TYPOJ3 Templates

Create and modify templates with TypoScript and TemplaVoila

PACKT *

TYPO3 Templates

Create and modify templates with TypoScript
and TemplaVoila

Jeremy Greenawalt

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

TYPO3 Templates

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010
Production Reference: 1111110

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847198-40-2
www . packtpub.com

Cover Image by Gavin Doremus (gdoremus24@gmail . com)

Credits

Author
Jeremy Greenawalt

Reviewers
Christine Gerpheide

Heike Raudenkolb
Ingo Schmitt

Acquisition Editor
Sarah Cullington

Development Editor
Maitreya Bhakal

Technical Editor
Kavita lyer

Indexer
Hemangini Bari

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Leena Purkait

Proofreaders
Aaron Nash

Lynda Sliwoski

Production Coordinator

Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Jeremy Greenawalt is a full-time developer and part-time writer with close to ten
years professional experience in website and application creation. His first love was
writing, but programming quickly followed.

He is a co-founder of Vintage 56 where he helps develop websites, online shopping
carts, web apps, iPhone/iOS apps, and anything else his friends can think up. Jeremy
is also the Web Director of a large ministry, Generals International.

Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-youthful
puppy, Aingeal. He loves spending time at home reading, playing around on the
piano, or just relaxing on the couch with his family.

You can read more from Jeremy at pocketrevolutionary.com, and you can follow
him on Twitter at @jgreenawalt.

Acknowledgment

This book is the product of so many editors, coworkers, and encouragers that
I'm surprised my name still gets to be on the cover. I wish I had space to thank
everyone individually.

I want to thank the entire Packt team that made this book possible. Thank you,
Sarah and Leena, for helping a new author through an intimidating process. A
special thanks to the editors and technical editors who helped turn some rambling
paragraphs and run-on sentences into a complete book.

Thanks to all of the smart people I work with. Thank you, Mike and Cindy, for
always encouraging me. Thank you, Neil, for telling me to write the book when
I thought I couldn't. Thank you, Kevin and Bethany, for being my test subjects
sometimes. Thanks to all of my coworkers who put up with my pre-deadline
breakdowns and always let me vent.

I need to thank Kasper Skarhgj for giving us TYPO3. More importantly, thanks
to all the developers, well-known and anonymous, who have made TYPO3 what
it is today.

Thank you, Michael Brennen, for giving me my first real programming job.
I still blame you for all my Linux or PHP knowledge.

Thanks to Jeff Segars and Ron Hall from the Dallas TYPO3 Users Group for
convincing me to use TYPO3 in the first place. Thanks, Ron, for letting me write my
final chapter on your framework and being the first to ask for a copy of the book.

Thanks again to my wonderful wife, Rebekah. You will always be my princess.

About the Reviewers

Christine Gerpheide works as a developer and project lead at customedialabs
Interactive Media Agency in Larissa, Greece. At customedialabs she helps create
enterprise applications and websites, specializing in TYPO3 and mobile application
development. She has also presented on TYPO3 at open source conferences in Greece
and at the North American TYPO3 Conference. In her free time, Christine likes to
experiment with upcoming web technologies, go backpacking, promote renewable
energy, and cook Greek food. Christine was born in Washington, D.C. and has a
bachelor's degree in Mathematics and Political Science from Grinnell College.

Heike Raudenkolb has been working with websites for more than ten years now.
Originally started as a hobby while studying to become a certified translator in the
late 1990s, web design and website production soon became her full-time day job
during which she has since been building many static as well as dynamic web pages
and playing with various CMS and webshop systems.

Today Heike works as a web designer and TYPO3 integrator for an Internet

service provider. Her main tasks there are behind-the-scenes TYPO3 integration,
customization, and templating —actually, not very different from how it is described
here in this book —but she's also doing end user support and customer workshops
for editors wanting to work with TYPO3.

Ingo Schmitt, born 1974, studied Electrical Engineering at the "Universitat
Gesamthochschule Duisburg", Germany, learned Pascal, C++, discovered the Web
with Netscape 1.0, and started working for Marketing Factory Consulting GmbH,
Diisseldorf in 1996. Working with PHP he developed Web-based applications,
releasing his first extranet online shop in 1998. As CTO of Marketing Factory
Consulting GmbH he started working with TYPO3 in 2002, including developing his
own extensions. Ingo Schmitt is founder and main developer of TYPO3 Commerce,
TYPO3 Certified Engineer and "IHK Priifer fur Fachinformatiker". At Marketing
Factory he and his team are responsible for the complete development process for
web applications and for ongoing maintenance including hosting of the applications.
You can follow Ingo Schmitt on twitter at http://twitter.com/Ischmitt.

Marketing Factory Consulting GmbH is one of the top TYPO3 agencies in Germany,
developing and hosting international multi-language web and portal applications for
clients such as Henkel, Ecolab, Ista, Metabo, Wrigley, and Westfalia.

Marketing Factory also runs its own websites such as heimwerker.de
(the biggest DIY site in the German language), ratgeber.de, and online
shops like blumenbutler.de.

This book is dedicated to my parents, Loren and Kathleen, and my beautiful wife, Rebekah.

To my parents, for buying me my first computer and being my most loyal readers;

I miss you both. To Rebekah, for loving me and encouraging me every day before and even
after the moment I decided to write this; I'll make it up to you somehow.

Table of Contents

Preface 1
Chapter 1: Getting Started 7
Basic requirements 8
How templates were created 9
Introducing TemplaVoila! 12
Installing TemplaVoila 12
Creating a basic HTML template 16
The root tag 17
The menu area 17
The content section 17
Creating your first template with the TemplaVoila Wizard 18
Selecting the HTML template 19
Configuring the new site 19
Mapping the template 20
Data elements 21
Mapping instructions 21
HTML-path 21
Action 21
Mapping rules 22
Starting to map 22
Mapping the rest of our elements 23
Header parts 24
Creating the main menu 25
Creating the submenu 25
Testing the finished template 26
The page tree 26
If something didn't work right 27
Adding content to our front page 29

Summary 31

Table of Contents

Chapter 2: Enhancing your Template with CSS 33
Creating a basic stylesheet 33
Including stylesheets in TYPO3 37

What you need for your main stylesheet 38
Adding CSS with the TemplaVoila Wizard 38
Including CSS with page.stylesheet 39
Including CSS with page.includeCSS 41
Including CSS with page.headerData 42
Using default markup in TYPO3 44
Headers 45
Image with text areas 45
Bullet lists 47
Tables 48
Removing default markup in TYPO3 49
Summary 50

Chapter 3: Adding Custom Template Fields 51
Modifying the page metadata 51
Adding a banner 54

Adding space for the banner to our HTML file 54
Adding the banner element to TemplaVoila 54
Configuring a data element 56
Viewing the data structure XML 58
Using our new data element 60
Adding the date to our template 61
Adding space for the date to our HTML file 62
Creating a data element 62
Viewing the updated XML 63
Showing our new banner 64
Loading the date and time from the TypoScript template 64
Changing our timestamp element in the data structure 65
Adding the timestamp object to the TypoScript template 67
Adding a dynamic logo 67
Summary 70

Chapter 4: Creating Flexible Menus 71
Page tree concepts 72
Introducing HMENU 72
Types of menu objects 73
Menu item states 74
HMENU properties 75
Common menu item properties 77

Lii]

Table of Contents

Introducing text-based menus 78
TMENU Properties 79
Adding separators to menu items 79
Redesigning the text-based menus 80
Final code 82
Introducing graphic menus 83
Introducing GIFBUILDER 84
The BOX object 85
The IMAGE object 85
The TEXT object 86
GIFBUILDER layers 87
GIFBUILDER properties 88
GMENU properties 88
Creating our first graphic menu 89
Modifying based on menu states 90
Main menu code 91
Creating a graphic menu with boxes 92
Submenu code 93
Using external images for menus 94
Other types of menus 97
Breadcrumb navigation 98
Pulling it all together 101
Summary 101
Chapter 5: Creating Multiple Templates 103
Creating new templates with sidebars 104
Creating the HTML and CSS 104
Adding columns to the data structure 105
Creating new TemplaVoila template objects 107
Mapping new template objects 110
Assigning a new template to our pages 112
Creating icons for templates 114
Assigning templates to subpages 117
Creating an extension template 118
Creating a printable template 121
Creating a print-only stylesheet 121
Creating a subtemplate 123
Creating a printable link 125
Adding a printable link section to the templates 125
Adding the printable link field to the data structure 126
Generating a printable link with TypoScript 127
Summary 129

[iii]

Table of Contents

Chapter 6: Creating a Template from Scratch 131
Designing the template 132
Creating a wireframe 132
Creating the HTML template 133
Creating the data structure 137
Creating data structure elements 140
The banner field 140
The date field 142
The main article field 143
The news fields 143
The upcoming events title field 144
The upcoming events list 144
The event container field 145
The event date and city fields 145
The product fields 146
The contact information fields 146
The footer field 147
Mapping the template object 148
Creating a folder in the page tree 151
Setting the TypoScript values 152
Creating an example page 153
Adding test content 154
Summary 157
Chapter 7: Customizing the Backend Editing 159
Updating the rich text editor 160
Editing the TSconfig 161
CSS properties 162
Classes properties 165
RTE class properties 166
Toolbar properties 167
HTML editor properties 170
Customizing the Page module 171
Creating the HTML layout 172
Assigning the backend layout 175
Adding some CSS styling 177
Setting a backend layout for a data structure with multiple
template objects 178
Using backend layout files for template objects 180
Using static data structures in TemplaVoila 1.4.2 181
What are static data structures 182

[iv]

Table of Contents

Setting up static data structures 183
Modifying static data structures 186
Summary 187
Chapter 8: Working with Flexible Content Elements 189
Introducing flexible content elements 190
Creating our first flexible content element 190
Building the content element 190
Testing our new content element 194
Creating a flexible HTML wrapper 195
Building the content element 196
Testing our new content element 198
Creating a multi-column layout element 200
Extending the multi-column layout element 203
Creating a product display element 206
Creating the HTML and CSS 206
Creating a customized data structure 208
Product name 208
Product class 210
Product image 211
Product price 212
Product description 213
Text for product link 214
Product link 214
Viewing our results 215
Summary 216
Chapter 9: Creating a Mobile Website 217
Introducing conditions 218
Browsers 220
Versions 221
Operating systems 221
User agents 222
Language 223
Logged in users 223
Global variables and strings 223
User function 224
Testing browser compatibility 224
Creating a mobile version of your website 226
Detecting a mobile device 227
Creating a mobile stylesheet 228
Customizing our TypoScript objects 229
Bringing it all together 230

[vl

Table of Contents

Adding a non-mobile link 231
Creating a mobile subtemplate 234
Adding a new option to our subtemplate pages 234
Creating a new TemplaVoila template for mobile devices 236
Adding our subtemplate to the TypoScript template setup 238
Redirecting to an external mobile site 239
Summary 240
Chapter 10: Going International 243
Introduction to internationalization and localization 244
Adding localization to a website 245
Adding a website language 246
Adding your languages to TypoScript 249
Adding localization to pages 252
Using the localization tab in the Page view 254
Hiding non-translated pages 255
Translating content 256
Creating universal elements 258
Adding content without a default language 259
TemplaVoila translator workflow 260
Adding a basic language menu 261
Adding the language menu to our TypoScript template 262
Viewing our changes on the frontend 264
Adding flags for language selection 265
Adding a localized logo 267
Creating localized TemplaVoila templates 268
Summary 270
Chapter 11: Building Websites with the TemplaVoila Framework 271
What is the TemplaVoila Framework? 272
Benefits of the TemplaVoila Framework 272
The TemplaVoila Framework workflow 274
Installing the TemplaVoila Framework 274
Setting up QuickSite for the first time 275
Assigning a site URL 275
Selecting a skin 276
Viewing our QuickSite frontend 278
Planning with the wireframe skin 278
Designing the page layouts 279
Page Templates 282

[vi]

Utility FCEs
Column groups

Module groups
Module options

HTML wrapper

Plain image

Module Feature Image
Creating a custom skin
Editing a skin

Editing TypoScript for the HTML structure

Editing CSS

Editing TypoScript constants

Adding JavaScript

Additional resources
Adding special functionality
Adding content

Feature content

Generated content
Summary
TYPO3 Templates summary

Index

283
283

284
285

286
286
287
287
288
288
291
292
293
293
294
294
295
296
297
298

299

Preface

The template systems in TYPO3 make it one of the most powerful content
management systems available today, but they seem too complex for many users.
Site developers, who are able to learn how to use them efficiently, can build more
extensible sites quicker and more customized for their users.

This book is a step-by-step guide for building and customizing templates in TYPO3
using the best solutions available. It takes the readers through one complete example
to create a fully functional demonstration site using TypoScript, TemplaVoila, and
other core TYPO3 technologies.

This book starts with the basics of creating an example TYPO3 site before showing
you how to add your own stylesheets and enhanced JavaScript to the template. You
learn about the different types of menus and navigation, and you can try out each
one with practical examples in the book. The book shows how to create multiple
templates for sections or individual pages in TYPO3 and how you can make a

new template completely from scratch for a newsletter. Just as importantly, you
learn how to update the editing experience and impress your clients with a custom
backend. Finally, you will learn how to specialize for browsers and internationalize
your TYPO3 site with simple template updates.

What this book covers

Chapter 1, Getting Started provides an introduction to TypoScript and the overall
methods of building templates in TYPO3 from the beginning up to the present. The
chapter introduces a new extension for building templates, TemplaVoila!, and walks
readers through building their first template from HTML to TYPO3 integration.

Preface

Chapter 2, Enhancing Your Template with CSS covers the different ways of integrating
stylesheets into a TYPO3 site and the advantages or disadvantages of each method.
The chapter concludes by looking at the built-in classes in TYPO3 that can be used to
style individual elements like even and odd rows in a table or a list.

Chapter 3, Adding Custom Template Fields gives an introduction to data structures in
TemplaVoila templates and walks readers through an example of adding new fields
for a banner and a datestamp to the existing template.

Chapter 4, Creating Flexible Menus covers the different types of navigation that can be
created in TYPO3 templates. The chapter explains the concepts of building menus
with TypoScript and walks through complete examples of text-based menus, graphic
menus, and special "breadcrumb" menus.

Chapter 5, Creating Multiple Templates goes through different examples of templates
that can be built based on the existing TemplaVoila template data like templates
with sidebars for additional content. The chapter concludes by walking through
the process of creating special print-friendly page templates that can be loaded
automatically when a visitor wants to print content from a TYPO3 site.

Chapter 6, Creating a Template from Scratch walks readers through building a complete
template from scratch from the HTML and data structure to a finished template with
custom data fields. Up until now, the book has been extending the template that

was automatically generated in the first chapter, but this chapter shows how

to build a custom template from scratch without the assistance of any wizards

or starter templates.

Chapter 7, Customizing the Backend Editing covers the different ways to make the
TYPO3 backend easier to use for editors by customizing the options available and
making the layout and styles match the frontend more closely. It starts by showing
how to customize the text editor to match the design and branding of a TYPO3 site
more by removing unnecessary options and adding styles that match the overall
design. After that, the chapter walks readers through modifying the backend page
layouts with columns and headings to mimic the frontend design of a site.

Chapter 8, Working with Flexible Content Elements introduces one of the most powerful
and useful technologies in TemplaVoila, flexible content elements. Flexible content
elements allow developers to create new content types utilizing the power of
TemplaVoila for specialized purposes such as displaying contact information or
product ads consistently across a site. The chapter explains the main concepts and
walks readers through multiple examples.

[2]

Preface

Chapter 9, Creating a Mobile Website covers everything that you need to know to create
a mobile version of a TYPO3 site. The chapter talks about detecting mobile browsers
and devices using TypoScript, customizing the TypoScript elements for mobile
devices, and creating a separate mobile template. The chapter ends by showing how
to use TypoScript to automatically redirect to a special mobile site when necessary.

Chapter 10, Going International goes through all the steps to make a TYPO3 site run
with multiple languages and localizations and shows why TYPO3 is so ideally suited
to international websites. The chapter covers translating content, creating a menu of
language options, and building special TemplaVoila templates for different languages.

Chapter 11, Building Websites with the TemplaVoila Framework covers the new
TemplaVoila Framework and looks at how it can help developers build sites faster
and with less effort by using a repeatable workflow and common tools. Frameworks,
cleaner coding, and rapid development are all themes that TYPO3 is moving towards
as it develops for the future, and this chapter gives developers a head start by
demonstrating the TemplaVoila Framework.

What you need for this book

In order to get the most out of this book, the reader will need some basic web
development experience and a text editor for HTML and CSS. None of the examples
use difficult HTML or CSS, but a basic understanding of the core concepts is
necessary to build proper TYPO3 templates. In addition, readers will need a new
TYPQO3 installation based on the requirements in Chapter 1, Getting Started to run the
examples in this book.

Who this book is for

If you are a developer, designer, or a site builder who wants to get the most out of
TYPO3, whether you are building multiple websites for clients or optimizing their
company's site, then this book is for you. It is written for new or experienced users at
all levels, but some basic experience with TYPO3 editing and installation is expected.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The first function is includecss, and this
is what it looks like in our TypoScript template setup with multiple CSS files:"

[31]

Preface

A block of code is set as follows:

Main Menu [Begin]
lib.mainMenu = HMENU
lib.mainMenu.entryLevel = 0
lib.mainMenu.wrap = <ul id="menu-area"s|
lib.mainMenu.1l = TMENU
lib.mainMenu.1.NO {
allWrap = <li class="menu-item">|

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

lib.mainMenu.entryLevel = 0
lib.mainMenu.wrap = <ul id="menu-area"s>|
lib.mainMenu.l = TMENU
lib.mainMenu.1l.NO {
allWrap = <li class="menu-item">|

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"You can see the results if we are on the Products page "

[% Warnings or important notes appear in a box like this.]

[Q Tips and tricks appear like this.]

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

[4]

Preface

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Getting Started

I was introduced to TYPO3 in 2006, when I started working at a ministry that was
using static pages exported out of Dreamweaver. As a lazy programmer who strives
for automation, I knew we needed a real content management system. We needed

a full solution that was in Open Source, could grow with us, and allowed quick and
easy template modifications as our goals and design ideas changed. We looked at a
lot of options, but finally settled on TYPO3 after talking to some other developers I
respected. They convinced me it was worth the initial effort of learning a whole new
CMS (Content Management System) to have the customizability and extensibility
that only TYPO3 could offer. I'm happy to say that we rebuilt that site in TYPO3
without ever looking back, but I'm a little embarrassed to admit that it took us years
to learn all the possible customizations and extensions that we could use to change
how templates work for our frontend users and backend editors.

My goal in this book is to show just how easy it is to build powerful, extensible
websites and get you started on that next major website that you're just waiting to
build. We're going to step through creating templates, building menus, updating the
backend, making mobile sites, going international, and more.

Because TYPO3 has become so powerful and modular, there are often more than
a few templating methods that can yield the same results. There are alternative
(and possibly better) methods to many of the templating examples in this book,
but I have tried to choose the easiest or most powerful techniques in each case to
get a site up and running as quickly as possible. If you want to dive deeper into
any particular topic after finishing this book though, I recommend continuing to
learn through the online documentation at http://typo3.org/documentation/
and the other TYPO3 books from Packt Publishing (http://www.packtpub.com/
books?keys=typo3&x=0&y=0).

Getting Started

This first chapter is going to walk you through setting up a test site to experiment
and play with for the rest of the book. Even if you have a site currently running on
TYPO3, I recommend setting up a fresh test site as described. With a test site, we can
all start with a blank template to build on, and I really don't want anyone breaking a
live site when we test different menu systems or internationalization later on.

In this chapter you will:

Learn a little about the history of creating templates in TYPO3
Install a powerful TYPO3 extension for templating called TemplaVoila!
Create a working TYPO3 template from ten lines of HTML

Set up a working page tree with example content and functioning menus

Basic requirements

In order to follow the tutorials in the book, there are a few requirements:

Basic HTML/CSS knowledge: None of the examples use very complex
HTML or CSS, but a basic understanding is necessary to build proper
TYPO3 templates.

Text editor: You won't require any special development software for
this book, but a good text editor is handy for creating HTML templates
and writing code. I use TextMate on a Mac, but e-TextEditor (Windows),
Notepad++ (Windows), BBedit (Mac), or jEdit (Java) all have extensions
for HTML, CSS, JavaScript, and TYPO3's own configuration language,
TypoScript.

Test server: We need a place to run our examples during the tutorial. If

you already have a hosted server that supports MySQL and PHP 5.2 (with
ImageMagick or GraphicsMagick and GDLib/FreeType), you can use that.
This may sound like a lot, but most hosting providers offer this by default.
Otherwise, you can run TYPO3 on your own computer using either XAMPP
(Windows, Linux, or Mac) or MAMP (Mac only). Both of these packages
allow you to run a full test server locally on your machine, and they already
include a web server (Apache), MySQL, and PHP 5.2 (with the necessary
graphics libraries).

[8]

Chapter 1

e TYPOS3 4.4 or higher with the dummy package installed: All of the
examples in the tutorial have been tested on 4.4.2, but they should work
equally well on future versions of TYPO3. You can download the newest
version of the TYPO3 source with a dummy package at http://www.
typo3.org/download/. If you have not installed TYPO3 before, detailed
instructions are available in the TYPO3 documentation library
(http://typo3.org/documentation/document-library/extension-
manuals/doc_inst upgr/current/).

How templates were created

Originally, many TYPO3 templates were built using just TYPO3's own configuration
language, TypoScript. TypoScript is not a traditional programming language; it is
actually a declarative language to configure templates and extensions in TYPO3.

For example, the following TypoScript code will output HELLO WORLD! through
a TYPO3 page. I've added TypoScript comments marked with ## to explain what

is happening:

Create a default page object
page = PAGE
page.typeNum = 0

Create a text object inside the page
page.1l0 = TEXT

Assign some text to the text object
page.10.value = HELLO WORLD!

You could add HTML to change the layout of the page, but it wasn't very intuitive.
The biggest problem, though, was there was no easy way to integrate a whole HTML
template. Designers created HTML files, and then a developer had to translate it all
into TypoScript for the final templates.

Next, we started integrating external HTML files directly into the template process.
Of course, the first step in creating templates was to build an HTML file to define
the basic structure of our pages, and a designer could do this. For example, if we
designed a basic template to show a headline and some content, we start with an
HTML file like this:

< !DOCTYPE HTML>
<html>
<head>
<title>Page Title</title>
</head>

[o]

Getting Started

<body>
<hl>
Header
</hl>
<div>
Content of our new page.
</div>
</body>
</html>

Next, we needed to add markers into the HTML to define sections of dynamic
content in our HTML. The markers were created as HTML comments within the
static HTML document, and we wrapped the sections we wanted to replace with
these identifying markers. The designers or the TYPO3 developers do this step.
In the following example , we identified the document body, main heading, and
a content area:

<!DOCTYPE HTML>

<html>
<head>
<title>Page Title</title>
</heads>
<body>
<!-- ###DOCUMENT BODY### -->
<hl>
<!-- ##H#HEADINGH### -->
Header
<!-- ##H#HEADINGH### -->
</hl>
<div>
<!-- ###CONTENTH### -->
Content of our new page.
<!-- ###CONTENTH### -->
</div>
<!-- ###DOCUMENT BODY### -->
</body>
</html>

Now that the HTML file is ready, we saved it on the £ileadmin/ folder. For

this example, we saved the HTML file in a subdirectory, templates/, as basic_
template.html. That means the path to our file would be fileadmin/templates/
basic template.html.

[10]

Chapter 1

The next step was creating a template in TypoScript to map content into our HTML
template. We will look more at TypoScript templates when we start building our
own example template later in this chapter, so we aren't going to step through the
whole process right now. As an example, though, the following TypoScript code
would be used to call the HTML file. You can find the sections that we wrapped
with markers, and replace the static HTML content.

First, we created a template object and assigned our HTML file to it:

temp.mainTemplate = TEMPLATE

temp.mainTemplate {

template = FILE

template.file = fileadmin/templates/basic template.html

}

Next, we created a page object and assigned the main template to it:

page = PAGE
page.typeNum = 0
page.10 < temp.mainTemplate

After we associated our page with our template, we start working on the HTML
between the DOCUMENT BODY markers in our HTML file:

page.1l0.workOnSubpart = DOCUMENT BODY

Now that we were working inside the DOCUMENT BODY markers, we created text
objects to go between the HEADING and CONTENT markers and assign values to them:

page.10.marks.HEADING = TEXT
page.10.marks.HEADING.value = This is a heading
page.10.marks.CONTENT = TEXT
page.1l0.marks.CONTENT.value = This is our content

Of course, this isn't actually very dynamic as the content is being coded into the
TypoScript template. The next step in the process was to map dynamic content
elements in TYPO3 to the HTML through the TypoScript template. This process was
more complicated and cannot be covered here, but you can learn more about it in the
online tutorial, Modern Template Building (http://typo3.org/documentation/
document—1ibrary/tutorials/doc_tut_templselect/current/)

[11]

Getting Started

Introducing TemplaVoila!

As you can see, this made very large HTML templates that had to be manually
edited for TYPO3. The markers were one more step for designers to learn if they
were moving into TYPO3 development. The TypoScript process also added more
training and complexity for new developers who were trying to pick up TYPO3.
Luckily for us, Kasper Skarhej and Robert Lemke went on to create a new template
extension called TemplaVoila!. This added more flexible page elements to replace
the earlier "columns" that defined sections in TYPO3 pages. It also introduced a
more intuitive backend editing experience and, more importantly, Flexible Content
Elements. Flexible Content Elements allow us to reuse custom blocks of HTML, and
are a key technology in building websites with TYPO3.

In TemplaVoila, the designers or developers create basic HTML templates
without any extra comments or markers. TemplaVoila maps the dynamic content
fields, or Content Elements, we want use in our pages to elements in our HTML
template using a TemplaVoila Template Object. The first time we set up a site with
TemplaVoila, we can run the TemplaVoila Wizard to help us automatically create
the new content fields and map them to our HTML template.

Although not required to build all templates in TYPO3, TemplaVoila is highly
recommended for its flexibility and more advanced templating techniques such

as Flexible Content Elements, backend layout customization, and custom template
fields. For that reason, we will be using TemplaVoila for the tutorial examples
throughout this book.

Installing TemplaVoila

TemplaVoila is a TYPO3 extension, so we can install it through the Extension
Manager in the TYPO3 backend.

If you just installed TYPO3 with the dummy package and finished the setup wizard,
you can get to the backend of TYPO3 at http://<your domains/typo3/ (Where
<your domains represents your own testing domain). If you are using a server
running on your machine with XAMPP or MAMP, then you can probably get to
your site at http://localhost/typo3/.

After we've logged in, we can follow these steps to install TemplaVoila:

1. We are going to use the Extension Manager, so go ahead and click on Ext
Manager in the left frame (marked in the following screenshot with a red 1).

[12]

Chapter 1

2. Select Import Extensions from the drop-down at the top of the main
Extension Manager frame. After the frame refreshes, we will be able to
search for new extensions in the TYPO3 Extension Repository (TER).
The TER is a repository for all of the public extensions or plugins that
developers have created for TYPO3.

3. Before we can search for the TemplaVoila plugin, we need to download the
most current list of available extensions from the TER. Click on the Retrieve/
Update button to start downloading the list. Depending on your Internet
connection, it may take a few minutes to download the updates. When it
is done downloading, the frame will automatically refresh.

4. Now that we have an updated list, we can search for the TemplaVoila
extension. Type templavoila into the search box and click on the Look
up button.

TYPU3‘ & admin logout I W F e

*
v WEB ! | Import extensions ¥ :i

[Page
@ View Extension Manager
i Group by: | Category -C! Show: | Details '3!
@ Info Show obsolete: [}
‘Y Access .)

Ext in TYPO3 Ext p Iy
Functions
ﬂ\lersioning
|:| = - 4 Look up extensions:
iz| Template -

templavoila Look up
T Recycler

Connect to the current mirror and retrieve the current list of available plugins from the TYPO3
¥ FILE 3 Extension Repository.

Filelist Retrieve/Update

v USER TOOLS

0
Task center @ Found a security problem? Please get in touch with us!
Su User settings Pleasg be.aware that 9)(tensic.ns are t.hird-party' sc..ftware. Installing an extension is a
security risk, as the high level of quality and security in the TYPO3 Core can not be assured
Wm’kspace in these extensions.
v ADMIN TOOLS If you think you have found a security issue in TYPO3 or an extension, please contact the

TYPO3 security team! Thank you!
& User Admin

l Ext Manager 1

[DB check PRIVACY NOTICE:
h Configuration When you interact with the online repository, server information may be sent and stored in the
|Z.| I repository for statistics.

Insta
Log N _ R
R s Upload extension file directly (.t3x):

£epo
i5) Scheduler Upload extension file (.t3x):

Choose File) no file selected
v HELP ...to location:

f T
D About TYPO3 Local (../typo3conffext/} vi
[Overwrite any existing extension!

ﬁ About Modules Upload extension file

[@ TvPO3 Manual
TypoScript Help

[13]

Getting Started

5. By searching for the word "templavoila" in the TER, we have found all of
the extensions related to TemplaVoila as well as the official TemplaVoila
extension. Scroll down until you find the official TemplaVoila extension
(circled in the following screenshot) and click on the Import button to
the left of the name.

TYPO3 ® gout|) W & Wm
*
* WEB | Impaort extensions J :i
@ Page [Backend Modules
@ View - TE DAM-Templavoila connector dam_tv_connector 0.1.0
Ltz = . Freesite for TemplaVoila! tvfreesite 0.3.0
@ Info =) [traditional-TemplaVoila eu_tradvoila 0.0.2
9 vy [1'@ TV Flexible Content Wizard templavoila_cw 0.1.0
Functions
ﬂ\a‘ersioning i Frontand
|:| Template 7= TE’% Text Pages for TemplaVoila rss_tv_text 0.1.0
[
T Recycler i
[JFrontend Plugins
¥ FILE =) [Plaintext Library for TemplaVoilal swo_tvplaintext 0.0.2
Filelist - E TemplaVoila Login Box tvloginbox 0.1.1
v USER TOOLS)
[J Miscellaneous
| I -_—
Task center 1] V] Templavoilal templavoila 1.4.4

&} User settings

R E_Tapla\mila BE-Layout "~ me_templavoilalayout 0.1.5

Workspace
¥ ADMIN TOOLS [Jservices
& Usar Admin - m Pdf Generator for TemplaVoila tv_pdfgen 1.1.1
"7l Ext Manager
[J Documentation
[DB check p 5
Template Voila Tutorial German -templavo... doc_tv de 0.0.27
& Caonfiguration v
] tnstall [TemplaVoilaBAutoparser Public Demo&a... tv_ap tutorial 1.0.5
ns
- TemplaVoilaBAutoparser Public Demo®&a... ruvnet tv_ap tut 1.0.0
Log =
Reports

(4} Scheduler

@ Found a security problem? Please get in touch with us!
Please be aware that extensions are third-party software. Installing an
extension is a security risk, as the high level of quality and security in the
TYPO3 Core can not be assured in these extensions.

v HELP
[] About TYPO3
ﬁ About Modules
[TvrPO3 Manual
TypoScript Help

If you think you have found a security issue in TYPO3 or an extension, please
contact the TYPO3 security team! Thank you!

[14]

Chapter 1

6. Once we click on the Import button, the extension is downloaded and
imported into our list of available extensions. To install it, click on the
Install extension button at the bottom of the frame.

7. The Extension Manager will show you a list of the database changes that it
needs to make to install TemplaVoila. Click on the Make updates button on
the bottom of the page.

8. TemplaVoila is now installed. The final page will show us a list of features
that we can enable, but none of them are necessary for our example site. Now
that TemplaVoila is installed, we can see an updated Page icon and a new

TemplaVoila button in the left frame as shown in the following screenshot:

& admin Logout 1Dy W & |'J e

=

v WEBE | Information | !
@ View @ The extension "templavoila’ has been installed.
List
@ nfo Extension Manager
ﬁ Access Extension: @empla\fﬂilal (templavoila)
Functions
Current status:
ﬂ\.fersmmng
15| Template The extension is installed (loaded and r ing)!
SR] Click here to remove the extension: (3
ecycler
"B Templavaila Configuration:
» FILE

» USER TOOLS

v ADMIN TOOLS
‘E‘ User Admin
| Ext Manager
& DB check
[Z, configuration
[=] nstall
Log
Reports
@ Scheduler

¥+ HELP
[7] About TYPO3
ﬁ About Modules
[@ TYPO3 Manual
TypoScript Help

(Notice: You may need to clear the cache after the configuration of the extension. This is required if the
extension adds TypoScript depending on these settings.)

Category: | BASIC (3) I :!

Enable features
Enable the classic Page dule [enable.oldPageModule]
Check this box to enable classic Page module in the list of modules.
(=

Enable data structure selection [enable.selectDataSource]

If this checkbox is checked, page and content elements will have data structure selector as they had in
older TemplaVoila versions. If current installation has very few template objects, it is recommended to
have this checkbox unchecked.

(=

Enable Header for FCE's [enable.renderFCEHeader]

If this checkbox is checked the header of Content Element type FCE will be rendered like headers of
other Content Elerments.

(=

[15]

Getting Started

Creating a basic HTML template

Now that we have TemplaVoila installed, we are almost ready to go through the
wizard and create our first TYPO3 pages. First, we need to create a basic HTML
template. In other content management systems, you don't often start by creating a
template from scratch; normally you would just find an existing one that you liked
enough, and then you would edit the CSS and HTML to make it match your vision.
TYPO3 allows us much more flexibility and freedom by making it easy to create our
own templates from scratch or use the HTML/CSS files from our designers.

Now we're going to create a basic HTML template to get started. As we'll be doing
all of our design work in CSS and TYPO3, we just need a "barebones" template that
gives us areas to map our content and menus. Normally, we would get the HTML
and CSS files at the same time from our web designers, but we are going to wait
until the next chapter to integrate the CSS design. Here is the code for our

HTML template:

<html>

<head>
<meta charset="utf-8" />

</heads>

<body>
<ul id="menu-area">

<li class="menu-item">Menu Item #l</1li>

</uls>

<ul id="submenu-area">
<li class="submenu-item">Submenu Item #l
</uls>
<div id="content">This is our content</divs>
</body>
</html>

We've already said that TemplaVoila doesn't need any extra markup or comments,
but we do have some requirements. As TemplaVoila is mapping TYPO3 content to
our HTML elements, all of the HTML code must be completely valid with beginning
and end tags. In addition, there are certain kinds of tags that we need:

[16]

Chapter 1

<html>
<head>
<meta charset="utf-8" />
</head>
<body>
<ul id="menu-area">
<1i class="menu-item">Menu Item #1</1i>

<ul id="submenu-area">
<li class="submenu-item"”>Submenu Item #l

<div id="content">This is our content</div>
</body>
</html>

The root tag

All TemplaVoila template objects must have a "root" tag as an overall container for
mapping. This can be any kind of enclosing tag; if we only wanted to use one section
of a larger template, for example, we could use a div section. For this example,
though, we are using the entire body of the HTML template, so we need body tags.

The menu area

We also need a container for the menu and the submenu sections, so we have added
list tags for both menus with unique ID attributes or menu-area and submenu-area.
These will serve as the containers for our dynamic menus, which will be filled in
later through TypoScript.

The content section

Finally, we have our content section that will be used to display the actual TYPO3
page content that we care about. For more complex templates, we would probably
have more than one content section, but one container is a good place to start, and is
all we need for the wizard.

Now that we have created our basic HTML template, we need to save it where
TemplaVoila will find it. In order for TemplaVoila to find our template without
problems, we must create a directory named templates under the fileadmin/
directory of your new TYPO3 installation. Once you have created the directory,
save a copy of our new HTML template in it as template.html. The name is not
required to be template.html, but throughout this tutorial it will be referred to
as such.

[17]

Getting Started

Creating your first template with the
TemplaVoila Wizard

Now that TYPO3 is setup, TemplaVoila is installed, and we have an HTML template
to start with, we can run the magical TemplaVoila Wizard to create a whole site in
just a couple of mouse clicks. I know this section has a lot of pages for a couple of
mouse-clicks, but it's important to understand what we're clicking on this for the
first time.

If you log in to the backend of TYPO3 right now, you will see we have a website with
absolutely no pages. When we go through the wizard, it will perform three tasks:

e Map dynamic content areas to our HTML template

e Generate some basic TypoScript for our menus

e Create sample content to test our new template

We are ready to start, so go ahead and choose the TemplaVoila module in the
left frame to enter the New site wizard as shown in the following screenshot:

TYPO3 ® & admin (oot I W F &

New site wizard
* WEB
If you want to start a new website based on the TemplaVeila template

B Page ; engine you can start this wizard which will set up all the boring initial
V¥ Awesome Site stuff for you.

e You will be taken through these steps:
El List - Creation of a new website root, storage folder, sample pages.
@ Info - Creation of the main TemplaVeila template, including mapping of onel
content area and a main menu.
:] Access - Creation of a backend user and group to manage only that website.
Functions You should prepare an HTML template before you begin the wizard;
Versinning simply make a design in HTML and place the HTML file including
— graphics and stylesheets in a subfolder of "fileadmin/templates"
o5 Template relative to the websites root directory.
C:-E—T:mpla\ro;;__:) Tip about menus: If you include a main menu in the template, try to
—— ——— place the whole menu inside a container (like <div>, <table> or <tr=)
» FILE and encapsulate each menu item in a block tag (like <tr=, <td> or
4 =<div=). Use A-tags for the links. If you want different designs for
» USER TOOLS normal and active menu elements, design the first menu item as
"Active" and the second (and rest) as "Mormal”, then the wizard might
» ADMIN TOOLS be able to capture the right configuration.
Tip about stylesheets: The content elements frem TYPO3 will be
» HELP outputted in regular HTML tags like <p=, <hl> to <h6>, <ol= etc. You|

will prepare yourself well if your stylesheet in the HTML template
provides good styles for these standard elements from the start. Then
you will have less finetuning to do later.

Start wizard now!

L+

[18]

Chapter 1

Selecting the HTML template

The first thing we need to do is select our HTML template. As we only have one
HTML file in the fileadmin/templates/ directory, the only choice will be our
new file, template.html. Click on [Choose as Template].

TYPU3‘ & admin logout I W F KBE

- @ Step 1: Select the template HTML file

v WEB
. The first step is to select the HTML file you want to base the new website design on. Below
Page N you see a list of HTML files found in the folder "fileadmin/templates/". Click the "Preview"-
@ View * Awesome Site link to see what the file looks like and when the right template is found, just click the
"Choose as template-link in order to proceed.
List 1f the list of files is empty you must now copy the HTML file you want to use as a template
@ Info into the template folder. When you have done that, press the refresh button to refresh the

list.

3 Access Pahs Usge
Functions fileadmin/templates/template.htm| Used 1 times [Preview first]{Choose as Template]>

2
[l versioning

1] Template

& receer

+B1 Tem plaVoila

e
» FILE

» USER TOOLS

» ADMIN TOOLS

» HELP

Configuring the new site

Once we click on Start wizard now! we are looking at a screen where we can set
basic information for our website. The name of our website is required to establish

a unique name for our website, but the URL of the website is not required. Running
the wizard will create a new editor in the backend, so the username field is required.
In the example below, I have named this user editor. The values that we fill in here
are used to start adding content to the database, set our URL in TypoScript, and
create a new user, but all of these settings can be easily changed later if necessary.
Once you've filled in required information, click on Create new site.

Next, you should enter default values for the new website. With this basic set
of information we are ready to create the initial website structure!

Name of the site:

(Required)

This value is shown in the browsers title bar and will be the default name of
the first page in the page tree.

Awesome Site

URL of the website:

(Optional)

If you know the URL of the website already please enter it here, eg.
"www.mydomain.com".

Editor username:

(Required)

Enter the username of a new backend user/group who will be able to edit the
pages on the new website. (Password will be "password" by default, make sure|

to change that!

editor

Create new site

[19]

Getting Started

Mapping the template

The screenshot that we just saw is just an introduction screen for the wizard with an
animation to explain the mapping process. Click on the Start the mapping process
button near the bottom of the page.

Now that we are starting the mapping process, we are presented with the default
TemplaVoila editing pages. Make sure you are on the Mapping tab.

TemplaVoila
[1] Go back

Template Mapping

Information Header Parts Mapping

Data Structure to be mapped to HTML template:

ROOT Select the HTML element an the page & EET inner |Re-Map | G Model body
which you want to be the overall container

element for the template.

Main Content Area Pick the HTML element in the template Map table:outer
where you want to place the main content td:inner
of the site. div:inner
! P
h1
h2
h3
h4
hS
Main menu Pick the HTML container element where Map table:inner
you want the automatically made menu ul
items to be placed. div
tr
td
Sub menu (if any) Pick the HTML container element where Map table:inner
you want the automatically made ul
submenu items to be placed. div

tr
td

I Clear all " Preview " Save " Save and Return " Rever‘tl

.i)The current mapping information is different from the mapping information in the Template Object

This page is the heart of TemplaVoila mapping. You'll notice that this page has
five columns, and understanding them now will introduce you to some of the
TemplaVoila concepts, and will save you from frustration later on.

[20]

Chapter 1

Data elements

Each template field is referred to as a Data Element in the mapping section of
TemplaVoila. Basically, every template section that will be replaced with TYPO3 data
(menus, content elements, and so on) is considered a data element in our template.
Each template in TemplaVoila uses a special Data Structure object to define all of

the data elements such as Main Content Area or Main menu that will be available
for mapping. When we are creating TemplaVoila templates from scratch, we must
define data elements by creating a data structure. We are going to be editing data
structures to add our own data elements in Chapter 3. This first time, though, we are
going to use the data structure from the wizard because it already includes all the
data elements we need.

Mapping instructions

The next column, Mapping Instructions, is a simple text area for notes in the data
structure. The mapping instructions are not binding, but they are used as plain
instructions from the creators of the data structure (the TemplaVoila creators, in this
case) to the template object mappers (that is you and me, the users of the wizard).
We can see, for example, that the default Data Structure includes instructions to map
the Main menu element to ...the HTML container element where you want the
automatically made menu items to be placed.

HTML-path

Once we have mapped an element, the mapped tag will show up in the HTML-path
column along with the mode, as we saw with the root data element discussed earlier.
The "mode" of a data element refers to inner and outer mapping. If a data element

is mapped with INNER selected, then the HTML tag from the template will remain
untouched, and the TYPO3 content will go inside it. In OUTER mode, the tag will be
replaced by the TYPO3 content. We don't need to worry about changing the mode
yet, but it can be handy in special circumstances when we want TYPO3 to add in its
own tag and class information.

Action

The action column simply holds the buttons for mapping, re-mapping, and changing
the mode of a data element.

[21]

Getting Started

Mapping rules

The rules, as the name implies, are the technical restrictions or allowances that the
data template creators have written into the structure. In this first template, the
rules will only allow the root data element to be mapped to a body tag, but they
allow any of the other data elements to be mapped to almost any container tag.
The main content area can even be mapped to paragraph and header tags, if we so
desire. As an example, TemplaVoila will not allow us to choose a span tag in the
mapping windows for the main content area, because it is not allowed in the set of
rules. As developers, we will normally allow mapping to most HTML containers like
the example discussed earlier, but it can be helpful to be more restrictive to avoid
unintended mappings.

Starting to map

Now that we understand what's possible on the mapping page, we can start
mapping the elements. We're going to map the main content area first, so go ahead
and click on the Map button in the main content area row. This will take us to the
mapping screen, and we can choose an editing mode from the Mapping Window
drop-down. Mode: Exploded Visual will show the rendered view of the template
with clickable areas for mapping, or we can choose Mode: HTML Source to navigate
through the HTML source code. For our purposes, we can map in the exploded
visual mode. To map the correct content tag, we'll just click on the div button with
the content ID (circled in the following screenshot). If we hover over the div button,
we can see the class, ID, and full path so we can identify it better:

Mapping Window:

| Mode: Exploded Visual | :i

TABLE TD,DIV,P,H1,H2,H3,H4,H5

Pick the HTML element in the template where you want to place the main
content of the site.

o Menu ltem #1

o Submenu Item #1

<div>
This is our content
"‘\in#cantent - ID="content"
'-.__‘_‘_‘_‘_‘_‘_ _._,_,_.-'-"'-’

[22]

Chapter 1

After we have chosen the mapping target, the next page prompts us to specify
whether we are using INNER or OUTER mapping before we set the changes in the
database. We will choose the default INNER mapping from drop-down in the action
column because we do not want the div to be replaced with TYPO3 content; we want
our TYPO3 content to go inside of the div tag. If we chose OUTER mapping, then
the generated TYPO3 content would replace the div tags instead of just the content
inside the tags. Now we can click on Set to save our mapping to the database, and
the wizard will take us back to the main mapping section.

TemplaVoila
[4] Go back

Template Mapping

Information Header Parts Mapping

Data Structure to be mapped to HTML template:

Main Content Area Pick the HTML element in the template where o <div> INNER <div> table:outer

you want to place the main content of the site. [INNER (Exclude tag) |+ td:inner
div:inner
:

h1
h2
A h3
ha
hs

I Clear all II Preview I Save I Save and Return I

We've now successfully mapped our first element! I'll give you a minute to celebrate,
because you deserve it. You now officially have all the skills you need to complete
the rest of this section, and I'll just be here with a little bit of guidance.

Mapping the rest of our elements

Our next step is mapping the main menu, and it will work exactly as you'd expect.
Go ahead and click on the Map button in the Main Menu row of the mapping page.
We are going to choose the tag with the ID menu-area for the main menu, and
choose the inner mapping mode. Remember to click on Set at the end to save your
changes. For the sub menu, go ahead and repeat the same steps with the submenu
element and the list tag with the ID submenu-area.

You'll notice that we have five buttons on the bottom of our mapping page that we
can use while we are mapping our template:

e Clear all will clear all of the mappings in the current template. This is helpful
if we just need to start over.

e Preview will show us a preview of our template as it is currently mapped
with unique example content to show the data elements.

[23]

Getting Started

e Save will save our current mapping.

e Save and Return will save our current mapping and return us to the list of
templates. If we are running the TemplaVoila Wizard, it will take us to the
next step in the wizard process.

e Revert will revert all of our changes since the last save.

Now that we have mapped our basic elements, go ahead and click on the Save and
Return button at the bottom of the page.

Header parts

Once you click on Save and Return, we are taken to the next step in the wizard
where we are told about mapping the HTML header parts for our template.
TemplaVoila allows us to select portions of our HTML template header area to

be included in the final TYPO3 output. This is helpful if we want to map CSS or
JavaScript directly in the HTML. Any part of the header that we do not choose
during this process will be ignored by TYPO3 when it renders our page. Right now,
we don't have any special information in our header, so we are going to uncheck all
of the boxes and click on Set. Once we've clicked on Set, TYPO3 will remember our
choice, and we can click on Save and Return without losing information. If we do
not click on Set, then TYPO3 will not remember what we checked and unchecked,
so it will revert to the default, or what was last set.

TemplaVoila
[«] Go back

Template Mapping

Information Header Parts Mapping

Adding parts from HTML header: .

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

N I o ——

'+, Do not forget to press "Set" if header parts are changed!

I-Clear all II Save II Save and Return I

[24]

Chapter 1

Creating the main menu

After we save, the wizard is ready to start creating our menus. TemplaVoila analyzes
the HTML template we have mapped to give us good default TypoScript code

for our main menu. Just to make sure it is correct, it will show us what it plans to
create on the next screen, as shown in the following code snippet. If the wizard has
evaluated our template correctly, the default TypoScript should look like this:

lib.mainMenu = HMENU
lib.mainMenu.entryLevel = 0
lib.mainMenu.wrap = <ul id="menu-area"s|
lib.mainMenu.1l = TMENU
lib.mainMenu.1l.NO {
allWrap = <1li class="menu-item">|

}

If you have worked with TypoScript before, this code will probably be familiar
to you as the basic code for all menus when you are first learning. If you don't
understand the menu code yet, don't worry. We will learn how to create menus
with TypoScript in Chapter 4:

lib.mainMenu = HMENU
lib.mainMenu.entryLevel = 0
lib.mainMenu.wrap = <ul id="menu-area"s|
lib.mainMenu.1l = TMENU
lib.mainMenu.1l.NO {
allWrap = <li class="menu-item">|

}

Go ahead and click on the Write main menu TypoScript code button.

Creating the submenu

Next will be to create the submenus for our site. The TypoScript will be almost
exactly the same, except we will be using an object called subMenu and we are
going to set the entry level to 1. Here is what the default code should look like:

lib.subMenu = HMENU
lib.subMenu.entryLevel = 1
lib.subMenu.wrap = <ul id="submenu-area"s|</uls>
lib.subMenu.l = TMENU
lib.subMenu.1.NO {
allWrap = <li class="submenu-item">|

}

[25]

Getting Started

Click on the Write sub menu TypoScript code button at the bottom of the page.
Once you have chosen to write the code, the next page will only have one final
button to click that says Finish Wizard!

Testing the finished template

After we click that button, it will save all of our changes and load the new TYPO3
site that was created when we started the TempaVoila Wizard. We're done, and we
should all be looking at a page that at least somewhat resembles the example shown
in the following screenshot:

Products

Content Elements
Visions

About Us
Contact

. 8 8 8

Nulla porta mollis sapien

Lorem ipsum dolor sit amet. Quisque orci sapien,
pretium placerat, sagittis ut, eleifend eu, sapien. Quisque
vehicula, wisi nec ullamcorper imperdiet, nibh metus
ultrices arcu, pharetra varius risus diam sit amet nibh.
Sed adipiscing, purus eu vulputate aliquam, sapien ante
condimentum turpis, at molestie arcu ante sit amet
lectus. Sed ante neque, porta at, congue vel, tristique
gravida, dui. Sed elit purus, ullamcorper a, tempor nec,
laoreet eu, dolor.

Nulla urna purus, lobortis sed, adipiscing et, ornare sed.
sapien. Nullam accumsan, ligula facilisis consectetuer
iaculis, libero eros ultrices sapien, in elementum est
sapien id justo. Nullam cursus, erat sed tempus
convallis, erat eros laculis eros, non consequat ante mi
in turpis. Nullam dictum, velit nec luctus consequat,
felis ante egestas lectus, nec viverra wisi arcu vel leo.
Nullam eleifend. elit ac faucibus pretium, wisi magna
suscipit lorem, ut viverra est dui vitae wisi.

Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere
cubilia Curae: Duis mauris sapien, iaculis
et, interdum non, ultricies ac, erat.

The page tree

The TemplaVoila Wizard helped us create our first template, but it also generated

a TYPO3 page tree full of content. All of the websites and pages in a TYPO3
installation are organized into a single page tree that we can navigate in the middle
frame of the backend. Each website has a single root page where the main template
is created; the root page of our new site is called Awesome Site. The rest of the pages
in our website are organized beneath the root page. All of the subpages directly

[26]

Chapter 1

beneath our root page (Products, Content Elements, Visions, and so on) are at level
0 of our page tree, and they will show up in the main menu. As we go deeper in the
page tree, the level number increases. The pages under Content Elements (Headers,
Text, and so on) are on level 1, and they will show up in our submenu when we are
on Content Elements or any of its subpages. Any subpages to those pages on level 1
are on level 2, and it can keep branching off as much as we want. This is our

page tree:

EY ol
v WEB
B Page
) W Awesome Site
& View])
‘FD Awesome Site
List = [Products
@ Info v-[] Content Elements
fl e D Headers
< Access | B Text
Functions | e [Bulletlists
ﬁ‘u‘ersioning """ L] Tables
. VD Forms
[om| Template - o[Thank you!
T Recycler VD Search
B TemplaVoila -0 $earch result
----- D Login
»FILE @ Login - protected page
----- D Menu/Sitemap
» USERTODLE = | e [Frames and spacing
----- I UsERS
» ADMINTODLS = | i D st
sHELP | D About Us
YD Contact
----- [l Brochures for Download
[Order material
----- [[3storage Folder

If something didn't work right

Of course, I ran through this example multiple times before writing this, and oddly
kept running into a broken page at the end of the wizard. If this happens to you too,
don't worry. We are about to fix any problems that the wizard caused right now.

[27]

Getting Started

If the wizard did not assign our new template to the main page correctly, you may be
confronted with this:

TemplaVoila ERROR:

Couldn't find a Data Structure set for table/row "pages:23".
Please select a Data Structure and Template Object first.

If this happens, it's still an easy problem to fix. This output on the frontend means
that the wizard didn't assign our template to the main page. So, in the backend,
select Web | Page in the far-left menu bar and then, in the page-tree, right-click
on our main page and choose Edit from the pop-up menu, as shown in the
following screenshot:

TYPU3‘ & admin | Logout 15 W & aw" L%

Versioning Non-used Advanced
v WEB elements functions
B Page .
) V¥ Awesome Site ¢’ i, Awesome Site
@ View H 5
VD Assrasnna Cika
List " Show [@
E . What is the TemplaVoild page module?
@ Info " Edit [
ihl Access New I} o
- Inf
Functions [e @
| Co
\.I'ersinning Y IE‘
— I Cut -4
Template
l) R Versioning =2
ﬁ Recycler Send to review/pub Bl
B Templavoila More options...
Hide) ‘
» FILE <
Visibility settings G
» USER TOOLS Edit page properties [
» ADMIN TOOLS Delete T
History/Undo 2
» HELP v/
View: Flexform XML 7™

In the edit form just open up the last tab at the top that is labeled Extended. The top
section is labeled Use Template Design: and we are going to choose Main Template,
which is the template we just mapped, from the drop-down list. Once you choose the
template, click on the disk icon to save your update.

[28]

Chapter 1

TYPO3 ®

v WEB
B page
@ View
List
@ Info
Y Access
Functions
Versmmng
1] Template
i Recycler
'B Templavaila
» FILE
» USER TOOLS
» ADMIN TOOLS

» HELP

¥ Awesome Site

v [] Awesome site

[Products

& admin Logout| 15 W ¥ BB

Path: /[) Awesome Site [23]

Edit Page "Awesome Site"

General Metadata Resources Options Access
»-[] content Elements I I
L[visions
] About Us Main Template
+-[A Contact N/ Main Template [Template]

*-[IJ storage Folder

Subpages - Use Template Design:

| Main Template [Template] -:]

Content:

Data Structure ERROR: Mo source value in fieldname "tx_templavoila_ds"

] show secondary options (palettes)

Extended

[} Page [23]

Adding content to our front page

Now that we have our template, we can add some content to our front page. If the
wizard already added example content, then you can skip the rest of this section.

As editors, we will use the TemplaVoila Page view to add elements that are mapped
in the current template. TypoScript was used to create the main menu and sub
menus, so they are not visible in the Page view. The only mapped data element that
we can currently add content to in our template is the Main Content Area, but we
will add more content areas in later chapters that will show up in the Page view.

1. Toadd a content element, select Web | Page button in the far-left menu bar
and then select (that is click on the page title of) the main page for our site in
the page tree. You will see an edit form similar to the following screenshot.

2. Click on the Create new element button in the Main Content Area.

TYPO3 ®

v WEB
B Page
@& View
List
@ 1nfo
| Access
Functions
Versioning
1] Template
T Recycler
B TemplaVoila
» FILE
» USER TOOLS
» ADMIN TOOLS

» HELP

¥ Awesome Site

v [] Awesome site
[Products
»-[] Content Elements
[visions
=[] About Us
» [contact
*-(9 Storage Folder

& admin Logout [EEJ * ‘ n|'4 L}

Wersioning Non-used Advanced
elements functions

H 2 1 Awesome Site
Main Content Area

What is the TemplaVoila page module?

[29]

Getting Started

3. Next, select Regular text element as the type of content that we want to
create. If you would like to include an image, select Text with image.

& admin Logout IZ W & mlk

B 2 New content element

¥ WEB Awesome Site

B Page

P V¥ Awesome Site 1: Select type of content element:

VD Awesome Site
List [Products Please select which kind of page content you wish to
@ Info »-[] Content Elements create:
D Visions

s D avoutis Tycalpagecontent |

Functions »[] Contact — e

ﬂ R o[Storage Folder Regular text element >

— A regular text element with header and bodytext

|om| Template k—FEES_ - —

T Recycler ﬁ Text with image

Any number of images wrapped right around a
B Templavoila regular text element.
" Images onl
RAEEE E An::umber‘;f images aligned in columns and rows
» USER TOOLS with & caption.
E Bullet list
A single bullet list.

» ADMIN TOOLS
s Table
» HELP A simple table.

4. Use the edit form to add a header and some content to your new content
element and save your changes.

Edit Pagecontent on page "Awesome Site"

General Text Access
Text:
Block style:
Text style:
B 7 % X Noblock format vz =

Bisdiowi9
i

Rapidiously recaptiualize dynamic e-services after diverse “outside the box” thinking.
Monotonectally aggregate client-focused portals rather than optimal intellectual capital.
Efficiently drive equity invested e-commerce rather than state of the art e-services.

Professionally redefine web-enabled functionalities and 2.0 strategic theme areas.
Monotonectally orchestrate stand-alone supply chains and enterprise-wide synergy.
Globally fashion frictionless e-commerce before ethical leadership skills.

Rapidiously deploy error-free materials before integrated materials. Phosfluorescently
conceptualize parallel intellectual capital via efficient initiatives. Proactively network
multidisciplinary leadership and distributed web-readiness.

Intrinsicly productivate client-based applications via stand-alone total linkage. .
Compellingly enhance mission-critical e-commerce after distributed value. Uniguely "
facilitate proactive resources vis-a-vis interdependent opportunities. v

Fath: body
“

Disable Rich Text Editor:
.

