates a new session record at the same page where
the the user records are located. When the user logs in, this information is available
from the pid parameter in the GET or POST data. We will use the t3lib_div::_GP

API function to retrieve this parameter. It examines both GET and POST.

[176]

Chapter 7

The uid and pid of the record will be stored in the current user record. When the
user navigates through the pages, we will quickly find our session information from
the user record.

Another task for the createSession function is to create an entry in the page
statistics table.

And the final thing we want to do is to ensure that TYPO3 knows about our
references to various tables. We will use t3lib_refindex to update this information.

Now, once we know what to do, we proceed to implementation. The code looks
like this:

function createSession() {
// Add session statistics
// Extract storage pid for users
Spid = t3lib_div::_GP('pid");
// Fill-in field array
Sfields = array(
'pid"' => $pid,
'fe_user' => intval(
SGLOBALSI['TSFE']->fe_user->user['uid']),
'session_start' => SGLOBALS['SIM_EXEC_TIME'],
'session_end' => $GLOBALS['SIM_EXEC_TIME'],
'first_page' => SGLOBALS['TSFE']->id,
'last_page' => SGLOBALS['TSFE']->id,
);
SGLOBALS['TYPO3_DB'->exec_INSERTquery(
'tx_feuserstat_sessions;, $fields);
$sesstat_uid = SGLOBALS['TYPO3_DB'l->sql_insert_id();
SGLOBALS['TSFE']->fe_user->setKey('ses,
self::SESSION_KEY, array(
"pid" => $pid,
'session_uid' => $sesstat_uid
)i
// Add page statistics
Sfields = array(
'pid' => $pid,
'fe_user' => intval(
SGLOBALSI'TSFE']->fe_user->user['uid']),
‘crdate’ => SGLOBALSI['SIM_EXEC_TIME'],
'tstamp' => SGLOBALS['SIM_EXEC_TIME'"],
'page_uid' => SGLOBALS['TSFE']->id,
'sesstat_uid' => $sesstat_uid,

[177]

Programming Backend Modules

SGLOBALS['TYPO3_DB'l->exec_INSERTquery(
'tx_loginusertrack_pagestat, $fields);

$pagestat_uid = SGLOBALS['TYPO3_DB']->sql_insert_id();

// Uodate reference index

Sref = t3lib_div:makelnstance('t3lib_refindex");

/* @var Sref t3lib_refindex */

Sref->updateReflIndexTable('tx_feuserstat_sessions),
Ssesstat_uid);

Sref->updateReflndexTable('tx_loginusertrack_pagestat,
$pagestat_uid);

}

The updateSession function is a little more complex. First, it needs to extract the
session ID from the user data. If no such ID exists, it means that the user is either not
logged in, or he/she has logged in before the statistics gathering for this website was
enabled. In both the cases, we skip recording statistics.

Next, we update the table with session data. We change the number of hits, session
end time, and exit page. The number of hits is a special case. All other fields will

be made database-safe by TYPO3 automatically. The number of hits need not

be escaped because we will simply increment it. This way, we avoid the SQL

SELECT query to fetch the number of hits. Very small but important performance
improvement!

Next, we execute a query to update page statistics. At this moment, the statistics
record for the current page may not yet exist in the database. We detect this case by
examining the number of updated rows and inserting a record if necessary. This is
again a small optimization in the code.

Finally, if a new record was inserted, we update the reference index for this record.

Here is the implementation:

function updateSession() {
// Get session data
$session_data = SGLOBALS['TSFE']->fe_user->getKey('ses,
self::SESSION_KEY);
if (is_array($session_data)) {
// Update session hit counter and length
$fields = array(
'session_end' => SGLOBALS['SIM_EXEC_TIME'],
'last_page' => SGLOBALS['TSFE']->id,
'hits' => 'hits+1'
)i
SGLOBALS['TYPO3_DB'l->exec_UPDATEquery(
'tx_feuserstat_sessions',
'uid=". intval(Ssession_data['session_uid']),

[178]

Chapter 7

$fields, array('hits"));
// Update current page stats
// (or insert new page stat record)
$fields = array(
'hits' => 'hits+1",
);
SGLOBALS['TYPO3_DB'l->exec_UPDATEquery(
'tx_feuserstat_pagestats,
'sesstat_uid=". intval(
$session_data['session_uid']) .
" AND page_uid=". $GLOBALS['TSFE']->id,
$fields, array('hits"));

if (SGLOBALS['TYPO3_DB']->sql_affected_rows() == 0) {

// First visit to this page
$fields = array(
'pid' => intval($session_data['pid']),
'fe_user' => intval(
SGLOBALS['TSFE']->fe_user->user['uid"]),
'page_uid' => SGLOBALS['TSFE']->id,
'sesstat_uid' => intval(
$session_data['session_uid']),
)i
SGLOBALS['TYPO3_DB'l->exec_INSERTquery(
'tx_feuserstat_pagestats; $fields);
Sref = t3lib_divi:makelnstance('t3lib_refindex");
/* @var Sref t3lib_refindex */
Sref->updateRefIndexTable(
'tx_feuserstat_pagestats,
SGLOBALS['TYPO3_DB'->sql_insert_id());
}
}

There are two points in the code that should catch the reader's attention. First, note
how we specify the fields that should not be escaped automatically by TYPO3. The
last argument for the SGLOBALS['TYPO3_DB']->exec_UPDATEquery is an array of

such fields.

Another point is that we always sanitize the (intval) fields that we pass to the SQL
query, even these are our own parameters (or at least, they are supposed to be ours).
It may seem a little paranoid but when it comes to security, there is no excuse for
giving any chance to an attacker to exploit your code.

[179]

Programming Backend Modules

To make the page statistics updates faster, we can add the following index to the
tx_feuserstat_pagestats table:

KEY fe_update (sesstat_uid,page_uid)

You may remember from the previous chapters that keys should include several
fields that participate in the query, and fields should be in the order they appear in
the query.

Some readers may ask why we don't use a TYPO3 session ID, but create our own.
Itis true that TYPO3 has its own sessions for Frontend users. But these sessions
leave as long as a user is logged in. If we refer to those sessions, we will have lots
of meaningless numbers for session IDs in our tables. Instead, we use our own
reference, which is persistent in the database.

This completes our implementation of the Frontend part.

Backend Modules: The Basics

In this section, we will briefly discuss the parts of a Backend module, the files it
includes, and the APl Backend modules it uses. This part is a necessary read if you
are serious about Backend programming.

What Is a Backend Module?

A backend module is a piece of code that implements certain functionality in TYPO3
Backend and presents it on the screen.

Some modules can integrate them inside other modules. For example, the RealURL
extension integrates itself into the Web | Info module. Kickstarter integrates itself into
the Extension Manager. Integration usually creates a new function in the module.

Module Functions

Backend modules may either have one function or provide several functions. When
a module provides several functions, they are usually shown as a select box in the
modaule. This is known as a module menu. TYPO3 has an API for handling such
menus. It can store the menu number for a module. When a user comes back to the
modaule, they will see the same menu item where they were when they left. Also,

a module can store data with the menu and merge user submitted data with the
module's already saved data. All these API services help to create modules with
session persistence. We will see corresponding functions later in this section.

[180]

Chapter 7

The following screenshot shows the module menu in the Extension Manager:

Instail extenslons H

Loaded extenslons
| Install extenslons
Import extenslons
Translation handling
Settings

Check for extension updates
Make new extenslan

Lok up:l I Search |

If you want to use an extension In TYPO3, you should simply click the "plus" button {E;. 5
Installed extenslons can also be removed agaln - just click the remove button g .

Backend Module Files

Each Backend module is located inside its own directory inside the extension.

Traditionally, modules are located in the directories prefixed with mod.

TYPO3 requires only one file for each module. The file is named conf.php. It contains
all information about the module. Here is an example of conf.php from our extension,

as generated by the Kickstarter (this may change after the book is printed!):

<?php

// DO NOT REMOVE OR CHANGE THESE 3 LINES:
define(TYPO3_MOD_PATH, './typo3conf/ext/feuserstat/mod1/');
$BACK_PATH=.././../../typo3/';
$SMCONF['name']='web_txfeuserstatM1";

$SMCONF['access']="user,group’;

SMCONF['script']="index.php';

SMLANG['default’]['tabs_images'l['tab'] = 'moduleicon.gif’;

SMLANG['default']['ll_ref'l=
'LLL:EXT:feuserstat/mod1/locallang_mod.xml’;

>

The first three code lines are modified by TYPO3 as necessary. The first two are not

very interesting for us. The third tells our module name as known internally to TYPO3.

[181]

Programming Backend Modules

This line contains the internal module name. The internal module name consists of a
parent module name, underscore character, and generated module identifier, which
in turn consists of tx, extension key, M, and the module number in the extension.

If a module is to be moved to another parent module, the first parent (before the
underscore character) must be adjusted. Such a change actually moves submodules
between modules.

