
www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Theme Design

A complete guide to creating professional
WordPress themes

Tessa Blakeley Silver

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Theme Design

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2008

Production Reference: 1230508

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-09-4

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author

Tessa Blakeley Silver

Reviewer

Laurens Leurs

Senior Acquisition Editor

David Barnes

Development Editor

Nikhil Bangera

Technical Editor

Mithun Sehgal

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Indexer

Hemangini Bari

Proofreader

Cathy Cumberlidge

Production Coordinator

Shantanu Zagade

Aparna Bhagat

Cover Work

Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Tessa Blakeley Silver's background is in print design and traditional illustration.
She evolved over the years into web and multi-media development, where
she focuses on usability and interface design. Prior to starting her consulting
and development company, hyper3media (pronounced hyper-cube media)
(http://hyper3media.com), Tessa was the VP of Interactive Technologies at
eHigherEducation, an online learning and technology company developing
compelling multimedia simulations, interactions, and games that met online
educational requirements like 508, AICC, and SCORM. She has also worked as
a consultant and freelancer for J. Walter Thompson and The Diamond Trading
Company (formerly known as DeBeers), and was a Design Specialist and Senior
Associate for PricewaterhouseCoopers' East Region Marketing department. Tessa
authors several design and web technology blogs. WordPress Theme Design is her
second book for Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Getting Started as a WordPress Theme Designer	 7

WordPress Perks	 7
Does a WordPress Site Have to Be a Blog?	 8
Pick a Theme or Design Your Own?	 9

Drawbacks to Using a Pre-Made Theme	 9
This Book's Approach	 10
Things You'll Need to Know	 10

WordPress	 10
CSS	 11
XHTML	 11
PHP	 11
Not Necessary, but Helpful	 12

Tools of the Trade	 13
HTML Editor	 13
Graphic Editor	 13
Firefox	 14
We'll Be Developing for Firefox First, then IE	 14

Summary	 15
Chapter 2: Theme Design and Approach	 17

Things to Consider	 17
Types of Blogs	 17
Plug-ins and Widgets	 19

Getting Ready to Design	 20
We Have a Problem	 20
It Gets Worse	 21

The Solution–Rapid Design Comping	 21
Let's Get Started	 23

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Sketch It	 23
Consider Usability	 25

Start with the Structure	 26
The DOCTYPE	 27
The Main Body	 27
Attach the Basic StyleSheet	 28
Basic Semantic XHTML Structure	 29

Adding Text–Typography	 31
Start with the Text	 32

Font Choices	 33
Cascading Fonts	 35
Font Sizing	 35
Paragraphs	 37
Default Links	 37

The Layout	 39
Navigation	 42
More Navigation–WordPress Specific Styles (OK, Style)	 44
Color Schemes	 46
Two-Minute Color Schemes	 46
Color Schemes with Photoshop	 47
Adding Color to Your CSS	 49

Create the Graphical Elements	 50
Relax and Have Fun Designing	 52
Slice and Export	 54
Summary	 59

Chapter 3: Coding It Up	 61
Got WordPress?	 61

Understanding the WordPress Theme	 62
Your WordPress Work Flow	 64
Let's Build Our Theme	 65
Tabula Rasa	 65

Including WordPress Content	 69
The Loop	 70
The Sidebar	 74
Breaking It Up–Separating Your Theme Into Template Files	 79
The Home Page	 80
Internal Pages	 83

Static Pages	 84
Quick Recap	 86

Fun with Other Page Layouts	 86
Don't Forget About Your 404 Page	 88

Summary	 90

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 4: Debugging and Validaton	 91
Don't Forget About Those Other Browsers and Platforms	 91
Introduction to Debugging	 92
Troubleshooting Basics	 94

Why Validate?	 95
PHP Template Tags	 96
CSS Quick Fixes	 97

Advanced Troubleshooting	 98
Fixing CSS Across Browsers	 98
Box Model Issues	 99
Everything Is Relative	 99
To Hack or Not to Hack	 100
Out-of-the-Box-Model Thinking	 101
The Road to Validation	 104
Advanced Validation	 107

Firefox's JavaScript/Error Console	 107
The Web Developer's Toolbar	 108
FireBug	 109

Extra Credit	 110
What About the New Safari Mobile Browser?	 111

Summary	 112
Chapter 5: Your Theme in Action	 113

A Picture's Worth	 113
Theme Packaging Basics	 115
Describing Your Theme	 115
Licensing?	 116
Create a ReadMe.txt File	 118
Zip It Up	 119
No Way to Zip?	 120
One Last Test	 121
Get Some FeedBack and Track It	 122
Summary	 123

Chapter 6: WordPress Reference	 125
Class Styles Generated by WordPress	 125
Using the Template Selector Feature	 126
Template Hierarchy	 127

New Template Tag in 2.5	 129
Great Template Tags for Tags from 2.3	 130

Adding Tag Display to Your Theme	 131

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

General Template Tags—the Least You Need to Know	 134
Include Tags	 140

Custom Includes—Streamline Your Theme	 141
The Loop Functions	 142
WordPress Core Functions	 142

Summary	 143
Chapter 7: Dynamic Menus and Interactive Elements	 145

DYI or Plug-ins?	 146
Dynamic Menus?	 146

Drop-Down Menus	 147
DIY SuckerFish Menus in WordPress	 148

Applying CSS to WordPress	 151
Applying the DOM Script to WordPress	 154

Flash-ize It	 157
Flash in Your Theme	 157

Pass Flash a WordPress Variable	 159
Users Without Flash, Older Versions of Flash, and IE6 Users	 161

Flash in a WordPress Post or Page	 163
Summary	 165

Chapter 8: AJAX / Dynamic Content and Interactive Forms	 167
Preparing for Dynamic Content and Interactive Forms	 168

You Still Want AJAX on Your Site?	 169
Plug-ins and Widgets	 170

Plug-ins	 170
Widgets	 170

Getting Your Theme Ready for Plug-ins and Widgets	 171
Plug-in Preparations	 171
Installing the AJAX Comments Plug-ins	 172
Widget Preparations	 173
Installing the Google Reader Widget	 175

AJAX–It's Not Just for Your Site Users	 178
pageMash	 179

The AJAX Factor	 180
JavaScript Component Scripts	 181

Summary	 183
Chapter 9: Design Tips for Working with WordPress	 185

The Cool Factor	 185
Rounded Corners	 186

The Classic – All Four Corners	 186
The Two Image Cheat	 188

Creative Posting	 191

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[�]

Breaking Boundaries	 192
Keep Tabs on Current Design Trends	 196
Graphic Text	 197

Extra Credit – Use PHP to make Graphic Headers Easy	 200
Good Design isn't Always Visual – Looking at SEO	 202

Search Engine Friendly URLs	 202
Keywords and Descriptions	 204

DYI Metatags	 205
Metatag Plug-ins	 206

Summary	 206
Index	 207

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
The goal of this title is to explain the basic steps of creating a WordPress theme.
This book focuses on the development, creation, and enhancement of WordPress
themes, and therefore does not cover general 'how to' information about WordPress
and all its many features and capabilities. This title assumes you have some level of
understanding and experience with the basics of the WordPress publishing platform.
The WordPress publishing platform has excellent online documentation, which
can be found at http://codex.wordpress.org. This title does not try to replace or
duplicate that documentation, but is intended as a companion to it.

My hope is to save you some time finding relevant information on how to create
and modify themes in the extensive WordPress codex, help you understand how
WordPress themes work, and show you how to design and build rich, in-depth
WordPress themes yourself. Throughout the book, wherever applicable, I'll point
you to the relevant WordPress codex documentation along with many other useful
online articles and sites.

I've attempted to create a realistic WordPress theme example that anyone can take
the basic concepts from and apply to a standard blog, while at the same time, show
how flexible WordPress and its theme capabilities are. I hope this book's theme
example shows that WordPress can be used to create unique websites that one
wouldn't think of as 'just another blog'.

What This Book Covers
Chapter 1 Getting Started as a WordPress Theme Designer introduces you to the
WordPress blog system and lets you know what you'll need to be aware of regarding
the WordPress theme project you're ready to embark on. The chapter also covers the
development tools that are recommended and web skills that you'll need to begin
developing a WordPress theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[�]

Chapter 2 Template Design and Approach takes a look at the essential elements
you need to consider when planning your WordPress theme design. It discusses the
best tools and processes for making your theme design a reality. I explain my own
'Rapid Design Comping' technique and give you some tips and tricks for developing
color schemes and graphic styles for your WordPress theme. By the end of the
chapter, you'll have a working XHTML and CSS based 'comp' or mockup of your
theme design, ready to be coded up and assembled into a fully functional
WordPress theme.

Chapter 3 Coding It Up uses the final XHTML and CSS mockup from Chapter 2 and
shows you how to add WordPress PHP template tag code to it and break it down
into the template pages a theme requires. Along the way, this chapter covers the
essentials of what makes a WordPress theme work. At the end of the chapter, you'll
have a basic, working WordPress theme.

Chapter 4 Debugging and Validation discusses the basic techniques of debugging and
validation that you should be employing throughout your theme's development. It
covers the W3C's XHTML and CSS validation services and how to use the FireFox
browser and some of its extensions as a development tool, not just another browser.
This chapter also covers troubleshooting some of the most common reasons 'good
code goes bad', especially in IE, and best practices for fixing those problems, giving
you a great-looking theme across all browsers and platforms.

Chapter 5 Your Theme in Action discuss how to properly set up your WordPress
theme's CSS style sheet so that it loads into WordPress installations correctly. It also
discuss compressing your theme files into the ZIP file format and running some test
installations of your theme package in WordPress's administration panel so you can
share your WordPress theme with the world.

Chapter 6 WordPress Reference covers key information under easy-to-look-up headers
that will help you with your WordPress theme development, from the two CSS class
styles that WordPress itself outputs, to WordPress's PHP template tag code, to a
breakdown of "The Loop" along with WordPress functions and features you can take
advantage of in your theme development. Information in this chapter
is listed along with key links to bookmark to make your theme development as easy
as possible.

Chapter 7 Dynamic Menus and Interactive Elements dives into taking your working,
debugged, validated, and properly packaged WordPress theme from the earlier
chapters, and start enhancing it with dynamic menus using the SuckerFish
CSS-based method and Adobe Flash media.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[�]

Chapter 8 AJAX/Dynamic Content and Interactive Forms continues showing you how
to enhance your WordPress theme by taking a look at the most popular methods
for leveraging AJAX techniques in WordPress using plugins and widgets. I'll also
give you a complete background on AJAX and when it's best to use those techniques
or skip them. The chapter also reviews some cool JavaScript toolkits, libraries, and
scripts you can use to simply make your WordPress theme appear 'Ajaxy'.

Chapter 9 Design Tips for Working with WordPress reviews the main tips from the
previous chapters and covere some key tips for easily implementing today's coolest
CSS tricks into your theme as well as a few final SEO tips that you'll probably run
into once you really start putting content into your WordPress site.

What You Need for This Book
Essentially, you'll need a code editor, the latest Firefox browser and any other web
browsers you'd like your theme to display well in. Most importantly, you'll need an
installation of the latest, stable version of WordPress.

WordPress 2.5 requires the following to be installed:

PHP version 4.3 or greater
MySQL version 4.0 or greater

For more information on WordPress 2.5's requirements, please browse to:

http://wordpress.org/about/requirements/

Chapter 1 covers in detail the software, tools, and skills recommended for WordPress
theme development.

Who This Book is For
This book can be used by WordPress users or visual designers (with no server-side
scripting or programming experience) who are used to working with the common
industry-standard tools like PhotoShop and Dreamweaver or other popular graphic,
HTML, and text editors.

Regardless of your web development skill-set or level, you'll be walked through
the clear, step-by-step instructions, but there are many web development skills and
much WordPress know-how that you'll need to be familiar with to gain maximum
benefit from this book.

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[�]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "In your index.html file, add your css
import link within the header file:"

A block of code will be set as follows:

<head>
<title>OpenSource Online Magazine</title>
<script type="text/javascript" src=""></script>
<style type="text/css" media="screen">
@import url("style.css");
</style>
</head>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

<head>
<title>OpenSource Online Magazine</title>
<script type="text/javascript" src=""></script>
<style type="text/css" media="screen">
@import url("style.css");
</style>
</head>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"In your WordPress go to Administration | Design | Themes (or Administration |
Presentation | Themes in 2.3). There, you'll be able to select the new theme you
just duplicated and renamed. (Look carefully! The image is still the same as the
default theme.)"

Important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[�]

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email to
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/3094_Code.zip to directly
download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a
WordPress Theme Designer

Welcome to WordPress theme design! This title is intended to take you through
the ins and outs of creating sophisticated professional themes for the WordPress
personal publishing platform. WordPress was originally, and is foremost, a blog
system. Throughout the majority of this book's chapters—for simplicity's sake—I'll
be referring to it as a blog or blog system. But don't be fooled; since its inception,
WordPress has evolved way beyond mere blogging capabilities and has many
standard features that are expandable with plug-ins and widgets, which make it
comparable to a full CMS (Content Management System).

In these upcoming chapters, we'll walk through all the necessary steps required to
aid, enhance, and speed your WordPress theme design process. From design tips
and suggestions to packaging up the final theme, we'll review the best practices for a
range of topics: designing a great theme, rapid theme development, coding markup,
testing, debugging, and taking it live.

The last three chapters are dedicated to additional tips, tricks, and various cookbook
recipes for adding popular site enhancements to your WordPress theme designs
using third-party plug-ins, as well as creating your own custom plug-ins.

WordPress Perks
As you're interested in generating custom themes for WordPress, you'll be very
happy to know (especially all you web standards evangelists), that WordPress really
does separate content from design.

You may already know from painful experience that many CMS and blog systems
end up publishing their content pre-wrapped in (sometimes large) chunks of layout
markup (sometimes using table markup), peppered with all sorts of pre-determined
selector id and class names.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[�]

You usually have to do a fair amount of 'sleuthing' to figure out what these id and
classes are, so that you can create custom CSS rules for them. This is very
time consuming.

The good news is, WordPress only publishes two things:

The site's textual content—the text you enter into the post and the page
Administration Panels.
Supplemental site content wrapped in list tags— and —which
usually links to the posts and pages you've entered and the meta information
for those items.

That's it! The list tags don't even have an ordered or unordered defining tag around
them. WordPress leaves that up to you. You decide how everything published via
WordPress is styled and displayed.

The culmination of all those styling and display decisions along with special
WordPress template tags, which pull your site's content into design, are what your
WordPress theme consists of.

Does a WordPress Site Have to Be a
Blog?
In a nutshell, even before the release of themes in WordPress 2, WordPress has been
capable of managing static pages and sub-pages since version 1.5. Static pages are
different from blog posts in that they aren't constrained by the chronology of
posts. This means you can manage a wide variety of content with pages and their
sub-pages.

WordPress also has a great community of developers supporting it with an
ever-growing library of plug-ins. Using plug-ins, you can expand the capabilities
of your server-installed WordPress site to include infinite possibilities like event
calendars, image galleries, side bar widgets, and even shopping carts. For just about
anything you can think of, you can probably find a WordPress plug-in to help
you out.

By considering how you want to manage content via WordPress, what kind of
additional plug-ins you might employ, and how your theme displays all that content,
you can easily create a site that is completely unique and original in concept as well
as design.

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[�]

Again, WordPress was built to be a blog system, and it has some great blog post and
category tools. But, if you want to use it to manage a brochure-style site, or have a
particular third-party plug-in to be the main feature of your site, and downplay or
even remove the blog, that's fine too! You'll just tweak your theme's template files to
display your content the way you prefer (which is something you'll be very good at
after reading this book).

Pick a Theme or Design Your Own?
I approach theme design from two angles. The first is Simplicity; sometimes it suits
the client and/or the site to go as bare-bones as possible. In that case, it's quick and
easy to take a very basic, pre-made theme and modify it.

The second is Unique and Beautiful. Occasionally, the site's theme needs to be created
from scratch so that everything displayed caters to the specific kind of content the
site offers. This ensures that the site is something eye-catching, which no-one else
will have. This is often the best route when custom branding is a priority or you just
want to show off your 'Hey, I'm hot-stuff' kind of design skills.

There are many benefits to using or tweaking pre-made themes. First, you save a
lot of time getting your site up with a nice theme design. Second, you don't need to
know as much about CSS, XHTML, or PHP. This means that with a little web surfing,
you can have your WordPress site up-and-running with a stylish look in no time
at all.

Drawbacks to Using a Pre-Made Theme
The drawback to using a pre-made theme is that it may not save you as much time
as you would hope for. You may realize, even with the new header text and graphic,
several other sites may have downloaded and/or purchased it for themselves and
you don't stand apart enough.

Perhaps, your site needs a special third-party plug-in for a specific type of content;
it might not look quite right without a lot of tweaking. And while we're discussing
tweaking, I find that every CSS designer is different and sets up its theme's template
files and style sheets accordingly; while it makes perfect sense to them, it can be
confusing and time-consuming to work through.

Your approach may have started out as Simplicity, but then for one reason or another,
you find yourself having to dig deeper and deeper through the theme, and pretty
soon it doesn't feel like quick tweaking anymore. Sometimes you realize—for
simplicity's sake (no pun intended)—it would have been a whole lot quicker to start
from scratch.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[10]

Before trying to cut corners with a pre-existing theme, make sure your project really is
as simple as it claims to be. Once you find a theme, check that you are allowed to tweak
and customize it (such as an open-source or creative commons license or royalty free
purchase from a template site), and that you have a look at the style sheet and template
files. Make sure the theme's assets seem logical and make sense to you.

This Book's Approach
The approach of this book is going to take you through the Unique and Beautiful
route (or Unique and Awesome, whatever your design aesthetics call for) with the
idea that once you know how to create a theme from scratch, you'll be more apt at
understanding what to look for in other WordPress themes. You'll then be able to
assess when it really is better or easier to use a pre-made theme versus building up
something of your own from scratch.

Things You'll Need to Know
This book is geared toward visual designers (with no server-side scripting or
programming experience) who are used to working with the common industry
standard tools like PhotoShop and Dreamweaver or other popular graphic, HTML,
and text editors.

Regardless of your web development skill-set or level, you'll be walked through
the clear, step-by-step instructions, but there are many web development skills and
WordPress know-how that you'll need to be familiar with to gain maximum benefit
from this book.

WordPress
Most importantly, you should already be familiar with the most current stable
version of WordPress. You should understand how to add content to the WordPress
blog system and how its posts, categories, static pages, and sub-pages work.
Understanding the basics of installing and using plug-ins will also be helpful
(though we will cover that to some extent in the later chapters of the book as well).

Even if you'll be working with a more technical WordPress administrator, you should
have an overview of what the WordPress site that you're designing entails, and
what—if any—additional plug-ins or widgets will be needed for the project. If your
site does require additional plug-ins and widgets, you'll want to have them handy
and/or installed in your WordPress development installation (a.k.a sandbox—a place
to test and play without messing up a live site). This will ensure that your design will
cover all the various types of content that the site intends to provide.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

What version of WordPress 2 does this book use? This book focuses on
WordPress 2.5. It has been an exciting few months to try to write a book
for WordPress! When I started writing this book, I was using WordPress
2.3.2. I soon upgraded to 2.3.3 and then found myself upgrading again
to very much improved version 2.5. Everything covered in this book
has been tested and checked in WordPress 2.5. You may occasionally
note screenshots from version 2.3.3 being used, but rest assured, any
key differences between 2.3.x and 2.5 are clearly noted when applicable.
While this book's case study was developed using version 2.5, any newer
version should have the same core capabilities enabling you to develop
themes for it using these techniques. Bug fixes and new features for each
new version of WordPress are documented at http://WordPress.org.
First time with WordPress? I recommend you read WordPress Complete by
Hasin Hayder.

CSS
I'll be giving detailed explanations of the CSS rules and properties used in this book,
and the 'how and why' behind those decisions. You should know a bit about what
CSS is, and the basics of setting up a cascading style sheet and including it within
an XHTML page. You'll find that the more comfortable you are with CSS markup
and how to use it effectively with XHTML, the better will be your WordPress theme
creating experience.

XHTML
You don't need to have every markup tag in the XHTML standard memorized (yes, if
you really want, you can still switch to the Design view in your HTML editor to drop
in those markup tags that you keep forgetting—I won't tell). However, the more
XHTML basics you understand, the more comfortable you'll be working in the Code
view of your HTML editor or with a plain text editor. The more you work directly
with the markup, the quicker you'll be able to create well-built themes that are
quick loading, semantic, expand easily to accommodate new features, and search
engine friendly.

PHP
You definitely don't have to be a PHP programmer to get through this book, but
be aware that WordPress uses liberal doses of PHP to work its magic! A lot of this
PHP code will be directly visible in your theme's various template files. PHP code is
needed to make your theme work with your WordPress installation, as well as make
individual template files work with your theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[12]

If you at least understand how basic PHP syntax is structured, you'll be much less
likely to make mistakes while re-typing or copying and pasting code snippets of
PHP and WordPress template tags into your theme's template files. You'll be able to
more easily recognize the difference between your template files, XHTML, and PHP
snippets; so you don't accidentally delete or overwrite anything crucial.

If you get more comfortable with PHP, you'll have the ability to change out variables
and call new functions, or even create new functions on your own, again infinitely
expanding the possibilities of your WordPress site.

Beef up those web skills! I'm a big fan of the W3 Schools site. If you'd like
to build up your XHTML, CSS, and PHP understanding, you can use this
site to walk you through everything from basic introductions to robust
uses of top web languages and technologies. All the lessons are easy,
comprehensive and free at http://w3schools.com.

Not Necessary, but Helpful
If your project will be incorporating any other special technologies such as
JavaScript, AJAX, or Flash content, the more you know and understand how those
scripting languages and technologies work, the better it is for your theme making
experience (again W3Schools.com is a great place to start).

The more web technologies you have a general understanding of, the
more likely you'll be to intuitively make a more flexible theme, which will
be able to handle anything the site may need to incorporate into itself in
the future.

More of a visual 'see it to do it' learner? lynda.com has a remarkable
course selection from the top CSS, XHTML/XML, JavaScript, PHP,
and Flash/ActionScript people in the world. You can subscribe and take
the courses online, or purchase DVD-ROMs for off-line viewing. The
courses might seem pricey at first, but if you're a visual learner (as most
designers are), it's money and time well spent. You can have a look at
http://lynda.com.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Tools of the Trade
In order to get started in the next chapter, you'll need the following tools to help
you out:

HTML Editor
You'll need a good HTML editor. DreamWeaver is good; I prefer to use
Coda for Mac. When I was on a PC I loved the free text editor HTML-kit
(http://www.htmlkit.com/), though, any HTML or text editor that lets you enable
the following features will work just great (and I recommend you enable all of
the following):

View line numbers: This comes in very handy during the validation and
debugging process. It can help you find specific lines in a theme file for
which a validation tool has returned a fix. This is also helpful for other theme
or plug-in instructions given by author, which refer to a specific line of code
that needs editing.
View syntax colors: Any worthwhile HTML editor has this feature usually
set as a default. The good editors let you choose your own colors. It displays
code and other markup in a variety of colors, making it easier to distinguish
various types of syntax. Many editors also help you identify broken XHTML
markup, CSS styles, or PHP code.
View non-printing characters: OK, you might not want this feature turned
on all the time. It makes it possible to see hard returns, spaces, tabs, and other
special characters that you may or may not want in your markup and code.
Text wrapping: This of course lets you wrap text within the window, so you
won't have to scroll horizontally to edit a long line of code. It's best to learn
what the key-command shortcut is for this feature in your editor, and/or
set up a key-command shortcut for it. You'll find it easier to scroll through
unwrapped, nicely-indented, markup and PHP code to quickly get a general
overview or find your last stopping point, yet want to turn it on quickly so
that you can see and focus your attention on one long line of code.

Graphic Editor
The next piece of software you'll need is a graphic editor. While you can find plenty
of CSS-only WordPress themes out there, chances are you'll want to expand on your
design a little more and add really nice visual enhancements and effects. These are
best achieved by using a graphic editor like Photoshop.

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[14]

I'll be using Adobe Photoshop in this title, and assume that you have some
familiarity with it and working with layers. Any graphic editor you prefer is fine.
One that allows you to work with layers is very helpful, especially with the design
comping (a.k.a mockup) techniques I will suggest in Chapter 2; but you can still get
by without layers.

Need a graphic editor? Try GIMP. If you're on a budget and in need of
a good image editor, I’d recommend it. It's available for PC, Mac, and
Linux. You can get it from http://gimp.org/.
Prefer Vector Art? Try Inkscape, which is also available for PC, Mac, and
Linux. Bitmap graphic editors are great in that they also let you enhance
and edit photographs, but if you just want to create buttons or other
interface elements and vector-based illustrations, Inkscape is worth trying
out (http://inkscape.org).

Firefox
Last, you'll need a web browser. Here, I'm not so flexible. I strongly
suggest that you use the latest, stable version of the Firefox browser
(http://mozilla.com/firefox/).

Why Firefox? I view this browser as a great tool for web developers. It's as essential
as my HTML editor, graphics, and FTP programs. Firefox has great features that
we'll be taking advantage of to help us streamline the design creation and theme
development process. In addition to those built-in features, like the DOM Source
Selection Viewer and adhering to CSS2 standards as specified by the W3C, Firefox
also has a host of extremely useful extensions like the Web Developer's Toolbar and
Firebug, which I recommend to further enhance your work-flow.

Get the extensions: You can get the Web Developer's Toolbar from
https://addons.mozilla.org/en-US/firefox/addon/60, and
Firebug from https://addons.mozilla.org/en-US/firefox/
addon/1843. Be sure to visit the developer's sites to learn more about
each of these extensions.

We'll Be Developing for Firefox First, then IE
In addition to Firefox having all the helpful features and extensions, IE6 and even
IE7 have a thing called quirks mode, and while Microsoft has attempted a lot of
improvements and tried to become more W3C compliant with IE7, there are still
some CSS rendering issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Your best bet will be to design for Firefox first, and then if you notice things
don't look so great in IE6 or IE7, there are plenty of standardized fixes and work
arounds for those two browsers because their 'wonks' are just that—'wonks' and
well-documented.

If you design only looking at one version of IE first, getting your design to look
the way you want, then find it a mess in Firefox, Opera, or Safari; you're going
to have a much harder time fixing the CSS you made for IE in a more standards
compliant browser.

Firefox doesn't have to become your only browser. You can keep using IE or any
other browser you prefer. I myself prefer Opera for light and speedy web-surfing,
but Firefox is one of my key web development tools.

Summary
To get going on your WordPress theme design, you'll want to understand how the
WordPress blog system works, and have your head wrapped around the basics
of the WordPress project you're ready to embark on. If you'll be working with a
more technical WordPress administrator and/or PHP developer, make sure your
development installation or sandbox will have the same WordPress plug-ins that
the final site needs to have. You'll want to have all the tools that are recommended
installed and ready to use as well as brush up on those web skills, especially XHTML
and CSS. Get ready to embark on designing a great theme for one of the most
popular, open-source, blog systems available for the web today!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach
In this chapter, we're going to take a look at the essential elements you need to
consider when planning your theme design. We'll then move on to discuss the best
tools and process for making that design a reality. I'll let you all in on my own 'Rapid
Design Comping' strategy and give you some tips and tricks to help you define your
color scheme and graphic style, as well as go over some standard techniques for
extracting images for your design.

By the end of this chapter, you'll have a working XHTML and CSS based 'comp' or
mockup of your WordPress theme's design, ready to be coded up and assembled
into a fully functional WordPress theme.

Things to Consider
First up, before we start, I'll acknowledge that you probably already have a design
idea in mind and would like to just start producing it. Chances are, unless you're
learning theme development solely for yourself, you probably have a client or maybe
a website partner who would like to have input on the design. If you have neither,
congratulations! You're your own client. Whenever you see me reference 'the client,'
just switch your perspective from 'Theme Designer' to 'Website User'.

At any rate, before you start working on that design idea, take a moment to start a
checklist and really think about two things: What type of blog the theme is going
to be applied to. And what, if any, plug-ins or widgets might be used within
the theme.

Types of Blogs
Let's take a look at the following types of blogs (regular sites fit these types as well).
These are not genres. Within these types of blog sites, just about any genre you can
think of—horseback riding, cooking, programming, etc.—can be applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[18]

You may be designing a theme for a specific site that has a targeted genre. You may
want to make a generic theme that anyone can download and use. Still, if you target
your theme to fit one of the types of blogs below, you might get more downloads of
it just because it's more targeted. There's a reason why Brian Gardner's Revolution
WordPress Theme is one of the top rated themes for online news and magazine sites
(http://www.revolutiontheme.com/). People who want to start a magazine or
news blog know that this theme will work for their type of site. No need for them to
look through dozens or even hundreds of more generic themes, wondering if they
can modify it to accommodate their site.

Just read through the following blog types and notice which one of these types your
theme fits into. Knowing this will help you determine how the content should be
structured and how that might affect your theme's design.

The Professional Expert Site: This is an individual who blogs in their area
of expertise to increase their personal exposure and standing. The type of
design that can be applied to this site is diverse, depending on the type
of expertise and what people's expectations are from that genre. Lawyers
will have more people that are just content searchers; the cleaner and more
basic the design, the better. Designers need to give the user a great visual
experience in addition to the content. People in media might want to create a
theme design that lends itself to listening or viewing podcasts.
The Corporate Blog: It's a company that blogs to reach customers and
encourage closer relationships, sales, and referrals. Here, the user is actually
a content searcher, so you might think a site that's simpler and focuses on
text would do better. They just need the specific information about products
and services, and maybe would like the opportunity to post a comment to
a relevant blog post by the corporation. However, the corporation that is
paying you to design the theme is really hoping to further engage the user
with a great site experience and immerse them in their brand.
Online News Source/Magazine: This is a blog that provides content on
a particular topic, usually funded by ads. The design for this kind of site
depends on how traditional the news content is or 'magazinish' the content
is. People looking for news and the latest updates in a genre might prefer
theme designs that remind them of the experience of reading a news
paper, while magazine readers—especially for fashion, travel, people, and
'bleeding-edge' technology—tend to like the site for the design experience
of it as well as the content. Just pick up a paper version of any current news
source or magazine and you will quickly become aware of what people in
that genre are expecting.

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

The Campaign Blog: These are the non-profit blogs run by charities or
'causes'. The information needs to be structured for clarity and winning
people over to understanding and campaigning the cause or candidate. Most
users will be content searchers and while being appreciative of a nice clean
content structure and design experience, depending on the campaign or
cause, users may become critical if the site is too well designed: 'This is nice,
but is it where they spend the money I donate, instead of the cause!?'

Keeping the discussed items in consideration, you can now think about the design
you have in mind and assess how appropriate it is for the type of blog or site, the
kind of experience you want to give to users, as well as what you might think of the
user's expectation about what the content and experience should be like.

Plug-ins and Widgets
The second consideration you'll want to make is about plug-ins and widgets.
Plug-ins are special files that make it easy to add extra functions and features to
your WordPress site. Widgets are now built into WordPress2 and are basically things
you can put into your WordPress site's sidebar, regardless of knowing any HTML
or PHP.

Plugins and Widgets usually place requirements on a theme: Certain CSS classes
will be generated and placed into the site for headers or special text areas. Maybe
a template file in the theme might need some specific PHP code to accommodate a
plug-in. You'll need to find out the theme requirements of any plug-in or widget that
you plan to use, so that you may accommodate it when you code up your theme.

What kinds of plug-ins are available? You can see all the types of
plug-ins available on the WordPress.org site , identifying them by their
tags (http://wordpress.org/extend/plugins/tags/).
Find out more about widgets: You'll be able to see a sample of widgets,
as well as find out the requirements for a widget compatible theme at
http://widgets.wordpress.com/. This will walk you through
'widgetizing' (our theme in Chapter 8).

When you begin working on your design, you'll want to compare your sketches and
design comp(s) against your plug-ins and widgets checklist, and make sure you're
accommodating them.

•

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[20]

Getting Ready to Design

Design Comp (abbreviation used in design and print): A preliminary
design or sketch is a 'comp,' comprehensive artwork, or composite. It is
also known as comp, comprehensive, mockup, sample, or dummy.

You may already have a design process similar to the one I detail next; if so, just skim
what I have to say and skip down to the next main heading. I have a feeling, though,
that many of you will find this design comping technique a bit unorthodox, but bear
with me, it really works.

Here's how this process came about. Whether or not you design professionally for
clients or for yourself, you can probably identify with parts of this experience:

We Have a Problem
Up until a couple of years ago, in order to mockup a site design, I loaded up
Photoshop and began a rather time-consuming task of laying down the design's
graphical elements and layout samples, which entailed managing, what sometimes
ended up being, a very large amount of layers, most of which were just lots of text
boxes filled with Lorem Ipsum sample text.

I'd show these mockups to the client, they'd make changes, which more often than
not were just to the text in the mockup, not the overall layout or graphical interface.
As my 'standard design procedure' was to have the client approve the mockup before
production, I'd find myself painstakingly plodding through all my Photoshop text
layers, applying the changes to show the mockup to the client again.

