TheYii Book

Developing Web Applications
Using the Yii PHP Framework

Larry Ullman

The Yii Book by Larry Ullman

Self-published

Find this book on the Web at yii.larryullman.com.
Revision: 0.61

Copyright © 2013 by Larry Ullman

Technical Reviewer: Qiang Xue

Technical Reviewer: Alexander Makarov

Cover design very kindly provided by Paul Wilcox.
Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any
form by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of the book, the author
shall not have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the instructions contained in
this book or by the computer software and hardware products described in it.

Trademarks

MySQL is a registered trademark of Oracle in the United States and in other coun-
tries. Macintosh and Mac OS X are registered trademarks of Apple, Inc. Microsoft
and Windows are registered trademarks of Microsoft Corp. Other product names
used in this book may be trademarks of their own respective owners. Images of
Web sites in this book are copyrighted by the original holders and are used with
their kind permission. This book is not officially endorsed by nor affiliated with any
of the above companies.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the author was aware of a trademark claim, the designations appear as
requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit
of such companies with no intention of infringement of the trademark. No such use,
or the use of any trade name, is intended to convey endorsement or other affiliation
with this book.

ISBN-13:
ISBN-10:

ii

http://yii.larryullman.com

This book is dedicated to:

Qiang Xue, creator of the Yii framework; Alexander Makarov,
and the whole Yii development team; and to the entire Yii
community. Thanks to you all for making, embracing, and

supporting such an excellent Web development tool.

iii

Contents

Introduction
Why Frameworks? L o
Why Yii?
What You'll Need
About ThisBook
GettingHelp

1 FUNDAMENTAL CONCEPTS
Object-Oriented Programming
The MVC Approach
UsingaWebServer

Command Line Tools e

2 STARTING A NEW APPLICATION
Downloading Yii
Testing the Requirements
Installing the Framework
Building the Site Shell
Testing the SiteShell

3 A MANUAL FOR YOUR YII SITE
TheSite’'sFolders
Referencing Files and Directories
YiiConventions

How Yii Handles a Page Request

CONTENTS

4 INITIAL CUSTOMIZATIONS AND CODE GENERATIONS
Enabling DebugMode 0 ..
Moving the Protected Folder
Basic Configurations, ..
Developing Your Site L Lo
Generating Codewith Gii

5 WORKING WITH MODELS
The Model Classes
EstablishingRules
Changing Labels
Watching for Model Events
RelatingModels L o

6 WORKING WITH VIEWS
The View Structure
Where Views are Referenced L.
Layoutsand Views
Editing View Files o
Working with Layouts

Alternative Content Presentation

7 WORKING WITH CONTROLLERS
Controller Basics e
Revisiting Views L
Making Useof Models
Handling Forms
Basic Access Control Lo
Understanding Routes
Tapping Into Filters
Showing StaticPages, ..

Exceptions

ii

47
47
48
49
60
70

77
77
79
96
99
103

107
107
108
109
112
121
126

CONTENTS

8

10

11

12

WORKING WITH DATABASES

Debugging Database Operations
Database Options
Using ActiveRecord 0.
Using Query Builder 0 ..
Using Database Access Objects
Choosing an Interface Option

Common Challenges

WORKING WITH FORMS

Understanding Formsand MVC
Creating Forms withoutModels
UsingCHtml
Using “Active” Methods
Using CActiveForm
Using Form Builder 0 .

Common FormNeeds

MAINTAINING STATE
Cookies e,

SESSIONS .« v v v e e e e e e e e e e e

USER AUTHENTICATION AND AUTHORIZATION

Fundamentals of Authentication
AuthenticationOptions
The Userldentity State
Authorization

Working with Flash Messages

WORKING WITH WIDGETS

UsingWidgets
BasicYii Widgets
PresentingData

ThejQuery UL Widgets

iii

161
161
163
164
179
184
187
189

192
192
193
195
196
197
199
205

224
224
228

233
233
244
250
254
268

CONTENTS

13 USING EXTENSIONS 309
The Basics of Extensions 309
The bootstrap Extension 312
The giix Extension 317
Validator Extensions o L 320
Auto-Setting Timestampso L Lo oL 322
Usinga WYSIWYG Editor 323

14 JAVASCRIPT AND JQUERY 327
What YouMustKnow o L 327
Adding JavaScripttoaPage L oL 328
Using JavaScript with CActiveForm 333
Implementing Ajax L 337
CommonNeeds 349

iv

Introduction

This is the 24th book that I've written, and of the many things I've learned in that
time, a reliable fact is this: readers rarely read the introduction. Still, I put a fair
amount of time into the introduction and would ask you to spend the five minutes
required to read it.

In this particular introduction, I provide the arguments for (and against) frameworks,
and the Yii framework specifically. I also explain what knowledge and technical
requirements are expected of you, the dear reader. And if that was not enough, the
introduction concludes by providing you with resources you can use to seek help
when you need it.

So: five minutes of your time for all that. Okay, maybe 8 minutes. How about you
give ita go?

Why Frameworks?

Simply put, a framework is an established library of code meant to expedite software
development. Writing everything from scratch on every project is impractical; code
reuse is faster, more reliable, and possibly more secure.

Many developers eventually create a lightweight framework of their own, even
if that’s just a handful of commonly used functions. True frameworks such as
Yii are just the release of a complete set of tools that a smart and hardworking
person has been kind enough to make public. Even if you don’t buy the arguments
for using a framework in its own right, it’s safe to say that the ability to use a
framework, whether that means a few pieces of your own reusable code or a full-
fledged framework such as Yii, is to be expected for any regular programmer today.

Why You Should Use a Framework

The most obvious argument for using a framework is that you’'ll be able to develop
projects much, much faster than if you didn’t use a framework. But there are other
arguments, and those are more critical.

http://yiiframework.com

INTRODUCTION

As already stated, framework-based projects should also be both more reliable and
secure than one coded by hand. Both qualities come from the fact that framework
code will inevitably be far more thoroughly tested than anything you create. By
using a framework, with established code and best practices, you're starting on a
more stable, secure, and tested foundation than your own code would provide (in
theory).

Similarly, a framework is likely to impose a quality of documentation that you might
not take the time to implement otherwise. The same can go for other professional
features, such as logging and error reporting. These are features that a good frame-
work includes but that you may not get around to doing, or doing properly, despite
your best intentions.

Still, the faster development argument continues to get the most attention. If you are
like, well, almost everyone, your time is both limited and valuable. Being able to
complete a project in one-third the time means you can do three times the work,
and make three times the money. In theory.

You can also make more money when you know a framework because it improves
your marketability. Framework adoption is almost a must for team projects, as
frameworks impose a common development approach and coding standard. For
that reason, most companies hiring new Web developers will expect you to know at
least one framework.

In my mind, the best argument for using a framework is this: so that you can always
choose the right tool for the job. Not to be cliché, but I firmly believe that one of the
goals of life is to keep learning, to keep improving yourself, no matter what your
occupation or station. As Web developers in particular, you must continue to learn,
to expand your skill set, to acquire new tools, or else you'll be left behind. Picking
up a framework is a very practical choice for your own betterment. In fact, I would
recommend that you actually learn more than one framework. By doing so, you can find
the right framework for you and better understand the frameworks you know (just
as I understood English grammar much better only after learning French).

Why You Shouldn’t Use a Framework

If frameworks are so great, then why isn’t everyone using a framework for every
project? First, and most obviously, frameworks require extra time to learn. The fifth
project you create using a framework may only take one-third the time it would
have taken to create the site from scratch, but the first project will take at least
the same amount of time as if you had written it from scratch, if not much longer.
Particularly if you're in a rush to get a project done, the extra hours needed to learn
a framework will not seem like time well spent. Again, eventually frameworks
provide for much faster development, but it will take you a little while to get there.

Second, frameworks will normally do about 80% of the work really easily, but that
last 20% (the part that truly differentiates this project from all the others) can be a real

INTRODUCTION

challenge. This hurdle is also easier to overcome the better you know a framework,
but implementing more custom, less common Web tasks using a framework can
really put you through your paces.

Third, from the standpoint of running a Web site or application, frameworks can
be terribly inefficient. For example, to load a single record from a database, a
framework may require three queries instead of just the one used by a conventional,
non-framework site. As database queries are one of the most expensive operations
in terms of server resources, three times the queries is a ghastly thought. And
framework-based sites will require a lot more memory, as more objects and other
resources are constantly being created and used.

{NOTE} Frameworks greatly improve your development time at a cost
of the site’s performance.

That being said, there are many ways to improve a site’s performance, and not
so many ways to give yourself back hours in the day. More importantly, a good
framework like Yii has built-in tools to mitigate the performance compromises being
made. In fact, through such tools, it’s entirely possible that a framework-based site
could be more efficient than the one you would have written from scratch.

Fourth, when a site is based upon a framework, you are expected to update the
site’s copy of the framework’s files (but not the site code itself) as maintenance
and security releases come out. This is true whenever you use third-party code.
(Although, on the other hand, this does mean that other people are out there finding,
and solving, potential security holes, which won’t happen with your own code.)

How You Use a Framework

Once you've decided to give framework-based programming a try, the next question
is: How? First, you must have a solid understanding of how to develop without
using a framework. Frameworks expedite development, but they only do so by
changing the way you perform common tasks. If you don’t understand basic user
interactions in conventional Web pages, for example, then switching to using a
framework will be that much more bewildering.

And second, you should give in to the framework. All frameworks have their own
conventions: how things are to be done. Attempting to fight those conventions will
be a frustrating, losing battle. Do your best to accept the way that the framework
does things and it'll be a smoother, less buggy, and faster experience.

Why Yii?

The Yii framework was created by Qiang Xue and first released in 2008. “Yii”
is pronounced like “Yee”, and is an acronym for “Yes, it is!”. From Yii’s official

INTRODUCTION

documentation:

Is it fast?...Is it secure?...Is it professional?...Is it right for my next
project?... Yes, it is!

“Yii” is also close to the Chinese character “Yi”, which represents easy, simple, and
flexible.

Mr. Xue was also the founder of the Prado framework, which took its inspiration
from the popular ASP.NET framework for Windows development. In creating Yii,
Mr. Xue took the best parts of Prado, Ruby on Rails, CakePHP, and Symfony to
create a modern, feature-rich, and very useable PHP framework.

At the time of this writing, the current, stable release of the Yii framework is 1.1.13.
It is expected that version 2 of the Yii framework will have its alpha release in early
2013.

What Yii Has to Offer

Being a framework, Yii offers all the strengths and weaknesses that frameworks in
general have to offer (as already detailed). But what does Yii offer, in particular?

Like most frameworks, Yii uses pure Object-Oriented Programming (OOP). Unlike
some other frameworks, Yii has always required version 5 of PHP. This is significant,
as PHP 5 has a vastly improved and advanced object structure compared with the
older PHP 4 (let alone the archaic and rather lame object model that existed way
back in PHP 3). For me, frameworks that were not written specifically for PHP 5
and greater aren’t worth considering.

Yii uses the de facto standard Model-View-Controller (MVC) architecture pattern.
If you're not familiar with it, Chapter 1, “Fundamental Concepts,” explains this
approach in detail.

Almost all Web applications these days rely upon an underlying database. Conse-
quently, how a framework manages database interactions is vital. Yii can work with
databases in several different ways, but the standard convention is through Object
Relational Mapping (ORM) via Active Record (AR). If you don’t know what ORM
and AR are, that’s fine: you'll learn well enough in time. The short description is
that an ORM handles the conversion of data from one source to another. In the case
of a Yii-based application, the data will be mapped from a PHP object variable to a
database record and vice versa.

{TIP} The excellent Ruby on Rails framework also uses Active Record
for its database mapping.

http://www.pradosoft.com
http://www.asp.net
http://rubyonrails.org
http://cakephp.org
http://www.symfony.com

INTRODUCTION

For low-level database interactions, Yii uses PHP 5’s PHP Data Objects (PDO). PDO
provides a data-access abstraction layer, allowing you to use the same code to interact
with the database, regardless of the underlying database application involved.

One of Yii's greatest features is that if you prefer a different approach, you can swap
alternatives in and out. For example, you can change:

The underlying database-specific library

The template system used to create the output
How caching is performed

And much more

The alternatives you swap in can be code of your own creation, or that found in
third-party libraries, including code from other frameworks!

Despite all this flexibility, Yii is still very stable, and through caching and other tools,
perform quite well. Yii applications will scale well, too, as has been tested on some
high-demand sites, such as Stay.com and VICE.

All that being said, many of Yii’s benefits and approaches apply to other PHP
frameworks as well. Why you should use Yii is far more subjective than a list of
features and capabilities. At the end of the day, you should use Yii if the framework
makes sense to you and you can get it to do what you need to do.

{NOTE} For a full sense of Yii’s feature set, see this book’s table of
contents online or the features page at the official Yii site.

As for myself, I initially came to Yii because it requires PHP 5-1 find backwards-
compatible frameworks to be inherently flawed—and uses the jQuery JavaScript
framework natively. (By comparison, the widely-used Zend Framework was rather
slow to adopt jQuery, in my opinion.) I also love that Yii will auto-generate a ton
of code and directories for you, a feature that I had come to be spoiled by when
using Rails. Yii is also well-documented, and has a great community. Mostly,
though, for me, Yii just feels right. And unless you really investigate a framework’s
underpinnings to see how well designed it is, how the framework feels to you is a
large part of the criteria in making a framework selection.

In this book and my blog, I'm happy to discuss what Yii has to offer: why you
should use it. The question I can’t really answer is what advantage Yii has over this
or that framework. If you want a comparison of Yii vs. X framework, search online,
but remember that the best criteria for which framework you should use is always
going to be your own personal experience.

{TIP}If you're trying to decide between framework X and framework Y,
then it’s worth your time to spend an afternoon, or a day, with each to
see for yourself which you like better.

5

http://www.php.net/pdo
http://www.stay.com
http://www.vice.com
http://yii.larryullman.com/toc.php
http://yii.larryullman.com/toc.php
http://www.yiiframework.com/features/
http://jquery.com
http://framework.zend.com
http://www.larryullman.com

INTRODUCTION

The only other PHP framework I've used extensively is Zend. The Zend Framework
has a lot going for it and is worth anyone’s consideration. To me, its biggest asset is
that you can use it piecemeal and independently (I've often used components of
the Zend Framework in Yii-based and non-framework-based sites), but I just don’t
like the Zend Framework as the basis of an entire site. It requires a lot of work, the
documentation is overwhelming while still not being that great, and it just doesn’t
“feel right” to me.

I really like the Yii framework and hope you will too. But this book is not a sales
pitch for using Yii over any other framework, but rather a guide for those needing
help.

Who Is Using Yii?
The Yii framework has a wide international adoption, with extensive usage in (the):

e United States
® Russia

e Ukraine

e China

e Brazil

¢ India

* Europe

Many open-source apps have been written in Yii, including;:

¢ Chive, an alternative to phpMyAdmin

® Zurmo, a Customer Relationship Management (CRM) system
¢ X2EngineCRM, another CRM

¢ LimeSurvey2, a surveying application

What Wil Be New in Yii 2?

In early 2013, the alpha release of Yii 2 should come out, with the general release
coming later in the year. At the time of this writing, the major changes for Yii 2 are
still under consideration, but it is known that Yii 2 will:

¢ Use namespaces for its classes (in keeping with more recent PHP adoption of
namespaces)

¢ Have a more logical structure for its MVC components

¢ Do more for creating console applications

¢ Make improvements for working with databases, including Active Record
changes

¢ Allin all, be even more beautiful (truly!)

6

http://www.chive-project.com
http://phpmyadmin.net
http://zurmo.org
http://www.x2engine.com
http://www.limesurvey.org

INTRODUCTION

What You’ll Need

Learning any new technology comes with expectations, and this book on Yii is
no different. I've divided the requirements into two areas: technical and personal

knowledge. Please make sure you clear the bar on both before getting too far into the
book.

Technical Requirements

Being a PHP framework, Yii obviously requires a Web server with PHP installed on
it. Version 1 of the Yii framework requires PHP 5.1 or greater. Version 2 is expected
to require PHP 5.3 or later. At the time of this writing, the latest version of PHP is
5.4.11. This book will assume you're using Apache as your Web server application.
If you're not, see the Yii documentation or search online for alternative solutions
when Apache-specific options are presented.

{NOTE/} In my opinion, it's imperative that Web developers know what
versions they are using (of PHP, MySQL, Apache, etc.). If you don’t
already, check your versions now!

You'll also want a database application, although Yii will work with all the common
ones. This book will primarily use MySQL, but, again, Yii will let you easily use
other database applications with only the most minor changes to your code.

All of the above will come with any decent hosting package. But I expect all
developers to install a Web server and database application on their own desktop
computer: it’s the standard development approach and is a far easier way to create
Web sites. Oh, and it’s all free! If you have not yet installed an *AMP stack-Apache,
MySQL, and PHP-on your computer, I would recommend you do so now. The most
popular solutions are:

XAMPP on Windows

EasyPHP on Windows

BitNami on Windows, Linux, or Mac OS X
Zend Server on Windows, Linux, or Mac OS X

All of these are free.

To write your code, you'll also need a good text editor or IDE. In theory, any
application will do, but you may want to consider one that directly supports Yii, or
can be made to support Yii. That list includes (all information is correct at the time
of this writing; all prices in USD):

¢ Eclipse, through the PDT extension, on Windows, Linux, or Mac OS X; free

7

http://httpd.apache.org
http://mysql.com
http://www.apachefriends.org
http://www.easyphp.org
http://bitnami.org
http://www.zend.com/en/products/server/
http://www.eclipse.org
http://www.eclipse.org/projects/project.php?id=tools.pdt

INTRODUCTION

Netbeans on Windows, Linux, or Mac OS X; free
PhpStorm on Windows, Linux, or Mac OS X; $30-$200
CodeLobster on Windows; $120

SublimeText 2 on Windows, Linux, or Mac OS X; $60

“Support” really means recognition for keywords and classes particular to Yii, the
ability to perform code completion, and potentially even include Yii-specific wiz-
ards.

In case you're curious, I almost exclusively use a Mac, and currently use the excellent
TextMate text editor (only for Mac, $51). But I've heard nothing but accolades about
SublimeText (version 3 is coming out in 2013) and PhpStorm, and plan on trying
them both out extensively in the future.

Your Knowledge and Experience

There are not only technical requirements for this book, but also personal require-
ments. In order to follow along, it is expected that you:

¢ Have solid Web development experience

¢ Are competent with HTML, PHP, MySQL, and SQL

¢ Aren’t entirely uncomfortable with JavaScript and jQuery

¢ Understand that confusion and frustration are a natural consequence of learn-
ing anything new (although I'll do my best in this book to minimize the
occurrence of both)

The requirements come down to this: using a framework, you'll be doing exactly
the kinds of things you have already been doing, just via a different methodology.
Learning to use a framework is therefore the act of translating the conventional
approach into a new approach.

The book does not assume mastery of Object-Oriented Programming, but things will
go much more smoothly if you have prior OOP experience. Chapter 1 hits the high
notes of OOP in PHP, just in case.

About This Book

Most of this introduction is about frameworks in general and the Yii framework in
particular, but I want to take a moment to introduce this book as a whole, too.

http://netbeans.org
http://www.jetbrains.com/phpstorm/
http://www.codelobster.com
http://www.sublimetext.com
http://macromates.com

INTRODUCTION

The Goals of This Book

I had two goals in writing this book. The first is to explain the entirety of the Yii
framework in such a way as to convey a sense of the big picture. In other words,
I want you to be able to understand why you do things in certain ways. By learning
what Yii is doing behind the scenes, you will be better able to grasp the context for
whatever bits of code you'll end up using on your site. This holistic approach is
what I think is missing among the current documentation options.

The second goal is to demonstrate common tasks using real-world examples. This
book is, by no means, a cookbook, or a duplication of the Yii wiki, but I would be
remiss not to explain how you implement solutions to standard Web site needs. In
doing so, though, I'll explain the solutions within the context of the bigger picture,
so that you walk away not just learning how to do X but also why you do it in that
manner.

All that being said, there are some things relative to the Yii framework (and Web
development in general) that the book will not cover. For example, Yii 1 defines
many of its own data types, used in more advanced applications. Some of these
are replicated in PHP’s Standard PHP Library, which will be used in Yii 2 instead.
This book omits coverage of them, along with anything else I've deemed equally
esoteric.

Still, my expectation is that after reading this book, and understanding how the Yii
framework is used, you'll be better equipped to research and learn these omissions,
should you ever have those needs.

Formatting Conventions

I've adopted a couple of formatting conventions in writing this book. They should
be obvious, but just in case, I'll lay them out explicitly here.

Code font will be presented 1ike this, whether it’s inline (as in that example) or

presented on its own:

// This is a line of code.
// This is another line.

Whenever code is presented lacking sufficient context, I will provide the name of
the file in which that code would be found, including the directory structure:

protected/views/layouts/home.php
// This is the code.

Sometimes I will also indicate the name of the function in that file where the code
would be placed:

http://www.yiiframework.com/wiki/
http://php.net/spl/

INTRODUCTION

protected/models/Example.php::doThis ()
// This is the code within the doThis () function.

This convention simply saves me from having to include the function doThis ()
{ line every time.

{NOTE} Chapter 3, “A Manual for Your Yii Site,” will explain the Yii
directory structure in detail.

Within text, URLs, directories, and file names will be in bold. References to specific
classes, methods, and variables will be in code font: SomeClass, someMethod (),
and $someVar. References to array indexes, component names, and informal
but meaningful terms will be quoted: the “items” index, the “site” controller, the
“urlManager” component, etc.

How I Wrote This Book

For those of you that care about such things, this book was written using the
Scrivener application running on Mac OS X. Scrivener is far and away the best
writing application I've ever come across. If you're thinking about doing any
serious amount of writing, download it today!

Images were taken using Snapz Pro X.

The entire book was written using MultiMarkdown, an extension of Markdown. I
exported MultiMarkdown from Scrivener.

Next, I converted the MultiMarkdown source to a PDF using Pandoc, which sup-
ports its own slight variation on Markdown. The formatting of the PDF is dictated
by LaTeX, which is an amazing tool, but not for the faint of heart.

To create the ePub version of the book, I also used Pandoc and the same MultiMark-
down source.

To create the mobi (i.e., Kindle) version of the book, I imported the ePub into Calibre,
an excellent open source application. Calibre can convert and export a book into
multiple formats, including mobi.

For excerpts of the book to be published online, I again used Pandoc to create HTML
from the MultiMarkdown.

This is a lot of steps, yes, but MultiMarkdown gave me the most flexibility to write
in one format but output in multiple. Pandoc supports the widest range of input
sources and output formats, by far. And research suggested that Calibre is the best
tool for creating reliable mobi files.

10

http://www.literatureandlatte.com/scrivener.php
http://www.ambrosiasw.com/utilities/snapzprox/
http://fletcherpenney.net/multimarkdown/
http://daringfireball.net/projects/markdown/
http://johnmacfarlane.net/pandoc/
http://www.latex-project.org/
http://calibre-ebook.com/

INTRODUCTION

About Larry Ullman

I am a writer, developer, consultant, trainer, and public speaker. This is my 24th
book, with the vast majority of them related to Web development. My PHP for the
Web: Visual QuickStart Guide and PHP and MySQL for Dynamic Web Sites: Visual
QuickPro Guide books are two of the bestselling guides to the PHP programming
language. Both are in their fourth editions, at the time of this writing. I've also
written Modern JavaScript: Develop and Design, which is thankfully getting excellent
reviews.

I tirst started using the Yii framework in early 2009, a few months after the frame-
work was publicly released. Later that year, I posted a “Learning the Yii Framework”
series on my blog, which has become quite popular. Qiang Xue, the creator of Yii,
liked it so much that he linked to my series from the Yii’s official documentation.
Ever since, the series has had a good amount of publicity and traffic. I have wanted
to write this book for some time, but did not have the opportunity to begin until
2012.

While a large percentage of my work is technical writing, I'm an active developer.
Most of the Web sites I do are for educational and non-profit organizations, but I also
consult on commercial and other projects. I would estimate that I use a framework
on maybe 60% of the sites I work on. I don’t use a framework all the time because a
framework isn’t always appropriate. Some of the framework-based sites I create
use WordPress instead of Yii, depending upon the client and the needs.

My Web site is LarryUllman.com. This book’s specific set of pages is at
yii.LarryUllman.com. You can also find me on Twitter @LarryUllman.

Getting Help

If you need assistance with your Yii-based site, or with any of this book’s material,
there are many places to turn:

The Yii documentation

The official Yii forums
¢ My support forums
The #yii IRC channel on the Freenode network

{NOTE/} If you don’t have an IRC client (or haven’t used IRC before), the
Yii Web site graciously provides a Web-based interface.

When you need help, you should always start by looking at the Yii documentation.
Over the course of the book, you'll learn how to use the docs to solve your own
problems, most specifically the class reference.

11

http://amzn.to/NeksoP
http://amzn.to/NeksoP
http://amzn.to/L61xOz
http://amzn.to/L61xOz
http://amzn.to/wsdmkq
http://www.larryullman.com/series/learning-the-yii-framework/
http://www.yiiframework.com/tutorials/
http://www.wordpress.org
http://www.LarryUllman.com
http://yii.larryullman.com
http://twitter.com/LarryUllman
http://www.yiiframework.com/doc/
http://www.yiiframework.com/forum/
http://www.larryullman.com/forums/
http://www.yiiframework.com/chat/
http://www.yiiframework.com/doc/api/

INTRODUCTION

If you're still having problems and a quick Google search won't cut it, the Yii forums
are probably the best place to turn. They have an active and smart community. Do
begin by searching the forums first, as it’s likely your question has already been
raised and answered (unless it’s very particular to this book).

Understand that wherever you turn to for assistance, you'll get far better results if
you provide all the necessary information, are patient, and demonstrate appreciation
for the help.

You can contact me directly with questions, but I would strongly prefer that you
use my support forums or the Yii forums instead. By using a forum, other people
can assist, meaning you’ll get help faster. Furthermore, the assistance will be public,
which will likely help others down the line.

{NOTE} I check my own support forums three days per week. I check
the Yii support forums irregularly, depending upon when I think of it.
But in both forums, there are other, very generous, people to assist you.
Of the two, the Yii forums have more members and are more active.

If you ask me for help via Twitter, Facebook, or Google+, I'll request that you use my
or the Yii forums. If you email me, I will reply, but it’s highly likely that it will take
two weeks for me to reply. And the reply may say you haven’t provided enough
information. And after providing an answer, or not, I'll recommend you use forums
instead of contacting me directly. So you can contact me directly, but it’s far, far
better—for both of us—if you use one of the other resources. Don’t get me wrong;:
I want to help, but I strongly prefer to help in the public forums, where my time
spent helping might also benefit others.

12

Chapter 1

FUNDAMENTAL CONCEPTS

Frameworks are created with a certain point of view and design approach. Therefore,
properly using a framework requires an understanding and comfort with the under-
lying perspective(s). Towards that end, this chapter covers the most fundamental
concepts that you'll need to know in order to properly use the Yii framework.

With Yii, the two most important concepts are Object-Oriented Programming (OOP)
and the Model-View-Controller (MVC) pattern. The chapter begins with a quick
introduction to OOP, and then explains the MVC design approach. Finally, the
chapter covers a couple of key concepts regarding your computer and the Web
server application.

I imagine that nothing in this chapter will be that new for some readers. If so, feel
free to skip ahead to Chapter 2, “Starting a New Application.” If you're confused by
something later on, you can always return here. On the other hand, if you aren’t
100% confident about the mentioned topics, then keep reading.

Object-Oriented Programming

Yii is an object-oriented framework; in order to use Yii, you must understand OOP. In
this first part of the chapter, I'll walk through the basic OOP terminology, philosophy,
and syntax for those completely unfamiliar with them.

OOP Terminology

PHP is a somewhat unusual programming language in that it can be used both
procedurally and with an object-oriented approach. (Java and Ruby, for example,
are always object-oriented language and C is always procedural.) The primary
difference between procedural and object-oriented programming is one of focus.

All programming is a matter of taking actions with things:

13

CHAPTER 1. FUNDAMENTAL CONCEPTS

e A form’s data is submitted to the server.
* A page is requested by the user.
¢ Arecord is retrieved by the database.

Put in grammatical terms, you have nouns—form, data, server, page, user, record,
database—and verbs: submitted, requested, and retrieved.

In procedural programming, the emphasis is on the actions: the steps that must be
taken. To write procedural code, you lay out a sequence of actions to be applied to
data, normally by invoking functions. In object-oriented programming, the focus
is on the things (i.e., the nouns). Thus, to write object-oriented code, you start by
analyzing and defining what types of things the application will work with.

The core concept in OOP is the class. A class is a blueprint for a thing, defining
both the information that needs to be known about the thing as well as the common
actions to be taken with it. For example, representing a page of HTML content as a
class, you need to know the page’s title, its content, when it was created, when it was
last updated, and who created it. The actions one might take with a page include
stripping it of all HTML tags (e.g., for use in non-Web destinations), returning the
initial X characters of its content (e.g., to provide a preview), and so forth.

With those requirements in mind, a class is created as a blueprint. The thing’s
data-title, content, etc.—are represented as variables in the class. The actions to be
taken with the thing, such as stripping out the HTML, are represented as functions.
These variables and functions within a class definition are referred to as attributes (or
* properties*) and methods, accordingly. Collectively, a class’s attributes and methods
are called the class’s members.

Once you've defined a class, you create instances of the class, those instances being
object variables. Going with a content example, one object may represent the Home
page and another would represent the About page. Each variable would have its
own properties (e.g., title or content) with its own unique values, but still have the
same methods. In other words, while the value of the “content” variable in one
object would be different from the value of the “content” variable in another, both
objects would have a getPreview () method that returns the first X characters of
that object’s content.

{NOTE} In OOP, you will occasionally use classes without formally
creating an instance of that class. In Yii, this is quite common.

The class is at the heart of Object-Oriented Programming and good class defini-
tions make for projects that are reliable and easy to maintain. As you'll see when
implementing OOP (if you have not already), more and more logic and code is
pushed, appropriately, into the classes, leaving the usage of those classes to be rather
straightforward and minimalistic.

I consider OOP in PHP to be a more advanced concept than traditional procedural
programming for this reason: OOP isn’t just a matter of syntax, it’s also about

14

CHAPTER 1. FUNDAMENTAL CONCEPTS

philosophy. Whereas procedural programming almost writes itself in terms of a
logical flow, proper object-oriented programming requires a good amount of theory
and design. Bad procedural programming tends not to work well, but can be easily
remedied; bad object-oriented programming is a complicated, buggy mess that can
be a real chore to fix. On the other hand, good OOP code is easy to extend and reuse.

{NOTE} Programming in Yii is different from non-framework OOP in
that most of the philosophical and design issues are already imple-
mented for you by the framework itself. You're left with just using
someone else’s design, which is a huge benefit to Object-Oriented Pro-
gramming.

OOP Philosophy

The first key concept when it comes to OOP theory is modularity. Modularity is
a matter of breaking functionality into individual, specific pieces. This theory is
similar to how you modularize a procedural site into user-defined functions and
includable files.

Not only should classes and methods be modular, but they should also demonstrate
encapsulation. Encapsulation means that how something works is well shielded from
how it’s used. Going with a Page class example (an OOP class defined to represent
an HTML page), you wouldn’t need to know how a method strips out the HTML
from the page’s content, just that the method does that. Proper encapsulation also
means that you can later change a method’s implementation-how it works—without
impacting code that invokes that method. (For what it’s worth, good procedural
functions should adhere to encapsulation as well.)

Encapsulation goes hand-in-hand with access control, also called visibility. Access
control dictates where a class’s attributes (i.e., variables) can be referenced and
where its methods (functions) can be called. Proper usage of access control can
improve an application’s security and reduce the risk of bugs.

There are three levels of visibility:

e Public
e Protected
e Private

To understand these levels, one has to know about inheritance as well. In OOP,
one class can be defined as an extension of another, which sets up a parent-child
inheritance relationship, also called a base class and a subclass. The child class in
such situations may or may not also start with the same attributes and methods,
depending upon their visibility (Figure 1.1).

15

CHAPTER 1. FUNDAMENTAL CONCEPTS

ParentClass
attribute1
attribute?2
method1()
method2()
method3()

ChildClass
attribute1
attribute?2
method1()
method2()
method3()

Figure 1.1: The child class can inherit members from the parent class.

An attribute or method defined as public can be accessed anywhere within the class,
within derived (i.e., child) classes, or through object instances of those classes. An
attribute or method defined as protected can only be accessed within the class or
within derived classes, but not through object instances. An attribute or method
defined as private can only be accessed within the class itself, not within derived
classes (i.e., child or subclasses) or through object instances.

Because object-oriented programming allows for inheritance, another endorsed
design approach is abstraction. Ideally base classes (those used as parents of other
classes) should be as generic as possible, with more specific functionality defined in
derived classes (children). The derived class inherits all the public and protected
members from the base class, and can then add its own new ones. For example,
an application might define a generic Person class that has eat () and sleep ()
methods. Adult might inherit from Person and add a work () method, among
others, whereas Child could also inherit from Person butadd a play () method
(Figure 1.2).

Inheritance can be extended to such a degree that you have multiple generations
of inheritance (i.e., parent, child, grandchild, etc.). PHP does not allow for a sin-
gle child class to inherit from multiple parent classes, however: class Dog cannot
simultaneously inherit from both Mammal and Pet.

{TIP} The Yii framework uses multiple levels of inheritance all the time,
allowing you to call a method defined in class C that’s defined in class
A, because class C inherits from B, which inherits from class A.

Getting into slightly more advanced OOP, child classes can also override a parent
class’s method. To override a method is to redefine what that method does in a child
class. This concept is called polymorphism: the same method can do different things
depending upon the context in which it is called.

16

CHAPTER 1. FUNDAMENTAL CONCEPTS

ParentClass
attribute1
attribute?2
method1()
method2()
method3

ChildClass

attribute3

method4()

methodss!

Figure 1.2: The child class can add new members to the ones it inherited.

OOP Syntax

With sufficient terminology and theory behind us, let’s look at OOP syntax in
PHP (specifically PHP 5; earlier versions of the language sometimes did things
differently).

Classes in PHP are defined using the class keyword:

class SomeClass {

}

Within the class, variables and functions are defined using common procedural
syntax, save for the addition of visibility indicators:

class SomeClass {
public $varl;
public function doThis () {
// Do whatever.

Public is the default visibility and it does not need to be specified as it is in that code,
but it is best to be explicit. The class attributes (the variables) can be assigned default
values using the assignment operator, as you would almost any other variable.

{TIP} You'll see this syntax to identify a method and the class to which
it belongs: SomeClass: :doThis (). That’s shorthand for saying “The
doThis () method of the SomeClass class”.

17

CHAPTER 1. FUNDAMENTAL CONCEPTS

Once you've defined a class, you create an instance of that class—an object-using the
new keyword:

Sobj = new SomeClass () ;

Once the object has been created, you can reference public attributes and methods
using object notation. In PHP, —> is the object operator (in many other languages it is
the period):

echo Sobj->varl;
Sobj—->doThis () ;

Note that, as in that code, object attributes are referenced through the object
without using the dollar sign in front of the attribute’s name (i.e., it’s not echo
Sobj->Svarl).

Within the class, attributes and methods are accessible via the special $this object.
$this always refers to the current instance of that class:

Class SomeClass {

public $varl;

public function doThis () {
Sthis->varl = 23;
Sthis—->doThat () ;

}

private function doThat () {

echo S$this->varl;

}

That code also demonstrates how a class can access protected and private members,
as protected and private members cannot be accessed directly through an object
instance outside of the class.

Some classes have special methods, called constructors and destructors, that are
automatically invoked when an object of that class type is created and destroyed,
respectively. These methods must always use the names __construct and __destruct.
A constructor can, and often does, take arguments, but cannot return any values. A
destructor cannot take arguments at all. These special methods might be used, for
example, to open a database connection when an object of that class type is created
and close it when it is destroyed.

Moving on, inheritance is indicated using the ext ends keyword:

18

CHAPTER 1. FUNDAMENTAL CONCEPTS

class ChildClass extends ParentClass {

}

You will see this syntax a lot when working with Yii, as the framework defines all of
the base classes that you will extend for individual purposes.

The last thing to know is that, conventionally, class names in PHP use the “upper-
camelcase” format: ClassName, ChildName, and so forth. Methods and attributes
normally use “lower-camelcase”: doThis, doThat, someVar, fullName, etc. Private
attributes normally have an underscore as the first character. These conventions
are not required, although they are the ones I will use in this book. By far, the most
important consideration is that you are consistent in applying whatever conventions
you prefer.

The MVC Approach

Another core concept when it comes to using the Yii framework is the MVC soft-
ware design approach. MVC, which stands for “model, view, controller”, is an
architecture pattern: a way of structuring a program. Although its origins are in
the Smalltalk language, MVC has been widely adopted by many languages and
particularly by frameworks.

The basic MVC concept is relatively simple to understand, but I find that the actual
implementation of the pattern can be tricky. In other words, it can take some time
to master where you put your code. You must comprehend what MVC is in order to
effectively use Yii. To convey both MVC and how it impacts the code you write,
let’s look at this approach in detail, explaining how it’s done in Yii, how it compares
to a non-MVC approach, and some signs that you may be doing MVC wrong.

The Basics
Simply put, the MVC approach separates (or, to be more technical, decouples) an
application’s three core pieces: the data, the actions a user takes, and the visual

display or interface. By adopting MVC, you will have an application that’s more
modular, easier to maintain, and readily expandable.

{TIP} You can use MVC without a framework, but most frameworks
today do apply the MVC approach.

MVC represents an application as three distinct parts:

* Model, which is a combination of the data used by the application and the
business rules that apply to that data

19

CHAPTER 1. FUNDAMENTAL CONCEPTS

¢ View, the interface through which a user interacts with the application
¢ Controller, the agent that responds to user actions, makes use of models, and
generally does stuff

{NOTE/ To be clear, an application will almost always have multiple
models, views, and controllers, as will be explained shortly.

You can think of MVC programming like a pyramid, with the model at the bottom,
the controller in the middle, and the view at the top. The PHP code should be
distributed appropriately, with most of it in the model, some in the controller,
and very little in the view. (Conversely, the HTML should be distributed like so:
practically all of it in view files.)

I think the model component is the easiest to comprehend as it reflects the data
being used by the application. Models are often tied to database tables, where one
instance of a model represents one row of data from one table. Note that if you have
two related tables, that scenario would be represented by two separate models, not
one. You want to keep your models as atomic as possible.

If you were creating a content management system (CMS), logical models might be:

¢ Page, which represents a page of content
¢ User, which represents a registered person
¢ Comment, which represents a user’s comment on a page

With a CMS application, those three items are the natural types of data required to
implement all the required functionality.

A less obvious, but still valid, use of models is for representing non-permanent sets
of data. For example, if your site has a contact form, that data won’t be needed after
it’s emailed out. Still that data must be represented by a model up until that point
(in order to perform validation and so forth).

Keep in mind that models aren’t just containers for data, but also dictate the rules
that the data must abide by. A model might enforce its “email” value to be a
syntactically valid email address or allow its “address2” value to be null. Models
also contain functions for common things you’ll do with that data. For example, a
model might define how to strip HTML from its own data or how to return part of
its data in a particular format.

Views are also straightforward when it comes to Web development: views contain
the HTML and reflect what the user will see—and interact with—in the browser. Yii,
like most frameworks, uses multiple view files to generate a complete HTML page
(to be explained shortly). With the CMS example, you might have these view files
(among many others):

¢ Primary layout for the site

20

CHAPTER 1. FUNDAMENTAL CONCEPTS

¢ Display of a single page of content

¢ Form for adding or updating a page of content
¢ Listing of all the pages of content

¢ Login form for users

¢ Form for adding a comment

¢ Display of a comment

Views can’t just contain HTML, however: they must also have some PHP (or
whatever language) that adds the unique content for a given page. Such PHP code
should only perform very simple tasks, like printing the value of a variable. For
example, a view file would be a template for displaying a page of content; within
that, PHP code would print out the page’s title at the right place and the page’s
content at its right place within the template. The most logic a view should have
is a conditional to confirm that a variable has a value before attempting to print it.
Some view files will have a loop to print out all the values in an array. The view
generates what the user sees, that’s it.

Decoupling the data from the presentation of the data is useful for two obvious
reasons. First, it allows you to easily change the presentation-the HTML, in a Web
page-without wading through a ton of PHP code. As you've no doubt created many
pages containing both PHP and HTML, you know how tedious it can be working
with two languages simultaneously. Thanks to MVC, you can create an entirely new
look for your whole site without touching a line of PHP.

{TIP} A result of the MVC approach is a site with many more files that
each contain less HTML and PHP. With the traditional Web development
approach, you’d have fewer, but longer, files.

A second, and more important, benefit of separating the data from the presentation
is that doing so lets you use the same data in many different outputs. In today’s
Web sites, data is not only displayed in a Web browser, it’s also sent in an email,
included as part of a Web service (e.g., an RSS feed), accessed via a console (i.e.,
command line) script, and so forth.

Finally, there’s the controller. A controller primarily acts as the glue between the
model and the view, although the role is not always that clear. The controller
represents actions. Normally the controller dictates the responses to user events: the
submission of a form, the request of a page, etc. The controller has more logic and
code to it than a view, but it’s a common mistake to put code in a controller that
should really go in a model. A guiding principle of MVC design is “fat model, thin
(or skinny) controller”. This means you should keep pushing your code down to
the foundation of the application (aka, the pyramid’s base, the model). This makes
sense when you recognize that code in the model is more reusable than code in a
controller.

{TIP} Commit this to memory: fat model, thin controller.

21

CHAPTER 1. FUNDAMENTAL CONCEPTS

To put this all within a context, a user goes to a URL like example.com/page/1/ (the
formatting of URLSs is a different subject). The loading of that URL is simply a user
request for the site to show the page with an ID of 1. The request is handled by a
controller. That controller would:

1. Validate the provided ID number.
2. Load the data associated with that ID as a model instance.
3. Pass that data onto the view.

The view would insert the provided data into the right places in the HTML template,
providing the user with the complete interface.

Structuring MVC in YII

With an understanding of the MVC pieces, let’s look at how Yii implements MVC in
terms of directories and files. I'll continue using a hypothetical CMS example as it’s
simple enough to understand while still presenting some complexity.

Each MVC piece-the model, the view, and the controller-requires a separate file, or
in the case of views, multiple files. Normally, a single model is entirely represented
by a single file, and the same is true for a controller. One view file would represent
the overall template and individual files would be used for page-specific subsets:
showing a page of content, the form for adding a page, etc.

With a CMS site, there would be one set of MVC pieces for pages, another set for
users, and another set for the comments. Yii groups files together by component
type-model, view, or controller, not by application component (i.e., page, user, or
comment). In other words, the models folder contains the page, user, and comment
model files; the controller folder contains a page controller file, a user controller file,
and a comment controller file. The same goes for a views folder, except that there’s
probably multiple view files for each component type.

{NOTE} Having exact parallel sets of MVC files for each component in
an application is a default initial setting, but a complete live site won't
normally have that same rigid symmetry.

For the Yii framework, model files are named ModelName.php: Page.php, User.php,
and Comment.php. As a convention, Yii uses the singular form of a word, with an
initial capital letter. In each of these files there would be defined one class, which is
the model definition. The class’s name matches that of the file, minus the extension:
Page, User, and Comment.

Within the model class, attributes (i.e., variables) and methods (functions) are used
to define that class and how it behaves. The class’s attributes would reflect the data
represented by that model. For example, a model for representing a contact form

22

CHAPTER 1. FUNDAMENTAL CONCEPTS

might have attributes for the person’s name and email address, the subject, and the
content. A model class’s methods serves roles such as returning some of the model’s
data in other formats. A framework will also use the model class’s attributes and
methods for other, internal roles, such as indicating this model’s relationships to
other models, dictating validation rules for the model’s data, changing the model
data as needed (e.g., assigning the current timestamp to a column when that model
is updated), and much more.

For most models, you'll also have a corresponding controller (not always, though:
you can have controllers not associated with models and models that don’t have
controllers). These files go in the controllers folder, and have the word “con-
troller” in their name: PageController.php, UserController.php, and Comment-
Controller.php.

Each controller is also defined as a class. Within the class, different methods identify
possible actions. The most obvious actions represent CRUD functionality: Create,
Read, Update, and Delete. Yii takes this a step further by breaking “read” into one
action for listing all of a certain model and another for showing just one. So in
Yii, the “page” controller would have methods for: creating a new page of content,
updating a page of content, deleting a page of content, listing all the pages of content,
and showing just one page of content.

The final component to cover are the views, which is the presentation layer. Again,
view files go into a views directory. Yii will then subdivide this directory by subject:
a folder for page views, another for user views, and another for comment view files.
In Yii, these folder names are singular and lowercase. Within each subdirectory
are then different view files for different things one does: show (one item), list
(multiple items), create (a new item), update (an existing item). In Yii, these files are
named simply create.php, index.php, view.php, and update.php, plus _form.php
(the same form used for both creating and updating an item).

There’s one more view file involved: the layout. This file (or these files, as one site
might have several different layouts) establishes the overall template: beginning
the HTML, including the CSS file, creating headers, navigation, and footers, ending
the HTML. The contents of the individual view files are placed within the greater
context of these layout files. This way, changing one thing, like the navigation,
for the entire site requires editing only one file. Yii names this primary layout file
main.php, and places it within the layouts subdirectory of views. Those individual
pieces are then brought into the primary layout file to generate the complete output.

MVC vs. Non-MVC
To explain MVC (specifically in Yii) in another way, let’s contrast it with a non-MVC
approach. If you're a PHP programmer creating a script that displays a single page
of content (in a CMS application), you'd likely have a single PHP file that:

1. Generates the initial HTML, including the HEAD and the start of the BODY

23

CHAPTER 1. FUNDAMENTAL CONCEPTS

Connects to the database

Validates that a page ID was passed in the URL

Queries the database

(Hopefully) confirms that there are query results

Retrieves the query results

Prints the query results within some HTML

Frees the query results and closes the database connection (maybe, maybe not)
Completes the HTML page

O PN WD

And that’s what'’s required by a rather basic page! Even if you use included files
for the database connection and the HTML template, there’s still a lot going on.
Not that there’s anything wrong with this, mind you-I still program this way as
warranted-but it’s the antithesis of what MVC programming is about.

Revisiting the list of steps in MVC, that sequence is instead:

A controller handles the request (viz., to show a specific page of content)
The controller validates the page ID passed in the URL

The framework (outside of MVC proper) establishes a database connection
The controller uses the model to query the database, fetching the specific page
data

The controller passes the loaded model data to the proper view file

The view file confirms that there is data to be shown

Ll e

The view file prints the model data within some HTML

The framework displays the view output within the context of the layout to
create the complete HTML page

9. The framework closes the database connection

® N

As you can see, MVC is just another approach to doing what you're already doing.
The same steps are being taken, and the same output results, but where the steps
take place and in what order will differ.

Signs of Trouble

I've said that beginners to MVC can easily make the mistake of putting code in the
wrong place (e.g., in a controller instead of a model). To help you avoid that, let’s
identify some signs of trouble up front. You're probably doing something wrong if:

* Your views contain more than just echo or print and the occasional control
structure.

* Your views create new variables.

* Your views execute database queries.

24

CHAPTER 1. FUNDAMENTAL CONCEPTS

* Your views or your models refer to the PHP superglobals: $_GET, $_POST,
$_SERVER, $_COOKIE, etc.

* Your models create HTML.

* Your controllers define methods that manipulate a model’s data.

As you can tell from that list, the most common beginner’s mistake is to put too
much programming (i.e., logic) into the views. The goal in a view is to combine
the data and the presentation (i.e., the HTML) to assemble a complete interface.
Views shouldn’t be “thinking” much. In Yii, more elaborate code destined for a
view can be addressed using helper classes or widgets (see Chapter 12, “Working
with Widgets”).

As already mentioned, another common mistake is to put things in the controller
that should go in a model (remember: fat models, thin controllers). You can think of
this relationship like how OOP works in general: you define a class in one script
and then another script creates an instance of that class and uses it, with some logic
thrown in. That’s what a controller largely does: creates objects (often of models),
tosses in a bit of logic, and then passes off the rendering of the output (usually, the
HTML) to the view files. This workflow will be explained in more detail in Chapter
3, “A Manual for Your Yii Site.”

Using a Web Server

Before getting into creating Yii-based applications, there are two more concepts with
which you must be absolutely comfortable. The first is your Web server, discussed
here, and the second is using the command-line interface, to be discussed next.
Understanding how to use both is the only way you can develop using Yii (and, one
could well argue, do Web development even without Yii).

{NOTE} Technically, it is possible to develop a Yii application with-
out using the command-line, but I would recommend you do use the
command-line tool, and you ought to be comfortable in a command-line
environment anyway.

Your Development Server

You can develop Yii-based sites anywhere, but I would strongly recommend that you
begin your projects on a development server and only move them to a production
server once the project is fairly complete. One reason I say this is that you'll need
to use the command-line interface to begin your Yii site, and a production server,
especially with cheaper, shared hosting, may not offer that option.

Another reason to use a development server is security: in the process of creating
your site, you'll enable a tool called Gii, which should not be enabled on a production

25

CHAPTER 1. FUNDAMENTAL CONCEPTS

server. Also, errors will undoubtedly come up during development, errors that
should never be shown on a live site.

Third, performance: useful debugging tools, such as Xdebug should not be enabled
on live sites, but are truly valuable during the development process.

Fourth, no matter the tools and the setup, it’s a hassle making changes to code
residing on a remote server. Unless you're using version control (which requires
even more learning), having to transfer edited files back and forth is tedious. If you
make your computer your development server, your browser will also be able to
load pages faster than if it had to go over the Internet.

So my advice is, before going any further, turn your computer into a development
server, if you have not already. You can install all-in-one packages such as XAMPP
for Windows or MAMP for Mac OS X, or install the components separately. What-
ever you decide, do this now. Once you have a complete site that you're happy with,
you can upload it to the production server.

{TIP} Some tricks explained in this book will require that you are able
to change how the Web server runs (i.e., edit Apache .htaccess files).
Having your own development server makes this more likely.

The Web Root Directory

Whether you're working on a production server or a development server,
you need to be familiar with the Web root directory. This is the folder on the
computer (aka the server) where a URL points to. For example, if you're using
XAMPP on Windows, with a default installation, the Web root directory is
C:\xampp\htdocs. This means that the URL http://localhost:8080/somepage.php
equates to C:\xampp\htdocs\somepage.php. If you're using MAMP on Mac OS
X, the Web root directory is /Applications/MAMP/htdocs (although this is easily
changed in the MAMP preferences).

I will occasionally make reference to the Web root directory. Know what this value
is for your environment in order to be able to follow those instructions.

Command Line Tools

The last bit of general technical know-how to have is how to use the command-
line tools on your server (even if your server is the same as your computer). The
command-line interface is something every Web developer should be comfortable
with, but in an age where graphical interface is the norm, many shy away from the
command-line. I personally use the command-line daily, to:

¢ Connect to remote servers

26

http://xdebug.org/
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.mamp.info/en/index.html

CHAPTER 1. FUNDAMENTAL CONCEPTS

¢ Interact with a database
® Access hidden aspects of my computer
¢ And more

But even if you don’t expect to do any of those things yourself, in order to create
a new Web site using Yii, you'll need to use the command-line once: to create the

initial shell of the site. Towards that end, there are three things you must be able to
do:

1. Access your computer via the command line
2. Invoke PHP
3. Accurately reference files and directories

Accessing the Command Line

On Windows, how you access your computer via the command-line interface will
depend upon the version of the operating system you have. On Windows XP and
earlier, this was accomplished by clicking Start > Run, and then entering cmd within
the prompt (Figure 1.3).

= Run ﬁﬂ

Type the name of a program, folder, document, of
Interne] resource, and Windows will apen i for you

Openc cmd -

e

Figure 1.3: The cmd prompt.

Then click OK.

As of Windows 7, there is no immediate Run option in the Start menu, but you can
find it under Start > All Programs > Accessories > Command Prompt, or you can
press Command+R from the Desktop.

However you get to the command-line interface, the result will be something like
Figure 1.4. The default is for white text on a black background; I normally inverse
these colors, particularly for book images.

27

CHAPTER 1. FUNDAMENTAL CONCEPTS

' N

BN C\Windows\system32\cmd.exe =nE X

Microsoft Windows [Uersion 6.1.7601] -
Copyright (c) 2009 Microsoft Corporation. All rights reserved. E

C:\Users\larry>

Figure 1.4: The command line interface on Windows.

{TIP} The command-line interface on Windows is also sometimes re-
ferred to as a “console” window or a “DOS prompt”.

On Mac OS X, the command-line interface is provided by the Terminal application,
within the Applications/Utilities folder. On Unix and Linux, I'm going to assume
you already know how to find your command-line interface. You're using *nix after
all.

Invoking PHP

Once you've got a command-line interface, what can you do? Thousands of things,
of course, but most importantly for the sake of this book: invoke PHP. A thing
the beginning PHP programmer does not know is that PHP itself comes in many
formats. The most common use of PHP is as a Web server module: an add-on that
expands what that Web server can do. There is also a PHP executable: a version that
runs independently of any Web server or other application. This executable can be
used to run little snippets of PHP code, execute entire PHP scripts, or even, as of
PHP 5.4, act as its own little Web server. It’s this executable version of PHP that
you’ll use to run the script that creates your first Yii-based Web application.

On versions of *nix, including Mac OS X, referencing the PHP executable is rarely a
problem. On Windows, it might be. To test your setup, type the following in your
command-line interface and press Enter/Return:

php -v

If you see something like in Figure 1.5, you're in good shape.

If you see a message along the lines of ‘php’ is not recognized as an internal or external
command, operable program, or batch file., there are two logical causes:

1. You have not yet installed PHP.
2. You have installed PHP, but the executable is not in your system path.

28

CHAPTER 1. FUNDAMENTAL CONCEPTS

|

NaN3s) 3} larryullman — The Yii Book "

Copyright (c) 1997-2812 The PHP Group
Zend Engine v2.4.8, Copyright (c) 1998-2812 Zend Technologies

with Xdebug v2.2.8rc2, Copyright (c) 2882-2812, by Derick Rethans
1 clear

Figure 1.5: The result if you can invoke the PHP executable.

If you have not yet installed PHP, such as even installing XAMPP, do so now. If you
have installed PHP in some way, then the problem is likely your path. The system
path, or just path, is a list of directories on your computer where the system will look
for executable applications. In other words, when you enter php, the system knows
to look for the corresponding php executable in those directories. If you have PHP
installed but your computer does not recognize that command, you just have to
inform your computer as to where PHP can be found. This is to say: you should
add the PHP executable directory to your path. To do that, follow these steps (these
are correct as of Windows 7; the particulars may be different for you):

1. Identify the location of the php.exe file on your computer. You can search for

it or browse within the Web server directory. For example, using XAMPP on

Windows, the PHP executable is in C:\xampp\php.

Click Start > Control Panel.

Within the Control Panel, click System and Security.

On the System and Security page, click Advanced System Settings.

On the resulting System Properties window, click the Environment Variables

button on the Advanced tab.

Within the list of Environment Variables, select Path, and click Edit.

Within the corresponding window, edit the variable’s value by adding a

semicolon plus the full path identified in Step 1.

8. Click OK.

9. Open a new console window to recognize the path change (i.e., any existing
console windows will still complain about PHP not being found).

G LN

N

Now the command php -v should work in your console. Test it to confirm, before
you go on.

{NOTE} If you have trouble with these steps, turn to the support forums
for assistance.

Referencing Files and Directories

Finally, you must know how to reference files and directories from within the
command-line interface. As with references in HTML or PHP code, you can use an

29

CHAPTER 1. FUNDAMENTAL CONCEPTS

absolute path or a relative one.

Within the operating system, an absolute path will begin with C:\ on Windows and
/ on Mac OS X and *nix. An absolute path will work no matter what directory you
are currently in (assuming the path is correct).

A relative path is relative to the current location. A relative path can begin with a
period or a file or folder name, but not C:\ or /. There are special shortcuts with
relative paths:

¢ Two periods together move up a directory
¢ A period followed by a slash (./) starts in the current directory

30

Chapter 2

STARTING A NEW
APPLICATION

Whether you skipped Chapter 1, “Fundamental Concepts,” because you know the
basics, or did read it and now feel well-versed, it’s time to begin creating a new Web
application using the Yii framework. In just a couple of pages you'll be able to see
some of the power of the Yii framework, and one of the reasons I like it so much: Yii
will do a lot of the work for you!

In this chapter, you'll take the following steps:

Download the framework

Confirm that your server meets the minimum requirements
Install the framework

Build the shell of the site

Test what you've created thus far

Gl L=

These are generic, but static steps, to be taken with each new Web site you create. In
Chapter 4, “Initial Customizations and Code Generations,” you'll have Yii begin
creating code more specific to an individual application.

Downloading Yii

To start, download the latest stable version of the Yii framework. At the time of
this writing, that’s 1.1.13. The file you download will be named something like
yii-version.release.ext (e.g., yii-1.1.13.e9e4a0.tar.gz or yii-1.1.13.e9e4a0.zip). Expand
the downloaded file to create a folder of stuff (Figure 2.1).

You should read the README and LICENSE docs, of course, but the folders are the
most important. The demos folder contains four Web applications written using

31

CHAPTER 2. STARTING A NEW APPLICATION

9‘-___:"- b larry ¥ Downloads ¢ yin-1L1.13.e%e4a0 » yu-

Organize = Include in hbrary = Share wath = Burm
Jemos
framework
requiréments

@ CHAMGELOG

@ LICENSE

2 README

@ UPGRADE

Figure 2.1: The contents of the downloaded Yii framework folder.

Yii: a blog, the game Hangman, a basic “Hello, World!”, and a phone book. The
demos are great for seeing working code as you're trying to write your own. The
framework folder is what's required by any Web site using Yii. The requirements
folder is something simple and brilliant, as you'll see in a moment.

Testing the Requirements

The first thing you need in order to use the Yii framework is access to a Web server
with PHP installed, of course. But if you're reading this, I'm going to assume you
have access to a PHP-enabled server (if not, see my recommendations). Note that
the Yii framework does require PHP 5.1 or above (in version 1 of Yii; version 2
requires PHP 5.3). Fortunately, the framework will test your setup for you, as you're
about to see.

To confirm that your server meets the minimum requirements for using Yii, follow
these steps:

1. Copy the requirements folder from the Yii download to your Web root direc-
tory.
2. Load yourURL/requirements in your Web browser (e.g., http://localhost/requirements/).

3. Look at the output to confirm that your setup meets the minimum require-
ments (Figure 2.2).

32

CHAPTER 2. STARTING A NEW APPLICATION

4. If your server does not meet the minimum requirements, reconfigure it, install
the necessary components, etc., and retest until your setup does meet the
requirements.

Yii Requirement Checker
Description

This wrigd chain il yosar seras conlguesticn mest ihe eeguinementy for ruening T Web spplicationy. i ohacky il the 1ameer
in g ihe vighe verian of MNP, @ agprogriaie PP exisnsiam hoee e laded, and il phpin Tie seitinga ane cormst

Conclusion

Eir LR SOnar e LA Teen TR TeriaTed T g e by i Pl LF Ry BIEEGN 10 the warmingu livied baboss il yoir
appdiratizn will use the comeppond s featurer

Details
Mame Eesull Bequiied By LLE
FHF erriien i 0 grrepergerd P 400 ar hejbent o rigueredl.
5 _SIRVIR wariabie i W g
Aefaciion Futeasion Yii Fagrraarsh
BORE stanpon Yol Exarreaiak
T s b bIEFT
(DO gt i LT, O Rty alist
PO gt rrisns AN D -selaled shidied
FIHD SO eaienuian Al fi-elaied $hnae Thin in reguired # you are ming Wi e databane.
P Wi
et el Al Df i elated dhidsied This id iguaned il yiou Bee el My SO detabiis
PO PovigeeSil - Thig b8 redguined i v 20 wing Peargneil
ERTEAR R R] datahaie
PO Qeaike
[fi-relaied shanaey %
TSR Warrang AN This in requined il you are sning dracle daishaor
:?E"ﬁ?' - A3 Thig i recpuined i you s eing MU, desabus
rarvy AN D -islalsdd dhidiss From LS Windows
iptks_rasgh
:E"I.ﬂmﬂ- Al et Thig b resguined i v g wing MSSOH. clesabuis
ipda_dislibl Troeee CRULinsgn, o0 ooty Pha
PN RSSO
oo ey A Dttt s TR e e e L s
e walur .
Memcachs exianpion [IREBSEN CMersiche
BT 1R Woarrersy CADIC e
ARl pulenas [Srblas dger Thig i3 fedquaned by aac vl sl sl eppd rreptbadh.
S0P paterdion CEpkierion. CWehiendoetion
O aabeniion with
Nene Typer nuppori
ar Irmagrsagok Llaptihaticiion
wsbenuizn with
N vwppart

oy Bulerians

Poussed | tuted wasvirg

Figure 2.2: This setup meets Yii's minimum requirements.

Assuming your setup passed all the requirements, you're good to go on. Note that
you don’t necessarily need every extension: you only need those marked as required
by the Yii framework, plus PDO and the PDO extension for the database you'll be
using. (If you're not familiar with it, PDO is a database abstraction layer, making
your Web sites database-agnostic.) The other things being checked may or may not
be required, depending upon the needs of the actual site you're creating.

Yii's testing of the requirements is a simple thing, but one I very much appreciate. It
also speaks to what Yii is all about: being simple and easy to use. Do you want to

33

CHAPTER 2. STARTING A NEW APPLICATION

know if your setup is good enough to use Yii? Well, Yii will tell you!

Assuming your setup meets the requirements, you can now install the framework
for use.

Installing the Framework

Installing the Yii framework for use in a project is just a matter of copying the
framework folder from the Yii download to an appropriate location. For security
reasons, this should not be within your Web root directory.

{WARNING/ Keep the Yii framework folder outside of your Web root
directory, if at all possible.

If you're going to be using Yii for multiple sites on the same server, place the
framework folder in a logical directory relative to every site. That way, when you
update the framework, you’ll only need to replace the files in one place.

As an added touch, you could place the framework folder in a directory whose
name reflects the version of the framework in use, such as C:\xampp \yii-1-1-12\
on Windows. Wherever you move (or copy) the frameworks folder to, make a note
of that location, as you'll need to know it when you go to create your Yii-based
application.

Building the Site Shell

Once you've installed the framework, you can use it to build the shell of the site.
Doing so requires executing a PHP script from the command-line interface. This
is done via the Yii framework’s yiic file. This is an executable that is run using the
computer’s command-line PHP and that really just executes the yiic.php script.

{TIP} If you'll be putting the site on a server that you do not have
command-line access to, then you should install a complete Web server
(Apache, PHP, MySQL, etc.) on your computer, run through these steps,
then upload the finished project once you've completed it.

Depending upon your system, you may be able to execute the yiic file using just
yiicorusing ./yiic (i.e., run the yiic command found in the current directory).
Or you can more explicitly call the PHP script using php yiic or php yiic.php.
My point here is that if at first you don’t succeed using the instructions to follow, try
appropriate variations until you get it right for your system.

34

CHAPTER 2. STARTING A NEW APPLICATION

{NOTE/} In somewhat rare situations, the version of PHP used to execute
the command line script will not be the same one that passed the Yii
requirements. If that’s the case for you, you'll need to explicitly indicate
the PHP executable to be used (i.e., the one installed with your Web
server).

Once you know you've figured out the proper syntax for invoking yiic, you follow
that by “webapp”, which is the command for “create a new Web application”.
Follow this with the path to the Web application itself. This can be either a relative
or an absolute path (again, see Chapter 1), but must be within the Web root directory.

As an example, assuming that the frameworks folder is one step below the Web

root directory, which I'll call htdocs, the command would be just

./yiic webapp ../htdocs

or

php yiic webapp ../htdocs

Or whatever variation on that you need to use.

You'll be prompted to confirm that you want create a Web application in the given
directory. Enter Y (or Yes) and press Return. After lots of lines of information,
you should see a message saying that the application has successfully been created
(Figure 2.3).

|

e 00D f_]framew-::rk—yii—l.l.li — The Yii Book i’

generate protected/yiic.php
mkdir /Users/larryullman/Sites/htdocs/themes
mkdir fUsers/larryullman/Sites/htdocs/themes/classic
mkdir /Users/larryullman/Sites/htdocs/themes/classic/views
generate themes/fclassic/views/.htaccess
mkdir /Users/larryullman/Sites/htdocs/themes/classic/views/layouts
mkdir /Users/larryullman/Sites/htdocs/themes/classic/views/site
mkdir /Users/larryullman/Sites/htdocs/themes/classic/views/system

Your application has been created successfully under fUsers/larryullman/Sites/htdocs.

Figure 2.3: The shell of the Yii application has been built!

Here, then, is the complete sequence:

1. Access your computer using the command-line interface. See Chapter 1 if you
don’t know how to do this.

2. Move into the framework directory using the command cd /path/to/framework.
The cd command stands for “change directory”. Change the /path/to/framework
to be accurate for your environment.

35

CHAPTER 2. STARTING A NEW APPLICATION

3. Create the application using yiic webapp /path/to/directory or
whatever variation is required. Again, change the /path/to/directory to be
appropriate for your environment. You may also need to invoke PHP overtly.

4. Enter “Y” at the prompt.

{TIP} If you’'ll be using Git with your site, the yiic tool can create the
necessary Git files, too (e.g., .gitignore and .gitkeep). Just add “git” after
the path to the destination directory.

{NOTE} If the PHP executable does not have permission to create the
necessary site files in the destination directory, you’ll need to change
the permissions on that directory. To do so, enter this command from
the command-line interface: chmod -R 755 /path/to/directory.
You may have to preface this with sudo, depending upon your environ-
ment. It is uncommon that you'll need to do this, however.

Testing the Site Shell

Unless you saw an error message when you created the site shell, you can now test
the generated result to see what you have. To do so, load the site in your browser
by going through a URL, of course (Figure 2.4).

My Web Application
[=K Logout
elcome to My Web Application

Congralulalions’

Figure 2.4: The shell of the generated site.

As for functionality, the generated application already includes:

¢ A home page with further instructions (see Figure 2.4)
¢ A contact form, complete with CAPTCHA

¢ Alogin form

¢ The ability to greet a logged-in user by name

36

CHAPTER 2. STARTING A NEW APPLICATION

¢ Logout functionality

It’s a very nice start to an application, especially considering you haven’t written a
line of code yet! Do note that the contact form will only work once you've edited
the configuration to provide your email address. For the login, you can use either
demo/demo or admin/admin (username/password). Lastly, the exact look of the
application may differ from one version of the Yii framework to another.

So that’s the start of a Yii-based Web application. For every site you create using
Yii, you'll likely go through these steps. In the next chapter, I'll explain how the site
you've just created works.

37

Chapter 3

A MANUAL FOR YOUR YII SITE

Now that you have generated the basic shell of a Yii-based site, it’s a good time to
go through exactly what it is you have in terms of actual files and directories. This
chapter, then, is a manual for your Yii-based Web application. In it, you'll learn what
the various files and folders are for, the conventions used by the framework, and
how the Yii site works behind the scenes. Reading this chapter and understanding
the concepts taught herein should go a long way towards helping you successfully
and easily use the Yii framework.

The Site’s Folders

The yiic command-line tool generates the shell of the site, including several folders
and dozens of files. Knowing how to use the Yii framework therefore begins with
familiarizing yourself with the site structure.

