Learning Yii Testing

Embrace 360-degree testing on your Yii 2 projects
using Codeception

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Yii Testing

Embrace 360-degree testing on your Yii 2 projects
using Codeception

Matteo Pescarin

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Yii Testing

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015
Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-227-7

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author Copy Editors
Matteo Pescarin Hiral Bhat
Tani Kothari
Reviewers Vikrant Phadke

Tristan Bendixen Sameen Siddiqui

Jesus Pena Cadena Trishla Singh

Mark Katkov Laxmi Subramanian

Samuel Liew

Project Coordinator
Commissioning Editor Suzanne Coutinho

Akram Hussain

Proofreaders
Acquisition Editors Stephen Copestake
James Jones Safis Editing
Greg Wild
Indexer
Content Development Editor Hemangini Bari
Rahul Nair

Production Coordinator

Technical Editor Komal Ramchandani
Taabish Khan

Cover Work
Komal Ramchandani

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Matteo Pescarin started his career as a filmsetter. He cofounded a digital agency
in 1998 with Emanuele Tozzato and became an expert in Flash in 2001, giving talks
and writing guides on it. He later decided to distance himself from closed source
technologies and committed himself to open standards and open source, joining the
Gentoo Channel Italia, an Italian-wide Linux User Group dedicated to the famous
distro. He became passionate about HTML and XML-related semantic technologies,
combining, once again, his passion for 2D graphics with programming.

Matteo moved to London, UK, in 2009 after getting a CS degree. While still working on
LAMP technologies, he started learning and specializing on the project management
and quality assurance side of work, where his major interests still lie.

During his spare time, Matteo pretends to be a world-renowned artist and a
formidable cook.

I'd like to thank everyone that in some way or the other supported
me. I'd also like to dedicate this book to my father, who helped me
the most.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Tristan Bendixen is currently studying to get a master's degree in software
engineering, having had programming as a passion most of his life. Throughout
the years, he has worked as a developer on fairly diverse projects, ranging from
commercial and corporate websites, over mobile phone apps, to regular
desktop applications.

He continues to work as a software developer during his studies, on paid projects
as well as some open source ones that he helps out with when time permits.

Jestas Peiia Cadena is a computer systems engineer who has loved computer
science since he was a kid. His first experience in software development was in high
school where he studied to be a computer technician. He fell in love with software
so much so that he decided to study his major in Universidad de la Sierra, which

is located in Moctezuma, Sonora, where he obtained the keys to grow himself and
became a proactive IT professional in the area of software development.

Over the last few years, he has been developing web applications, most of the

time working with PHP in the backend and with technologies such as HTMLS5,
JavaScript, and CSS in the frontend. His first job as an engineer was in eDesarrollos
(http://edesarrollos.com), where he learned a lot more about the software
development process.

www.it-ebooks.info

http://edesarrollos.com
http://www.it-ebooks.info/

When he's not tinkering with code, he could be learning something new or
spending quality time with his girlfriend, Valeria, his family, and friends.

Many thanks to God for giving me the ability to live and learn in this
amazing world. I am also grateful to the Yii framework community
because it helped me to become interested in this beautiful framework.
In the end, I want to thank my parents for always helping me with
their best effort (Philippians 4:13 and Psalm 23:4).

Mark Katkov (https://github.com/Ragazzo) started developing for web in 2008
while working on a VoIP project. There, he introduced the first version of the Yii
framework and used Codeception, Behat, and Mink for testing purposes, learning a
lot about the tools and testing in general.

Since then, he has handled various projects from simple blog engines to complex
enterprise systems, mastering his skills using both Yii 1 and Yii 2.

Currently, Mark is busy with enterprise e-commerce projects in the travel industry,
which are developed and maintained according to TDD and DDD.

Apart from commercial jobs, he has contributed significantly to several open source
projects, such as the Yii framework, Codeception, and Faker. Currently, he is helping
the Yii team with everything that is TDD related.

I would like to thank Matteo Pescarin for sharing his great TDD
knowledge, which is vital for Yii developers to make their projects
better. This book contains a lot of useful information that can help
beginners to not only find their starting point towards learning
what TDD is and how it can help them, but also to master the
TDD approach.

I'would also like to thank Alexander Makarov (https://github.
com/samdark), a Yii core team member, for helping us figure out
which topics are especially interesting for people developing with
the Yii framework.

Finally, thanks to Michael Bodnarchuk (https://github.com/
DavertMik), creator of Codeception, for explaining how Codeception
works internally and helping me out in difficult situations.

www.it-ebooks.info

https://github.com/Ragazzo
https://github.com/samdark
https://github.com/samdark
https://github.com/DavertMik
https://github.com/DavertMik
http://www.it-ebooks.info/

Samuel Liew lives in Singapore and is a full-stack web developer who enjoys
producing solutions with interesting and challenging requirements. He has
been involved with creating two proprietary content management systems
using C#.NET/MongoDB and PHP/Yii/MySQL. His latest accomplishment is
developing a microstock photography website (http://vivistock.com/) using
the Yii Framework, which involves e-commerce transactions and implements
heavy business logic.

www.it-ebooks.info

http://vivistock.com/
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.

com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

a PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

Table of Contents

Preface \'
Chapter 1: The Testing Mindset 1
Understanding the importance of testing 2
Involving project management 4
Estimating tasks 5
Testing approaches 6
Introducing Test Driven Development 9
Planning tests 11
Generating tests 1"
Obtaining the testing mindset 12
Starting with no testing culture — a practical approach 13
Summary 15
Chapter 2: Tooling up for Testing 17
Downloading and installing Yii 2 17
Environment and workflow 18
Introducing Composer 20
Installing and using it 20
The composer.json and composer.lock files 22
Packages and Packagist 24
Creating your first web app 27
The CLI command line 29
Finding your way around Yii 2 30
Structure of the default web application 32
Documentation and sample code 33
Defining our working strategy 33
Key features to be implemented 33
User authentication REST interface 35