Sometimes, I would miss a small piece of text that should have been updated with
other sets of text! This would confuse (or annoy) the client and they'd request
another change! I guess they figured that as I had to make the change anyway, they
might request a few more tweaks to the design as well, which again, were usually
more textual than graphical and took a bit of focus to keep track of.

The process of getting a design approved became tedious, and at times, drove me
nuts. At one point, I considered dropping my design services and just focusing on
programming and markup so that I wouldn't have to deal with it anymore.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

It Gets Worse
Upon finally getting an approval and starting to produce the design comp into
XHTML and CSS, no matter how good I got at CSS and envisioning how the CSS
would work while I was mocking-up the layout in Photoshop, I would inevitably
include something in the layout that would turn out to be a bit harder than I'd
thought to be to reproduce with XHTML and CSS.

I was then saddled with two unappealing options: either go back to the client and get
them to accept a more reasonable 'reality' of the design; or spend more time doing all
sorts of tedious research and experimentation with the XHTML and CSS to achieve
the desired layout, or other effect, across all browsers and IE.

The Solution–Rapid Design Comping
I soon realized the problem was me hanging onto a very antiquated design process
of what the mockup was and what production was. Before late 2005, I would have
never cracked open my HTML editor without a signed design approval from the
client, but why?

The web was originally made for text. Thus, it has a very nice, robust markup
system for categorizing that text (a.k.a. HTML/XTHML). Now with browsers that all
comply (more or less) to CSS standards, the options for displaying those marked-up
items are more robust, but there are still limitations.

Photoshop, on the other hand, has no display limitations. It was made to edit and
enhance digital photographs and create amazing visual designs. It can handle
anything you layout into it, be it realistic for CSS or not. It was not designed to help
you effectively manage layers upon layers of text that would be best handled with
global stylings!

This realization led me to the ten step process I've termed Rapid Design Comping.
The term is a bit of a play on the term Rapid Prototyping which had become very
popular at the time this design process emerged for me, which is indeed inspired by,
and bears some similarities to Rapid Prototyping.

The following is the overview; we'll go over each step in detail afterwards:

1.	 Sketch It: Napkins are great! I usually use the other side of a recycled
piece of photocopied paper—the more basic the better. No fine artist skills
required! Perk: Using this sketch you can not only get your graphic interface
ideas down, but you can already start to think about how the user will
interact with your theme design and re-sketch any new ideas or
changes accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[22]

2.	 Start with the Structure: I create an ideal, un-styled semantic XHTML
document structure and attach a bare bones CSS sheet to it.

3.	 Add the Text: Lots of text, the more the better! A sample of actual content is
best, but Lorem Ipsum is fine too.

4.	 CSS Typography: Think of your Typography and assign your decisions to
the stylesheet. Review! Don't like how the formatted text looks in-line? Being
separated into columns with fancy background graphics won't make it any
better. Get your text to look nice and read well now before moving on to
layout.

5.	 CSS Layout: Set up the Layout—this is where you'll see upfront if your
layout idea from your sketch will even work. Any problems here and you
can re-think the design's layout into something more realistic (and usually
more clean and elegant). Perk: Your client will never see, much less become
attached to, a layout that would cause you problems down the road in CSS.

6.	 CSS Color Scheme: Assign your color scheme basics to the CSS. We're close
to needing Photoshop anyway, so you might as well open it up. I sometimes
find it useful to use Photoshop to help me come up with a color scheme and
get the hex numbers for the stylesheet.

7.	 Take a Screenshot: Time for Photoshop! Paste the screenshot of your basic
layout into your Photoshop file.

8.	 Photoshop: Have fun creating the graphical interface elements that will be
applied to this layout over your screenshot.

9.	 Send for Approval: Export a .jpg or .png format of the layout and send it
to the client. Perk: If the client has text changes, just make them in your CSS
(which will update your text globally—no layer hunting for all your headers
or links, etc.) and resnap a screenshot to place back in the Photoshop file with
the graphic elements. If they have a graphical interface change, well that's
what Photoshop does best! Make the changes and resend for approval.

10.	 Production: Here's the best part; you're more than halfway there! Slice and
export the interface elements you created over (or under) your screenshot
and apply them with the background image rules in your CSS. Because
you worked directly over a screenshot of the layout, slicing the images to
the correct size is easier and you won't discover that you need to tweak the
layout of the CSS as much to accommodate the graphic elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

If you start getting really good and speedy with this process, and/or
especially if you have text overlaying the complicated backgrounds, you
can also just export your images to your CSS file right away and send the
client a straight screenshot from the browser to approve. Play with this
process and see what works best for you.

For the purposes of this title, there's actually an eleventh step of production,
which is, of course, coding and separating up that produced mockup into your
WordPress Theme. We'll get to that in Chapter 3.

Let's Get Started
After taking all of the preceding items into consideration, I've decided that the type
of theme I'd like to create, and the one we'll be working on throughout this book, is
going to be an Online News Source/Magazine type of site. Our site's content will be
geared towards using Open-Source Software. Even though this type of site usually
does very well by just focusing on the content, I would like to give the users the
design experience of reading a more trendy paper magazine.

Sketch It
The whole point of this step is to just get your layout down along with figuring
out your graphic element scheme. You don't have to be a great artist or technical
illustrator As you'll see next, I'm clearly no DaVinci! Just put the gist of your layout
down on a sheet of paper, quickly!

The best place to start is to reference your checklist from the steps I provided, which
consider how the site is going to be used. Focus on your desired layout: Are you
going to have columns? If so, how many? On the left or the right? How tall is your
header? Will your footer be broken into columns? All of these things will compose
the structure of your design. You can then move on to any graphic element schemes
you might have in mind; that is, would you use rounded corners on the box edges or
a particular icon set? Where? How often?

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[24]

In the following figure, I've sketched a basic three column layout which features
using the WordPress blog to manage and feature magazine-style articles on a
particular subject, rather than just straight-up blog posts.

Because the design experience I want to give my site's viewers will be that of reading
a paper magazine, the scheme for my graphic elements are going to focus on creating
the illusion of paper edges and columned magazine-style layouts (particularly on the
home page). I want the home page to feel like similar to the 'Table of Contents' page
in a magazine.

TOC's in magazines usually have big images and/or intro text to the featured articles
to peak your interest. They then have listings of recurring 'columns' like, 'Ask the
Expert' or 'Rants and Raves' (things like that).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Therefore, the graphical element scheme of my site, which will make up the majority
of the design experience, will focus on 'paper edges', curling up at the corners, like
a well-read, glossy, thin magazine paper tends to do. My layout is going to take
advantage of the main WordPress blog, using the pre-snips of the story as the intro
text to peak interest. I'll use WordPress's categorizing feature to mimic a display of
recurring columns (as in recurring articles) and the monthly archive list as a 'Past
Issues' list.

Consider Usability
Once you've created your sketch, based on your considerations, look at it for
usability. Imagine you are someone who has come to the site for the information
it contains.

What do you think the user will actually do? What kind of goals might they have for
coming to your site? How hard or easy will it be for them to attain those goals? How
hard or easy do you want it to be for them to attain those goals?

Are you adhering to standard web conventions? If not, have you let your user know
what else to expect? Web standards and conventions are more than what's laid out in
a lengthy W3C document. A lot of them are just adhering to what we, as web users
expect. For example, if text has underlines in it and/or is a different color, we expect
that text to be a link. If something looks like a button, we expect clicking on it to do
something, like process the comment form we just filled out or adding an item to
our cart.

It's perfectly OK to get creative and break away from the norm and not use all the
web conventions. But be sure to let your viewers know upfront what to expect,
especially as most of us are simply expecting a web page to act like a web page!

Looking at your sketch, do any of the just discussed scenarios make you realize any
revisions need to be made? If so, it's pretty easy to do. Make another sketch!

Clean it up? This might seem to defeat the purpose of 'Rapid Design
Comping', but if you're working within a large design team, you
may need to take an hour or so to clean your sketch up into a nicer
line drawing (sometimes called a 'wire frame'). This may help other
developers on your team more clearly understand your WordPress
theme idea.

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[26]

Start with the Structure
The preceding usability scenarios deal with someone who will be looking at your
content through your fully CSS stylized WordPress theme. What if someone views
this content in a mobile browser? A text-only browser? Or a text-to-speech browser?
Will the un-styled content still be understood? Or, will someone be scrolling or
worse, listening and trying to tab through thirteen minutes of your sidebar 'blogroll'
or Flickr image links before getting to the page's main content? To ensure such
a scenario doesn't happen, we'll dive into our design comp by starting with the
XHTML structure.

Open up your HTML or text editor and create a new, fresh index.html page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

The DOCTYPE
XHTML has two common DOCTYPEs: Strict and Transitional. There's also the
newer 1.1 DOCTYPE for 'modularized' XHTML. The Strict and 1.1 DOCTYPE is for
the truly semantic. It's requirements suggest you have absolutely no presentational
markup in your XHTML (though in Strict 1.0, any strong, em, b, i, or other
presentation tags that slip in, will still technically validate on W3C's service; it's just
not the recommendation for how to remain 'Strict').

You can use what you like, especially if it's your WordPress site. However, if the
WordPress site will not remain completely under your control, you can't control
everything that other authors will add to the posts and pages. It's safest to use the
Transitional 1.0 DOCTYPE which will keep your theme valid and have more
flexibility for different kinds of users and the type of content they place into
the system.

For our OpenSource Magazine theme, I'll go ahead and use the 1.0 Transitional
DOCTYPE:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN"
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

You should note, while being integral to a valid template, the DOCTYPE declaration
itself is not a part of the XHTML document or an XHTML element. It does not use a
closing tag, even though it does look a bit like an empty tag.

Check your editor's preferences! Some editors automatically place a
DOCTYPE and the required html, header, title, and body tags into
your document when you open up your blank file. That's great, but please
go into your editor's preferences and make sure your Markup and DTD
preferences are set to XHTML and Transitional (or Strict, if you prefer).
Some editors that offer a 'design' or WYSIWYG view will overwrite
the DOCTYPE to whatever the preferences are set to, when you switch
between the Design and Source (a.k.a. Code) views. Dreamweaver
doesn't seem to have this problem, but you should set your DOCTYPE
preferences there too, just to be safe.

The Main Body
After our DOCTYPE, we can add in the other essential requirements of an XHTML file,
which are as follows:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>My New Theme Title</title>
</head>
<body> body parts go here </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[28]

Attach the Basic StyleSheet
At this time, as we have our basic header tags created, I go ahead and attach a bare
bones stylesheet. This stylesheet just has the general items, matching div id's and
placeholders that I use for most CSS styling. But it's just the 'shell'. There are no
display parameters for any of the rules.

Time For Action:

1.	 In your index.html file, add your css import link within the header file:

	 <head>
	 <title>
	 OpenSource Online Magazine</title>
	 <script type="text/javascript" src=""></script>
	 <style type="text/css" media="screen">
	 @import url(“style.css");
	 </style>
	 </head>

2.	 Create a style.css file and include this basic shell:

	 /*
	 Enter WP Design & Creation Comments Here
	 */
	

	 /*////////// GENERAL //////////*/
	 body {}
	

	 #container {}
	 #container2 {}
	 #container3 {}
	

	 /*////////// TYPEOGRAPHY //////////*/
	 h1 {}
	 h2 {}
	 h3 {}
	 h4 {}
	 p {}
	 a {}
	 a:hover {}
	 a:visited {}
	

	 /*////////// HEADERS //////////*/
	 #header {
	 /*background: #666666;url(“images/css_cs_header.jpg") no-repeat
	 left top;*/
	 }
	 #header p, #header h1, #header h2/**/ {
	 /*display: none;*/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

	 }
	

	 /*////////// CONTENT //////////*/
	 #content {}
	

	 /*////////// SIDEBARS //////////*/
	 #sidebarLT {}
	 #sidebarRT {}
	

	 /*////////// NAV //////////*/
	

	 #top_navlist {}
	

	 /*////////// BLOG ELEMENTS //////////*/
	

	 /*////////// FORMS //////////*/
	

	 /*////////// FOOTER //////////*/
	 #footer {}
	

	 /*////////// IMAGES //////////*/		
	

	 /*////// FUN CLASSES ///////////*/
	 /*any little extra flares and fun design
	 elements you want to add can go here*/

Basic Semantic XHTML Structure
Referring back to our sketch, we'd like our theme to have a standard header that
stretches across three columns. The left column being the main content or blog posts;
the middle column being our side bar; and a third column on the far right that will
hold our own custom feature links and/or advertisements. A footer will run across
the bottom of all three columns, naturally falling beneath the longest extending
column, no matter which of the three it is.

So let's start off with some very basic code within our <body> tag to get that going.
I've included relevant id names on each div in order to keep track of them and later
to assist me with my CSS development.

<body>
<!--anchor for top-->
<div id="container"><!--container goes here-->
<div id="header">
Header: background image and text elements for header will go
inside this div
</div><!--//header-->

<!-- Begin #container2 this holds the content and sidebars-->
<div id="container2">

<!-- Begin #container3 keeps the left col and body positioned-->
<div id="container3">
<!-- Begin #content -->

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[30]

<div id="content">
Main Content: Post content will go here inside this div
</div><!-- //content -->

<!-- #left sidebar -->
<div id="sidebarLT">
Left Side Bar: Will contain WordPress content related links
</div><!--//sidebarLT -->
</div><!--//container3-->

<!-- #right sidebar -->
<div id="sidebarRT">
Right Side Bar: This will include additional ads,
or non-content relevant items.
</div><!--//sidebarRT -->

<div id="pushbottom"> </div><!--//this div will span across the 3 divs
above it making sure the footer stays at the bottom of the longest
column-->

</div><!--//container2-->

<div id="top_navlist">
Top Nav: For reading through straight text, it's best to have
links at bottom (css will place it up top, for visual ease of use)
</div><!--//top_navlist-->

<div id="footer">
Footer: quick links for CSS design users who've had to scroll
to the bottom plus site information and copyright will go here

</div><!--//footer-->

</div><!--//container-->

</body>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Not much to look at, but you can see our semantic goals at work. For instance, if a
search engine bot or someone using a text-only browser or mobile device arrived and
viewed our site, the following is the order they'd see things in:

Header—because it's good to know whose stuff you're looking at.
Main Content—get right to the point of what we're looking for.
Left Column Content—under the main content, should have the next most
interesting items—Features list, Category a.k.a. Columns links, and Archives
a.k.a. 'Past Issues' links.
Right Column Content—secondary information such as advertisements and
non-content related items.
TopPage Navigation—even though in the design this will be on the top, it's
best to have it at the bottom in text-only viewing.
Footer Information—if this was a page of real content, it's nice to see whose site
we're on again, especially if we've been scrolling or crawling down for
some time.

Moving navigation to the bottom: Some SEO experts believe that another
reason to semantically push the navigation items down the page after the
body of content as far as possible is, it encourages the search engine bots
to crawl and index more of the page's content before wandering off down
the first link it comes to. The more content the bot can index at a time, the
sooner you'll be displayed with it on the search engine. Apparently, it can
take months before a site is fully indexed, depending on its size. I have
no idea if this is actually true, but it's in-line with my semantic structure
based on usability, so no harm done. You'll have to tell us at Packt
Publishing if you think your content is getting better SE coverage based
on this structure.

Adding Text–Typography
We're now ready to make our typography considerations. Even if you're designing
far into the experience side of the scale, text is the most common element of a site, so
you should be prepared to put a fair amount of thought into it.

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[32]

Start with the Text
I like to add an amount of text that has a site name and description paragraph right
on top in my header tags, the main body text up high in the content tags, secondary
then tertiary text below that (some of which usually ends up in a side bar), and
the navigation at the very bottom of the page in an unordered list. You know, it's
basically that 'perfect page' SEO experts go on and on about—a Google bot's delight,
if you will.

Minimally, I include <h1>, <h2>, <h3>, and <h4> headers along with links, strong
and emphasized text, as well as a block-quote or two. If I know for sure that the site
will be using the specific markup like <code> or form elements like <textarea> or
<input>, I try to include examples of text wrapped in these tags as well. This will
help me ensure that I create style rules for all the possible markup elements.

To help me out visually, I do tweak the text a bit to fit the situation for WordPress
theme designing. I put some blog post-ish stuff in there along with example text of
features I want the blog to have, that is, 'read more' links or a 'how many comments'
display along with samples of what kind of links the blog system will provide.

Actually, start with a lot of text. Here's my secret: I use a lot of sample
text. A major issue I've always noticed about design comps and reality
is this: We tend to create a nice mockup that's got clean little two-word
headers followed by trim and tight, one or two sentence paragraphs
(which are also easier to handle if you did the entire mockup in
Photoshop).
In this optimally minimalist sample, the design looks beautiful. However,
the client then dumps all their content into theme which includes long,
boring, two sentence headlines and reams and reams of unscannable text.
Your beautiful theme design now seems dumpy and all of a sudden the
client isn't so happy, and they want you to incorporate full of suggestions
in order to compensate for their text-heavy site.
Just design for lots of text upfront. If the site ends up having less text than
what's in your comp, that's perfectly fine; less text will always look better.
Getting mounds of it to look good after the fact is what's hard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Font Choices
When it comes to fonts on the web, we're limited. You must design for the most
common fonts that are widely available across operating systems. It doesn't mean
you shouldn't spend time really considering what your options are.

I think about the type of information the site holds, what's expected along with
what's in vogue right now. I then consider my fonts and mix them carefully. I usually
think in terms of headers, secondary fonts, block-quotes, specialty text (like depicting
code), and paragraph page text.

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[34]

You can use any fonts you want as long as you think there's a really good chance that
others will have the same font on their computers. Here is a list of the basic fonts I
mix and match from and why:

San-Serif Fonts: These fonts don't contain 'serifs' (hence the name san-serif).
Serifs are the little 'feet' you see on the appendages of type faces. San-Serif
fonts are usually considered more new and modern.
Verdana: This font is common on every platform and was specifically
designed for web reading at smaller web sizes. When you really want to use
a san-serif font for your body text, this is your best bet. (There was a great
article in The New Yorker in 2007 about the designer of this font.)
Arial and Helvetica: Common on every platform. A little tame. Great for
clean headlines, but a bit hard to read at smaller font sizes.
Trebuchet: Fairly common nowadays, and a pretty popular font on the 'web
2.0' styled sites. Clean like Arial with a lot more character. It reads a little
better at smaller sizes than Arial. This was originally a Microsoft font, so
sometimes it doesn't appear in older Mac or Linux OSs (Verdana is a MS font
too, originally released with IE 3, but its design for screen readability got it
opted quickly by other OSs).
Century Gothic: Fairly common. Clean and round, a nice break from the
norm. Reads terribly at small sizes though. Use for headings only.
Comic Sans Serif: Another MS font, but common on all platforms. Fun and
friendly, based on traditional comic book hand lettering. I've never been able
to use it in a design (I do try from time to time, and feel it's 'hokey'), but I
always admire when it's used well in site design (See Chapter 9 for a
great example).
Serif Fonts: These fonts are considered more traditional, or 'bookish', as serif
fonts were designed specifically to read well in print. The serifs (those 'little
feet') on the appendages of the letters form subtle lines for your eyes
to follow.
Times New Roman and Times: Very common on all platforms; one of
the most common serif fonts. Comes off very traditional, professional,
and/or serious.
Georgia: Pretty common, again predominately a Microsoft font. I feel it has
a lot of character, nice serifs, and a big and fat body. Like Verdana, Georgia
was specifically designed for on-screen reading for any size. Comes off
professional, but not quite as serious as Times New Roman.
Century Schoolbook: Pretty common. Similar to Georgia, just not as 'fat'.

•

•

•

•

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Courier New: This is a mono-spaced font, based on the old typewriters
and often what your HTML and text editor prefers to display (the point of
mono-type is that the characters don't merge together, so it's easier to see
your syntax). As a result of that association, I usually reserve this font for
presenting code snippets or technical definitions within my designs.

Cascading Fonts
When assigning font-families to your CSS rules, you can set up backup font choices.
This means that if someone doesn't happen to have Century Schoolbook, then they
probably have Georgia, and if they don't have Georgia either, then they definitely
have Times New Roman, and if they don't have that? Well, at the very least you
can rely on their browser's built-in 'generic' assigned font. Just specify: serif,
sans-serif, or mono-space.

Because I want the style of my site's text to convey friendly and modern magazinish
look, I'm going to have my headers be a mix of Trebuchet and Georgia, while the
body content of my text will be Trebuchet as well. My
font-families will look something like the following:

For body text:

#container {
 font-family: “Trebuchet MS", Verdana, Arial, Helvetica, sans-serif;
}

For h1 and h4 headers:

h1, h4 {
 font-family: “Trebuchet MS", Arial, Helvetica, sans-serif;
}

For h2 and h3 headers:

h2, h3{
font-family: Georgia, Times, serif;
}

Font Sizing
Thankfully, we seem to be out of the trend where intsy-teensy type is all the rage. I
tend to stick with common sense: Is the body text readable? Do my eyes flow easily
from header to header? Can I scan through the body text landing on emphasized or
bolded keywords, links, and sub-headers? If so, I move onto the next step.

•

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[36]

Where I can't help you is determining how to size your fonts. The W3C recommends
using em sizing for fonts on web pages. I, who normally treat anything the W3C
recommends as scripture, actually use (gasp!) pixels to size my fonts.

Why? Because it's simpler and quicker for me to work with. This might not be the
case for you, and that's fine. Yes, I've read the evidence and understood the logic
behind em sizing. But, I usually design my sites for FireFox, IE6 and IE7, Opera 9,
and Safari 3 (in about that order of importance). All these browsers seem to resize
pixel-sized fonts and line-heights just fine. I also tend to design my sites with locked
widths, assuming vertical expansion. Resizing fonts up or down from within any of
these browsers may not look wonderful, but it does not break any of my designs, it
just gives you bigger text to read and a little more scrolling to do.

You may not agree with using pixels to size, and if you intend for your theme's
layouts to be flexible and resizable, then you'll definitely want to go with em sizing
(for a lot of elements, not just your fonts).

You can set your font sizes to anything you'd like. I've set my container and heading
rules to the following:

#container {
 font-family: “Trebuchet MS", Verdana, Arial, Helvetica, sans-serif;
 font-size: 12px;
}
h1 {
 font-size: 32px;
}
h2 {
 font-size: 22px;
}
h3 {
 font-size: 16px;
}
h4 {
 font-size: 14px;
}

Want more info on the pros and cons of em and pixel sizing? A List
Apart has several great articles on the subject. The two that are most
relevant are: How to Size Text in CSS (http://www.alistapart.
com/articles/howtosizetextincss) and Setting Type on the
Web to a Baseline Grid (http://www.alistapart.com/articles/
settingtypeontheweb).
Really interested in web typography? Be sure to check out
http://webtypography.net/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Paragraphs
No matter what sizing method you decide on, px or em, be sure to give in some
space. With just the right amount of space between the lines, the eye can follow the
text much more easily, but not too much space should be given! By setting your
line-heights to a few more pixels (or em percentages) more than the 'auto' line-height
for the font size, you'll find the text much easier to scan online. Also, add a little
extra margin-bottom spacing to your paragraph rule. This will automatically add
a natural definition to each paragraph without the need for adding in hard return
breaks (
). You'll need to experiment with this on your own, as each font family
will work with different line-height settings and font sizes.

I've set my container rule to have a line-height of 16px and my paragraph rule to
allow a bottom margin of 18px:

#container {
 font-family: “Trebuchet MS", Verdana, Arial, Helvetica, sans-serif;
 font-size: 12px;
 line-height:16px;
}
p {
 margin-bottom: 18px;
}

Default Links
Many of the links in our theme are going to be custom-designed, based on the div
id they are located in. Still, I've gone ahead and decided to adjust my basic link or a:
href settings. I like my links to be bold and stand out, but not have what I find to be,
a distracting underline. However, I do feel the underline is an essential part of what
people expect a link to have, so if they do decide to move the mouse over to any of
the bold text, an underline will appear and they'll immediately know it's a link.

I've set the bold and underline for my links like the following:

a {
 text-decoration: none;
 font-weight: bold;
}
a:hover {
 text-decoration: underline;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[38]

Remember: If you don't like how your text looks here, a bunch of
graphics, columns, and layout adjustments really won't help. Take your
time getting the text to look nice and read-well now. You'll have less edits
and tweaks to make after the fact.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

The Layout
Let's now start to get this stuff look like our sketch!

You'll notice in our XHTML markup that each of our divs has an id name: the
divs that are going to be our three columns are wrapped inside an outer div called
container2; the main and the left columns are wrapped in a div called container3;
and the entire set of divs, including the header and footer, are wrapped in a main
div called container.

This structure is what's going to hold our content together and lets WordPress
display semantically with the main content first, yet lets the style allow the left
column to show up on the left. This structure also insures that the footer stays at the
bottom of the longest column.

In the stylesheet, I've set up my basic CSS positioning like
the following:

body {
 margin: 0px;
}
#container {
 margin: 0 auto;
 width: 900px;
 border: 1px solid #666666;
 font-family: “Trebuchet MS", Verdana, Arial, Helvetica, sans-serif;
 font-size: 12px;
 line-height:16px;
}
#container2 {
 border: 1px solid #0000ff;
}
#container3 {
 width: 670px;
 float:left;
 border: 1px solid #ff0000;
}
#header {
 border: 1px solid #00ff00;
 width: 930px;
 height: 300px;
 /*background: #666666;url(“images/css_cs_header.jpg") no-repeat left
top;*/
}
#content {
 margin:0 10px;
 width: 420px;
 float:left;

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[40]

 border: 1px solid #333333;
}
#sidebarLT {
 margin:0 5px;
 width:200px;
 border: 1px solid #ff9900;
 float:right;
}
#sidebarRT {
 margin:0 10px;
 width: 200px;
 float: right;
 border: 1px solid #0000ff;
}
#top_navlist {
 position: absolute;
 top: 170px;
 width: 900px;
 text-align:right;
 border: 1px solid #003333;
}
#pushbottom{
 clear:both;
}
#footer {
 border: 1px solid #000033;
 height: 85px;
 width: 930px;
}
#footerRight{
 margin: 0 10px 0 10px;
 width:400px;
 float:right;
 border: 1px solid #552200;
}
#footerLeft{
 margin: 0 10px;
 width: 400px;
 float:left;
 border: 1px solid #332200;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Adding the preceding code to my stylesheet gives me a layout that looks like the
the following:

Quick CSS layout tip: As you can see, I like to initially place bright
colored borders in my CSS rules, so I can quickly check (on first glance)
and see if my widths (or heights) and positioning for each of my divs is
on target. I tweak from there. As I continue to bring in all the details into
each CSS rule, I remove these border elements or change them to their
intended color. You can also use the Web Developer's Toolbar to quickly
see the border area of divs as you drag your mouse over them.

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[42]

Navigation
As we've discussed, one of the many cool things about WordPress is that it outputs
all lists and links with tags wrapping each item. This lets you specify if you
want the list to be an ordered or unordered list and what id or class you'd like to
assign to it, even though by default, all lists are vertical with bullets. Using CSS, you
have a wide range of options for styling your WordPress lists. You can turn them
into horizontal menus and even multi-level drop down menus! (I'll show you how to
create drop-downs and more starting in Chapter 7.)

Awesome CSS List Techniques: Listamatic and Listamatic2 from
maxdesign (http://css.maxdesign.com.au/index.htm) are
wonderful resources for referencing and learning different techniques to
creatively turn list items into robust navigation devices. It's what I've used
to create my Top (Page links nav), Featured, Column, and Past Issues
menus in this theme. The Top menu uses Eric Meyer's tabbed navbar
(http://css.maxdesign.com.au/listamatic/horizontal05.
htm) and the Sidebar menus use Eric Meyer's Simple Separators
(http://css.maxdesign.com.au/listamatic/vertical06.
htm). I just added my own background images and/or colors to these
techniques and the navigation came right together.

Time For Action:

I tweaked the code from the two Listamatic sources in a few ways:

1.	 I added id="navlist" to my ul inside my top_navlist div.
	 <div id="top_navlist">
	 <h2>main navigation</h2>
	 <ul id="navlist">
	 link 01
	 link 02
	 link 03
	
	 </div><!--//top_navlist-->

2.	 I also hid my h2 headers for the main navigation and footers that I would like
people reading my site in-line un-styled to see, but is unnecessary for people
viewing the styled site:

	 #top_navlist h2{
	 display: none;
	 }
	 #footer h3{
	 display: none;
	 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

3.	 I massaged the height and width padding on my main li a nav to be about
the height and width I imagine my graphical interface images to be.

4.	 I turned the second list into a class called tocNav, as I intend to apply it to all
my blog navigation.

I now have a side bar and top page navigation that looks like the following in the
style.css sheet:

#top_navlist {
 position: absolute;
 top: 240px;
 width: 900px;
 text-align:right;
 border: 1px solid #003333;
}

#top_navlist h2{
 display: none;
}

#navlist{
 padding: 10px 10px;
 margin-left: 0;
 border-bottom: 1px solid #778;
 font-weight: bold;
}

#navlist li{
 list-style: none;
 margin: 0;
 display: inline;
}

#navlist li a{
 padding: 11px 30px;
 margin-left: 3px;
 border: 1px solid #778;
 border-bottom: none;
 background: #DDE;
 text-decoration: none;
}

#navlist li a:link { color: #448; }
#navlist li a:visited { color: #667; }

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[44]

#navlist li a:hover{
 color: #000;
 background: #AAE;
 border-color: #227;
}

#navlist li a#current{
 background: white;
 border-bottom: 1px solid white;
}

/*TOC Nav*/
.tocNav{
 padding-left: 0;
 margin-left: 0;
 border-bottom: 1px solid gray;
 width: 200px;
}

tocNav li{
 list-style: none;
 margin: 0;
 padding: 0.25em;
 border-top: 1px solid gray;
}

tocNav li a { text-decoration: none; }

More Navigation–WordPress Specific Styles
(OK, Style)
WordPress does output a single predefined CSS style. There is a template tag
(wp_list_pages) that not only outputs the page links wrapped in an tag, but
adds the class attribute of page_item to it. If the selected page link also happens to
be the current page displayed, then an additional class called current_page_item is
additionally applied.

If your WordPress theme were to take advantage of creating a robust menu
for the page links, you could write individual styles for page_item and
current_page_item in order to have complete control over your page links menu,
including ensuring that your menu displays whichever page is currently active.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Multiple class styles assigned to the same XHTML object tag?! Yep,
as you can see in the DOM Source of Selection graphic, you can have
as many classes as you want assigned to an XHTML object tag. Simply
separate the class names with a blank space and they'll affect your
XHTML object in the order that you assign them. Keep in mind the rules
of cascading apply, so if your second CSS rule has properties in it that
match the first, the first rule properties will be overwritten by the second.
There are more suggestions for this trick in Chapter 9.

This means we simply change our Listamatic CSS from an id (#current) within an
a:href item, to a class within our li item (current_page_item) as follows:

#navlist li.current_page_item a{
 background: white;
 border-bottom: 1px solid white;
}

We now have a page layout that looks like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[46]

Color Schemes
Now that the general layout is hammered down, we're ready to move onto more
exciting design elements.

You'll want a predefined palette of three to ten colors arranged in a hierarchy from
most prominent to least. I like to create a simple text file which lists the colors' hex
values and then add my own comments for each color and how I plan to use it in the
theme. This makes it easy for me to add the colors to my CSS file and then later to
my Photoshop document as I create graphic interface elements.

How many colors should I use? I've seen designers do well with a
scheme of only three colors, however, six to ten colors is probably more
realistic for your design. Keep in mind, WordPress will automatically
generate several types of links you'll need to deal with, which will
probably push your color scheme out.

Color schemes are the hardest thing to start pulling together. Designers who have
years of color theory under their belt still dread coming up with the eye-catching
color palettes. But the fact is, color is the first thing people will notice about your
site and it's the first thing that will help them not notice that it is just another
WordPress site (especially if you're taking the 'Simplicity' route and modifying an
existing theme).

Two-Minute Color Schemes
When it comes to color schemes, I say, don't sweat it. Mother nature, or at the very
least, someone else, already created some of the best color schemes for us. Sure, you
can just look at another site or blog you like and see how they handled their color
scheme, but it's hard to look at someone else's design and not be influenced by more
than just their color scheme.

For those intent on an original design, here's my color scheme trick: If your site will
be displaying a prominent, permanent graphic or picture (most likely in the header
image), start with that. If not, go through your digital photos or peruse a stock
photography site and just look for pictures which appeal to you most.

Look through the photos quickly. The smaller the thumbnails the better, content is
irrelevant! Just let the photo's color hit you. Notice what you like and don't like
(or what your client will like, or what suits the project best, etc.), strictly in terms
of color.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Color Schemes with Photoshop
Pick one or two images which strike you and drop them into Photoshop. A
thumbnail is fine in a pinch, but you'll probably want an image a bit bigger than
the thumbnail. Don't use photos with a watermark as the watermark will affect the
palette output.