The next code line defines who can access the module. Possible values are:

e admin for admin-only access

e usergroup for making access to user and group

SMCONF['script'] defines which file will be executed as a module. Normally, it is
index.php.

The $SMLANG['default']['tabs_images']['tab'] defines module icon. The file
name is typically left as it is, but the icon is changed.

The last line, SMLANG['default'l['ll_ref'], defines a file with language labels for
the module.

The conf.php file is rarely changed. If changes happen, typically, the access mode is
adjusted, or the module is moved to another parent module.

Backend API

Backend modules can freely use most of the classes in the t3lib/ directory. We will
review some most used classes here.

t3lib_BEfunc

t3lib_BEfunc is a collection of functions for Backend. We already know about
t3lib_div, which provides many convenient functions. t3lib_BEfunc is similar,
but limited to Backend.

The most important functions in this class are deleteClause and BEenableFields.
Together, they provide an equivalent of $this->cObj->enableFields in Frontend.

Another useful function is readPageAccess. It accepts the page uid value

and the permission clause (typically provided by SGLOBALS['BE_USER']-
>getPagePermsClause(1)). If this function returns false, it means the current user
does not have access to the page. Otherwise, the function returns the page record.

[182]

Chapter 7

BEgetRootLine is a rough equivalent of Frontend functions to retrieve the rootline.
It is not the exact re-implementation of the Frontend. BEgetRootLine will stop only
when it reaches a page record with pid field set to zero. The equivalent Frontend
function will return a root line up to the root of the website.

cshitem allows us to create context sensitive help (CSH) for table records. It accepts
the table name, field name, and a module's BACK_PATH. It will return a linked help
icon. When hovered or clicked, the icon will present a help for the field in the table (if
defined).

getModTSconfig retrieves TSConfig for the module by page id and path. We will see
how this function works later in this chapter.

getModuleData is a very useful function if a programmer wants to store certain data
for the module. Information is Backend user dependent. This function accepts three
parameters: an array of default values, an array of current values, and module name.
The result is default data overridden by the already saved data and overridden yet
more by the changed settings. This result is also saved to the current user record.
Thus, persistence for the module can be maintained.

getRecord retrieves a record from the table by its ID. It is simply a convenient
method. There is a companion function named getRecordRaw, which accepts the
table name and SQL WHERE condition.

getRecordTitle will return a title of the record as shown by the List module.

t3lib_TCEmain

This class is one of the most important classes in TYPO3. It processes absolutely
all record creation, modification, removal, and versioning in the TYPO3 Backend
(excluding most extensions). This class can and must be used by extensions. There
are several reasons to use this class instead of direct database access:

e |ttakesinto account several factors to create data properly

e It maintains links between records

e |t checks permissions

e |trecords datain proper formats (including many-to-many
database relations)

e [t calls hooks from other extensions

The most important functions include clear_cacheCmd, process_cmdmap, and
process_datamap.

[183]

Programming Backend Modules

clear_cacheCmd will clear cache for the given argument. all will clear all cache_
tables. pages will clear page cache. temp_CACHED will clear cache files. An integer
value will clear a page with this id. The first three commands are available only to
the admin user or to the user who has corresponding option.clearCache in the

User TSConfig. The last (integer) value can also be used from the Frontend, though
this is not documented.

process_datamap works with a data array supplied to the start class function. It
accepts an array with keys equal to table names. Each value is also an array where
the key is either an ID or a string starting with NEW and value is a record array. The
following is an example of creating a new record in the tx_myext_table table:

$data = array(
"tx_myext_table' => array(
uniqid('NEW') => array(
'pid' => $pid,
‘crdate' => time(),

)i

)i
)i
Stce = t3lib_div:makelnstance('t3lib_TCEmain');
/* @var Stce t3lib_TCEmain */
Stce->start(Sdata, null);
Stce->process_datamap();
if (count($tce->errorLog)) {

// Process errors here

}
This is all a programmer needs to create a new record in the database!

Itis possible to create, for example, pages and content elements on these pages at the
same time. In this case, pid must have the corresponding NEW value.

process_cmdmap works in a similar way. The format is a little different. The table
name and ID are still present (no NEW value though), but they point to a command
array specific to each command. Command examples are move, copy, version,
delete, and so on. The data array depends on the command. The format of the

data is different for each command. The best way to find the information is to look
through the source code.

t3lib_TCEforms

This class shows all Backend forms. It can be used from extensions as well. The
example of using TCEform exists in the TYPO3 core. The workspaces module
(typo3/mod/user/ws) contains a customized TCEform for sys_workspaces.

[184]

Chapter 7

t3lib_htmimail

This class allows us to send HTML and plain emails with attachments. There is an
explanation for usage in the beginning of the class. Here, we provide a simple
code example:

$mail = t3lib_div::makelnstance('t3lib_htmImail');
/* @var Smail t3lib_htmImail */
$Smail->start();
$mail->useQuotedPrintable();
$mail->returnPath = $mail->from_email = $mail->replyto_email =
$mail->from_name = $mail->replyto_name =
$sender;
Smail->recipient ="' . addslashes(Srecipient_name) .
" <", Srecipient_email . '>;
$mail->subject = $subject;
$mail->addPlain($message);
// Attachments
for ($i = 0; $i < count(Sattachments); Si++) {
$mail->addAttachment($attachments[$i]);
}

Sresult = Smail->send(");

t3lib_refindex

This is a reference index processing class, which we have already seen when we
programmed a Frontend plugin.

$BE_USER

This is a global instance of the t3lib_beUserAuth class. It is similar to the Frontend
user (shares the same base classes). The user record is available through the user
attribute (array). There is also a boolean admin property, which is set to true if the
user is an admin.

Implementing a Backend Module

In this section, we will implement the Backend module of our extension. Our
Backend module will not use many functions, but the reader can extend it as
required to include additional functionality.

[185]

Programming Backend Modules

Files and Classes

Our Backend module is going to be large. Therefore, we will have a main class for
making the menu and dispatching code to other included files. The other files will
have classes for showing:

e The fixed number of logins

e The Monthly view

e The Active and inactive views (the same class)

e The Page hit statistics for each user and optionally, the session

Classes and files will appear as follows:

File name Class name

index.php tx_geuserstat_module1
class.tx_feuserstat_logins.php tx_feuserstat_logins
class.tx_feuserstat_monthly.php tx_feuserstat_monthly
class.tx_feuserstat_active.php tx_feuserstat_active
class.tx_feuserstat_pagestats.php tx_feuserstat_pagestats

All files will be there in the mod1 subdirectory. Each class will have a main
method. It will accept a pointer to a calling class ($pObj parameter). In the case of
tx_feuserstat_active, it is a boolean parameter saying whether we show active

or inactive users.

A Note about Backend HTML

At the moment of writing this book, Backend modules did not have a good
equivalent of Frontend templating. Some functions existing in t3lib_parsehtml can
be used for templating, but mostly HTML is hard-coded in Backend modules.

Backend modules use a document to generate output. A document is an attempt
to hide the lack of templating and styling for Backend behind several methods
and variables.

There are several types of documents (smallDoc, mediumDoc, largeDoc, and noDoc).
They differ on the width of the output area. noDoc does not limit the width.

[186]

Chapter 7

A document is created and initialized inside the generated main method in the
following way:

Sthis->doc = t3lib_div::makelnstance('mediumDoc');
$this->doc->backPath = SGLOBALS['BACK_PATH'];
$this->content .= $this->doc->startPage(
SGLOBALS['LANG']->getLL('title"));
$this->content.=Sthis->doc->header(
SGLOBALS['LANG']->getLL('title"));
Sthis->content.=$this->doc->spacer(15);

The code above creates an instance of mediumDoc. Next, a path to this module
is set to the document instance. This is necessary to generate links correctly inside
the document.

The line with the startPage call generates markup to start the page. This includes
page title and form tag. The whole module output will be enclosed to the form and
ready for submission.

The line with the header call creates a header. Using the header function to create
headers makes all modules in the system look similar.

The last line creates a vertical spacer on the page.

Implementing the Main Class

According to the table above, the main class of the module is located in
mod1/index.php. There is nothing much to modify there. Mostly, global declaration
should be removed, and the global variables should be changed accordingly to use
$SGLOBAL. The only method that needs changes to implement module functionality
is moduleContent. This method dispatches calls to other classes. The output of the
classes is wrapped into a "section” (a part of "Document” we discussed earlier).