E] Pagecontent [93]

[30]

Chapter 1

After you've saved your new content element, you can see it in the TemplaVoila
Page view and the frontend of your TYPO3 site:

TYPUS‘ & admin lLogout| I W F BE

Versioning Mon-used elements Advanced functions
* WEB
Bl Page |H & <, Awesome Site
@ View ‘:'Awescme Site Main Content Area
v D Awesome Site
List [Praducts i :
@ Info : D Content Elements : Rapidiously recaptiualize dynamic e-services after... ykélﬂ FE] ;ﬁga :
B a D Visions . [Text: Rapidiously recaptivalize dynamic e-services after diverse &gquot;outside the :
:1 CORSS D About Us ! [box" thinking. Monotonectally aggregate client-focused portals rather than
& Functions pD Contact : optimal intellectual capital. Efficiently drive equity invested e-commerce rather than :
VEI’S\Dnm | Storage Folder B state_of th_e_ art E-SEI"\'ICES.B«HI?SD; Professionally redefine web-enabled i
m g i functionalities and 2.0 strategic theme areas. Monotonectally orchestrate stand-

| lalone supply chains and enterprise-wide synergy. Globally fashion frictionless e-
E commerce before ethical leadership skills. Rapidiously deploy error-free
ﬁ' Recycler) |materials before integrated materials. Phosfluorescently conceptualize parallel
B TemplaVoila : intellectual capital via efficient initiatives. Proactively network multidisciplinary

: [eadership and distributed web-readiness. Intrinsicly productivate client-
i [pased applications via stand-alone total linkage. Compellingly enhance mission-

|ic] Template

» FILE

| lcritical e-commerce after distributed value. Uniquely facilitate proactive resources
i is-a-vis interdependent opportunities. Completely engineer premier

! [communities via covalent opportunities. Phosfluorescently streamline end-to-end
E quality vectors through economically sound processes.

» USER TOOLS

» ADMIN TOOLS

» HELP

What is the TemplaVoild page module?

]

Summary

Congratulations, you have a site! Okay, I know it's ugly right now, but we'll make it
pretty soon enough. Right now, you just need to appreciate how far along you are.
After learning about the history of TYPO3 templates, we have already created our
tirst template in TemplaVoila and started adding content to our pages.

Our site has nothing to show our clients or bosses yet, but we can finally move on

to the reason you bought this book: modifying templates. So, go ahead and get some
coffee and congratulate yourself a little more, but hurry back. In the next chapter,
we're going to start using CSS to update the look of our templates. We'll look at
how we can dynamically call our stylesheets using TypoScript. Then, we can look

at ways we can use our template and TYPO3's built-in markup to style our menus
and specific sections of content.

[31]

Enhancing your Template
with CSS

Okay, now that we have a basic site, we can lean back, look at our screens, and admit
that we don't have anything to brag to our clients about yet. You paid for a book
about customizing your templates, and so far we've just created an ugly dummy site
with no customizations. Now that we've moved through the initial setup and have

a running site, we can integrate our cascading stylesheets (CSS) into our website.
More importantly, we are going to cover some of the CSS techniques that are specific
to TYPO3. We're going to learn how to add our stylesheets in a number of different
ways and look at the default styles in TYPO3 we can customize.

In this chapter you will:

e Learn all four ways to add a stylesheet in TYPO3 and their advantages
and disadvantages

e Learn about the extra markup TYPO3 creates to help CSS developers
and how to remove it

Creating a basic stylesheet

Most of the time we will be given the HTML and CSS files for a website at the same
time, so we can just place them both in the fileadmin/templates/ directory before
we run the TemplaVoila Wizard. To avoid information overload, we are handling
the HTML template and CSS as two different steps. We've already added the HTML
template to TYPO3, so now we just need to add our CSS files.

Enhancing your Template with CSS

We are going to be adding more HTML template files to our site later in this tutorial,
so we will create a css/ directory inside the fileadmin/templates/ directory just
to keep our files organized. If you have CSS files ready, copy them to the fileadmin/
templates/css/ directory now. You can use any filenames that you like, but for the
rest of this tutorial the main stylesheet will be referred to as style.css. If you don't
have a CSS file ready, you can look at my file below which includes some browser
reset rules from Eric Meyer (http://meyerweb.com/eric/tools/css/reset/),
basic styling, and code for cleaner menus.

The first thing that I did was reset the default browser styling using some of Eric
Meyer's CSS:

/* @group Reset Styling */

html, body, div, span, applet, object, iframe,
hi, h2, h3, h4, h5, hé6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, g, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, 1i,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {
margin: 0;
padding: 0;
border: 0;
outline: 0;
font-size: 100%;
vertical-align: baseline;
background: transparent;

blockguote, g {
quotes: none;

blockguote:before, blockquote:after,
g:before, g:after {
content: '';

content: none;

:focus
outline: 0;

[34]

Chapter 2

ins {
text-decoration: none;

del {
text-decoration: line-through;

table {
border-collapse: collapse;
border-spacing: 0;

/* @end Reset Styling */
Next, we need to include some base styling for the main HTML tags:

/* @group Base Styling */

body {

font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;

font-size: 16px;

line-height: 18px;

margin: 20px;

}

p, ul, div {

color: #333;

font-size: 16px;
line-height: 18px;

}

hi {
font-size: 30px;
line-height: 36px;
margin-bottom: 18px;
font-weight: 200;
font-variant: small-caps;

h2 {
margin-bottom: 24px;
line-height: 30px;
font-size: 18px;

h3 {

[35]

Enhancing your Template with CSS

font-size: 20px;
line-height: 24px;

}

h4, h5, he {
font-size: 18px;
line-height: 24px;

}

ul, ol {
margin: Opx Opx 18px 18px;

}

ul
list-style-type: circle;

}

ol {
list-style: decimal;

}

td {
padding: 5px;

}

:1link, :visited {
font-weight: bold;
text-decoration: none;
color: #036;

/* @end Base Styling */

Finally, my CSS file has some basic menu styling to clean up the navigation at the top
of our page:

/* @group Menu Styling */

ul#menu-area 1i, ul#submenu-area 1i
list-style-type: none;
display: inline;
margin-right: 20px;

ul#menu-area {
border-bottom: 2px solid #666;
margin-bottom: 2px;

ul#submenu-area
margin: Opx Opx 20px 50px;

[36]

Chapter 2

}

li.menu-item a {
font-size: 24px;
line-height: 24px

}

1i.menu-item a, li.submenu-item a {
color: #666;
font-weight: normal;
font-variant: small-caps;

}

/* @end Menu Styling */

Including stylesheets in TYPO3

There are almost half a dozen radically different methods to do anything in TYPO3,
and CSS is no exception. TYPO3 has exactly four documented methods for including
stylesheet links in templates:

¢ Adding headers from the HTML template during the TemplaVoila Wizard
® page.stylesheet
® page.includeCSS

® Page.headerData

Now, before you get too worried, let me ask you to go ahead and set your mind at
ease. We are only going to end up using one method for our main template. In fact,
I will cut the suspense and tell you right now that, like all good step-by-step books,
we're going to use the fourth and final option. However, it's still important that you
are aware of how the others work for a few reasons.

First, we'll hear all about these methods in TYPO3 documentation, forums, and other
discussions. If we don't have at least a basic understanding of all four functions, each
one will seem like a brand new technique when somebody mentions them online or
at a conference. We won't know why we're using page . headerbata in our code, and
we'll have to spend time trying each one out as it comes up.

Second, learning the stylesheet methods is a step-by-step process. Each of these
methods is successively more powerful or cleaner, and we'll appreciate headerData
so much more after we see how all of the methods work.

[37]

Enhancing your Template with CSS

We have different needs for all of our templates and websites. Just because including
the CSS in our TemplaVoila headers is not the most dynamic approach for our main
template, doesn't mean that we don't want to use it for a subtemplate or specialized
section of one of our websites.

Finally, some of this is subjective. Just because we're going to use the headerData
function for the rest of this book doesn't mean you won't decide later on that I was
wrong. If you decide to use page . includecss for all of your sites one day, this will
still be a good reference.

What you need for your main stylesheet

Before we look at the four options for including CSS, we need to define what we
need when we include the main stylesheet for our website:

e Multiple CSS files: We need to be able to include multiple CSS files in the
same page. At the very least, we will need the ability to include our main
stylesheet and a print stylesheet.

¢ Conditional CSS: We will need to be able to target browsers or mobile
devices with specific CSS. If you have ever made a complex design work
in multiple browsers, you know that we sometimes need to create a special
stylesheet for Internet Explorer or Opera.

e Order: When we are using multiple CSS files, it is very important for us to be
able to define the order in which they are included because it is common that
one file may override some styles in another file. Managing these overrides is
an essential part of CSS development.

e Extensibility: We need the ability to include a different stylesheet on a page
or section of pages without remapping our template or creating a new HTML
file. If we want to change the look of one page, we don't have to go through
all the steps of creating a new TemplaVoila template.

e Stability: We need a solution that will be stable for the rest of our site. This
means that it obviously can't be fragile enough to break on its own, but it also
means that it shouldn't add any extra steps to the normal maintenance of our
site that makes it more prone to breaking.

Adding CSS with the TemplaVoila Wizard

When we mapped our template in TemplaVoila, we were given the option to include
any headers that we required while including stylesheet and JavaScript declarations.
Including the CSS in our TemplaVoila mapping can be a quick way to include our
CSS by using the headers from our HTML template, but it does not fulfill our needs.

[38]

Chapter 2

We can include multiple CSS files and set their order in the HTML header, but here
are some disadvantages:

e We don't have very powerful options to conditionally include CSS for
specific browsers.

e It's not extensible because we can't include a different CSS file on one page
without mapping a new TemplaVoila template.

e Finally, it is our least stable option because we have added a new step to the
mapping process anytime that a TemplaVoila template is created or edited.
We will need to update the mapping of our TemplaVoila template at some
point, and we don't want to lose all of our styling because we forgot to check
one box in the wizard. I did this when we were first using TYPO3 on a live
site, and trying to figure out why half my site was completely broken was
one of the most panicked moments I've had as developer.

Including CSS with page.stylesheet

The second method is using the TypoScript object page . stylesheet to dynamically
include one CSS file in our TypoScript template. Our TypoScript template can use
the basic conditional statements and logic of TypoScript to give us more flexible and
dynamic templating functions. We were introduced to the TypoScript template in the
first chapter when we looked at the TypoScript code that the TemplaVoila Wizard
was creating for our menus, but now we're going to start editing it ourselves without
a wizard. Every site that you create in TYPO3 has a TypoScript template, and it is
always on the root page of your page tree. In the last chapter we looked at the page
tree a little, so you'll remember that the page Awesome Site is our current root page.
Just like our TemplaVoila template defines the layout of HTML and content elements
on our page, our TypoScript template will configure the dynamic output including
menus, other languages, and more for the root page and all pages underneath it.
Right now, we're going to use the TypoScript template to include our CSS file:

1. To update the TypoScript template, click the Web | Template button in the
far-left menu bar.
Select the root page of our site, Awesome Site, in our page tree.

Select Info/Modify from the drop-down list at the top of the
Template tools frame.

[39]

Enhancing your Template with CSS

4. We are going to include page . stylesheet in the TypoScript template setup,
so click on the edit icon next to the Setup label.

& admin logout I W F R

E

¥ WEB [info/Modify [Path: /[] Awesome Site [23]
Page
D View W' Awesome Site Template tools
¥ [] Awesome Site
List -[Products Template information:
@ nfo [] content Elements
----- {1 Headers iz Main template: Awesome Site - (Awesome Site)
(&) Access
..... [Text
Functions B Bulletlists & Title: Main template: Awesome Site
----- Tables -
@VM‘”"‘"Q v-[] Forms o Sitetitle: Awesome Site
i) Template [Thank you! ¢ Description:
{7 Recycler [search
. * [0 search result & Resources:
& Templavoila
""" g Login . ¢ Constants: (editto view, 9 lines)
----- Login - protected page
» FILE .
[Menu/Sitemap 4 ¢ Setup: (edit to view, 36 linas)
»USER TOOLS = [l Frames and spacing
[C1USERS £ Edit the whole template record
» ADMIN TOOLS [visions
» HELP ~[[] about Us

ontact

Brochures for Download
-[] Order material

(3 storage Folder

5. Scroll down in our TypoScript editor past the code that was generated by the
TemplaVoila Wizard to where the page is defined, and add the following line
to our TypoScript page definition to include our CSS:

page.stylesheet = fileadmin/templates/css/style.css

6. Once we've added our TypoScript line as shown in the following screenshot,
click on the save icon at the top of the frame:

| Info/Modify [Path: /|] Awesome Site [23]

Template tools

Template information:

iz Main template: Awesome Site - (Awesome Site)

Setup:

TID. T = HMENT
lib.subMenu.entryLevel = 1
lib.subMenu.wrap = <ul id="submenu-area">| lr
lib.subMenu.l = TMENU
lib.subMenu.1.H0 {

allWrap = <li class="submenu-item">|</lix

RN N

9 ## Menu [End)

11 ## Menu [Beginj
12 1lib.mainMenu = HMENU
13 lib.mainMenu.entrylevel = 0
14 lib.mainMenu.wrap = <ul id="menu-area">|
15 1ib.mainMenu.l = TMENU
16 lib.mainMenu.l.NO {
17 allWrap = <li class="menu-item">|
+

18

19 ## Menu [End]

20

ii config.spamProtectEmailAddresses = 1

23 page = PAGE
24 page.typeium = 0
25 page.l0 = USER

26 page.i0.userfunc = tx templavoila_pil-»main_page b
<27 page.stylesheet = fileadmin/templates/css/style.css — *
28 I 3

[40]

Chapter 2

To see our changes on the frontend, we need to clear the TYPO3 cache. By default,
TYPO3 uses intelligent caching to save our template information so it doesn't have to
be rebuilt for every visitor. If we make a change to the template that might have been
cached, we will have to clear the cache and let TYPO3 cache the updated version

of our template. To clear the cache, click on the Clear cache menu in the top-right
corner of the backend window, and select Clear all caches as shown in the

following screenshot:

&, admin Logout 12 W

4% Clear all caches:}

“Clear pagg_cantent cache

me Site [23]
&2 Clear configuration cache

= Clear RTE Cache

This is more dynamic than mapping our CSS as part of the TemplaVoila Wizard, but
it has a drawback: it only works for one stylesheet. This code can be used to declare
exactly one stylesheet for the TypoScript template; we can overwrite it later with
another stylesheet, but we can't call two consecutive stylesheets with this method.
We already decided that we need the ability to include multiple CSS files for print
and browser-compatibility stylesheets, so we can't use page . stylesheet.

Including CSS with page.includeCSS

Now that we've discussed and eliminated the methods that are objectively not
correct choices for our main template, we can look at two equivalent methods that
are both powerful enough to be used to include our stylesheets in the main template.
The first function is includecss, and this is what it looks like in our TypoScript
template setup with multiple CSS files:

page.includeCSS
filel = fileadmin/templates/css/style.css
filel.media = screen
file2 = fileadmin/templates/css/print.css
file2.media = print

}

As you can see, this allows us to declare multiple stylesheets in our TypoScript, and
they are included in the exact order that they are listed. Additionally, we can update
the values or add a CSS file easily on a specific page or section of pages by using a
TypoScript extension template.

[41]

Enhancing your Template with CSS

A TypoScript extension template can be created on any page, and it will include all
of the values of the TypoScript templates above it in the page tree followed by any
specific configuration in the extension template. For example, we could create a
TypoScript extension template on a page with the following lines in the setup

to include another CSS file to that page and the pages below it in the page tree:

page.includeCSS
file3 = fileadmin/templates/css/style special.css
file3.media = screen

}

Unfortunately, includecss does not fulfill one of our requirements for a good
solution: conditional CSS. Because we don't have direct control over the HTML
headers that are being generated, we cannot use conditional comments like <!-- [1f
IE] > to target specific browsers.

An advantage of the includecss function is that it implements the 1ink rel and
type attributes completely in TypoScript, and this may be easier for developers
who haven't already learned how to declare stylesheets in normal HTML headers.
Readers of this book are smart developers, so we're comfortable trading a little
convenience of not typing full HTML headers for the control conditional CSS.

Including CSS with page.headerData

The final method we are going to look at is the headerData function in TypoScript,
and this is what it looks like when we include multiple CSS files:

page {
headerData.1l0 = TEXT
headerData.l0.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/css/style.css" />
headerData.20 = TEXT

headerData.20.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/css/more style.css" />

}

The headerData function in TypoScript adds arbitrary headers directly to the
template when it is output in the TYPO3 frontend. This works almost exactly like

the includecss function, but it has two advantages: flexibility and conditional CSS.
Because the data we assign is completely arbitrary, we can use the same function to
declare stylesheet links, JavaScript file links, and even hardcoded CSS and JavaScript.
This is like learning a suite of functions for the price of one! We can also take
advantage of this flexibility to use standard header logic from an advanced template
without translating it into TypoScript:

[42]

Chapter 2

//Include IE Hacks CSS
page.headerData.30 =TEXT
page.headerData.30.value (
<!--[if IE]>
<style type="text/css" media="screen">
@import "fileadmin/templates/css/common_ ie.css";
</style>
<! [endif]-->

)

Personally, I also prefer the way that headerbata handles the ordering of the CSS
files. By using the numeric values 10 and 20 in the declaration (headerData. 10,
headerData.20, and so on), we can guarantee the order that the links will appear in
the header in the main TypoScript template and any extension templates; TYPO3
will always add them to the template in ascending order.

Go ahead and copy this code into the main TypoScript template setup of our
example site and replace any of the other functions we tried:

page {
headerData.10 = TEXT

headerData.l10.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/css/style.css" />

}

If you need help editing the TypoScript template, you can look at the steps at the
beginning of this section again. We will be editing the TypoScript template setup a
lot, so you will be very comfortable getting in and out of the Template tools pages
soon enough. Remember to clear the cache after you've made the changes. Our
frontend site should now look something like this:

Prooucts Content ELements Visions Asout Us Contact

AN AWESOME FRONT PAGE

Jeremy Greenawalt is a full-time developer and part-time writer with close to
ten years professional experience in website and application creation. His
first love was writing, but programming quickly followed.

He is a co-founder of Vintage 56 where he helps develop websites, online
shopping carts, web apps, iPhone/iOS apps, and anything else his friends
can think up. Jeremy is also the web director of a large ministry, Generals
International.

Portrait by Rebekah

Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever- Greenawalt

youthful puppy, Aingeal. He loves spending time at home reading, playing
around on the piano, or just relaxing on the couch with his family.

You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on Twitter at
@jgreenawalt.

[43]

Enhancing your Template with CSS

Using default markup in TYPO3

By default, TYPO3 includes extra markup in all of the content elements it outputs
including extra div wrappers, classes, and HTML identifiers. A standard content
element from our website looks like this:

<!-- CONTENT ELEMENT, uid:93/textpic [begin] -->
<div i1d="c93" class="csc-default" >
<!-- Header: [begin] -->
<div class="csc-header csc-header-nl"><hl class="csc-
firstHeader">An Awesome Front Page</hl></divs>
<!-- Header: [end] -->

<!-- Image block: [begin] -->
<div class="csc-textpic csc-textpic-intext-right"><div
class="csc-textpic-imagewrap"><dl class="csc-textpic-image csc-
textpic-firstcol csc-textpic-lastcol" style="width:200px;"><dt><img
src="uploads/pics/portrait.png" width="200" height="150" border="0"
alt="" /></dt><dd class="csc-textpic-caption">Portrait by Rebekah
Greenawalt</dd></dl></div><div class="csc-textpic-text"s>
<!-- Text: [begin] -->
<p class="bodytext">Jeremy Greenawalt is a full-time
developer and part-time writer with close to ten years professional
experience in website and application creation. His first love was
writing, but programming quickly followed.

</p>
<!-- Text: [end] -->
</div></div><div class="csc-textpic-clear"><!-- --></div>
<!l-- Image block: [end] -->
</div>
<!-- CONTENT ELEMENT, uid:93/textpic [end] -->

In this example straight from our front page, there is more markup than actual
content. This looks messy, confusing, and is one of the first things that new
developers criticize about TYPO3. If we actually look at the code, we start to
see how helpful this markup can be.

Look in the code above, and you'll start to notice that TYPO3 has generated classes
and div tags according to the type of backend content element and the different
layout options that were chosen in the backend. We can see the first header tag

on our page is given the . csc-firstHeader class. We used a text /image content
element with the image inset on the right, so the entire content element is wrapped
with a new .csc-textpic-intext-right div tag. We included a caption for our
image as well, and the caption has the class . csc-textpic-caption. Using this
automatically-generated markup, we can override and style specific kinds of
content using only the CSS stylesheet and TYPO3's own rendering workflow.

[44]

Chapter 2

TYPO3 assigns the . bodytext class to all paragraph tags in text
elements. If we wanted to change the default class for all paragraphs,
though, we could add the following code to the bottom of our main
template to change the default class to . awesome-class:
lib.parseFunc_RTE.nonTypoTagStdWrap.encapsLines.
L addAttributes.P.class = awesome-class

As the default class is assigned to all paragraphs within the scope of
our template, we can use this code to assign different classes in certain
sections (with extension templates) or differentiate between regular
paragraph styles and the output of extensions or non-TYPO3 pages.

Headers

TYPO3 wraps headers in a div tag with the . csc-header and a subclass, .csc-
header-nx, that increments x for every header of any type, h1-h6, in a dynamic
content area:

<div class="csc-header csc-header-nl"s>
<hl class="csc-firstHeader">Main header on page</hl>
</divs>
<div class="csc-header csc-header-n2"><h2>Subheader</h2></div>
<div class="csc-header csc-header-n3"><h2>Another

Subheader</h2>
</divs>

We can also see in the example we just saw that TYPO3 adds the class .csc-
firstHeader to the first header in any dynamic area. We can use the .csc-
firstHeader class to emphasize the first header of any type, h1-h6, in our main
content area like a headline in a newspaper by styling div#content .csc-
firstHeader in our CSS.

Image with text areas

TYPO3 controls the layout of our image and text areas using multiple classes
and subclasses:

<div class="csc-textpic csc-textpic-left csc-textpic-above"s
<div class="csc-textpic-imagewrap">
<dl class="csc-textpic-image csc-textpic-firstcol csc-textpic-
lastcol" style="width:260px;">
<dt><img src="uploads/pics/a4 08.jpg" width="260"
height="260" border="0" alt=""></dt>
<dd class="csc-textpic-caption">Rapidiously leverage other's

[45]

Enhancing your Template with CSS

excellent technology and cutting-edge ROI. Dramatically e-enable
functionalized applications for out-of-the-box markets.</dd>

</dl>
</divs>
</div>

The CSS Styled Content TYPO3 extension, which is enabled by default, includes a
default stylesheet for all of these classes, but we can still override them in our own
CSS. For images that are above or below the text (like the code above), TYPO3 uses
two basic classes for positioning. The first class declared assigns the horizontal
positioning (.csc-textpic-center, .csc-textpic-right, or .csc-textpic-left),
and the second class is for the image's vertical positioning related to the text (.csc-
textpic-above Or .csc-textpic-below). If the image is supposed to be in the text
like the code below, then the horizontal and vertical positioning classes are replaced
by one of four classes for layout: .csc-textpic-intext-right, .csc-textpic-
intext-left, .csc-textpic-intext-right-nowrap, Or .csc-textpic-intext-
left-nowrap. This is an example of the TYPO3 output for an image on the right side
with text wrapped around it:

<div class="csc-textpic csc-textpic-intext-right"s>
<div class="csc-textpic-imagewrap">
<dl class="csc-textpic-image csc-textpic-firstcol csc-textpic-
lastcol" style="width:260px;">
<dt><img src="uploads/pics/a4_ 08.jpg" width="260"
height="260" border="0" alt="" /></dt>

<dd class="csc-textpic-caption">Rapidiously leverage other's
excellent technology and cutting-edge ROI. Dramatically e-enable
functionalized applications for out-of-the-box markets.</dd>

</dl>
</divs>
</div>

Another class that we see in the examples above is the . csc-textpic-caption class.
All text captions for images are wrapped in this class, so we can easily address it in
our CSS. If we wanted to make caption text smaller, for example, we could add this
to our stylesheet:

dd.csc-textpic-caption {
font-size: 70%;

[46]

Chapter 2

Bullet lists

TYPO3 allows editors to choose from four different layouts for any ordered or
unordered bullet list in the backend:

General Bullet list Access

Layout:

¥ MNormal
Layout 1
Layout 2
Layout 3

Goose
Iceman
Jester

Depending on the layout chosen in the backend, TYPO3 will add the CSS class . csc-
bulletlist-0, .csc-bulletlist-1, .csc-bulletlist-2,0r .csc-bulletlist-3
to the HTML output:

<ul class="csc-bulletlist csc-bulletlist-1">
<1li class="odd"s>Maverick</1li>
<1li class="even">Goose
<li class="odd">Iceman
<1li class="even"s>Jester

There is no CSS to style these classes in the default TYPO3 stylesheets, but we can
use CSS to target each of these classes with our own styling.

As you can see in the code above, TYPO3 also automatically adds the classes .even
and . odd to the bullet list items so we can use alternating styles to keep long lists
readable or even create a two-column list.

[47]

Enhancing your Template with CSS

Tables

Like lists, tables have four different default layouts that editors can choose from:

General Table Access
Narmal
+ Layout 1 ==
Laycut 2

Layout 3 ns:

e

Text:

=]

Mame:|Age:|Role in family: |Note:

Homer J. Simpson|36|Mentally absent father|<b=0ccupation: Worker dron
Marge Simpson|34|Thread that holds Simpson family together|Jobs: St
Bart Simpson|10|Makes Homer crazy|Abilities: Possesses a huge repe
Lisa Simpsan|8|Maoral center and middle child|Past addictions: The Cor
Maggie Simpson|1l|Pacifier-sucking youngest Simpsaon child.| <b=>0nly true enam

| 2 3 NS

Like the lists, the layouts are associated with classes . contenttable-0,
.contenttable-1, .contenttable-2, Oor .contenttable-3 which we can use in
our own CSS to style them. The rows are assigned a class of .tr-even or . tr-odd.
For large sets of data, this makes alternating row colors as simple as one line CSS
affecting the . tr-even class. Finally, all rows and cells are assigned a class .tr-x
or .td-x, where x is a number based on the current row or cell number. Here is
an example of a full table from our example site:

<!-- Table: [begin] -->
<table class="contenttable contenttable-1"><tbody>
<tr class="tr-even tr-0">
<td class="td-0">Name:</td>
<td class="td-1">Age:</td>
<td class="td-2">Role in family:</td>
<td class="td-last td-3">Note:</td>
</tr>
<tr class="tr-odd tr-1">
<td class="td-0">Homer J. Simpson</td>
<td class="td-1">36</td>
<td class="td-2">Mentally absent father</td>

<td class="td-last td-3">Occupation: Worker drone/safety

inspector, Sector 7G, Springfield Nuclear Power Plant. Holds plant
record for most years worked at an entry-level position.</tds>

</tr>
<tr class="tr-even tr-2">
<td class="td-0">Marge Simpson</td>

[48]

Chapter 2

<td class="td-1">34</td>
<td class="td-2">Thread that holds Simpson family together</td>

<td class="td-last td-3">Jobs: Strikebreaking teacher
at Springfield Elementary, worker at nuclear power plant, carshop
waitress, Springfield police officer, pretzel franchisee</tds>

</tr>
</tbody></table>
<!l-- Table: [end] -->

Removing default markup in TYPO3

We have seen how we can use the extra default markup for styling, but sometimes
we want TYPO3 to only output "clean" code without extra div tags or classes for a
few reasons:

e We might want to remove legacy styling from TYPO3 to make it easier to
match the carefully built HTML and CSS templates we got from a designer.

e If we are generating a lot of non-cached content, we will want to generate
smaller pages to keep our bandwidth bill smaller; even ten kilobytes of total
markup can add up to a lot if we have a million hits a month.

e Removing some of the default markup will make our source code look better
and more custom when potential clients look at our previous sites.

No matter what our motivation is, we can add TypoScript to our template to take all
the TYPO3 markup down to the bare necessities. Adding the following to the bottom
of our TypoScript template setup will remove the paragraph classes, extra wrapper
tags, and header markup:

lib.parseFunc RTE.nonTypoTagStdWrap.encapsLines.addAttributes.P.class
>

lib.stdheader.stdWrap.dataWrap >
lib.stdheader.3.headerClass >

This will remove most of the extra markup, but not all of it. For the brave, there are
more ambitious techniques that will come up every once in a while on the forums
to remove all markup including the table and list markup. We're not going to look
at those in this book, though, because many of them are known to break extensions
or need specific patches applied to the TYPO3 core. The good news is that the core
development team is working on ways to give even greater control over the HTML
to developers so it will be easier to remove all markup we don't need or is actually
hampering our CSS and keep the generated classes that we want.

[49]

Enhancing your Template with CSS

Summary

Now that we have declared our own stylesheet to restyle our template, our example
site is looking better already with our own CSS included. In this chapter, we have
learned about four different ways to declare a CSS stylesheet in the TYPO3 template
and opted to use headerData. After setting up our basic stylesheet, we looked at all
of the default HTML markup TYPO3 provides that we can use in our own CSS. We
also learned how to remove or change the default markup in TYPO3 to make our
frontend HTML cleaner and more readable.

Now that we have added some of our own style, we have something to show our
boss. Go ahead and show off our work real quick so we can justify the time spent
reading a book at our desks and get back to learning.

After we all refill our coffee mugs, we'll jump into the next chapter and start digging
deep into the TypoScript to add JavaScript and extra header markup to our template.
The real fun starts when we dig into the TemplaVoila structures. Once we start
modifying the data structure, we'll add dynamic logos, banners, and timestamps

to our websites.

[50]

Adding Custom Template
Fields

We have a good-looking site now. It is pretty and standards-compliant, but not
particularly customized. Now we can jump in and start playing with the TypoScript
and TemplaVoila templates. We need to update the metadata, but we also need to
start adding key design elements like banners and a logo. Like almost everything in
TYPQO3, there are a lot of ways to add some of these elements. We are going to use
TypoScript, to make them more flexible and easier to maintain. We want to make
sure that our new elements are easy to update when we want to make changes, but
we don't want to have to set the logo on each page.

In this chapter you will be:
¢ Adding important keywords and description metadata through
page properties
e Defining new elements in our TemplaVoila template
e Adding a banner to our page properties
e Adding a current date and timestamp to our template

¢ Adding dynamic logos to our template

Modifying the page metadata

Now that we are getting comfortable working with updating the TypoScript
template, we are ready to start diving more into the HTML output generated

from the TypoScript and integrating more information from the individual page
properties into the template. For example, we can tie the keywords and descriptions
section of the page properties to the TypoScript setup so that we output the
keywords into the metadata in the head section of our HTML when it is viewed.

Adding Custom Template Fields

Proper metadata such as keywords and description on individual pages can be
an important part of our overall strategy for search engine optimization (SEO). By
including keywords in our individual pages, we can generate sitemaps for search
engines automatically and help new visitors find our website easier.

First, we need to add some keywords and a description in the page properties of our
front page. Remember that we looked at the page properties at the end of Chapter

1 when we assigned the TemplaVoila template to our main page. This time we

just need to edit the Metadata tab. Add some keywords and a description in the
Metadata text areas as shown in the following screenshot:

Path: /| | Awesome Site [23]

Edit Page "Awesome Site"

General Metadata Resources Options Access Extended
Author:
Author: Email:
Abstract:

Keywords (,):

typo3, template, awesome, example

Description:

This is just an awesome page about TYPOS3 template goodness.

[7] Page [23]

To see this work right now, we can go ahead and add the following code to
the bottom of our TypoScript template setup.

page.meta.keywords.field = keywords
page.meta.description.field = description

The nice thing about TypoScript is that it's fairly easy to read even if you're not
comfortable writing it from scratch, yet. Anytime that we write page . <something>,
we are modifying the page object that TYPO3 is using to build the rendered page. In
this case, we are modifying page .meta.keyword and page .meta.description, and
TYPO3 already knows where to place those in the rendered HTML output. Finally,
the keywords and description values on the right side of the = are the names of the

[52]

Chapter 3

specific fields in the page properties. When the page is generated for output, TYPO3
will pull the keywords and description fields from our page properties, assign
them to the page .meta fields, and render the HTML with the new meta tags in

the head.

If we clear the cache, reload the front page, and view the source code, we see our
keywords in the HTML head:

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=is0-8859-1" />
<!--
This website is powered by TYPO3 - inspiring people to share!
TYPO3 is a free open source Content Management Framework
initially created by Kasper Skaarhoj and licensed under GNU/GPL.
TYPO3 is copyright 1998-2009 of Kasper Skaarhoj. Extensions are
copyright of their respective owners.
Information and contribution at http://typo3.com/ and http://
typo3.org/
-->
<title>Awesome Site: Awesome Site</title>
<meta name="generator" content="TYPO3 4.3 CMS" />
<meta name="keywords" content="typo3, template, awesome, example"
/>
<meta name="description" content="This is just an awesome page
about TYPO3 template goodness." />
<link rel="stylesheet" type="text/css" href="typo3temp/
stylesheet 42a7d7391a.css" media="screen" />
<script src="typo3temp/javascript 0b12553063.js" type="text/
javascript"s</scripts> B
<link rel="stylesheet" type="text/css" href="fileadmin/templates/
reset.css" /><link rel="stylesheet" type="text/css" href="fileadmin/
templates/style.css" />
</head>

Using this technique, we've managed to move up our search rankings in about five
minutes. That is impressive, but the most important thing we've done is seeing how
we can link the dynamically controlled information from the page setup area into
our TypoScript template.

[53]

Adding Custom Template Fields

Adding a banner

Okay, we're ready to start adding new sections for dynamic content to our template
now. In order to add new content areas, we will have to start modifying the
TemplaVoila data structure and template objects. For now, this is not much different
from using the TemplaVoila Wizard that we used in Chapter 1. We are going to

add new areas to the HTML file for mapping and use the backend interface to add
elements to TemplaVoila, so that we can update fields with page properties or
TypoScript in the future. For our first new element, we are going to add a banner

to our example template.

Adding space for the banner to our HTML file

Before we modify the TemplaVoila data structure, we're going to add a div
enclosure for the banner to our original HTML file. Like before, all that's important

is that we create a set of tags with a unique identifier. We are going to map our new
div tags in TemplaVoila, which will tell TemplaVoila to replace any content inside of
them with some generated content that we will define in the data structure. If we add
a div tag between our menu and the main content, the body of our HTML template
will look like the example below.

<!DOCTYPE HTML>

<html>
<head>
<meta charset="utf-8" />
</heads>
<body>
<ul id="menu-area"><li class="menu-item">Menu Item
#l</1li></uls>

<ul id="submenu-area"s><li class="submenu-item">Submenu Item #l
<div id="banner image"></div>
<div id="content">This is our content</div>
</body>
</html>

Adding the banner element to TemplaVoila

After we have saved the update to our HTML template, we need to add the element
to the TemplaVoila data structure. TemplaVoila uses data structures to define the
content elements for each template in a custom XML format that is stored in the
database. In TemplaVoila, template objects are then used to store the mapping
information between the original HTML file and the content elements in the data
structure. So, our next step is to update the data structure with our new content
element and then we can update the mapping in our template object.

[54]

Chapter 3

We can define the type of element and some parameters in a wizard for the data

structure, and TemplaVoila will regenerate the data structure XML in the database
according to what we set up. First, we need to go into the editing area for our data
structure for the first time:

1. Choose TemplaVoila in the far-left menu to edit our TemplaVoila templates.

2. Choose Storage Folder from the page tree; this is where our TemplaVoila
template objects and data structures are stored.

3. Make sure you are on the Page templates tab to see our current templates.

Under the Main Template, click on Update mapping to access the data

structure and mapping areas.

TYPO3 ®

v WEB
Page
B View
E List
@ Info
4 Access
Functions
B versioning
[iz] Template
T Recycler
‘B TemplaVoila
» FILE
» USER TOOLS
v ADMIN TOOLS
i, User Admin
) Ext Manager
[DB check
[, Configuration

[Z] Install

L

4 Awesome Site

[Bulletlists
----- [] Tables
-] Forms
[7) Thank you!
-[] search
=[] Search result
[Login
----- 5 Login - protected page
----- 11 Menu/sitemap
Frames and spacing

Brochures for Download
Order material
Storage Folder

TemplaVoila Control Center

[Show Details

&, admin

3Pagetemp\ates i, | ElFexible ce Other

XML file

Main Template
Main Template

b

[No icon]

[Template]

ol
Template Status

Global Processing XML

0] Main Template [Template] 2
[No icon] File reference:
The following pages in the
root line contain data
structures and template
objects:
Mapping status:

4 Update mapping

Local Processing XML:
[FiCreate new Template Object

logout I W ¥ WE @

Template Files Errors (1)

Y

&

@ Mo errors found!
#4.0 K bytes

fileadmin/templates/template.html
Main Template for the website

My Template file was updated since last
mapping (31-08-10 18:02) and you
might need to remap the Template
Object!

Vi

5. On the Template Mapping page, click on the Modify DS/ TO (Data
Structure/ Template Object) button in the Information tab.

6. When we click on the button to modify the data structure, TYPO3 will give
us a pop-up warning about overwriting our XML. If we had manually edited
the XML of our data structure at any point, then we would want to be careful
here because editing the data structure with the backend graphic interface
tools will overwrite the XML from scratch. As we have not edited the data
structure by hand, we can go ahead and click on OK on the warning pop-up.

[55]

Adding Custom Template Fields

7. On the bottom of the data structure page, we can create a new element for
the template. Go ahead and fill in the name of our new field, field_banner,
and click on the Add button.

TemplaVoila
[1] Go back

D_ fileadmin/templates/template.html|
[emplate Objecti 111 voin Template (Tempiae]

- Building Data Structure:

ROOT ROOT Select the HTML element on the () [EEELIE) INNER body & T
page which you want to be the
overall container element for the
template.

Main Content Area field_content Pick the HTML element in the @ <div> INNER Change Made | table:outer 2 i
td

template where you want to place rinner

the main content of the site. div:inner
p
h1
h2
h3
ha4
h5
Main menu field_menu Pick the HTML container element @ table:inner 2
where you want the automatically ul
made menu items to be placed. div
tr
td
Sub menu (if any) field_submenu Pick the HTML container element @ table:inner 4* T
where you want the automatically ul
made submenu items to be div
placed. tr

- td

Clear all " Preview II Save and Exit

I Refresh I

I Save as

Configuring a data element

When the frame refreshes, we can fill in the fields to define our new data element.
TemplaVoila used to require editing the data structure XML directly to define most
of the fields for a data element, but the newest versions of TemplaVoila allow us to
edit almost every field that we need completely within the graphical interface. For
now, we can go ahead and fill out the fields similar to the default element fields.

o Title: The title of our new data element will be displayed in the TYPO3
backend. To keep things simple, we will name our element Banner Image.

e Mapping Instructions: The mapping instruction will be seen in the
backend on the mapping pages, and we are going to follow the same style
as the default mapping instructions with our instructions: Pick the HTML
container element where you want the banner image to be placed.

[56]

Chapter 3

Sample Data: Sample data is used when generating previews in the backend
mapping area. Let's go ahead and follow the format of the default elements
by leaving our Sample Data with the words [Banner goes here], which will
of course be filled in later by TYPO3.

Element Preset: The Element Preset determines the type of element that

we will be creating in the template. We can modify this information later,
but by choosing an appropriate element preset at the beginning we allow
TemplaVoila to automatically generate the most fitting XML and TypoScript
data. This will make more sense in a moment when we start writing the
TypoScript. As we are going to fill this data element with an image we will
go ahead and set our element preset to Image field.

Mapping rules: Template creators use mapping rules to restrict how other
editors can map this data element in the future. We are going to tie this
directly to an image, so we don't want users to accidentally map this to

a header tag in the future. Let's go ahead and allow only a few container
elements by setting our mapping rules as div, span, tr, td.

If we fill everything out correctly, this is what our screen should look like before we

save it:

| Element

-------------- ﬂ Title:

field_banner {new):
; onfiguration Mapping Instructions:

Banner Image

Pick the HTML container element where you want the banner image to be placed.

Sample Data:

[Banner goes here]

Element Preset:

[imagefield [

Changing element type will change your existing settings!

Mapping rules:

div, span, tr, td

Cancel

[57]

Adding Custom Template Fields

Once we are satisfied that we have filled out the initial configuration correctly, we
can click on the Add button. Adding the field with the button saves it temporarily,
but it is still not saved permanently to the template. Clicking on the Add button
updates the configuration of our element based on the Element Preset, and
TemplaVoila will generate some basic TypoScript to define our image element.
Click on field_banner | Configuration | Data processing to see the preset
TypoScript code:

.Elemem ﬂ TypoScript Constants:

field_banner
Configuration

Data processing

TypoScript Code:

10 = IMAGE
10.file.import = uploads/tx templawvoila/
10.file.import.current = 1

10.file.import.listNum = 0
10.file.maxW = 200

| Update || Cancel / Close |

As we are using this as a banner, we want to change the maximum width of our file
from the default that TemplaVoila generated, 200. Change the last line to 10.file.
maxW = 800 and click on Update.

Now we can save our new data structure to the database. In order to permanently
save our changes and overwrite the old data structure, we need to click on the Save
button and clear the cache.

Viewing the data structure XML

Now that we have created a new element and saved the changes to our template, we
can check the XML that the graphical interface created for us. Click on Show XML
and we will see that it has added our banner image field to the XML with all of the
configuration options we chose. Obviously, we only filled in a couple of fields, but

it filled in the rest based on the defaults for our installation. If we want finer control
over our data elements that the wizard can't give us, we can always edit the

XML directly.

[58]

Chapter 3

As you can see, most of the data structure XML is simple and easy to read. Once we
edit the XML by hand, we can no longer use the wizards to modify the data structure
or it will write over our changes.

The new field in our XML should look like the following code snippet. Go ahead and
look through the code real quick to see the basic XML tags and TypoScript that our
wizard created:

<field banner type="array">
<tx templavoila type="array">
<title>Banner Image</title>

<description>Pick the HTML container element where you want the
banner image to be placed.</descriptions>

<sample data type="array">
<numIndex index="0">[Banner goes here] </numIndex>
</sample datas>
<eType>image</eType>
<tags>div, span, tr, td</tags>
<TypoScripts>
10 = IMAGE
10.file.import = uploads/tx templavoila/
10.file.import.current = 1
10.file.import.listNum = 0
10.file.maxW = 800
</TypoScripts>
<proc type=»array»>
<stdWrap></stdWrap>
</proc>
</tx_templavoilas
<TCEforms type=»array»>
<label>Banner Image</labelx>
<config type=»array»>
<type>group</type>
<internal types>file</internal types>
<allowed>gif, png, jpg, jpeg</allowed>
<max_size>1000</max size>
<uploadfolders>uploads/tx templavoila</uploadfolders
<show_thumbs>1</show_thumbs>
<size>l</size>
<maxitems>1l</maxitems>
<minitems>0</minitems>
</config>
</TCEforms>
</field banners

[59]

Adding Custom Template Fields

Look at how the XML is storing the information that we just filled in like the sample
data mapping rules. You can also see how the wizard used the element preset of
Image field to generate some basic TypoScript and initial parameters to define our
new image object.

Using our new data element

We have successfully added our own data element and configured it, and we even
looked at the XML for fun. Next, we need to map our new element to its appropriate
location in our original HTML file. Let's go ahead and click on the Map button in
the backend and map our new data element to the div tag in our updated HTML
template with the identifier banner image.

Now that we have mapped the banner area, we can add a banner to our front page.
This is where the editor experience is affected because we chose the Image preset
when we created our new data element because different types of data elements are
edited in different parts of the page or TypoScript template. If we had chosen Page
Content Elements, then we would have another column visible in the Web | Page
view. We chose the Image preset, so we are going to update and use this field by
adding an image through our page properties. Go ahead and click on the page you
would like to modify and right-click the page and choose Edit page properties. If
we go to the Extended tab, we can see that Banner Image has been added as a new
optional content area in the backend:

Edit Page "Awesome Site"

General Metadata Resources Options Access Extended

Use Template Design:
“Main Template [Template] a

Subpages - Use Template Design:
“Main Template [Template] ﬂ

Content:

Main Content Area

An Awesome Front Page [E 3 [Z An Awesome Front Page [93]
B
=]
H|
[F] Pagecontent
Banner Image
banner.png] m (2 |banner.png

GIF PNG JPG JPEG

(Choose File) no file selected

[] Page [23]

[60]

Chapter 3

I chose a random image that was roughly the right size just to test our banner and
show the example output. We haven't modified the flexible width layout in CSS or
redesigned the page to work with one fixed size of banners, but we could do that
later if we needed to. What we have done, though, is create our first new template
element from scratch, and it wasn't even a standard element for generic content; we
created a very specific banner element that could be used on a live site with just a
little bit of CSS tweaking, but it doesn't look too bad right now:

Propbucts _ConTent ELEMENTS Visions Asout Us Conrtact

Jeremy Greenawalt is a full-time developer and part-time writer with close
to ten years professional experience in website and application creation.
His first love was writing, but programming quickly followed.

He is a co-founder of Vintage 56 where he helps develop websites, online
shopping carts, web apps, iPhone/iOS apps, and anything else his friends
can think up. Jeremy is also the web director of a large ministry, Generals
International.

Portrait by Rebekah Greenawalt

Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-
youthful puppy, Aingeal. He loves spending time at home reading, playing around on the piano, or just
relaxing on the couch with his family.

‘You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on Twitter at
@jgreenawalt.

Adding the date to our template

We have added our own element to the template, but we're trying to add a few more
automated pieces to the template. The new banner is a nice touch, but it's just one
more thing we would have to manually update in all of our current pages. Our boss
really wants to see some new elements, and we want to add some features that can
update themselves without extra work. Luckily for us, our boss is still impressed
with the idea that modern websites can show the date programmatically and,
bolstered by our newfound experience with data structures, we can add a date
stamp to our example site before the next coffee break.

[61]

Adding Custom Template Fields

Adding space for the date to our HTML file

Just like the last modification, we're going to add a div container to our HTML
template before we have a chance to forget. Let's go ahead and give our new div tag
the identifier timestamp, £loat it to the right for a better layout, and add it directly
above our menu like this:

<body>

<div id="timestamp" style="float: right;"></div>

<ul id="menu-area"s><li class="menu-item">Menu Item #1l</
a></lis>

<ul id="submenu-area"s><li class="submenu-item">Submenu

Item #l

<div id="banner image"></div>
<div id="content">This is our content</divs>

</body>

Creating a data element

Once again, we're going to modify the data structure in the TemplaVoila
backend just like last time. Let's go ahead and create a new field with the name
field_timestamp. TemplaVoila does not allow spaces in the field name, so we use
underscores instead. After you type in the field name and click on Add, fill in the
following fields for the basic configuration:

Title: We'll keep it simple again and make our title Timestamp. Because our
new element will not contain elements for TYPO3 editors to work with, our
title will only be seen on the mapping page this time.

Mapping Instructions: We'll use the same format as before and say Pick the
HTML container element where you want the timestamp to be placed.

Sample Data: We can use the words [Timestamp goes here] as our
sample data.

Element Preset: This time our element is going to be using straight
TypoScript without any visibility to editors so we're going to choose None
(TypoScript only) from the preset drop-down list. As we are using None as
our preset, we will do all of our setup and modifications in the data structure
wizard itself.

Mapping rules: Just like the last element, we are only going to restrict the
mapping to prevent obvious mistakes by setting the mapping rules to div,
span, tr, td.

[62]

Chapter 3

Our new data element configuration before we save our changes looks like this:

| Element 'i] [tlaz
field_timestamp Timestamp
Configuration Mapping Instructions:
- Data processing Pick the HTML container element where you want the timestamp to be placed.
- Extra Sample Data:

[[Timestamp goas hera)

Element Preset:
| Mone (TypoScript only) +
Changing element type will change your existing settings!

Mapping rules:

div, span, tr, td

| Update || Cancel / Close |

After we've updated our configuration, we need to add our TypoScript to the
element. To get to the TypoScript section of our configuration like last time, we
need to click on field_timestamp | Configuration | Data processing. In the data
processing section of the configuration, we can put the following code into the
TypoScript Code text area

10 = TEXT
10.data = date:U
10.strftime = %B %e, %Y

We are not doing anything extremely complicated in our TypoScript code. We are
creating a text object, assigning it a date data type, and assigning the current time
to it formatted as a standard date. For more information on TypoScript and date
formatting, see the TSref.

Viewing the updated XML

Now that we have done our entire configuration, we can click on the Add button
and save everything with the Save button. Like the banner element, we are going to
overwrite the old template by saving our new version over it. If we choose to Show
XML now, this is the new element we will see:

<field timestamp type="array"s>
<tx templavoila type="array">
<title>Timestamp</title>

<description>Pick the HTML container element where you want the
timestamp to be placed.</descriptions>

<sample data type="array"s>

[63]

Adding Custom Template Fields

<numIndex index="0">[Timestamp goes here] </numIndex>
</sample data>
<eType>none</eType>
<tags>div, span, tr, td</tags>
<TypoScript>10 = TEXT

10.data = date:U

10.strftime = %B %e, %Y</TypoScripts>
<proc type="array">

<stdWrap></stdWrap>

<HSC>1</HSC>
</proc>

</tx_templavoilas
</field timestamp>

Showing our new banner

Now that we have a new element, we can just map it to the timestamp div tag we
already added to the HTML template. If we look at any of our pages on the frontend,
we can now see the current date printed in the upper right corner alongside

our menu:

Prooucts Content ELements Visions Asout Us Contact September 9, 2010

Loading the date and time from the
TypoScript template

We've successfully added the date to our page with the template, and we are
definitely feeling good about ourselves right now. Unfortunately, the boss points out
that they want to show the entire time stamp instead of just the date. We can argue
the finer points of the formatting, but what we've realized is that the exact formatting
of our date stamp will need to be tweaked sometimes in the future; putting the
formatting directly into the template data structure will probably cause problems in
the future with this particular element. Luckily for us, TYPO3 gives us many ways of

[64]

Chapter 3

doing things, and we can just use a different method to create the same final output.
Our next step is to move the actual time stamp generation and formatting rules into
the template setup where they can be updated without requiring us to change the
main data structure all the time. We're going to change the data structure from using
integrated TypoScript to using a TypoScript object. If we use a TypoScript object in
our data structure, we can assign values and configure the TypoScript object in the
TypoScript template setup.

Changing our timestamp element in the
data structure

Our first step is to modify the data structure to change our data element so that we
can use a TypoScript object to define in the TypoScript template setup, instead of
defining all of our TypoScript in the XML. Let's go ahead and get into editing mode
on our data structure again like we have in the past couple sections. We can choose
to edit the data element by selecting the pencil in the timestamp section like shown
in the following screenshot:

Building Data Structure:

ROOT ROOT Select the HTML element on the () [T INNER body & @

page which you want to be the
overall container element for the
template.

Main Content Area field_content Pick the HTML element in the ° <div> INNER Change Mode table:outer 2 7
td:i

template where you want to place rinner
the main content of the site. div:inner
p
h1
h2
h3

ha
hs

Main menu field_menu Pick the HTML container element @@ Change Mode | tablesinner 2 T
ul

where you want the automatically

made menu items to be placed. div
tr
td

Sub menu (if any) field_submenu Pick the HTML container element o Change Mode table:inner y by
ul

where you want the automatically

made submenu items to be div

placed. tr
td

Banner Image field_banner Pick the HTML container element 0 <div> INNER Change Mode | div &
span

where you want the banner image
to be placed. tr
td

Timestamp field_timestamp Pick the HTML container element ° <div> INNER Change Mode e @
where you want the timestamp to span L

be placed. tr
td

[65]

Adding Custom Template Fields

We will change the Element Preset from None (TypoScript only) to TypoScript
Object Path and click on the Update button. When the frame reloads, we can choose
Typoscript from the tree on the left under the title field_timestamp to enter a new
TypoScript object path. We can give our new object any name that we want starting
with 1ib, but it is helpful to make sure we use a specific and clear name that makes
sense when we define it in the TypoScript template setup. This time, we can call our
new object 1ib.timestamp:

i <div> INNER N _ div
("Element .¢3 Extra options Q Change Mode epan
Object path: |jp i
field_timestamp Ject pa _|Ib.t|mestamp| J tr
i Configuration td
----- Typoscript
b (=)
Update || Cancel / Close

When we click on the Update button again, we will use the Save button to overwrite
the old data structure with our new structure. If we check the XML, we can see the
immediate changes:

<field timestamp type="array"s>
<tx templavoila type="array">
<title>Timestamp</title>
<description>Pick the HTML container element where you want the
timestamp to be placed.</descriptions>

<sample data type="array">
<numIndex index="0">[Timestamp goes herel] </numIndex>
</sample datas>
<eType>TypoScriptObject</eType>
<tags>div, span, tr, td</tags>
<proc type="array">
<int>0</int>
<HSC>0</HSC>
<stdWrap></stdWrap>
</proc>
<previews</previews>
<TypoScriptObjPath>1ib. timestamp</TypoScriptObjPath>
</tx_templavoilas
</field timestamp>

[66]

Chapter 3

Adding the timestamp object to the
TypoScript template

The next thing we need to do is define the timestamp object in the TypoScript
template setup, just so that we can clearly see the change. We are going to change the
formatting to show the current time as well as date (for time formatting information,
see the TSref). Right now, we are going to add the following code to the bottom of
our TypoScript template setup on the root page:

lib.timestamp = COA
lib.timestamp {
10 = TEXT
10.data = date:U
10.strftime = %B %e, %Y

o\©

T

}

If we clear the cache and look at the front page now, we can see a complete time
stamp with date and time in the upper right corner. Now, when somebody needs to
change the format of our time stamp, they can simply tweak the TypoScript template
setup instead of diving into the XML of our carefully constructed data structure.

Adding a dynamic logo

Our final change will be to add a logo to the top right corner of our website. We
could, of course, add this in the HTML template, but we want our logo to be a
TypoScript object like the time stamp. We know that we may need to change the
logo at certain times of the year, and we don't like the idea of just overwriting a
single image file for every change. We also want the ability to overwrite the logo
in subsections of our site or create different logos for international versions of
our site in the future. So, we have decided that it should be a TypoScript object.

Our first step, like always, is to add the space for a logo to our HTML. We know that
we want it at the top of our site, and we're not going to use any CSS positioning right
now; we can go ahead and add it right below the body tag in our HTML:

<body>
<div id="logo"></div>
<div id="timestamp" style="float: right;"></div>

<ul id="menu-area"><li class="menu-item">Menu Item #1l</
a></lis>
<ul id="submenu-area"><li class="submenu-item">Submenu

Item #l

<div id="banner_ image"></div>

<div id="content">This is our content</divs>
</body>

[67]

Adding Custom Template Fields

Now that we're getting into the flow of editing the template, we know that our next
step will be adding it to the TemplaVoila data structure as a new data element. We
can go ahead and open up the data structure for editing again and add a new field at
the bottom of the page called field_logo:

Timestamp field_timestamp Pick the HTML container element o <div> INNER Change Mode | div

where you want the timestamp to span
be placed. tr
td

CFedloss [radlo>

Now that we know how this works, we're going to just fill in the form with the new
configuration information:

Title: We'll keep it simple and call this Logo in the backend.

Mapping Instructions: Just like the other elements, we'll use the same basic
kind of instructions: Pick the HTML container element where you want the
logo to be placed.

Sample Data: Our sample data can be [Logo goes here].

Element Preset: We know we're going to use an object this time, so we can go
ahead and choose TypoScript Object Path from the drop-down menu.

Mapping rules: Like the other elements we've added, we just want some
simple rules: div, span, tr, td.

Object path: We'll set this under the TypoScript section again. This time we
can call it lib.logo so our editors know exactly what we are creating.

Now we can click on the Add button and use Save to overwrite the old template data
structure with the new one. If we choose to Show XML, this should be the new field
that the wizard created from our configuration:

<field logo type="array"s>

<tx templavoila type="array">

<titles>Logo</title>
<description>Pick the HTML container element where you want the

logo to be placed.</descriptions>

<sample data type="array"s>

<numIndex index="0">[Logo goes here] </numIndex>
</sample data>
<eType>TypoScriptObject</eType>
<tags>div, span, tr, td</tags>
<proc type="array">

<stdWrap></stdWrap>
</proc>
<TypoScriptObjPath>1ib.logo</TypoScriptObjPath>

</tx_templavoilax>

</field logo>

[68]

Chapter 3

If everything looks okay, we can map it to the new div tag with the 1ogo identifier
and save our changes.

After we've saved our mapping, we need to add our new object to the TypoScript
template. I created a quick image with the filename logo.png and saved it into the
fileadmin/templates/ directory. It's also helpful to make sure that our logo links
back to the homepage, so we're going to add a standard wrapper to the image with a
link to our example site for right now. We could have created an image element like
we did for the banner, but we wouldn't be able to set the image and wrap it in a link
for the entire site using TypoScript. Because we are using the TypoScript template,
we can add this code to the bottom of our TypoScript template setup to define our
image and the link together:

lib.logo = IMAGE
lib.logo.file = fileadmin/templates/logo.png
lib.logo.stdWrap.wrap = |

My fancy new logo simply says Example.com in the example below, but our site
is still looking much more professional:

Example.com

Prooucts Content ELements Visions Asout Us Contact September 9, 2010 23:20:31

AN AwesoME FRONT PAGE

Jeremy Greenawalt is a full-time developer and part-time writer with close
to ten years professional experience in website and application creation.
His first love was writing, but programming quickly followed.

He is a co-founder of Vintage 56 where he helps develop websites, online
shopping carts, web apps, iPhone/iOS apps, and anything else his friends
can think up. Jeremy is also the web director of a large ministry, Generals
International.

Portratt by Rebekah Greenawalt
Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-
youthful puppy, Aingeal. He loves spending time at home reading, playing around on the piano, or just
relaxing on the couch with his family.

You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on Twitter at
@jgreenawalt.

[69]

Adding Custom Template Fields

Summary

Now that we have started using the page properties and TypoScript, we have a
whole new world of options available to us. We've already used our knowledge
to enhance the search engine optimization (SEO) and add banners, a timestamp,
and a logo.