Lose the watermark: Most stock sites have a watermark and there's
nothing you can do about that. You can create a free login on
gettyimages's photodisc (http://Photodisc.com). Once logged in, the
watermark is removed from the comp images preview which is about 510
pixels by 330 pixels at 72dpi, perfect for sampling a color palette.
The watermark free image is for reference and mockups only. We won't be using
the actual images, just sampling our color palettes from them. If you do
end up wanting to use one of these images in your site design or for any
project, you must purchase the royalty free rights (royalty free means
once you buy them, you can use them over and over wherever you want)
or purchase and follow the licensing terms provided by gettyimages's
LTD for rights-managed images. (Rights-managed images usually have
restrictions on where you can use the image, how long it can be on a
website, and/or how many prints you can make of the image.)

Once you have an image with colors you like, opened up in Photoshop, go to
Filter | Pixelate | Moziac and use the filter to render the image into huge pixels.
The larger the cell size, the fewer colors you have to deal with, but unfortunately, the
more muted the colors become.

I find that a cell size of 50 to 100 for a 72 dpi web image is sufficient (you might need
a larger cell size if your photo is of high-resolution). It will give you a nice, deep
color range and yet, few enough swatches to easily pick five to ten for your site's
color scheme. The best part, if you liked the image in the first place, then any of these
color swatches will go together and look great! Instant color scheme!

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[48]

Once the image has been treated with the mosaic filter, just pick up the eyedropper
to select your favorite colors. Double-clicking the foreground palette in the tool bar
will open up a dialog box and you'll be able to 'copy and paste' the hex number from
there into your text file.

Keep track of this text file! Again, it will come in handy when you're ready to paste
items into your style.css sheet and create graphic interface elements in Photoshop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Adding Color to Your CSS
After some thought, I've gone through my CSS sheet and added some color to the
existing classes. I either used the color: property to change the color of fonts, and
even though I'll probably be adding background images to enhance my design,
I've gone ahead and also used the background-color: property to add color
to the backgrounds of divs in my layout that are similar to the base color of the
background image I'll probably be designing.

The benefits of using the background-color property, even though you intend to
create images for your design are:

1.	 In the event your images happen to load slowly (due to server performance,
not because they're too big), people will see CSS color that is close to the
image and the layout won't seem empty or broken.

2.	 If you can't finish designing images for every detail, sometimes the
background color is enough to take the site live and still have it look pretty
good. You can always go back in and improve it later.

I've also created four new classes to handle my 'TOC section headers' uniquely from
regular h2 headers:

.thisMonth{
 margin-top: 0;
 height: 56px;
 line-height: 85px;
 background-color: #9E745E;
 font-size: 42px;
 font-weight: normal;
 color: #ffffff;
}
.features{
 margin-top: 0;
 height: 46px;
 line-height: 70px;
 background-color: #9E9C76;
 font-size: 36px;
 font-weight: normal;
 color: #ffffff;
}
.columns{
 margin-top: 0;
 height: 46px;
 line-height: 70px;
 background-color: #253A59;
 font-size: 36px;
 font-weight: normal;

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[50]

 color: #ffffff;
}
.pastIssues{
 margin-top: 0;
 font-family: Georgia, Times, serif;
 font-size: 31px;
 font-weight: normal;
 color: #305669;
}

Create the Graphical Elements
Now, except for those multi-colored borders I've put around each of my containing
divs (they will be removed shortly), I have an XHTML and CSS design that's not half
bad. Let's polish it off!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

Snap a screenshot (Ctrl+Prt Scr on a PC, or use Grab, the free capture program on a
Mac) of your layout and paste it into a blank Photoshop document, or open it up
into Photoshop.

This is where (after realizing that blocking out layout directly in CSS isn't so bad)
I've had web designers argue with me about this 'Rapid Design Comping' process.
All your text is now an un-editable graphic and trapped on one opaque layer. Any
graphics you place on top of it will obscure the text underneath it, and any graphics
you place underneath it, well, can't be seen at all!

So? We're in Photoshop, the program that edits graphic images so well? Keeping
in mind that images in your theme design will need to be added using CSS
background-image techniques, it will probably be best to have your interface
graphics set up behind your text layer.

Simply use the Select>Color Range tool to select and knock out the blocks of color
you want replaced with background images in your CSS. A tolerance setting of 32 is
more than enough to grab the entire blocks of color. Sure, there are probably places
where you plan to replace the text entirely with a graphic, in which case, you can
apply the graphic over that area.

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[52]

But what if your client makes a change to the text stylings? Easy! Make the requested
change to your CSS file, take another screenshot of the updated index.html page in
your browser and place it back inside your Photoshop file. Yes, you'll have to again
knock out some of the blocks of colors so that your graphic interface elements can
be seen again. Does making two mouse selections to accomplish that take more time
than finding all the layers of relevant text and making the style change?

At best, it might be close. But, don't forget the real perk: Your design comp is more
than half way ready for production (a.k.a. turning into a working WordPress theme).
If the whole mockup was done in Photoshop, you'd still have all the XHTML and
CSS creation to go through and then hope you can recreate what's in your Photoshop
design comp across browsers.

What about designing in a vector program? If you really love Illustrator
or Inkscape so much, you can do one of the two things: One, just design
over your text image layer, and if you really must show a comp to a client,
add a little text back over the areas obscured by your graphic. Or, you can
open the image into Photoshop or GIMP and just as I suggested earlier,
use the Select | Color Range tool to knock out the main block colors that
will be replaced with graphics. Save as a transparent GIF or PNG and
import into your vector editor and proceed as suggested above, on layers
underneath the text.

Relax and Have Fun Designing
Now that I have my layout set up in Photoshop with the white knocked out, I can
proceed with designing my graphic interface elements in the layers underneath.

As you work in your graphic editor, you may come across items that need updating
in the CSS to accommodate the interface elements you're designing. I usually deal
with these in two ways:

1.	 If the CSS properties I'm dealing with need to change in size (say for instance,
I wanted the top_navigation tabs to be taller, or I might decide the padding
around the WordPress items inside the sidebarLT div to be taller or wider
to accommodate a graphic), then, as described above, I would make the
change in my CSS stylesheet and take another screenshot to work with.

2.	 If the CSS property is just being removed or handled in a way that doesn't
change the size, such as borders and display text, I don't take another
screenshot. I just edit them out of the PSD layout and make a mental note
or production to-do list item to remove the CSS property. Properties that
need removing or setting to display: none are pretty obvious and easy
to take care of while you insert your graphic element images into CSS as
background-image properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

There are a couple of 'special needs' cases in my theme design idea that I've been
attempting to handle from the start. You may have noticed in my CSS layout that the
header is wider at about 930px than my layout at 900px, and it hangs out to the left.
I'm going to add a little hint of shadow and that's the amount I've allowed for it.

The border properties I've set up for my main layout elements will help me layout
my graphic elements, and as the elements become finalized, I just take the eraser
tool or use Select | Color Range again to remove them (good thing I made each div
border property a different color!).

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[54]

You can see our final result once we erase the lines and text that will be set to
display:none or text-aliged out of the way:

Slice and Export
When getting ready to slice your images for export, keep in mind that via the
background properties in CSS you can control the top, bottom, left, or right
placement, x and y repetition, as well as make the image non-repeating. You can also
set the background image to 'fixed', and it will not move with the rest of your page if
it scrolls.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

You'll need to look at your design and start thinking in terms of what will be
exported as a complete image, and what will be used as a repeating background
image. You'll probably find that your header image is the only thing that will be
sliced as a whole. Many of your background images should be sliced so that their
size is optimized for use as a repeated image.

If you notice that an image can repeat horizontally to get the same effect, then you'll
only need to slice a small vertical area of the image. Same goes for noticing images
that can repeat vertically. You'll only need to slice a small horizontal area of the image
and set the CSS repeat rule to repeat-x or repeat-y to load in the image.

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[56]

If you'd like more information on how to slice and work with background
images, repeating and non-repeating for use with CSS, check out this
article from Adobe's site:
http://www.adobe.com/devnet/dreamweaver/articles/
css_bgimages.html

Now that you've placed the slices for each of your theme image elements, export
them using the smallest compression options available. Once you have each
image, you can import them using the background-image, background-repeat,
background-attachment, and background-position CSS properties.

Using CSS 'shorthand' you can handle all of that, including the background-color
property via the plain background property, like so:

background: #fff url(img.gif) no-repeat fixed 10px 50%;

After including our header image, I need to remove the text-header information.
Rather than just deleting it from the XHTML page, I set the display for h1, h2, and
p to none. That way, people who view the content un-styled will still see appropriate
header information. I've also added a #date id so that I can have the current month
and year displayed under my magazine text, just like a print magazine.

Here are our #header id rules:

#header {
 width: 930px;
 height: 250px;
 background: url(“images/oo_mag_header.jpg") no-repeat left top;
}

#header p, #header h1, #header h2/**/ {
 display: none;
}

#header #date{
 position:absolute;
 font-family: Georgia, Times, serif;
 font-size: 16px;
 margin-top: 160px;
 margin-left: 25px;
 color:#253A59;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

And here are our #top_navlist id rules, that use a single image rollover technique:

#top_navlist {
 position: absolute;
 top: 260px;
 width: 897px;
 text-align:right;
}
#top_navlist h2{
 display: none;
}
#navlist{
 padding: 10px 10px;
 margin-left: 0;
 border-bottom: 1px solid #ccc;
 font-family: Georgia, Times, serif;
 font-weight: bold;
}
#navlist li{
 list-style: none;
 margin: 0;
 display: inline;
}
#navlist li a{
 padding: 11px 30px;
 margin-left: 3px;
 border: none;
 border-left: 1px solid #ccc;
 background: #8BA8BA url(images/oo_mag_main_nav.jpg)
 no-repeat top right;
 text-decoration: none;
 color: #253A59;
}
#navlist li a:hover{
 background-color: #9E9C76;
 background-position: right -37px;
 border-color: #C5BBA0;
 color: #784B2C;
 text-decoration: underline;
}
#navlist li.current_page_item a{
 border-bottom: 1px solid white;
 background-color: #fff;
 background-position: right -74px;
}
#navlist li a:visited { color: #253A59; }

www.it-ebooks.info

http://www.it-ebooks.info/

Theme Design and Approach

[58]

Wellstyled.com has an excellent tutorial on how to use a single image
technique to handle image background rollovers with CSS
(http://wellstyled.com/CSS-nopreload-rollovers.html).

To see the full and final CSS mockup style.css and index.html page, please refer
to the code download section in the Preface.

The final theme mockup looks like the following in our Firefox browser:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

Yes, the final XHTML/CSS mockup is very similar to the Photoshop mockup. It
should be almost perfect! You may still notice some slight differences. As I was
putting the images into CSS, I discovered that I rather liked having each gradient
section outlined using the same base color of the gradient, so I just left some border
properties in the stylesheet and changed their color.

I also tested out my top_navigation rollover images by adding an extra link (not
sure the WordPress site will have a need for a reference page, but if it ever needs it,
it can have as many links as can fit across the top there!) and some plausible text to
make sure the link area expands with the extra text.

Summary
You have now learned the key theme design considerations to make when planning
a WordPress theme. We've also created a great XHTML/CSS mockup. Let's dive
right in to cutting it up into a fully working WordPress theme!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up
We're now going to take our XHTML/CSS mockup and start working it into our
WordPress Theme. We'll take a look at how the mockup will be broken apart into
template files and how to incorporate WordPress specific PHP code into the template
pages to create our working theme.

Got WordPress?
First things first! If by some chance you skipped over Chapter 1 and/or just don't
have one yet, you'll need an installation of WordPress to work with. As I explained
in Chapter 1, I assume you're familiar with WordPress and its Administration Panel
basics and have a development sandbox installation to work with.

Sandbox? I recommend you use the same WordPress version, plug-ins,
and widgets that the main project will be using, but don't use the 'live
sites' installation of WordPress. Using a development installation (also
called 'the sandbox') allows you to experiment and play with your theme
creation freely while the main project is free to get started using a built-in
default theme to display content. You then also don't have to worry about
displaying anything 'broken' or 'ugly' on the live site while you're testing
your theme design.

Many hosting providers offer WordPress as an easy 'one-click-install.' Be sure to
check with them about setting up an installation of WordPress on your domain.

If you need help getting your WordPress installation up and running, or need an
overview of how to use the WordPress Administration Panel, I highly recommend
you read Packt Publishing's WordPress Complete by Hasin Hayder.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[62]

Want to work locally? I spend a lot of time on my laptop, traveling often
without a WiFi 'hot spot' in sight. Having a local install of WordPress
comes in very handy for theme development. You can install local
running versions of PHP5, Apache, and MySQL onto your machine, and
afterward, install WordPress 2.
PC users: WAMP Sever2 is a great way to go. Download it from
http://www.wampserver.com/en/. You can follow 'Jeffro2pt0's'
instructions for installing WordPress in this two part series on weblog
tools collection at:

1. http://weblogtoolscollection.com/
archives/2007/12/30/install-wordpress-
locally-1-of-2/

2. http://weblogtoolscollection.com/
archives/2008/01/03/install-wordpress-
locally-part-2-of-2/

Mac users: You can install MAMP for Mac OSX. Download MAMP
from http://www.mamp.info/en/. You can follow Michael Doig's
instructions to install WordPress at http://michaeldoig.net/4/
installing-mamp-and-WordPress.htm.

Understanding the WordPress Theme
Let's get familiar with the parts of a theme that your mockup will be separated into.

We'll use the default WordPress theme to review the basic parts of a theme that
you'll need to think about as you convert your XHTML/CSS mockup into
your theme.

Earlier, I explained that the WordPress theme is the design of the site and the
WordPress generates the content. Thus the content and the design were separate.
They are, but your theme does need to have the appropriate WordPress PHP code
placed into it in order for that content to materialize. It helps if the theme is broken
down into template files, which make it even easier to maintain with less confusion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

The following figure illustrates how the theme's template files contribute to the
rendered WordPress page the user sees on the web.

Within a theme, you'll have many individual files called template files. Template files
mainly consist of XHTML and PHP code required to structure your site, its content,
and functionality.

A WordPress theme's main template files consist of the main index.php file, which
uses PHP code to include other template files, such as header.php, footer.php, and
sidebar.php. However, as you'll learn throughout this book, you can make as many
templates as you feel necessary and configure them any way you want!

Your theme also contains other types of files such as stylesheets (style.css), PHP
scripts (like searchform.php), Javascript, and images. All of these elements, together
with your template files, make up your complete WordPress theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[64]

Your WordPress Work Flow
Your work flow will pretty much look like the following:

You'll be editing CSS and XHTML in your HTML editor. After each edit, you'll hit
Save, then use alt+tab or task-bar over to your browser window. You'll then hit
Refresh and check the results (I'll usually direct you alt+tab, but however you get to
the directed window is fine). Depending on where you are in this process, you might
also have two or more browser windows or tabs open—one with your WordPress
theme view and others with the key WordPress Administration Panels that you'll
be using.

Whether you're using Dreamweaver, or a robust text editor like Coda or HTML-kit,
all three of these editors let you FTP directly via a site panel and/or set up a working
directory panel (if you're working locally on your own server). Be sure to use this
built-in FTP feature. It will let you edit and save to the actual theme template files
and stylesheet without having to stop and copy to your working directory or upload
your file with a standalone FTP client. You'll then be able to use alt+tab to move to a
browser and view your results instantly after hitting Save. Again, this is one of the
reasons you're working on a development/sandbox installation of WordPress. You
can directly save to the currently selected theme's files and not have to worry about
temporarily having something 'ugly' or 'broken' appear on the live site.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Be sure to save regularly and make backups! Backups are sometimes
more important than just saving. They enable you to 'roll back' to a
previously stable version of your theme design, should you find yourself
in a position where your XHTML and CSS has stopped playing nice.
Rather than continuing to futz with your code wondering where you
broke it, it's sometimes much more cost effective to roll back to your last
good stopping point and try again. You can set your preferences in some
editors, like HTML-kit, to autosave backups for you in a directory of
your choice. However, only you know when you're at a good 'Hey, this
is great!' spot. When you get to these points, get in the habit of using the
'Save a Copy' feature to make backups. Your future-futzing-self will love
you for it.

Let's Build Our Theme
Have your HTML editor open and set up to display a FTP or local working directory
panel so that you have access to your WordPress installation files. Also, have a
couple of browser windows open with your WordPress home page loaded into it as
well as the WordPress Administration Panel available.

Tabs! Use them. They're one of those neat built-in FireFox features we
were talking about. Keep all your WordPress development and admin
views in one window. Each tab within a FireFox window is accessible via
Ctrl+1, Ctrl+2, etc. keystrokes. It makes for a much cleaner work space,
especially as we'll already be in constant alt+tab flip mode. Flipping
to the wrong browser windows gets annoying and slows you down.
You'll quickly get in the habit of 'Alt+tab, Ctrl+?' to jump right to your
WordPress theme view or administration page, etc.

Tabula Rasa
As I've mentioned in the beginning of this chapter, WordPress separates its themes
out into many different template files. As a result, if you want to work on the main
body, you'll open up the index.php file, but if you want to work on the header
layout or DOCTYPE, you'll need to open up the header.php file. If you want to deal
with the side bar, you'll need to open up sidebar.php, and even then, if you want to
work on a specific item within the sidebar, you might need to open up yet another file
such as searchform.php.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[66]

When you're trying to put your theme together, initially this can be quite
overwhelming. My approach to coding up your theme entails the following: (We'll
go over each step in detail.)

1.	 In your new theme directory, create a copy of the existing index.php and
style.css files. Keep these files for reference.

2.	 Upload your mockup's image directory as well as your index.html and
style.css mockup files to the directory, and rename your index.html file
to index.php.

3.	 Add WordPress PHP code to your design so that the Word Press content
shows up.

4.	 Once your theme's WordPress content is loading in and your XHTML and
CSS still work and look correct, then you can easily pull it apart into your
theme's corresponding template files.

5.	 Once your theme design is separated out into logical template files, you can
begin finalizing any special display requirements your theme has, such as a
different home page layout, internal page layouts, and extra features.

The other advantage to this approach is that if any part of your theme starts to
break, you can narrow it down to WordPress PHP code that wasn't copied into its
own template file correctly and you have base files to go back to with the clean code
(because you've kept the original default theme files, as pointed out in step 1), so you
can try again.

Why does WordPress have its theme spread across so many template
files? In a nutshell, WordPress does this for powerful flexibility. If your
theme design is simple and straightforward enough (that is, you're sure
you want all your loops, posts, and pages to look and work exactly the
same), you can technically just dump everything into a single index.php
file that contains all the code for the header, footer, sidebar, and plug-in
elements. However, as your own theme developing skills progress (and as
you'll see with the theme we build in this book), you'll find that breaking
the theme apart into individual template files helps you take advantage
of the features that WordPress has to offer, which lets you design more
robust sites that can easily accommodate many different types of content
and layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

Time For Action: To get started, we'll create a copy of the existing default theme. I'm
using a development installation of WordPress on a remote server that I'm FTPing
into. If you're working locally, you can follow my instructions using the common
desktop commands instead of an FTP client.

1.	 Inside your WordPress installation, in the themes directory (under the
wp-content directory), locate the default theme directory and copy it down
locally (or just copy it).

2.	 Rename the copy of the directory to a theme name which suites your project
(and copy it back up to the themes directory if working remotely).

3.	 Important! Don't skip this step! WordPress template files follow what's
known as the Template Hierarchy. Upon renaming the theme directory,
open it up. We'll be referencing code from some of the files, but WordPress
will use certain files as defaults for different page content if they are left
alone. If the theme directory you duplicated has a home.php page, a page.
php, category.php, archive.php, and/or a single.php page, you must
either remove or rename these files to something else. I usually just rename
them to orig_page.php, orig_home.php, and so on, until I'm ready to
incorporate them into my new theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[68]

Find out more about the WordPress Template Hierarchy: Certain
WordPress template pages will override other pages. Not being aware
of which files override which ones within your template hierarchy can
make troubleshooting your template a real pain. We'll talk about this
more in Chapter 6 which deals with WordPress Reference, and you can read
through the WordPress codex online at http://codex.wordpress.
org/Template_Hierarchy.

4.	 After you've made a copy of the style.css and the index.php files (again,
I usually rename them as orig_style.css, etc.), upload your mockup's
style.css and index.html sheet (renaming your index.html file to
index.php) into the directory. Now, in your editor, open up the original
stylesheet into the Code view. There are eighteen lines of commented
out code that contain the theme's information for WordPress. Copy those
eighteen lines over into the top of your style.css sheet before your style
rules. Leaving the text before the colons in each line alone, update the
information to the right of each colon to accommodate your own theme.
For instance:

 /*Theme Name: 1 OpenSource Online Magazine
 Theme URI: http://wpdev.eternalurbanyouth.com/
 Description: A WordPress Theme created originally for InsideOpenOffice.org and
 then modified for Packt Publishing's WordPress Theme Design.
 Version: 1.3
 Author: Tessa Blakeley Silver
 Author URI: http://hyper3media.com
 The CSS, XHTML and design is released under GPL:
 http://www.opensource.org/licenses/gpl-license.php
 */

5.	 In your WordPress go to Administration | Design | Themes (or
Administration | Presentation | Themes in 2.3). There, you'll be able to
select the new theme you just duplicated and renamed. (Look carefully!
The image is still the same as the default theme.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Finding your new theme:
I gave my theme a name that started with '1'. I did this only for
development purposes, so it would be easy to find in the list of many
themes that come with my installation of WordPress. Before I actually
deploy the theme, I'll remove the '1' from the name in the stylesheet. You
may do the same when you develop, or you may chose to intentionally
name your theme with a number or the letter 'A' so that it shows up closer
to the top within the list of themes.

Including WordPress Content
When you point your browser to your WordPress Installation, you should see your
mockup's unstyled XHTML.

To get your index.php page to read your style.css page, you must replace the @
import url code in your home.php page with the following:

<style type="text/css" media="screen">
 @import url("<?php bloginfo('stylesheet_url'); ?>");
</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[70]

Congratulations! That's your first bit of WordPress code. You should now see your
styled mockup when you point your browser at your WordPress installation.

We're now ready to start adding WordPress theme code.

The Loop
The next (and I'd say, the most important) bit of WordPress code that I like to
tuck into my mockup file is called 'The Loop'. The Loop is an essential part of your
WordPress theme. It displays your posts in chronological order and lets you define
display properties with other PHP bits of code wrapped in XHTML markup.

If by some chance you have no posts to show, the default is to display WordPress'
searchform.php file.

Unfamiliar with the Loop? 'The Loop' is one of those core pieces of
WordPress PHP code you should brush up on. Understanding how 'The
Loop' works in WordPress is incredibly helpful in letting you achieve
any special requirements or effects of a custom professional template.
To find out more about The Loop, its uses in the main index page, other
template pages, and how to customize it, check out the following links on
WordPress.org's codex site:
http://codex.wordpress.org/The_Loop_in_Action

http://codex.wordpress.org/The_Loop

I'll start by pasting the following code (which I've copied from the default theme's
index.php loop) into my widest column under my This Month: header, overwriting
the sample content. This code will ensure that the sample posts I've added to my
WordPress installation will show up.

<?php if (have_posts()) : ?>
 <?php while (have_posts()) : the_post(); ?>
 <div class="post" id="post-<?php the_ID(); ?>">
 <h2><a href="<?php the_permalink() ?>" rel="bookmark"
 title="Permanent Link to <?php the_title(); ?>"><?php
 the_title(); ?></h2>
 <small><?php the_time('F jS, Y') ?> <!-- by <?php
 the_author() ?> --></small>
 <div class="entry">
 <?php the_content('
Read the rest of this entry
 »'); ?>
 </div>
 <p class="postmetadata">Posted in <?php the_category(', ')
 ?> | <?php edit_post_link('Edit', '', ' | '); ?> <?php
 comments_popup_link('No Comments »', '1 Comment
 »', '% Comments »'); ?></p>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

 </div>
 <?php endwhile; ?>
 <div class="navigation">
 <div class="alignleft"><?php next_posts_link('« Previous
 Entries') ?></div>
 <div class="alignright"><?php previous_posts_link('Next
 Entries »') ?></div>
 </div>
 <?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for something
 that isn't here.</p>
 <?php include (TEMPLATEPATH . "/searchform.php"); ?>
<?php endif; ?>

Upon reloading my page, I discover it works just fine and my five sample posts are
indeed showing up. However, there's a bit of tweaking to be done:

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[72]

Keeping in mind that I don't want this theme to be an average blog, and I'm going
to continue to emulate my magazine-style concept: The first thing I notice about this
loop is that it best suits the standard blog posts. It displays the date, and although
commented out, it displays the author. It also lists a Posted in: for the Category and
Comments link.

Just like any good magazine, I want to let the content loaded into this theme hang
around while the month on the cover is current, and peruse its contents at my
leisure. I'm concerned that leaving the full time stamp for each post will encourage
some people to not read the content if it happens to be seven days old already or
anything like that.

Hence, I'm going to remove the individual time stamp:

<?php the_time('F jS, Y') ?>

I do want the author's name to show up, but again, more like an article, I think it
should be their full name, not their user id or nickname, and the author's name
should appear below the post's title with a 'by Author Name'. So, that will have to
be uncommented and tweaked to display the author's name. I'll also change the
XHTML a bit with and add a new CSS class reference. My author code then changes
from <!--<?php the_author() ?>--> to the following:

<p class="authorName">by <?php the_author_firstname(); ?> <?php the_
author_lastname(); ?> for <?php the_category(', ') ?></p>

I also moved up the category template tag into the paragraph markup and
added my own custom class authorName.

Because this is the web and not a paper magazine, there are WordPress features I
should take advantage of. I feel I want to show what 'Column' (a.k.a. WordPress
category) the article has been posted to. I also want to take advantage of having
people's comments and ideas expand on the article and help keep it fresh. So, I'll
show how many comments have been added to the post. But again, some editing
will need to happen as I don't want those two items lumped together at the end
of the article section. I've already moved my category template tag up next to my
author name display, so what I'm left with is this:

<div class="comments"> <div class='commentIcon'><?php comments_
number('No Comments','1 response','<span
class="bigNum">% Comments'); ?></div> <?comments_popup_
link('Add Your Thoughts', 'Add Your Thoughts', 'Add Your Thoughts');
?></div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

You'll see in the preceding code that I've changed the comments_popup_link
template tag to always display Add Your Thoughts and added the comment_number
template tag to track how many comments are made on an article. I've also again
added my own custom classes called comments, commentsIcon, and bigNum to the
markup and changed it from a paragraph tag to a div tag. (So my 'left' and 'right'
float assignments would work within it.)

Even though I had most of these text elements handled in my mockup, I'm now
seeing what's available to me via the WordPress template tags. You've probably
noticed that the classes authorName and bigNum were not the part of my original
mockup. I've decided to add them in as I'm developing the WordPress theme. I
thought that making the author's name just a little smaller would offset it nicely
form the article, and as I created the comment icon, it would be cool, if there were
comments, to show them in a big number floating in the middle of the icon.

You will probably come across little details like these yourself, feel free to add them
in as you see fit. As long as your changes don't drastically change the layout, your
client will not mind. If you think they will, it might be best to add to your original
mockup and send a screenshot to the client for approval before proceeding.

Within The Loop (Template Tags): Once you get to rummaging around
in your loop (or loops, if you create custom ones for other template
pages), you'll quickly see that the default theme's template tags are a bit
limiting. There are thousands of custom template tags you can call and
reference within the loop (and outside of it) to display the WordPress
content. Check out the following link to find out what template tags
are available:
http://codex.wordpress.org/Template_Tags

After considering the above discussion, I've come up with a main loop that looks
something like the following:

<!--//start content loop-->
<?php if (have_posts()) : ?>
 <?php while (have_posts()) : the_post(); ?>
 <div class="post" id="post-<?php the_ID(); ?>">
 <h2><a href="<?php the_permalink() ?>" rel="bookmark"
 title="Permanent Link to <?php the_title(); ?>"><?php
 the_title(); ?></h2>
 <p class="authorName">by <?php the_author_firstname(); ?>
 <?php the_author_lastname(); ?> for <?php the_category(',
 ') ?></p>
 <div class="entry">
 <?php the_content('
Read the rest of this entry
 »'); ?>
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[74]

 <div class="comments"> <div class='commentIcon'><?php
 comments_number('No Comments','1 response','% Comments'); ?></div>
 <?comments_popup_link('Add Your Thoughts', 'Add Your
 Thoughts', 'Add Your Thoughts'); ?></div>
 </div>
 <?php endwhile; ?>
 <div class="navigation">
 <div class="alignleft"><?php next_posts_link('«
 Previous Entries') ?></div>
 <div class="alignright"><?php previous_posts_link('Next
 Entries »') ?></div>
 </div>
 <?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for something
 that isn't here.</p>
 <?php include (TEMPLATEPATH . "/searchform.php"); ?>
 <?php endif; ?>
<!--//end content loop-->

It displays a comment post that looks like this:

The Sidebar
The default theme's sidebar.php file displays the following information:

Static Page Links: This is a list of your static pages (content you add via
the Administration | Write | Write Page tab in the administrator panel
as opposed to the Administration | Write | Write Post panel. This list is
displayed using the wp_list_pages template tag.
Archive Links: Again, controlled by a template tag, wp_get_archives, this
is set to the type=monthly default.

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Category Links (with how many posts per category): This displays your
categories using the wp_list_categories template tag.
A BlogRoll set of links: This list is controlled by the wp_list_bookmarks()
template tag which displays bookmarks found in the Administration |
Blogroll | Manage Blogroll panel.
A set of 'Meta' links (links to info about the site): These links are hand-coded
into the sidebar.php page in the default template.

Generally, the above works out great for a more 'standard' blog. But as discussed,
I would like my page links to display horizontally up top of my sidebar, and I
want my theme to display a vertical sidebar that looks more like the contents page
of a magazine.

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[76]

Time For Action:

1.	 To start, I'll be treating my archives as Past Issues. So showing the month
and year will be just fine. Under my Past Issues heading I'll add the
following code which will display my archive links wrapped in unordered
list elements:

	 <!--//start archive list-->
	 <ul class="tocNav">
	 <?php wp_get_archives('type=monthly'); ?>
	
	 <!--//end archive list-->

Formatting tip: You'll see I've wrapped each bit of PHP and its template
tag in <ul class="..."> (unordered list XHTML markup). WordPress
will automatically return each item wrapped in (list item tags).
Adding the unordered list tags (or ordered list tags if you want.)
ensures I have a valid list that is easy for me to customize with my CSS.
XHTML comments: You'll also note that I'm wrapping most of my
WordPress code in <!--//--> XHTML comment tags. I do this so that
scanning the markup is easier for myself and any other developer who
comes across the code (a nice idea for those of you who are looking
forward to creating commercial themes to make a little money; the
more clear your markup, the less time you'll spend helping purchasers
troubleshoot your theme). Also, indicating where WordPress code starts
and ends as well as what kind of code it is, will also come in very handy
when we get ready to break the code out into template pages, reducing
the chance of possible cut-and-paste errors that can occur.

2.	 Next, my Columns are really just a list of my categories. The default sidebar
lists the title as Categories, but as I have my own special header hand-coded
into the side bar, I've removed the following:

	 &title_li=<h2>Categories</h2>

I have changed it to this:

&title_li=

It gives me the code under my Columns header that looks like this:

<!--//start categories list-->
<ul class="tocNav">
 <?php wp_list_categories('show_count=1&title_li='); ?>

<!--//end categories list-->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

3.	 Next, my Features will require a little bit of finessing. I would like WordPress
to display the most recent five posts that are only in the Features category.
There are a few clean template tags that will display the most recent post
titles, but they don't seem to let me limit the posts to just coming from my
Features category.

Because I understand a little PHP, I'll include a small custom loop which will use
three WordPress template tags to call in the post information for the last five posts in
category 3 (which is my Features category), then just display the perma link for each
post and its title.

Again, as long as you recognize what the template tags look like and how to
paste them into your theme template pages, you don't have to understand PHP or
write any special scripts yourself. You can do a whole lot with just the existing
template tags.

Understanding PHP and how to craft your own bits of code and loops will enable
you to have no limits on your theme's capabilities. The following script has the
WordPress template tags highlighted in it, so you can see how they're used.

<!--//start recent features list-->
<ul class="tocNav">
 <?php
 global $post;
 $myposts = get_posts('numberposts=5&category=3');
 foreach($myposts as $post):
 setup_postdata($post);?>
 <a href="<?php the_permalink() ?>"><?php the_title();
 ?>
 <?php endforeach; ?>

<!--//end recent features list-->

Custom Selecting Post Data: You'll probably notice that the
setup_postdata(); function isn't listed in WordPress.org's
template tag reference page, it's actually a WordPress formatting
function. If you're interested in PHP and would like to learn more about
being able to infinitely customize WordPress content into your themes,
I'll discuss this and some other formatting functions in Chapter 6, it's
also worth it to check out the topic on WordPress codex site from
http://codex.wordpress.org/Displaying_Posts_Using_
a_Custom_Select_Query.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[78]

4.	 Last, I am ready for my page navigation. At the moment, my only static
pages are About and Contact. I'll place the wp_list_pages template tag into
my top_navlist div tags as follows:

	 <!--//start page nav list-->
	 <ul id="navlist">
	 <?php wp_list_pages('title_li='); ?>
	
	 <!--//end page nav list-->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

Breaking It Up–Separating Your Theme Into
Template Files
As I mentioned earlier, the advantage to having your WordPress theme's parts
separated into individual template pages is that your theme will be more flexible and
able to accommodate a wider range of content. As nice as my theme currently looks,
there are some problems with it that can only be dealt with if I break the theme's
design up into multiple WordPress template pages.