Here is the code:

protected function moduleContent() {
Sfunction = intval(Sthis->MOD_SETTINGS['function']);
switch ($function) {
case 1:
$Smod = t3lib_div:makelnstance(
'tx_feuserstat_logins');
/* @var $mod tx_fe_userstat_active */
Sthis->content .= $this->doc->section(
$SGLOBALS['LANG'->getLL('last_logins'),
$mod->main(Sthis), 0, 1);
break;

[187]

Programming Backend Modules

case 2:
$Smod = t3lib_div:makelnstance(
'tx_feuserstat_monthly');
/* @var $Smod tx_fe_userstat_active */
Sthis->content .= Sthis->doc->section(
$SGLOBALS['LANG']->getLL('monthly_view"),
$mod->main(Sthis), 0, 1);
break;
case 3:
$Smod = t3lib_div:makelnstance(
'tx_feuserstat_active');
/* @var $Smod tx_fe_userstat_active */
Sthis->content .= Sthis->doc->section(
$SGLOBALS['LANG']->getLL(‘active_log"),
$Smod->main(Sthis, true), 0, 1);
break;
case 4:
$Smod = t3lib_div:makelnstance(
'tx_feuserstat_active');
/* @var $Smod tx_fe_userstat_active */
Sthis->content .= Sthis->doc->section(
$SGLOBALS['LANG'->getLL('inactive_log"),
$mod->main(Sthis, false), 0, 1);
break;

Implementing the List of Last Logins

The list of last logins is in the tx_feuserstat_logins class. We select a fixed

amount of maximum 200 users from tx_feuserstat_sessions and sort them by
session_start. The reader can, for an exercise, implement a configurable number of
users either as a TSConfig option, or as a form in the Backend module. The TSConfig
example will be shown later in this chapter. In the case of the form, do not forget to
pass the id parameter to the index.php.

[188]

Chapter 7

Here is how the list of the last logins looks:

Frontend user statistics

= Q, Users 2 [Last logins ﬁ
Path: /Welcome! ! fUsers 2/

LAST LOGINS

Date/Time: Aga: Username: MName: Sesslon length: Page hits:
28-08-08 22:01 B molly Maolly 1 5

28-08-08 22:00 10 ron Ronald O 1

28-08-08 22:00 10 molly Molly 0 1

2B-08-08 21:59 10 charlle Charlle D 1

After selecting the rows, we will generate HTML for each row and collect it in the
array. After collecting all rows, we implode the array and wrap it with table tags.
This technique is commonly used in the TYPO3 core for repeating activities.

Here is the implementation of the function:

public function main(&$pObj) {
Suserld = intval(t3lib_div::GPvar('useruid'));
$sessld = intval(t3lib_div::_GP('sessid");
Slist = array();
// TODO Configurable limit!
$query = 'SELECT t1.*,t2.username,t2.name,t2.uid AS '.
'user_uid FROM'.
'tx_feuserstat_sessions t1,fe_users t2 WHERE '.
't2.uid=t1.fe_user'
(Suserld ? ' AND t2.uid="intval(Suserld) : ").
(Ssessld 7" AND t1.uid=". $sessld : ") .
' AND t2.pid = intval($pObj->id).
t3lib_BEfunc:deleteClause('fe_users' 't2').
" ORDER BY session_start DESC LIMIT 200';
$res = SGLOBALS['TYPO3_DB'l->sql_query(Squery);
while ((Srow = SGLOBALS['TYPO3_DB']->sq|_fetch_assoc(
$res))) {
Sextra=";
if (Suserld) {
Sextra .= '&sessid=". Srow['uid'];

[189]

Programming Backend Modules

}

$list[] = '<tr bgcolor=

m

. $pObj->doc->bgColors . ">
<td nowrap>'.
date($GLOBALS['TYPO3_CONF_VARS1['SYSI'ddmmyy'] .
"', SGLOBALS['TYPO3_CONF_VARS'I['SYS'I['hhmm'],
Srow['session_start']) . '</td>
<td nowrap>'. t3lib_BEfunc:calcAge(time() -
Srow(['session_start'],
$GLOBALS['LANG']->getLL('minutesHoursDaysYears')) .
'</td>
<td nowrap>id .
'‘&useruid=". Srow['user_uid"].Sextra.">".
Srow['username']!</td>
<td nowrap>'. Srow['name'].</td>
<td nowrap>'.
t3lib_BEfunc::calcAge($row['session_end'] -
Srow(['session_start'],
$GLOBALS['LANG']->getLL('minutesHoursDaysYears')) .
'</td>
<td>'. Srow['hits'] . '</td>
</tr>

1.

}

’

SGLOBALS['TYPO3_DB']->sql_free_result(Sres);
$content = '<table border="0" cellpadding="1"

cellspacing="1" width="100%">

<tr bgcolor="". $pObj->doc->bgColor5 . ">
<td>'.
$SGLOBALS['LANG']->getLL('header_datetime') .
'</td>

<td>'.
$SGLOBALS['LANG']->getLL('header_age') .
'</td>

<td>'.
$SGLOBALS['LANG']->getLL('header_username') .
'</td>

<td>'.
$SGLOBALS['LANG'->getLL('header_name').
'</td>

<td>'.
$GLOBALS['LANG'->getLL('header_session_lgd") .
'</td>

<td>'.
$SGLOBALS['LANG']->getLL('header_pagehits') .

[190]

Chapter 7

'</td>
</tr>
' implode(", $list) . '</table>';
if (Suserld > 0) {
Sinst = t3lib_div::imakelnstance(
'tx_feuserstat_pagestats’);
/* @var Sinst tx_feuserstat_pagestats */
$content = 'id .
(Ssessld ? '&useruid=". Suserld : ") .
">'. SGLOBALS['LANG']->getLL($sessld ?
'modulecont_listAllSessions':
'modulecont_listAllUsers') .
'

'. $content.
$pObj->doc->section(
SGLOBALS['LANG']->getLL('header_pagestats'),
$sessld ?
$inst->getPageStatsForSession($pObj->doc,
$sessld) :
Sinst->getPageStats($pObj->doc, Suserld)) .
'

}
return $content;

}

This code also demonstrates the usage of the SGLOBALS['TYPO3_DB'l->sql_

query() function. This function can be used to execute complex queries directly. It is
especially useful when a query contains constructions that cannot be understood by
other TYPO3 functions. Such constructions include (but are not limited to) UNION
and JOIN.

Furthermore, we can also see the usage of $SGLOBALS['TYPO3_
CONF_VARS['SYST'ddmmyy'l and SGLOBALS['TYPO3_CONF_

VARS'I['SYSI'ddmmyy']. These two system settings contain date and time

formats. Mostly, they are used in Backend. Frontend may have its own settings to
accommodate a designer's requirements better. But the Backend modules should use
these settings for consistency with other Backend modules.

[191]

Programming Backend Modules

Implementing Monthly View

Monthly view shows login statistics by the month. For each user, it displays how
many times a user logged into the Frontend. Sorting goes from most visits to least
visits. Here is how this view looks:

Frontend user statistics

Q, Users 2 [-Mnnthl:.r view

Path: /Welcome! ! fUsers 2/

01-08-08 - 28-08-08
Date/Time: Age: Username: Name: Logln count:

2B-08-08 22:01 12 maolly Molly 2
2B8-08-08 21:59 13 charlie Charlle 1
2B-08-08 22:0012 ron Fonald 1

01-07-08 - 31-07-08
Date/Time: Age: Username: Name: Login count:

01-06-08 - 30-06-08
Date/Time: Age: Username: Name: Login count:

The code follows:

function main(&$pObj) {
Suserld = intval(t3lib_div::GPvar('useruid'));
Stimes = array();
Stimes[0] = time();
for (Sa=1; Sa<=12; Sa++) {
Stimes[$a] = mktime(0, 0, 0, date('m’) + 1 - $a, 1);
}
Scontent=";
for ($a=0;%a<12; Sa++){
Slist = array();
Squery = 'SELECT t1.*,t2.username,t2.name,t2.uid '.
'AS user_uid, count(*) AS counter, '.
'MAX(session_start) AS last_login FROM'.
'tx_feuserstat_sessions t1, fe_userst2'.
'WHERE t2.uid=t1.fe_user'.
(Suserld >07?"AND t2.uid=".
intval(Suserld) : ") .
" AND t2.pid =" . intval($pObj->id).

[192]

Chapter 7

" AND t1.session_start<'. intval($Stimes[$a]) .
"AND t1.session_start>=".
intval(Stimes[$a+1]).
t3lib_BEfunc:deleteClause('fe_users' 't2") .
' GROUP BY t2.uid ORDER BY counter DESC'.
'LIMIT 200";
$res = SGLOBALS['TYPO3_DB'l->sql_query(Squery);
while ((Srow = SGLOBALS['TYPO3_DB']->sql_fetch_assoc(
$res))) {
$list[] = '<tr bgcolor="". $pObj->doc->bgColor4 .
"><td nowrap>'. date(
SGLOBALS['TYPO3_CONF_VARS['SYS'I['ddmmyy']
SGLOBALS['TYPO3_CONF_VARS'I['SYS'I['hhmm'],
Srow['last_login') . '</td>
<td nowrap="nowrap">'.
t3lib_BEfunc::calcAge(time() -
Srow(['session_end'],
SGLOBALS['LANG']->getLL(
'minutesHoursDaysYears')) . '</td>
<td nowrap><a href="index.php?id=".
$pObj->id . '&useruid=". Srow['user_uid" .
">'. Srow['username'] . '</td>
<td nowrap>'. Srow['name'] . '</td>
<td>'. Srow['counter'] . '</td>
</tr>

.
’

}

SGLOBALS['TYPO3_DB']->sql_free_result(Sres);
Scontent .= '
'.
SGLOBALS['LANG']->getLL('period") .