Now that we are modifying the data structure, we can add any elements we want

to a template without fear. We can use TypoScript and TemplaVoila together to give
us the results that others are expecting from a powerful engine like TYPO3, and we
deserve to be proud for a moment. It's the end of another chapter, so we can take
our traditional coffee break and show our co-workers the cool site we're building.
As soon as we get back, we're going to tackle one of the most important pieces

of successful site building, navigation, in the next chapter. We're going to look at
updating our text menu, generating graphic menus, building toolbars with icons,
and even adding breadcrumb navigation to our site.

[70]

Creating Flexible Menus

We just got done adding flexible banners and logos to our site, and we're ready to
attack one of the biggest problems in template building: navigation. If you've flipped
through, you noticed that this chapter has more tables and example code than
everything before it combined. Don't worry, that's a good thing. The hierarchical
menu in TYPO3 is one of the most powerful concepts available for us as TYPO3
developers. It includes the ability to create flexible menus with text, graphics,
JavaScript, or DHTML completely through TypoScript without spending time in
Photoshop or learning a new language.

Most importantly, this chapter is packed with code and examples because navigation
is possibly the most important thing to get right in web design. All of the content
and soon-to-be bestselling products in the world don't mean anything if users can't
find them. Our menu is more than just the text at the top of the page; it's our first
marketing pitch on how great a company we are to work with because we can

help you find what you're looking for in the clearest way possible. So, it's time to

get excited because there's no better way to show off our skills and please our boss
(maybe get a bonus) then making a beautiful menu.

In this chapter you will:

e Learn about the base hierarchical menu object in TYPO3: HMENU
e Getintroduced to the text-based menu object

e Rebuild the main menu and submenu from scratch with fancy text-based
menu options

e Create your first graphical menu with a custom font, drop-shadows, and
rollover actions

e Create a breadcrumb navigation menu that helps users see where they are
in the website

Creating Flexible Menus

Page tree concepts

We are about to dive into all of the little details, but there are a few basic concepts
that we need to review first. We've already talked about the page tree and levels a
little in the Chapter 1, but we are going to be using these concepts a lot in this chapter.
So, we're going to make sure we have a more complete definition that avoids

any confusion:

Page tree: Our TYPO3 page tree is all of the pages and folders that we work
with. This includes the home page, about us, subpages, and even non-public
items such as the storage folder in our example site. If we have a very simple
website it could look like this:

° Home
° About Us
° Staff

Level: Our page tree will almost always have pages, subpages, and pages
under those. In TYPO3, these are considered levels, and they increase as you
go deeper into the page tree. For example, in our extremely simple website
from the example above both Home and About Us are at the base (or root)
of our page tree, so they are on level 0. The staff page is underneath the
About Us page in the hierarchy, so it is on level 1. If we added a page for

a photo gallery of our last staff lunch as a subpage to the staff page, then it
would be at level 2:

° Home (Level 0)
° About Us (Level 0)
° Staff (Level 1)
° Staff Lunch Gallery (Level 2)
Rootline: TYPO3 documentation actually has a few different uses for the
term "rootline", but for the menu objects it is the list of pages from your
current page or level moving up to the root page. In our example above, the

current rootline from the Staff Lunch Gallery is Staff Lunch Gallery | Staff
| About Us.

Introducing HMENU

Before we look at all the different kinds of menus in TYPO3 and all their little
differences, we need to explore the base TypoScript object for all of them: HMENU.
HMENU generates hierarchical menus, and everything related to menus in TYPO3 is
controlled by it. As the base object, HMENU is the one thing that every type of menu

[72]

Chapter 4

is guaranteed to have in common. If we understand how HMENU is creating its
hierarchical menu, then everything else is just styling.

We can already see an example of HMENU being used in our own TypoScript template
setup by looking at the menus that the TemplaVoila Wizard generated for us:

Main Menu [Beginl]
lib.mainMenu = HMENU
lib.mainMenu.entryLevel = 0
lib.mainMenu.wrap = <ul id="menu-area"s|
lib.mainMenu.1l = TMENU
lib.mainMenu.1l.NO {
allWrap = <li class="menu-item">|
}

Main Menu [End]

Submenu [Beginl]
lib.subMenu = HMENU
lib.subMenu.entryLevel = 1
lib.subMenu.wrap = <ul id="submenu-area"s|
lib.subMenu.l = TMENU
lib.subMenu.1.NO {
allWrap = <li class="submenu-item">|</1li>
}

Submenu [End]

We can see that the wizard created two new HMENU objects, 1ib.mainMenu and 1ib.
subMenu, and assigned properties for the entry level and HTML tags associated with
each menu. We're about to learn what those specific properties mean, but we can
already use the code from the wizard as an example of how HMENU is created and
how properties are defined for it.

Types of menu objects

The HMENU class does not output anything directly. To generate our menus, we
must define a menu object and assign properties to it. In our current menus, the
TemplaVoila Wizard generated a menu object for each HMENU in the following
highlighted lines:

Main Menu [Begin]
lib.mainMenu = HMENU
lib.mainMenu.entryLevel = 0
lib.mainMenu.wrap = <ul id="menu-area"s|
lib.mainMenu.l = TMENU
lib.mainMenu.1l.NO {
allWrap = <li class="menu-item">|

[73]

Creating Flexible Menus

Main Menu [End]

Submenu [Begin]
lib.subMenu = HMENU
lib.subMenu.entryLevel = 1
lib.subMenu.wrap = <ul id="submenu-area"s|</uls>
lib.subMenu.l = TMENU
lib.subMenu.1l.NO {
allWrap = <1i class:“submenu—item">|</1i>
}

Submenu [End]

There are a handful of classes for menu objects that can be used by HMENU to generate
menus in TYPO3, but we are going to be concentrating on the two most powerful
and flexible options: TMENU and GMENU.

The TemplaVoila Wizard used TMENU in our current menu, and it is used to generate
text-based menus. Menus built with TMENU output the title of each page in the menu
as a text link, and then we can use HTML and CSS to add styling and layout options.

Menus created with the GMENU class are considered graphic menus. We can use
GMENU to dynamically generate images from our page titles so that we can use fancy
fonts and effects like drop-shadow and emboss that are not supported in CSS by all
browsers equally.

Menu item states

The menu system in TYPO3 allows us to define states for different menu options. For
example, using the state definitions, we can customize the behavior of menu items
when they are active or rolled over. The normal state (NO) is available and set by
default, but all of the menu item states must be enabled in TYPO3 by adding code

to our template like this: 1ib.mainMenu.1.ACT = 1. All menu objects share a
common set of menu item states from the table below:

State Description
NO This is the normal state for menu items.
ACT This state is active if the menu item is in the rootline for the current page.

Remember, this means that the menu item is in the path from the current
page to the highest level of our page tree.

CUR This is active when the menu item is for the current page.
IFSUB This state applies to any page with subpages.
RO This state can be used for rollover or mouse-over actions.

[74]

Chapter 4

State Description

USR This state applies to pages that restrict access by frontend user groups. This
can be used to show pages like members-only sections differently in the

ACTIFSUB TYPOS includes support for special combination states that rely on two or

more conditions being met. ACTIFSUB, for example, shows the active state
for a menu item if you are on a subpage of that page that is if the menu item
is in your current rootline.

HMENU properties

Because HMENU is the root of all of our other menu objects, any of the properties that
we learn for HMENU will be applicable to all of our menu options that we might use
on future websites. I've included a list of the TypoScript properties that we are most
likely to use in the TypoScript template setup, but you can see the complete list in
the TSref (http://typo3.org/documentation/document-library/references/
doc_core_tsref/current).

If you haven't used TypoScript much, and this is too much information all at once,
don't worry. It will make more sense in a few pages when we start experimenting
on our own site. Then, this will serve as a great reference.

Property

Description

entryLevel

maxItems

This defines at which level in the current page tree we want the
menu to start. The default, 0, is the base of the page tree. In our
example site, the entryLevel for our main menu is 0:

lib.mainMenu.entryLevel = 0

In our current site, we define the entryLevel of our submenu as
1 because we want to show the subpages on level 1 underneath the
top page in our current rootline:

lib.subMenu.entrylLevel = 1

We can also set the maximum number of items in the menu with
maxItems. After the menu reaches maxItems, it will ignore any
remaining items.

This affects all of the submenus as well. If we want to set it
specifically for each menu associated with an HMENU object, we
can to set it in the menu objects. Like in programming languages,
this is called inheritance because the submenus are inheriting this
value from the main menu

[75]

Creating Flexible Menus

Property

Description

begin

This sets the first item in the menu. For example, if you wanted to
skip the first three pages in your page tree, you could set the value
of begin to 4:

lib.mainMenu.begin = 4

Like maxItems above, being has inheritance. If we need to control
this on each menu object, we can to set it on the menu object itself.

excludeUidList The excludeUidList property excludes the pages associated with

special

the ID's listed. You may list as many items as you want separated
by commas, and you can add the keyword current to the list to
exclude the current page:

lib.mainMenu.excludeUidList =
4,8,15,16,23,42,current

As a caution, I wouldn't recommend actually hard-coding pages
you don't want in the menu. It's better practice to just flag the pages
in their setup to not show in menus so you don't have to modify the
template code if pages are moved around, but this property can be
good for excluding your current page from a menu when it makes
more sense for the user experience.

This property allows us to create special menus to show updated
pages, keyword pages, and others. We can also use this property
with as a list if we only want to show a few specific pages like a
special navigation menu:
lib.mainMenu.special = list
lib.mainMenu.special.value = 3,12,19,80

We are mainly talking about normal page tree menus and
submenus in this chapter, but we will talk about breadcrumb
menus later in this chapter.

As we've already witnessed in the main menu, TYPO3 sorts our menu
by the order in the page tree by default. We can use this property to
list fields for TYPO3 to use in the database query. For example, if we
wanted to list the main menu items in reverse alphabetical order, we
could call the alternativeSortingField in our template:

lib.mainMenu.1l = TMENU

lib.mainMenu.l.alternativeSortingField = title desc

[76]

Chapter 4

Common menu item properties

We've looked at the menu as a whole, but a lot of our TypoScript configuration
revolves around the menu items themselves. Editing all of the menu items in
TypoScript is not hard, but it's not completely straightforward. When we are adding
TypoScript configuration like HTML tags to all of our menu items, we will always
start by assigning them to the normal (NO) state. For example, we haven't talked
about the specific properties available yet, but the following TypoScript code will
assign a class to all of the menu links:

lib.mainMenu.1l = TMENU
lib.mainMenu.1.NO.ATagParams = class="menu-links"

Here are some of the most common menu item properties that we might use in
our TypoScript templates:

Property Description
addParams Using addParams, we can add GET parameters to the link URLs in the
menu. The value must be encoded for raw URL processing;:
lib.mainMenu.1l.NO.addParams = "&your variable=your%20
value"
ATagParams We can add additional attributes such as class and style to the <a> tag
with ATagParams. Example:
lib.mainMenu.1l.NO.ATagParams = class="menu-links"
ATagTitle This will specify the title attribute of the <a> tag for the menu items

affected. For example, we can use the abstract or description:

lib.mainMenu.1l.NO.ATagTitle.field = abstract //
description

allWrap We can wrap the entire menu entry including the link in our own
arbitrary HTML output with al1Wrap. We can use this in our own site
to wrap each item in our main menu with a new span tag with the class
menu-1item by adding this to our TypoScript setup:

lib.mainMenu.1.NO.allWrap = <span class="menu-

item">|

All of the wrap properties in TypoScript have the same format where |
represents the object. In the code above, the | is representing the entire
menu entry. For example, this is the original menu entry output:

Home

The allWrap property would place span tags on either side so it looks
like this:

<a href="index.
php?id=1">Home

[77]

Creating Flexible Menus

Property Description

wrap We can wrap just the menu entry (without the link) in our own arbitrary
HTML output with wrap. We can use this to add special formatting
around our menu items inside of the link.

linkWrap This works like al1Wrap, but it wraps just the <a> tag of our menu
entries. This can result in different output from allWrap if we are
inserting images with beforeImg or afterImg (discussed below).

before Like allWrap and and 1inkWrap, this is used to insert arbitrary HTML
output near our menu item. In this case, before determines what will
be displayed before the menu entry. If we do not need to wrap an entry
with output before and after it, we can simply use the before property
instead of al1lWrap.

after This property works like before, but it defines what should be
displayed only after the menu entry.

Introducing text-based menus

The simplest type of menu is the text-based menu, TMENU, which displays the page
titles of menu items as text links. It's the fastest, drop-in solution for any menu, and
it's what TemplaVoila created by default. The big advantages for TMENU are speed
and flexibility. It's the fastest to implement, but it's also the fastest menu object to
render because it's not downloading any special graphics or complex layouts during
the loading of our page.

It also means that your design is not tied to the TypoScript template, so you can do
all your customization through CSS or even JavaScript libraries. If you're designing
for CSS3-compatible browsers and you really know what you're doing, then you can
build a very fast menu with custom fonts and effects that degrade gracefully across
unsupported browsers without TypoScript. We are going to look at ways to integrate
non-web fonts and complex graphic effects using TypoScript in this chapter because,
for those who aren't CSS or JavaScript geniuses already, TypoScript is easier and
more flexible. Almost anything is possible, with TMENU, CSS, and JavaScript.

What are the disadvantages? Obviously, the main disadvantage can be appearance. If
your designer has handed you a folder of mockups with fancy graphical menus, then
they are not going to be impressed with our text-based navigation. If you want fancy
buttons, but you're still designing for legacy browsers and graceful degradation
(displaying functional but less advanced designs to older browsers) is not an option,
you'll need to use GMENU with GIFBUILDER.

If you build enough websites, you will end up using various menus at different
times, but TMENU is both a great starting point for new projects and a nice alternative
when we need the basic functionality of our navigation.

[78]

Chapter 4

TMENU Properties

As a child of HMENU, TMENU shares some common properties with the other menu
objects, but there are some specific TMENUITEM properties that can be modified for
the items in a text-based menu:

Property Description

beforeImg We can specify an image to be displayed before the menu entry with
beforeImg. This property is an imgResource, so we can simply
declare the file we want to display as a link, or we can expand and use
the more advanced properties of an image resource discussed in the
TSref (width, height, and so on). We will use some of the advanced
properties in our examples.

beforeROImg This declares an image to be displayed on rollover in conjunction with
beforeImg. To use this, we must enable rollovers on our menu.

beforeImgLink The beforeImgLink property will link the beforeImg image with
the same information as the text link in the menu item if this is set.

afterWrap, These properties function similar to beforeWrap, beforeImg, and
afterImg, so on. to add images and wrapped elements after the text menu item.
afterROImg,

afterImgLink

Adding separators to menu items

Okay, now that we've seen the properties we can use, we can start using them

and improving the basic menu we currently have. We remember that our boss
complained early on that our multiple word menu titles sometimes looked like
separate items and wondered if we could put separators in-between the items.

Of course, we could try to just add a | after every menu item by saying 1ib.
mainMenu.1.NO.after = |, but then the menu will still have one annoying |
at the end. Luckily for us, we can use the optionsplit function in TypoScript. With
the optionsplit function, we can define different wrappings for the first, middle,
and last elements. The optionsplit function can be used with many different menu
properties including our different wrapping properties, and the basic syntax looks
like this:

wrap = [First element] |+*| [All middle elements] |*| [Last element]

[79]

Creating Flexible Menus

As we're already using the allwrap property, we don't really want to retype the 11
three times. We can go ahead and use the before and after properties. We only
actually need the vertical separators after our menu items, so we can quickly skip the

before property and just add a special after to our main menu using splitOption
like this:

Main Menu [Begin]
lib.mainMenu = HMENU
lib.mainMenu.entryLevel = 0
lib.mainMenu.wrap = <ul id="menu-area"s>|
lib.mainMenu.l = TMENU
lib.mainMenu.1.NO {
allWrap = <li class="menu-item">|
after = | | *|
 | |*|
}

Main Menu [End]

Now, our main menu with CSS spacing and vertical separators can look like this:

Example.com

Visions | Probucts | Content ELements | Contact | Asout Us

Redesigning the text-based menus

Okay, so we've made some tasteful changes to update our navigation and make our
boss happier, but we need to see the full power of the basic text menu in TYPO3
before we move on to graphical menus. We can't just go back to our bosses and
show them that we added little lines to the menu; it's not that impressive. We need
to really experiment with this, and that means we have to make more than small
tasteful changes. We need to break stuff.

1. There is a limited amount of space in our submenu area, so we'll set a
maximum limit of items:

lib.subMenu.1l.maxItems = 8

2. We can skip over the first page in the main page tree (Products) for now, so
we'll just start on the second item:
lib.mainMenu.1l.begin = 2

3. The spacing between the text items and the separators seems a little
imprecise. We can replace the snbsp; spaces with spacer images:

lib.mainMenu.1.NO.after = | |*|
 | |*|

[80]

Chapter 4

If we add a class to the <a> tags, it will make it even easier to style in CSS:

lib.mainMenu.1l.NO.ATagParams = class="menu-links"

Right now, we don't have a title field in the <a> tags, but a title helps
usability for everyone and especially those using screen readers or other
assistive devices. We're all about web standards right now. We can add the
description or page title from the page properties to the link's title field to
clarify the contents of the page to which we are linking. To insure that we
don't have blank titles, we are going to use the // operator in TypoScript so
that TYPO3 will look for the description field first and use the title field if the
description is empty:

lib.mainMenu.1l.NO.ATagTitle.field = description // title

It might end up looking tacky, but we just want to see what it looks like to
place an image in front of our text titles in the menu. Just to be consistent, we
want to make sure that the image links to the same page as the text:

lib.mainMenu.1l ({
NO {

beforeImg = fileadmin/templates/bullet.png
beforeImgLink = 1

}

While we're at it, let's just add a rollover image. Remember we have
to enable the rollover state at the end for it to work:

lib.mainMenu.1.NO
RO =1
beforeROImg = fileadmin/templates/bullet rollover.png

}

Finally, we decide that we want to show the pages in the current rootline
(with the AcT state) differently to set them apart. Our first though might be to
just worry about the current page state (CUR), but it might be nice if the main
menu item displayed differently even if we're on a subpage. We can use the

< operator TypoScript (see TSref for more information) to copy the properties
of the normal state over as a starting point. To copy all of the properties, we
will write AcT < .NO (not ACT < NO). We'll change the class on the active
links and remove the image in front of them. Once again, we will have to
enable the ACT state to use it:

lib.mainMenu.1 ({
ACT < .NO
ACT = 1
ACT {

ATagParams = class="active-link"

[81]

Creating Flexible Menus

beforeImg >

}

9. Finally, we need to add a class to the stylesheet to differentiate the active
links according to TYPO3. We've just told the template to change the class to
active-1link, so we can add the following code to the bottom of our CSS file
to change the color of the link to a light grey:

li.menu-item a.active-link {
color: #ddd;

}

After all of our changes, our menu may not be as simple and clean as it once was,
but it definitely shows what we can do with some lines of TypoScript. Here is a
screenshot with from the Content Elements page. With the mouse hovering over the
Visions menu item we can see the rollover image and the link title text that is being
pulled from the description field of the page properties:

Example.com

| ®Visions | @®Asoutr Us | @Contact

) p— _ —
Heapers Text BULLE This is the recipe for our awesome-sauce. Loain Menu/SiTemar

Final code

If you stepped through all of those changes with us, you probably noticed that we
added a lot of redundant lines because we wanted all of our modifications to stand
on their own. Of course, in a production environment, those changes should look
cleaned up:

Main Menu [Begin]

lib.mainMenu = HMENU

lib.mainMenu.entryLevel = 0

lib.mainMenu.wrap = <ul id="menu-area"s|
lib.mainMenu.1l = TMENU

lib.mainMenu.1 ({

begin = 2
NO
allWrap = <li class="menu-item">|</1li>
after = | |*| <img src="clear.
gif" width="15"> | |*|
ATagParams = class="menu-links"

ATagTitle.field = description // title
beforeImg = fileadmin/templates/bullet.png

[82]

Chapter 4

beforeImgLink = 1
RO =1

beforeROImg = fileadmin/templates/bullet rollover.png

}

ACT < .NO

ACT = 1

ACT {
ATagParams = class="active-1link"
beforeImg >

}

Main Menu [End]

Submenu [Begin]
lib.subMenu = HMENU

lib.subMenu.entryLevel = 1
lib.subMenu.wrap = <ul id="submenu-area"s|</uls>
lib.subMenu.l = TMENU
lib.subMenu.l.maxItems = 8
lib.subMenu.1.NO ({
allWrap = <li class="submenu-item">|</1li>

}

Submenu [End]

Introducing graphic menus

Now that we've modified our text menu, we are definitely feeling a little more
confident with the hierarchical menu. We might want to show this off to the bosses,
or we can make our titles jump off the page a little more before we start bragging.
Now we can try out a simple graphical menu object referred to as GMENU in TYPO3.
GMENU is our next step above TMENU in power and complexity, but it's still a pretty

easy transition if we take a few minutes to understand the concepts.

Our graphical menu, GMENU, has the ability to use a TYPO3 class, GIFBUILDER,

to create images on the fly. We are going to look at GIFBUILDER in depth in just a
moment, but the basic idea is that GIFBUILDER can help us build complex graphics
for our menus dynamically so that we can use fonts that are not be supported by
all browsers, build button-like graphics, and use drop-shadows and embossing for
effect. This means that we don't need to update Photoshop every time that we want
to change the menu titles or replace the font, and we also don't have to learn or use

Flash or JavaScript just to create flexible menu titles.

[83]

Creating Flexible Menus

We gain a lot of freedom and power with GMENU, but it does have some
disadvantages compared to TMENU. Depending on our needs, we will be generating
an image for every state (normal, rollover, active, and so on), for each menu item
anytime we make a change. The nice thing is that TYPO3 will cache our images, so
they are only generated after we make a change and reset the cache. Overall, we will
use the server a little more heavily anytime we reset the cache, and our users will
need to download images for each menu item. The last disadvantage is just that it

is more complex than TMENU. If our frontend developers or designers have already
provided us with some awesome CSS/JavaScript or Photoshop images, then we may
only need a text-based menu. In return for those possible disadvantages, we will

get freedom and cross-browser compatibility, so let's see what we can do before we
make any decisions.

Introducing GIFBUILDER

GIFBUILDER is a universal object in TypoScript that uses some basic TypoScript code
to generate images using the ImageMagick (or GraphicsMagick) library in PHP.
Generating images with ImageMagick is normally very complex, and we would
have to learn a fair amount of PHP to make anything. Using GIFBUILDER, makes

it relatively easy to make these same dynamic images without learning PHP or
opening Photoshop. GIFBUILDER can actually be used for any images that we would
want to create in TypoScript, but we are going to be using it specifically for GMENU in
this book to turn our text fields into typographic images complete with layers

and effects.

We are going to learn about three main objects in GIFBUILDER that will help us create
our menu items:

e Boxes: We can layer simple boxes to make borders or button effects.

e Images: We can use uploaded or external image files as backgrounds or just
display them as menu items.

o Text: Most importantly, we can use text objects to show our page titles in
non-web fonts with drop-shadow or emboss effects.

A complete list of the properties available to GIFBUILDER is beyond the scope of
this chapter, and not really necessary to build most menus. If you want to learn
more about GIFBUILDER, I recommend Mastering TypoScript by Daniel Koch. If you
have any problems with GIFBUILDER, you may need to check your ImageMagick
configuration in the TYPO3 Install Tool.

[84]

Chapter 4

The BOX object

The BOX object is one of the key TypoScript objects in GIFBUILDER. The Box object
is, like it sounds, just a simple graphical box defined by its size and color. By
itself, it's not that helpful, but we can add boxes as layers to generate borders and
backgrounds that will be flattened into our final generated images. We are only
going to use two properties for our boxes:

e BOX.dimensions defines the dimensions of the box in the format x, y, w,
h where x, y is the offset for the top right-corner and w, h is the width and
height of the box.

e BOX.color defines the color of the inside of the box.

Here is an example of a gray box, 400 pixels wide, 20 pixels tall, and offset 3 pixels
down and to the right:

lib.subMenu.1.NO {
5 = BOX
5.color = f#aaaaaa
5.dimensions = 3,3,400,20

The IMAGE object

The next object we can use, IMAGE, will bring in an image for normal display or basic
tiling and masking. The IMAGE object can be used for complex displays, but we are
only looking at menu applications and will just look at a few options:

Property Description

file We can declare point to a filename or use a use a complete imageFile
declaration like the rollover images we used in the TMENU section:

10.file = fileadmin/templates/image.png
10.file {
import = uploads/media/
import.field = media
import.listNum = 0
width = 15
height = 10

}

offset Thisis the x, y offset from the layer beneath it.
tile We can tile the image X, y times inside the GIFBUILDER object. The maximum

is 20 in each direction, so you may need a bigger image if you need to cover
more space.

[85]

Creating Flexible Menus

The TEXT object

Finally, we're going to look at the options for a TEXT object in GIFBUILDER. TEXT
objects are used to display any text we want in GIFBUILDER, but will be mainly
using them to show the title of each page as a menu item. This list of properties is
much more exhaustive because this would obviously be one of the most important
objects to customize when we're creating a menu using graphical text:

Property Description

text.field This is the field from the menu item we want to use for the text.
We are going to use title in our current site, but we could use
the description or abstract if that was necessary.

fontFile As we are rendering this text as a graphic image, we don't need to
rely on browser-safe fonts. We can point this to any font file that
we are licensed to use to generate our images. This is one of the
most important reason to look at using GMENU because it means
we don't have to create in images in Photoshop or Flash files for
every change or rely on JavaScript/CSS solutions that may not
work with the font we want to use.

fontSize This is the font size of our text.

fontColor This is the color of our text.

offset Like the other objects, we can define an offset from the layer
before this.

align We can align the text to the right, left, or center.

angle We can set the angle to display the text at. For a 45 degree angle,
we could say 10.angle = 45.

niceText If set, this will render small text cleaner by generating the text

shadow.offset
shadow.color
shadow.blur

shadow.opacity

shadow.intensity

at twice its font size scaling it down to the correct size using
ImageMagick on the server. Unfortunately, this can be CPU-
intensive so we should only use it in production if we've tested it
with and without and decide whether we need the functionality.

We can render the text with a shadow and define its x, y offset.
This defines the color of the shadow.
We can change the blur of the shadow with values 1-99.

If blur has a value, we can set the opacity of the shadow from 0%
(transparent) to 100% (opaque). Example of 80% opacity:

10.shadow.opacity = 80
We can set the intensity of the shadow from 0 to 100.

[86]

Chapter 4

Property Description
emboss.offset, We can also use an emboss effect on our text using properties
emboss.blur, similar to the shadow properties.

emboss.opacity,
emboss.intensity

emboss.highColor This sets the upper border color of the emboss effect.

emboss.lowColor This sets the lower border color of the emboss effect.

GIFBUILDER layers

We work with GIFBUILDER by creating new objects for the GIFBUILDER, designing
them with properties, and layering them by number values. Each layer is stacked in
ascending order (larger numbers on top), and then TYPO3 generates a final image
by flattening all of the layers into one image. It sounds a little complex, but look at
this example:

lib.subMenu.1.NO {
5 = BOX
5.color = #aaaaaa
5.dimensions = 3,3,400,20
10 = TEXT
10.text.field = title
10.fontSize = 12

}

In the example that we just saw, 1ib. subMenu. 1.NO is our GIFBUILDER object.
Although the numbers used to identify objects (5 and 10 in the example) are
sometimes arbitrary in TYPO3, they are very important for GIFBUILDER because
they define the ordering in layers. GIFBUILDER stacks it's subobjects from lowest
number to highest. So, in the example that we just saw, TYPO3 is generating an
image in a logical sequence:

1. A gray box is defined.

2. The dimensions of the gray box are defined to make it 400 pixels wide
and 20 pixels.

3. A text object is created on top of the gray box to show the title field of the
page from the menu item.

The size of the text for the title is set to 12 pixels.
TYPO3 generates a flattened image of our menu item title in a gray box.

Using this system, we can stack very simple objects on top of each other to draw
basic buttons.

[87]

Creating Flexible Menus

GIFBUILDER properties

The GIFBUILDER object will apply itself to all items in a GMENU menu. For the basic
GIFBUILDER object, we are only going to look at two properties:

o XY defines the size of the image (width and height)

e backColor defines the background color for the entire image

The interesting trick for Xy (and some of the other dimension properties) is that it can
be based on hard-coded numbers and TypoScript constants, or it can be a calculation
based on the size of another item. In the following code, the size of the GIFBUILDER
object is tied directly to the size of the TEXT object declared below it:

10 = TEXT
10.text.field = title
XY = [10.w]+10, [10.h]+10

The references [10.w] and [10.h] read the current width and height of the object
associated with 10. Then, we add 10 pixels onto each one to give ourselves a little bit
of room for spacing. We'll use this technique in GMENU to make sure that our boxes
and graphic objects always line up with our titles.

GMENU properties

The first thing that you'll probably notice going from TMENU to GMENU is that we are
about to multiply the number of properties at our disposal dramatically. We've
already covered the common menu properties that we won't talk about again, but I
could easily finish out a new chapter just discussing all of the options we have with
GIFBUILDER objects. Instead, we're just going to cover the most basic or necessary
properties in the following tables to get an idea of what we can do. If it looks
intimidating, don't worry. Most of the properties are created logically and build
upon our earlier knowledge. Most importantly, there's no requirement to learn all
of GIFBUILDER before we start playing around.

The menu object itself has just a few key properties that we need to look at:

Property Description

min This sets the minimum dimensions for the entire menu in the
standard TypoScript width and height format (x, y).
Example:
lib.mainMenu.l.min = 50,20

max This sets the maximum dimensions for the menu in the same
format as min.

[88]

Chapter 4

Property Description

useLargestItemX If this is set, the width of all menu items will be equal to the widest

item.

useLargestItemY If this is set, the height of all menu items will be equal to the tallest

item.

Creating our first graphic menu

The first change we can accomplish is updating our main menu with a custom font
and some rollover functionality. We can do that with minimum fuss, and it'll update
our whole look nicely. I chose a freeware font from Larabie Fonts (http: //www.
larabiefonts.com) called Deftone because it'll show off GIFBUILDER, and my boss
loves it. You can use any TrueType font file you would like, though. Some fonts seem
to work better with ImageMagick then others, so you may need to experiment. In
any case, let's start updating our menu:

1.

We need to change 1ib.mainMenu.1 = TMENU to lib.mainMenu.l = GMENU
to use the GMENU objects.

We want a consistent height for our entire menu, so we'll enable
useLargestItemY in our template:

lib.mainMenu.1l.uselLargestItemY = 1

Let's update the normal menu state first. We won't be using the div tags
around our menu items, so want to add a class to our images:

lib.mainMenu.1l.NO.ATagParams = class="menu-link"

We can set the background color and dimensions of our menu items. We are
going to use 10 for our text object, so we can go ahead and use that as part
of the size calculation to make our items exactly the same width and 5 pixels
taller than the text:
lib.mainMenu.1l.NO {

backColor = #ffffff

XY = [10.w], [10.h]+5

}

Now we can create the TEXT object. This is our main menu, so we're just
going to use the title as our text content. We're also going to use the Deftone
font at a size of 36 in a classic black:
lib.mainMenu.1.NO {

10 = TEXT

10.text.field = title

10.fontFile = fileadmin/templates/deftone.ttf

[89]

Creating Flexible Menus

10.fontSize = 36
10.fontColor = #000000
10.align = left

}

6. The main menu is already looking better, but we can add some flair by
tilting the text up with the angle property. Because of the angle changing the
dimensions, we'll push the text down a little more by adding a 50 pixel offset
to the height:
lib.mainMenu.1.NO {

10.offset = 0,50
10.angle = 3

}

After all of our modifications, this is what our menu should look like:

Dnoducts [snlenl Eements Yisions ([Hhoullls

Modifying based on menu states

We can't deny that the menu is looking better, but we lost that rollover functionality
that we were showing off in the TMENU. Luckily, we can add that back with just a
couple lines of code. We can use the < operator to copy all of the NO properties over,
then we can change the text to red and add a shadow whenever the mouse rolls over
it with the rO state:

lib.mainMenu.1 {
RO < .NO
RO {
10.fontColor = #990000
10.shadow.offset = 1,1

If we want to differentiate the pages in the current rootline by graying them out,
it's almost the same process:

lib.mainMenu.1 {
ACT < .NO
ACT {
10.fontColor = #999999
10.shadow.offset = 1,1

}

ACT = 1

[90]

Chapter 4

In the following screenshot, you can see the results if we are on the Products page
(so it's active) and roll over the Content Elements menu item with our mouse. We
could almost show this off right now.

Drodocls (onlentZlements UYisions (loulUs

Main menu code

After all of the tweaking, our code might be getting ugly. If we take away the
redundancies and use curly braces, this is what our code can look like:

Main Menu [Begin]

lib.mainMenu = HMENU

lib.mainMenu.entryLevel = 0

lib.mainMenu.wrap = <ul id="menu-area"s|
lib.mainMenu.l = GMENU
lib.mainMenu.l.uselargestItemY = 1
lib.mainMenu.1l ({

NO

{
allWrap = <1li class="menu-item">|
ATagParams = class="menu-link"
backColor = #ffffff
XY = [10.w], [10.h]+5
10 = TEXT
10 {
text.field = title
fontFile = fileadmin/templates/deftone.ttf
fontSize = 36
fontColor = #000000
align = left
offset = 0,50

angle = 3
}
}
RO < .NO
RO =1
RO {
10.fontColor = #990000
10.shadow.offset = 1,1
}
ACT < .NO
ACT =1
ACT {
10.fontColor = #999999
10.shadow.offset = 1,1

Main Menu [End]

[91]

Creating Flexible Menus

Creating a graphic menu with boxes

Now that we've created a basic GMENU, we can get a little fancier with the submenu.
This time, let's actually create buttons with embossed text. Because the emboss effect
works better with certain fonts, we don't want to use the Deftone font again. I tried
plenty of combinations early on, but I love the look of an emboss on a simple, serif
typeface. I've downloaded an open source font from The League of Movable Type
(http://www.theleagueofmovabletype.com) called Goudy Bookletter 1911, but
you can use any font with clean, straight lines to get the same effect.

1.

We added a hefty margin to the submenu in CSS, but we don't really want
to stop and modify our stylesheets while we're playing around. Instead, we
can wrap our submenu in a ul with a reset margin to offset the styling. This
wouldn't be a permanent solution, but it's handy while we're experimenting;:
lib.subMenu.wrap = <id="submenu-area" style="margin-left:
Opx">|</uls>
Just like the main menu, we need to enable GMENU by changing 1ib.
subMenu.l = TMENUto lib.subMenu.l = GMENU.

This time, we won't worry about the height of the menu (it'll be consistent,
anyway), but we do want all of the buttons to be the same width. We can set
the menu to use the widest item as a base:

lib.subMenu.1l.uselLargestItemX = 1

Like the main menu, we need to add a class to the images for future
reference:

lib.subMenu.1l.NO.ATagParams = class="submenu-link"

This time, we'll define the background as a light gray. We are going to use
10 for TEXT object, so we'll set the width of each menu item to be 10 pixels
wider than the text by using [10.w] + 10 for our width. We will set the
height of the menu as a whole to 26 pixels so we have space for boxes and
text inside. The background that is visible between the boxes will be a visual
border around the entire area:

lib.subMenu.1.NO {
backColor = #bbbbbb
XY = [10.w]+12,26

}

We're going to define a darker gray box for each menu item as our button:

lib.subMenu.1.NO {
5 = BOX
5.color = #aaaaaa
5.dimensions = 3,3,400,20

[92]

Chapter 4

Next, we'll add a text field on top of the box. Remember, the numbering of
our objects defines their layer, so we're going to use 10 to place the TEXT
object on top of the BOx object:
lib.subMenu.1.NO {

10 = TEXT

10.text.field = title

10.fontFile = fileadmin/templates/goudy bookletter 1911-
webfont.ttf

10.fontSize = 12
10.fontColor = #555555

}

This time, we're going to set the offset and alignment to center the text
horizontally and vertically in the boxes:
lib.subMenu.1.NO {

10.0ffset = 0,19

10.align = center

}

Finally, we'll add the emboss effect using shades of gray to make the text
appear sunken into the boxes:
lib.subMenu.1.NO {

10.emboss.offset = 1,1

10.emboss.highColor = #cccccce

10.emboss.lowColor = #bbbbbb

}

Now that we've updated our submenu, it should look like this:

Headers Text Bulletlists Tables Forms

Submenu code

Once again, step-by-step modification doesn't lend itself to clean code. If we optimize
our code and remove all the redundant lines, this should be our final submenu code:

Submenu [Beginl]

lib.
lib.
lib.

ul>

lib.
lib.

subMenu = HMENU

subMenu.entryLevel = 1

subMenu.wrap = <ul id="submenu-area" style="margin-left: Opx">|</
subMenu.l = GMENU

subMenu.l.maxItems = 8

[93]

Creating Flexible Menus

lib.subMenu.1l.uselLargestItemX = 1
lib.subMenu.1.NO {

allWrap = <li class="submenu-item" style="margin-right: Opx">|</1li>
ATagParams = class="submenu-1link"
backColor = #bbbbbb
XY = [10.w]+12,26
5 = BOX
5 {
color = #aaaaaa
dimensions = 3,3,400,20
}
10 = TEXT
10 {

text.field = title

fontFile = fileadmin/templates/goudy bookletter 1911-webfont.ttf
fontSize = 12

fontColor = #555555

offset = 0,19

align = center

emboss.offset = 1,1

emboss.highColor = #cccccce

emboss.lowColor = #bbbbbb

}
}

Submenu [End]

Using external images for menus

Now that we've seen how we can generate images, we should look at using external
images as well. It's going to happen quite often in the real world that a designer is
going to already have icons or images designed for our menu that can't possibly be
replicated dynamically with GIFBUILDER. In our case, we'll imagine that our boss
wants to use some special graphics for each main menu item. We want the editors to
be able to update these images in the future without breaking our template or bother
us, and it's probably a good idea to make sure that we fall back to a GIFBUILDER
image if somebody forgets to assign an image to a menu item in the page properties.

The first thing we can do is adding an alternate image property to our menu items
with the alt ImgResource property. The altImgResource property takes some of
the same file parameters as the beforeImg functions we saw earlier:

altImgResource.import = uploads/media/
altImgResource.import.field = media
altImgResource.import.listNum = 0

[94]

Chapter 4

Using these parameters, our menu can import images associated with our pages
through the resources tab in page setup. By assigning the 1istNum to 0, we will
pull the first image from the list. We can also assign higher numbers in the list to
use different images for rollover and active states as well. It's easier to understand
if we see this in action, so we can add the alt ImgrResource code highlighted below
to our main menu code. Like earlier, we have comments added for information on
each function:

Main Menu [Begin]
lib.mainMenu = HMENU
lib.mainMenu.entryLevel = 0

lib.mainMenu.wrap = <ul id="menu-area"s|
lib.mainMenu.1l = GMENU
lib.mainMenu.1l.uselargestItemY = 1

lib.mainMenu.1 {

NO

RO
RO
RO

{

allWrap = <1li class="menu-item">|</1li>

ATagParams = class="menu-link"

Add an image resource to load up if available
altImgResource.import = uploads/media/

Use the media field of the page setup for images
altImgResource.import.field = media

Import the first image listed in the page setup
altImgResource.import.listNum = 0

If no images in the page properties, create

GIFBUILDER image

backColor = #ffffff

XY = [10.w], [10.h]+5
10 = TEXT
10 {

text.field = title

fontFile = fileadmin/templates/deftone.ttf
fontSize = 36

fontColor = #000000

align = left

offset = 0,50

angle = 3

< .NO

For rollover, import the second image listed in
the page properties

[95]

Creating Flexible Menus

altImgResource.import.listNum = 1
10.fontColor = #990000
10.shadow.offset = 1,1

ACT < .NO
1

+H
HF o~ 1

For now, the active state will use the same
altImgResource as the normal state
10.fontColor = #999999

10.shadow.offset = 1,1

}

Main Menu [End]

The new menus will use the resources from the page setup to show items. After
we've updated the menu, we'll notice that nothing may have changed initially
because we haven't added files to the page resources. This is okay, because it just
means that the menu is falling back to GIFBUILDER correctly. To show our images,
we can add files to the resources tab of the page properties. Remember, we can access
the page properties by right-clicking on our page in the page tree and selecting Edit:

& sdmin logout Iy W & n!‘ L}

= B

v WEB Path: /Awesome Site/ | Products [44]

Page

> " Awesome Site Edit Page "Products"
Vi "

D v [) Awesome Site

B ust ﬂ Products General Metadata Resources Options Access Extended

@ Info L5 Content Elements

) visions Files:
= 1= les:
] Aosess [) About Us "
Functions » [Contact product_normal.png Bog
B versioning () Storage Folder product_rollover.png 'i]] & 4l |product_normal.png
x

iz, Template .

77 Recycler GIF JPG JPEG TIF TIFF BMP PCX TGA PNG coduct ralloust o

E 2 PDF Al HTML HTM TTF TXT CSS L - o

HA TemplaVoila
¥ FILE ((Choose File) no file selected

S

() Filelist [Page (44)
¥ USER TOOLS

a N

o Task center] Show secondary options (palettes)

According to our code, the menu should try to load the first image for a normal state,
and it will display the second file in the list for when the mouse rolls over it. If we
add these resources to our Products page, we will see an image replace the text for
that menu item:

¢ fLondent Elements Yisims [Hhoullls

[96]

Chapter 4

On rollover, the Products menu item will show the second image in the list:
.%)/1 .
N fondent Elements Yisions (Uhoullls

As you can see, the altImgResource can be a very helpful and powerful way to use
more complex images designed in Photoshop or Illustrator inside our own templates.
It even keeps the HTML tags that we wrapped around our menu items and the 1ink
tag parameters. If we use alt ImgResource and an image returns from the page
properties, than it will simply override any GIFBUILDER configuration. This is why
we can use GIFBUILDER as a seamless backup menu procedure for when an image

is not set in the page properties. So, if it's overriding the GIFBUILDER configuration,
why is it considered an alternate image resource? I don't know, but according to the
TSref "this is how it irreversibly is and has been for a long time."

Other types of menus

We have covered the two main types of menus in TYPO3 that we will need to know
for template building, TMENU and GMENU. TYPO3 offers other menu options that we
do not have time to cover in this chapter. Because so many of the other menus are
extensions of TMENU or GMENU, it was more important that we spend time learning
TMENU and GMENU in-depth then try to gloss over all six menu options. Now that we
know the big two, we can extend our menus to some of the following options:

e GMENU_LAYERS and TMENU_ LAYERS extend GMENU or TMENU to create a
multi-level DHTML (Dynamic HTML) menu.

e GMENU FOLDOUT extends GMENU to create a multi-level menu with
JavaScript actions.

e IMGMENU creates a large image map with GIFBUILDER objects.
e JSMENU creates drop-downs that dynamically load using JavaScript.
In most situations, you won't need to go very deep into any of these menu options

that date back to solving problems with Netscape 4 and predate modern JavaScript
libraries, but the TSref has detailed information for all of them.

[97]

Creating Flexible Menus

Breadcrumb navigation

Along with standard page tree navigation, TYPO3 menu objects can be used for
specific navigation using the special properties. It is possible to list recently
updated pages, pages related by keywords, and even a complete directory listing.
One of the best options, though, is the root1ine menu that shows the path along
the rootline from the top of the menu to the current page. In web development, this
is called breadcrumb navigation because it leaves a trail for users to take back to the
beginning, and it is used in e-commerce sites or websites with deep navigation trees.

To create our own breadcrumb navigation, we need to add a new element to our
HTML file and TemplaVoila template. First, we need to add the space for our
breadcrumb navigation to our HTML. We can place it directly below the submenu
in our HTML file:

<body>
<div id="logo"></div>
<div id="timestamp" style="float: right;"></div>
<ul id="menu-area"><li class="menu-item">Menu Item
#l
<ul id="submenu-area"><li class="submenu-item">Submenu Item #l
<div id="breadcrumb">Top Menu \ Next Page</div>
<div id="banner image"></div>
<div id="content">This is our content</divs>
</body>

Once we've updated our HTML, we need to add a new field to our main
TemplaVoila data structure. We will follow the same steps from the last chapter:
1. Click on TemplaVoila in the far-left menu.
2. Choose the Storage Folder from the page tree.
3. Click Update mapping.

[98]

Chapter 4

B Y - ® TemplaVoila Control Center
v WEB

= [Show Details
Page =

v
@ View 7 Awesome Site Page templates /i | [E]Flexible CE Other Template Files Errors (1) iy

v-[] Awesome Site
List [Products XML file
@ 1nfo L] Cortent Elements Localization Container status Mapping status Usage count
o - [visions Main Template
.| Access H B
(i 1 About us Main Template [Template] a
Functions [contact
By versioning [storage Folder] 7
@ Template [Mo icon] Template Status °No errors found!

Global Processing XML 5.3 K bytes

T Recycler

'B) TemplaVaila
» FILE
» USER TOOLS
» ADMIN TOOLS

» HELP

@ Main Template [Template] 2

[MNo icon] File reference: fileadmin/templates/template.html|
The following pages in the Main Template for the website
root line contain data
structures and template
objects:

Mapping status: MTemplate file was updated since last
mapping (09-09-10 23:11) and you
might need to remap the Template
Object!

4 Update mapping
Local Processing XML: &
Create new Template Object

4. Click Modify DS/ TO (Data Structure / Template Object) on the
mapping page.

5. At the bottom of the data structure page, add a new field called
field breadcrumb:

Pick the HTML container element where
you want the logo to be placed.

Logo

field_breadcrumb IAdd

field_logo

I Show XML " Clear all " Preview " Save " Save and Exit " Save as " Load " Refresh I

@ <div> INNER

6. Finally, fill in the form for the new field with the following values:

° Title: Our title can be Breadcrumb Navigation.

° Mapping Instructions: Just like the original elements, we'll
add some basic instructions: Pick the HTML container
element where you want the breadcrumb navigation to
be placed.

° Sample Data: Our sample data can be [Breadcrumb
navigation goes here].

Element Preset: We are going to use TypoScript object to

define the menu, so we can go ahead and choose TypoScript

Object Path from the drop-down menu.

[99]

Creating Flexible Menus

o

Mapping rules: Like the other elements we've added, we just
want some simple rules: div, span, tr, td.

Object path: We need a name for our object that will be easy
to remember, so we can call it lib.breadcrumb so our editors
know exactly what we are creating.

7. Save the changes to our template and map the new field to the new
breadcrumb div tag in our HTML file.

Now that we have updated our TemplaVoila template, we can try out the
breadcrumb navigation by defining it at the end of our TypoScript template
setup with the following code:

Declare a new HMENU object
lib.breadcrumb = HMENU
Define the new object as a rootline
lib.breadcrumb.special = rootline
Sets the range from the base of the page tree (0) to the
current level (-1)
lib.breadcrumb.special.range = 0]-1
Adds basic wrapping and titles to menu
lib.breadcrumb.wrap = Current Location:
lib.breadcrumb.l = TMENU
lib.breadcrumb.1
{
target
= _top
NO.before
=
NO.after
= / |*| / |*|
}

Using this code exactly as it stands (and some CSS like the submenu styling), we can
see this output:

Current Location: Awesome Site / Cowtent ELements /[Texr

[100]

Chapter 4

Pulling it all together

Now that we've seen the different menu options we can take our pick of what we
want to keep for our example site. We've seen the most basic text, text with icons,
graphical text, buttons, and designer image resources. Our boss will probably love
the graphical main menu, but we might have been experimenting a bit too much
when we converted the submenu to little embossed buttons. The alternate images
were also great, but stick figures may not be the most helpful navigation aids. So,
before we show this off, we can just grab the best bits of our graphical main menu
and our text-based submenu:

Droducts [onlent Tloments Yisions (houllls

Heapers Text Buuwremusts Tasies Forms SearcH Loaink Menu/STEmMaP FRAMES AND SPACING

Summary

We can be proud because in this chapter, we have learned everything that we really
need to know to build great menus in TYPO3. We can now customize the navigation
to our boss's content, and it's definitely time for another coffee break. In fact, we
should probably show this to a few co-workers just so they know why we just spent
the past hour staring at a book. As soon as we get back, we'll start creating some
new templates in the next chapter. We'll be creating printable versions of our pages,
special layouts for different sections, and adding them to the list for editors to choose
from when they create new pages. So, take a break and hurry back with your coffee
and a text editor handy.

[101]

Creating Multiple Templates

We've done pretty well with just a single template, but we will need multiple
templates to build a complete website in TYPO3. Bosses and content editors are
not going to be that impressed that we've effectively given them only one editable
content area in the entire template; we are going to need some diversity in our
internal pages for multiple columns or sidebars if we want to make a professional
website. It's our job to make sure that the editors have options for the layout when
they are adding new pages or sections or updating current ones, so we're going

to start adding new layouts into the mix.

In this chapter you will:

e Create multiple templates for different page layouts
e Add asidebar to the list of possible content areas in the backend
e Assign specific templates to pages and subpages

e Create icons for our templates to make it easier to choose the right layout
for a page

e Update the icon and timestamp fields for just one section of the website
e Create a printable template with CSS
e Create a new printable subtemplate for the main template

e Create a dynamic link to a print-friendly template on each page

Creating Multiple Templates

Creating new templates with sidebars

We know that we need more templates, but we can't spend too much time on each
one or make updating more confusing for editors. Of course, we could go through
all the work of creating multiple new data structures and template objects just to
add some sidebars, but we would end up repeating a lot of work needlessly. Instead
of creating a set of complete templates with new data structures, we can just create
a handful of template objects in TemplaVoila that can share one data structure and
one new HTML file. We already have one main data structure that we are using,
and TemplaVoila allows multiple template objects to be mapped to a single data
structure. Essentially, each template object is just a unique mapping of the fields in
the data structure to an HTML file. As long as we are using most of the same data
fields, we will just keep creating new template objects for the existing data structure.
We can even add a few fields like sidebars to the main structure; we don't have to
map them in template objects that don't need them.

Our boss really loves sidebars, so we can impress everyone with a few choices of
templates with sidebars. We could create just one, but we can create three new
templates with almost the same amount of work. We'll create one with a sidebar
on the right, one with a sidebar on the left, and one with sidebars on both sides.

Creating the HTML and CSS

Our mapping will help us define the final layout of each template object, but we

don't need to create a new HTML file for each object. We can re-use the same HTML
file for multiple templates by creating a new HTML file with div areas for left and
right sidebars. We'll just map them or ignore them in each template object depending
on what we need. Technically, this template will be exactly like the current HTML
template except for the sidebars, so we can even copy template.html to start with. We
could actually modify the main HTML template, but we're still experimenting. There's
no point in breaking the current template by accident. For now, we can just create a file
named template sidebar.html in the templates directory (fileadmin/templates/)
that looks just like the main template with two div tags added for sidebars:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8" />
</head>
<body>
<div id="logo"></div>
<div id="timestamp" style="float: right;"></div>
<ul id="menu-area"><li class="menu-item">Menu Item
#l</1li></uls>

[104]

Chapter 5

<ul id="submenu-area"><li class="submenu-item">Submenu Item #l

<div id="banner image"s></divs>
<div id="left sidebar" class="sidebar"></div>
<div id="right sidebar" class="sidebar"></div>
<div id="content">This is our content</divs>
</body>
</html>

With the new HTML in place, we can update our stylesheet to arrange our templates
correctly. We're going to keep this pretty simple. For our site, all sidebars can be
exactly 200 pixels wide, and we'll put a 30 pixel margin between the sidebar content
and the main content area next to it. We can add the following code to our main
stylesheet (fileadmin/templates/style.css) to set the width, margins, and
appropriate floats:

.sidebar {
width: 200px;
}

#left sidebar {
float: left;
margin-right: 30px;

}

#right sidebar {
float: right;
margin-left: 30px;

Adding columns to the data structure

Before we create the new template objects, we need to make sure that we have data
tields available for mapping. Just like when we added the banner, logo, and other
fields in Chapter 3, Adding Custom Template Fields, we are going to modify the

data structure.

Just to refresh, we get into the data structure modification page through the
TemplaVoila view in the backend. Next to the main template, just click on the
Update mapping button. In the Information tab, we can get access to add columns
to the data structure by clicking on the button labeled Modify DS/TO. We have
already done this a few times, so we can confidently click on OK on the warning
pop up and proceed into the editing page for the data structure.

[105]

Creating Multiple Templates

At the bottom of the page, we can add a new field called field leftsidebar:

Pick the HTML container element
where you want the logo to be
placed.

Logo

field_logo

Breaderumb Navigation field breadcrumb Pick the HTML container element
where you want the breadcrumb
navigation to be placed.

_field_leftsidebar Add

| Show xML

Clear all I Preview " Save " Save and Exit " Save as " Load " Refresh I

@ <div> INNER

@ <div> INNER

We are going to use the Page-Content Elements element preset so that our editors
will see our new sidebar field in their TemplaVoila page view. Other than that, it's
a basic element like the ones we've been creating, so we can configure it with the

following settings:

o Field: field leftsidebar
o Title: Left Sidebar

e Mapping Instructions: Pick the HTML element in the template where you

want the left sidebar to be mapped.
e Sample Data: [Left sidebar goes here]
e Element Preset: Page-Content Elements

e Mappingrules: div, span, tr, td

Our screen should look like this:

| Element | :i Title:

field_leftsidebar (new): Left Sidebar

Configuration Mapping Instructions:

- Data processing

Sample Data:

Pick the HTML element in the template where you want the left sidebar to be mapped.

[Left sidebar goes here]

Element Preset:

| Page-Content Elements [Pos.: 0]) H
Changing element type will change your existing settings!

Mapping rules:

div,span,tr,td

conel

[106]

Chapter 5

We can save and update the left sidebar and create a new right sidebar with
a similar configuration:

Field: field rightsidebar
Title: Right Sidebar

Mapping Instructions: Pick the HTML element in the template where you
want the right sidebar to be mapped.

Sample Data: [Right sidebar goes herel
Element Preset: Page-Content Elements

Mapping rules: div, span, tr, td

| Element

= i Title:

field_rightsidebar (new):
- Configuration Mapping Instructions:
- Data processing Pick the HTML element in the template where you want the right sidebar to be mappec

- Extra Sample Data:

Right Sidebar

[Right sidebar goes here]

Element Preset:
| Page-Content Elements [Pos.: 0] ¥ ﬂ
Changing element type will change your existing settings!

Mapping rules:

div,span,tr,td

Cancel

Once we've created both fields, we can save our changes by clicking on Save
and Exit.

Creating new TemplaVoila template objects

Now that we have a new HTML file, updated CSS, and new fields available to us in
the data structure, we can create our new template objects. There are three steps we

need to

1.

go through to create each new template:

At the bottom of the main TemplaVoila page, click on the link labeled
Create new Template Object.

[107]

Creating Multiple Templates

2. This brings up a configuration page for the new template. We are not dealing
with subtemplates or special local processing yet, so we only need to fill out
the title, choose a file reference (our HTML file) and select our data structure
from the drop-down. Here are the values we will use for our example site:

° Title: Left Sidebar Template [Template]

o

File reference: fileadmin/templates/template sidebar.
html

° Data Structure: Main Template

3. If our configuration looks like the following screenshot, we can save it. As we
need to create two more templates, we'll click on the "Save and create new
icon" (circled in the following screenshot) to save our current template object
and create a new one.

Path: fAwesome Site/ "] Storage Folder [24]

Create new TemplaVoila Template Object on page "Storage Folder"

Title:

Left Sidebar Template [Template]|

Make this a sub-template of:

[] H
File reference:
» fileadminf/templates/template_sidebar.html &
BELayout Template File:
&

Data Structure:

| Main Template | :}-I-
Inherit default subtemplates from:
[] :i

Description of the template:

Local Processing (XML):

14| TemplaVoila Template Object NEW

[108]

Chapter 5

After we choose to save and create a new object, we can immediately start
configuring our new one to show a sidebar on the right. Our settings will be exactly
the same as Left Sidebar Template [Template], but we will name it Right Sidebar
Template [Template]. As an aside, it is important that we name our templates
clearly for any site we are working on. Except for the possible icons that we can add
later, this name will be the only thing an editor sees when they are trying to choose
the right template for a page.

With the new title, this should be our configuration screen for the new template object:

Path: fAwesome Site/ "] Storage Folder [24]

Create new TemplaVoila Template Object on page "Storage Folder"

Title:

F Right Sidebar Template [Template]

Make this a sub-template of:

A
L

File reference:

0

» fileadmin/templates/template_sidebar.html|

BELayout Template File:

Data Structure:

| Main Template | :]-'-
Inherit default subtemplates from:
[I H

Description of the template:

Local Processing (XML):

@ TemplaVoila Template Object NEW

[109]

Creating Multiple Templates

If our configuration looks correct, we choose to save and create another document
again. This time, we'll create our final template for now to show two sidebars. Once
again, we will choose the same file reference and data structure; our only change will
be naming our template Two Sidebar Template [Template]:

Path: /Awesome Site/["] Storage Folder [24]

Create new TemplaVoila Template Object on page "Storage Folder"

Title:

Two Sidebar Template [Template]l

Make this a sub-template of:
[) :]

File reference:

fileadmin/templates/template_sidebar.html &

BELayout Template File:

4

Data Structure:

| Main Template | :!-|-
Inherit default subtemplates from:
[! :]

Description of the template:

Local Processing {XML):

@ TemplaVoila Template Object NEW

We do not have any more templates to create right now, so we can choose to save
and close the document to be returned to the main TemplaVoila Control Center.

Mapping new template objects

Mapping the new template objects will be just like mapping our main template, so
we can click on the Remap button on the main TemplaVoila page next to the new
template object Left Sidebar Template [Template]. On the mapping page, we will
map all of the elements to our new object as we have done for the main template:

[110]

Chapter 5

Map Root to the body tag.

Map Main Content Area to the div with the ID content.
Map Main Menu to the 1ist tag with the ID menu-area.
Map Sub menu to the 1ist tag with the ID submenu-area.
Map Banner Image to the div with the ID banner image.
Map Timestamp to the div with the ID timestamp.