To start, I only want that huge 300 pixel high header graphic to load on the home
page. It's neat to give the feel of a magazine cover, but once the reader has moved
onto a full article (a.k.a. post) or one of my static pages, I'd rather not have it there
eating up screen real estate that the reader could be using to read more content
without having to scroll. Like wise, the This Month header only needs to be on the
home page, not on any internal page.

Also, while I do want the Features, Columns, Past Issues sidebar navigation to show
up in a full article view page, I don't want that navigation sidebar on the About and
Contact static pages. I'll have them click on an additional link in the top nav called
The Zine to get back to the home page view.

Again, because WordPress is so flexible, it's super easy to add this extra link to the
top nav by just adding the list item under the template tag like so:

<ul id="navlist">
 The Zine

 <?php wp_list_pages('title_li='); ?>

That link The Zine will now let people go back to the home post page if they
view one of my static pages. As my CSS style is targeting list items in the
top_navigation div, the new list items automatically pick up the same styling
as the WP generated items.

Next, the loop needs slightly different formatting between my posts and static pages.
Posts are being treated like articles, so I have template tags that announce 'by Author
Name for Category Name,' but on the static pages, to have the page title About and
then 'by Author Name' is a little ridiculous.

Last, I'll need the full article pages to display comments under the article with the
'Add Comments' form underneath that, so if people click on the Add Your Thoughts
link, they'll be anchor-tagged down to the form for the post.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[80]

The Home Page
To ensure that only the home page has the main header and This Month show up,
I'll take advantage of WordPress' template pages. Along with index.php, header.
php, footer.php, and sidebar.php, you can also create a template file called
home.php.

If you have a template file called home.php, WordPress will automatically use this
as your theme's home page. If WordPress scans your theme's directory and finds no
home.php page, WordPress will use the index.php page as the default.

Many theme developers use a home.php page to set up a static home page or 'splash'
page for their site. I'll be keeping the loop in mine, but it's the same idea.

Because I don't intend for my theme's blog posts (a.k.a. articles) to have a different
URL location from my home page, this method for separating out some visual
elements between my home page and internal pages is just fine.

However, if you do intend to have different URL locations for your blog posts
versus the home page (that is http://myblogurl.com for the home page and
http://myblogurl.com/blog for the blog posts page), you should heed WordPress'
latest 2.1 suggestion of not naming your homepage as home.php and setting your
home page up via your Administration | Options | Reading panel. Not doing so
may mean trouble for your more link button. You can find out more on WordPress'
site: http://codex.wordpress.org/Creating_a_Static_Front_Page.

Time For Action:

1.	 Because I like the way my index.php looks and works strictly as a home
page, I'll start off by just duplicating my index.php file and renaming it to
home.php inside my theme's directory. Even though the markup is same,
WordPress is now automatically reading from the home.php page instead of
the index.php page. (Making a small, temporary difference in the markup of
the home.php will prove this if you'd like to test it.)

2.	 Now that it's done, I know that the Features, Columns, and Past Issues side
bar will be used in post pages and the home page, so I'll pull the markup and
code from my #sidebarLT div and paste it into my sidebar.php page. I'll
then include that page into my home.php page by using the following code:

	 <?php get_sidebar(); ?>
3.	 I'll do the same with my footer code, cutting and pasting everything from my

footer div into the footer.php file using the following code:
	 <?php get_footer(); ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

4.	 I'll test this in the browser, and upon its working, I'll duplicate those included
files from my home.php page into in my index.php page. (It will be handy to
have the includes in place when we make our internal page.)

Extra Credit: In my #header div, I have a div id called #date. I want to
display the full name for the current month and year. The best route for
this is to just apply some basic PHP directly. I enter the following PHP
code into my #date div:

<div id="date"><?php echo date("F Y"); ?></div>

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[82]

Time For Action: The very last detail I'll include is my third column. I want to be
able to manually control the advertisements (be it Google AdSense or AdBright ads)
and custom feature graphic links that go in here. No one else should be able to edit
this include through the WordPress admin panel, so using a little of my own PHP,
I'll create a page called sidebar2.php which I'll place in my own directory in the
root of my WordPress installation and manually include this page with a standard
PHP include call, like so:

<?php include(TEMPLATEPATH . '/sidebar2.php'); ?>

Including TEMPLATEPATH will point to your current theme directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

Internal Pages
Now that our home page is working, it's time to modify the index.php file for the
internal page layout.

Using the same 'Rapid Prototyping' process we used to generate the home page
layout in Chapter 2, I've also created a mockup of my internal layout (the internal
layout is included with the home page layout in the zip file, available for download
at http://packtpub.com/?/?tbd).

Time For Action:

The biggest difference between my internal pages and my home page is the header.
As a result, it will be easier to start off by just copying my current home.php page
back over into the index.php page.

1.	 I'll rename the #header div id and give it a different id called #intHeader
and create a new style that calls in my thinner, internal page header graphic
and sets the height of the div accordingly.

2.	 Next, I'll remove the <h2> header that displays This Month:. I'll also create a
div id rule for the header's #date and create a style for that which will move
my magazine's PHP date code to the top-right of my internal header.

3.	 Next, my top_navigation id will have to change to intTop_navlist, and
I'll amend the top_navlist rules that control the unordered list.

4.	 Now, I just need to add the 'Comments' display and 'Add Comments' form to
my index page. I'll do so by placing the following code at the end of my loop
in the index.php page, under the the_content template tag like so:

	 ...<div class="entry">
	 <?php the_content('
Read the rest of this entry »');
	 ?>
	 </div>
	 <div id="pagecomments">
	 <?php comments_template(); ?>
	 </div>
	 <p class="articleComment">

5.	 This will pull in the default theme's comments.php page, which works quite
well for my purpose. It just requires that I create a few additional style
elements for the input box and the submit button so that it works well with
my theme.

6.	 I'll now just break the header div out of my index.php page and copy it into
a header.php file in my theme's directory. Then in index.php, I'll call in the
header block with:

	 <?php get_header(); ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[84]

This gives us an internal page that looks like this:

Static Pages
Static pages are the pages you generate in WordPress using the Write (or Manage)
| Pages instead of Write (or Manage) | Posts. Our index.php page now effectively
handles all the secondary requests. This is great, except my static About and Contact
pages don't need the comment posted or #sidebarLT information to to be displayed.
This is where another one of those great WordPress template files comes in—the
page.php template file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

Time For Action:

Create a page.php file and paste your index.php information into it.

The first quick and easy thing we can do is remove the class="current_page_
item" from The Zine link we've added on to our page display.

1.	 You can now remove the WordPress' comments_template template tag and
XHTML markup from the loop:

	 <div id="pagecomments">
	 <?php comments_template(); ?>
	 </div>

You can also remove the number of comments code and the Add Your Thoughts
code from the loop:

<div class="comments"> <div class='commentIcon'><?php comments_
number('No Comments','1 response','<span
class="bigNum">% Comments'); ?></div> <?comments_popup_
link('Add Your Thoughts', 'Add Your Thoughts', 'Add Your Thoughts');
?></div>

2.	 You can also completely remove the #sidebarLT div now:
	 <div id="sidebarLT">
	 <?php get_sidebar();?>
	 </div><!--//sidebarLT -->

3.	 Without the side column, the content div doesn't have to be restricted to
430px wide. Change the div id to pgContent and add a new CSS rule to your
style.css page:

	 <!-- Begin #content -->
	 <div id="pgContent">...
	 #pgContent {
	 margin:0 0 0 10px;
	 width: 650px;
	 float:left;
	 }

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[86]

Quick Recap
OK to recap, you should have three views now:

1.	 One template view for your home page that shows the large home page
header and link to comments.

2.	 One template view for your article (post) pages, which uses the internal
header and displays your comments. Because this layout is for articles, The
Zine link is left with the class current_page_item.

3.	 And last, one template page view for 'static' pages.

Fun with Other Page Layouts
Because we renamed (or removed) archive.php and category.php from our
template directory, the index.php template file is covering links to Categories
(a.k.a. Columns) and archives (a.k.a. Past Issues).

This on its own is working well enough, but you can certainly improve these pages
by pasting your index.php code into a new archive.php and/or category.php
page, and then customize those page views even further.

For instance, you could place the following code into your category.php page, just
above the loop:

<h3>You're reading the: <?php the_category(', ')?> column</h3>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

It would give you the following result:

Remember, WordPress has a host of template tags to help you add content to any
of your template files, be they includes or page views. We'll discuss important
WordPress template tags in Chapter 6.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[88]

Don't Forget About Your 404 Page
Error 404 pages are where servers direct browsers when a URL seeks a missing page.
While it's easy to think you won't really need a 404 page with a WordPress install,
you'd be surprised. Even though all the links to the article or page you deleted are
removed automatically from within your site, someone else might have created a
link on their site to your post, which will no longer work. The 404.php template
page is how you'll handle these requests.

You might have noticed, the PHP code we use for the home.php and index.php
page loops have a 'catch-all fix' in case posts are not found, which will display a
nice message and the search.php template page. The 404.php template page in
the default WordPress theme does not do this (and it's also not set up to display our
other template files and CSS).

Because the 404.php page does not require the comments or author information
display, the template page that is closest to it is our page.php file. However, we want
to give people additional options to get back into our content, so we'll want to place
the #sidebarLT div back into it.

Time For Action:

1.	 Copy the contents of your page.php template file into the 404.php
template file.

2.	 You can remove the entire loop from the file.
3.	 Place in some encouraging text and the PHP code to include the search.php

template file:
	 <h2 class="center">Not Found</h2>
	 <p class="center">Sorry, but you are looking for something that
 isn't here.</p>
	 <?php include (TEMPLATEPATH . "/searchform.php"); ?>

4.	 Add the #sidebarLT XHTML and PHP WordPress template tag back in
under the content div:

	 <div id="sidebarLT">
	 <?php get_sidebar();?>
	 </div><!--//sidebarLT -->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

These steps should give you a 404 error page that looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Coding It Up

[90]

Summary
We've now completed the OpenSource Online Magazine WordPress theme.
Great Job!

It's probably clear that you can take advantage of all sorts of custom WordPress
template hierarchy pages, and endlessly continue to tweak your theme in order to
display custom information and layouts for all types of different scenarios.

How much customization your theme requires depends entirely on what you
want to use it for. If you know exactly how it's going to be used and you'll be the
administrator controlling it, then you can save time by covering the most obvious
page displays the site will need to get it rolling and occasionally creating new page
view files should the need arise. If you intend to release the theme to the public,
then the more customized page views you cover, the better. You never know how
someone will want to apply your theme to their site.

You've now learned how to set up your development environment and an HTML
editor for a smooth work flow. You now have a theme design that uses semantic,
SEO friendly XHTML and CSS, and has been broken down into WordPress template
pages for flexibility in your layouts. Believe it or not, we're not quite done!

In the next chapter, we'll continue working with our XHTML and CSS layout,
showing you some tips and tricks for getting it to display properly in all the
browsers, debugging IE quirks as well as running it through a thorough
validation process.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton
For simplicity's sake, I've made this process a separate chapter. However, as you
work on and develop your own WordPress themes, you will no doubt discover
that life will go much smoother if you debug and validate at each step of your theme
development process. The full process will pretty much go like this: Add some code,
check to see the page looks good in FireFox, validate, then check it in IE and any
other browsers you and your site's audience use, validate again if necessary, add the
next bit of code... repeat as necessary until your theme is complete.

In this chapter, I'm going to cover the basic techniques of debugging and validation
that you should be employing throughout your theme's development. We'll dive
into the W3C's XHTML and CSS validation services, and I'll walk you through using
FireFox's JavaScript/Error Console for robust debugging, as well as introduce you
to the FireBug extension and the Web Developer's Toolbar. I'll also give you a little
troubleshooting insight as to some of the most common reasons 'good code goes
bad,' especially in IE, and the various ways to remedy the problems.

Don't Forget About Those Other
Browsers and Platforms
I'll mostly be talking about working in Firefox and then 'fixing' for IE. This is
perhaps, unfairly, assuming you're working on Windows or a Mac and that the
source of all your design woes will (of course) be Microsoft IE's fault. But as I
mentioned in Chapter 1, this book is not about only using Firefox! You must check
your theme in all browsers and if possible, other platforms, especially the ones you
know your audience uses the most.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[92]

I surf with Opera a lot and find that sometimes JavaScripts can 'hang' or slow that
browser down, so I debug and double-check scripts for that browser. (We'll discuss
more on JavaScripts in Chapter 8.) I'm a freelance designer and find a lot of people
who are also in the design field use a Mac (like me), and visit my sites using Safari,
so I occasionally take advantage of this and write CSS that caters to the Safari
browser. (Safari will interpret some neat CSS 3 properties that other browsers
don't yet.)

Generally, if you write valid markup and code that looks good in Firefox, it will look
good in all the other browsers (including IE). Markup and code that goes awry in IE
is usually easy to fix with a work-around.

Firefox is a tool, nothing more! That's the only reason why this book
tends to focus on Firefox. Firefox contains features and plug-ins that we'll
be taking advantage of to help us streamline the theme development
process and aid in the validation and debugging of our theme. Use it just
like you use your HTML/code editor or your image editor. When you're
not developing, you can use whatever browser you prefer.

Introduction to Debugging
Remember in Chapter 3, our initial work-flow chart?

I was insistent that your work-flow pretty much be as edit -> check it -> then go back
and edit some more. The main purpose of visually checking your theme in FireFox
after adding each piece of code is so that you can see if it looks OK, and if not,
immediately debug that piece of code. Running a validation check as you work just
doubly ensures you're on the right track.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

So, your work-flow really ends up looking something more like this:

You want to work with nice, small pieces or 'chunks' of code. I tend to define a chunk
in XHTML markup as no more than one div section, the internal markup, and any
WordPress template tags it contains. When working with CSS, I try to only work
with one id or class rule at a time. Sometimes, while working with CSS, I'll break this
down even further and test after every property I add to a rule, until the rule looks as
I intend and validates.

As soon as you see something that doesn't look right in your browser, you can check
for validation and then fix it. The advantage of this work-flow is you know exactly
what needs to be fixed and what XHTML markup or PHP code is to blame. All the
code that was looking fine and validating before, you can ignore. The recently added
markup and code is also the freshest in your mind, so you're more likely to realize
the solution needed to fix the problem.

If you add too many chunks of XHTML markup or several CSS rules before checking
it in your browser, then discover something has gone awry, you'll have twice as
much sleuthing to do in order to discover which (bit or bits) of markup and code are
to blame. Again, your fail-safe is your backup.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[94]

You should be regularly saving backups of your theme at good stable stopping
points. If you do discover that you just can't figure out where the issue is, rolling
back to your last stable stopping point and starting over might be your best bet to
getting back on track.

As mentioned in Chapter 2, you'll primarily design for FireFox and then apply any
required fixes, hacks, and workarounds to IE. You can do that for each piece of code
you add to your theme. As you can see in the preceding figure, first check your
theme in FireFox and if there's a problem, fix it for FireFox first. Then, check it in IE
and make any adjustments for that browser.

At this point, you guessed it, more than half of the debugging process will depend
directly on your own eyeballs and aesthetics. If it looks the way you intended it to
look and works the way you intended it to work, check that the code validates and
move on. When one of those three things doesn't happen (it doesn't look right, work
right, or validate), you have to stop and figure out why.

Troubleshooting Basics
Suffice to say, it will usually be obvious when something is wrong with your
WordPress theme. The most common reasons for things being 'off' are:

Mis-named, mis-targeted, or inappropriately-sized images.
Markup text or PHP code that affects or breaks the Document Object Model
(DOM) due to being inappropriately placed or having syntax errors in it.
WordPress PHP code copied over incorrectly, producing PHP error displays
in your template, rather than content.
CSS rules that use incorrect syntax or conflict with later CSS rules.

The first point is pretty obvious when it happens. You see no images, or worse,
you might get those little ugly 'x'd' boxes in IE if they're called directly from the
WordPress posts or pages. Fortunately, the solution is also obvious: you have to go
in and make sure your images are named correctly if you're overwriting standard
icons or images from another theme. You also might need to go through your CSS
file and make sure the relative paths to the images are correct.

For images that are not appearing correctly because they were mis-sized, you can go
back to your image editor, fix them, and then re-export them, or you might be able
to make adjustments in your CSS file to display a height and/or width that is more
appropriate to the image you designed.

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

Don't forget about casing! If by some chance you happen to be
developing your theme with an installation of WordPress on a local
Windows machine, do be careful with the upper and lower casing in your
links and image paths. Chances are, the WordPress installation that your
theme is going to be installed into is more likely to be on a Unix or Linux
web server. For some darn reason, Windows (even if you're running
Apache, not IIS) will let you reference and call files with only the correct
spelling required. Linux, in addition to spelling, requires the upper
and lower casing to be correct. You must be careful to duplicate exact
casing when naming images that are going to be replaced and/or when
referencing your own image names via CSS. Otherwise, it will look fine
in your local testing environment, but you'll end up with a pretty ugly
theme when you upload it into your client's installation of WordPress for
the first time (which is just plain embarrassing).

For the latter two points, one of the best ways to debug syntax errors that cause
visual 'wonks' is not to have syntax errors in the first place (don't roll your eyes
just yet).

This is why, in the last figure of our expanded work-flow chart, we advocate you
to not only visually check your design as it progresses in FireFox and IE, but also
test for validation.

Why Validate?
Hey, I understand it's easy to add some code, run a visual check in FireFox and IE,
see everything looks OK, and then flip right back to your HTML editor to add more
code. After-all, time is money and you'll just save that validation part until the very
end. Besides, validation is just icing on the cake. Right?

The problem with debugging purely based on visual output is, all browsers (some
more grievously than others) will try their best to help you out and properly
interpret less than ideal markup. One piece of invalid markup might very well look
OK initially, until you add more markups and then the browser can't interpret your
intentions between the two types of markup anymore. The browser will pick its own
best option and display something guaranteed to be ugly.

You'll then go back and futz around with the last bit of code you added (because
everything was fine until you added that last bit, so that must be the offending code)
which may or may not fix the problem. The next bits of code might create other
problems and what's worse that you'll recognize a code chunk that you know should
be valid! You're then frustrated, scratching your head as to why the last bit of code
you added is making your theme 'wonky' when you know, without a doubt, it's
perfectly fine code!

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[96]

The worst case scenario I tend to see of this type of visual-only debugging is that the
theme developers get desperate and start randomly making all sorts of odd hacks
and tweaks to their markup and CSS to get it to look right.

Miraculously, they often do get it to look right, but in only one browser. Most likely,
they've inadvertently discovered what the first invalid syntax was and unwittingly
applied it across all the rest of their markup and CSS. Thus, that one browser started
consistently interpreting the bad syntax! The theme designer then becomes convinced
that the other browser is awful and designing these non-WYSIWYG, dynamic
themes is a pain.

Avoid all that frustration! Even if it looks great in both browsers, run the code
through the W3C's XHTML and CSS validators. If something turns up invalid, no
matter how small or pedantic the validator's suggestion might be (and they do seem
pedantic at times), incorporate the suggested fix into your markup now, before you
continue working. This will keep any small syntax errors from compounding
future bits of markup and code into big visual 'uglies' that are hard to track down
and troubleshoot.

PHP Template Tags
The next issue you'll most commonly run into is mistakes and typos that are created
by 'copying and pasting' your WordPress template tags and other PHP code
incorrectly. The most common result you'll get from invalid PHP syntax is a 'Fatal
Error.' Fortunately, PHP does a decent job of trying to let you know what file name
and line of code in the file the offending syntax lives (yet another reason why in
Chapter 3 I highly recommend an HTML editor that lets you view the line number in
the Code view).

If you get a 'Fatal Error' in your template, your best bet is to open the file name
that is listed and go to the line in your editor. Once there, search for missing
<?php ?> tags. Your template tags should also be followed with parenthesis
followed by a semicolon like ();. If the template tag has parameters passed
in it, make sure each parameter is surrounded by single quote marks, that is,
template_tag_name('parameter name', 'next_parameter');.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

CSS Quick Fixes
Last, your CSS file might get fairly big, fairly quickly. It's easy to forget you already
made a rule and/or just accidentally create another rule of the same name. It's all
about cascading, so whatever comes last, overwrites what came first.

Double rules: It's an easy mistake to make, but validating using W3C's
CSS validator will point this out right away. However, this is not the case
for double properties within rules! W3C's CSS validator will not point out
double properties if both properties use correct syntax. This is one of the
reasons why the !important hack returns valid. (We'll discuss this hack
just a little further down in this chapter under To Hack or Not to Hack.)

Perhaps you found a site that has a nice CSS style or effect you like, and so you
copied those CSS rules into your theme's style.css sheet. Just like with XHTML
markup or PHP code, it's easy to introduce errors by miscopying the bits of CSS
syntax in. A small syntax error in a property towards the bottom of a rule may seem
OK at first, but cause problems with properties added to the rule later. This can also
affect the entire rule or even the rule after it.

Also, if you're copying CSS, be aware that older sites might be using depreciated CSS
properties, which might be technically OK if they're using an older HTML DOCTYPE,
but won't be OK for the XHTML DOCTYPE you're using.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[98]

Again, validating your markup and CSS as you're developing will alert you to syntax
errors, depreciated properties, and duplicate rules which could compound and cause
issues in your stylesheet down the line.

Advanced Troubleshooting
Take some time to understand the XHTML hierarchy. You'll start running into
validation errors and CSS styling issues if you wrap a 'normal' (also known as a
'block') element inside an 'in-line' only element, such as putting a header tag inside
an anchor tag (<a href, <a name, etc.) or wrapping a div tag inside a span tag.

Avoid triggering quirks mode in IE! This, if nothing else, is one of the most important
reasons for using the W3C HTML validator. There's no real way to tell if IE is
running in quirks mode. It doesn't seem to output that information anywhere (that
I've found). However, if any part of your page or CSS isn't validating, it's a good way
to trigger quirks mode in IE.

The first way to avoid quirks mode is to make sure your DOCTTYPE is valid and
correct. If IE doesn't recognize the DOCTYPE (or if you have huge conflicts, like an
XHTML DOCTYPE, but then you use all-cap, HTML 4.0 tags in your markup), IE will
default into quirks mode and from there on out, who knows what you'll get in IE.

My theme stopped centering in IE! The most obvious thing that happens
when IE goes into quirks mode is that IE will stop centering your layout
in the window properly if your CSS is using the margin: 0 auto;
technique. If this happens, immediately fix all the validation errors in
your page. Another big obvious item to note is if your div layers with
borders and padding are sized differently between browsers. If IE is
running in quirks mode it will incorrectly render the box model, which
is quite noticeable between FireFox and IE if you're using borders and
padding in your divs.

Another item to keep track of is to make sure you don't have anything that will
generate any text or code above your DOCTYPE.

FireFox will read your page until it hits a valid DOCTYPE and then proceed from
there, but IE will just break and go into quirks mode.

Fixing CSS Across Browsers
If you've been following our debug->validate method described in the chapter, then
for all intents and purposes, your layout should look pretty spot-on between both the
browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

Box Model Issues
In the event that there is a visual discrepancy between FireFox and IE, in most cases
it's a box model issue arising because you're running in quirks mode in IE. Generally,
box model hacks apply to pre IE 6 browsers (IE 5.x) and apply to IE6 if it's running
in quirks mode. Again, running in quirks mode is to be preferably avoided, thus
eliminating most of these issues. If your markup and CSS are validating (which
means you shouldn't be triggering quirks mode in IE, but I've had people 'swear' to
me their page validated yet quirks mode was being activated), you might rather 'live
with it' than try to sleuth what's causing quirks mode to activate.

Basically, IE 5.x and IE6 quirks mode don't properly interpret the box model
standard and thus, 'squish' your borders and padding inside your box's width,
instead of adding to the width as the W3C standard recommends.

However, IE does properly add margins! This means that if you've got a div set to
50 pixels wide, with a 5 pixel border, 5 pixels of padding, and 10 pixels of margin
in FireFox, your div is actually going to be 60 pixels wide with 10 pixels of margin
around it, taking up a total space of 70 pixels..

In IE quirks mode, your box is kept at 50 pixles wide (meaning it's probably taller
than your FireFox div because the text inside is having to wrap at 40 pixels), yet it
does have 10 pixels of margin around it. You can quickly see how even a one pixel
border, some padding, and a margin can start to make a big difference in layout
between IE and FireFox!

Everything Is Relative
Most Windows users are still predominately using IE 6 (and IE7 is gaining).
When it comes to validating and debugging for IE, I find that as long as I stay in
strict mode and not fall into quirks mode, I don't have too many issues with box
model rendering. Occasionally, I still notice that relative CSS values such as % or
.ems render a little differently, but that's not box model, so much as what the two
browsers interpret, say, 20% to be in pixels. Even so, as long as your layout doesn't
look weird, it's generally OK if your theme's container divs are a hair wider in one
browser over the other. If you're using relative values to measure everything out,
your placement will stay intact.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[100]

What are the major browsers? According to W3schools, at the time of this
writing, IE6 and IE7 together make up a little over half of the total users.
Firefox comes in second. Use this link to keep up on browsing trends:
http://www.w3schools.com/browsers/browsers_stats.asp.
As I mentioned at the beginning of this chapter, you still need to look and
make sure your site is rendering properly in as many browsers as you
have access to. As a bonus, if you have access to multiple platforms (like
Linux or Mac, if you're on a PC), it's good to check and see how popular
browsers who have distributions for those OSs look on them too.
If you're using valid markup, you'll be pleasantly surprised to find
out that your site looks great in all sorts of browsers and platforms.
Occasionally, if you run into a situation where something doesn't look
right, you can then decide if that browser is critical to your users and if
you'd like to fix it.

To Hack or Not to Hack
If for some reason, you feel you know what you're getting into and have
intentionally used markup syntax that's triggering quirks mode in IE (or you
just can't figure out why, or maybe your client insists on designing for IE5.x for
Windows), then it's time for some hacks.

The cleanest hack is the !important hack. I like it because it lets CSS still render
as valid. However, you should note that the !important value is the valid syntax
and meant to be used as an accessibility feature of CSS. It's not a value that was ever
meant to affect the design.

The fact that IE does not recognize it is a bug and though it's very simple and
easy to implement, it's not recommended to be used liberally as a design fix. The
understanding is, eventually IE will fix this bug so that it adheres to accessibility
standards and then your hack will no longer work (especially if IE doesn't change
anything about how it runs in quirks mode).

Remember: All CSS hacks rely on exploiting various bugs in IE to some
extent and may or may not continue to work with future service patches
and upgrades to IE.

To implement the !important hack, take the width, height, margin, or padding
property that has the discrepancy in it and double it. Place the value that looks best
in FireFox first and add the !important value after it. Then, place the value in the
duplicate property that looks best in IE below the first property. You should have
something that looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

.classRule{
 height: 100px !important;
 height: 98px;
}

FireFox and all other browsers will read the value with the !important value after
it, as if it were the last value in the rule. IE ignores the !important value and thus
regular-old cascading kicks in, so it reads the actual last property value in the rule.

Other IE hacks include using the star selector bug hack (*) and the _ underscore hack
(_). Both hacks work on the same general principle as the !important hack, that IE
does or doesn't recognize something that all the other browsers do or don't recognize
themselves. You can find out more about the underscore hack from WellStyled.
com (http://wellstyled.com/css-underscore-hack.html). A good overview of
the star selector bug can be found at Info.com (http://www.info.com.ph/~etan/
w3pantheon/style/starhtmlbug.html).

Be aware, those last two hacks will show up as validation errors in your CSS. Plus, the
star and underscore hacks are rumored to no longer be viable in IE7 (ah! fixing those
bugs!). You must choose to use these three hacks at your discretion.

Out-of-the-Box-Model Thinking
Your best bet is again to not use hacks. This is achieved in a couple of ways. First,
you can break your XHTML markup down a little more. That means, for example,
instead of one div layer:

<div id="leftSide">...</div>

...with the assigned rule:

#leftSide{
width: 200px;
border: 2px;
padding: 10px;
}

... which is clearly going to give you problems in quirks mode IE, because the div
will stay at 200 pixels wide and 'squish' your border and padding inside it, it would
be better to tuck an extra div or other XHTML element inside the leftSide id like so:

<div id="leftSide"><div>...</div></div>

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[102]

Then, you can control the width and borders much more accurately using CSS that
looks like this:

#leftSide{
width: 200px;
}
#leftSide div{
border: 2px;
padding: 10px;
}

Using a fix like above, your div will always be 200 pixels wide (despite the border
and padding) in all the browsers, regardless of quirks mode. Plus, your XHTML
markup and CSS stays valid.

Container divs: I find working with CSS and XHTML markup like this
also keeps you from getting into other trouble; let's say we 'do the math'
to figure our column widths and margins out, but then, either forget to
account for borders and padding in the design or maybe just decide to add
them later. In browsers like FireFox, a miscalculation or late addition like
that will throw columns off, especially if their containing div is set to an
exact width. This results in ugly, stacked columns. As you noted in Chapter
2, when we built the theme mockup, I like to use clean containing divs to
only control placement, width, and margins. Then, I let inner divs (which
will by default, expand to the width of the containing div) take on borders,
padding, and other visual stylings. This is a good way to get your math
right and keep it right, no matter what design additions may come later.

Your final alternative is to just create two stylesheets for your theme, one for general
browser use and one for IE browsers, and let each browser call them in.

This isn't as bad as it seems. The bulk of your CSS can stay in your main CSS file,
you'll then call in this specific IE stylesheet code below which will load additionally,
only if the browser is IE.

In the IE stylesheet, you'll duplicate the rules and correct the properties that were
not looking correct in FireFox. Because this stylesheet will load in underneath your
main stylesheet, any duplicated rules will overwrite the original rules in your first
stylesheet. The result is CSS styling that's perfect in FireFox and IE. However, if you
run the CSS validator in IE it will alert you to the double rules.

In your header.php, home.php, or index.php template file (whichever file has your
<head> tags in it), add the following code after your full stylesheet call:

<!--[if IE]>
 <link rel="stylesheet" type="text/css" href="ie-fix.css"
 media="screen, projection" />
<![endif]-->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

Is that a conditional comment?! Yes it is. In the past, your best-bet to
loading in the proper stylesheet would have been using a server-side
script to detect the browser with something like PHP. You could use
a JavaScript as well, but if someone had JavaScript disabled in their
browser, it wouldn't work. Not everyone can be a PHP whiz, hence, I
advocate the just discussed method for loading in your two stylesheets
with minimal hassle. This method is also best for keeping your two
stylesheets as simple as possible (having a main one, then one with IE
fixes), but you can apply all sorts of control to the conditional comment
above, giving you quite a bit of power in how you dole out your CSS. For
instance, you can specify what version of IE to check for (IE5, IE6, or
IE7). You can also inverse the condition and only load in the CSS if the
browser is not IE, by placing another exclamation point (!) in front of
the IE, (for example, <!--[if !IE]> ...<![endif]-->). Learn more
about this conditional CSS tag at http://www.quirksmode.org/css/
condcom.html.

You have to add that code in the theme's template file or files that contain the
<head> tags. I usually put it in under my main stylesheet call. Yes, it would be nice if
something like this could be implemented into the actual CSS file and then only parts
of our CSS would need to be specific, and we'd only need to keep track of one file,
but alas, you have to add it to your theme's header.php or files that contain the
header tags.

Also, please note that while I advocate using the @import method for bringing in
stylesheets, that method will not work within the <![if IE]> CSS check. Use the
standard link import tags that are used in this include method above.

CSS troubleshooting technique: The best way to quickly get a handle on
a rule that's gone awry is to set a border and general background color to
it. You'll notice I did this in Chapter 3 to the initial layout. Make the color
something obvious and not part of your color scheme. Often times, using
this technique will reveal quite unexpected results, like showing that a div
was inadvertently set somehow to just '500' wide instead of '500px' wide,
or perhaps that another div is pushing against it in a way you didn't
realize. It will quickly bring to your attention all the actual issues affecting
your object's box model that need to be fixed to get your layout back
in line.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[104]

The Road to Validation
You'll always want to validate your XHTML first. This is just as well because W3C's
CSS validator won't even look at your CSS if your XHTML isn't valid.

Go to http://validator.w3.org/ and if your file is on a server, you can just enter
in the URL address to it. If you're working locally, from your browser, you'll need to
choose Save Page As and save an HTML file of your theme's WordPress output and
upload that full HTML file output to the validator using the upload field provided.