''.
date(SGLOBALS['TYPO3_CONF_VARS'I['SYS'I['ddmmyy'],
Stimes[Sa+1])."'-".
date(SGLOBALS['TYPO3_CONF_VARS'I['SYS'I['ddmmyy'],
Stimes[$a] - 1) . '

<table border="0" cellpadding="1" cellspacing="1">
<tr bgColor="". $pObj->doc->bgColor5 . ">
<td>'.
SGLOBALS['LANG'->getLL('header_datetime') .
'</td><td>".
SGLOBALS['LANG'->getLL('header_age').</td>
<td>'.
SGLOBALS['LANG']->getLL('header_username’) .

[193]

Programming Backend Modules

'</td><td>".
SGLOBALS['LANG'->getLL('header_name’).
'</td><td>".
SGLOBALS['LANG'->getLL('header_logins') .
'</td></tr>
' implode(", $list) . '</table>';
}
if (Suserld > 0) {
$content = 'id .
">'.
$GLOBALS['LANG']->getLL('modulecont_listAllUsers')
.'
'. Scontent;
}
return Scontent;

}

Now, we already have two functions in the module!

Implementing a List of Active Users

The list of active users shows the recently logged in users. We will show a maximum
of 200 users for a period of the last 90 days. These limits can be changed by making a
form in the module to enter these values or by using page TSConfig for new defaults.
A TSConfig example is shown in the code. The reader is encouraged to implement
the alternative form as an exercise.

Here is the screenshot of this view:

Frontend user statistics

3 Q, Users 2 [Artive users ﬁ
Path: /Welcome!!fUsers 2/

ACTIVE USERS

Total number of users: &
Username: Name: Page hits: Last login:

molly Mally 28-0B-08
ron Ronald Z28-08-08
charlie Charlle 28-0B-08

=]

[194]

Chapter 7

To change the number of days through TSConfig, a user can enter the following
property in the page TSConfig on the page where the user records are stored:

mod.web_txfeuserstatM1.activeLogins.days = 120

In this example, we change the number of days from the default of 90 to 120.

The code of the function follows:

function main(&SpObj, $showActive) {
// Get number of days from module TSConfig
$tsConfig = t3lib_BEfunc::getModTSconfig($pObj->id,
'mod. . SGLOBALS['MCONF']['name’] .
‘activelLogins.days');
$daysBack = t3lib_div:testint($tsConfig['value') ?
intval($tsConfig['value']) : 90;
// Total number of users:
list(Srow) = $GLOBALS['TYPO3_DB']->exec_SELECTgetRows(
'COUNT(*) AS t,
'fe_users',
'pid=". intval($pObj->id) .
t3lib_BEfunc::deleteClause('fe_users"));
$content.= ''.
$SGLOBALS['LANG']->getLL('total_number_of _users') .
'". Srow['t'];
$query = 'SELECT uid,username,email,name,lastlogin’'.
' FROM fe_users'
"WHERE pid=". intval($pObj->id) .
"AND lastlogin'. ($showActive ? '>=":'<') .
(time() - $daysBack*24*3600) .
t3lib_BEfunc::deleteClause('fe_users') .
' ORDER BY lastlogin DESC LIMIT 200";
Sres = SGLOBALS['TYPO3_DB'l->sql_query(Squery);
StableRows = array();
StableRows][] = '<tr bgcolor="".
$GLOBALS['TBE_TEMPLATE']->bgColor5 . ">
<td nowrap>'.
SGLOBALS['LANG'->getLL('header_username') .
'</td>
<td nowrap>'.
SGLOBALS['LANG'->getLL('header_name').
'</td>
<td nowrap>'.
SGLOBALS['LANG']->getLL('header_email') .
'</td><td nowrap>'.

[195]

Programming Backend Modules

SGLOBALS['LANG']->getLL('header_lastlogin’) .

'</td></tr>";
while ((Srow = SGLOBALS['TYPO3_DB']->sql_fetch_assoc(
$res))) {

StableRows[] = '<tr bgcolor="".
$SGLOBALS['TBE_TEMPLATE"]->bgColor4 . ">
<td nowrap>'. htmlspecialchars(Srow['username']) .
'</td><td nowrap>'.
htmlspecialchars($Srow['name’]) .
'</td><td nowrap>'.
htmlspecialchars(Srow['email']) .
'</td><td nowrap>'.
htmlspecialchars(date(
SGLOBALS['TYPO3_CONF_VARS['SYS'II'ddmmyy'],
$rowl['lastlogin'l)) .
'</td></tr>"
}
$content .= '<table border="0" cellpadding="1"".
‘cellspacing="2">".
implode(", StableRows) . '</table>";
SGLOBALS['TYPO3_DB']->sql_free_result(Sres);
return $content;

}

As seen from the code, we use the t3lib_BEfunc:getModTSconfig function to
obtain module TSConfig. This function accepts two arguments:

e pageid
This is the ID of the page to fetch TSConfig for. Different pages can have
different TSConfigs.

e TSConfig path
This is the path to TSConfig that we want to examine. It is a list of

TSConfig properties separated by a dot. In our case, we use mod.web_
txfeuserstatM1.activeLogins.days.

As usual with TypoScript, the same property can have a value and point to an array
of subproperties. The t3lib_BEfunc:getModTSconfig function will return an
array consisting of two keys:

e value
This key points to a single value of the TSConfig property found at the given
path. If no value is found, it will be null.
e properties
An array of properties or array (with dot appended) of deeper
TSConfig levels.

[196]

Chapter 7

In our case, we just query the value directly. If the reader adds another property
(for example, userLimit), they would query TSConfig differently:

$tsConfig = t3lib_BEfunc:getModTSconfig($pObj->id,
'mod. . SGLOBALS['MCONF'['name'] . 'activeLogins');

$daysBack = $tsConfig['properties'l['days'];

SuserLimit = $tsConfig['properties'l['userLimit'];

TSConfig is often a good way to customize module appearance or functionality.
When implementing the real module in your extension, think what you want to
leave to TSConfig, and what you want to put into the form inside the module.
Many settings are easily changeable by users and should be in the form instead of
TSConfig.

Implementing Page Statistics

Page statistics use SQL LEFT JOIN to show the page information for the user or user
session. The page may be removed or be inaccessible to the current user. Therefore,
we have to take care to show the statistics while not showing the page title or a link
to it. This is important from both completeness and security point of views.

Since there can be a lot of pages, our example uses the hard-coded number of pages
to show (64). The reader can make this value configurable as an exercise.

The code is longer than in the previous cases:

function getPageStatsForSession(&Sdoc, $session_id) {

/* @var $doc mediumDoc */

$content = '<table width="100%" border="0"
cellpadding="1" cellspacing="1">".
'<tr bgcolor="". $doc->bgColor5.">".
'<td>'.
$GLOBALS['LANG']->getLL('header_pid') .
'</td><td>".
SGLOBALS['LANG']->getLL('header_pagetitle') .
'</td><td>".
SGLOBALS['LANG']->getLL('header_pagehits') .
'</td><td>".
$SGLOBALS['LANG']->getLL('header_firsthit') .
'</td><td>".
SGLOBALS['LANG']->getLL('header_lasthit’) .
'</td></tr>";

// Get records

Sres = SGLOBALS['TYPO3_DB'l->sql_query(
'SELECT t1.page_uid,t2.title,t1.hits,t1.crdate, '.
"t1.tstamp FROM tx_feuserstat_pagestats t1"'.

[197]

Programming Backend Modules

'LEFT JOIN pages t2 ON .

't1.page_uid=t2.uid WHERE sesstat_uid=".

intval($session_id) .

t3lib_BEfunc:deleteClause('pages, 't2') .

str_replace('pages., 't2,
t3lib_BEfunc::BEenableFields('pages")) .

"ORDER BY t1.hits DESC');

Shum =0;
SnumResults = SGLOBALS['TYPO3_DB']->sqgl_num_rows(Sres);
while (Snum < 64 &&
false I= (Sar =
SGLOBALS['TYPO3_DB']->sql_fetch_assoc($res))) {

$content .= '<tr bgcolor="". $doc->bgColor4 .
"><td>'.
$ar['page_uid". '</td><td>".