In the folder where the Web application was created, you'll find the following:

¢ assets, used by the Yii framework to make necessary resources available

* css

* images

¢ index.php, a “bootstrap” file through which the entire Web site will be run
¢ index-test.php, a development version of the bootstrap file

¢ protected, where all the site-specific PHP code goes

¢ themes, for theming your site, as you would with a WordPress blog

Of these folders, you'll use css and images like you would on a standard HTML or
PHP-based site. Conversely, you'll never directly do anything with the assets folder:
Yii uses it to write cached versions of Web resources there. For example, modules
and components will come with necessary resources: CSS, JavaScript, and images.
Rather than forcing you to copy these resources to a public directory—and to avoid

38

CHAPTER 3. A MANUAL FOR YOUR YII SITE

potential naming conflicts, Yii will automatically copy these resources to the assets
directory as they are needed. Yii will also provide a copy of the jQuery JavaScript
framework there. Note that you should never edit files found within assets. Instead,
on the rare occasion you have that need, you should edit the master file that gets
copied to assets (this will mean more later in the book). You can delete entire folders
within assets to have Yii regenerate the necessary files, but do not delete individual
files from within subfolders.

{WARNING/ The assets folder must be writable by the Web server or else
odd errors will occur. This shouldn’t be a problem unless you transfer
a Yii site from one server to another and the permissions aren’t correct
after the move.

The themes folder can be ignored unless you implement themes. I don’t personal
use themes that often, and don’t formally cover the subject in the book. For more on
this subject, see the Yii documentation.

The protected folder is the most important folder: you'll edit code found in that
folder to change the look and behavior of the site. Unlike the other files and folders,
the protected folder does not actually have to be in the Web root directory. In fact,
for security purposes it is recommended to move it elsewhere (as explained in the
next chapter).

{TIP} The protected folder is known as the application base directory in the
Yii documentation.

Within the protected folder, you'll find these subfolders:

e commands, for yiic commands

¢ components, for defining necessary site components

* config, which stores your application’s configuration files

¢ controllers, where your application’s controller classes go

* data, for storing the actual database file (When using SQLite) or database-
related files, such as SQL commands

¢ extensions, for third-party extensions (i.e., non-Yii-core libraries)

* messages, which stores messages translated in various languages

* migrations, for automating database changes

* models, where your application’s model classes go

¢ runtime, where Yii will create temporary files, generate logs, and so forth

¢ tests, where you’d put unit tests

¢ views, for storing all the view files used by the application

You'll also find three scripts related to the yiic tool.

39

http://www.yiiframework.com/doc/
http://www.sqlite.org/

CHAPTER 3. A MANUAL FOR YOUR YII SITE

{WARNING/ The protected/runtime folder must be writable by the Web
server.

The views folder has some predefined subfolders, too. One is layouts, which will
store the template for the site’s overall look (i.e., the file that begins and ends the
HTML, and contains no page-specific content). Within the views folder, there will
also be one folder for each controller you create. In a CMS application, you would
have controllers for pages, users, and comments. Each of these controllers gets its
own folder within views to store the view files specific to that controller.

Again, all of these are within the protected folder, also known as the application
directory. The vast majority of everything you’ll do with Yii throughout the rest of
this book and as a Web developer will require making edits to the contents of the
protected folder.

Referencing Files and Directories

Because the Yii framework adds extra complexity in terms of files and folders, the
framework uses several aliases to provide easy references to common locations.

Alias References
system framework folder
zii Zii library location

application protected folder
webroot directory where you can find the index file

ext protected/extensions

If you're using modules in your site (to be covered in Chapter 15, “Working with
Modules”), there will be aliases for each module as well.

As for an example of how these aliases are used, if you were to take a peek at the
protected/config/main.php file, to be discussed in great detail in the next chapter,
you'd see this code:

"import'=>array (
'application.models.x"',
'application.components.x',

) s

That code imports all of the class definitions found in the protected/models and
protected/components folders, because “application” is an alias for the protected

40

CHAPTER 3. A MANUAL FOR YOUR YII SITE

folder.

Yii Conventions

The Yii framework embraces the “convention over configuration” approach (also
promoted by Ruby on Rails). What this means is that although you can make
your own decisions as to how you do certain things, it’s preferable to adopt the
Yii conventions. Fortunately, none of the conventions are that unusual, in my
experience.

If you really don’t like doing something a certain way, Yii does allow you to change
the default convention, but doing so requires a bit more work (i.e., code) and
increases the potential for bugs. For example, if you want to organize your protected
directory in another manner, such as move the view files to another directory, you
can, you just need to take a couple more steps.

Let’s first look at the conventions Yii expects within the PHP code and then turn to
the underlying database conventions.

PHP Conventions

First, Yii recommends using upper-camelcase for class names-SomeClass—and lower-
camelcase for variables and functions: someFunction, someVar, etc. Camelcase, in case
it’s not obvious, uses capital letters instead of underscores to break up words; lower-
and upper-camelcase differ in whether the first letter is capitalized or not. Private
variables in classes (i.e., attributes) are prefixed with an underscore: $_someVar. All
of these conventions are fairly common among OOP developers.

7

Additionally, any controller class name must also end with the word “Controller”
(note the capitalization): MyController.

Files that define classes should have the same name, including capitalization, as
the classes they define, plus the .php extension: the MyController class gets defined
within the MyController.php file. Again, this is normal in OOP.

You'll also find that Yii prefixes almost all of ifs classes with a letter to avoid colli-
sion issues (i.e., the name of one class conflicting with another). Most Yii classes
are prefaced with a capital “C”-CMenu, CModel, except for interfaces, which are
appropriately prefaced with a capital “I”: IAction or IWebUser.

{TIP} An interface is a special type of class that dictates what methods a
class that implements that interface must have defined. Put another way,
an interface acts like a contract: in order for objects of this class type to
be usable in a certain manner, the class must have these methods.

41

http://rubyonrails.org

CHAPTER 3. A MANUAL FOR YOUR YII SITE

Database Conventions

The Yii convention is for the database to use all lowercase letters for both table names
and column names, with words separated by underscores: comment, first_name, etc.
It is recommended that you use singular names for your database tables—user, not
users, although Yii will not complain if you use plural names. Whatever you decide,
consistency is the most important factor (i.e., consistently singular or consistently
plural).

You can also prefix your table names to differentiate them from other tables that
might be in your database but not used by the Yii application. For example, your Yii
site tables might all begin with yii_ and your blog tables might begin with wp_.

How Yii Handles a Page Request

The next thing to learn about your new site is how the Yii framework handles
something as basic as a page request. Learning this workflow will go a long way
towards understanding the greater Yii context.

In a non-framework site, when a user goes to http://www.example.com/page.php
in her Web browser, the server will execute the code found in page.php. Any output
generated by that script, including HTML outside of the PHP tags, will be sent to
the browser. In short, there’s a one-to-one relationship: the user requests that page
and it is executed. The process is not that simple when using Yii (or any framework).

First, whether it’s obvious or not, all requests in a Yii-based site will actually go
through index.php. This is called the “bootstrap” file. With Yii, and some server
configuration, all of these requests will be funneled through the bootstrap file:

¢ http://www.example.com/
http://www.example.com/index.php
http://www.example.com/index.php?r=site
http://www.example.com/index.php?r=site/login
http://www.example.com/site/login/
http://www.example.com/page/35/

Note that other site resources, such as CSS, images, JavaScript, and other media,
will not be accessed via the bootstrap file, but the site’s core functionality—the PHP
code-will.

Let’s look at what the bootstrap file does.
The Bootstrap File

The contents of the index.php file, automatically generated by the yiic command,
will look something like this:

42

10

11

12

13

CHAPTER 3. A MANUAL FOR YOUR YII SITE

<?php

// change the following paths 1f necessary
$yii=dirname(_FILE_).'/../yii-dir/framework/yii.php';
$config=dirname (__FILE__).'/protected/config/main.php';

// remove the following lines when in production mode
defined ('YII _DEBUG') or define('YII_DEBUG', true);

// specify how many levels of call stack should be shown in
// each log message

defined ('YII_TRACE_LEVEL') or define('YII_TRACE_LEVEL', 3);

require_once ($yii) ;
Yii::createWebApplication ($config)->run();

Line 3 identifies the location of the Yii framework directory, and specifically the
yii.php script within it. The next line identifies the configuration file to use for this
application. By default, that configuration file is found within the config directory of
the protected folder. The next two lines (7 and 10) establish the debugging behavior.

{TIP} The index-test.php bootstrap file mostly differs in that it includes
an alternate configuration file and is meant to be used in conjunction
with unit testing.

At the end of the script, the yii.php page is included (line 12). This script defines
the Yii class. The final line invokes the createWebApplication () method of
the Yii class. This method is provided with the location of the configuration file.
The method will return a “Web application” object (technically, in Yii, an object of
type CWiebApplication). The Web application object has a run () method, which
starts the application. The last line of code is just a single line version of these two
steps:

Sapp = Yii::createWebApplication (Sconfig);
Sapp->run () ;

{NOTE} The Yii: :createWebApplication () syntax is an example
of calling a class method directly through the class, without a class
instance (i.e., an object). There are OOP design reasons for taking this
approach, made possible by defining the method as “static”.

That’s all that’s happening in the bootstrap file: a Web application object is created
and started, using the configuration settings defined in another file. Everything that
will happen from this point on happens within the context of this application object.
What happens next depends upon the route, but let’s look at the application object
in more detail first.

43

CHAPTER 3. A MANUAL FOR YOUR YII SITE

The Application Object

So what does it mean to say that the Web site runs through the application object?
First, the application object manages the components used by the site. For example,
the “db” component is used to connect to the database and the “log” component
handles any logging required by the site. I'll get back to components in a couple of
pages, just understand here that components are made available to the site through
the application object.

The second important task of the application object is to handle the user request. By
“user request”, I mean the viewing of a particular page, the submission of a form,
and so forth. The handling of the user request is known as routing: reading the
user’s request and getting the user to the desired end result.

Before explaining routing, let’s get a bit more technical about the application object
itself. Within your PHP code, you can access the application object by invoking the
static app () method of the Yii class. This is to say: Yii: :app (). Whether you
need to access the name of the application in a view file (e.g., to set the page title),
store a value in a session, or get the identity of the current user, that will be done
through vii: :app (). This is what I mean when I say that the Web application
object is the “context” through which the site runs.

Visually, the bootstrap file’s operations can be portrayed as in (Figure 3.1).

index.php application application
object components

Figure 3.1: The index page creates an application object which loads the applica-
tion components.

Routing

As already mentioned, in a non-framework site, the user request will be quite lit-
eral (e.g., http://www.example.com/page.php). Yii also uses the URL to identify
requests, but all requests instead go through index.php. To convey the specific
request, the route is appended to the URL as a variable. In the default Yii behavior,
the request syntax is index.php?r=ControllerID/ActionID. All that’s happening
there is that a GET variable is passed to index.php. The variable is indexed at r,
short for “route”, and has a value of ControllerID/ActionlD.

Controllers, as explained in the section on the MVC approach, are the agents in an
application: they handle requests and implement the work to be done. In the default

44

CHAPTER 3. A MANUAL FOR YOUR YII SITE

site shell created by the yiic command, there will be one controller: site. In keeping
with Yii conventions, the “site” controller is defined in a class called SiteController in
a file named SiteController.php, stored in the protected/controllers directory. The
ID of this controller is the name of the class, minus the word “Controller”, all in
lowercase. Hence: “site”.

Every controller can have multiple actions: specific things done with or by that
controller. Four of the actions defined by default in the site controller are: error,
login, logout, and contact. As you'll learn about in much more detail in Chapter 7,
“Working with Controllers,” actions are created by defining a method within the con-
troller named “action” plus the action name: actionError (), actionLogin (),
actionLogout (),and actionContact (). The action ID is the name of the func-
tion, minus the initial “action”, all in lowercase. Hence: “error”, “login”, “logout”,
and “contact”.

Putting this all together, when the user goes to this URL:
http://www.example.com/index.php?r=site/login

That is a request for the “login” action of the “site” controller. Behind the scenes,
the application object will read in the request, parse out the controller and action,
and then invoke the corresponding method accordingly. In this case, that URL has
the end result of calling the actionLogin () method of the SiteController class.

That’s all there is to routing: calling the correct method of the correct controller class.
The controller method itself takes it from there: creating model instances, handling
form submissions, rendering views, etc. (Figure 3.2).

There are a couple more things to know about routes. First, if an action
is not specified, then the default action of the controller will be executed.
This is normally the “index” action, represented by the actionIndex ()
method. A request with a controller but no action would be of the format
http://www.example.com/index.php?r=site.

Second, if neither an action nor a controller is indicated, Yii will execute the default
action of the default controller. This is the “index” action of the “site” controller,
generated by yiic.

Third, many requests will require additional information to be passed along. For
example, a CMS site will have a “page” controller responsible for creating, reading,
updating, and deleting pages of content. Each of these tasks constitutes an “action”.
Three of those—all but “create”—also require a page identifier to know which page
of content is being read, updated, or deleted. In such cases, the request URL will
become of the format http://www.example.com/index.php?r=page/delete&id=25.

Fourth and finally, although the default request syntax is—
http://www.example.com/index.php?r=ControllerID/ActionID

This format is commonly altered for Search Engine Optimization (SEO) purposes.
With just a bit of customization, the format can be changed to:

45

CHAPTER 3. A MANUAL FOR YOUR YII SITE

index.php application application
object components

model view

Figure 3.2: Subsequent steps involve the correct controller being called, accessing
models, and rendering views.

http://www.example.com/index.php/ControllerID/ActionID/

Taken a step further, you can drop the index.php reference and configure Yii to
accept http://www.example.com/ControllerID/ActionID/. Using the examples al-
ready explained, resulting URLs might be:

http://www.example.com/site/
http://www.example.com/site/login/
http://www.example.com/page/create/
http://www.example.com/page/delete/id/25/

You'll see how this URL manipulation is done in Chapter 4, “Initial Customizations
and Code Generations.”

46

Chapter 4

INITIAL CUSTOMIZATIONS
AND CODE GENERATIONS

After you've created the shell of your Web application, and once you're fairly
comfortable with what Yii has generated for you, it’s time to start tweaking what was
generated to customize your site. First, you'll want to change how your application
runs. The first half of the chapter will explain how you do that and introduce the
most common settings you'll want to adjust.

Then, it’s time to have Yii generate more code for you. But instead of creating
just a generic site template, you'll have Yii build boilerplate code based upon the
particulars of the database schema you'll be using for the application.

Enabling Debug Mode

When developing a site, the first thing you’ll want to do is make sure that the
debugging mode is enabled. This is done (for the entire site) in the bootstrap file,
thanks to this line:

defined ('YII_DEBUG') or define('YII_DEBUG', true);

Written out less succinctly, that line equates to:

if (!'defined('YII_DEBUG')) {
define ('YII_DEBUG', true);

In short: set debugging to true if it’s not already set. This is the default for any
newly generated site, but you may want to check that this line is present, just in case
you're working with a site someone has already edited, or in case Yii later changes

47

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

this default. With debugging enabled, Yii will report problems to you should they
occur (and they will).

In index.php, the next line of code dictates how many levels of call stack are shown
in a message log;:

defined('YII_TRACE_LEVEL') or define('YII_TRACE_LEVEL', 3);

The call stack is a history of what files, functions, etc., are included, invoked, and so
forth. With a framework, the simple loading of the home page could easily involve
a dozen actions. In order to restrict the logged (i.e., recorded) data to the freshest,
most useful information, the call stack is limited by that line to just the most recent
three actions. If you find that’s too much or not enough information when you are
debugging, just change that value.

While you're checking your debugging settings, I'd recommend that you also con-
firm that PHP’s display_errors setting is enabled. If it’s not, then parse errors will
result in a blank screen.

{TIP} You can check your PHP’s display_errors setting by calling the
phpinfo () function.

Note that both of these recommendations are for sites that you are developing. Due
to the extra debugging information and logging, sites running with these settings
will be slower. A production site on a live server should have Yii’s debugging mode
disabled (by removing that line of code in index.php) and PHP’s display_errors
setting turned off. You'll read more on what else you should do before going live in
Chapter 26, “Shipping Your Project.”

Moving the Protected Folder

Next, for security purposes, you ought to move your protected folder outside of
the Web root directory. This isn’t mandatory, as there is an .htaccess file within
protected to prevent direct access, but if you can move the protected folder, you
should.

{NOTE} Some (cheaper) hosting environments will not allow you to put
things outside of the Web root directory. In such cases, just leave the
protected folder where it is and don’t edit the index.php file.

Assuming that the folder C:\xampp\htdocs\ is my Web root directory (where the
site is located), then I would move protected to C:\xampp. After doing that, the
bootstrap file has to be updated so it can find the protected folder. Change this line:

48

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

Sconfig=dirname (___FILE_) .'/protected/config/main.php';
to
Sconfig=dirname (__FILE_).'/../protected/config/main.php"';

The difference is the addition of the two periods before “/protected”, saying to go
up one directory to find the protected folder.

You can now save the index file and reload the site in your Web browser to confirm
that everything still works.

Basic Configurations

Aside from ensuring that debugging is enabled and possibly changing the location
of your protected folder, the rest of your site configuration will go within a configu-
ration file. Let’s first look at where the configuration files are and how they work,
and then walk through the most important changes to make.

The Configuration Files

If you look in the protected/config directory, you’ll find that three configuration
files have been generated for you:

¢ console.php, for configuring console applications
¢ main.php, for the production site
¢ test.php, for testing mode

If you look at index.php, you'll see that it includes main.php as its configuration file.
The index-test.php bootstrap is exactly the same as index.php, except that index-
test.php includes the test configuration file. However, the test configuration file just
includes the main configuration file, then also enables the CDbFixtureManager
component, used for unit testing. The index-test.php file also omits the call stack
limitation.

{TIP} Chapter 20, “Implementing Unit Tests,” will explain how to per-
form unit testing in Yii.

If you open the main configuration file in your text editor or IDE, you'll see that all
it does is return an array of name=>value pairs. The first question you may have
is: How do I know what names to use and what values (or value types)? Over the

49

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

rest of this chapter, I'll explain the most important names and values, but the short
answer is: Any writable property of the CWebApplication class can be configured
here. Okay, how’d I know that?

As explained in the previous chapter, the bootstrap file creates a Web application
object through which the entire site runs. That object will actually be an instance of
type CWWebApplication. The configuration file, therefore, configures this object.
And by “configures”, mean that the configuration file sets the values for the object’s
public, writable properties. In other words, the configuration file is a way to tell the
Yii framework: when you go to create an object of this type, use these values. That’s
all that’s happening in the configuration file, but it’s vital.

For example, CWebApplication has a name property, which takes a string as the
name of the application. By default, yiic creates this for you:

return array (
'name'=>'My Web Application',
// Lots of other stuff.

)i

All you have to do is change the value of the name element in that array and you’ll
have successfully changed the name of your Web application. (The application
name, by the wayj, is used in page titles and other places.)

As the configuration file is extremely important, you really have to master how it
works. To do that, I would first recommend that you be very careful when making
edits. Because the whole file returns an array, and because many of the values will
also be arrays, you'll end up with nested arrays within nested arrays. A failure to
properly match parentheses and use commas to separate items will result in a parse
€error.

{TIP} You may want to always start by making a duplicate of your
existing, working configuration file, before performing new edits.

My second tip is to learn how to read the Yii class documentation, starting with
the page for CWebApplication. For example, I said that the configuration file can
be used for any writable property of that class; using the docs, you can find out
what properties exist, what types of values they expect, and whether or not they are
writable. Figure 4.1 shows the manual’s description of name:

You can see that the property expects a string value and that it defaults to “My
Application” (although the configuration file overwrites that value with “My Web
Application”). Now you know that name must be assigned a string.

Conversely, look at the documentation for request (Figure 4.2):
This is a read-only property, meaning you cannot assign it a new value in the config-

uration file.

50

http://www.yiiframework.com/doc/api/
http://www.yiiframework.com/doc/api/1.1/CWebApplication

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

name property
public string $name;

the application name. Defaults to 'My Application’.

Figure 4.1: The Yii docs for the name property of the CWebApplication class.
request property read-only
public CHttpRequest getRequest()

Returns the request component.

Figure 4.2: The Yii docs for the request property of the CWebApplication
class.

With this introduction to the configuration file in mind, let’s go through the most
common and important configuration settings for new projects. Throughout the
course of the book, you'll also be introduced to a few other configuration settings,
as appropriate.

Configuring Components

Rather than walk through the configuration file sequentially, I'm going to go in
order of most important to least. Arguably the most important section is components.
Components are application utilities that you and/or Yii have created. To start,
you’ll configure how your application uses Yii’s predefined components.

Predefined Components

The Yii framework defines 16 core application components for you, representing
common needs. Just some of those are:

¢ authManager, for role-based access control (RBAC)

¢ cache, for caching of site materials

¢ clientScript, through which client-side tools—JavaScript and CSS—can be man-
aged

¢ db, which provides that database connection

51

http://www.yiiframework.com/doc/guide/1.1/en/basics.application#core-application-components

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

* request, for working with user requests
* session, for working with sessions
¢ user, which represents the current user

Those names are the corresponding configurable CWebApplication properties.
For each component, Yii defines a class that does the actual work.

In this chapter, I'll explain the basic configuration of the components that are most
immediately needed. Throughout the rest of the book, I'll introduce other predefined
components as warranted.

Enabling and Customing Components

Components are made available to the Yii application, and customized, via the

4 “”

configuration file’s “components” section:

return array (
'name'=>'My Web Application’,
'components' => array (
), // End of components array.
// Lots of other stuff.

)i

Within the “components” section of the configuration file, each component is de-
clared and configured using the syntax:

'componentName' => array(/* configuration values x/)

The names of the predefined components are: “authManager”, “cache”, and the
others already mentioned, plus a few more listed in the manual (and discussed,
when appropriate, in this book). The name is also the component’s ID.

As for the values, they will vary from one component to the next. To know what
configuration is possible for a component, you'll need to look at the underlying
class that provides that component’s functionality. For example, the db component
provides a database connection. The associated class is CDbConnection. In other
words, when a database connection is required, an object of CDbConnection type
will be created. The “db” element of the “components” section of the configuration
file can set the values of that object’s properties.

Looking at the Yii API reference (aka, the class documentation), you can see that the
CDhbConnection class has a public, writable username property. Therefore, that
property’s value can be assigned in your configuration file:

52

http://www.yiiframework.com/doc/api/

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

'components' => array (
'db' => array (
'username' => 'someuser'

) // End of db array.
), // End of components array.

With that line in the configuration file, when the site needs a database connection,
Yii will create an instance of CDbConnection type, using “someuser” as the value
of the object’s username property.

{NOTE} Just as the whole configuration file can only assign values to
the writable properties of the CWebApplication object, individual
configurations can only assign values to the writable properties of the
associated class (e.g., the writeable properties of CDbConnection).

Over the next few pages, I'll explain the most important ways to configure the most
important components. But first, there are two more things to know about these
application components.

First, Yii wisely only creates instances of application components when the com-
ponent is used. For example, if you configure your Web site to have a database
component, Yii will still only create that component on pages of your site that use
the database. Thanks to Yii's automatic management of components, your site
will perform better without you having to perform tedious tweaks and edits on a
page-by-page basis (i.e., to turn components on and off).

Still, Yii can be told to always create an instance of a component. This is done through
the “preload” element of the main configuration array:

'preload'=>array('log'),

By default, the logging component is always loaded. To always load other com-
ponents, you would just add those component IDs to that array. Although, for
performance reasons, you should only do so sparingly.

The second thing to know about application components is how to access them
in your code (e.g., in controllers). Components are available in your code via
Yii::app () ->ComponentID, where the ComponentID value comes from the con-
figuration file. For example, in theory, you could change the database username on
the fly (although you never would):

Yii::app () —>db->username = 'this username';

With this understanding of how components in general are configured, let’s look at
a handful of the most important components when starting a new Yii application.

53

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

Connecting to the Database

Unless you are not using a database, you'll need to establish the database connection
before doing anything else. (And if you're not using a database, there’s probably
a good argument that you shouldn’t be using a framework, either.) Establishing
the database connection is accomplished through the “db” component, as already
mentioned. In the default configuration file created by Yii, a connection to an SQLite
database is established:

'db'=>array (
'connectionString' =>
'sqlite:'.dirname(___FILE_).'/../data/testdrive.db'

) s

If you are using SQLite for your project, just change that line so that it correctly
points to the location of your SQLite database. If you're not using SQLite, comment
out or remove those three lines of code and take a look at the lines following it in
the configuration file:

'db'=>array (

'connectionString' => 'mysgl:host=localhost;dbname=testdrive’',
'emulatePrepare' => true,

'username' => 'root',

'password' => '"',

'charset' => 'utf8',

),

By default, those lines will be disabled as they are surrounded by the /% and «/
comment tags. Remove those tags to enable this configuration. Then you'll need to
change the values to match your setup.

The connection string is a DSN (Database Source Name), which has a precise
format. It starts with a keyword indicating the database application being used, like
“mysql”, “pgsql” (PostgreSQL), “mssql” (Microsoft’s SQL Server), or “oci” (Oracle).
This keyword is followed by a colon, then, depending upon the database application
being used, and the server environment, any number of parameters, each separated
by a semicolon:

¢ mysql:host=localhost;dbname=test
* mysql:port=8889;,dbname=somedb

¢ mysql:unix_socket=/path/to/mysql.sock;dbname=whatever

Indicating the database to be used is most important. Depending upon your en-
vironment, you may also have to set the port number or socket location. For me,

54

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

when using MAMP on Mac OS X, I had to set the port number as it was not the
expected default (of 3306). On Mac OS X Server, I had to specify the socket, as the
expected default was not being used there. Also do keep in mind that you'll need to
have the proper PHP extensions installed for the corresponding database, like PDO
and PDO MySQL.

You should obviously change the username and password values to the proper
values for your database. You may or may not want to change the character set.

{NOTE/} If you don’t know what your database connection values are-the
username and password, then this book might be too advanced for you
in general. This is fairly basic MySQL knowledge, which is assumed by
this book.

And that’s it! Hopefully your Yii site will now be able to interact with your database.
You’'ll know for sure shortly.

Managing URLs

Next, I want to look at the urIManager component. This component dictates, among
other things, what format the site’s URLs will be in.

Creating SEO-friendly URLs As explained in Chapter 3, “A Manual for Your Yii
Site,” the default URL syntax is:

http://www.example.com/index.php?r=ControllerID/ActionID

For SEO purposes, and because it looks nicer for users, you'll probably want URLs
to be in this format instead:

http://www.example.com/index.php/ControllerID/ActionID/

To do that, just enable the “urlManager” component and customize its behavior. Yii
nicely provides the right syntax for you in the main configuration file, you just need
to remove the comment tags from around the following;:

'urlManager'=>array (

'urlFormat'=>'path',

'rules'=>array (
'<controller:\w+>/<id:\d+>"'=>"'<controller>/view',
'<controller:\w+>/<action:\w+>/<id:\d+>"

=>'<controller>/<action>"',
'<controller:\w+>/<action:\w+>'
=>'<controller>/<action>"',

55

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

Note that you don’t have to do anything to Apache’s configuration (i.e., to the Web
server itself) for this to work. By using this component, any links created within
the site will use the proper syntax as well (you'll learn much more about how this
works in Chapter 7, “Working with Controllers™).

If you want, you can test this change already. After removing the comment
tags around that code, save the configuration file, and then reload the home
page in your Web browser. Click on “Contact” and you should see that
the URL is now http://www.example.com/index.php/site/contact instead of
http://www.example.com/index.php?r=site/contact.

Hiding the Index File If you want to take your URL customization
further, it’s possible to configure “urlManager”, along with an Apache
htaccess file, so that index.php no longer needs to be part of the URL:
http://www.example.com/ControllerID/ActionID/.

To do this, you have to add a mod_rewrite rule to an .htaccess file stored in your
Web root directory (i.e., in the same directory as index.php). The contents of that
file should be:

<ifModule mod_rewrite.c>
Turn on the engine:

RewriteEngine on

Don't perform redirects for files and directories that exist:

RewriteCond %${REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_ FILENAME} !-d

For everything else, redirect to index.php:
RewriteRule " (.*)$ index.php/S$1
</ifModule>

If you're not familiar with mod_rewrite, you can look up oodles of tutorials
online. Note that this modification will only work if your Web server allows for
configuration overrides using .htaccess. If not, then you may be a bit over your head
anyway. You can either look online for how to allow for overrides via .htaccess,
skip this step for now, or ask for help in my support forums.

Once you've implemented the mod_rewrite rules, to test if mod_rewrite is
working, go to any other file in the Web directory (e.g., an image or your CSS
script) to see if that loads. Then go to a URL for something that doesn’t exist (e.g.,
www.example.com/varmit) and see if the contents of the index page are shown
instead (most likely with an error message).

Finally, you must tell the URL manager not to show the bootstrap file by setting the
showScriptName property to false:

56

http://www.larryullman.com/forums/

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

'urlManager'=>array (
'showScriptName'=>false,
'urlFormat'=>"'path',
'rules'=>array (
'<controller:\w+>/<id:\d+>"'=>"'<controller>/view',
'<controller:\w+>/<action:\w+>/<id:\d+>'=>'<controller>/<action>",
'<controller:\w+>/<action:\w+>'=>'<controller>/<action>"',
),
) 4

Logging

A third component I'd recommend you configure before you begin working is log.
The log component writes pertinent information to a text file. If you're not in the
habit of implementing logging on your projects, you're missing out on something
wonderfully useful. Logs serve two excellent purposes:

1. They allow you to investigate a problem after the fact (i.e., without attempting
to recreate the problem yourself, which can be anywhere from not easy to
impossible).

2. They allow you to see errors and problems without them being visible to
public users.

The logging component is enabled by default, and, as already mentioned, is set
to always be loaded. If you want to quickly test it, you just need to create an
error. For example, by changing the site URL from index.php/site/contact to in-
dex.php/site/contacts, you'll create a page not found (404) exception (Figure 4.3).

My Web Application

Home About Comtact Login

Home = Error

Error 404

The system is unable to find the requested action "contacts”.

Figure 4.3: The default page not found response.

57

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

As you can see in the image, Yii reports that there is no action that matches “con-
tacts”. Yii also logs this occurrence. To view that, open the protected/runtime/ap-
plication.log file in any text editor (Figure 4.4).

W applikation log
DAl BEA 22 14243:3]1 [error] [exceptics. CHEEpExcéption.4@d] eicepiion "CHIUpEXCEpLion’ wWith Bessoge
"Tr gySEEE §§ unable B0 Find ke FeSUEITEE OCELGA TOoAtACES", ' 1A
Alersslarryul Leon Sl tess fromemork-yil-1. L. 13 webr Clomtrol Ler . pho 485
Stak trace:

Clomtrol ler-smissinghction " contocts ™)
£l SUserssLorryul Ison S ves. f romeworiyil-1. 1. 13 /meb,/ Chebippl L coti on. phed 282):
!.'_:'-Lr.‘frl:l'. L= Funi] " OaertacER ")

1} Alerslarryul e S tes/ fromework-wii-1.1, 13/web/Tlebipp] i cot i on, phed 141):
[Webdppi i cotion-sruntontrol ler] “site contocts ')

mhﬂ.ﬂﬂ'.li;‘;;;‘i"-’.-i-rlr‘fﬂi'}.'\hqll!'l.t::l
8 AersSTorryul Isons S 1 tes hindor sy index . phgd 153 Capol icotion-«rnm)
F5 {main}

REQUEST_LURT =/ madpx o/ s e/ CONEACES

Figure 4.4: The logging information for the page not found exception.

That’s one example of logging, but as already said, this is enabled by default. I
recommend that while you're debugging a project, you also enable CWebLogRoute.
This tool will output tons of useful details to each rendered page. The code for
enabling it is already in the main configuration file, you just need to remove the
comment tags from around it. Here’s the relevant logging code in its entirety:

'log'=>array (
'class'=>'CLogRouter',
'routes'=>array (
array (
'class'=>'CFileLogRoute',
'levels'=>'error, warning',
)I
array (
'class'=>'CWebLogRoute',
),
)I
),

With the same error in place (the request for a page/action that does not exist),
Figure 4.5 shows some of the output generated by CiwebLogRoute.

Modules

After you've configured the necessary components, there are a few other configura-
tion settings you should look at. One is under the “modules” section. Modules are

58

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

Time slams Lewel alegory

Figure 4.5: The same error as in Figure 4.3, with extra Web logging.

essentially mini-applications within a site. You might create an administration mod-
ule or a forum module. Chapter 15, “Working with Modules”, will cover creating
modules in detail, but to begin developing your site, you'll want to enable one of
Yii’s modules: Gii.

Gii is a Web-based tool that you'll use to generate boilerplate model, view, and
controller code for the application (based upon your database tables). Gii is a
wonderful tool, and a great example of why I love Yii: the framework does a lot of
the development for you.

To enable Gii, just remove the comment tags—/« and % /-that surround this code:

'gii'=>array (
'class'=>'system.gii.GiiModule',
'password'=>'Enter Your Password Here',
// If removed, Gii defaults to localhost only.
// Edit carefully to taste.
'ipFilters'=>array('127.0.0.1',"'::1"),

) s

Next, enter a secure password in that code, one that only you will know. The ipFilters
option let’s you declare through what IP addresses Gii can be accessed. Understand,
however, that Gii should not be used on a live site.

59

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

{TIP} If you're using a very secure development server, like your own
local machine, you can set the password to “false” (the Boolean, without
any quotes), allowing you to use Gii without authentication.

With Gii enabled and configured, you'll be able to use it later in this chapter.

{NOTE/} Gii was added to Yii in version 1.1.2, and it replaces functionality
previously made available using the command-line Yii tools.

Parameters

At the end of the configuration file, there’s a “params” element. This is where
user-defined parameters can be established. One will already be there for you:

'params'=>array (
// this is used in contact page
'adminEmail'=>"'webmaster@example.com',

) s

Change this to your email address, so that you receive error messages, contact form
submissions, or whatever. Understand that for those emails to be sent, your Web
server must be configured properly. On a live server, that shouldn’t be a problem,
but on your own test system, you may need to install a mail server or configure
PHP to use an SMTP server.

You can add other name=>value pairs here, if you'd like:

'params'=>array (
// this 1s used in contact page
'adminEmail'=>'"'webmaster@example.com',
'something' => 23,

) s

By setting this parameter, in your site’s code (e.g., in a controller), you'll be able to
globally access the parameter value via Yii: :app () —>params [’ something’].
You'll see examples of this later in the book.

Developing Your Site

Over the course of the book, I'll work with different practical examples so that you
can use real-world code to learn new things. In Part 4 of the book, I'll create a
couple of examples in full (or mostly full), in order to show how all of the ideas

60

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

come together in context. But the primary example to be used throughout the book
is a Content Management System (CMS). CMS is a fairly generic term that applies
to so many of today’s Web sites. I would describe CMS as a moderately complex
application to implement, and so it makes for a good example in this book.

In the next several pages, you'll learn not just how to design a CMS site, but also
how to approach designing any new project.

Identifying the Needed Functionality

Simply put, projects are a combination of data, functionality, and presentation. Games
have a lot more of the latter two and many Web-based projects focus on the data,
but those are the three elements, in varying percentages. When you go to start a
new project, it’s in one of these three areas that you must begin. And you should
always start with the functionality, as that dictates everything else. The functionality
is what a Web site or application must be able to do, along with the corollary of
what a user must be able to do with the Web site or application. The functionality
needs to be defined in advance. Use a paper and pen (or note-taking application),
and write down everything the project requires:

¢ Presentation of content

¢ User registration, login, logout
Search

Rotating banner ads

* Et cetera

Try your best to be exhaustive, and to perform this task without thinking of files
and folders, let alone specific code. Be as specific as you can about what the project
has to be able to do, down to such details as:

Show how many users are online
Cache dynamic pages for improved performance

¢ Not use cookies or only use cookies
Have sortable tables of data

The more complete and precise the list of requirements is, the better the design
will be from the get-go, and you'll need to make fewer big changes as the project
progresses.

{NOTE} The development process and the site’s functionality will be
dictated by your business goals, too: how much money you’re able to
spend, how much money you’d like to make (and through what means),
etc. But for a developer, and for the purposes of this book, the site’s
functionality is most important.

61

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

With a CMS, the most obvious functionality is to present content for people to view.
This implies related functionality:

¢ Someone should be able to create new content
¢ Someone should be able to edit existing content

(Maybe content should also be deletable, but I'd rather make content no longer live
than remove it entirely.)

This is a fine start, but the CMS would be better if people could also comment on
content. So there’s another bit of functionality to be implemented.

And I should define what I mean by “content”. For most of the Web, content is in
the form of HTML, even if that HTML includes image and video references. But
it would be nice if the content could also have files that are downloadedable. This
feature adds a few more requirements:

¢ The ability to upload files

¢ The ability to associate files with pages of content (i.e., the files will be linked
somewhere on the site)

¢ The ability to download files

¢ The ability to change a previously uploaded file

And to better distinguish between a page of content and file content, let’s start
calling the page of content a “page”.

But I'm not done yet: let’s assume that all of the content is publicly viewable, but
there ought to be limits as to who can create and edit content. More functionality:

Support for different user types
Only certain user types can author content

Only certain user types can edit content (e.g., the original author, plus admin-
istrators)

Only certain user types can assign types to users

As you can see, one initial goal-present content-has quickly expanded into over a
dozen requirements. As I said, this is a moderately complex example, but will work
well for the purposes of this book.

Next Steps
Once you’'ve come up with the functionality (with the client, too, if one exists), it’s
time to start coding and creating files and folders. You can start that process from

one of two directions: the data or the presentation. In other words, you can begin

62

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

with the user interface and work your way down to the code and database or you
can begin with the database and work your way up to the user interface. I'm a
developer and a data-first person, but let’s look at the presentation approach, too.

If you're a designer, or are working with clients that think primarily in visual terms,
it makes sense to begin any new project with how it will look. You may want to
start with a wireframe representation, or actual HTML, but create a series of pages
or images that provides a usable basis for how the site will appear from a user
interface perspective. You don’t need to create every page, and in a dynamically
driven site you actually shouldn’t, but address the key and common parts. The end
goal is the HTML, CSS, and media, in a final or nearly final state. Once you’ve done
that, and the client has accepted it, you can work your way backwards through the
functionality and data.

If you're a developer, like me, incapable of thinking in graphical terms, it makes
sense to begin any new project from the perspective of the data: what will be stored
and how the stored information will be used. For this task, you’ll want to use a
paper and pen, or a modeling tool such as the MySQL Workbench, but the goal is to
create a database schema. Always err on the side of storing too much information,
and always err on the side of complete normalization (when using a relational
database). Once you've done that, I normally populate the database with some
sample data. This allows me to then create the functionality that ties the data into a
sample presentation. By doing so, I, and the client, can confirm that the site looks
and works as it should. From there, you can implement more functionality, and
then have the entire presentation and interface finalized.

With the CMS site, I already have a sense of data used by the site: pages, users,
comments, and files. As a quick check, I can look back over the needed functionality
and confirm that everything that the site must be able to do will involve just those
four types of things.

Defining the Database

Now that the functionality has been identified, and I know what data the site will
use, it’s time to create the database itself. Using a relational database application
such as MySQL, one would go through the process of normalizing a database. It’s
beyond the scope of this book to explain that process here (and it’s the kind of
thing I would assume you already know), but if you're not familiar with database
normalization, search online for tutorials or check out my “PHP and MySQL for
Dynamic Web Sites: Visual QuickPro Guide” book.

Figure 4.6 shows the database schema, as designed in the MySQL Workbench.

I'll now walk through the tables, and the corresponding SQL commands, individu-
ally. You should notice that I'm keeping with the Yii database conventions: singular
table names, all lowercase table and column names, and id for the primary keys.
Also, every table will be of the InnoDB type-MySQL’s current default storage engine,
and use the UTF8 character set.

63

http://www.mysql.com/downloads/workbench/
http://amzn.to/L61xOz
http://amzn.to/L61xOz
http://www.mysql.com/downloads/workbench/

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

_| page v
—_| comment v it INT Uy s
id INT g wae @user_id INT gy uu

| page_has_file ¥

@ user_id INT ux wn > ive TINYINT(1) Uy s
page_id INT gy yy
& page_id INT un uw] < fitle VARCHAR(100) proe b
| I
content LONGTEXT UM MM

> comment MECIUMTEXT wy

»date_entered TIMESTAMP yy »date_updated TIMESTAMP yy
| 3 date_published DATE
lE >
|
| s
! |
! [
' |
' *] file v
| -
| | user v i INT wast
I i INT s i a0 » user_id INT s
| »usemame VARCHAR4S) yy »name VARCHAR({BO) s
L - »email VARCHARIED) wn - e > type VARCHARI4S) s
___________ > pass CHAR(G) wy T > size INT uy
5 type ENUM(..) wu description MEDIUMTEXT
»date_entered TIMESTAMP 4y »date_entered TIMESTAMP 4y
> date_updated DATETIME

Figure 4.6: The CMS database schema.

{NOTE} You can download the complete SQL commands, along with
some sample data, from the account page on the book’s Web site.

CREATE TABLE IF NOT EXISTS yii_cms.user (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
username VARCHAR (45) NOT NULL,
email VARCHAR (60) NOT NULL,
pass CHAR(64) NOT NULL,
type ENUM('public', 'author', 'admin') NOT NULL,
date_entered TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (id),
UNIQUE INDEX username_UNIQUE (username ASC),
UNIQUE INDEX email UNIQUE (email ASC))

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8

The user table stores information about registered users. The table will store the
user’s username, which must be unique, her email address, which must also be
unique, and her password. Users can be one of three types, with public being the
default (MySQL treats the first item in an ENUM column as the default).

New user records can be created using this SQL command:

64

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

INSERT INTO user (username, email, pass) VALUES ('<username>',
'<email>"', SHA2 ('<password><username><email>', 256))

As you can see, the stored password is salted by appending both the user’s name
and the user’s email address to the supplied password, with the whole string run
through the SHA2 () method, using 256-bit encryption (which returns a string 64
characters long). If your version of MySQL does not support SHA2 (), you can use
another encryption or hashing function.

The page table stores a page of HTML content:

CREATE TABLE IF NOT EXISTS yii_cms.page (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
user_id INT UNSIGNED NOT NULL,
live TINYINT (1) UNSIGNED NOT NULL DEFAULT O,
title VARCHAR(100) NOT NULL,
content LONGTEXT NULL,
date_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
date_published DATE NULL,
PRIMARY KEY (id),
INDEX fk_page_user_idx (user_id ASC),
INDEX date_published (date_published ASC),
CONSTRAINT fk_page_user
FOREIGN KEY (user_id)
REFERENCES yii_cms.user (id)
ON DELETE CASCADE
ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = utf8
COLLATE = utf8_general_ci

{NOTE} When revising this text for release version 0.5, made a slight
alteration to the page table. Specifically, I swapped the order of the
two date columns and changed the date_entered TIMESTAMP NOT
NULL column to date_published DATE NULL.

There’s nothing too revolutionary here, save for the use of the foreign key constraint,
as there’s a relationship between page and user. MySQL supports foreign key
constraints when using the InnoDB type. This particular constraint says that when
the user.id record that relates to this table’s user_id column is deleted, the
corresponding records in this table will also be deleted (i.e., the changes will cascade
from user into page). You may not want to cascade this action; you could have the
user_id be set to NULL instead:

65

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

CREATE TABLE IF NOT EXISTS yii_cms.page (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
user_id INT UNSIGNED NULL,

/* other columns and indexes +/
CONSTRAINT fk_page_user
FOREIGN KEY (user_id)
REFERENCES yii_cms.user (id)
ON DELETE SET NULL
ON UPDATE NO ACTION)

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8

COLLATE = utf8_general_ci

Note that setting the user_id value to NULL is only possible if the column allows
for NULL values as in the above modified SQL.

New page records can be created using this SQL command:

INSERT INTO page (user_id, title, content) VALUES
(23, 'This is the page title.', 'This is the page content.')

When the page is ready to be made public, you'd change its 1ive value to 1 and set
its date_published column to the publication date.

Next, there’s the comment table, with relationships to both page and user:

CREATE TABLE IF NOT EXISTS yii_cms.comment (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
user_id INT UNSIGNED NOT NULL,
page_id INT UNSIGNED NOT NULL,
comment MEDIUMTEXT NOT NULL,
date_entered TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (id),

INDEX fk_comment_user_idx (user_id ASC),
INDEX fk_comment_page_idx (page_id ASC),
INDEX date_entered (date_entered ASC),
CONSTRAINT fk_comment_user

FOREIGN KEY (user_id)

REFERENCES yii_cms.user (id)

ON DELETE CASCADE

ON UPDATE NO ACTION,
CONSTRAINT fk_comment_page

FOREIGN KEY (page_id)

REFERENCES yii_cms.page (id)

ON DELETE CASCADE

66

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = utf8
COLLATE = utf8_general_ci

Again, there are foreign key constraints here, but nothing new.

New comment records can be created using this SQL command:

INSERT INTO comment (user_id, page_id, comment) VALUES
(23, 149, 'This is the comment.')

Next, there’s the file table, for storing information about uploaded files. It relates
to user, in that each file is owned by a specific user:

CREATE TABLE IF NOT EXISTS yii_cms.file (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
user_id INT UNSIGNED NOT NULL,
name VARCHAR (80) NOT NULL,
type VARCHAR (45) NOT NULL,
size INT UNSIGNED NOT NULL,
description MEDIUMTEXT NULL,
date_entered TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
date_updated DATETIME NULL,

PRIMARY KEY (id),
INDEX fk_file_userl_idx (user_id ASC),
INDEX name (name ASC),
INDEX date_entered (date_entered ASC),
CONSTRAINT fk_file_user

FOREIGN KEY (user_id)

REFERENCES yii_cms.user (id)

ON DELETE CASCADE

ON UPDATE NO ACTION)

ENGINE = InnoDB

DEFAULT CHARACTER SET = utf8

COLLATE = utf8_general_ci

The file’s name, type (as in MIME type), and size would come from the uploaded
file itself. The description is optional.

New file records can be created using this SQL command:
INSERT INTO file (user_id, name, type, size, description)

VALUES (23, 'somefile.pdf', 'application/pdf', 239085,
'This is the description')

67

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

Finally, the page_has_file table is a middleman for the many-to-many relation-
ship between page and file:

CREATE TABLE IF NOT EXISTS yii_cms.page_has_file (
page_1id INT UNSIGNED NOT NULL,
file_id INT UNSIGNED NOT NULL,
PRIMARY KEY (page_id, file_id),
INDEX fk_page_has_file_file_idx (file_id ASC),
INDEX fk_page_has_file_page_idx (page_id ASC),
CONSTRAINT fk_page_has_file_page
FOREIGN KEY (page_id)
REFERENCES yii_cms.page (id)
ON DELETE CASCADE
ON UPDATE NO ACTION,
CONSTRAINT fk_page_has_file_ file
FOREIGN KEY (file_id)
REFERENCES yii_cms.file (id)
ON DELETE CASCADE
ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = utf8

New page_has_file records can be created using this SQL command:

INSERT INTO page_has_file (page_id, file_id) VALUES (23, 82);

And there you have the entire sample database. No doubt there are things you
might do differently and, if so, feel free to edit my design as you’d prefer it to be.
Just remember to factor in your edits when working with the code later in the book.

This database also makes a couple of assumptions. First, only logged-in users
can make comments. If you’d want to allow anyone to post comments, then you
wouldn’t tie the comments to the user table, instead storing the information about
the person making the comment in comment.

Second, this database doesn’t support the option of categorizing or tagging content.
That’s easy enough to implement, however. You can either add that functionality
yourself, or perhaps I'll add that to the fuller implementation of this project in
Chapter 23, “Creating a CMS”.

Foreign Key Constraints in MyISAM Tables
In the previous section, in which I outline the database schema, I made repeated
references to the foreign key constraints in place. Foreign key constraints are

beneficial in databases as they help to insure data integrity. It’s anywhere from

68

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

messy to outright bad if a record in one table remains after a related record in another
table is removed. However, there is another benefit to foreign key constraints in
Yii-based applications beyond just data integrity.

In Yii, a model will be based upon a database table. In situations where one database
table is related to another, such as user to comment, it’s helpful to recognize
the relationship in the corresponding model files, too (i.e., in the PHP code). For
example, if the Comment model is identified as being related to User through its
user_id property, then instances of Comment type can use knowledge of that
relationship to, for example, easily retrieve the username associated with the
user_id of the current comment. For this reason, Yii will automatically read the
foreign key constraints and use them to identify relationships in models, as you're
about to see in the section on using Gii.

The problem is that MySQL only enforces foreign key constraints in InnoDB tables
(when every table involved uses the InnoDB storage engine). This may be a problem
as MyISAM was the default storage engine for years, and you may still be using
it. If so, you can’t use foreign key constraints. Still you can indicate to Yii that a
relationship exists between two tables by adding a comment to the related column.
Here is the page table, without the foreign key constraint but with the comment:

CREATE TABLE IF NOT EXISTS yii_cms.page (
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
user_id INT UNSIGNED COMMENT

"CONSTRAINT FOREIGN KEY (user_id) REFERENCES User (id)",

/* other columns and indexes x/
)
ENGINE = MyISAM
DEFAULT CHARACTER SET = utf8
COLLATE = utf8_general_ci;

The comment that’s part of the user_id column indicates that this column relates
to the id column of the user table (or, technically, that user_id references the id
property of the User model to be created by Yii).

To be clear, this comment has no effect on MySQL at all, but when you generate
the models for these tables, Yii will automatically add the code to reflect the proper
relationships.

{TIP}If you don’t add this comment, it’s not a big deal as you can write

the code to indicate the relation yourself, but it’s nice that Yii will do it
for you.

Creating the Database

Once you've defined your database in SQL terms, you'll need to create it in MySQL
(or whatever database application you're using). You should do that now. You

69

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

can use whatever tools you’d like, and the SQL commands I used are available to
download from this book’s Web site.

Before continuing, you should also double-check your main configuration file to
confirm that it is set to connect to the proper database used by the application. As
already mentioned, for the purposes of this book, I'm calling this the yii_cms
database.

Generating Code with Gii

Once you've created your database, and configured your Yii site to connect to it, it’s
time to fire up Gii. Again, the purpose of Gii is to create the fundamental model,
view, and controller files required by the site. Most of what you'll learn in Part 2 of
this book will be how to edit these files to tweak them to your particular needs.

Gii Requirements

Before going any further, you should go through the following checklist (if you have
not already):

1. Confirm that your Yii installation meets the minimum requirements.

2. Have your database design as complete as possible. Because Gii does so much
work for you, it’s best not to have to make database changes later on. If done
properly, after creating your database tables following these next steps, you
won'’t use Gii again for the project.

3. Enable Gii, using the instructions provided earlier in this chapter (and remem-
ber the password you identified).

4. Be using a development server (ideally).

Preferably, you've enabled Gii on a development server, you'll use it, and then
disable it, and then later put the site online.

Assuming you understand all of the above and have taken the requisite steps,
you should now load Gii in your browser. Assuming your site is to be found at
www.example.com/index.php, the Gii tool is at www.example.com/index.php/gii/.
This URL also assumes you're using the URL management component in Yii. If not,
head to www.example.com/index.php?r=gii instead.

Using that address, you should be taken to the login screen (Figure 4.7).

Enter your Gii password (established in the configuration file), and click Enter.
Assuming you entered the correct password, you'll see a splash page and a list of
options (Figure 4.8).

As you can see, Gii can be used to generate:

70

http://yii.larryullman.com/account.php

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

‘r yil cod rator ot | g | i

Phiuickin il yooun pidwad

| ==

Figure 4.7: The Gii login page.

y, Ul code generator

Welcome to Yii Code Generator!

You may use the following generators to quickly build up your Yii application:

Controller Generator
Crud Generator
Form Generator
Model Generator
Module Generator

Figure 4.8: The Gii home page.

71

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

e Controllers

CRUD functionality
e Forms

Models

Modules

Over the next couple of pages, you'll use two of these options: models and then
CRUD.

Generating Models

4

The first thing you'll want to do is generate the models. Click the “Model Generator’
link. On the following page (Figure 4.9):

Model Generator

This generator generates a model class for the specified database table.
Fields with * are required. Click on the highlighted fields to edit them.

Database Connection *

db

Table Prefix

[empty]

Table Hame *

& f
Base Class *

CActiveRecord

Model Path *

application.models

Build Relations

Code Template *
default {/Users/larryullman/Sites/framework-yii-1.1.13/gii/generators/model/templates/default)

| Preview |

Figure 4.9: The form for auto-generating a model file.

1. Enter * as the table name.

2. Click Preview.

3. In the preview (Figure 4.10), deselect the PageHasFile.php model, which is
not needed by this application.

72

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

| Preview || Generate |

Code File Generate |
models/Comment.php new
models/File.php newy [
models/Page.php newe (o
models/PageHasFile. php e [
models/User.php new

Figure 4.10: The preview of the files to be created.

4. Click Generate.

The * is a shortcut to have Gii automatically model every database table. If you'd
rather generate a model at a time, you can enter a table name in the first field and
work through Steps 2 and 3, and then repeat for every other table. You can also
deselect models in the preview if you don’t want them generated.

After clicking Generate, you should then see a message indicating that the code was
created. You can check for the new files within the protected/models directory to
confirm this. If you see an error about an inability to write the file, you'll need to
modify the permissions on the protected/models directory to allow the Web server
to write there (Figure 4.11).

| Preview |

There was some error when generating the code. Please check the following messages.

Generating code using template "JUsers/larryullman/Sites/frameWwork-yii-1
generating models/Comment.php

Unable to write the file '/Users/larryullman/Sites/htdocs/prol
generating models/File.php

Unable to write the file '/fUsers/larryullman/Sites/htdocs/proi
generating models/Page.php
Unable to write the file
skipped models/PageHasFile.php
generating models/User.php
Unable to write the file '/Users/larryullman/Sites/htdocs/proi

‘fUsers/larryullman/Sites/htdocs/prol

Figure 4.11: You'll see errors if Yii cannot create files in the models directory.

For the CMS example, these steps generate four files within the protected/models
directory:

73

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

e Comment.php
File.php
Page.php
User.php

In Chapter 5, “Working with Models,” you’ll start using and editing the generated
code.

Generating CRUD

With the models created, the next step is to have Gii generate complete CRUD
functionality. “CRUD” stands for Create, Retrieve (or Read), Update, and Delete. In
other words, everything you’d do with database content. This ability of Yii to write
this code for you is a wonderful feature, in my opinion, saving you lots of time and
energy.

To start, click the “Crud Generator” link. On the following page (Figure 4.12):

Crud Generator

This generator generates a controller and views that implement CRUD operations for the specified
data model.

Fields with * are required. Click on the highlighted fields fo ed™

Controller ID is case-sensitive. CRUD controllers
Model Class * are often named after the model class name that
they are dealing with. Below are some examples:

Page

* post generates FostController. php
Controller ID *

¢ postTag generates FostTagController. php
page ¢ sdminduser generates
Base Controller Class * admin/UserController.php. If the application
Controller has an admin module enabled. it will generate
Codle Template * UserCantroller (and other CRUD code) within

default (/Users/larryullman/Sites/framework-yii-1.1.13/gii/gene the module instead.

Preview

Figure 4.12: Generating CRUD functionality for pages.

1. Enter “Page” as the Model Class.

2. Retain “page” as the Controller ID (Gii will automatically populate this field
for you).

3. Click Preview.

4. Click Generate (Figure 4.13).

If all went well, that one step will create the controller file for the Page model, plus
a view directory for its view files, and eight specific view files:

¢ _form.php

74

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

Prewview Cenerate

Code File Generate @
controllers/PageController. php new
views/page/ form.php new
views/page/ search.php new
views/page/ view.php new
views/page/admin.php new o
views/page/create php hew (o
views/page/index. php few (o
views/page/update.php newr (o
views/page/view.php newr (o

Figure 4.13: The preview of the files to be generated for Page CRUD functional-
ity.

_search.php
¢ _view.php
¢ admin.php
* create.php
¢ index.php
e update.php
¢ view.php

The controller will be explained in detail in Chapter 7, “Working with Controllers.”
The view files will be covered in Chapter 6, “Working with Views.” For your
knowledge now, I'll explain that the form file is used to both create and update
records. The search script is a custom search form. The _view.php file is a template
for showing an individual record. The admin script creates a tabular listing of
the model’s records, with links to CRUD functionality. The index script is really
intended for a public listing of the records. The view script is used to show the
specifics of an individual record. And the create and update files are wrappers to
the form page, with appropriate headings and such.

You'll also see that the resulting page will offer up a link to go test the generated
files.

{TIP} If you know you won’t need certain functionality, such as the
ability to create a model type, deselect the corresponding checkboxes in
the preview table before generating the code.

Again, if you see a permission error, as in Figure 4.11, you’ll need to correct the
permissions on the protected/views and protected/controllers folders, too.

75

CHAPTER 4. INITIAL CUSTOMIZATIONS AND CODE GENERATIONS

Once those steps works for the Page model, repeat the process for Comment, User,
and File. You don’t need to create CRUD functionality for the PageHasFile
class.

{NOTE/ You will have situations where you'd have a model for a table
but not want CRUD functionality, so don’t assume you always take both
steps.

And that’s it! You can click “logout”, then click “webapp” to return to the home
page. You should then disable Gii by editing the main configuration file.

You can confirm that what you did worked by checking out the new directo-
ries and files or by going to a URL. Depending upon whether or not you added
“urlManager” to the application’s configuration, the URL would be something
like www.example.com/index.php/user/ or www.example.com/index.php?r=user.
You will see that there are no records to list yet, and also that you can’t add any
new records without logging in (the default is admin/admin). But, to be clear, you
won’t want to add any new records until you make some edits anyway, starting in
Chapter 5.

{TIP} If you use Yii a lot, and have a few of your own ways of doing
things, you may want to look into how you can customize the Gii gener-
ated output.

76

http://www.yiiframework.com/doc/guide/1.1/en/topics.gii#extending-gii
http://www.yiiframework.com/doc/guide/1.1/en/topics.gii#extending-gii

Chapter 5

WORKING WITH MODELS

Part 1 of the book, “Getting Started,” introduces the underlying philosophies of the
Yii framework and provides an overview of how a Yii-based site is organized and
how it functions. You also saw how to create the initial shell of an application, and
how to have Yii create a ton of code for you. In Part 2 of the book, you'll expand
that knowledge so that you will understand how to customize the generated code.
The combination of generated code and your alterations is how Yii-based sites are
created: have yiic and Gii create the boilerplate materials, and then edit those files
to make the code specific for the application.

The process of learning about the core Yii concepts begins with the three pieces
of MVC design: models, views, and controllers. In this chapter, you'll read about
models in greater detail. You'll learn what the common model methods do, and
how to perform standard edits. Many of the examples will assume you’ve already
created the CMS database and code explained in Part 1. If you have not already, you
might want to do so now.

Also, the focus in this chapter is obviously on models, but there are two types of
models you'll work with: those based upon database tables and those not (the
alternative types are normally based on a form). So as to keep the chapter to a
reasonable length, and to not overwhelm you with technical details, most of the
chapter covers subjects relevant to both model types. A bit of the material will
only apply to database-specific models, with much more such material to follow in
Chapter 8, “Working with Databases.”

The Model Classes

By default, model classes in a Yii-based application go within the protected/models
directory. Each file defines just one model as a class, and each file uses the name of
the class it defines, followed by the .php extension.

77

CHAPTER 5. WORKING WITH MODELS

{TIP} You can break a model into one base class and multiple derived
classes. This is sometimes necessary for large applications where not
all the model’s methods are needed everywhere in the site (e.g., when
using modules).

In Yii, every model class must inherit directly from the CModel class, or, more
commonly, from a subclass. Yii defines two subclasses for you: CAct iveRecord
and CFormModel. CActiveRecord is the basis of models tied to database tables.
CFormModel is the basis of models not tied to database tables, instead tied to HTML
forms.

{TIP} Another way of differentiating between the two model types
is that CActiveRecord models permanently store data. Conversely,
CFormModel models temporarily represent data, such as from the time
a contact form is submitted to when the contact email is sent, at which
point the data is no longer needed.

For example, if you have Yii create your model code and site shell for the CMS exam-
ple and steps outlined in Chapter 4, “Initial Customizations and Code Generations,”
you’ll end up with six model classes:

¢ ContactForm.php and LoginForm.php, both of which extend CFormModel
e Comment.php, File.php, Page.php, and User.php, all of which extend

CActiveRecord

Even though these six classes represent two different types of models—those asso-
ciated only with an HTML form and those associated with a database table, all
models serve the same purposes. First, models store data. Second, models define
the business rules for that data. All models are used in essentially the same way,
too, as you'll see when you learn more about how controllers use models.

Let’s first look at the model classes from an overview perspective and then go into
their code in more detail.

The two classes that extend CFormModel have this general structure:

class ClassName extends CFormModel {

// Attributes...
public $someAttribute;

// Methods...

public function rules () {}
public function attributelLabels() {}

78

CHAPTER 5. WORKING WITH MODELS

The classes that extend CAct iveRecord have this general structure:

class ClassName extends CActiveRecord {

// Methods...

public function model ($className=__ CLASS_) {}
public function tableName () {}

public function rules() {}

public function relations () {}

public function attributelabels () {}

public function search () {}

As you can see, two of the methods-rules () and attributeLabels ()-are com-
mon to both model types. Also, as both model types are inherited (indirectly) from
CModel, other methods are common to both model types but aren’t included in
these specific model definitions. You'll see some of those later in the chapter.

Further, the CFormModel models will always have declared attributes. These
are used to temporarily represent the model data. Conversely, CActiveRecord
models don’t initially need explicit attributes, as the data is stored in the database
and then loaded into attributes made available on the fly through Active Record. The
CActiveRecord models also define four other methods that CFormModel models
do not have. Two of those-model () and tableName () —are obvious and don’t
need further illumination. The other two methods-relations () and search () -
will be explained in this and subsequent chapters.

Over the rest of this chapter you'll learn what these methods do, and how you
might want to edit them. I'll also explain how you can add your own attributes and
methods when needed, just as you can in any class.

{TIP} Most of the model’s functionality isn’t defined in your model class,
but rather in a parent class. For example, CAct iveRecord defines a
save () method for saving data to the database. Since that functionality
is defined already for you (in a parent class), the goal of your specific
model should be to tweak and expand that core, inherited functionality
when needed.

Establishing Rules

Perhaps the most important method in your models is rules (). This method
returns an array of rules by which the model data must abide. Much of your applica-
tion’s security and reliability depends upon this method. In fact, this method alone

79

CHAPTER 5. WORKING WITH MODELS

represents a key benefit of using a framework: built-in data validation. Whether a
new record is being created or an existing one is updated, you won’t have to write,
replicate, and test the data validation routines: Yii will handle them for you, based
upon the rules.

{NOTE} Your database tables will have built-in rules, too, such as re-
quiring a value (i.e., NOT NULL) or restricting a number to being non-
negative (i.e., UNSIGNED). However, while those rules protect the in-
tegrity of your data, and assist in performance, violating these rules
won'’t necessarily result in error messages end users can see, unlike the
Yii model rules.

The rules () method, like many methods in Yii, returns an array of data:

public function rules() {
return array (/* actual rules x/);

The rules () method needs to return an array whose elements are also ar-
rays. Those arrays are going to be of the syntax array (’attributes’,
"validator’, [other parameters]).

The attributes are the class attributes (for CFormModel) or table column names
(for CActiveRecord) to which the rule should apply. To apply the same rule to
multiple attributes, just separate them by commas as part of one string value.

The validator value is a single string, referring to a built-in Yii validator or one of
your own creation (or a third-party’s creation). For an easy example, there’s the
“required” validator:

protected/models/File.php
public function rules() {
return array (
array ('name, type, size', 'required')
); // End of return statement.
} // End of method.

That one rule says that values for the name, t ype, and size attributes (in this case,
table columns) are required.

Some validators take parameters that further dictate the terms. For example, the
“length” validator can take a “max” parameter:

array ('name', 'length', 'max'=>80),

80

CHAPTER 5. WORKING WITH MODELS

That code is from the File.php model. You may notice that Yii will have already
generated rules like this based upon the underlying table definition: the name
column in the file table is a VARCHAR (80).

(For simplicity sake, and to reduce the amount of code, I'm going to forgo the
function definition and return array () statement from here on out, for the most

part.)

If you want to pass multiple parameters to a validator, you do so as separate
arguments:

array ('age', 'numerical', 'integerOnly'=>true, 'min'=>13, 'max'=>100),

(Also note that you don’t have to use the array () method explicitly in these
parameter statements.)

With an understanding of how rules are syntactically defined, let’s look at more of
the validators, and then get into more custom rules.

Available Validators

Yii has defined more than a dozen common validators for you. These are:

¢ boolean
¢ captcha
* compare
e date

e default
e email

e exist

o file

o filter

* in

¢ length
e match

* numerical
* required
e gafe

* type

® unique
¢ unsafe
e url

Each of these names is associated with a defined Yii class that actually performs
the validation . If you look at the Yii class docs for any of them (linked through the

81

http://www.yiiframework.com/doc/api/1.1/CValidator
http://www.yiiframework.com/doc/api/

CHAPTER 5. WORKING WITH MODELS

CValidator page), you can find the parameters associated with that validator. The
parameters are listed as the class’s properties. For example, the “required” class has
a requiredvalue property (Figure 5.1).

requiredValue property
public mixed $requiredValue;

thie desired value that the attribute must have. If this is null, the validator will validate that the specified attribute
does not have null or empty valug, If this is set as a value that is not null, the validator will validate that the
attribute has a value that is the same as this property value, Defaults to null,

Figure 5.1: The details for the “requiredValue” property of the
CRequiredValidator class.

Using that information, you now know that you can set a specific required value
when using this rule:

array ('acceptTerms', 'required', 'requiredValue'=>1l),

(In case it’s not obvious, that particular bit of code is how you would verify that
someone has checked an “acceptance of terms” checkbox, which results in the
associated variable having a value of 1.)

Looking at the other validators, the “boolean” validator confirms that the value is
Boolean-like. I say “Boolean-like”, because it’s not looking for PHP’s true/false
values, but rather 1 or 0. This makes sense if you think about it, as MySQL, for
example, stores Booleans as 1 or 0, and HTML doesn’t have true/false Booleans
either. The Yii generated code uses the “boolean” validator for the “remember me”
option in the LoginForm class:

array ('rememberMe', 'boolean'),

The “captcha” validator is used with the CCaptchaAction class to implement
captcha form validation. I'll discuss this more in Chapter 12, “Working with Wid-
gets.”

The “compare” validator compares a value against another value and confirms
equality. The second value can either be another attribute or an external value. For
example, a registration form often has two passwords. The second password, which
I might call “passCompare” would be represented as an attribute in the model, but
not stored in the database table:

class User extends CActiveRecord {

// Add passCompare as an attribute:
public $passCompare;

The rules () method would then return this array, among others:

82

http://www.yiiframework.com/doc/api/1.1/CValidator

CHAPTER 5. WORKING WITH MODELS

array ('pass', 'compare', 'compareAttribute'=>'passCompare')

The “compare” validator’s st rict property takes a Boolean indicating if a strict
comparison is required: both the value and the type must match. This is false, by
default. The operator property takes the comparison operator you’d like to use:
==,!=,>, <, <=, and >=.

The “date” validator confirms that the provided value is a date, time, or datetime.
Its format property dictates the exact format the value must match, with the
default being “MM/dd/yyyy”. As in that string, the format is dictated using special
characters, outlined in the Yii docs for the CDateTimeParser class. The characters
are largely what you’d expect; you mostly have to adjust for whether values include
leading zeros or not.

The “default” validator is not a true restriction, but rather establishes a default value
for an attribute should one not be provided. I'll return to it in a few pages.

The “email” and “url” validators compares the value against proper regular expres-
sions for those syntaxes. You can customize these in a few ways. For example, you
can use the validSchemes property to list the acceptable URL schemes (“http”
and “https” are the defaults).

array ('email', 'email'),
array ('website', 'url'),

The “exist” validator is for very specific uses. It confirms that the provided value
exists in a table. You'll normally see this with foreign key-primary key relationships
wherein the value provided for a foreign key in Table A must exist as a primary key
value in Table B. I'll show a real-world example of this in a few pages.