In our example above, you can see that we have a typo in one of our divs (looks like an
odd s got in there somehow), and we have an image tag that doesn't have the proper
closing (/) in it. Wherever possible, you'll note that the validator tries to tell us how to
fix the error. Whenever a recommendation is made, go ahead and implement it.

We'll need to fix those two errors and run the validation again to make sure we're
now validating. Don't just think you can fix the errors listed and move on without
validating again. Occasionally, an error will be so grievous that it will block other
errors from being picked up until it's fixed. Always validate -> fix -> validate, until
you get that happy green bar telling you that you're good to move on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

Where's My Error? The validator tells us which line the offensive code
appears in, which is why we love HTML editors that display the line
number to the left in our Code view. However, once your theme is
pulling in the content from WordPress, the line the offense appears in
is not necessarily the same code line in your specific theme template
anymore. So where's the error? Well, you have to know your template
files enough to recognize where the error might be, for instance, I know
that <div id="footer"> is in my footer.php template file. Once I
know the general file, I work around this by copying some unique text
from the error, (in my case, s>). You can also use text from an alt or id
tag within the reported object. Then, use the Find option in your editor to
directly locate the error.

Ideally, when you run your XHTML through the validator, you'll get a screen with a
green bar that says This Page Is Valid XHTML 1.0 Transitional!.

You can then move on to checking your CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[106]

Open up another tab in your browser and go to http://jigsaw.w3.org/css-
validator/. Again, same deal! If you're working off a server, then just enter the
address of your CSS file on the development site and check the results. Otherwise,
you'll have to use the by File Upload tab and upload a copy of your CSS file.

Here you'll want to see another screen with a green bar that says Congratulations!
No Error Found.

If you don't get the green bar, the validator will display the offending error and
again offer suggestions on how to fix it. The CSS validator will also show you the
line of code the offense takes place on. This is handy as your stylesheet is not affected
by WordPress' output, so, you can go right to the line mentioned and make the
suggested fix.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

Advanced Validation
Perhaps you've discovered (because you are talented indeed and would find
something like this) that your XHTML and CSS validates, yet somehow something
is still wrong with your layout. Or maybe, you're using some special JavaScripts to
handle certain aspects or features of your theme. W3C's XHTML and CSS tools won't
validate JavaScript. If you find yourself in this situation, you're going to have to dig
a little deeper to get to the root of the problem and/or make sure all aspects (like
JavaScripts) of your theme's files are valid.

Firefox's JavaScript/Error Console
You can use FireFox's JavaScript/Error Console (called the JavaScript Console in 1.x
and Error Console in 2.x) to debug and validate any JavaScripts your theme is using.
Go to Tools | Error Console in your browser to activate it; you can also activate it by
typing javascript: into your address bar and hitting Enter on your keyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[108]

You will be pleasantly surprised to find out that the console will also spit out several
warnings and errors for CSS rules that the W3C's validators probably didn't tell
you about. The Error Console does hold a log of all errors it encounters for all pages
you've looked at. Therefore, the best way to proceed with the Error Console is to first
hit Clear and then reload your page to be sure that you're only looking at current
bugs and issues for that specific page.

Again, the Error Console will let you know what file and line the offending code is
in, so you can go right to it and make the suggested fix. In my previous screenshot, it
looks like the console is taking issue with the thickbox.css file (Thickbox is a web
user interface feature we'll install and learn about in Chapter 9).

The Web Developer's Toolbar
This is a great extension which adds a toolbar to your Firefox browser. The extension
is also available for the Seamonkey suite and the new Flock browser, both of which
are like Firefox, powered by the open-source code of Mozilla.

Get it from http://chrispederick.com/work/web-developer/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

The toolbar lets you link directly to the DOM browsers and Error Consoles, W3C
XHTML and CSS validation tools, toggle and view your CSS output in various
ways, as well as just lets you view and manipulate a myriad of information your site
page is outputting on-the-fly. The uses of this toolbar are endless. Every time I'm
developing a design I find some feature, I'd never previously used, useful.

FireBug
A more robust tool is Joe Hewitt's FireBug extension for Firefox
(there's a 'Firebug Lite' version for Internet Explorer, Safari, and Opera)
(http://www.getfirebug.com/).

This extension is a powerhouse when combined with the features of the Web
Developer Toolbar and even on its own will find them all—XHTML, CSS, JavaScript,
and even little 'wierdo' tidbit things happening to your DOM (Document Object
Model) on-the-fly. There's a variety of fun inspectors and just about all of them
are invaluable.

Linux and Firebug: "Firebug does work on Linux, but some distributions
don't compile Mozilla correctly, and it is missing the components that
Firebug depends on. Even more common is the case of individual Linux
users compiling their own Firefox binaries incorrectly."--Firebug FAQ
(http://www.getfirebug.com/faq.html)

Once you have Firebug installed into your browser, you can turn it off and on by
hitting F12 or going to View | Firebug.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[110]

My favorite Firebug features are the options for reviewing HTML, CSS, and the
DOM. Firebug will show you your box models and let you see the measurements of
each ledge. Plus, the latest version of Firebug lets you make edits on-the-fly to easily
experiment with different fixes before committing them to your actual document.
(There are features that let you do this using the Web Developer Toolbar as well, but
I find the Firebug interface more in-depth—see the following screenshot.)

DOM? We've mentioned DOM a few times in this book. Learning about
the Document Object Model can really enhance your understanding of
your XHTML for WordPress themes (or any web page you design), as
well as help you better understand how to effectively structure your CSS
rules and write cleaner and accurate JavaScripts. Find out more from the
W3Cschools (http://w3schools.com/htmldom/default.asp).

Extra Credit
If you want a better understanding of how all text browsers or some users on mobile
devices are viewing your site (not including the new iPhone or iPod Touch and
similar graphical interface mobile browsers), you can use Google's mobile viewing
tool to give you an idea. This may help you visualize how to better arrange your site
semantically for users in these categories.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

To use this Google tool, type the following into your browser:

http://www.google.com/gwt/n?u=http://yoursitegoeshere.com

You'll now be able to see how your complete site looks without CSS styling. You can
even turn off images. Use this to think about if your WordPress content is loading
in logically and in the order of importance you prefer for your viewers. Also keep in
mind that this is very similar to how a search engine bot will crawl your page from
top to bottom and thus the order in which the content will be indexed.

What About the New Safari Mobile Browser?
The good news about your site and iPhone/iPod touch users is that the Mobile Safari
(the mobile web browser Apple products use) is graphical. This means the browser
seems to be able to take snapshots of your site fully rendered and shrink it down into
the mobile browser allowing you to zoom in and out on the content.

Mobile Safari attempts to be standards compliant. If you've followed this book's
guidance on creating W3C standards compliant XHTML markup and CSS in the
creation of your theme, your WordPress site will most likely show up stunningly
on an iPhone or iPod touch. The only major drawback I've seen in the Safari Mobile
browser is the lack of Flash support, which is tough if your site has (or relies on)
Flash content (such as embedded YouTube, Google Video, or Jumpcut.com clips).

Want more info on designing mobile devices? A List apart (as always)
has some great info on designing for devices including the iPhone:
http://www.alistapart.com/articles/
putyourcontentinmypocket

Interested in Mobile Safari? Check out this great O'Reilly Digital
ShortCut: Optimizing Your Website for Mobile Safari: Ensuring Your
Website Works on the iPhone and iPod touch (Digital Short Cut) by
August Trometer. It's a digital PDF you can purchase and download from
inFormIt.com:
http://www.informit.com/store/product.
aspx?isbn=0321544013

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validaton

[112]

Summary
In this chapter, we reviewed the basic process to debugging and validating your
theme's XHTML markup, PHP code, and CSS. You learned how to use W3C's
XHTML and CSS validation tools, and we further explored using FireFox as a
valuable development tool by using its Error Console and available extensions like
the Web Developer Toolbar and Firebug.

Next, it's time to package up your design and send it to your client!

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action
Now that we've got our theme designed, styled, and looking great, we just have one
last thing to do. It's time to share your theme with your client, friends, and/or the
rest of the WordPress community.

In this chapter, we'll discuss how to properly set up your theme's style.css so that
it loads into WordPress installations correctly. We'll then discuss compressing your
theme files into the zip file format and running some test installations of your theme
package in WordPress's Administration Panel.

A Picture's Worth
Before we begin wrapping up our theme package, we'll need one more asset—the
theme's preview thumbnail. Take a screenshot of your final layout, resize it and save
it out to be about 200 pixels wide. Place your image in your theme's root directory
structure and ensure that it's named screenshot.png.

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[114]

WordPress offers previews of themes using the screenshot.png. It's in your best
interest to take advantage of it. If you don't add a screenshot, WordPress will simply
display a grey box. As mentioned, many shared hosting solutions pre-install many
themes with their installations of WordPress. It can be difficult to scroll through all
the textual names trying to find the theme you just installed by remembering its
name. As most people will know what the theme they want to activate looks like,
having the screenshot.png preview set up will help them out.

In a nutshell, there's not a whole lot involved in getting your new theme together
and ready for the world. By using the default theme as our base for file reference
and following good testing and validation standards, we already pretty much have
a WordPress approved theme according to their Designing Themes for Public
Release document.

For other tips, including how to promote your new WordPress theme,
check out the document I just mentioned:
http://codex.wordpress.org/Designing_Themes_for_
Public_Release

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

Theme Packaging Basics
To make sure your template is ready to go public, run through the following steps
before packaging it up:

1.	 Remove all the unnecessary files hanging out in your theme's root folder! As
I work on a theme, I often rename the original default files to something like
orig_header.php, and so on, for quick and easy reference of template tags
which I know I'll want to use in my theme, but those must be cleared out
before you package up. Be sure that only the files required to run the theme
are left in your directory. Don't forget to test your theme one more time after
deleting files to ensure you didn't accidentally delete a file your theme uses!

2.	 Open up the style.css sheet and make sure that all the information
contained in it is accurate. I had you fill this out in the beginning of Chapter 3
when we were setting up our development theme directory, but I'll review it
in detail below.

3.	 Create a ReadMe.txt file. Let your users know what version your
theme is compatible with, how to install it, and if it has any special features
or requirements.

4.	 Zip it up and put it out there! Get some feedback and install it in your client's
installation of WordPress, upload it to your own website, or to your favorite
user group, or post it directly on http://themes.wordpress.net/. The
choice is yours!

Describing Your Theme
We very briefly discussed this in Chapter 3, just to get our development going, but
let's review exactly what kind of information you can place into your stylesheet
which will show up in the WordPress Theme Administration Panel. Essentially the
first eighteen lines of the style.css sheet are commented out and without changing
anything that comes before a colon (:), you can fill out the following information
about your template:

1.	 Theme Name: This is where you'll put the full name of your theme.
2.	 Theme URI: Here you'll place the location from where the theme can

be downloaded.
3.	 Description: It's a quick description of what the theme looks like, any

specific purpose it's best suited for, and/or any other theme it's based on or
inspired by.

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[116]

4.	 Version: If this is your theme's first debut, you may want to put 1.0. If the
theme has been changed, had bug fixes, or reincarnated in any way, you may
feel a higher version is appropriate. As this is essentially the same theme I've
created for another project, I've just changed its color scheme, graphics, and
reduced functionality. I've numbered it version 1.3 (for the three major visual
revision processes it's gone through).

5.	 Author: Your name as the theme's author goes here.
6.	 Author URI: It's a URL to a page where people can find out more about you.
7.	 The CSS, XHTML and design is released under __: This is optional. You can

use this area to describe any licensing conditions you want for your theme.
The WordPress Administration Panel will not display it, though only people
who've downloaded your theme and viewed the style.css file will see it.

Links in the Themes Tab: WordPress works some impressive 'PHP
magic' to run through that comment and parse the URI links into the
appropriate places. You can also add your own URL's by hand-coding
<a href> links into comments. Just test the output in the Administrator
| Design | Themes (Administrator | Presentation | Themes in version
2.3.x) area to ensure your link syntax is correct and not broken!

Licensing?
You'll find that most WordPress themes you found on the web either do not mention
licensing or use the GNU/GPL license. If you're not familiar with the
GNU/GPL license, you can learn more about it at
http://www.gnu.org/copyleft/gpl.html.

You may wish to do the same with your theme, if you want it to be freely distributed,
available to all, and changeable by all, with no permissions necessary as long as they
acknowledge you.

If you've created a completely original design that you intend to sell commercially,
or just want to be able to grant permission for any other possible use, you'll want
to place specific copyright information and the name of the person or organization
that holds the copyright. Something like © 2008 My Name, All Rights Reserved, is
generally recognized as legal with or without any formal copyright filing procedures
(but you should look up how to best formally copyright your design material!).

This book's theme has been leveraged from another project of mine for Packt
Publishing for educational purposes. While the GNU/GPL license is more than
adequate, its text is a bit more 'software-ish' and 'tech-heavy' than I'd like, so I'm going
to redistribute the Open Source Magazine theme under a more general-public-friendly
Creative Commons License (http://creativecommons.org).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

I'll use the CC Labs DHTML License Chooser to assist me in selecting an appropriate
license (http://labs.creativecommons.org/dhtmllicense/):

I'll of course allow sharing of the theme, and let others 'Remix', which means,
derive new themes from this theme with proper credit. I will, however, prevent it
from being sold commercially by another entity (commercial sites are welcome to
download it and use it), and require the 'Share-Alike' option. This means that no
one can legally take the theme package and offer it for sale or use it in such a way
that it generates income for them without my permission. If they reuse or redesign
the package in any other non-commercial way, they're free to do so; they're simply
required to give me and Packt Publishing credit where credit is due.

My licensing agreement looks like the following:

"OpenSource Magazine WordPress Theme by Tessa Blakeley Silver is licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License."

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[118]

The end result is a license that keeps to the spirit of the GNU/GPL license, but is
much less vague. It tells the user upfront that it allows sharing, which is important
to us for educational purposes and prevents commercial distribution without
permission, and by requiring 'Share-Alike,' encourages a continued friendly
WordPress-esque atmosphere of open-source collaboration. It also expressly states
the version number of the license, making it very easy for anyone to look up and
read in detail.

Create a ReadMe.txt File
You're now ready to create a ReadMe.txt file. ReadMe files have a long history with
computers, often accompanying software installation. This has carried over to the
web where anything that gets added or installed into a web service usually has a
ReadMe file included. Many theme authors chose to make the ReadMe file a .rtf or
.html file so that they can include formatting. You may deliver it in any format you
wish. I prefer .txt files because it ensures that everyone can simply click to open the
file, and the lack of formatting options ensures I keep my text as clear and concise
as possible.

ReadMe files are not required for your theme to work, but if you want to have happy
theme users they're highly recommended. Your ReadMe file is generally your first
defense against theme users with installation and usage questions.

These are the basics of what you should cover in your WordPress theme ReadMe file:

Inform theme users what your theme and template files will do (what kind of
site it works best with, if any plug-ins work with it, if it's 'Widit-ized', and
so on).
Inform theme users of any deficiencies in your theme (any plug-ins it does
not play well with or types of content it doesn't handle well, that is, I've seen
good themes that don't do well with YouTube content due to column
width, etc.).
Discuss any specific modifications you've made to the theme (especially if
it's a newer version of a theme you've previously released) and what files
contain the modifications (it's always good to have comments in those files
that explain the modification as well).
Reiterate the basic steps for installing a WordPress theme (not everyone is
keen on reading through WordPress's codex site and will know to unzip the
theme or where to upload the file). Also, mention any special requirements
your theme has. For instance, if you included some custom PHP code
that requires special CHMOD (a.k.a. RewriteRules) or anything like
that, specifically list the steps of action a user should take to get your
theme running.

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

As mentioned in Chapter 4, try and test your theme across platforms and
browsers and mention any rendering issues that certain browsers may have
on specific platforms.
Reiterate the copyright information that you placed into your style.css
sheet and provide your contact information (web page or email) so that
people can reach you for support and questions.

ReadThisToo.txt: As long as your ReadMe file includes the points just
discussed, you're generally good to go! However, if you're gearing up
to release themes for commercial sale, Tonya Engst's article on writing
a ReadMe file is great. It's geared toward software developers, but can
provide invaluable insight to your theme's ReadMe file (if the following
URL is too long, you can also just go to mactech.com and use the Google
search bar to search for ReadMe file).
http://www.mactech.com/articles/mactech/Vol.14/14.10/
WritingAReadMeFile/index.html

Zip It Up
We're now ready to zip up our theme files and test an installation of our theme
package. Zipping is just the file compression type WordPress prefers, though it's
suggested you offer at least two kinds of compression, such as .zip and .rar or
.tar. If you're a Windows PC user, chances are, you're very familiar with zipping
files. If you're a Mac user, it's just as easy. As a new Mac user, I was thrilled to
discover its built-in support for creating zip archives similar to Windows XP (and I
assume Vista). Select your theme's folder and right-click or Ctrl-click to select
Create Archive.

Even if you're working off a server, rather than locally, it's probably best if you download
your theme's directory and zip them up on your local machine. Plus, you'll want to test
your install and almost everyone will be uploading your file off their local machine.

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[120]

No Way to Zip?
If you're on an older computer and don't have compression software, you'll have to take
a little tour of the Internet to find the very best zip solution for you. There are tons of free
archiving and compression tools that offer the zip format.

So let's start with the obvious. If you don't have any zip compression tools, head over to
http://www.stuffit.com/.You'll find that StuffIt software is available for Mac or
PC and lets you compress and expand several different types of formats including
.zip. The standard edition is most likely all you'll ever need, and while there's
nothing wrong with purchasing good commercial software, you'll have plenty of
time to play with the trial version. The trial for the standard software is 15 days, but
you might find that it lasts longer than that (especially if you're patient while the
continue trial button loads). If you're on a PC you also have WinZip as an option
(http://www.winzip.com/) where again, you're given a trial period that does seem
to last longer than the suggested 45 days.

WinZip and StuffIt are considered 'industry standard' software. They've been
around for a good while and are stable products which, for under $50, you can't go
too wrong.

Come on, where's the free open-source stuff? If you must have truly free
compression software and are on a PC, there is 7-zip (http://www.7-
zip.org/). I've only minimally played around with 7-Zip, but it does
create and expand zip files and can even compress in a new format (called
7z) that gets better compression than standard zip files. Unfortunately,
not too many people are readily using the 7z format yet, so make sure
you're also creating a standard zip version of your theme when you use it.

Each compression utility has its own interface and procedures for creating a standard
.zip file. I'll assume that you have one, or have chosen one from above and have
made yourself familiar with how to use it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

One Last Test
You're now ready to test the package. Start from scratch. If at all possible, don't
install the theme back into your sandbox installation (especially if it's on your local
machine). If your sandbox is all you have for some reason, I recommend you rename
your existing development theme directory or back it up (so you're sure to be testing
your package).

Ideally, you'll want to install your theme on a web server installation, preferably the
one where the theme is going to be used (if it's a custom design for a single client) or
under the circumstances you feel your theme's users are most likely to use (e.g., If
you're going to post your theme for download on WordPress's theme directory, then
test your theme on an installation of WordPress on a shared hosting environment
which most people use).

Don't assume the zip or compression file you made is going to unzip or unpack
properly (files have been known to corrupt). Follow the procedure you know your
client will be using or the procedure someone finding your theme on the web
will perform.

Unzip the folder (if applicable, download it from wherever it will be accessed
from, and then try to unzip the folder).
FTP the folder to the wp_content/themes directory.

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[122]

Go to Administration | Design | Themes (or Administration |
Presentation | Themes in older versions of WordPress) and see if your
theme is there.
Select the theme and make sure it displays properly.

With the successful installation and testing of your theme, you now have an
understanding of the entire WordPress theme development process—from
conception to packaging.

Get Some FeedBack and Track It
You're not quite done! Great design doesn't happen in a vacuum. If you've developed
your theme for private use by a client, then you've probably already gone through
a rigorous process of feedback and changes during the theme's development. But if
you're developing a theme for commercial sale, free distribution to people, or even
just for yourself, you'll want to get some feedback. How much feedback is up to you.
You might just want to email a handful of friends and ask them what they think. If
you plan to widely distribute your theme freely or commercially, you really should
offer a way for people to review a demo of your theme and post comments about it.

At first glance, if you're happy with something, you might not want anyone else's
input. Having to hear criticism is hard. However, there's a scientific term called
'emergence', and it basically dictates that 'we' is smarter than 'me.' It's the basis
behind a lot of things, from how ants form food routes for their colonies, to how
people in urban areas create neighborhoods niches, and why the web is transforming
itself into a huge social network. As far as feedback goes, if you have a group of
people, guess how many jelly beans are in a jar, the average of everyone's answer
will be closer to the exact amount than anyone's single guess. Now, design aesthetics
are a lot more ambiguous than the correct number of jelly beans in a jar, but using
this principle in receiving feedback is still something your theme can really take
advantage of.

See how people use your theme. You'll be surprised the situations and circumstances
they attempt to use it in that you would have never thought of on your own. After
several feedback comments you'll probably be able to detect patterns: what kind of
hosting they're using, what kind of sites (discussed in Chapter 2) they are applying
it to, and most importantly, what about the theme is working for them and what
drawbacks they are encountering.

You'll be able to offer version upgrades to your theme by being able to see if your
theme needs any tweaks or additions made to it. More importantly, you'll also see if
there's anything in your theme that can be parred down, removed, and simplified.
Remember that more isn't always better!

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

Summary
In this chapter, we reviewed describing our theme in the style.css commented
header and how to package up your finished theme into a working zip file that
anyone should be able to upload into their own WordPress installation.

Congratulations! You now know about getting a WordPress theme design off that
coffee shop napkin and into the real world! In the next few chapters, we'll get down
into the 'real-world' nitty-gritty of getting things done quickly with our theme
Markup Reference and Cook Book chapters. We'll cover the key design tips and
cool 'HOW TOs,' like how to set up dynamic drop-down menus, best practices for
integrating Flash, AJAX techniques, useful plug-ins, and more.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference
This chapter will cover information to help you with your WordPress theme
development from the two CSS class styles that WordPress itself outputs to
WordPress's template hierarchy—template tags and include tags—to a breakdown of
The Loop along with a few other functions and features you can take advantage of.

I'll review the essentials with you and then give you the key links to the bookmark,
should you be interested in more detail. Consider this chapter your 'cheat sheet'.

Class Styles Generated by WordPress
As we learned in Chapter 3, WordPress content is generated by those bits of PHP
code known as template tags, that look like have_posts() or the_category()
and so on.

There is one template tag that outputs two CSS classes—wp_list_pages()—which
we first discussed in Chapter 2. In Chapter 3, we discovered if you pass this template
tag a parameter of title_li=, WordPress assumes you're going to use the list as a
set of navigation links, so it helps you out by adding the following class styles to the
 tags generated by the template:

Class style Description
page_item Generated by the wp_list_pages() code. Use it to style and

control the page menu items.
current_page_item Generated by the wp_list_pages() code. Use it to style and

control the currently selected main menu item.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[126]

WordPress even takes advantage of a CSS feature which lets you apply as many CSS
class styles as you'd like to a single XHTML object. You simply leave a space
in between each class name. The page list items are displayed as <li class=
"page_item"> and the page that is currently selected displays as <li class=
"page_item current_page_item">.

By applying those two classes to the wp_page_list() template tag, WordPress
enables you to create a very flexible navigation layout using pure CSS.

If you wanted to use WordPress as a full CMS, you could have many pages and their
sub-pages displayed in a clean navigation menu. In fact, in the next chapter, I'll cover
how to use this template tag's output to create a great dynamic drop-down menu.

Using the Template Selector Feature
In chapter 3, I intended my pages (About and Contact) to be static. So I removed
the comments_template and comments_number template tag from the page.php
template. But what if I want (or want my theme users to be able) to create a static
page that lets users leave comments? This is easily achieved by creating a custom
page template:

Time For Action:

1.	 Create a new file that contains the markup, CSS styles, and template tags
you'd like your optional template page to have. I made a copy of my page.
php and called it page_dynmc.php. I then copied the following comment loop
back into it:

 <div id="pagecomments">
 <?php comments_template(); ?>
 </div>
 <div class="comments"> <div class='commentIcon'><?php
 comments_number('No Comments','1
 response','% Comments'); ?></div>
 <?comments_popup_link('Add Your Thoughts', 'Add Your Thoughts',
 'Add Your Thoughts'); ?></div>

2.	 At the very top of the page, before any other coding, you'll want to include
this comment inside PHP brackets:

 <?php
 /*
 Template Name: Dynamic Page
 */
 ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[127]

3.	 You can then log in to your Administration Panel, and by going to
Administration | Write(or Manage) Page, select the page you want to have
a unique template, and underneath the editor window, select your new
template from the Page Template selector drop-down:

Template Hierarchy
After the work we've done on our theme, you've probably noticed that certain
WordPress template pages will override other template pages. Not being aware
of what standard file names can override other file names within your template
hierarchy can cause problems troubleshooting your template.

Essentially, you can have fourteen different default page templates in your
WordPress theme, not including your style.css sheet or includes such as
header.php, sidebar.php, and searchform.php. You can have more template pages
than that if you take advantage of WordPress's capability for individual custom
page, category, and tag templates.

For instance, if you've created a category whose ID is '4', and then created a template
page in your theme called category-4.php, WordPress will automatically pull that
template page in before accessing the category.php or index.php page when that
category is selected. Same goes for tags; if I have a tag named 'office', and create a
template called tag-office.php, WordPress will pull that template page in before
pulling the tag.php or index.php.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[128]

Can't find your category ID? If you want to create a specific category
template page, but don't want to take time to use the the_ID() template
tag to display the ID in your theme, and you don't have your WordPress
Administration | Settings | Permalinks (or Administration | Options
| Permalinks in 2.3.x) set to default, you can still easily figure out a
category's ID number by using the Administration Panel's URI to discover
the ID (this works for discovering the post and page IDs as well):

The following are the general template hierarchy's rules. The absolute simplest
theme you can have must contain an index.php page. If no other specific template
pages exist, then index.php is the default. You can then begin expanding your
theme by adding the following pages:

archive.php trumps index.php when a category, tag, date, or author page
is viewed.
home.php trumps index.php when the home page is viewed.
single.php trumps index.php when an individual post is viewed.
search.php trumps index.php when the results from a search are viewed.
404.php trumps index.php, when the URI address finds no existing content.
page.php trumps index.php when looking at a static page.

a custom template page, selected via the Administration
Panel, trumps page.php which trumps index.php when that
particular page is viewed.

category.php trumps archive.php, which trumps index.php when a
category is viewed

a custom category-ID.php page trumps category.php,
which trumps archive.php, which trumps index.php.

•

•

•

•

•

•

°

•

°

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[129]

tag.php trumps archive.php, which trumps index.php when a tag page
is viewed.

a custom tag-tagnam.php page trumps tag.php which
trumps archive.php, which trumps index.php.

author.php trumps archive.php which trumps index.php, when an
author page is viewed.
date.php trumps archive.php, which trumps index.php when a date page
is viewed.

You can find a detailed flow chart of the template hierarchy here:

http://codex.wordpress.org/Template_Hierarchy

WordPress's template tags go through revisions with each release. New and useful
tags are introduced and some tags become deprecated (which means that one of the
template tags has been superseded by a more efficient template tag). Tags that are
deprecated usually still work in the current version of WordPress, but at some point
their functionality will be removed.

Do not use a deprecated template tag in a new theme. If you have an older theme
that now has depreciated tags, you'll want to update it to the new template tag
equivalent and offer a new release of your template. Keeping up on the template tags
page on WP's codex will help you keep your theme up-to-date.

Let's take a look at what I consider some of the more useful template tags to be.
I won't list them all here, you can easily review them all in detail and clearly see
what's been deprecated at http://codex.wordpress.org/Template_Tags.

New Template Tag in 2.5
I haven't found a need to use the new wp_count_posts tag in a theme yet, though, I
can see how it would be primarily useful for plug-in developers.

Template Tag Description Parameters
wp_count_posts()
Sample:
wp_count_
posts('type',
'status');

Returns the amount of rows in wp_
posts that meet the post_type
and post_status designated.
More Info:
http://codex.wordpress.
org/Template_Tags/wp_
count_posts

post, page,
draft, publish,

Defaults: post,
published

•

°

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[130]

Great Template Tags for Tags from 2.3
WordPress Version 2.3 saw the release of five new template tags. If you're interested
in using the tags feature of WordPress then all five will be of interest to you.

Just a quick note: tags are not intended to replace categories. Categories provide
a more hierarchical structure for your content. Tags are not hierarchical at all
and function more like meta-information about your posts, letting you
'crosslink' them.

While you can assign multiple categories to your content (like placing a post in
'Features' and also in 'On The Web'), tagging additional keywords in that article,
especially words that you might not want to set up a full category for, makes it easier
for your site's users to find relevant information.

For instance, if I write two articles and one goes into 'On The Web' and another
goes into 'Office Productivity', but both articles happen to talk about text-to-speech
technology, I don't really want to create a whole category called 'text-to-speech'
(especially as my site sparingly uses categories as 'monthly columns'), but I'll
certainly add the tag to those items. This way, when someone who is interested
in text-to-speech stumbles upon one of my articles, they can simply click on the
tag 'text-to-speech' and be able to see all my relevant articles, regardless of what
individual categories the content belongs to.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[131]

Adding Tag Display to Your Theme
In the interest of keeping things straightforward and concise, we didn't include
tag-display capability to our theme in Chapter 3. That's OK, we'll do it now. This
feature is very easy to add using the the_tags() template tag.

Within any pages that display The Loop in your theme, decide where you'd like
your tags to be displayed. I prefer they be up top, under the author's name and
category display.

I'll add the following template tag just under the author and category tags in
my loop:

...<p class="authorName">by <?php the_author_firstname(); ?> <?php
the_author_lastname(); ?> for <?php the_category(', ') ?>

<?php the_tags(); ?></p>
 <div class="entry">

The result is this:

The coolest new template tag is wp_tag_cloud(). It lets you easily generate one of
those neat 'Web 2.0' text clouds that show all your tags and have the most used tags
sized from larger to smaller accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[132]

The following are the 2.3 template tags:

Template Tag Description Parameters
the_tags()

Sample:
the_tags('before',
'separator', 'after');

Displays links to the tags a
post belongs to. If an entry
has no tags, the associated
category is displayed instead.
Note: Use this tag in The
Loop. (see Chapter 3 for how
to set up The Loop)
More Info:
http://codex.
wordpress.org/
Template_Tags/the_tags

Any text characters you want
to appear before and after the
tags, as well as, to separate
them:

 ('Tags:', '|', '
')

Default: No parameters will
display.
Tags: tagName, tagName.

get_the_tags()

Sample:

<?php

$posttags =

get_the_tags();
if ($posttags) {

foreach($posttags

as $tag) {

echo $tag->name . '

';

}

}

?>;

This tag does not display
anything by itself.
You have to sort through it
using a basic PHP statement—
foreach—to display the
information you want (see
sample to the left).
Note: Use this tag in The
Loop. (see Chapter 3 for how
to set up The Loop)

More Info:
http://codex.
wordpress.org/
Template_Tags/get_the_
tags

You can use the following
parameters within the
foreach statement to display
the tag information:
$tag->term_id, $tag-
>name, $tag->slug,
$tag->term_group, $tag-
>description, $tag-
>count.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[133]

Template Tag Description Parameters
get_the_tag_list()
Sample:
echo
get_the_tag_
list('<p>Tags: ',',

','</p>');

This tag does not display
anything by itself. If you use
the PHP echo statement
(see sample to the left), it can
display XHTML
markup of the tags assigned
to the post.
Note: Use this tag in The
Loop. (See chapter 3 for how
to set up The Loop.)
More Info:
http://codex.
wordpress.org/
Template_Tags/get_the_
tag_list

Similar to the_tags(), you
can place any text characters
you want to appear before
and after the tags as well as
separate them:

('<p>Tags: ',',

 ','</p>')

single_tag_title()
Sample:
single_tag_
title('This Tag: ');

Displays the title of the tag the
user is viewing or sorting by.

More Info:
http://codex.
wordpress.org/
Template_Tags/single_
tag_title

Any text characters you
want to appear before the
tag name can be added—
('This Tag:').
You can also add a Boolean
of true or false afterward if
you don't want the text to
display—('', 'false').
Default: The Boolean
default is 'true' and no
parameters will display—
(no text) tagName.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[134]

General Template Tags—the Least You Need
to Know
The following are the top WordPress template tags I find most useful for
theme development:

Template Tag Description Parameters
bloginfo()

 Sample:
bloginfo('name');

Displays your blog's
information supplied by your
user profile and general options
in the Administration Panel.

More Info:

http://codex.wordpress.
org/Template_Tags/
bloginfo

Any text characters you
want to appear before
and after the tags, as well
as to separate them—
name, description,
url, rdf_url, rss_url,
rss2_url, atom_url,
comments_rss2_url,
pingback_url,
admin_email, charset,
version.'

Default: No parameters
will display anything.
You must use a
parameter.

wp_title()

Sample:

wp_title('--
',true,'');

Displays the title of a page or
single post.

Note: Use this tag anywhere
outside The Loop.