'<atarget="_blank" href="".
t3lib_div::getindpEnv('TYPO3_REQUEST_HOST') .
'/index.php?id=". Sar['page_uidT.">".
htmlspecialchars(Sar['title']) . '</td><td>".
$arl'hits'. '</td><td>".
date(
SGLOBALS['TYPO3_CONF_VARS['SYS'I['ddmmyy" .
SGLOBALS['TYPO3_CONF_VARS'I['SYS'I['hhmm'],
Sar['crdate']) .
'</td><td>'.
date(
SGLOBALS['TYPO3_CONF_VARS['SYS'I['ddmmyy" .
SGLOBALS['TYPO3_CONF_VARS'I['SYS'I['hhmm'],
Sar['tstamp']) .
'</td></tr>"
Snum++;
}
SGLOBALS['TYPO3_DB']->sql_free_result(Sres);
if (Snum < SnumResults) {

Scontent .= '<tr><td colspan="4">". sprintf(
SGLOBALS['LANG'->getLL('message_moreresults’),
SnumResults - Snum) .

'</td></tr>"
}
Scontent .= '</table>";
return $content;

}

[198]

Chapter 7

/**
* Makes report about visited pages.

*

* @param mediumDoc Sdoc Document (like mediumDoc)
* @param int Suser UserID

*@return string Generated HTML

*/

function getPageStats(&$doc, $user) {
/* @var $doc mediumDoc */
Scontent = '<table width="100%" border="0"
cellpadding="1" cellspacing="1">".
'<tr bgcolor="". $doc->bgColor5.">".
'<td>'.
SGLOBALS['LANG']->getLL('header_pid") .
'</td><td>".
SGLOBALS['LANG']->getLL('header_pagetitle") .
'</td><td>".
SGLOBALS['LANG']->getLL('header_numsessions') .
'</td><td>".
SGLOBALS['LANG']->getLL('header_pagehits") .
'</td><td>".
SGLOBALS['LANG']->getLL('header_firsthit') .
'</td><td>".
SGLOBALS['LANG']->getLL('header_lasthit") .
'</td></tr>";
// Get records
Sres = SGLOBALS['TYPO3_DB'l->sql_query(
'SELECT COUNT(page_uid) AS num_sessions, ' .
'SUM(hits) AS num_hits, ".
'MIN(t1.crdate) AS crdate, MAX(t1.tstamp) AS'.
'tstamp, page_uid, title FROM '.
'tx_feuserstat_pagestats t1 LEFT JOIN pages t2'.
'ON t1.page_uid=t2.uid WHERE fe_user=".
intval(Suser) .
t3lib_BEfunc:deleteClause('pages, 't2') .
' GROUP BY page_uid ORDER BY hits DESC'
);
Snum =0;
SnumResults = SGLOBALS['TYPO3_DB']->sqgl_num_rows(Sres);
while (Snum < 64 && false != (Sar =
SGLOBALS['TYPO3_DB']->sql_fetch_assoc($res))) {
$content .= '<tr bgcolor="". $doc->bgColor4 .
"><td>'. Sar['page_uid']. '</td><td>".
'<atarget="_blank" href="".

[199]

Programming Backend Modules

t3lib_div::getIndpEnv('TYPO3_REQUEST_HOST') .
'/index.php?id=". Sar['page_uidT.">".
htmlspecialchars(Sar['title']) . '</td><td>".
Sar['num_sessions'] . '</td><td>".
Sar['num_hits'] . '</td><td>".
date(
SGLOBALS['TYPO3_CONF_VARS['SYS'I['ddmmyy" .
SGLOBALS['TYPO3_CONF_VARS'I['SYS'I['hhmm'],
Sar['crdate']) .
'</td><td>'.
date(
SGLOBALS['TYPO3_CONF_VARS['SYS'I['ddmmyy"] .
SGLOBALS['TYPO3_CONF_VARS'I['SYS'I['hhmm'],
Sar['tstamp']) .
'</td></tr>"
Snum++;
}
SGLOBALS['TYPO3_DB']->sql_free_result(Sres);
if (Snum < SnumResults) {

Scontent .= '<tr><td colspan="4">'. sprintf(
SGLOBALS['LANG']->getLL('message_moreresults’),
SnumResults - Snum) .

'</td></tr>'
}
Scontent .= '</table>";
return $content;

}

The phpDoc comments are removed from the code to save space. Actual code should
always have phpDoc comments.

The code also informs a user if there are more results as shown. We use sprintf to
format results in a localization friendly way.

Summary

In this chapter, we learned the Backend module theory and programmed our own
Backend module. The reader should now be able to make his own Backend modules.

[200]

Finalizing Extensions

In this chapter, we will prepare our extension for external use. This involves
several steps that make an extension look better and more convenient for users.
After completing these steps, an extension can be sent to the TYPO3 extension
repository (TER).

Overview

When extension programming is completed, there should be additional steps taken
before an extension is published. These steps add significant value to the quality of
the extension. The steps include:
e Updating code files
This involves checking the code once again for possible problems and
missing code lines. Additionally, the function index should be created for

each code file.

e Writing documentation
This involves creating manuals for the extension.

Updating Code Files

Updating code files makes sure that an extension code is free from obvious errors.

Checking the Code

The first thing to do is to check your code again. Some things may have been missed
during development, and now it is time to recover them. Use the following checklist

to check your code.
e Are all the require_once statements in place?
It is easy to forget some of these statements during development if you are
logged into TYPO3 Backend and running Frontend code. The code will work,
but it will fail when running standalone.

Finalizing Extensions

Are all the request parameters checked?

It is not enough to assign a variable from a request parameter and assume
that it is always in the correct format. Check it and substitute it with a good
default, or show an error message if defaults are not possible. The same goes
for TypoScript setup.

Are all SQL parameters sanitized?

SQL injection is the most common problem for beginner PHP programmers
and sometimes even for experienced programmers. Always use the
fullQuoteStr or intval for SQL parameters.

Do all case statements have break statements or Fall through comments?

If there is no break statement for a case statement, then it is an unintentional
error or an intentional deletion. If it is an intentional deletion, write a
comment about it!

Do XCLASS declarations exist in every code file?

XCLASS declarations must be there in every code file. It allows others to
extend your classes without modifying them and losing the changes with
an update.

Are XCLASS declarations correct?

First, check if the file names are correct in XCLASS declarations. Next, ensure
that there are no extra spaces or missing spaces. Formatting is very important
for XCLASS statements. Check the extension information screen in TYPO3
Extension Manager for missing XCLASS declarations. If the Extension
Managers lists some, but you have an XCLASS declaration in that class, it
means that the formatting is wrong.

Are all extended tables mentioned in ext_emconf.php?
All extended tables should be mentioned in the modify_tables option of
ext_emconf.php.

Do all functions have phpDoc blocks?
If not, add these blocks. Read more about phpDoc on the phpDoc website at
http://www.phpdoc.org/.

Do functions have public/protected/private modifiers?

If not, add them. Remember that private should be used with care as
it prevents XCLASSing in some cases. It is better to use protected than
private.

Are there any empty lines at the end of PHP files?
If yes, remove them, or they may break gzip encoding of Frontend output.

Did you follow TYPO3 coding guidelines?
Following coding guidelines is not a formality. They are developed in a way
that helps to prevent certain typing and coding errors.

[202]

Chapter 8

Itis also good to scroll code slowly from top to bottom. This way, you can see
flaws in the code, missing handlers, and obvious typos in parameter names. A
review would help discover minor errors that your eyes may have missed when
writing code.

Using extdeveval to Beautify your Code

Extension Development Evaluator (extdeveval) is a TYPO3 extension for developers
to help them make their code better. It adds a new menu item to the Tools module in
the TYPO3 Backend.

Developers will mostly be interested in several tools that extdeveval provides:

e PHP script documentation help — This will insert/reformat phpDoc in
the file. Even if you are tempted to use this instead of writing comments
manually, do not do this. You will still have to go and fill in stub comments
generated by this function. But it is good for adding missing phpDoc
parameters and verifying syntax in general.

e PHP source code tuning-This tool provides two options:

° Convert double quotes to single quotes (better
PHP performance)

° Reformat/beautify PHP source code. This will format PHP
code according to TYPO3 coding guidelines

e Calculator —This is not a mathematical calculator but a tool to convert SQL
dates to Unix time stamps, create MD5 hashes out of pasted content, and
create many more handy functions.

Let's see these functions in more detail.

Script Documentation

phpDoc comments in PHP files are important for several reasons.

First, they allow anyone (even the author after several months) to get an idea of
the function's purpose. There can also be calling constraints, extra notes, and so on.
Anything useful for the user of the function should go to phpDoc.

Next, phpDoc comments describe parameters. Parameters in TYPO3 functions can
be very complex, and phpDoc helps to make a function more usable by providing
information about parameter types and possible values.

[203]

Finalizing Extensions

phpDoc also describes the return type of a function. If a function does not return
anything, use void as the return type.