The “file” validator is for validating an uploaded file. This is a bit more complex of
a process, and so I'll cover its usage in Chapter 9, “Working with Forms”.

The “filter” validator isn’t a true validator, but actually a processor through which
the data can be run. I'll explain it in more detail later in this chapter.

The “length” validator is used on strings and confirms that the number of characters
is more than, fewer than, or equal to a specific number:

array ('pass', 'length', 'max'=>20),

{TIP} All numbers used for sizes, ranges, and lengths are inclusive.

The minimum and maximum can also be combined to create a range:

83

http://www.yiiframework.com/doc/api/1.1/CDateTimeParser

CHAPTER 5. WORKING WITH MODELS

array ('pass', 'length', 'min'=>6, 'max'=>20),

To require a string of a specific length, use the is property:

array ('stateAbbr', 'length', 'is'=>2),

The “in” validator confirms that a value is within a range or list of values. You can
provide the range or list as an array assigned to the range attribute:

array ('stooge', 'in', 'range'=>array('Curly', 'Moe', 'Larry')),
array ('rating', 'in', 'range'=>range(l,10)),

The “match” validator tests a value against a regular expression. You assign the
specific regular expression to the pattern attribute:

array ('pass', 'match', 'pattern'=>'/"[a-z0-9_-1{6,20}$/1"),

The “numerical” validator confirms that the value is a number: integer or rational.
You can further customize this by setting its integerOnly property to true, or by
assigning min and max values:

php array(’age’, ’'numerical’, ’integerOnly’=>true, 'min’=>13,
"max’=>110),

The “required” validator will catch both null values and empty values. You've
already seen an example of it:

array ('user_id, name, type, size, date_entered', 'required'),

Keep in mind that “required” only insures that the attribute has a value; the other
rules more specifically restrict what the value must be. This also means, for example,
that applying the “email” validator to an attribute without also applying “required”,
means that value can be null (or empty), but if it has a value, it must match the email
address pattern.

{WARNING} Be sure to also apply “required”, on top of any other rule
when the attribute must have a value.

The “safe” and “unsafe” validators are used to flag attributes as being safe to use
without any other rules applying, or unsafe to use. For example, the description
column in the file table can have a null value, and its allowed value-any text-
doesn’t lend itself to any other validation. But without any validation, Yii will
consider description to be unsafe. On the other hand, an email address is
already considered to be “safe” because it must abide by the email rule.

84

CHAPTER 5. WORKING WITH MODELS

“Unsafe” isn’t just a label, however. When a form is submitted, Yii quickly maps
the form data onto corresponding model attributes. This process is called “massive
assignment”. But Yii will only perform massive assignment for attributes that
are considered to be safe. This means that, without any other validation rules,
the description value from the form, for example, will not be assigned to the
corresponding model attribute, and therefore won’t end up in the database. The
fix is to apply the “safe” validator to description to force Yii to treat it as safe to
massively assign:

array ('description', 'safe'),

All that being said, in the particular case of an optional description, you’'d likely
want to filter it through PHP’s strip_tags () function, as a security measure. In
fact, I would generally recommend that you try to apply at least one validator to
every attribute and in the rare cases you cannot, that you at least apply a filter. And
once you've applied the filter, then you no longer need to declare the attribute as
safe.

{NOTE/} Rarely do attributes need to be labelled as “unsafe”.

The “type” validator used to be a catchall, in case another validator didn't fit the bill,
but thanks to the addition of the “date” validator (in Yii 1.1.7), there’s little need for
“type” now. The “numeric” validator can catch numbers and “length” can validate a
string’s size. If, for whatever reason, you need to validate that a value is just, say, an
array (without further validating the array’s values), then “type” would be useful.

The “unique” validator requires that the value be unique for all corresponding
records in the associated database table. You would use this to insure unique email
addresses, for example:

array ('email', 'unique'),

And that’s an introduction to all of Yii’s built-in validators. At the end of this section
of the chapter, I'll put this information together within the context of the CMS site
to show some practical rules for its models. But first, there’s more to learn about
rules...

Changing Error Messages

As you've already seen, many validators take additional parameters, which map
to public properties of the underlying validator class. There are also parameters
common to every validator, as they all extend the Cvalidator class. One such
parameter is “message”. This attribute stores the error message returned when the
attribute does not pass a particular validation (Figure 5.2).

85

CHAPTER 5. WORKING WITH MODELS

Email *

varmit

Email is not a valid ermail address.

Figure 5.2: The default error message for an invalid email address.

As with almost everything in Yii, if you don’t like the default response, you can
easily change it. To change the default error message for an attribute, assign a new
value to the message property:

array ('email', 'email',
'message’'=>'You must provide an email address
to which you have access.),

array ('pass', 'match', 'pattern'=>'/"[a-z0-9_-1{6,20}$/",
'message'=>"'The password must be between 6 and 20 characters
long and can only contain letters, numbers, the underscore,
and the hyphen.'),

Within your new message value, you can use the special placeholder {attribute} to
have Yii automatically insert the offending attribute.

array ('pass', 'match', 'pattern'=>'/"[a-z0-9_-1{6,20}$/",
'message'=>"'The {attribute} must be between 6 and 20 characters
long and can only contain letters, numbers, the underscore,
and the hyphen.'),

If you also set a requiredvalue attribute for the item in question, your error
message can indicate what the required value is via {value}.

A couple of validators have more specific error messages you can customize. The
“length” validator has tooLong and tooShort properties for those specific error
messages. Similarly, the “numeric” validator has tooBig and tooSmall:

array('age', 'numerical', 'integerOnly'=>true,
'min'=>13, 'max'=>110,
'tooSmall'=>'You must be at least 13 years old to use
this site.'),

Setting Default Values

As previously mentioned, the “default” validator is not a true validator but is instead
used to set default values for an attribute should one not be provided. Default rules

86

CHAPTER 5. WORKING WITH MODELS

are normally implemented when an attribute should be provided with a value but
not by the user.

As an appropriate example of this, you could use “default” to set a default user
type. The CMS database defines the user.type column as ENUM (’ public’,
"author’, ’admin’).Of course, when a new user registers, the user would not
indicate her user type; that’s something only the administrator would set. Now,
technically, if an ENUM column is set as NOT NULL, MySQL will automatically use
the first possible value as the default, so you could get away with not providing a
type value. However, it’s best to be as explicit as you can when programming and
not rely upon assumptions about external behavior. (And, of course, you may not
be using MySQL.)

A better solution is to assign the type property a default value:

array ('type', 'default', 'value'=>'public')

If no value is provided, then “public” will be used. But when a value is provided,
such as when an administrator updates an account and changes the user’s type in
the process, that provided value will be used instead.

{TIP} Another good example of default values is to set date and time
values, as demonstrated in the validation scenarios section later in this
chapter.

You can also use the default validator to set empty values to NULL. For example,
the file.description column can be NULL. If no value is provided for that
element in the form, then its value will be an empty string when saved in the
database. An empty string is not technically the same as NULL, and won't be
properly represented in queries that use IS NULL conditionals. The solution is to
set a default value of NULL:

array ('description', 'default', 'wvalue'=>NULL)

Creating Your Own Validator

Thus far, I've only covered the built-in validators, but Yii allows you to create your
own, too. The more advanced way to do so is to create a new class that extends
CValidator. A more simple approach (and more appropriate approach much of
the time) is to define a new method in the same model. That model method can
then perform the validation. The LoginForm class created by the yiic script does
just that, defining an authenticate () method:

87

CHAPTER 5. WORKING WITH MODELS

public function authenticate ($Sattribute, Sparams) {
if (!'Sthis->hasErrors()) {
Sthis->_identity=new UserIdentity (S$Sthis->username,
Sthis->password) ;
if(!'$Sthis->_identity->authenticate())
Sthis->addError ('password',
'Incorrect username or password.');

What's going on in that code is a bit complicated for the beginner, but will be
explained in Chapter 11, “User Authentication and Authorization.” You may not
want to get bogged down in the particulars of that code, and instead focus on
the ability to define your own method as a validator. The method must take two
arguments: the attribute being validated and the validation parameters (which
should be an array). Once defined, the method is used as the validator name. Here’s
that rule from LoginForm:

array ('password', 'authenticate'),

Asin the authenticate () example, all your validation method has to do in order
to indicate a problem is add an error to the model instance object (aka $this). Yii
will use the presences of errors, or lack thereof, as an indicator of whether or not
all the validation tests have been passed by the provided data. The addError ()
method takes two arguments: the attribute to which the error applies and an error
message.

As another example, the File class has a type attribute, which corresponds to
file.type in the database. This column/attribute is meant to store the MIME
type of a file: application/pdf, audio/mp4, video/ogg, or application/msword. When the
file is uploaded, the PHP code can retrieve this value, and these values will be used
when PHP sends the file back to the browser (i.e., when the user downloads the
file).

A site would normally want to restrict the kinds of files that can be uploaded to
certain file types. Older versions of the framework had no built-in validator to do
that, so you would have defined your own method for that purpose:

protected/models/File.php
public function validateFileType (Sattr, S$params) {

// Allow PDFs and Word docs:
Sallowed = array('application/pdf', 'application/msword');

// Make sure this is an allowed type:

88

CHAPTER 5. WORKING WITH MODELS

if (!in_array (Sthis->type, S$allowed)) {
Sthis->addError ('type',
'You can only upload PDF files or Word docs.');

}
} // End of validateFileType () method.

Once defined, the validating method can be applied:

public function rules () {
return array (
// Other rules.
array ('type', 'validateFileType'),
)i

{TIP} More current versions of Yii have a validator that can check a file’s
type, as will be explained in Chapter 9.

Applying Filters

As already explained, the “filter” validator is not a true validator, but rather a way
to run a value through a function. This processing will occur prior to any other
validation. When you have attributes whose values don’t align with any other
validator, I would strongly recommend that you consider filtering that data for extra
security. Common examples would be addresses or comments, both of which don’t
fit any regular expression but should be sanitized for safe usage. Or, going with the
CMS example, the File class’s description attribute should be stripped of any
HTML or PHP code:

array ('description', 'filter', 'filter' => 'strip_tags')

As another example, you can run values through the t rim () function, if you'd like:

array ('username, email, pass', 'filter', 'filter' => 'trim')

You can even write your own filtering function, if you need something more custom.
The function needs to take one argument-the value being filtered—and return a
value:

public function filterValue ($Sv) {

// Do whatever to Sv.
return $v;

89

CHAPTER 5. WORKING WITH MODELS

Validation Scenarios

Another thing to learn when it comes to rules are validation scenarios. Validation
scenarios are a way to restrict when a rule should or shouldn’t apply. A scenario
is indicated using the syntax " on’ => ’scenarioName’. If you want a rule to
apply to multiple scenarios, just separate each with a comma.

By default, rules apply under all scenarios. In order to change when a rule applies,
you need to know what the possible scenarios are.

{TIP} Instead of using “on” to specify a scenario, you can use “except”
to have a rule apply to every scenario but the one(s) indicated.

Simply put, a scenario is a label that describes how a model is currently being
used. (Technically, scenario is a writable property of the CModel class.) The
CActiveRecord class defines two scenarios for you: insert and update. This means
that when you create a new record in a database table, the model is in the “insert”
scenario. When you update a record in the database table, the model is in the
“update” scenario. Scenarios are useful when code in a model needs to take extra, or
just different, steps under different conditions.

Take, for example, the File class (and file database table), which has
date_entered and date_updated attributes (and columns). When a new file
record is created, the date_entered attribute should be set to the current date
and time. But this should only happen when a new file record is being created; in
all other situations, the date_entered should be left alone. To properly address
the range of possibilities, a rule can be established to set this attribute’s value,
but should do so only upon inserts. Similarly, the File class’s date_updated
attribute should be set to the current date and time whenever the file is updated,
but not when it’s first created. Thus, you have two different steps that should occur
in two different situations. Scenarios to the rescue!

The specific code to solve this particular problem is:

array ('date_entered', 'default',
'value'=>new CDbExpression ('NOW()"'),
'on'=>"'insert'"),

array ('date_updated', 'default',
'value'=>new CDbExpression ('NOW()"'),
'on'=>"'update'),

The new CDbExpression ('NOW () ‘) bit of code will be explained in Chapter 8.
For now, just understand that it says to use the MySQL NOW () function for this
column’s value in the database query.

If you want to take this scenario rule a step further, you can set the “default” valida-
tor’s setOnEmpty property to false:

90

CHAPTER 5. WORKING WITH MODELS

array ('date_entered', 'default',
'value'=>new CDbExpression ('NOW()"'),
'setOnEmpty'=>false, 'on'=>'insert'),

array ('date_updated', 'default',
'value'=>new CDbExpression ('NOW() '),
'setOnEmpty'=>false, 'on'=>'update')

That code says that a value should be set for the given attribute whether it already
has a value or not (given the specific scenario, of course). In other words, even if
your code sets the date_entered value to tomorrow, by disabling set OnEmpty,
the current date and time will always be used. If, however, you wanted to allow
for a user-provided value, only overriding that if one is not provided, you would
instead use the first example bit of code (that does not change setOnEmpty).

Those are two scenarios built into Active Record, but Yii let’s you define your own.
For example, a User object would be created when a person registers or when he
logs in. During the registration process, all of the information is required, and you
would often compare the password with a confirmed version of the password. But
during the login process, only the email address and password are necessary. To
address these different uses, you would create two scenarios: register and login.

Creating a scenario is easy, although it’s done not in the model itself but when an
instance of that model is created. To flesh out this specific example, I need to turn to
controllers a bit (and two chapters early). ..

The registration of a new user would likely be done through the act ionCreate ()
method of the UserController class, as registration is literally the creation of a
new user. That method begins with this line of code:

Smodel=new User;

To convert that into a scenario, provide the constructor (the class method that’s
automatically called when a new object of that class is created) with the name of the
scenario:

Smodel=new User ('register');

Now there is a register scenario! Any rules set to apply during the register scenario
will only be invoked within this one circumstance. You might also create user-
related scenarios for changing passwords (where a second password would again
be necessary and compared) or for changing other user settings.

{TIP} Scenarios can also be set on existing instances using the code
Smodel->scenario = ’'value’;.

91

CHAPTER 5. WORKING WITH MODELS

The Yii generated code already creates a scenario in this manner: search. This
scenario is used by the CGridview widget used in the “admin” view. That page is
intended as an administrator’s page for viewing records. The associated rule, again
created by Gii, will look like this:

array ('id, username, email, pass, type, date_entered', 'safe'
'on'=>'search'),

The purpose of that rule is to make certain values safe to use for searching. You
would want to remove any attribute listed there that should not be a search criteria.
In Chapter 12, I'll cover the search scenario in more detail, and I'll also discuss the
related search () method defined by Gii in CAct iveRecord models.

Putting It All Together

With all of this information in mind, how do you then go about defining rules for a
model? Here’s what you should do:

¢ Identify required attributes. This should be obvious and easy, but think
in terms of information required from the user. You only establish rules for
tields (i.e., models attributes) whose data may be provided by users. You
wouldn’t, for example, declare a rule for a primary key field, whose value will
be automatically created by the database.

¢ Validate the values in the most restrictive way possible. The required rule
ensures that the attribute has a value, but most attributes can be further
restricted. Add rules in this order:

1. Validate anything you can to a specific value. It's not often the case that an attribute
must have a specific value, or one of a possible set of values, but if so, check for

that. For example, the type attribute of User can only be “public”, “author”,
or “admin”.

2. Validate anything else remaining to a strict pattern, if you can. For example, an
email address or a URL must match a (pre-defined) pattern. You might also
create patterns for matching usernames, passwords, and so forth.

3. Validate anything else remaining to a strict type, if you can. For example, validate
to numbers or numeric types.

4. Validate numbers to an appropriate range, if you can. The easiest and most common
check is for a positive value. Ages, quantities, prices, and so forth, must all be
greater than 0. Ages, however, would also have a logical maximum, such as
100 or 120.

92

CHAPTER 5. WORKING WITH MODELS

¢ Apply filters as appropriate. At the very least, you'll likely want to apply
filters to any remaining attribute not covered by a validation rule.

* Be as conservative as you can with safe lists. If you've thought carefully
about the applicable validation rules, there should hopefully be only a rare
few attributes that also need to be forcibly marked as safe. Even better, only
mark attributes as safe in specific scenarios.

* Be as conservative as you can with the search list. Chapter 12 will explain
the usage of the search scenario in more detail.

* Customize descriptive error messages, if needed. This is more of a user
interface issue, but something to also consider.

With all of this in mind, I'll present the rules I would initially set for the CMS site’s
four models. If you're the kind of person that likes to test yourself, take a crack
at customizing the appropriate rules first, before looking at mine. You can check
your answers by downloading my code from the book’s download page (on the
“Downloads” tab of your account page).

{NOTE/} Later in the chapter, you’'ll learn how to handle the foreign key
columns such as comment .user_id, comment .page_id, etc.

protected/models/Comment .php::rules ()
// Required attributes (by the user):
array ('comment', 'required'),

// Must be in related tables:
array ('user_id, page_id', 'exist'),

// Strip tags from the comments:
array ('comment', 'filter', 'filter'=>'strip_tags'),

// Set the date_entered to NOW() :
array ('date_entered', 'default',
'value'=>new CDbExpression('NOW()"'), 'on'=>'insert'),

// The following rule is used by search().
// Please remove those attributes that should not be searched.
array ('id, user_id, page_id, comment, date_entered’,

'safe', 'on'=>'search'),

{NOTE} To save space, I'm only showing the arrays that are returned as
part of the primary array in the rules () methods.

93

http://yii.larryullman.com/account.php

CHAPTER 5. WORKING WITH MODELS

And here is Page:

protected/models/Page.php::rules ()
// Only the title is required from the user:
array ('title', 'required'),

// User must exist in the related table:
array ('user_id', 'exist'),

// Live needs to be Boolean; default O:
array ('live', 'boolean'),
array ('live', 'default', 'value'=>0),

// Title has a max length and strip tags:
array ('title', 'length', 'max'=>100),
array ('title', 'filter', 'filter'=>'strip_tags'),

// Filter the content to allow for NULL values:
array ('content', 'default', 'wvalue'=>NULL),

// Set the date_entered to NOW() every time:
array ('date_entered', 'default',
'value'=>new CDbExpression ('NOW()"')),

// date_published must be in a format that MySQL likes:
array ('date_published', 'date', 'format'=>'YYYY-MM-DD'),

// The following rule is used by search().

// Please remove those attributes that should not be searched.

array ('id, user_id, live, title, content, date_entered,
date_published', 'safe', 'on'=>'search'),

And here is User:

protected/models/User.php::rules()
// Required fields when registering:
array ('username, email, pass', 'required', 'on'=>'insert'),

// Username must be unique and less than 45 characters:
array ('email, username', 'unique'),
array ('username', 'length', 'max'=>45),

// Email address must also be unique (see above), an email address,

// and less than 60 characters:
array ('email', 'email'),

94

CHAPTER 5. WORKING WITH MODELS

array ('email', 'length', 'max'=>60),

// Password must match a regular expression:
array ('pass', 'match', 'pattern'=>'/"[a-z0-9_-1{6,20}$/i"),

// Password must match the comparison:
array ('pass', 'compare', 'compareAttribute'=>'passCompare',
'on'=>"'register'),

// Set the type to "public" by default:
array ('type', 'default', 'value'=>'public'),

// Type must also be one of three values:
array ('type', 'in', 'range'=>array ('public', 'author', 'admin')),

// Set the date_entered to NOW() :

array ('date_entered', 'default',
'value'=>new CDbExpression ('NOW()"'),
'on'=>'"'insert"'"),

array ('date_updated', 'default',
'value'=>new CDbExpression ('NOW()"'),
'on'=>"'update'),

// The following rule is used by search ().
// Please remove those attributes that should not be searched.
array ('id, username, email, pass, type, date_entered', 'safe', 'on'=>'search'

You also have to add one attribute to User:

protected/models/User.php

class User extends CActiveRecord {
public $passCompare; // Needed for registration!
// Et cetera

{TIP} The “user” validation rules will also change depending upon how
you plan on handling logging in (see Chapter 11) and updating user
accounts.

And here are the rules from the File model:

protected/models/File.php::rules ()
// name, type, size are required (sort of come from the user)
array ('name, type, size', 'required'),

95

CHAPTER 5. WORKING WITH MODELS

// description is optional; must be filtered

// and set to NULL when empty:

array ('description', 'filter', 'filter'=>'strip_tags'),
array ('description', 'default', 'wvalue'=>NULL),

// Maximum length on the name:
array ('name', 'length', 'max'=>80),

// Type must be of an appropriate kind:
array ('type', 'validateFileType'),

// Set the date_entered to NOW() :
array ('date_entered', 'default',
'value'=>new CDbExpression('NOW()'), 'on'=>'insert'),

// Set the date_updated to NOW() :
array ('date_updated', 'default',
'value'=>new CDbExpression('NOW() '), 'on'=>'update'),

// The following rule is used by search().

// Please remove those attributes that should not be searched.

array ('id, user_id, name, type, size, description, date_entered,
date_updated', 'safe', 'on'=>'search'),

Those rules also refer to the “validateFileType” filter, explained earlier in the chapter.
Three of the file attributes—its name, type, and size-aren’t actually provided by the
user directly, but come from the file the user uploaded. I'll explain how to get those
into the attributes in Chapter 9.

Changing Labels

Moving out of the rules, on a much more trivial note, let’s look at the
attributeLabels () method. This method returns an associative array of
fields and the labels the site should use for those fields. The labels will appear in
forms, error messages, and so forth. For example, in a form that asks the user for an
email address, should that form field say “Email”, “E-mail”, “E-mail Address”, or
whatever? Rather than editing the corresponding HTML (in the view file), the MVC
approach says to put this knowledge into the model itself. By doing so, editing one
file will have the desired effect wherever the field’s label is used.

The Yii framework uses the attributeLabels () method for this purpose, and
it does a great job of generating reasonable labels for you. For example, given
a column name of “date_updated”, Yii will generate the label “Date Updated”.
Foreign key columns, such as “user_id” become references to the associated class:

96

CHAPTER 5. WORKING WITH MODELS

“User”. Still, you may want to customize these labels more. To do so, just edit the
values returned by attributeLabels (). Note that you only want to edit the
values, not the array indexes.

For example, in the File.php model, used to represent an uploaded file, I would
change the attributeLabels () definition to:

public function attributelabels () {
return array (
'id' => 'ID',
'user_id' => 'Uploaded By',

'name' => 'File Name',
'type' => 'File Type',
'size' => 'File Size',
'description' => 'Description',

'date_entered' => 'Date Entered’',
'date_updated' => 'Date Updated',

After making those edits, you'll see that all of the view files reflect the new changes
(Figure 5.3).

{NOTE} The file upload (or create) form would actually be much different
in the live site, as the file’s name, type, and size would come from the
uploaded file itself.

(Unless you've made edits to the LoginForm model, you can access the
page shown in Figure 5.3 by first logging in as admin, and then going to
http://www.example.com/index.php/file/create/.)

When editing these values, remember that they aren’t just relevant on forms such as
that in Figure 5.3. For example, you won’t have the user provide the date_entered
value, instead that will be automatically created by the database. That might lead
you to think there’s no need to have a “Date Entered” label, but that label will be
useful on a page that shows the information about an already uploaded file.

Also, when you have a model that’s not based upon a database, you'll need to add
the attribute names and values to the att ributeLabels () method yourself. This
is also true when you add attributes to a database-based model:

protected/models/User.php::attributeLabels ()
return array (

'id'" => 'I1D',

'username' => 'Username',

'email' => 'Email',

97

CHAPTER 5. WORKING WITH MODELS

Create File

Fields with * are regquired

Uploaded By
File Name *
File Type *
File Size *

_I]escriptiun

Datie Entered

Date Updated

Create

Figure 5.3: The form for adding a new file, with its new labels.

98

CHAPTER 5. WORKING WITH MODELS

'pass' => 'Password',

'type' => 'Type’,

'date_entered' => 'Date Entered',
'comparePass' => 'Password Confirmation'’

Watching for Model Events

Thus far, the chapter has been examining the model methods created by Gii. But
there are methods not generated for you but still common to Yii models to be
discussed. I'm specifically thinking of:

e afterConstruct ()
o afterDelete ()

® afterFind()

e afterSave ()

o afterValidate ()
® beforeDelete ()

® beforeFind()

® beforeSave ()

® beforevValidate ()

These methods are used to handle model-related events. Before looking at the usage
of these methods, let’s first look at event handling in Yii in general.

The CComponent Class

Something I thought about discussing in Chapter 3, “A Manual for Your Yii Site,”
but later changed my mind about, is the concept of components. Discussion of
components can get a bit complex (which is why I removed it from Chapter 3), but
components are an important subject, and it’s time they were introduced to you.

Unlike the application components configured in Chapter 4 (such as the database
component, the “urlManager” component, and so forth), I'm talking about generic
components here. Components are the key building block in the Yii framework. It all
starts with Yii’'s CComponent class. Most of the classes used in Yii are descendants
of the base CComponent class. For example, the application object will be of type
CWebApplication. That class is derived from CComponent (although there are
other classes in between). Controllers are of type CController, which inherits
from CBaseController, which inherits from CComponent. CActiveRecord
inherits from CModel, which inherits from CComponent, and the same inheritance
path apply to CFormModel (Figure 5.4)

99

CHAPTER 5. WORKING WITH MODELS

CComponent

| CModule
T

| CBaseController I CModel

| CApplication | l CController I
J 5

CWebApplication |CActiveHecord | | CFormModel |

Figure 5.4: Part of Yii’s class inheritance structure, with CComponent at the
top.

Knowing that the component is the basic building block is important to your
use of Yii. Because of the nature of inheritance in OOP, functionality defined in
CComponent will be present in every derived class, which is to say most of the
classes in the framework.

The CComponent class provides three main tools:

¢ The ability to get and set attributes
¢ Event handling
¢ Behaviors

Of these three, I want to discuss events now. This coverage will be specific to
models, but understand that any class that inherits from CComponent supports
events (which is to say most classes).

Event Handling in Yii

Event programming isn’t necessarily familiar territory to PHP developers, as PHP
does not have true events the way, say, JavaScript does. In PHP, the only real event
is handling the request of a PHP script (through a direct link or a form submission).
The result of that event occurrence is that the PHP code in that script is executed.
Conversely, in JavaScript, which continues to run so long as the browser window
is open, you can have your code watch for, and respond to, all sorts of events (e.g.,
a form’s submission, the movement of the cursor, and so forth). Thanks to the
CComponent class, Yii adds additional event functionality to PHP-based Web site.

{NOTE} To be perfectly clear, events in Yii still only occur during the exe-
cution of a script. Once a complete browser page has been rendered, no
other events can occur until another PHP script is requested. Therefore,
it may help to think of events in Yii as being similar to the concept of
database triggers more so than to events in JavaScript.

100

CHAPTER 5. WORKING WITH MODELS

Event handling in any language starts by declaring “when this event happens with
this thing, call this function”. In Yii, you can create your own events, and I'll perhaps
discuss that at another point in the book (in a chapter to be named later). But models
have their own predefined events you can watch for: before a model is saved, after a
model is saved, before a model is validated, after a model is validated, and so forth
(the available events will depend upon the model type). Yes: each of the methods
previously mentioned correspond to an event that Yii will watch for with your
models.

In many situations, you’ll want to make use of events when something that happens
with an instance of model A should also cause a reaction in model B. You'll see
examples of this in time. But watching for events can be a good way to take some
extra steps within a single model, too.

For example, you might want to do something special before a model instance is
saved. To do so, just create a beforeSave () method within the model:

protected/models/SomeModel.php
protected function beforeSave () {
// Do whatever.
return parent::beforeSave();

As you can see in that minimal example, it’s a best practice to call the parent class’s
same event handler (here, beforeSave ()) just before the end of the method. Doing
so allows the parent class’s event handler to also take any actions it needs to, just
in case. (If you don’t do this, then any default behavior in the parent class method
won’t be executed.)

As a real-world example of using an event with a model, the page . user_id value
needs to be set to the current user’s ID when a new page record is created. One way
to do that is to create a beforevValidate () event handler that sets the attribute’s
value:

protected/models/Page.php

protected function beforeValidate () {
if (empty ($this->user_id)) { // Set to current user:
Sthis->user_id = Yii::app()->user->id;

}

return parent::beforevValidate () ;

This does assume that the current user’s ID is available through user->id, but
other than that, it will work fine. And because this method checks for an empty
user_1id attribute first, the event handler will not have an impact on the attribute’s
value when a page is being updated.

101

CHAPTER 5. WORKING WITH MODELS

{TIP} In Chapter 11, you'll learn about Yii: :app () —>user—->id.

The same concept can be applied to the user_id and page_id attributes in
Comment and the user_id attribute in File. See the downloadable code for
examples of all of these.

As another example, earlier in the chapter you saw how to set the two date/time
column values via scenarios:

protected/models/AnyModel .php::rules ()

array ('date_entered', 'default',
'value'=>new CDbExpression ('NOW()"'),
'on'=>"'insert'),

array ('date_updated', 'default',
'value'=>new CDbExpression ('NOW() '),
'on'=>"'update'),

An alternative solution would be to use the beforesSave () method and set the
values within it. To test whether this is an insertion of a new record or an update of
an existing one, the code can check the i sNewRecord property of the model:

protected/models/AnyModel.php

public function beforeSave () {
if (Sthis->isNewRecord) {
Sthis->created = new CDbExpression ('NOW()"');
} else {
Sthis->modified = new CDbExpression ('NOW()"');

}

return parent::beforeSave();

Which approach you take for setting values—validation scenarios or events—is largely
a matter of preference, as both can the trick. The argument for using event handling
is that you are moving more of the logic out of the rules and into new methods,
which can make for cleaner code.

{TIP} To get the automatically incremented primary key value for the
new record just created, refer to $this->primaryKey. You might need
to do thisin an afterSave () event handler.

As a final note on this concept, if the event that’s about to take place shouldn’t occur—
for example, the model should not be saved for some reason, just return false in the
event handler method.

102

CHAPTER 5. WORKING WITH MODELS

Relating Models

To wrap up this discussion of models, another key model method is relations ().
This method is used by CAct iveRecord models to indicate one model’s relation-
ship to other models. If your database is designed properly, this method will already
be properly filled out, again thanks to Gii.

{TIP} Revisit Figure 4.6 in Chapter 4 if you don’t recall the relationships
between the various tables in the CMS example.

Here’s what the relations () method in the Comment model looks like, with the
Gii-generated code:

protected/models/Comment .php
public function relations () {
return array (
'page' => array(self::BELONGS_TO, 'Page', 'page_id'),
'user' => array(self::BELONGS_TO, 'User', 'user_id'"),
)i

This method returns an array. Each array index is the relation’s name. The relation’s
name, is a made up value, that should be obviously meaningful.

Each value is another array, starting with the relationship type, followed by the
related model, followed by the attribute in this model that relates to that model
(i.e., the foreign key to that model’s primary key). The above code indicates that
Comment belongs to Page via the page_id attribute. In other words, each com-
ment belongs to a page, and the association is made through page_id. The same
relationship exists with User.

Here’s how this will come into play: When loading a record for a Page, you can
also load any of its related models. In this case, the Page instance can load the
comments associated with that page. This will allow the page to also display those
comments (without you doing any other work). Furthermore, since Comment is
related to User, the user’s name can also be loaded and shown. You'll see examples
of this in subsequent chapters. But for now, let’s look into the model relations in
great detail.

{TIP} The relationships are also needed by the “exists” validator which
confirms that a foreign key value in this table exists as a primary key in
another.

103

CHAPTER 5. WORKING WITH MODELS

Relationship Types
The possible relationships are:

* HAS_ONE

® BELONGS_TO
® HAS_MANY

® MANY_MANY

{TIP} The relationships are indicated by constants defined within the
CActiveRecordclass. That's why each is prefaced with sel1f:: when
used in the relations () method.

You've already seen an example of BELONGS_TO. This constant represents the “one”
side of a one-to-many relationship (e.g., page “belongs to” user). The other model
in that relationship will have a HAS_MANY relationship to this one:

protected/models/User.php

public function relations() {
return array (
'comments' => array(self::HAS_MANY, 'Comment', 'user_id'),

'files' => array(self::HAS_MANY, 'File', 'user_id'),
'pages' => array(self::HAS_MANY, 'Page', 'user_id'),
)i

As you can see, a User can have many comments, files, and pages in the system.

When there is a one-to-one relationship between two models, the relations are
BELONGS_TO and HAS_ONE (instead of HAS_MANY). One-to-one relationships in
databases aren’t that common as one-to-one relations can alternatively be combined
into a single table. But, as a hypothetical example, if you had an e-commerce site
that used subscriptions to access content, you could opt to store the subscription
information separate from the user information. But each user could only have a
single subscription and each subscription could only be associated with a single
user. Again, this isn’t common, but Yii supports that arrangement when it exists.

Note that these relation definitions can be automatically created by Gii based upon
one of two things found in your database:

¢ Foreign key constraints

¢ Comments used to indicate relationships for tables that don’t support foreign
key constraints

If Gii doesn’t generate this code for you, or if you just need to alter the relations
later, you can add the right relation definitions that match the situation.

104

CHAPTER 5. WORKING WITH MODELS

Handling Many-to-Many Relationships

Finally, there’s the MANY_MANY relationship. In a normalized, relational database,
a many-to-many relationship between two tables is handled by creating an in-
termediary table. Both of the original two tables will then have a one-to-many
relationship with the intermediary. This is the case in the CMS example, with the
page_has_file table.

When using Gii to create the boilerplate code in Chapter 4, the page_has_file
table was purposefully not modeled, as the PHP code will never need to create an
instance of that table’s records. (The table only has two columns: page_id and
file_id.) You might think that you would have to model that table and then
indicate its relationship to the other two models in order for the models to use the
table, but thankfully, Yii supports a different syntax for the common situation of a
many-to-many relationship between two models:

protected/models/AnyModel .php::relations ()
return array (
'relationName' => array(self::MANY_MANY, 'Model',
'intermediary_table (fkl, fk2)")

Again, you give the relationship a name as the index. The value is an array, with
the first value being the type: here, MANY_MANY. Next, you name the other model
to which this model relates. Next, instead of identifying the foreign key in this
model that relates to the other model, you name the intermediary table and the
corresponding foreign keys.

Putting this together, here are the corresponding relations for File:

protected/models/File.php
public function relations () {
return array (
'user' => array(self::BELONGS_TO, 'User', 'user_id'),
'pages' => array(self::MANY_ MANY, 'Page',
'vage_has_file(file_id, page_id) "),

And here’s Page:

protected/models/Page.php
public function relations () {
return array (
'comments' => array(self::HAS_MANY, 'Comment', 'page_id'),
'user' => array(self::BELONGS_TO, 'User', 'user_id'),

105

CHAPTER 5. WORKING WITH MODELS

'files' => array(self::MANY_MANY, 'File',
'page_has_file(page_id, file_id)"'"),

As the Gii-generated comments also indicate, even though proper relationship
definitions were probably created for you, you'll want to inspect them yourself, just
to be sure.

{TIP} More advanced relationship issues will be covered in Chapter 19,
“Advanced Database Issues.”

106

Chapter 6

WORKING WITH VIEWS

Part 2 of the book focuses on the core concepts within the Yii framework. The very
core of the core of Yii is the MVC—model, view, controller-design approach. The
previous chapter explained models in some detail. Models represent the data used
by an application. In this chapter, you'll look at views in equal detail. Users interact
with applications through the views. For Web sites, this means that views are a
combination of HTML and PHP that help to create the desired output that the user
will see in her browser. To me, models are complicated in design but easy to use.
Conversely, views are simple in design but can be challenging for beginners to get
comfortable with because of how they are implemented.

In this chapter, you'll learn everything you need to know in order to both compre-
hend and work with views. You'll also encounter several recipes for performing
specific tasks. As in the previous chapter, many of the examples will assume that
you’ve created the CMS example explained in Chapter 4, “Initial Customizations
and Code Generations.”

Finally, understand that views are rendered-loaded and their output sent to the
browser—through controllers. Controllers will be covered in the next chapter, but
there’s a bit of a “chicken and the egg” issue in discussing the two subjects. As best
as I can, I'll keep explanations in this chapter to the view files themselves, but some
discussion of the associated controllers will inevitably sneak in.

The View Structure

When you use the command-line and Gii tools to create a new Web application,
you’ll generate a series of files and folders. By default, all of the view files will
go in the protected/views directory. This directory is subdivided into a layouts
directory plus one directory for each controller you've created. Those directory
names match the controller IDs: comment, file, page, site, and user in the CMS
example application.

107

CHAPTER 6. WORKING WITH VIEWS

Within the layouts directory, you'll find these three files:

¢ columnl.php
¢ column2.php
¢ main.php

For each of the controllers you created via Gii (i.e., all of the directories except for
site), you'll find these files:

_form.php
_search.php
e _view.php
¢ admin.php
¢ create.php
¢ index.php
e update.php
¢ view.php

As you can see, view files are designed to be broken down quite atomically, such
that, for example, the form used to both create and edit a record is its own file, and
that file can be included by both create.php and update.php (those two files start by
changing the headings above the form). As with most things in OOP, implementing
atomic, decoupled functionality goes a long way towards improving reusability. But
the individual view files are only part of the equation for creating a complete Web
page. The individual view files get rendered within a layout file. Although most of
your edits will take place within the individual view files, in order to comprehend
views in general, you must understand how Yii assembles a page.

Where Views are Referenced

In Chapter 3, “A Manual for Your Yii Site,” I discuss routing in Yii: how the URL
requested by the Web browser becomes the generated page. For example, when the
user goes to this URL:

http://www.example.com/index.php?r=site/index

That is a request for the “index” action of the “site” controller. (Because
“site” is the default controller and “index” is the default action, the URL
http://www.example.com/ would have the same effect.) Behind the scenes, the
application object will read in the request, parse out the controller and action, and
then invoke the corresponding method accordingly. In this case, that URL has the
end result of calling the act ionIndex () method of the SiteController class:

108

CHAPTER 6. WORKING WITH VIEWS

public function actionIndex () {
Sthis—->render ('index"');

}

The only thing that method does is invoke the render () method of the $this
object, passing it a value of “index”. The render () method, defined in the
CController class, is called any time the site needs to render a view file within
the site’s layout. The first argument to the method is the view file to be rendered,
without its .php extension. By default, the view file will be pulled from the current
controller’s view directory: protected/views/ControllerID/viewName.php. In this
case, “index” means that protected/views/site/index.php will be rendered.

{TIP} As $this always refers to the current object, within a controller
$this refers to the current instance of that controller.

That’s where the view file is referenced and how Yii decides it is time to create a
Web page. Now let’s look at the rendering process itself.

Layouts and Views

In order to understand what Yii does behind the scenes to create a complete HTML
page, it may help to begin by looking at how templates are used in a non-framework
PHP site.

The Premise of Templates

When you begin creating dynamic Web sites using PHP, you’ll quickly recognize
that many parts of an HTML page will be repeated throughout the site. At the very
least, this includes the opening and closing HTML and BODY tags. But within the
BODY, there are normally repeating elements: the header, the navigation, the footer,
etc. To create a template system, you would pull all of those common elements out of
individual pages and put them into one (or more) separate files. Then each specific
page can include these files before and after the page-specific content (Figure 6.1):

<?php

include ('header.html');

// Add page-specific content.
include ('footer.html');

This is the approach I would use on non-framework-based sites. It’s easy to generate
and maintain. If you need to change the header or the footer for the entire site, you
only need to edit the one corresponding file.

109

CHAPTER 6. WORKING WITH VIEWS

My Blog HEADER

My blog is great because | am grear.

ALICE IN WONDERLAND

All the time they were playing the Qween newer left off guarneling with the cther players, and shouting "OFf with kiz Fead!™ oo
“OFf withi her bead!® Those whom she sentenced were taken indo custody by the scldiers, who of course had bo beave off
bBeinay arches i dio this, so that by the end of halt an hour or so chere were no arches left, and all the players, enceps the
Eing, the Quggn, and Al {E i Ciis K 3l T iy | exeouglion.

e PAGE. SPECIEIC CONTENT.
emped pp in puch @ hurry Thal ife Hpped over 1R Jurp-boa with fthe edge af har ki, upieifing &l the juryman on to the

heads of the crowd below, and there they lay sperawing aboat, remingding her very much of 2 [l) of [rinte fish she had
ancidenially upset the week belore

The firdr queseinn of Courde wks, hos Do gt dry again: They had & consuleanion absoat e, amd after & Tew minuies i
wipirmad quite nateral to Alice 1o find heriall taling familiardy with therm, as iF she had known them all Bar lde. isdeed, 55
huad guite 4 lang gumsnt with 158 Loy, wha a8 Laid turried sulky, and would anly key, " b older than yow, and migdt know
befter.” and this Alice would not allow without kroweng Row old f was, and, a3 the Lory poaifreely refused 1o bell Ha age,
there was no more to be 1ald

FOOTER e ekl

Figure 6.1: A templated page.

Templates in Yii

When using Yii for your site, you'll still use a template system, but it’s not so simple
and direct as that just outlined. In a non-framework site, the executed PHP scripts
tend to be accessed directly (i.e., the user goes to view_page.php or add_page.php).
In Yii, everything runs through the bootstrap file, index.php. As explained in
Chapter 3, the bootstrap file creates an application object and runs it. It’s up to that
application object to assemble all the necessary pieces together. Of those pieces, the
layout files constitute all the common elements, everything that’s not page-specific.

In your Yii-generated site, you'll find the protected/views/layouts/main.php file.
This is the primary page layout. If you open it, you'll see that it begins with the
DOCTYPE and opening HTML tag, then has the HTML HEAD and all its jazz, then
this page starts the BODY, and finally the page contains the footer material and the
closing tags. This one file acts as both the header and the footer.

{TIP} The main layout file obviously has much more to it, and I'll explain
the key pieces throughout this chapter.

In the middle of the body of the page, you'll see this line:

110

CHAPTER 6. WORKING WITH VIEWS

<?php echo $content; ?>

This is the most important line of code in the entire layout file. Its job is to pull the
page-specific content into the template. For example, when the SiteController
class’s actionIndex () method is invoked, it renders the “index” view file, which
is to say protected/views/site/index.php. In that situation, the contents of that view
tile are assigned to the $content variable and then printed at that spot in the layout
file. This is what it means to “render” a view file. If the view file has any PHP code,
that code will be executed and its results also assigned (inline) to the $content
variable (Figure 6.2).

<html|>
<body>
<?php
echo $content; —™
7>
</body>
</html>

$content

View File Layout Complete HTML Page

Figure 6.2: How Yii renders a complete page by pulling an individual view file
into the layout.

{TIP} “Rendering” just means compiling all the pieces together, including
static text (HTML and such) and the output from executed PHP code.

Now you won’t find an assignment to the $content variable anywhere in
your code and do note that it's just $content, not $this->content or
$model->content. Yii just uses this variable to identify the rendered view
content that will be inserted into the layout. All the other HTML and PHP in the
layout is the template for the entire site; the value of $content is what makes page
X different from page Y.

That’s the principle involved, but the process is made more complicated by the
various ways that content can be wrapped in Yii. This is where the column1.php
and column2.php files from the layouts directory come into play. I'll explain what’s
happening there later in the chapter, but for now, let’s move on to the basics of
editing view files.

{TIP} Also pertinent to views is Chapter 12, “Working with Widgets.”
Widgets are used to generate more custom HTML (and JavaScript) with-

out embedding too much logic directly in a view file.

111

CHAPTER 6. WORKING WITH VIEWS

Editing View Files

Now that you (hopefully) have a sense of how individual view files and the primary
layout file work together to create a full Web page, let’s look at the individual view
files in more detail. Over the next several pages, I'll explain

¢ What variables exist in view files, and how they get there
* How to set the page’s title in the browser

¢ The syntax commonly used in view files

¢ How to create absolute links to resources

¢ How to create links to other site pages

¢ How to prevent Cross-Site Scripting (XSS) attacks

One thing I'm not going to explain in any detail in this chapter is the use of forms
within view files. Forms are a specific enough topic that they get their own coverage
in Chapter 9, “Working with Forms.”

Variables in the View

Views use a combination of PHP and HTML to create a complete page, just as in
many non-framework PHP pages. But it’s not often that a view will contain only
HTML; most of the dynamic functionality comes from the values of variables. A
common point of confusion, however, is how variables get to the view file in the
first place.

In a traditional, non-framework PHP script, PHP and HTML are intermixed, making
it easy to reference variables:

<?php

$var = 23;

?>

<!-— HTML --—>

<?php echo $var; ?>
<!-— HTML -->

?>

Even if you use included files, you won’t have problems accessing variables (outside
of functions, that is), as the included code has the same scope as the page that
included it.

But in a Yii-based site, the structure and sequence is not so straightforward, as
already explained. Further, you will rarely create variables in the view files them-
selves. No, most of the variables used in view files will come from the controller
that rendered the view. This is not that direct either, however. For example, say you
change the act ionIndex () method of the SiteController class to:

112

CHAPTER 6. WORKING WITH VIEWS

public function actionIndex () {
Snum = 23;
Sthis->render ('index');

You might think that the protected/views/site/index.php script could then make use
of $num, but that is not the case. Variables must be passed to the view deliberately.
To do so, pass an array as the second argument to the render () method:

Sthis->render ('index', array('num' => $num)) ;

Now, index.php can make use of $num, which will have a value of 23. Note that
you can use any valid variable name for the array index, and the resulting variable
will exist in the view file. This is equally acceptable, albeit confusing:

Sthis->render ('index', array('that' => S$num));

Now, index.php has a $that variable with a value of 23.

An important exception to the rule that variables must be formally passed to
the view file is $this. S$this is a special variable in OOP that always refers
to the current object. It never needs to be formally declared. As a view file gets
rendered by a controller, $this in a view file always refers to the current con-
troller. In protected/views/site/index.php, Sthis refers to the current instance of
the SiteController class.

The view files generated by Gii have comments at the top of them that indicate
the variables that were passed to the view file. For protected/views/site/index.php,
that’s:

<?php
/* @var Sthis SiteController x/

For protected/views/user/create.php, you'll see:

<?php
/* @var Sthis UserController x/
/* @var Smodel User =*/

This is a simple but brilliant touch that makes it easier to know what variables you
can work with within a view.

{TIP} Follow the Yii framework’s lead and add, or modify, the comments
at the top of the view file when you change what variables are passed to
it.

113

CHAPTER 6. WORKING WITH VIEWS

As in that user example, the relevant model instance will normally be passed
to the view file, too. The code Gii generates passes the model instance as the
$model variable. Here’s the relevant parts of the actionCreate () method from
UserController:

public function actionCreate () {
Smodel=new User;
Sthis->render ('create',array (
'model'=>Smodel,

))

This means that within the view, you can access any of the model’s public properties
via $model->propertyName. With the User class defined in the CMS example,
you could therefore greet the user by username in a view using:

<?php echo $model->username; ?>

{WARNING/ That code will work, but later in the chapter you'll learn a
slightly more secure approach.

You can also call any of a model’s public methods via $model->methodName ().
For example, the CModel class defines the getAttributeLabel () method which
returns the label (defined in the model’s attributelLabels () method) for the
provided attribute:

<?php echo $model->getAttributelabel ('user_id'"')); 2>

Setting Page Titles

As previously mentioned, within a view file, the $this variable refers to an instance
of the controller that rendered the file. As $this will be an object, you can access
any public controller property via $this->controllerProperty. There aren’t
that many of them, and certainly few you would need to access within a view, but
pageTitle is useful. Its value will be placed between the TITLE tags in the HTML,
and therefore used as the browser window title.

<?php $this->pageTitle = 'About This Site'; 2>

Or, in the CMS example, you might want the browser window title to match the
title of the content for a single page. That would have been passed to the page as
Smodel:

114

http://www.yiiframework.com/doc/api/1.1/CController#properties

CHAPTER 6. WORKING WITH VIEWS

<?php $this->pageTitle = $model->title; ?>

By default, the pageTitle value will be the application’s name (defined in the
config file) plus something about the current page. For example, for the protect-
ed/views/user/create.php page, the title will end up being My Web Application -
Create User unless changed.

If you want to use the application’s name in the title, it’s available via
Yii::app()->name. This comes from the configuration file, explained in
Chapter 4:

<?php $this->pageTitle = Yii::app()->name . '::' . S$model->title;

{TIP} Because the page title is set by assigning a value to the controller
instance, it can also be set within the controller action, if you’d rather.

Alternative PHP Syntax

The view files are just PHP scripts, and so you can write PHP code in them as if they
were any other type of PHP script. While you could do that, view files are also part
of the MVC paradigm, which has its own implications. Specifically, the emphasis
in view files should be on the output, the HTML. Towards that end, the PHP code
written in views is embedded more so than in non-MVC sites. For example, a
foreach loop in non-MVC code might be written as so:

<?php
foreach ($list as $value) {
echo "$value";

In Yii, that same code would be normally written as:

<?php foreach ($list as $value): ?>
<1li><?php echo $value; ?></1i>
<?php endforeach; ?>

In this particular example, with so little HTML, using three separate PHP blocks
may seem ridiculous, but the important thing to focus on is the alternative foreach
syntax. Instead of using curly brackets, a colon begins the body of the loop and the
endforeach; closes it.

The same approach can be taken with conditionals:

115

?>

CHAPTER 6. WORKING WITH VIEWS

<?php if (true): ?>
<div><h2>True!</h2>

<p>Hey! This is true.</p>
</div>

<?php else: ?>
<div><h2>False!</h2>

<p>Hey! This was not true.</p>
</div>

<?php endif; ?>

Naturally, the else clause is optional.

Again, these are just syntactical differences, common in MVC, but not required. Yii
uses its own template system by default, but allows you to use alternative systems,
if you’d rather. For example, you can use Smarty.

Linking to Resources

If you look at the protected/views/layouts/main.php file, you'll see that the CSS
files for the site are stored where you’d expect them to be, within a ¢ss subdirectory
of the Web root. However, the layout file does not use a relative path to the CSS
scripts:

<!-- NOT THIS! —-—>
<link rel="stylesheet" type="text/css"
href="css/screen.css" media="screen, projection" />

While you may be in the habit of using relative URLs for CSS, JavaScript, and other
resources on your sites, relative URLs are not a good idea when using Yii. The reason
has nothing to do with Yii and everything to do with how Web servers and browsers
work. Say you change how URLs are formatted in Yii (see Chapter 4), so that the
user might end up at http://www.example.com/index.php/site/login. Or better yet:
http://www.example.com/site/login. In both of those cases, the request to load the
CSS file using href="css/screen.css" means that the browser will request the
file http://www.example.com/site/login/css/screen.css. That file, of course, does
not exist.

The solution is to use an absolute path to all CSS, JavaScript, images, and so forth.
This could be as simple as:

<!-- NOT THIS! ——>
<link rel="stylesheet" type="text/css"
href="/css/screen.css" media="screen, projection" />

116

http://www.yiiframework.com/doc/guide/1.1/en/topics.prado
http://www.smarty.net

CHAPTER 6. WORKING WITH VIEWS

The initial slash before css/screen.css says to start in the Web root directory.

That will work, but it leaves you open to another problem. Like me, you may
develop a site on one server and then deploy it to the live server. On the development
server, the URL may be something like http://localhost/sitename/. In that case, the
proper absolute path would be /sitename/css/screen.css. If you used that value on
your local server, you would have to changed it when the site is deployed to the
production server.

Rather than having to double check all your references when you move the
site, and to generally make your site much more flexible, just have the Yii
application insert the proper absolute path for you. That value can be found in
Yii::app () —->request->baseUrl:

<link rel="stylesheet" type="text/css"
href="<?php echo Yii::app()->request—>baseUrl; ?>/css/
main.css" />

Note thatthe Yii: :app () —>request—->baseUrl value does not end with a slash,
so you must add that.

{TIP} Always use absolute paths for external resources.

Understand that you should not use this approach to create links to other pages
within your site. Only use Yii::app () ->request->baseUrl to reference re-
sources that should not be loaded through the bootstrap (index.php) file. For links
to other pages, there are better solutions.

Linking to Pages

As you should well know by now, every page within a Yii site goes through the
bootstrap file. The URL for site pages will be in one of the following formats,
depending upon how the “urlManager” component is configured:

¢ http://www.example.com/index.php?r=ControllerID/ActionID
¢ http://www.example.com/index.php/ControllerID/ActionID/
¢ http://www.example.com/ControllerID/ActionID/

Because the URL format is dictated by the “urlManager”, and because you may
need to change this format later, you don’t want to hardcode links to other pages
within your views. Instead, have Yii create the entire correct URL for you.

The right tool for this job is the 1ink () method of the CHtm1 class (Figure 6.3).
This class defines oodles of helpful methods for you, although most are related to
creating HTML forms.

117

CHAPTER 6. WORKING WITH VIEWS

link() method

public static string link(string Stext, mixed Surl='#', array sShtmlOptions=array |
N

Stext string link body. It will NOT be HTML-encoded. Therefore you can pass in HTML code such
as an image tag.

$url mixed a URL or an action route that can be used to create a URL. See normalizeUrl for more
details about how to specify this parameter.

$htm|Options array additional HTML attributes. Besides normal HTML attributes, a few special attributes
are also recognized (see clientChange and tag for more details.)

{return} string the generated hyperlink

Figure 6.3: The class documentation for the CHtm1 : : 1ink () method.

As you can see in the figure, the first argument is the text or HTML that should be
linked. This can be straight text, such as “Home Page”, or HTML. This means that
you can use 1ink () to turn an image into a link.

The second argument is the URL to use. You could provide a hardcoded value here,
but that again defeats the purpose of having flexible links. Instead, you should
provide the proper route. This must be provided as an array, even if it’s an array of
one argument. For example, the route for the home page, which by default is the
“index” action of the “site” controller would be “site/index”:

<?php echo CHtml::link ('Home', array('site/index')); 2>

The route for the create a user page (i.e., registration), would be “user/create”:

<?php echo CHtml::link('Register', array('user/create')); ?>

{NOTE} Routes are in the format ControllerID/ActionID.

Understand that this only works if the route is provided as an array. If you provide
a string as the second argument to CHtml: : 1ink (), it will be treated as a literal
string URL value:

<?php
// This result is ALWAYS http://www.example.com/site/index:
echo CHtml::1link ('Home', 'site/index'); ?>

That URL may work, depending upon how the “urlManager” is configured, but will
break if you ever change the routing configuration.

If you need to pass additional parameters to the routing, just add those to the array.
This next bit of code creates a link to the page that has an ID value of 23:

118

CHAPTER 6. WORKING WITH VIEWS

<?php echo CHtml::link('Something', array('page/view',6 'id' => 23));

The resulting output will be one of the following, depending upon the configuration:

<a href="http://www.example.com/index.php?
r=pageview&id=23">Something

<a href="http://www.example.com/index.php/
page/view/id/23">Something

Something

As already stated, the value being linked (i.e., that which the user would click upon)
can be HTML, too:

<?php
echo CHtml::1link ('request->baseUrl
'/img/thing.png" />', array('page/view',6 'id' => 23)); ?>

The third parameter to 1ink () is for additional HTML options. You could use this,
for example, to set the link’s class:

<?php echo CHtml::link('Something', array('page/view', 'id' => 23),
array ('class' => 'btn btn-info')); ?>
Results in:

<a href="http://www.example.com/index.php/page/view/id/23"
class="btn btn-info">Something

{TIP} The CHtml: : 1ink () method takes additional HTML options not
tied to HTML attributes. These allow you to associate JavaScript events
with a link, and will be discussed in Chapter 14, “JavaScript and jQuery.”

Sometimes you'll need to create a URL for a page without creating the entire
HTML link code. For example, you may want to use the link’s URL for the link
text, or just include a URL in some other text or the body of an email. In those
cases, you wouldn’t want to use CHtml: :1ink (), nor would you want to use
Yii::app () ->request->baseUrl (which does handle routing). The trick in
such cases is to use the CController::createAbsoluteUrl () method. It's
available via $this, of course:

<?php

$url = $this->createlAbsoluteUrl ('page/view', array('id' => 23));

echo CHtml::1link ($url, array('page/view', 'id' => 23)); ?>

119

?>

CHAPTER 6. WORKING WITH VIEWS

As you can see in that code, createAbsoluteUrl () takes the route as a string,
not an array, as its first argument. Additional parameters can be provided as an
array to the second argument. (I've spread the entire code out over two lines for
extra clarity, but that’s not required.)

{TIP} To link to an anchor point on a page, pass ’ #’ => ’anchorId’
as a parameter.

Preventing XSS Attacks

A few pages ago, I demonstrated a line of code but mentioned that the code could
be implemented more securely:

<?php echo $model->comment; ?>

That may seem harmless, but if a malicious user entered HTML in a comment,
that HTML would be added to the page (assuming that tags weren’t stripped out
prior to storing the value). If the HTML included the SCRIPT tags, the associated
JavaScript would be executed when this page was loaded. That is the premise
behind Cross-Site Scripting (XSS) attacks: JavaScript (or other code) is injected into
Site A so that valuable information about Site A’s users will be passed to Site B.

{NOTE} Reprinting user-provided HTML tags on a page is not only a
secure concern, but it can also mess up the appearance and functionality
of the page.

Fortunately, XSS attacks are ridiculously easy to prevent. In straight PHP, you would
send data through the htmlspecialchars() function, which converts special characters
into their corresponding HTML entities. In Yii, you can use CHtml: :encode () to
perform the same role (it’s just a wrapper on htmlspecialchars (). You'll see
this method used liberally (and appropriately) in the view files generated by Gii:

<?php echo CHtml::encode ($data->getAttributelLabel ('id"));

?>:
<?php echo CHtml::1link (CHtml::encode ($data->id),
array ('view', 'id'=>$data->id)); ?>

As a rule of thumb, any value that comes from an external source that will
be added to the page’s HTML (including the HEAD), should be run through
CHtml::encode (). “External source” includes: files, sessions, cookies, passed in
URLs, provided by forms, databases, Web services, and probably two or three other
things I didn’t think of.

120

http://www.php.net/htmlspecialchars

CHAPTER 6. WORKING WITH VIEWS

{WARNING/ You should use encode () when dynamically printing the
page’s title, too.

CHtml: :encode (), or htmlspecialchars (), is fine, but it’s not an ideal so-
lution in all situations. For example, in the CMS site, each page has a content
attribute that stores the page’s content. This content will be HTML, so you can’t ap-
ply either of these methods to it. Obviously, pages of content should only be created
by trusted administrators, but you can still make the content safe to display without
being vulnerable to XSS attacks. That solution is to use the CHtm1Purifier class,
which is a wrapper to the HTML Purifier library:

<?php

Spurifier = new CHtmlPurifier();

$data = $purifier->purify ($page->content);
echo $data;

?>

HTML Purifier is able to strip out malicious code while retaining useful, safe code.
This is a big improvement over the blanket approach of htmlspecialchars ().
Moreover, HTML Purifier will also ensure that the HTML is standards compliant,
which is a great, added bonus (particularly when non-Web developers end up
submitting HTML content).

The biggest downside to using CHtmlPurifier is performance: it’s slow and
tedious for it to correctly do everything it does. For that reason, I would recommend
using CHtmlPurifier to process data before it’s saved to the database. In other
words, you'd add its invocation as a beforeSave () method of the model instead
of putting it into your view. Alternatively, you could use fragment caching to cache
just the HTML Purifier output.

{TIP} CHtmlPurifier can be customized as to what tags and values
are allowed (i.e., considered to be safe).

Working with Layouts

As explained earlier in the chapter, complete HTML pages are created in Yii by
compiling together a view file within the layout file. The past several pages have
focused on the individual view files: the variables that are accessible in them, the
alternative PHP syntax used within view files, and how to properly and securely
perform common tasks. Now let’s look at layouts in detail.

As a reminder, the layout is the general template used by a page. It's a wrapper
around an individual view file. And, to be precise, the result of an individual view
file will be inserted into the layout as the $content variable.

121

http://htmlpurifier.org/

CHAPTER 6. WORKING WITH VIEWS

{TIP} You can also change the entire look of a site using themes. I've
never personally felt the need to use them, but if you're curious, the Yii
guide explains them well.

Creating Layouts

Although the default template that the generated Yii site has is fine, you'll likely
want to create your own, more custom site. By this point, you should have the
knowledge to do that, but here’s the sequence I would take:

1. Create a new file in the protected/views/layouts directory.

I would recommend creating a new file, named whatever you think is
logical, and leaving the main.php file untouched, for future reference.

2. Drop in your HTML code:

<!doctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<title>untitled</title>
<!——[if 1t IE 9]>
<script src="js/html5. js"></script>
<!'fendif]—-——>

</head>

<body>

</body>

</html>

That is a basic HTMLS5 template, and it includes a locally hosted copy of
the html5shiv.

3. As the very first line of the page, add:

<?php /* @var $this Controller =/ ?>

This is the kind of documentation that Gii puts into the default layout
for you. You really ought to put it in your layout file as a reminder of
what variables are available to this page.

4. Replace the page’s title with:

122

http://www.yiiframework.com/doc/guide/1.1/en/topics.theming
http://code.google.com/p/html5shiv/

CHAPTER 6. WORKING WITH VIEWS

<?php echo CHtml::encode ($this->pageTitle); ?>

This inserts the value of the controller’s pageTit le attribute between
the HTML TITLE tags. For extra security, it’s sent through the encode ()
method first.

5. Include your CSS files using;:

<link rel="stylesheet" href="<?php echo
Yii::app () ->request->baseUrl; ?>/css/styles.css">

This method for providing an absolute reference to a CSS script was
explained earlier in the chapter. Obviously you'll need to change the
specific filename to match your site.

6. Repeat Step 5 for any JavaScript:

<script src="<?php echo
Yii::app () —>request—->baseUrl; ?>/js/scripts.js"></script>

7. In the proper location between the BODY tags, print the content:

<?php echo $content; ?>

{WARNING} Never apply encode () when printing the $content vari-
able! It will contain HTML that must be treated as such.

8. Make any other necessary changes to implement your template.

9. Save the file.

Once you've created the layout file, you can tell your site to use it.

Changing Layouts

To change layouts in Yii, assign a new value to the 1ayout property of the controller.
That’s really simple to do, but there are several places you can take that step.

To broadly change the layout used for every page of your site, edit the protected/-
components/Controller.php file:

123

CHAPTER 6. WORKING WITH VIEWS

class Controller extends CController {
public $layout='//layouts/your—-layout';

The Controller class is created when you make a new site, and all new controllers
created by Gii will extend it. Thus, changing the property here impacts every
controller. Note the syntax used: //layouts/your-layout. The “//” indicates to start
in the default views directory. Then, “layouts” means go into the layouts directory,
and “your-layout” says to use the file named your-layout.php. Change this last
value to match the filename of your layout file.

If different controllers are going to use different layouts, you can still set a de-
fault layout in protected/components/Controller.php, but override that value in
individual controllers:

protected/controllers/UserController.php
class UserController extends Controller {
public $layout='//layouts/your-other-layout';

Now this one controller will use your-other-layout.php.

You can also change the layout for specific controller actions (and therefore different
view files):

protected/controllers/SiteController.php

public function actionIndex () {
Sthis->layout = '//layouts/home';
Sthis—->render ('index"');

And that’s all there is to it. When protected/views/site/index.php is rendered, it
will use the protected/views/layouts/home.php template.

There is one more way in which you can change the default layout of the entire site:
by assigning a value to “layout” in the configuration file (i.e., assign a new value
to the 1ayout property of CWebApplication). The following table shows all the
options, in order from having the biggest impact to the smallest.

Location Applies to

config/main.php Every controller and view
components/Controller.php Every controller that inherits from Controller
controllers/SomeController.php Every view in SomeController

SomeController::actionSomething() The view rendered by act ionSomething ()

124

CHAPTER 6. WORKING WITH VIEWS

Also note that layout changes made by code lower in the table override values es-
tablished higher in the table. For example, a layout change in SomeController.php
overrides the value set in Controller.php or the configuration file.

Rendering Views Without the Layout

Sometimes you want to render view files without using a layout. Two logical reasons
to do so are when:

* One view file is being rendered as part of another
¢ A view file’s output won’t be HTML

For an example of the first situation, take a peek at any of the “create” view files.
You'll see something like this:

<hl>Create User</hl>
<?php echo $this->renderPartial ('_form', array('model'=>$model)); ?>

Both the “create” and the “update” processes make use of the same form, the latter
is just pre-populated with the existing data. Since multiple files will use this same
form, the logical approach is to create the form as a separate file and then include it
wherever it's needed. That’s what’s happening in protected/views/user/create.php
above. However, if both the create.php and _form.php view files were rendered
within the template, the template would be doubled up and the result would be a
huge mess.

Yii is prepared for such situations and provides the renderPartial () for them.
Just like the render () method, the first argument should be the name of the view
file (without an extension) to be rendered, and the second argument can be used to
pass along variables.

{TIP} Most of the time you use renderPartial () within one view file,
you’ll want to pass along the variables it received to the other view file.

The second common need to render a view file without the layout (i.e., to use
renderPartial ()) is because the view file is not outputting HTML. That would
be the case if you were creating a Web service that were to output plain text, XML,
or JSON data. Remember that views are not just for Web pages, but for any interface
with the site. That interface could be a Web service accessed by client-side JavaScript.

125

CHAPTER 6. WORKING WITH VIEWS

Rendering Views From Other Controllers

As mentioned already, the file being rendered comes from the directory associated
with the current controller. For example, when updating a post record, the URL is
something like http://www.example.com/index.php/post/update/id/23. This calls
the actionUpdate () method of the PostController class. That method ren-
ders the “update” view, which is to say protected/views/post/update.php. But
there are cases where you’ll need to render view files from other subdirectories.

For example, say you've created an EmailController class that defines the for-
matting for all the emails sent by the site. When a purchase is completed, which
would be an action of the ShoppingCartController class, the method may want
to send the confirmation email (arguably, the EmailController could do that,
too, but I'm demonstrating a concept here). To generate the body of the email,
the ShoppingCartController class method can render the EmailController
class’s view file using;:

// Use a simpler layout:

Sthis->layout = '//layouts/email';

// Render the email/purchase.php view:

Sthis->render ('//email/purchase', array('order' => S$Sorder));

That code is close to what’s required, but will actually render the output in the
browser. Instead, the code should return the rendered result so that it can be used
in an email. That’s possible if you provide the render () method with a third
argument of true:

// Use a simpler layout:
$this->layout = '//layouts/email';

// Render the email/purchase.php view:
$body = $this->render('//email/purchase’,
array ('order' => S$Sorder), true);

// Use S$body in an email!

Alternative Content Presentation

There are a couple more ways that you might present content to the user that merit
discussion in this chapter. In fact, one of these topics will go a long way towards
helping you to understand what’s going on in the layout system implemented by
the yiic command.

126

CHAPTER 6. WORKING WITH VIEWS

Using Content Decorators

Content decorators are a less heralded but interesting feature of Yii. Content dec-
orators allow you to hijack the view rendering process and add some additional
stuff around the view file being rendered. It works by invoking the controller’s
beginContent () and endContent () methods. The beginContent () method
takes as an argument the view file into which this content should be inserted (i.e.,
treat this output as the value of $content in that view):

<?php $this->beginContent ('//directory/file.php'); ?>
// Content.
<?php $this->endContent (); ?>

This feature is best used for handling more complex embedded or nested layouts, al-
though it can be used in other ways, too (there’s an interesting example in Alexander
Makarov’s book).

For example, say you wanted some pages in your site to use the full page width for
the content (Figure 6.4).

My Web Application

Cortact L
Kiin

About

Figure 6.4: The page-specific content goes across the entire width of the browser.

But some pages should have a sidebar (Figure 6.5).

You could create two different layout files and use each accordingly. However, most
of the common elements would then be unnecessarily repeated in two separate
tiles, making maintenance a bit harder. The solution is to decorate the page specific
content with the sidebar on those pages that ought to have it. Rather than showing
you new code that illustrates this point, I'll recommend that you turn to the files
generated by yiic, which does this very same thing.