More Info:
http://codex.wordpress.
org/Template_Tags/
wp_title

Any text characters you
want to use to separate
the title—('--').

You can set up a Boolean
to display the title—
('--', 'false').

New in 2.5: You can
decide if the separator
goes before or after the
title—('--', 'true',
'right').

Default: No parameters
will display the page
title with a separator if a
separator is assigned its
default to the left.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[135]

Template Tag Description Parameters
the_title()

Sample:
the_title('<h2>', '</
h2>');

Displays the title of the current
post.
Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop.)
More Info:
http://codex.wordpress.
org/Template_Tags/the_
title

Any text characters you
want to appear before
and after the title—
('<h2>', '</h2>').
You can also set a
Boolean to turn the
display to false—
('<h2>', '</h2>',
'false').
Default: No parameters
will display the title
without a markup.

the_content()

Sample:
the_content('more_
link_text', strip_
teaser, 'more_file');

Displays the content and
markup you've edited into the
current post.
Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop.)
More Info:
http://codex.wordpress.
org/Template_Tags/the_
content

As you can add text to
display the 'more link',
a Boolean to show or
hide the 'teaser text',
there is a third parameter
for more_file that
currently doesn't work—
("Continue reading"
. the_title()).

You can also set a
Boolean to turn the
display to false—
('<h2>', '</h2>',
'false').
Default: No parameters
will display the content
for the post with a generic
'read more' link.

the_category()

Sample:
the_category(', ');

Displays a link to the category
or categories a post is assigned
to.
Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop)
More Info:
http://codex.wordpress.
org/Template_Tags/the_
category

You can include text
separators in case there's
more than one category—
('>').
Default: No parameters
will display a comma
separation if there is
more than one category
assigned.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[136]

Template Tag Description Parameters
the_author()

Sample:
the_author();

Displays the author of a post
or a page.

Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop.)

More Info:
http://codex.wordpress.
org/Template_Tags/the_
author

This tag accepts no
parameters. Instead, use
the full tags to get specific
author information—
the_author_
firstname(), the_
author_lastname(),
the_author_
description(), the_
author_nickname(),
etc.

Default: This tag displays
whatever the Display
name publicly as setting
in your user profile is set
to.

wp_list_pages()

Sample:
wp_list_pages('title_
li=');

Displays a list of WordPress
pages as links.

More Info:
http://codex.wordpress.
org/Template_Tags/wp_
list_pages

title_li is the most
useful as it wraps the
page name and link in list
tags .
.ext, the other
parameters can be set
by separating with an
'&': depth, show_date,
date_format,
child_of, exclude,
echo, authors,
sort_column.

Default: No parameters
will display each title
link in an list
and include an
tag around the list (not
recommended if you
want to add your own
custom items to the
page navigation).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[137]

Template Tag Description Parameters
next_post_link()

Sample:
next_post_
link('%title</
strong>');

Displays a link to the next post
which exists in chronological
order from the current post.
Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop.)
More Info:
http://codex.wordpress.
org/Template_Tags/next_
post_link

Any markup and
text characters you
want to appear—
(%title</
strong>).
%link will display the
permalink, %title the
title of the next post.
Default: No parameters
will display the next post
title as a link followed by
angular quotes (>>).

previous_post_link()

Sample:
previous_post_
link('%title</
strong>');

Displays a link to the
previous post which exists in
chronological order from the
current post.
Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop.)
More Info:
http://codex.wordpress.
org/Template_Tags/
previous_post_link

Any markup and
text characters you
want to appear—
(%title</
strong>).

%link will display the
permalink, %title the
title of the next post.

Default: No parameters
will display the previous
post title as a link
preceded by angular
quotes (<<).

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[138]

Template Tag Description Parameters
comments_number()

Sample:
comments_number('no
responses','one
response','%
responses');

Displays the total number of
comments, Trackbacks, and
Pingbacks for a post.
Note: Use this tag in The Loop.
(See chapter 3 for how to set
up The Loop.)
More Info:
http://codex.wordpress.
org/Template_Tags/
comments_number

Lets you specify how
to display if there are
0 comments, only 1
comment, or many
comments—('no
responses','one
response','%
responses').
You can also wrap
items in additional
markup—('No
Comments','<span
class="bigNum">1</
span>
response','<span
class="bigNum">%</
span> Comments').
Default: No parameters
will display:
No comments, or 1
comment, or ? comments.

comments_popup_link()

Sample:
comments_popup_
link('Add Your
Thoughts');

If the comments_popup_
script is not used, this
displays a normal link to
comments.

Note: Use this tag in The Loop.
(See chapter 3 for how to set
up The Loop.)

More Info:

http://codex.wordpress.
org/Template_Tags/
comments_popup_link

Lets you specify how
to display if there are
0 comments, only 1
comment, or many
comments—('No
comments yet', '1
comment so far',

'% comments so far (is
that a lot?)', 'comments-
link', 'Comments are off
for this post').

Default: No parameters
will display the same
default information as the
comments_number()
tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[139]

Template Tag Description Parameters
edit_post_link()

Sample:
edit_post_link('edit',
'<p>', '</p>');

If the user is logged in and has
permission to edit the post,
this displays a link to edit the
current post.

Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop.)

More Info:
http://codex.wordpress.
org/Template_Tags/edit_
post_link

Any text you want to be
in the name of the link,
plus markup that you'd
like to come before and
after it—('edit me!',
'', '</
strong>').

Default: No parameters
will display a link
that says 'edit' with no
additional markup.

the_permalink()

Sample:
the_permalink();

Displays the URL for the
permalink to the current post.

Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop.)

More Info:
http://codex.wordpress.
org/Template_Tags/the_
permalink

This tag has no
parameters.

the_ID()

Sample:
the_ID();

Displays the numeric ID of the
current post.

Note: Use this tag in The Loop.
(See Chapter 3 for how to set
up The Loop.)

More Info:
http://codex.wordpress.
org/Template_Tags/
the ID

This tag has no
parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[140]

Template Tag Description Parameters
wp_get_archives()

Sample:
wp_get_archives('type=
monthly');

Displays a date-based archives
list.

More Info:
http://codex.wordpress.
org/Template_Tags/wp_
get_archives

You can set parameters
by separating them with
an '&'—('type=monthl
y&limit=12').

The other parameters are
type, limit, format,
before, after, show_
post_count.

Default: No parameters
will display a list of all
your monthly archives in
HTML format without
before or after markup
and show_post_count
set to false.

get_calendar()

Sample:
get_calendar(false);

Displays the current month/
year calendar.

More Info:
http://codex.wordpress.
org/Template_Tags/get_
calendar

A Boolean value can be
set which will display
a single-letter initial (S
= Sunday) if set to true.
Otherwise, it will display
the abbreviation based on
your localization (Sun =
Sunday)—(true)

Default: No parameters
will display the single-
letter abbreviation.

Include Tags
The following is a list of all the tags and file names you can include into your theme:

Include Tag Description
get_header(); Finds and includes the file header.php from your current

theme's directory. If that file is not found, it will include
wp-content/themes/default/header.php in its place.

get_footer(); Finds and includes the file footer.php from your current
theme's directory. If that file is not found, it will include
wp-content/themes/default/footer.php in its place.

get_sidebar(); Finds and includes the file sidebar.php from your current
theme's directory. If that file is not found, it will include
wp-content/themes/default/sidebar.php in
its place.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

Include Tag Description
comments_template(); Finds and includes the file comments.php from your

current theme's directory. If that file is not found, it will
include wp-content/themes/default/comments.php
in its place.

TEMPLATEPATH

Sample:
include(TEMPLATEPATH
. '/filename.php');;

TEMPLATEPATH is a reference to the absolute path (not the
URL path) to the current theme directory. It does not include
a / at the end of the path. You can use it to include any file
into your theme using the standard PHP include statement
(see the sample to the left). This is how theme developers
include the searchform.php file into their themes.

Custom Includes—Streamline Your Theme
In Chapter 3, we included our own custom sidebar using the WordPress TEMPLATE
path inside a basic PHP include call. This technique can come in very handy in
helping you streamline your theme's code and help keep it easily updateable.

For instance, my index.php, page.php, and category.php pages have different
headers and slightly different uses of The Loop, but they all have the exact same
page navigation code. This bit of code is small, yet if I ever want to tweak my
internal navigation layout, I'll need to touch all three of those pages. Let's clean that
up so that I only need to edit one page.

Time for Action:
1.	 Open up your index.php page and select everything from the

<div id="intTop_navlist"> down to the end div tag and
<!--//top_navlist--> comment.

2.	 Cut that code out and paste it into a new template page—navlist.php.
3.	 Go back to the index.php and add this include file where all that code used

to be:
 <?php include(TEMPLATEPATH . '/navlist.php'); ?>

4.	 Test your internal page views out. You should see your layout working
just fine.

You can now replace that same code in your page.php and category.php template
pages with the include line you just created. Test out those internal page views
again to be sure the include is working. Now any time you want to update your
internal navigation, you only have to edit the navlist.php file.

You can get really granular with this technique. Feel free to really look through your
theme and find ways to separate out parts into includes so that you don't have to
worry about duplicating your markup.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Reference

[142]

The Loop Functions
Chapter 3 will really help you understand how to put each of these functions
together into The Loop. The following is a description of each part of The Loop:

Loop Functions Description
<?php if(have_posts()) :
?>

This function checks to make sure there are posts
to display. If so, the code continues onto the next
function below.

<?php while(have_posts())
: the_post(); ?>

This function shows the posts that are available and
continues onto the next function below.

<?php endwhile; ?> This function closes the while(have_posts... loop
that was opened above once the available posts have
been displayed.

<?php endif; ?> This function ends the if(have_posts... statement
that was opened above once the while(have_
posts... loop has completed.

WordPress Core Functions
In Chapter 3, I wrote a custom display loop that showed the top five most recent post
titles in my Features category. I used a WordPress function called
setup_postdata().

I mentioned you might notice that the setup_postdata() function isn't listed in
WordPress.org's template tag reference page. Template tags are WordPress functions
that are defined for use specifically within themes; the setup_postdata function is part
of WordPress's core functions.

Core functions are primarily useful to plug-in developers and the developers
customizing WordPress' overall functionality for themselves. Occasionally, as we
discovered in Chapter 3, some of the functions can be useful to theme developers
who want highly specialized functionality within their themes.

I won't take time to break down any core functions into a table, as most people won't
really need these for their theme development. I just want to make you aware of the
core functions, existence so that if you ever do find WordPress template tags to be
limiting, you can see if getting creative with a core function might solve
your problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

The most useful core functions I've found as a theme developer are part of a class
called WP_query. The setup_postdata() function is part of this class. Functions
within this class let you call specific posts and manipulate post data and how it's
displayed. You can find out more about this class at:

http://codex.wordpress.org/Function_Reference/WP_Query

What's a class? This might seem to take us off topic from theme
development, but it never hurts to understand WordPress a little better.
You might only be familiar with the term 'class' as used in CSS. This
is different. A class is also a term used in Object Oriented Programming
(which is how WordPress is written using the PHP language). It can
best be described as a 'package' or 'collection' of functions and rules that
define what an object can have done to it and how that object will behave.
Objects are instances of their class which hold actual data inside them
(like post data, for example, in the case of WordPress). The data inside the
object can be retrieved and manipulated via the functions available in that
object's class (such as the setup_postdata() function).

Again, you can find out more about using the setup_postdata() function, as
mentioned in Chapter 3, here:

http://codex.wordpress.org/Displaying_Posts_Using_a_Custom_
Select_Query

If you use PHP or are interested in it and would like to learn more about
WordPress's core functions, you can find out more here:

http://codex.wordpress.org/Function_Reference

Summary
Aside from two style classes output by the page navigation template tag, WordPress
lets you completely control your own XHTML markup and CSS styles. We've
reviewed WordPress 2.0's template hierarchy, top template tags, as well as include
and loop functions that will help you with your theme. I've also introduced you to the
'under-belly' of WordPress's core functions, should you choose to venture far out into
the world of WordPress theme and plug-in development. Dog-ear this chapter and
let's get ready to start cooking. First up: Dynamic menus and interactive elements.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and
Interactive Elements

Most of the techniques I'm about to discuss in this chapter and the next one are often
used inappropriately and needlessly, not-to-mention they can create issues with
usability and accessibility standards, but if you haven't already been asked for one or
more of these features, you will be!

Chances are half of every five clients has already asked you for drop-down menus,
slick Flash headers, YouTube embeds, and other interactive content that they insist
will give their site 'pizazz!'

My gut reaction (and probably yours) to anyone who utters the 'P' word is to pick up
a heavy hammer! Unfortunately, the people who sling around such words, as Steve
Krug notes in his excellent book 'Don't Make Me Think', are usually the CEO or VP,s
and well, you know, people with money for the project. Wherever possible, you put
down the hammer and give them exactly what they want—pizazz it is. Here we go.

Don't Make Me Think!: A Common Sense Approach to Website Usability is an
excellent book on website design for usability and testing that anyone
who has anything to do with website development or design can greatly
benefit from. You'll learn why people really leave websites, how to make
your site more usable and accessible, and even how to survive those
executive design whims (without the use of a hammer). You can find out
more at Steve's site (http://www.sensible.com/).

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[146]

DYI or Plug-ins?
In this chapter and the next one, I'll discuss how to do some of these techniques
yourself but will also direct you to comparable plug-ins, or in the case of more
complex techniques, show you plug-ins that do the job and point you in the direction
for learning more about doing it yourself. As to the question: Should I use Plug-ins
or do it myself? That depends on a few things such as the following:

Time available
Your technical comfort level
The level of control you want over the theme
If your theme is unique for use on a single site or if you plan on a wide
distribution of it

If you're new to web development, especially using PHP and/or you just don't have
the time to create a completely custom solution, WordPress plug-ins are a great way
for you to go. If you've been developing with various web technologies for a while
and you want to have exact detailed control over your theme, then you should be
able to implement and further customize any of the solutions discussed in these next
few chapters.

The other consideration is the usage of your theme. If you're developing a theme that
is for a specific client to be used only on their site, then you might want to implement
a solution directly into your theme. This will enable you to have detailed control
over its display via your theme pages and style.css sheet. If, on the other hand,
you plan to sell your theme commercially or otherwise let it be widely distributed,
your best bet is to make it 'Widgetized' and as plug-in friendly as possible. (By 'plug-
in friendly', I simply mean, test it with popular plug-ins to make sure they work well
with your theme.) This way, your theme users have greater flexibility in how they
end up using your theme and aren't locked-in to using any features you've enabled
the theme with.

Dynamic Menus?
This is the nice thing about WordPress—it's all 'dynamic', Once you install
WordPress and design a great theme for it, anyone with the right level of
administrative capability can log into the Administration Panel and add, edit, or
delete content and menu items. But generally, when people ask for 'dynamic menus',
what they really want are those appearing and disappearing drop-down menus
which, I believe, they like because it quickly gives a site a very 'busy' feel.

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[147]

I must add my own disclaimer; I don't like drop-downs. Before you get on to my
case, I will say it's not that they're 'wrong' or 'bad', they just don't meet my own
aesthetics and I personally find them non-user friendly. I'd prefer to see a menu
system that, if requires sub sections, displays them somewhere consistently on
the page, either by having a vertical navigation expand to display sub sections
underneath, or if a horizontal menu is used, shows additional sub sections in a set
location on the page.

I like to be able to look around and see 'OK, I'm in the New Items | Cool Dink
section and I can also check out Red Dinks and Retro Dinks within this section.'
Having to constantly go back up to the menu and drop-down the options to remind
myself of what's available and what my next move might be, is annoying. Still
haven't convinced you not to use drop-downs? OK, read on.

Drop-Down Menus
So you're going to use drop-downs. Again it's not 'wrong', however, I would strongly
caution you to help your client take a look at their target users before implementing
them. If there's a good chance that most users are going to use the latest browsers
that support current Javascript, CSS, and Flash standards, and everyone has great
mobility and is 'mouse-ready', then, there's really no issue, go for it.

If it becomes apparent that any percentage of the site's target users will be using older
browsers or have disabilities that prevent them from using a mouse and will limit
them to tabbing through content, you must consider not using drop-down menus.

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[148]

I was especially negative about drop-down menus as, until recently, they required
bulky JavaScripting or the use of Flash which, does not make clean, semantic, and
SEO-friendly (or accessible) XHTML. Until now. Enter the Suckerfish method
developed by Patrick Griffiths and Dan Webb.

This method is wonderful because it takes valid, semantically accurate, unordered
lists (WordPress' favorite!), and using almost pure CSS, creates drop-downs. The
drop-downs are not tab accessible, but they will simply display as a single, clear
unordered list to older browsers that don't support the required CSS.

IE6 as per usual, poses a problem or two for us, so there is some minimal
DOM JavaScripting needed to compensate and achieve the correct effect
in that browser.

If you haven't heard of or worked with the Suckerfish method, I'm going to
recommend you to go online (right now!) and read Dan and Patrick's article in detail
(http://alistapart.com/articles/dropdowns).

More recently, Patrick and Dan have revisited this method with 'Son-of-a-Suckerfish',
which offers multiple levels and an even further parred down DOM JavaScript.
Check it out at http://www.htmldog.com/articles/suckerfish/dropdowns/.

I also suggest you play around with the sample code provided in these articles so
that you understand exactly how it works. Go on, read it. When you get back, I'll
review how to apply this method to your WordPress theme.

DIY SuckerFish Menus in WordPress
All done? Great! As you can see, the essential part of this effect is getting your menu
items to show up as unordered lists with sub unordered lists. Once you do that, the
rest of the magic can be easily handled by finessing the CSS that Patrick and Dan
suggest into your theme's CSS and placing the DOM script in your theme's header
tag(s), in your header.php and/or index.php template files. Seriously, that's it!

The really good news is that WordPress already outputs your content's pages and
their sub-pages using unordered lists. Right-click on the page links in Firefox to
View Selected Source and check that the DOM inspector shows us that the menu is
in fact being displayed using an unordered list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[149]

Now you can go into your WordPress Administration Panel and add as many pages
and sub-pages as you'd like (Administration | Write | (Write)Page). You'll use the
Page Parent tab underneath the editor (or on the right if your WordPress version is
older than 2.5) to assign your sub pages to their parent.

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[150]

Once you've added sub pages to a page, you'll be able to use the DOM Source of
Selection viewer to see that your menu is displayed with unordered lists and
sub lists.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[151]

Applying CSS to WordPress
We're going to use the new and improved 'Son-of-a-Suckerfish' method so that
our menu can handle multi-level drop-downs. To start, let's just take Dan and
Patrick's suggested code and see what happens. Their unordered list CSS looks
like the following:

#nav, #nav ul { /* all lists */
 padding: 0;
 margin: 0;
 list-style: none;
 line-height: 1;
}

#nav a {
 display: block;
 width: 10em;
}

#nav li { /* all list items */
 float: left;
 width: 10em; /* width needed or else Opera goes nuts */
}

#nav li ul { /* second-level lists */
 position: absolute;
 background: orange;
 width: 10em;
 left: -999em; /* using left instead of display to hide menus
 because display: none isn't read by screen readers */
}

#nav li ul ul { /* third-and-above-level lists */
 margin: -1em 0 0 10em;
}

#nav li:hover ul ul, #nav li:hover ul ul ul, #nav li.sfhover ul ul,
#nav li.sfhover ul ul ul {
	 left: -999em;
}

#nav li:hover ul, #nav li li:hover ul, #nav li li li:hover ul, #nav
li.sfhover ul, #nav li li.sfhover ul, #nav li li li.sfhover ul { /*
lists nested under hovered list items */
 left: auto;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[152]

Now in WordPress, our menu item's ul is within a div id called top_navlist, And
the ul id is reffered to as navlist. There may or may not be lots of other unordered
lists used in our site, so we want to be sure that we only affect uls and lis within
that top_navlist id.

We'll simply tweak the CSS a bit to move items to the left (unfortunately, this works
best with horizontal Navs that are positioned from the left instead of the right) and
make sure to add #navlist to each element in the Suckerfish CSS. Also, we already
have a general #top_navlist and #intTop_navlist rule for the div, so we'll want
to make sure that this only affects the ul within that div by making sure it's named
#navlist. So our navigation CSS styles now look something like the following:

/*////////// NAV //////////*/

#top_navlist {
 position: absolute;
 top: 260px;
 width: 897px;
 text-align:left;
}

#intTop_navlist {
 position: absolute;
 top: 173px;
 width: 897px;
 text-align:left;
}

#top_navlist h2, #intTop_navlist h2{
 display: none;
}

#navlist{
 padding: 10px 10px;
 margin-left: 0;
 border-bottom: 1px solid #ccc;
 font-family: Georgia, Times, serif;
 font-weight: bold;
}

#navlist li{
 list-style: none;
 margin: 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[153]

 display: inline;
}

#navlist li a{
 padding: 11px 30px;
 margin-left: 3px;
 border: none;
 border-left: 1px solid #ccc;
 background: #8BA8BA url(images/oo_mag_main_nav.jpg) no-repeat top
 right;
 text-decoration: none;
 color: #253A59;
}

#navlist li a:hover{
 background-color: #9E9C76;
 background-position: right -37px;
 border-color: #C5BBA0;
 color: #784B2C;
 text-decoration: underline;
}

#navlist li.current_page_item a{
 border-bottom: 1px solid white;
 background-color: #fff;
 background-position: right -74px;
}

#navlist li a:visited { color: #253A59; }

/*suckerfish menu starts here*/

#navlist li ul { /* second-level lists */
 position: absolute;
 border: none;
 margin-top: 10px;
 margin-left: 70px;
 left: -999em; /* using left instead of display to hide menus because
display: none isn't read by screen readers */
}

#navlist li ul li a {
 display: block;
 width: 150px;
 font-family: Georgia, Century Schoolbook, Times, serif;

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[154]

 font-size: 12px;
 text-transform:none;
 font-variant: normal;
 font-weight:bold;
 border: 1px solid #666666;
 background-color: #ffffff;
 background-image: none;
}

#navlist li ul li a:hover {
 background-color: #cccccc;
 text-decoration: none;
}

#navlist li ul ul { /* third-and-above-level lists */
 margin: -1em 0 0 7em;
}

#navlist li:hover ul ul, #nav li:hover ul ul ul, #nav li.sfhover ul
ul, #nav li.sfhover ul ul ul {
 left: -999em;
}

#navlist li:hover ul, #nav li li:hover ul, #nav li li li:hover ul,
#nav li.sfhover ul, #nav li li.sfhover ul, #nav li li li.sfhover ul {
/* lists nested under hovered list items */
 left: auto;
}

Applying the DOM Script to WordPress
The last bit is the JavaScript so that the hover works in IE6. I call it DOM scripting or
the DOM script, but it's basically just a JavaScript that rewrites your markup (how
your DOM is being perceived by IE6) on-the-fly. This drop-down effect relies on the
CSS hover attribute, IE6 only recognizes the hover attribute if it is applied to the a
(link) entity. IE7 has fixed this limitation and works similarly for FireFox and other
browsers. Dan and Patrick's script appends the additional .sfhover class to the li
items in IE6 only.

You'll need to add this script to your index.php and/or header.php template pages,
inside the header tags. The thing to remember here is that Dan and Patrick named
their ul's id as nav and that's what this script is looking for. Our ul's id is named
top_navlist, so by simply switching out document.getElementById("nav"); to
document.getElementById("navlist");, you're good to roll in I.E.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[155]

The full script in your header tags should look like the following: (I prefer to tuck it
into an include and place it in my home.php (or index.php) and header.php files
with a JavaScript inlcude.)

<script type="text/javascript"><!--//--><![CDATA[//><!--
sfHover = function() {
 var sfEls = document.getElementById("navlist").getElementsByTagNam
e("LI");
 for (var i=0; i<sfEls.length; i++) {
 sfEls[i].onmouseover=function() {
 this.className+=" sfhover";
 }
 sfEls[i].onmouseout=function() {
 this.className=this.className.replace(new RegExp("
 sfhover\\b"), "");
 }
 }
}
if (window.attachEvent) window.attachEvent("onload", sfHover);
//--><!]]></script>

For demonstration purposes, I've kept the CSS pretty bare bones and ugly, but when
we check this out in our browser we now see the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[156]

It's working! Remember with the preceding code, you can have drop-down menus
that go three levels deep (Dan and Patrik's HTML Dog article shows you how to
make it handle as many levels as you'd like).

Control those dropdown levels! As cool as SuckerFish drop-downs are,
refrain from going overboard on those levels! Cascading levels can really
become tedious for a user to mouse through and turn a site with a 'busy
feel' into a total mess. You'll find that with a little care, you can easily
organize your site's page content so that it only requires two levels. From
there, if you really need it, you can add an occasional third level without
creating too much user distraction.
Don't want all your pages to display? In our theme, we used the wp_
list_pages() template tag to display our pages. You can amend the
template tag with an exclude parameter, which will hide the pages
we don't want to see, including their sub pages (example: wp_list_
pages('exclude=9&title_li=');). You do have to know what the
page's id number is. (You can temporarily set your permalinks to 'default'
to see the page's id number in the site's url). The pages themselves will
still be available for viewing if you know their direct URL path. Read
more about it at http://codex.wordpress.org/Template_Tags/
wp_list_pages#Exclude_Pages_from_List.

At this point, all that's left is fixing up the CSS to make it look exactly the way you
want. There you go, semantic, SEO, and accessible-as-possible dynamic menus
in WordPress.

Drop-down Menu Plug-ins: Now you're probably already thinking:
'Wait, this is WordPress, maybe there's a plug-in' and you'd be right! By
searching the 'Extend' section of the WordPress.org site, you'll find that
there are a handful of WordPress plug-ins that allow for drop-down
menus under different conditions. Ryan Hellyer has written a plug-in that
uses the 'Son-of-a-SuckerFish' method that we reviewed in detail earlier.
You can review it at http://wordpress.org/extend/plugins/
ryans-suckerfish-wordpress-dropdown-menu/.
Ryan even offers a great drop-down style generator making it easy to
get your menu's to match your theme's existing stylesheet (http://
ryanhellyer.net/dropdowns/).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[157]

Flash-ize It
Adobe Flash—it's come quite a long way since my first experience with it as a
Macromedia product (version 2 in 1997). Yet still, it does not adhere to W3C
standards, requires a plug-in to view, and above all, is a pretty pricey proprietary
product. So why is everyone so hot on using it? Love it or hate it, Flash is here to
stay. It does have a few advantages which we'll take a quick look at.

The Flash player plug-in does boast the highest saturation rate around (way above
other media player plug-ins) and it now readily accommodates audio and video, as
video sites like YouTube take advantage of it. It's pretty easy to add and upgrade it
for all major browsers. The price may seem prohibitive at first, but once you're in for
the initial purchase, additional upgrades are reasonably priced. Plus, many third-
party software companies offer very cheap authoring tools which allow you to create
animations and author content using the Flash player format. (In most cases, no one
needs to know you're using the $50 version of Swish and not the $800 Flash CS3 to
create your content.)

Above all, it can do so much more than just playing video and audio (like most plug-
ins). You can create seriously rich and interactive content, even entire applications
with it, and the best part is, no matter what you create with it, it is going to look and
work exactly the same on all browsers and platforms, period. These are just a few of
the reasons why so many developers chose to build content and applications for the
Flash player.

Oh, and did I mention you can easily make awesome, visually slick, audio-filled stuff
with it? Yeah, that's why your client wants you to put it in their site.

Flash in Your Theme
A common requested use of Flash is usually in the form of a snazzy header
within the theme of the site. The idea being that various relevant and/or random
photographs or designs load into the header with some super cool animation (and
possibly audio) every time a page loads or a section changes.

I'm going to assume if you're using anything that requires the Flash player, you're
pretty comfy with generating content for it. So, we're not going to focus on any Flash
timeline tricks or ActionScripting. We'll simply cover getting your Flash content into
your WordPress theme.

For the most part, you can simply take the HTML object embed code that Flash (or
other third-party tools) will generate for you and paste it into the header area of your
WordPress index.php or header.php template file.

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[158]

I use a very basic embed method based on the 'Satay' method (plus, this
method works well with the Object Swap version check and ActiveX Restriction
'workaround' we'll get to in the next section of this chapter).

I like to wrap the object embed tags in a specific div id tag so that I can control its
position via CSS.

Time For Action:

1.	 Using the swf file included in this book's code packet, create a new directory
in your theme called flash and place the swf file in it. Then, include this
code inside your intHeader div in your header.php template file:
<object data="<?php bloginfo('template_directory'); ?>/flash/
ooflash-sample.swf"
 type="application/x-shockwave-flash"
 width="338"
 height="150">
 <param name="movie" value="<?php bloginfo('template_directory');
 ?>/flash/ooflash-sample.swf" />
 <param name="menu" value="false" />
 <param name="wmode" value="transparent" />
 <param name="quality" value="best" />
</object>

2.	 Add this id rule to your stylesheet (I placed it just below my other header
and intHeader id rules):
#flashHold{

 float: right;

 margin-top: 12px;

 margin-right: 47px;

}

As long as you take care to make sure the div is positioned correctly, the object
embed code has the correct height and width of your Flash file, and that you're not
accidentally overwriting any parts of the theme that contain WordPress template
tags or other valuable PHP code, you're good to go.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[159]

What's the Satay method? It's a slightly cleaner way to embed your Flash
movies while still supporting web standards. Drew McLellan discusses its
development in detail in his article:
http://www.alistapart.com/articles/flashsatay. This
method was fine on its own until IE6 decided to include its ActiveX
Security restriction. Nowadays, your best bet is to just implement the
Object Swap method we'll discuss next.

Pass Flash a WordPress Variable
So now you've popped a nice Flash header into your theme. Here's a quick trick
to make it all the more impressive. If you'd like to keep track of what page, post,
or category your WordPress user has clicked on and display a relevant image or
animation in the header, you can pass your Flash swf file a variable from WordPress
using PHP.

I've made a small and simple Flash movie that will fit up right over the top-right of
my internal page's header. I'd like my Flash header to display some extra text when
the viewer selects a different 'column' (a.k.a. category). In this case, the animation
will play and display OpenSource Magazine: On The New Web underneath the
open source logo when the user selects the On The New Web category.

More fun with CSS
If you look at the final theme package available from this title's URL
on Packt's site, I've included the original ooflash-sample.fla.
You'll notice the fla has a standard white background. If you look
at my header.php file, you'll note that I've set my wmode parameter
to transparent. This way, my animation is working with my CSS
background. Rather than beef up my swf's file size with another open
source logo, I simply animate over it! Even if my animation 'hangs' or
never loads, the user's perception and experience of the page is not
hampered. You can also use this trick as a 'cheater's preloader'. In your
stylesheet, assign the div which holds your Flash object embed tags, a
background image of an animating preloading GIF or some other image
that indicates the user should expect something to load. The user will see
this background image until your Flash file starts to play and covers
it up. My favorite site to get and create custom loading GIFs is
http://www.ajaxload.info/.

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[160]

In your Flash authoring program, set up a series of animations or images that will
load or play based on a variable set in the root timeline called catName. You'll pass
this variable to your ActionScript. In my fla example, if the catName variable does
not equal "On The New Web", then the main animation will play, but if the variable
returns On The New Web,' then the visibility of the movie clip containing the
words OpenSource Magazine: On The New Web will be set to 'true'.

Now, let's get our PHP variable into our swf file. In your object embed code where
your swfs are called, be sure to add the following code:

<object data="http://wpdev25.eternalurbanyouth.com/wp-content/themes/
oo_magazine/flash/ooflash-sample.swf?catName=<?echo single_cat_
title('');?>"
 type="application/x-shockwave-flash"
 width="338"
 height="150">
 <param name="movie" value="http://wpdev25.eternalurbanyouth.com/
 wp-content/themes/oo_magazine/flash/ooflash-sample.
 swf?catName=<?echo single_cat_title('');?>" />
 <param name="menu" value="false" />
 <param name="wmode" value="transparent" />
 <param name="quality" value="best" />
</object>

Be sure to place the full path to your swf file in the src and value
parameters for the embed tags. Store your Flash file inside your
themes folder and link to it directly, that is, src="http://mysite.
com/wp-content/themes/mythemename/myswf.swf". I like to use
the bloginfo('template_directory'); template tag. This will
ensure that your swf file loads properly.

Using this method, every time someone loads a page or clicks a link on your site
that is within the On The New Web category, PHP will render the template tag
as myswfname.swf?catName=On The New Web, or whatever the $single_cat_
title(''); for that page is. So your Flash file's ActionScript is going to look for
a variable in the_root or _level0 called catName, and based on that value, do
whatever you told it to do: call a function, go to a frame and animate, you name it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[161]

For extra credit, you can play around with the other template tag variables such
as the_author_firstname()or the_date(), for example, and load up special
animations, images, or call functions based on them. Review the template tag
options listed in Chapter 6 and experiment! There are a lot of possibilities for Flash
control there!