Extdeveval will generate stub phpDoc comments where they are missing. It can
recognize PHP type hinting and default attributes when necessary.

PHP script documentation function in extdeveval also adds a function index to the
file. The next section discusses this in more detail.

Adding a Function Index

A function index helps to get a quick overview of the function list in the file. If the
author uses a modern PHP IDE (such as Zend Studio or Komodo IDE) for PHP
development, the function index may not seem important because IDEs can generate
it on the fly in their GUI. However, the function index is helpful for people who use
more generic tools for editing, or when a developer has to make adjustments to

the code from the shell (for example, on the server outside of their usual
development environment).

The function index is placed at the beginning of the file where the [CLASS/FUNCTION
INDEX of SCRIPT] line is located. This line triggers creation of the function index. If
it is missing, no index will be generated.

Here is an example of a function index as seen in t3lib/class.t3lib_db.php:

E 3

138:

175:
1492 :
206
225
250
278
381:

* F F ¥ OF OF F OF F OF F F F OF ¥

[CLASSAFUNCTION INDEX of SCRIPT]

class t31ib_DE

SECTION: Query execution

function
function
function
function
function
function
function

exec_INSERTquery(3$table,$fields_values, $no_
exec_UPDATEquery(3table, $where,$fields_valu
exec_DELETEquery($table, fwhere)
exec_SELECTquery($select_fields,$from_table
exec_SELECT _mm_query($select,$local_table,$
exec_SELECT_queryArroy($queryParts)
exec_SELECTgetRows(%select_fields, $from_tab

The function index includes the line number and the full function declaration

[204]

Chapter 8

Reformatting the Code

Every TYPO3 extension should follow TYPO3 coding guidelines. This makes it easy
for every developer to reuse the code or check it for problems.

Different people have different programming habits and different coding styles.
There are over 3300 extensions available for TYPO3. It is hard to expect every author
to follow the guidelines precisely. Here is where extdeveval comes into use.

Extdeveval can reformat the code according to TYPO3 coding guidelines. Developers
select a file to reformat, and extdeveval does the rest. Usually, it is a safe operation,
but it is a good idea to make a backup of the source file. Very seldom, extdeveval
may corrupt the file.

This tool can also convert double quotes to single quotes. All TYPO3 code should
use single quotes (with possible exception to "\n"). This saves some time for each
request and may also prevent accidental variable expansion.

Writing Documentation
(Extension Manual)

Good documentation is a very good reason for people to use an extension. An
excellent extension without documentation will lose to an average extension with a
good manual. The reason is simple — people use the extension manual to know what
an extension does, how it looks and what it needs to run. In other words, it is like a
manual for most home appliances: "no manual - hard to operate”.

In this section, we will see how to write a good manual for a TYPO3 extension.

Documentation Template

TYPO3 requires extension manuals to follow the same format, and to be based on
the same template. This requirement exists due to the TYPO3 Extension Repository
(TER). TER renders manuals and makes them available online. All extension
manuals are available at http://typo3.org/documentation/document-library/
extension-manuals/. This is a very long page with a list of all available

extension manuals.

[205]

Finalizing Extensions

A link to the manual is also available in the extension details at typo3.org website:

E 3X Album (album3x)

e { Updated

Dmitry Dulepov 1B.12.2007
Version [Upload comment

Fixed bug: possible error about
undefined classes t3lib_refindex and

Downloa { " [Rating _
.. t≦EEﬁunn (only for old TYPO3

Dascription

Image album (photo gallery) with thumbnails, mid-size and click-open full size photos

Manuals are created in the OpenOffice 1.0 format. The documentation template
is available at http://typo3.org/documentation/document-library/core-
documentation/doc_template/current/. To install the template, download it,

open it in OpenOffice, and then save it as a template.

The saved template should be installed in OpenOffice. Open OpenOffice preferences
(go to Tools | Options) and expand OpenOffice on the left. Then click on Paths.

See where user the templates are located using Template entry on the right. There
you will find the folder name where the saved template should be moved.

¥ NeoOffice
User Data Paths used by NeoOffice
General P —
Memory AutoCorrect {Users/@s'Library/P
View AutoText fUsers/@sw'Library/P
Print Backups fUsers/ssLibrary/P
Paths Gallery [Users/#swLibrary/P
Colaors Graphics {Users/@sw'Library/P
Fonts My Documents fUsers/ s
Security Templates {Users/msw'Library/P
Appearance Temporary files fvar/folders/Nk/NkAFH
Accessibility
Java

When starting a new manual, choose File | New | Templates and Documents in
the OpenOffice. Navigate to Templates. Select TYPO3 documentation template
there and a new document will be created. This document should be saved in the
extension's doc/ directory. The file must be saved in the OpenOffice 1.0 format

(sxw file).

[206]

Chapter 8

Template Structure

The template (and manual) has a certain structure, which should be followed in
general. However, if the template section is not relevant to the extension, it should be
removed. Do not leave empty sections in the manual! If you need it in the future, you
can always add it back later.

The template starts from the title and the table of contents. Then comes the
Introduction section. It contains the information that users read when they

want to decide if an extension meets their requirements. This section also contains
screenshots in the Screenshots section.

The next section is the Users manual. This part describes how to use an extension for
the editor or the Frontend user.

The third section is for administrators and is present in the Administration
section. It describes how to configure and administer an extension. This is for
TYPO3 administrators.

The Configuration section describes how to configure an extension. It should list all
TypoScript and Flexform properties.

The Tutorial section teaches one to use an extension in a quick and easy way
(if possible).

The Known problems section shows the problems and limitations that the extension
author recognizes.

The To-Do list section shows a list of tasks for the extension author. Of course, this
section is optional.

The Changelog section is intended for listing changes in the extension. It does not
really make sense to record changes in the manual because it makes manuals much
longer, and no one really needs this information in the manual. The Changelog

file in the extension's root directory is a much better place for it. The author of the
book recommends leaving a single statement in this section: See Changelog in the
extension's directory.

[207]

Finalizing Extensions

Styles in the Template

The documentation template has several predefined styles. These styles must be
used in the documentation. Any other style will be ignored by the documentation
renderer in the TYPO3 Extension Repository. The following styles are defined:

Style name Usage

Text body This is the default style to use for all normal text.

Table heading This style is used to create table headings.

Table Contents This style is used inside table cells that are not inside table headers.

Preformatted text This style is used to create code examples, configuration examples,
and so on.

Heading 1 This style is used for the main heading in the document. The

documentation renderer will create a new HTML page for each of
these headings.

Heading 2 This style is used for major text blocks inside Heading 1.

Heading 3 This style is used for separating text blocks further. Logically, it is a
subheading.

Heading 4 This style is similar to heading 3, and is used for even deeper dividing
texts.

Source text This is a character style. It is used for inline code fragments.

These styles can be seen in OpenOffice's formatting toolbar.

Images in the Documentation

Images need special care in the TYPO3 manual. To render the documentation
properly, images must be pasted as bitmaps to the document. This is accomplished
by selecting Edit and then Paste special in the OpenOffice. There is a window where
the documentation writer should select Bitmap. This will copy all image data to the
document and allow the renderer to create an image on the server.

Writing Documentation

Writing a good documentation is not an easy task. There are lots of books for
documentation writers on the Internet. The topic is large and cannot be covered here
in full. However, we will try to provide certain advices. If the reader is interested in
technical writing, he should consult special literature on this topic.

[208]

Chapter 8

When starting a new manual, the first task is to update properties in the document.
There are three properties: the standard property named title and two custom
properties (Email and Author). Properties are accessed through the File menu, and a
menu item named Properties.

Next, describe what the extension does. Try to avoid use of highly technical language
wherever possible. This section is normally read by ordinary users to decide if they
want use the extension and how.

Do not save on screenshots. Screenshots are important because they help users to
understand what an extension's output or configuration looks like. At least one
screenshot is required if your extension provides any output at all. It is good to
mention that the extension's output is customizable by using a template.

When writing User and Administrator parts, do not assume that the reader knows
the details as well as the writer does. It is okay to assume generic Unix shell or
TYPO3 knowledge. However, all other instructions should be as detailed as possible.
Knowledgeable users will just skip to the necessary parts. Beginners will be grateful
for even the small details.

The configuration chapter needs a lot of attention. When writing in detail about
configuration, follow the same style, type definitions, and example definitions as
seen in the official TYPO3 documentation such as the TSRef of TYPO3 Core API.

Itis important to give examples. Examples not only provide useful pieces of code,
but also help people to understand the configuration better.

The quality of the example should be good. A trivial example should be followed by
more complex examples.

The last but not the least part of the writing work is to update the table of contents
(TOC) when finished with your writing. It is frustrating for users to navigate to a
page mentioned in the TOC and find that the TOC is wrong. By the way, have you
ever seen a book with a wrong TOC?