More recent versions of Yii will automatically create three layout files when you
create a new Web app:

¢ views/layouts/columnl.php
¢ views/layouts/column2.php

127

http://yiicookbook.org/
http://yiicookbook.org/

CHAPTER 6. WORKING WITH VIEWS

My Web Application
B ——————

» Llgaers

~ i Craati L
D pilny
v W Hanrd
I 1
Usernane: Tesl
Email: lestifosample com
Pawword: pakvaoed
Typa: pubdc
Date Enbsred: 2013-01-01 000000

Figure 6.5: The page-specific content shares the browser width with a sidebar.

¢ views/layouts/main.php

Although all three are layout files, you don’t have three different template files. The
main.php file still creates the DOCTYPE and HTML and HEAD and so forth. The
columnl.php and column2.php files are decorators that create variations on how
the page-specific content gets rendered. Here is the entirety of columnl.php:

<?php $this->beginContent ('//layouts/main'); ?>
<div id="content"><?php echo $content; ?></div>
<?php $this->endContent (); ?>

Again, you have the magic echo $content line there, but all columnl.php does
is wrap the page-specific content in a DIV.

The column2.php file starts off the same, but adds another DIV (which includes
some widgets) before $this->endContent ():

<?php $this->beginContent ('//layouts/main'); ?>

<div class="span-19">

<div id="content"><?php echo $content; ?></div>

<!-- content —--></div>

<div class="span-5 last">

<div id="sidebar">

<?php $this->beginWidget ('zii.widgets.CPortlet',
array ('title'=>'Operations'));

$this->widget ('zii.widgets.CMenu', array (
'"items'=>$this->menu,
'htmlOptions'=>array('class'=>'operations'),

)) s

$this->endWidget () ;

?></div>

<!-- sidebar --></div>

<?php $this->endContent (); ?>

128

CHAPTER 6. WORKING WITH VIEWS

To be absolutely clear on what’s happening, the protected/components/Con-
troller.php class sets columnl.php as the default layout file. When, say, the
actionIndex () method of the SiteController class is invoked, it renders
the protected/views/site/index.php file. The rendered result from index.php will
be passed to the layout file, columnl.php. This means the Scontent variable in
columnl.php represents the rendered result from index.php.

Then, because columnl.php uses beginContent () the rendered result from col-
umnl.php will be passed to the main.php layout file (because it’s provided as an
argument to beginContent ()). This means the $content variable in main.php
represents the rendered result from *column1.php.

Personally I think this default layout approach is a bit complicated for the Yii newbie
(yiibie?), but it is invaluable in situations where the content around the page-specific
content needs to be adjusted dynamically.

Using Clips

Somewhat similar to decorators are clips. Whereas a decorator provides a way to
wrap one piece of content within other content, a clip provides a mechanism for
dynamically defining some content that can be used as needed later. In short, it’s an
alternative to using renderPartial () with a hardcoded view file. Clips can be
more dynamic than view files, and provide a way to take potentially complex logic
out of views.

To create a clip, wrap the content within beginClip () and endClip () calls.
Provide a unique clip identifier to the former method invocation:

protected/controllers/SomeController.php
public function actionSomething () {
Sthis->beginClip ('stockQuote');
echo 'AAPL: $533.25';
Sthis->endClip () ;
Sthis->render ('something') ;

Anything outputted between the beginClip () and endClip () method calls will
be stored in the controller under that clip identifier. Again, to be clear: that echo
statement won’t actually send the data to the browser. (This is similar to output
buffering in PHP.)

Presumably, the clip content would be more dynamic than that, such as performing
a Web service call to fetch the actual stock price. Note that the clip does not need
to be passed to the view like other variables, because it’s defined as part of the
controller.

To use a clip in a view file, first check that it exists, and then print it:

129

CHAPTER 6. WORKING WITH VIEWS

<?php
protected/views/some/something.php
if (isset ($this—>clips|['stockQuote'])) {

echo $this->clips|['stockQuote'];

130

Chapter 7

WORKING WITH
CONTROLLERS

The third main piece of the MVC design approach is the controller. The controller
acts as the agent, the intermediary that handles user and other actions. The previous
chapter mentioned controllers as they pertain to views, and in this chapter, you'll
learn all the other fundamental aspects of this MVC component.

Controller Basics

To best understand the role that controllers play, it may help to think about what a
site may be required to do. Say you have an e-commerce site: you may have created
a model named Product, which can represent each product being sold. There are
several actions that can be taken with products:

¢ Creating one

¢ Updating one

¢ Deleting one

¢ Showing one

¢ Showing multiple

The first three of these are actions that would only be taken by an administrator.
The last two are how customers would interface with products on the site (i.e.,
maybe first seeing all the products in a category, then viewing a particular one).
Furthermore, the presentation for a single product or multiple products will likely
be different for the customer than it would be for the administrator. So you have
many different uses of the same model within the site.

{NOTE} Understand that I'm just focusing on the product aspect of an
e-commerce site here. The act of adding an item to a shopping cart
would fall under the purview of a ShoppingCart class.

131

CHAPTER 7. WORKING WITH CONTROLLERS

In the MVC approach, the way to address the complexity of doing many different
things with one model type is to create a controller that will handle all the inter-
actions with an associated model. Hence, the Product model has a pal in the
ProductController controller. The controller is implemented as a class.

For the controller to know which step it’s taking (e.g., updating a product vs. show-
ing multiple products), one method is defined for each possibility. One method of
the controller fetches a single product whereas another method fetches all the prod-
ucts and another is called when a product is created. In Yii, as already mentioned,
these methods all begin with the word action.

The code created by Gii’s scaffolding tool defines these methods for you:

* actionCreate (), for creating new model records

* actionIndex (), for listing every model record

* actionView (), for listing a single model record

* actionUpdate (), for updating a single model record

* actionDelete (), for deleting a single model record

* actionAdmin (), for showing every model record in a format designed for
administrators

The generated code defines a few other methods:

filters ()

® accessRules ()

e]loadModel ()

® performAjaxValidation ()

As you saw in Chapter 4, “Initial Customizations and Code Generations,” the gener-
ated code can already handle all of the CRUD functionality and even implements
basic security that prevents anyone but an administrator from creating, updating,
and deleting records. This is a wonderful start to any Web site, and one of the
reasons I like Yii. But there’s much more to know and do with controllers.

In this chapter, I'm going to explain three of these methods and, more importantly,
the valuable relationship that the controller has with the model and the views. You'll
also learn a few new tricks, such as how to create static pages and how to define
more elaborate routing possibilities.

{TIP} Chapter 14, “JavaScript and jQuery,” will explain the
performAjaxValidation () method.

Chapter 11, “User Authentication and Authorization,” is also germane to controllers,
but more advanced. After reading this chapter, you may want to also consider
reading Alex Markarov’s book, which has oodles of controller tips and tricks (among
other goodies).

132

http://yiicookbook.org/

CHAPTER 7. WORKING WITH CONTROLLERS

Gii Generated Controllers

All controllers in a Yii based site must extend the CController class (which, in
turn, extends CBaseController, which extends CComponent). The controllers
automatically generated by the yiic command line script and the Gii module add
another layer to this hierarchy.

First, the yiic command creates the protected/components/Controller.php class
that extends CController:

<?php

class Controller extends CController {
public $layout='//layouts/columnl';
public $menu=array () ;
public $breadcrumbs=array () ;

As you can see in the comments, this is a customized base controller class. It does
three things:

1. Sets a default layout for every controller
2. Creates an attribute to be used for an HTML menu

3. Creates an attribute to be used for breadcrumbs

You don’t have to extend this Cont roller component class when you create your
own controllers, but this class does provide an easy way to customize how all
of your controllers function (i.e., without hacking the CController class in the
framework files). Towards that end, you should probably consider editing pro-
tected/components/Controller.php to suit your needs. For example, you should
change the $1ayout value to your actual layout file (as explained in the previous
chapter).

Setting the Default Action

The “index” action is the default for every controller in Yii. This means that when an
action is not specified, the act ionIndex () method of the controller will be called.
To change that behavior, just assign a different action value to the $SdefaultAction
property within the controller class:

class SomeController extends Controller {
public S$defaultAction = 'view';

133

CHAPTER 7. WORKING WITH CONTROLLERS

Note that you're using the action ID here, not the name of the method: it’s just view,
not actionView or actionView().

With that line, the URL http://www.example.com/index.php/some calls the
actionView () method whereas http://www.example.com/index.php/some/create
calls actionCreate ().

Setting the Default Controller

Although you can set the default action value within a controller, you cannot set the
default controller in that way (which makes sense when you think about it). Just as
the “index” action is the default in Yii, the “site” controller is the default controller.
In other words, if no controller is specified in the URL (i.e., by the user request), the
“site” controller will be invoked (and, therefore, the “index” action of that controller).

If you want to change the default controller, add this code to the main configuration
array:

protected/config/main.php

return array (
/* Other stuff. */
'defaultController' => 'YourControllerId',
/* More other stuff. */

)

Note that you use the controller ID here (i.e., you drop off the controller part and
use an initial lowercase letter). For example, to make “SomeController” the default,
you’d use just “some” as the value.

Also note that you add this line so that it’s a top-level array element being returned
(i.e., it does not go within any other section; it’s easiest to add it between the
“basePath” and “name” elements, for clarity):

protected/config/main.php
return array (
'basePath'=>dirname (_FILE_) .DIRECTORY SEPARATOR.'..',
'defaultController' => 'some',
'name'=>'My Blog',
/* More other stuff. =*/
)i

Revisiting Views

As explained in the previous chapter, controllers create the site’s output by invoking
the render () method:

134

CHAPTER 7. WORKING WITH CONTROLLERS

public function actionIndex () {
Sthis—->render ('index"');

The first argument to the method is the view file to be rendered, without its .php
extension. By default, the view file will be pulled from the current controller’s view
directory: protected/views/ControllerID/viewName.php.

The second argument to render() is an array of data that can be sent to the view file.
In many methods, a model instance is being passed along:

public function actionCreate() {
Smodel = new Page;
Sthis->render ('create',array ('model'=>S$model));

As also explained in the previous chapter, that code will create a variable named
$model in the “create” view file.

The render () method takes an optional third argument, which is a Boolean indi-
cating if the rendered result should be returned to the controller instead of sent to
the Web browser. This would be useful if you wanted to render the page and then
send the output in an email or write it to a text file on the server (to act as a cached
version):

Sbody = $this->render ('email', 'data' => S$data, true);

As also mentioned in the previous chapter, sometimes you’ll want to render a
view file without incorporating the layout. To do that, invoke renderPartial ().
The renderPartial () method is also used for Ajax calls, where the layout isn’t
appropriate.

And finally, you'll sometimes need to render a view file from another directory
(i.e., not this controller’s directory). To change directories, preface the view file’s
name with //, which means to start in protected/views. The following code renders
protected/views/users/profile.php;

Sthis—->render ('//users/profile', 'data' => $data);

Making Use of Models

The most common thing that a controller does is create an instance of a model
and pass that instance off to a view. Knowing how to do that is therefore vital to
programming in Yii. I'm going to present the most standard, simple ways of doing

135

CHAPTER 7. WORKING WITH CONTROLLERS

so in this chapter, and Chapter 8, “Working with Databases,” will delve into the
more complicated ways to get model instances. There are three basic ways that a
controller will create a model instance:

¢ Creating a new, empty model instance
¢ Loading an existing model instance (i.e., a previously stored record)
* Retrieving every model instance (i.e., all previously stored records)

Creating New Model Instances

The first way controllers create model instances is quite simple, and just uses
standard object-oriented code:

public function actionCreate () {
Smodel = new Page;
// Etc.

{TIP} The parentheses often used when creating a new class instance are
optional, meaning that new Page and new Page () are equivalent.

Loading a Single Model

The second scenario-loading a single model instance from the database—is required
by multiple actions:

® actionView ()
® actionUpdate ()
® actionDelete ()

Since three (or possibly more) methods will perform this task, the code generated
by Gii does the smart thing and creates a new controller method for that purpose:

public function loadModel ($id) {
Smodel = Page::model () ->findByPk ($id);
if (Smodel===null) {
throw new CHttpException (404, 'The requested page
does not exist.');
1

return Smodel;

{NOTE/ In order to enhance readability, some of the code that I present
will be formatted slightly differently than the original created by Yii.

136

CHAPTER 7. WORKING WITH CONTROLLERS

As you can see, this method takes an ID value as its lone argument. This should
be the primary key value of the model to be loaded. The first line of the method
is obviously the most important. It attempts to fetch the record with the provided
primary key value:

Smodel = Page::model () ->findByPk ($id);

Let’s take a moment to understand what’s going on there, as it’s both common in
the framework and important. The goal is to fetch the record from the database
table and turn it into a model object (an instance of the class). Fetching the record is
done via the £indByPk () method. This is defined in the CActiveRecord class,
which all database models should extend. In theory, you could create an instance of
the class and then use that instance’s method:

Smodel = new Page;
Smodel Smodel->findByPk ($id) ;

That would work, but it’s a bit verbose, redundant, and illogical. The alternative is
to use a static class instance. A static class instance is a more advanced OOP concept.
Understanding static class instances is easier if you first understand static methods.

A standard class method is invoked through an object instance:

Sobj = new ClassName () ;
Sobj->someMethod () ;

Some class methods are designed to be useful without a class instance. These are
called static, and are defined using that keyword:

class SomeClass {
public static function name () {

}

Because that method is public and static, it can be called without creating a class
instance:

echo SomeClass: :name () ;

This is what’s happening in the first part of that code: Page: :model (). That
specific part of the code calls the static model () method of the Page class. (The
model () method is specifically defined within the CActiveRecord class, which
all database models should extend.)

137

CHAPTER 7. WORKING WITH CONTROLLERS

As another example of a static class method that you would have seen in Yii, the
app () method of the YiiBase class is also static. This is why the index.php
bootstrap file uses the code Yii: :app ().

The problem is that only static methods can be invoked this way; non-static methods
still require a class instance. This creates a dilemma, as there are times where it'd be
useful to call non-static methods without having to create a class instance first. The
solution Yii came up with is to create a static class instance. A static class instance has
these characteristics:

¢ Itis immutable (i.e., it does not have properties that can be changed)
¢ It is not created with the new keyword
¢ [t can be used to invoke non-static methods

One such non-static method is £indByPk ().

Putting this all together, that one line of code is the same as:

// Get a static class instance:
Sstatic = Page::model () ;

// Invoke the (non-static) method:
Smodel = S$static—->findByPk ($id);

For brevity sake, the two lines are combined into one by chaining the result of one
method call to another. Specifically, Page : :model () returns a static class instance,
on which the £indByPk () method is called.

{TIP} The :: is known as the scope resolution operator.

Moving on in the controller’s 1oadModel () method, after attempting to load the
model instance, the method next checks that the value isn’t NULL. If it is NULL,
which means that no model could be created given the provided primary key value,
an exception will be thrown:

if ($Smodel===null) {
throw new CHttpException (404, 'The requested page does
not exist.');

I'll talk about exceptions in more detail at the end of the chapter.

Finally, the fetched model is returned by the method: return $model;. Note that
due to the way exceptions work, this line will never be executed if an exception is
thrown by the preceding line.

Here’s an example of how this method is used:

138

CHAPTER 7. WORKING WITH CONTROLLERS

public function actionView ($id) {
Sthis->render ('view',array (
'model'=>$this—->1loadModel ($1id),
))i

Anytime you need to load a model instance in your controller, simply call the
loadModel () method, providing it with the primary key value of the record to
retrieve.

Loading Every Model

The final way a controller may create model instances is to load every model instance
(i.e., every database record). That’s easily done via the findAl1l () method of the
CActiveRecord class. This method returns an array of model objects. Because
this method is not static, it cannot be called directly through the class name (as in
ClassName: :findAll ()). And, of course, you're not going to use an instance
of the class either (it wouldn’t make sense to create an actual model based upon a
single database record in order to fetch every database record). The solution once
again is to use the static class instance returned by the model () method:

Smodels = Page::model ()-—>findAll();

Surprisingly, you won't find this code in that generated for you by yiic and Gii. The
reason is that the two methods that will fetch multiple models—actionIndex ()
and actionAdmin () —use alternative solutions for fetching all the records.

The actionIndex () method ends up using a CActiveDataProvider object
which will fetch all the model instances. That object is used by the CListView wid-
get in the view file. Chapter 12, “Working with Widgets,” talks about CListView
in detail.

The actionAdmin () method uses the “search” scenario to fetch the applicable
models. That scenario also returns a CAct iveDataProvider object. This is also
covered in detail in Chapter 12.

Joining Models

Finally, there’s the issue of how a controller can fetch joined models. I'm using the
phrase “joined models” to refer to two models that have a relationship, as defined
by the relations () method of each model class.

When you have two related tables, such as comment and user, you can use a JOIN
in an SQL query to fetch information from both tables, such as the comment itself

139

CHAPTER 7. WORKING WITH CONTROLLERS

(from the comment table) and the user’s name (from user). But when using the
CActiveRecord methods for fetching records (e.g., £indByPk ()), how you fetch
the necessary information from the related table is not obvious. But Yii is brilliant,
and has prepared two solutions.

The first solution is called “lazy loading”. Lazy loading triggers Yii to perform a
relational query on demand:

// Perform one query of the comment table:

Scomment = Comment::model () ->findByPk (1) ;

// Run another query to get the associated username:
Suser = S$Scomment—->user—->username;

This code works because the Comment class has a declared relationship with User.
Usage of the user->username triggers another query to fetch the related record.
That code is simple to use (and can even be used in a view file), but is not very
efficient. Two queries are required when just one would work using straight SQL.
With a page that shows 39 comments, that means there would be 40 total queries!

A better alternative is “eager loading”. When you know you’ll need related models
ahead of time, you can tell Yii to fetch those, too, as part of the primary query:

// Perform one query of the comment table:

Scomment = Comment::model () ->with ('user')->findByPk (1) ;
// No query necessary to do this:

Suser = S$comment->user—->username;

The value to be provided to the with () method is the name of the relation as
defined within the Comment class. This works whether you're fetching one record
or multiple. As another example, the Page class in the CMS example is related to
User, in that each page is owned by a user:

protected/models/Page.php::relations ()
return array (
'comments' => array(self::HAS_MANY, 'Comment', 'page_id'),
'user' => array(self::BELONGS_TO, 'User', 'user_id'),
'files' => array(self::MANY_MANY, 'File',
'page_has_file(page_id, file_id)"'"),
)i

This means you can fetch every page with every page author in one step:

Spages = Page::model () ->with ('user')->findAll ();

There are the very basics of joining models in a controller. It can get far more
complicated, as will be explained in Chapter 8.

140

CHAPTER 7. WORKING WITH CONTROLLERS

Handling Forms

Two of the controller methods are used to both display and handle a form: create and
update. The structure of both is virtually the same, except that the one begins with
a new model from scratch and the other fetches its model from the database (and
they obviously render different view files). Here’s the act ionCreate () method:

public function actionCreate () {
Smodel=new Page;

if (isset ($_POST['Page']l)) {
Smodel->attributes=$_POST|['Page'];
if (Smodel->save()) {

Sthis->redirect (array ('view',
'id'=>%$model->1id)) ;
} // save()
} // isset ()

Sthis->render ('create',array ('model'=>Smodel));

First, the method creates a new model instance. In actionUpdate (), that would
be $model=$this->loadModel ($1id) ; instead, as that method is working with
an existing record, not a new one.

Next, the method checks if the form has been submitted. If so, then
$_POST[’ClassName’] will be set. Chapter 9, “Working with Forms,”
goes into forms in detail, but know now that $_POST [’ ClassName’] will be an
array:

e S POST[’ClassName’] [’ someAttribute’]
e S POST[’ClassName’] [’anotherAttribute’]
e Et cetera

If the form has been submitted, then the model’s attributes will be assigned the
values from the form, but only for attributes that are safe thanks to the model’s rules. This
was explained in Chapter 5, “Working with Models.”

Next, if the model can be saved, then the user is redirected to the view page (i.e., the
page for viewing a specific record). Know that the model can only be saved if the
data passed all the business rules defined in the model.

If the model cannot be saved, or if the form has not yet been submitted, then the
corresponding view file—"create” or “update”’—is rendered, passing along the model
instance.

141

CHAPTER 7. WORKING WITH CONTROLLERS

Basic Access Control

Access control is an integral aspect of any Web site, dictating what a user can and
cannot do based upon factors of your choosing. There are a couple of ways of
implementing access control in Yii, starting with basic access control. This approach,
which I'll cover here, is similar to the Access Control Lists (ACL) used by operating
systems. This approach is simple to implement in Yii. In fact, Gii will have set up a
basic access control structure for you, to be explained now.

{NOTE} Chapter 11 will discuss the more advanced alternative, Role-
Based Access Control (RBAC).

The Fundamentals

The code generated by Gii defines the accessRules () method, which provides
for basic access control. For the access rules to apply, the method must first be set as
a filter:

public function filters() {
return array('accessControl');

I'll cover filters later in the chapter, but that code, created by Gii in CRUD-related
controllers, enables the access control filter. The accessRules () method then
defines who can do what.

For the “what” options, you have your actions: admin, create, delete, index, update,
and view. In almost all situations, only administrators should be able to execute
the admin and delete actions, but maybe every user can do index. It’s helpful to
remember that although this code is in the controller, it really dictates who can do
what with the associated models (i.e., who can create, read, update, etc. the model
records).

{WARNING/} When you add new actions to a controller, be sure to update
your access rules!

Your “who” depends upon the situation, but to start there are three general types of
users, each represented by a symbol:

¢ 2, anonymous (i.e., not logged-in) users
¢ @, logged-in users
* x,any user, logged-in or not

142

CHAPTER 7. WORKING WITH CONTROLLERS

Depending upon the login system in place, you may also have levels of users, like
admins, or specific user names to target.

The accessRules () method combines all this information and returns an array
of values. The values are also arrays, indicating permissions (“allow” or “deny” are
the only options), actions, and users. Each value array is of this syntax:

array (
'<permission>",
'actions' => array('actionl', 'action2'),
'users' => array('userl', 'user2')

)

This syntax comes from the CAccessRule class which dictates what’s possible for
a rule: what attributes exist to which you can assign values. Only the permission—
“allow” or “deny”—is required.

{TIP} Both the actions and the users are case-insensitive, but I think it’s
best to treat them all as if they were case-sensitive regardless.

Here are some unedited rules created by Gii:

protected/controllers/PageController.php::accessRules ()
array('allow', // allow all users to perform 'index' and
// 'view' actions
'actions'=>array('index', 'view'),
'users'=>array('x"'),
) 4
array('allow', // allow authenticated user to perform
// 'create' and 'update' actions
'actions'=>array ('create', 'update'),
'users'=>array ('Q"),
) 4
array('allow', // allow admin user to perform 'admin' and
// 'delete' actions
'actions'=>array ('admin', 'delete'),
'users'=>array ('admin'),
),
array ('deny', // deny all users
'users'=>array('+"'),

) s

Those rules represent the default settings, where anyone can perform index and
view actions, meaning that anyone can list all records or view individual records
of the associated model. The next section allows any logged-in user to perform

143

CHAPTER 7. WORKING WITH CONTROLLERS

create and update actions. Next, only the “admin” user can perform admin and
delete actions. To be clear, the use of “admin” here doesn’t refer to a user type, but a
specific user name (based upon the default accepted login values of user/user and
admin/admin). Finally, a global deny for all users is added to cover any situation
that wasn’t explicitly defined. This is just a good security practice.

Understand that these rules are checked in order from top down. Once a rule
applies, that’s it: the rules do not continue to be evaluated. This means that if you
put a “deny all” rule first, no one could do anything. On the other hand, if no rules
apply, then the action is allowed. For this reason, you should always do a “deny all”
last, just in case you missed something (from a security perspective, it’s far better to
accidentally deny an action than to accidentally allow one).

You’ll want to customize the rules to each controller and situation. For example,
in a CMS site, anyone (or more specifically, anonymous users) needs to perform
create actions with a User model and controller, as that constitutes registration. But
perhaps only logged-in users can create comments, and only certain users or user
types can create posts.

Identifying Users

With basic access control, there are four ways to identify or restrict to what users a
rule applies:

* By authentication status (anyone, only anonymous, or only logged-in)
¢ By username

¢ By IP address

* By role

The first two possibilities have already been mentioned. The use of authentication
status is the most broad (i.e., whether or not the user is logged-in). Don’t use
authentication status if it’s possible to be more specific! For example, if you only
want to allow the admin user (by name) to delete records, don’t allow all logged-in
users delete capability.

Setting rules by specific user name is very particular and effective, but only appro-
priate for sites with a small number of relatively static users. If a site only has one
administrator, and that administrator will never change, then using the name of
that administrator is appropriate.

Similarly, setting rules by IP address is logical if an administrator will only ever be

accessing the site from a specific IP address. To do that, set a “ips” value:

array (
'allow',
'actions' => array('admin', 'delete'),

144

CHAPTER 7. WORKING WITH CONTROLLERS

'users' => array('Q@'),
'ips' => array('127.0.0.1")
) ;

That code says that the user must be logged-in and coming from the 127.0.0.1 IP
address. This, of course, is the IP address for localhost, which means that the
administrator is allowed to perform those actions when working on the same
computer as the site. To allow remote access, you would need to add the IP address
of the administrator’s computer (or network).

{NOTE/} IP addresses are a great way to allow for access via localhost, but
using IP addresses to identify users over networks is problematic for two
reasons. First, a person’s IP address can change frequently, depending
upon her Internet access provider. Second, multiple people accessing
the same site from the same network (e.g., a company, organization, or
school) may all have the same IP address.

Finally, you can identify users by roles. This is an implementation of Role-Based
Access Control (RBAC), and will be explained in Chapter 11.

Other Restrictions

There are two more ways you can restrict who can do what. The first is to use
the “verbs” index. It takes an array of request types to which the rule applies. For
example, if you have a page that both shows some information and displays a form,
you might allow everyone to perform a GET request (i.e., see the information) but
only logged in users can submit the form (perform a POST request):

array (
// Anyone can "GET" the page
'allow',
'actions' => array('someAction'),
'users' => array('x"'),
'verbs' => array ('GET'")

)/

array (
// Must be logged in to POST
'allow',
'actions' => array('someAction'),
'users' => array('Q"),
'verbs' => array ('POST'")

145

CHAPTER 7. WORKING WITH CONTROLLERS

(Of course, you'd also want to code your view so that it doesn’t show the form to
those that can’t submit it, but this rule is acting as a security measure.)

Or, as another example, you might have a cron or other automated process that
regularly performs HEAD requests of an action to confirm that the site is up and
running. That kind of request would be restricted to anonymous users.

Finally, there’s the “expression” option. It can be used to define a PHP expression
whose executed value dictates whether or not the rule will apply. You can use
this to establish conditionals with a Boolean result. This example is from the Yii
documentation:

array (
'allow',
'actions' => array('someAction'),
'expression'=>"'!Suser->isGuest && Suser—->level==2",
) 4

A CMS example with different user types—admin, editor, writer, and other—might
let everyone but “other” (i.e., readers) create content:

array (
'allow',
'actions' => array('create'),
'expression'=>'isset (Suser->type) &&

(Suser->type !== "other")',
),

Expressions can be very useful, but they also start blurring the lines with roles.

When Access is Denied

You should also be aware of what happens when Yii denies access to an action. If
the user is not logged in and the rule requires that she be logged in, the user will be
redirected to the login page by default. After successfully logging in, the user will
be redirected back to the page she had been trying to request.

If the user is logged in but does not have permission to perform the task, an HTTP
exception is thrown using the error code 403. That value matches the “forbidden”
HTTP status code value. Towards the end of the chapter you'll see how exceptions
are handled.

To change an error message associated with an exception, assign a value to the
“message” index:

146

CHAPTER 7. WORKING WITH CONTROLLERS

array ('allow',
'actions' => array('someAction'),
'user'=>"'admin',
'message'=>"'You are not allowed to do this thing
you are trying to do.'

Understanding Routes

A topic critical to controllers, although not dictated within the actual controller code
are routes. Routes are how URLs map to the controller and action to be invoked.
Chapter 3, “A Manual for Your Yii Site,” introduced the basic concept and Chapter
4 explained how to configure the “urlManager” component to change how routes
are formatted. Let’s now look at the topic in greater detail.

Path vs. Get

URLs in Yii are going to be in one of two formats:
http://www.example.com/index.php?r=ControllerID/ActionID
or
http://www.example.com/index.php/ControllerID/ActionID/

The first format is the default, and is called the “get” format, as values are passed as
if they were standard GET variables (because, well, they are). The second format is
the “path” format, in which the values appear as if they are part of the path (i.e., as
if they map to directories on the file system). As explained in Chapter 4, this format
is enabled by uncommenting the appropriate part of the configuration file:

protected/config/main.php
// Other stuff.
'components'=>array (
'urlManager'=>array (
'urlFormat '=>'"'path',
// Etc.
// More other stuff.

This is fairly basic information and is hopefully well ingrained to you by now. The
important part of this concept is how you define the rules for dictating the paths.

Note that, for simplicity sake, I'm going to assume you're using the path format from
here on out. Further, the rules I'll discuss only apply to the “path” part of the URL:
that after the schema (e.g., http or https) and the domain (e.g., www.example.com/).

147

CHAPTER 7. WORKING WITH CONTROLLERS

So in the rest of this explanation, I'll generally begin my demonstration URLs
without the assumed http://www.example.com/.

{TIP} You can actually make your rules apply to the whole URL, includ-
ing the domain and/or subdomain. See the class docs for the CurlMan-
ager class for an example.

Route Rules
These are the default rules set in the configuration file:

'rules'=>array (

'<controller:\w+>/<id:\d+>' => '<controller>/view',

'<controller:\w+>/<action:\w+>/<id:\d+>' =>
'<controller>/<action>"',

'<controller:\w+>/<action:\w+>' =>

'<controller>/<action>"',

) s

What exactly is going on there and, more importantly, how do you understand these
rules enough for you to be able to implement your own?

The “urlManager” rules apply both when reading in a URL and when creating
a URL (e.g., as a link). The rules serve two purposes: identifying the route-the
controller and action-and reading in or passing along any parameters.

Each rule uses a name=>value pair to associate a value with a route. For example,
here’s a simple rule: “home’ => ’site/index’. With that rule in place, the URL
http://www.example.com/home will call the “index” action of the “site” controller.
And similarly, if you go to create a URL to the “site/index” route, Yii will set that
URL as http://www.example.com/home.

Obviously hardcoding literal strings to routes has limited appeal. To make your rules
more flexible, apply regular expressions and named placeholders as the values. That
syntax is: <PlaceholderName:RegEx>. Naturally, you do need to understand
regular expressions to follow this approach.

As an example, let’s return to the last rule defined by default in the configuration
file:

'<controller:\w+>/<action:\w+>' => '<controller>/<action>"',

The very first part of thatis <controller: \w+>. That means the rule is looking for
what'’s called a regular expression “word”, represented by \w+. In plainer English,
that particular regular expression looks for a string of one or more alphanumeric

148

http://www.yiiframework.com/doc/api/1.1/CUrlManager
http://www.yiiframework.com/doc/api/1.1/CUrlManager

CHAPTER 7. WORKING WITH CONTROLLERS

characters and the underscore. Once a “word” is matched, the rule labels that
combination of characters as controller.

Next, the rule looks for a literal slash.

Next, the rule looks for another “word”: \w+. Once found, the rule labels that
combination as action.

The labels-the named placeholders—can then be used to establish the route. (Think of
this like back referencing in regular expressions, if you're familiar with that concept.)

This rule therefore equates a URL of anywordl/anyword2 with the “any-
wordl/anyword2” route. Hopefully, that literal association makes sense, but
remember that this is a flexible literal association, unlike the hardcoded one shown
earlier.

{TIP} You may have an easier time understanding routes and regular
expressions if you're familiar with using Apache’s mod_rewrite tool
as routes in Yii are used to the same effect.

Handling Parameters

Once you understand the concepts I've covered thus far, there’s one new twist to
introduce: parameters. Many actions will require them, such as the “view” and
“update” actions that need to accept the ID value of the record being viewed or
updated. Those particular values will always be integers, you can use the \d+
regular expression pattern to match them. That’s what’s going on in the first rule:

'<controller:\w+>/<id:\d+>' => '<controller>/view',

That rule looks for a “word”, followed by a slash, followed by one or more digits.
The matching “word” gets mapped to the controller’s “view” action. Hence, the
URL page/42 is associated with the route “page/view”. But what about the 42?

The digits part is a named parameter, labelled “id”. That value does not get used
as part of the actual route: it’s neither a controller nor an action. Where does it go?
Well, it will be passed as a parameter to the action method:

protected/controllers/PageController.php
public function actionView ($id) {
// Etc.

When Yii executes the “view” action, it invokes that method, passing along the
parameter, as you would pass a parameter to any function call. In this particular
case, the route will be “page/view” but the actionvView () method of the “page”
controller will also be able to use $id, which will have a value of 42. There’s one
little hitch. ..

149

CHAPTER 7. WORKING WITH CONTROLLERS

Normally, it does not matter what names you give your parameters in a function:

function test ($x) {}

Sz = 23;
test ($z); // No problem.
Sx = 42;

test ($x); // Still fine.

However, when you’ve identified a parameter in a rule that’s not part of the route,
it will only be passed to an action if that action’s parameter is named the same. The
earlier example code works, but this action definition with that same rule will throw
an exception (Figure 7.1):

protected/controllers/PageController.php
public function actionView ($x) {
// Etc.

My Web Application

Home About Conmtact Login

Haome = Error

Error 400

Your request is invalid.

Figure 7.1: This exception is actually caused by a misnamed method parameter.

{NOTE} Placeholders, as I'm calling them, and parameters are created
in a rule in exactly the same way. But for clarity sake, I'm using two
different terms to distinguish between matches that will be used in routes
(i-e., placeholders) and those passed to action methods (i.e., parameters).

Looking at this in more detail, let’s say you want to support more than one parameter.
For example, you have a user verification process, wherein the user clicks a link in

150

CHAPTER 7. WORKING WITH CONTROLLERS

an email that takes them back to the site to verify the account. The link should pass
two values along in the URL to uniquely identify the user: a number and a hash (a
string of characters). The rule to catch that could be:

'verify/<x:\d+>/<y:\w+>' => 'user/verify',

That rule says that the literal word “verify”, followed by a slash, followed by a
digit, followed by another slash, followed by a regular expression “word” should
be routed to “user/verify”. With the named parameters, the actionvVerify ()
method should be written to accept two parameters, $x and $y:

protected/controllers/UserController.php
public function actionVerify ($x, Sy) {
// Etc.

Strange as it may seem, you can put those parameters in either order, and it will
still work. You can even write the method with just one or no parameters and the
the action can still be invoked without error (although the action would not be
passed both parameters in that case). Really, the only thing you can’t do is define
the method to take parameters with different names than those in the rule.

As one more example of this, to really hammer the point home, let’s say you want
a way to view a user’s profile by name: user/myUserName, user/yourUserName,
etc. That rule could be:

protected/config/main.php
'user/<username:\w+>' => 'user/view',

That rule associates the “user/view” route with that value, and creates a named
parameter of “username”. (Note that the regular expression pattern for matching
the actual username will depend upon what characters you allow in a username.)

Now for the action, which would presumably retrieve the user’s profile from the

database using the username:

protected/controllers/UserController.php
public function actionView (Susername) {
// Etc.

Returning to the default rules created by yiic, the “edit” and “update” actions are
handled by the last one:

'<controller:\w+>/<action:\w+>/<id:\d+>' =>
'<controller>/<action>",

151

CHAPTER 7. WORKING WITH CONTROLLERS

That rule would catch page/edit/42 or page/delete/42 (as well as page/view/42).
And, again, each action should be defined so that it takes a parameter specifically
named $id.

Understand that the rules are tested in order from top down, the first rule that
constitutes a match will be equated to its route. Also, from both a comprehension
standpoint, and for better performance, you should try to have as few rules as
possible.

Case Sensitivity

Before getting into a couple more examples, I should clarify that routing rules are
case-sensitive by default. This means that although the regular expression \w+ will
match Post, post, or pOsT, only post will match a controller in your application.

As explained previously, the controller ID is the name of the controller class minus
the “Controller” part, with the first letter in lowercase. Thus, SiteController
becomes “site”, but SomeTypeController would become “someType”. The same
is true for actions, except you start by dropping the initial “action” part.

{TIP} Routes can be made to be case-insensitive. Still, I think it best to
have them be and treat them as case-sensitive.

Creating URLs

As I said at the beginning of this discussion, the routing rules come into play when
parsing URLSs into routes and also when creating URLs based upon routes. You
should always have Yii create URLs to any page that gets run through the bootstrap
file! This is done using either the createUrl () or the createAbsoluteUrl ()
method of the CController class.

Within a controller, or within its view files, you can access those methods via $this.
Note that both methods just create and return a URL, not an HTML link!

The first argument to both is a string indicating the route. The current controller and
action are assumed, so $this->createUrl (”) returns the URL for the current

page.
If you just provide an action ID, you'll get the URL for that action of the current
controller:

protected/controllers/PageController.php

public function actionDummy () {
Surl = S$this->createUrl('index'); // page/index

If you provide a route, the URL will be to that route:

152

CHAPTER 7. WORKING WITH CONTROLLERS

protected/controllers/PageController.php
public function actionDummy () {
Surl = $this->createUrl ('user/index'); // user/index

If the URL expects named parameters to be passed, add those in an array as the
second argument:

protected/controllers/PageController.php
public function actionDummy () {
Surl = S$this->createUrl ('view', array('id' => 42));
// page/view id=42

To really hammer home the point, for that URL to work, the act ionvView () method
of the controller should be written to accept an $1id parameter, which presumably
also matches the corresponding rule.

You can also create URLs through Yii: :app ():

Surl = Yii::app()->createUrl ('page/view',
array ('id' => 42));

The main difference between the two versions of the createUrl () method is that
the CController version can be used without referencing a controller ID, whereas
the Yii: :app () version (i.e., that defined in CApplication) requires a controller
ID be provided.

Tapping Into Filters

Another method defined in controllers by Giiis filters (). Filters let you identify
code to be executed before and/or after an action is executed. An example is the
“accessControl” filter, which is run prior to an action, and confirms that the user has
authority to perform the action in question. You can also use filters to:

¢ Restrict access to an action to HTTPS only or a certain request type (Ajax, GET,
POST)

¢ Start and stop timers to benchmark performance

¢ Implement compression

¢ Perform any other type of setup that should apply to one or more actions

Filters are created by defining methods in your controller or by creating a separate
class that extends CFilter. The controller method uses the naming scheme “fil-
ter” plus whatever filter name. CController hasa filterAccessControl ()

method defined for you, whose usage has already been explained.

153

CHAPTER 7. WORKING WITH CONTROLLERS

There are two other filters defined for you in CController: filterAjaxOnly ()
and filterPostOnly (). These filters are used to prevent an action from executing
unless it was requested via Ajax and POST accordingly. The Gii generated code uses
the latter to force deletions via POST:

public function filters() {
return array (
// perform access control for CRUD operations:
'accessControl',
// we only allow deletion via POST request:
'postOnly + delete’,
)i

Looking at the syntax there, the filters () method returns an array. Each array
value should be a string. The string starts with the filter’s name, which is the name
of the associated method to call minus its “filter” preface.

Then, within the string, you can optionally dictate to what actions the filter should
or should not be applied. A plus sign means the filter applies to the following action
or actions, separating multiple via commas:

return array (
// perform access control for CRUD operations:
'accessControl',
// we only allow deletion & updates via POST request:
'postOnly + delete,update’,

)i

A minus sign would mean that the filter would apply to every action except the
one(s) named. Note that the filters are run in the order they are listed, so in that
code, the “accessControl” filter is executed, then “postOnly”.

As an example of writing your own filter, the following function can confirm that
an HTTPS connection was used to access a resource. As previously mentioned, all
filtering methods must begin with “filter”. The method needs to take one parameter,
which will be a filter chain. This variable will be used to allow the action to take
place by invoking its run () method (i.e., continue the filtering and such). To test
if HTTPS was used, you can invoke the get IsSecureConnection () method of
the CHttpRequest object, available via Yii: :app () ~>getRequest (). Here’s
the entire code:

public function filterHttpsOnly ($fc) |

if (Yii::app()—->getRequest () —>getIsSecureConnection()) {
Sfc—>run () ;
} else {

154

CHAPTER 7. WORKING WITH CONTROLLERS

throw new CHttpException (400,
'This page needs to be accessed securely.');

{NOTE/ In this particular example, I would also have Apache be config-
ured to force HTTPS for the URLs in question, with this Yii filter acting
as a safety net.

To use that filter in a controller, you would code:

public function filters() {
return array (
'accessControl',
// account must be accessed over HTTPS:
'httpsOnly + account',
)i

{TIP} Explaining how to create filters as a separate class is a bit too
advanced and esoteric at this point, but see the corresponding section of
the Yii Guide, if you're curious.

Showing Static Pages

Next up, let’s look at a different way of rendering view files: using static pages. The
difference between a static page and a standard page in the site is that the static
page does not change based upon any input. In other words, a dynamic page might
display information based upon a provided model instance, but a static page just
displays some hard-coded HTML (in theory).

If you only have a single static page to display, the easy solution is to treat it like
any other view file, with a corresponding controller action:

<!-— # protected/controllers/views/some/about.php ——>
<hl>About Us</hl>

<p>spam, spam, spam...</p>

And:

protected/controllers/SomeController.php
public function actionAbout () {
Sthis->render ('about');

155

http://www.yiiframework.com/doc/guide/1.1/en/basics.controller#filter

CHAPTER 7. WORKING WITH CONTROLLERS

The combination of those two files means that the URL http://www.example.com/index.php/some/about
will load that about page. As I said, this is a simple approach, and familiar, but less
maintainable the more static pages you have.

An alternative and more professional solution is to register a “page” action asso-
ciated with the CviewAction class. This is done via the controller’s act ions ()
method:

protected/controllers/SiteController.php

public function actions () {
return array (
'page' => array('class' => 'CViewAction')

)

{TIP} You can have any controller display static pages, but it makes sense
to do so using the “site” controller.

The CviewAction class defines an action for displaying a view based upon a param-
eter. By default, the determining parameteris $_GET [’ view’]. This means that the
URL http://www.example.com/index.php?r=site/page&view=about oz, if you've
modified your URLs, http://www.example.com/index.php/site/page/view/about,
is a request to render the static about.php page.

{NOTE} You must also adjust your access rules to allow whatever users
(likely everyone) to access the “page” action. Or, if you can do what the
“site” controller does: not implement access control at all.

By default, CviewAction will pull the static file from a pages subdirectory of the
controller’s view folder. Thus, to complete this process, create your static files within
the protected/views/site/pages directory.

If, for whatever reason, you want to change the name of the subdirectory from
which the static files will be pulled, assign a new value to the basePath attribute:

protected/controllers/SiteController.php
public function actions () {
return array (
'page' => array('class' => 'CViewAction',
'basePath' => 'static')
)

You can also create a nested directory structure. For example, say you wanted
to have a series of static files about the company, stored within the protect-
ed/views/site/pages/company directory. To refer to those files, just prepend the

156

CHAPTER 7. WORKING WITH CONTROLLERS

value of $_GET[’view’] with “company.”: /site/page/view/company.board
would display the *protected/views/site/pages/company/board.php page.

By default, if no $_GET [’ view’] value is provided, CViewAction will attempt
to display an index.php static file. To change that, assign a new value to the
defaultView property:

protected/controllers/SiteController.php
public function actions () {
return array (
'page' => array('class' => 'CViewAction',
'defaultView' => 'about')
)i

To change the layout used to encase the view, assign the alternative layout name to
the layout attribute in that array.

Exceptions

One of the great things about Object-Oriented Programming is that you'll never see
another error, although there are exceptions (pun!). Exceptions, in case you're not
familiar with them, are errors turned into object variables, that’s all. This is fairly
standard OOP stuff, but you'll need to be comfortable with exceptions in order to
properly use the framework.

In many situations, the framework itself will automatically create an exception for
you. You may have seen this already, as in Figure 7.1.

Sometimes you’ll want to raise an exception yourself. To do so, you throw it:

if (/* some condition /) {
throw new CException ('Something went wrong');

You've actually seen code similar to this in the chapter already. Notice that the thing
being thrown is actually an object of type CExcept ion. Written more verbosely,
you could do this:

Se = new CException ('Something went wrong.');
throw $e;

{TIP} When an exception is thrown, whether by you or automatically by
the framework, no subsequent code will be executed.

157

CHAPTER 7. WORKING WITH CONTROLLERS

Yii defines three classes for exceptions:

® CException
® CDbException
® CHttpException

The first is a generic exception class, a wrapper of PHP’s built-in Exception class.
When creating an exception of this type, provide the constructor (the method called
when an instance of this class is created) with a string message. Optionally, you can
provide an error number as the second argument. It’s up to you to give this number
meaning.

The CDbException class is for exceptions related to database operations.

The CHttpException class is for exceptions related to HTTP requests. This excep-
tion type also has a status code value. You could use it to indicate, for example, a
page not found (Figure 7.2):

throw new CHttpException (404, 'Page not found.');

My Web Application

Home Abhout Contact Login

Home = Error

Error 404

Unable to resolve the request "ugh".

Figure 7.2: Because the “ugh” controller does not exist, a 404 exception is thrown.

Previous examples in this chapter also use CHt t pExcept ion for forbidden access
messages.

{TIP} In time you'll probably want to create your own exception class by
extending CException.

158

CHAPTER 7. WORKING WITH CONTROLLERS

In standard PHP code, exceptions are used with try. . .catch blocks, where any
exceptions that occur within the t ry block are to be caught by a matching catch.
You don’t have to formally create try. . .catch blocks in your Yii code, though.
Yii will automatically catch the exceptions and handle them differently based upon
the type.

When a CHttpException occurs, Yii will look for a corresponding view file to
use. The name of the file will match the HTTP status code associated with the error:
errorXXX.php, where XXX is the code. The framework will look for that view file in
these directories in this order:

* WebRoot/themes/ThemeName/views/system
* WebRoot/protected/views/system
e yii/framework/views

So if you are using a theme, Yii will check that directory first. If not, Yii will check
within a system subdirectory of your application’s views folder. If you have not yet
created an appropriate view file there, Yii will use the default view that comes with
the framework files.

For all other exception types, by default, Yii uses the “site” controller’s “error” action
to handle exceptions. This is true regardless of the controller in which the exception
actually occurred. You can change the behavior by configuring the “errorHandler”
component in your configuration file:

protected/config/main.php
// Other stuff.
'components' => array (
'errorHandler' => array ('errorAction' =>
'ControllerId/ActionId")

The default error handling action method looks like:

public function actionError () {
if ($Serror=Yii::app () —>errorHandler->error) {
if(Yii::app () —>request->isAjaxRequest) {
echo Serror|['message'];
} else {
Sthis->render ('error', S$error);

The error will be an array with these elements:

159

CHAPTER 7. WORKING WITH CONTROLLERS

Index Stores the...

code HTTP status code
file name of the PHP script where the error occurred
line line number in the PHP script on which the error occurred

message error message
source source code context in which the error occurred
trace call stack leading up to the error

type error type

This means that within your custom view file, you can refer to these value to report
whatever to the end user. How you access those values is a bit tricky, however, as Yii
passes the error object to the view in a somewhat unconventional way. Traditionally,
you would do this:

Sthis->render ('error', array('error' => S$Serror));

In that case, $Serror in the view is an array, just as it is in the controller. However,
the code Yii uses to pass the error along is this:

Sthis->render ('error', $error);

Because $error is passed as an array;, its individual elements will be immediately
available in the view file as $code, $file, $1ine, etc. This is equivalent to coding:

Sthis->render ('error', array(

'code' => S$Serror['code'],
'file' => Serror['file'],
// etc.

));

Keep in mind that end users should never see detailed error messages. They are for
the developer’s benefit only.

As a convenience, Yii will automatically log exceptions to protected/runtime/appli-
cation.log (or your other default log file). This allows you to go back in and view
all the exceptions that occurred.

160

Chapter 8

WORKING WITH DATABASES

A database is at the core of most dynamic Web applications. In previous chapters,
you’ve been introduced to the basics of how to interact with a database using Yii.
At a minimum, this entails:

¢ Configuring Yii to connect to your database
¢ Creating models based upon existing tables
¢ Using Active Record to create, read, update, and delete records

This combination is a great start and can provide much of the needed functionality
for most sites. But in more complicated sites, you'll need to be able to interact with
the database in more low-level or custom ways.

In this chapter, you'll learn all of the remaining core concepts when it comes to
interacting with databases using Yii. In Part 3, “Advanced Topics,” a handful of
other subjects related to databases will be covered, although those will be far more
complex and less commonly needed than those discussed here.

As with most things in Yii, there are many ways of accomplishing the same task.
Attempting to explain every possibility tends to confuse the reader, in my experience.
So, for the sake of clarity, this chapter will discuss only the approaches and methods
that I think are most practical and common.

Debugging Database Operations

Whenever you begin working with a database, you introduce more possible causes
of errors. Thus, you must learn additional debugging strategies. When using PHP
to run queries on the database, the problems you might encounter include:

¢ An inability to connect to the database

161

CHAPTER 8. WORKING WITH DATABASES

¢ A database error thrown because of a query

¢ The query not returning the results or having the effect that you expect
¢ None of the above, and yet, the output is still incorrect

On a non-framework site, you just need to watch for database errors to catch the

first two types of problems. There’s a simple and standard approach for debugging
the last two types:

1. Use PHP to print out the query being run.
2. Run the same query using another interface to confirm the results.
3. Debug the query until you get the results you want.

When using a framework, these same debugging techniques are a little less obvious,
in part because you may not be directly touching the underlying SQL commands.
Thankfully, Yii will still be quite helpful, if you know what switches to flip.

First of all, while developing your site, enable CWebLogRoute:

protected/config/main.php "components" section
'"log'=>array (
'class'=>'CLogRouter',
'routes'=>array (
array (
'class'=>'CFileLogRoute',
'levels'=>'error, warning',
),
array (
'class'=>'CWebLogRoute',

This will show, in your browser, everything being done by the framework including
what queries are being run (Figure 8.1).

But there’s one more thing you should do to make debugging SQL problems eas-
ier...

Many queries will use parameters, separating the core of the query from the spe-
cific (and often user-provided) values used by it. To see the entire query, with
the parameter values in place, you must also set the CDbConnection class’s
enableParamLogging attribute to true:

protected/config/main.php "components" section
'db'=>array (

162

CHAPTER 8. WORKING WITH DATABASES

Fage. findByFlk ()

in fUzersflarryullmanssitesfhtdocs/protected/controllers/FageController . php
[1557

in fUzers/larryullmandsites/htdocs/protected/controllers/FageController.php
£552

in fUzers/ larryullmanssitesshtdocs/index . php (13)

Ouerying S0L: SELECT * FROM “page” “t° WHERE “t°."id"='1"' LIMIT 1

in fUsersf larryullmandsites/htdocs/protected/controllers/PageController . php
[1557

in fUzers/larryullmandsites/htdocs/protected/controllers/FageController.php
£552

in fUzers/larryullmanssitesshtdocs/index . php (13)

Figure 8.1: Here, the Web log router is showing one of the queries required to
fetch a page record.

'connectionString' =>
'mysqgl:host=1ocalhost; dboname=test’',

'emulatePrepare' => true,
'enableParamlLogging' => true,
'username' => 'root',
'password' => '"',
'charset' => 'utf8',

),

Now you’ll be able to see the entire query in your output, including the query’s
parameter values.

{WARNING/ Public display of errors and detailed logging are terrible
for a site’s security and performance. Both should only be used during
the development of a site.

Database Options

There are two broad issues when it comes to having a Yii based site interact with a
database: the database application in use and how the interactions are performed.

MySQL is by far the most commonly used database application, not just for Yii, but
for PHP, too. And, it’s the only database application I'm using in this book (I think,
perhaps I'll find the time and need to discuss one or two others in Part 3). You tell
Yii what database application, and what specific database, is to be used via the “db”

163

CHAPTER 8. WORKING WITH DATABASES

component, configurable in the primary configuration file as you just saw in the
previous bit of code.

Yii can work with other database applications, too, including:

¢ PostgreSQL

e SQLite

® Microsoft’s SQL Server
e QOracle

To change database applications, modify the “connectionString” value (in the con-
figuration file) to match the application in use. To find the proper connection string
DSN (Database Source Name) value, see the PHP manual page for the PHP Data
Object (PDO) class. Yii uses PDO for its connections and low-level interactions.

Once you've configured Yii for your database application and specific database,
the “db” component can pretty much be forgotten about. But you can easily switch
databases or database applications later on, if needed (e.g., you might change the
database name when you go from the development site to the production version).

Regardless of what database application you're connected to, there are actually
three different ways in Yii you can interact with it:

e Active Record
* Query Builder
¢ Database Access Object (DAO)

The Active Record approach is what you have already seen. For example, this line
of code was explained in the previous chapter:

Smodel = Page::model () ->findByPk ($id);

That line performs a SELECT query, retrieving one record using the primary key
value.

The two alternatives to Active Record are the Query Builder and Data Access Objects
(DAO). To best understand the three options, when you would use them, and how,
let’s look at each in great detail. As in the previous chapters, I'll assume you’'ve
created the CMS example first mentioned in Chapter 2, “Starting a New Application.”
After covering all three options in great detail, I'll provide some tips as to when you
should use which approach.

Using Active Record

If you're reading this book sequentially, and I really hope you are, you've already
learned about and used Active Record. In Yii, Active Record is implemented in

164

http://www.postgresql.org/
http://www.sqlite.org/
http://www.microsoft.com/sqlserver/
http://www.oracle.com
http://php.net/pdo

CHAPTER 8. WORKING WITH DATABASES

the CActiveRecord class. Every model based upon a database table will extend
CActiveRecord by default. Still, you may not really understand what Active
Record is or how to use it to its fullest potential.

Active Record is simply a common architectural pattern for relational databases
(first identified by Martin Fowler in 2003). Active Record provides CRUD—Create,
Read, Update, and Delete-functionality for database records. Active Record is
used for Object Relational Mapping (ORM): converting a database record into a
usable programming object and vice versa. An instance of the CAct iveRecord
class therefore can represent a single record from the associated database table.

{TIP} Active Record cannot be used with every database application, but
does work with MySQL, SQLite, PostgreSQL, SQL Server, and Oracle.

Creating New Records

A new Active Record object can be created the way you would create any object in
PHP:

Smodel = new Page () ;

(That code assumes that the Page class extends CActiveRecord.)

Assuming this is the CMS example, a new page record can be created by assign-
ing values to the properties; the class properties each corresponding directly to a
database column:

Smodel->user_id = 1;
Smodel->title = 'This is the title';
// And so forth.

Understand that in the code created by Gii, the controllers automatically popu-
late the object’s properties using the form values, but you can hardcode value
assignments as in the above.

To create the new record in the database, invoke the save () method:

Smodel->save () ;

The save () method is also how you would update an existing record, after having
changed the necessary property values. Remember that whether you're creating a
new record, or updating an existing one, the INSERT/UPDATE will only occur if
the model’s data passes all of the validation routines established in the model class.
This was explained in Chapter 5, “Working with Models.”

165

CHAPTER 8. WORKING WITH DATABASES

To differentiate between inserting a new record and updating an existing one, you
can invoke the get IsNewRecord () method, which returns a Boolean. The catch is
that you can only reliably use it before the record is saved. Once the record is saved,
getIsNewRecord () will return false, because the record is no longer new:

Snew = $model->getIsNewRecord();
if (Smodel->save()) {
1if (Snew) {

Smessage = 'The thing has been created’';
} else {
Smessage = 'The thing has been updated.';
}
}
Retrieving A Record

One example of retrieving existing records using Active Record has already been
shown and explained in this book:

Smodel = Page::model () ->findByPk ($id);

The £indByPk () method needs to be provided with a primary key value and
returns a single row. If no matching primary key exists, the method returns NULL.

Active Record supports several different methods that allow you to retrieve records
using different criteria. The most basic of these is find () (Figure 8.2).

find{) methad

public CactiveRecord fimd({mixed Scondition='", array Sparams=array ())

fcondition mixed quieny condition or crteda, If a string, it Is treated as query condition (the WHERE
clause); If an array, it is ireated as the iniial values for constrecting a COBCrteria
object; Othersise, il should be an instance of CDBCriteria.

$params anay parameters fo be bound to an SOL statement. This is only used when the first
parameter is a string (query condition), In other cases, please use CDLCrterda; param
o sl parameters

{return} ChcliveRecord the record found. Null if no recard is feund
Figure 8.2: The class specification for the £ind () method.

There’s also findAll (), findAllByAttributes(), £findAllByPk(),
findAl1BySql (), findByAttributes (), £indByPk (), and findBySql ().
All of these methods can be grouped into two categories: methods that return every
record, and methods that only return one (at most). Then the methods differ in how
they go about selecting the record(s) to be returned.

166

CHAPTER 8. WORKING WITH DATABASES

To use any of the findx () methods, you must comprehend the arguments they
take. Many of these methods take one argument, which is used to set the selection’s
conditions, and another argument for passing condition parameters. The conditions
argument can be a string, an array, or a CDbCriteria object. Let’s look at some
examples.

If the conditions value is a simple string, it will be used as the clause following
WHERE. This line is equivalent to the £indByPk () method:

// Works, but dangerous:
Smodel = Page::model ()->find("id=$id");

With both that line of code and the £indByPk (), the result is the query SELECT «
FROM page WHERE id=X (asin Figure 8.1). But there is one important difference
between that use of find () and the use of £indByPk () : this last bit of code leaves
you open to SQL injection attacks. A more secure solution is to use a parameter:

// Works safely:
Smodel = Page::model ()->find('id=:id', array(':id'=>$id));

The difference may be subtle between the two, but the latter is more secure as the
query won't break even if an inappropriate ID value is provided. Notice that this
example uses a named parameter—":id”, which must match the index value of the
parameter array. Also, the parameters argument is only ever used in an example
like this, where the condition is a string. The condition can also be set as an array or
as a CDbCriteria object. The array just maps to the CDbCriteria object, so let’s
look at CDbCriteria next.

Using CDDbCriteria

The CDbCriteria class let’s you customize queries through an object. To start,
create a CDbCriteria instance:

Scriteria = new CDbCriteria();

Then you can customize it by assigning values to various properties, the most
important of which are listed in the following table.

Property Sets

condition The WHERE clause
limit The LIMIT value
offset The offset value in a LIMIT clause

167

CHAPTER 8. WORKING WITH DATABASES

order The ORDER BY clause
params The variables to be bound to the parameters

select The columns to be selected

There are also properties for grouping and aggregating results, to be discussed later
in the book.

{TIP} The first thing you should do to become more comfortable with
Active Record is master usage of CDbCriteria.

As an easy example to begin, the same £indByPk () query can be accomplished in
this manner:

Scriteria = new CDbCriterial();
Scriteria—->condition = 'id=:id';
Scriteria->params = array(':id'=>$id);
Smodel = Page::model ()->find($Scriteria);

To perform the same query using find() without formally creating a
CDbCriteria object, just pass find() an array equivalent to what you
would do with CDbCriteria:

Smodel = Page::model ()->find(array ('condition' => 'id=:id',
'params' => array(':id'=>$id)));

{NOTE} When you're finding a record using the primary key, it makes
the most sense to use the £indByPk () method. These other examples
are for simple, comparative demonstrations.

As another example, this code might be used as part of the login process:

Scriteria = new CDbCriteria();

Scriteria->select = 'id, username';

Scriteria->condition = 'email=:email AND pass=:pass';
Scriteria->params = array(':email'=>S$Semail, ':pass'=>S$pass);
Smodel = User::model ()->find(Scriteria);

Retrieving Multiple Records
The find () method only ever returns a single row (at most). If multiple rows
should be returned by a query, use £indAll () instead. Its signature is the same

(Figure 8.3).

168

CHAPTER 8. WORKING WITH DATABASES

ﬁnd.ﬁ.ll{: e had
public array findAll(mixed $conditions"", array $params=array [})
fcondition muoed query condition or critera
fparams amay paramaters (o be bound to an SOL statement
{return} anmay list of active records satisfying the specified condition. An emply aray is retumed if none

is Fouand.

Figure 8.3: The class specification for the findA11 () method.

The £indAll () method will return an array of objects, if one or more records
match. If no records match, £indAll () return an empty array. This differs from
find (), which returns NULL if no match was found.

Deleting Records

So far, you've seen how to perform INSERT, UPDATE, and SELECT queries, using
different Active Record methods. Sometimes you’ll also need to run DELETE
queries. This is easily done.

If you have a model instance, you can remove the associated record by invoking the
delete () method on the object:

Smodel = Page::model () —>findByPk ($id);
Smodel->delete () ;

{TIP} The model object and its values (stored in its attributes) remain
until the variable is unset by PHP (e.g., when a function or script termi-
nates).

If you don’t yet have a model instance, you can remove the record by calling
deleteByPk () ordeleteAll ():

Smodel = Page::model () ->deleteByPk ($id);

Or:

Scriteria = new CDbCriterial();
Scriteria—->condition = 'email=:email';
Scriteria->params = array(':email'=>$email);

Smodel = User::model ()—>deleteAll (Scriteria);

As you can see in that second example, the deleteAll () method takes the same
arguments as find () or £indAll ().

169

CHAPTER 8. WORKING WITH DATABASES

{TIP} The updateAll () method can be used like deleteaAll () to
update multiple records at once.

Counting Records

Sometimes, you don’t actually need to return rows of data, but just determine how
many rows apply to the given criteria. If you just want to see how many rows would
be found by a query, use Active Record’s count () method. It takes the criteria as
the first argument and parameters as the second, just like find ():

// Find the number of "live" pages:
Scriteria = new CDbCriterial();
Scriteria—->condition = 'live=1l"';

Scount = Page::model () —>count ($criteria);

This is equivalent to running a SELECT COUNT () FROM page WHERE live=1
query and fetching the result into a number.

If you don’t care how many rows would be returned, but just want to confirm that
at least one would be, use the exists () method:

Scriteria = new CDbCriteria();
Scriteria—->condition = 'email=:email';
Scriteria->params = array(':email'=>Semail) ;
if (User::model ()->exists(Scriteria)) {
Smessage = 'That email address has already been
registered.';
} else {
Smessage = 'That email address is available.';

Working With Primary Keys

Normally, the primary key in a table is a single unsigned, not NULL integer, set
to automatically increment. When a query does not provide a primary key value-
which it almost always shouldn’t, the database will use the next logical value. In
traditional, non-framework PHP, you're often in situations where you’ll immediately
need to know the automatically generated primary key value for the record just
created. With MySQL, that’s accomplished by invoking the mysqgli_insert_id()

or similar function.

In Yii, it’s so simple and obvious to find this value that many people don’t know
how. After saving the record, just reference the primary key property:

170

CHAPTER 8. WORKING WITH DATABASES

Smodel->save () ;
// Use S$model->id

It’s that simple.

Scopes

Web sites will commonly use SELECT queries repeatedly configured in the same
manner. For example, a site might want to show the most recently posted comments
or the most active users. You already know how to write such queries using Active
Record: configure a CDbCriteria object and provide it to the findAll () method.

Yii allows you to “bookmark” queries using named scopes. A named scope is a
previously defined configuration associated with a name. Referencing that name
invokes that same configuration.

{NOTE} Named scopes only apply to SELECT queries.

To define a named scope, create a scopes () method in your model definition (or
edit an existing one, if applicable):

protected/models/SomeModel.php
class SomeModel {
// Other stuff.
public function scopes () {
// Definition.

The method needs to return an array. The array’s indexes should be the name of the
scope, and its values should be an array of criteria:

protected/models/Comment .php

public function scopes () {
return array (
'recent' => array(

'order' => 'date_entered DESC',
'limit' => 5

To use a named scope, reference the scope as if it were a class method, just before
the find () or findAll ():

171

CHAPTER 8. WORKING WITH DATABASES

Scomments = Comment::model () —>recent () —>findAll () ;

The end result will be the criteria identified in the named scope passed to the
findAll () method as if it were the first argument to the findA11 () call

{TIP} You can parameterize a named scope: define it so that you can
change a value used in the scope. See the Yii Guide for details.

Sometimes you’ll have criteria that should be applied to every query. In that case,
create (or edit) the defaultScope () method of the model class:

protected/models/Page.php
public function defaultScope() {
return array (
'condition' => 'live=1",
"limit' => 5,
'order' => 'date_published DESC'
)i

Notice that the default scope just returns an array of criteria, not a multidimensional
array as in scopes ().

With that particular default scope, for the most recently published, live pages, you'd
probably want to create a named scope for other queries as well. For example,you
would want other scopes for showing non-live pages (for the administrator).

Performing Relational Queries

The use of Active Record to this point has largely been for retrieving records from
a single table, but in modern relational databases, it’s rarely that simple. Active
Record is quite capable of performing JOINs-selecting data across multiple tables,
it’s just a question of how (as always). I briefly introduced this concept in Chapter 7,
“Working with Controllers,” but now it’s time to cover the subject in sufficient detail.

{NOTE} You can download my code from your account page at the
book’s Web site.

The first thing you’ll need to do is make sure you've properly identified all of your
model (and therefore, table) relationships in your model definitions. Chapter 5
went through this in detail. Remember that the names assigned to the defined
relationships will be used when performing queries. Once you’ve done that, you
can use lazy loading or eager loading in Active Record to reference values from related
tables. This was explained in Chapter 7. Here’s the difference in terms of code:

172

http://www.yiiframework.com/doc/guide/1.1/en/database.ar#named-scopes

CHAPTER 8. WORKING WITH DATABASES

// Lazy:

Spages = Page::model ()-—>findAll();

Suser = Spage->user—->username;

// Eager:

Spages = Page::model ()->with('user')->findAll();
Suser = $page->user—->username;

Of the two approaches, eager loading is clearly better for a couple of reasons. First,
if you know you’ll want access to related data, you should overtly request it (i.e.,
it’s bad programming form to rely upon lazy loading). Second, eager loading is
far more efficient. When Yii performs lazy loading, it runs two separate SELECT
queries: in the above, one on the page table and another on user. With eager
loading, Yii actually performs a JOIN across the two, resulting in a single SELECT

query.
{NOTE} Lazy and eager loading work on any of the findx () methods.

Getting a bit more complicated, you can use with () to JOIN multiple tables. Just
pass the other relation names to with (), separated by commas:

Spage = Page::model () -—>with ('comments', 'user')->findByPk ($id);
Suser Spage->user—->username;

But what will that query return? Obviously that query returns a single page record,
along with all the comments associated with that page (because the “comments”
relationship is defined within the Page model). But the “user” reference may cause
confusion because both the Comment model and the Page model have a relationship
named “user”. To understand the result, let’s investigate the executed query thanks
to CWebLogRoute (Figure 8.4).

If you look at that query, you'll noticed a couple of things. For one thing, Yii uses
aliases to the nth degree. That'’s fine, but you do need to know that Yii uses the alias
“t” for the primary table by default. In this case, that’s page.

Moving on, the first JOIN is:

"page” "t LEFT OUTER JOIN "comment ~comments’
ON (" comments . page_id ="t . 1id")

This is a LEFT OUTER JOIN, which means that the page record will be returned
whether or not there are comments for it (which is what you would want). An
INNER JOIN would only return the page record if it also had comments (which
is what you don’t want). The JOIN equates the comment s . page_id column with
page. id, which is correct.