Users Without Flash, Older Versions of Flash, and
IE6 Users
What about users who don't have Flash installed or have an older version that won't
support your content? By amending your object embed code with this following
solution, your theme will gracefully handle users who do not have Flash (if you've
used the overlay method above, they'll simply see the CSS background image and
probably know nothing is wrong!) or an older version of Flash that doesn't support
the content you wish to display. This method lets you add in a line of text or a static
image as an alternative, so, people who don't have the plug-in/correct version
installed are either served up alternative content and they're none-the-wiser, or
served up content that nicely explains that they need the plug-in and directs
them toward getting it. Most importantly, this method also nicely handles IE's
ActiveX Restrictions.

What is the ActiveX Restriction? Last year the IE browser upped its security, so users
now have to validate content that shows up in the Flash player (or any player, via
MicroSoft's ActiveX controls). Your Flash content will start to play, but there will be
a 'grey outline' around the player area which may or may not mess up your design.
If your content is interactive, then people will need to click to activate it. This is
annoying but there are workarounds for it.

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[162]

Essentially, you need to include your Flash content via a JavaScript include file. I
used to use my own custom JavaScript, which was great for new content, but not
so great for all my old content that's already out there (who wants to go rewrite
all their object embed tags as JavaScript includes?!). Recently, I've discovered
the ObjectSwap method from sitepoint: http://www.sitepoint.com/article/
activex-activation-issue-ie.

Time For Action:

1.	 It helps to understand a little bit of JavaScript, but even if you don't, this is
a great script which will very easily allow you to activate Flash movies for
ActiveX and make it much easier to update older content from past projects
without striping out the original object embed tags. And because it's so
simple, it fits right into a WordPress template page without any stress. You'll
simply copy the JavaScript include line into your header.php and/or
index.php header tags:
<script type="text/javascript" src="<?php

 bloginfo('template_directory')?>/js/objectSwap.js"> </
script>

2.	 You'll then include the objectSwap.js file with your theme template files.
3.	 Be sure to read the article at the link provided above. Download the

example files from http://www.sitepoint.com/examples/objectswap/
objectswap.zip.

More good news! It looks like Microsoft is planning to remove the
click to activate requirement from IE sometime in 2008. You can keep up
on this topic by visiting IE's blog (http://blogs.msdn.com/ie/
archive/2007/11/08/ie-automatic-component-activation-
changes-to-ie-activex-update.aspx). Even once this happens, as
mentioned above, the objectswap.js is a great way to handle people
who do not have Flash installed or a version that is too old.

Good Developer's Tip: Even if you loath IE (as lot of us as developer's
tend to), it is an 'industry standard' browser and you have to work with
it. I've found the Microsoft's IE blog (http://blogs.msdn.com/ie/)
extremely useful in keeping tabs on IE so that I can better develop CSS
based templates for it. While you're at it, go ahead and subscribe to the
RSS feeds for Firefox (http://developer.mozilla.org/devnews/),
Safari (http://developer.apple.com/internet/safari/), and
your other favorite browsers. You'll be surprised at the insight you can
glean, which can be in extremely handy if you ever need to debug CSS or
JavaScripts for one of those browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[163]

Flash in a WordPress Post or Page
For Flash content that's going to go into a specific WordPress post or page, you'll
need to be sure to switch over to the HTML (or Code in 2.3.x) view and enter your
object embed tag into the post or page where you'd like it to appear within your
content. In the following screenshot, I've added the object embed tags for a YouTube
video. (YouTube uses the Flash player for all their video content.)

New for 2.5! The Code is now called the HTML view. WordPress 2.5
makes it even easier to add media—images, video, and audio. Just select
the appropriate media type from the left side of the editor window.
If you're using an older version of WordPress, just be careful. The first
time you enter in custom HTML code into a post or page and hit save,
the post will save and render your new code just fine. However, if you
then edit that post, the custom code will look OK, as you edit it, but then
for some reason, the custom code will be changed a little and might not
display properly once you hit Save. (I believe it is because the WordPress
editor attempts to 'fix' any code it doesn't recognize.) WordPress 2.5
seems to fix this issue and I have no problems editing and re-editing posts
with custom HTML code tags. (The editor works a lot better with the
Safari browser too.)

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Menus and Interactive Elements

[164]

Again, if the user is browsing with IE6, then they will have to click to activate. The
good news is the swapobject.js Javascript that we implemented above for your
theme's headers can be leveraged anywhere on your site including these posts.

Yes, of course there's a plug-in: This won't help you too much if you're
planning on Flash in your theme, but for Flash in your WordPress posts
and pages, Jim Penaloza has written a great little plug-in using the
SWFObject method detailed above. You can find out more about it here:
http://wordpress.org/extend/plugins/wp-swfobject/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[165]

Want more Flash? Despite my warnings at the beginning of this chapter,
if you still want to add more interesting Flash to your site, there's a host
of Flash-based WordPress plug-ins that allow you to easily embed Flash
content and features into your WordPress posts and pages. Check out the
plug-ins directory at http://wordpress.org/extend/plugins/
search.php?q=Flash.

Summary
In this chapter, we've looked at getting drop-down Suckerfish menus and
Flash content quickly and painlessly into your WordPress theme and content. Next
up—getting AJAX with dynamic interactive forms into your WordPress project.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and
Interactive Forms

AJAX—it's the buzzword that hit the Web with a bullet in 2005, thanks to Jesse
James Garrett, a user-experience expert who founded AdaptivePath.com. If you're
totally new to AJAX, I'll just point out that; at its core, AJAX is nothing that scary or
horrendous. AJAX isn't even a new technology or language!

Essentially, AJAX is an acronym for Asynchronous JavaScript and XML, and it is
the technique of using JavaScript and XML to send and receive data between a web
browser and a web server. The biggest advantage this technique has is that you can
dynamically update a piece of content on your web page or web form with data from
the server (preferably formatted in XML), without forcing the entire page to reload.
The implementation of this technique has made it obvious to many web developers
that they can start making advanced web applications (sometimes called RIAs—Rich
Interface Applications) that work and feel more like software applications, instead of
like web pages.

Keep in mind that the word AJAX is starting to have its own meaning (as you'll also
note its occasional use here as well as all over the web as a proper noun, rather than
an all-cap acronym). For example, a Microsoft web developer may use VBScript
instead of JavaScript to serve up Access Database data that is transformed into JSON
(not XML) using a .NET server-side script. Today, that guy's site would still be
considered an AJAX site, rather than an AVAJ site (yep, AJAX just sounds cooler).

In fact, it's getting to the point where just about anything on a website (that isn't
in Flash) that slides, moves, fades, or pops up without rendering a new browser
window is considered an 'Ajaxy' site. In truth, a large portion of these sites don't
truly qualify as using AJAX, they're just using straight-up JavaScripting. Generally,
if you use cool JavaScripts in your WordPress site, it will probably be considered
'Ajaxy', despite not being asynchronous or using any XML.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and Interactive Forms

[168]

We're going to take a look at the most popular methods to get you going with AJAX
in WordPress using plug-ins and widgets to help you include dynamic self-updating
content and create interactive forms in your WordPress site. While we're at it, we'll
also look at some cool JavaScript toolkits, libraries, and scripts you can use to
appear 'Ajaxy'.

Want more info on this AJAX business? The w3schools site has an
excellent introduction to AJAX, explaining it in straight-forward, simple
terms. They even have a couple of great tutorials that are fun and easy
to accomplish, even if you only have a little HTML, JavaScript, and
server-side script (PHP or ASP) experience (no XML experience required)
(http://w3schools.com/ajax/).

Preparing for Dynamic Content and
Interactive Forms
Gone are the days of clicking, submitting, and waiting for the next page to load, or
manually compiling your own content from all your various online identities to post
into your site.

A web page using AJAX techniques (if applied properly) will give the user a
smoother and leaner experience. Click on a drop-down option and the checkbox
menus underneath are updated immediately with the relevant choices—no
submitting, no waiting. Complicated forms that, in the past, took two or three
screens to process can be reduced into one convenient screen by implementing the
form with AJAX.

As wonderful as this all sounds, I must again offer a quick disclaimer. I understand
that, as with drop-down menus and Flash, you may want or your clients are
demanding that AJAX be in their sites. Just keep in mind, AJAX techniques are
best used in situations where they truly benefit the user's experience of the page,
for example, being able to add relevant content via a widget painlessly or cutting
a lengthy web process from three pages down to one. In a nutshell, using an AJAX
technique simply to say your site is an AJAX site is probably not a good idea.

You should be aware that, if not implemented properly, some uses of AJAX can
compromise the security of your site. You may inadvertently end up disabling key
web browser features (like back buttons or the history manager). Then there are all
the basic usability and accessibility issues that JavaScript, in general, can bring to
a site.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[169]

Some screen readers may not be able to read a 'new' screen area that's been generated
by JavaScript. If you cater to users who rely on tabbing through content, navigation
may be compromised once new content is updated. There are also interface design
problems that AJAX brings to the table (and Flash developers can commiserate).
Many times, in trying to limit screen real estate and simplify a process, developers
actually end up creating a form or interface that is complex and confusing, especially
when your user is expecting the web page to act like a normal web page!

You Still Want AJAX on Your Site?
OK! You're here and reading this chapter because you want AJAX in your WordPress
site. I only ask you take the just discussed into consideration and do one or more of
the following to prepare.

Help your client assess their site's target users first. If everyone is web 2.0 aware,
using newer browsers, and are fully mouse-able, then you'll have no problems,
AJAX away. But if any of your users are inexperienced with RIA (Rich Interface
Application) sites or have accessibility requirements, take some extra care. Again, it's
not that you can't or shouldn't use AJAX techniques, just be sure to make allowances
for these users. You can easily adjust your site's user expectations upfront, by
explaining how to expect the interface to act. Again, you can also offer alternative
solutions and themes for people with disabilities or browsers that can't accommodate
the AJAX techniques.

Remember to check in with Don't Make Me Think, that Steve Krug book I
recommended in Chapter 7 for help with any interface usability questions
you may run into. Also, if you're really interested in taking on some AJAX
programming yourself, I highly recommend AJAX and PHP by Cristian
Darie, Bogdan Brinzarea, Filip Chereches-Tosa, and Mihai Bucica. In it,
you'll learn the ins and outs of AJAX development, including handling
security issues. You'll also do some very cool stuff like make your own
Google-style auto-suggest form and a drag-and-drop sortable list
(and that's just two of the many fun things to learn in the book).

So, that said, you're now all equally warned and armed with the knowledgeable
resources I can think to throw at you. Let's get to it; how exactly do you go about
getting something 'Ajaxy' into your WordPress site?

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and Interactive Forms

[170]

Plug-ins and Widgets
In these next few sections we're going to cover plug-ins and widgets. Plug-ins
and widgets are not a part of your theme. They are additional files with WordPress
compatible PHP code that are installed separately into their own directories in
your WordPress installation (again, not in your theme directory). Once installed,
they are available to be used with any theme that is also installed in your
WordPress installation.

Even though plug-ins and widgets are not the part of your theme, you might have to
prepare your theme to be compatible with them.

Let's review a bit about plug-ins and widgets first.

Plug-ins
WordPress has been built to be a lean, no frills publishing platform. Its simplicity
means that with a little coding and PHP know-how, you can easily expand
WordPress's capabilities to tailor to your site's specific needs. Plug-ins were
developed so that even without a little coding and PHP know-how, users could
add extra features and functionality to their WordPress site painlessly, via the
Administration Panel. These extra features can be just about anything—from
enhancing the experience of your content and forms with AJAX, to adding self-
updating 'listening/watching now' lists, Flickr feeds, Google Map info and Events
Calendars; you name it, someone has probably written a WordPress plug-in for it.

Take a look at the WordPress Plug-in page to see what's available:

http://wordpress.org/extend/plugins/

Widgets
Widgets are basically just another plug-in! The widget plug-in was developed by
AUTOMATTIC (http://automattic.com/code/widgets/), and it allows you to
add many more kinds of self-updating content bits and other useful 'do-dads' to your
WordPress site. Widgets are intended to be smaller and a little more contained than
a full, stand-alone plug-in, and they usually display within the side bar of your theme
(or wherever you want; don't panic if you're designing a theme without a sidebar).

If you're using WordPress version 2.2 and up, the widget plug-in has become a part
of WordPress itself, so you no longer need to install it before installing widgets. Just
look through the widget library on WordPress's widget blog and see what you'd like!
(http://widgets.wordpress.com/)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[171]

Trying to download Widgets but the links keep taking you to Plug-in
download pages? You'll find that many WordPress Widgets 'piggyback'
on WordPress Plug-ins, meaning you'll need the full plug-in installed in
order for the widget to work or the widget is an additional feature of the
plug-in. So don't be confused when searching for widgets and all of a
sudden you're directed to a plug-in page.

WordPress Widgets are intended to perform much the same way Mac OS's
Dashboard Widgets and Windows Vista Gadgets work. They're there to offer you
a quick overview of content or data and maybe let you access a small piece of often
used functionality from within a full application or website, without having to take
the time to launch the application or navigate to the website directly. In a nutshell,
widgets can be very powerful, while at the same time, just don't expect too much.

Getting Your Theme Ready for Plug-ins
and Widgets
In this chapter, we'll take a look at what needs to be done to prepare your theme for
plugins and widgets.

Plug-in Preparations
Most WordPress Plug-ins can be installed and will work just fine with your theme,
with no extra effort on your part. You'll generally upload the plug-in into your
wp_content/plugins directory and activate it in your Administration Panel. Here
are a few quick tips for getting a plug-in displaying well in your theme:

1.	 When getting ready to work with a plug-in, read all the documentation
provided with the plug-in before installing it and follow the developer's
instructions for installing it (don't assume just because you've installed one
plug-in, they all get installed the same way).

2.	 Occasionally, a developer may mention the plug-in was made to work best
with a specific theme, and/or the plug-in may generate content with XHTML
markup containing a specific CSS id or class rule. In order to have maximum
control over the plug-in's display, you might want to make sure your theme's
stylesheet accommodates any id or class rules the plug-in outputs.

3.	 If the developer mentions the plug-in works with say, the Kubrick theme,
then, when you install the plug-in, view it using the Kubrick theme (or any
other theme they say it works with), so you can see how the plug-in author
intended the plug-in to display and work within the theme. You'll then be able
to duplicate the appropriate appearance in your theme.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and Interactive Forms

[172]

Installing the AJAX Comments Plug-ins
As I mentioned earlier, AJAX can really enhance the user's experience when it
comes to forms. The most used form on a blog would be the comment form.
Let's look at a plug-in that can really speed and tidy up the comment process.
I'll be installing Mike Smullin's AJAX Comments Plug-in. You can get it from
http://wordpress.smullindesign.com/plugins/ajax-comments.

If you can't spare the dollar that ol' Mike is asking for, you can also use Regua's
AJAX Comment Posting plug-in (http://wordpress.org/extend/plugins/
ajax-comment-posting/).

Regua's plug-in is good, but I just really like Mike Smullin's plug-in it's very light and
works quickly. Well worth the dollar I spent on it. Here's the best part installing it:

Time For Action:

1.	 Unzip and upload the ajax-comments directory into the wp-content/
plugins directory.

2.	 Go to Administrator | Plug-ins panel and Activate it.
3.	 Use it. That's it! The user sees their comment updated immediately with a

note that the comment is awaiting approval. It's nice for the moment and
they feel 'heard', but you might not ever actually approve the comment
depending on its content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[173]

Widget Preparations
Some plug-ins, like the widget plug-in (again you don't have to install this if you're
using version WordPress 2.2 and up), do require your theme to go through some
more formal preparation. You'll need to do the following to make your theme
compatible with widgets (a.k.a 'Widgetized').

Time For Action:

1.	 Your side bar should ideally be set up using an unordered list format.
If it is, you can add this code within your side bar: (If your sidebar is not
set up using an unordered list format, ignore this step, but pay attention
in step 3.)
<ul id="sidebar">

<?php if (!function_exists('dynamic_sidebar')

 || !dynamic_sidebar()) : ?>

 <li id="about">

 <h2>About</h2>

 <p>This is my blog.</p>

2.	 Because we deconstructed the default WordPress theme, based on the
famous Kubrick theme, there is a funcitons.php file in our theme that
already has the widgets registered for the sidebar. If by some chance you
started completely from scratch or lost that file, you simply need to create a
functions.php file in your themes folder and add this code to it:
<?php

if (function_exists('register_sidebar'))

 register_sidebar(array(

 'before_widget' => '<li id="%1$s"
 class="widget %2$s">',

 'after_widget' => '',

 'before_title' => '<h2 class="widgettitle">',

 'after_title' => '</h2>',

));

?>

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and Interactive Forms

[174]

3.	 My problem is that my sidebar format is much customized and it's not
in a simple unordered list. Plus, I have two sidebars. I'd want the second
sidebar that holds my GoogleAdSense to contain a widget or two, but not
my 'Table of Contents' sidebar. Not a problem! The code we entered above
in the functions.php file helps us with our more traditional div-header-list
structure. Add this code to your non-unordered list sidebar:
<div id="sidebar">

<?php if (!function_exists('dynamic_sidebar')

 || !dynamic_sidebar()) : ?>

 <div class="title">About</div>

 <p>This is my blog.</p>

 <div class="title">Links</div>

 Example

<?php endif; ?>

</div>

4.	 You've got two sidebars and you want them both to be dynamic? Instead of
register_sidebar(), use register_sidebars(n), where n is the number
of sidebars. Place them before the array bit of code if you're using a non-
unordered list sidebar, like so:
<?php

if (function_exists('register_sidebar'))

 register_sidebar(n, array(

 'before_widget' => '<li id="%1$s"
 class="widget %2$s">',

 'after_widget' => '',

 'before_title' => '<h2 class="widgettitle">',

 'after_title' => '</h2>',

));

?>

Then place the appropriate number in the dynamic_sidebar() function, starting
with 1. For example:

<div id="sidebar1">

<?php if (!function_exists('dynamic_sidebar')

 || !dynamic_sidebar(1)) : ?>

<div class="title">About</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[175]

Your theme is now 'Widgetized'. For those of you who are looking
forward to creating commercial themes be sure to tell everyone your theme is
widget-friendly.

Like Widgets? Learn all about how to control their display in your theme
and even develop your own. Check out AUTOMATTIC's Widget API
Documentation at http://automattic.com/code/widgets/api/.
Additional Considerations: There are no concrete standards for widgets
as of yet (though, the W3C is working on it (http://www.w3.org/TR/
widgets/). Many WordPress widgets, like Google Reader, are flexible
and can handle just about any size column. Some widgets may require a
minimum column size! You may need to adjust your theme if the widget
has an inflexible size. Some widgets (especially the ones that display
monetized ads for your site) have display requirements and restrictions.
Be sure to thoroughly investigate and research any widget you're
interested in installing on your site.

Installing the Google Reader Widget
I do a lot of online reading, thank goodness for RSS feeds. I used to load-in all
sorts of RSS feeds to my site to show people what I was reading, but that's not very
accurate. It only shows what sites I usually go to, and what I might have read on that
site. With all the new sites and blogs coming and going, I'd have old feeds left on my
site, it got to be ugly, and I eventually stripped them all out.

Google Reader has a shared feed that lets people know exactly what I really have
been reading and interested in. Thanks to this handy widget by James Wilson, I can
share what I'm really reading, in real-time, quickly and easily. Once your theme is
widget-compatible, it's pretty much just as simple to get a widget up and running
as a plug-in. Get the Google Reader Widget from http://wordpress.org/extend/
plugins/google-reader-widget/.

Time For Action:

1.	 Unzip and drop googlereader.php file into the wp-content/plugins
directory. (Depending on the widget, be sure to read the author's
instructions. Some will want you to install to the wp-content/plugins
directory and some will want you to install to the wp-content/plugins/
widgets directory. You might have to create the widget directory.)

2.	 Go to Administration | Plug-ins and Activate it.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and Interactive Forms

[176]

3.	������ Go to Administration | Presentation | Widgets and drag the widget to your
sidebar area.

4.	 View it on your site.

I ran into a snag with the Google Reader Widget:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[177]

I had to read the FAQ for the Google Reader Widget to learn that my hosting
provider doesn't approve of the file_get_contents() method (http://
wordpress.org/extend/plugins/google-reader-widget/faq/). So I had to
modify my googlereader.php file at line 57 with the following workaround the
widget author recommended:

$ch = curl_init();
$timeout = 5; // set to zero for no timeout
curl_setopt ($ch, CURLOPT_URL, $uri);
curl_setopt ($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt ($ch, CURLOPT_CONNECTTIMEOUT, $timeout);
$stories = curl_exec($ch);
curl_close($ch);

After making this tweak, the Widget worked fine:

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and Interactive Forms

[178]

AJAX–It's Not Just for Your Site Users
I've already mentioned how, when applied properly, AJAX can aid in interface
usability. WordPress attempts to take advantage of this within its Administration
Panel by enhancing it with relevant information and compressing multiple page
forms into one single-screen area. The following is a quick look at how WordPress
uses AJAX to enhance it's Administration Panel forms:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[179]

Even if you haven't upgraded to WordPress 2.5, WordPress 2.3 makes use of AJAX
on the widgets panel, allowing you to easily drag-and-drop to add and arrange your
sidebar widgets. (For some reason, this has been redesigned in 2.5; I would have
preferred if it had stayed the same).

pageMash
In addition to finding plug-ins and widgets that enhance your theme, you should
consider looking for plug-ins that enhance your administration experience of
WordPress! For example, if your WordPress site has a lot of pages and/or you
display your page links as drop-down menus, as discussed in Chapter 7, then, Joel
Starnes pageMash plug-in is for you.

pageMash is a great little plug-in that uses the MooTools framework and Moo.
fx library. Instead of having to go into each individual page's editor view and then
use the Page Parent view to manipulate your pages around into your hierarchical
structure, this plug-in lets you reorder and assign pages as parents and sub-pages
on-the-fly.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and Interactive Forms

[180]

Time For Action:

1.	 Download the pageMash plug-in from: http://wordpress.org/extend/
plugins/pagemash/.

2.	 Unzip the files and upload the pagemash directory to your /wp-content/
plugins/ directory.

3.	 Go to Administration | Plug-ins and Activate it. pageMash will then show
up under the Administration | Manage tag.

I hope you can get an idea by the following screenshot about how much easier and
quicker it is to arrange your WordPress pages with pageMash.

The AJAX Factor
Aside from the many-interface enhancing, time-saving benefits of Ajax, sometimes
you do just want to 'wow' your site visitors. It's easy to give your site an 'Ajaxy' feel,
regardless of asynchronously updating it with server-side XML, just by sprucing up
your interface with some snappy JavaScripts. The easiest way to get many of these
effects is to reference a JavaScript library (sometimes called a toolkit or framework,
depending on how robust the provider feels the code is). A few of the leading
favorites in the AJAX community (in no particular order) are:

1.	 Script.aculo.us: (http://script.aculo.us/)
2.	 Prototype: (http://www.prototypejs.org/)
3.	 jQuery: (http://jquery.com/)

There's also:

4.	 MooTools: (http://mootools.net/)
5.	 Moo.fx: (http://moofx.mad4milk.net/)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[181]

Prototype is more of a framework and Script.aculo.us is more of an add-on toolkit
or set of libraries for neat effects. In fact, Script.aculo.us references the Prototype
framework, so your best bet is probably to use Script.aculo.us, but if you do
work with it, be sure to check out Prototype's site and try to understand what that
framework does.

Moo.fx is the smallest JavaScript effects library (boasting a 3k footprint), but again, it
needs to be supported by the MooTools or Prototype frameworks.

jQuery is my personal favorite. It pretty much stands on its own without needing to
be backed up by a more robust framework (like Prototype), but you can still do some
very robust things with it, manipulating data and the DOM, plus it's packed with
neat and cute visual effects, similar to Script.aculo.us.

Using JavaScript libraries like the above, you'll be able to implement their features
and effects with simple calls into your WordPress posts and pages.

JavaScript Component Scripts
The fun doesn't stop there! What's that? You don't have time to go read up on how
to use a JavaScript library like jQuery? Never fear! There are many other JavaScript
effect components and libraries that are built using the libraries above. One of the
most popular scripts out there that makes a big hit on any website is Lightbox JS:

http://www.huddletogether.com/projects/lightbox2/

Lightbox JS is a 'simple, unobtrusive script used to overlay images on the current
page.' It's great, but it uses both the Prototype and Script.aculo.us libraries to achieve
its effects. I also found that Lightbox was limited to only displaying images and a
hair difficult to manipulate it to handle anything more than that. What if I wanted to
display XHTML text, or markup containing YouTube videos, maybe even make an
AJAX request to the server?

Enter Thickbox: http://jquery.com/demo/thickbox/

Thickbox is very similar to Lightbox JS. It uses only the jQuery library, and in
addition to handling images similar to Lightbox JS, it can also handle in-line content,
iFrame content, and AJAX content (be sure to check out the examples on the
ThickBox page!). The downside—Thickbox doesn't do that smooth animation that
Lightbox JS (version 2) does when images are different sizes. This is the trade-off
I made when I decided it was more important to be able to display more than just
images in my OpenSource Magazine theme.

www.it-ebooks.info

http://www.it-ebooks.info/

AJAX / Dynamic Content and Interactive Forms

[182]

Depending on your theme's design and what type of blog or site you're creating
it for, you may opt to use Lightbox instead or something all together different! It's
your theme, don't feel limited to what I specifically discuss in this book. I'll walk you
through the process of installing ThickBox, but many 'Ajaxy' scripts that use these
JavaScript libraries/frameworks are installed similarly. Just follow the instructions in
the ReadMe files and you're on your way to an enhanced theme.

Time For Action:

1.	 This is an extremely easy-to-implement script. After downloading it, add the
key js and CSS files to your WordPress theme's home.php and header.php
files using the bloginfo template tag to target your theme:

 <script type="text/javascript" src="<?php bloginfo	
 ('template_directory'); ?>/js/jquery.js"></script>
 <script type="text/javascript" src="<?php bloginfo	
 ('template_directory'); ?>/js/thickbox.js"></script>

2.	 You'll also add in a call to the ThickBox CSS file:
 <style type="text/css" media="all">@import "<?php bloginfo	
 ('template_directory'); ?>/thickbox.css";</style>

3.	 Don't forget to upload the loadingAnimation.gif and macFFBgHack.png
images to your theme directory and update the thickbox.js and thickbox.
css files as per the ReadMe file instructions.

4.	 Then, you can create a post (or page) in your Administration Panel and using
the Code View add in basic href links around your image tags, like so:

 <a href='/wp-content/uploads/2008/04/inkscape2.jpg'
 class="thickbox" rel="inkscape"><img src="/wp-content/
 uploads/2008/04/inkscape2-150x150.jpg" alt="" title="inkscape2"
 width="150" height="150" class="alignnone size-thumbnail
 wp-image-15" />
 <a href='/wp-content/uploads/2008/04/inkscape1.jpg'
 class="thickbox" rel="inkscape"><img src="/wp-content/
 uploads/2008/04/inkscape1-150x150.jpg" alt="" title="inkscape1"
 width="150" height="150" class="alignnone size-thumbnail
 wp-image-14" />

I uploaded the images via WordPress's built-in up-loader and let WordPress create
the thumbnails; I just added the captions to the title attribute, the rel attribute and
the thickbox class by hand.

That's it!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[183]

Summary
In this chapter, we reviewed a few ways to take advantage of AJAX on your
WordPress site. We 'Wigitized' our theme and downloaded and installed a couple
of useful plug-ins, and looked at using jQuery and ThickBox to enhance post and
page content. Up next—let's take a look at some final design tips to working
with WordPress.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with
WordPress

Alright, for this last chapter, let's sum things up by giving you a few final design tips,
tricks, and troubleshooting ideas to take with you into your future WordPress theme
designs. As we've gone through this book there are quite a few tips that have been
given to you along the way. Here are the top four to remember:

1.	 Create and keep lists: Check lists, color lists, font lists, image treatment lists.
Keep all of these handy from your initial design phase. You'll find them to be
useful and excellent inspiration for your designs to come.

2.	 Design for FireFox first, then, fix for IE: Firefox is more than a browser
preference; it's a true web designer and developer's tool.

3.	 Validate your XHTML and CSS... often: The more stable your markup and
CSS, the less hacks and fixes you'll need to make.

4.	 Consider usability issues when implementing site enhancements: Steve
Krug is a cool guy. Moreover, good usability naturally lends itself to
great design.

With that said, let's just go over a few last design techniques that any good designer
wants in their arsenal these days.

The Cool Factor
Next, I'll go through what I feel are the most popular tricks used in website design
today. After that, we'll take a look at some interesting samples of unique design
ideas and how theme authors approached achieving them. Most techniques are
easily incorporated into WordPress as they're handled one hundred percent via CSS.
A few items will require you to think and plan ahead, as you'll need to make sure
the WordPress theme code accommodates the effect. The best thing is, if you can
implement these techniques into a WordPress theme, you can implement them into
any website.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[186]

First off, we've already looked at several 'cool factor' techniques that are very
popular in web design today. Among these techniques are using floats to create a
three column layout complete with header and footer, along with a two column
internal page layout. We've looked at styling lists with CSS (essential, as WordPress
outputs a lot of lists). And we've also covered using the CSS hover property for our
drop-down menus, which could be applied to text or used with images for a rollover
effect without the use of (or with minimal use of) JavaScript.

Get good with backgrounds! If you haven't already realized this by now,
about ninety eight percent of the CSS that will make your WordPress
theme look great is dependent on how creative you get with images and
the background properties of your XHTML objects, classes, and id rules.
From page header backgrounds to data table spruce ups, rounded corners
and fancy text (as you'll find out about in a minute), knowing how to
really control and manipulate background colors and images via CSS is
key. Check out http://w3schools.com/CSS/CSS_background.asp
to learn the ins and outs of this CSS property.

Rounded Corners
Rounded corners have been pretty popular the past few years, to the point that many
sites have been accused of incorporating them just beacuase they seemed 'Web 2.0-
ish‘. Fads aside, rounded corners are occasionally just flat going to work well with a
design (they're great for implying happy-friendly-ish tones and/or retro styles), so
you might as well know how to incorporate them into your WordPress theme.

The Classic – All Four Corners
Ideally, you'll wrap your WordPress template tag in enough div tags to be able
to create a round cornered object that is flexible enough to scale horizontally and
vertically. You can also use heading tags or probably any other XHTML tag that
occurs in the element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[187]

Really understanding rounded corners in a table-less design: If you
haven't noticed by now, I'm a fan of aListApart.com, so I'll leave it to
these trusted experts to give you the complete low-down on the details
outs of making rounded corner boxes with pure CSS:
http://www.alistapart.com/articles/customcorners/

Also, there are many rounded corner generator sites out there which
will do a lot of the work for you. If you're getting comfortable with CSS
and XHTML markup, you'll be able to take the generated code from one
of these sites and 'massage' the CSS into your WordPress style.css.
Roundedcornr.com is my favorite:
http://www.roundedcornr.com/

To start, just make four rounded corner images named left-bot.gif, right-
bot.gif, left-top.gif, and right-top.gif respectively (or generate them at
roundedcornr.com). And using a class name called .sidebarItem (you can name
this class whatever you'd like), reference the images via background parameters in
your CSS like so:

.sidebarItem {
 background: #cccccc;
 background: url(../images/left-top.gif) no-repeat top left;
 /*be sure to set your

 preferred font requirements*/

}
.sidebarItem div {
 background: url(../images/right-top.gif) no-repeat top right;
}
.sidebarItem div div {
 background: url(../images/left-bot.gif) no-repeat bottom left;
}
.sidebarItem div div div {
 background: url(roundedcornr_170953_br.png) no-repeat bottom
 right;
}
.sidebarItem div div div, .sidebarItem div div, .sidebarItem div,
.module{
 width: 100%;
 height: 30px;
 font-size: 1px;
}
.sidebarItem {
 margin: 0 30px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[188]

The following is an example of the markup you should wrap your template tag(s) in:

<div class="sidebarItem"> <!--//left-top.gif-->f
<div> <!--//right-top.gif-->
 <div> <!--//left-bot.gif-->
 <div> <!--//right-bot.gif-->
 <h3>Header</h3>
 Content the Template Tag outputs goes in here
 </div>
 </div>
</div>
</div>

Your end result should be something that looks like the following:

The Two Image Cheat
I'll be honest; I'm on the cheater's band wagon when it comes to rounded corners.
I often create locked-width designs so I always know exactly how much room my
columns can take up, and they only need to be able to expand vertically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[189]

More aListApart: Again aListApart.com comes in with a great take on
this two image process, along with some great tips for creating the corners
in your favorite graphic program:
http://www.alistapart.com/articles/mountaintop/

This rounded corner fix only works for a set width with a variable height. That means,
how wide you make your graphic, is as wide as your outer div should be. So, if you
know the width of your columns and just need the height to expand, you can do this
two image cheat by only making a top image and an extended bottom image like so:

Test this technique! In the previous graphic, I mention to make sure this
height is a bit longer than what you think the div may need to expand
to. Once you have it implemented, try it out in different browsers and
set your browser's default type to different sizes. If someone has their
browser set to very large type, this effect can be easily broken!