NSO XN

Map Logo to the div with the ID logo.

The only additional mapping will be the new field labeled Left Sidebar, which we
can map to the div with the identifier 1eft_sidebar that we have circled in the
following screenshot:

Mapping Window:

[Mode: HTML Source l:’] -

_ Pick the HTML element in the template where you want the left sidebar to be mapped.

<{DOCTYFPE HTML>

<head>

<meta charset="utf-8" />
</head>
<body>

<div> id="logo">
</div>
<div> id="timestamp" style="float: right;">
</div>
<ul id="menu-area">
<li class="menu-item">

Menu Item #1
<fa>
</1li>

<ul id="submenu-area">
<li class="submenu-item">

Submenu Item #1
<fa>
</1li>

<div> id="banner_ image">
</di
<div> id="left_sidebar" class="sidebar">

<div> id="right_sidebar" class="sidebar">
</div>
<div> id="content">
This is our content
</div>

With our updated mapping, we can click on the Save and Return button to save
all of our changes to the database and go back to the TemplaVoila Control Center
to map the next templates.

[111]

Creating Multiple Templates

From the main TemplaVoila page, we will click on the button to update the mapping
of the Right Sidebar Template [Template]. Once again, we'll map everything

like the earlier template objects with two obvious changes: we do not map the

Left Sidebar element, and we map the Right Sidebar element to the div with the
identifier right_sidebar. Once we have mapped everything, we save our changes
and return to the main TemplaVoila page again.

Now we can map our last template object, Two Sidebar Template [Template].
Again, we choose to update the mapping of our template object and map all of our
elements almost exactly like our other template objects. The only difference this time
is that we want to map both the Left Sidebar and Right Sidebar elements in this
template object. Once we have clicked on Save and Return we have officially created
and mapped three new templates for our editors to use. Of course, we'll need to tests
them first.

Assigning a new template to our pages

Now that we have some variety in our options, we can update some of our pages.
The first thing we should do is updating the Content Elements page from our
example site to use a sidebar. It's already got a content element to list the subpages
that really should be in a sidebar on the left, and it has plenty of pages below it that
we can play with. To change the template for the page, we can click on the pencil
icon in the Page view or choose Edit page properties from the drop-down on the
Content Elements page. We have already done this before when we set banner
images or added resources for the menus, so should be comfortable jumping into the
page properties. This time, though, we'll go to the Extended tab (like shown in the
following screenshot). In the section labeled Use Template Design: we can choose
Left Sidebar Template [Template] from the drop-down menu:

* WEB Path: /A Site/ [30]

B Page

- Vi " Awesome Site Edit Page "Content Elements"

¥ |] Awesome Site

3 List [% ::“’:“‘i . General Metadata Resources Options Access Extended

i Info Wil n ements

3 Access j _}r‘::‘dc” Use Template Design:

A Functions O Bulletists »|_Left Sidebar Template (Template] 4]

& Versioning L] Tables -

»-[] Forms Subpages - Use Template Design:

1m| Template »] Search ﬁ

7 Recyeler L] Login

B TemplaVolla &l Login - protected page :

emplaVoil [Menu/Sitemap Content:
» FILE é‘ Frames and spacing Main Content Arca
USERS —_— — -
» USER TOOLS [} visions Cantent Elements LS} [cantant Elana isiH)
[About Us List of subpages: («] [a] Ust of subpages: [54]
» ADMIN TOOLS » -] Contact g
» HELP (B storage Folder :]]
X
[F] Pagecontent

[112]

Chapter 5

If we save and close the page properties, we can see that TYPO3 has added a new
content area to the page view with the label from one of our new data structure
elements, Left Sidebar. If we are running TYPO3 4.3 or higher (and if our browsers
can handle AJAX), we can drag the List of subpages: content element over to the
new column. If we can't use the updated AJAX backend for some reason, we can
still cut and paste the element into the new section. In either case, we can move the
element over and see that both columns have content in the backend page view:

Main Content Area Left Sidebar
EO 3
Content Elements VA" = EE L] List of subpages: A" e 4]

[Text: Websites built with TYPO3 are usually constructed by | :
a number of "content elements" which are put together in a|!
lcertain order or nested structure. Each content element
has a type. The type of the element determines what
output it generates. The most popular types of content
elements are "Text", "Text w/Ilmage", "Search", "Login",
"Insert Plugin" etc. By combining the various content
elements you can create almost any page layout you wish
in a very flexible way but still with a lot of control over the |1
lcontent. On the other hand you also have to deal with all
lthe possible variations of content elements when you
Idesign a website. In order to help you design the
stylesheet for your website all the subpages to this page
lcontains various content element types and within each
ltype some variations.

EO

Menu type: Menu of subpages to these pages

EO

When we refresh the page on the frontend of our site, we can see that the list is now
floating on the left as we expected:

LisT OF CONTENT ELEMENTS

SUBPAGES! Websites built with TYPO3 are usually constructed by a
number of "content elements" which are put together

o Headers in a certain order or nested structure.

o Text Each content element has a type. The type of the

o Bulletlists element determines what output it generates. The most

¢ Tables popular types of content elements are "Text", "Text

¢ Forms w/lmage", "Search", "Login", "Insert Plugin" etc.

o Search By combining the various content elements you can

o Login crez_ate almost any page layout you wish in a very

o Menu/Sitemap ggﬁtlzlﬁtway but still with a lot of control over the

° Frames and spacing On the other hand you also have to deal with all the
possible variations of content elements when you

design a website. In order to help you design the stylesheet for your website all the

subpages to this page contains various content element types and within each type

some variations.

[113]

Creating Multiple Templates

Creating icons for templates

Now that we've created our first set of templates, we should make it just a little bit
easier for editors to pick the right one in the page properties. TYPO3 includes all
available TemplaVoila templates in the appropriate drop-down menus, but we can
create preview icons for our templates that will show up in the page properties.
Preview icons are actually helpful for a couple of reasons.

Of course, preview icons can be created to show what the template will actually look
like. Like I said before, naming our templates is important, but sometimes a picture
works even better. A preview icon is whatever we create, but there are basically two
options that are normally used: screenshots or wireframes. If we want, we can take
screenshots of an example page for each template and shrink it down to illustrate the
template. If that sounds too busy or possibly confusing for a thumbnail, another idea
is just to create wireframes like the examples in this section. With a basic wireframe
icon, we can still show how many columns are being used and basic layout, but we
are not worried about colors or if a sidebar is distinguishable in a small image.

The other reason to use preview icons, though, is that they are displayed separate
from the drop-down menu in the backend. If you have a large site with multiple
sections, you could end up with dozens of specialized templates that your editors
don't really need to see. Just because there is a special e-mail invitation template
available, doesn't mean that you want to confuse your editors by putting it at the
same level in the drop-down menu as the half-dozen templates that they may
actually use every day. With preview icons, it's easy to highlight the common
templates. If we only make previews for the handful of templates that editors need to
use most often, they will rarely have to open the drop-down and see all the template
objects that are used once a year or in special situations. In addition, you don't have
to worry as much that they will accidentally assign the 2005 Christmas Donation
Newsletter template to the front page. It will be easier for you and the editors to
have this separation between common templates and the rest.

[114]

Chapter 5

Our first step is obviously to create a few icons in a graphics editor. I chose to create
wireframe previews as you can do that in even the simplest editor with a couple of
box shapes. We need to create icons for the main template and both single sidebar
templates, but we'll ignore the template with two sidebars; our editors should rarely,
if ever, have to use it for our simple website. We can make simple square preview
icons like these for our purposes:

On the main TemplaVoila page in the backend, let's add an icon to the Left Sidebar
Template [Template] by clicking on the edit icon. When we open up the editing
view, we can see an area labeled Attach preview icon (gif or png in 1:1 size): with
a blank box. We can upload a new icon with the Choose File button or choose one
from our current directory structure by clicking on the folder icon to the right of the
box. If our preview icon is named left_sidebar_icon.png, then it will look like
the following screenshot after we have chosen it.

Attach preview icon (gif or png in 1:1 size):

left_sidebar_icon.png 3
(& |left_sidebar_icon.png

GIF PNG

Choose File | no file selected

[115]

Creating Multiple Templates

After we have saved the changes to Left Sidebar Template [Template], we can add
icons to Right Sidebar Template [Template] and Main Template [Template]. After
saving our changes to all three template objects, the main TemplaVoila screen will
show preview icons in the list of templates like this:

s} z
[Mo icon] Template Status aNo errors found!
Global Processing XML 7.8 K bytes
@ Left Sidebar Template [Template] 2

File reference: fileadmin/templates/template_sidebar.html

The following pages in the root line
contain data structures and template

objects:

Mapping status: OMapping is up to date.
Update mapping

Local Processing XML: &

@ Main Template [Template] 2>

File reference: fileadmin/templates/template.html
The following pages in the root line contain data Main Template for the website
structures and template objects:

Mapping status: oMapping is up to date.
Update mapping
Local Processing XML: &

@ Right Sidebar Template [Template]y
File reference: fileadmin/templates/template_sidebar.html

The following pages in the root line
contain data structures and template

objects:
Mapping status: al"'lapping is up to date.
Update mapping
Local Processing XML: &
@ Two Sidebar Template [Template]y
[Mo icon] File reference: fileadmin/templates/template_sidebar.html
The following pages in the root line contain
data structures and template objects:
Mapping status: ol'dapping is up to date.
Update mapping
Local Processing XML: &

Create new Template Object

[116]

Chapter 5

If we go to edit the page properties of the Content Elements page again, we can see
that the preview icons are being used now. TemplaVoila is even indicating which
template is currently being used with a small black arrow:

Edit Page "Content Elements"

General Metadata Resources Options Access Extended

Use Template Design:

| Left Sidebar Template [Template] | H
»

Subpages - Use Template Design:

a
o

Assigning templates to subpages

If you look at the back end page view for any of the pages underneath the Content
Elements page in the tree, you will see that they also have the Left Sidebar column
added. Like TypoScript templates, TemplaVoila templates are always inherited from
pages higher in the page tree unless they are specifically set. In our case, every subpage
below Content Elements is now automatically using the Left Sidebar Template
[Template] design.

[117]

Creating Multiple Templates

If we want all of the subpages below Content Elements to use a different template by
default, we can set a template for sub-pages in the Subpages - Use Template Design:
section of the Content Elements page properties:

Edit Page "Content Elements"

General Metadata Resources Options Access Extended

Use Template Design:

ry

| Left Sidebar Template [Template] } v]
3

Subpages - Use Template Design:

| Right Sidebar Template [Template] | ti

Of course, we can still override the template on any individual subpages that we
want, but this means that they will default to Right Sidebar Template [Template]
if nothing else is chosen. This is commonly done to set the internal pages of a
website to a different default template than the home page.

Creating an extension template

Another way that we can change the look of individual pages beyond the basic layout
is by overriding our TypoScript template settings with another kind of template
concept. As we've seen, each website uses one main TypoScript template, and we've
used this to define the style of our menus and assign values to our own TypoScript
objects like the logo and the timestamp. We can change these values by assigning an
extension template to any page, and it will affect that page and any pages below it with
our TypoScript changes. Let's make some special modifications to the products page to
make it more of a distinct store section under the main website.

[118]

Chapter 5

1. In the backend, click on the Template link on the main sidebar to jump to the
template editing view.

2. Weneed to edit the Products page, so we should choose it from the page tree
after we are in the template view.

3. There is currently no TypoScript template assigned to the Products page
besides the main site template, so we will see a screen like the one shown
in the following screenshot. This page warns us that there is no current
template and even points us to the closest page in the page tree with a
template. We have the choice of creating a new website that will give
us a brand new template and ignore all values above it in the page tree.
Alternatively, we can create an extension template that will add or change
values from the current templates for this page and the pages below it. We
want to extend our current template without replacing it completely, so we
need to click on the Click here to create an extension template button.

E E B
| Info/Modify 49 Path: fAwesome Site/| | Products [44]

Template tools

@ No template
There was no template on this page!
You need to create a template record below in order to edit your configuration.

Create new website

If you want this page to be the root of a new website, optionally based on one of the standard templates,
then press the button below:

Create template for a new site

Create extension template

An extension template allows you to enter TypoScript values that will affect only this page and subpages.

(tf_:_licl-c here to create an extension template.D

Go to closest page with template
Closest template is on page 'Awesome Site' (uid 23).

Click here to go.

[119]

Creating Multiple Templates

4. Once we choose to create an extension template, we are now presented with
a new template to edit. The template is currently completely blank, but it is
implied that all properties or values are already inherited from the templates
before it. All we need to do is adjust the setup, so we'll click on the pencil
icon next to the Setup: label to start editing the TypoScript setup values.

E E B

| Info/Modify -:i Path: /Awesome Site/| | Products [44]

Template tools

Template information:

5] +ext

o Title: +ext
& Sitetitle:
& Description:

* Resources:

yl:onstan_ts: (edit to view, 0 lines)
Cgietup: (edit to view,_E.ldi_n-EE}

&7 Edit the whole template record

5. We are going to remove the timestamp from the Products page because our
boss heard a consultant say that it was unnecessary in the catalog section
of our site. Currently, the 1ib. timestamp object is assigned a value in the
TypoScript of our main page. All we need to do is set the object to null in
our TypoScript setup:

lib.timestamp >

6. We also want to replace the logo in the upper-left with an alternative version
telling users they are in the store section of our website. We'll use the logo
our designer handed us that looks suspiciously like he just added the word
"Store" in grey Helvetica. We could eventually have a lot of pages under here,
so we're also going to make sure that users who get too deep and click on the
logo are brought straight back to the store page (instead of the main home
page). We don't have redefine the entire 1ib. logo TypoScript object because
it is already completely defined in the parent template; we just need to adjust
two of the values in our setup with some TypoScript:

lib.logo.file = fileadmin/templates/logo store.png

lib.logo.stdWrap.wrap = <a href="http://www.example.com/
products">|

[120]

Chapter 5

After our changes, we can refresh the Products page in the frontend and see a new
logo (and missing timestamp):

EX&mple.com

Dnodocls Lonlent Eements Yisions [Hhoul Us

Creating a printable template

Now that we have more options for our layouts and our design is looking better on
the screen, we need to make our pages look a little better when they're printed. Our
current site is pretty simple, so it doesn't break as bad as most when you try to print it.
We can clean it up a little, though. We don't need menus on the printed page, for one
thing, and the timestamp is already put in place by the browser when you print. We'll
just remove those and maybe move some elements around to look better on paper.

Creating a print-only stylesheet

We're about to create our first subtemplate just for the printable version, but I'd be
remiss if I didn't mention the most obvious tool we have to fix layouts for printing:
CSS. By setting the media value to print in our CSS link, we can call a specific CSS
file just for printing.

First, let's create a new stylesheet called print.css in the fileadmin/templates
directory along with our normal stylesheets. We don't have to put in a lot of styling
because we'll call it after the main stylesheet; we just need to hide the menus and
timestamp. For good measure, we'll also align the logo on the right side of the page
so that it looks cleaner on paper. The new file, print . css, is very basic:

/* Hide unnecessary elements */
ul#menu-area, ul#submenu-area, div#timestamp {
display: none;

/* Move the logo to the right */
div#logo {

float: right;
}

/* Don't let the content wrap around the logo */
div#content {
clear: right;

[121]

Creating Multiple Templates

Now, we can add the CSS file to our main template setup:

page.headerData.20 = TEXT

page.headerData.20.value = <link rel="stylesheet" type="text/css"
media="print" href="fileadmin/templates/css/print.css" />

As you can see, this looks just like our other stylesheet link, but we have changed
the value to 20 and we have set the media attribute to print in the link. This means
that this will load after the default CSS files and it will only load when the browser
requests a print version of the document. If we try to print a page on the frontend
now, we can see the changes:

Awesome Site: Awesome Site 9/16/10 7:50 PM

Example.com

AN AWESOME FRONT PAGE

Jeremy Greenawalt is a full-time developer and part-time writer
with close to ten years professional experience in website and
application creation. His first love was writing, but programming
quickly followed.

He is a co-founder of Vintage 56 where he helps develop
websites, online shopping carts, web apps, iPhone/iOS apps,
and anything else his friends can think up. Jeremy is also the web
director of a large ministry, Generals International.

Portrait by Rebekah Greenawalt

Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-youthful puppy, Aingeal.
He loves spending time at home reading, playing around on the piano, or just relaxing on the
couch with his family.

You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on
Twitter at @jgreenawalt.

[122]

Chapter 5

Creating a subtemplate

Of course, things are rarely this easy in the real world. For whatever reason, it is
common to need a printer-friendly version of many templates. We can use special
print templates to remove sidebars, fix ad spaces, or make a graphics-based layout
friendlier to basic text. In our case, we are going to make an alternate version of our
main template that uses tables instead of div tags. As annoying as tables can be, we
have clients using Netscape Navigator 6.0 to print articles from our site, and our
stylesheets are just not translating that well across the browsers.

First, we need to create a new HTML template in our fileadmin/templates
directory named printable_template.html that has most of the same sections
as our main template (minus the menus and timestamp) in a table format:

<!DOCTYPE HTML>

<html>

<head>
<meta charset="utf-8" />
<titles></title>

</head>

<body>
<table>
<tr>
<td id="logo"></td>
</tr>
<tr>
<td id="banner_ image"s></td>
</tr>
<tr>
<td id="content"></td>
</tr>
<tr>
<td id="print link"></td>
</tr>
</table>
</body>
</html>

[123]

Creating Multiple Templates

You probably noticed the print_1link cell above; we're going to use that in just

a minute to show a dynamic link to a printable version of the current page in the
frontend. For now, we need to finish creating our new template. Unlike the previous
template objects we created, we want this one to be a subtemplate to the main
template object. This means that, instead of standing on its own as a template object,
it will be automatically available to all pages using the Main Template [Template]
layout and will be called through special parameters. Like the other templates,

we will click on the Create new Template Object link on the bottom of the main
TemplaVoila Control Center page. In the configuration screen, we will set the normal
title and file reference as well as setting it as a subtemplate of the main template and
choosing a printer friendly rendering with the following options:

Title: Printable Main Template [Template]
Make this a sub-template of: Main Template [Templatel

1
2
3. File reference: fileadmin/templates/printable template.html
4

Select a type of rendering: Printer friendly

Title:

Printable Main Template [Template]

Make this a sub-template of:

| Main Template [Template] ¥ v]

File reference:

fileadmin/templates/printable_template.html <
BELayout Template File:
e

Language:
(-
-

Select a type of rendering:

| Printer friendly | & i

Local Processing {XML):

[124]

Chapter 5

After we have filled out the configuration like the screenshot that we just saw, we
can save our changes and exit to the main TemplaVoila page. We need to map the
subtemplate before we forget, so we'll just click on the Remap button next to the
printable template. This is basically the same as our main template (without a menu
and timestamps), so we map the new sub-template to the current data structure with
most of the same rules:

1. Map Root to the body tag

2. Map Main Content Area to the table cell with the ID content
3. Map Banner to the table cell with the ID banner image

4. Map Logo to the table cell with the ID logo

Once we've mapped the elements, we can click Save and Return and test our
new template. We can see the new subtemplate on any current page using Main
Template [Template] on the frontend by appending the parameter &print=1

to the URL in our address bar (for example, http://example.com/index.
php?id=73&print=l)

Creating a printable link

A printable version of our pages doesn't do much good if nobody knows about it. Of
course we know the syntax and we could spend time adding a printable link to the
bottom of every page that we want it on, but that obviously doesn't make sense when
we're using a powerful CMS like TYPO3. Using TypoScript, we can dynamically
create a printable link at the bottom of every page that has a printable template.

Adding a printable link section to the
templates

We have already added a section to map to on the printable template.html,
but we need to add a div to the main template HTML file. Go ahead and update
template.html with a new div tag like this:

< !DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8" />
</heads>
<body>
<div id="logo"></div>
<div id="timestamp" style="float: right;"></div>
<ul id="menu-area"><li class="menu-item">Menu Item
#l
<ul id="submenu-area"><li class="submenu-item"><a

[125]

Creating Multiple Templates

href="">Submenu Item #l
<div id="breadcrumb">Top Menu \ Next Page</div>
<div id="banner image"s></divs>
<div id="content">This is our content</divs>
<div id="print link"></div>
</body>
</html>

Adding the printable link field to the data
structure

This will have to be mapped to the templates in order to be usable, so we need to add
another field to the data structure:

1. Go through the TemplaVoila section of the backend to the data structure
editing page that we used to add the sidebar fields earlier.

2. Add a field named field printlink to the bottom of the main
data structure.

3. Like the menus and logo, this will be a TypoScript Object Path, so we
can configure it with the following settings:

[e]

Field: field printlink
° Title: Printable Link

[e]

Mapping Instructions: Pick the HTML element in the
template where you want the printable 1ink to be mapped.
Sample Data: [Print link goes here]

Element Preset: TypoScript Object Path

Mapping rules: div, span, tr, td

(Bement———— g Tt
field_printlink (new): Printable Link
- Configuration Mapping Instructions:

- Data processing Pick the HTML element in the template where you want the printable link to be mappe

Sample Data:
[Print link goes here]

Element Preset:
| TypoScript Object Path) ¢i
Changing element type will change your existing settings!

Mapping rules:

div,span,tr,td

Cancel

[126]

Chapter 5

Click on the Add button.
Choose TypoScript from the tree on the left.
Set Object path to 1ib.printLink.

N o e

Click on the Update button and then on Save to save the data structure
changes to the database.

After we have saved our changes to the data structure, we just need to map the new
field to the tags in the HTML files. For Main Template [Template], go ahead and
update the mapping to map the Printable Link field to the div with the ID
print_link. For Printable Main Template [Template], map Printable Link

to the table cell with the ID print_1link. When you're done, make sure you

save all of the changes.

Generating a printable link with TypoScript

In the earlier TYPO3 tutorial Futuristic Template Building, they talked briefly about
how to generate a printable link, but they didn't use the typolink object to make it
as powerful as it could be. Like that tutorial, we are going to update the TypoScript
template setup, but we are going to use a typolink solution that will work better
with RealURL and multiple URL parameters.

To use the typolink object, we just need to setup the URL parameters and assign it
to our printLink TypoScript object. Typolink will use our configuration to generate
a complete URL. First, we can use the page : uid value to call the current page ID and
assign it to the first parameter:

lib.printLink.typolink.parameter.data = page:uid

Next, we can start adding parameters to the link in a query string. We will need to
use addQueryString.exclude to make sure we don't post the page ID twice in the
parameters. Then, we can add the parameter aprint=1 to the link URL to call our
printable template when the link is used:

lib.printLink.typolink ({
addQueryString = 1
addQueryString.exclude = id
additionalParams = &print=1

}

Finally, we can create a link to the non-print template that will remove the print
parameters and only be displayed when the print parameter is already set:

[globalVar = GP:print>0]
lib.printLink {
value = Normal page view

[127]

Creating Multiple Templates

typolink {
additionalParams >
addQueryString.exclude = print

Return to global processing
[globall

If we put all of the new TypoScript pieces together and eliminate some duplication
by using curly braces, we can add this code to the bottom of our main TypoScript
template setup:

Print View Link
lib.printLink = TEXT
lib.printLink {
value = Printable page view
typolink {
parameter.data = page:uid
addQueryString = 1
addQueryString.exclude = id
additionalParams = &print=1

Normal View Link (to run when print is greater than 0)
[globalVar = GP:print>0]
lib.printLink {
value = Normal page view
typolink {
additionalParams >
addQueryString.exclude = print

Return to global processing
[globall

Now we can test this out on a frontend page. On any page using the main template,
we can see a link labeled Printable page view on the bottom of the page. If we click
on it, we see a printable version of the same page with a link at the bottom back to
the normal view:

[128]

Chapter 5

Example.com

AN AwesoME FRoNT PaGe

Jeremy Greenawalt is a full-time developer and part-time writer with close
to ten years professional experience in website and application creation.
His first love was writing, but programming quickly followed.

He is a co-founder of Vintage 56 where he helps develop websites, online
shopping carts, web apps, iPhone/iOS apps, and anything else his friends
can think up. Jeremy is also the web director of a large ministry, Generals
International.

. Portrait by Rebekah Greenawalt
Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-

youthful puppy, Aingeal. He loves spending time at home reading, playing around on the piano, or just
relaxing on the couch with his family.

You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on Twitter at
@jgreenawalt.

Normal page view

Summary

We've now started making some new templates that are more useful for internal
content pages; more importantly, we know how to make any template objects we
need to in the future that use existing data structures. We'll learn more about creating
new data structures in the next chapter, but we've already quadrupled the possible
layouts for our pages and added a printable version. On top of that, we learned how
to add preview icons to make our editors' jobs easier when they take over updating
the site layout themselves.

Using just these tools, we've come as far as many TYPO3 site creators who are
successfully running websites, but we're only halfway done with this website. In the
next chapter, we're going to create a whole new template (data structure and layout
design) from scratch to create newsletter. As crazy as we can go with just the default
data structure, there are times that we need to start with a whole new data structure;
a newsletter is a great example. Before we do that, though, you should take a minute
to show your boss the printable version links on our website. So few people actually
make printable versions of pages that I'm sure your boss will be impressed you did it
all dynamically.

[129]

Creating a Template from
Scratch

We've gotten pretty good at modifying our existing templates and data structures to
do whatever we want, but every once in a while we have to start over from scratch.
We will sometimes need to create a new data structure because we are creating

a section of our website that doesn't share the same data types as the rest of our
website. As an example, we are going to create a new template for a newsletter.
While the rest of our website may be centered around main content area, menus,
and sidebars, our newsletter needs schedules, news articles, contact info, and other
special elements. Of course, we could update our main data structure again like we
did in the last chapter, but there's so little shared data that we would just make life
more confusing for ourselves and anybody else who has to use our templates. We've
been concentrating on the boss up to this point, but now we can start making life
better for the editors. With the idea of helping the editors, we'll learn how to create
a new template data structure from scratch. We will review some of the techniques
from the last chapters, but we will be concentrating on the entire process of creating
a data structure and some advanced TemplaVoila data elements known as "section"
and "container" elements.

In this chapter you will:

e Lay out and design a new data structure from scratch
e Create your first data structure without the TemplaVoila "new site" wizard

e Learn about and create special section and container elements in our data
structure for advanced template control

e Setup a new system folder in the TYPO3 page tree with a template extension
and an example page

Creating a Template from Scratch

Designing the template

In this chapter, we are going to go through the entire creation of a new template
including some of the processes and best practices that are necessary to build
long-lasting, extensible templates. With that in mind, our first step to create

a new template is to sit down with a piece of paper and decide what information
we must communicate:

e We need a space for a main article.

e Along with a main article, we need a place for snippets of other, less
important, news.

e Of course, every newsletter should have our letterhead banner and the date
of the newsletter.

¢ We need some basic newsletter-like elements including a list of upcoming
events, some advertisements, our contact information, and a footer.

Creating a wireframe

Now that we have a small list of requirements, we can create a basic "wireframe"
mockup of our newsletter. A wireframe mockup is just a rough sketch that shows the
content areas and functionality, but it does not try to convey the design elements like
color, fonts, or graphics. It is a quick way of looking at the content without design
distractions, and we can make wireframes with a specific tool such as Balsamiq
Mockups (http://www.balsamiq.com/). We can also use diagramming programs
such as Microsoft Visio (http://office.microsoft.com/en-us/visio/) or
OmniGraffle (http://www.omnigroup.com/products/omnigraffle/) on the Mac
or iPad. We can also use Photoshop or even paper. The tool we use doesn't really
matter, but it is important to write down a basic sketch of where everything is going
to be so we can make sure that all our required data is included; it also helps us to
get an idea of what containers and tags will need to exist in our HTML template.
Here is a wireframe generated by Balsamiq Mockups:

[132]

Chapter 6

The Awesome Newsletter

<] E> X ‘{} Lhitp://www.example.com/newsletter

] @D

—Example.com Newsletter

March 12, 2010

Featured Article

lorem Ipsum dolor sit amet, consectetuer
adiplsc50 g elit. Ut nec lacus a neque

pulvinar pulvinar. Al0Oliquam sagittis,

purus in fermentum ornare, orci 150igula
vulputate saplen, a rutrum nisl mi eu mi.
Suz00spendisse potentl. Aliquam eros. Nullam eros
neque250, cursus eu, commedo In, vulputate nec, ipsum.
Dui300s et est a ante convallis consequat. Sed et nisl.
350Praesent vulputate erat quis magna. Aenean nisl
me400tus, euismod at, viverra nec, tristique eget,
nisi450. Phasellus In nunc at quam tristique ornare.
Quis500

Other News
lorem [psum dolor sit amet, consectetuer
adiplsc50 g elit. Ut nec lacus a neque pulvinar

lorem Ipsum dolor sit amet, consectetuer
adipisc50 g elit. Ut nec lacus a neque pulvinar

lorem Ipsum dolor sit amet, consectetuer
adipisc50 g elit. Ut nec lacus a neque pulvinar

Upcoming Dates
May 24th - Boston, MA
June 2nd - New York, NY
June 16th - Dallas, TX

New Products

lorem Ipsum dolor
sit amet, consect-
etuer adipisc50 g

elit. Ut nec lacus a neque

pulvinar pulvinar.

lorem Ipsum dolor
sit amet, consect-
etuer adipisc50 g

elit. Ut nec lacus a neque

pulvinar pulvinar.

Contact Us
Suite 850

123 Anyplace Ave.
Dallas, TX 75154 USA
‘eremg@examgle_com
www.example.com

Copyright Example.com 1526-2010

#|

Creating the HTML template

Now that we have our data elements designed and a basic wireframe, building

the HTML template is quick and easy. We're really just creating code to match
what we've already designed on paper. The only thing we have to do now is create
container tags for any elements that we need to map and write HTML that can be
used for an e-mail newsletter.

As you notice, we haven't done anything especially fancy with our template design;
we've just laid out the data that we know needs to be represented in a logical way
with a main section and a sidebar area.

[133]

Creating a Template from Scratch

Our example is an HTML newsletter that could be sent to a mailing list (through a
third-party service or a TYPO3 extension), so we want to make our HTML as simple
and clear as possible for all of the different e-mail clients that our subscribers might
be using with a few rules:

e No CSS layouts. Floating and block layouts are either completely
unsupported or non-standard in many e-mail clients, so we'll have
to use tables instead.

e We'll use inline CSS when possible. If we need a border for a table or cell,
we'll use style="border: 1px solid #000;" in the HTML tag.

e Anything that may not work in an inline CSS declaration such as fonts will
be declared in the head of our HTML, and we are going to include those
values in the TemplaVoila mapping later.

. There are more guidelines for designing an e-mail template than we can
cover here. For more information, I recommend the articles on Campaign
i Monitor (http://www.campaignmonitor.com/resources/) or
MailChimp (http://www.mailchimp.com/resources).

To create our HTML template, we only need to create a file named template_
newsletter.html in the fileadmin/templates/ directory and start creating our
HTML based on our wireframe and e-mail requirements. We are going to go through
all of the HTML right here, but you can download the complete HTML file from the
Packt site (https://www.packtpub.com/support).

First, we can add the header information with some basic CSS for our fonts
and margins:

<!DOCTYPE html lang="en">
<head>
<meta charset="utf-8" />
<titles</titles>
<style type="text/css">
* |
font-family: "Helvetica Neue", Arial, Helvetica, Geneva,
sans-serif;
font-size: 12px;
line-height: 18px;
}
p {
margin: 0px;
}

h2, h3 {

[134]

Chapter 6

margin: O0px;

h2
font-size: 24px;
line-height: 36px;

h3 {
font-size: 18px;
line-height: 24px;
}
</style>
</head>

Next, we need to start adding the body our HTML. We'll use one main table for the
entire template. We need rows for our banner and the date at the top, and we'll open
up a new cell for the main content. Notice that we are using inline CSS to create our
border under the date and setting the width of our main content section in the
HTML tag:

<body>
<table align="center" width="550" style="border: 1lpx solid #000;">
<tr>
<td id="banner image" colspan="2" align="center"></td>
</tr>
<tr>

<td id="date" colspan="2" align="right" style="border-
bottom: 1px solid #000;"></td>
</tr>
<tr>
<td id="main content" width="350" valign="top">

For the main content section, we are going to create a nested table for the main article
and news snippets:

<table>
<tr>
<td id="main article" style="padding-bottom: 15px;">
</td>
</tr>
<tr>
<td id="news" style="padding-bottom: 15px;">
<h2 id="news_title"></h2>
<div class="news list"></div>
</td>
</tr>
</table>

[135]

Creating a Template from Scratch

Now we can close the main_content cell, and create our cell for the sidebar. We will
create another nested table for the sidebar:

</td>
<td id="sidebar" width="200" valign="top">
<table style="border-left: 1px solid #000; padding-left: 10px;">

Now we will create our itinerary section to list upcoming events. We are adding
HTML for each element of our itinerary (date and city) so that we can map them
to fields in the page properties easier:

<tr>
<td style="padding-bottom: 15px;">
<h3 id="event list title"></h3>
<div id="event list">
<div class="event">
</
span> - </spans
</div>
</divs>
</td>
</tr>

We will add sections for our products and contact information:

<tr>
<td id="product list" style="padding-bottom: 15px;">
<h3 id="product_title"></h3>
<div class="product"></div>
</td>
</tr>
<tr>
<td id="contact info section" style="padding-bottom: 15px;">
<h3 id="contact_info_title"></h3>
<div id="contact_info"></div>
</td>
</tr>

Finally, we can close all of our tables and add a footer section at the bottom of
the page:

</tables>

</td>

</tr>

</tables>

<div id="footer" align="center"></divs>
</body>

</html>

[136]

Chapter 6

As you can see the HTML is just like we designed in the wireframe. The entire
template is based on tables, and we have used HTML attributes where possible to
set the padding and border of the different cells. Like we talked about, we have
also included some very basic CSS in the head section to set the font sizes and reset
the margins to 0 for paragraph tags. We have also created a cell, div, or span
container with a unique identifier or class attribute for each section that will need to
be mapped to a data element. Finally, we have created h2 and h3 header tags with
unique identifier attributes for the titles that we can map in TemplaVoila.

Creating the data structure

Now that we have everything planned out, we can create a data structure in
TemplaVoila without the worry that we're going to have to update it a few times
before we can really use it. We know about all of the main data elements that will
need to be created, we know basically how they will work from the wireframe, and
we have a copy of the HTML template that they will need to be mapped to as a
reference guide.

Of course, our first step is to create a blank data structure. In the TemplaVoila
module in the TYPO3 backend, click on the DS icon for the Main Template to
get a contextual menu. From the contextual menu, click on New:

TYPO3® & odmin [Logou 1% % & KRR %
TemplaVoila Control Center
v WEB
B p [] Show Details
age
¥ Awesome Site + Other .
@ View D i = Page templates Flexlble CE Lost TOs [1] Template Files
¥-[] Awesome Site
List [Products XML file
@ o T DS/TOTMe Localization Container status Mapping status Usage count
2 Access [Headers Main Template
) [Text Left Sidebar Template [Template] o
Functions [Bulletlists Main Template [Template] ®
Wersioning <[Tables Right Sidebar Template [Template]
0
k] Forms 2
= Two Sidebar Ti late [T¢ |ate
i8] Template . D —— wo Sidebar Template [Template] o
o gl o L
i = Edit
Bl Templavoila 3 % Lagin - pratmcied page K Status @ o errors found!
Menu/Sitemap 1 New e qiD 8.7 K bytes
» FILE -] Frames and spacing Info @ .
[E UsERs c & zbar Template [Template] /
opy
» USER TOOLS [visions File reference: fileadmin/templates/template_sidebar. html
ADMIN TOOLS D (ol cut # The following
= »-[7] Contact Versioning B8 ———| pages in the root
&, User Admin v [Newsletters Send to review/pub B line contain data
) -] Newsletter #1 M t structures and
) Ext Manager [Storage Folder ore options... template
[DB check Delete i objects:
h Conflguration History/Undo Mapping status: eMapping is up to date.
[Z] 1nstall TemplaVoila ™ __UDdate mapping
Local Processing %
Log XML:
Reports @ Main Template [Template] 7
“a"d Scheduler File reference: fileadmin/templates/template. html|

[137]

Creating a Template from Scratch

We will see a basic configuration screen for the new data structure immediately.
All we need to fill in is the title and category for our new template. Our Title will
be Newsletter, and the Category will be Page Template from the drop-down.
We can leave the icon and XML sections blank for now and save our changes:

Path: fAwesome Site/ "] Storage Folder [24]

Create new TemplaVoila Data Structure on page "Storage Folder"

. Title:

F | Newsletter

. Category:
}f Page Template r—%-]

. Attach preview icon (gif or png in 1:1 size):

x| &

GIF PNG
Choose File | no file selected

BELayout Template File:

§

. Data Structure XML:

TemplaVoila Data Structure NEW

After we save our new template, we are ready to create the template object to map

to. Under the Newsletter heading on the page, click on the link titled Create new
Template Object just like we did in the last chapter to create our new template object
for mapping;:

[Mo icon] Template Status QND errors found!
Global Processing XML &

reate new Template DED

[138]

Chapter 6

Like the data structure, we can fill out a minimum of fields to save our new page.
The Title should be Newsletter [TEMPLATE], you can use the file tool to set the File
Reference to fileadmin/templates/template newsletter.html, and the Data
Structure will be Newsletter for this template. Once you have filled in the fields like
shown in the following screenshot, we can save and close the template object page:

Path: fAwesome Site/[] Storage Folder [24]

Create new TemplaVoila Template Object on page "Storage Folder"

Title:

Newsletter [TEMPLATE]

Make this a sub-template of:
[»

ar
L

File reference:

':_ﬁj

F fileadmin/templates/template_newsletter.html

BELayout Template File:

':_ﬁj

Data Structure:

| Mewsletter ' :!-l-

Inherit default subtemplates from:
f F
v

Description of the template:

Local Processing (XML):

@ TemplaVoild Template Object NEW

[139]

Creating a Template from Scratch

In order to create the data elements for the first time, we will follow some of the same
steps we took to add elements to the main data structure. This time, we will click

on the Remap link under the new Newsletter [Template] object to go to the editing
screen and click on the Modify DS / TO button on the Information tab. The only
element that we should see already created is the ROOT container that will hold all
of our other data elements:

TemplaVoila
[1] Go back

D_ fileadmin/templates/template_newsletter.html
1| Hemplat bjects 1 Nevileter (TEMPLATE]
|| Data Structure Record: et

- Building Data Structure:

ICO| R ROOT Select the HTML element an the Map (ALL)
page which you want to be the
overall container element far the
template.

[Enter new fieldname] |Add |

I Show XML " Clear all " Preview " Save " Save and Exit " Save as " Load " Refresh I

Creating data structure elements

Going down the list from our requirements, wireframe, and HTML, we can start
creating new elements for this template. A lot of this is review, so we won't spend
too much time on techniques we've already learned. For the first field, though, we
will review the process of creating a data element one time.

The banner field

We'll start at the top with the banner image. We will make the banner image a
TypoScript object so that it can be set in the TypoScript template setup. Like we've
done before, this is helpful so that editors do not have to set it for each newsletter,
but it can still be changed through the TypoScript template if necessary. We are
calling it an image, but it will be a plain TypoScript object so we can always assign
text or HTML values to it as well in the future.

Remember, we create a new element by filling in a field name at the bottom of our
editing page and clicking on Add:

[140]

Chapter 6

TemplaVoila
[1] Go back

D_ fileadmin/templates/template_newsletter.html
|| Templte Objects | newsicter (TEMPLATE]
| Bata Structure Recards ncweicter

., Building Data Structure:

'C 0| ROOT ROOT Select the HTML element on the (ALL)
page which you want to be the

overall container element for the
template.

(| field_banned

Clear all

| Add

L=

Preview || Save " Save and Exit " Save as " Load " Refresh I

Go ahead and fill out the form with the following settings:

e Field: field banner
e Title: Banner Image
e Sample Data: [Banner goes here]

e Element Preset: TypoScript Object Path

If your screen looks like the following screenshot, click on Add to create the element:

2 Building Data Structure:

ROOT ROOT Select the HTML element on the page which you want to be the overall container

element for the template.
e

ield_banner {(new): Banner Image
Configuration Mapping Instructions:
- Data processing

- Extra Sample Data:

(et [Banner goes here]

Element Preset:

[TypoScript Object Path =
Changing element type will change your existing settings!
Mapping rules:

I Show XML II Clear all " Preview II Save and Exit II Save as || Refresh I

[141]

Creating a Template from Scratch

When the page refreshes, click on Typoscript in the left menu and set the Object
path to 1ib.bannerImage:

. Building Data Structure:

ROOT ROOT Select the HTML element on the page which you want to be
the overall container element for the template.

[Element ™| Extra options

Object path: [Iib.bannerlmage|]

field_banner

‘. Configuration

i Typoscript
e Eri7)

| Update || Cancel / Close |

[Enter new fieldname] |Add| .

I Show XML II Clear all " Preview II Save " Save and Exit " Save as " Load " Refresh I

Click on Update to save our changes.

The date field

Next, we can create the date field. The date needs to set by the editors for every
newsletter, but it does not need to be a dynamic container for content elements like
most of the dynamic elements we have made before. We can set the date to be a
Plain input field, which means that editors will only need to input plain text through
the page properties, and the template will take care of any styling. Our goal in this
template is to standardize as much as possible, so using a basic input field makes the
editors' jobs easier and cuts down on styling mistakes compared to using a rich text
editor. We can create the date element with the following settings:

o Field: field date
o Title: Date
e Sample Data: [Date goes herel

e Element Preset: Plain input field

[142]

Chapter 6

The main article field

Next, we can create the Main Article element. Like the Main Content area in the
main template, this element will display content elements of any type and be edited
through the Page view. This element is the mostly like what we have been using this
whole time, so we can go ahead and create it in the backend:

e Field: field main article

e Title:Main Article

e Sample Data: [Article goes here]

e Element Preset: Page-Content Elements

The news fields
Next, we can create the news elements. We could leave the news title hardcoded as
part of the template, but let's make it editable through TypoScript instead so we can
change it easier in the future or translate it for different languages someday. Go ahead
create this new element as a TypoScript object before we create the news section:

e Field: field news title

o Title: News Title

e Sample Data: [News title goes here]

e Element Preset: TypoScript Object Path

e Object path: 1ib.newsTitle
Now we can create the news section. Like the main article section for the newsletter,
we'll just allow content elements to be added to it in the Page view. Later on, we can
restrict what the editors add a little more, but we'll just create a basic content element
section for now:

o Field: field news

o Title: News

e Sample Data: [News goes herel

e Element Preset: Page-Content Elements

[143]

Creating a Template from Scratch

The upcoming events title field

Go ahead create a new element as a TypoScript object for the title of the upcoming
events section:

e Field: field event list title

e Title: Event List Title

e Sample Data: [Event list title goes here]
e Element Preset: TypoScript Object Path

e Object path: 1ib.eventListTitle

The upcoming events list

Our next element, the list of upcoming events, will be different than what we've
done before. Because we need to create a section for repeating elements (agenda
items, in this case) we are going to introduce the Section of elements and Container
of elements DS (Data Structure) elements. A section element is used to map a series
of repeating elements inside of our data structure. For our example, we need to have
one agenda section with an unknown number of events. By using a section element,
we do not have to set the number of events while we are creating the template. To
add the new section, we can create a new element with the fieldname field event
list, and change the drop-down from Element to Section of elements (shown in
the following screenshot):

o Field: field event list
e Section of elements

e Title: Event List

| Section of elements | & Title:

field_calendar Event List

i.. Configuration Mapping Instructions:

Mapping rules:

| Update || Cancel / Close |

After we've added the section element, you can see that we can now add elements
inside of it as well as to the ROOT container.

[144]

Chapter 6

The event container field

Now we are going to add a container element inside of the Event List section. The
container element, like our ROOT container, can hold different data elements inside
of it. In our case, we are going to create a container element for the events in the
upcoming events list that includes the date and city as separate elements. The reason
we're going to build it like this is so that we can actually create a single container for
each event that can then be repeated multiple times inside of the calendar. If we just
added the event date and city elements to the Event List section without enclosing
them in a container, they would not be grouped accurately and we would just have
a series of dates and unconnected cities. Now that we understand the purpose of
the container, we can go ahead and build it to see it in action. Under the Event List
section, g0 ahead and create a new element:

e Field: field event

e Container for elements

e Title: Event

e Mapping Instructions: Pick the HIML container element where you
want the event to be placed.

The event date and city fields

When we save the new container, we can then add elements inside of it. Go ahead
and create the event date element inside of the new Event container:

e Field: field event date

e Title: Event Date

e Mapping Instructions: Pick the HTML container element where you want
an event date to be placed.

e Sample Data: [Event date goes here]

e Element Preset: Plain input field
After we've saved the event date field, we can create the event city field right below it:

e Field: field event city
e Title: Event City

e Mapping Instructions: Pick the HTML container element where you want
an event city to be placed

e Sample Data: [Event city goes here]

e Element Preset: Plain input field

[145]

Creating a Template from Scratch

The product fields

Now that we've created the section and the content elements, the hardest part is
behind us. We just need to create the rest of the data elements for our new template.
Like the News Title element, we'll create a Products Title element so that we can map
the title to a TypoScript object. We know how to do this pretty well now, so we'll just
create a new element under the ROOT container with the following settings:

e Field: field product title
e Title: Product Title

e Mapping Instructions: Pick the HTML container element where you
want the product title to be placed

e Sample Data: [Product title goes herel
¢ Element Preset: TypoScript Object Path
e Object path: 1ib.productTitle

For now, we'll allow the editors to add any content elements they need to into the
products section of our newsletter, so we'll just make a basic content element section
like the news section:

e Field: field products
e Title: Products

e Mapping Instructions: Pick the HTML container element where you
want the products to be placed

e Sample Data: [Products go herel
e Element Preset: Page-Content Elements

The contact information fields

We need to create an element for the contact information section. We need to create
an element for the contact information section. We could combine the title and
contact information into one TypoScript object, but that might make it harder for
the editors if they need to customize the contact information (like preferred email
address) for different types of newsletters in the future. We're already planning on
having a few different newsletters for different departments, and we'll need to list
different contact e-mails and phone numbers on the different ones. First, we'll make
the title element:

e Field: field contact title

e Title: Contact Info Title

e Mapping Instructions: Pick the HTML container element where you
want the contact info title to be placed

[146]

Chapter 6

Sample Data: [Contact info title goes here]
Element Preset: TypoScript Object Path

Object path: 1ib.contactTitle

Next, we'll create a TypoScript object element for the contact information:

Field: field contact info
Title: Contact Info

Mapping Instructions: Pick the HTML container element where you
want the contact info to be placed

Sample Data: [Contact info goes here]
Element Preset: TypoScript Object Path

Object path: 1ib.contactInfo

The footer field

Finally, we'll create a data element for the footer section of our page. This will
also stay the same across groups of newsletters, but will need to be changed in the
TypoScript for some folders. We'll create a TypoScript object for the footer as well:

Field: field footer
Title: Footer

Mapping Instructions: Pick the HTML container element where you
want the footer to be placed

Sample Data: [Footer goes here]
Element Preset: TypoScript Object Path
Object path: 1ib. footer

That may seem like a lot of data elements, but the point of this template is to spend
the extra time upfront to save editors' time and prevent layout inconsistency in the
future. As we broke everything down to small sections and used a lot of TypoScript
options, the editors will only have three blank sections to edit in the Page view: Main
Article, News, and Products.

[147]

Creating a Template from Scratch

If we've added everything correctly, our data structure should look like the following
screenshot and we can use the Save as button to save our changes to the Newsletter
[Template] template object and data structure.

ROOT ROOT (ALL) &
Banner Image field_banner (ALL) &
Date field_date (ALL) & T
Main Article field_main_article (ALL) &
News Title field_news_title (ALL) o
News Articles field_news (ALL) o
Event List Title field_event_list_title (ALL) o
Event List field_event_list (ALL) & T

Event field_event (ALL) o
Event Date field_event_date (ALL) o
Event City field_event_city (ALL) & T

[Enter new fieldname] | Add | .

[Enter new fieldname] |Add | .

Product Title field_product_title (ALL) & T
Products field_products (ALL) &
Contact Info Title field_contact_title (ALL) y iy
Contact Info field_contact_info (ALL) &
Footer field_footer (ALL) L T

[Enter new fieldname] |Add |

I Show XML " Clear all " Preview " Save " Sawve and Exit " Save as || Refresh I

Mapping the template object

Once we have saved our new data structure, we can map all of our elements to
the Newsletter [Template] template object. We've already mapped quite a few
objects, so we'll just go through the mapping list to make sure that everything
is mapped correctly.

1. Before we map the individual elements, we need to make sure that our in-
line CSS is included in the header of the template. In the Header Parts tab,
go ahead and check <style> tag checkbox and click on the Set button to
save your changes:

[148]

Chapter 6

Information Header Parts Mapping

Adding parts from HTML header:

O <meta charset="utf-8" /=
E <style> <style type="text/css">
"
font-family: "Helvetica Neue", arial
font-size: 12px;
Tine-height: 18px;
1
p{
margin: Opx;
1
h2, h3 {
margin: Opx;
i
h2 {
font-size: 24px;
Tine-height: 36px;
1
h3 {

font-size: 18px;
Tine-height: 24px;

</style>

S-diEEE e n \t”t\}bnn!n]én!e--’

/1, Do not forget to press “Set" if header parts are changed!

I Clear all " Set " Save " Save and Return " Rever‘tl

Map the ROOT container to the body tag in INNER mode.

Map the Banner Image element to the table cell with the identifier
banner_image.

Map the Date element to the table cell with the date identifier.

5. Map the Main Article element to the table cell with main_article
identifier attribute.

6. Map the News Title element to the h2 tag with the identifier news_title.
Instead of using a td or div, we are mapping directly to the h2 tag to keep
the correct styling.

Map the News element to the div with the news_item class.

Map the Event List Title element to the h3 with the event_list_title identifier.

[149]

Creating a Template from Scratch

9.

10.

11.

12.
13.
14.
15.

16.
17.
18.

19.

For the Event List section, go ahead and map it to the div with the identifier
or event_list. We need to make sure to map this to an HTML container that
completely encloses whatever we need to map for the data elements inside of
the Event List data section.

Map the Event container to the div with the class event in the OUTER mode.
This is class in HTML because it will likely be repeating, and we just need

to make sure again that we are mapping our container to an HTML tag that
wraps around any data elements we will need to map. We also need to use
the OUTER mode in TemplaVoila to ensure that it shows correctly when
being repeated inside of the Event List section.

Map the Event Date element to the span with the event_date class in our
template. You should notice that TYPO3 only allows you to map tags inside
of the Event container.

Map the Event City to the span with the event_city class as an attribute.
Map the Product Title to the h3 tag with the product_title identifier.
Map the Products element to the div with the class product.

Map the Contact Info Title to the h3 tag using the identifier
contact_info_title.

Map the Contact Info to the contact_info div tag.
Map the Footer to the footer div at the bottom of the HTML template.

Click on the Preview button, and choose the Exploded Visual mode from
the drop-down. If everything is mapped correctly, you will see a preview
that closely resembles our wireframe:

[Banner goes here]

[Date goes here]

[Article goes here] [Event list title goes
here]

[News title goes here] [Event date goes here] - [Event

[News goes here] city goes here]
[Product title goes
here]

[Products go here]

[Contact info title

goes here]
[Contact info goes here]

[Footer goes here]

Click Save and Return to save our mapping.

[150]

Chapter 6

Creating a folder in the page tree

With a finished template, we need to start working on the page tree like an editor
and make an area to hold our newsletters. In the page tree in the backend, click on
the icon for the page right above the Storage Folder (should be Contact), and choose
New from the contextual menu. On the next page, we just need to click on the Page
(after) link to create our new page.

Instead of creating a page to be shown on the frontend, we want to create a system
folder (sysFolder) to hold our future newsletters as normal pages. Unlike pages,
system folders in the page tree do not appear in frontend menus, and they are not
editable in the TemplaVoila page module. Instead, they are good places to hold
pages or special content elements that will be accessed in other ways. In our case,
we just want a place to store newsletters, and our editors will be using the generated
HTML from the newsletter pages to send e-mails through a mailing list service.

If we choose sysFolder as the page type and set the title to Newsletters, our page
will look like this:

Edit Page "Newsletters"
General Resources Options Extended

Type:

[SysFolder :]
Layout: Last updated: 'New"' until: Mo search:
[Mormal % — E — E| O

Hide page:

=

Title:

MNewsletters

[151]

Creating a Template from Scratch

Before we save and close our page settings, we can choose Newsletter [Template] as
the default template for all subpages from the Extended tab:

Subpages - Use Template Design:
» | Newsletter [TEMPLATE] B

Once the template has been chosen, we can save and close the page settings view.

Setting the TypoScript values

We need to create an extension template for the newsletters to clear out unnecessary
headers and set the values for our TypoScript objects. As we move away from being
the site builders, we might need to show this setup to our co-workers in the future,
but for now go ahead and choose the Template icon from the far-right sidebar and
select the Newsletters folder so we can make an example. Just like last time, TYPO3
will need to know if we are creating a template for a new site or simply an extension.
Click on the button labeled Click here to create an extension template to create our
new extension. This is a review of what we've already learned, we are just going to
quickly add the following lines to the Setup section to clear our external CSS calls,
eliminate our JavaScript, and set the TypoScript objects that we created in

our template data structure:

Clear our CSS and JavaScript calls
page {

headerData.10 >

headerData.20 >

headerData.30 >

jsFooterInline.10 >

}

Set the banner image
lib.bannerImage = IMAGE
lib.bannerImage.file = fileadmin/templates/newsletter banner.png

Set the news title

[152]

Chapter 6

lib.newsTitle = TEXT
lib.newsTitle.value = Other News

Set the calendar title
lib.eventListTitle = TEXT
lib.eventListTitle.value = Upcoming Dates

Set the products area title
lib.productTitle = TEXT
lib.productTitle.value = New Products

Set the contact info title
lib.contactTitle = TEXT
lib.contactTitle.value = Contact Us

Set the contact information with HTML formatting
lib.contactInfo = HTML
lib.contactInfo.value (

<p>Suite 850</p><p>1214 Rebekah Ave.</p><p>Dallas, TX 75154 USA</
p><p>jeremy@example.com</
p><p>www.example.com</p>

)

Set the footer as plaintext with a dynamic year. See the TSref for
more formatting

lib.footer = TEXT

lib.footer.data = date:U

lib.footer.strftime = %Y

lib.footer.wrap = Copyright | Example.com

These are all the values that we need to set in the TypoScript, so we can save our
changes and close the Template view.

Creating an example page

With the TypoScript changes saved we can create an example page inside of the
Newsletters folder from the contextual menus in the page tree to test our template.
Because we set the default template as Newsletter [Template] for all pages inside the
Newsletter folder, we will already have the newsletter template applied, and we can
see our new sections for content elements in the Page view:

Main Article News Articles Products

Creating a Template from Scratch

If we choose the View button from the sidebar, we can see that the template has
already filled in a lot of our information from the TypoScript objects and HTML
that we already mapped before we even start adding our own content:

Example.cm Newsletter

Upcoming Dates
Other News New Products

Contact Us

Suite 850

1214 Rebekah Ave.
Dallas, TX 75154 USA
jeremy@example.com
www.example.com

Copyright 2010 Example.com

When we see this much information already included in the template that means that
we designed a bulletproof template. All of the output we see here is information that
our editors do not have to fill in by hand for every newsletter from now on. We're
already making their lives easier, and we can go ahead and finish creating

an example page for them.

Adding test content

Now that we have a blank example page, we can add some content. We want to
show the editors an example of the formatting that they should use, so we'll just
go through and fill in every dynamic field with some information.

First, we can add some content elements to each column in the TemplaVoila page
module. We have already worked with page content elements, so we are not going
to go through this step-by-step, but you can add some basic elements with graphics
to your example newsletter now. This is what our page module looks like after we
have added some content:

[154]

Chapter 6

Main Article News Articles Products

[TYPO3 Templates 2 (& (1 73 8 ¢3| |
Text: TYPO3 Templates
 is a step-by-step
guide for building and
customizing templates in
TYPO3 using the best
solutions available. Buy now

[Vintage 56: A New Hope /2 (4 (5 7y 54 &3
Text: It has come time to Images:
t[announce my bold new VINGG
adventure: Vintage 56 .

Yes, although I may hate the

escapade that was freelancing (on

the side), I'm really excited about

getting to form an honest-to-
goodness production/design

b |agency with some great people

that I've worked with

atéinbsp;Generals International

 for years. Basically, we've

figured out how to make our own

mark doing web, iPhone apps,

graphics, video, and audio

production with clients we love

and help out a ministry by "
donating 2 large portion of our i
t | profits to Generals. Actually, H
we're helping a lot of ministries
and medium-size companies right
now because they're getting the
full agency treatment without the
full agency budget. Basically, I
get to work with really talented

i | people, and T wanted to brag on
them. You can check
out htip://vin56.com
Bnbsp;to see what I'm talking
about (yes, the video works an
iPads, iPhones, and iPods).

[MarketingDilemma.com launched. Fans rejoice.

VAT R

Text: MarketingDilemma.com launched. Fans rejoice. Images:

BO
5 PocketRevolutionary.com still exists. Less fans re... 7 (g) 53 % €3]

Text: PocketRevolutionary.com still exists. Less fans rejoice. Images:

BO
[E5 Need help building TYPO3 websites? Click here to r... 2 (4P 53 3 €5|

Text: Need help building TYPO3 websites? Click here to read Images.
about my new book. @

BO

Next, we can add the date and event information to our newsletter. Our new fields
are available in the Extended tab of the page properties. We can see the new columns
that we created in the data structure in the Content: section; the Main Article, News,
and Products will show the elements that we just created in the first three steps.
Now, we can fill out the date of our newsletter:

Content:

Date

March 12, 2010

Main Article

Vintage 56: A New Hope (1 [} Vintage 56: A Mew Hope [232]

(<] [1 B

[F] Pagecontent

News Articles

[[} MarketingDilermma.com launched.... [233]
[Z PocketRevolutionary.com still ... [234]
[Z MNeed help building TYPO3 websi... [235]

MarketingDilemma.com launched. Fans r
PocketRevolutionary.com still exists. Les
Need help building TYPO3 websites? Click

El
[
&
E|

[E] Pagecontent
Event List

[+] Toaagle all

Add new: [Event

Products

TYPO3 Templates [[} TYPO3 Templates [236]

[F] Pagecontent

Creating a Template from Scratch

Finally, we can add events to the calendar by clicking on the Add new: Event button
in the Event List section of the page properties. We can add as many events as we
need by clicking on the Event button for each new event, and we can use the arrows
and trash can icons to move our events around in the list or delete them entirely.