Making Documentation Available

If the documentation writer works on non-Windows systems, he/she may
accidentally make the manual inaccessible. The problem happens when the user file
permissions on non-Windows systems are set in a way that disallows the reading

of files or certain directories. If the doc/ directory or files in it cannot be accessed

by TYPO3 Extension Manager, they will not be uploaded to TER. If the directory

is accessible for reading but the file is not, then the file will be uploaded with zero
length causing the Manual cannot be rendered error in TER.

Always check file system permissions before sending extensions to TER.

[209]

Finalizing Extensions

Uploading Extensions to TER

An extension is uploaded to the TYPO3 Extension Repository using the Extension
Manager. Click on the extension name in the Extension Manager and choose Upload
to TER from the function menu.

When an extension is uploaded to TER, the developer should specify a comment. As
usual, respect your users and provide a good comment that tells the users what the

changes were. It is not worth pasting the full change log if it is too long (you have it

in the Changelog file already). But outlining the most important changes is always a
good thing to do.

Another important question is about extension versioning.

TYPO3 follows the PHP versioning scheme. This means that there are three version
numbers. The first number changes when something major is introduced, or the
product is remade completely. When this happens, the remaining numbers are set
to zero.

The second number changes when a certain feature is introduced, or a major bug is
fixed, or lots of bugs are fixed.

The third number is changed for small bug fix releases.
Why is this important to know?

There are lots of extensions in the TYPO3 repository that have version numbers
similar to 0.64.39 or so. It usually means that the author is simply afraid of declaring
a major release of the product. This is a typical problem of open source software

- a product exists for years, but never gets major release (version 1.0). One of my
favorite examples is eAccelerator, which is a great accelerator for PHP. At the time
of writing this book, the version number was 0.9.5.4. And this product has been in
development for more than two years, and is installed in thousands of web servers
across the world! Another example is Wine. Wine is a Windows emulator for Linux.
It was used for 15 years before the version 1.0.0 was released.

When an extension fulfills all the declared requirements, its version number should
be set to 1.0.0. Do not be afraid. Everyone makes mistakes, and every software has
bugs. There is no such thing as a perfect software. Declare your extension as 1.0.0
and increase its version number as you fix the bugs. Let your users know that the
version is stable in terms of functionality, and you are fixing bugs. This is the right
thing to do.

[210]

Chapter 8

Summary

This chapter was the last chapter of the book. We started the book with the overview
of TYPO3 Core API, walked through extension generation and code writing until
uploading the extension to TER. It was a long way. This chapter adds the final

polish to your extension. Good luck to the reader of this book in writing spectacular
extensions. The author of the book truly expects better and better extensions coming
from you into TER soon!

[211]

Backend. See BE
backend module
$BE_USER, backend API 185
about 180
active users list,implementing 194-196
backend APl 182
backend HTML 186, 187
backend module files 181, 182
classes 186
database, adjusting 165
files 186
frontend hook, implementing 175-179
implementing 185
last logins list, implementing 188-191
main class, implementing 187, 188
module functions 180
monthly view, implementing 192-194
page statistics, implementing 197-200
planning 163
t3lib_BEfunc, backend API 182
t3lib_htmlmail, backend APl 185
t3lib_refindex, backend API 185
t3lib_TCEforms, backend APl 184
t3lib_TCEmain, backend APl 183, 184
backend module, planning
backend module, functionality 163, 164
database structure 165
frontend classes 164
BE 5
BE API, TYPO3 API 27
TCEforms 27
TCEforms, uses 28
TCEmain 28

Index

C

caching
cached or uncached plugins,
determining 111
cached plugins 111
cHash, using 112
cHash code, creating 112
no_cache=1, avoiding 113
noncached plugins 111
noncached plugins, configuring 111
set_no_cache(), avoiding 113
USER_INT into USER plugin,
embedding 113
caching, TYPO3 110
categories, TYPO3 extension
BE category 36
BE category, examples 36
BE module category 37
BE module category, examples 37
choosing 35
documentation category 37
examples category 37
FE category 36
FE plugins category 36
FE plugins category, examples 36
Miscellaneous category 38
services category 37
templates category 37
code files, extensions
code, checking 201-203
code, reformatting 205
code modifying, Extension Development
Evaluator (extdeveval) used 203
function index, adding 204
phpDoc documentation 203, 204

updating 201

common files, TYPO3 extension files
SEM_CONF array, fields used 53
class.ext_update.php file 53
class.ext_update.php file, access method 54
class.ext_update.php file,main method 54
ext_conf_template.txt file 44
ext_conf_template.txt file, TypoScript

constants 45, 46

ext_emconf.php file 38
ext_emconf.php file, example 39-43
ext_icon.gif file 51
ext_localconf.php file 50
ext_tables.php file 46
ext_tables.php file, examples 47, 49
ext_tables.php file, functions 46
ext_tables.sql file 49, 50
ext_tables_static+adt.sql file 50
tca.php file 51-53
tca.php file, example 51,52

common TYPO3 API
database API 11
extension management class 15
t3lib_div class 16

D

database adjusting, backend module
columns, tca.php file 169-171
ext_tables.php file 166
ext_tables.sql file 166
palettes, tca.php file 173-175
tca.php file 169
types, tca.php file 172,173
database APl, common TYPO3 API
accessing, t3lib_DB used 11
example 14,15
fullQuoteStr() function 14
result fetching group 13
SQL queries group 11,12
SQL queries group, functions 11,12
t3lib_DB used 11
utility functions 13
database structure, extension planning
first table, fields 70
records, storing 70
secondt table, fields 71

database structure, TYPO3 planning
data types 65
fields, requiring 63, 64
indexes 66
indexes, creating tips 66

Inline relational record editing(IRRE) 67

Many-to-many (MM) relations 67
relations, types 66
reserved fields, requiring 65
traditional relations 67
database tables, creating
options 78-80
options, fields 81
tables, configuring 84, 85
documentation, extension manual
documentation template 205-207
extensions, uploading to TER 210
images 208
making, available 209
template, styles 208
template structure 207
writing 209

E

elD file 123
extension
adjusting 94
generating 92
manual 205
overview 201
planning 67
uploading, toTER 210
versioning 210
extension, adjusting
fields, changing 94
files, removing 94
tables, hiding 94
extension, generating
advantages 73
Kickstarter, using 73,74
Kickstarter user interface 74
need for 73
preparing for 73
extension, planning
BE module 69
database structure 70, 72

[214]

documentation 72
FE plugins, features 69
FE plugins, functions 69
FE plugins used 69
feuserstat extension key, advantages 69
hook used 70
requirements, defining 67
extension generation, steps 75
BE modules, creating 89, 90
database tables, creating 77
existing tables, extending 85
existing tables, extending in Kickstarter 86
extension information, entering 75
extension information, fields 76, 84
extension key, entering 75
FE plugin, caching 88
FE plugin, creating 86-89
integrating, into existing module 90
languages, setting up 77
services, creating 90
TSConfig, adding 92
TYPO3 clickmenu items, adding 90
TypoScript configuration, entering 90
TypoScript plugins, defining 90
extension keys, TYPO3 planning
bad extension keys, examples 63
good extension keys, examples 63
extension management class, common
TYPO3 API
functions used 15
extension manual
creating 206
documentation 205
extensions, TYPO3
code files, updating 201
overview 201
extensions, uploading to TER 210

F

FE 5

FE API, Typo3 API
content objects 34
plugins 34
plugins, function group 34
TSFE 32
tslib_phase class 34

FE plugin creating. See plugin, creating
FE plugin files
class.tx_feuserlist_pil.php 116-118
ext_localconf.php 119, 120
ext_tables.php 120
locallang.xml 118
nonreviewed files 120, 121
other files 119
TypoScript files 119
FE plugin files, TYPO3 extension files
about 54
BE modules 56,57
BE modules files, example 56
BE modules files, values 56
documentation files 58
examples 54
module fuction files 57
module fuctions, registering 57
pifiles 55
TypoScript templtes 55
TypoScript templtes, naming 55
TypoScript templtes, registering 55
FE plugins
about 97
advantages 97
basics 97
calling 98
class, generating 98, 99
configuring 100
creating 98, 121
flexform 100
structure 114
template, using 105-107
FE plugins, configuring
flexform configuration 100
flexform configuration, creating 102
TypoScript configuration 100
ways 100
flexform, FE plugins
configuration, creating 102
configuring 100
fields, defining 103
including 104
structure 101
Frontend. See FE

[215]

L

localization
character sets, handling 109, 110
character sets, settings 109
localization-aware plugins 107
records, fetching 108
strings, localizing 108