173

CHAPTER 8. WORKING WITH DATABASES

Querying 50L: SELECT “t°.°9d™ A% “t@_c@™, "t “user_id" A5 "tO_cl”,

Tttt ldwet AS CEO_c2t, Tttt titlet AS CtR_c3C. Ctt . Ccontentt A% CfE_c4t,
“tT . date_updatedt A5 TtB_c5°, Ct7 . "date_publizhed® A5 CfBE_cg”,
‘commentst . Tidt A% Ctl_cBT, “commentst | Cuser_idt AS T tl_cl”,
‘commentst . Cpage_idT AS Ctl_c2t, “comments® . Ccomment® AS Ctl_c3C,
‘commentst . “date_enteredt A5 Ctl_cdt, Cuser® . tidt A5 Ct2_c@t,
‘user® . Cusername” A5 Ct2_clT. “user’ . Cemailt A5 Tt2_c2t, Tuser’ . ‘pass’ AS

“t2_c3t, Cusert | Ctywpet A5 Ct2_cdt, ‘wser’ . “date_entered® 8% “t2_c5t FROM
“page’ " t* LEFT OUTEER JOIM *comment® “comments® 0N

(“comments® “page_id ="t" . "id*) LEFT OUTERE JOIN “user”™ “user® 0ON

("t “user_id'="user®."id*) WHERE ¢ t*."id'='1"'}

in fUsers/larryullmanssites/htdocs/protecteds/controllers/FageContraller. php
(557

in fUszers/larryullmanssitesshtdocs/index . php (13)

Figure 8.4: A JOIN across three tables.

Now let’s look at the next JOIN. It joins the previous results with LEFT OUTER
JOIN user user ON (t.user_id=user.id. There is probably at least one
problem with this JOIN. First, this query is returning the user that owns this page,
as you can tell by this second LEFT OUTER JOIN'’s clause. That may be what you
want, but what if you actually wanted the user that posted each comment? To do
that, you must specify which “user” relationship you want:

Spage = Page::model () ->with ('comments', 'comments.user')->findByPk ($id);
Suser = $page—->user->username;

That’s a solution, but the query should actually retrieve both users: the one that
owns the page and the user associated with each comment. In theory, you could do
this:

Spage = Page::model ()->with ('user', 'comments',
'comments.user')->findByPk ($id) ;
Suser = S$Spage->user—->username;

In my opinion, the clearest way to handle this situation is to make sure that no two
models use the same relationship names. For example, if you change your model
definitions to:

protected/models/Page.php::relations ()
return array (
'pageComments' => array(self::HAS_MANY,
'Comment', 'page_id'),
'pageUser' => array(self::BELONGS_TO,
'User', 'user_id'"),
'pageFiles' => array(self::MANY MANY, 'File',

174

CHAPTER 8. WORKING WITH DATABASES

'page_has_file(page_id, file_id)"'"),
)i

And:

protected/models/Comment .php::relations ()
return array (
'commentPage' => array(self::BELONGS_TO,
'Page', 'page_id'),
'commentUser' => array(self::BELONGS_TO,
'User', 'user_id"),

);

Then this works, and is much more clear:

Spage = Page::model () ->with ('pageUser', 'pageComments',
'pageComments.commentUser') ->findByPk ($id) ;

// Note the change from "user" to "pageUser":

Suser = S$page->pageUser—->username;

But there’s a secondary problem with this particular example: neither a page nor a
comment can be created without an associated user. An OUTER JOIN from comment
to user or from page to user is imprecise. Both should be INNER JOINs. To fix
that, you need to know how to customize relational queries.

Customizing Relational Queries

Providing the names of relationships to the with () method is an easy and direct
way to perform a JOIN and fetch the information that you need. But you'll inevitably
need to know how to customize the resulting queries. For example, as just indicated,
the default is for OUTER JOINs to be performed, which is not always appropriate.
Or, as another example, if you know you will only be needing certain bits of
information, there’s no reason to select every column from the related table.

{TIP} Every SELECT query you run should ideally be limited to selecting
only the information you actually need.

To customize the related query, pass an array to with (). The array’s index should
be the relation name; the array’s value should be the customization. This should be
a series of name=>value pairs. The allowed names are listed in the following table,
and are similar to the attributes used with CDbCriteria.

175

CHAPTER 8. WORKING WITH DATABASES

Index Sets

alias An alias for the related table
condition The WHERE clause

group A GROUP BY clause
having The HAVING clause

join An additional JOIN clause
joinType The type of JOIN to perform

limit The LIMIT value

on An ON clause

offset The offset value in a LIMIT clause
order The ORDER BY clause

params The variables to be bound to the parameters
scopes The scope to use

select The columns to be selected

For example, here’s how a Page query would also just select the page owner’s
username:

Spage = Page::model () ->with (array('pageUser' =>
array ('select'=>'username')
)) —>findByPk ($id) ;

{TIP} As a reminder, use the output from CWebLogRoute to verify what
query is actually being executed.

All that code is doing is customizing how the related User model is fetched along
with Page. Every column from the page table is retrieved, along with the matching
user record, but only the username column is retrieved from user.

In some situations, you don’t need to actually fetch the related models, but you
want to use them in some manner. For example, a query may only want to fetch the
pages that have comments. In that case, set “select” to false:

Spages = Page::model () ->with (array ('pageComments' =>
array ('select'=>false)))->findAll();

176

CHAPTER 8. WORKING WITH DATABASES

As another example, if you wanted to fetch the associated comments in order of
ascending comment date, you would do this:

Spage = Page::model () ->with (array ('pageComments' =>
array ('order'=>'date_entered')))->findByPk ($id) ;

You can use scopes with related models, too. Perhaps you've defined a “recent”
scope in Comment that fetches the five most recently entered comments. In other
words, that scope orders the selection by the date_entered DESC, and applies a
LIMIT of 5. You could use that in your relational query:

Spage = Page::model () ->with (array ('pageComments' =>
array ('scopes'=>'recent')
)) —>findByPk ($id) ;

(To be clear, because of the JOIN across page and comment, the scope should return
the most recently entered five comments associated with this page.)

If comments had an approved column, you could factor that in:

Spage = Page::model () ->with (array (
'pageComments' => array('scopes'=>'recent',
'condition' => 'approved=l")

)) —>findByPk ($id) ;

To apply a scope to the primary table (i.e., the target model) while using a relational
query, invoke the primary table’s scope before the with ():

Spage = Page::model () —>scopeName () —>with (array (
'pageComments' => array('scopes'=>'recentComments',
'condition' => 'approved=l")

)) —>findByPk ($id) ;

Moving on, the “joinType” index can be used to specify the type of JOIN to be
performed across the two tables. The default, as you've already seen, is a LEFT
OUTER JOIN. Let’s make that an INNER JOIN where appropriate:

Spage = Page::model () —>with (array (
'pageUser' => array('joinType' => 'INNER JOIN'),
'pageComments’',
'pageComments.commentUser' =>
array ('joinType' => '"INNER JOIN')
)) —>findByPk ($id) ;

177

CHAPTER 8. WORKING WITH DATABASES

Preventing Column Ambiguity

With JOINs, a common problem is a database error complaining about an ambiguous
column name. Relational databases often use the same name in related tables; using
that name in a SELECT, WHERE, or ORDER clause causes confusion. Preventing
such errors is easily done using the dot syntax: table_name.column_name.

The trick to doing this in Yii is that Yii automatically creates aliases for table and
column names. In order to use the proper dot syntax, you must understand Yii’s
system, which is simple:

¢ The primary table’s alias is “t”
¢ The alias for any other table is the relationship name

That is all.

Statistical Queries

Another common need with relational queries are “statistical queries”: where
information about related records is needed, not the related data itself. With the
CMS example, you might want to find out:

* How many pages a user has created

¢ How many comments a user has posted
* How many comments a page has

* How many files a user has uploaded

When hand coding SQL queries, you’d use a COUNT() to fetch this information.
When using Active Record, you instead create a new relation identifying the partic-
ular situation, specifying the relationship as STAT:

protected/models/Page.php::relations ()
return array (
'pageComments' => array(self::HAS_MANY,
'Comment', 'page_id'),
'pageUser' => array(self::BELONGS_TO,
'User', 'user_id'"),
'pageFiles' => array(self::MANY_ MANY, 'File',
'page_has_file(page_id, file_id)"'"),
'commentCount' => array(self::STAT,
'Comment', 'page_id")

178

CHAPTER 8. WORKING WITH DATABASES

{NOTE} Statistical queries can only be run when there is a HAS_MANY
or MANY_MANY relationship between the two models.

With the new relationship defined, you can use it like you would any other relation-
ship declaration. This code retrieves a single page and the number of comments for
that page:

Spage = Page::model () ->with ('commentCount')->findByPk ($id) ;

Now $page->commentCount will represent the statistical value (i.e., COUNT(¥)).

You can further customize how statistical queries are executed, such as changing
the selection from COUNT(*) to something else, or adding a conditional. See the Yii
Guide for details.

Using Query Builder

Active Record provides the most common ways to interact with the database in Yii,
but not the only way. Yii’s Query Builder is the first logical alternative to Active
Record that you'll use. Query Builder is a system for using objects to create and
execute SQL commands. It’s best used for building up dynamic SQL commands on
the fly. Although Query Builder is a different beast than Active Record, many of the
same ideas, and even the CDbCriteria class will apply to Query Builder, too.

{NOTE} Like most things in Yii, there’s more than one way to use Query
Builder. I'll present the most direct, easy to understand approach here.

Simple Queries

Whereas all the Active Record interactions go through the model classes or objects,
Query Builder works through Yii: :app () ->db. Yii: :app () —>db refers to the
“db” component customized in the configuration file. One of the “db” component’s
attributes is a CDbConnect ion instance, which provides the database connection.
Another is CDbCommand, used to make an SQL command.

To start using Query Builder, you create a new CDbCommand object:

Scmd = Yii::app()—->db->createCommand() ;

To execute simple queries—those that don’t return results, invoke the corresponding
method on the CDbCommand object:

® delete ()

179

http://www.yiiframework.com/doc/guide/1.1/en/database.arr#statistical-query
http://www.yiiframework.com/doc/guide/1.1/en/database.arr#statistical-query

CHAPTER 8. WORKING WITH DATABASES

® insert ()
® update ()

These methods all take the table name as the first argument. The delete () method
takes the WHERE condition as its second, and bound parameters as its third:

Scmd->delete ('file', 'id=:id', array(':1id'=>$id));

The insert () method takes an array of column=>value pairs as its second argu-
ment:

Scmd->insert ('some_table',
array ('some_col'=>$vall, 'num_col' => $val2));

Understand that Yii will automatically take care of parameter binding for you, so
you don’t have to worry about SQL injection attacks when using this approach.

The update () method takes an array of column=>value pairs as its second argu-

ment, the WHERE condition as its third, and bound parameters as its fourth:

Scmd->update ('some_table',
array ('some_col'=>:coll, 'num_col' => :col2),
'id=:id"'",
array (':coll' => 'blah', ':col2' => 43, ':id'=>$id));

{WARNING/ If you insert or update records using Query Builder, you
don’t get the benefits of data validation that Active Record offers.

All three methods return the number of records affected by the action.

Building SELECT Queries

Where Query Builder really shines is in SELECT queries. These are built up by
assigning values to any number of command properties.

Property Sets or returns

from The tables to be used
join A JOIN
limit A LIMIT clause without an offset

offset A LIMIT clause with an offset
order The ORDER BY clause
select The ccl)%gmns to be selected

where A WHERE clause

CHAPTER 8. WORKING WITH DATABASES

{NOTE} There are also properties for creating more complex queries that
use GROUP BY clauses, UNIONSs, and so forth. I'll get to those later.

For an easy example, and one that’s not a good use of Query Builder, let’s retrieve
the title and content for the most recently updated live page record (Figure 8.5):

Scmd->select = 'title, content';
Scmd->from = 'page';

Scmd->where = 'live=1l"';

Scmd->order = 'date_published DESC';
Scmd->1imit = '1"';

Ouerying S0L: SELECT “title”, "cantent”

FEOM “page”

WHERE 1iwe=1

ORDEE BY “date_published”™ DESC LIMIT 1

in AUzers/larryullmanssitesshtdocss/protecteds/controllersssiteController.php
(1187

in fUzersélarryul lmanssitesshtdocssindex . php (13)

Figure 8.5: The resulting query, run in the browser.

Once you've defined the query, for SQL commands like SELECT that return results
(or should), invoke query ().

Sresult = S$Scmd->query () ;

The query () method will return a CDbDataReader object, which you can use in
a loop:

foreach (Sresult as Srow) {
// Use Srow['column_name'] et al.

If your query is only going to return a single row, you can just use queryRow ()
instead:

Scmd = Yii::app()->db—>createCommand () ;

Scmd->select = 'x';
Scmd->from = 'user';
Scmd->where = "id=$id";

Srow = S$Scmd->queryRow () ;

When you have a query that only returns a single wvalue, you can use
queryScalar():

181

CHAPTER 8. WORKING WITH DATABASES

Scmd = Yii::app()—->db->createCommand() ;
Scmd->select = 'COUNT (%) ';

Scmd->from = 'page';

Snum = S$cmd->queryScalar();

Using Methods Instead of Attributes

For every attribute you can use to customize a command, there’s also a method.
This earlier example:

Scmd->select = 'title, content';
Scmd->from = 'page';

Scmd->where = 'live=1"';

Scmd->order = 'date_published DESC';

Scmd->1limit = '1"';

can also be written as:

Scmd->select ('title, content');
Scmd->from ('page') ;

Scmd->where ('live=1");

Scmd->order ('date_published DESC');
Scmd->1imit ('1'");

The end result is the same; which you use is a matter of preference. Still, some
people like the method approach because you can “chain” multiple method calls
together, resulting in a single line of code:

Scmd->select ('title, content')->from('page')->
where ('live=1")->order ('date_published DESC')->1imit ('1l");

If you prefer more clarity, you can spread out the chaining over multiple lines:

Scmd->select ('title, content')
->from('page"')
—>where ('live=1")
->order ('date_published DESC')
—>1limit ('1");

This appears to be thoroughly unorthodox, but it’s syntactically legitimate. But
understand that this only works if you omit the semicolons for all but the final line.

You can even combine the creation of the command object and its execution on the
database into one step:

182

CHAPTER 8. WORKING WITH DATABASES

Snum = Yii::app () —->db->createCommand ()
—>gselect ("COUNT (%) ")
—>from('page')

—>queryScalar();

{TIP} If you want one more way to use Query Builder, you can pass
an array of attribute=>value pairs to the createCommand () method
instead.

At any point in time, you can find the final query to be run (perhaps for debugging
purposes) by referencing $cmd->getText () (Figure 8.6):

echo $cmd->getText ();

SELECT ‘title’, "content” FROM “page’” WHERE live=1 ORDER BY "date_published” DESC LIMIT 1

Figure 8.6: The complete and actual query that was run.

Setting Multiple WHERE Clauses

If you're dynamically building up a query, you might be dynamically defining the
WHERE clause, too. For example, you might have an advanced search page that
allows the user to choose what criteria to include in the search. The where attribute
of the CDbCommand object takes a string, so you could dynamically define that
string. Or you could let Yii do that for you.

ChbCommand defines two methods for building up the WHERE clause:
andWhere () and orWhere (). The former adds an AND clause to the exit-
ing WHERE conditional, and the latter adds an OR:

Scmd = Yii::app()->db-—>createCommand () ;

Scmd->select = 'id, title';
Scmd->from = 'page';
Scmd->where = 'live=1"';

if (isset ($_POST['author'])) {

Scmd->andWhere ('user_id=:uid’,
array (':uid', $_POST['author'));
}
// And so on.

183

CHAPTER 8. WORKING WITH DATABASES

Performing JOINs

The last thing to learn about Query Builder is how to perform JOINs. The from
attribute or from () method takes the name of the initial table on which the SELECT
query is being run. You can provide it with more than one table name to create a
JOIN:

Scmd = Yii::app()->db—>createCommand () ;

Scmd->select = 'page.id, title, username';
Scmd->from = 'page, user';
Scmd->where = 'page.user_id=user.id';

// And so on.

Or you can use the from () method:

Scmd = Yii::app()—->db—->createCommand() ;
Scmd->select ('page.id, title, username');
Scmd->from ('page, user');

$cmd->where ('page.user_id=user.id');

// And so on.

The from () method (or attribute), as well as select (), order (), and others, can
take its argument (or value) as a string or an array.

You can also use the join (), leftJoin (), rightJoin (), crossJoin (), and
naturalJdoin () methods to perform JOINs. The first three methods all take as
their arguments: the name of the table to join, the conditions, and an array of
parameters:

Scmd = Yii::app()->db—>createCommand () ;
Scmd->select ('page.id, title, username');
Scmd->from ('page') ;

Scmd->join ('user', 'page.user_id=user.id');
// And so on.

The crossJoin and naturalJoin () methods just take the name of the table
being joined to as its lone argument.

Using Database Access Objects

The third way you can interact with a database in Yii is via Data Access Objects
(DAO,). This is a wrapper to the PHP Data Objects (PDO). DAO provides the most
direct way of interacting with the database in Yii, short of tossing out the framework
altogether and invoking the database extension functions directly!

184

CHAPTER 8. WORKING WITH DATABASES

Simple Queries

As with Query Builder, one starts by creating a CDbCommand object. Unlike with
Query Builder, you should actually provide the SQL command to the constructor:

Sq = 'SELECT » FROM table_name';
Scmd = Yii::app () —->db—->createCommand ($q) ;

For simple queries, which do not return results, invoke the execute () method to
actually run the command:

Sq = 'DELETE FROM table_name WHERE id=1"';

Scmd = Yii::app()->db->createCommand ($q) ;
Scmd->execute () ;

This method returns the number of rows affected by the query:

1f (Scmd->execute () === 1) {
Smsg = 'The row was deleted.';
} else {
Smsg = 'The row could not be deleted’;
}
SELECT Queries

SELECT queries return results, and are therefore not run through execute ().
There are many ways you can execute a SELECT query and handle the results. One
option is to use the query () method:

Sg = '"SELECT * FROM table_name';
Scmd = Yii::app()->db->createCommand ($q) ;
Sresult = S$Scmd->query () ;

The query () method will return a CDbDataReader object, which you can use in
a loop:

foreach ($result as S$row) {
// Use Srow['column_name'] et al.

If your query is only going to return a single row, you can just use queryRow ()
instead:

185

CHAPTER 8. WORKING WITH DATABASES

Sq = 'SELECT * FROM table_name WHERE id=1"';
Scmd = Yii::app()->db->createCommand ($q) ;
Srow = S$Scmd->queryRow () ;

When you have a query that only returns a single value, you can use
queryScalar():

Sq = 'SELECT COUNT (*#) FROM table_name';
Scmd = Yii::app()->db->createCommand ($q) ;
Snum = S$cmd->queryScalar () ;

Returning Objects

Except for queryScalar (), the mentioned methods all result in arrays (e.g., within
the foreach loop, $row will be an array, queryRow () returns an array, etc.). If
you’d rather fetch results into an object, set the fetch mode:

$g = 'SELECT * FROM page WHERE id=1"';

Scmd = Yii::app()->db->createCommand($q) ;
Scmd->setFetchMode (PDO: :FETCH_CLASS, 'Page');
Smodel = Scmd->queryRow () ;

// Use S$model->title et al.

As you can see in that code, this allows you to fetch results as an object type of your
choosing.

Parameter Binding

In order to use DAO securely, you must use bound parameters to prevent SQL
injection attacks. Unlike Active Record and Query Builder, DAO will not take the
necessary steps on its own. To do so, first make sure that the “emulatePrepare”
option is set to true in your database configuration:

protected/config/main.php
// Lots of other stuff.
'db'=>array (
'connectionString' =>
'mysgl:host=localhost;dbname=test’,
'emulatePrepare' => true,

{WARNING}/ It was reported to me that setting “emulatePrepare” to true
causes bugs in PostgreSQL (thanks, David!).

186

CHAPTER 8. WORKING WITH DATABASES

With that set, you can use bound parameters by using named or unnamed parame-
ters (i.e., question marks) in place of variables (or values), in your query. I would
recommend you go the named route. Use unique identifiers as the placeholders in
your query, and then bind those to variables using the bindParam () method:

Sg = 'INSERT INTO table_name (coll, col2)

VALUES (:coll, :col2)';
Scmd = Yii::app()-—>db->createCommand ($q) ;
Scmd->bindParam(':coll', S$some_var, PDO::PARAM_STR) ;
Scmd->bindParam(':col2', Sother_var, PDO::PARAM INT) ;
Scmd->execute () ;

{TIP} Depending upon a few factors, there may also be a performance
benefit to using bound parameters.

The data type is identified by a PDO constant:

e PDO: :PARAM_BOOL

® PDO::PARAM_INT

e PDO::PARAM_STR

* PDO: :PARAM_LOB (large object)

This is an example of binding input parameters; you can also perform outbound
parameters, too (see the Guide for details).

Choosing an Interface Option

Now that you've seen the three main approaches for interacting with the database-
Active Record, Query Builder, and Data Access Objects, how do you decide which
to use and when?

Active Record has many benefits. It:

¢ Creates usable model objects

¢ Has built-in validation

* Requires no knowledge or direct invocation of any SQL

¢ Handles the quoting of values automatically

¢ Prevents SQL Injection attacks automatically via parameters
¢ Supports behaviors and events

All of these benefits come at a price, however: Active Record is the slowest and least
efficient way to interact with the database. This is because Active Record has to
perform queries to learn about the structure of the underlying database table.

187

http://www.yiiframework.com/doc/guide/1.1/en/database.dao#binding-columns

CHAPTER 8. WORKING WITH DATABASES

A second reason not to use Active Record is that, as is the case with many things,
using it for very basic tasks is a snap, but using it for more complex situations can
be a challenge.

But before giving up on Active Record entirely, remember that Yii does have ways
of improving performance (e.g., using caching), and that ease of development is one
of the main reasons to use a framework anyway. In short, when you need to work
with model objects and are performing basic tasks, try to stick with Active Record,
but be certain to implement caching.

{TIP} One rule of thumb is to stick with Active Record for creating,
updating, and deleting records, and for selecting under 20 at a time.

Query Builder’s benefits are that it:

Handles the quoting of values automatically

Prevents SQL injection attacks automatically via parameters

Allows you to perform JOINSs easily, without messing with Active Record’s
relations

Ofters generally better performance than Active Record

The downsides to Query Builder are that it’s a bit more complicated to use and does
not return usable objects. Query Builder is recommended when you have dynamic
queries that you might build on the fly based upon certain criteria.

Finally, there’s Direct Access Objects. With DAO, you're really just using PDO,
which might be enough of a benefit for you, particularly when you're having trouble
getting something to work using Active Record or Query Builder. Other benefits
include:

Probably the best performance of the three options (depending upon many
factors)

Ability to use the SQL you’ve known and loved for years

Ability to fetch into specific object types

Ability to fetch records into arrays, for easy and fast access

On the other hand, DAO does not provide the other benefits of Active Record, is
not as easy for creating dynamic queries on the fly as with Query Builder, and does
not automatically prevent SQL injection attacks via bound parameters. I would
recommend using DAO when you have an especially tough, complex query that
you're having a hard time getting working using the other approaches.

188

CHAPTER 8. WORKING WITH DATABASES

Common Challenges

To conclude this chapter, I thought I would cover a couple of specific, common chal-
lenges when it comes to working with databases. These challenges are independent
of the database approach in use: Active Record, Query Builder, and DAO.

At this point in the book’s progression, I've only come up with two challenges
that haven’t already been covered: performing transactions and using database
functions. Other possible topics have been moved to Part 3 of the book. If, after
reading this chapter, something’s still not clear, let me know and I'll see about
adding coverage of that topic to subsequent updates of the book.

Performing Transactions

In relational databases, there are often situations in which you ought to make use of
transactions. Transactions allow you to only enact a sequence of SQL commands if
they all succeed, or undo them all upon failure.

Transactions are started in Yii by calling the CDbConnection object’s
beginTransaction () method. That’s accessible through the “db” compo-
nent:

Strans = Yii::app()->db->beginTransaction();

Then you proceed to execute your queries and call commit () to enact them all or
rollback () toundo them all. It would make sense to execute your code within
atry...catch block in order to most easily know when the queries should be
undone:

Strans = Yii::app()->db->beginTransaction();
try {
// All your SQL commands.
// If you got to this point, no exceptions occurred!
Strans—->commit () ;
} catch (Exception Se) {
// Use Se.
// Undo the commands:
Strans->rollback () ;

That is the code you would use with Query Builder or DAO. To use transactions
with Active Record, begin the transaction through the model’s dbConnection

property:

189

CHAPTER 8. WORKING WITH DATABASES

Smodel = new SomeModel;
Strans

Smodel->dbConnection->beginTransaction () ;

Everything else is the same.

Know that, depending upon the database application in use, certain commands
have the impact of automatically committing the commands to that point. See your
database application’s documentation for specifics.

{NOTE} MySQL only supports transactions when using specific storage
engines, such as InnoDB. The MyISAM storage engine does not support
transactions.

Using CDbExpression

Many, if not most, queries use database function calls for values. For example, the
date_updated column in the file table would be set to the current timestamp
upon update. You can do this in your SQL command for the table, depending upon
the database application in use and the specific version of that database application,
but you would also normally just invoke the NOW () function for that purpose (in
MySQL):

UPDATE file SET date_updated=NOW(), /x etc. #/ WHERE id=42

In theory, you might think you could just do this in Yii:

protected/models/File.php beforeSave ()
Sthis->date_updated = '"NOW() ';

But that won’t work, for a good reason: for security purposes, Yii sanitizes data
used for values in its Active Record and Query Builder queries (Yii does so with
table and column names, too). Thus, the string NOW()” will be treated as a literal
string, not a MySQL function call.

In order to use a MySQL (or other database application) function call, you must use
a CDbExpression object for the value. That syntax is:

protected/models/File.php beforeSave ()
Sthis->date_updated = new CDbExpression ('NOW()"');

If the MySQL function takes an argument, such as the password to be hashed, use
parameters:

190

CHAPTER 8. WORKING WITH DATABASES

protected/models/User.php beforeSave ()
Sthis->pass = new CDbExpression ('SHA2 (:pass)',
array (':pass' => S$this->pass));

As another example, if you wanted to get a random record from the database, you
would use a CDbExpression for the ORDER BY value:

Scmd = Yii::app()—->db—->createCommand() ;
Scmd->select = 'x';

Scmd->from = 'user';

Scmd->order = new CDbExpression('RAND()');

Scmd->1imit = 1;
Srow = $cmd->queryRow () ;

To select a formatted date, use the DATE_FORMAT() call as part of the selection:

Scmd = Yii::app()->db->createCommand() ;
Scmd->select = array ('*',

new CDbExpression ('DATE_FORMAT (date_entered, "%Y-%m-%d"))
)i

Scmd->from = 'user';

Scmd->order = new CDbExpression('RAND()"');
Scmd->1limit = 1;

Srow = $cmd->queryRow () ;

191

Chapter 9

WORKING WITH FORMS

HTML forms are one of the key pieces of any Web site. As is the case with many
things, creating forms while using a framework such as Yii is significantly different
than creating forms using standard HTML alone. In this chapter, you'll learn what
you need to know to create HTML forms when using the Yii framework. You'll
comprehend the fundamentals of forms in Yii and see a few recipes for common
form needs.

Understanding Forms and MVC

Before getting into the code, let’s take a minute to think about the MVC architec-
ture. A form is part of the view component, as a form is an aspect of the user
interface. Forms, though, are almost always associated with specific models. A
contact form may have its own model, not tied to a database table (in which case
the model extends CFormModel), and a form for employees or departments will
be based upon a model that is tied to a database table (in which case the model
extends CAct iveRecord, most likely). Whether the model extends CFormModel
or CActiveRecord, the important thing to remember is that the form is tied to a
model. This is significant because it’s the model that dictates what form elements
should exist, controls validation of the form data, and even defines the form’s labels
(e.g., “First Name” for the firstName attribute), and so forth.

{TIP} With the MVC approach, forms should be associated with models.
There are situations where you might have a form not associated with a
model, but that is extremely rare.

When you use Gii to auto-generate CRUD functionality for a model, the framework
creates a form for you in a file named _form.php. This file in turn gets included by
other view files (any view file in Yii that starts with an underscore is intended to be
an include). Naturally, the controller dictates which primary view file gets rendered.

192

CHAPTER 9. WORKING WITH FORMS

Also understand that the same _form.php file is intended to be used whether the
form is for creating new records or updating existing ones. Yii will take care of
populating the form’s elements with the model’s current value when an update is
being performed.

Because forms are normally tied to models, you'll need access to a model instance
when you go to create the form. Before getting to the view and its form, let’s be clear
as to how the view accesses the specific model. A controller may have this code:

public function actionCreate () {
Smodel=new Page;
/+* Code for validation and redirect upon save. =*/
// If not saved, render the create view:
Sthis->render ('create',array (
'model'=>$model
)) i

The create.php view file will include _form.php, passing along the model instance
in the process:

<?php echo $this->renderPartial ('_form',
array ('model'=>$model)); ?>

So now _form.php has access to the model instance and can create the form tied
to that model. Once the form view file has access to the model, it can create form
elements in one of two ways:

¢ Invoking the CHtm1 class methods directly
¢ Using the CActiveForm widget

I'll explain both approaches, but focus more on the later, which is the current default
approach in Yii.

Of course, to be fair, you could create an HTML form using raw HTML, without
Yii at all. The downside to that approach is it creates no tie-in between the model’s
validation rules, errors, labels, etc., and the form. By creating the form using
Yii, labels will be based upon the model definitions (meaning that changing just
the model changes reference to attributes everywhere), invalid form values can
automatically be highlighted, and much, much more. Plus, it’s not hard to use Yii to
create a form, once you understand how.

Creating Forms without Models

The older Yii approach for creating a form was simply a matter of invoking the
appropriate CHtml methods. This class is used statically (i.e., not through a model

193

CHAPTER 9. WORKING WITH FORMS

instance), and defines everything you need to make form elements. To start, you
would create the opening FORM tag:

<?php echo CHtml::beginForm(array('search'), 'get'); ?>

The method’s first argument is the tag’s “action” attribute value. Yii will turn this
into an appropriate route. The above, for example, would be submitted to one of
the following, depending upon the configuration:

¢ http://www.example.com/index.php?r=search
¢ http://www.example.com/index.php/search
¢ http://www.example.com/search

Thus, the form gets submitted to the search controller, and the default action of that
controller.

The second argument to beginForm() is the value of the form’s “method” at-
tribute.

Next, start adding form elements. There’s a method for each type. For example, the
label () method creates an HTML LABEL (Figure 9.1).

label{) method

public static string label(string %label, string %for, array ShtmlOptions=array ([))

Slabel siring label text. Note, you should HTML-encode the text if needed.

Sor 51ring the 1D of the HTML element that this label is associated with. If this is false, the Yor'
attribute for the label tag will not be rendared.

ShimiOptions amay additional HTML atiributes. The following HTML option is recognized:

» pequined: If this s set and is true, the label will be styled with C55 class ‘requined’
{customizable with CHiml: SrequiredCss), and be decorated with

CHiml::beforeRequiredLabel and CHtml::afterRequiredlabel
{return} siring the generated label tag

Figure 9.1: The Yii class docs for the CHtm1 : : 1abel () method.

The textField () method creates a text input. Toss in a submit button, and you've
got yourself a search box:

<?php echo CHtml::label ('Search', 'terms'); ?>
<?php echo CHtml::textField('terms'); ?>
<?php echo CHtml::submitButton('Go!'); ?>

Finally, close the form:

194

CHAPTER 9. WORKING WITH FORMS

<?php echo CHtml::endForm(); ?>

The end result would be the following HTML:

<form action="/index.php/page/search" method="get">
<label for="terms">Search</label>

<input type="text" value="" name="terms" id="terms" />
<input type="submit" name="yt0" value="Go!" />
</form>

It’s not practical, or a good use of book space, to explain each CHtml method in
detail in this book. Instead, I'll cover how you create forms in practice, and leave it
up to you to look up the details and options in the Yii class reference for the CHtm1
class. Later in the chapter, I'll specifically walk through a few of the more common
but difficult needs. But rather than leave you entirely on your own, there are a few
things you ought to know up front about the CHtm1 methods. ..

Using CHtml

When creating “action” attributes for your forms, they need to be mapped
to proper routes for your site and controllers. To do so, Yii uses the
CHtml::normalizeUrl () method, which does the following;:

¢ Uses the current URL when an empty string is provided

¢ If a non-empty string is provided, that string is used as a URL without change

e Ifanarray is provided, the array’s values are used as in the CController: :createUrl ()
method, explained in Chapter 7, “Working with Controllers”

In case you don’t remember what I wrote in that chapter, basically, the first element
in the array is treated as the controller (e.g., “search”) or controller and action (e.g.,
“search/view”). Any other array elements will be used as parameters passed in the
URL.

Next, you should know that many of the CHtm1 methods take a final argument that
can be used to provide additional HTML attributes. For example, to apply a class to
an input, you would do this:

<?php echo CHtml::textField('terms', '"',
array ('class' => 'input-medium search-query')); ?>

(The second argument to the textField () method is its value.)

Third, CHtm1 has methods for creating useful elements that don’t correspond to a
single HTML form element. For example, the checkBoxList () method creates a

195

http://www.yiiframework.com/doc/api/1.1/CHtml

CHAPTER 9. WORKING WITH FORMS

sequence of checkboxes and radioButtonList () does the same thing with radio
buttons (Figure 9.2):

<?php echo CHtml::label ('Your Interests:', 'interests'); ?>
<?php echo CHtml::checkBoxList ('interests', '',
array ('"PHP', 'MySQL', 'JavaScript', 'CSS',
'Yii Framework')),; 2?>

Your Interests:
PHP

MySQL
JavaScript
CSS

Yii Framework

Figure 9.2: The checkBoxList () method creates multiple checkboxes from an
array.

Fourth, and similarly, CHtm1 defines methods related to other HTML aspects, not
just forms. For example, the cssFile () method creates a link to a CSS file:

<?php echo CHtml::cssFile('css/mycss.css'); ?>

Or, the image () method creates an HTML IMG tag and 1ink () creates an HTML
A tag.

Using “Active” Methods

The final thing you should know about CHtml is that each method in CHtml
used to create form elements is repeated with a version prefaced with “active”:
activelabel (), activeTextField(), activeSubmitButton (), and so
forth. The non-active versions are used without a model reference. The active
versions all take a model instance as their first argument:

<div class="row">

<?php echo CHtml::activeLabel ($model, 'username'); ?>
<?php echo CHtml::activeTextField ($model, 'username') ?>
</div>

Note that each element’s name, such as “username” in the above needs to be exactly
the same as a corresponding attribute in the model. Doing so ties the model’s

196

CHAPTER 9. WORKING WITH FORMS

definition-its labels, validation routines, and so forth—to the form elements. If you
attempt to create an element that doesn’t correlate to a model attribute, you'll get an
error (Figure 9.3).

CException

Property "User.name" is not defined.

Figure 9.3: An exception is thrown by attempting to create a form element without
a matching model attribute.

And here’s another benefit of tying a model to a form: if the form is being used for an
update, the values will automatically be pre-populated/pre-selected / pre-checked
based upon the existing model instance! As you should know, that alone requires a
lot of code and logic in traditional programming.

Using CActiveForm

Just using the “active” methods to tie a form to a model is great, but you can improve
upon that approach. As of Yii 1.1.1, forms can be created using the CActiveForm
class as a widget. Although widgets won’t be formally covered until Chapter 12,
“Working with Widgets,” using CActiveForm as a widget is easy enough to grasp
and implement that I can explain it here.

You always start using CAct iveFormby invoking the controller’s beginWidget ()
method. Provide to it the name of the widget class:

<?php $form = $this->beginWidget ('CActiveForm'); ?>

(That code goes in the _form.php file.) Now $formis an object of the CActiveForm
type and it can be used to generate the form itself.

From there, the CHtml “active” methods have been wrapped within methods in
the CActiveForm class, although you no longer have to use the “active” part. For
example, activeTextField () isnow just textField (). The activeLabel ()
becomes 1abelEx (), however:

<div>
<?php echo $form->labelEx (Smodel, 'firstName'); ?>
<?php echo $form->textField ($model, 'firstName',
array ('size'=>20, 'maxlength'=>20)); ?>

197

CHAPTER 9. WORKING WITH FORMS

<?php echo $form->error ($model, 'firstName'); ?>
</div>

The model is still passed as the first argument to these methods. The model attribute
involved is passed as the second.

By using CAct iveForm, instead of just CHtm1, you can now easily implement:

¢ Server-side validation
¢ Client-side validation via JavaScript
¢ Client-side validation via Ajax

The first two will be implemented automatically for you. Just test it for yourself to
see. Disable JavaScript and test that, too. Chapter 14, “JavaScript and jQuery,” will
discuss Ajax and Ajax form validation.

Returning to the widget itself, you can customize the behavior of the form by passing
an array of values when creating it:

<?php $form = $this->beginWidget ('CActiveForm', array (
'id'=>"'user—-form',
'enableAjaxValidation'=>false,
'focus'=>array ($model, 'firstName'),

)) i ?>

The various CAct iveForm properties can be found in the documentation. Com-
monly you won't need to customize any properties, but you can change the form’s
“method” and “action” attributes, or add additional HTML to the opening FORM
tag.

Finally, the form needs a submit button. Unlike the other form elements, this isn’t
tied to a model; it is created with just the CHtm1 class:

<div>
<?php echo CHtml::submitButton (
$model->isNewRecord ? 'Create' : 'Save'); ?>
</div>

Then the form is closed by “ending” the widget:

<?php $this->endWidget (); ?>

Those are the basics for using CAct iveForm. Once you've taken the above steps,
form elements will be pre-populated when updating a record, errors will be clearly
indicated upon form submission, and so forth.

198

CHAPTER 9. WORKING WITH FORMS

Using Form Builder

Another way of creating forms in Yii is to use the Form Builder. Form Builder in
Yii is somewhat similar to using PEAR’s HTML_QuickForm, if you're familiar with
that. Form Builder is useful if you want to create forms dynamically or if you'd just
rather not rely upon so much hard coded HTML and PHP in your views. For an
example of using Form Builder, I'll recreate a contact form.

Getting Started
To start, you need to create a new CForm object. This would be done in a controller:

protected/controllers/SiteController.php

public function actionContact () {
Smodel = new ContactModel;
Sform = new CForm(<configuration>, Smodel);

When creating the CForm object, you need to pass to the constructor two values:

¢ Configuration details for the form
* An instance of the model to associate with the form

For the model instance, let’s assume as an example that you want a contact form
for the site (and don’t want to use the view created by yiic). Here’s part of the
ContactForm model definition that Yii will create for you:

protected/models/ContactForm.php
class ContactForm extends CFormModel {
public $name;
public S$email;
public $subject;
public S$body;

{TIP} For the sake of simplicity, I'm ignoring the captcha for this example.

Since the model has these four attributes, the form should have four elements, plus
a submit button.

As with other forms tied to models, Form Builder will perform validation of the
submitted data, populate the form with existing data when applicable, use the
model’s label values, and so forth.

199

http://pear.php.net/package/HTML_QuickForm2

CHAPTER 9. WORKING WITH FORMS

The “configuration” argument is how you dictate what elements the form has. There
are a couple of ways you can configure the form. The first is to pass the constructor
an array:

protected/controllers/SomeController.php
public function actionContact () {
Smodel = new ContactModel;
Sform = new CForm(array (/* index=>value */), S$model);

The second way to configure the CForm object is to have a file store an array and
pass the path to that file to the constructor. There’s a good argument to taking this
approach, as it results in cleaner code that’s easier to edit. As this information will
eventually be used to create a view, it makes sense to put the array in a view file:

protected/views/site/contactForm.php
<?php
return array (

/* index => value */

) ;

Once you've created the file that returns an array, tell CForm to use it:

protected/controllers/SiteController.php

public function actionContact () {
Smodel = new ContactModel;
$form = new CForm('application.views.site.contactForm',
Smodel) ;
}
Configuring CForm

However you pass an array to the CForm constructor, the key is what that array
contains. The array’s indexes will always include two values: “elements” and
“buttons”. These two values correspond to the two categories into which CForm
sorts all form elements. The submit button and a reset button (if you're using those,
which you generally shouldn’t) go into the latter category; everything else is an
element.

You can also set indexes for any other writable property of the CForm class. This
includes:

* action, dictating to what page the form should be submitted
* method, dictating the method (the default is POST)

200

CHAPTER 9. WORKING WITH FORMS

® title, used asalegend value in a fieldset

To create elements and buttons, you assign an array to those indexes. Within that
inner array, each form element is indexed by its name. Again, these names/indexes
should match the corresponding model attributes. Here’s what the code looks like
considering what I've explained thus far:

return array (

'title' => 'Contact Us',

'elements' => array (
'name' => array(),
'email' => array (),
'subject' => array(),
'body' => array ()

) 4

'buttons' => array(
'submit' => array()

) ;

That code defines the form’s title and then identifies four elements and one button.
The four elements align with the four attributes in the model. The order in which
the elements and buttons are listed dictates the order in which they are displayed in
the form.

{TIP} You can create subforms by specifying another CForm object as an
element type. The Guide has examples of this.

Next, the code creates the arrays for the individual elements and buttons. Each
element and button is represented as an array, which should always have a “type”
index. For element types, the possible values are:

* text

¢ hidden

* password

® textarea

o file

¢ radio

e checkbox

e listbox

¢ dropdownlist
¢ checkboxlist
¢ radiolist

201

http://www.yiiframework.com/doc/guide/1.1/en/form.builder#creating-a-nested-form

CHAPTER 9. WORKING WITH FORMS

e url

¢ email

e number
* range
e date

Note that there are again Yii variations here on common HTML elements, such as
checkboxlist and listbox. The last five options are all new to HTML5. And, if that’s
not enough, you can use CInputWidget or CJuiInputWidget widgets for the
types, too (widgets will be covered in Chapter 12).

For buttons, the possible types are:

¢ htmlButton
¢ htmlReset
¢ htmlISubmit
e submit

¢ button

® image

® reset

e link

The first three options all use HTML BUTTON tags. Generally speaking, you'll use
the “submit” type.

The individual element and button arrays will have other indexes depending upon
the item in question. For example, the “list” types—checkboxlist, dropdownlist,
and radio list-all need “items”. For buttons, you'll normally want to set the “la-
bel” index, which is the text that appears on the button. All of the other indexes
that you can customize are the writable attributes of the CFormInputElement
and CFormButtonElement classes. These classes use CHtm1 methods to actually
create the various elements; your existing knowledge of CHtml applies to using
CForm, too.

With all this in mind, here’s the complete customization of the contact form (without
the return array () part):

'title' => 'Contact Us',
'elements' => array (
'name' => array (
'type' => 'text',
'maxlength' => '80"
),
'email' => array (
"type' => 'email',

202

CHAPTER 9. WORKING WITH FORMS

'hint' => 'If you want a reply, you must...',
'maxlength' => '80'
),

'subject' => array(
'type' => 'text',
'maxlength' => '120"
)l

'body' => array (
'type' => 'textarea',
'attributes' => array('rows'=>20, 'cols'=>80)
)

),
'buttons' => array(

'submit' => array(
"type' => 'submit',
'label' => 'Submit'
)

{TIP} By default, the model’s att ributeLabels () values will be used
for the labels for the elements. You can change this using the “label”
index.

Displaying the Form

Once you've created a customized CForm object, it’s ready to be rendered in a view.
First, in your controller, pass the CForm and model objects to the view file:

protected/controllers/SiteController.php

public function actionContact () {
Smodel = new ContactModel;
Sform = new CForm('application.views.site.contactForm',
Smodel) ;
Sthis->render ('contact', array('model' => Smodel,
'form' => S$form));

Then, in the view file, just do this:

<?php echo $form; ?>

{TIP} You can customize how the form is displayed by extending the
CForm class to override the render () method. See the Guide for de-
tails.

203

http://www.yiiframework.com/doc/guide/1.1/en/form.builder#customizing-form-display

CHAPTER 9. WORKING WITH FORMS

Handling Form Submissions

Now that you've successfully displayed the form (hopefully), the final step is to
handle the form’s submission. This occurs in the controller, of course. You can
check for a form’s submission by calling the form object’s submitted () method,
providing to it the name of the submit button: $form->submitted (’ submit”’).
The default value is “submit”, so if you name your button that, you can just use
$form->submitted (). To see if the form data passed all validation (as defined in
the model), invoke the validate () method.

Putting this altogether, your controller might look like this:

protected/controllers/SiteController.php

public function actionContact () {
Smodel = new ContactModel;
Sform = new CForm('application.views.site.contactForm',
Smodel) ;
if (Sform->submitted() && Sform->validate()) {

// Send the email!
Sthis->render ('emailSent');
} else {
Sthis->render ('contact', array('model' => Smodel,
'form' => S$form));

Note that Yii will automatically take care of error reporting and making the form
sticky should it be displayed again after a submission that does not pass validation.

The last thing you need to know is how to access the submitted data. That will be
available in the model, through its attributes:

// Get the "to" from the Yii configuration file:

Sto = Yii::app()->params['adminEmail'];
// Compose the body:
Sbody = "Name: {Smodel->name}

Email: {$Smodel->email}
Message: {S$model->body}";
mail (Sto, Smodel->subject, S$body);

{WARNING]/ That code will send the email, but to make it more secure,
I'd test and scrub the submitted values for possible spam attempts.

204

CHAPTER 9. WORKING WITH FORMS

Common Form Needs

This book is purposefully not intended as a recipe book, such as Alexander
Makarov’s book, and my hope is that the material in this chapter to this point gives
you enough information that you would be able to figure out whatever it is you
need to do from this point forward. On the other hand, there are still a few common
needs and points of confusion that could stand to be addressed. Over the rest of the
chapter, I'll do just that.

If, after reading this chapter or working with forms on your own, you find that there
are still some significant, outstanding mysteries when it comes to using forms, let
me know. I can also add more of these “how to’s” in subsequent releases.

{TIP}I'm not going to explain CAPTCHA in this chapter as it requires a
widget. You'll see how to use it in Chapter 12.

Working with Checkboxes

Checkboxes can sometimes be challenging to work with, due to the way they
represent values. When you enter “lycanthropy” in a text box, you know that text
box’s value will be “lycanthropy”. But when you check a checkbox, what value will
it have? And, more importantly, how can that value be properly mapped to a model
attribute?

The answer to the first question is simple: if a checkbox is checked, the resulting
PHP variable will have the same value as the checkbox’s “value” attribute:

Receive Updates?
<input type="checkbox" name="updates" value="yes">

If that box is checked, then $_POST [’ updates’] will have a value of “yes”. But
what happens if the checkbox is not checked? In that case, $_POST [’ updates’]

will not have a value (i.e., the variable won’t be “set”). And this creates one problem:
the database, and the corresponding model attribute, may use true/false, Y/N, or
1/0 to represent whether or not that checkbox was checked. You can easily set the
affirmative value-true, Y, 1, but how do you set the negative (i.e., non-checked)
value?

A second problem arises when updating models. You can pre-check a checkbox by
adding the “checked” attribute to the element:

Receive Updates? <input type="checkbox" name="updates"
value="yes" checked>

How do you make that happen when the model might use true, Y, or 1 for its
affirmative values?

205

http://yiicookbook.org/
http://yiicookbook.org/

CHAPTER 9. WORKING WITH FORMS

In order to answer all these questions, let’s run through some specific examples,
starting with simply accessing checkboxes.

{TIP} Most of the information with respect to checkboxes equally applies
to radio buttons.

Implementing “Remember Me?” Functionality

The code generated by the yiic script makes use of a checkbox already: the login
form presents a “Remember Me?” element. This is an optional checkbox: the user
can log in whether she checks the box or not. If the user does check the box, the
login cookie will be extended.

The checkbox is created in the view form using this code:

<?php echo $form->checkBox ($model, 'rememberMe'); ?>

This checkbox is mapped to a model attribute. This means the controller can find
the attribute’s value using $model->rememberMe. But what will that value be if
checked? What will it be if not checked?

The first thing you need to know about checkboxes in Yii is that if a checkbox is
not provided with a value, its default value will be 1. In other words, Yii will set
a checkbox’s “value” attribute to 1, unless you specify otherwise. But Yii does
something very clever: it creates a default value, too. The trick can be seen in the
rendered HTML:

<input id="ytLoginForm_ rememberMe" type="hidden" value="0"
name="LoginForm[rememberMe]" />

<input name="LoginForm|[rememberMe]"
id="LoginForm_rememberMe" value="1" type="checkbox" />

First, there’s a hidden input with a value of 0 and the name “Login-
Form[rememberMe]”. Then comes the checkbox with a value of 1 and the
same name. Whenever you have two form elements with the same name, the value of
the second element will overwrite the value of the first. In this case, if the checkbox
is checked, then $_POST[’LoginForm’] [’ rememberMe’] ends up being 1,
because the value of the checkbox overwrites the value of the hidden form element.
If the checkbox is not checked, then $_POST [’ LoginForm’] [/ rememberMe’]

ends up being 0, because the checkbox will not be set, leaving the hidden form
element’s value intact. Clever stuff!

To change the checked and unchecked values, pass a third argument to the
checkBox () method:

206

CHAPTER 9. WORKING WITH FORMS

<?php echo $form->checkBox ($model, 'rememberMe',
array ('value' => 'Y', 'uncheckValue'=>'N")),; ?>

Agreeing To Terms

The “remember me?” example is one in which the checking of the box is optional,
but what if it's required? A logical example is the pervasive “I agree to these terms
(that I did not even consider reading)” checkbox.

Enforcing this requirement is simple, and is done in the same way you enforce any
requirement on a model attribute: using the model rules. This code was presented
in Chapter 4, “Initial Customizations and Code Generations”:

array ('acceptTerms', 'required', 'requiredValue'=>1,
'message'=>"'You must accept the terms to register.'),

Assuming that your model has the acceptTerms attribute, and that your form
creates that corresponding checkbox, the form now mandates that the user check
the box (Figure 9.4).

Accept Terms
You must accept the terms to register.

Figure 9.4: The resulting error message if the terms checkbox is not checked by
the user.

Checkboxes and Updates

The last remaining question, then, is how to handle updates and checkboxes. In
theory, you could just add the “checked” attribute to the view code that creates the
form. But you would have to do this conditionally, based upon what value the
corresponding model attribute has, if any.

Yii has predicted and solved this dilemma, however: the framework will automati-
cally check the box for you if the corresponding model attribute has a “true” value,
in PHP terms. This includes the Boolean true, as well as any non-zero number, as
well as any non-empty string. If your attribute has any of the following values, Yii
will check the box on updates:

* true
o 1

e “Yes’

207

CHAPTER 9. WORKING WITH FORMS

° /Yl

That’s great, but the problem is that ‘N’, ‘No’, and ‘false” would also qualify as “true”
values.

If you're using values for your checkboxes that do not easily correlate to Booleans,
such as Y/N or Yes/No, the solution is to convert the values from non-Booleans
to Booleans before rendering the form. You'll want to perform that conversion in
the controller, before an update occurs, but the particular functionality should be
defined within the model itself. Here’s how I would do that. ..

To start, create a convertToBooleans () method. It should define an array of all
attributes that need the conversion and then loop through that array. Within the
loop, the attribute’s value should be converted to a Boolean:

protected/models/SomeModel.php
public function convertToBooleans () {
Sattributes = array('receiveUpdates',
'receiveOffers', ...);
foreach (Sattributes as Sattr) {
Sthis—->$Sattr = (Sthis->$Sattr === 'Y') ? true : false;

The list of strings must exactly match the names of the corresponding model at-
tributes, but that’s all you need to do to make this work.

Now the controller should invoke this method, but only when an update is being
performed:

protected/controllers/SomeController.php

public function actionUpdate ($id) {
Smodel=$this->loadModel ($id) ;
Smodel->convertToBooleans () ;
// Rest of the method (show & handle the form).

Now the checkbox(es) in the form will be automatically checked as appropriate.
Note that even with that code, the form should end up assigning Y/N or Yes/No to
the model attributes, as that’s what would be stored in the database:

<?php echo $form->checkBox ($model, 'attributeName',
array ('value' => 'Y', 'uncheckValue'=>'N")); ?>
Working with Passwords

If you have any kind of user-type model, you presumably have a password attribute,
required for logging in. This alone leads to two problems to solve:

208

CHAPTER 9. WORKING WITH FORMS

¢ Confirming the password during registration
* Securely storing the password

Let’s quickly look at both delimmas.

Confirming Passwords

By now you've certainly been asked to confirm your password upon registration
many thousands of times. The theory is that it ensures that the user knows exactly
what her password was because she had to enter it twice. That’s a theory, anyway.
Before showing you how to do this in Yii, Id like to put forth the case that it’s really
unnecessary.

Many sites are forgoing the password confirmation these days, and with good
reason: it’s an extra hassle that provides no extra security. Sure, in theory you’ll
know your password better because you entered it twice, but how many times have
you done that just to forget it later anyway? A lot, right? So how about just taking
the user’s password once, and if the user forgets it, have a good “forget password”
system in place. That’s it. But if you still want to do a password confirmation. ..

Let’s assume you have a User model, which extends CActiveRecord. In the
database, there’s a pass column for storing the password. The first thing you
should do is add an attribute to the model itself:

protected/models/User.php
class User extends CActiveRecord {
public $passCompare; // Needed for registration!

Then, add a rule that says that the two password attributes must match:

protected/models/User.php::rules ()
return array (
// Other rules.
array ('pass', 'compare', 'compareAttribute'=>'passCompare',
'on'=>"'insert'),

);

You'll notice that this rule only applies during the “insert” scenario. This means
that the rule will only apply when the model is being saved for the first time (in the
actionCreate () method of the UserController).

Next, your view file must also display the second password input:

209

CHAPTER 9. WORKING WITH FORMS

<div class="row">

<?php echo $form->labelEx ($model, 'passwordCompare'); ?>

<?php echo $form->passwordField ($model, 'passwordCompare',
array ('size'=>60, 'maxlength'=>64)); ?>

</div>

And that will do it (Figure 9.5)!

Password

HEEEEEEE

Fassword must he repeated exactly.
Pass Compare

Figure 9.5: Password confirmation is now part of the registration form (for better
or for worse).

{TIP} If you want the ability for users to change their passwords (which
only makes sense), change the password compare rule to also apply to
the “update” scenario.

Securing Passwords

Another common issue regarding passwords is how you secure them. Typically,
one would store the hashed version of a password upon registration, not the actual
password itself. Then, when the user goes to login, the submitted login password is
hashed using the same code, and the two hashes are compared. The simplest way
of doing all this is to use a MySQL function:

INSERT INTO users VALUES (NULL, 'trout', 't@example.com',
SHA2 ('bypass', 512)

And:

SELECT » FROM users WHERE (email='t&example.com' AND
pass=SHA2 ('bypass', 512))

(Obviously most of those values would be represented as PHP variables in a real
site; 'm demonstrating the underlying commands).

You may be wondering how you can take this same approach when using Yii? If
you're just using a MySQL function as in the above, you can set the password using
a CDbExpression, as discussed in Chapter 8, “Working with Databases”:

210

CHAPTER 9. WORKING WITH FORMS

protected/models/User.php
public function beforeSave () {
if (Sthis->isNewRecord) {
Sthis->pass = new CDbExpression ('SHA2 (:pass, 512)°',
array (':pass' => S$this->pass));
}

return parent::beforeSave();

That code uses a CDbExpression to set the value of the password using the
SHAZ2() function but only for new records. That’s obviously how the registration
(i.e., INSERT) would work; you’'d need to do a similar thing with SHA2() upon
login.

That approach will work, and may be secure enough for some sites, but SHA2() has
been cracked and it also requires a relatively current version of MySQL with SSL
support enabled. An alternative, and probably more secure, approach would be to
hash the password in PHP.

There are a number of ways to hash data in PHP, which approach you use is really
a matter of the level of security you need to reach for your site. I often use the
hash_hmac () function, added to the language as of PHP 5.1.2. Its first argument is
the algorithm to use, the second is the password to encrypt, and the third is a key
for added security:

Spass = hash_hmac ('sha256"', S$pass, 'lvkj23mn5j25KJE5r');

This is much more secure than just using SHA2(), but requires that the same key
be used for all interactions (i.e., both registration and login). Normally I would
securely store that key as a constant in a configuration file, thereby separating the
key from the code that uses it. If you want to take that route in Yii, you can set the
key as a parameter in the configuration file:

protected/config/main.php
// Lots of other stuff.
'params'=>array (
'adminEmail '=>"'webmaster@example.com',
'encryptionKey' => 'lvkj23mn5j25KJES5r",
),

Then your code can use this key like so:

Spass = hash_hmac ('sha256', Spass,
Yii::app () —>params['encryptionKey']);

211

CHAPTER 9. WORKING WITH FORMS

There are arguments for using the hash () method, or crypt () with the Blowfish
algorithm, instead. For added security, you can salt the password: add extra data to
it to increase the password’s length and uniqueness.

To use a PHP hashing function in your model upon registration, add a
beforeSave () event handler, as described in Chapter 5, “Working with Models”:

protected/models/User.php
public function beforeSave () {
if (S$Sthis—>isNewRecord) {
Sthis->pass = hash_hmac('sha256', S$this->pass,
Yii::app()—->params|['encryptionKey']); }
return parent::beforeSave();

To use the security manager upon login attempts is just a matter of calling
hash_hmac () again and comparing the results. You'll see this in Chapter 11, “User
Authentication and Authorization.”

Handling File Uploads

Next, let’s look at how to handle uploaded files in Yii using the MVC approach. In
non-framework PHP, handling uploaded files, while not hard, is a different process
than handling other types of form data. I'm going to assume that you already know
how to do that, and are able to set the correct permissions on folders, and do the
other things that need to be in place for any PHP script to handle an uploaded file.

Defining the Model

The CMS project already has a good model to use for this example: File. But that
model works a bit differently than many uses of uploaded files, so let’s come up
with a new hypothetical: say users can upload an avatar image. It can be in JPG or
PNG formats (no animated GIFs!), and must be smaller than 100KB in size. To start,
set the rules in the model:

protected/models/User.php::rules ()
// Other rules

array ('avatar', 'file', 'allowEmpty' => true,
'maxSize' => 102400, 'types' => 'Jpg, Jpeg, png')

This rule uses the “file” validator, which in turn uses the CFilevValidator class.
Its writable attributes include:

* allowEmpty, whether the file is required

212

CHAPTER 9. WORKING WITH FORMS

* maxFiles, the number of files that can be uploaded
* maxSize, the maximum number of bytes allowed
* minSize, the minimum number of bytes required
e types, the allowed file extensions (case-insensitive)

Thus, the above code says that the file is optional, but if provided must be under
100KB, and has to use the .jpg, .jpeg, or .png extension.

Plus, you can set error messages using the tooLarge, tooMany, tooSmall, and
wrongType attributes:

protected/models/User.php::rules ()

// Other rules

array ('avatar', 'file', 'allowEmpty' => true,
'maxSize' => 102400, 'types' => 'IJpg, Jjpeg, png’',
'tooLarge' => 'The avatar cannot be larger than 100KB.',
'wrongType' => 'The avatar must be a JPG or PNG.')

And that takes care of all the validation!

Creating the Form

Next, let’s turn to the view file that displays the form. I'm going to demonstrate
this for CActiveForm, but it should be easy enough for you to translate to using
CHtml directly, or using Form Builder.

As you should know, in order for PHP to be able to handle an uploaded file, the form
must use the “enctype” attribute, with a value of multipart/form-data. In order to
have your Yii form do that, set the “htmlOptions” when invoking beginWidget ():

Sform = $this->beginWidget ('CActiveForm',
array (
'enableAjaxValidation' => false,
'htmlOptions' =>
array ('enctype' => 'multipart/form-data'),

{WARNING}/ Forgetting to set the “enctype” attribute is a common cause
of problems when attempting to upload files. Also make sure that
PHP is configured to allow for big enough file uploads to match your
application’s needs.

213

CHAPTER 9. WORKING WITH FORMS

Also remember that such forms must use the POST method, which is the default.
And “enableAjaxValidation” is disabled because uploaded files cannot be validated
via Ajax (more on Ajax validation in Chapter 14, “JavaScript and jQuery.”

To create the file input in the form, invoke the fileField () method:

<?php echo $form->fileField ($model, 'avatar'),; ?>

Handling the Uploaded File

Finally, there’s the controller, which should handle the uploaded file. The code
created by Gii will look like this:

protected/controllers/UserController.php
public function actionCreate () {
Smodel=new User;
if (isset ($_POST['User'])) {
Smodel->attributes=$_POST['User'];
if (Smodel->save ()) {
Sthis->redirect (array ('view',
'id'=>Smodel->id)) ;

}

Sthis->render ('create',array ('model'=>Smodel)) ;

That code takes care of everything except for the uploaded file. File uploads are
handled using the CUploadedFile class, which is the Yii equivalent to PHP’s
$_FILES array. Invoke its get Instance () method to access the uploaded file:

Smodel->attributes=$_POST['User'];
Smodel->avatar =
CUploadedFile: :getInstance ($Smodel, 'avatar');

With that in place, you can now save the model instance (i.e., store the record in the
database):

Smodel->attributes=$_POST['User'];
Smodel->avatar =

CUploadedFile: :getInstance (Smodel, 'avatar');
if (Smodel->save()) {

As with any other model attribute, the model cannot be saved if it does not pass
validation, including the validation of the file.

Finally, after saving the model, save the physical file to the server’s file system:

214

CHAPTER 9. WORKING WITH FORMS

if (Smodel->save()) {
Smodel->avatar—->saveAs ('path/to/destination');

When the file is optional, as in my example, you should check that the attribute isn’t
null before attempting to save the file:

1if (Smodel->save()) {
if (Smodel->avatar !== null) {
Smodel->avatar—->saveAs ('path/to/dest');

Of course, you need to set the “path/to/destination” to something meaningful.

Setting the File’s Name

The “path/to/destination” value provided to the saveAs () method needs to indi-
cate both the destination directory for the file and the file’s name.

For the destination, for security reasons, it’s best to store uploaded files outside
of the Web root directory, or at least in a non-public Web directory. I always try
to go outside of the Web root directory, but in a Yii site, using a subfolder of
protected makes equal sense. For this example, let’s assume you’ve created an
avatars directory in protected (and set the permissions accordingly). Having done
s0, you can use this code to get a reference to that directory:

Sdest = Yii::getPathOfAlias ('application.avatars');

{NOTE/} Once you store an uploaded file so that it’s not directly available
in the browser, you then need to use a proxy script to display it in the
browser. I'll explain how to do that in Yii in Chapter 18, “Leaving the
Browser.”

Next, there’s the file’s name to determine. The CUploadedFile object will have
the following useful properties:

® crror, an error code, if an error occurred

* extensionName, the file’s extension (from its original name)

* name, the file’s original name on the user’s computer

* size, the size of the uploaded file in bytes

* tempName, the path and name of the file as it was initially stored on the server
* type, the file’s MIME type

215

CHAPTER 9. WORKING WITH FORMS

As the model attribute is assigned the value of the CUploadedFile object, you
could do this:

Smodel->avatar—->savelAs ($dest . '/' . Smodel->avatar—>name) ;

For improved security, though, it’s also best to rename uploaded files. In this
particular situation, where the uploaded file is directly related (in a one-to-one
manner) with a user record, I'd be inclined to use the unique user’s ID for the file’s
name, although with its original extension:

Smodel->avatar—->saveAs (Sdest . '/' . Smodel->id . '.'
Smodel->avatar—->extensionName) ;

The only caveat here is that the file’s extension isn’t entirely reliable. Neither is the
MIME type. I'll introduce an alternative approach in just a few pages.

Handling Updates

Files that are uploaded in association with a model (such as an avatar for a user)
pose a logical problem when it comes to updating the model. A user might change

other pieces of information, such as her password, without touching the uploaded
file.

To handle this situation, you must first address the validation rules in the model. If
the file is required, you would want to make sure it’s required only upon insertions
of new records:

protected/models/User.php::rules ()

// Other rules

array ('avatar', 'file', 'allowEmpty' => false,
'maxSize' => 102400, 'types' => 'jpg, Jpeg, png',
'on' => 'insert'),

array ('avatar', 'file', 'allowEmpty' => true,
'maxSize' => 102400, 'types' => 'IJpg, Jjpeg, png',
'except' => 'insert')

Next, I normally reveal something about the file on the update form to let the user
know what the current file is. This could be the current image, in the case of an
avatar, or the original file name and size for something not visual. How you do this
depends upon the file, your models, and so forth, but you should be able to figure
that part out.

Then in the controller that handles the form’s submission, you can actually use the
same code already explained to handle the uploaded file. If the file was required,
then it will only pass validation if provided. If the file was not required, then you
don’t want to blindly do this:

216

CHAPTER 9. WORKING WITH FORMS

Smodel->avatar =
CUploadedFile: :getInstance (Smodel, 'avatar');

That would overwrite any existing file value with a NULL value (which would be
bad). Instead, check for the presence of an uploaded file first:

Smodel->attributes=$ _POST['User'];
Supload = CUploadedFile::getInstance ($model, 'avatar');

if (Supload !== null) S$model->avatar = S$Supload;
if (Smodel->save()) {
if (Supload !== null) {

Smodel->avatar—->saveAs ('path/to/destination');

The CUploadedFile instance is first assigned to a local variable. Then that local
variable will be used as a flag to know whether or not a new file was uploaded.

Uploading Multiple Files

If you have the need to upload multiple files with one model instance, there are a
couple of ways you can do that. If the files are different, such as an avatar and a
resumé, those would be two different attributes and you can handle each separately
in the same way as you handle the one.

If the user could provide multiple files for the same attribute, things get more
complicated but not that much more complicated. First, in the model, use the same
validation rules you otherwise would, but also set the maxFiles attribute:

protected/models/SomeModel.php::rules ()
// Other rules

array ('images', 'file', 'allowEmpty' => true,
'maxSize' => 102400, 'types' => 'jpg, Jjpeg, png',
'maxFiles' => 3)

Then, in the form, create the correct number of file inputs, giving each the rather
unconventional name “[JattributeName”:

<?php echo $form->fileField($model, '[]images'); ?>
<?php echo $form->fileField($model, '[]images'); ?>
<?php echo $form->fileField($model, '[]images'); ?>

(You'd add labels and formatting to your form, too, of course.)

Finally, in the controller, instead of calling CUploadedFile: :getInstance (),
call CUploadedFile: :getInstances (), which will return an array of uploaded
tile instances, usable in a loop:

217

CHAPTER 9. WORKING WITH FORMS

Sfiles = CUploadedFile::getInstances (Smodel, 'images');
foreach ($Sfiles as S$file) {
if (S$file !== null) {
// Use S$file->saveAs ()

More Secure Uploading

As you can tell, it’s pretty easy to upload files in Yii, and there’s even built-in
validation. However, that validation is based upon information provided to PHP by
the user and the browser: the file’s MIME type, its extension, and so forth. In PHP,
more secure validation can be accomplished using the Fileinfo functions. These
functions, built into PHP as of version 5.3, use a file’s magic bytes—actual data stored
in the file itself-to determine its type. In Yii, you can use the CFileHelper class. If
Fileinfo is available, CFileHelper will use that extension. If not, CFileHelper
will use the mime_content_type () function or just the file’s extension (as the
worst case scenario).

You can use this class directly, if you want, but Yii will automatically use it if you
set the “mimeTypes” property in the rule:

protected/models/User.php::rules ()
// Other rules
array ('avatar', 'file', 'allowEmpty' => true,
'maxSize' => 102400,
'mimeTypes' => 'image/Jjpeg, 1image/pjpeg, image/png')

As with the extensions, the MIME types are case-insensitive, but you have to be
careful as to what values you use. A file with an extension of .jpeg may have a
MIME type of either image/jpeg or image/pjpeg. Search online for a complete list of
MIME types by file type.

Working with Lists

There are several HTML elements that use lists of data:

Check box list
Drop down list
List box

Radio button list

218

http://php.net/manual/en/ref.fileinfo.php

CHAPTER 9. WORKING WITH FORMS

These elements take arrays for their data, but you can also use list data. List data is
created by the CHtm1: :1istData () method, and is a good way to populate one
of these elements using existing models.

For example, say you want to create a drop down list that allows an administrator
to change the owner of a page (reflected in the Page model’s user_id attribute).
You could populate that drop down list using this code:

<?php echo $form->dropDownList ($model, 'user_id',
CHtml::listData (User::model ()—->findAll (), 'id', 'username')
), ?>

The first argument to 1istData () is an array of models. This can be returned by
the findAll () method. The second argument is the index or attribute in the data
to use for the list’s values. The third argument is the index or attribute in the data to
use for the list’s displayed text.