We could do something like this with flexible-content elements, which we will learn
about in a couple chapters, but doing it this way can help structure our template to
make sure that editors never forget to include the upcoming events in our pages and
is faster than creating multiple content elements. Let's go ahead and add a few events
as shown in the following screenshot and save our changes.

Event List

[+] Togagle all

[~] Event [&] T

Event Date

May 2d4th

Event City

USAFA, CO

[*] Event [

Event Date

June 4th

Event City

Fort Warth, TX

[~] Event [&] T

Event Date

June 16th

Event City

Dallas, T.‘J(|

Add new: 55 Event

[156]

Chapter 6

Summary

After we save our content updates to the example newsletter, we're done! We
should be at least a little proud because we just created a whole new template

from scratch including the HTML and data structure, and we can see the results

in our new newsletter:

Example.con Newsletter

March 12, 2010

Vintage 56: A New Hope

It has come time
to announce my
bold new

adventure: Vintage 56. Yes, although | may
hate the escapade that was freelancing (on the
side), I'm really excited about getting to form
an honest-to-goodness preduction/design
agency with some great people that I've
worked with at Generals International for
years. Basically, we've figured out how to
make our own mark doing web, iPhone apps,
graphics, video, and audio production with
clients we love and help out a ministry by
donating a large pertion of our prefits to
Generals. Actually, we're helping a lot of
ministries and medium-size companies right
now because they're getting the full agency
treatment without the full agency budget.
Basically, | get to work with really talented
people, and | wanted to brag on them. You can
check out http://vin56.com to see what I'm
talking about (yes, the video works on iPads,
iPhones, and iPods).

Other News

@ MarketingDilemma.com launched. Fans
rejoice.

@ PocketRevolutionary.com still exists.
Less fans rejoice.

@ Need help building TYPO3 websites? Click
here to read about my new book.

Upcoming Dates
May 24th - USAFA, CO
June 4th - Fort Worth, TX
June 16th - Dallas, TX

New Products
Sl TYPO3

i " Templates is

PESSy 268 a step-by-

kel Step guide for

8 building and
customizing

templates in TYPO3 using

the best solutions

available.

Buy now

Contact Us

Suite 850

1214 Rebekah Ave.
Dallas, TX 75154 USA
jeremy@example.com
www.example.com

Copyright 2010 Example.com

[157]

Creating a Template from Scratch

Once again, we probably need to talk about why we created this template from
scratch. You might be thinking that this example was a little contrived just so that we
could experiment with creating data structures with different elements, sections, and
containers and using them in the real world; you're only partially correct. We created
this template from scratch because this was a one-off template for a special purpose
(email) that didn't have any of the requirements or uses of the default data structure
that the TemplaVoila wizard created for us. We've learned something that will come
in handy when we create specialized sections for our websites like newsletters and
online stores, and we also learned how to create our template without the wizard if
we feel the urge to skip its processing entirely in the future. Most importantly, we've
seen that we can create templates from scratch whenever we need to, and it's no
longer a complex process to be feared.

We've come a long way with our template, and we've definitely made the back end
editing easier by creating very defined data elements to be filled in, but we can still do
more. In the next chapter we're going make the text areas easier to edit and modify our
TemplaVoila data structures to customize the look of the TemplaVoila page view. So
go ahead and show one of your coworkers how nice and structured our new template
is, grab some coffee, and get comfortable. We're about to go very, very deep into the
data structure specifications, but we’ll come out with shiny, user-friendly editing.

[158]

Customizing the Backend
Editing

In the last chapter we started making life easier for the editors with a custom
template, and in this chapter we're going to continue to help our editors. We have
two real goals in both of these chapters: customizing the workflow for editors and
making sure that the frontend of our website is as consistent as possible. A moment
ago we worked on both of those goals by making a template that enforced the
original design and made filling the content as easy as fill-in-the-blank. This time
we're going to work on the two main areas that editors spend their time on: the
text editor and the Page module. We are going to edit the text editor to match the
frontend styling in our website and add or remove functions to suit the website.
We can add classes and functions that we think others might need, or we can take
away functions (like tables or bright yellow text) that we don't want others in our
organization to use. This is nice on small websites, but it's absolutely necessary

on enterprise-level websites where many people are working on the content and
consistent branding is essential. At the same time, we're going to edit the layout of
the Page module in the backend to match what is shown on the frontend and even
guide our users by making some sections more prominent or easier to read. Basically,
we're going to spend one more chapter making sure that our site is as

easy as possible to hand off and let others start to edit.

In this chapter you will:

e Learn about the default rich text editor in TYPO3
e Learn how to configure the rich text for a single page or a whole page tree

e Update the CSS in the rich text editor to match what users will see on
the frontend

¢ Remove unwanted classes and tools from the text editor
e Add support for extra HTML tags and YouTube video to the text editor

Customizing the Backend Editing

e Learn how the configure the Page module layout of our templates with
backend layouts

e Learn how to create a backend layout for data structures with multiple
template objects

e Learn about static data structures and the future of TemplaVoila templates

Updating the rich text editor

While we are making life easier for the editors, we can work on one of the areas
they have to spend the most time in: the Rich Text Editor (RTE). The rich text editor
allows anybody editing text or content in the TYPO3 backend to add formatting and
styling such as bold or italics without using special syntax or HTML, and see the
results in the text area immediately. This is also known as a WYSIWYG (What You
See Is What You Get) editor and we've used it in the previous chapters to edit our
own content:

Block style: Mo block style w | Text style:

B [X X Paragraph viii= = Eifalin B:d: <o
* @

=

lller'em\-r Greenawalt is a full-time developer and part-time writer with close to ten years professional
experience in website and application creation. His first love was writing, but programming quickly
followed.

He is a co-founder of Vintage 56 where he helps develop websites, online shopping carts, web apps,
iPhone/iOS apps, and anything else his friends can think up. Jeremy is also the web director of a large
ministry, Generals International.

Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-youthful puppy, Aingeal. He
loves spending time at home reading, playing around on the piano, or just relaxing on the couch with
his family.

You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on Twitter at

@igreenawalt.

Out of the box, TYPO3 comes with the htmlArea RTE (extension key: rtehtmlarea),
and it really is a good editor to work with. The problem is that it's configured by
default to fit everybody, so it doesn't really fit anybody particularly well without a
little bit of modification: it has it's own classes that we probably don't actually use,
toolbars that may give too many options, and it blocks some handy tags such as the
embed and object tags that we need for embedded video. Luckily, the htmlArea
RTE is very configurable like everything in TYPO3 and allows us to override or add
to almost all of its rules.

[160]

Chapter 7

There's an entire TSref document (http://typo3.org/documentation/document -
library/extension-manuals/rtehtmlarea/current), so we're not going to try to
cover everything that is possible. The TSref is being updated with the new releases,
so I recommend checking it out if you have any questions or want to get more
information on configurations that we have only glossed over or skipped.

As a final note, some of the configuration properties in this section will work on
other RTE options, but many are special for the htmlArea RTE. We are going to talk
about the htmlArea RTE because it is already installed by default and has a lot of
powerful options, but you may choose to install a different editor as an extension
in the future. TYPO3 allows us to replace the RTE in the backend with TYPO3
extensions, and we might want to replace the default htmlArea RTE if we need to
support older browsers or use special features like plugins for editing images. If
you are using a different editor, you may need to look at its documentation for any
differences in configuration.

Editing the TSconfig

Unlike the previous chapters, configuration of the RTE is done completely in the
TSconfig for the user or the page. We've used the TypoScript template for frontend
configuration and layout, but the TSconfig is mainly used for configuring backend
modules in TYPOS3 like the RTE. The rich text editor is a backend module, so we
need to use the TSconfig to configure it for our editors.

The TSconfig can be modified through the Page properties view on any page in the
Options tab (shown in the following screenshot):

Edit Page "Awesome Site"

General Metadata Resources Options Access Extended

TSconfig:

RTE {

default {

ignoreMainstyledverride = 1

contentCss = fileadmin/templates/rte.css
showTagFreeClasses = 1

classesParagraph = blue, red
classescharacter = blue, red
classesanchor = blue, red

1

classes {
blue {
name = Blue Text
value = color: blue;
t
red {
name = Red Text !
value = color: red;
} 'y
} v

[161]

Customizing the Backend Editing

Above you can see an example of the TSconfig with some of the modifications that
we are going to look at for the RTE. Of course, you can edit the TSconfig on any page
in the page tree that you would like, but we are going to be working on the Root
page. Like templates, the TSconfig is inherited from the parent pages in the page tree,
so we can modify all of the instances of the RTE in the entire site by modifying the
Root page.

CSS properties

The first thing that we want to update in our editor is the CSS. Without special
configuration, the htmlArea RTE uses its own default CSS to decide how the
different options such as headings, bold, italics, and so on, look in the text area
preview. We can update the TSconfig, to load our own external stylesheet for the
RTE that more closely resembles our working frontend site; the editors will see the
same basic styling for paragraphs and headings as the visitors and have a better idea
of what their content will look like in the frontend.

According to the TSref on htmlArea, the following stylesheets are applied to the
contents of the editing area by default in ascending order (we'll talk about each one
in a moment):

e Thehtmlarea-edited-content.css file from the current backend TYPO3
skin (contains selectors for use in the editor but not intended to be applied in
the frontend)

e A CSSfile generated from the mainStyleOverride and inlineStyle
assignments

e Any CSS file specified by contentcss property in the page TSConfig

We don't need to worry about the first file, htmlarea-edited-content.css. The
TYPO3 skin that styles everything in the backend controls it. By default, there is an
extension named TYPO3 skin, and we can simply override any of the styles by using
the contentcss property that we will see in a minute.

The mainStyleOverride and inlineStyle properties are controlled by the
htmlArea RTE, and TYPO3 generates a CSS file based on their settings in the
extension. The mainStyleOverride contains all of the default text settings including
sizes and font choices. If we are using our own CSS, we will want to ignore the
original styles, so we are going to use the ignoreMainStyleOverride property in
our TSconfig. To ignore set this property for our RTE, we can add the following line
to the TSconfig on our main page:

RTE.default.ignoreMainStyleOverride = 1

[162]

Chapter 7

The inlineStyle assignments in TYPO3 create default classes for use in the RTE.
You've probably already noticed some of them as options in the style drop-downs

in the editor (Frame with yellow background, Justify Center, Justify Right, and so
on). If we override the inlineStyle assignments, the default classes are removed
from the RTE. Of course, we don't need to eliminate these classes just to use our own,
but we can do this if we are trying to clean up the RTE for other editors or want to
make our own alignment styles.

Finally, we can use the contentCss property to load our own external stylesheet into
the RTE. To use our own stylesheet, we will use the following code in the TSconfig to
use a new stylesheet named rte.css in our editor:

RTE.default.contentCSS = fileadmin/templates/css/rte.css

At this point, we're all pretty used to the syntax of TypoScript, but a review might
be in order. In the previous line of TypoScript, we are updating the contentcss
property in the default instances of the RTE object with the new value fileadmin/
templates/css/rte.css. If you understand that line, then everything else we're
about to cover will be easy to pick up.

As we want to use our own CSS file and override the defaults at once, this will be the
TypoScript for our TSconfig:

RTE.default
contentCSS = fileadmin/templates/css/rte.css
ignoreMainStyleOverride = 1

}

Of course, the next thing we need to do is create our new stylesheet. We don't want
to use the complete stylesheet that we are using for the frontend because it could be
thousands of lines and will have a lot of formatting and page layout rules that we
don't need for simple text editing. Instead, we can just copy the most important text
and paragraph styles from our style.css file in the fileadmin/templates/css/
directory into a new file called rte.css. In addition, we're going to add two new
classes to style.css and copy them over; we'll create a class named blue to set the
font color to pure blue and a class named red to set the font color to pure red. This
should be the content of our new file, rte.css:

p, ul, div {
color: #666;
font-size: 12px;
line-height: 18px;

h1l {
font-size: 24px;
line-height: 36px;

[163]

Customizing the Backend Editing

margin-bottom: 18px;
font-weight: 200;
font-variant: small-caps;

}

h2
margin-bottom: 18px;
line-height: 18px;
font-size: 18px;

}

h3
font-size: 15px;
line-height: 18px;

}

ha, h5, he {
font-size: 12px;
line-height: 18px;

}

ul, ol {
margin: Opx Opx 18px 18px;

}

ul
list-style-type: circle;

}

ol {
list-style: decimal;

}

td {
padding: 5px;

}

:link, :visited {
font-weight: bold;
text-decoration: none;
color: #036;

}

.blue {
color: #0000ff;

}

.red {
color: #f£0000;

}

With our new CSS we will notice at least a subtle difference in our RTE. In the
following screenshot, we can see the original RTE on the left and the updated RTE
on the right. As you can see, our text is now spaced out better and lightened to match
the frontend:

[164]

Chapter 7

Block style: No block style - Block style: No block style w

Text style: Text style:

B I x: x*: paragraph v iz = EifaliQ B I % % Paragraph MRS Eifaliq
Eidaio B i@ Hiddio % i@

i HS i i i :

Jeremy Greenawalt is a full-time developer and part-time writer with clese to ten Jeremy Greenawalt is a full-time developer and part-time writer with close to ten
years professional experience in website and application creation. His first love was years professional experience in website and application creation. His first love was
writing, but programming quickly followed. writing, but programming quickly followed.

He is a co-founder of Vintage 56 where he helps develop websites, online shopping
carts, web apps, iPhone/iOS apps, and anything else his friends can think up. He is a co-founder of Vintage 56 where he helps develop websites, online shopping

Jeremy is also the web director of a large ministry, Generals Internaticnal. carts, web apps, iPhone/iOS apps, and anything else his friends can think up.
Jeremy Is also the web director of a large ministry, Generals International.

Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-youthful A s
puppy, Aingeal. He loves spending time at home reading, playing around on the v\ _ . e soar nailac Tovac with bic e Bobolab and fhgic ouoo hEl 1

As we have overridden the default classes without creating any new ones, the Block
style and Text style drop-downs are both empty now. In the RTE, block styles are
used for the "blocks" of our content such as paragraphs and headings while the

text styles are applied directly to words or pieces of text within a larger block. Put
simply, if we wanted a whole paragraph to be blue, we would use the Block style
drop-down, and we would use the Text style drop-down if we only wanted a single
word to be blue. Both of these drop-downs use our CSS classes for styling, so we'll go
ahead and create our new classes in the TSconfig.

Classes properties

All of the classes in our external CSSfile (rte.css) are made available as soon as we
declared the file with the contentcss property. If we want to use them, we just need
to associate them with a style type (paragraph, character, image, and so on) for the
default RTE. If we wanted to associate the blue and red classes with text styles, for
example, we would add the following to our page's TSconfig:

RTE.default.classesCharacter = blue, red

Before we assign the classes to a type, we should declare them in the TSconfig so
they show up properly in the RTE. By declaring the classes, we can set the titles we
want to show in the RTE and how we want the titles to be styled in the drop-downs.
Without declarations, the styles will still show up, but the titles will just be CSS class
names. We want to declare them in TSconfig with specific title to make our editors'
lives easier. We can add the following code to the TSconfig to declare the classes in
our RTE and set more descriptive titles that will be shown in blue or red in the
drop-down menus:

RTE.classes {
blue {
name = Blue Text

[165]

Customizing the Backend Editing

value = color: blue;

}

red {

name = Red Text

value = color: red;

}

We can use CSS classes for more than just the text style, of course. The table below
shows all of the main ways that we can associate and use classes in the htmlArea
RTE, but you can read more in the htmlArea TSref. Go ahead and try some of them
out with the example TypoScript lines that are shown.

RTE class properties

Properties

Description

showTagFreeClasses

classesParagraph

classesCharacter

classesImage

classesAnchor

If this value is set, classes in the contentCSS stylesheet
without an associated tag can be used in the defined class lists.
I recommend setting this at least in the example site now so
that you do not have to declare p.blue, div.blue, hl.blue,
and so on in your stylesheets. We can set it now with like this:

RTE.default.showTagFreeClasses = 1
The classes available through the Block style: drop-down box

are defined here. We can make the classes blue and red from
the example above available for block styling:
RTE.default.classesParagraph = blue, red
This works the same as classesParagraph for setting the
classes that are available through the Text style: selector.
Unlike the block style selector, the text style selector is used

to format an individual string of text instead of the entire
paragraph. Example:

RTE.default.classesCharacter = blue, red

This property defines the classes that are available for images.
Example:

RTE.default.classesImage = red-border, no-
border

This property defines the classes that are available in the Insert
Web Link dialog box from the classes defined by the RTE.
classesAnchor property. Example:

RTE.default.classesAnchor = blue, red

[166]

Chapter 7

Properties Description
classesTable, Like above, we can set the classes for tables or cells:
classesTD

RTE.default.classesTable = no-headers,
headers-on-top
RTE.default.classesTD = blue, red

Toolbar properties

Along with what shows up inside the content of the RTE, we can modify the toolbar
itself to control what editors are able to see and use. By controlling the toolbar, we

can make the RTE easier for editors and make sure that the branding and styling is
consistent. The table below shows some of the most useful properties we can use to
alter the toolbar available to editors. We can actually go much further in editing the
individual buttons of the toolbar, but this is changing enough between major releases
that I recommend using the TSref as a reference for your version of the htmlArea RTE.

Properties

Description

showButtons

You can set the buttons that are shown in the RTE using the
showButtons property. The following buttons are available
in htmlArea:

blockstylelabel, blockstyle, textstylelabel,
textstyle, fontstyle, fontsize, formatblock,
bold, italic, underline, strikethrough, subscript,
superscript, lefttoright, righttoleft, left,
center, right, justifyfull, orderedlist,
unorderedlist, outdent, indent, textcolor, bgcolor,
textindicator, emoticon, insertcharacter, line,
link, image, table, user, acronym, findreplace,
spellcheck, chMode, inserttag, removeformat,
copy, cut, paste, undo, redo, showhelp, about,
toggleborders, tableproperties, rowproperties,
rowinsertabove, rowinsertunder, rowdelete,
rowsplit, columninsertbefore, columninsertafter,
columndelete, columnsplit, cellproperties,
cellinsertbefore, cellinsertafter, celldelete,
cellsplit, cellmerge

This property will override the default buttons shown, so
only the buttons that we list will be shown. If we wanted to
show only the two style selectors, we could set the property
like this:

RTE.default.showButtons = blockstylelabel,
blockstyle, textstylelabel, textstyle

[167]

Customizing the Backend Editing

Properties

Description

hideButtons

toolbarOrder

This works like showBut tons, but obviously it is used to
hide specific buttons. If we have decided that editors should
no longer be styling text with underlines, strike-throughs,
subscripting or superscripting except through our CSS, we
could hide them in the RTE:

RTE.default.hideButtons =
strikethrough, subscript,

underline,
superscript

We can also just change the grouping and order of the
buttons that our editors see using the toolbarOrder
property. In addition to the available buttons, we can add
spaces, separators, and line breaks using the keywords space,
separator, and linebreak. This is the default order of RTE
buttons for reference:

blockstylelabel,
textstylelabel,

blockstyle, space,
textstyle, bar,
linebreak, fontstyle, space, fontsize,
space, formatblock, bar, bold, italic,
underline, bar, strikethrough,
subscript, superscript, bar, lefttoright,
righttoleft, bar, left, center,

right, justifyfull, bar, orderedlist,
unorderedlist, outdent, indent, bar,
textcolor, bgcolor, textindicator,

bar, emoticon, insertcharacter, line,
link, image, table, user, acronym, bar,
findreplace, spellcheck, bar, chMode,
inserttag, removeformat, bar, copy, cut,
paste, bar, undo, redo, bar, showhelp,
about, linebreak, toggleborders, bar,
tableproperties, bar, rowproperties,
rowinsertabove, rowinsertunder, rowdelete,
rowsplit, bar, columninsertbefore,
columninsertafter, columndelete,
columnsplit, bar, cellproperties,
cellinsertbefore, cellinsertafter,
celldelete, cellsplit, cellmerge

[168]

Chapter 7

Properties Description
keepButtonGroup As we saw above, a line breaker or a separator can delimit
Together button groups. All buttons in a group are displayed on the
same line if this property is set. Example:
RTE.default.keepButtonGroupTogether = 1
hideTableOperations This can be a handy property to hide all table operations in
InToolbar the RTE toolbar. Example:

disableContextMenu,
disableRightClick

showStatusBar

RTE.default.hideTableOperationsInToolbar
=1

Of course, all of these toolbar properties only control which
buttons are visible or hidden, so an editor could still add a
table in HTML mode.

Either one of these properties can be set to disable the
right-click context menu in the main editing section
of the RTE. Example:

RTE.default.disableContextMenu = 1

or
RTE.default.disableRightClick = 1

This property is used to specify whether or not the status
bar is displayed on the bottom of the main editor to show
the current tags surrounding the text being edited. It is set
by default but can be turned off:

RTE.default.showStatusBar = 0

[169]

Customizing the Backend Editing

HTML editor properties

Finally, we can change the way that the RTE works with HTML. For example, the
RTE uses paragraph tags (<p></p>) for all blocks in our text area, but we can replace
this behavior with break tags (
) if we want. The RTE also strips certain tags,
and we can change that with RTE properties as well. The following table shows the
most common properties that we can use in the Page TSconfig to modify the HTML
in the htmlArea RTE. Even if we don't need anything else in this section; using
allowTags to allow embedded video can make our editor" lives easier if we want

to embed YouTube or Vimeo players in our website. All of this information is also
available in the TSref for the htmlArea if you need an updated reference.

RTE editor properties Description

disableEnterParagraphs This property can be set to disable the creation of new
paragraphs (using the <p></p> tags) when the Return
key is hit in the editing window. If the property is set,
break tags (
) will be inserted instead. Example:

RTE.default.disableEnterParagraphs = 1

removeTrailingBR We can set this property to remove the trailing

tags from block elements. Example:

RTE.default.removeTrailingBR = 1

removeComments If the removeComments property is set HTML
comments will be removed when the content element
is saved or the editor toggles to HTML source mode.

Example:
RTE.default.removeComments = 1
removeTags If this property is set, tags listed will be removed when

the editor saves or toggles the HTML source mode. If we
wanted to remove the table tags from HTML editing, we
could set it with this property:

RTE.default.removeTags = table, tbody,
tr, td

removeTagsAndContents Like the removeTags property,
removeTagsAndContents will remove the tags and
the contents of the tags. Example:

RTE.default.removeTagsAndContents =
table

[170]

Chapter 7

RTE editor properties Description
allowTags, We can allow extra tags in the HTML editor using
allowTagsOutside allowTags and allowTagsOutside. We don't want

to break our current list of allowed tags, so we can use
the addToList () function with the : = operator to
add our tags to the current list without overwriting
the preexisting values. If we wanted to add support
for embedding YouTube or Vimeo videos, we can add
object, param, and embed tags to the allowed list:

RTE.default.proc
allowTags := addToList (object,
param, embed)
allowTagsOutside :=
addToList (object, embed)
entryHTMLparser db.allowTags < RTE.
default.proc.allow%ags

}

Of course, that code will allow you to use the tags you
need in the RTE, but you can test it now and you'll
notice that it only works in the backend. In order to
allow the new tags to be sent to the frontend of our
website, we need to add the following code to our
template's TypoScript setup:

lib.parseFunc_RTE.allowTags :=
addToList (object, param, embed)

allowedClasses Like allowTags, we can add custom classes to the
allowed list for the HTML editor in the RTE. Example:

RTE.default.proc.allowedClasses :=
addToList (red, blue, specialClass)

Customizing the Page module

Now that we are done customizing the RTE, we can work on the main module

that editors will be looking at day after day, the Page module. The look of the Page
module in TemplaVoila has improved, but it does not give our editors a good idea of
how pages will look in the frontend. It's also based entirely on columns, so it can get
too wide for easy editing. Like all things in TYPO3, we can adjust it and customize it
to our needs. We can use an HTML file like we use for TemplaVoila template objects
to make the backend look more like the frontend with headers, footers, and sidebars.

[171]

Customizing the Backend Editing

We're going to update the backend layout (commonly called BELayout in TYPO3) for
the newsletter template by creating a new HTML file and assigning it to the template.
As you can see, our default backend layout for the newsletter shows three columns,
and there is no real indication of where things will appear in the frontend view:

Main Article News Articles Products
P e i i i i = i o e e e

e @0 s]
|5 Vintage 56: A New Hope 7 (&) B 3¢ 43| i |75 MarketingDilemma.com launched. Fans rejoice. & oY B 3 4b| 5 |75 TYPO3 Templates o (g 1) Bl 3¢ 4B/}
Text: It has come time to Images: Text: MarketingDilemma.com launched. Fans rejoice. Images: I | Text: TYPO3 Templates Im 1|

s |announce my bold new

i |adventure: nbsp; Vintage 56 .

: | Yes, although I may hate the

i |escapade that was freelancing {on
: |the side), I'm really excited about
" | getting to form an honest-te- o | Text: PocketRevolutionary.com still exists. Less fans rejoice. Images:
: | goodnessBinbsp;production/design H

E agency with some great people
: |that I've worked with

H Binbsp;is a step-by-step
mRC 1 |guide for building and
BO ! | customizing templates in

— - — = -1 = | TYPO3 using the best
(& PocketRevolutionary.com still exists. Less fans re... 2 (& 3 3¢ i i | solutionsanhsp;available.

o |Buy now
@B ;

| anbsg;for years. Basically, we've T "% Need help building TYPO3 websites? Click here to r... 2 (g By 3¢ &b i

: |figured out how to make our own & | Text: Need help building TYPO2 websites? Click here to read Images:|:;

: |mark doing web, iPhone apps, it |about my new book. @ H i
| @raphics, video, and audic

| preduction with clients we love § @O
 |and help out a ministry by H

: |denating a large portion of our H
: | profits to Generals. Actually, we're
 |helping a lot of ministries and H
i i i ies right now i a
because they're getting the full
agency treatment without the full
 |agency budget. Basically, I get to
: |work with really talented people,
E and I wanted to brag on them.

| You can check o o
" | out http://vinS6.com H Y
i | to see what I'm talking o
i |about (yes, the video warks on
: |iPads, iPhones, and iPods).

f B0

Date March 12, 2010
field_event_date May 24th
field_event_city USAFA, CO
field_event_date June dth
field_event_city Forth Worth, TX

field_event_date June 16th
» field_event_city Dallas, TX

Creating the HTML layout

Now we can create our own backend layout to replace the default for any pages with
the newsletter template:

e We are going to make the backend layout look as much like the frontend
template as possible, so we can start by copying the current newsletter
HTML template, template newsletter.html, to a new file, belayout
newsletter.html, inside the fileadmin/templates/ directory.

e After you have created the new HTML file, open it up in a text editor so we
can make some changes to adapt it to the backend better.

e Remove the style section in the head of the HTML document. We will
add CSS later, but the CSS in the head section will not affect what we
want right now.

[172]

Chapter 7

Let's change the main table tag to work better with the backend. We don't
need to use tables in backend layouts, but we are using a table here to match
what is seen on the frontend. We want our width to be fluid, so we'll remove
the width property. We also don't need another border in addition to the one
the Page module already provides, so we'll remove the border and replace it
with a plain white background color:

<table align="center" style="background-color: #ffffff;">

We want the banner to show up. As this is loading in the backend,
TypoScript objects will not be loaded. Instead, we'll add the image as an
HTML tag in the layout file:

<td id="banner image" colspan="2" align="center"><img src="/
fileadmin/templates/newsletter banner.png" alt=""></td>

As we are not using pixels to constrain the width of our table, we need to
change the main content column:

<td id="main content" width="64%" valign="top">

Inside our HTML, we can use markers to load content fields. The markers are
simply the name of the field from the data structure (field main_article,
for example) surrounded by hash tags: ###field main_article###.
TemplaVoila will replace this marker with an area for our different content
elements such as the Main Article column in the default layout. So, we can
use these markers in our HTML file to add the content fields to our main
content column:
<table>

<tr>

<td id="main article" style="padding-bottom:
15px; ">###field main article###i</td>

</tr>
<tr>
<td id="news" style="padding-bottom: 15px;">
<div class="news_item">###field news###</div>
</td>
</tr>
</table>

Next, we can update the width of the sidebar:
<td id="sidebar" width="36%" valign="top">

[173]

Customizing the Backend Editing

TemplaVoila only lets us use markers for the fields of type "Content
Elements", which are the fields that normally show up as columns in the Page
module. Any of the other fields like TypoScript objects or fields that are set
in the page properties cannot be part of the layout. The fields from our page
properties, like our event fields in the newsletter, will still be automatically
shown at the bottom of the page. So, we can't add the events fields to our
layout, but we can add a placeholder section with a note for the editors so
they still have a better preview of the frontend page:
<td style="padding-bottom: 15px;">

<h3 id="event list title">Upcoming Dates</h3>

<p>(Edit events in page properties)</p>
</td>
We can use markers for the products section, though:
<td id="product list" style="padding-bottom: 15px;">

<div class="product">###field products###</div>
</td>

We can use example data for the contact section. As editors will not be
editing our TypoScript values, we don't need to tell them where to go to
change the values. We can just show them some sample data based on the
current TypoScript values so that they remember the contact information
needs to fit into the column:
<td id="contact info section" style="padding-bottom: 15px;">
<h3 id="contact_info title"s>Contact Us</h3>
<div id="contact info"s>
<p>Suite 850</p>
<p>1214 Rebekah Ave.</p>
<p>Dallas, TX 75154 USA</p>

<p>jeremy@example.com</
a></p>

<p>www.example.com</p>
</div>
</td>

Finally, we will add some example data for the footer as well:

<div id="footer" align="center">Copyright Example.com 2010</div>

[174]

Chapter 7

e After we have saved our changes to belayout_newsletter.html, we
can open it in a browser to see that it structurally matches the newsletter
template we are showing to visitors:

Example..n Newsletter

##tfield_main_articledt##

#tdfield_news#i

Copyright 2010 Example.com

Upcoming Dates

(Edit events in page properties)

#titield_products###

Contact Us

Suite 850

1214 Rebekah Ave.
Dallas, TX 75154 USA
jeremy @ example.com

WWW example.com

Assigning the backend layout

Now that we have an HTML file, we can assign it to the newsletter template data
structure in the TemplaVoila module:

1. Go to the TemplaVoila module, and click on the pencil icon next to the
Newsletter data structure:

o

[MNo icon]

e

Template Status oNo errors found!
Global Processing XML #*10.8 K bytes

Td| Newsletter [Template] /
[Mo icon] File reference:
The following pages in the root line contain data
structures and template objects:
Mapping status:

Local Processing XML:
Create new Template Object

fileadmin/templates/template_newsletter.html

oMapping is up to date.

Update mapping
&

[175]

Customizing the Backend Editing

2. Select our new HTML file, fileadmin/templates/belayout newsletter.

html, in the BELayout Template File field using the link icon on the right of
the text field.

Edit TemplaVoila Data Structure "Newsletter" on page "Storage Folder"

Title:

Mewsletter

Category:
| Page Template) ¢]

Attach preview icon (gif or png in 1:1 size):

O

GIF PNG
Choose File) no file selected
BELayout Template File: —
C fileadmin/templates/belayout_newsletter.html = :)

3. Refresh the cache, and go to our newsletter page in the backend Page
module. You will see a page that looks much more like the frontend view,
has a cleaner layout overall, and will be easier for our editors to use:

Example ..m Newsletter

Main Article .
re- Upcoming Dates

{Edit events in page properties)

YT

|| Vintage 56: A New Hope

i Text: It has come time to announce my bold new

|| adventure: Vintage 56 . Yes, although I may hate the

f escapade that was freelancing (on the side), I'm really excited
! |about getting to form an honest-to-

! | goodness production/design agency with some great

Images:

VINGE ||

Products

5 TYPO3 Templates & (& () 771 3 €

3 people that I've worked with at Generals International

! | for yvears. Basically, we've figured out how to make our
i |own mark doing web, iPhone apps, graphics, video, and audio
3 production with clients we love and help out a ministry by

! |donating a large portion of our profits to Generals. Actually,

I |we're helping a lot of ministries and medium-size companies

f right now because they‘re getting the full agency treatment

i [without the full agency budget. Basically, I get to work with

!| really talented people, and 1 wanted to brag on them. You can
| check outlnbsp;http://vinS6.com ta see what I'm talking
|| about {yes, the video works on iPads, iPhones, and iPods).

L

ZMarkEtingDilemma.mm launched. Fans rejoice.

VA~ L

Text: MarketingDilemma.com launched. Fans rejoice. Images:

-EPuckEtREvulutmnary.cum still exists. Less fans re...

Text: PocketRevolutionary.com still exists. Less fans rejoice. Images:

f%@%%%i

Text: TYPO3 Templates

i | Bnbsp;is a step-by-step

E guide for building and
customizing templates in
TYPO3 using the best
solutions available.
Buy now

Images

Contact Us

Suite 850

1214 Rebekah Ave.
Dallas, TX 75154 USA
jeremy@example.com
www.example.com

[176]

Chapter 7

Adding some CSS styling

Our new backend layout is almost perfect, but it would be nice if the titles of each
content section were a little clearer. We are allowed to use stylesheet links in our
HTML head, so we'll take advantage of that right now. Let's add a link to our HTML
file right now:

<head>
<meta charset="utf-8" />

<link rel="stylesheet" type="text/css" href="/fileadmin/templates/
css/belayout.css">

</head>

Now, we just need to create a minimal stylesheet for our newsletter template's
Page module with some updated font sizes that might stand out a little better for
our editors. Lets create the blank file belayout . css in our templates CSS directory
(/fileadmin/templates/css/) right now. We'll update the size of the content
element titles and previews using the built-in classes. TemplaVoila uses a class
called tpm-preview around each content element in the backend, so we can update
the font sizes to make it easier to read. The Page module also uses a class called
tpm-title-cell for the title of each section like Main Article or Products, so we
can use that class to make our titles clearer:

.tpm-title-cell {
font-size: 1l4px;
color: #555;
font-weight: bold;

}

.tpm-preview {

font-size: 12px;
line-height: 1lé6px;

}

If you would like to know what classes are used for the rest of the elements in the
Page module, the easiest way to find them is by viewing the source code when
you are looking at the Page module in your browser. If you want an easy way to
scan through the entire HTML output that TYPO3 is using, I recommend Firebug
(http://getfirebug.com/) for the Firefox browser or the Web Inspector in Safari
(http://www.apple.com/safari/features.html#developer).

[177]

Customizing the Backend Editing

Setting a backend layout for a data
structure with multiple template objects

The new layout worked great for the newsletter, but we really need to update

the main template. We could make a generic template, but how will it handle the
multiple template objects? Luckily, the TemplaVoila Page view is already prepared
to ignore any markers for content elements that are not active in the current template
object. This means that we can create a generic HTML layout that includes the main
content area and both the left and right sidebars without worrying about confusing
our editors. Let's go ahead and create a new file named belayout_main.html in our
templates directory (/fileadmin/templates/) right now with a universal layout:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8" />
<link rel="stylesheet" type="text/css" href="/fileadmin/
templates/css/belayout.css">
</head>
<body>
<table style="background-color: #fff;">
<tr>
<td id="logo" colspan="3">

</td>
</tr>
<tr>
<td id="left sidebar" style="background-color: #ddd;">
###field leftsidebar###
</td>
<td id="content"s>
###field content###
</td>
<td id="right sidebar" style="background-color: #ddd;">
###field rightsidebar###
</td>
</tr>
</table>
</body>
</html>

[178]

Chapter 7

Now, we can assign this as the backend layout file for the main template data
structure in the TemplaVoila module just like we did for the newsletter data
structure. If we load up a few pages in the backend, we can see that the inactive
fields are being omitted without showing our markers at all. Without any content
elements to be filled, the table cells are simply collapsing. As an example, this
template does not use a left sidebar:

Example.com

Main Content Area

|

An Awesome Front Page & s el
i | Text: Jeremy Greenawalt is a full-time developer and part-time writer with close to ten Images: |
years professional experience in website and application creation. His first love was writing, :
but programming quickly followed. He is a co-founder of Vintage 56 where he helps develop [
| | websites, online shopping carts, web apps, iPhone/iOS apps, and anything else his friends

can think up. Jeremy is also the web director of a large ministry, Generals International.
Jeremy lives near Dallas, Texas with his wife, Rebekah, and thelir ever-youthful puppy,

i | Aingeal. He loves spending time at home reading, playing around en the piane, or just

relaxing on the couch with his family. You can read more from Jeremy at
pocketrevelutionary.com , and you can follow him on Twitter at @jgreenawalt .

[Banner Image m

This is a template that uses a left sidebar:

Example.com

Left Sidebar Main Content Area

=
'

E List of subpages:y k_éﬂ a4 8 Content Elements y k—élﬂ‘ 7 es H
i Menu type: Menu of subpages to | [Text: Websites built with TYPO3 are usually constructed by a
| these pages i 1 [number of "content elements” which are put together in a

: certain order or nested structure. Each content element has a
[type. The type of the element determines what output it
generates. The most popular types of content elements are H
"Text", "Text w/Image", "Search", "Login", "Insert Plugin" etec. |!
By combining the various content elements you can create

| [almost any page layout you wish in a very flexible way but still
with a lot of control over the content. On the other hand you
also have to deal with all the possible variations of content

| [elements when you design a website. In order to help you
design the stylesheet for your website all the subpages to this
page contains various content element types and within each
[type some variations.

:I:I

Of course, if we had any other information in the cell besides the markers with hash
tags, then they would show up. If we want to make it more specific we'll need to set
a layout for the individual Template Objects.

[179]

Customizing the Backend Editing

Using backend layout files for template
objects

Assigning a new layout to a template's data structure is very useful, but we might
not want all objects to have to same layout for some reason. Specifically, we might
want to assign different layouts to the templates with sidebars without worrying
about our modifications showing up for all templates under the Main Template data
structure. The good news is that we're not limited to assigning external layouts to
Data Structure objects, but we can also assign them to Template Object objects easily.
If we want to create a specific layout only for the Left Sidebar Template [Template],
we can follow almost the same steps as we did for the Newsletter template:

1.

Create a new HTML file named belayout left sidebar.html in the
templates directory (/fileadmin/templates/) with a basic HTML layout.
We're going to add special instructions for our editors directly into the layout
for this particular template. If we put instructions into the left sidebar area
in belayout_main.html, they would show up on every page. This is a good
reason to assign a special backend layout to just the Left Sidebar Template
[Template] object:
<!DOCTYPE HTML>
<html>
<head>

<meta charset="utf-8" />

<link rel="stylesheet" type="text/css" href="/fileadmin/
templates/css/belayout.css">

</heads>
<body>
<table style="background-color: #fff;">
<tr>
<td id="logo" colspan="3">

</td>
</tr>
<tr>
<td id="left sidebar" style="background-color: #ddd;"»>
<h3>0nly use this sidebar for special links</h3>
###field leftsidebar###
</td>
<td id="content">
###field content###
</td>
</tr>
</table>
</body>
</html>

[180]

Chapter 7

2. Click the edit icon next to the Left Sidebar Template in the
TemplaVoila module:

ns] Z
[Mo icon] Template Status oNo errors found!
Global Processing XML #7B.7 K bytes

@ Left Sidebar Template [Templat

File reference: fileadmin/templates/template_sidebar.html|
The following pages in the root

line contain data structures and
template objects:

Mapping status: oMapping is up to date.
Update mapping
Local Processing XML: V4

3. Select our new HTML file, fileadmin/templates/belayout left
sidebar.html, in the BELayout Template File field using the link icon
on the right of the text field.

4. Now we can save our changes at look at the new Page module in
the backend:

Example.com

Main Content Area

Only use this sidebar for special - ---- -7 oot T s
links ‘B0 :
Left Sidebar | Content Elements 2B ¥ e|]

!' b [Text: Websites built with TYPO3 are usually constructed by a number of
) R g "content elements" which are put together in a certain order or nested
i |[&] List of subpages: 4 (& 'H F3 8 €5|! | |structure. Each content element has a type. The type of the element

Menu type: Menu of subpages to determines what output it generates. The most popular types of content
! these pages g elements are "Text", "Text w/Image", "Search", "Legin"”, "Insert Plugin"
0 | [etc. By combining the various content elements you can create almost
i i any page layout you wish in a very flexible way but still with a lot of
CmTTmTmommmmmmmmemmmmmmeomeooneoes . control over the content. On the other hand you also have to deal with
1 [l the possible variations of content elements when you design a
| |website. In order to help you design the stylesheet for your website all
[the subpages to this page contains various content element types and
within each type some variations.
LE
Banner Image

Using static data structures in
TemplaVoila 1.4.2

While we are talking about editing the data structures and backend layout options,
we need to look at where TemplaVoila is going in the future. TemplaVoila 1.4.2
introduced static data structures as a new way of working the DS XML files, and
the current workflow that we have been using for this chapter may be deprecated
at some point. As of this writing, this feature is still experimental.

[181]

Customizing the Backend Editing

In fact, it is the experimental aspect of static data structures that made me almost not
talk about it. It is well tested in several environments, though; it's just not going to be
turned on by default for a few more versions of TemplaVoila.

For simple websites, you can skip this section. If you build enterprise websites or
build a lot of websites with the same template elements, static data structures can be
very helpful. I am including it in this chapter because it will change the way we build
backend layout files, but it is not necessary for many simple websites.

What are static data structures

You may not realize this yet, but the current way to create data structures and
backend layouts is unwieldy, prone to errors, and hard to backup. Traditionally,

the XML of a DS object is stored in the database, and the only way to edit it was
through the TemplaVoila module like we have been doing up to now. The major
problems with this is that you had to edit only through the control center's text areas,
and any custom XML could be wiped out by clicking Modify DS / TO and saving
edits through the wizards. Many of us have gotten around this by creating XML
documents in a text editor, saving the file as a backup, and copying and pasting the
content into the TemplaVoila Control Center text areas. Static data structures save
us extra steps and standardize the process.

The concept of static data structures is simple: each Data Structure object is an XML
file organized by filename and directory structure. Directories in the fileadmin
folder organize static data structures. The main data structure directory is called
ds, and it includes a subdirectory for Flexible-Content Elements (fce), which we
will talk about in the next chapter, and Pages (page). Inside the directory, each
data structure can have an XML data structure file and an optional back end layout
HTML file and preview icon using the DS object name to tie them together and
extension to assign their purpose:

e Data Structure: Template Name (page) .xml
e Backend layout: Template Name (page) .html

e Preview icon: Template Name (page) .gif
An example data structure for our current website would look like this:

ds/
page/
Main Template (page) .xml
Main Template (page) .html
Newsletter (page) .xml
Newsletter (page) .html

fce/

[182]

Chapter 7

You'll notice that the scope of the template (page) must also be included in the
filename. This may change in future versions of TemplaVoila, but it is a requirement
right now. This is one disadvantage to static data structures right now for those who
don't want spaces or parentheses in filenames on their server, but the new system
has a lot of advantages for future template building, such as:

e Static files are easier to backup and restore on the server. You need to have
consistent backups of your database, but actually restoring a broken data
structure inside the database can be a monumental task. You can't rollback
an entire database on a live site with users, and the only other option is to
restore one single field from a large backup file. Static data structures can be
backed up with the rest of your site's template files and restored using your
default backup software.

e Similar to backing up, static data structures can be stored in a version control
system such as Subversion or Git. This gives us the power to test, deploy, or
rollback data structures without performing major operations.

* You can deploy new templates easier with static data structures. Have a new
website that needs a template you built somewhere else? We can copy the
data structure files with the Template Object HTML file into the new website,
and the only operation left to do in the backend is map the two together.

e We can work on the XML in the editor of our choice. Many editors such as
TextMate can already support TemplaVoila's Data Source XML syntax, and
working on a large data structure inside a text area has never been a good
option. Just our current main template is almost two hundred lines at this
point, so just the ability to have powerful find and replace can save lots of
time. If you use snippets like the TextMate bundle, you can save even more
time and prevent the frustration of tracking down a simple typo.

Setting up static data structures

To help you understand the static data structures, we will go through an example

in our test environment. The TemplaVoila developers are still working on the
implementation, so some of these steps may have changed or become more
automated through wizards. Remember to check the online documentation

(http ://typo3.org/documentation/document-library/extension-manuals/
templavoila/current/) if you need more updated references. Once we have
enabled static data structures, TYPO3 will no longer check the database for our XML,
so we need to make sure that we follow of the steps for conversion carefully.

1. First things first, you need to back up your current database. We are about to
change the fundamental way that templates work, so you need to the ability
to restore the current data structures in the database. The more current your
backup, the easier it is to restore.

[183]

Customizing the Backend Editing

If you are not sure how to backup your database, MySQL has instructions on
their website (http://dev.mysql.com/doc/refman/5.1/en/backup-and-
recovery.html).

2. Now we can create new directory structure for our static templates. The
TemplaVoila extension wizard should be able to do this, but some versions
do not currently set the permissions correctly so it's easier to create them by
hand. Create a directory named ds inside the fileadmin directory. Inside
the ds directory, create two subfolders: fce and page. Again, make sure that
they are readable and writable by the web server.

3. Inthe backend of TYPO3, go to the Extension Manager (labeled Ext
Manager) under the Admin Tools section of the left frame. Make sure
that Loaded extensions is selected in the main drop-down.

4. Choose the TemplaVoila! extension in the Miscellaneous folder to edit
the extension installation and enable static data structures.

5. In the configuration section, check the checkbox labeled Enable static files

for data struct... to enable static data structures in this installation and click
on the Update button to save our changes.

Configuration:

(Notice: You may need to clear the cache after the configuration of the extension. This is required if the
extension adds TypoScript depending on these settings.)

Category: [STATIC DS (4) [+]

Enable static files for data struct... [staticDS.enable]
Experimental! Use Static DS Conversion Wizard below!

¥

FCE Data Structure Path [staticDS.path_fce]
Path to the static data structures for flexible content elements

fileadmin/templates/ds/fce/

Page Data Structure Path [staticDS.path_page]
Path to the static data structures for pages

fileadmin/templates/ds/page/

Static DS Conversion Wizard [staticDS.wizard]

Check data structure paths

The wizard checks if the data structure paths exist and are writeable. If a path does not exist, it
attempts to create the necessary directory.

If you want to update your records, ensure you checked "staticDS.enable" before starting the wizard.

|static DS Wizard - Step 1: Check paths

6. Next, we can start the DS Wizard by clicking on the button labeled static DS
Wizard - Step 1: Check paths. This will allow the wizard to check that our
new directories are created and have the correct permissions for the static
data structure files.

[184]

Chapter 7

7. After the wizard checks our directories and permissions, it will try to convert
our existing data structures by creating XML files in our ds/page/ directory.
If we had not enabled static data structures, we could still use this part of
the wizard to save static copies of our XML as static data structure files for
backup. We have enabled static data structures, so we need to make sure that
we convert all of our data structures to prevent data loss. Once again, TYPO3
will no longer check the database for our XML when static data structures
are enabled. With that in mind, we need to go ahead and select all of our data
structures for the conversion step.

Convert existing data structures

This step copies your existing data structures into static files using the specified data structure paths.
Static files that already exist will be overwritten.

Since the existing data structures remain unchanged, this is also an easy way to back up data
structure records without actually using the static data structure functionality.

Directory "fileadmin/templates/ds/fce/" exists and is writable. Ready for usage.
Directory "fileadmin/templates/ds/page/" exists and is writable. Ready for usage.

UIDPIDTitle Scope Usage s o
4 68 Main Template Page 7 E]
5 68 Newsletter Page 3)

Are you sure you want to enable static data structures? This feature is experimental
and it is recommended that you perform a database backup of all tables involved
(pages, tt_content, tx_templavoila_datastructure, and tx_templavoila_tmplobj) before
continuing.

[Update database records and enable static data structure

|static DS Wizard - Step 2: Update database records and enable static data structures|

8. We need to confirm that we are enabling static data structures and allow
the wizard to update our database by checking the box labeled Update
database records and enable static data structure. Now is a great chance
to double-check that we have a current backup of the database including
the pages, tt_content, tx templavoila datastructure, and
tx_templavoila_tmplobj tables. Once we have verified our backup, we
can click on the large button labeled static DS Wizard - Step 2: Update
database records and enable static data structures.

[185]

Customizing the Backend Editing

9.

10.

11.

12.

After the wizard is done processing, we can see two new files in the /
fileadmin/ds/page/ directory named Main Template (page) .xml and
Newsletter (page) .xml. In order to move over the backend layout files,
we just need to copy them from the fileadmin directory and rename them
to match our new data structures. Copy /fileadmin/belayout_main.html
to /fileadmin/ds/page/Main Template (page).html and /fileadmin/
belayout newsletter.html to /fileadmin/ds/page/Newsletter (page).
html. To create backend layout files in the future, all we have to do is create
an HTML file with a filename that matches the data structure we

are modifying. TYPO3 will automatically detect the new layout.

Next, we could add a preview icon to either data structure by adding a GIF
file with the name of the DS object. For example, a preview icon for the main
template just has to have the filename Main Template (page) .gif in the /
fileadmin/ds/page folder. Currently, it detects the preview icon by name
and extension, so only GIF formatted images are allowed. You may have to
convert from PNG if that is what you were using before.

Clear the cache for TYPO3. We have made a lot of changes, so the cache will
be inconsistent until we clear it. If any Template Object records lost their
association with the data structures during the update, we may need to
update them in the TemplaVoila Control Center by selecting them in the
Lost TOs tab and updating their Data Structure value.

Finally, we can re-enable our backend layouts by copying the HTML files
into the ds/page/ directory. For example, we can use our backend layout file
for the newsletter template by copying fileadmin/templates/belayout_
newsletter.html to fileadmin/templates/ds/page/Newsletter (page) .
html. Go ahead and copy the belayout_main.html to ds/page/Main
Template (page) .html as well. The backend layout that we created for the
Left Sidebar Template need not to be changed because the changes only
affected data structures. From now on, we can create new backend layouts
without ever touching the TemplaVoila module in the TYPO3 backend; we
just need to make HTML files inside the ds/page/ directory.

Modifying static data structures

After the cache is cleared and any lost templates are updated, we'll be using the
new static data structure. Aside from the obvious changes we just made, a lot of
our workflow will still be the same. We can still edit the data structures through the
Modify DS / TO wizards in the control center, but now we can make a copy of our
files before we make any large changes. Of course, we can also now edit the XML
directly in an editor if we want.

[186]

Chapter 7

If we want to create a new data structure, we just need to either make a blank XML
file in the /fileadmin/ds/page directory with the name we want and the (page)
scope or copy and duplicate one of our existing static data structure files.

Summary

Okay, now that we've wrapped up our little experiment with static data structures,
we can look back at everything that we've done in this short chapter. At the
beginning of this chapter, the entire editing experience for our editors was exactly
like any other out-of-the-box TYPO3 installation. That would be okay, but we've
seen that the developers of TYPO3 and TemplaVoila gave us the ability to tailor our
backend experience to our editors' needs and the branding and layout that we have
built for the frontend.

By configuring the text editor, we were able to show the editors what paragraphs
and headings would really look like. In addition, we could add some classes to their
toolbox we wanted to use on the frontend and remove some unwanted classes and
toolbar buttons that we didn't want them to touch. We even added access to the
HTML tags that they need to include video from YouTube or Vimeo directly in

a text content element.

After we got the text editor looking better, we went after the Page view layout. We
also saw a couple ways of including backend layouts through inline tags in the XML
and external HTML files. We looked at ways to build better looking backend layouts
that could apply to a whole data structure or just individual templates.

Finally, we looked at where TemplaVoila templates are going with static data
structures. We looked at some of the advantages and even tried it out on our
own example site. There may be some changes in implementation over time, but
we'll already be a step ahead of the crowd now that we've started using the next
generation of data structure workflows.

Looking at the new editing experience in the backend, we've made a lot of
improvements. We also know our way around the TemplaVoila Data Structure system
like experts now, so we're going to start looking at the other side of TemplaVoila in
the next chapter: Flexible Content Elements. Flexible Content Elements are kind of like
mini-templates for TYPO3, and we're going to use them to create ads, multi-column
layouts, and a few more helpful objects. I know it seems like we've exhausted every
layout trick available, but FCEs are the other half of TemplaVoila in many ways.

Many developers have switched to TYPO3 just for the FCEs.

Okay, grab some more coffee, show your favorite website editor how nice the
backend looks, and come back here ready to play with some Flexible Content
Elements in the next chapter.

[187]

Working with Flexible Content
Elements

Now that we know our way around TemplaVoila data structures and template
objects, we're ready to introduce flexible content elements (or FCEs). As a core
feature of the TemplaVoila extension, FCEs can almost be thought of as mini-
templates for groups or chunks of content. Site developers use them in TYPO3
installations worldwide to create specialized content layouts for small groups of
content like an advertisement where you might want a title, description, and image
grouped together. There are actually so many places that you can use them that
flexible content elements are used in many situations instead of custom extension
development. By the end of this chapter, we'll all be creating custom FCEs to fill
our special requirements.

In this chapter, you will:

e Learn about flexible content elements
e Create your first flexible content element to display contact information

e Create an FCE to wrap a group of content elements in a div tag for
custom styling

e Use an FCE to create multi-column layouts inside any TemplaVoila
content area

e Create a flexible content element for product displays

Working with Flexible Content Elements

Introducing flexible content elements

I just said flexible content elements are like mini-templates, but they are actually a
little more sophisticated than that. TYPO3 templates, traditionally, are just used to
design the pages of your website. Well, flexible content elements are there as a way
to create our own specialized types of content elements. Flexible content elements
give us most of the power that we've had in the main TemplaVoila templates; the
workflow and structure is almost exactly the same. We still have a data structure
and a mapped object for each template, and we can still create backend layouts and
preview images to help our editors. So, we already have all the raw skills we need to
start creating them, but we just need a few examples of where we would want them.

Creating a flexible content element really is just like creating a new content type for
our sites utilizing the power of TemplaVoila. Once created, they can be embedded
into any templates or even other FCEs. We can use references to link them across
separate pages. We can copy them around between TYPO3 installations easily. We
can even update the main template object or data structure of an FCE and watch
our changes reach to every instance of that content element in our page tree. The
best examples of this are going to be some of the ones we're about to build: a contact
section, a div to wrap around other content elements, a multi-column element, and
a custom product layout.

Creating our first flexible content element

The first FCE we're going to create is going to be simple enough to show us the
basic workflow, but it's also a pretty handy trick so that we can add our contact
information onto multiple pages using consistent formatting across our site. We're
going to create a new flexible content element for our contact information using
microformats (http://microformats.org/) so that Google and some browsers can
read our address, phone number, and email address easier. Normally, this would
require a lot of extra work to place it on multiple pages, but we can create an FCE
that our editors can add to any page just like a normal content element.

Building the content element

1. Of course, the first thing that we should do is create an HTML file that we
can use for our mapping. FCEs are normally mapped to a part of a complete
HTML template, while page templates are mapped to the whole file. For our
example, we will create one universal HTML file to hold all of our flexible
content element HTML snippets called template fce snippets.html in the
fileadmin/templates/ directory.

[190]

Chapter 8

At this point, we can create our HTML that the FCE will be based on. Like we
said before, we are going to use microformats so that our contact information
can be read by software more easily. To use microformats, we are just going
to add some specific class names to the span and div tags around our
information. If you would like to see more information about microformats, I
recommend going to http://microformats.org/. For now, we can add this
code into our template fce snippets.html file

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8" />
</head>
<body>
<div id="contact info section">
<h3 id="contact_ info title">Contact Us</h3>
<div class="vcard">
<div class="fn org"s>Example.com</div>
<div class="adr">
<div class="street-address">1214 Rebekah Ave.
</div>
Dallas,
TX
75154
USA
</divs>
<div class="tel">(212) 555-1212</div>
<a class="email"
href="mailto:jeremy@example.com">jeremy@example.com
</divs>
</divs>
</body>
</html>

We are ready to start creating the TemplaVoila structures now, so we can
go to the TemplaVoila Control Center in the backend of our installation
now. We can create a new data structure by going to the Template Files
tab in the control center. To create a new template object and data structure
simultaneously based on our new HTML file, we need to click on the
Create... link for our template file, fileadmin/templates/template_fce
snippets.html.

[191]

Working with Flexible Content Elements

4. Now we need to choose the root data element. Go ahead and choose
the main div tag (circled in the following screenshot). We need to make
sure we set the mapping mode to OUTER (Include tag). Due to an oddity
in TemplaVoila, outer mapping is the only way to make sure that we
actually keep the contact_info_section class after mapping. It may be

counter-intuitive, but TemplaVoila treats root elements exactly the opposite

of all other elements in its implementation of outer and inner mapping
modes. Click on Set to start creating our data structure.

<!DOCTYPE HTML> <html> <head> <meta charset="utf-8" /> </head>
<body>
“ediv> id="contact info section
B ER Tt corrae o 2>
Contact Us
</h3>
<div: class="vcard">
<div> class="fn org">
Example.com
</div>
<div> class="adr">
<div> class="street-address">
Suite 850
=
1214 Rebekah Ave.
</div>
 class="locality">
Dallas

r

 class="region">
TX

5. Now that we have set the root, we can add our own fields to the FCE data
structure. All of our contact information can be static, so we will just create
a field for the header. Like the page templates, we will create a new field by

filling the in name, field_ header, at the bottom of the page as shown in
following screenshot, and click on Add.