Next reference the images in your CSS (note how much simpler the CSS becomes):

.sidebarItem {
 margin:0 0 10px 0;
 padding:0 0 10px 0;
 width: 150px;
 background:url(../images/bot-side.gif) bottom left no-repeat;
 /*be sure to set your

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[190]

 preferred font requirements*/
}
.sidebarItem h3 {
 padding:8px 10px 6px 15px;
 margin-bottom:8px;
 /*be sure to set your
 preferred font requirements*/
 background:url(../images/top-side.gif) top left no-repeat;
}

You'll see the XHTML markup is now greatly simplified because I take advantage of
my header tag as well:

<div class="sidebarItem"> <!--//bot-side.gif-->
 <h3>Header</h3><!--//top-side.gif-->
 Content the Template Tag outputs goes in here
</div>

Great for block quotes! I also use this technique to handle custom block
quotes that get used inside static pages and posts (a great way to spice up
pages so that they look 'magazine-ish'). Again, the block quotes must be a
set width, but I then only need to make sure I place in my <blockquote>
and <h3> tags to have an effective style with minimal (and semantic)
markup. Just replace the .sidebarItem{... from the preceding
code with blockquote{... (or make a special class to assign to your
<blockquote> tag).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[191]

Creative Posting
In these next few sections, we're going to focus more on ideas than specific
techniques. The good news is, because you're using the Firefox browser with the
Web Developer Toolbar, you'll be able to easily 'deconstruct' many of these site
samples using the CSS | View Style Information and CSS | View CSS tools and
think of ways to creatively use them in your own themes.

How Toons (http://www.howtoons.com/blog/) is a great kid's site that
teaches them interesting things in math, art, history, and science using fun comic
illustrations. The site's blog features a great use of the Comic Sans font (we discussed
in Chapter 2 how it's hard to make that font work well; here it's perfect), and the site's
author has created a very unique post template.

If you explore this site with your Web Developer Toolbar, you'll see the author
creates these posts using actual image tags inside the .blogpost class. It works, and
it allows the author to easily randomly assign bottom speech-bubble images with
different cartoon scenes.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[192]

I'd like to point out that while the author's technique works very well, using a
variation of the 'two image cheat' listed previously could achieve the same effect.
This would work best if you didn't want to have randomly different post bottoms
on each post. The point is, as you surf the web, you'll find there are many ways to
achieve the same effect. You'll need to decide which solutions work best for you and
your theme.

Breaking Boundaries
The HowToons.com site does something more than just make their posts creative;
the speech-bubble bottoms of each post and the nice big background image that is
positioned with no-repeat and fixed in the bottom right, achieve what I refer to
as 'boundary breaking‘.

Whether we realise it or not, we tend to create theme designs and page templates
that adhere to a 'grid' of some sort. This is not a bad thing. It makes for good design,
easier use of the interface, and most importantly, easier content reading.

However, I tend to find we can become 'desensitised' to many site's designs, and
thus, it's interesting when a site's design displays clever ways of breaking out of the
layout's grid.

Whenever I see boundary breaking done on other sites, I find it catches my eye and
awakens it to really move around and take in the other details of the site's design
that I might have otherwise ignored. As a result, I look for interesting ways to do this
subtly within my own designs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[193]

Within this book's case study, the OpenSource Magazine theme, I achieved this in the
main and internal headers by extending it out past the container2 div. The graphic
seems to swoop back to line up with the container2 div's boundary for easy content
reading, but the header extends past it, engaging the reader in a little design detail:

Kaushal Sheth has created a WordPress theme based on his favorite book, The
Hobbit (http://www.kaushalsheth.com/the-hobbit-wordpress-theme-
released/). His use of Bilbo's sword in the upper-left corner adds a nice layered
dimension to the theme and interests your eye in moving around taking in all the
other very nice details that Kashual took the time to put into it—the detailed paisley
corners, the 'elvish' writing separating the posts, and so on.

Kaushal achieved this effect by splitting the sword and title graphic into two parts,
then using an absolute positioned div to lay the handle of the sword up against the
part of the image contained inside the header div.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[194]

The left side of the image is opaque, so he had to pay very special attention, making
sure the absolute positioning of the div not only aligned it with the rest of the header
image but also overlaid the repeating background image perfectly.

A minor drawback to the Hobbit theme is that on some browsers, while the handle
of the sword is always aligned perfectly with the header h1 background image,
the delicate paisley background doesn't always overlay perfectly with the site's
repeating background, and as a result, you're made aware of the images edges
against the background.

Rhodia Drive (http://rhodiadrive.com/) uses a similar technique to Kaushal's
by using an absolute positioned div to hold a CSS background image of an orange
Rhodia notebook, which breaks the boundaries on the left side. Because the site's
main background uses a subtle repeat-x gradient that has been set to fixed, the
image uses a transparent PNG. This way, as you scroll the blog up, the background
of the notebook reveals the site's true background gradient.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[195]

Using transparent PNGs: The great news is IE7, and all newer browsers,
natively support transparent PNGs. For the fewer out there still clinging
to IE6, there's a good IE6 fix which helps that browser display transparent
PNGs properly using a Microsoft filter that can be accessed via image tags
and stylesheets.
The Rhodia Drive site makes use of alternate stylesheets using the <!--
[if IE6]> solution discussed in Chapter 4, and an IE6 transparent PNG
fix, which you can find out more about at: http://www.howtocreate.
co.uk/alpha.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[196]

Want to really break the boundaries? Molly E. Holzschlag has an in-
depth article that goes way beyond the occasional 'overstepped line‘. With
pure CSS, anything is possible and it's a great thought-provoking read.
http://www.alistapart.com/articles/outsidethegrid/

Keep Tabs on Current Design Trends
In addition to rounded corners there are some fairly common graphic interface
techniques that seem to define those trendy '2.0' sites. These include things like
the following:

Gradients and glows: But remember, it's all about being subtle!
Reflections: ���������������������� Again, just be subtle!
Vector images and creative drop-shadows: Give your page a feeling
of space.'

Thin, diagonally stripped background: Could be for just header delineation,
not necessarily the whole site's background!
Glass or 'jelly' buttons and star-burst 'stickers'.

Grunge-organic: Emerged in its hey-day of print design in the early 90s, but
it's quickly becoming the new 'shiney, clean, and bright' of Web 2.0 sites:
paper-looking photos, X-File-ish folder/messy desk layouts, decaying/
misprinted fonts, natural edges, and liberal (but again, subtle) doses of
various spills, drips-and-drops that we usually encounter in creative life.

•

•

•

•

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[197]

Design trends come and go; while the above are popular today, they'll become 'old
hat' soon enough. Take note of bookmark leading sites and blogs of designers, web
programmers, and key contributors to the web field. Visit these sites often (the good
ones update their interface at least once a year; most are constantly tweaking their
interface adding new things little-by-little). By keeping your finger on the 'pulse,'
you'll be able to recognize new trends as they start emerging. Think about how you
can creatively leverage them into your own theme designs. You'll probably find
yourself inventing your own unique interface looks that other people start adopting.

Learn the ins and outs of how to use your image editing software. Right now, a
large part of these design trends are graphics loaded in via CSS. To get those great
trendy images into your theme, you'll need to understand CSS, and as I've already
mentioned, you'll need to know how to effectively (and sometimes creatively) use
the background property in your CSS rules.

PSDTuts is��� a great site for picking up a little quick 'how to' knowledge
for current design techniques. The whole site is definitely worth a look
through, but they have a special section for interfaces that covers how to
create many design trends and visual effects using Adobe Photoshop:
http://psdtuts.com/category/interface-tutorials/

Stylegala and SmashingMagazine are other good sources of keeping
up on web design trends. Stylegala also has a great, clear, concise CSS
reference chart that I've found very useful from time to time:
http://www.stylegala.com/features/css-reference/

http://smashingmagazine.com

Graphic Text
Now here's something that's a total pain all web designers have had to deal with.
As we discussed in detail in Chapter 2, there's really only three, maybe five, truly
safe fonts for the web—fonts that you can be fairly sure that every PC and Mac (and
maybe Linux) computer has natively installed. All other fonts tend to be off limits for
web design. This is a shame, as typography is a huge element of great design. None-
the-less, if you want these fonts, you have to create them as graphics and include the
images into your layout.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[198]

The problem with using graphics instead of text is that it really messes with your
site's semantics. Usually, it's the section headers that you want in the pretty font.
However, if you use in-line image tags, your semantic markup gets thrown off and
your SEO will fall because search engine bots really like to find those h1, h2, and h3
header tags to help them assess the real keywords in your page. Plus, if your style
aesthetic changes, you have to not only change the theme but then update individual
posts and pages with new images from within WordPress's Administration Panel.

The solution is to use text in your header tags, yet display unique fonts as images, by
setting up custom classes in your stylesheet that will 'move' the text out of the way
and insert your graphic font as a background image.

Again, as we mentioned in Chapter 4: search engine bots generally view your pages
as though the stylesheet has been turned off, therefore the search engine bot and
people using screen readers will keep flowing smoothly over pure text, while the rest
of us get to see your sweet design and nice font selection. The bonus: when the site
design changes, all your images are handled via the CSS sheet, so you won't have to
touch individual post and static pages.

My WordPress theme makes use of Futura in the header. I'd love to use it for my
section headers, the problem is, a lot of people don't have Futura on their computer.
Even if my user has Futura on his machine, I think the font looks best when it's anti-
aliased. While Mac users with Futura would then see it OK, PC users won't. I've
created graphics of my headers using Futura, and will set up my header tags with
classes to move the XHTML text out of the way and use my new background images.

The drawback: Try to keep track of the bandwidth your site needs to
load. The more images and the bigger they are, of course the longer it will
take to load. By switching my headers from XHTML text with a small,
thin repeating background, to a full non-repeating image, I went from a
1k graphic to a 10k graphic. On the whole, especially in this day and age
of broadband, it's no big deal, but still something to keep in mind as you
try to assess what elements of your design will use pure XHTML and CSS
and what will be images.

As an example, in your CSS page, set up the following class rules:

.textMove{ /*this is your standard for each header*/
height: 23px;
margin-top:10px;
width: 145px;
text-indent: -2000px;/*This pushes your text back so it's invisible*/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[199]

}
.specificText{ /*specific header-text image*/
 background: url("../images/specificText.jpg") no-repeat left top;
}

Now, either in your theme's template pages or in posts and pages you've added via
the Administration Panel, apply the appropriate classes to the text headers that you
would like replaced with graphics (again, if you're in the Administration Panel, use
the Code view).

<h2 class="textMove specificText">Section Header</h2>

Assign more than one class rule to an XHTML markup object? As you
can see by our sample above, you can assign more than one class rule
to a markup object. Simply separate each class rule with a space (not a
comma), e.g., class="rule1 rule2". This comes in handy when you
need to customize many elements, yet don't want to repeatedly copy
similar properties across all of them (plus, you can easily change the main
properties in just one spot instead of having to fix them all). In the case
of graphic text headers, I like to make one rule that handles pushing the
text out of the way and sets the height and margins for my header images,
then, all my other class rules just handle the background image name,
e.g., class="textMove graphicText". This trick only works with
CSS class rules, not id rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[200]

Extra Credit – Use PHP to make Graphic
Headers Easy
I like to simplify this process by using a simple PHP script with a local TTF font
(True-Type Font) to help me quickly generate my header graphics. I can then just
include them into my CSS sheet, dynamically setting up the text that the header
needs to say.

This technique is very useful if your site is going to be mainly controlled by a client.
As they'll probably have to let you know every time they make a new header that
needs to be a graphic loaded in via CSS. You'll be able to accommodate them on-the-
fly (or even better, teach them how to do it), as opposed to having them wait for you
to generate the graphic with PhotoShop or Gimp, and then implement the CSS.

Heads up: This PHP code requires the standard ImageGD library to be
installed with your PHP configuration. This library has been on most
shared/virtual hosting companies I've used, but to be safe, contact your
website host administrator to ensure the ImageGD library is installed.

You can place this script's file anywhere you'd like. I usually place it in my theme's
image directory—imgtxt.php—as I will be referencing it as an image.

<?PHP

/*Basic JPG creator by Tessa Blakeley Silver
Free to use and change. No warranty.
Author assumes no liability, use at own risk.*/

header("Content-type: image/jpeg");

$xspan = $_REQUEST['xspan'];//if you want to adjust the width
$wrd = $_REQUEST['wrd'];//what the text is

if (!$xspan){//set a default width
 $xspan = 145;
}

$height = 20;//set a default height

$image = imagecreate($xspan, $height);

//Set your background color.
//set to what ever rgb color you want
if(!$bckCol){
 $bckCol = imagecolorallocate($image, 255, 255, 255);
}

//make text color, again set to what ever rgb color you want
if (!$txtCol){
 $txtCol = imagecolorallocate($image, 20, 50, 150);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[201]

}

//fill background
imagefilledrectangle($image, 0, 0, $xspan, $height, $bckCol);

//set the font size on the 2nd parameter in
//set the server path (not the url path!) to the font location at the
7th parameter in:
imagettftext($image, 15, 0, 0, 16, $txtCol, "home/user/sitename/fonts/
PLANE___.TTF", "$wrd");//add text

imagejpeg($image,'',80);//the last number sets the jpg compression

//free up the memory allocated for the image.
imagedestroy($image);

?>

This script only works with True-Type fonts. Upload the True-Type
font and directory location you referenced in the script to the matching
location on the server. Also, my script is very basic, no drop-shadows or
reflections. It only creates a JPG with a solid background color, True-Type
font, font-size, and solid font color. If you're comfortable with PHP, you
can Google/search the web for PHP image scripts that allow you to do
more with your text-image, that is, add gradient backgrounds or generate
transparent PNGs, or overlay other images on top of or behind your text.

From here on out, you'll only need to reference this PHP script in your CSS, passing
your text to it via a query string instead of the images you were generating:

.specificText {
 background: url("../images/imgtxt.php?xspan=300&wrd=
 This Is My New Text") no-repeat left top;
}

The xspan variable is optional; if you don't include it, the default in the script is set
to 145 pixels wide. If your custom text will be longer than 145 pixels, you can set it
to the pixel width you desire. (In the previous example, I have it set to 300. Be sure
your width doesn't conflict with your div widths!)

The wrd variable is where you'll set your custom text. (Be aware that some characters
may not come over as the string will be url encoded.)

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[202]

Each time you have a new graphic to generate, you can do it entirely via the theme's
stylesheet. The following is a screenshot from my professional site, which uses the
PHP script in the previous example to generate header fonts.

Good Design isn't Always
Visual – Looking at SEO
At this point you've gone through the trouble to create a semantic, user-friendly, and
accessible XHTML theme, and one of the benefits of that structure is that it helps
with SEO (Search Engine Optimization, if you haven't guessed by now). You might
as well go all out and take time to set up a few more optimizations.

Search Engine Friendly URLs
WordPress URLs by default are dynamic. That means they are a query string of the
index.php page, e.g, http://mysite.com/?p=123.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[203]

In the past, dynamic URLs had been known to break search engine bots who either
didn't know what to do when they hit a question mark or ampersand and/or started
indexing entire sites as 'duplicate content', because everything looked like it was
coming from the same page (usually the index.php page).

Generally, this is no longer the case, at least not with the 'big boy' search engines like
Google, but you never know who is searching for you using what service.

Also, by changing the dynamic string URL to a more SEF (Search Engine Friendly)
URL, it's a little harder for people to directly manipulate your URLs because they can't
clearly see what variable they're changing once it's in a search engine friendly URL.

WordPress has this SEF URL feature built-in, but only if you're running PHP on Apache.

Go to Adiministration | Settings | Permalinks (Administration | Options |
Permalinks in version 2.3.x) and simply switch the Default selection to either Day
and Name based, Numeric, or Custom.

I like to select Custom and tell my structure to be /%category%/%postname%/. That
way, my URLs will reflect the category they are posted to and then the permalink
title which is your post's title with (-) dashes put in for spaces. If your blog is going
to be more date-based, then one of the presets might be a better option for you.

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[204]

Search engine bots will 'think' the forward slashes are directories and not freak out
about question marks and ampersands, or assume that everything on your site is
really the same page.

Forget the Search Engine Friendly! What about People-Friendly URLs?
WordPress is great at people-friendly URLs. Comprehensive URLs are
one of the great things about WordPress 2, and a feature that places it
above other comparable CMS and blog tools currently out there (even
if you select 'SEF' URLs, it can still be a long URL of odd numbers and
incomprehensible variable names separated by slashes).
Sometimes, you're in a situation where you just can't copy and paste
your link over! It's great to have lunch with your friend and be able to
verbally give her the URL to your latest web-rant and know that she'll
easily remember: http://myurl.com/rants/newrant. Also, clearly
named URLs greatly boost your "link trust" (that's what I call it anyway).
If the relevant link you've emailed people or posted in your blog, or as
a comment on someone elses blog doesn't appear to clearly have any
indication of what you promised is in it, people are much less likely
to click on it (do you like clicking on long strings of odd numbers and
cryptic variable names?). And, while the impact of key words in URLs
seems to be waning, there are SEO experts who still swear that your URLs
should contain the top key words in your document. If you haven't done
so already, be sure to take advantage of this feature in WordPress.

Keywords and Descriptions
Most people just 'hard code' some general keyword and description metatags into
their theme's template files that best describe the overall gist of their WordPress
site. However, if you want to aid in your content being indexed by search engines
a little better and/or you use your WordPress site to cover a wide range of diverse
information which an overall gist of keywords and a description just won't cover,
you'll want to make metatags in your template files a bit more dynamic. There
are several ways in which you can add keyword and description metatags for
individual posts and pages to your WordPress theme. You can use the available
template tags within your theme's index.php or header.php pages to add content
to your metatags, or you can install third-party plug-ins which will expand your
administration page options and give you a little more control than what is produced
by your post's content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[205]

DYI Metatags
For most people, myself included, this method works well. In my index.php and
header.php template files, I set up my metatags for keywords and descriptions. I
then take advantage of the single_cat_title(), single_post_title(), and the_
exerpt()template tags.

In my keywords metatag, I include the single_cat_title()and then the single_
post_title()tags like as follows:

<meta name="keywords" content="<?echo single_cat_title('');?>, <?echo
single_post_title('');?>" />

The previous modification will give my page the following runtime output:

<meta name="keywords" content="Office Productivity, Fun with OO2" />

This, if you keep keywords in mind while writing your titles and assigning them to
categories, will be fairly comprehensive.

Setting up the description tag takes just a bit more, as the_exerpt() tag only works
within The Loop. So you just need to make sure you set up a little 'mini loop' for it to
run in, like so:

<meta name="description" content="

<? if(is_category() || is_archive()) {

 echo the_excerpt();

 } else {

 echo 'This is my default description to use if a post or page
doesn't have an excerpt';

 } ?>

" />

The previous code will produce a description that looks like the following:

<meta name="description" content="This is the optional excerpt for
this article, Fun with OO2. I use the Optional Excerpt field to aid in
my description metatags." />

www.it-ebooks.info

http://www.it-ebooks.info/

Design Tips for Working with WordPress

[206]

Metatag Plug-ins
If you're a serious blogger and really need more robust options for your metatags,
you might want to try one of the following two WordPress plug-ins:

All in One SEO Pack by uberdose 2.0 (http://wp.uberdose.
com/2007/03/24/all-in-one-seo-pack/). This plug-in utilizes the
the_exerpt() tag as we just did, but also allows you to set your own specific
keywords and several other great options for handling robust metatag
information for each post.
Ultimate Tag Warrior 3 by neato.co.nz (http://www.neato.co.nz/
ultimate-tag-warrior/). This plug-in doesn't do so well with the metatag
description, but for the really 'hard core' out there who want to ensure
their keyword usage is maximized, this seems to be the plug-in of choice.
It includes a Yahoo! keyword suggestor, which informs you what words
Yahoo! has deemed important in your post.

Summary
We've reviewed the main tips you should have picked up from the previous
chapters, and covered some key tips for easily implementing today's coolest CSS
tricks into your theme, as well as a few final SEO tips that you'll probably run
into once you really start putting content into your site, or turn the site over to the
content editors. I hope you've enjoyed this book and found it useful in aiding your
WordPress theme creations.

•

•

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
2.3 template tags

get_the_tag_list() 133
get_the_tags() 132
single_tag_title() 133
the_tags() 132

A
ActiveX Restriction 161
advanced validation 107
AJAX 167
AJAX factor

about 180
JavaScript component scripts 181, 182
jQuery 180
Moo.fx 181
MooTools 180
Prototype 180
Script.aculo.us 180

AJAX in WordPress
Administration Panel forms, enhancing

178, 179
AJAX comment plug-ins, installing 172
dynamic contents, preparing for 168
Google reader widget, installing 175, 177
interactive forms, preparing for 168
pageMash plug-in 179
plug-in preparations 171
plug-ins 170
plug-ins, installing 171
using on site 169
widget preparations 173, 175
widgets 170

B
blogs, types

campaign blog 19
corporate blog 18
online news source/magazine 18
professional expert site 18

C
containers divs 102
cool factor techniques, WordPress theme

boundaries, breaking 192-194
classic corners, rounded corners 186, 187
creative posting 191
graphic interface techniques 196
rounded corners 186
two image cheat, rounded corners 188, 189

CSS 11
CSS troubleshooting technique 103
CSS validation tools

FireBug 109, 110
FireFox JavaScript/Error Console 107
web developers toolbar 108

D
debugging 92
design comp 20
design techniques, WordPress theme

cool factor 185, 186
graphic text 197, 198
PHP script, using 200

dynamic menus
about 146

www.it-ebooks.info

http://www.it-ebooks.info/

[208]

drop-down menus 147, 148
SuckerFish menus 148-150

F
Firefox browser 14
Flash player plug-in

advantages 157
embed method 158
Flash 157
Flash swf file, passing variable from Word-

Press 159, 160
IE6 users, handling 161
in WordPress post/page 163
Satay method 158
users with older versions, handling 161
users without Flash, handling 161

G
graphic editor 13
graphic interface techniques

glass buttons 196
gradients and glows 196
grunge organic 196
reflections 196
thin, diagonaaly stripped background 196
vector images and creative drop shadows

196

H
HTML editor

about 13
features 13

I
include tags

comments_template() 141
get_footer() 140
get_header() 140
get_sidebar() 140
TEMPLATEPATH 141

J
JavaScript component scripts

about 181

Ligthbox.JS 181
Thickbox 181

jQuery 181

L
layout, WordPress theme

color, adding to CSS sheet 49
color schemes 46
color schemes, with Photoshop 47, 48
CSS list techniques 42
CSS positioning 39, 40
graphical elements, creating 50-52
navigation 42-44
WordPress specific styles 44

Lightbox.JS, JavaScript component scripts
181

loop 70

M
Moo.fx 181

P
PHP

about 11
plug-ins

about 146
Prototype

about 181

R
Rapid Design Comping 21
Rapid Prototyping 21

S
Satay method 159
Script.aculo.us 181
SEO tips

descriptions 204
DYI metatags 205
keywords 204
metatag plugins 206
search engine friendly URLs 202

sidebar
archieve links 74

www.it-ebooks.info

http://www.it-ebooks.info/

[209]

blogroll set of links 75
category links 75
set of meta links 75
static page links 74

static pages
about 84
creating 85

SuckerFish menus
about 148
CSS, applying to WordPress 151-153
DOM script, applying to WordPress 154,

156
Son-of-a-SuckerFish method 151

T
template files

footer.php 63
header.php 63
index.php 63
searchform.php 63
sidebar.php 63

template hierarchy
2.3 template tags 130, 133
about 127
custom includes 141
flowchart 129
include tags 140
rules 128, 129
tag display, adding to WordPress theme

131
template tag in 2.5 129
The Loop function 142
top template tags 134-140
WordPress core functions 142, 143

template tags
bloginfo() 134
comments_popup_link() 138
comments number() 138
edit_post_link() 139
get_calendar() 140
next_post_link() 137
previous_post_link() 137
the_author() 136
the_category() 135
the_content() 135

the_ID() 139
the_permalink() 139
the_title() 135
wp_get_archives() 140
wp_list_pages() 136
wp_title() 134

template view
for article pages 86
for home page 86
for static pages 86

The Loop functions
<?php endif; ?> 142
<?php endwhile; ?> 142
<?php if(have_posts()) : ?> 142
<?php while(have_posts()) : the_post(); ?>

142
Thickbox, JavaScript component scripts 181
tools

Firefox borwser 14
graphic editor 13
HTML editor 13
IE browser 14
IE browser, quirks mode 14

trouble shooting basics
about 94
CSS quick fixes 97
PHP template tags 96
validation 95, 96

typography, WordPress theme
Arial and Helvetica fonts 34
Century Gothic fonts 34
Century Schoolbook fonts 34
Comic Sans Serif fonts 34
Courier New fonts 35
default links 37
fonts 33
fonts, cascading 35
font sizing 35
Georgia fonts 34
paragraphs 37
San-Serif fonts 34
Serif fonts 34
text, adding 32
Times New Roman and Times fonts 34
Trebuchet fonts 34
Verdana fonts 34

www.it-ebooks.info

http://www.it-ebooks.info/

[210]

W
web development skills

CSS 11
PHP 11
web technologies 12
WordPress 10
XHTML 11

WordPress
about 7, 10
advantages 7, 8
blog system 9, 10
class styles 125, 132
current_page_item, class styles 125, 132
dynamic menus 146
Flash player plug-in 157
page_item, class styles 125, 132
plug-ins 10, 146
prerequisites 10
sandbox 10
static pages 8
template hierarchy 127
template selector feature 126
tools 13

WordPress 2.5 11
WordPress post/page

Flash content 163
WordPress site

pre-made theme, disadvatages 9
themes 9

WordPress theme
!important hack 100
!important hack, implementing 100
advanced trouble shooting 98
advanced validation 107
blogs, types 17
box model issues 99
building 65
code, adding to template files 102, 103
coding 66
considerations 17
CSS, fixing across browsers 98
debugging 92, 93
describing 115
designing 23
design techniques 185
design tips 185

error 404 page 88
exporting 54-59
FTP feature, HTML editor 64
Google tool, using 110
header, working on 65
HTML editor, setting up for work-flow 64
lincensing 116, 117
main body, working on 65
Mobile Safari browser 111
online news source/magazine type site 23
other page layouts 86
packaging basics 115
plug-ins 19
preview thumbnail 113, 114
ReadMe.txt file, basics 118, 119
ReadMe.txt file, creating 118
SEO tips 202
sidebar, working on 65
static pages 84
steps, before packaging 115
style.css sheet, describing 115
stylesheets, creating 102
template files 63
template hierarchy 67
tracking 122
trouble shooting basics 94
validation process 104-106
widgets 19
width/borders, controllng 102
WordPress content 69
work flow 64
working with 67, 68
XHTML markup, breaking down 101
zipping 119

WordPress theme, designing
basic semantic XHTML structure 29-31
basic style sheet, attaching 28
graphic elements, creating 50
graphic interface elements, creating 52
layout 39
sketching 23, 24
structure 26
text, adding 31
typography 31
usability 25
XHTML structure 26

www.it-ebooks.info

http://www.it-ebooks.info/

[211]

WordPress theme code
home.php, creating 80
home page 80
home page, working with 80
internal pages 83
internal pages, working with 83
loop 70
loop, in action 70-73
sidebar 74
sidebar, working with 76, 77
template tags, loop 73
theme, sepeating into template files 79

WordPress theme package
testing 121, 122

WordPress theme	
feedback, receiving 122

X
XHTML 11
XHTML/CSS mockups

creating 20
XHTML structure, WordPress theme

1.1 DOCTYPE 27
DOCTYPE 27
main body 27
strict DOCTYPE 27
trasitional DOCTYPE 27

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
WordPress Theme Design

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing WordPress Theme Design, Packt will have given some of the
money received to the WordPress project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Complete
ISBN: 978-1-904811-89-3 Paperback: 272 pages

A comprehensive, step-by-step guide on how to
set up, customize, and market your blog using
WordPress

1.	 Clear practical coverage of all aspects of
WordPress

2.	 Concise, clear, and easy to follow, rich with
examples

3.	 In-depth coverage of installation, themes,
syndication, and podcasting

Joomla! Template Design
ISBN: 978-1-847191-44-1 Paperback: 250 pages

A complete guide for web designers to all aspects
of designing unique website templates for the free
Joomla! 1.0.8 PHP Content Management System

1.	 Create Joomla! Templates for your sites

2.	 Debug, validate, and package your templates

3.	 Tips for tweaking existing templates

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Table of Contents
	Preface
	Chapter 1: Getting Started as a WordPress Theme Designer
	WordPress Perks
	Does a WordPress Site Have to Be a Blog?
	Pick a Theme or Design Your Own?
	Drawbacks to Using a Pre-Made Theme

	This Book's Approach
	Things You'll Need to Know
	WordPress
	CSS
	XHTML
	PHP
	Not Necessary, but Helpful

	Tools of the Trade
	HTML Editor
	Graphic Editor
	Firefox
	We'll Be Developing for Firefox First, then IE

	Summary

	Chapter 2: Theme Design and Approach
	Things to Consider
	Types of Blogs
	Plug-ins and Widgets

	Getting Ready to Design
	We Have a Problem
	It Gets Worse

	The Solution–Rapid Design Comping
	Let's Get Started
	Sketch It
	Consider Usability

	Start with the Structure
	The DOCTYPE
	The Main Body
	Attach the Basic StyleSheet
	Basic Semantic XHTML Structure

	Adding Text–Typography
	Start with the Text
	Font Choices
	Cascading Fonts
	Font Sizing
	Paragraphs
	Default Links

	The Layout
	Navigation
	More Navigation–WordPress Specific Styles (OK, Style)
	Color Schemes
	Two-Minute Color Schemes
	Color Schemes with Photoshop
	Adding Color to Your CSS

	Create the Graphical Elements

	Relax and Have Fun Designing
	Slice and Export
	Summary

	Chapter 3: Coding It Up
	Got WordPress?
	Understanding the WordPress Theme

	Your WordPress Work Flow
	Let's Build Our Theme
	Tabula Rasa
	Including WordPress Content
	The Loop
	The Sidebar
	Breaking It Up–Separating Your Theme Into Template Files
	The Home Page
	Internal Pages

	Static Pages
	Quick Recap
	Fun with Other Page Layouts
	Don't Forget About Your 404 Page

	Summary

	Chapter 4: Debugging and Validaton
	Don't Forget About Those Other Browsers and Platforms
	Introduction to Debugging
	Troubleshooting Basics
	Why Validate?
	PHP Template Tags
	CSS Quick Fixes

	Advanced Troubleshooting
	Fixing CSS Across Browsers
	Box Model Issues
	Everything Is Relative
	To Hack or Not to Hack
	Out-of-the-Box-Model Thinking
	The Road to Validation
	Advanced Validation
	Firefox's JavaScript/Error Console
	The Web Developer's Toolbar
	FireBug

	Extra Credit
	What About the New Safari Mobile Browser?

	Summary

	Chapter 5: Your Theme in Action
	A Picture's Worth
	Theme Packaging Basics
	Describing Your Theme
	Licensing?
	Create a ReadMe.txt File
	Zip It Up
	No Way to Zip?
	One Last Test
	Get Some FeedBack and Track It
	Summary

	Chapter 6: WordPress Reference
	Class Styles Generated by WordPress
	Using the Template Selector Feature
	Template Hierarchy
	New Template Tag in 2.5
	Great Template Tags for Tags from 2.3
	Adding Tag Display to Your Theme

	General Template Tags—the Least You Need to Know
	Include Tags
	Custom Includes—Streamline Your Theme

	The Loop Functions
	WordPress Core Functions

	Summary

	Chapter 7: Dynamic Menus and Interactive Elements
	DYI or Plug-ins?
	Dynamic Menus?
	Drop-Down Menus
	DIY SuckerFish Menus in WordPress
	Applying CSS to WordPress
	Applying the DOM Script to WordPress

	Flash-ize It
	Flash in Your Theme
	Pass Flash a WordPress Variable
	Users Without Flash, Older Versions of Flash, and IE6 Users

	Flash in a WordPress Post or Page

	Summary

	Chapter 8: AJAX / Dynamic Content and Interactive Forms
	Preparing for Dynamic Content and Interactive Forms
	You Still Want AJAX on Your Site?

	Plug-ins and Widgets
	Plug-ins
	Widgets

	Getting Your Theme Ready for Plug-ins and Widgets
	Plug-in Preparations
	Installing the AJAX Comments Plug-ins
	Widget Preparations
	Installing the Google Reader Widget

	AJAX–It's Not Just for Your Site Users
	pageMash

	The AJAX Factor
	JavaScript Component Scripts

	Summary

	Chapter 9: Design Tips for Working with WordPress
	The Cool Factor
	Rounded Corners
	The Classic – All Four Corners
	The Two Image Cheat

	Creative Posting
	Breaking Boundaries
	Keep Tabs on Current Design Trends
	Graphic Text
	Extra Credit – Use PHP to make Graphic Headers Easy

	Good Design isn't Always Visual – Looking at SEO
	Search Engine Friendly URLs
	Keywords and Descriptions
	DYI Metatags
	Metatag Plug-ins

	Summary

	Index