This will work for you just fine, and even pre-select the right option when perform-
ing an update. Still, there are two ways you could improve upon this:

¢ Only display the users that have the authority to be owner’s of a page
® Only fetch the User class’s id and username attributes, as those are the only
two being used

Both issues can be addressed using scopes, as explained in Chapter 8:

protected/models/User.php

public function scopes () {
return array (
'authorsForLists' => array (
'select' => 'id, username',
'order' => 'username ASC',

'condition' => 'type!="public"'

)

Then the 1istData () call can be changed to:

<?php echo $form->dropDownList ($model, 'user_id',
CHtml::listData (
User: :model () —>authorsForLists ()->findAll (),
'id', 'username')
)i ?>

And by the way: the update form will still automatically select the correct author
name from the drop down list! How nice is that?

219

CHAPTER 9. WORKING WITH FORMS

Forms for Multiple Models

There is one last subject that ought to be covered in this chapter: working with
multiple models in the same form. In a somewhat trivial way, you just saw an
example of this: in which the attribute in one model is related to another. Next, I'll
expand on that example in a couple of ways. Finally, I'll demonstrate how to create
two model instances using one form.

Handling Many-to-Many Relationships

The previous example demonstrated using one model to populate a drop down list
for another model. In that situation, there was a one-to-many relationship between
the two models. A more complicated situation exists when there’s a many-to-many
relationship between two models, such as Page and File in the CMS site. Because
of the many-to-many relationship between these two, neither Page nor File would
have a foreign key to the other. Instead, a junction table is used: page_has_file.
The table itself has only two columns: page_id and file_id. Each file associated
with a page is represented by a record in this table.

On the form for adding (or updating) a page, you’d need to be able to select multiple
files to associate with the page:

<div>

<?php echo $form->labelEx ($model, 'files'); ?>

<?php echo $form->dropDownList ($model, 'files', CHtml::listData (
File::model () —>findAll(), 'id', 'name'),
array ('multiple'=>"'multiple', 'size'=>5)

)i ?>

<?php echo $form->error ($model, 'files'); ?>

</div>

That dropDownList () method will create a drop-down of size 5 (five items will be
shown), populated using the list of files, and the user will be able to select multiple
options. If you were to run this code, though, you’d get an error as Page doesn’t
have a files attribute (Figure 9.6).

But there’s an easy solution here. ..

In the Page model definition, the model’s relationship is identified within the
relations () method (these relations are updated after going through Chapter 8):

protected/models/Page.php::relations ()
'pageComments' => array(self::HAS_MANY,
'Comment', 'page_id'),
'pageUser' => array(self::BELONGS_TO, 'User', 'user_id'),
'pageFiles' => array(self::MANY MANY, 'File',

220

CHAPTER 9. WORKING WITH FORMS

CException

Property "Page.files” is not defined.

Figure 9.6: Yii complains when you attempt to create a form element for a model
that does not have that attribute.

'page_has_file(page_id, file_id)"'"),
'commentCount' => array(self::STAT, 'Comment', 'page_id'")

Not only does this result in Page having a “pageFiles” relationship, it also results in
Page having a “pageFiles” attribute, as if it were a column in the database. All you
need to do to fix this is change the code in the form to use “pageFiles” instead of
“files”. Then the form will work and the menu will even select files that have been
associated with that page (Figure 9.7).

Page Files

S5ome File
Another File

Figure 9.7: The file associated with this page is selected in the drop down box.

Furthermore, you can also add “pagesFiles” to the attributeLabels () array
of the Page model to give this relationship a new label that would be used in the
form. You can even add a rule to the Page model to make sure this part of the form
validates.

{TIP} When you create a relation, that relation becomes an attribute of
the model.

Now that the form is working—in this case allowing you to select multiple files to be
associated with a page, you'll need to update the controller to handle the file selec-
tions. Within the actionCreate () method (of PageController), after the page
has been saved, loop through each file and add that record to the page_has_file
database table. This is a great time to use a prepared statement and a transaction.

221

CHAPTER 9. WORKING WITH FORMS

protected/controllers/PageController.php

public function actionCreate() {
Smodel=new Page;
if (isset ($S_POST['Page']l)) {
Smodel->attributes=$_POST]['Page'];
if (Smodel->save ()) {
foreach ($_POST['Page']['pagesFiles'] as $file_id)

// Save to the “page_has_files' table.

}
// Et cetera

Personally, I would be inclined to use Direct Access Objects and prepared statements
within the foreach loop to perform that task:

protected/controllers/PageController.php::actionCreate ()
if (Smodel->save()) {
Sg = "INSERT INTO page_has_file (page_id, file_id)
VALUES ({Smodel->id}, :file_id)";
Scmd = Yii::app()->db->createCommand($q) ;
foreach ($S_POST['Page']|['pageFiles'] as $file_id) {
Scmd->bindParam(':file_id', $file_id,
PDO: :PARAM INT);
Scmd->execute () ;
}
// Et cetera

Now, when a new page is created, one new record is created in page_has_file
for each selected file.

There’s still one more consideration: the update process. The final step is to update
the page_has_file table when the form is submitted (and the page is updated).
This could be tricky, because the user could add or remove files, or make no changes
to the files at all. The easiest way to handle all possibilities is to clear out the existing
values (for this page) in the page_has_file table, and then add them in anew. To
do that, in actionUpdate () of the PageController, you would have:

protected/controllers/PageController.php::actionUpdate ()
if ($Smodel->save ()) {
Sg = "DELETE FROM page_has_file
WHERE page_id={$model->id}";
Scmd = Yii::app()->db->createCommand($q);
Scmd->execute () ;

Then you use the same foreach loop asin actionCreate () to repopulate the table.

222

CHAPTER 9. WORKING WITH FORMS

Creating Different Models at Once

The previous example demonstrated how to create and handle a form in which mul-
tiple instances of a model is associated with a single instance of another. Sometimes,
you may only have a one-to-one relationship but you’ll actually want to create
new instances of both models at one time. For example, in my PHP and MySQL
for Dynamic Web Sites: Visual QuickPro Guide book I used an example in which an
administrator could add works of art as products to be sold in an e-commerce site.
In the form for adding a print, the administrator could select an existing artist or
add a new artist while adding the print. How you do this is easier than you might
think.

In your controller (for whichever model is primary), create instances of both objects
and pass them to the view:

protected/controllers/ArtController.php
public function actionCreate() {
Sart = new Art;
Sartist = new Artist;
Sthis->render ('create', array(
'artist'=>$artist,
'art'=>$art,
)) i

From there, it’s rather simple:

* Create elements for both models in the view

* Back in the actionCreate () method, mass assign the primary model’s at-
tributes

* Then, mass assign the secondary model’s attributes

¢ If the secondary model is not NULL, save it in the database and assign the
new ID value as the foreign key in the primary model

¢ Save the primary model

And that should do it. For added reliability, you could use transactions here, as
explained in Chapter 8.

223

Chapter 10

MAINTAINING STATE

One of the first things every Web developer must learn is that the HyperText
Transfer Protocol (HTTP) is stateless. Every page request and server response is a
separate action, with no shared memory. Even the loading of an HTML form and
the submission of that form are two separate and technically unconnected steps.
(Conversely, a desktop application is one constantly running process.)

The ability to maintain state is required in order to have any of the functionality
expected by today’s Web sites. Without maintaining state, you can’t have users
logging in, shopping carts, and much more. Through cookies and sessions, server-
side technologies such as PHP provide easy and reliable mechanisms for maintaining
state in your applications. When using Yii, you could, of course, still use the standard
PHP approaches. But since you're already using the framework, you ought to use
the framework.

In this chapter, I'll explain everything you need to know in order to maintain state
using Yii. I do assume that you already know the arguments for and against cookies
vs. sessions. I won’t waste time explaining when and why you would use one over
the other, rather just cover the “how”.

Cookies

First up, let’s look at cookies: how to create, read, delete, and customize them. You'll
also see how to make your site more secure using cookies.

Creating and Reading Cookies
To create a cookie in PHP without using a framework, you just call the

setcookie () function. To create a cookie while using the Yii frame-
work, you don’t use setcookie (), but rather create a new element in the

224

CHAPTER 10. MAINTAINING STATE

Yii::app () ->request->cookies array. CookiesareinYii: :app () ->request->cookies,
because cookies are part of the HTTP request a browser makes of a Web server.

What you'll want to do to create a cookie is create a new object of type
CHttpCookie: Yii's class for cookies. Here, then, is the syntax for setting a cookie
in Yii:

Yii::app () —>request->cookies['name'] =
new CHttpCookie('name', 'value');

You must use the same name in both places, replacing it with the actual cookie name.
Remember that the cookie’s name, and value, are visible to users in their browsers,
so one ought to be prudent about what name you use and be extra mindful of what
values are being stored.

{TIP} Because the cookie’s name must be used twice in the code, you
may want to consider assigning the cookie’s name to a variable that is
used in both instances instead.

Once you've created a cookie, you can access it, using:

Yii::app () —>request—->cookies['name']->value

You have to use the extra —>value part, because the “cookie” being created is
actually an object of type CHttpCookie (and Yii, internally, takes care of actually
sending the cookie to the browser and reading the received cookie from the browser).

{NOTE} Remember that cookies are only readable on subsequent pages;
cookies are never immediately available to the page that set them.

To test if a cookie exists, just use isset () onYii: :app () ->request->cookies [’ name’],
as you would any other variable:

if (isset(Yii::app()->request—->cookies['name'])) {

// Use Yii::app()—->request—>cookies['name']->value.
}
Deleting Cookies

To delete an existing cookie, just unset the element as you would any array element:

225

CHAPTER 10. MAINTAINING STATE

unset (Yii::app () —>request->cookies|['name']);

To delete all existing cookies (for that site), use the clear () method:

Yii::app () —>request—>cookies—->clear();

Customizing Cookies

By default, cookies will be set to expire when the browser window is closed. To
change that behavior, you need to modify the properties of the cookie. You can’t
do so when you create the CHttpCookie object (i.e., the only arguments to the
constructor are the cookie’s name and value), so you must separately create a new ob-
ject of type CHt tpCookie, to be assigned to Yii: :app () ->request->cookies
later:

Scookie = new CHttpCookie ('name', 'value');

Then adjust the expire attribute:

Scookie->expire = time () + (60x60%24); // 24 hours

Then add the cookie to the application:

Yii::app()->request—->cookies|['name'] = S$Scookie;

You can manipulate other cookie properties using the above syntax, changing out
the specific attribute: domain, httpOnly, path, and secure. Each of these corre-
spond to the arguments to the setcookie () function. (You can also manipulate
the value of the cookie through $cookie->value and the cookie’s name through
Scookie—->name).

For example, if you want to limit a cookie to a specific domain, or subdomain, use
domain. To limit a cookie to a specific folder, use path. To only transmit a cookie
over SSL, set secure to true.

If you’d rather not set one attribute at a time, you could instead pass an array to the
configure () method:

Scookie = new CHttpCookie ('name', 'value');
Scookie->configure (array (

'expire' => time () + (60%x60x24),

'domain' => 'subdomain.example.com',

'path' => 'dir'

))

226

CHAPTER 10. MAINTAINING STATE

Securing Cookies

Another way to configure your cookies is to add an extra layer of security by setting
Yii’s “enableCookieValidation” to true. This is done by assigning that value within
the “request” component section of the main configuration file:

protected/config/main.php
// Other stuff.
'components'=>array (
'request '=>array (
'enableCookieValidation'=>true,
),
// Other stuff.

Cookie validation prevents cookies from being manipulated in the browser. To
accomplish that, Yii stores a hashed representation of the cookie’s value when the
cookie is sent, and then compares the received cookie’s value against that stored
hash to ensure they are the same. Obviously there’s extra overhead required to do
this, but in some instances, the extra effort is justified by the extra security.

Preventing CSRF Attacks

One thing to watch out for when using forms is the potential for Cross-Site Request
Forgery (CSRF) attacks. A CSRF works like this:

e Site A does something meaningful by passing a value in a URL:
http://www.example.com/page.php?action=this

¢ Site A requires that the user has a cookie from Site A in order to execute that
action.

¢ Malicious site B has some code on it that unknowingly has users make that
same request of site A. This could even be an image tag’s src attribute.

e If the user still has the cookie from site A, the request will be successful.

CSREF is a blind attack, in that the hacker cannot see the results of the request, but
CSRF is amazingly easy to implement. As an example, let’s say that an administrator
at your site logs in and does whatever but doesn’t log out. The administrator
therefore still has a cookie in his browser indicating access to the site (i.e., the user
could open the browser and perform admin tasks without logging in again). Now
let’s say that the src attribute on malicious site B points to a page on your site that
deletes a blog posting. If the administrator with the live cookie loads that page on
site B, it will have the same effect as if that administrator went to your site and
requested the blog deletion directly. This is not good.

To prevent a CSRF attack on your site, first make sure that all significant form
submissions use POST instead of GET. You should be using POST for any form that

227

CHAPTER 10. MAINTAINING STATE

changes server content anyway, but a CSRF POST attack is a bit harder to pull off
than a GET attack.

Second, set “enableCsrfValidation” to true in your configuration file, under the
“request” component:

protected/config/main.php
// Other stuff.
'components'=>array (
'request '=>array (
'enableCsrfValidation'=>true,

) 5
// Other stuff.

By doing this, Yii will send a cookie with a unique identifier to the user. All forms
will then automatically store that same identifier in a hidden input. The form
submission will only be handled then if the two identifiers match. With the case of a
CSREF attack, the two identifiers will not match because the form'’s identifier will not
be passed as part of the request. Note that this only works if you're using CHtm1
to create your forms, including through CAct iveForm (if you manually create the
form tags, Yii won’t insert the necessary code for preventing CSRF attacks).

The most important thing to remember about cookies, which I've already stated, is
that cookies are visible to the user in the browser. And unless you're using SSL for
the cookies, they are also visible while being transmitted back and forth between
the server and the client (which happens on every page request). So be careful of
what gets stored in a cookie! If the data is particularly sensitive, use sessions instead
of cookies.

Sessions

With coverage of cookies completed, let’s quickly look at sessions in Yii.

Using Sessions

The first thing to know about using sessions in Yii is that you don’t have to do any-
thing to enable them, which is to say you don’t have to invoke session_start (),
as you would in a standard PHP script. This is the behavior with Yii’s “au-
toStart” session property set to true, which is the default. Even without calling
session_start () yourself, you could, of course, make use of the $_SESSION
superglobal array, as you would in a standard PHP script, but it’s best when using
frameworks to make total use of the framework. The Yii equivalent to $_SESSION
isYii::app()->session:

228

CHAPTER 10. MAINTAINING STATE

Yii::app () —>session['name'] = 'value';
echo Yii::app()—->session['name']; // Prints "value"

And that’s all there is to it. To remove a session variable, apply unset (), as you
would to any other variable:

unset (Yii::app()—->session['name']);

{NOTE/ Sessions are stored in Yii: :app () —>session, but cookies are
inYii::app()->request—->cookies.

There are, of course, session methods you can use instead, if you’d rather:

Yii::app () —->session->add('name', 'value');
echo Yii::app()—->session—->itemAt ('name'); // Prints "value"
Yii::app () —>session—->remove ('name') ;

Frequently, for debugging purposes, and sometimes to store it in the database,
I like to know the user’s current session ID. That value can be found in
Yii::app () —->session—->sessionID.

If you'll be working with sessions a lot in a script, you may tire of typing
Yii::app()->session[’whatever’]. Instead, you can create a shorthand
variable pointing to the session:

Ssession = Yii::app()->session;
// Or:

Ssession

Yii::app()->getSession();
// Use S$session['var'].

If you do this, just be careful not to assign a value to $session, because that value
won’t be stored in the actual session. Not unless you perform a mass reassignment
later on:

Yii::app()—->session = $session;

Those are the basics, and there’s nothing really unexpected here once you know
where to find the session data. The more complex consideration is how to configure
sessions for your Yii application.

229

CHAPTER 10. MAINTAINING STATE

Configuring Sessions

You can change how your Yii site works with sessions using the primary configu-
ration file. Within that, you would add a “session” element to the “components”
array, wherein you customize how the sessions behave. The key attributes are:

* autoStart, which defaults to true (i.e., always start sessions)

* cookieMode, with acceptable values of none, allow, and only, equating to:
don’t use cookies, use cookies if possible, and only use cookies; defaults to
allow

* cookieParams, for adjusting the session cookie’s arguments, such as its
lifetime, path, domain, and HTTPS-only

* gCProbability, for setting the probability of garbage collection being per-
formance, with a default of 1, as in a 1% chance

* savePath, for setting the directory on the server used as the session directory,
with a default of /tmp

* sessionName, for setting the session’s, um, name, which defaults to PHPSES-
SID

* timeout, for setting after how many seconds a session is considered idle,
which defaults to 1440

* useTransparentSessionId, if set to true, the session ID will be appended
to all URLs and stored in all forms

For all of these, the default values are the same as those that PHP sessions commonly
run using, except for autoStart.

For security purposes, I normally prefer to take the session out of the default /tmp
directory, and put them in a directory that only this site will use. While I'm at it, I'll
set cookieMode to only, and change the session name:

protected/config/main.php
// Other stuff.
'components'=>array (

'session' => array (
'cookieMode' => 'only',
'savePath' => '/path/to/my/dir"',
'sessionName' => 'Session'

),
// Other stuff.

The save path, in case you're not familiar with it, is where the session data is
stored on the server. By default, this is a temporary directory, globally readable and
writable. Every site running on the sever, if there are many (and shared hosting
plans can have dozens on a single server), share this same directory. This means

230

CHAPTER 10. MAINTAINING STATE

that any site on the server can read any other site’s stored session data. For this
reason, changing the save path to a directory within your own site can be a security
improvement.

Storing Sessions in a Database

Another customization you can make as to how sessions are used is to store the
session data in a database. To do that, change the session class used from the default
CHttpSession to CDbHttpSession:

protected/config/main.php
// Other stuff.
'components'=>array (

'session' => array (
'class' => 'system.web.CDbHttpSession',
'connectionID' => 'db"',
'sessionTableName' => 'session',

) 5
// Other stuff.

You can also perform any of the other session configuration changes in that code
block, too. The CDbHt tpSession class extends CHttpSession, so it inherits the
properties you've already seen.

If you choose this route, Yii can automatically create the table if it does not exist if
you set “autoCreateSessionTable” to true. But to be thorough, you should create it
yourself first:

CREATE TABLE session (
id CHAR(32) PRIMARY KEY,
expire INT,

data TEXT,

KEY (expire)

)

Other than the initial configuration differences, everything else about using the
database is the same.

{TIP} You can also store session data in a cache, but this does require that
you've established a caching mechanism first.

Destroying Sessions
When the user logs out, you may want to formally eradicate the session. To do so,
call Yii::app () —>session->destroy () to getrid of the actual data stored on

the server and the session:

231

CHAPTER 10. MAINTAINING STATE

protected/controllers/SiteController.php::actionLogout ()

if (Yii::app()—->session->isStarted()) {
Yii::app () —>session->clear();
Yii::app()—->session->destroy();

Disabling Sessions

If your site will not be using sessions at all, you would want to disable them by
adding this code to the “components” section of the configuration file:

protected/config/main.php

// Other stuff.

'session' => array (
'autoStart' => false,

)/

// Other stuff.

232

Chapter 11

USER AUTHENTICATION AND
AUTHORIZATION

Authentication is the process of identifying a user. On Web sites, this is most of-
ten accomplished by providing a username/password combination (or email/-
password), or via a third-party, such as the user’s Twitter or Facebook account.
Un-authenticated users qualify as anonymous users, or guests.

Related to authentication is authorization. Authorization is the process of determin-
ing whether the current user is allowed to perform a specific task. Users don’t nec-
essarily need to be authenticated to be authorized—for example, an un-authenticated
guest can view your home page, but even in those situations, the authorization is
using authentication (specifically the lack of authentication) to dictate what the user
can do.

The previous chapter explained how to maintain state in Yii: storing and retrieving
data that continues to be associated with a user as she travels from page to page.
And in Chapter 7, “Working with Controllers,” you were introduced to basic access
control in Yii. Using it, a site can restrict which users can invoke what controller
methods. The material in that chapter involves the basic user authentication gener-
ated by the yiic command when you first create a site. That generated code allows
you to login using either admin/admin or demo/demo. Now it’s time to learn how
to fully implement user authentication and authorization in Yii (aka, “auth and
auth”).

Fundamentals of Authentication

As with anything in Yii, authentication is a matter of using the proper classes defined
in the framework. And although the authentication classes are easy enough to use,
the authentication process can be a bit confusing, due to the number of pieces
involved and the role each plays. To hopefully minimize confusion, let’s start by
looking at the fundamentals of authentication, and the logic flow it entails.

233

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

Key Components

The authentication process is designed to be quite flexible in Yii. Authentication can
be performed against:

e Static values (e.g., demo/demo and admin/admin)
e Database tables

¢ Third-parties (e.g., Facebook or Twitter)

¢ Lightweight Directory Access Protocol (LDAP)

As already mentioned, the code created by yiic uses static values. It does so by
creating the UserIdentity class, which inherits from CUserIdentity (which
implements the IUserIdentity interface). The main purpose of these classes is
to implement an authenticate () method that authenticates the user based upon
whatever criteria or source you desire.

{NOTE} First thing to remember: the authenticate () method of
the CUserIdentity class (or subclass) is used to perform the actual
authentication.

A representation of the current user (i.e., the person accessing the current page)
is always available through the “user” application component. Consequently,
Yii::app () —>user is a reference to the current user. This is true whether the user
is authenticated (logged-in) or not.

By default, the “user” component is an object of type CiwebUser. The isGuest
attribute stores a Boolean indicating authentication status:

if (Yii::app()-—>user—->isGuest) {
// Do whatever.

} else {
// Do this.

{NOTE} Second thing to remember: the representation of the user is
stored in the “user” component as an object of type CWebUser (or an
extended type).

If the data passes authentication, then the CWebUser class’s 1ogin () method
is invoked. It saves the authenticated user’s identity in the “user” component.
From there on, different controllers can use the saved user identity to determine
authorization. Controllers will do so in one of two ways:

¢ Basic access control (list-like)

234

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

¢ Role-Based Access Control (RBAC)

Finally, the user will log out. Logging out involves calling the 1ogout () method of
CWebUser, thereby removing the user’s saved identity.

Of course, thrown into this mix, you also have the login form, which is tied to a
model, which entails its own validation. Figure 11.1 shows the logic flow of this
entire process.

Invalid

Submission |- Valid

CWebUser instance
(guest)

Login Controller Login CUserldentity CWebpser
e Form Form ::authenticate() <login()
user" application Model
_________ component N Yalidation]
Request actions
CWebUser instance (eventually)
: (authenticated) =
Logout authorization Controllers

Figure 11.1: The authentication and authorization process.

With that overview in mind, let’s now walk through the authentication process
using the code generated by yiic.

Default Authentication Process

The default application created by the Yii framework has built-in authentication
using hard-coded values. When you generate a new site using Yii’s command-line
tool, three files for managing authentication are created:

¢ protected/components/Userldentity.php
* protected/models/LoginForm.php
* protected/views/site/login.php

And there’s also some code added to protected/controllers/SiteController.php that
comes into play. The controller file gets the action going, of course. The view file is
the login form itself. The LoginForm model defines the rules and behaviors for the
login data. And the UserIdentity class defines a component that performs the
actual authentication.

The URL to login will be www.example.com/index.php/site/login (or a variation
on that URL), as Yii puts login/logout functionality in the “site” controller by default.
When the user clicks on a link to go to the login page, she’ll go through the “site”

235

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

controller and call the actionLogin () method. That method is defined as (with
some comments and Ajax functionality removed):

protected/controllers/SiteController.php::actionLogin ()
Smodel=new LoginForm;

if (isset ($_POST['LoginForm'])) {
Smodel->attributes=$_POST|['LoginForm'];
if ($model->validate () && Smodel->login()) {

Sthis->redirect (Yii::app()->user—->returnUrl) ;

}

Sthis->render ('login',array ('model'=>Smodel)) ;

First, a new object of type LoginForm is created (line 2). That class is defined in
the LoginForm.php model file. The model extends CFormModel, and has three
public attributes: username, password, and rememberMe. There’s also a private
_1identity attribute, used upon logging in.

If the form has been submitted (line 3), the form data is assigned to the model’s
attributes (line 4). Then a conditional does two things: attempts to validate the data
and login the user (line 5). If the data passes validation and the user can be logged
in, the user will be redirected to whatever URL got her here in the first place (line 6,
more on redirection later in the chapter). If the form has not been submitted, or if
the form data does not pass the validation routine, then the login form is displayed,
and the LoginForm object is passed along to it (line 9). There’s nothing unusual
about that form, so I'll leave it up to you to examine that view file if needed.

The call to the validate () method in the above code means that the form data
has to pass the validation rules established in the LoginForm class. This is basic
model validation as defined by the rules () method of that model:

protected/models/LoginForm.php::rules ()
return array (
// username and password are required
array ('username, password', 'required'),
// rememberMe needs to be a boolean
array ('rememberMe', 'boolean'),
// password needs to be authenticated
array ('password', 'authenticate'),

)

One little trick here is the authenticate () validation requirement. This is an
example of a user-defined filter, explained in Chapter 4, “Initial Customizations and
Code Generations”. Here’s that method’s definition:

236

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

protected/models/LoginForm.php::authenticate ()
if (!'Sthis->hasErrors()) {
Sthis—->_identity=new UserIdentity ($this->username,
Sthis->password) ;

if (!$this->_identity->authenticate()) {
Sthis->addError ('password',
'Incorrect username or password.');

} // Did not authenticate.
} // Errors exist already!

That method actually performs the authentication: compares the submitted values
against the required values. To start, it only performs this task if the model does
not already have any errors (line 2). No use in attempting validation if a username
or password was omitted, right? Next, the method creates a new UserIdentity
object, passing it the username and password values (line 3). This object is assigned
to the internal, private _identity attribute. Then the UserIdentity class’s
authenticate () method is invoked (line 4). This is the primary authentication
method in the site, which performs the actual authentication. If that method returns
false, an error is added to the current model. As with all validators, if no error is
added, then the model will be considered to have valid data.

{NOTE} In case it’s not clear, the purpose of the LoginForm model’s
authenticate () method is to invoke the UserIdentity class’s
authenticate () method. It's that other method that actually
performs the authentication against stored values.

Now, let’s look at the UserIdentity class, defined in protected/compo-
nents/Userldentity.php. This class extends CUserIdentity which, in turn,
implements the IUserIdentity interface, as required by Yii for any authentica-
tion classes. The CUserIdentity class takes two arguments to its constructor: a
username and a password. These are then assigned to its attributes.

Note that you’ll never use CUserIdentity directly. You should extend it
to create your own authentication class. The CUserIdentity class has an
authenticate () method which has to be overridden by classes that extend
CUserIdentity. The authenticate () method needs to do whatever steps are
necessary to authenticate the user. It must return a Boolean value, indicating success
of the authentication. Here’s how UserIdentity defines the authenticate ()
method:

protected/components/UserIdentity.php::authenticate ()
Susers=array (

// username => password

'demo'=>"demo"',

237

10

11

12

13

14

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

'admin'=>"'admin',

)

if (!'isset (Susers[Sthis—>username])) {
Sthis—->errorCode=self::ERROR_USERNAME_INVALID;

} else if(Susers[S$this->username] !==S$this->password) {
Sthis—->errorCode=self::ERROR_PASSWORD_INVALID;

} else {
Sthis—->errorCode=self::ERROR_NONE;

}

return !S$this->errorCode;

Before explaining this code, Figure 11.2 demonstrates the logical flow that got the
application this point.

==} Submission
—
]

Login Controller Login Login Form CUserldentity
Form Form Model ::authenticate()
Model authenticate()
validate()
Figure 11.2: How the Yii app gets to the

UserIdentity::authenticate () method

As already mentioned, the default code authenticates users against hard-coded
values. If you do nothing at all after creating a site, users will be allowed to log into
the site with the username/password combinations of demo/demo or admin/admin.
You can see those values in the above code.

After defining those values, the code checks if the current instance’s username
property does not exist in the internal $users array. Given the hard-coded values,
an alternative would be to simply confirm that $this->username equals either
“demo” or “admin”.

If the username isn’t a proper value, then the UserIdentity class’s errorCode

property is assigned the value of the constant UserIdentity: : ERROR_USERNAME_INVALID.
This constant is defined in CBaseUserIdentity, and is inherited down to
UserIdentity. This table lists the available constants and their values.

Constant Value

ERROR_NONE 0
ERROR_USERNAME_INVALID 1
ERROR_PASSWORD_INVALID 2

238

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

ERROR_UNKNOWN_IDENTITY 100

If that first conditional is false-the username does exist in the Susers array,
then the next conditional is evaluated: S$Susers[Sthis—->username] !==
$this->password. In other words, does the submitted password not match
the assigned password for this user. If the passwords do not match, then the
UserIdentity class’s errorCode property is assigned the value of the constant
UserIdentity::ERROR_PASSWORD_INVALID.

Finally, if neither of those conditions is true, then the username must exist in
the array and the password for that username must be correct. In that case, the
UserIdentity class’s errorCode property is assigned the value of the constant
UserIdentity::ERROR_NONE.

{NOTE/} The logic of the authenticate () method is a little less clear
because both conditionals test for negative conditions: the username not
existing and the password not being correct.

The last thing the method does is return a Boolean indicating whether or not there
was an error:

return !$this->errorCode;

If no error occurred, that statement returns true: the user was authenticated. If there
was an error, that statement returns false: the user was not authenticated.

As a reminder, the returned value is used by the authenticate () method of the
LoginForm model:

if(!$this->_identity->authenticate())
Sthis->addError ('password',
'Incorrect username or password.');

Thus, if the login form values don’t authenticate in UserIdentity, a new error is
added to the login form model instance. (And that error can be used on the login
form view page.)

All of this code completes the validate () process of the LoginForm model. Next,
return to the “site” controller, which subsequently invokes the model’s 1ogin ()
method:

protected/controllers/SiteController.php::actionLogin ()
if ($model->validate () && Smodel->login())

239

10

11

12

13

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

The 1ogin () method of the model is responsible for registering the UserIdentity
object to the “user” component. This allows the entire site to track and recognize an
authenticated user. The code generated for you is:

protected/models/LoginForm.php::login ()

if (Sthis—>_identity===null) {
Sthis->_identity=new UserIdentity ($Sthis->username,

$this—>password) ;

Sthis—>_identity->authenticate () ;

}

if (Sthis—>_identity->errorCode===UserIdentity::ERROR_NONE) {
Sduration=$this->rememberMe ? 3600x24x30 : 0; // 30 days

Yii::app () —->user->login ($this->_identity, Sduration);
return true;
} else {

return false;

This code first checks that an authenticated UserIdentity object exists (line 2).
This is just a precaution, as you wouldn’t want to login a non-authenticated use. If

no such object exists, a new UserIdentity objectis created and validated (lines
3-5).

The next conditional further checks that there’s no error code (line 6). If no error code
is present, then the UserIdentity object will be registered with the application
by providing it to the CWebUser: : 1login () method (line 8). That method needs
to be provided with a TUserIdentity object. (I'll get to the $duration shortly.)

Finally, the function returns true or false. This returns the logic flow back to the
controller:

protected/controllers/SiteController.php::actionLogin ()
if ($model->validate () && Smodel->login())
Sthis->redirect (Yii::app () —>user—->returnUrl);

The user is redirected if she was able to be logged in. If not, the form will be
displayed again.

Whew! This probably seems like a lot of code and logic. And, well, it kind of is. But
by separating all the pieces of the authentication process, it’s an extremely flexible
process. Here’s what you have to work with:

A model (LoginForm)

A view (views/site/login.php)

A controller (SiteController)
Validation (through the model)

240

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

¢ Error reporting (through the view)

¢ Authentication (through UserIdentity)

* Registration of the authenticated user with the application (through
Yii::app()->user—>login)

Because these are separate components, you can make changes to one without
having to even look at the others. You want to authenticate based upon an email
address instead of a username? No problem. You want to authenticate against a
database? No problem. You want to change what errors are displayed? No problem.

Hopefully you were able to follow this logic, because you'll need to understand the
role each part plays in order to customize the authentication process for your own
sites. You'll learn how to do that after first learning a couple more things about the
“user” component in Yii.

Allowing for Extended Login

By default, Yii will use sessions to store the user identity. As with any use of sessions,
this means that after a relatively short period of inactivity, the user will need to login
again. If you’d like users to be recognized by your system for a longer duration,
including after closing the browser and later returning, you can tell Yii to use cookies
instead of sessions for storing the user identity.

{TIP} As a session’s true expiration is partly based upon PHP’s garbage
collection mechanism, how quickly a session actually expires (once it
becomes inactive) depends upon several factors, including how busy
your site is.

The first thing you'll need to do is set the allowAutoLogin “user” component
property to true in your configuration file:

protected/config/main.php
// Lots of other stuff.
'components'=>array (
'user'=>array (
'allowAutoLogin'=>true,

),
// More stuff

The default value for this property is false, but the code created by yiic configures
it to true (i.e., that code is already in the generated configuration file).

That allows for cookies to be used. The next thing you need to do is tell Yii to
actually use cookies for the user identity. To do that, provide a duration argument

241

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

to the Login () method of the CWebUser class (aka, the “user” component of the
application). This value should be a number in seconds.

The code generated for you will already do this if the “remember me” checkbox is
checked:

protected/models/LoginForm.php::login ()
Sduration=$this->rememberMe ? 3600x24x30 : 0; // 30 days
Yii::app()->user->login($this->_identity, $duration);

By default, the cookie will last whatever duration you specified from the time the
cookie is first sent. If the cookie is set to last for 30 days, that’s 30 days from the
original login, not from the point of last activity. If you'd like to change it so that
the cookie is resent when the user is active, set the aut oRenewCookie property to
true:

protected/config/main.php
// Lots of other stuff.
'components'=>array (
'user'=>array (
'allowAutoLogin'=>true,
'autoRenewCookie'=>true,
),
// More stuff

With that configuration, the cookie will automatically be resent with each user
request, thereby continuing to push back the cookie’s expiration. Yii will continue to
use the original duration period for each cookie’s expiration value. For that reason,
you’d likely want to reduce the duration to a shorter period, such as a few days.

{WARNING/ The autoRenewCookie feature can adversely affect per-
formance.

If you want to otherwise customize the cookie, configure the identityCookie
property of the CiiebUser object, providing new values using the CHttpCookie
properties (explained in Chapter 10, “Maintaining State”):

protected/config/main.php
// Lots of other stuff.
'components'=>array (
'user'=>array (
'allowAutoLogin'=>true,
'identityCookie' => array(
'domain' => 'store.example.org',

242

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

'secure' => true

),
// More stuff

I've just explained how you would use cookies instead of sessions to store the user’s
identity, but a secondary issue is should you?. Remember that cookies are less secure
than sessions, as they are transmitted back and forth between the client and the
server. As always, you must match the level of security to the site.

I would generally recommend that you use only sessions and disable
allowAutoLogin, unless security is less of a concern for the site in ques-
tion and it would be an unreasonable inconvenience to expect the user to frequently
login. Good examples that meet both of these criteria are social media sites such as
Facebook. Later in the chapter, though, you’ll see how to store other information
as part of the user’s identity, and you must be careful about doing so when
allowAutoLogin is enabled (I'll remind you about the security issues then, too,
just for safe measure).

{TIP} If you're not allowing auto login (i.e., cookies storage for the user
identity), then be certain to remove all references to the “remember me”
checkbox from your model and view files.

If you are restricting the site to sessions for the user identity, you can make the
system even more secure by restricting the authentication time period to an even
smaller duration than the default session duration. To do that, set the authTimeout
property to a time period, in seconds:

protected/config/main.php
// Lots of other stuff.
'components'=>array (
'user'=>array (
// Next line not needed, as it's the default:
'allowAutoLogin'=>false,
'authTimeout' => (60%15) // 15 minutes
)
// More stuff

Logging Out
Finally, you also ought to know how to log out a user. That’s accomplished by

invoking the logout () method of the “user” component (the CWwebUser class).
This code comes from the “site” controller:

243

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

public function actionLogout () {
Yii::app()—->user->logout ();
Sthis->redirect (Yii::app () —>homeUrl) ;

Authentication Options

Now that you have an understanding of authentication in Yii (hopefully), let’s start
tweaking the default authentication system. To start, I'll explain how you’d change
the static authentication. Then I'll explain how you would implement database
authentication.

Using Static Authentication

The first, and by far the easiest, option is to continue using the static authentication
but change the login values. I've worked on a couple of projects built in Yii where
only one user ever needed to login: a single administrator. In the rare situations
where that’s also true for you, then you can open Userldentity.php and change this
code:

Susers=array (
// username => password
'"demo'=>"'demo',
'admin'=>"'admin',

)

to
Susers=array (

'whateverName'=>'"'whateverPassword'

)
At that's it!

{TIP} Don’t forget to remove the hint paragraph from the view, as de-
mo/demo and admin/admin will no longer work.

For security reasons, I prefer administrators to login for each session, though. In
these situations, I would also disable the allowAutoLogin and remove references
to the “remember me” attribute and checkbox.

244

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

Implementing Database Authentication

If you can use static authentication, great, but more frequently, authentication will
be performed against a database table. No matter what the source is for your
authentication, you still need to:

* Create a login form that’s associated with a model
¢ Create a CUserIdentity object that authenticates the user
* Register the CUserIdentity object with the “user” component

The process is the same regardless of the source; the actual implementation is mostly
a matter of what classes you want to use.

For this example, let’s assume there’s a user table, and that the user will login
by providing a combination of an email address and password. The password is
hashed using the PHP crypt () function, as explained in Chapter 9, “Working with
Forms.”

Starting with the login form, there are two approaches you could try: using the
LoginForm class (or your own class like it) or using the actual model associated
with the underlying database table. Let’s walk through both options.

Updating the LoginForm Class

The first way you can authenticate against a database table is to use the LoginForm
class generated by yiic, but tweak it to suit your needs. This approach is pretty
easy. You'd start by changing the attributes in LoginForm to those you require:
email, password, possibly rememberMe (depending upon the site, I'll remove it),
and _identity:

protected/models/LoginForm.php
class LoginForm extends CFormModel ({
public S$email;
public $password;
private $_identity;
// Et cetera

Next, alter the rules accordingly. Instead of username and password being required,
email and password are now required. Also, the email should be in a valid email
address format. The application of the authenticate () method to validate the
password remains:

protected/models/LoginForm.php
public function rules() {

245

1

2

3

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

return array (
array ('email, password', 'required'),
array ('email', 'email'),
array ('password', 'authenticate'),

)

Next, if you want, update the attributeLabels () method for the email address
and remove the label for rememberMe:

protected/models/LoginForm.php
public function attributelabels () {
return array('email'=>'Email Address');

The next changes to the LoginForm model are in the authenticate () method.
Two references to “username” must be changed to “email”. For example, this:

Sthis->_identity=new UserIdentity ($Sthis->username,
$this—>password) ;

becomes:

Sthis->_identity=new UserIdentity ($Sthis->email,
$this—>password) ;

The same change has to be made in the 1ogin () method.

The final edits to the LoginForm class are to remove references to rememberMe
and Sdurationin the login () method. Here's that subsection:

if ($Sthis—>_identity->errorCode===UserIdentity::ERROR_NONE) {
Yii::app () —>user->login (Sthis—->_identity);

And that takes care of edits to the LoginForm class.

Next, you need to edit UserIdentity::authenticate (), which is where
the actual authentication against the database takes place. Replace the entire
authenticate () method definition with the following (to be explained
afterward):

protected/components/UserIdentity.php::authenticate ()

// Understand that email === username
Suser = User::model () ->findByAttributes (array (

246

10

11

12

13

14

15

16

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

'email'=>$this—->username)) ;
if (Suser === null) {
// No user found!
Sthis->errorCode=self::ERROR_USERNAME_INVALID;
} else if (Suser—->pass !==
hash_hmac ('sha256', S$this->password,
Yii::app()—>params|['encryptionKey'])) {
// Invalid password!
Sthis—->errorCode=self::ERROR_PASSWORD_INVALID;
} else { // Okay!
Sthis—->errorCode=self: :ERROR_NONE;
}

return !S$Sthis->errorCode;

The third line tries to retrieve a record from the database using the provided
email address. You may be wondering why I refer to $this->username here.
That’s because the CUserIdentity class’s constructor takes the provided email
address and password (from LoginForm) and stores them in $this->username
and $this->password. For that reason, I need to equate “username” with “email”
here, which is better than editing the framework itself. You ought to leave a com-
ment about this so that you won’t be confused later when looking at the code.

Next the authenticate () method checks a series of possibilities and assigns
constant values to the errorCode variable, just like the original version did. In the
tirst conditional, if Suser has no value, then no records were found, meaning that
the email address was incorrect. In the second conditional, the stored password is
compared against the computeHMAC () version of the submitted password. This
assumes that Yii has been configured to use this method (see Chapter 9, “Working
with Forms”) and that the same hashing configuration was used to register the user.

If neither of those two conditionals are true-$user is not NULL and the passwords
match, then everything is okay.

Finally, the method returns a Boolean indicating whether or not an error exists. And
that’s it for changing the UserIdentity class.

The last remaining change is to the form itself. First, the hint paragraph needs to be
removed, as demo/demo and admin/admin will no longer work. Then the code
that displays the “remember me” checkbox should also be excised. Remember me
functionality is only good for cookies, so it’s useless here. Finally, the form should
take an email address, not a username, so those two lines must be changed. The
complete form code is now (Figure 11.3):

<div class="row">
<?php echo $form->labelEx ($model, 'email'); ?>
<?php echo $form->textField ($model, 'email'); 2>
<?php echo $form->error ($model, 'email'); ?>

247

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

</div>

<div class="row">
<?php echo $form->labelEx ($model, 'password'); 2>
<?php echo $form->passwordField ($model, 'password'); ?>
<?php echo $form->error ($model, 'password'); 2>

</div>

<div class="row buttons">
<?php echo CHtml::submitButton ('Login'); ?>
</div>

Login
Please fill out the mllnwing form with Your Ingin credentials:

Fields with ™ are required.

Email Address *

Password ”

Login
Figure 11.3: The updated login form.

And that’s it. You can now perform authentication against a database table.

That being said, if you do have problems with this, start by making sure that all
passwords are hashed during the registration process (i.e., saved in the database)
using the exact same algorithm and other particulars as are being used during the
login process. From there, I would next walk through the authentication process

and confirm what is, or is not, working each step of the way.

Using the Existing Model

An alternative approach to database-driven authentication is to use the User model
directly. The argument for this approach is that it reduces the code redundancy. With
the LoginForm model, you've duplicated two attributes—the email address and

248

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

password-that are already in User. You've also duplicated the logic surrounding
those attributes, such as the validation rules and the attribute labels. If you later
want to make a simple change, such as making the email address label just “Email”,
instead of “Email Address”, you’ll need to remember to make that change in two
places. This isn’t a terrible thing, to be sure, but generally redundancies are to be
avoided in any software.

Tapping into the User model for authentication is not that hard, so long as you
remember your scenarios. Most of the validation rules would apply when a new
user is created (i.e., registers) or when an existing user updates her information, but
those rules would not apply during login. For example, the username would not be
required upon login (if you're using the email address to login) and you wouldn’t
set the user’s type then, either.

To make the model work for all situations, I would add new rules for the “login”
scenario and exempt every other rule from that scenario. Here’s part of that:

protected/models/User.php::rules ()
return array (
// Always required fields:
array ('email, pass', 'required'),
// Only required when registering:

array ('username', 'required', 'on' => 'insert'),
// Password must be authenticated when logging in:
array ('pass', 'authenticate', 'on' => 'login'),

// And so on.

{NOTE} The User model uses pass as its password attribute name,
not password as in LoginForm. You'll need to make sure all the code
consistently uses the right attribute name.

Next, add to the User model the authenticate () and login () methods as
previously explained for LoginForm. You'll also need to define the UserIdentity
class as just explained in the LoginForm example.

Next, create the act ionLogin () method of the UserController class. It needs
to create and use an object of type User instead of LoginForm:

protected/controllers/UserController.php::actionLogin ()
Smodel=new User ('login');
if (isset ($_POST['User']l)) {

Smodel->attributes=$ _POST['User'];

// validate user input and redirect

// to the previous page if valid:

if (Smodel->validate () && Smodel->login())

Sthis->redirect (Yii::app()->user—->returnUrl) ;

249

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

}
// display the login form
Sthis->render ('login',array ('model'=>Smodel)) ;

}

And, finally, create the login form:

<div class="row">
<?php echo $form->labelEx ($model, 'email'); 2>
<?php echo $form->textField ($model, 'email'); 2>
<?php echo $form->error ($model, 'email'); ?>

</div>

<div class="row">

<?php echo $form->labelEx ($model, 'pass'); ?>
<?php echo $form->passwordField ($model, 'pass'); ?>
<?php echo $form->error ($model, 'pass'); ?>

</div>

<div class="row buttons">
<?php echo CHtml::submitButton ('Login'); ?>
</div>

And that should do it!

Having seen the code required to use User for authentication, you can now appre-
ciate the arguments against this approach. First, you'll end up adding two methods
to the class that will only be used during the login process. Second, it makes the
logic with the rules a bit more complicated, which could lead to bugs.

That being said, which approach you use-the LoginForm or the User class—is up
to you.

The Userldentity State

The IUserIdentity interface class, and therefore CUserIdentity and
UserIdentity (in the code created by yiic) has a concept called state. State is
nothing more than stored data specific and unique to the authenticated user.

To start, by default, the user identity will store the user’s name: the value provided
to login. Using the default code, this value is automatically stored as part of the user
when the authenticated user is registered with the “user” component. The value
is therefore available through a reference to the “user” component. Specifically,
Yii::app () —>user->name will return the username value provided upon login.
This allows you to greet the user by name (Figure 11.4):

250

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

<h2>Hello,
<?php # protected/views/someController/someView.php
echo (Yii::app()->user->isGuest) ? ' Guest'
CHtml: :encode (Yii::app () —>user—->name) ;
?>
I</h2>

My Web Application

Hello, text@example.com!

Figure 11.4: Greeting the user by login name.

In a non-Yii site, you would store this information in a session (or possibly a cookie).
You could do that in Yii, too, but since you've already authenticated the user, and
the Yii application needs a reference to the user, it makes sense to store user-specific
in the “user” component.

Before going further, notice that if you change the login process to be based upon the
user’s email address and not a username, then Yii: :app () —>user->name will
return the email address, as in Figure 11.4. This is because that value was associated
with the internal name attribute during the login process (see the pages earlier in
this chapter if this is still not clear).

Along with the name value, the user identity automatically also stores the user’s ID:
a unique identifier. There’s a catch, though: by default, the unique identifier is the
same as the username, and is therefore also returned by references to id. This code
has the same result as the previous bit (and Figure 11.4):

<h2>Hello,

<?php # protected/views/someController/someView.php

echo (Yii::app()->user->isGuest()) ? ' Guest'
CHtml: :encode (Yii::app () —>user—->id);

?>

1</h2>

This probably seems unnecessarily duplicitous, but with the default login scheme,
based upon static values, the username and password are the only two pieces of
information known about the user. Hence, while you need to be familiar with the

251

10

11

12

13

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

user identity state and the role it plays, there are two other things you’ll commonly
want to do:

¢ Store other data as part of the user identity state
¢ Change the state’s reference to the user’s ID

Adding to the State

To save other information in the user identity state, invoke the setState () method
of the CUserIdentity class. Its first argument is a name and its second argument
is a value (again, this is like storing a value in a session, but the storage is directly
tied to the user).

As an example of this, the User model in the CMS example has a type property,
which reflects the kind of user: public, author, or admin. Many pages will want to
access this information to know, for example, if the current user should be allowed
to create a new page of content or edit a specific page. Again, this value could be
stored in a session or cookie, but as it’s particular to the user, it makes sense to store
it in the “user” component. Here’s the updated code in the UserIdentity class:

protected/components/UserIdentity.php::authenticate ()

Suser = User::model () ->findByAttributes (array (
'email'=>$this—->username)) ;

if (Suser === null) {
Sthis—->errorCode=self::ERROR_USERNAME_INVALID;

} else if (Suser->pass !== hash_hmac ('sha256"',
Sthis->password, Yii::app()->params|'encryptionKey'])) {

Sthis—->errorCode=self: :ERROR_PASSWORD_INVALID;
} else {
Sthis->errorCode=self::ERROR_NONE;
Sthis->setState('type', Suser->type);
}

return !S$this->errorCode;

There’s only one new line of code there (line 11), which invokes setState (). With
that in place, once the user has been authenticated, you can access the user’s type
value via Yii::app () —>user—>type.

Storing the User’s ID

Another thing you'll probably want to do in situations like this (authenticating
against the database) is establish a proper reference the user’s ID. In the CMS site,
the user’s ID will be used to associate pages with users, files with users, and so
forth.

252

10

11

12

13

14

15

16

17

18

19

20

21

22

23

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

One solution would be to just store the user ID as part of the identity using
the setState () method. However, that solution could lead to confusion and
bugs as references to Yii::app () ->user->id would still return the user’s
name or email address, not her ID. The better solution is to change what value
Yii::app()->user->id returns. That’s accomplished by overriding the
getId () method of the CUserIdentity class:

protected/components/UserIdentity.php::authenticate ()
class UserlIdentity extends CUserIdentity {
private $_id;

public function authenticate() {

Suser = User::model () ->findByAttributes (array (
'email'=>$this->username)) ;

if (Suser === null) {
Sthis->errorCode=self::ERROR_USERNAME_INVALID;

} else if (Suser->pass !== hash_hmac ('sha256"',
$this—>password,
Yii::app()—->params|['encryptionKey'])) {

Sthis->errorCode=self::ERROR_PASSWORD_INVALID;
} else { // Okay!
Sthis—->errorCode=self: :ERROR_NONE;
Sthis->setState('type', Suser->type);
Sthis->_id = Suser—->id;
}
return !S$this—->errorCode;
}
public function getId() {
return $this->_1id;

To start, a new private attribute is added to the class for storing the ID value (line 3).
Then, in the else clause for successful authentication, the user’s actual ID value is
assigned to the class $_id attribute (line 16).

Finally, the getId () method is overwritten, now returning the class’s $_id at-
tribute instead of the user’s name or email address.

Where State Is Stored

The last thing you need to know about the user identity state is where the state
information is stored. The answer is simple: it depends!

If cookie-based login is enabled (by setting CWebUser: :allowAutoLogin to be
true), the user identity information may also be saved in cookie. In such cases, you
would never want to store the user’s ID (i.e., primary key value).

253

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

{WARNING/ Never store primary key values (from the database) in
cookies!

If cookie-based login is disabled, then the user identity information will be stored
in the session, by default, in which case it is safe to store the user ID and other
important information as part of the user state.

Authorization

Now that you (hopefully) have a firm grasp on authentication, it’s time to turn to its
sibling, authorization. As a reminder, authentication is a matter of verifying who the
user is; authorization is a matter of confirming if the user has permission to perform
a certain task.

One method of authorization was introduced in Chapter 7. There, you learned about
“access rules” in controllers for basic access control. With the additional knowledge
of user identity states, you can now learn one more way to define an access rule:
using an expression. It’s also time to discuss a more sophisticated approach to
authorization: Role-Based Access Control (RBAC). And, I'll explain a couple of
techniques for enforcing authorization and redirecting the user.

Revisiting Access Control

The access control options discussed in Chapter 7 include dictating access based
upon the user’s:

¢ Guest or non-guest status
¢ Specific username (i.e., that used to login)
e [P address

A fourth way to dictate access is to use an expression. An expression is simply PHP
code that, when executed, returns a Boolean value. If the code returns true, the
rule would apply. As a reminder, this is used in the accessRules () method of a
controller:

protected/controllers/SomeController.php::accessRules ()

array (
'allow',
'actions' => array('index'),
'users' => array('Q"),
'expression' => 'PHP code to be evaluated'

254

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

Two quick things to know about using expressions. First, you still need to use the
“users” index in the array to dictate for what user types the expression should be
evaluated. Second, you'll probably want to restrict the rule to logged-in users (most
likely).

Using the information presented in just this chapter, there’s already a good example
of when you might want to use this. In the CMS example, only author and admin
users should be able to create or update pages of content. Assuming that the user’s
type has already been stored in the user identity state, that value can be used to
fine-tune the access rules:

protected/controllers/PageController.php::accessRules ()
array ('allow',
'actions'=>array ('create', 'update'),
'users'=>array ('Q"),
'expression'=>'isset (Suser->type) &&
((Suser—->type==="author") ||
(Suser->type==="admin"))"'

) s

With that rule, users that aren’t logged in, or users that are logged in but are the
public type, won’t be able to execute the “create” or “update” actions.

As another example, you could use a similar rule to restrict deleting of pages to only
administrator types.

Role-Based Access Control

When access rules are too simple, you can move on to the more custom and elaborate
way to implement authorization in Yii: using Role-Based Access Control (RBAC).
With RBAC, the goal is to identify who is allowed to do what, but RBAC uses a
hierarchy which often better correlates to a site’s users. For example, in a CMS site,
an administrator has more power than an author who has more power than a public
user. Of course, with this hierarchy comes more complexity.

The fundamental unit in RBAC is the authorization item, which is a permission to do
something. Authorization items can be:

¢ Operations
e Tasks
¢ Roles

The hierarchy begins at the bottom with operations. An operation is a single atomic
permission: edit a page, delete a user, post a comment, etc.

The next level of the hierarchy are tasks. Tasks commonly serve one of two purposes:

255

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

¢ As a modified permission (i.e., Can this user edit this page?)
* As a group of permissions (e.g., the managing files task might entail these
operations: add a file, delete a file, edit a file, view a file)

At the top of the hierarchy are the roles. This is the final arbiter of who can do what.
In the CMS example, perhaps an administrator can perform all the operations in all
the tasks, but an author would not have authority to perform any of the user tasks,
save those granted to the most basic user.

The hierarchies are very fluid in Yii’s implementation of RBAC. For example, you
can assign an operation directly to a role. Tasks can be parents of not just operations
but also other tasks. One role can be subservient to another role.

To implement RBAC in your site, you should first start by sketching out the various
roles, tasks, and operations involved. The end goal is to design your hierarchy as
efficiently as possible. Understand that you only need to represent authorization
items that are restricted. In the CMS example, any type of user, including non-
authenticated guests, can view a page of content, so that does not need to be
represented in the hierarchy.

Figure 11.5 shows a subsection of authorization items for the CMS example. Under-
stand that there’s no one right answer here. Any two people could create slightly
different hierarchies for the same site (in much the same way that two developers
might come up with slightly different database schemes, both of which would work
fine).

Administrator

Create Page Update Page Update User Create Comment Delete User

Figure 11.5: Some authorization items for the CMS example.

Once you've sketched out your items and hierarchy, you can begin defining the
authorization items in Yii.

{TIP} A third way of enforcing authorization in Yii is to use proper Access
Control Lists (ACL), a more formal and thorough implementation of
Yii’s built-in access lists. There’s an ACL extension for this purpose.

256

http://www.yiiframework.com/extension/acl/

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

Establishing the Authorization Manager

RBAC requires the use of an authorization manager to function. The authorization
manager is first used to define authorization items, and later performs the act of
confirming the user’s ability to perform a specific task.

Yii provides two classes of auth managers for you:

® CPhpAuthManager, which uses a PHP script
e CDbAuthManager, which uses the database

Normally you'll use the database, which is what I'll focus on here.

You tell your application which authorization manager to use by configuring the
“authManager” application component:

protected/config/main.php
// Other stuff.
'components'=>array (
// Other stuff.
'authManager'=>array (
'class'=>'CDbAuthManager',
'connectionID'=>"'db',
),
) 4
// Other stuff.

As you can see in that code, when using the CDbAuthManager you have to also
provide a connection identifier. In this case, that’s the “db” application component.
Yii can create the database tables for you but it’s better if you do so yourself, using
the SQL commands found in the framework’s web/auth/schema-.sgl* file.

When using CPhpAuthManager, you don’t need to identify the database connec-
tion. Instead, you'd set the authFile property to the name of the PHP script
that serves the same role. If you don’t customize this property, the “authManager”
component will use the file protected/data/auth.php by default.

Note that no matter what PHP script you use for the authorization manager, the
script must be readable and writable by the Web server. That’s because the authoriza-
tion manager first acts as a storage mechanism for the authorization items. Also note
that you normally shouldn’t use the PHP script option (i.e., CPhpAuthManager).
Using it for a complex set of rules will not be efficient, as reading from large text
tiles is never as efficient as using an indexed database.

With the configuration in place, you can begin telling your Yii application what
operations, tasks, and roles should exist, in that order.

257

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

Defining Operations
To define an operation, you should first get a reference to the authorization manager:

Sauth = Yii::app()->authManager;

A question you may have is: where do I put that code? You only need to establish
the authentication items once for a site, so my recommendation would be to create a
specific controller and/or action that performs the authorization initialization. For
example, you might create an act ionSetup () method in the “site” controller that
only administrators can execute. The administrator would then execute that action
once, before the site is live. In fact, you may just create the authorization items once
while developing the site, and then recreate them on the live site when you replicate
the database.

{NOTE} A console script is a great choice for performing a site’s setup.
I'll discuss those in Chapter 18, “Leaving the Browser”.

Next, invoke the createOperation () method to create each operation. Its first
argument should be a unique name. Its second argument is an optional description.
Here are a few operations based on Figure 11.5:

protected/controllers/SiteController.php::actionSetup ()
Sauth = Yii::app()->authManager;

Sauth->createOperation ('createPage');
Sauth->createOperation ('updatePage') ;
Sauth->createOperation ('updateUser');
Sauth->createOperation ('createComment') ;
Sauth->createOperation ('deleteUser');

= e e e

Those five operations define a decent range of the kinds of things required by the
CMS site. With the operations defined, you'd next define the tasks.

Defining Tasks

Tasks are created via the createTask () method. Its first argument is a unique
identifier and its second is an optional description. As a simple starting example
(not represented in Figure 11.5), you might create a task that represents the creation
of any site content (pages and files). Those two operations can go under one task:

protected/controllers/SiteController.php::actionSetup ()

Sauth = Yii::app()->authManager;
Sauth->createOperation ('createPage');

258

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

Sauth->createOperation ('createFile');
Stask = $Sauth->createTask ('createContent',
'Allows users to create content on the site');

You would then associate the specific operations with that task, using the
addChild () method, providing it with the name of the operation:

protected/controllers/SiteController.php::actionSetup ()
Sauth = Yii::app()->authManager;
Sauth->createOperation ('createPage');
Sauth->createOperation ('createFile');
Stask = $Sauth->createTask ('createContent',

'Allows users to create content on the site');
Stask->addChild ('createPage');
Stask—->addChild ('createFile');

{TIP} Operations can be assigned directly to roles (as in Figure 11.5), so
tasks aren’t always necessary, depending upon your structure.

Some tasks require a bit of business logic. For example, a user should be able to
update her own record (e.g., change her password) or an author should be able to
update a page he created. To add business logic to a task, provide a third argument
to the createTask () method. This should be a string of PHP code whose returned
Boolean value allows or denies the action:

protected/controllers/SiteController.php::actionSetup ()
Sauth = Yii::app()->authManager;
// Create operations.

Stask = $Sauth->createTask ('updateOwnUser',
'Allows a user to update her record',
'return Sparams["id"] == Yii::app()->user->id;"');

Stask->addChild ('updateUser');

{TIP} Remember that references to Yii: :app () ~>user—>id will only
return the user’s primary key value if you've overwritten the getId ()
method in UserIdentity.

Perhaps that additional bit of code has left you confused. If so, that’s understandable,
and I'll go through it slowly. The business rule needs to return a Boolean. In this
particular case, true should be returned if the current user’s ID, represented by
Yii::app () ->user->id matches the id value of the user record being edited.
Hopefully that side of the comparison makes sense. But where did $params ["id"]
come from?

259

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

The $params array will be populated (or, to be precise, can be populated) when the
authorization is actually tested. In other words, when a user goes to update a user
record, the auth manager will be used to confirm that the action is allowed. In doing
so, the auth manager will be provided with the ID value of the user record being
updated, which then gets assigned to $params["id"]. You'll see this in action
shortly.

Here, though, is the most important tip I can give you regarding business rules,
one that’s not emphasized enough elsewhere: make sure your rule ends with a
semicolon! If it does not, the business rule will not work as you expect it to.

{WARNING} End your business rules with semicolons or bugs will occur
in your RBAC!

Defining Roles

Finally, you should create roles and add tasks or operations to those roles:

protected/controllers/SiteController.php::actionSetup ()
Sauth = Yii::app()->authManager;

// Create operations.

// Create tasks.

Srole = Sauth->createRole ('public');

Srole->addChild ('updateOwnUser"') ;
Srole—->addChild('createComment') ;

// And so on.

That code assigns one task to the public user and one operation to the public
user. Also remember that in the CMS example, “public” is the lowest level of
authenticated user, different from an un-authenticated guest. Certain permissions,
such as the viewing of a page, the creation of a user record (for registering), or the
reading of a user record (for logging in) won’t be restricted at all.

To make the most of the hierarchical structure, you would add not only tasks to
some roles but also roles to other roles. An author is just a basic (i.e., public) user
with the added ability of creating pages and files and editing pages and files she
created. An administrator is an author user with the added abilities of:

¢ Editing any page, file, or comment
¢ Deleting any page, file, or comment
¢ Editing any user

* Deleting any user

Here’s how that might play out:

260

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

protected/controllers/SiteController.php::actionSetup ()
Sauth = Yii::app () ->authManager;

// Create operations.

// Create tasks.

Srole = $Sauth->createRole ('public');
Srole->addChild ('updateOwnUser"') ;
Srole->addChild ('createComment') ;

// And so on.

Srole = $Sauth->createRole ('author');
Srole->addChild ('public');
Srole->addChild ('updateOwnPage') ;
Srole->addChild ('updateOwnFile') ;

// And so on.

Srole = $auth->createRole ('admin');
Srole->addChild ('author');
Srole->addChild ('updatePage') ;
Srole->addChild ('updateFile');
Srole->addChild ('updateComment ') ;

Note that in the code I'm making reference to operations not in Figure 11.5 or
previously discussed, just to give the code more bulk. You'll also notice that in
my design, the “update page” operation is linked to the administrator twice: once
directly and once through the “author” user. The “author” user doesn’t actually
have “update page” functionality, only “update own page”, with the extra logic
enforced. An administrator could update her own page, if she created it, but also
needs to be able to update any page.

{TIP} To make this example a bit simpler, I did not create a “content”
management task that is the parent of pages and files, although you
certainly could.

Again, taking advantage of the hierarchical structure of users and permissions
makes building up complex authorization structures much, much easier. The last
step in the definition process is to assign roles to specific site users.

{TIP} If all this seems a bit complicated, there are Yii extensions that can
simplify the process for you.

Assigning Roles to Users
Finally, you need to associate authenticated users with authorization roles. This is
done via the assign () method. Its first argument is the role being assigned and

the second is an identifier of the user to which the role is assigned. If you are using

261

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

static logging in (against an array of values, as in the default code), you would do
this:

protected/controllers/SiteController.php::actionSetup ()
Sauth = Yii::app()->authManager;

// Create operations.

// Create tasks.

// Create roles.

Sauth->assign ('public', 'demo');

Sauth->assign('admin', 'admin');

Now the “demo” user has been assigned certain tasks and the “admin” user has
been assigned those tasks and more.

All of the code to this point creates a slew of records in the database or text file,
which will then be used to test authorization. Note that you only have to invoke the
assign () method once (not each time the user logs in), as that creates the record
in the database.

{TIP} If you need to tweak or re-define your authorization items, first
clear the underlying database tables and then rerun your setup action.

In a few pages, I'll explain how to tie the role assignments to database users, but let’s
go with this for the time being, while I demonstrate how to enforce the authorization
items you’'ve declared.

{TIP} Roles can also be assigned using default roles, as explained in the
Guide.

Enforcing Authorization

All of the code to this point establishes the authorization rules (as a text file or a
database). Now you can make use of those rules to allow users to perform tasks.
Understand that RBAC is better for defining what’s allowed, unlike the simpler
access rules that can establish what’s allowed and what’s denied. In RBAC, if an
action is not specifically allowed, then it’s denied by default.

There are two ways to enforce RBAC authorization: using access control roles or
using the “user” component’s checkAccess () method. I normally end up using
a combination of both.

To use RBAC with access control, make sure that access control is enabled as a filter:

262

http://www.yiiframework.com/doc/guide/1.1/en/topics.auth#using-business-rules

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

protected/controllers/PageController.php
public function filters() {
return array (
'accessControl',
'postOnly + delete’,
)i

Then you define your access rules, as you would when using simple access control,
but this time also use the “roles” index, indicating the roles that should be allowed
to execute certain actions:

protected/controllers/PageController.php::accessRules ()
return array (
// Anyone can use "index" and "view":
array('allow',
'actions'=>array('index', 'view'),
'users'=>array ('x"),
),
// Only admin roles can create and update content:
array ('allow',
'actions'=>array ('create', 'update'),
'users'=>array ('Q"),
'roles'=>array('admin')
),
// And so on.
array ('deny', // deny all users
'users'=>array ('x"'),
),
)

You'll notice there’s a combination of basic access and RBAC there. This allows any
guest to view pages, but only administrator (roles) to create an update them. (This
particular example is limited, given only two users, but you'll see a more dynamic
version shortly.)

Sometimes you'll want to check authorization within a specific controller action.
That’s accomplished via the CWebUser class’s checkAccess () method. (As a
reminder, CWebUser is the “user” component.) Provide to this method the name of
the operation to be performed and it will return a Boolean indicating if the current
user has that permission:

protected/controllers/SomeController.php
public actionSomething () {
if (Yii::app()—->user->checkAccess ('doThis"')) {

263

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

// Code for doing this.
} else {
// Throw an exception.

Or, considering that exceptions stop the execution of a function, you could simplify
the above to:

protected/controllers/SomeController.php
public actionSomething () {
if (!Yii::app()->user—->checkAccess ('doThis"')) {
throw new CHttpException (403, 'You are not allowed to do this.');

}
// Code for doing this.

Another use of checkAccess () is to confirm that your RBAC is setup properly.
Just do this in a view file to test all your permissions:

<?php

echo '<p>Create comment: '
Yii::app () —>user—->checkAccess ('createComment"')
'</p>';

// Continue for the other permissions.

?>

The output will be blank for lacking permission, and ones for granting permissions
(Figure 11.6).

Authorization with Database Users

The code to this point, and much that you’ll find elsewhere, associate roles with
static usernames. That'’s fine in those rare situations where you're using static users
(in which case, you may not even need the complexity of RBAC), but most dynamic
sites store users in a database table. How do you associate database users with
RBAC roles?

The goal is to invoke the assign () method once for each user, as that’s what the
RBAC system will need in order to confirm permission.

The first thing you'll need to do is determine what user identifier counts. In other
words: what table column and model attribute differentiates the different roles?
Logically, this would be a property such as user. type in the CMS example. The
goal, then, is to do this:

264

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

Hello, author!

Create comment: 1
Create page: 1
Update page: 1
Delete user:

Update user:

Figure 11.6: Testing the permissions for an author user type.

if (Suser->type === 'admin') {
Sauth->assign ('admin', S$user->id);

} elseif (Suser->type === 'author') {
Sauth->assign ('author', S$user->id);

} elseif (Suser->type === 'public') {
Sauth->assign ('public', S$user->id);

That code associates the user’s ID with a specific RBAC role. As each $user->type
value directly correlates to a role, that code can be condensed to:

Sauth->assign (Suser—->type, Suser—->id);

Second, you need to determine when it would make sense to invoke assign ().
A logical time would be after the user registers. To do that, you could create an
afterSave () method in the model class:

protected/models/User.php
public function afterSave() {
if (!Yii::app()—->authManager—->isAssigned (
Sthis->type, $this->id)) {
Yii::app () —>authManager->assign ($Sthis->type,
Sthis->id) ;
}

return parent::afterSave();

265

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

That code will be called after a model record is saved. This could be after a new
record is created or after it is updated (like when the user changes her password).
Because the second possibility exists, this code first checks that the assignment has
not already taken place. If not, then the assignment is performed.