) Building Data Structure:

ROOT ROOT Select the HTML element on the page & <div> | Re-Map I Change Mode |

which you want to be the overall
container element for the template.

(field_header |Add | o

I Show XML" Clear all " Preview " Save " Save and Exit " Save as " Load " Refresh I

[192]

Chapter 8

6. Now we can fill in the form for our new field. We will set the Title to Header,
and we can set the Sample Data as [Header goes here]. As we are using
this as a header, we can choose Header field as our Element Preset. After
we have filled out the form as shown in the following screenshot, we can
click on Add to save our settings.

ROOT ROOT Select the HTML element on the page which you want to be the overall container
element for the tamplate.

[Element I-G-i Title:
field_header (new):
i~ Configuration Mapping Instructions:

Header

Data processing

| o | 2572 Sample Data:
e FOFM

[Header goes he re]|

Element Preset:
[Header field '-G"i
Changing element type will change your existing settings!

7. Map the header field to the h3 tag in our HTML template and click on Set to
save the mapping.

8. We've finished creating our small content element, so we can click on the
Save as button in our builder screen and save our progress. We are creating
a new data structure, so we will need to fill out the CREATE Data Structure
/ Template Object portion of the TemplaVoila save screen. We will give our
new element an easy title, Contact Information. We also need to make sure
we choose Content Element from the Template Type drop down because we
are creating an FCE instead of a page template this time.

[193]

Working with Flexible Content Elements

9. Our screen should look something like shown in the following screenshot
before we click on the CREATE DS/ TO button:

TemplaVoila

D_ fileadmin/templates,/template_fce_snippets.html
. Remalate Objects | (e
" Data Structure Record: </

CREATE Data Structure / Template Object:

_ Contact Information

[Storage Folder (UID:24) I-#-]

| CREATE DS / TO || cancel

Testing our new content element

We can add our element to any page the same way we've been adding text or
graphic elements in the past through the Page view.

1. Go to the main page in the backend of TYPO3 and click on the new element
button (circled in the following screenshot).

Main Content Area

[An Awesome Front Page S iaE M e

|| Text: Jeremy Greenawalt is a full-time developer and part-time writer with close to ten Images:
E vears professional experience in website and application creation. His first love was

' |writing, but programming quickly followed. He is a co-founder of Vintage 56 where he l

i | helps develop websites, online shopping carts, web apps, iPhonefi0S apps, and anything

i |else his friends can think up. Jeremy is also the web director of a large ministry,

E Generals International. Jeremy lives near Dallas, Texas with his wife, Rebekah, and their

| | ewer-youthful puppy, Aingeal. He loves spending time at home reading, playing around

E on the piano, or just relaxing on the couch with his family. You can read more from

' |Jeremy at pocketrevolutionary.com , and you can follow him on Twitter at @jgreenawalt .

Banner Image m

2. Added to the choices of standard or extension-based elements, we can see
our own flexible content element, Contact Information [Template], listed.
Go ahead and choose it to add it to the page.

[194]

Chapter 8

3. The next screen we see is the content editing screen where we can fill in the
header for our new element:

Template Object:

| Contact Information [Template] | ¢]

Content:

» Header

Contact Information

4. Finally, we can save our new content element and see the output on the
frontend (highlighted in the following screenshot):

He is a co-founder of Vintage 56 where he helps develop websites, online
shopping carts, web apps, iPhone/iOS apps, and anything else his friends
can think up. Jeremy is also the web director of a large ministry, Generals
International.
Portrait by Rebekah Greenawalt
Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-
youthful puppy, Aingeal. He loves spending time at home reading, playing around on the piano, or just
relaxing on the couch with his family.

You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on Twitter at
@jgreenawalt.

Contact Information
Example.com

1214 Rebekah Ave.
Dallas, TX 75154 USA
(212) 555-1212
jeremy@example.com

Printable page view

Creating a flexible HTML wrapper

As a website grows, we sometimes run into times where we would like to assign a
special style to a content element or group of content elements, but there is no easy
way to do this in TYPO3 without creating a new page template. All we really want to
do is wrap a div tag around the group of elements we are styling with a CSS class to
give them any style we need from our own stylesheets. For example, we might want
to highlight a group of content elements with a color background or border.

We will create a flexible content element to output a div tag with a blank class
attribute that can contain normal page content elements. The FCE will have a field
for the class, so our editors can fill in whatever class they need to use later.

[195]

Working with Flexible Content Elements

We're also keeping control over the options that editors have. They are still restricted
to using CSS classes, as opposed to arbitrary style attributes, so we have not given
them too much freedom.

Building the content element

1. First, we can create our HTML to which the FCE will be mapped. All we
need is a div tag with a blank class attribute, so we can just add our snippet
to the bottom of /fileadmin/templates/template fce snippets.html.
We will also add some HTML comments around our new snippet so that we
can always identify it in the HTML file:

<!-- BEGIN HTML Wrapper -->
<div class=""></div>
<!-- END HTML Wrapper -->

2. Now, we go back to the TemplaVoila module in the backend. From the
Template Files tab in the TemplaVoila Control Center, click on Create...
next to the file fileadmin/templates/template fce snippets.html label.

3. Go ahead and choose our new div tag between the HTML comments
(circled in the following screenshot) and click on Set to start creating
our data structure.

lass-"amail" href="mailto:
jeremyfexample.com

</fdiv>
<fdiv>
L — {THL. Wrapper
<div: class=""=

|
.‘
&

<! End HTML Wrapper

Again, choose OUTER (Include tag) as our mapping mode.

The first field we need to create is the wrapper field for the content element.
We have already set the div tag as the root element, but we still need to
create a separate field to handle content elements or we won't be able to add
content into our new FCE in the Page view. Like before, we can create a field
by filling in the new field text area with a new name, field wrapper, and
clicking on the Add button. Now we can create the field with the following
values just like we did when we added fields to our main templates. Like
our page templates, we are going to use the Page-Content Elements preset
because it allows us to place other content elements inside our new field:

e}

Field: field wrapper

o

Element

[196]

Chapter 8

o

Title: Wrapper

o

Sample Data: [Content goes herel

° Element Preset: Page-Content Elements

6. Once we have created and saved our new field, we can map it to the div tag
by clicking on the Map button. We can use inner mapping this time because
we want to keep the tag and this is not the ROOT field.

7. The next field we need to create is the class field so that we can edit the class
from the page module. Instead of an element, we are creating an attribute. To
create the new field, fill in the name, field class, at the bottom of our page
and click on Add. Choose Attribute from the drop down on the left side and
fill out the field values:

° Title: Class
° Sample Data: [Class field]

° Element Preset: Plain input field

8. After we have created the new class attribute and saved it, we can map it to the
class attribute in our div tag. If we click on the Map button for the class field,
we see that we can only choose the div tag to map to; this is okay. If the div
tag is grayed out or disabled, we probably need to check that the root element
was set with OUTER mapping. After we click on the div tag, we are presented
with a slightly different mapping screen than we have seen before. Up until
now, we have been mapping tags instead of attributes, so our choice has been
INNER or OUTER mode. When mapping attributes, this drop down will
show any blank attributes that exist within the HTML template for that tag.

If we wanted to set a relation attribute, for example, the HTML just needs
to have rel="" present in the tag with or without a value. For now, we can
choose ATTRIBUTE "class" (=) from the drop down and click on the Set
button to continue.

Class field_class [Class field] (ALLY y b}
ATTRIBUTE “class” (= }u.D
Set

I Show XML " Clear all " Preview " Save as " Load " Refresh I

9. We've created all of the fields we need for this small content element, so we
can click on the Save as button to save our progress. We will give our new
element an easy title, HTML Wrapper. We also need to make sure we choose
Content Element from the Template Type drop down again.

[197]

Working with Flexible Content Elements

Testing our new content element

We now have a data structure and template object created as a flexible content
element and mapped, so we are ready to test. We can test with almost any class from
our stylesheet, but we'll make it easy by adding a new class style to the bottom of our
style.css file with a color background, rounded corners, and a slight shadow to
highlight content:

.alert {
background-color: #BBCCDD;
padding: 10px;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
box-shadow: 2px 2px 5px #888;
-webkit-box-shadow: 2px 2px 5px #888;
-moz-box-shadow: 2px 2px 5px #888;

}

As an example, we can highlight a couple of bullet lists on the Bulletlist page that
the TemplaVoila wizard created.

1. Go to the Bulletlist page in the backend of TYPO3 and choose to add a new
element like we did for the Contact Information FCE.

This time, choose HTML Wrapper [Template] for our new element.

The next screen we see is the editing screen, and we can see that the titles we
gave our data structure fields are showing up along with the different form
elements we just declared. We can add elements to the wrapper here, but it's
easier in the page module. Instead, we'll just set the Class field to alert to
match our stylesheet, and save our new element.

Template Object:

| HTML Wrapper [Template] } ¢]
Content:
Wrapper
= &
[]
K|
=

[F] Pagecontent

Class

alerﬂ

[198]

Chapter 8

4. Finally, in the page module, we can drag elements into our new content
element, and our new div tag with a class we have set in the settings will
wrap around them. We can drag two of our bullet lists into the FCE:

0 [No title] ytéﬁ;g;@gp
Wrapper

' |l Bulletlist Test #2 2 sH R e
[Text:
» Maverick
* Goose
+ Iceman
» Jester

@O :
| [= ulletiist Test #3 2 P 7 e

* Maverick
» Goose
» Iceman
+ Jlester

IClass alert

If we look at our edited page on the frontend, we can see the new CSS
styling applied immediately:

BuLLeTtusT TesT #1

o Maverick
o Goose
o lceman
< Jester

BuLLETUIST TEST #2

o Maverick
o Goose
o |ceman
< Jester

BuLLETLIST TEST #3

¢ Maverick
o Goose
o |ceman
< Jester

BuLLETuST TEST #4

e Maverick
o Goose
o |ceman
o Jester

[199]

Working with Flexible Content Elements

Creating a multi-column layout element

As helpful as a wrapping div tag can be, we should start getting a little bigger with
our goals. One thing that we run into all the time in the real world of site development
is the need to have multi-column elements. With the rise of grid-based design and
content-heavy sites, it's getting more popular to start adding two columns into the
main content area under a single column article or something similar. Unfortunately,
there are a lot of variations on this idea of mixing and nesting multi-column layouts,
and it's not always possible or smart to create a template for every possible variation
in a limited amount of time. You can easily waste all your time creating templates
with a two-column element over a three-column element over a two-column element
over a single-column element. I know that sounded confusing, and that's the problem.
Instead, we can create a handful of useful multi-column flexible content elements that
our editors can use anywhere they need to and in any order they need to. They can
even nest them inside of each other if we do this right.

Right now, we're going to make a quick FCE with two columns that take up roughly
half of the current content area. We're just going to start by adding some basic styling
to our main stylesheet, fileadmin/templates/style.css

.multi column_element {
display: inline-block;
width: 100%;

}

#nested column 1 {
float: left;
clear: left;

}

#nested column 2 {
float: right;
clear: right;

}

.half {
width: 49%;
1

As you can see above, we are using inline-block as the display setting for the
entire element. If we don't set that, then the elements below it can creep up when
we start using floats. For more information on CSS values like inline-block, I
recommend the tutorials from w3schools.com (http://www.w3schools.com/css/).

In addition, our style floats the first column, nested_column_1, to the left and clears
anything to its left. The second column, nested_column_2, floats to the right and
clears anything to the right of it. If we assign the class half to both columns, then
they will both take up a little under 50% of the total width with a little whitespace
in the middle.

[200]

Chapter 8

After we've modified the CSS, we need to update our HTML file. Once again, we'll
add our new HTML code with identifying comments into our HTML template, /
fileadmin/templates/template fce snippets.html. Go ahead and add some
basic code to the main FCE HTML file to create two divs for columns:

<!-- BEGIN 1/2 + 1/2 Element --><div class="multi column element"s>
<div class="nested column half" id="nested column_1">Column 1l</div>
<div class="nested column half" id="nested column_ 2">Column 2</div>

</div>

<!-- END 1/2 + 1/2 Element -->

Now we're going to follow most of the same steps from the previous examples
starting with the creation of a new data structure:

1. From the Template Files tab in the TemplaVoila Control Center, click on
Create... next to the file fileadmin/templates/template fce snippets.
html label.

2. Choose the main div tag that wraps around the entire HTML template as the
root field. Again, we need to make sure we set the mapping mode to OUTER
(Include tag).

3. Create a new field for the first column named field column 1. As the float
is set completely in CSS, we will not refer to the columns as left or right
columns here. This means we could swap the columns in CSS or assign
different identifiers in the HTML without breaking our data structure.

Go ahead and create our new field with these values:

° Field: field column 1

o

Element
° Title: column 1

o

Sample Data: [Column #1 goes here]

o

Element Preset: Page-Content Elements

4. Save the first field and map field column_1 to the div tag with the ID
nested_column_1. Make sure that you select inner mapping so that the
classes and identifiers are left in the div tag.

5. Create a new field for the second column with almost the same values as the
first column:
° Field: field column 2
° Element
° Title: Column 2
Sample Data: [Column #2 goes here]

Element Preset: Page-Content Elements

[201]

Working with Flexible Content Elements

6. Save the second column field and map it to the div tag with the ID
nested column 2 in the HTML.

7. Click on the Save as button to save our new data structure and template
object. Set the title as something memorable, Two-Column Element, before
choosing Content Element as the Template Type and clicking CREATE
DS/ TO.

As easy as that, we've just created another FCE. We can test this one on the
main page of our test site by creating a new content element with our new FCE,
Two-Column Element, and dragging our current blocks into either side:

Main Content Area

+ [N title] AN ek Lk

Column 1

% An Awesome Front Page fk_élﬂ e ; fk_élﬂ EE L ; ;

i |Header Contact Information

i | Texct: Jeremy Greenawalt is a full-time Images:
: developer and part-time writer with close to

|ten years professional experience in website

i |and application creation. His first love was

i [writing, but programming quickly followed. He i i
i|is a co-founder of Vintage 56 where he helps @ K
| |[develop websites, online shopping carts, web i HE
i |2pps, iPhone/i0S apps, and anything else his i i
1 |friends can think up. Jeremy is also the web @ K
i |director of a large ministry, Generals i K
i |International. Jeremy lives near Dallas, Texas N HE
' [with his wife, Rebekah, and their ever-youthful
V| puppy, Aingeal. He loves spending time at i K
i [home reading, playing around on the piano, or N HE
! |just relaxing on the couch with his family. You
i |' [can read more from leremy at " K
| || | pocketrevolutionary.com , and you can follow e

| him on Twitter at @jgreenawalt .

Banner Image m

With two even columns, our front page should look something like this:

AN AWESOME FRONT PAGE Contact Information

Example.com

1214 Rebekah Ave.
Dallas, TX 75154 USA
(212) 555-1212
jeremy@example.com

Jeremy Greenawalt is
a full-time developer
and part-time writer
with close to ten
years professional
experience in website
and application
creation. His first love
was writing. but Portrait by Rebekah Greenawalt
programming quickly

followed.

[202]

Chapter 8

Extending the multi-column layout
element

As you can see from our example above, two even columns are not always the

best answer for a good layout. Thankfully, we can create multiple flexible content
elements using the same data structure. In fact, the process is, like all of the FCE
processes, almost exactly like the page template process. Just like when we created
multiple template objects from the main data structure, we can create multiple FCE
template objects from the multi-column data structure.

We're going to add two new template objects. Each will have a column using 33%

of the total width and a column using 65% of the total width. Like the even columns,
we're just using percentages as a quick way of getting up and running, and we're
allowing a little less than 100% width so there will be some space between the
columns. One template will have the large column on the right, and the other one
will have the large column on the left. We'll just be building on the data structure
that we've already built, so we can go through the process without too much
explanation on each step.

1. We need to add classes for the two new possible column widths to the
stylesheet. Let's go ahead and add these to the bottom of our style.css file:

.one_third ({
width: 33%;

}

.two_thirds ({
width: 65%;

}

2. We are going to create two new HTML snippets almost exactly like the
previous one. The only difference will be in the classes of the columns. Before
we set them both to half, now we will be using one_third or two_thirds.
First, we'll add the HTML code with 33% width on the left with HTML
comments that identify it as having 1/3 on the left and 2/3 on the right to
template fce snippets.html:

<!l-- BEGIN 1/3 + 2/3 Element -->
<div class="multi column element">

<div class="nested column one third" id="nested
column_1">Column 1</divs>

<div class="nested column two thirds" id="nested
column_2">Column 2</divs>
</divs>
<!-- END 1/3 + 2/3 Element -->

[203]

Working with Flexible Content Elements

3.

Next, we'll create the HTML with the smaller column on the right. The
only difference in the HTML is that we have switched the one_third and
two_thirds classes between the columns. We could make this editable like
the HTML wrapper, but that would just add work for the editors. With this
code, there's no possibility of putting two two_thirds columns next to
each other:

<!-- BEGIN 2/3 + 1/3 Element -->
<div class="multi_column_element">

<div class="nested column two thirds" id="nested
column_1">Column 1l</divs>

<div class="nested column one third" id="nested
column 2">Column 2</divs>
</div>
<!-- END 2/3 + 1/3 Element -->

In the backend TemplaVoila module, we can go to the Flexible CE tab to see
our current flexible content elements. To avoid confusion, we can rename the
Two-Column Element [Template] template object. Go ahead and click on
the pencil to edit it, and change the title to something more unique like 1/2 +
1/2 Element [Template].Save the changes.

Back in the TemplaVoila module, we will click on the Create new Template
Object link under our template object labeled 1/2 + 1/2 Element [Template].

When the editing screen comes up, we can fill out the fields for our
new template:

° Title:1/3 +2/3 Element [Template]

o

File reference: fileadmin/templates/template fce snippets.
html

Data Structure: Two-Column Element (or Static: Two-Column
Element (fce) if you are using static data structures)

After you have saved your changes, repeat the process to create another
template object with similar settings:

° Title:2/3 + 1/3 Element [Template]

o

File reference: fileadmin/templates/template fce snippets.
html

Data Structure: Two-Column Element (or Static: Two-Column
Element (fce) if you are using static data structures)

[204]

Chapter 8

9.

10.

Next, we can click on the Remap button for the 1/3 + 2/3 Element [Template]
to start mapping it. Map this new template object exactly like the template
object with two even columns before.

o

Map ROOT to the main div with the class multi_column_element.
Select OUTER for the mode.

Map Column 1 to the div with the id nested _column_1.

o

o

Map Column 2 to the div with the id nested_column_2.

Click the Save and Return button.

Repeat the mapping and saving process for the 2/3 + 1/3 Element [Template]
template object.

Now we can return to the front page and update our layout. Just click on the
pencil icon for our two-column element to edit it and change the Template Object
drop-down to 2/3 + 1/3 Element [Template]. If we refresh our page in the frontend,
we should see something that works at least a little better:

| SFIEEERNNRa.. __ aa |

AN AWESOME FRONT PAGE Contact Information

Jeremy Greenawalt is a full-time developer
and part-time writer with close to ten years
professional experience in website and
application creation. His first love was
writing, but programming quickly followed.

He is a co-founder of Vintage 56 where he
helps develop websites, online shopping
carts, web apps, iPhone/i0OS apps, and
anything else his friends can think up. Jeremy
is also the web director of a large ministry, Generals International.

Example.com

1214 Rebekah Ave.
Dallas, TX 75154 USA
(212) 555-1212
jeremy@example.com

Portrait by Rebekah Greenawalt

[205]

Working with Flexible Content Elements

Creating a product display element

We've seen how we can use flexible content elements to give us better control over
our layouts and give us multi-column layouts, but we haven't actually built a whole
new kind of content element like we would expect from an extension or specialized
installation. Well, it just happens that we need to work on integrating consistent
product displays into our website so we have the perfect situation to learn more
about the FCE system. We could use the old Image w/ Text content type everywhere
or we could create our own new content element that would be on the same level as
a customized Image w/ Text content element. What are the advantages of using an
FCE for this little task, though?

e Consistency: All of the product displays will inherently look the same
because the image size, link structure, and even product name placement
can be controlled through the FCE.

e Flexibility: If we decide that we want all of the product images to be to the
right of the descriptions one day, we can change the FCE, flush the cache,
and see all product displays immediately change when we refresh our
browsers. We can't do this with simple content elements styled in the RTE.

e Speed: If we spend a few extra minutes laying out a nice flexible content
element, our editors will save at least a few minutes on every single product
display they create; that translates to plenty of saved time and money

pretty quickly.

So, our final FCE will be a new element to display products. We want to be able to
show the name, description, price, and a link to our product in the store with our
own consistent layouts, and we need the ability to have a few different styles of
products based on CSS classes. We also want to make sure that it's easy to buy the
product, so the name of the product and the image will always link to our product
in the store.

Creating the HTML and CSS

Just like before, our first step is to create a good HTML template to build from.
Obviously, there are a lot of ways that we could build a good product display, but
here is some example HTML code that will put us all immediately on the same page:

<!-- BEGIN Product Element -->
<div id="product_ ad" class="">

<div class="product text"s>
<p id="product name"></p>
<p id="product description"s</p>

[206]

Chapter 8

<p id="product price"></p>
<p id="product_ link"s></p>

</div>
</div>
<!-- END Product Element -->

As you can see above, our template once again consists mostly of empty HTML tags
with identifiers or classes that we will use in the CSS and TemplaVoila mapping.
Right now, we can add our new HTML snippet to the template fce snippets.
html file.

As part of our overall HTML/CSS template creation, we can go ahead and setup our
stylesheet changes now. This is just for our example site, so there's no reason to go
crazy on CSS customization, but we do want to make a few changes to make sure
that the product graphic floats nicely to the left of the description. We're going to
restrict the overall width of a product display to 450 pixels and the width of the text
to 290 pixels. The image will float to the left, and its size will be set by the TypoScript
in the data structure so that the server will handle any resizing that is necessary. Go
ahead and add this small chunk of CSS to the bottom of your style.css file to make
these updates:

#product ad {
width: 450px;

}

#product ad div.product text {
width: 290px;

}

#product description {
margin-bottom: 5px;

}

#product price {
font-weight: bold;

}

#product ad img {
float: left;
margin-right: 10px;

[207]

Working with Flexible Content Elements

Creating a customized data structure

Now we're ready to create the actual data structure. The process is going to be
basically the same as the other content elements, but we are going to spend more
time tweaking each field to work exactly the way we want.

Our first step is always to create a new data structure again by clicking Create... next
to the fileadmin/templates/template fce snippets.html label. Go ahead and
map the root field to the main div tag with the ID of product_ad. Like before, we
need to set the mapping mode to OUTER (Include tag) so that the product_ad ID
attribute stays in the HTML tag.

Product name

The first field we are going to create is the product name field, so go ahead and create
anew field named field_ name with some basic settings:

e Field: field name

e FElement

e Title: Product Name

e Sample Data: [Product name]

¢ Element Preset: Plain input field

1. Go ahead and save the initial configuration by clicking on the Add button.
After you have saved the original settings, go ahead and click on the Extra
link under the Configuration heading (pictured in the following screenshot).
We want to wrap a link to the product page around a few of our fields
including the name field, so we are going to add some TypoScript to the
Custom stdWrap parameter for field name. We are going to use two lines
of TypoScript for this:

if.isTrue.current = 1
typolink.parameter.field = field link

2. The first line checks to see that the f£ield name currently exists. We do this
this so that TYPO3 only creates a 1ink tag when the product name exists.
The second line creates a typolink wrap around the field name output.

In addition, it gets the link parameters, or destination and target of the link,
from a field named field link. We will be creating this data structure field
later on as a link to the product page, but we can go ahead and start using it
to add dynamic links to specific data structure elements. Before we click on
Update, our screen should look like this:

[208]

Chapter 8

fp— .:i Applied post-processes:

] ;
field_name | Cast content to integer

Configuration E] Pass content through htmliSpecialChars (HSC)

Data processing Custom stdWrap:

2 if.isTrue.current = 1
typolink.parameter.field = field link

Enable data preview in Page-Module:
® Enable
() Disable

| Update || Cancel / Close |

We are almost done with the product name field, but we are going to tweak
the form display itself before we're done. Go ahead and click on the Form
link on the left side of screen (below the Extra link we just clicked on). You'll
see that it shows the field label and some code in an XML format called
FlexForm that TYPO3 uses for backend form configurations. We want to
limit how large product names are, so we are going to change the size from
48 to 20. In addition, we want to add a checkbox to the field, so that it's easy
to quickly unset the field. Some of our editors have probably already gotten
used to using this for other fields, so we'll make their job easier by adding a
checkbox to the text input. We will also leave trimin the eval field, which
will trim the whitespace from before and after the name. After those two
minor changes, here is our new form configuration code:
<types>input</types>

<gsize>20</size>

<checkbox></checkbox>

<eval>trim</evals>

Now we can save our changes to the name field by clicking on the Update
button. Click on the Map button to map the product name field to the
paragraph tag with the ID of product_name.

[209]

Working with Flexible Content Elements

Product class

We are going to create a class field so that we can change the style for different
product types through CSS. The easiest way to modify the styling of our entire
product display is to modify the class attribute on the main div tag, and we can use
a drop-down to make sure that our editors only have to deal with a list of known
categories or product types. They'll never know that they are dynamically altering
the class attribute for the main display; they'll just know that sometimes the product
image is on the other side or the product name is a different color. Like before, let's
go ahead and create an initial field before we start modifying it with the following
settings and make sure we set it as an Attribute:

° Field: field class
° Attribute
° Title: class

° Element Preset: Selector box

As we have a drop-down, or selector box, we are going to need to modify the form
configuration using FlexForm XML to make it work completely. We will only be
using basic FlexForm tags, but you can see more information about FlexForms in the
TYPO3 Core API (http://typo3.org/documentation/document-library/core-
documentation/doc_core api/current /).

1. First, go click on the Form link on the left side like when we updated the
product name field.

2. Second, we can set the form label to category in the text area labeled Form
label: so that the backend form, at least, will show this as a category selection
for the editors instead of a class selection.

3. Next, we are going to create the drop-down values to replace the default
code in the wizard. We are going to insert one blank option in the drop-
down so it's not required, and then each option after that is numbered with
an index as part of the select array (see the following code snippet). For each
option, there are two pieces: the label and the value. We are just setting up a
normal HTML form select input, so these are the same values that we would
normally be adding by hand. In the first example below, the label Book will
be shown in the drop-down, and the value product_book will be assigned
to the class of the main div if it is chosen. Here is the FlexForm code for our
new drop-down:

<types>select</type>
<items type="array">
<numIndex index="0" type="array">
<numIndex index="0"></numIndex>

[210]

Chapter 8

<numIndex index="1"></numIndex>
</numIndex>
<numIndex index="1" type="array"s>
<numIndex index="0">Book</numIndex>
<numIndex index="1">product book</numIndexs>
</numIndexs>
<numIndex index="2" type="array"s>
<numIndex index="0">CD</numIndex>
<numIndex index="1">product cd</numIndex>
</numIndexs>
<numIndex index="3" type="array"s>
<numIndex index="0">Pet</numIndex>
<numIndex index="1"sproduct pet</numIndexs>
</numIndex>
<numIndex index="4" type="array">
<numIndex index="0">Widget</numIndex>
<numIndex index="1">product widget</numIndex>
</numIndexs>
</items>
<default>0</default>

4. Now we can save the changes to our class field and map it to the main div
with the ID product_ad. Choose ATTRIBUTE "class" (=) in the drop down
before clicking on Set.

Product image
Let's go ahead and create a thumbnail graphic area for the product now. We are
going to restrict the size of the graphic to fit our design in the TypoScript this time,
and we are going to wrap it in the product link if the image is present. We'll start
with basic settings again:

° Field: field image

° Element

° Title: Product Graphic

° Element Preset: Image field, fixed W+H

[211]

Working with Flexible Content Elements

We just set the element preset to be an image with fixed width and height
dimensions, so the wizard will fill in some preliminary TypoScript for us if we

click on Add. We do want to update the default values a little to set maximum
width to 150 pixels and the maximum height to 200 pixels. We can click on the

Data processing link on the sidebar to edit the TypoScript code for our field. The
TemplaVoila data structure can actually handle all kinds of arbitrary TypoScript
code and constants, but we don't always have a reason to play with this. We are just
going to update the TypoScript Code text area with our new dimensions to optimize
for portrait layouts using some basic TypoScript (see the TSref at http://typo3.
org/documentation/document-library/core-documentation/doc_core tsref/
current/ for more information):

10 = IMAGE

10.file.XY = 150,200

10.file.import = uploads/tx templavoila/
10.file.import.current = 1
10.file.import.listNum = 0

10.file.maxW = 150

10.file.minW = 150

10.file.maxH = 200

10.file.minH = 200

Again, we are going to wrap the product page link around our image by adding
our two lines of TypoScript to the Custom stdWrap text area:

if.isTrue.current = 1
typolink.parameter.field = field link

After we've saved our changes, we can map our product graphic to the HTML
image tag in our template.

Product price

Next, we can add a special field for the price with an automatic currency symbol. We
are going to use the US dollar symbol, but we could just as easily use TypoScript to
pull the local value for our currency symbol. For now, we need to create the field:

° Field: field price
° Element

° Title: Price

Sample Data: [Price]

° Element Preset: Plain input field

[212]

Chapter 8

We are going to update the Custom stdWrap configuration again, but we are going
to use it to prepend a currency symbol. Once again, we need to use a TypoScript
conditional to make sure that the price exists with data because we never want a
missing price to result in a currency symbol sitting by itself on a line. We can test
that our price exists and prepend the currency symbol by adding the following to
our Custom stdWrap area:

if.isTrue.current = 1
prepend=TEXT
prepend.value=$

A price should be a relatively short field, so we can limit its size in the form.
In addition, we can add a checkbox for easy unsetting of the field by updating
the form configuration just like the product name that we created earlier:

<types>input</type>
<size>10</size>
<checkbox></checkbox>
<evals>trim</eval>

Finally, we can save our price field and map it to the paragraph tag with the
identifier product_price in our HTML template.

Product description

For our product description, we can use a default configuration for the field. Our
only customization will be selecting Text area for bodytext as the element preset so
that our editors will be inputting multi-line plain text without formatting a rich-text
editor of any kind. We can create our new description field with basic settings:

o

Field: field description

o

Element

° Title: Product Description

o

Sample Data: [Product description]

o

Element Preset: Text area for bodytext

Go ahead and map the description field to the product_description paragraph tag
in the HTML and set the changes.

[213]

Working with Flexible Content Elements

Text for product link

We are almost done, but we need to have text for the link at the bottom of the
product display so the editors can display "Buy now!" or "Click here to learn more".
We can create a basic text field, and our only modifications will be wrapping the
text in the product display link and limiting the input field to 20 characters in the
backend form with the following settings:

° Field: field linktext

° Element

° Title: Link Text

° Sample Data: [Link text]
Element Preset: Plain input field
° Custom stdWrap:

if.isTrue.current = 1
typolink.parameter.field = field link

Form Configuration:
<type>input</type>
<size>20</size>
<evals>trim</eval>

Map the link text field to the paragraph tag on the bottom of our template with the
product link ID.

Product link

Finally, we are ready to create our link field for the main URL that we will be
wrapping around our product name, graphic, and link text at the bottom of the
display. First, we'll create the initial field to save our settings. Instead of Attribute

or Element, we are going to choose Not mapped in the drop-down on the side.

This means that we will not have to map the element to our HTML template, and it
makes sense because we're using TypoScript in the data structure to use this element
anywhere that we need it. We can create our final field with this configuration:

° Field: field 1link

° Not mapped

° Title: URL

° Element Preset: Link field

The link field does not have to be mapped, so we're done. Click on Save as and
create a new content element named Product before saving all of our changes with
the CREATE DS / TO button.

[214]

Chapter 8

Viewing our results

Now, we can go to the Page view in any page in the backend to test out our new
flexible content element. Like before, we can just create a new element, choose the
Product [Template] content element, and we'll see our own very specialized form
based on the data structure we just created:

Template Object:

ar
L

| Product [Template]

Content:

Product Name

E] Awesome Dog

Category

.

| Pet v
Product Graphic
aingeal.jpg =

GIF PMNG IPG IPEG

Choose File | no file selected

Price

s,000.00

Product Description

This our awesome dog that is inexplicably for sale on this website! Aingeal is
known to patrol the yard, sleep in the bed with us, and steal pillows at every
opportunity. Her diet consists of the healthy dog food that we buy her and all

Link Text

Click here for more information

URL

M a4

§

[215]

Working with Flexible Content Elements

Now, all of the layout and design is already taken care of; we can just fill in some
basic text fields and select a picture of any size to get a uniform product display:

Y Awesome Dog
This our
awesome dog
that is
inexplicably for
sale on this
website! Aingeal
is known to patrol
the yard, sleep in
the bed with us,
and steal pillows
at every
opportunity. Her
diet consists of the healthy dog food
that we buy her and all of the unhealthy
treats and "human food" that our guests
bribe her with.

$5,000.00
Click here for more information

Summary

Okay, that's enough flexible content element information for this book, but there's
still more to play around with and learn about FCEs. Like templates, FCEs can even
have preview icons and layout files. For now, though, we've learned what flexible
content elements area, when to use them, and how to build them. We created contact
information FCE, an HTML wrapper, multi-column elements, and a nice product
display element for our example site.

We also took some time to dive into the TemplaVoila data structure wizard more.

It wouldn't have been smart to try to learn all of the complex ways we could modify
the data structure in the earlier chapters while we were still learning how to create
tields. Now that we have more experience, we got to learn how to add wraps and
TypoScript directly into the data structure. We even learned how to modify the
forms to control what our editors see in our content elements. We're becoming
experts now.

Now that we've spent so much time learning TemplaVoila and becoming the
local geniuses in flexible content elements, we're ready to take a step back and
get back to our TypoScript roots. In the next chapter, we're going to learn some
advanced TypoScript tools to help us tailor our site for different browsers and,
most importantly, create a mobile version of our website Like always, take a
break, grab some coffee, and come back ready to get into the little details.

[216]

Creating a Mobile Website

Okay, we've built a handful of templates, updated the backend look, and even
learned how to create flexible content elements for our website. Now we need to start
making sure that our website works everywhere. That means that we need it to work
across all the desktop browsers that we are targeting and even mobile devices. This

is one of the most important chapters, come to think of it. Almost anybody can create
a website these days, but there's a surprisingly smaller amount of websites that adapt
well to browser and operating system changes. There are a handful of reasons that all
sites don't handle this better, but TYPO3 gives us a few advantages when websites
work on mobile devices:

¢ You don't have to create your own checks. In static HTML and even many
CMSs, there's no built-in way to check the browser on the fly. You might be
able to use some CSS hacks, but those are fragile and can be broken by any
browser updates in the future. Even if you do check for the browser, you'll
have to create your own routines to handle the different environments as you
run into them. TYPO3 already has browser-checking functions as part of its
core and we'll be able to access it using basic TypoScript.

¢ You don't need a separate mobile site. It's common to create a whole
"mobile experience" through what basically amounts to a new website. You
might be able to share the content in an ideal world, but you'll still probably
need to create a whole new set of templates just for the mobile devices in
other CMSs. Sometimes, you'll even have to direct everyone to a mobile URL
(like http://m.example.com) to clearly show the separation of your mobile
website and your full website. We're going to use our TypoScript only to
slightly tweak the normal experience for the Web; no new templates and no
special URL are required, but we still use them if we want to.

Creating a Mobile Website

This is the chapter that will show our boss that we're putting in the extra effort,

and it shows that we're solving the same problems as the big companies. Here's the
secret: it's really easy. Like we just saw in the list, TYPO3 is doing most of the work
for us. We're going to let TYPO3 detect the user's environments and run TypoScript
code specific to any browser, device, operating system, and so on that they are using.
We just have to tell it what TypoScript code it should run.

In this chapter, you will:

e Learn how to use conditions in TypoScript
e Learn about all of the different conditions TypoScript can check

e Learn how to send a specific stylesheet to a browser (for example, Microsoft
Internet Explorer)

e Learn how to detect a mobile device

e Create a mobile stylesheet

e Customize TypoScript elements for mobile devices

¢ Add a non-mobile link to the mobile version of our website
e Create a mobile subtemplate in TemplaVoila

e Learn how to redirect to an external mobile site when necessary

Introducing conditions

Before we create the mobile version of our website, we need to learn how to detect
the browsers and devices our users are using to access our site. TypoScript includes
built-in conditions to check user information such as browser, operating system, and
language that we can use to specify which TypoScript code can run in a template. We
are going to look at some of the most common conditions, but you can see the full,
updated list in the TSref (http://typo3.org/documentation/document-library/
core-documentation/doc_core_tsref/current/). These checks are similar to the
PHP methods that programmers use to read server variables, but TypoScript makes
them easier to use without an understanding of programming. In fact, we've already
used conditions in our own template code. We were first introduced to TypoScript
conditions when we added a link to our printable template in Chapter 5 with the
following code:

Normal View Link (to run when print is greater than 0)
[globalVar = GP:print>0]
lib.printLink {
value = Normal page view
typolink {
additionalParams >

[218]

Chapter 9

addQueryString.exclude = print

Return to global processing
[globall

We used the condition above, globalvar, to check that the print variable was
passed along in the URL with the syntax &print=1. If the condition is true, then
the printLink object is modified. At the end, we used the [global] line to end
the conditional section and return to "global" mode. The actual syntax after the
equal sign in the condition, GP:print>0, is less important right now then the
understanding that TYPO3 was able to check the condition against the current
environment and run or skip the enclosed TypoScript based on the results of
that test.

The universal syntax for conditions in TypoScript is pretty basic. All conditions are
declared with square brackets (for example, [browser = msie]), and they can be
combined using AND (&&) and OR (| |) operators. Using an AND operator means that
both values must be true for the condition to be valid, and an or operator means that
the condition is valid if either value is true. For example, we can use the condition
statement below to deliver different TypoScript values to only Netscape browsers
running on Windows:

[browser = netscape] && [system=win]

The AND operator is always read before OrR operators, so we can also combine
conditions to check to for Internet Explorer on any platform or Netscape on
Windows like this:

[browser = msie] || [browser = netscape] && [system = win]
We are going to look at the following conditions in this chapter:

® Dbrowser

e version

° system

® useragent

® language

e JloginUser

® usergroup

e globalVar

e globalString

® userFunc

[219]

Creating a Mobile Website

Browsers
Syntax:

[browser = browserl, browser2,...]

One of the most common conditions to check for in TYPO3 is browsers. The syntax
for the browser condition is [browser = browserl, browser2, ...].Each value
in the condition is compared to the browser name and browser version concatenated
together (for example, msie6 . 5). The condition is only checking to see if the value
exists anywhere in the browser version from the user, so ie and ms will both match
all Internet Explorer browsers. If we type msies, then all Internet Explorer 6.x
browsers will match. We can list as many browser values as we want after the

equal sign, of course, and any match will cause the condition to be true (for example,
[browser = msie6.5, msie7, msie8]). The table below lists the browser names
that are available up through TYPO3 4.3.x.

Browser values Browsers

msie Microsoft Internet Explorer
netscape Netscape Communicator
lynx Lynx

opera Opera

ibrowse IBrowse (Amiga browser)

You'll probably notice that many of the options above are outdated, obscure, or
even dead browsers and none of them are mobile browsers. Luckily, some TYPO3
developers noticed the same thing and overhauled the entire system for version
4.4 and later updates. If you are running TYPO3 4.4 or later, you can use any of
the browser keys from the following updated table. These don't include mobile
browsers, yet, but that should come in an update soon, and we can still use these
values for fixing other cross-browser development problems:

TYPO3 4.4 Browser values

msie Microsoft Internet Explorer
firefox Firefox

webkit WebKit

opera Opera

netscape Netscape

kongqueror Konqueror

gecko Gecko

chrome Chrome

[220]

Chapter 9

TYPO3 4.4

Browser values

safari
seamonkey
lynx
amaya
omniweb
camino
flock

aol

Safari
SeaMonkey
Lynx

Amaya
OmniWeb
Camino
Flock

AOL Browser

Versions
Syntax:

[version = valuel]

We can also check for the version of the browser using the version condition.
Unlike the browser condition, the version condition checks for pure mathematical
value using =, >, and < operators. All of the following examples would be true for

Microsoft Internet Explorer 6.5:

[version = 6]
[version = =6.5]
[version = >5]
[

version = <7]

Version operators

[nothing]

The value must be part of the beginning of the
version as a regular string (for example "6" or
"6.5" matches "6.5").

The value must match exactly (for example, "6"
does not match "6.5").

The version number must be greater than the
value (for example, "6.5" is greater than "5").

The version number must be less than the value
(for example, "6.5" is less than "7").

Operating systems

Syntax:

[system = systeml, system2, ...]

[221]

Creating a Mobile Website

We can also check for the user's operating system. The following table is directly
from the TSref, and you'll notice that many of the specific operating systems may
be outdated. Like the browser condition, TypoScript is only looking for a match for
the value somewhere in the key. We can simply use [system = win] to match all
Windows operating systems.

System values

linux Linux

unix sgi SGI / IRIX
unix_ sun SunOS

unix hp HP-UX

mac Macintosh
win311 Windows 3.11
winNT Windows NT
win9s Windows 95
win9s Windows 98
amiga Amiga

User agents
Syntax:

[useragent= agent]

The useragent condition can be used as a direct match on the user agent string that
the server passes along during the session. Every browser sends a user agent string
showing all of the information about the operating system and browser version
when it accesses a website. For example, the iPhone 4 sends out a user agent string
like this:

Mozilla/5.0 (iPhone; U; CPU iPhone OS 4 0 like Mac 0OS X; en-us)
AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5 Mobile/8A293
Safari/6531.22.7

In our other condition variables, TYPO3 has parsed this user agent itself to provide

us with easy system and version selections. Unfortunately, the other solutions don't
have mobile devices yet. If you are trying to work with mobile phones or other
devices with very specific user agent, this is the fastest and easiest way to target them.
User agent information is also the easiest identification information to find online by
searching for something like "iPhone user agent". As user agents tend to be long and
overly-specific, we can use a * at the beginning and/or the end as a wildcard:

° [useragent = *iPhone*]

[222]

Chapter 9

We will use this variable in a moment to check for mobile operating systems, but
we're going to look at some other helpful conditions first.

Language
Syntax:

[language = langl, lang2, ...]

The user's browser will also tell us what language the user prefers or will accept, and
we can check against this with the 1anguage variable. The values must either be a
straight match, or we can wrap our values in wildcards like the useragent variable
(for example, *en-us*).

Logged in users
Syntax:

[loginUser = fe users-uid, fe users-uid, ...]
[usergroup = groupl-uid, group2-uid, ...]

If a user is logged in, we can evaluate against their user group or identification
number as shown in the following examples:

[loginUser = 7,13,19]
[usergroup = 5,12,92]

Of course, if a user is not logged in, then they will have no user identification or
current group associated with them; only a wildcard (*) would evaluate as true
for loginUser or usergroup in that case.

Global variables and strings
Syntax:

[globalvVar = varl=value, var2<value2, var3>value3, ...]
[globalString = varl=value, var2= *value2, var3= *value3d*,...]

Like we saw with the print variable, TypoScript can handle global variables or
strings that are passed in either through the session information or the URL. From
our printable example before, the following condition will match a URL that includes
&print=1:

[globalVar = GP:print > 0]

[223]

Creating a Mobile Website

User function
Syntax:

[userFunc = function (parameter)]

Finally, we can create our own user functions for conditions with some PHP.
We create the function, we decide what it checks, and we decide when it returns
a true or false value. For example, we could add code similar to the following to
our localconf .php to start checking mobile devices:

function mobile check ($cmd) {
switch ($cmd) {
case "appleDevices":

if (strstr($_SERVER['HTTP_USER AGENT'], 'iPhone') || strstr($_
SERVER ['HTTP_USER_AGENT'], 'iPod') || strstr($_SERVER['HTTP USER_
AGENT'], 'iPad')) {

return true;

}

break;
case "androidDevices":

break;

}
Then, we could check for Apple mobile devices with the following condition:

[userFunc = mobile check (appleDevices)]

This relies on PHP knowledge, so we aren't going to be using it in this chapter to
detect special circumstances like mobile browsers. If you are comfortable with
some PHP coding, I recommend building your own user function to test for the
most common mobile devices as an exercise. The userFunc condition can be
very powerful.

Testing browser compatibility

Using our new information about conditions, we can target browsers through our
TypoScript more precisely. This is probably the most common use for conditions,
after all. It's great to complain about how much a certain browser doesn't support the
cool trick we just learned, but our boss and our users really don't care. At the end of
the day, our site has to be usable on the visitor's machine, and that may mean that
we have to detect the browser. The good news is that this is a very elegant solution
to CSS or image problems. Instead of using some of the usual CSS hacks like special

[224]

Chapter 9

CSS commenting structure that won't we be read correctly by Internet Explorer,
we can actually detect the browser at the beginning and only send them the
corrected stylesheet.

We can add browser-specific stylesheets using a browser condition and our
headerData properties. We can create one stylesheet, common_ie.css, with all of our
Internet Explorer fixes that is only served to Microsoft Internet Explorer browsers.

At the same time we can create a final stylesheet, common . css, with code that could
potentially break Internet Explorer (like text -shadow: gray 3px 3px 5px;) thatis
served to everyone else. To send different stylesheets to the different browsers, we can
add this to our TypoScript template:

page.headerData.30 = TEXT
[browser = msiel

page.headerData.30.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/common ie.css" />

[else]

page.headerData.30.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/common.css" />

[end]

We can also use this same structure to modify our TypoScript objects. So, if we
wanted to use a great PNG logo with transparency on our website, we don't have
to worry about older versions of Microsoft Internet Explorer anymore. We can use
a conditional to send a GIF image to Internet Explorer 5.5 and 6, and still send our
original PNG to the rest of our users:

lib.logo = IMAGE

lib.logo.stdWrap.wrap = |
[browser = msie] &&[version= <7]

lib.logo.file = fileadmin/templates/logo for ie.gif

[else]

lib.logo.file = fileadmin/templates/logo.png

[end]

Using conditional statements means that we no longer have to use undocumented
CSS to get around or be worried about "quirks mode" in a browser breaking our
carefully crafted template. Instead of sending data that we don't expect the troubling
browser to parse, we're only sending our browser-specific data to the browsers that
can handle it correctly.

[225]

Creating a Mobile Website

Creating a mobile version of your website

Now we can get a little more complex and create something that your boss has
probably been asking about for a year already: a mobile version of our site. Ideally,
of course, our site might already look okay in a modern mobile device, but that's not
always the case. In our example site, we are loading some unnecessary graphics, our
two column systems do not scale well for readability, and our default fluid layout
breaks pretty easily. You can see what our example looks like on an iPhone as shown
in the following screenshot:

il Carrier 5 2:37 PM =P

LU=

Example

m W W Sapharnbar 20, 3040 13342
MboulUs [mlact

An Awesone FronT Paze

Jeremy Greenawalt is a ful-time developer and part-fime writer
with close to ten yaars professional expeience n websie and
application craation. His frst kove wes witng, but pragramming
ouickly folowed.

Ha is a co-fourder af Vintape &6 whene he helps develop websites, |

online shapping carts, web apps, iPhoneiCS apps, and anything

else his friends can think up. Jeremy i alse the web dinector of a large ministry,
Generals Intermational.

Jeremy |res near Dallas, Texas with his wife, Rabekah, and their ever-yauthful puppy,
sAingaal. He laves spending time at home reading, playing around on the piana, ar just
rebming an the cauch with his family.

fou can read mone from Jersmy at pocketrevolutionany.com, ard you can fallkaw him
on Twitter at @jgreenawalt.

B e s

Our website is still functional, but we can make it truly optimized with just a few
extra steps.

[226]

Chapter 9

Detecting a mobile device

The first thing that we need to do to create our mobile site is decide how we are
going to detect mobile users. Currently, there are no conditions for this in TYPO3
because the mobile condition that was built into TypoScript is outdated. There are
developers working on updated solutions right now, and they should be in a future
version of TYPO3. We could create a custom user function, but we'd have to know
enough PHP to pull it off skillfully without slowing down or breaking our current
site. For now, our best option is using the useragent condition in TypoScript. The
good thing about the useragent condition is that it is pulled directly from the client's
information, so it can never be outdated. On top of that, we can use * as a wildcard
before and after the key that we are looking for, so we do not have to be overly
explicit with our syntax. We can detect any iPhone (no matter what the hardware
or software version) with one simple line:

[useragent = *iPhone*]

Now we just need to find out what all of the user agents that we need are. The
available mobile devices are changing so rapidly now that there's no point in listing
them all in a book. Instead, I've gathered together some of the most common user
agents for our example. If we were going live with this site today, we could use an
analytics tools such as Google Analytics (http://www.google.com/analytics/) to
find out what is most popular on our site and search for the user agents through search
engines and forums. For our example, we'll go with the most popular keywords:

e iPhones have the word ipPhone in the user agent.

e iPod Touches have the word ipod in the user agent.

e Mobile devices using the Android operating system have the word Android
in the user agent.

e Mobile devices that use the mobile version of the Opera browser have the
words Opera Mini in the user agent.

e BlackBerry phones have the word BlackBerry in the user agent.

TypoScript doesn't allow us to combine all of these keywords into one condition
check, but we can list each user agent check on the same line:

[useragent = *iPhone*] || [useragent = *iPod*] || [useragent =
Android] | | [useragent = *Opera Mini*] || [useragent = *BlackBerry*]

[227]

Creating a Mobile Website

Creating a mobile stylesheet

Okay, we've figured out how to detect our users' mobile devices, so now we need to
start working with them. The first thing we can do is serving up a mobile stylesheet.
Of course, there are CSS tricks to serving up a mobile stylesheet, but we don't need to
use them because we've already done the hard part of detection. We just need to add
a headerData object into our template after our mobile browser condition:

page.headerData.30 = TEXT

page.headerData.30.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/mobile.css" />

Now we just need to create that stylesheet for mobile devices in our templates
directory. Go ahead and create a blank file called mobile.css inside of the
fileadmin/templates/ directory right now, and open it up in a text editor so we
can start adding some new rules. Remember, we're adding this into the header after
the main stylesheet, so we only need to update the values we care about. We're just
going to use our mobile stylesheet to tweak a few things:

e We need to resize our text; nobody wants to read 10px or 12px text on a tiny
screen. We don't need to make it huge, but 24px text should be nice and easy
to read from an arm's length distance.

e We are going to switch to a text-based menu as well, so we need to update
the font sizes and margins for the menus.

e We are going to use the print link at the bottom as a link back to the full
version of the website. We need to make sure it is centered and easy to find.

e Finally, we really don't need to pull off our two-column designs on a little
screen. So, we are going to turn off the floats and resize all of our columns to
100%. We need to reset the product advertisements at the same time, to keep
everything clean and legible across mobile devices.

After taking all of that into account, we can update our mobile.css stylesheet with
the following CSS code:

/* Resize all fonts for mobile devices */
p, ul, div, h2, h3, h4, h5, hée {
font-size: 24px;
line-height: 30px;
}
/* Fix menu-area padding for text-based menu */
ul#menu-area {
padding-bottom: 20px;
}

/* Resize menu items for mobile devices */

[228]

Chapter 9

li.menu-item a {
font-size: 30px;
line-height: 36px;
margin-right: 10px;

}

/* Resize footer link for mobile devices */

#print link {
padding-top: 20px;
font-size: 30px;
line-height: 36px;
text-align: center;

}

/* Reset all columns and product ads to 100% width and single-column
on mobile devices */

#nested_column_ 1, #nested column_ 2, #product_ad, #product_ad div.
product_text {

float: none;
width: 100%;

Customizing our TypoScript objects

Finally, we can update some of our TypoScript objects for mobile devices. The

first thing we need to do is getting rid of unnecessary data, so we'll go after the
timestamp. We definitely don't need to waste precious space in the browser restating
the time on a mobile device that is already showing it in the status bar. All we need
to do is wipe out the object with a simple line of TypoScript:

lib.timestamp >

The next area that we can clean up is the menu. The graphic menu items we created
earlier are not translating well to the small screen, and we need to make our page
load as fast as possible over slower data networks. We are going to use text-based
menus to solve both problems. We can replace our graphic menu items with a
text-based system simply by re-declaring the main menu object inside of our
conditional statement:

lib.mainMenu = HMENU
lib.mainMenu {
entryLevel = 0
wrap = <ul id="menu-area"s|
1 = TMENU
1.NO.allWrap = <li class="menu-item">|

[229]

Creating a Mobile Website

Finally, our last step will be to replace the current logo with a smaller graphic:

lib.logo.file = fileadmin/templates/logo mobile.png

Bringing it all together
If we bring together all of our TypoScript modifications, we can add them to the
main template setup just like this:

[useragent = *iPhone*] || [useragent = *iPod*] || [useragent =
Android] | | [useragent = *Opera Mini*] || [useragent = *BlackBerry*]
page.headerData.30 = TEXT

page.headerData.30.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/css/mobile.css" />

lib.timestamp >

lib.mainMenu >

lib.mainMenu = HMENU
lib.mainMenu {
entryLevel = 0
wrap = <ul id="menu-area"s>|
1 = TMENU
1.NO.allWrap = <li class="menu-item">|

lib.logo.file = fileadmin/templates/logo _mobile.png

[end]

We need to to place [end] or [globall at the bottom of our conditional statements
so TYPO3 knows when the condition is done and the rest of the template can

be parsed. With all of our changes now, we have a faster, more functional

mobile website:

[230]

Chapter 9

il Carrier = 5:13 PM ==

Example.com

Prooucts Conment ELements Visions Asout Us Cowtact

A AweEsome Front Pace

Jeremy Greenawalt is a full-time developer and
part-time writer with close to ten years
professional experience in website and
application creation. His first love was writing,
but programming quickly followed.

Porieas by Rebskah
Gt

Ha is a co-founder of Vintage 56 where he helps develop
wabsites, online shopping cars, web apps, iPhone/i0S apps,
and anything else his friends can think up. Jeremy Is also the
wab director of a large ministry, Generals Internaticnal.

Jeramy lives near Dallas, Texas with his wife, Rebekah, and
their evar-youthful puppy. Alingeal. He loves spending time at

home reading, playing around on the piano, or just relaxing on
dlos, s icle sadbls kb foonilia

Adding a non-mobile link

Creating a mobile website is great, but we should always offer an alternative link to
the full (non-mobile) version of our website. This is most important if we've excluded
features from the mobile version, but sometimes mobile users just want to see the
full version of the website that they're used to from their laptop or desktop browsers.
We can do this like when we handled the printable version of our template by using
a global variable. For the purpose of our example site, we can use a global variable
named full.If full is set to 1 as a GET or POST variable, then we won't show the
mobile version changes to the website. To make sure that the variable is appended
consistently to the link after it is set, we will declare it using config.linkVars:

config.linkVars = full

[231]

Creating a Mobile Website

Unfortunately, TypoScript does not recognize nested conditions or nested
conditional statements. We can't wrap parentheses around all of our useragent
conditions, and AND always takes precedence over oOr in TypoScript. We also can't
nest the mobile conditional section inside of a condition for our new variable, and
the entire condition check must be entered without line breaks. We'll need to add a
global variable check to each useragent condition:

[useragent = *iPhone*] && [globalVar = GP:full<l] ||
[useragent = *iPod*] && [globalVar = GP:full<l] ||
[useragent = *Android*] && [globalVar = GP:full<l] ||
[useragent = *Opera Mini*] && [globalVar = GP:full<l] ||
[useragent = *BlackBerry*] && [globalVar = GP:full<1l]

If we were using a programming language that used parentheses for AND/0OR
precedence, this is what our line would represent:

([useragent = *iPhone*] || [useragent = *iPod*] ||
[useragent = *Android*] || [useragent = *Opera Minix*] ||
[useragent = *BlackBerry*]) && [globalVar = GP:full<1]

This may seem a little complex at first, but remember that we are stretching a
scripting non-programming language with our logical conditions at this point.

If we needed to do this repeatedly, we might need to learn enough PHP to start
creating our own extensions or create a special user function in localconf .php.
Luckily for us, there are developers working on updates to TYPO3's mobile
detection and creating extensions right now. Until those changes make it into the
core, we can still do everything we need with one ugly line that we don't have to
look at more than once. The trade-off is we don't have to learn PHP today or wait
for the next TYPO3 version.

Now that we've updated our logic to check for this new variable, we need to create
a link for our mobile users at the bottom of the page. Thankfully, we've already
done this once for the printable templates and we can reuse our code with a little
bit for tweaking:

[globalVar = GP:full<1]
lib.printLink {

value = Full Version

typolink {
parameter.data = page:uid
addQueryString = 1
addQueryString.exclude = id
additionalParams = &full=1

}

[globall

[232]

Chapter 9

You'll notice that we are still using the same TypoScript object, 1ib.printLink, as
we used for the printable link. This is intentional so that we can actually replace the
printable version link with the non-mobile version link on mobile devices. The 1ib.
printLink object is already mapped in our templates, so we will automatically get
our new link at the bottom of every page when somebody is viewing the mobile
version. Of course, this means that they will not have a printable version link in the
mobile view, but that is really not an issue for mobile users. To finish up, we can
combine our different TypoScript declarations into one complete mobile section in
our template setup:

config.linkVars = full

[useragent = *iPhone*] && [globalVar = GP:full<l] || [useragent =
iPod] && [globalVar = GP:full<l] || [useragent = *Android*] &&
[globalVar = GP:full<l] || [useragent = *Opera Mini*] && [globalVar =
GP:full<l] || [useragent = *BlackBerry*] && [globalVar = GP:full<1l]

page.headerData.30 = TEXT

page.headerData.30.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/css/mobile.css" />

lib.timestamp >
lib.mainMenu >

lib.mainMenu = HMENU
lib.mainMenu {

entryLevel = 0

wrap = <ul id="menu-area"s>|

1 = TMENU

1.NO.allWrap = <li class="menu-item">|

lib.logo.file = fileadmin/templates/logo mobile.png

lib.printLink {
value = Full Version
typolink {
parameter.data = page:uid
addQueryString = 1
addQueryString.exclude = id
additionalParams = &full=1

[end]

[233]

Creating a Mobile Website

Now we have a nice link back to the full version of our website on mobile devices:

.all Carrier = 5:26 PM (=]
Example.com
Prooucts Content ELements Visions Aaout Us CowtacT

Jeremy Greenawalt is a full-time developer and
part-time writer with close to ten years
professional experience in wabsite and
application creation. His first love was writing,
but programming quickly followed.