P

PHP files
phpDoc comments 203
planning
need for 59, 60
stages 60
planning, stages
document, planning 62
implementing 61, 62
requirements, gathering 61
plugin, creating
cache issues, handling 152
configuration values, loading 126, 127
CSS styles, disadvantages 150, 151
dispatching code, creating 131
elD 123
environment, checking 125
extension, initializing 124
files, adding 121
Flexform configuration 122
Flexform data source,
modifying 127-130
functions, defining 123, 124
hooks, adding 157-160
JavaScript, creating for
autocomplete 153, 155
list view, creating 140
list view, programming 143-149
list view, template creating 140, 141
list view, TypoScript template
modifying 141, 142
optimization 160
PHP Code, creating for
autocomplete 155-157
search, creating 149
search box, adding to template 151
search condition, adding 152

single view, adding stdWrap for
fields 136, 137
single view, creating 134
single view, programming 137-139
single view template, creating 134, 136
templates 121
templates, basics 131, 133
templates, using 133, 134
TypoScript, disadvantages 150, 151

R

requirements, extension planning

expandability feature 68
functionality tasks 67, 68
technical feature 68
usability feature 68

-

t3lib_div class, common TYPO3 API

array functions 17

debug functions 20

directory functions 19

file functions 19

GET/POST functions, defining 16
hooks 25,26

languages 23

languages, methods 23, 24
reference index 25

reference index, using 25
string functions, defining 17
system functions 20, 21

TYPOS3 files, refering 22

TYPO3 specific functions 21, 22
URL functions 19

XML processing functions 18

Table Configuration Array. See TCA
TCA 166
TCEmain, BE API

cache, clearing 31
commands 29

example 29, 31

record, manipulating 28, 29
tasks 28

TER

extensions, uploading to 210

[216]

TSFE

about 32
attributes 32, 33

TYPO3

about 5

backend module, implementing 185
backend module, planning 163
caching 110

class, hierarchy 7

data, storing 9

extension, manual 205

extensions 201

frontend hook, implementing 175-179
localization 107

planning 62

predefined fields, examples 9
tables, defining 9, 10

TCA 166, 167

TYPO3, classes

t3lib _ (TYPO3 library) 7

t3lib _ (TYPO3 library), examples 7
tslib_(TypoScript library) 7
tslib_(TypoScript library), lists 8

tx_(TYPO3 Extensions) 8
user_ 9
ux_ 8
TYPO3 API
BE API 5,27
common TYPO3 API 10
FE API 5,32
overview 5,6
TYPO3 extension
anatomy 35
categories 35
files 38
TYPO3 extension files
common files 38
FE Plugin files 54
TYPO3 extension repository. See TER
TYPO3, planning
database structure, using 63
extension keys 62
TypoScript, FE plugins
configuring 100
TypoScript Frontend. See TSFE

[217]

Thank you for buying
TYPO3 Extension Development

PUBLISHING

Packt Open Source Project Royalties

When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing TYPO3 Extension Development, Packt will have given some
of the money received to the TYPO3 association Project.

In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and

you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing

Packt, pronounced 'packed; published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

PUBLISHING

TYPO3
ISBN: 190-4-811-41-8 Paperback: 595 pages
The Official TYPO3 Book, written and endorsed by
the core TYPO3 Team

1. Easy-to-use introduction to TYPO3

2. Design and build content rich extranets and
intranets

3. Learn how to manage content and
administrate and extend TYPO3

Mastering TypoScript
ISBN: 190-4-811-97-3 Paperback: 400 pages
A complete guide to understanding and using

TypoScript, TYPO3's powerful configuration
language.

1. Powerful control and customization using
TypoScript

2. Covers templates, extensions, admin,
interface, menus, and database control

3. Youdon't need to be an experienced PHP
developer to use the power of TypoScript

Please check www.PacktPub.com for information on our titles

	TYPO3 Extension Development
	Table of Contents
	Preface
	Chapter 1:
About TYPO3 API
	Overview of TYPO3 API
	PHP Classes and Files
	t3lib_
	tslib_
	tx_
	ux_
	user_

	How Data is Stored in TYPO3
	Common TYPO3 API
	Database API
	Extension Management
	Helper Functions (t3lib_div)
	GET/POST Functions
	String Functions
	Array Functions
	XML Processing
	File, Directory, and URL Functions
	Debug Functions
	System Functions
	TYPO3-Specific Functions
	TYPO3 File References

	Language Support
	Reference Index
	Hooks

	Backend API
	TCEforms
	TCEmain
	Record Manipulation
	Clearing Cache

	Frontend API
	TSFE
	Content Objects
	Plugin API

	Summary

	Chapter 2:
Anatomy of TYPO3 Extension
	TYPO3 Extension Categories
	Category: Frontend
	Category: Frontend plugins
	Category: Backend
	Category: Backend module
	Category: Services
	Category: Examples
	Category: Templates
	Category: Documentation
	Category: Miscellaneous

	Extension Files
	Common Files
	ext_emconf.php
	ext_conf_template.txt
	ext_tables.php
	ext_tables.sql
	ext_tables_static+adt.sql
	ext_localconf.php
	ext_icon.gif
	tca.php
	class.ext_update.php

	Frontend Plugin Files
	pi Files
	TypoScript Templates

	Backend Module and its Files
	Module Function Files
	Documentation Files

	Summary

	Chapter 3:
Planning Extensions
	Why is Planning Important?
	How to Plan
	Gathering Requirements
	Implementation Planning
	Documentation Planning

	TYPO3-Specific Planning
	Extension Keys
	Database Structure
	Field Names
	Indexes
	Database Relations

	Planning Our Extension
	Requirements
	Functionality
	Usability and Expandability
	Technical

	Extension key
	Frontend Plugins
	Backend Module
	Other Classes
	Database Structure
	Documentation

	Summary

	Chapter 4:
Generating Extensions
	Why Generation?
	Preparing for Generation
	Generation Steps
	Entering an Extension key
	Entering Extension Information
	Setup Languages
	Creating New Database Tables
	Extending Existing Tables
	Creating Frontend Plugins
	Creating Backend Modules
	Integrating into Existing Modules
	Adding Clickmenu Items
	Creating Services
	Static TypoScript Code
	Adding TSConfig
	Generating the Extension

	Adjusting Extensions
	Clean Up
	Changing Fields
	Hide Tables

	Summary

	Chapter 5:
Frontend Plugin: An In-Depth Study
	Frontend Plugins: The Basics
	Concepts
	Plugin Configuration
	TypoScript Configuration
	Flexform Configuration

	Templating
	Localization
	Being Localization-Aware
	Localizing Strings
	Fetching Localized Records
	Character Set Handling

	Caching
	Caching in TYPO3
	Cached and Non-Cached Output
	Using cHash
	Two Things to Avoid
	no_cache=1
	set_no_cache()

	Advanced: Embedding USER_INT into USER

	Summary

	Chapter 6:
Programming Frontend Plugins
	Review and Update Generated Files
	Frontend Plugin Files
	class.tx_feuserlist_pi1.php
	locallang.xml

	Other Related Files
	TypoScript Files
	ext_localconf.php
	ext_tables.php

	Non-reviewed files

	Clean Up Extension
	Programming the Plugin
	General Workflow
	Adding Files
	Templates
	Flexform Configuration
	eID

	Defining Functions
	Initializing an Extension
	Checking the Environment
	Loading Configuration

	Modifying the Flexform Data Source
	Dispatching Calls
	Using Templates
	Template Basics
	Using Templates

	Creating a Single view
	Creating a Template
	Adding stdWrap for Fields
	Programming Single View

	Creating a List View
	Creating a Template
	Modifying the TypoScript Template
	Programming List View
	What is Missing in the List View

	Creating Search
	Including Styles and Scripts
	Adding a Search Box to the Template
	Adding a Search Condition
	What About Cache?
	Creating JavaScript for Autocomplete
	Creating PHP Code for Autocomplete

	Adding Hooks
	What Can be Optimized?

	Summary

	Chapter 7:
Programming Backend Modules
	Planning a Backend Module
	Functionality of a Backend Module
	Frontend Classes
	Database Structure

	Adjusting the Database
	ext_tables.sql
	ext_tables.php
	tca.php
	Columns
	Types
	Palettes

	Implementing a Frontend Hook
	Backend Modules: The Basics
	What is a Backend Module?
	Module Functions
	Backend Module Files
	Backend API
	t3lib_BEfunc
	t3lib_TCEmain
	t3lib_TCEforms
	t3lib_htmlmail
	t3lib_refindex
	$BE_USER

	Implementing a Backend Module
	Files and Classes
	A Note about Backend HTML
	Implementing the Main Class
	Implementing the List of Last Logins
	Implementing Monthly View
	Implementing a List of Active Users
	Implementing Page Statistics

	Summary

	Chapter 8:
Finalizing Extensions
	Overview
	Updating Code Files
	Checking the Code
	Using extdeveval to Beautify your Code
	Script Documentation
	Adding a Function Index
	Reformatting the Code

	Writing Documentation (Extension Manual)
	Documentation Template
	Template Structure
	Styles in the Template
	Images in the Documentation
	Writing Documentation
	Making Documentation Available

	Uploading Extensions to TER
	Summary

	Index