Checking Parameters

Just a bit ago, I explained how to use the ‘checkAccess() method within a controller
action to confirm the ability to perform a task (as opposed to using an access rule).
The most logical reason you’d check the authorization within an action is when a
user is going to update a record that only that user should be allowed to update
(e.g., the owner of a page can update a page). In those situations, the underlying
business rule needs to know if the current user is the owner of the item in question.
Here’s the example of that from earlier:

protected/controllers/SiteController.php::actionSetup ()
Sauth = Yii::app()->authManager;
// Create operations.

Stask = Sauth->createTask ('updateOwnUser',
'Allows a user to update her record',
'return S$params["id"] == Yii::app()->user->id");

Stask->addChild ('updateUser');

Now you just need to know how to pass $params to the authorization item. To do
that, provide a second argument to the checkAccess () method. The argument
should be an array. Here’s how that plays out in the “user” example:

protected/controllers/UserController.php
public actionUpdate () {
Smodel=$this—->1loadModel ($id) ;
if (!Yii::app()—->user—->checkAccess ('updateUser',
array ('id' => $id))) {
throw new CHttpException (403, 'You are not allowed to do this.');
}
// Code for doing this.

That code passes the model’s id property (i.e., the primary key) to the authorization
item, giving it the index “id”. When values are passed to an authorization item,
it receives them in a parameter named $params. Thus, $params [’ id’] will be
assigned the value of $model->1id and the comparison can be made.

Alternatively, $params [’ userId’] will automatically be added to the passed
parameters, representing the value Yii: :app () —>user->id. So you could define

266

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

the task’s business logic to use it, if you’d prefer. Remember that this value rep-
resents the user’s name, unless you overwrite the get Id () method as previously
explained.

Notice that the specific operation being checked is just “updateUser”, not “upda-
teOwnUser”. This goes back to the hierarchy and how authorization is checked
from the bottom up (see Figure 11.5). The functionality that’s needed is the ability to
update a user record. If an administrator goes to update the user, the hierarchy im-
mediately shows that administrators have this ability, regardless of the user record
in question (and authorization is allowed). If a non-administrator goes to update a
record, the administrator path is blocked. The next path goes through “update own
user”, so it’s checked. If this is not the user’s own record, then all paths have been
blocked and permission is denied. If this is the user’s own record, and the user is a
public type or an author, then permission is allowed.

As another example, in which a foreign key value is checked, here’s the code for
only allowing an author of a page to edit that page:

protected/controllers/SiteController.php::actionSetup ()
Sauth = Yii::app()->authManager;
// Create operations.
Stask = Sauth->createTask ('updateOwnPage',

'Allows a user to update pages she created',

'return S$params["ownerId"] == S$params["userId"]');
Stask->addChild ('oUpdatePage') ;

In that code I've switched to using $params [’ userId’], which is equivalent to
Yii::app()->user—->id.

And:

protected/controllers/PageController.php
public actionUpdate () {
Smodel=$this—->1loadModel ($id) ;
if (!Yii::app()—->user—->checkAccess ('updatePage',
array ('ownerId' => Smodel->user_id))) {
throw new CHttpException (403, 'You are not allowed to do this.');
}
// Code for doing this.

The user_id value from the Page model record, which identifies the author of the
page, gets passed to the task for comparison to the current user’s ID. If they are
the same, the action is allowed. (The action will also be allowed to administrators,
thanks to the direct assignment of the “update page” operation to the administrator

type.)

267

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

Handling Redirections

Switching gears a bit, Chapter 7 also mentioned what happens when Yii denies
access to an action. If the user is not logged in and the access logic requires that
she be logged in, the user will be redirected to the login page by default. After
successfully logging in, the user will be redirected back to the page she had been
trying to request. If the user is logged in but does not have permission to perform
the task, an HTTP exception is thrown using the error code 403, which matches the
“forbidden” HTTP status code value.

Looking at the other side of this equation, there are times when you’ll want to
redirect the user upon a successful login. For example, if the user goes to a page and
is denied (because the user was not logged in), it'd be nice if the site returned the
user to the original intended destination upon successful login.

You can find out the URL of the user’s previous request via Yii: :app () ~>user->returnUrl.
You can redirect the browser using the redirect () method of the controller.

Putting these two ideas together, the actionLogin () method of the “site”

controller has an example of redirecting to the previously requested page:

if (Smodel->validate () && Smodel->login())
Sthis->redirect (Yii::app()->user—->returnUrl) ;

Working with Flash Messages

The last subject for this chapter is flash messages. Flash messages provide functionality
that’s commonly needed by Web sites: an easy way to create and display errors or
messages. Flash messages aren’t the same kind of storage mechanism as cookies,
sessions, or user state, however:

¢ They are only available in the current request and the next request
¢ They are automatically cleared once used or a third request is made

Flash messages are most often used to convey the success or error of a recent user
action.

You create a flash message by calling the setFlash () method of the CWebUser
object, available in Yii: :app () —>user. This method should be provided with
two arguments: an identifier and a value. This is normally done in a controller:

protected/controllers/SomeController.php

public function actionSomething () {
if (true) {
Yii::app()—->user—->setFlash ('success',

268

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

'The thing you just did worked.');
} else {
Yii::app () —>user—->setFlash('error',
'The thing you just did DID NOT work.');
}

Sthis->render ('something') ;

{TIP} By default, flash messages are temporarily stored in the session.

As you'll see, the identifiers are just used to indicate whether a given type of flash
message exists. It’s the specific message that gets relayed to the user. Common
identifiers are simple labels like “success” and “error”, but the identifiers can be
anything. One recommendation would be to align your flash message labels with
your CSS classes, for reasons you'll soon see. As for the message itself, it must be a
simple, scalar data type, such as a string.

{TIP} Flash messages are often used when redirection is also involved, as
they provide a way to pass a message to be displayed on another page.

To use a flash message, invoke the hasFlash () method to see if a given flash
message exists. Then use getFlash () to retrieve the actual message. This is most
logically done in a view file:

<?php if (Yii::app()->user—->hasFlash('success')) :?>
<div class="info">
<?php echo Yii::app()->user->getFlash('success'); ?>
</div>

<?php endif; ?>

Once the getFlash () method has been called to retrieve a flash message, it will be
removed from user identity (i.e., you can’t get a flash message twice without taking
extra steps).

If you wanted to clear a flash message without using it, invoke setFlash (),
providing the same identifier but no value:

// Whatever code.
Yii::app () —>user—->setFlash('success', null);

If it’s possible that there would be more than one flash message, you can use
getFlashes () toreturn them all and loop through them:

269

CHAPTER 11. USER AUTHENTICATION AND AUTHORIZATION

foreach (Yii::app()-—->user->getFlashes () as
Skey => Smessage) {
echo '<div class="alert-' . Skey . '">'
Smessage . '</div>"';

In that particular bit of code, each flash message’s identifier is used as part of
the CSS class that wraps the message, letting you easily create one message with
an “alert-info” class and another with an “alert-success” class (using the Twitter
Bootstrap classnames).

270

Chapter 12

WORKING WITH WIDGETS

Widgets address a common concern with the MVC approach: you shouldn’t put
much programming logic in your view files, and yet, a decent amount of logic is
required to render the proper output, particularly with Web sites. Once you factor
in dynamic client-side behavior driven by JavaScript, the complexity of a view
becomes even more elaborate. If you take as an example a navigable calendar or a
dynamic table of data, you can appreciate how much HTML, JavaScript, and logic
is required by one simple component on a page.

The focus in this chapter is on using widgets in general, and using the widgets
defined within the Yii framework specifically. To start, you'll see how to add a
widget to a view, and how to customize a widget’s behavior. Then I'll walk through
the usage and configuration of the most popular widgets.

Using Widgets

If you're reading this book sequentially, then you will have already seen one use of
a widget. By necessity, Chapter 9, “Working with Forms,” used widgets, as the best
way to create forms associated with models is to use the CAct iveForm widget.

Widgets are, at their root, just an instance of a class. Specifically, the class must
itself be CWidget, or, more commonly, a class that extends that. Yii has dozens of
applicable widget classes defined for you, such as:

® CActiveForm

® CListPage and CLinkPager, which provides for data paging

* CBreadcrumbs, for creating breadcrumbs

® CCaptcha, for creating a CAPTCHA with a form

* CJuiWidget, for implementing jQuery User Interface components
® CMenu, for creating HTML navigation menus

® CTabView, for creating a tab interface

271

CHAPTER 12. WORKING WITH WIDGETS

In this chapter, I'm going to focus on these predefined widget classes. In Part 3 of
the book, you'll see how to create your own widget class.

Once you know what class you'll be using, you can create a widget in one of two
ways. The first is to invoke the widget () method of the controller object. Its first
argument is the name of the widget class to use and its second is for customizing
that class instance (which is to say the widget).

protected/views/thing/page.php

<?php $this->widget ('ClassName',
array (/+ customization x/)); ?>

Most widget classes are defined in Yii’s sy stem package (or a sub-package thereof),
such as CActiveForm (Figure 12.1).

CActiveForm g+ ==

All Packages | Properties | Methods

Package systemn.web.widgets

Inheritance class CActiveForm » CWidget » CBaseController » CComponent
Subclasses CCodeForm

Since 111

Source Code framework/web/widgets/CActiveForm.php

Figure 12.1: The package and inheritance details for CActiveForm.

When a widget class is defined within system, you can just provide the class name
when creating an instance of that widget:

<?php $this->widget ('CCaptcha'); ?>

For classes not within system, you need to provide a complete reference to the
class. All of the other classes you'll use in this chapter are in the zii family of
packages, such as the jQuery Ul accordion class:

<?php $this->widget ('zii.widgets.jui.CJuilAcordion',
array (/+ customization x/)); ?>

The alternative way to instantiate a widget is to use the beginwWidget () method.
This is to be followed by content that gets captured by the widget. And finally you in-
voke endWidget () to complete the widget creation. This is how the CActiveForm
widget is used:

272

CHAPTER 12. WORKING WITH WIDGETS

<?php $form=$this->beginWidget ('CActiveForm',
array (/+ customization #/)); ?>

<p class="note">Fields with *
are required.</p>

<?php echo $form->errorSummary ($model); 2>

<div class="row">
<?php echo $form->labelEx ($model, 'name'); ?>
<?php echo $form->textField ($model, 'name'); ?>
<?php echo $form->error ($model, 'name'); 2>

</div>

<!-— And so on. ——>

<?php $this->endWidget (); ?>

With that particular case, which is the most frequent use of beginWidget () and
endWidget () that you'll see, those method calls end up creating the opening and
closing FORM tags, with the form being written between them.

There are two challenges to using widgets in Yii:

¢ Knowing what widgets exist
¢ Customizing the widgets to function as you need them to

Over the rest of this chapter, I'll introduce what I think are the most important
widgets. You can find others by searching online, searching the Yii site, asking in
the Yii forums, or by looking in the class docs to see what classes extend CWidget
and its children.

To customize the widgets—to know what to provide as an array to the widget () or
beginWidget () method, you'll want to look at the public, writable attributes of
the associated class. For example, CActiveForm has the following public, writable
attributes (plus a couple more):

® action dictates the form’s “action” attribute

® enableAjaxValidation turns Ajax validation on or off

® enableClientValidation turns client-side validation on or off
® crrorMessageCssClass sets the CSS class used for errors

¢ method dictates the form’s “method” attribute

Knowing this, you can use those attribute names for your configuration array’s
indexes. For the values, if it’s not obvious what an appropriate value or value
type would be, check out the class’s documentation for those attributes. A simple
customization:

273

http://yiiframework.com
http://www.yiiframework.com/forum/
http://www.yiiframework.com/doc/api/

CHAPTER 12. WORKING WITH WIDGETS

<?php $form = $this->beginWidget ('CActiveForm', array (

'enableAjaxValidation' => true,

'enableClientValidation' => true,

'errorMessageCssClass' => 'error'
)) i ?>

<!-- And so on. ——>

<?php $this->endWidget (); ?>

The class docs also indicate the default properties, so you know whether customiza-
tions are even required.

Basic Yii Widgets

To start, let’s work with the non-jQuery Ul widgets that are part of the Yii frame-
work. These are all defined within the system.web.widgets package or the
zii.widgets package. If you created a site using yiic and Gii, you'll already
have several widgets in use:

® CMenu in the main.php layout file

® CBreadcrumbs in the main.php layout file

® CPortlet in the column2.php layout file

® CActiveForm for all the forms

® CCaptcha for implementing CAPTCHA on a form
® CListView on the index.php pages

® CDetailView on the view.php pages

® CGridview on the admin.php pages

I'll write a bit about each of these except for two: CActiveForm was covered in
Chapter 9, and CPortlet really just provides a way to wrap the presentation of
some content. There’s not much to explain about it.

Captcha

First up, let’s take a look at how one implements CAPTCHA: Completely Auto-
mated Public Turning test to tell Computers and Humans Apart (how’s that for an
acronym?). I can actually explain how to use this widget very quickly, as the code
generated by yiic implements CAPTCHA on the contact form already:

protected/views/site/contact.php

<?php if (CCaptcha::checkRequirements()): ?>
<div class="row">

274

CHAPTER 12. WORKING WITH WIDGETS

<?php echo $form->labelEx ($model, 'verifyCode'); ?>

<div>

<?php $this->widget ('CCaptcha'); ?>

<?php echo $form->textField ($model, 'verifyCode'); 2>
</div>

<div class="hint">Please enter the letters as they are
shown in the image above.

Letters are not case-sensitive.</div>
<?php echo $form->error ($model, 'verifyCode'); 2>
</div>
<?php endif; ?>

The CCaptcha class requires the GD extension in order to work. As a safety
measure, you can invoke the checkRequirements () method to confirm that
the minimum requirements are met prior to attempting to use the class. If that
method returns true, then you simply create the widget as you would any other:
Sthis->widget (' CCaptcha’).

The widget itself creates the HTML IMG tag that shows the CAPTCHA image. You
can configure the CAPTCHA presentation a bit by setting the various CCaptcha
class attributes, such as customizing how the user would refresh the CAPTCHA
image (Figure 12.2).

Verification Code

dvvaxz

Get a new code

Figure 12.2: The CAPTCHA widget displays the image and creates the “Get a
new code” link.

As you can see in the form, you also need a text input where the user would enter
what she thinks the CAPTCHA value is.

Turning to the model associated with the form, you need to apply the CAPTCHA
validation rule to the text input. Again, this can be set to allow for an empty value if
the PHP installation does not meet the minimum requirements:

protected/models/ContactForm.php::rules ()

array ('verifyCode', 'captcha',
'allowEmpty'=>!CCaptcha: :checkRequirements ()),

275

CHAPTER 12. WORKING WITH WIDGETS

If the CCaptcha: :checkRequirements () method returns false, meaning that
the GD library is not available, then the “allowEmpty” option will be set to true (the
opposite of false, which the method returns).

Finally, there’s the controller. Unlike most other widgets you'll use, you need to tell
the controller to do something when using CAPTCHA. Specifically, you need to
have the controller create the CAPTCHA image (the widget itself just creates the
IMG tag). Having the controller create the CAPTCHA image is done by adding an
action to the controller:

protected/controllers/SiteController.php

public function actions () {
return array (
'captcha' => array ('class' => 'CCaptchaAction')

)i

The CCaptchaAction class will actually create the image using the GD library.

And that’s all there is to it! If you ever need to use CAPTCHA on one of your forms,
just copy and tweak the code already generated for you by yiic.

CMenu

The CMenu class provides a way to display a hierarchical navigation menu using
nested HTML lists. With the default code created by yiic and Gii, the main.php
page ends up with this code:

<?php $this->widget ('zii.widgets.CMenu',array (
'"items'=>array (
array ('label'=>"'Home', 'url'=>array('/site/index')),
array ('label'=>'About', 'url'=>array('/site/page',

'view'=>"about')),

array ('label'=>"'Contact',
'url'=>array ('/site/contact')),

array ('label'=>'Login', 'url'=>array('/site/login'),
'visible'=>Yii::app()—->user->isGuest),

array ('label'=>'Logout ('.Yii::app()->user—->name."')"',

'url'=>array ('/site/logout'),
'visible'=>!Yii::app () —>user—->isGuest)

That creates four menu items, as the Login/Logout items will only appear if the
user is or is not logged in (Figure 12.3).

276

CHAPTER 12. WORKING WITH WIDGETS

Home [Tontac i
[| T T

Figure 12.3: The default navigation menu.

Configuring the widget is a matter of assigning values to the writable properties
of the CMenu class. There are only a few, such as act iveCssClass for indicating
the name of the CSS class to be applied to the currently active menu item. There are
similar properties for setting the CSS class for the first and last item in the menu (or
submenu).

{TIP} The CMenu widget automatically applies a class to highlight the
active page, as demonstrated in Figure 12.3.

The most important property is items. It’s used to establish the navigation items,
and is declared as an array. Each item is represented by its own array, with any of
the following indexes:

* active

¢ itemOptions

* items

¢ label

¢ linkOptions

¢ submenuOptions
¢ template

e url

¢ visible

The most important of these are “label” and “url”, as shown in the default code.
The label is displayed to the user. The URL value is used for the link. For it, follow
the same rules as for normalizeUrl () (covered in Chapter 7, “Working with
Controllers”), with one exception: if you specify a controller, you must also specify
the action (i.e., you cannot rely upon the default controller action). If you just specify
an action value, the current controller will be used. If you don’t specify a URL, the
result will be an unlinked SPAN. That would be appropriate when working with
submenus.

To create a submenu, provide an “items” subarray to an individual item. In theory.
How well this works will depend upon your CSS, HTML, and such. The fact is that
CMenu is better for simpler presentations of menus. More elaborate menus are best
left to extensions.

Still CMenu is easy to use for basic menus and you should have no problems manip-
ulating the code created by yiic for the main navigation menu. But the generated

277

CHAPTER 12. WORKING WITH WIDGETS

code uses a second instance of CMenu, which may be a little confusing. Code created
by Gii will have lines like this:

protected/views/user/index.php
Sthis->menu=array (
array ('label'=>'Create User', 'url'=>array('create')),
array ('label'=>'Manage User', 'url'=>array('admin')),
)i

What's going on there? It’s actually a simpler concept than you might first imag-
ine. All controllers in the generated code extend the protected/components/Con-
troller.php class. That class creates a menu property. The above code is just assigning
a value to that already declared class attribute.

During the rendering of the view file, this property is used by the column2.php
layout file:

Sthis->widget ('zii.widgets.CMenu', array (
'items'=>$this->menu,
'htmlOptions'=>array ('class'=>'operations'),

));

That code says to use the controller’s menu attribute value for the CMenu class’s
items. In short, this is an easy way to define a needed value in one place (a view
tile) and use it in another (the layout file).

CBreadcrumbs

Another widget created by the yiic command is CBreadcrumbs. It’s used to
create the breadcrumbs effect at the top of the page, which users and search engines
alike both appreciate (Figure 12.4).

| Home —geublyy Contact — Login |

Home = About

Figure 12.4: A rather short trail of breadcrumbs.

The most important property is 1inks, which should be an array. If an array
element has an index and a value, that will be used for the link label and URL. If just
provided with a value, the value will be the label and no link will be created. This
structure allows you to link to items higher up the breadcrumb trail but only show,
not link, the current page. For example, Figure 12.4 shows the (current) “About”
page unlinked, with the “Home” page linked:

278

CHAPTER 12. WORKING WITH WIDGETS

<?php $this->widget ('zii.widgets.CBreadcrumbs', array (
'"links'=>array (
'About’

Note that the home page is always assumed and you never have to specify it. Here’s
another example (Figure 12.5):

Home About Contact Login

Home » Pages » Phasellus dapibus dolor et mauris.

Figure 12.5: The breadcrumb trail to a specific page being viewed.

protected/views/page/view.php (in theory)
<?php $this->widget ('zii.widgets.CBreadcrumbs', array (
'"links'=>array (
'Pages'=>array ('index'),
Smodel->title,

The order the items are listed in the array is the order in which they will be listed
(from left to right) in the breadcrumbs.

If you look at the documentation for the CBreadcrumbs class, you'll find the
attributes that are public and writable, such as separator, for defining the charac-
ter(s) placed between items (Figure 12.6):

Home Ahout Contact Login

Home = Pages = Phasellus dapibus dolor et mauris.

Figure 12.6: The same trail with a different separator.

protected/views/page/view.php (in theory)
<?php $this->widget ('zii.widgets.CBreadcrumbs', array (
'"links'=>array (
'Pages'=>array ('index'),
Smodel->title,
)

279

CHAPTER 12. WORKING WITH WIDGETS

'separator' => "' > !
)) i ?>

The only other thing to know about breadcrumbs is that the default generated code
uses a trick similar to the CMenu trick for defining the breadcrumb items in the view
file but creating the CBreadcrumb widget instance in the layout:

protected/views/page/view.php

Sthis->breadcrumbs=array (
'Pages'=>array ('index'),
Smodel->title,

)i

protected/layouts/main.php

<?php if (isset ($this->breadcrumbs)) :?>
<?php $this->widget ('zii.widgets.CBreadcrumbs', array (

'links'=>$this->breadcrumbs,

)); ?><!—-- breadcrumbs —--—>

<?php endif?>

The value of $this->breadcrumbs provided in the controller will be used for the
array of links in the main layout file. If you want to customize the breadcrumbs
behavior, you’d do that in the main layout file.

Presenting Data

The next group of widgets to be covered are all similar to each other in that they
present data. Some widgets present multiple records at once, offering great features
like sorting, pagination, and filtering, while others present just a single record.
Therefore, before I get into the specifics of each widget, I must first discuss how you
provide data to them. For some of these widgets, you don’t just provide an array of
objects, but rather a specific kind of data type, one that supports features such as
sorting, pagination, and filtering. Let’s look at the data types first.

Data Formats

The data formats you’ll use with some of the Yii widgets are defined as classes
that implement the IDataProvider interface. The base class is CDataProvider,
which is then extended by three child classes. All three class types can be used in
the same way as a data source for a widget. They differ in where they get their data
from:

e CActiveDataProvider, uses an Active Record model

280

CHAPTER 12. WORKING WITH WIDGETS

® CArrayDataProvider, uses an array
® CSglbataProvider, uses an SQL query

Put another way, each of these classes is a wrapper that can take a different data
source and make it universally usable by the various widgets.

You create an object of one of these three types using this syntax:

Sdp = new CClassType (<source>, <configuration>);

The class types have already been mentioned. The sources will be a model name
(for CActiveDataProvider), an array (for CArrayDataProvider), or an SQL
query (for CSglDataProvider). For example, here is how you would create a
data source from all of the User records:

Sdp = new CActiveDataProvider ('User');

That code executes a User: :model () —>fetchAll () query and returns the re-
sults as a CAct iveDataProvider object, usable by a widget.

Here’s how you’d accomplish the same thing using a direct query:

Sdp = new CSqglDataProvider ('SELECT % FROM user');

That code will run the query on the database and return the results as a
CSglDataProvider object, usable by a widget. Understand that this particular
query is more simple than you’d normally use for CSglDataProvider, but it
works just the same.

{NOTE} As using an array as a data source is less common when working
with a database, so I won’t discuss it in this chapter. But you'll see an
example in Chapter 18, “Leaving the Browser,” in which I explain how
to work with Web services.

Configuring the class is more involved, and more interesting. The second argument
to each class’s constructor can be an array of name=>value pairs for assigning values
to the class’s public, writable properties. What properties exist will depend upon
the class, although there are many common ones.

When working with CAct iveDataProvider, animportant propertyiscriteria,
used to configure how the Active Record model fetches the records. These are the
same CDbCriteria options explained in Chapter 8, “Working with Databases”.
For example, say you wanted to retrieve only the “author” type users, in alphabetical
order by username:

281

CHAPTER 12. WORKING WITH WIDGETS

Sdp

))

If you needed to fetch associated data from related models, you’'d just add a “with”

= new CActiveDataProvider ('User', array (
'criteria' => array(
'condition' => 'type="author"',
'order' => 'username ASC'

item to the array. For all the nitty gritty on CDbCriteria, see Chapter 8.

Another common configuration option for the various sources is “pagination”. You
can use it to dictate how pagination is accomplish with the data set. The most
common configuration setting is how many items should be in a page of results. To

set that, assign a value to the pagination’s “pageSize”:

$dp

))

Pagination works the same when using an SQL command, except that you need to

= new CActiveDataProvider ('User', array (
'criteria' => array(
'condition' => 'type="author"',
'order' => 'username ASC'
),
'pagination' => array (

'pageSize' => 10

tell the class how many total records exist in that situation:

$q =
Scou
Sdp

'SELECT COUNT (id) FROM user WHERE type="author"';
nt = Yii::app()->db->createCommand ($q)->queryScalar () ;
= new CSglDataProvider ('SELECT * FROM user
WHERE type="author"',
array (

'totalItemCount' => $count,
'pagination' => array(
'pageSize' => 10

{WARNING}/ If your primary query uses a conditional to limit the results,
the count query must use that same condition or else the number of
pages won’t match the number of records to display.

282

CHAPTER 12. WORKING WITH WIDGETS

Adding sorting to the process is a bit more complicated, too. You should indicate
the columns used for sorting as one configuration item. Then you set the default
sorting order for those columns as true for DESC and false for ASC:

Sg = 'SELECT COUNT (id) FROM user WHERE type="author"';
Scount = Yii::app()->db->createCommand ($q)->queryScalar ();
Sdp = new CSglDataProvider ('SELECT % FROM user
WHERE type="author"',
array (
'totalItemCount' => S$Scount,
'pagination' => array(
'pageSize' => 10
),
'sort' => array(
'attributes' => array('username'),
'defaultOrder' => array('username' => false)

)i

Once you've created a data source, most widgets will take that object as the value
for its “dataProvider” property.

{NOTE/} The data providers assume that “id” is the name of the primary
key in the table. If not, assign the primary key column name to the
“keyField” property.

CListView

Now I'm going to move into a series of widgets that make the presentation of data
much, much easier. The first of these is CListView. The CListView class presents
multiple records of data in a list (as opposed to a table). You can see an example of
it on the index.php page created by Gii (Figure 12.7).

That output is created by the following code:
<?php $this->widget ('zii.widgets.CListView', array(
'dataProvider'=>$dataProvider,

'itemView'=>"'_view',
)i ?>

You'll notice the data provider there, which can be any of the three class types
already explained.

283

CHAPTER 12. WORKING WITH WIDGETS

Users

1D: §
Username: Administraior
Email: adminexample. com

Displaying 1-10 of 16 resulls

Sorthy. Lisername « Email

Password: 2119b59e3c882 36d3efbboBbd Tad 13781 c Tad589cc B4 af20e2elbad 1c B4 6 34 a6

Type: adrman
Date Entered; 2013-02-1T 15:58:2

1D: &
Usernama: Ancthar Admin
Ermail: adrin?@exarmple. net

g
'l

Password: 2119592 3:982 36d3afbbc Bb4ATad 13781 c Tad589cc Bdaf2DaZelbad 1 B4 61 34abs

Type: admin

Date Entered: 2013-02-10 15:59:24

10: 4
Username: Anolher Author
Email: blahi@lexample.ong

Password: 2119603082 36430 /bEc b4 T ad 1378 1 ¢ TadS0c c Bdaf20elelbad 10 D461 34 ald

Type: author

Date Entered: 2013-01-27 15:50:24

The “itemView” index is

Figure 12.7: A list of users.

used to identify the view file that will present each record

being displayed. The above code specifies the individual view file as _view.php (in
the same views subfolder). Here’s a snippet of that code:

<div class="view">

<?php echo CHtml::

?2>:

<?php echo CHtml::
array ('view',

<?php echo CHtml::

?2>:

<?php echo CHtml::

// And so on.

encode ($data->getAttributelabel ('id"));

link (CHtml: :encode ($data->id),
'id'=>$data->id)); ?>

encode ($data->getAttributelabel ('username')) ;

encode ($data->username); ?>

For each item shown, the individual view file is passed a specific item as the $data
array. If the data provider object contains Active Model User objects, then $data
in the file will be a User instance. For that reason, you can reference the model’s
methods and attributes accordingly. To change the presentation of the information
in CListView, either edit the individual view file or use one of your own creation.

284

CHAPTER 12. WORKING WITH WIDGETS

{TIP} Within the individual view file, the $index variable will represent
the index number of the item being displayed, starting at 0.

Pagination of the records will automatically be applied. To enable sorting, set the
“sortableAttributes” property of the CListView class:

protected/views/user/index.php

<?php $this->widget ('zii.widgets.CListView', array(
'dataProvider'=>$dataProvider,
'itemView'=>"'_view',
'sortableAttributes'=>array('username', 'email')

)) i ?>

That will prompt Yii to create sorting links above the list (as in Figure 12.7). Clicking
the links changes the order of the displayed items.

Not only does Yii create, and handle, the pagination and sorting features automati-
cally, but it will do so using JavaScript, if enabled, or HTML, if not. To test this, click
the pagination or sorting links and notice that no browser refreshes are required (if
JavaScript is enabled). Then disable JavaScript in your browser and test it again:
still works!

As you can see in Figure 12.7, the default layout of the entire list view is: summary
(e.g., Displaying x-y of z results), followed by the sorting links, followed by the actual
results, followed by the pagination links. To change the layout, set the template
attribute. Use {summary}, {sorter}, {items}, and {pager} placeholders to
insert those values dynamically:

protected/views/user/index.php
<?php $this->widget ('zii.widgets.CListView', array(
'dataProvider'=>$dataProvider,

'itemView'=>"'_view',

'sortableAttributes'=>array('username', 'email'),
'template' => '{sorter}{items}<hr>{summary} {pager}'
)) i ?>

There are more attributes you can set, too, that will do things like set the text before
and after the sorting links, change the CSS classes used, and so forth. These are all
explained in the Yii class docs.

CDetail View

The CDetailView widget is used to display information about a single record. An
example of its usage is written into the view.php file by Gii (Figure 12.8).

285

http://www.yiiframework.com/doc/api/

CHAPTER 12. WORKING WITH WIDGETS

View Page #1

ID 1
User 3
Live 1

Title Aliguam malesuada, ligula sit amet.

Content Lorem ipsum dolor sit amet, consectet
ad litora torquent per conubia nostra, |
hendrerit odio porta non. Donec eu me
elit rutrum at porta lacus aliquet. Peller
nascetur ridiculus mus.

Figure 12.8: The view display for a single Page record.

Unlike CListView and CGridView, CDetailView expects as its data source
either a single model instance or a single associative array. This is assigned to the
CDhetailView class’s data property.

The second most important property is at t ributes. This is how you dictate which
values in the model or array are displayed:

protected/views/page/view.php:
<?php $this->widget ('zii.widgets.CDetailView', array (
'data'=>$model,
'attributes'=>array (
'id"',
'user_id',
'live',
'title',
'content',
'date_entered’',
'date_published',

{TIP} The order in which the attributes are listed are the order in which
they will be displayed (from top to bottom).

286

CHAPTER 12. WORKING WITH WIDGETS

If you don’t want to display a value, just remove it from that list. If you're using
an Active Record model instance and you want to show an attribute from a related
model, use relationName.attribute. For example, Page is related to User via the
user_id column. The defined relationship (in Page) is:

'pageUser' => array(self::BELONGS_TO, 'User', 'user_id'),

As the detail view should probably show the associated user’s username, not the
user_id, replace user_id in that list with pageUser.username (Figure 12.9).

View Page #1

I 1
Username Sarmne author
Live 1
Itle Alrguarn malasuada, hoda 518 amet
Comtent =p=Lorem ipsum dolor il amel, consectetur adipiscing elit, Nam porta ecius sed ipsum
tinecidunt lacinda. Indeger lacinla semper variug. Class aplend 1acil soclosgu ad lora torguent
par conubila nostra, per incepios himenagos. Mulla loboris nulla e lesegasias &l luchs tellus
tempor. Mulla taucibus pubhings metl s, quis hendred odio pora non. Donec ou metus tincidun
tellus corvallis imcidunt & &¢ guam, Quisgue & maollis lecius, Fusce nec pretiem libearo, L
rhoncus awgue au elit rutrem at porta lacus aliguet Pellendesque moleshe vivarra purus et
acinda Wulla facilisi. Cum saciis nalogue penatibus e r 1agnis dis parturient monbas, nascetur
rifdiediliig Faiie <ine <nxSnd hihendiem laiila e ims snaestas ssemad Miine & rnksehis

Figure 12.9: The same page with the author’s name now displayed.

The general format for specifying how something is displayed is Name:Type:Label,
with the last two being optional. The “type” value dictates how the value is format-
ted, with plain text being the default. Other possible values are:

* “raw” does not change the value

¢ “text” HTML-encodes the value

¢ “ntext” HTML-encodes the value and applies n12br ()
¢ “html” purifies and returns the value as HTML

¢ “date” formats the value as a date

* “time” formats the value as a time

¢ “date time” formats the value as a date and time

* “boolean” displays the value as a Boolean

¢ “number” formats the value as a number

¢ “email” wraps the value in a “mailto” link

¢ “image” creates the proper IMG tag to show the value
¢ “url” formats the value as a hyperlink

These options come from the CFormatter class, which is used to format the pre-
sentation of data. If you use data formatting a lot, you'll want to spend some time
reading its documentation.

By default, all values are shown as encoded text. With the page example, you may
want to make a few changes (Figure 12.10):

287

http://www.yiiframework.com/doc/api/1.1/CFormatter

CHAPTER 12. WORKING WITH WIDGETS

protected/views/page/view.php:
<?php $this->widget ('zii.widgets.CDetailView', array (
'data'=>$model,
'attributes'=>array (
Tdel?,
'pageUser.username',
'live:boolean',
'title',
'content:html',
'date_entered’',
'date_published',
)

)); 2>

View Page #1

i 1
Username Sarne Authior
Lie ‘ez
Title Alquarn malesuada, ligula sit amet

Comdent Lorem ipsum dolor it amed, consecielur adipiscing alit. Mam pona lecius sed ipsurm lincidund
lacinda. Integer lacinia semper varius. Class aplend taciti soclosgu ad kora torguent par
conubia nostra, par inceplos himanaeos. Mulla laboris nulls o |80 egestas at luctus tallus
tmpar. Mulla Taucibueg pubhands mel s, quis hindrem odeo pora non. Daned du metus tincidumn
telus cormsallis tincidund & &t glarm, Quisque & mallis lecius. Fusce nec pretinm libara, Uit
rhoncus awgua au elit rotrum at pora lecus aliguat Pellenesqus misleste vivama puns &t
lacinia. Mulla facilisi. Cum sociis natogua penatibus el magnis dis parturient montes, nascetr

rislieilnie Fraine

Figure 12.10: The same page again, with a better display.

If you don’t specify a label, the model’s attribute label value will be used.

Instead of the “Name:Type:Label” structure for each attribute, you can format each
attribute as an array. This flexibility allows you to further customize the output. The
following code will change the displayed value to be the author’s username, linked
to that author’s view page:

protected/views/page/view.php:
<?php $this->widget ('zii.widgets.CDetailView', array (
'data'=>$model,
'attributes'=>array (
vid',
array (
'label' => 'Author',
'value' => CHtml::1link (CHtml: :encode (
$model->pageUser—->username) ,
array ('user/view', 'id'=>$model->user_id)),
'type' => 'raw'

),

288

CHAPTER 12. WORKING WITH WIDGETS

'live:boolean',

'title',

'content:html',

'date_entered’',

'date_published',
)

)) i ?>

{TIP} When you use a “value” element in the array, “name” will be
ignored.

CDetailView uses a table row to display each item. Naturally, this is also cus-
tomizable. To use, say paragraphs instead of a table, you would set the tagName
property to NULL (or DIV, as a parent), then assign a value to the itemTemplate
property. Use the placeholders {class}, {label}, and {value}:

protected/views/page/view.php:
<?php $this->widget ('zii.widgets.CDetailView', array (
'data'=>$model,

'tagName' => 'div',
'"itemTemplate' => '<p>{label}: {value}</p>"',
'attributes'=>array (

'id',

array (

'label' => 'Author',

'value' => CHtml::1link (CHtml: :encode (
$model->pageUser->username) ,
array ('user/view', 'id'=>$model->user_id)),

'type' => 'raw

) 14

'live:boolean',
'title',
'content:html',
'date_entered’,
'date_published’,

)); 2>

CGridView

The cGridview class is the true workhorse of the bunch. You can see it in action
on the admin.php page (Figure 12.11).

The CGridview presents a series of records in a table and provides the following
functionality:

289

CHAPTER 12. WORKING WITH WIDGETS

Displaying 110 of 16 results

: Dade
U ———— e ™

W o

1 Test led@esamplecom 21/0h0eIc082 EdIemE AT 341 3741 cTad50 cB4 AR 20B0A4] cOAETIEDE public 0101 2

DOO000 o

w3 o

4 Someones mMaEeampleong L1MEhSedci9 30 ehEcEnd T ad 1 ITal cFadS e atila s aBnad) cO4634abs public 01-21 &

113281 o

W o

3 Some Author suth@examplensl HiS00e3c080 350 b b4 T ad1 3741 c7ad500c Bdaile2eBhad] cO4EMI4abE suthor 0302
15:50:24

-

Figure 12.11: The admin grid of users.

¢ Pagination

* Sorting

Links to view, edit, or delete a record
Basic searching by field

Advanced searching

Live search results via Ajax

If you've spent any time creating similar functionality, normally for the administra-
tion of a site, you can appreciate just how much work goes into implementing all
that capability.

And here’s the code that creates the widget:

protected/views/user/admin.php
<?php $this->widget ('zii.widgets.grid.CGridView', array (
'id'=>"'user—-grid’,
'dataProvider'=>$model->search (),
'filter'=>$model,
'columns'=>array (
'id’',
'username',
'email',
'pass’',
'type',
'date_entered’',
array (
'class'=>'CButtonColumn',
),
),

)); ?>

This is a great “bang for your buck” example: just a bit of code delivers tons of
functionality. But, how, exactly does it work?

290

CHAPTER 12. WORKING WITH WIDGETS

{NOTE} The dynamic display and form submission handling of the
advanced search is accomplished via some JavaScript and jQuery, to be
explained in Chapter 14, “JavaScript and jQuery.”

Four CGridview attributes are set in that code: id, dataProvider, filter, and
columns. The id value is only necessary because some JavaScript (for the advanced
search) needs a quick reference to the grid. The dataProvider should be familiar
to you, although its value-$model->search ()-won’t be. The filter attribute
is also a new one. And columns is how you dictate what columns are shown. Let’s
look at each of these properties in detail. But first, let’s look at the controller that
renders this view.

{NOTE} I could easily write an entire chapter on just this widget, consid-
ering all the permutations and configurations people may want to make
to a CGridview widget. As one chapter on just this would be impracti-
cal (and still not exhaustive), I'll cover the absolute fundamentals and
rely upon you to search online for more and more examples as you need
them.

The CGridView Controller and Filter
The code generated by Gii creates the following in the controllers:

protected/controllers/UserController.php
public function actionAdmin () {
Smodel=new User ('search');
Smodel->unsetAttributes () ;
if (isset ($_GET['User']l))
Smodel->attributes=$_GET['User'];
Sthis->render ('admin', array (
'model'=>Smodel,

))

As you can see, smodel, which gets passed to the view, is an instance of the User
class, but more specifically, it’s an instance of the “search” scenario. Scenarios were
explained in Chapter 5, “Working with Models,” but the short explanation is that
you can set different validation rules for different situations. The default rules for
the “search” scenario is to make every attribute safe:

protected/models/User.php::rules ()

array('id, username, email, pass, type,
date_entered', 'safe', 'on'=>'search'),

291

CHAPTER 12. WORKING WITH WIDGETS

Thanks to that line, when code uses Smodel=new User (' search’), all of the
attributes are considered safe without passing any rules. This means that “varmit”
will be accepted as an email address or an ID value! To know why this is correct
requires an understanding of how model rules are used.

Model rules will only allow values to be assigned to model attributes if the values
pass the validation rules. For example, only a syntactically valid email address can
be assigned to the User model’s email attribute. That’s good, right? But the grid
has a search component that will allow the user to look up records by attributes.
A user, when performing a search, may only provide part of an email address for
searching: instead of “test@example.com”, the user might search for just email
addresses that start with “test” or use the “@example.com” domain. If you don’t
make the email attribute safe without passing the email validation rule, the search
functionality will be too limited. On the other hand, if you have model attributes
that would never be used for searching, you should remove those from the rule, just
to be more secure.

Returning to the controller, the next line is $model->unsetAttributes () ;. As
a comment there indicates, this clears out any default values that might be in the
model’s attributes. This way, what the user is searching for won’t be polluted by
default model values.

Next, the model attributes are assigned values from the form, when submitted:

if (isset ($_GET['User']))
Smodel->attributes=$_GET['User'];

This is similar to how the actionCreate () method works, but this time GET is
used instead of POST. You want to use GET here because submissions of the grid
form via Ajax uses the GET method (as does the form itself, in case JavaScript is
disabled).

By this line in the controller, if the user entered “test” in the email input, then
$model->email would have a value of “test” and no other model attribute would
have a value. This model instance will be used by the grid’s filter to limit what
records are shown:

protected/views/user/admin.php
<?php $this->widget ('zii.widgets.grid.CGridView', array (
'id'=>"user—-grid',
'dataProvider'=>$model->search (),
'filter'=>$model,
// And so on.

The CGridview class’s filter attribute is optional, but accepts a model instance
as its value. If no filter attribute value is set, then the filtering boxes above the
grid would not be shown. You can set the filterPosition attribute of the widget

292

CHAPTER 12. WORKING WITH WIDGETS

to “header”, “body”, or “footer” to change where the boxes appear: just above the
column headings, just below the column headings (“body”, the default), or below
the final record.

The CGridView Data Provider

For the dataProvider attribute of the grid widget, the value is Smodel->search ().
In other words, the data for the grid will be returned by the search () method of
the model instance. Here’s what that method looks like:

#fprotected/models/User.php

public function search() {
Scriteria=new CDbCriteria;
Scriteria->compare ('id', Sthis->id, true);
Scriteria—->compare
Scriteria->compare

'username', $Sthis->username, true) ;

'email', Sthis—->email, true);

Scriteria->compare ('pass', $Sthis->pass, true);

Scriteria->compare ('type', $this->type, true);

Scriteria->compare ('date_entered’',
Sthis—->date_entered, true);

return new CActiveDataProvider ($this, array(
'criteria'=>$criteria,

(
(
(
(

))

At the end of the method, you can see that a CActiveDataProvider object is
returned. As already explained, its first argument is the class being used, which is
repressed by the magical keyword $this.

And, as also explained earlier in the chapter, the second argument to the
CActiveDataProvider constructor can be used to configure how the records are
returned. In this case, that’s a matter of setting criteria for what records are selected.
Logically, the records will be selected based upon the search criteria provided by
the user. The desired result is to create some number of conditions in the WHERE
clause would be added to the SELECT query, equivalent to SELECT * FROM user
WHERE email LIKE “%@example.com%’ AND type="public’, as an example. Those
conditions are added to the criteria by the compare () method, which I've not
previously discussed.

The CDbCriteria class’s compare () method is used to add comparison expres-
sions to a criteria. In situations where the condition may be built up dynamically,
compare () is a much better solution than trying to create your own complex
“condition” value. The compare () method takes up to five arguments:

¢ The name of the column to be used in the comparison

293

CHAPTER 12. WORKING WITH WIDGETS

¢ The comparison value

¢ Whether a full or partial match should be made (i.e., an equality comparison
or a LIKE comparison, with the default being a full equality match)

¢ How this condition should be appended to any existing condition, with the
default being AND

* Whether the value needs to be escaped (which you’d want to do when allow-
ing for partial matches, if % or _ might be in the value)

As you can see in the code, the current model instance’s values are used for
the values of the comparisons. When a user enters “test” in the username box,
$model->username gets a value of “test” in the controller, meaning it will have
that value in the view and in this method when it’s called. If a model has an empty
value for any attribute, then that condition is not added to the query.

The default code results in partial match conditions separated by AND. If the user
enters “@example.com” for the email address and “public” for the type, the result
will be a query like SELECT * FROM user WHERE email LIKE “%@example.com%’
AND type LIKE “%public%’. Understanding how this works, there are some edits
you’ll likely want to make to the search () method.

First, remove any column that should not be searchable. Also remove that column
from the “search” scenario rule. You may even want to remove that column from
the displayed list in the grid (that’s up to you).

Second, see if you can’t change any comparison from a partial match to a full match.
LIKE conditionals are much less efficient to run on the database than equality
conditionals. In a situation like an email address or a username, you’d probably
need to allow for partial matches. For numeric columns, however, partial matches
often don’t make sense. For example, if you were to allow the results to be searched
by primary key, you wouldn’t want a partial match there, as the primary key 23
should not also bring up 123, 238, and 4231. Similarly, ENUM or SET columns can
be set to full matches if you also edit the filtering so that the user can only select
from appropriate values (more on that shortly).

Third, change the final parameter to false if a partial match is allowed but it’s
not logical for a value to contain an underscore or a percent sign (i.e., those two
characters with special meaning in a LIKE conditional). The most common example
would be an email address.

You can also change the conditional operator from AND to OR using the fourth
argument, if you prefer. If you do so, make sure you change them all to be consistent.
And, more importantly, add some text to the view to notify the user that multiple
search criteria expands the search results, not limits them.

Customizing the Display

The data provider and the filter dictate which rows of records are displayed. You
can also change what columns are displayed, or how they are displayed. The first

294

CHAPTER 12. WORKING WITH WIDGETS

way of doing so is to change the values listed for the CGridview class’s columns
attribute. This is an array of attribute names by default. To start customizing this
aspect, remove any attributes you don’t need to show, such as a user’s password.

{TIP} The order of the column listings dictates the order of the displayed
columns in the grid, from left to right.

From there, you can customize the column values the same way you customize the
attributes property in the CDetailView. For example, the Page model’s 1ive
attribute is a 1 or a 0. It would make more sense to display that as “Live” or “Draft”
(or something like that). Just change the value displayed accordingly:

protected/views/page/admin.php
<?php $this->widget ('zii.widgets.grid.CGridView', array (
'id'=>'page—-grid"',
'dataProvider'=>8model->search (),
'filter'=>$model,
'columns'=>array (

'id',

'pageUser.username’,

array (
'header' => 'Live?',
'value'=>"' ($data->1live == 1) ?

"Live" : "Draft"',
),
'title',

'date_entered’',
array (
'class'=>'CButtonColumn',

) s

V)i ?>

For the user_id value, you probably instead want to change the displayed value
from the author’s ID to the actual author name. Just use relationName.attribute as
explained for CDetailView. The above code already does this (Figure 12.12).

{NOTE} Changing the displayed values will probably cause problems
with the filtering/search functionality as in Figure 12.12. I'll explain why,
and the fix, shortly.

Sometimes columns may have NULL or empty values and you’ll want to dis-
play something to indicate that status. To do so, set the nullDisplay and/or
emptyDisplay values:

295

CHAPTER 12. WORKING WITH WIDGETS

Dusplaying 1-10 of 22 resulls

| : i

1 Some Author Live Aliguam malesuada, ligula sitamel 20130217 o2 fw
2 Another Author Live Ten yiars ago a 20130222 B Fa
3 Moe Draft Phasellus dapibus dalor ef mauris. o rx
4 Another Author Live Thunder, thunder, thundercats, Haol 2013-02-01 ol

Figure 12.12: The updated page grid view.

protected/views/page/admin.php
<?php $this->widget ('zii.widgets.grid.CGridView', array (
'id'=>"'page—-grid',
'dataProvider'=>8model->search (),
'filter'=>$model,
'nullDisplay' => 'N/A',
'emptyDisplay' => 'N/A'
'columns'=>array (
// Actual columns.
)

)); 2>

{TIP} There are multiple properties for changing the CSS classes involved,
too. See the Yii docs for specifics.

Customizing the Buttons

With the default code, in the far right column of the grid, three buttons are displayed:
view, update, and delete. If you want to change these, you need to configure
the CBut tonColumn class. The two most important properties are buttons and
template. The template property lays out the buttons. You can use the {view},
{update}, and {delete} placeholders to reference default buttons.

This code removes the delete option and swaps the order of the other two:

<?php $this->widget ('zii.widgets.grid.CGridView', array (

'id'=>"'page—-grid"',
'dataProvider'=>8model->search (),
'"filter'=>$model,
'columns'=>array (

// Other columns,

array (

'class'=>'CButtonColumn',

296

http://www.yiiframework.com/doc/

CHAPTER 12. WORKING WITH WIDGETS

'template'=>"'{update} {view}'
) o
),

)); 2>

If you want to change the images used for the buttons, assign new values to the
deleteButtonImageUrl,updateButtonImageUrl,and viewButtonImageUrl
properties.

You can also define your own buttons via the but t ons property. This is explained
in the Yii class docs for CButtonColumn.

More Complex Searches

The searching and filtering built into the grid is a wonderful start, but can be
improved. For example, the available user types are only “public”, “author”, and
“admin”. There’s no point in allowing the user to search by any user type value, and
it would be far more accurate to pre-set those values. To accomplish that, you’'d
need to change the filter box for the user type column from a text input to a drop

down menu. That’s done by setting the “filter” index of a column:

protected/views/user/view.php:
<?php $this->widget ('zii.widgets.grid.CGridView', array (
'id'=>"user—-grid’',
'dataProvider'=>$model->search (),
'filter'=>$model,
'columns'=>array (
'id',
'username',
'email',
array (
'value' => 'ucfirst (Sdata->type)',
'filter' => CHtml::dropDownList ('User[type]’,
$model->type, array('public' => 'Public',
'author' => 'Author', 'admin' => 'Admin'"),
array ('empty' => ' (Select)'))
)
'date_entered’',
array (
'class'=>'CButtonColumn',

)/

)) i ?>

297

http://www.yiiframework.com/doc/api/1.1/CButtonColumn

CHAPTER 12. WORKING WITH WIDGETS

And that will do that. Displaying the drop down list is fairly easy. To get the filtering
of the grid to work, you just need to associate the model attribute-User [type]-
with the drop down menu by providing it as the first argument as in the above code
(Figure 12.13).

' (Select) h
: Public E—
A :

dmin !
wample.net e]
wample.org Author 2013
mample.org Authoar 2013

Figure 12.13: Users can now be filtered by specific type values.

Because the values returned by the drop down exactly match those used in the
database, no further customization would be required. As your can see in the figure
and code, I've also changed the displayed value to capitalize the type, but that only
impacts the display.

Another good example would be to use a drop down list to filter pages by those
that are live or not. The grid may display the words “Live” and “Draft” for those
values, but the drop down list should use the corresponding database values:

protected/views/page/admin.php

<?php $this->widget ('zii.widgets.grid.CGridView', array (
'id'=>"'page—-grid',

'dataProvider'=>8$model->search (),

'filter'=>$model,

'columns'=>array (

'id’',
'pageUser.username’,
array (
'header' => 'Live?',
'value'=>" ($data->1live == 1) ? "Live" : "Draft"',
'filter' => CHtml::dropDownList ('Page[live]’,
$model->1live, array('l' => 'Live',
'0' => '"Draft'), array('empty' => ' (select)'))
),
'title',
'date_published',
array (

298

CHAPTER 12. WORKING WITH WIDGETS

'class'=>'CButtonColumn',
)
)

)); 2>

You can see the results in Figure 12.14.

(select) i
|~ Live [S—
ot

hioe Craft Phase
Same Authar Draft | never
Another Authar Draft Barnat

Figure 12.14: The drop down filter for the page’s status.

When you’re working with a single model, you can customize the filtering pretty
easily. When you have related models, it becomes a bit trickier. Take, for example,
a grid for pages that shows the username of each page author (see the above code
and Figure 12.14). That value comes from the user table. As it stands, the above
code will display the username, but won’t do proper filtering by username as the
underlying Page attribute is user_id. As you can see in Figure 12.14, no filter box
is provided anyway. But even if a text input were present, the person using the grid
could enter “test”, but that will never match a user_id value.

Two steps are required to solve this riddle. First, a text input must be displayed
for the column. The filters are based upon the model, and as the model has no
pageUser.username attribute, no text input shows. The fix for that is to name the
column user_id for the filters, but still use pageUser.username as the value of
the column:

protected/view/page/admin.php
<?php $this->widget ('zii.widgets.grid.CGridView', array (
'id'=>'page—-grid’,
'dataProvider'=>$model->search (),
'filter'=>$model,
'columns'=>array (
'id’',
array (
'header' => 'Author',

299

CHAPTER 12. WORKING WITH WIDGETS

'name' => 'user_id',
'value' => 'Sdata->pageUser—->username’

),
// And so on.

Now the grid shows an input for the column (test it for yourself to see).

Next, the search () method must be changed so that the query uses the supplied
user_id value to compare against the username column in the user table.

The default Page: : search () method looks like this:

protected/models/Page.php

public function search () {
Scriteria=new CDbCriteria;
Scriteria->compare ('id', $this->id, true);
Scriteria->compare ('user_id', Sthis->user_id, true);
// Other comparisons
return new CActiveDataProvider ($Sthis, array(

'criteria'=>S$criteria,

));

First, you'll want to add a with clause to change from lazy loading of the
user records to eager loading. Then, change the comparison to use the
pageUser.username field instead of user_id:

protected/models/Page.php
public function search() {
Scriteria=new CDbCriteria;
Scriteria->with = 'pageUser';
Scriteria->compare ('id', $this—>1id);
Scriteria->compare ('pageUser.username',
Sthis->user_id, true);
// Other comparisons
return new CActiveDataProvider ($Sthis, array(
'criteria'=>S$criteria,

))

And now the grid of pages can be filtered by author name (Figure 12.15).

Working with dates brings its own problems, as you may know from your expe-
riences interacting with a database. How you address this issue depends greatly
upon how the dates are stored in the database and how you would imagine a
user would filter by dates. For an example to work with, let’s imagine you want

300

CHAPTER 12. WORKING WITH WIDGETS

Moe (selec %

Moe Crratt Fhasellus dag
Moe Live Test Title

Mo Live There's g vaic

me.

Figure 12.15: Only pages by “Moe” are now shown.

to be able to filter users by the date they registered. This value is stored in the
user.date_entered column, which is a timestamp.

A timestamp is a perfect way of marking when records are created, but it’s generally
impractical to filter by the date and time (down to the seconds) unless you're looking
at ranges. But a reasonable alternative for filtering the grid would be to expect a
date to be provided and then to find all records created that day.

In that situation, you would probably want to first only show the registration
dates as YYYY-MM-DD, which also provides a sense of how filtering would be
accomplished. I would change the search () method to pull out dates in that
format:

protected/models/User.php::search ()

Scriteria=new CDbCriteria;

// Select the date in a formatted way:

Scriteria->select = array('x', new
CDbExpression ('DATE_FORMAT (t .date_entered,
"$Y-%m—-%d") AS date_entered')

)

Scriteria->compare('id', $this->id, true);

// And so on.

return new CActiveDataProvider ($this, array(
'criteria'=>S$Scriteria,

));

That code change uses a CDbExpression to format the selected data. Thanks to an
alias, the formatted date is still returned as date_entered. The end result is that
the formatted date is used for date_entered in the model and in the grid.

Next, you need to change the search () method to perform a different comparison
of the date_entered column value against the provided date_entered value. I
would do that using a condition:

301

CHAPTER 12. WORKING WITH WIDGETS

protected/models/User.php: :search ()

Scriteria=new CDbCriteria;

// Select the date in a formatted way:

Scriteria->select = array('x', new
CDbExpression ('DATE_FORMAT (t .date_entered,
"$Y-%m—-%d") AS date_entered')

)i

// Check for a date:

if (isset (Sthis—->date_entered) &&
preg_match ('/~[0-9]1{4}\-[0-9]{2}\-[0-9]{2}s/",
Sthis—->date_entered)) {

Scriteria—>condition = 'DATE_FORMAT (date_entered,
"$Y-%m—-%d") = :de’';
Scriteria->params = array(':de' => $this->date_entered);

}

Scriteria->compare('id', Sthis->id, true);

// And so on.

return new CActiveDataProvider ($this, array(
'criteria'=>$criteria,

));

That code confirms that $this->date_entered has a value and that the value
matches the pattern ####-##-##. If so, then a condition is added to the criteria,
checking for an equality match between that provide value and the formatted date.

Note that the condition property must be set prior to any compare () calls or
else the query’s logic will get messed up. Also be certain to remove the compare ()
use of date_entered that the search () method also has.

This is a simple and effective way to filter the records by the date (Figure 12.16),
but you should make it clear to the user in what format the date criteria must be
provided.

The jQuery UI Widgets

One of the features of Yii that I always appreciated is that it has support for jQuery
built-in (the Zend Framework, by comparison, took years to add a jQuery compo-
nent). Chapter 14 goes into JavaScript and jQuery in Yii in more detail, but while I'm
talking about widgets, I'll go ahead and mention the jQuery User Interface (jQuery
Ul) widgets now.

The jQuery User Interface is a package of useful components built on top of jQuery.
jQuery Ul includes:

¢ Functionality such as dragging, dropping, sorting, and resizing

302

http://jqueryui.com/

CHAPTER 12. WORKING WITH WIDGETS

Displaying 1-3 of 3 results.

e I
(Select) 5 2013-02-17

Adrmin 2013-02-17 2o re
Fubilic 2013-02-17 o lar o
Author 2013-02-17 Folar o |

Figure 12.16: The grid can now be filtered by date.

* Widgets
¢ Effects such as hiding, showing, color animation, and so on
* A couple of utilities

The jQuery Ul widgets include much of the functionality common in today’s Web
sites:

* Accordion

¢ Autocomplete
¢ Datepicker

¢ Dialog

¢ Menu

e Slider

¢ Spinner

¢ Tabs

¢ Tooltips

As jQuery is built-into Yii, it was only natural to have parts of jQuery UI ported
into Yii as well. About a dozen jQuery Ul components have been recreated in Yii as
widgets, found within the zii.widgets.jui package. Most of these are pretty easy to
use just by looking up the corresponding Yii class documentation.

In this chapter, I'll demonstrate a couple that are the easiest to use, most necessary,
and do not require additional JavaScript (such as an Ajax component). Chapter 14
will discuss a couple of others.

Accordions

As a first example, the CJuiAccordion creates an accordion display of content
(Figure 12.17).

303

CHAPTER 12. WORKING WITH WIDGETS

= o

* 5Some Title

Lorem ipsum dolor sit amet, consectetur.

» Another Title

+ Third Title

Figure 12.17: A jQuery Ul accordion.

That output is created by this Yii code:

<?php

$this->widget ('zii.widgets.jui.CJuiAccordion', array (

'panels'=>array (
'Some Title'=>'Lorem ipsum dolor sit amet.',
'Another Title'=>'Mauris pharetra viverra lacinia.',
'Third Title'=>'Morbi iaculis fermentum lorem eu.',

And that will do it! Of course, it’s not truly reasonable to hardcode the different
content into the widget. Normally the content will be dynamically generated. When
that’s the case, there are a couple of ways you can approach the issue. As an
example of this, let’s say the controller is passing the accordion view page an array
of information:

<?php
protected/controllers/SomeController.php::someAction ()
$data = array(
array ('title' => 'Some Title',
'content' =>'Lorem ipsum dolor sit amet.'
),
array ('title' => 'Another Title',
'content' =>'Mauris pharetra viverra lacinia.'
)
array ('title' => 'Third Title',
'content' =>"'Morbi iaculis fermentum lorem eu.')

304

CHAPTER 12. WORKING WITH WIDGETS

) ;
$this—>render ('accordionView', array('data' => $data));

Then, in the accordionView.php page, you would use the received data:

<?php
$this-—>widget ('zii.widgets.jui.CJuilAccordion', array (
'panels'=>array (

$data[0]['title'] => $data[0] ['content'],
Sdata[l]['title'] => $data[l]['content'],
Sdata[2]['title'] => $data[2] ['content']

{NOTE} There are other, more automated ways to create the data to be
used for the accordion, but I'm trying to keep things more simple.

If the content was much more complex or dynamically generated, you could use
renderPartial () to assign another view file as the content. You’d just need to
set the method’s third argument to true to have the rendered content returned:

<?php
$this->widget ('zii.widgets.jui.CJuiAccordion', array (
'panels'=>array (

'"Actual Title' => $this->renderPartial ('_accordionItem',
array (/+ pass data =/), true);
// Etc.

Tabs

The CJuiTabs widget works exactly the same way as CJuiAccordion, but uses
the tabs property and lays out the content in tabs:

<?php
$this-—>widget ('zii.widgets.jui.CJuiTabs',array (
'tabs'=>array (

Sdata[0] ['title'] => $data[0]['content'],
$data[l]['title'] => $data[l] ['content'],
Sdata[2]['title'] => $data[2] ['content']

Again, you could render partial views for the content when needed.

305

CHAPTER 12. WORKING WITH WIDGETS

Datepicker

Another great and useful widget is the Datepicker (Figure 12.18).

Date Published

(4] March 2013 O

SUu Mo Tu We Th Fr Sa

10 11| 12 13| 14 15| 16
17 18 19 200 21 22 23
24 25 26 27| 28 29 30
31

Figure 12.18: A jQuery Ul datepicker.

That’s created by this code:

<?php

$this->widget ('zii.widgets.jui.CJuiDatePicker',array (
'attribute'=>'date_published',
'model' => Smodel
)) s

?>

Because this is a form element, you can associate it with a model, as the code shows.

Although the Datepicker is easy to use, there is a catch when it’s associated with a
model and an underlying database that expects dates to be in a particular format.
I'll explain that in the next section.

Customizing jQuery Ul Widgets
As with any widget, the available properties of the associated class can be used
to customize its behavior. All jQuery Ul widgets support theme and themeUrl

properties, for example, if you're using a jQuery Ul theme.

306

CHAPTER 12. WORKING WITH WIDGETS

The most important property for the jQuery Ul widgets is options. Through
the options property you can configure the widget’s behavior. For the option
indexes and values, turn to the corresponding jQuery Ul documentation. For
example, the jQuery UI accordion has the “animate”, “collapsible”, “heightSize’
and other properties. To set the accordion as collapsable, which means that every

section can be closed at the same time, set that property to true:

4

<?php
$this-—>widget ('zii.widgets. jui.CJuilAccordion', array (
'panels'=>array (/* values =/),
'options'=>array (
'collapsable'=>true

))

?>

The tabs widget has properties for dictating how tabs are hidden and shown (among
others);

<?php
$this-—>widget ('zii.widgets.jui.CJuiTabs', array (
'tabs'=>array (/* values */),
'options'=>array (
'hide'=>"'fade',
'show'=>"'highlight'

The Datepicker has a ton of options. The “dateFormat” is used to set the format for
the selected and displayed dates. You can set the latest date that can be selected via
“maxDate” and the earliest via “minDate”.

<?php
$this-—>widget ('zii.widgets. jui.CJuiDatePicker', array (
'attribute'=>'starting_date"',
'model' => $model,
'options'=>array (
'dateFormat '=>"'yy-mm-dd',
'maxDate'=>"+1m', // One month ahead
'minDate'=>"'new Date()', // Today

));

To find what options are available, and what an appropriate value would be, check
the jQuery UI documentation.

307

http://api.jqueryui.com/
http://api.jqueryui.com/datepicker/

CHAPTER 12. WORKING WITH WIDGETS

As for the trick mentioned earlier that may be required when using Datepickers
with models, if the model attribute correlates to a database column, updates and
inserts will only work properly if the submitted date is in a format that MySQL
accepts. The default format for the date picker is mm/dd/yy, which will fail when
used to update or insert a record in the database. One solution is to customize the
widget to use a better format, as in the code above.

308

Chapter 13

USING EXTENSIONS

When I first started using Yii, I thought of extensions as being similar to third-party
libraries. Basically, I imagined them as entirely separate components that were used
to add large amounts of functionality, like widgets on steroids. Over time, I realized
that extensions are quite literally that: extensions of the core Yii framework. Some
extensions are separate components, while others add very specific functionality,
and yet others actually define widgets.

This chapter starts by explaining the concept of extensions in Yii. Next, you'll learn
some basic recommendations as to how to select an extension for your needs.

The bulk of the chapter highlights a few notable extensions, from the hundreds that
are available. To generate this list, I looked at the extensions that:

¢ I've personally used

¢ Are the most downloaded

Are the highest rated

Are newer (at the time of this writing)
Are the easiest to get started with

Obviously, this chapter cannot be exhaustive in terms of the extensions covered, or
the coverage of individual extensions. But by the end of the chapter, you should
better understand the range of what extensions have to offer, and how you go about
using them.

{NOTE} In Chapter 21, “Extending Yii,” you'll learn how to write your

own extensions of the framework.

The Basics of Extensions

The first fact to know about extensions, if you don’t already, is the one that took
me a while to learn: extensions can serve many different roles. They can act as

309

CHAPTER 13. USING EXTENSIONS

application components, add new behaviors, be used as widgets, create filters and
validators, be used as stand-alone modules, and more.

In fact, you may be surprised to find out that you’ve probably already used two
extensions. First, there’s the Gii extension, which is an application component.
Second, there’s Zii, which is an extension that defines several widgets, among other
things. Both of these extensions are unlike many of those you'll deal with in Yii in
that they are automatically installed as part of the framework itself.

For all the other available extensions, head to the Yii framework extensions page.
At the time of this writing, there are over 1,100 extensions available, sorted into 15
categories. Once there, you'll need to choose what extensions you’ll want to use for
your project. Obviously the primary criteria will be your application’s needs, such
as:

A WYSIWYG editor

Easy and powerful authorization management
Excellent debugging tools

Cache management

The ability to send HTML email

Whatever the need, there’s a good chance there’s already an extension that will do
the job.

Once you've identified your criteria, and have used the extensions page to find
options that may do the job, I would make a specific decision based upon (in this
order):

* What versions of Yii it requires
This could be even more of an issue when Yii 2 comes out.
* What version the extension is currently in

You probably don’t want to use a beta version of an extension on a production site.
On the other hand, if the extension looks to be perfect for your needs, using the beta
version while you develop the site, and helping the developer find and fixed bugs,
could be a symbiotic relationship. Moreover, some extension developers mark their
releases as betas just to cover themselves.

e How well maintained it is

To me, one of the most important criteria is how well maintained an extension (or
any software/code you use) is. It's best not to rely upon an extension that will
become too outdated to be useful. Look at the extension’s version number to tell
how well maintained an extension is. Also note how recently updated the extension
is. And check out how active the developer is in replying to comments.

310

http://www.yiiframework.com/extensions/

CHAPTER 13. USING EXTENSIONS

e How well documented it is

There’s no point in attempting to use an extension that you won't be able to figure
out how to use. And, as a writer, I particularly value good documentation.

* How popular it is (in terms of both downloads and rating)

Popularity isn’t always a good thing, and it’s certainly not the most important
criteria, but can be useful when making a final decision.

{TIP} You can also learn a lot about an extension-how useful it is, how
well maintained it is, etc.—by searching for the extension in the Yii forums.

Once you've identified the extension to use, the installation process goes like so:

1. Download the code (from its extension page).
2. Expand the downloaded code (from a .zip or other file type to a folder).
3. Move or copy the resulting folder to the protected/extensions directory.

These are generic instructions. Some extensions will require that you rename the
resulting folder (from, say, “yii-bootstrap-2.0.3.r329” to just “bootstrap”). Other
extensions might expect you to move a subdirectory from the resulting folder to
your extensions directory. Just read and follow the installation instructions that the
extension provides. If it doesn’t have installation instructions? Then you don’t want
that extension.