He is a co-founder of Vintage 56 where he helps devalop
websites, online shopping carts, web apps, iPhone/i0S apps,
and anything else his friends can think up. Jereamy s also the
web director of a large ministry, Generals Internaticnal.

Jeremy lives near Dallas, Texas with his wife, Rebekah, and
their evar-youthful puppy, Alngeal. He loves spending time at
home reading, playing around on the plano, or just relaxing on
the couch with his family.

You can read mare from Jeremy at pocketrevelutionary.com,
and you can follow him on Twitter at @jgreenawalt.

Full Version

Creating a mobile subtemplate

We've updated the CSS and TypoScript objects for our mobile version, but
sometimes we might need to change the actual HTML for our mobile website.
Using TemplaVoila, we will create a new template object for mobile devices just
like we created a subtemplate for the printable version of our main template.

Adding a new option to our subtemplate
pages

First, we need to setup a "rendering type" for our mobile template objects to show
up in the TemplaVoila editing pages for subtemplates. In Chapter 5, we saw that
TemplaVoila let us choose "Printer friendly" as a type of rendering when we
created our printable template. Out of the box, that is the only type of rendering
that TemplaVoila lets us choose, but we can update our TYPO3 site to show any
rendering types that we want to create. To add a mobile type, we need to update
the TSconfig on our main page.

[234]

Chapter 9

In Chapter 7, we updated our rich text editor in the TSconfig, and we're going to add
a line of TypoScript for our new mobile rendering in the same place. In the page tree,
right-click on the icon for the root page and select Edit just like we did to get to the
page properties. Click on the Options tab to see the TSconfig for our main page.
Add this line to the bottom of the TSconfig;:

TCEFORM. tx templavoila tmplobj.rendertype.addItems.mobile = Mobile
version

That line of TypoScript will add a new item, mobile, to the render types available for
TemplaVoila subtemplates and show it in the drop down as Mobile version. After
you have added that to your TSconfig as shown in the following screenshot, clear the
cache in TYPO3:

Edit Page "Awesome Site"

General Metadata Resources Options Access Extended

TSconfig:

SMURTAYrTeEcuTasses & 4L " s
classesParagraph = blue, red
classesCharacter = blue, red
classesAnchor = blue, red
1 ~
classes {
blue {
name = Blue Text
value = color: blue;

1
red {
name = Red Text
value = color: red;
}

>

< |[TCEFORM. tx_templavoila_tmplobj.rendertype.addIitems.mobile = Mobile wersion v l=>

[235]

Creating a Mobile Website

Creating a new TemplaVoila template for
mobile devices

Now we can create a new template object for our mobile version. Just like the
printable template in Chapter 5, we're going to create this as a subtemplate to the
main template.

1. Create a new HTML file for the mobile versions. We can copy our original
HTML file, template.html, in the fileadmin/templates/ directory and
just make a few modifications. First, name the new file mobile template.
html so we can identify it quickly on the server. Next, remove the div tags
for the timestamp and the banner. We don't need either of these for our
mobile version. Your mobile HTML template should look like this:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8" />
</heads>
<body>
<div id="logo"></div>
<ul id="menu-area"><li class="menu-item">Menu
Item #l
<ul id="submenu-area"><li class="submenu-item">Submenu Item #l
<div id="content">This is our content</divs>
<div id="print_link"></div>
</body>
</html>

2. Next, we need to create a new template object in the TemplaVoila module.
Under the Main Template in the TemplaVoila module, click Create new
Template Object:

[236]

Chapter 9

@ Right Sidebar Template [Template]y

template objects:
Mapping status:

Local Processing XML:

@ Two Sidebar Template [Template] /*
[Mo icon] File reference:

objects:
Mapping status:

Local Processing XML:

;‘;&w Template Ob_jeE::j

File reference:
The following pages in the root line

contain data structures and

The following pages in the root line
contain data structures and template

fileadmin/templates/template_sidebar.html

@ Mapping is up to date.

Update mapping

fileadmin/templates/template_sidebar.html

eMapping is up to date.

Update mapping

Now we just need to fill in the form for our new template object. The title

of our new template is Mobile Main Template [Template], and we need
choose Main Template [Template] from the drop-down that is labeled Make
this a sub-template of:. Choose the HTML file we just created, fileadmin/
templates/mobile_template.html, as the file reference. Finally, we can
select Mobile version as our rendering type. If your form looks like
the following screenshot, save your changes and return to the main

TemplaVoila screen.

"Storage Folder"

Title:

Edit TemplaVoild Template Object "Mobile Main Template [Template..." on page

Mobile Main Template [Template]

Make this a sub-template of:

| Main Template [Template] 'y i

File reference:

fileadmin/templates/mobile_template.html

BELayout Template File:

Language:
-
-

Select a type of rendering:

| Mobile version -3]

Creating a Mobile Website

4. Click Update mapping next to our new template object, and map our new
template. Go ahead and map the root, main content area, both menus, logo,
and printable link fields to your HTML.

Adding our subtemplate to the TypoScript

template setup

Finally, we can add the subtemplate to our TypoScript template. The printable
version that we created in Chapter 5 was automatically chosen, but we need to add
one line of TypoScript to our template setup to choose this subtemplate inside our
condition for mobile devices:

[useragent = *iPhone*] && [globalVar = GP:full<l] || [useragent =
iPod] && [globalVar = GP:full<l] || [useragent = *Android*] &&
[globalVar = GP:full<l] || [useragent = *Opera Mini*] && [globalVar =
GP:full<l] || [useragent = *BlackBerry*] && [globalVar = GP:full<1l]

page.l0.childTemplate = mobile

page.headerData.30 = TEXT
page.headerData.30.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/css/mobile.css" />

The rest of our mobile code from above goes here

Remember that the TemplaVoila wizard added the following lines to our TypoScript
setup automatically in Chapter 1 when we setup our site:

page.10 = USER
page.l0.userFunc = tx templavoila pil->main page

As we can see from those two lines, page . 10 represents the user function that pulls
in our TemplaVoila templates and their mappings. Now, we are assigning the mobile
template as a child template (also known as a subtemplate) to render our pages in
the frontend with the childTemplate property if the mobile conditions are met. This
means that for any template object we use, it will look for a subtemplate with the
mobile rendering type. If it cannot find a subtemplate with the mobile rendering
type (like our newsletter), then TYPO3 will simply show the normal template with
our CSS and TypoScript changes.

If we refresh the cache in TYPO3, we can see our front page is using the simpler
TemplaVoila template with no top banner:

[238]

Chapter 9

il Carrier = 10:49 PM (=]

Example.com

Prooucts Conment Eements Visions Asour Us Commact

An Awesome Front Pace

Jeremy Greenawalt is a full-time developer and

part-time writer with close to ten years

professional experlence in website and

application creation. His first love was writing, Prve o
but programming quickly followed. [—

He is a co-founder of Vintage 56 where he helps develop
websites, online shopping carts, web apps, IPhoned0S apps,
and anything else his friends can think up. Jeremy |8 also the
web director of a large ministry, Generals International.

Jeremy lives near Dallas, Texas with his wife, Rebekah, and
their ever-youthful puppy, Alngeal. He loves spending time at
home reading, playing around on the plano, or just relaxing on
the couch with his family.

You can read more from Jeremy at pocketrevolutionary.com,
and you can follow him on Twitter at @jgreenawalt.

Full Version

MmO

Redirecting to an external mobile site

Our TypoScript, TemplaVoila, and CSS modifications will work for most websites,
but sometimes we need to work with a special mobile site outside of the main TYPO3
installation. Often, companies will have a special website with a unique URL (for
example, http://m.example.com) built in one of the newest mobile frameworks
like Sencha Touch (http://www.sencha.com/products/touch/) or jQuery Mobile
(http://jquerymobile.com/) thatis optimized for Apple and Android devices.
Luckily, we can make use of TypoScript to redirect visitors to a different URL and
use the same condition statements; we just used to make sure everybody is covered.

We can use the config.additionalHeaders property in TypoScript to add
information into the HTTP headers of our website. The HTTP headers can be used
for different operations like controlling client-side caching and languages, but all we
care about is the Location field in the headers. If we add header information with

a new location (URL), then visitors will be automatically redirected to the new URL.
This is the same technique that many websites use for missing or blocked pages,

but we are going to use it to send people to http://m.example. com:

config.additionalHeaders = Location: http://m.example.com

[239]

Creating a Mobile Website

Now, we still have a pretty good mobile device for many devices such as BlackBerry
phones and Opera Mini, so we don't need to redirect everybody. We can setup a
special condition for iPhones, iPods, and Android devices to go to the mobile website
that our developers built with jQuery Mobile, and we can send other mobile devices
to our current mobile version of the TYPO3 site:

[useragent = *iPhone*] && [globalVar = GP:full<l] || [useragent =
iPod] && [globalVar = GP:full<l] || [useragent = *Android*] &&
[globalVar = GP:full<1]

config.additionalHeaders = Location: http://m.example.com
[end]
[useragent = *Opera Mini*] && [globalVar = GP:full<1l] || [useragent =

BlackBerry] && [globalVar = GP:full<1]
page.l1l0.childTemplate = mobile

page.headerData.30 = TEXT

page.headerData.30.value = <link rel="stylesheet" type="text/css"
href="fileadmin/templates/css/mobile.css" />

The rest of our mobile code from above goes here

[end]

Summary

Congratulations, we've learned what we need to do to make a better mobile

version of our website, but, as importantly, we've learned how to use conditions in
TypoScript to optimize our template for the users' needs. We covered the big two
issues, browser dependency and mobile websites, but there is obviously a lot more
we could do with these conditionals. As we saw in the first section, TypoScript has
conditions for everything from the user's operating system to the day of the week
on the server. This means that we can go even further with our customizations if we
wanted and post special code every Friday, or we could send a different template to
users who are coming from an internal IP address. On top of that, we can always use
global variables and user functions to add our own special conditions. How do we
do use this going forward?

[240]

Chapter 9

First, we can send browser-specific TypoScript code with just a basic condition
statement. We're not relying on CSS hacks, undocumented JavaScript, or "quirks
mode" to make sure that our site renders correctly. We only have to send the
stylesheets or TypoScript values that we want to send to each browser. If we have
a specific stylesheet for Microsoft Internet Explorer, we can send it using a browser
check. If our fancy menu breaks in Firefox 2.6, we can send a different menu to
that browser. Most importantly, we don't have to know PHP or complex HTTP
information to make conditional statements; it's just TypoScript.

Second, we can create a mobile site without building a whole new website.
Everything we did to create a mobile site added up to twenty four lines of
TypoScript, and half of that was updating the menu and logo objects. Of course,
we also saw how we can create custom templates and redirect to mobile websites
as well. Many site creators' aren't creating custom mobile versions because it will
be too hard. By using TYPO3, that's not a problem for us. We can rely on the hard
work already invested by the core developers to make our jobs easier.

Finally, we can think up our own ways to use conditions in our websites. Most of the
time, it's too complex to know simple things about the operating environment unless
we're used to hand coding PHP. Using conditional statements, we already have a
whole toolbox ready to go. If we're building an internal website with logins and user
groups, we can swap stylesheets and change the look and feel any time a user in our
"Senior Executives" group logs in. Our boss will be impressed enough that we have
a mobile website, but he'll/she'll be more than impressed when he/she logs in to the
frontend site and sees a template specially tweaked for the executives' needs.

In the next chapter, we're going to learn about the next jump we can make to take
our website experience worldwide: internationalization and localization. Those are
some of the biggest buzzwords in web development along with "browser-specific"
and "mobile", and we'll learn all about them in a minute. Just like the mobile website,
we're going to see that TYPO3 has done most of the job for us already. All we have to
do is use the tools its already provided. So, go show the mobile website to your boss
real quick on his/her iPhone, grab some coffee, and come back ready to take our
little example site multilingual.

[241]

10

Going International

We've optimized our templates, and we've made our site accessible to mobile devices
all over the world. How big can we really grow, if only English-speaking users can
use our site? We've opened ourselves up to close to a billion mobile users, but we
need to start speaking their language if we want our website to be truly international.
As more groups worldwide start using the Web regularly, internationalization and
localization are no longer just nice features to have. We all know that our boss will
not be happy in a few years if we say that we'll have to rebuild the entire website to
enter a new country. Luckily, internationalization and localization are two ideas that
are built into the core of TYPO3 from the beginning, and TemplaVoila only makes
them easier to use. In fact, the ease of localization is one of the great strengths of
TYPO3 when compared to other CMSs, and we're going to see how simple it really

is in this chapter.

In this chapter, you will:

e Learn about the difference between internationalization and localization
¢ Add a new language to the website and start translating individual pages
e Learn how to hide pages that you don't want to translate

e Learn how to translate content elements

e Create a frontend menu for visitors to choose their own language

e Learn how to localize dynamic elements like the logo

e Create a special TemplaVoila template for a new language

Going International

Introduction to internationalization and
localization

The first thing we need to clarify is our definitions of internationalization and
localization. Not everybody agrees on the proper usage of the terms, and some
developers still incorrectly use them interchangeably. For the purpose of TYPO3
development, though, they do have very specific and subtly different meanings.

Localization is the adaptation of an application or website to a specific audience

or locale. It is sometimes used as a synonym for translation, but localization can

be more complex than just changing the language. Full localization often involves
adapting date and time formats, currency, graphics, legal requirements, and any
other content that may be unique to a specific market. TYPO3 gives us built-in ways
to localize our content with different languages, currencies, date formats, and more.

In documentation and forums, localization is often shortened to 110n
s because there are 10 letters between the 1 and the n.

Internationalization is the high-level design of an application or website to allow
easy localization. Typically this involves a lot of work for the developers and site
creators if they aren't using TYPO3. The entire system must be able to handle
Unicode characters so that it can handle Latin characters along with Chinese,
Japanese, Cyrillic, and so on. Content such as article text, titles, menus, and graphics
need to be separated from the actual structure of the website. The display of
currencies, time formats, and other localized contents needs to be handled separately
through libraries or modules. The layout has to be flexible enough to adapt to
different lengths of words. There are even more considerations, and they usually
have to be designed into the application from the very beginning. Luckily for us,
internationalization has already been built into TYPO3 and is still being improved.
TYPO3 handles the internationalization, and we are responsible for the localization.

Internationalization can also be called globalization or written as
s i18n in documentation and online forums.

[244]

Chapter 10

Adding localization to a website

Now that we understand the overall concepts of internationalization and
localization, it's time to start making our website ready for the rest of the world.
The good news is that internationalization is already built into TYPO3 for the most
part. All we need to do is start the localization process by adding new locales to
our website. We're going to go through each step of this process, but the overall
workflow in TYPO3 is pretty basic:

1. Add an alternative language to the website.
Add our new language to the pages we want to translate.

Add translations to the content already existing in our default language.

Add a language menu so that frontend visitors can select their own language.

ARSI

Localize any logos or graphics.

Of course, there are more things that we can tweak and play with, but that is the
basic workflow that can be used to add languages and localization features to
any modern TYPO3 site. We're going to start by adding the two languages of my
ancestors: Irish and German. I'm not really fluent in either language, and I don't
expect you to read them; we'll be using filler text to make the examples easier

to follow.

We are going to use one page tree to hold multiple translations, but
. another method of TYPO3 localization is called the "two-tree" concept
% where a completely separate page tree is created for each locale. This
L—is helpful if the pages or content are completely different, and you can
read more about it at http://typo3.org/documentation/tips-
tricks/multi-language-sites-in-typo3/.

[245]

Going International

Adding a website language

Our first step in any translation project is to add a new alternative language to our
website. TYPO3 is already aware of almost any language we want to use through
the static_info_tables extension (which is installed by default), so it will already
have flags and ISO 3166 country codes available (see http://www.iso.org/iso/
country_codes.htm for more information on country codes). We just need to tell it
we want to start using one of the optional languages:

1. In the backend of TYPO3, choose the website object on the sidebar in List
view and select the root in the page tree. Then, click on the Create new
record button (circled in the following screenshot).

& admin logout L) W & ﬂlk o

actH
v WEB %) Path: §¥ Awesome Site [0]
) Page
) ¥ Awesome Site
View ’ ¥ Pa 1) B
@ vD Awesome Site S— .
List ----- [Products [# Pagetitle:
@ Info ¥-[] Content Elements
A acoms | [7] Headers [] Awesome Site
ﬁ mEEEE D Text
Functions | [7] Bulletlists » Backend user (2) 1 &
ﬂ\lersioning """ % Tables
k|| Forms
: »
@ Tamplata DD S Backend usergroup (5) @
A s | | - 8 oo S —
c » Territol Fral +
B TemplaVoila | 0 7 £l Login - protected page —
----- D Menu/Sitemap
»FILE 0 D Frames and spacing P > Countries (241)
----- USERS
» USER TOOLS D Visions » Country subdivisions (489)
ADMINTOOLS | | S s
v » 0 Contac
l% User Admin
(1 Ext Manager » cCurrences (163)
[DB check [Extended view
[} Configuration] Show clipboard
[2] Install [Localization view
Log
Reports .
(5 Scheduler Search String: I; This page .] Search
D Show records:

[246]

Chapter 10

2. Under System Records, click on the Website Language button (circled in the
following screenshot) to create a new TYPO3 language record.

v WEB
Page
@ View
List
@ Info
Y Access
Functions
ﬁ Versioning
uz| Template
T Recycler
B TemplaVoila
» FILE
» USER TOOLS
v ADMIN TOOLS
l% User Admin
) Ext Manager
[DB check

[=] Install
Log
Reports
f\;'d Scheduler

» HELP

[} Configuration

V' Awesome Site

w-[] Awesome Site

D Products

"---D Content Elements
----- D Headers

..... 2] Login - protected page
----- [Menu/Sitemap
----- [] Frames and spacing

----- D Visions

----- D About Us

»-[] Contact

v-[C1 Newsletters

D Newsletter #1
D Newsletter #£2
""" [3 storage Folder

Path: §¥ Awesome Site [0]

New record
¥ Awesome Site

----- |:é Create a new page
-[] Page (inside)

42 Backend user
&& Backend usergroup
Filemount

= &
‘g Website Language ___::>
Workspace .

[247]

Going International

3.

We only need to fill out a few fields before we save our new Website
Language record to the database. Obviously, we don't want to disable the
language, but we could edit this record later to disable the language for

the entire website using the Disable checkbox if we no longer offered our
website in a given language. The first record we're going to create will be for
the Irish language, so we will fill in the Language field appropriately. This is
actually just a title for the backend editors to see, so we can give it any value
we want. We want to make it easy, by calling it simply Irish. The next
drop down, Select Official Language (ISO code), is more important. This

is the ISO code that will be used for TypoScript, core localization, and
extension translations. Many extensions already have translations for the
most common languages, so this ISO code will be used to grab the translated
labels, descriptions, and titles automatically. We will choose Irish from

the drop-down menu. Finally, we can select a flag icon for our Website
Language record. This icon is used to identify translated pages or content
elements in the backend. Go ahead and choose ie.gif from the menu.

Path: 4¥ New TYPO3 site [D]

Create new Website Language on root level

Disable:

P

J

Language:

F Irish

Select Official Language (IS0 code):

-

y_Irish &

Select flag icon:

— kIl Il =S
[=] em ™M ST SR TT
= 4= 11 ™ SE &a =
='1l ==l

i

B <HHIN

w¥ Website Language NEW

E] Show secondary options (palettes)

[248]

Chapter 10

4. After we have filled out the fields, we can save our new record and repeat
our steps for German. After creating both Website Language records, we can
see them in the List view on the website root:

v WEB 3 Path: ¥ Awesome Site [0]
E| Page
g V¥ Awesome Site
over
YD Awesome Site ge (1) & .
List [Products (3 Pagetitie:
@ 1nfo v-[] Content Elements
..... [] Headers [Awesome Site
(HAccess | 1 B Text
Functions [Bulletlists » Backend user (2) (]
ﬁ\l‘ersioning """ % Tables
_ || Forms
|1l Template »-[7] Search » Backend usergroup (5) & @
T Recycler [] Login
N e 5] Login - protected page Ra—— Language (2) ®
B TemplaVeia = D N
Menu/Sitemap . L Language:
»FILE o [Frames and spacing
----- E3users & German
» USER TOOLS [visions)
..... [About Us o Irish
v ADMIN TOOLS D Contact

Adding your languages to TypoScript

Now that we have added some languages to our website we have to update our
main TypoScript template. The nice thing is that we don't have to actually break
anything that is currently working in the template, but we do have to add the ability
to track which language the frontend user wants to see. The easiest and most reliable
way to figure out which language should be displayed for a given page in TYPO3 is
through a URL variable.

TYPO3 is already using URL variables by default to decide which page to display.
When you see the URL http://www.example.com/index.php?id=108 in a TYPO3
site, you already know that it is going to be displaying a page with an id of 108.
All we are going to do is add a new parameter, L, to the URL by saying config.
linkvars = L. That means we can gotohttp://www.example.com/index.
php?id=108&L=1 in the future and see the same page in Irish. In fact, the L. parameter
is a standard convention in TYPO3 that is used specifically for languages. We will
use TypoScript to associate different values for L with the languages records we
have already created. We've already used a URL variable for the printable version
of pages, so this really just a refresher. We're going to add a condition like this to
change our TypoScript for each value of L:

[globalvVar = GP:L=1]

[249]

Going International

We are also going to set two configuration properties for the entire website to help
us: config.sys language mode and config.sys language overlay. We can set
config.sys_language_mode to the property content_fallback. This means that
we do not have to set all of the fields including (but not limited to) title, text, and
image for each content element. If we decide not to set a translation for one element,
like the image, TYPO3 will fall back to the value in the default language. We can still
set a translated version, of course, but this means that our content elements will not
break if a field inside the content element is not translated. To use content fallback,
we will add this line to our TypoScript template:

config.sys language mode = content fallback

Next, we are going to set config.sys_language_overlay to the value
hideNonTranslated for the default language. This will hide any content elements
that we do not translate. The alternative, without this property set, would be to show
the default language version of the content element for any non-translated elements.
If you have five elements on a page, and you only translated three, then the two
non-translated elements would simply show up in the default language. As we don't
want to mix German and English or Irish and English text on the same page, we

can set the template to hide our non-translated elements completely. Of course, like
almost all TypoScript template values, these could be reset in an extension template
for a specific section if that was necessary. As a note, this is only for hiding the
content elements, but we will talk about hiding entire non-translated pages in just

a moment. For now, we will have to hide our non-translated content elements with
this line in our TypoScript template:

config.sys language overlay = hideNonTranslated

For each language, we are going to associate the language UID with the ID of

the Website Language that we created. We will also use config.locale_all to
configure how TYPO3 natively outputs time and date values and set the language
code by adding these lines to our TypoScript for each language (=1 and L.=2):

[globalVar = GP:L=1]
config {
Use the Website Language record with a UID of 1
sys_language uid = 1
Set the locale
locale_all = ga_IE
Set language code to ie
language = ie

[250]

Chapter 10

Finally, we are going to add a little bit of TypoScript to change the format of our date
and timestamp in the corner by updating the strftime format (for more information
on strftime formatting, see the TSref at http://typo3.org/documentation/
document-library/core-documentation/doc_core_tsref/current/). The same
date is shown in a different way for each area that we are targeting:

e United States: August 7, 2010
e Ireland: 07-08-2010
e Germany: 07.08.2010

For Irish, we can reformat our time stamp like this:

Change timestamp to Irish format (DD-MM-YYYY)
lib.timestamp.10.strftime = %$d-%m-%Y $T

For German, we can use this TypoScript code to update our timestamp:

Change timestamp to German format (DD.MM.YYYY)
lib.timestamp.10.strftime = %d.%m.%Y %T

Remember, localization goes beyond just translating the text sometimes. Our goal is
to look native to our target users, and we have to be aware of how we display date,
time, and currency. Of course, currency normally needs to involve conversion rates
and payment systems that can handle international payments, so we need to make
sure we're not just changing symbols without thinking ahead.

Now that we have an understanding of what we're changing, let's go ahead and
update our main TypoScript template. The following code can be added to the
bottom of our main TypoScript template setup:

Configure the default language (English)
config {
sys_language mode = content fallback
sys_language overlay = hideNonTranslated
locale all = en US
linkVars = L

Irish localization

[globalVar = GP:L=1]

config {
sys_language uid = 1
locale_all = ga_IE
language = ie

[251]

Going International

o\°

Y

o°

lib.timestamp.10.strftime = %d-%m- T
German localization
[globalVar = GP:L=2]
config {
sys_language uid = 2
locale all = de DE
language = de
}

lib.timestamp.10.strftime = %d.%m.

o\

Y

o°

T

Return to global processing
[globall

Adding localization to pages

Okay, we've successfully added a few languages to our website and updated our
template to handle the new languages, but you've probably noticed that nothing has
really changed. In fact, if you go to one of our pages in the frontend and add &L=1 or
&L=2 to the URL, the only change you can see is the date format. Everything is still
in English, and it's not even hiding the non-translated content. That's okay, because
it just means that we have not added translations to our individual pages, yet. The
TypoScript we just added will hide non-translated content elements on a translated
page, but the default TYPO3 response to a non-translated page is to show the default
language. We can change that in a moment if we want to hide the default language
for non-translated pages. For now, let's just translate our main page.

We add a language to pages in TYPO3 through an Alternative Page Language
record, and it's easier than it sounds. By adding an Alternative Page Language record
to any page in TYPO3, we are saying that we want to start showing an alternative
version of our page to visitors using the Website Language record and we need to
start seeing translation buttons in the backend Page and List views. This is set for
each page as part of the developer's design, and it makes sense once you're used to
it. In the real world of international websites, it is common to translate only parts

of a site. Even the largest companies will often tailor which pages need to be seen

in certain regions. This happens because some pages are not applicable to all areas,
local working groups may manage some sections, and sometimes it's just not feasible
to translate something like a company blog into multiple languages. TYPO3 gives

us control over which pages and which content elements are available in each locale
that we are targeting.

[252]

Chapter 10

We can create an Alternative Page Language record for any page through the Page
view by clicking on the Localization view tab that is now available. Just choose a
language from the drop-down menu, and we're ready to create our record:

Localization view Versioning

Create new page translation:

f —¢]

Mon-used elements Advanced functions

Al

Once we choose a language from the drop down, TYPO3 will create an

~ Alternative Page Language record that we can also see in the List view.
This can be helpful for debugging problems with translations if we think
that the Alternative Page Language record has been accidentally deleted.

By choosing a new language from the drop down, we can start creating a new record
and go to an editing screen like the one shown in the following screenshot. In that
screen, we can set a translated title for our page. As TYPO3 uses our page titles for
menu items, this will automatically translate our menu as well. We can also use this
opportunity to translate keywords, description, or anything else that is stored in the
page properties. We can even modify the access rules or available resources if we
want. You can see an example of the Alternative Page Language record page when it

is filled out below:

Site

Hide page:
=

Language:
»/_Irish) :!

Pagetitle:

Create new Alternative Page Language on page "Awesome

General Metadata Resources Access

Path: /[| Awesome Site [67]

Subtitle:

} Awesome Site in Irish

Navigation title:

-

E! Show secondary options (palettes)

@ Alternative Page Language NEW

[253]

Going

International

Once we are happy with our changes, we can save our Alternative Page Language.

If we

reload the same page in the frontend with the URL variable =1, then we will

see that the content elements are now missing. We have set our website to hide the
non-translated content elements, so we will need to translate the content elements
before they become visible again.

Using the localization tab in the Page view

Now

that we have added an alternative language to our current page, the

Localization view tab in the Page module becomes a more important part
for our workflow:

Localization view Versioning Non-used elements Advanced functions

Show page language version: :_ Default | &]

Display mode: | Default 5
Edit page properties: 21
Create new page translation: | =

The drop downs can be used to change the way we view the page for editing so that
we can concentrate on editing the default language or translating content. Here is a
list of the options that are available and how they affect our Page view:

Show page language version: Displays a list of the current languages
available to work with.

Display mode: This can be set to Default, Selected language, Or Only
Localized Elements. If itis set to Selected language, any content
elements that have been translated into the selected language are visible
along with the default language versions. If it is set to Only localized
elements, then the current language version of all translated content
elements will be shown without the original default language versions.
When we start translating content elements in a moment, this will make
more sense.

Edit page properties: This shows flags for the alternative languages, and
we can use these to access page properties such as titles and metadata for
translated pages.

Create new page translation: We saw this just a minute ago as a quick
way of creating a new Alternative Page Language record.

[254]

Chapter 10

Hiding non-translated pages

You probably noticed that all of our pages are still available in the menu no matter
what language we are in, and most of them aren't translated. TYPO3 allows hiding
certain pages if they are not translated so that they will be accessible or appear in the
menu, or we can change our configuration to hide all non-translated pages

by default.

We can set individual pages to stay hidden if they don't have an Alternative Page
Language record for the current language through the page properties. In the
Options tab, we can set our localization settings to hide the non-translated page by
checking the option labeled Hide page if no translation for current language exists.

If we only want our page to be available in a non-default language (if we only
want the page in Irish, not English) we can hide the default translation of a page
by checking the option labeled Hide default translation of page:

Localization settings:

[} Hide default translation of page

E Hide page if no translation for current language exists

If we want to change the default setting for our entire TYPO3 installation, we can
change that as well. As this affects the entire TYPO3 installation, instead of just the
page tree, we have to make our change in the TYPO3 configuration file instead of the
TypoScript template. To hide all non-translated pages (pages without an Alternative
Page Language record) by default, we can add the following line to our typo3conf/
localconf .php file:

STYPO3 CONF_VARS['FE'] ['hidePagesIfNotTranslatedByDefault'] = '1';

This only changes the default setting to hide pages. We can still choose to show
pages without a translation through the page properties. If TYPO3 is set to hide
non-translated pages by default, the option in page properties changes to read Show
page even if no translation exists. You can still choose to show pages that may not
need a native translation like image galleries or links to online stores that have their
own translation.

[255]

Going International

Translating content

We've created an Alternative Page Language record on our target page, so now we
can start translating the content elements. Translating a content element is almost
the same as editing a content element in the default language, so this is pretty easy

to learn.

1. We need to open the page we are translating in the Page view. You'll

notice that we have localization flags added to our built-in content
elements for translating.

Unfortunately, some content elements, like FCEs, do not use
s localization flags. The easiest way to translate those elements is

Q to copy the content element and change the Language property
for the translated element in the content element editing module,

which we will see on the next page.

2. Click on the link labeled Create a copy for translation (Irish). It should look

like the following screenshot, but if it doesn't we just need to check to make

sure that the Alternative Page Language was created correctly.

Main Content Area

[COCCoS5000O0500055000000000000055000050000000050000055000000055000050000000055000050000000055000
'
]
'

years professional experience in website and application creation. His first love was

writing, but programming quickly followed. He is a co-founder of Vintage 56 where he [
helps develop websites, online shopping carts, web apps, iPhone/iOS apps, and anything
else his friends can think up. Jeremy is also the web director of a large ministry, Generals
International. Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-
youthful puppy, Aingeal. He loves spending time at home reading, playing around on the
piano, or just relaxing on the couch with his family. You can read more from Jeremy at
pocketrevolutionary.com , and you can follow him on Twitter at @jgreenawalt .

Localizati .
|E| Create a copy for translation (Irish

|_=‘Eﬁ.n Awesome Front Page y k—éﬂ CER A

Text: Jeremy Greenawalt is a full-time developer and part-time writer with close to ten Images:

=% 5 ToosTeETEsToETE ST T

@O

3. After we have clicked on the link to create a copy, TYPO3 will return us to
the Page view. We need to click on the flag icon next to the new copy of our

content element to start editing the translation.

[256]

Chapter 10

4. Our editing page looks similar to what we're used to with just a few
additions. You can see in the following screenshot that we have a few
new drop downs available to choose the current language. If we change
the language here, it will simply move this copy of the content element
over to that language. The drop down labeled Transl.Orig is also helpful for
showing us what element we are translating. The most helpful information
we can see on the screen is probably the text highlighted under each value.
These are the values from the default language, and they will only change
when the default language version of the content element is updated. This
is essential when we are doing a lot of translation.

Language: lrish | :i Path: /[| Awesome Site [23]

Edit Pagecontent "An Awesome Front Page in Irish" on page "Awesome Site"

General Text Media Access
Type:
Text w/image ¥

Text w/image

Language: Transl.Orig: Columns: Before: After: Frame: Index:
[rish — [4) [An Awesome Front Page | +] [Normal [4] M M | Default Frame | ¢! ™
Default Normal - - Default Frame e
1] 0

Hide:

=)

Mo

Header:

An Awesome Front Page in Irish

An Awesome Front Page

Align: Type: Link: Date:
|) ‘l | Normal | ‘l |
v v (] & D E
Normal = ° E

31-12-69 (-41 yrs)

To top:

[Z Pagecontent [250]

5. We've seen our way around the new editing page, so we can go ahead and
update the Header for the new Irish version of the content element with a
new title, An Awesome Front Page in Irish.

[257]

Going International

6. In the Text tab, we can translate the main text of our content area. Notice
again that the entire default language version of the text is highlighted
directly below the RTE. We can see that TYPO3 has automatically added the
text [Translate to Irish:] to the beginning of our text area as a reminder
when we are working on the site. For now, we can just leave the text as it is
with the translation marker left at the beginning to let us know when we're

showing the Irish version of our content.

7. Finally, we can change the image for this content element if we need to. As
we have content fallback turned on, we can leave it as it is. If we don't change
anything, then it will automatically get the image from the default language.

Language: lIrish | :i Path: /[] Awesome Site [23]
General Text Media Access
Text:
Block style:
Text style:
B 7 X X Noblock format iz = Ei[a]in
diddio %! i@
CHEF ;

i
r

[Translate to Irish:] Jeremy Greenawalt is a full-time developer and part-time
writer with close to ten years professional experience in website and application
creation. His first love was writing, but programming quickly followed. EI

He is a co-founder of Vintage 56 where he helps develop websites, online shopping
carts, web apps, IPhone/iOS apps, and anything else his friends can think up.
Jeremy is also the web director of a large ministry, Generals International.

"
Jaramu livae noar Nallac Towvac with hic wifa _Doholah _and thair ausraungthful b

Path: body

“
Jeremy Greenawalt is a full-time developer and part-time writer with close to ten years
professional experience in website and application creation. His first love was writing, but
programming quickly followed.

He is a co-founder of Vintage 56 where he helps develop websites, online shopping carts, web
apps, iPhonefi0S apps, and anything else his friends can think up. Jeremy is also the web
director of a large ministry, Generals International.

Creating universal elements

What if we have a content element that doesn't need translation but that we want

to show in every language? The most common reason to do this is for non-text
images as there is no need to create multiple translated versions of portraits or
product pictures. For any content element, though, we can set the Language field to
[A11] (circled in the following screenshot). This sets the content element to appear
localized for all alternative languages, and it will show a multi-flag icon next to it in

the localized Page view.

[258]

Chapter 10

Edit Pagecontent "Portrait” on page "Awesome Site"
General Media Access
Type:
Image ¥
Language: Columns: Before: After: Frame: Index:
Clan 5 [Normal [5]]] [Default Frame [5] ™
Hide:
g
Header:
Portrait
Align: Type: Link: Date:
{ = [Hidden [%] - & =
To top:
g

Adding content without a default language

Creating a content element that shows in all languages is pretty straightforward, but
sometimes we may need to create content elements that only exist for a non-default
language. We may need to add some legal language, or we could just be advertising
a special that only applies to our group in Ireland. How do we create a content
element without a default language version?

1. Create the new content element in the backend Page view just like any other
element that we have created until now.
Change the Language drop down to our target language, Irish.
Go ahead and fill out the rest of the context fields in Irish.

Test it in the frontend. As we have set up the default language to hide
non-translated elements, our new element will simply not appear in
anything but the Irish frontend.

[259]

Going International

These non-default content elements normally work great, but we do
have to be careful when we create elements that don't exist in the
\l default language. As editors will probably be doing the layout and
~ design of any page in the default language, we need to use extra care

in testing to make sure that our new element still works correctly in
the target language after any major layout changes to the page. This
sounds obvious, but it can be an easy mistake if we are dealing with
multiple columns and complex layouts in the default language.

TemplaVoila translator workflow

Once we start dealing with translating all of our content, we probably need to start
thinking about how we can set this up for translators. We may be able to translate
some of the content, but we know that we'll need to hand it over to somebody else
eventually. Of course, TYPO3 can be complex, and we don't need full-fledged editors
for each translator position. In fact, we might not want to give them access to change
the layout or change page properties for the default language at any time. Luckily,
the TYPO3 developers already considered this, and we can restrict backend users or
groups to specific languages. Now that we have added alternative languages to our
site, we can see a new section in the User Admin module labeled Limit to languages
(shown in the following screenshot).

Limit to languages:

Default language

If we turn off the default language, then the Page view will be specifically tailored
to translating. We can see in the translator's screen in the following screenshot that
there are no buttons to create new content elements. They are given only flags to
translate the content elements that already exist. This makes sure that translators

are not creating new content on our main site, but it also makes it easier for them to
find what needs to be translated and do their job quickly. They don't need to become
TYPQO3 editors or worry about breaking the main site when they are translating.

[260]

Chapter 10

Main Content Area

| Salalaiaialiaieiainiaiaiaiaiaisiniaininiaininiaiainteinintaiaiaiatainiaiaiaiei it 1

B 1 [E] Article without default translation B
ext: Only Irish readers will see this.

[An Awesome Front Page &G K éh

Text: Jeremy Greenawalt is a full-time developer and part-time writer with close to ten Images:
years professional experience in website and application creation. His first love was l -

1 |writing, but pregramming quickly followed. He is a co-founder of Vintage 56 where he

i |helps develop websites, online shopping carts, web apps, IPhonefi0S apps, and anything

E else his friends can think up. Jeremy is also the web director of a large ministry, Generals
| [International. Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-

1 | youthful puppy, Aingeal. He loves spending time at home reading, playing around on the

E piano, or just relaxing on the couch with his family. You can read more from Jeremy at

' | pocketrevelutionary.com , and you can follow him on Twitter at @jareenawalt .

Localizations:

i LII'] Create a copy for translation (Irish)

Adding a basic language menu

Now that we have some pages translated we need to make it easier to access. The
only way to see the localized pages right now is by adding &L=1 or &L=2 to the
address of any page, and that's not going to work for our visitors. We need to create
a basic language menu for them. Adding the language menu is like adding a link to a
printable version of our pages. We just need to provide a link to the localized version
of the page instead. We're going to go through the same steps of adding a spot to

the template in HTML and TemplaVoila, and then we can assign the languages to it
through TypoScript.

1. Our first step is to add a container for the new menu to our HTML templates.
Go ahead and open template.html and template sidebar.html in your
editor of choice and add a new div tag above the closing body tag;:

<div id="print_ link"s></div>
<ul id="language-menu"s>
</body>

2. Weneed to add the menu to the main TemplaVoila templates. We've
done this a few times by now, so we'll go through it quickly this time. To
remember how to add a field to the data structure, you can look at Chapter
3. In the TemplaVoila module, click on Update mapping under the Main
Template heading.

3. Click on Modify DS/ TO to update the data structure.

[261]

Going International

4. We can add a field to the bottom of the data structure with the

following values:

o

Field: field langmenu

o

Element

o

Title: Language Menu

o

Sample Data: [Language menu goes here]

o

Element Preset: TypoScript Object Path
° Object path: 1ib.langMenu

After we have created the new field, we need to make sure that we have
saved our changes and the new field can be mapped.

Map the new field, field langmenu, to the ul container that we added to
the HTML files with the ID of 1anguage-menu. Make sure to save the new
mapping to all of our main template files so that the menu doesn't suddenly
disappear when our users are browsing the new site.

Adding the language menu to our TypoScript
template

Finally, we can update our main TypoScript template setup with values for our new
language menu. We are going to use the same HMENU class that we used for the main
menu and submenu, but this time we are going to use the special property like we
used to add breadcrumb navigation in Chapter 4. We will use a TMENU to display

our new menu, but we will set the special property to language in order to take
advantage of some functions specific to languages.

1.

First, we will create a menu object and assign the special property:

lib.langMenu = HMENU
lib.langMenu {

Next, we can assign the special property. The values that we assign to the
special property will correlate with the language parameter values. The first
link in our menu will be 0 (default), the second link will be 1 (Irish), and the
third link will be 2 (German).

special = language
special.value = 0,1,2

[262]

Chapter 10

We need to create the TMENU object and add formatting to the menu items:
1 = TMENU

1

NO = 1

NO.allWrap = <li style="display: inline; margin-right:
10px;">|</1i>

Now, we can create a menu title for each language. If we let TYPO3
automatically detect our titles, it will use the translated page title of the
current page. Instead, we want to use the names of our languages:

NO.stdWrap.setCurrent = English || Irish || German
NO.stdWrap.current = 1

We want the current language to stand out, so we will wrap it in bold tags.
We can also deactivate the link for the current language so that visitors do
not unnecessarily try to click on it and reload the page.

ACT < .NO
ACT.linkWrap = |
ACT.doNotLinkIt = 1

Finally, we can deactivate links to languages that are not available on the
current page. This way, we don't link to German if this particular page does
not have an Alternate Page Language for German. We are going to use

the USERDEF1 item state that is defined in the TSref (http://typo3.org/
documentation/document—library/references/doc_core_tsref/)Iike
the NO or ACT states, this is a Boolean value that tells us something about the
current state of the page. The USERDEF1 is normally reserved for user-defined
states. As we assigned the special property to language, it will automatically
assign it for all menu items that link to a language that is not available on the
current page:

USERDEF1 < .NO
USERDEF1.doNotLinkIt = 1

}

Without the comments, this is our final code for the TypoScript
template setup:

lib.langMenu = HMENU
lib.langMenu {

special = language
special.value = 0,1,2
1 = TMENU
1

NO =1

[263]

Going International

NO.allWrap = <li style="display: inline; margin-right:
10pX;">|

NO.stdWrap.setCurrent = English || Irish || German

NO.stdWrap.current = 1

ACT < .NO

ACT.linkWrap = |

ACT.doNotLinkIt = 1

USERDEF1 < .NO

USERDEF1.doNotLinkIt = 1

Viewing our changes on the frontend

After we've created our new menu, we can go back to our front page and see the
differences between the languages. I've included two screenshots for reference, but
we can see the same results on our example site right now in front of us. The first
screenshot shows the default language, and everything should look the same as
before except for the new language menu at the bottom. We can notice that the menu
item for English is bold with no link because it's the current language. The Irish link
is active because we have created an Irish translation of this page. The German link
is not active because we do not have a German translation of this page.

. "
AN AwesoME FRONT Paa

Jeremy Greenawalt is a full-time developer and part-time writer with close
to ten years professional experience in website and application creation.
His first love was writing, but programming quickly followed.

He is a co-founder of Vintage 56 where he helps develop websites, online
shopping carts, web apps, iPhone/iOS apps, and anything else his friends
can think up. Jeremy is also the web director of a large ministry, Generals
International.

. . . . R Portrait by Rebekah Greenawalt
Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-

youthful puppy, Aingeal. He loves spending time at home reading, playing around on the piano, or just
relaxing on the couch with his family.

'You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on Twitter at
@jgreenawalt.

Printable page view
English Irish German

[264]

Chapter 10

Now we can click on the Irish link to see our translated page. We can see that

our main article is showing the translated version, and our menu has updated to
reactivate the link English. We can also notice that an article we added only for the
Irish language shows up for the first time; it was not rendered at all when we saw the
page in its default language.

[s @S TITEESEEEEEEREE . . e |
ARTICLE WITHOUT DEFAULT TRANSLATION

Only Irish readers will see this.

AN AWESOME FRONT PAGE IN IRISH

[Translate to Irish:] Jeremy Greenawalt is a full-time developer and part-
time writer with close to ten years professional experience in website and
application creation. His first love was writing, but programming quickly
followed.

He is a co-founder of Vintage 56 where he helps develop websites, online
shopping carts, web apps, iPhone/iOS apps, and anything else his friends
can think up. Jeremy is also the web director of a large ministry, Generals

International. Portrait by Rebekah Greenawalt

Jeremy lives near Dallas, Texas with his wife, Rebekah, and their ever-youthful puppy, Aingeal. He loves
spending time at home reading, playing around on the piano, or just relaxing on the couch with his
family.

You can read more from Jeremy at pocketrevolutionary.com, and you can follow him on Twitter at
@jgreenawalt.

Printable page view
English Irish German

Adding flags for language selection

We can do one better than having a text menu for the languages, because we can
create nice flag buttons. We can even make it so that flags for languages that are
not available will appear obviously inactive.

1. Of course, the first thing we need to do is get some flags for our buttons. If
we're lucky, we can go down the hall and ask the graphic designer nicely to
throw something together for the new site we're building. If we don't have
access to a designer and we can't make them ourselves, we can just search
Google for "free flag icons"; we're sure to find some that are at least
usable for testing. We only need three flags right now.

[265]

Going International

2. We want to make our new flag icons easy to identify in our TypoScript, so we
will name them usa.gif, ireland.gif, and germany.gif and place them in
the template images folder, fileadmin/templates/images/.

3. Next, we can update our TypoScript template to replace the TMENU object
with a GMENU object. We'll recognize the GMENU properties from Chapter 4.
First, we'll replace the TMENU object with a GMENU object, wrap our menu
items in list tags, and set the title parameter of each link to the page title in
the correct language:

1 = GMENU
1
NO =1
NO {
allWrap = <1li style="display: inline; margin-right:
10px;">|</1i>
ATagTitle.field = title

4. Next, we can set the dimensions for our menu items and assign our flag icons
to the menu:

XY = [5.w]+10, [5.h]

5 = IMAGE

5.file = fileadmin/templates/images/usa.gif || fileadmin/
templates/images/ireland.gif || fileadmin/templates/images/

germany.gif
5.o0ffset = 0,0

}

5. Again, we will deactivate links for the current language:

ACT < .NO
ACT.noLink = 1

6. Finally, we will remove the links from the unavailable languages and make
their flag icons grayscale so they will appear inactive:
USERDEF1 < .NO
USERDEF1 {
noLink = 1
20 = EFFECT
20.value = gray

}

If all languages are available on a page, we can see the active version of all flags like
the menu screenshot as shown in the following screenshot:

[266]

Chapter 10

If only German and English are available, we can see that the Irish flag is monochrome:

€Oe

You'll notice that we removed the link from the current language flag, but we did
not make it appear inactive. We could change the TypoScript to show the inactive
graphics for all buttons that do not link, but we should be careful before we gray out
too many buttons. If there is only a default language on any page, all of the buttons
will be gray and it will look like our language menu is just broken.

Adding a localized logo

While we are localizing our website, we should go ahead and make sure that our
logo is translated for all of the languages we are targeting. We thought ahead enough
to make our logo a TypoScript object when we added it to our website, so all we
need to do is change the values for the object within the realm of each language.
Our original logo image is located in the fileadmin/templates directory, so we
can make our own localized versions named logo ie.pngand logo de.png in the
same directory. As we want to keep our visitors in the same language when they
click on the logo, we can also update the link to connect to our home page with

the correct language variable in the URL. To set our changes for the languages, we
just need to set the new values between the globalvar conditional statements like
shown in the following code (new lines are highlighted):

#Setting up Irish language:
[globalVar = GP:L=1]
config {
sys_language uid = 1
language = ie
}
lib.timestamp.10.strftime = %d-%m-%Y %T
lib.logo.file = fileadmin/templates/logo ie.png
lib.logo.stdWrap.wrap = <a href="http://www.example.com/index.
php?L=1">|

[267]

Going International

#Setting up German language:
[globalVar = GP:L=2]
config {
sys_language uid = 2
language = de
}
lib.timestamp.10.strftime = %d.%m.%Y %T
lib.logo.file = fileadmin/templates/logo de.png
lib.logo.stdWrap.wrap = <a href="http://www.example.com/index.
php?L=2">|

[globall

Creating localized TemplaVoila templates

Along with tailoring our content and TypoScript for a specific language, we can also
create separate TemplaVoila templates for each language. That means we can use a
different HTML file, change our mapping, or even map fields that aren't mapped in
the default language's template. Instead of having to set up our own logic to switch
the template for each language, it is handled by TemplaVoila completely in the
background using the same subtemplate logic we used for a printable template.
This gives us more flexibility with our localization, and we can add it as easy as
creating any other template object:

1. The first step is obviously to create a new template object in the TemplaVoila
module. Don't worry about the language settings yet; just create a blank
template object named German Main Template, and set the file reference to
fileadmine/templates/template.html.

2. Next, we can assign the new template object as a subtemplate of Main
Template [Template]. This automatically links the new object so it can
inherit the data structure values from the main template like when we
created our printable template in Chapter 5.

3. We want to use this for the German localization of the website, so choose
German in the drop down labeled Language. As we declared this as a
subtemplate of the main template, any page using the main template will
display this template when the current language is German. Our editing
screen should look like the following screenshot before we save:

[268]

Chapter 10

Edit TemplaVoila Template Object "German Main Template” on page
"Storage Folder"

Title:

German Main Template

Make this a sub-template of:

| Main Template [Template] o i
3

File reference:

§

fileadmin/templates/template.html

BELayout Template File:

Language:

| German | 3!

Select a type of rendering:

| Default output -:i

Local Processing (XML):

@ TemplaVoila Template Object [30]

4. Finally, we can update the mapping for the template to make our new
template different from the main template. If you want to see that the
template is automatically called correctly, leave the banner image un-
mapped as a test.

After we save our new mapping settings, we can view the front page in German.
Notice that the banner image automatically disappears when we switch to German
without us ever having to update the TypoScript or content of the page. This is just
a simple example, but we can easily find uses for this automatic template
replacement once we start launching sites in the real world. For example, if we
already know that we have less content translated to show in German than English,
we can change all two column layouts to use a single column when the active
language is German. There's no reason our site needs to look any worse just because
we are trying to target a new area.

[269]

Going International

Summary

Congratulations! Our site is now capable of going international, and we can
definitely pat ourselves on the back. The ideas of internationalization and
localization sound pretty daunting at first, but TYPO3 has really done most of the
work for us. We just had to learn how to tweak the templates a little to give us the
most flexibility. With a few changes, though, we figured out that we could go all the
way from a simple translated site that looks basically the same in all languages to a
fully-configured website that can change it's design and functionality for each locale
that we're targeting. We even learned how to customize our logos and templates for
each locale. It seems easy now, but our mobile-friendly, internationalized website
just jumped beyond most of our competition in only a few chapters.

In the final chapter, we are going to look at where TYPO3 template development

is going with a new TemplaVoila framework. As we've seen TemplaVoila and
TypoScript can work together to make a very powerful template system. There

are places that it can be made easier to use or faster to customize, and that is why
we're going to be looking at the TemplaVoila Framework in our final chapter. It's

not a replacement for anything we've learned so far, but it is both a final set of
enhancements to what we've been working on and a glimpse of where TYPO3 is
going in the future. So, you know the routine by now: show off our new international
website to one of your co-workers, grab some coffee, and come back ready to learn
just how powerful a little framework can really be.

[270]

11

Building Websites with the
TemplaVoila Framework

We've officially covered everything you must know to modify and create templates
from beginning to end, and we've even learned how to handle special cases like
mobile websites and internationalization. Now we are going to take a step back and
look at the overall workflow for bringing everything together and building websites.
In the real world, we will need to go from designer comps and mockups to launched
websites. As we've already covered mapping, content elements, and everything

else we need to know to create a great website from mockups with a traditional
workflow, we're going to look at how we can reverse our thinking a little and build
our TYPO3 sites more effectively. We're going to look at the new TemplaVoila
Framework that has just recently been introduced by Ron Hall of Busy Noggin, Inc.
and Web-Empowered Church (WEC) that can help us build sites faster and with less
unnecessary effort.

This chapter gives a good overview of this new framework and shows some
real-world examples, but it doesn't cover everything and we won't go through
building a whole new example site from scratch. Instead, we are going to look
at how the framework functions and how you can start your next project with it.
For more information, downloads, and the latest news, go to
http://templavoilaframework.sitebuilderlab.com.

In this chapter, you will:

e Learn about the TemplaVoila Framework workflow and approach to
template building
e Learn how frontend designs are built in the framework using "skins"

e Create a new skin and learn how to modify it

Building Websites with the TemplaVoila Framework

e Learn how to use the page templates included in the TemplaVoila
Framework

e Learn how to use the content elements included in the framework
to make multiple layouts

What is the TemplaVoila Framework?

The TemplaVoila Framework is a lean framework with a common code base, a
prescribed workflow, and a set of best practices for template development. Like
other software frameworks such as Ruby on Rails or FLOWS3, the TemplaVoila
Framework provides a basic structure and gives us some common tools (such as
multi-column flexible content elements) to help us build sites faster. At the same
time, the framework helps us define a repeatable workflow by changing the way
we think about building templates and helps us concentrate on the unique tasks
we want to accomplish instead of making the same templates over and over for
different sites.

If this framework is meant to reverse our thinking, why is it at the end of the book?
The TemplaVoila Framework was designed to be used and understood best by those
of us who already have experience developing websites with the core technologies
of TemplaVoila, TypoScript, and frontend coding. Just like FLOW3 doesn't replace

a developer's knowledge of PHP, the TemplaVoila Framework doesn't replace our
knowledge of TemplaVoila and TypoScript. For one thing, we can only get so far
even in a framework if we don't know how to build menus or other basic operations.
TYPO3 knowledge is still needed to build good templates. Secondly, one of the
reasons that the TemplaVoila Framework is powerful is because we have all the
power of TemplaVoila and TypoScript to extend and customize it with our own
templates and FCEs.

Benefits of the TemplaVoila Framework

So, if the TemplaVoila Framework doesn't replace TemplaVoila and TypoScript, why
do we need to learn it?

e We can build sites faster. With a standardized workflow and set of tools,
we can start working quicker and avoid miscommunication. Using the
built-in page templates and FCEs, we can also skip the initial process of
creating new HTML files from hand, mapping them, and creating common
flexible content elements.

[272]

Chapter 11

The TemplaVoila Framework includes common FCEs and page templates.
Multiple column layouts, HTML wrappers, and other flexible content
elements and page templates are included in the core of the framework

so we can spend our time building custom FCEs or templates after we've
exhausted the built-in options.

The TemplaVoila Framework uses "skins" for the look and feel of our
websites. As simple collections of CSS, HTML, and TypoScript files, the
framework skins (which are not related to TYPO3 backend skins) can

be moved around easily as packages or directories. We can build a skin
completely on a development server or our own computers and move it up
to the production site only when we're done. We can even develop the skin
on our own computer while others on our team are creating content on a
staging server with a basic wireframe skin. When the skin is ready, we can
just upload our skin to the staging server as a single directory. Additionally,
since skins are just collections of files in a directory, so we can use version
control software like Git or Subversion to store them safely and work with
multi-developer teams.

The TemplaVoila Framework skins are easy to reuse. Skins can be
downloaded from developers like Web-Empowered Church (WEC) through
the TYPO3 Extension Repository, or we can reuse skins that we have built
before. We can build our own wireframe skins to use at the beginning of each
site. We can use a skin from one TYPO3 site as a starting point for a different
website with a similar design.

Less remapping. All of the templates in the TemplaVoila Framework are
already mapped, so we only need to map specialized templates that we build
outside of the framework. In addition, the TemplaVoila Framework maps
blocks instead of individual elements. Instead of mapping the title, banner,
search area, and menu at the top of the page, it just maps the header as an
entire block. This means less remapping when the search area changes and
no remapping when a different skin is applied with a new element in

the header.

The TemplaVoila Framework's default backend is easier for editors. Instead
of going through and making our own modifications to the backend layout
files, we can rely on the default, tab-driven design of the TemplaVoila
Framework. This layout is consistent between framework-driven sites, so it
makes for easier training and documentation when we work with clients. Of
course, we can still make our own backend layouts if we want to, but it is not
as necessary.

[273]

Building Websites with the TemplaVoila Framework

e Frameworks, cleaner coding, and rapid development are all themes that
TYPO3 is moving towards with other projects like FLOW3 and TYPO3
v.5 as it develops for the future. These concepts are the future of TYPO3
development, and using the TemplaVoila Framework gives us a head start.

The TemplaVoila Framework workflow

The traditional TemplaVoila workflow is to build static template files in HTML, CSS,
and JavaScript, test them, and then create and map content elements in TemplaVoila.
In the TemplaVoila Framework, however, the built-in templates are already mapped
to working content elements. Compared to a traditional workflow, we work
backward to update the look and feel of our site by using TypoScript to adjust the
HTML layout and writing CSS for styling. That means that we can use one set of
templates, and create completely different looks and structures just by changing

the skin.

This workflow also means that different people can be working on different parts

of the site creation process at the same time. After we install the framework, we can
start using the built-in skins to design how the page tree and our content will be

laid out (which is called the information architecture) using a "wireframe" skin that
only shows the basic layout of our pages without design elements. As it's a live site,
we can even click through the links and see how our IA (information architecture)
design will actually function. Once a basic IA has been agreed upon, the designers
can start working on the visual design mockups. Instead of waiting for the designers
to finish completely, the client or editors can start adding content to the basic site and
creating pages while we work on special functionality such as internationalization
or custom FCEs. After the visual design mockups are done, we can just integrate the
visual design into a content-filled, functional site by creating a template skin.

Installing the TemplaVoila Framework

The TemplaVoila Framework is an extension, but it can be used to create a new
site in two different ways. It can be installed as an extension to a TYPO3 dummy
package installation, or we can install a bundle called the QuickSite package that
includes TYPO3, the TemplaVoila Framework extension, a database schema for the
framework, and some helpful extensions.