How you import, configure, and use the extension will also differ from one extension
type to the next. Some are configured as application components, others just need
to be referenced where you're using it (e.g., a widget).

{TIP} The path alias ext . name refers to the extension’s base directory,
where “name” is the name of the folder in which the extension resides.

Before moving on, I have two specific recommendations. First, if your permissions
are not properly set (if the Web server cannot read everything within the extensions
directory), you'll get errors and unusual results when you go to use any extension. I
found (when using Mac OS X), that any time I had unusual results when first using
an extension, I would have to fix the permissions on the applicable directories to get
the problem sorted.

Second, trying to use any extension for the first time can be quite frustrating. In
writing this chapter, I ran into many hurdles with extensions that I would have
liked to cover (not insurmountable hurdles, necessarily, but too many hurdles to
reasonably still use the extension in a book). As this will likely be the case for you

311

CHAPTER 13. USING EXTENSIONS

as well, I would recommend first installing and testing new extensions on a practice
project. By using a demo site, you won’t run the risk of cluttering up, or worse yet,
breaking, your actual project.

With that general introduction in place, let’s look at some specific extensions.

The bootstrap Extension

Twitter Bootstrap is a framework of HTML, CSS, and JavaScript, designed to make
front-end Web development quick, reliable, and painless. A highlight of Bootstrap’s
features include:

¢ A grid system for easy layout

* Responsive design

¢ Basic typography

¢ Table, form, and image styling

¢ CSS buttons

¢ Common components, such as navigation menus, drop down menus, alerts,
etc.

¢ JavaScript-dependent components like modal windows, tabs, tooltips,
carousels, and so forth

{NOTE] Twitter Bootstrap does require that you use HTML5, which you
ought be to using anyway.

To use Twitter Bootstrap in a Yii-based site, you have a couple of options. The first
and most obvious would be to download the Bootstrap framework, install it on
your site, and then have Yii create the necessary HTML and JavaScript to create the
various elements. That approach would get tedious fast.

An alternative, then, is to use one of the available Twitter Bootstrap extensions for
Yii. The two likely candidates are:

* Yii-Bootstrap
¢ YiiBooster

Both are great, with YiiBooster being an extension of Yii-Bootstrap. I'll quickly walk
through its installation and usage.

To install YiiBooster, download it from http://yii-booster.clevertech.
biz/index.html. Then expand the downloaded file to create a folder called
something like clevertech-YiiBooster-bf8ace(. Rename this folder as bootstrap and place
it in your extensions directory.

To enable this extension, add it to the “components” section of the configuration file:

312

http://twitter.github.com/bootstrap/
http://www.cniska.net/yii-bootstrap/index.html
http://yii-booster.clevertech.biz/index.html
http://yii-booster.clevertech.biz/index.html
http://yii-booster.clevertech.biz/index.html

CHAPTER 13. USING EXTENSIONS

protected/config/main.php
// Other stuff.
'components'=>array (
'bootstrap' => array (
'class' => 'ext.bootstrap.components.Bootstrap',
'responsiveCss'=>true,
) r
// More other stuff.

Then, you also need to tell Yii to preload this extension:

protected/config/main.php

// Other stuff.
'preload'=>array('log', 'bootstrap'),
// More other stuff.

Once enabled, you'll immediately see some aesthetic changes, even to the default
Yii-generated site. And the layout will be somewhat responsive if you've set “re-
sponsiveCss” to true (as in the above).

{TIP} There’s also a series of Gii templates you can enable when using
YiiBooster.

To create a site layout that uses Twitter Bootstrap, I'd begin with one of the examples
that Twitter Bootstrap provides, such as the starter template. Copy that example
page’s HTML to a new layout file (perhaps called “bootstrap.php”).

{NOTE/} Also see Chapter 6, “Working with Views,” for instructions on
creating and switching layouts in general.

Next, you'll want to change the TITLE tag to have it be populated by Yii:

<title><?php echo CHtml::encode ($this->pageTitle); ?>
</title>

And don’t forget the most important step: having Yii insert the page-specific content
in the right place:

<?php echo $content; ?>

To convert the default Yii main menu to a Twitter Bootstrap menu, just add the “nav”
class as an HTML option:

313

http://twitter.github.com/bootstrap/getting-started.html#examples

CHAPTER 13. USING EXTENSIONS

<div class="nav-collapse collapse">
<?php $this->widget ('zii.widgets.CMenu',array (
"items'=>array (

array ('label'=>"'Home', 'url'=>array('/site/index')),
array ('label'=>"About',
'url'=>array ('/site/page', 'view'=>'about')),
array ('label'=>'Contact',
'url'=>array ('/site/contact')),
array ('label'=>'Login', 'url'=>array('/site/login'),
'visible'=>Yii::app()—->user->isGuest),
array ('label'=>'Logout ('.Yii::app()-—->user—->name."')"',

'url'=>array('/site/logout'),
'visible'=>!Yii::app()->user->isGuest),
)

'htmlOptions' => array('class'=>'nav')
)); 2>
</div><!--/.nav-collapse ——>

And now you have a basic Twitter Bootstrap implemented in Yii (Figure 13.1).

Project name Home About Contact Login

Welcome to My Web Application

Congratulations! You have successfully created your Yii application.
You may change the content of this page by modifying the following two files:

« View file: /Users/larryullman/Sites/htdocs/protected/views/site/index.php
« Layoutfile: /Users/larryullmans/Sites/htdocs/protected/views/layouts/main.php

For more details on how to further develop this application, please read the documentation. Feel free

Figure 13.1: The Bootstrap version of the basic site design.

Note that you don’t have to install Twitter Bootstrap yourself. Nor do you have
to add references to the Twitter Bootstrap CSS and other files to your layout. The
extension’s assets manager will take care of all that for you.

Using YiiBooster, you can also make use of any of the formatting options that
Twitter Bootstrap provides. For example, Twitter Bootstrap has labels for making
text prominent (Figure 13.2):

WARNING!

With YiiBooster, you can create the HTML as in the above, or dynamically create it
using a widget:

314

CHAPTER 13. USING EXTENSIONS

EZ5IITED Do not do whatever it is you are about to do!

Figure 13.2: A Bootstrap label.

<?php

$this->widget ('bootstrap.widgets.TbLabel', array (
'type'=>'"important',
'label'=>'WARNING! ',

)) i

?>

There are plenty more widgets defined in YiiBooster. For example, here’s how you
would implement the breadcrumbs widget (Figure 13.3):

protected/views/layouts/main.php
<?php if (isset ($this->breadcrumbs)) :?>
<?php
$this—>widget ('bootstrap.widgets.TbBreadcrumbs', array (
'"links'=>$this->breadcrumbs
)) i
?>
<?php endif?>

Home / Pages / Aliguam malesuada, ligula sit amet.

Figure 13.3: The Bootstrap version of the breadcrumbs.

Chapter 12, “Working with Widgets,” spends a decent amount of time discussing the
CGridview widget. YiiBooster extends this widget in the TbExtendedGridview
class (Figure 13.4):

protected/views/page/admin.php

Sthis->widget ('bootstrap.widgets.TbExtendedGridvView', array (
'dataProvider' => S$model->search (),
'filter' => Smodel,
'type' => 'striped bordered',

'columns' => array (
'id',
array (
'header' => 'Author',
'name' => 'user_id',

315

CHAPTER 13. USING EXTENSIONS

'value' => 'Sdata->pageUser—->username'

),
array (

'header' => 'Live?',

'value'=>"' (Sdata->1live == 1) ?

"Live" : "Draft"',

'filter' => CHtml::dropDownList ('Page[livel]',

Smodel->1live,

array (

'1' => 'Live',
'0' => 'Draft'),

array ('empty'
) 14
'title',
'date_published’,
array (
'header' => Yii:

=> ' (select) "))

:t('ses', 'Edit"'"),

'class' => 'bootstrap.widgets.TbButtonColumn',

'"template' => '"{view}

) s

ID Author Live?
(select) | &
1 Some Author Live
2 Another Author Live
3 Moe Draft
4 Another Author Live
5 Another Author Live
6 Moe Live

Title

Aliquam malesuada, ligula sit amet.
Ten years ago a...

Phasellus dapibus dolor et mauris.
Thunder, thunder, thundercats, Ho!
Michael Knight, a young loner

Test Title

{delete}"',

Date Published

2013-02-17

2013-02-22

2013-02-01

2013-03-15

2013-01-03

Figure 13.4: The Bootstrap version of the grid view.

You can configure the YiiBooster grid view to add many great features:

¢ A fixed table header (that stays visible as you scroll down the table)

¢ Inline editing

e Bulk edits

¢ Table summaries
¢ Graphs

¢ Groupings

¢ Advanced filtering

316

Edit

CHAPTER 13. USING EXTENSIONS

Just check out the YiiBooster documentation for how to implement these features,
and to see what else is possible with the extension.

{TIP} The creators of YiiBooster also created YiiBoilerplate, an advanced
template for an entire Yii project.

The giix Extension

Another extension I'd like to highlight is giix, short for gii Extended. giix is a version
of Gii with extra features:

¢ Better handling of complex relations amongst models

¢ Support for internationalization (i18n) out-of-the-box

* Generation of form elements more specific to model attributes
¢ Generation of forms that reflect model relations

Creation of base model classes that are extended

Creation of new model methods

To enable giix, first download and expand the extension. Then move or copy its
giix-components and giix-core folders to your extensions directory. Next, enable
the extension in your configuration file:

protected/config/main.php
// Other stuff.
'modules'=>array (
'gii' => array(
'class' => 'system.gii.GiiModule',
'password'=>'1234",
'generatorPaths' => array (
'ext.giix-core',
),
)y

// Lots more other stuff.

As you can see in that code, you're just telling Gii to use the giix-core files for the
code generators.

You should also import the giix components:
protected/config/main.php
// Other stuff.

'"import'=>array (
'application.models.x',

317

https://github.com/clevertech/yiiboilerplate
http://www.yiiframework.com/extension/giix/

CHAPTER 13. USING EXTENSIONS

'application.components.x*',
'ext.giix—components.x*"',

) 4

// Lots more other stuff.

With that configured, you can head to Gii as you usually would.

giix adds two new options to Gii:

¢ GiixCrud Generator
¢ GiixModel Generator

Both of these are used just like the standard Gii tools, with the difference being in
the code they generate. For example, when using giix to model and CRUD the page
table in the CMS example, the model generator creates a BasePage class which
is then extended by Page. This allows you to make edits to Page that won't be
overwritten, even if you later need to re-generate BasePage (e.g., after changing
the database table).

Where giix really shines in the view files, however. Using the CMS page example,
giix will do a few nice things for you, such as create a drop down list of authors for
searching, filtering, adding, and updating page records (Figure 13.5).

Administrator : :
=p>=Lorem ipsum dolor sit amet, consectetur

Gl porta lectus sed ipsum tincidunt lacinia. Inte
Anather Author varius. Class aptent taciti sociosqu ad litora
Curly nostra, per inceptos himenaeos. Nulla lobor

Figure 13.5: The author username drop down is automatically added to the grid
view filter.

Similarly, the author’s name is also automatically displayed in the list and detail
views. Further, on the view page, the author’s name is automatically linked to the
author’s view page (Figure 13.6).

The strong suit of giix is really all the ways that related models are automatically
used. As another example, the individual view page also immediately lists all the
comments and files associated with that page, which is something you’d likely want
to implement anyway (Figure 13.7).

Similarly, giix implements “save related” functionality into the controllers and
models. With the CMS example, if you were to select files associated with a page

318

CHAPTER 13. USING EXTENSIONS

View Page Aliquam malesuada, ligula

D 1
User Some Author
Live 1

Title Aliguam malesuada, ligula sit amet.

Figure 13.6: The default view for an individual page.

Date Updated 2013-02-17 16:10:18
Date Published 2013-02-17

Comments

+ Sed bibendum ligula ac uma egestas euismod. Nunc eu molestie purus.
« Sed bibendum ligula ac uma egestas euismod. Nunc eu molestie purus.
+ Sed bibendum ligula ac urmna egestas euismod. Nunc eu molestie purus.

Files

Figure 13.7: The comments and files associated with the page.

319

CHAPTER 13. USING EXTENSIONS

(all the files are automatically listed as checkboxes on the page form), the giix code
will save the file relations, too.

Although giix does add some great functionality, there’s another reason why I'm
highlighting it in this chapter. If you use Yii a lot, and have Gii generate a lot of code
for you, there’s a strong argument to be made for customizing the generated code
so that it closely matches what you want and prefer. That’s exactly what giix does.

Validator Extensions

Taking a look at another type of extension, there are many Yii extensions written
expressly for acting as validators. As explained in Chapter 5, “Working with Models,”
Yii has a slew of built-in validators for use in your models. But there are ways you’ll
need to validate model attributes that aren’t sufficiently covered by the built-in
options.

One way of creating additional validators, as also demonstrated in Chapter 5, is to
define a validator as a method in the model. The downside to this approach is the
code ends up being less reusable. A more flexible solution would be to write the
validator as its own class. When you’ve done that, you've created an extension.

On Yii’s extensions page, there are oodles of validator extensions available. For this
example, I'll demonstrate eccvalidator, which confirms that a value is a syntactically
valid credit card number. To start, download the extension.

Next, I would create a validators folder within extensions, into which you’ll put
any validator class you use. Copy the downloaded code-ECCValidator.php-to this
directory.

To use the validator, you’d reference it in the rules () method of a model. Let’s
say there’s a PaymentForm model, that has a ccNum attribute:

protected/models/PaymentForm.php
class PaymentForm extends CFormModel ({
public $ccNum;

Here’s how the rules () method would partially look:

Yii::import ('ext.validators.ECCValidator"');
return array (
// ccNum is required:
array ('ccNum', 'required'),
// ccNum needs to be a valid number:
array ('ccNum', 'ext.validators.ECCValidator'),

320

http://www.yiiframework.com/extension/eccvalidator/

CHAPTER 13. USING EXTENSIONS

First the validator class file is imported so that it may be used. Then the credit card
number is marked as required, using the standard Yii validators. Finally, the credit
card number is validated using the ECCValidator class.

And that is all you need to do! Now the credit card number in the form will be
tested, with errors reported (Figure 13.8).

Payment

Credit Card Number *
4485587139555400

Credit Card Number is not a valid Credit Card number.

Figure 13.8: A syntactically invalid credit card number is reported.

The eccvalidator supports over a dozen credit card types. To limit the allowed types,
use the “format” index and the constants defined in the class:

array ('ccNum', 'ext.validators.ECCValidator',
'format' => array (
ECCValidator: :MASTERCARD,
ECCValidator::VISA,
ECCValidator: :AMERICAN_EXPRESS,
ECCValidator: :DISCOVER

) s

If you look at the ECCValidator class code, you'll find all the available public
properties that you can configure. This list includes “allowEmpty”, meaning you
can omit the “required” rule and declare the requirement as part of the ECCValidator
rule:

array ('ccNum', 'ext.validators.ECCValidator',
'allowEmpty' => false,
'format' => array(
ECCValidator: :MASTERCARD,
ECCValidator::VISA,
ECCValidator: :AMERICAN_EXPRESS,
ECCValidator: :DISCOVER

) r

And that’s an example of how you use extensions as validators. Just search or
browse through the Yii extensions pages to find others that you might need.

321

CHAPTER 13. USING EXTENSIONS

Auto-Setting Timestamps

Also in Chapter 5, I explained two different ways of setting a model’s attributes to
the current timestamp:

¢ Using a default value rule
¢ Using abeforeSave () event handler

A third option is to use a behavior added to the framework via an extension. Be-
haviors, in general, allow you to extend a model by adding additional members
at runtime. In OOP terms, behaviors are like mixins, and atone for some of the
limitations of inheritance in PHP.

Behaviors are most useful when:

* The same functionality might be needed by multiple classes (and, therefore,
defining the functionality in a separate class makes it more portable)
¢ Functionality may only be needed in certain circumstances

There are extensions you can download to add behaviors to a site, but one is
already available to you via the Zii extension that comes with the framework. The
CTimestampBehavior class can be used to automatically populate date and time
attributes. To use it, create a behaviors () method in your model. Within the
method, return an array that specifies CTimestampBehavior and the attributes to
be populated upon creating and updating model instances:

protected/models/SomeModel.php
public function behaviors () {
return array (
'CTimestampBehavior' => array (
'class' => 'zii.behaviors.CTimestampBehavior',
'createAttribute' => 'date_entered',
'updateAttribute' => 'date_updated’

The behavior will automatically determine how best to set the timestamp, but you
can specify where the timestamp value should come from if you want. See the
CTimestampBehavior class docs for details.

Because the CTimestampBehavior is added to the behaviors () method, it’s
always attached to the model. You can attach a behavior only under certain circum-

stances using the attachBehavior () method. I may discuss this more later in
the book.

322

http://www.yiiframework.com/doc/api/1.1/CTimestampBehavior

CHAPTER 13. USING EXTENSIONS

Using a WYSIWYG Editor

Often, a site like the CMS example will require an administrative area to dynamically
manage the site’s content. Much of the content can contain some HTML, including
media (images, videos, etc.), typography, lists, and so forth. So that non-technical
people can create nice-looking HTML, I normally turn to a Web-based WYSIWYG
editor like CKEditor or TinyMCE. Getting either to work within the Yii environment
isn’t too hard, once you know what to do. However, the process can be greatly
simplified thanks to the right extension.

If you want to use CKEditor, the editMe extension is brilliantly easy to use. It creates
a widget that you can drop into your view files wherever you need an instance of
the CKEditor.

Start by downloading the editMe extension, and expanding the downloaded file.
Copy the resulting folder to the protected/extensions directory. There’s nothing
you need to do to enable this extension.

To use the CKEditor in a form, you’ll need to edit the _form.php file for the particular
view, such as for “page” in the CMS example. By default the form will have a
standard textarea for every TEXT type:

protected/views/page/_form.php
<div class="row">
<?php echo $form->labelEx ($model, 'content'); 2>

<?php echo $form->textArea ($model, 'content'); ?>
<?php echo $form->error ($model, 'content'); 2>
</div><!—-- row ——>

To use CKEditor instead of the textarea, invoke the editMe widget by replacing that
code with this:

protected/views/page/_form.php

<div class="row">

<?php echo $form->labelEx ($model, 'content'); 2>

<?php $this->widget ('ext.editMe.widgets.ExtEditMe', array (
'model '=>$model,
'attribute'=>'content'

)); 2>
<?php echo $form->error ($model, 'content'); 2>
</div><!-- row ——>

That code starts by saying a widget should be rendered in this place, specifically the
editMe widget. That widget gets passed an array of values to configure it. To start,
pass the model instance, which Yii stores in the $model variable by default. The
attribute element is the name of the associated model attribute.

323

http://ckeditor.com/
http://www.tinymce.com/
http://www.yiiframework.com/extension/editme

CHAPTER 13. USING EXTENSIONS

If you load page/create in your browser, you should now see a lovely WYSIWYG
editor in lieu of the text area (Figure 13.9).

Content
El source || [@ & | B B W e 44 gh | [| AR ABc-
2 [© ol B [o
B I U=:Xx, x| @ =& gl v E=s==ae B8R
HOEOE & O &
Styles = Normal =| || Font =| | Size '+ v AT | 3 K

Lorem ipsum daolor sit amet, consectetur adipiscing elit. Nam porta lectus sed ipsum tincidunt lacinia. Integer lacinia semper

egestas at luctus tellus tempor. Mulla faucibus pulvinar metus, quis hendrerit odio porta non. Donec eu metus tincidunt tellus
convallis tincidunt a ac quam. Quisque a mollis lectus. Fusce nec pretium libero. Ut rhoncus augue eu elit rutrum at porta
lacus aliquet. Pellentesque maolestie viverra purus et lacinia. Nulla facilisi. Cum sociis natogue penatibus et magnis dis
parturient montes, nascetur ridiculus mus.

Figure 13.9: The CKEditor instance used to create and edit a Page record.

There are further configurations explained in the extension’s wiki. For example,
“height” and “width” change the size of the text area:

protected/views/page/_form.php

<div class="row">

<?php echo $form->labelEx ($model, 'content'); ?>

<?php $this->widget ('ext.editMe.widgets.ExtEditMe', array (
'model'=>$model,
'attribute'=>'content',
'height '=>'400"

)) i ?>
<?php echo $form->error ($model, 'content'); 2>
</div><!—-- row ——>

Those steps are pretty easy to understand and will get you a working WYSIWYG
editor in no time. But you'll likely need to tweak how the CKEditor behaves, too,
which is much more complicated.

For starters, if you want to allow the admin to upload files to the server, like
images or videos, you'll need to enable the file manager. This gets complicated,
as CKEditor does not come with this functionality built-in. You'll need to either
buy the commercial CKFinder, or find a third-party alternative. Once you've done
that, you’d set the various editMe properties that begin with “filebrowser”. (See the
editMe docs for details.)

Next, you'll likely want to configure the CKEditor as it'll behave in the Web browser.
To do so, you can first set the “toolbar” index. This is an array of options that
should appear in the toolbar. The values themselves come from the CKEditor
documentation:

324

https://bitbucket.org/TeamTPG/editme/wiki/Configuration
http://cksource.com/ckfinder

CHAPTER 13. USING EXTENSIONS

protected/views/page/_form.php
<?php $this->widget ('ext.editMe.widgets.ExtEditMe', array (
'model '=>$model,
'attribute'=>"'content',
'height '=>"'400"
'toolbar'=>array (

array (
'Bold', 'Italic', 'Underline', 'Strike',
'Subscript', 'Superscript', 'RemoveFormat'

)

‘_'I

array ('Link', 'Unlink', 'Anchor'),

|/l,

array ('NumberedList', 'BulletedList', '-',
'Outdent', 'Indent', '-',
'Blockquote’', 'CreateDiv', '-',

'"JustifylLeft', 'JustifyCenter', 'JustifyRight',

Within the array, each subarray is a grouping (Figure 13.10). Visual separators are
created by a hyphen, and a slash creates a line break (i.e., to start the next sequence
of toolbar options on the next row). If you attempt this configuration and the result
is a blank toolbar, or no WYSIWYG editor at all, then you’'ve probably created a
syntax error of some type.

Content

B I U = X, x* & e =

[1)

|

[]

]
i
i
k]
=
5
I
i
i

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nan
varius. Class aptent taciti sociosqu ad litora torquent per cor
egestas at luctus tellus tempor. Nulla faucibus pulvinar metL
convallis tincidunt a ac quam. Quisque a mollis lectus. Fusc
lacus aliquet. Pellentesque molestie viverra purus et lacinia
parturient montes, nascetur ridiculus mus.

Figure 13.10: A customized toolbar.

Finally, as a reminder, consider that the views, by default, echo out model data
using the CHtml: :encode () method. This is a logical and necessary security

325

CHAPTER 13. USING EXTENSIONS

feature, as it prevents cross-site scripting attacks (XSS). However, it also makes the
CKEditor-generated HTML completely useless. Therefore, whenever you use a
WYSIWYG editor for site content, be certain to change the corresponding view file
(that displays the content) so that it does not use CHtm1: :encode () for the HTML
content.

To still have some security measures in place, and to make sure that the administrator
does not do anything to mess up the site’s presentation, you can apply PHP’s
strip_tags () function to submitted content. This function has an optional second
argument wherein you can specify the allowed tags:

protected/views/page/view.php

<?php echo strip_tags ($model->content,
'<p><a><div>"');

2>

326

Chapter 14

JAVASCRIPT AND JOUERY

I've been very fortunate in my career in many regards, including this one: the first
two languages I learned as a professional were PHP and JavaScript (I forget in which
order). That was in 1999, and while there are plenty of dynamic Web sites built
today that don’t use PHP, there are very, very few that don’t make use of JavaScript.
I wouldn’t go so far as to say that if you were to learn only one Web development
language, it should be JavaScript, but I can definitively say that you need to learn at
least two, and one must be JavaScript.

As Yii is used to create dynamic Web sites, being able to apply JavaScript to a Yii-
based site is a critical skill. That is exactly the goal of this chapter, covering the three
core concepts:

¢ Adding raw JavaScript to a page (as opposed to jQuery)
¢ Using jQuery on a page
¢ Implementing Ajax

And, at the end of the chapter, I'll explain how to implement a couple of common
needs.

Note that this chapter does assume comfort with JavaScript and jQuery. It’s just
impossible to try to teach either the JavaScript language or the jQuery JavaScript
framework in this book, let alone in this chapter. If you aren’t already comfortable
with JavaScript, might I (selfishly) suggest you read my “Modern JavaScript: De-
velop and Design” book, which teaches JavaScript for beginners, and introduces the
jQuery library.

What You Must Know

Despite the fact that I just said you need to know JavaScript and jQuery in order
to make the most of this chapter, history would suggest some of you will continue

327

http://amzn.to/wsdmkq
http://amzn.to/wsdmkq

CHAPTER 14. JAVASCRIPT AND JQUERY

through this chapter regardless. As a precaution, I want to start with a few fun-
damentals of JavaScript, jQuery, and Yii that everyone needs to understand and
appreciate.

First, jQuery is JavaScript. This should be obvious, but some don’t appreciate the
significance of this fact. When you’re programming in jQuery, you're actually pro-
gramming in JavaScript (just as when you're using Yii, you're programming in PHP).
jQuery is extremely reliable and easy to use, which has a negative consequence:
many people will implement jQuery without actually knowing JavaScript. That, to
me, is a problem. Before attempting to use jQuery, learn JavaScript, because jQuery
is JavaScript!

Second, you will inevitably have issues due to how browsers load the Document Object
Model (DOM). Trust me on this one. The DOM provides a way for browsers to
represent and interact with elements in a Web page. But a browser does not have
access to any page element until it has loaded every page element. I'm simplifying
this discussion some; but programming as if that last sentence is exactly the case
is most foolproof. This trips up JavaScript programmers that attempt to make
immediate reference to DOM elements. The solution is to only reference DOM
elements when the window’s contents have been loaded, or when jQuery’s “ready”
event has occurred. If you know JavaScript, you know what I'm talking about, but
I'm reminding you of this issue here as you'll inevitably make this common mistake

in your Yii sites, too.

Third, identify, install, and familiarize yourself with some good JavaScript debugging tools.
As JavaScript runs in the browser, you’ll need to use your browser debugging tools
to identify and fix any problems. Again, if you know JavaScript, you know this
already.

Adding JavaScript to a Page

The first thing you'll need to know to use JavaScript and jQuery in Yii is how to add
JavaScript to a Web page. As with any standard Web page, there are two primary
options:

¢ Link to an external file that contains the JavaScript code
¢ Place the JavaScript code directly in the page using SCRIPT tags

Just as I assume you're already comfortable with JavaScript, I'll also assume you
know the arguments for and against both approaches. (Technically, there’s a third
option: place the JavaScript inline within an HTML tag. This is not a recommended
approach in modern Web sites, however, and I won’t demonstrate it here.)

328

CHAPTER 14. JAVASCRIPT AND JQUERY

Linking to JavaScript Files
External JavaScript files are linked to a page using the SCRIPT tag;:

<script src="/path/to/file.js"></script>

The contemporary approach is to link external files at the end of the HTML BODY,
although some JavaScript libraries must be included in the HEAD.

If you need to include a JavaScript file on every page of your site, an option is to
just add the reference to your layout file:

<script src="<?php echo Yii::app()->request—->baseUrl;
?>/path/to/file. js"></script>

Do be certain to use an absolute reference to the file, for reasons explained in Chapter
6, “Working with Views.”

Alternatively, you can use Yii's CHtml: : scriptFile () method to create the entire
HTML tag:

<?php echo CHtml::scriptFile(Yii::app () -—>request—>baseUrl
'/path/to/file.js");
?>

The end result is the same.

Sometimes, you'll have external JavaScript files that should only be included on
specific pages. In theory, you could just add the appropriate SCRIPT tag to the
corresponding view files, but that’s less than ideal for a couple of reasons. For one,
the final page will end up with SCRIPT tags in the middle of the page BODY, which
is sloppy. Another reasons why you don’t want to take this approach is that it gives
you no vehicle for putting the script in the HTML HEAD, should that be necessary.

The better way to add external files to a page from within the view file is to use Yii’s
“clientScript” component, and its registerScriptFile () method in particular:

protected/views/foo/bar.php
<?php Yii::app()->clientScript
—->registerScriptFile('/path/to/file.js"); 2>

The “clientScript” application component manages JavaScript and CSS resources
used by a site. By calling that line anywhere in a view file (or a controller), Yii will
automatically include a link to the named JavaScript file in the complete rendered
HTML. Further, if, for whatever reason, you register the same JavaScript file more
than once, Yii will still only create a single SCRIPT tag for that file.

329

CHAPTER 14. JAVASCRIPT AND JQUERY

By default, Yii will link the registered script in the HTML HEAD. To change the
destination, add a second argument to registerScriptFile (). This argument
should be a constant that indicates the proper position in the HTML page for the
JavaScript file reference:

® CClientScript::POS_HEAD, in the HEAD before the TITLE (the default)
® CClientScript::POS_BEGIN, at the beginning of the BODY
® CClientScript::POS_END, at the end of the BODY

To have the SCRIPT tag added at the end of the body, you would do this:

protected/views/foo/bar.php

<?php Yii::app()->clientScript
->registerScriptFile ('/path/to/file.js"',
CClientScript::POS_END); ?>

Linking jQuery

The previous section explained how to link external JavaScript files from a Web page.
There’s a subset of external JavaScript files that are treated differently, however. I'm
referring to JavaScript files that come with the Yii framework, such as the jQuery
library.

To incorporate jQuery into a Web page, invoke the registerCoreScript ()
method, providing it with the value “jquery”:

<?php Yii::app()->clientScript->registerCoreScript ('jquery');

That line results in the jQuery library being linked to the page via a SCRIPT tag
(Figure 14.1).

<link rel="stylesheet" type="text/css" href="/yii-test/css/main.css" />
<link rel="stylesheet" type="text/css" href="/yii-test/css/Torm.css" />

=s5cript type="text/javascript" src="/yii-test/assets/B479529c/jquery.js"==/script>

=title=My Web Application=/title=
=/head=

Figure 14.1: The resulting link to the jQuery library.

As you can see in the figure, the jQuery library is referenced within the Web direc-
tory’s assets folder. Copies of the library will be placed in that folder by Yii’s assets
manager.

By default, registerCoreScript () will place SCRIPT tags within the HTML
HEAD (as in Figure 14.1). To have Yii place the tags elsewhere, change the
coreScriptPosition attribute value to one of the constants already named:

330

?>

CHAPTER 14. JAVASCRIPT AND JQUERY

<?php

Yii::app () —->clientScript->coreScriptPosition =
CClientScript: :POS_END;

Yii::app()->clientScript->registerCoreScript (' jquery');

?>

You can also globally change this setting in your primary configuration file (by
assigning a value to the “coreScriptPosition” index of the “clientScript” component).

Some pages, like those that use certain widgets or that have Ajax form validation
enabled, will already include jQuery. Fortunately, you don’t have to worry about
possible duplication, as the Yii assets manager will only incorporate the library once.

If you're curious as to what other core scripts are available, check out the web/js/-
packages.php file found in your Yii framework directory. As of this writing, some
of the core scripts are:

* jquery

* vyii, a Yii extension of the jQuery library

¢ yiiactiveform, which provides code for client-side form validation
® jquery.ui

* cookie, for cookie management

history, for client-side history management

This means, for example, to incorporate the jQuery User Interface library, you would
do this:

<?php
Yii::app () —>clientScript->registerCoreScript (' jquery.ui');
?>

For all of the options, and details on the associated scripts, see the web/js/sources
directory (within the Yii framework folder).

Adding JavaScript Code

When you have short snippets of JavaScript code, or when the code only pertains
to a single file, it’s common to write that code directly between the HTML SCRIPT
tags. Again, you could do this in your view files:

<script>

/+ Actual JavaScript code. x*/
</script>

331

10

11

12

13

14

15

CHAPTER 14. JAVASCRIPT AND JQUERY

You could also use the Yii CHtml: : script () method to create the SCRIPT tag for
you:

<?php echo CHtml::script('/* Actual JavaScript code. */'); ?>

You could add SCRIPT tags in either of those ways, but there’s a better approach: the
“clientScript” component’s registerScript () method. This is the companion to
registerScriptFile (), butinstead of linking to an external JavaScript file, it’s
used to add JavaScript code directly to the page.

The method’s first argument is a unique identifier you should give to the code
snippet. The second is the JavaScript code itself. This code is generated by Gii on
the “admin” view pages:

protected/views/page/admin.php

<?php

Yii::app () —->clientScript->registerScript ('search', "

S('.search-button') .click (function () {
S('.search-form') .toggle () ;

return false;

S('.search—-form form') .submit (function () {
S.fn.yiiGridView.update ('post—-grid', {
data: $(this).serialize()

)

return false;

The first bit of JavaScript (lines 4-7), shows and hides the advanced search form that
can appear above the grid. The form’s visibility is toggled when the user clicks on
the search button. The second bit (lines 8-13) invokes the yiiGridview.update ()
method when the search form is submitted. Both sections use jQuery.

As you can see in that example, the combination of PHP and JavaScript can easily
lead to syntax errors. You should use one set of quotation types to encapsulate the
JavaScript (passed to registerScript ()) and another type within the JavaScript.
Also be certain to terminate JavaScript commands with semicolons, and terminate
the PHP command, too. If the JavaScript you write doesn’t work, start by confirming
that the resulting JavaScript code (in the browser’s source) is syntactically correct.

One of the benefits of providing a unique identifier is that the “clientScript” com-
ponent will manage the code bits so that even if the same code (by identifier) is
registered multiple times, it will still only be placed on the page once.

As with registerScriptFile (), registerScript () takes a final argument
to indicate where, in the HTML page, the JavaScript should be added:

332

CHAPTER 14. JAVASCRIPT AND JQUERY

e CClientScript::POS_HEAD, in the HEAD before the TITLE (the default)
® CClientScript::POS_BEGIN, at the beginning of the BODY.

® CClientScript::POS_END, at the end of the BODY.

® CClientScript::POS_LOAD, within a window.onload event handler

® CClientScript::POS_READY, within a jQuery “ready” event handler

The two additional options are necessary because of the way the browser loads the
DOM. If you are using jQuery and you want to execute some JavaScript when the
document is ready, use CClientScript: : POS_READY. It’s slightly faster than the
standard JavaScript window.onload option. If you're not using jQuery, then use
CClientScript::POS_LOAD.

Using JavaScript with CActiveForm

One of the absolutely most critical uses of JavaScript in today’s Web sites is for form
validation. This is no less true when using Yii, although Yii can do much of the work
for you, as is the case with so many things. Let’s quickly look at how JavaScript is
used with forms in Yii, specifically when using the CActiveForm widget.

Client-Side Validation

When you create a new CAct iveForm widget instance, you can configure how it
behaves, as is the case with most widgets. Configuration is performed by passing
an array of name=>value pairs as the second argument to the beginWidget ()
method (see Chapter 12, “Working with Widgets”).

To enable client-side JavaScript form validation, set the “enableClientValidation”
property to true:

protected/views/page/_form.php

<?php $form=$this->beginWidget ('CActiveForm', array (
'id'=>"'page-form',
'enableClientValidation'=>true,

)); 2>

By setting this property to true, Yii will add the appropriate JavaScript to the page
to perform client-side validation. The validation will use the same rules as defined
in the associated model, assuming that the validator is supported on the JavaScript
side. At the time of this writing, all of these validators can also be used on the client
side:

® CBooleanValidator

333

CHAPTER 14. JAVASCRIPT AND JQUERY

® CCaptchaValidator

® CCompareValidator

® CEmailValidator

® CNumberValidator

® CRangeValidator

® CRegularExpressionValidator
® CRequiredValidator

® CStringValidator

® CUrlvalidator

To be perfectly clear, this means that if you have an email attribute in a model
that’s associated with an “email” form input and that has an “email” validator in
the model’s rules, that validation can be performed client-side, too. On the other
hand, attributes that have the “default”, “date”, “exist”, and other validators not
listed above applied to them cannot be validated in the client.

{TIP} You may not be able to see, or appreciate, the effects of client-side
validation until you configure the “clientOptions” as well. I'll explain
those in just a couple of pages.

Not only will your existing model validation rules be used when you enable client-
side validation, but so will the existing error messages for reporting problems. If
you customize an error message in a validation rule, the client-side validation will
use that when the data does not pass.

If the user does not have JavaScript enabled, then client-side validation cannot
occur (of course). In those cases, the server-side validation will still be used (in the
controller that handles the form submission). In fact, for security purposes, your
controllers should always be written to perform server-side validation. Client-side
validation is a convenience to the user; not a security technique.

{WARNING/} Always use server-side validation!

Ajax Validation

Another way to validate a form using JavaScript is via Ajax. Ajax validation makes
an actual request of the server to validate the form data. For this reason, Ajax
validation can be used to validate form elements that cannot be validated via client-
side JavaScript alone, such as:

¢ The availability of a username
¢ Confirming that a value exists in a related table
¢ If a value is unique in the database

334

CHAPTER 14. JAVASCRIPT AND JQUERY

There are limits to Ajax validation, however. First, Ajax cannot validate uploaded
files. This is a restriction on Ajax in general, not in Yii. Second, Ajax in Yii cannot
validate “tabular” data: multiple records of data at a single time.

To enable Ajax validation, set “enableAjaxValidation” to true when configuring the
CActiveForm widget:

protected/views/page/_form.php

<?php $form=$this->beginWidget ('CActiveForm', array (
'id'=>'page-form',
'enableAjaxValidation'=>true,

)) i ?>

{TIP} You may not be able to see, or appreciate, the effects of Ajax
validation until you configure the “clientOptions” as well. I'll explain
those in just a couple of pages.

There are two sides to Ajax, of course: the client-side JavaScript and the server-side
code that handles the JavaScript request. For the Ajax validation to work, you must
create the appropriate server-side code, too. That is easily done, though, and Yii
provides a template for you:

protected/controllers/PageController.php
public function actionCreate () {
Smodel=new Page;
if (isset ($_POST['ajax'])
&& $_POST['ajax']==='page—-form') {
echo CActiveForm::validate ($Smodel) ;
Yii::app()—->end();
}
// Rest of the action.

The code first checks if $_POST[’ajax’] is set and if it has the value of “mod-
elName-form”. If so, the controller prints out the result returned by calling the
CActiveForm: :validate () method. The validate () method returns the re-

sults as JSON data (Figure 14.2), so that’s what the JavaScript in the browser will
receive.

Next, the code terminates the application so that nothing else will be sent back to
the JavaScript that made the Ajax request.

In the code created by Gii, this same process is handled slightly differently. Gii
creates a controller method that performs the Ajax validation:

335

CHAPTER 14. JAVASCRIPT AND JQUERY

1"User username":["Username cannot be blank."],"User email":["Email
cannot be blank."],"User pass":["Password cannot be
blank."],"User acceptTerms":["Y ou must accept the terms to register.” |}

Figure 14.2: The [SON reporting for the validation of a user.

protected/controllers/UserController.php
protected function performAjaxValidation (Smodel) ({
if (isset ($_POST['ajax'])
&& $_POST['ajax']==='page-form') {
echo CActiveForm: :validate (Smodel) ;
Yii::app()—->end();

Then both the “create” and “update” actions can make use of that method:

protected/controllers/PageController.php
// Uncomment the following line if AJAX validation is needed
// S$this->performAjaxValidation ($Smodel) ;

The end result is the same as if that validation code were in the individual action
methods, however.

Setting clientOptions

The third configuration option when working with CAct iveForm with which you
should be familiar is “clientOptions”. This is an array of values that can be used to
further customize the JavaScript validation:

protected/views/page/_form.php
<?php $form=$this->beginWidget ('CActiveForm', array (
'id'=>'page-form',
'enableClientValidation'=>true,
'clientOptions'=>array (
/+ name=>value palrs x/

) ?>

For example, you can identify a different URL to use for validation purposes by
assigning a value to “validationURL” (by default, the validation URL is the same as
the form’s “action” attribute). Or you can change when validation is performed. By

336

CHAPTER 14. JAVASCRIPT AND JQUERY

default, validation is performed when any form element’s value changes, but you
can set the validation to occur upon submission instead:

protected/views/page/_form.php
<?php $form=$this->beginWidget ('CActiveForm', array (
'id'=>'"'page-form',
'enableClientValidation'=>true,
'clientOptions'=>array (
'validateOnSubmit '=>true,
'validateOnChange'=>false,

)) i ?>

As another example, you can change the CSS classes associated with validation by
changing the corresponding property:

* errorCssClass, which styles the container in which the error occurred
(defaults to “error”)

® successCssClass

* errorMessageCssClass, which styles the error message itself (defaults to
“errorMessage”)

For all the possibilities, see the CActiveForm::clientOptions documentation in the
Yii APL. Note that these settings can impact both types of client-side validation: only
JavaScript or also Ajax.

Implementing Ajax

Ajax is one of the reasons why JavaScript is so critical to today’s Web sites. Ajax
has been around for more than a decade now, and the features Ajax can add to a
Web site are pretty much expected by most users anymore (whether they know it or
not). I've already mentioned Ajax once in this chapter (for validation purposes), and
assume you do know the fundamentals of this vital technology. But let’s quickly
look at a couple more ways to implement Ajax in a Yii-based site.

Ajax in Controllers

Ajax blends the two sides of Web development: the client-side (aka, the browser)
and the server-side. When developing Ajax processes, I like to start on the server-
side of things so that I know what to do and expect on the client-side. (Also, I'm a
server-side developer first.)

337

http://www.yiiframework.com/doc/api/1.1/CActiveForm#clientOptions-detail

CHAPTER 14. JAVASCRIPT AND JQUERY

Server-side Ajax resources in Yii are represented as controller actions, just like
regular Web pages. But there are a few major differences between an Ajax action
and a standard one. The first key difference is that an Ajax response is almost always
made up of the most minimal amount of data:

¢ Short, plain text

* A snippet of HTML

¢ More complex data as JSON
¢ More complex data as XML

For this reason, Ajax controller actions almost never use the render () method to
create the output. Instead, there are two common approaches:

1. Directly print the desired output from the controller
2. Use renderPartial () tohave a view represent the output (but without the
primary layout file)

{NOTE} In Chapter 16, “Leaving the Browser,” I may present a situation
in which you would use render () : You could output XML, with the
primary layout file representing the beginning and end of the XML
document.

Ajax actions are also different in that they’re not meant to be accessed directly by
users in the browser. It's not a big deal, normally, but at the very least, the user will
have an unappealing, if not confusing, experience if she ends up directly requesting
an Ajax resource. There are a couple of ways in Yii that you can limit access to an
action to an Ajax request. One option is to set a filter:

protected/controllers/SomeController.php
public function filters() {
return array (
'ajaxOnly + ajaxActionId’
)i

Just replace ajaxActionld with the actual ID value(s) of the action(s) that must be
used via Ajax. Non-Ajax requests of the named action(s) will result in 400 (Bad
Request) exceptions being thrown.

Some actions are written to be accessed via Ajax and non-Ajax alike, reacting slightly
differently in each case. The “create” and “update” actions generated by Gii are
examples. In such situations, you can test if an Ajax request is being made via the
“request” application component:

338

CHAPTER 14. JAVASCRIPT AND JQUERY

protected/controllers/SomeController.php
public function actionSomething () {
// React different based upon Ajax request status:
if (Yii::app()-—->request->isAjaxRequest) {
// Do things this way.
} else {
// Do things this other way.

In situations where the same action may be used by Ajax and non-Ajax requests,
for the Ajax portion, you'll also need to invoke the application’s end () method to
terminate the output immediately. This prevents the non-Ajax output from being
added to the result. Here’s an example of what I mean:

protected/controllers/PageController.php
public function actionCreate() {
Smodel=new Page;
if(isset ($_POST['ajax'])
&& $_POST['ajax']==='page-form') {
echo CActiveForm: :validate (Smodel) ;
Yii::app()->end();
}
// Rest of the action.
// Including rendering the form.

The last thing to keep in mind with Ajax processes is to set the proper controller
permissions. It’s not obvious to many developers, but when an Ajax request is
performed, it’s as if the user himself requested the resource directly. In other words,
an Ajax request made from a user’s browser is still being made by that user. This
means that Yii’s permissions apply to Ajax requests just the same as they do to other
requests. Keep this in mind when creating actions and setting permissions.

As a rule of thumb, if the “foo” page makes an Ajax request of the “bar” action, then,
logically, both “foo” and “bar” need to have the same permissions in the controller.
Still, very rarely will an Ajax action need protection at all, so you can normally
make them publicly accessible. Do so if you’d rather not run the risk of having Ajax
request failures due to permission issues.

Another approach for the Ajax permissions is to create a controller explicitly for
all Ajax requests. That controller would have open permissions, like the “site”
controller does. I'll demonstrate that concept next.

339

CHAPTER 14. JAVASCRIPT AND JQUERY

Sample Ajax Actions

In order to test Ajax processes, at least within the confines of this book, it may help
to have a couple of test Ajax processes that can be used for experimentation. To be
clear, I'm talking about making sample PHP resources that client-side JavaScript
can request. To do so, let’s create a new controller for this purpose:

protected/controllers/AjaxController.php
<?php
class AjaxController extends Controller {

}
Within that controller, I'll define three actions:

* One that returns (or prints) a simple string
¢ One that returns some HTML
* One that returns dynamic HTML (in theory)

In just a few pages, I'll add another action that returns data in JSON format. Note
that all of these actions as defined will be rather static, but they are all easy enough
to update to being truly dynamic in a real-world site. Also, there are no filters in
this controller, such as the access control filter, so every action will be executable by
any user. The “ajaxOnly” filter is not used either, so you can test these directly in
your browser.

The first action only returns a simple text message:

protected/controllers/AjaxController.php
public function actionSimple () {
echo 'true';

This simple action might be used to verify that an username is available or that an
email address has not yet been registered. In a real-world site, the action would
perform the necessary logic, and then print “true” or “false” accordingly. Note that
the Ajax action must print strings, not Booleans.

Next, there’s an action that returns a bit of HTML. The premise is the same, but the
text is actually HTML:

protected/controllers/AjaxController.php
public function actionHtml () {
echo '<p>Lorem ipsum dolor...</p>';

340

CHAPTER 14. JAVASCRIPT AND JQUERY

Finally, the third action returns more dynamic HTML, using a variable and a view
file:

protected/controllers/AjaxController.php
public function actionDynamicHtml () {
// Dynamic data:
Sdata = array (
'title'=>"'Dynamic!"',
'content '=>'<p>Lorem ipsum dolor...</p>'
)i
// Render the page:
$this->renderPartial ('dynamic', array('data'=>S$data));

Obviously, in the real-world, the data itself might be pulled from the database.
The view file looks like this:

protected/view/ajax/dynamic.php
<?php

/* @var Sthis AjaxController x/
/* @var Sdata array #*/

?>
<article>
<h3><?php echo $data['title']; ?></h3>
<div><?php echo $data['content']; ?></div>
</article>

The received $data array’s pieces are placed within a context of HTML (Figure
14.3). Changing the data values in the controller therefore changes the output.

Now that three sample Ajax processes have been defined, you can test them in your
browser by going to:

* ajax/simple
¢ ajax/html
¢ ajax/dynamicHtml

{TIP} 1 always recommend testing server-side Ajax resources directly
tirst, to confirm they are working, before connecting them to the
JavaScript.

Once you have those working as you would hope, it’s time to turn to the JavaScript.
There are four ways you can perform an Ajax request using Yii:

341

CHAPTER 14. JAVASCRIPT AND JQUERY

® 00 cms/index.php/ajax/

> [+][L][@8][6 cms

Dynamic!

Lorem ipsum delor sit amet, consectetur adipisicing elit, sed do e
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullam
aute irure dolor in reprehenderit in voluptate velit esse cillum dolc
cupidatat non proident, sunt in culpa qui officia deserunt mollit an

Figure 14.3: The “dynamic” HTML response.

¢ Via an immediate Ajax request

Via a link

Via a button

¢ By tying an Ajax request to another DOM element

I'll explain all three, saving the last example for later in the chapter.

Making Direct Ajax Calls

To start, let’s look at how to make a direct and immediate Ajax call. This is ac-
complished via the CHtml: :ajax () method. It takes one argument: an array of
options. As soon as this method is invoked, the Ajax request is begun. In my expe-
rience, one does not frequently use this approach (as opposed to an Ajax request
triggered by a user action), but as this method is the foundation for the alternatives,
I'll begin with it.

The syntax is:

protected/views/foo/bar.php
<?php echo CHtml::ajax (/* options #*/); ?>

That method call creates the JavaScript required to perform an Ajax request. The
JavaScript itself uses the jQuery ajax () method. For the options, you can start
with the possible settings outlined for the jQuery ajax () method in the jQuery
documentation. If you do Ajax in Yii (using jQuery), you absolutely must familiarize
yourself with jQuery’s Ajax options.

The most important of the configuration options are:

342

http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.ajax/

CHAPTER 14. JAVASCRIPT AND JQUERY

e “data”, which is data to be sent as part of the request

* “dataType”, the type of data expected in return (“text”, “html”, “json”, etc.)
¢ “url”, the URL to request

* “type”, the request, or method, type (i.e., “get” or “post”)

* “success”, the JavaScript function to call upon a successful request being made

Here is how you might perform an Ajax request of the “simple” controller action:

protected/views/foo/bar.php
<?php echo CHtml::ajax (array (
'dataType' => 'text',

'url' => Yii::app()->createUrl ('ajax/simple'),
'type' => 'get',
'success' => 'function (result) {

alert (result) ;
}]

)); 2>

There are a couple of things to notice there. First, for the URL, use Yii to create a
proper URL (e.g., using createUrl ()). Not using an accurate URL is a common
cause of problems. Second, the “success” item takes a JavaScript function that will
be invoked when the request is successfully completed. This can be the name of an
existing JavaScript function, or an anonymous function as in the above. Per how
jQuery’s ajax () method works, this function can be written to take up to three
arguments, the first being the actual response.

That line of Yii code generates this output:

jQuery.ajax ({
'dataType': 'text',
'url':'/index.php/ajax/simple’,
'type':'get',
'success' :function(result) { alert (result); 1},
'cache':false,
'data':jQuery (this) .parents ("form") .serialize ()
1)

Understand that CHtml::ajax () only returns that code. In order for it to be
actually executed, it must be added to the page as JavaScript:

<?php echo CHtml::script (
CHtml::ajax (array (
'dataType' => 'text',
'url' => Yii::app()->createUrl ('ajax/simple'),

343

CHAPTER 14. JAVASCRIPT AND JQUERY

'type' => 'get',
'success' => 'function (result) {
alert (result) ;
}r
)) // ajax
); // script
?>

Now, when the page is loaded, the Ajax request will be made and the response
alerted. Merely change the URL being requested to get different responses (Figure
14.4).

http:/ fems

<p=Lorern ipsum dolor< [Sreng> Sit amet,
eantectetur adipisicing elit, 1ed do eiutrmad termpar
incididunt ut labere ef dolore magna aligua. Ut enim
ad minim weniam, guis <a href="wep:/ |

Wi B amiple oo > Aodtrud exercitation < i
ullameo labaris misi ut aliquip &x ea commodo
consequat. Duis aute irure dolar in reprehenderit in
voluprare velit asse cillum dolore eu fugiar mulla
pariatur. Exeepteur Sint occlecal cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim

id esn labarurm. < /g
ok |

Figure 14.4: The response from the HTML action.

Of course, you don’t want to just alert the Ajax response. Normally, you’ll update
the DOM in some way, perhaps based upon what the response was:

<?php echo CHtml::script (
CHtml::ajax (array (
'dataType' => 'text',

'url' => Yii::app()->createUrl ('ajax/simple'),
'type' => 'get',
'success' => 'function (result) {
if (result === "true") {
S ("#response") .text ("The username is available.");
} else {
S ("#response") .text ("The username has been taken.");
}
K
)) // ajax

344

CHAPTER 14. JAVASCRIPT AND JQUERY

); // script
?>

(A quick reminder: I assume you’re comfortable with JavaScript and jQuery. If not,
learn them now!)

Or, you may add the response itself to the page:

<?php echo CHtml::script (
CHtml: :ajax (array (
'dataType' => 'text',
'url' => Yii::app()->createUrl ('ajax/html'),
'type' => 'get',
'success' => 'function (result) {
S ("#destination") .html (result);
}r
)) // ajax
); // script

When you’re doing a simple update of the page using the result, Yii has created a
shortcut for you. Assign the jQuery selector (the element(s) being updated with the
result) to the “update” index. This is the equivalent to the above:

<?php echo CHtml::script (
CHtml: :ajax (array (
'dataType' => 'text',

'url' => Yii::app()->createUrl('ajax/html'),
'type' => 'get',
'update' => 'f#destination'

)) // ajax

); // script

Again, that code is the same as the previous example. jQuery is used to select
the element with an ID value of “destination”, and the jQuery html () method is
invoked upon that selection, which replaces its HTML content with the new content
provided.

{TIP} Yii also has a “replace” option, which is used like “update”, but
invokes the jQuery replaceWith () method instead of html ().

Understand that if you use the jQuery “success” option, then any “update” or
“replace” value will be ignored.

345

CHAPTER 14. JAVASCRIPT AND JQUERY

Links and Buttons

Generally speaking, you won’t want to use CHtml: :ajax () itself very often. But
you need to understand the a jax () method in order to use two Yii methods that
make use of the same jQuery ajax ():

® CHtml::ajaxLink ()
® CHtml::ajaxButton ()

The only difference in the two is that one creates a link and the other creates a button.
Both, when clicked, will perform the Ajax request. The arguments to both methods
are essentially the same (Figure 14.5).

ajaxButton() method

public static string ajaxButton(string $label, mixed $url, array $ajaxOptions=array
{)}, array $htmlOptions=array (})

$label string the button label

Surl mixed the URL for the AJAX request. If emptly, it is assumed to be the cument URL. See
normalizeUr for more details

$ajaxOptions aray AJAX options (see ajax)

$htm|Options aray additional HTML attributes. Besides normal HTML attributes, a few special attributes

are also recognized (see clientChange and tag for more details.)

{return} string the generated button
Figure 14.5: The description of the a jaxButton () method.

Unlike ajax (), the URL to request is the second argument. The third argument to
both methods is how you set any of the other jQuery ajax () settings, plus the two
additional Yii options: “update” and “replace”. Here’s an example:

protected/views/foo/bar.php
<div id="destination"></div>
<?php echo CHtml::ajaxButton ('Get Content',
Yii::app () —>createUrl ('ajax/dynamicHtml'"),
array (

'dataType' => 'html',

'type' => 'get',

'update' => '#destination'

) // ajax
); // script
?>

Figures 14.6 and 14.7 show this in action. (Well, in printed, not live, action.)
Also notice that this method can be called on its own directly, not fed to
CHtml::script ().

346

CHAPTER 14. JAVASCRIPT AND JQUERY

Testing Ajax

Get Content

Figure 14.6: The page when the user first sees it.

Testing Ajax
Dynamic!

Lorem ipsum dolor sit amet, consectetur at
ullamco laboris nisi ut aliquip ex ea commot
cupidatat non proident, sunt in culpa qui off

| Get Content |

Figure 14.7: The same page after the user has clicked the button.

347

CHAPTER 14. JAVASCRIPT AND JQUERY

Working with JSON

The three Ajax controller actions defined offer a range of possibilities, but there’s
one more example to implement. When you need to return more complex data from
the server to the client, plain-text and HTML formats are insufficient. Originally,
eXtensible Markup Language (XML) was used as the data format (“Ajax” either is
or is not an acronym for “Asynchronous JavaScript and XML”, depending upon
whom you ask). These days, JSON (JavaScript Object Notation) is the norm. The
JSON format is compact, resulting in faster response times, and readily usable by
JavaScript in the client.

The downside to JSON is that its syntax is particular and can be difficult to get right.
Fortunately, Yii has the CJSON class, and its encode () method, for creating JSON
data. You can feed it almost any data type and it will output proper JSON. Let’s add
another demo action to the “ajax” controller:

{NOTE} CJSON is one of the rare classes in Yii whose name is entirely in
uppercase letters.

protected/controllers/AjaxController.php
public function actiondson () {
Sdata = array (
'title'=>'Dynamic!"',
'content'=>'<p>Lorem ipsum dolor...</p>'
)i
echo CJSON: :encode ($data) ;

And here’s how that might be used in the view file:

<h3 id="updateTitle"></h3>
<div id="updateContent"></div>

<?php echo CHtml::ajaxButton ('Get Content',
Yii::app()—->createUrl ('ajax/json'), array (
'dataType' => 'json',
'type' => 'get',
'success' => 'function (result) {
$("#updateTitle") .html (result.title);
S ("#updateContent") .html (result.content);
}r
) // ajax
); // script
?>

Figures 14.8 and 14.9 show this in action.

348

CHAPTER 14. JAVASCRIPT AND JQUERY

Testing Ajax

Get Content

Figure 14.8: The page when the user first sees it.

Testing Ajax
Dynamic!

Lorem ipsum dolor sit amet, consactetur adipi
ullameco laboris nisi ut aliguip ex ea Commcao |
cupidatat non proident, sunt in culpa qui officia

Get Content

Figure 14.9: The same page after the user has clicked the button.

Common Needs

To wrap up this chapter, I'll cover a few common needs and points of confusion
when it comes to JavaScript and jQuery in Yii. As with the entire book, if you're still
confused or curious about an issue after completing this chapter, let me know, and
I'll see about addressing it in another release of the book or online.

Setting Focus

If you want to set the focus on a particular form element (e.g., have the user’s cursor
begin in that element), there are a couple of options. The first is available if you're
using HTMLD5: set the “autofocus” property on the element. Here’s how that would
look in straight-up HTML:

<input type="email" name="email" autofocus>

When you're using Yii to create form elements, just add this as an additional HTML
attribute:

349

CHAPTER 14. JAVASCRIPT AND JQUERY

<?php echo $form->textField($model, 'attribute’,
array ('autofocus'=>'autofocus')); ?>

The HTML5 “autofocus” property is supported by most modern browsers, but not in
Internet Explorer until version 10. As a backup, you can also use JavaScript to set the
focus. This is done by configuring the CAct iveForm widget’s focus property. You
can assign to this property a value in many different formats. Normally, the most
direct option is to set it to the element associated with a specific model attribute:

protected/views/site/login.php

<?php $form=$this->beginWidget ('CActiveForm', array (
'id'=>"'login-form',
'enableClientValidation'=>true,
'clientOptions'=>array (

'validateOnSubmit '=>true,

)
'focus'=>array ($model, 'username')

))i ?>

Other possible values for “focus” are listed in the documentation for the CActive-
Form.

Implementing Autocomplete

A common use of JavaScript and Ajax is autocomplete functionality. First popularized
as Google’s Suggest tool, autocomplete is now a Web standard, including in the Yii
class reference (Figure 14.10).

Thanks to the jQuery Ul autocomplete widget, and the Yii CdJuiAutoComplete
class (defined in the Zii extension), it’s pretty easy to implement autocomplete on
your Web site. As an example of this, let’s create the ability to autocomplete pages
in the CMS site by title (Figure 14.11).

To start, in the view file, create an instance of the CJuiAutoComplete widget:

<?php
$this—>widget ('zii.widgets.jui.CJuiAutoComplete', array (
'name'=>"'title',
"sourceUrl'=>Yii::app()->createUrl ('ajax/getPageTitles'),
'options'=>array (
'minLength'=>'2",
'type'=>'get',
'select'=>"js:function (event, ui)
S("#selectedTitle") .text (ui.item.value) ;

350

http://www.yiiframework.com/doc/api/1.1/CActiveForm#focus-detail
http://www.yiiframework.com/doc/api/1.1/CActiveForm#focus-detail
http://www.yiiframework.com/doc/api/
http://www.yiiframework.com/doc/api/

CHAPTER 14. JAVASCRIPT AND JQUERY

LOOK UP A CLASS, METHOD, PROPERTY OR EVENT
| autocomp

CluiAutoComplete
CAutoComplete.autoFill
CAutoComplete.cachelLength
CAutoComplete.clientOptions
CAutoComplete.cssFile

Figure 14.10: Autocomplete functionality in the Yii class reference.

T'esﬂ

Test Title
This is my Files Test

Figure 14.11: Autocompletion of page titles.

351

10

11

12

13

14

CHAPTER 14. JAVASCRIPT AND JQUERY

}l
)
)) i
?>

This widget will, by default, create a text input with the “name” value you provide
(line 3). When using dynamic data returned by an Ajax request, the “sourceUrl”
value needs to point to the controller action that will return the results (line 4).

The “options” is where you configure the jQuery Ul options, found in the jQuery
UI documentation for the autocomplete widget. In those options, I've set the
“minLength” to 2, so that no results are returned until at least 2 characters are
entered. I've also created a function that will be called when a selection is made
from the list of options (lines 8-10). Let’s look at that function in detail. ..

The anonymous function takes two arguments: an event and an object. This object
is conventionally, in jQuery U]I, called “ui”, and its item property will represent
the selected item. To make it obvious which value was selected, a SPAN is updated
upon selection.

If you're paying close attention, you'll notice that this function definition is prefaced
with “js:”. This is required by Yii (in some situations). The need for this preface is
that Yii will often escape values to prevent them from being executed code, which
could be insecure. Thus, if you were to write function (event, ui) {... in
the above code, it wouldn’t result in a usable JavaScript function. The fix is to
preface the function definition with “js:” to tell Yii that this is proper JavaScript, not
to be escaped (i.e., creating some executable JavaScript code is your intent).

With the widget in place in the view, it’s time to create the controller action that
provides the source data for the widget. Per the widget configuration, the source
URL is “ajax/getPageTitles”, which means that there needs to be a “getPageTitles”
action in the “ajax” controller. This action should use the submitted term-what the
user typed—and return an array of values in JSON format:

public function actionGetPageTitles () {
$q = 'SELECT id, title AS value FROM page
WHERE title LIKE ?';
Scmd = Yii::app () ->db->createCommand($q) ;
Sresult = Scmd->query(array('$' . S_GET['term'] . '$'));
Sdata = array();
foreach (Sresult as S$Srow) {
Sdatal[] = Srow;
}
echo CJSON: :encode ($data) ;
Yii::app () —>end();

352

http://api.jqueryui.com/autocomplete/
http://api.jqueryui.com/autocomplete/

CHAPTER 14. JAVASCRIPT AND JQUERY

The specific query is supposed to fetch the page ID and title for every page whose
title is similar to the provided input. To accomplish that, I'm using Data Access
Objects (DAO), explained in Chapter 8, “Working with Databases.” I've chosen
to make the LIKE condition extremely flexible (i.e., LIKE %$term$), but you could
change it to just LIKE term% to be less so. The jQuery autocomplete widget will
provided what the user typed as “term”, so that’s available in $_GET [’ term’].

Finally, notice that I've chosen to select the page title aliased (in the query) as
“value”. This makes it easy to use in the generated drop-down list of autocomplete
matches. This is also why the “select” JavaScript function in the widget refers to
ui.item.value. If the page titles were selected as “title”, you would also have to
configure how the matches are rendered by jQuery UL

And that’s enough to implement autocomplete in a Yii-based site. To properly use
the selected value, just change the contents of the “select” function to suit your
needs.

If you have any problems in implementing this, begin by confirming the results
of your Ajax request, as that’s the most likely cause of problems. Also familiarize
yourself with the jQuery UI autocomplete widget, as the CJuiAutoComplete class
is just a wrapper to it.

Using the clientChange Options

The last topic I want to discuss has a broad range of influence. Many of the methods
in CHtml that create form elements, take an “htmlOptions” parameter. This is an
array of name=>value pairs that can configure the resulting element’s HTML. For
example, you can use “htmlOptions” to apply a class to an element or size a text
area. Along with the expected HTML attributes that you can configure through
“htmlOptions”, there are also “clientChange” options.

The “clientChange” options stem from the CHtml: :clientChange () method,
which is used to create JavaScript to be associated with changes in the browser.
For example, there’s a “confirm” “clientChange” option which allows you to add a
JavaScript confirmation window to a form element:

protected/views/foo/bar.php
<?php echo CHtml::submitButton ($model->isNewRecord ?
'Create' : 'Save',
array (
'confirm'=>"'Are you sure?'

)

) ?>

In fact, the CGridview widget uses this same functionality to confirm the deletion
of records.

353

CHAPTER 14. JAVASCRIPT AND JQUERY

Another useful “clientChange” option is “ajax”. If you create a form element with
an “htmlOption” of “ajax”, you'll tie changes in that form element to an Ajax request
(using the jQuery ajax () method already explained). Here, then, is how you could
validate that a username is available via Ajax (without applying Ajax validation to
the entire form):

protected/views/foo/bar.php

<?php echo $form->textField ($model, 'username', array (
'ajax' => array (
'dataType' => 'text',
'data'=> array ('username'=>"']Js:S$(this).val()"'),
'url' => Yii::app()->createUrl ('user/checkUsername'),
'type' => 'get',
'success' => 'function (result) {
if (result === "true") {
S ("#response") .text ("The username is available.");
} else {
S ("#response") .text ("The username has been taken.");
}
X
)
)); ?>

With that code in place, changes to the username text input results in an Ajax request
of the “checkUsername” action in the “user” controller. That action would receive
the entered value in $_GET [’ username’]. The action would then return just
“true” or “false” depending upon whether or not that username is available.

This ability to tie Ajax requests to specific form elements allows for tons of function-
ality, such as dependent dropdown lists, as explained in this Yii wiki article. Once
you understand the role that the “clientChange” option plays, the potential uses are
only limited to your needs and imagination.

354

http://www.yiiframework.com/wiki/24/

	Introduction
	Why Frameworks?
	Why Yii?
	What You'll Need
	About This Book
	Getting Help

	FUNDAMENTAL CONCEPTS
	Object-Oriented Programming
	The MVC Approach
	Using a Web Server
	Command Line Tools

	STARTING A NEW APPLICATION
	Downloading Yii
	Testing the Requirements
	Installing the Framework
	Building the Site Shell
	Testing the Site Shell

	A MANUAL FOR YOUR YII SITE
	The Site's Folders
	Referencing Files and Directories
	Yii Conventions
	How Yii Handles a Page Request

	INITIAL CUSTOMIZATIONS AND CODE GENERATIONS
	Enabling Debug Mode
	Moving the Protected Folder
	Basic Configurations
	Developing Your Site
	Generating Code with Gii

	WORKING WITH MODELS
	The Model Classes
	Establishing Rules
	Changing Labels
	Watching for Model Events
	Relating Models

	WORKING WITH VIEWS
	The View Structure
	Where Views are Referenced
	Layouts and Views
	Editing View Files
	Working with Layouts
	Alternative Content Presentation

	WORKING WITH CONTROLLERS
	Controller Basics
	Revisiting Views
	Making Use of Models
	Handling Forms
	Basic Access Control
	Understanding Routes
	Tapping Into Filters
	Showing Static Pages
	Exceptions

	WORKING WITH DATABASES
	Debugging Database Operations
	Database Options
	Using Active Record
	Using Query Builder
	Using Database Access Objects
	Choosing an Interface Option
	Common Challenges

	WORKING WITH FORMS
	Understanding Forms and MVC
	Creating Forms without Models
	Using CHtml
	Using ``Active'' Methods
	Using CActiveForm
	Using Form Builder
	Common Form Needs

	MAINTAINING STATE
	Cookies
	Sessions

	USER AUTHENTICATION AND AUTHORIZATION
	Fundamentals of Authentication
	Authentication Options
	The UserIdentity State
	Authorization
	Working with Flash Messages

	WORKING WITH WIDGETS
	Using Widgets
	Basic Yii Widgets
	Presenting Data
	The jQuery UI Widgets

	USING EXTENSIONS
	The Basics of Extensions
	The bootstrap Extension
	The giix Extension
	Validator Extensions
	Auto-Setting Timestamps
	Using a WYSIWYG Editor

	JAVASCRIPT AND JQUERY
	What You Must Know
	Adding JavaScript to a Page
	Using JavaScript with CActiveForm
	Implementing Ajax
	Common Needs