Unless you need to start with a default TYPO3 dummy package for some reason,

I recommend the QuickSite package as the most common and easy way to get a
site started with the Framework. Even if you are converting an existing site to a
new design and the TemplaVoila Framework, it is often easiest to start with a fresh

[274]

Chapter 11

QuickSite installation in a staging area and import chunks of data from the live site.
It's a good opportunity to reverse our thinking and try to do things the TemplaVoila
Framework way instead of just transferring over bad habits from before.

We are not going to create a whole site in this chapter, but you do want to have the
TemplaVoila Framework available to see some of the examples. We are going to

use the QuickSite package for this chapter, so go ahead and download the QuickSite
package and install it right now using the detailed instructions for your platform
athttp://templavoilaframework.sitebuilderlab.com. After you

have downloaded and installed QuickSite, the next section will go through

the setup process.

Setting up QuickSite for the first time

QuickSite starts with the wireframe skin as a default and some example content.
We can log in to the backend with the username of admin and the password of
password. After we log in the first time, TYPO3 will ask us to change our password.
Go ahead and change it to something more secure right now.

Assigning a site URL

Next, we need to edit the TypoScript constants for the main template to assign
a Site URL:

1. First, click on the Template module on the far left sidebar.

2. Click on the root page for our page tree, which should be labeled The
QuickSite by default.

3. Next, choose Constant Editor from the drop-down at the top of the Template
editing pane. TYPO3 installations and the TemplaVoila Framework in
particular, use TypoScript constants for configuration options that the
TypoScript template needs access to.

4. Select SITE CONSTANTS from the Category drop down.

[275]

Building Websites with the TemplaVoila Framework

5. Finally, fill in the fields labeled Site Name and Site URL with appropriate
values like shown in the following screenshot and click on the save icon.

TYPO3 ¥

3 E
v WEB 3 (Constant Editor ‘ path: /[The Quicksite [1]
Page
¥ BN QuickSite Basic 2.0.5
& View VBN Q L=]E2 Template tools
v D The QuickSite
List ; Edit constants for template:
@ Info About
D About the QuickSite @ Main TypoScript Template
j CEEEE D Skin Selection
. ") 4Categm’v: | SITE CONSTANTS {9) | :!
Functions D Styling Guide
Page Not Found
Versioning : " .
@ . v ElGenerated Content 5;1“ N""“n L*'tET'“?Jh M
lig| Template] D SOrCies) SR The overall name of the site. This will appear on every page.
‘B Templavoila “-[IJ Generated Content-2 2
TE[' Recycler “({1 Site Resources 5 Awesome Site
“
et Site URL [sitelURL]
il The domain for T.:he site with the trailing slash included.{ex.
http: /fwww.mysite.com/)
¥ USER TOOLS =]
&Task center http://quicksite.jer
w/
&3 User settings
Site Logo [siteLogo]
Workspace The path to the logo for your site which will appear in the header of every
page (ex. fileadmin/images/mylogo.jpg). This setting is optional and may not
¥ ADMIN TOOLS be used by all skins.
& User Admin y {stemplavoila_framework.skinPath}css/images/masthead_title.gif
) Ext Manager
DB check A Copyright [copyright]
% chee I Copyright for the site. The current year will automatically be added before this
| Confiauration b value

Selecting a skin

Now we can select a new skin. By default, QuickSite uses a plain white skin for

wireframing, but we can change it to one of the other built-in options right now:
1. Choose Info/Modify from the drop down at the top of the editing pane.
2. Click on the link labeled Edit the whole template record.

3. Now, we can go to the Skin Selector tab to choose a new skin for our
template (shown in the following screenshot).

[276]

Chapter 11

4. The Busy Noggin White Wireframe skin is chosen by default, but we can
select a new skin by clicking on the Select Skin button under any of the
available skins.

&, admin Logout EJ * ‘ L}

* @

v WEB Path: /[| The QuickSite [1]

) Page

. Edit Template "Main TypoScript Template" on page "The QuickSite"

Pl General Options Includes Resources Access Skin Selector

@ Info

ﬂncr_ess Select a skin

Functions Currently Selected Skin

ﬂ\.ﬂ'ersioning s e

@ Template
B TemplaVoila

T Recycler
G - = -
v FILE Busy Noggin White Wireframe
Filelist This minimalistic layout works well for information architecture & prototyping. It can

also be used a a starting point in the development of new skins.

¥ USER TOOLS (Standard Skin)

Task center Unselect Skin||CDpv Skin
IE} User settings w/
i workspace Custom Skins

¥ ADMIN TOOLS

l% User Admin

) Ext Manager
[DB check

Configuration Busy Noggin Blue Demo Skin

[277]

Building Websites with the TemplaVoila Framework

Viewing our QuickSite frontend

Finally, we can clear the TYPO3 cache to see our changes in the frontend. After setup
is complete and the cache is cleared, our front page will look like this:

Busy Noggin Wireframe Skin

.QuickSite 2.0 ‘
You've got it launched. “
Now you just have to skin it.

Don't worry, it's not rocket science.

Why another TYPO3 install package?

Welcome to the Busy Noggin QuickSite

This is the defaultinstallation of the Busy Noggin QuickSite (version 2.0.5). Itis used by
Busy Noggin as the base install package for the TYPO3 sites they build. The company
has made this QuickSite available as a free download for those who wish to use itin their
own development.

This QuickSite exists to provide an easy-to-install TYPO3 package that runs Busy
Noggin's Framework for TemplaVoila. This framework works in conjunction with
TemplaVoila (an advanced templating extension for TYPO3). The framework is itselfan
extension and provides special features for the content editor and a systematized
workflow for the developer.

You can find out more about the QuickSite here. The full documentation for developing
skins with the TemplaVoila framework can be found at templavoila busynoggin.com.

Important: Initial Setup & Skin Selection

Mow that you have the QuickSite installed you will need to do a little setup. Here are
those instructions. When finished be sure to change the back-end password and the
install tool password

Special Features of this Site

Because it use's our Framework for Templavoila, this
site has the the utility FCEs (Flexible Content
Elements) for creating columns, modules and more.
Find out how these are used at
templavoila.busynoggin.com.

Giving the QuickSite to Others

We ask that you not distribute this QuickSite to others
from your own servers. Rather you should provide a
link to templavoila.busynoggin.com. This will ensure
that users get the latest version and have the
opportunity to sign up for news and announcements.

Ye Qle Disclaimer

This QuickSite is provided to the world free of charge
and comes with ABSOLUTELY NO WARRANTY . Itis
your responsibility to ensure itis fit for your purposes
and you use it at your own risk.

Since the QuickSite is builton TYPQ3, itis subject
to TYPO3's license. TYPO3 is distributed under the
GPL license. You can find out more about TYPO3 at
typo3.org

Planning with the wireframe skin

Now that we've installed QuickSite on a test domain, we can use the built-in Busy
Noggin White Wireframe skin to start planning the information architecture (IA)
with our team. By wireframing in a live site, we can immediately see how things
will work in the final product. We can use the TYPO3 backend to create basic pages
and example content and move them around in the page tree. We can even start
using the links and menus that we will use in the final version. Finally, we can start

[278]

Chapter 11

training the clients or editors on the TYPO3 backend they will be using; they can
start entering real content instead of just placeholder text and stock photos that have
to be replaced at the end.

Because we are creating real pages to test the flow of our site, we can even
do some basic usability testing to make sure that our IA is well-designed
M for the target audience. This is a great benefit of using the wireframe skin
Q compared to planning everything on paper or in software; regular users
can actually test our information architecture to let us know if content
was where they expected it to be. For more information on testing, I
recommend Jakob Nielsen's website, http://useit.com.

The included Busy Noggin White Wireframe skin is just a basic skin to get us started,
but we can easily create our own custom skin for wireframing sites. If we are doing
work for an agency or just want to show our own brand internally, we can create

a copy of the wireframe skin and modify it easily. We can replace the title on the
skin, the logo in the upper-right corner, and any other small tweaks that would be
more appropriate for our clients. Then, we can save a copy of that skin for all future
products, and we will always have a professional, branded skin available to use for
wireframing new sites.

Designing the page layouts

Once we have a page structure and the rough design mockups from the designers,
we can start working on the overall HTML structure for our pages. Normally, we
will end up having 2-3 different page layouts for any given site, but not too many
more. When we look at the design mockup, our goal is to visualize the large blocks
in the design and categorize them. Once again, we are not mapping each element like
traditional TemplaVoila design, but we are defining the large chunks of content that
we need. By defining the large blocks, we can decide which page templates and FCEs
we are going to need to make the design work. This also means that we can change
the skin later on without altering the HTML structure.

[279]

Building Websites with the TemplaVoila Framework

If this is our design mockup:

Busy Noggin Wireframe Skin £

About

You've got it launched.
Now you just have to skin it.

s

Don't worry, it's not rocket science.

About the QuickSite ¢« About the QuickSite Switching Skins

We recommend you look at this video presenting an overview Find out how to switch the skin of your site
= ofthe Busy Noggin QuickSite and the Templavoila Framework, here
==r=—r lRisaliwe over & minutes long.

Please note that this video used an early version of the
framework. The current version uses a new point and click
interface for managing skins which is even easier than what s
shown in the video. All the other features presented in the video are consistent with the
current version of the QuickSite.
HD version
MNon-HD version (for lower bandwidth)

We want to divide it into blocks like this:

Header

Feature

Generated Main Content Alternative
Content Content

Footer

[280]

Chapter 11

We are going to look at the different templates and FCEs in a moment, but first we
need to decide the types of content areas in our structure. All of the blocks in our
design can be categorized as one of these types:

Header: This is, of course, at the top of the page and is easily recognizable in
almost all designs. Every template in the TemplaVoila Framework includes
a header, and this is typically a good place for the logo, main menu, and any
universal tools for logging in, searching, or choosing a language.

Footer: This block is at the bottom of every page template in the TemplaVoila
Framework, and it is normally reserved for the copyright information and
important links like support, FAQs, and contact information.

Main content block: This is the central block of our page where all of the
main content for this page is shown. Every page must have a main content
block, so it is also included in every built-in (or "core") page template.

Feature: This area is for content that falls right below the header of our page
template. It is normally used for banners that are unique to a page. We don't
need to use this block on every page, but it is available in every core page
template. It will only appear, if it has content.

Additional content blocks: These blocks are optionally used for secondary
content on a page. The right and left sidebars that we used in earlier
templates would be considered additional content blocks. The core page
templates are broken up into series by what additional content blocks

they support.

Generated content blocks: These blocks can be used for content that will

be automatically generated using TypoScript or plugins and displayed on
multiple pages. Local menus, login areas, and other generated content are
placed in here. Generated content blocks are only included in some of the
core page templates.

Now, using those types of blocks, we can start looking at the HTML structure that
we need to fulfill the client's needs and match the designer's mockups.

[281]

Building Websites with the TemplaVoila Framework

Page Templates

The TemplaVoila Framework comes with 15 different mapped page templates in the
core that are broken into three main series: F1, F2, and F3. All of the page templates
are similar in their main structure, but they include different content areas and
different body tag IDs for styling them in CSS or calling them in JavaScript. We can
see all of the available page templates in the TemplaVoila module in the backend,
but it helps to see what each series has to offer:

F1 Series:
e Header
e Footer

e Featured Content

e Main Content Area

F2 Series:
e Header
e Footer

e Feature Content
e Main Content Area

e Content Area 2

F3 Series:
e Header
e Footer

e Feature Content
e Main Content Area
e Content Area 2

e Content Area 3

Of course, we can use page templates from any of the series in our own website; for
example we can have a page template from the F1 series, the front page and a page
template from the F2 series on internal pages. Once we know which page templates
we want the editors to use, we can move the unneeded page templates into a
SysFolder labeled Unused Templates so they will not show up in the normal
page editing screens.

[282]

Chapter 11

Remember, these are just the core page templates that are included in the TemplaVoila
Framework. We can still create special page templates for newsletters or print later on
if we need to.

Utility FCEs

In addition to page templates, the TemplaVoila Framework includes a few built-in
FCES, or what it calls Utility FCEs, for laying out our content inside content blocks.
Using the Utility FCEs, we can add multiple columns, custom HTML tags, and other
necessary elements to our page design. If there are any FCEs that we are not going
to need for our website, we can move them to the Unused Templates folder with
our unnecessary page templates to keep them out of the way without permanently
deleting them.

There are five Utility FCEs that we will look at:

e Column groups
e Module groups
e HTML wrapper
e Plain image

e Module feature image

Column groups

Column groups are available to display multiple columns inside a page template
content block. The TemplaVoila Framework includes column groups of 2, 3, and 4
columns for us to use in our design. Compared to the basic column groups we built
ourselves earlier in the book, the column groups in the TemplaVoila Framework
have a few key advantages in how they adjust to the content area in which they

are placed.

e All column groups are self-adjusting to the content they are placed in, so they
correctly fill up the content area using pixel calculations for their maximum
width and gutters (the visual space between columns).

¢ In addition, column groups can be nested one-level deep; we can nest a
three-column group inside of a two-column group if we needed to match
a particular design. This can be especially handy if we are emulating
grid-based newspaper layouts within our designs.

[283]

Building Websites with the TemplaVoila Framework

e The gutter width is set in pixels as part of the TypoScript file for the skin
for consistency and flexibility and then output to the browser as part of the
style attribute for each column. By using TypoScript for this, the framework
will be able to use calculations to output fixed-width columns that still have
the flexibility of being moved around and changed in the backend.

e Column groups have options to define the column distribution (Half / Half,
Third / Two Third, and so on) and whether there should be a separating
line at the bottom of the column group when they are created on each page.
This makes it easy to adjust the look and feel of a column group without
remapping the template or making major content changes.

Of course, if we want our own multi-column element with different sizes of columns
than the framework has available, we can look back at Chapter 8§ to make our own
FCEs as well.

Module groups

Module groups can be used to show distinct "modules" of content on our pages with
up to four modules in a row and customizable borders. You can see an example

in the following screenshot of a module group from our TemplaVoila Framework
installation, but it's important to remember that the look of our modules can be
changed a lot through our skin and by which options we choose:

Special Features of this Site Giving the QuickSite to Others

Because it uses our Framework for TemplaVolla, this
site has the the utility FCEs (Flexible Content
Elements) for creating columns, modules and more.
Find out how these are used at
templavoila.busynoggin.com.

We ask that you not distribute this QuickSite to others
from your own servers. Rather you should provide a
link to templavoila.busynoggin.com. This will ensure
that users get the latest version and have the
opportunity to sign up for news and announcements.

Like column groups, module groups come in groups of 1, 2, 3, or 4 modules and are
self-adjusting to fill the content block they are in perfectly. Columns can be nested
one-level deep inside of modules, but modules cannot be nested inside each other.
With one level of nesting though, we can create a module with two columns of
content, for example, easily without worrying about defining widths or redefining
our gutters. Module groups also use options to define the module distribution
(Half / Half, Third / Two Third, and so on).

[284]

Chapter 11

Module options

Module groups also include options that can be set per module in the backend
editing screens like shown in the following screenshot for each group:

MODULE 1: Title

Module #1

MODULE 1: Show Title
[On -

MODULE 1: Bleed (edge to edge)
=

—

MODULE 1: Column Style (no frame)
=

[

Using these options, we can change the look of each module in a group:

e Show Title: We can choose whether or not to show the module title for each
module. This is what a module looks like with the title shown:

Title

This is a module with the title shown.

e Bleed: We can set each module to bleed to the edges or keep its margins with
the Bleed option. In the example below, the module on the left does not have
bleed turned on, so we can see the margin of white space around the image
and the text. The module on the right has bleed turned on, so there is no
margin anymore:

No Bleed

This is a module without bleed his is & module with bleed

[285]

Building Websites with the TemplaVoila Framework

Column Style (unframed): We can also set individual modules to appear
unframed so they look like columns. This is helpful if we want a content
block to look like it has a column between two modules like shown in the
following screenshot.

This is a normal module. This is a module with no frame. See how it This is a normal module.
looks like a column between two
modules?

Column-Style

corners, stylized border treatments, drop shadows, and so on)
Lo

You may notice that the modules have a lot of HTML markup. This is
done so that they can be styled in as many ways as possible (rounded

completely in CSS. In order to allow all of these designs, the HTML
markup is written to be able to use the CSS sliding doors technique
(http://www.alistapart.com/articles/slidingdoors/).

HTML wrapper

Like the HTML wrapper FCE that we built in Chapter 8, this Utility FCE allows us to
wrap a content element or set of content elements in custom HTML tags. Unlike the
one we built before, which was hardcoded to be a div tag, this FCE allows us to use
any HTML we want before and after the content elements inside of it.

Plain image

Normally, we can display images using TYPO3's built-in content elements Text with
Image or Image without any tweaking or special programming. Occasionally, we
might need more control over the display of our images. The Plain Image FCE in the
TemplaVoila Framework core lets us manually set any of these options:

Link

Alternate image text

Image width

Margin-Top

Margin-Bottom

Margin-Right

Margin-Left

Z-Index (to determine stacking order)

Display (inline, float left, float right, display block)

[286]

Chapter 11

Module Feature Image

We've seen that we can set the module to bleed when we want edge-to-edge
coverage by the image and the text. In many circumstances, we may only want the
image to bleed while the text keeps its margins inside the module. In these situations,
we can use the Module Feature Image FCE. We can set the module itself not to bleed
(so the words have spacing between them and the sides), and then we can add the
Module Feature Image FCE into the module with an image. The image defined in
the Module Feature Image will automatically stretch edge-to-edge inside the module
without affecting the rest of the content. In the example (as shown in the following
screenshot), the module on the left has bleed turned on so the text has no space
around it; the module on the right has bleed disabled so the text has space around it,
but it is using a Module Feature Image FCE at the top for the banner.

Module Set to Bleed
PN,

»

This module is not set to bleed, but we are using a
Feature Image FCE to let the image bleed without
taking away the text margin.

his module is set to bleed. Motice how the textis
bleeding as well as the image.

Creating a custom skin

The TemplaVoila Framework has two types of skins: standard skins that are
packaged with the extension and stored in the database and custom skins in a
directory that we can define. By default, custom skins are stored in fileadmin/
templates/skins/, but this can be changed in the Extension Manager. To create
a new skin, we can start by copying a standard skin, so we don't have to manually
create all of the files and directories we will need:

1. Click on the Template view on the left sidebar and choose the main template
in the root page of our site.

2. Just like when we chose a skin to use, choose Info/Modify from the
drop-down at the top of the editing pane and click on the link labeled
Edit the whole template record.

3. Go to the Skin Selector tab where we chose a skin before.

Under the skin that we want to copy click on the Copy Skin button.
For now, let's copy the Busy Noggin White Wireframe skin.

[287]

Building Websites with the TemplaVoila Framework

5. Assoon as we choose to copy the skin, the page will refresh and we can
see that there are two identical skins. More importantly, the framework has
created a new directory in our custom skin folder using the name of the
original skin. In our case, we will have a new directory named skin_bn_
white wireframe in the fileadmin/templates/skin/ directory. To make
our new skin unique, we need to rename that directory. Let's go ahead and
change the name to skin_awesome_book.

6. Next, we need to update the title and description for the skin. Inside the
fileadmin/templates/skin/skin awesome book/ directory, we can open
a file named info.txt in a text editor. The info. txt file is a plaintext file
with the current title and description. Go ahead and update the info.txt file
to look like this:

Title: Awesome Book Wireframe

Description: This is our first custom skin. It may not be perfect,
but it's ours.

7. After you save the changes to your skin, reload the Skin Selector tab and
click on the Select Skin button next to our new skin labeled Awesome
Book Wireframe.

Editing a skin

A custom skin in the Busy Noggin TemplaVoila Framework is really just a directory
that holds the unique CSS, JavaScript, TypoScript, and other files that we need to set
the look and feel of our frontend. That means that editing an entire skin can be done
just by editing the files inside of a text editor or, for CSS and JavaScript, possibly a
development environment or dedicated CSS editor like CSSEdit. Instead of working
through tools and wizards in the back end of TYPO3, we are going to look at the
individual files that we can modify in a text editor to completely change the look of
our new skin. So, let's go into our skin directory at fileadmin/templates/skin/
skin_awesome_book to start editing the files.

Editing TypoScript for the HTML structure

The HTML structure of our skin is defined using TypoScript in the skin_typoscript.
ts file inside of the typoscript/ directory of our skin folder, and we can customize it
inside a normal text editor. You'll notice that both files in the typoscript/ folder have
a unique file extension, ts, to identify them as TypoScript files.

Remember that our templates are mapped using large blocks for content, so we use
the TypoScript in this file to define the layout and functionality inside the header,
footer, and other content blocks. There are four main types of TypoScript objects

[288]

Chapter 11

inside the file that we can edit to change the structure of our templates: header,
footer, preCode, and postCode objects (which are used to customize all of the
content blocks).

The header object is simply identified as header, and this is where we can define all
of the code for the top of our page. We can use TypoScript to define a main menu,
submenu, search box, login area, or any other information that we need at the top
of every page. Because this is part of the skin, it can be changed here without any
remapping and we can copy it over to other framework-based TYPO3 sites easier.
This is some of the code from the original White Wireframe skin, and you can see
that it defines the logo and the main menu in HTML and TypoScript:

header = COA

header {
wrap = <div id="header"s | </divs>
10 = IMG_RESOURCE
10 {

file = {$siteLogo}
stdWrap.dataWrap = <h3 id="masthead" style="width:{TSFE:last
ImgResourceInfo|0}px;height: {TSFE:lastImgResourceInfo|l}px;background:
url(|) no-repeat;"s>{S$siteTitle}</h3>
}

20 = HMENU

20 {
entryLevel = 0
wrap = <ul id="globalMenu'"s|<div
class="clearOnly"> </div><!-- end #globalMenu -->
1 = TMENU

1
noBlur = 1
NO {
subst _elementUid = 1
before = <1i id="globalMenuItem-
{elementUid}">|*|<1li id="globalMenuItem-{elementUid}">|*|<1i
id="globalMenultem-{elementUid}" class="last">
after = </1i>
stdWrap.htmlSpecialChars = 1

[289]

Building Websites with the TemplaVoila Framework

The footer object is also identified simply as footer in the TypoScript file, and it can be
found near the bottom of the code. We can use standard TypoScript to enter copyright
information, contact details, and anything else that we need at the bottom of the screen
just like we would in the TypoScript template setup of our website. In the code from
the White Wireframe skin, we can see that Busy Noggin has included the TypoScript
constant copyright and a link to his website as part of the footer object:

footer = TEXT
footer ({

data = date:U

strftime = %Y

dataWrap = <div class="clearOnly"> </div><div
id="footer" class="clear"><p id="footerCopyright"s>©
; | {Scopyright}</p><a id="footerHomeLink" href="http://www.
busynoggin.com/">www.busynoggin.com<div class="clearOnly"> </
divs</div><!-- end #footer -->

}

The TypoScript code includes many objects with names starting with precode
and postCode to wrap around different parts of the template. For example,
preCodeFeature and postCodeFeature will place code directly before and after
the feature content block, but only if the feature content area is used on a page. In
the same way, there are preCode and postCode objects for almost all of the content
blocks available in our templates, but they will only show up when that content
block is used. We can wrap the secondary content block in all of our templates
with two unique content areas with the objects preCodeContentBlock-2 and
postCodeContentBlock-2. There are a lot of precode and postCode objects
available, but most of them are set to null in the TypoScript code. The easiest way
to start modifying them is to find the definition for the block we want to edit in a
working example skin like the wireframe and add our own TypoScript to replace
the null values.

Another helpful object, additionalDocHeadCode, can be found at the bottom of
skin typoscript.ts. We can use additionalDocHeadCode to add extra CSS or
JavaScript to the head of our HTML structure right after the standard stylesheet and
JavaScript includes. For example, the wireframe skin adds a special Internet Explorer
6 stylesheet after the rest of our CSS files by default:

additionalDocHeadCode = HTML
additionalDocHeadCode.value (
<!--[i1f IE 6]>
<link rel="stylesheet" type="text/css" href="{$templavoila
framework.skinPath}css/ie6.css" />
<! [endif]-->

[290]

Chapter 11

This is an advantage over the traditional way because it means that we can upload
our skin to a staging server or copy it for another site, and we don't have to worry
about editing the TypoScript template setup to load additional CSS files.

Finally, we can also target individual page templates with our TypoScript objects.
Remember that all of the templates have a unique identifier like F3b or F1c. We
can add the unique identifier to the beginning of our object path to target these
specific page templates. For example, in TypoScript, we can set £3b. header to show
a different menu configuration. All of the page templates except F3b will pull the
code from the header object, but any pages using the F3b template will pull their
header code from the £3b.header object. This can be useful if we want to create a
specialized look for certain page templates, and it can be used very effectively with
page template groups like F1a, F1b, and F1c where the only structural difference
is the template identifier. For example, all three templates could be identical in
everything except for the header.

Editing CSS

All of the CSS for our skin is stored in, of course, the css/ directory. The
TemplaVoila Framework will automatically call two default skins, mainstyle.css
and rte.css, but we can also use the directory to store any additional CSS files that
we call through the additionalDocHeadCode object in our skin_typoscript.ts
file. In addition to the actual CSS files, we can store all of the images used by our
stylesheets in the css/images/ directory. By storing the images in a subfolder with
our CSS, we can test our styles easier with tools like CSSEdit and insure that no
images of ours are lost when we move our CSS to another framework installation
or even another skin.

The rte.css file contains all of the styling like typography and paragraph or header
styles that we want to include both in the rich text editor and the frontend. We've
already seen this before in earlier chapters, but we want to give the editors a better
backend experience by using the same fonts, line heights, headers (h1-hé), and

other styles in the RTE as what is used in the frontend. Like before, we can also add
unique classes to this stylesheet like redText or blueText, and we can configure the
TSconfig to show them in the RTE drop-down menus.

[291]

Building Websites with the TemplaVoila Framework

The main stylesheet, mainstyles.css, is used for the frontend layout and contains
all of the CSS code except what we have already placed in rte.css. The naming
conventions, ID names, and class names in the mainstyles.css included with the
wireframe skin provide a blueprint to building our own stylesheets. Each template
has its own unique ID for the body tag, so they be can styled using declarations like
#£1d and #£2a. In addition, the individual content blocks from the core templates
have unique identifiers that we can see in the wireframe CSS like #feature,
#generatedContent-1, and #contentBlock-2. By using the wireframe skin as an
example, we can create our own styling from scratch or adapt CSS files from other
developers to style our skin.

Editing TypoScript constants

After we've worked on some CSS, we will probably need to update the TypoScript
constants for our skin. The TypoScript constants for our skin are defined in the
skin_constants.ts file inside the typoscript/ directory, and they are available
to define the default settings for many of the framework's features like bleed

and padding:

featureBleedDefault = 0
featureLeftPadding = 0
featureRightPadding = 0

These constants can be overridden in the TypoScript templates through the
Constants Editor, but we can set defaults here to provide a consistent baseline for
anywhere our skin is installed. In fact, on our own sites we should rarely have to

set any of these constants in the Constants Editor because they are so easy to update
with a text editor in the skin files.

More importantly than setting defaults, the TypoScript constants file defines the
widths of the frontend containers for every core page template. The widths do not
take into account padding, margin, or border sizes, but they are used to calculate the
relative widths of columns, modules, and the maximum image sizes. If we change
the size of our containers in the CSS, we need to adjust the values in this file. When
the values are set correctly, the TemplaVoila Framework can automatically set the
frontend size of columns or modules in pixels by taking into account the container
width that we set here, gutters, and the distribution (Half / Half, Third / Two Third,
and so on).

[292]

Chapter 11

Adding JavaScript

All of our JavaScript files for the framework skin go in the js/ directory, and
a default JavaScript file, skin. js, is provided for us that will be automatically
loaded by the templates. If we have additional JavaScript files that we want to
use, they can be placed in the js/ directory as well and included through the
additionalDocHeadCode object in the TypoScript file for our skin.

The TemplaVoila Framework automatically loads jQuery to make the
modules within a group equal in height using the built-in core. js file.
If you do not want to automatically include the jQuery library, you can
disable it by adding this constant declaration to the skin constants.

~ ts file:
enabledQuery = 0

Of course, if you choose to set this constant to zero neither jQuery nor
the core. js file will be loaded. If you want to include jQuery some
other way or have equal height modules, you will need to add your own
JavaScript in the js/ directory.

The skin. js file and any files that we add will be included after the jQuery library,
s0 jQuery plugins can be used without a problem. In order to prevent conflicts with
other JavaScript libraries, the TemplaVoila Framework loads jQuery in noconflict
mode. This means that we must use the word jQuery instead of a $ to load jQuery
methods and objects:

// This is correct

jQuery (' .myClass') .hide () ;
//This is not correct
$('.myClass') .hide () ;

Additional resources

In addition to the required files and directories in our skin directory, we can create
other directories to keep additional resources with our skin. For example, we can
create a fonts/ directory to store any fonts we load through TypoScript or CSS.
Finally, we can replace the screenshot . jpg with an updated representation of
our skin for the editors or other site builders to see in the Skin Selector.

[293]

Building Websites with the TemplaVoila Framework

Adding special functionality

Now that we've created a custom skin, we can still put more of our TemplaVoila
and TypoScript skills to work. We might still need a lean, table-based page template
for our e-mail newsletter, and we still might want to add another language to our
site. Luckily, the TemplaVoila Framework is just a framework, and we still have

all of the power of TemplaVoila and TypoScript at our disposal. We can create our
own template objects in TemplaVoila to handle the newsletter, but this time we can
use field names from the core data structure XML files so we don't need to remap
anything. We can still add our own data structures fields as well. We can also plug
in any of the TypoScript that we really need in the main template or create custom
FCEs for advertising or product display. The workflow of our special functionality
can all stay the same, or we can try to build on some of the standard features that
the framework makes available. In either case, we're probably going to want to do
some custom TypoScript and TemplaVoila coding using what we've learned, and
the framework will get out of our way for that kind of development.

Adding content

As the TemplaVoila Framework is a framework for TypoScript and TemplaVoila,
adding content and editing pages is almost exactly the same as it has always been.
The only difference is a uniform new look to the backend using a tab for each content
block, and you can see how clean it looks in the following screenshot. For normal
editing, we can choose any templates that we didn't move to the Unused Templates
folder in the Page Properties and start adding content. Any Utility FCEs that we did
not move to the Unused Templates folder, like columns or modules, can be added

to a page like the flexible contents that we used before. Here is an example of a

test page with a three-column group in the main content area with the new

backend layout:

[294]

Chapter 11

Feature Content Area 2 Content Area 3

EThis is a test area.
Text: This is a test area.

@[No title] P~ -
3 Column Group

B cColumn 1 s gt W Column 2 PA = ol AT W column 3 7 ®gte M w

Header: Column 1 Header: Column 2 Header: Column 3

Feature content

The Feature block is specially designed for banners or featured content at the top
of our pages. It is available in all of the core page templates, but is not shown on
the frontend until we add content to it. In addition to only being created when it
has content, the Feature block is special because we can set it to bleed (display
edge-to-edge without margins or padding) in the Page Properties. If we don't set
it in the Page Properties, it will automatically use the default setting in the skin's
TypoScript constants file (skin_constants.ts).

[295]

Building Websites with the TemplaVoila Framework

Generated content

We can add generated content to our pages by using a core template with a
generated content block and placing dynamic content elements into one of our
generated content SysFolders:

v WEB Path: ...e QuickSite/Genei

B Page

&¥ BN QuickSite Basic 2.0.5
v-[] The Quicksite = @K e

List [Header:

@ Info 5

2 a [About the Quicksite [E [No title] @sEOREO

| Access [ski

: Skin Selection
] E e}
Functions Styling Guide [Local Menu B/ HOBC
" Module Testing
Versioning = -

@ " Page Not Found ¥ Extended view

li| Template v eferatet -ty [} show clipboard

B Templavoila (7 Generated Content-1 =) (el G

Recycler i S 3
ﬁ g -] Site Resources
4
¥ FILE ¥ 5
Search 5tring: This page b | Search

[Filelist

Show records:
» USER TOOLS
» ADMIN TOOLS
» HELP

For example, a template with a content block mapped to Generated Content-1
will automatically show all of the content elements in the Generated Content-1
system folder. This is helpful for including local menus or generated ads in some
of our pages.

If we want to create local menus, we normally need access to the template to use the
power of TypoScript for this:

10 = HMENU
10.entryLevel = 1

10.wrap = <ul id="localMenu"s>|<!-- end #localMenu -->
10.1 = TMENU
10.1 {

noBlur = 1
NO.wrapItemAndSub = <lis>|</1li>

ACT = 1
ACT.wrapItemAndSub = <li class="active">|
CUR =1

CUR.wrapItemAndSub = <li class="current"s>|

[296]

Chapter 11

Luckily, QuickSite includes a TypoScript Code extension, so we can add our

own arbitrary TypoScript by creating a new content element, choosing Insert plugin
as the content type, and choosing the TypoScript code plugin from the Plugin
drop-down menu. Then we can add our own TypoScript into the content element
like this:

Edit Pagecontent "Local Menu" on page "Generated Content-1"

General Plugin Access

Plugin:
TypoScript code %

Plugin Options:
DEF:

TypoScript code

10 = HMENU
10.entrylLevel = 1
10.wrap = <ul id="localMenu"=|<!-- end #localMenu --=>
10.1 = TMENU
10.1 ¢
noBlur =1
MNO.wrapltemAndSub = <li=|</li=
ACT=1
ACT.wrapltemaAndSub = <l|i class="active">=|
CUR =1
CUR.wrapltemAndSub = <li class="current"=|</li=

A

Summary

We just learned about a new framework that can help us build sites faster and more
consistently with a standard code base and a core set of page templates and FCEs.
Of course, we were really only able to scratch the surface of creating sites with the
Busy Noggin's TemplaVoila Framework. The only way to really understand the
Framework or TYPO3 templates at all is to start coding. Now that we know how it
works as a framework, we can start integrating our knowledge of TypoScript menus
to make our header really stand out with custom menus or build a skin that works
with mobile browsers.

[297]

Building Websites with the TemplaVoila Framework

Even if we decide not to use the TemplaVoila Framework on a project today because
we're working with an existing site that we're afraid of breaking, it's good that we
took some time to learn the TemplaVoila Framework. It is a great chance to look at
some best practices in action and see some of the future trends of TYPO3 (cleaner
coding and rapid development); we might think about ways that we can reduce the
amount of remapping necessary between our templates or make editing easier with
tab-based back end layouts. For further reading about the TemplaVoila Framework,
you can go to http://templavoilaframework.sitebuilderlab.com.

TYPO3 Templates summary

Congratulations, you made it! We have successfully learned how to create our own
templates from scratch, add dynamic elements, create awesome menus, and make
our own flexible content elements. In the end, we even learned about three emerging
technologies that many other TYPO3 site creators are just starting to experiment
with: mobile websites, international websites, and the TemplaVoila Framework.

Now is the most important part. You can relax for five minutes, drink your coffee,
and feel accomplished that you finished this rather large book. After that, open

a browser window to your test site, fire up your text editor, and start creating.
You should still be at least a little excited about what you've learned, and I'm sure
something in here has given you an idea that you want to work on. So, start
building it. Play. Experiment. Make stuff.

[298]

A

additional resources, custom skin 293
addParams, menu item properties 77
afterImgLink, TMENU Properties 79
afterImg, TMENU Properties 79
after, menu item properties 78
afterROImg, TMENU Properties 79
afterWrap, TMENU Properties 79
align property, TEXT object 86
allowedClasses property 171
allowTagsOutside property 171
allowTags property 171
allWrap, menu item properties 77
allWrap property 80
Alternative Page Language record
content elements, translating 256-258
creating 253, 254
altImgResource property 94
angle property, TEXT object 86
ATagParams, menu item properties 77
ATagTitle, menu item properties 77

B

backend layout files
using, for template objects 180, 181
backend layout, for data structure
setting, with multiple template objects 178,
179
Balsamiq Mockups
about 132
URL 132
banner, adding to TemplaVoila template
about 54
banner element, adding 54, 56

Index

data element, configuring 56, 58
data structure XML, viewing 58, 59
new data element, using 60, 61
space, adding to HTML file 54
banner field, data structure elements 140,
142
basic HTML template
content section 17
creating 16
menu area 17
root tag 17
basic language menu
adding, to TemplaVoila templates 261, 262
adding, to TypoScript template 262, 263
changes, viewing on frontend 264
basic requisites, TYPO3 templates
about 8
basic HTML/CSS knowledge 8
test server 8
text editor 8
TYPO3 4.4 or higher with the dummy
package installed 9
basic stylesheet
creating 33-36
beforeImg functions 94
beforeImgLink, TMENU Properties 79
beforelmg, TMENU Properties 79
before, menu item properties 78
beforeROImg, TMENU Properties 79
begin, HMENU properties 76
BOX.color property, BOX object 85
BOX.dimensions property, BOX object 85
BOX object, GIFBUILDER
about 85
BOX.color property 85
BOX.dimensions property 85

breadcrumb navigation 98-100
browser compatibility
testing 224, 225
browser condition
about 220
syntax 220
browser, TypoScript conditions 220
browser values, TYPO3 4.3.x
ibrowse 220
lynx 220
msie 220
netscape 220
opera 220
browser values, TYPO3 4.4+
amaya 221
aol 221
camino 221
chrome 220
firefox 220
flock 221
gecko 220
konqueror 220
lynx 221
msie 220
netscape 220
omniweb 221
opera 220
safari 221
seamonkey 221
webkit 220
Busy Noggin White Wireframe skin
using 278

C

classesAnchor property 166
classesCharacter property 166
classesImage property 166
classesParagraph property 166
classes properties, rich text editor 165
classesTable property 167
classesTD property 167
column groups, FCEs

about 283

advantages 283
contact information fields, data structure

elements 146

content
adding to front page 29-31
adding, to TemplaVoila Framework 294
contentCSS property 163
content elements
translating 256-258
content elements translation
about 256
content, adding without default language
259
TemplaVoila translator workflow 260
universal elements, creating 258
content, TemplaVoila Framework
feature content 295
generated content 296
CSS
adding, with TemplaVoila wizard 38, 39
including, with page.headerData 42, 43
including, with page.includeCSS 41, 42
including, with page.stylesheet 39- 41
CSS, custom skin
editing 291, 292
CSS properties, rich text editor
contentCSS 163
ignoreMainStyleOverride 162
inlineStyle 162
mainStyleOverride 162
updating 162-165
customized data structure, product display
element
creating 208
product class 210, 211
product description 213
product image 211, 212
product link 214
product link, testing 214
product name 208, 209
product price 212,213
custom skin, TemplaVoila Framework
additional resources 293
creating 287, 288
CSS, editing 291, 292
editing 288
JavaScript, adding 293
TypoScript constants, editing 292
TypoScript, editing 288-291

[300]

D

data structure
creating 137-140
data structure elements
banner field 140-142
contact information fields 146
creating 140
date field 142
event container field 145
event date and city fields 145
footer field 147
main article field 143
news fields 143
product fields 146
upcoming events list 144
upcoming events title field 144
date, adding to TemplaVoila template
about 61
data element, creating 62, 63
new banner, displaying 64
space, adding to HTML file 62
updated XML, viewing 63
date and time, loading
about 64
timestamp element, changing 65, 66
timestamp object, adding 67
date field, data structure elements 142
default markup, TYPO3
about 44
bullet lists 47
headers 45
image with text areas 45, 46
removing 49
tables 48, 49
Deftone font 89
disableContextMenu property 169
disableEnterParagraphs property 170
disableRightClick property 169
dynamic logo
adding, to TemplaVoila template 67-69

E

emboss.blur property, TEXT object 87

emboss.offset property, TEXT object 87
emboss.opacity property, TEXT object 87
entryLevel, HMENU properties 75
event container field, data structure
elements 145
event date and city fields, data structure
elements 145
example page, newsletters
creating 153, 154
test content, adding 154-156
excludeUidList, HMENU properties 76
extension template
creating 118, 120
external mobile site
redirecting to 239-241

F

FCEs. See Utility FCEs
Feature block 295
feature content
adding, to TemplaVoila Framework 295
file property, IMAGE object 85
first graphic menu
creating 89, 90
main menu code 91
modifying, based on menu states 90
first template, creating with TemplaVoila
wizard
about 18
action column 21
data elements 21
elements, mapping 22, 23
finished template, testing 26
header parts 24
HTML-path 21
HTML template, selecting 19
main menu, creating 25
mapping instructions 21
mapping rules 22
new site, configuring 19
submenu, creating 25
template, mapping 20
flags, for language selection
adding 265-267

emboss.highColor property, TEXT object 87 Flexible Content Elements 12

emboss.intensity property, TEXT object 87
emboss.lowColor property, TEXT object 87

flexible HTML wrapper

[301]

content element, building 196, 197 HMENU properties

content element, testing 198, 199 about 75
creating 195 begin 76
folder entryLevel 75
creating, in page tree 151, 152 excludeUidList 76
fontColor property, TEXT object 86 maxItems 75
fontFile property, TEXT object 86 special 76
fontSize property, TEXT object 86 htmlArea RTE 161
footer field, data structure elements 147 HTML editor properties, rich text editor 170
HTML template
G creating 133-136
HTML Wrapper 197
generated content HTML wrapper FCE 286
adding, to TemplaVoila Framework 296
GIFBUILDER |
about 84
BOX object 85 icons, for templates
IMAGE object 85 creating 114-117
layers 87 ignoreMainStyleOverride property 162
main objects 84 IMAGE object, GIFBUILDER
properties 88 about 85
TEXT object 86 file property 85
globalString condition offset property 85
syntax 223 tile property 85
globalVar condition inlineStyle property 162
syntax 223 internationalization 244
GMENU 74
GMENU properties J
about 88
max 88 jQuery library 293
min 88
useLargestltemX 89 K

useLargestltemY 89

graphic menu keepButtonGroupTogether property 169

about 83, 84 L
creating, with boxes 92, 93
submenu code 93, 94 language condition
about 223
H syntax 223

Larabie Fonts 89

headerData function 42 linkWrap, menu item properties 78

hideButtons property 168

hideTableOperationsInToolbar property losggj?tzz
169 .
HMENU adding, to pages 252-254

about 72, 73 adding, to website 245

properties 75

[302]

localization, adding to pages
about 252-254
localization tab, using in Page view 254
non-translated pages, hiding 255
localization, adding to website
language, adding to TypoScript 249-251
website language, adding 246-249
localized logo
adding 267
localized TemplaVoila templates
creating 268, 269
loginUser condition
syntax 223

main article field, data structure elements
143

mainStyleOverride property 162
main stylesheet, requisites

conditional CSS 38

extensibility 38

multiple CSS files 38

order 38

stability 38
max, GMENU properties 88
maxItems, HMENU properties 75
menu item properties

about 77

addParams 77

after 78

allWrap 77

ATagParams 77

ATagTitle 77

before 78

linkWrap 78

wrap 78
menu items

separators, adding 79
menu item states

about 74

ACT 74

ACTIFSUB 75

CUR 74

IFSUB 74

NO 74

sRO 74

USR 75
menu objects
about 73
types 73,74
menus
creating 71
external images, using 94-97
other types 97
page tree concepts 72
methods, for including stylesheets in
TYPO3
about 37
CSS, adding with TemplaVoila wizard 38,
39
CSS, including with page.headerData 42,
43
CSS, including with page.includeCSS 41, 42
CSS, including with page.stylesheet 39-41
microformats
URL 190
Microsoft Visio
about 132
URL 132
min, GMENU properties 88
mobile subtemplate
adding, to TypoScript template setup 238
creating 234
new option, adding 234, 235
TemplaVoila template, creating for mobile
devices 236-238
mobile website, TYPO3
advantages 217
conditions 218, 219
creating 217, 226
mobile device, detecting 227
mobile stylesheet, creating 228
mobile subtemplate, creating 234
new option, adding to subtemplate pages
234, 235
non-mobile link, adding 231-233
TypoScript modifications, implementing
230
TypoScript objects, customizing 229
Module Feature Image FCE 287
module groups, FCEs
about 284
options 285

[303]

multi-column layout element
creating 200-202
extending 203-205

N

news fields, data structure elements 143
niceText property, TEXT object 86

(0

offset property, IMAGE object 85
offset property, TEXT object 86
OmniGraffle

about 132

URL 132
optionSplit function 79

P

page.headerData 42
page.includeCSS 41
page layouts, for TYPOS3 sites
designing 279-281
page templates 282
page metadata, TemplaVoila template
modifying 51-53
Page module customization
about 171
backend layout, assigning 175, 176
CSS styling, adding 177
HTML layout, creating 172-174
page.stylesheet 39, 40
page templates, TemplaVoila Framework
282
page tree concepts
about 72
level 72
page tree 72
rootline 72
page tree, TYPO3
about 26, 27
folder, creating 151, 152
Plain Image FCE
about 286
options 286
printable link
adding, to data structure 126, 127

adding, to templates 125,126

creating 125

generating, TypoScript used 127,128
printable template

creating 121

print-only stylesheet, creating 121, 122

subtemplate, creating 123-125
print-only stylesheet

creating 121, 122
product display element

creating 206

customized data structure, creating 208

HTML/CSS template, creating 206, 207

results, viewing 215, 216

product fields, data structure elements 146

Q

QuickSite
about 275
installing 274
setting up 275
site URL, assigning 275
skin, selecting 276
viewing 278

R

removeComments property 170
removeTagsAndContents property 170
removeTags property 170
removeTrailingBR property 170
rich text editor

about 160

classes properties 165

CSS properties, updating 162-165

HTML editor properties 170

RTE class properties 166

toolbar properties 167, 169

TSconfig, editing 161, 162

updating 160, 161
RTE class properties, rich text editor

about 166

classesAnchor 166

classesCharacter 166

classeslmage 166

classesParagraph 166

classesTable 167

[304]

classesTD 167
showTagFreeClasses 166
RTE Editor properties
allowedClasses 171
allowTags 171
allowTagsOutside 171
disableEnterParagraphs 170
removeComments 170
removeTags 170
removeTagsAndContents 170
removeTrailingBR 170

S

separators

adding, to menu items 79
shadow.blur property, TEXT object 86
shadow.color property, TEXT object 86
shadow.intensity property, TEXT object 86
shadow.offset property, TEXT object 86
shadow.opacity property, TEXT object 86
showButtons property 167
showStatusBar property 169
showTagFreeClasses property 166
special functionality

adding, to TemplaVoila Framework 294
special, HMENU properties 76
static data structures, TemplaVoila 1.4.2

about 182

modifying 186, 187

setting up 183-186

using 181
stylesheets, including in TYPO3

about 37

methods 37
subtemplate

creating 123-125
system condition

about 222

syntax 222
system values

amiga 222

linux 222

mac 222

unix_hp 222

unix_sgi 222

unix_sun 222

win95 222
win98 222
win311 222
winNT 222

T

template
assigning, to pages 112,113
assigning, to subpages 117, 118
designing 132
wireframe, creating 132
template object
mapping 148-150
templates, with sidebars
columns, adding to data structure 105-107
creating 104
HTML and CSS, creating 104, 105
template objects, mapping 110, 112
TemplaVoila template objects, creating
107-110
TemplaVoila
about 12
installing 12-15
TemplaVoila Framework
about 272
benefits 272, 273
content, adding 294
custom skin, creating 287, 288
custom skin, editing 288
installing 274
page templates 282
special functionality, adding 294
Utility FCEs 283
workflow 274
TemplaVoila template
banner, adding 54
banner element, adding 54
data structures 54
date, adding 61
date and time, loading from TypoScript
template 64
dynamic logo, adding 67-69
page metadata, modifying 51-53
template objects 54
TemplaVoila template objects
creating 107-110

[305]

TemplaVoila translator workflow 260
TemplaVoila wizard
first template, creating 18
text-based menus
about 78
final code 82, 83
redesigning 80-82
text.field property, TEXT object 86
TEXT object, GIFBUILDER
about 86
align property 86
angle property 86
emboss.blur property 87
emboss.highColor property 87
emboss.intensity property 87
emboss.lowColor property 87
emboss.offset property 87
emboss.opacity property 87
fontColor property 86
fontFile property 86
fontSize property 86
niceText property 86
offset property 86
shadow.blur property 86
shadow.color property 86
shadow.intensity property 86
shadow.offset property 86
shadow.opacity property 86
text.field property 86
tile property, IMAGE object 85
TMENU 74
TMENU properties
about 79
afterlmg 79
afterImgLink 79
afterROImg 79
afterWrap 79
beforelmg 79
beforelmgLink 79
beforeROImg 79
toolbarOrder property 168
toolbar properties, rich text editor
about 167
disableContextMenu 169
disableRightClick 169
hideButtons 168
hideTableOperationsInToolbar 169

keepButtonGroupTogether 169
showButtons 167
showStatusBar 169
toolbarOrder 168
TSconfig, rich text editor
editing 161, 162
TSref 75
TSref document 161
TYPO3
about 7
basic stylesheet, creating 33-36
default markup 44
default markup, removing 49
external mobile site, redirecting to 239-241
flexible menus, creating 71
internationalization 244
localization 244
mobile website, creating 217
TYPOS3 page tree 26, 27
TYPOS3 sites
building, TemplaVoila Framework used
271
page layouts, designing 279-281
wireframing 278, 279
TYPOS3 templates
basic requisites 8
content, adding to front page 29-31
error 27,28
extension template, creating 118, 120
FCEs 190
history 9, 10, 11
icons, creating 114-117
printable link, creating 125
printable template, creating 121
templates, assigning to pages 112, 113
templates, assigning to subpages 117, 118
templates, creating with sidebars 104
TYPO3 Templates summary 298
TypoScript 9
TypoScript conditions, for mobile website
about 218, 219
browser 220
globalString 223
globalVar 223
language 223
loginUser 223
system 221

[306]

useragent 222
userFunc 224
version 221
TypoScript constants, custom skin
editing 292
TypoScript, custom skin
customizing 288-291
TypoScript extension template 41
TypoScript template
page metadata, modifying 51
updating 51
TypoScript values
setting 152, 153

U

upcoming events list, data structure
elements 144
upcoming events title field, data structure
elements 144
useLargestItemX, GMENU properties 89
useLargestItemY, GMENU properties 89
useragent condition
about 222
syntax 222
userFunc condition
syntax 224
Utility FCEs
about 190, 283
advantages 206
column groups 283

content element, building 190-194
content element, testing 194
creating 190

HTML wrapper 286

Module Feature Image 287
module groups 284

Plain image 286

\'

version condition
about 221
syntax 221
version operators 221

w

website
content elements, translating 256
flags, adding for language selection 265-267
language menu, adding 261, 262
localization, adding 245
localized logo, adding 267
wireframe
creating 132
wireframe mockup 132
wireframe skin
using 279
workflow, TemplaVoila Framework 274
wrap, menu item properties 78
WYSIWYG editor 160

[307]

open source

community experience distilled

PUBLISHING

Thank you for buying
TYPO3 Templates

About Packt Publishing

Packt, pronounced "packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

TYPO3 Extension Development
ISBN: 978-1-847192-12-7 Paperback: 232 pages

Developer's guide to creating feature rich extensions
using the TYPO3 API

1. Covers the complete extension development
process from planning and extension
generation through development to writing

documentation

TYPO3

Extension Development 2. Includes both front-end and back-end
development

3. Describes TYPO3 areas not covered in the
official documentation (such as using AJAX
and elD)

Mastering TypoScript: TYPO3
Website, Template, and Extension

Development
ISBN: 978-1-904811-97-8 Paperback: 400 pages

Build powerful web applications, quickly and cleanly,
with the Django application framework

. . 1. Powerful control and customization using
Mastering TypoScript TypoScript

TYPO3 Website, Template, and Extension Development
2. Covers templates, extensions, admin, interface,
menus, and database control

Daniel Koch PACKT. 3. You don't need to be an experienced PHP
- developer to use the power of TypoScript

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Basic requirements
	How templates were created
	Introducing TemplaVoila!
	Installing TemplaVoila
	Creating a basic HTML template
	The root tag
	The menu area
	The content section

	Creating your first template with the TemplaVoila Wizard
	Selecting the HTML template
	Configuring the new site
	Mapping the template
	Data elements
	Mapping instructions
	HTML-path
	Action
	Mapping rules
	Starting to map
	Mapping the rest of our elements

	Header parts
	Creating the main menu
	Creating the submenu
	Testing the finished template

	The page tree
	If something didn't work right
	Adding content to our front page
	Summary

	Chapter 2: Enhancing Your Template with CSS
	Creating a basic stylesheet
	Including stylesheets in TYPO3
	What you need for your main stylesheet
	Adding CSS with the TemplaVoila Wizard
	Including CSS with page.stylesheet
	Including CSS with page.includeCSS
	Including CSS with page.headerData

	Using default markup in TYPO3
	Headers
	Image with text areas
	Bullet lists
	Tables
	Removing default markup in TYPO3

	Summary

	Chapter 3: Adding Custom Template Fields
	Modifying the page metadata
	Adding a banner
	Adding space for the banner to our HTML file
	Adding the banner element to TemplaVoila
	Configuring a data element
	Viewing the data structure XML

	Using our new data element

	Adding the date to our template
	Adding space for the date to our HTML file
	Creating a data element
	Viewing the updated XML
	Showing our new banner

	Loading the date and time from the TypoScript template
	Changing our timestamp element in the data structure
	Adding the timestamp object to the TypoScript template

	Adding a dynamic logo
	Summary

	Chapter 4: Creating Flexible Menus
	Page tree concepts
	Introducing HMENU
	Types of menu objects
	Menu item states
	HMENU properties
	Common menu item properties
	Introducing text-based menus
	TMENU Properties

	Adding separators to menu items
	Redesigning the text-based menus
	Final code

	Introducing graphic menus
	Introducing GIFBUILDER
	The BOX object
	IMAGE object
	The TEXT object
	GIFBUILDER layers
	GIFBUILDER properties

	GMENU properties
	Creating our first graphic menu
	Modifying based on menu states
	Main menu code

	Creating a graphic menu with boxes
	Submenu code

	Using external images for menus
	Other types of menus
	Breadcrumb navigation
	Pulling it all together
	Summary

	Chapter 5: Creating Multiple Templates
	Creating new templates with sidebars
	Creating the HTML and CSS
	Adding columns to the data structure
	Creating new TemplaVoila template objects
	Mapping new template objects

	Assigning a new template to our pages
	Creating icons for templates
	Assigning templates to subpages
	Creating an extension template
	Creating a printable template
	Creating a print-only stylesheet
	Creating a subtemplate

	Creating a printable link
	Adding a printable link section to the templates
	Adding the printable link field to the data structure
	Generating a printable link with TypoScript

	Summary

	Chapter 6: Creating a Template from Scratch
	Designing the template
	Creating a wireframe

	Creating the HTML template
	Creating the data structure
	Creating data structure elements
	The banner field
	The date field
	The main article field
	The news fields
	The upcoming events title field
	The upcoming events list
	The event container field
	The event date and city fields
	The product fields
	The contact information fields
	The footer field

	Mapping the template object
	Creating a folder in the page tree
	Setting the TypoScript values
	Creating an example page
	Adding test content

	Summary

	Chapter 7: Customizing the Backend Editing
	Updating the rich text editor
	Editing the TSconfig
	CSS properties
	Classes properties
	RTE class properties
	Toolbar properties
	HTML editor properties

	Customizing the Page module
	Creating the HTML layout
	Assigning the backend layout
	Adding some CSS styling

	Setting a backend layout for a data
structure with multiple template objects
	Using backend layout files for template objects
	Using static data structures in
TemplaVoila 1.4.2
	What are static data structures
	Setting up static data structures
	Modifying static data structures

	Summary

	Chapter 8: Working with Flexible Content Elements
	Introducing flexible content elements
	Creating our first flexible content element
	Building the content element
	Testing our new content element

	Creating a flexible HTML wrapper
	Building the content element
	Testing our new content element

	Creating a multi-column layout element
	Extending the multi-column layout element
	Creating a product display element
	Creating the HTML and CSS
	Creating a customized data structure
	Product name
	Product class
	Product image
	Product price
	Product description
	Text for product link
	Product link

	Viewing our results

	Summary

	Chapter 9: Creating a Mobile Website
	Introducing conditions
	Browsers
	Versions
	Operating systems
	User agents
	Language
	Logged in users
	Global variables and strings
	User function

	Testing browser compatibility
	Creating a mobile version of your website
	Detecting a mobile device
	Creating a mobile stylesheet
	Customizing our TypoScript objects
	Bringing it all together

	Adding a non-mobile link
	Creating a mobile subtemplate
	Adding a new option to our subtemplate pages
	Creating a new TemplaVoila template for mobile devices
	Adding our subtemplate to the TypoScript template setup

	Redirecting to an external mobile site
	Summary

	Chapter 10: Going International
	Introduction to internationalization and localization
	Adding localization to a website
	Adding a website language
	Adding your languages to TypoScript

	Adding localization to pages
	Using the localization tab in the Page view
	Hiding non-translated pages

	Translating content
	Creating universal elements
	Adding content without a default language
	TemplaVoila translator workflow

	Adding a basic language menu
	Adding the language menu to our TypoScript template
	Viewing our changes on the frontend

	Adding flags for language selection
	Adding a localized logo
	Creating Localized TemplaVoila templates
	Summary

	Chapter 11: Building Websites with the TemplaVoila Framework
	What is the TemplaVoila Framework?
	Benefits of the TemplaVoila Framework
	The TemplaVoila Framework workflow
	Installing the TemplaVoila Framework
	Setting up QuickSite for the first time
	Assigning a site URL
	Selecting a skin
	Viewing our QuickSite frontend

	Planning with the wireframe skin
	Designing the page layouts
	Page Templates

	Utility FCEs
	Column groups
	Module groups
	Module options

	HTML wrapper
	Plain image
	Module Feature Image

	Creating a custom skin
	Editing a skin
	Editing TypoScript for the HTML structure
	Editing CSS
	Editing TypoScript constants
	Adding JavaScript
	Additional resources

	Adding special functionality
	Adding content
	Feature content
	Generated content

	Summary
	TYPO3 Templates summary

	Index