User login from a modal window 35

[il

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Introducing testing for our purposes 35
Using a top-down approach versus a
bottom-up approach 40
What to test and what not to test 41
The master test plan 42
Summary 43
Chapter 3: Entering Codeception 45
Getting started with Codeception 46
A modular framework rather than just another tool 47
Outlining concepts behind Codeception 47
Types of tests 48
AcceptanceTester 49
FunctionalTester 51
UnitTester 53
Other features provided by Codeception 54
Installing Codeception in Yii 2 56
Finding your way around Codeception 57
Configuring Codeception 58
Tests available in Yii 2 60
Interacting with Codeception 61
Creating tests 62
Migrations on the test database 62
Summary 63
Chapter 4: Isolated Component Testing with PHPUnit 65
Understanding the work to be done 65
Using the User model 66
Implementing the first unit test 67
How much to care for other people's code 69
Component testing of the model 70
What's testing for PHPUnit 72
Testing the methods inherited by Identitylnterface 73
Using data providers for more flexibility 75
Using fixtures to prepare the database 77
Adding the remaining tests 80
Implementing the ActiveRecord class and its methods 80
Dealing with migrations 80
The Gii code generation tool 83
Seeing tests pass 87
Using global fixtures 88
Summary 920

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 5: Summoning the Test Doubles 91
Dealing with external dependencies 91
Isolating components with stubs 93
Listening for calls with an observer 96

Introducing mocking 97
Getting to know the Yii virtual attributes 98
Writing maintainable unit tests 102
Using BDD specification testing 103
Summary 105

Chapter 6: Testing the APl — PHPBrowser to the Rescue 107

Functional tests in Yii 2 107
Understanding and improving the available CEPTs 108
Writing reusable page interactions 112
Implementing fixtures 113
Pitfalls of functional tests 116

Functional tests for REST interfaces 116
Defining the API endpoints 118
Implementing the tests for the API 119

Creating a RESTful web service with Yii 2 121
Writing modular code in Yii 121
Creating a module with Gii 122
Using modules in Yii 2 124
Converting our controller to be a REST controller 124
Adding the access check and security layer 126

Building the authentication layer 128
Modifying the existing actions 130
Adding a new endpoint with parameters 131

Summary 133

Chapter 7: Having Fun Doing Browser Testing 135

Introducing Selenium WebDriver 136

Installing and running Selenium Server 137
Configuring Yii to work with Selenium 137
Implementing WebDriver-led tests 138
Creating acceptance tests 141
Implementing the modal window 142
Making the server side work 144
Adding the JavaScript interaction 144
Tying everything together 148
Dealing with Yii 2 assets bundles 148
Finalizing the tests 150

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Testing multiple browsers 152
Understanding Selenium limits 154
Summary 154
Chapter 8: Analyzing Testing Information 155
Improving the quality of your tests 155
Enabling code coverage in Codeception 157
Extracting the code coverage information for unit tests 158
Generating a detailed coverage report of the unit tests 160
Aggregating functional tests to unit tests 164
Generating acceptance tests' coverage report 166
Improving our code with the aid of additional tools 169
Summary 171
Chapter 9: Eliminating Stress with the Help of Automation 173
Automating the build process 174
Introducing continuous integration systems 174
Available systems 175
Installing and configuring Jenkins 176
Understanding the Jenkins organization 176
Installing the required plugins 180
Creating the required build files 181
Understanding the basic Ant structure 181
Adjusting the build.xml file 182
Preparing the environment for the build 185
Adding the required configuration settings 187
Adding Composer, Yii, and Codeception support in Ant 188
Configuring the Jenkins build 190
Generic build settings 191
Build settings 191
Postbuild settings 191
Executing the job 192
Going forward 193
Summary 194
Index 195

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Since I've stumbled upon Yii first and Codeception later on, I couldn't believe that
someone actually thought of solving the eternal damnation of a difficult testing
panorama that most web developers, including me, have suffered with for so
many years.

I've poured a good part of myself into this book, hoping that I could finally create
a book that I never managed to find when I needed to learn about testing.

I believe the hardest part has been concentrating all of the accumulated experience,
reading, conferences, and chats I've had about quality assurance, testing, and project
management.

But this wouldn't have been possible without the great effort that has been put into
Yii in its current version (version 2) and Codeception. Both these pieces of software,
and the rest that are noted throughout the book, are the result of the efforts of
hundreds of developers across the globe.

With all of this, together with the compassion and patience of Cristina, who tolerated
my restless evenings to exhaustion, I have the pleasure to release this book, hoping
that you will find an inspiration to discuss, improve, and contribute to the testing
and web development community.

What this book covers

Chapter 1, The Testing Mindset, starts by defining the concepts used throughout the
book, tries to explain why testing is so important, introduces the major testing
techniques, and shows you how to get into the right mindset to approach this book.

Chapter 2, Tooling up for Testing, introduces Yii 2 with an overview for you to
understand how the code is organized. We also start defining the work that will
be carried over to the remaining chapters from the testing perspective.

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 3, Entering Codeception, introduces Codeception and explains what it does,
how it's structured, and how it works.

Chapter 4, Isolated Component Testing with PHPUnit, demonstrates PHPUnit. The
first unit tests are implemented in this chapter, with the help of data providers.

Chapter 5, Summoning the Test Doubles, introduces test doubles with the use of
mocks and stubs, while still sticking to PHPUnit. We also appreciate an alternative
BDD-like syntax to write our tests.

Chapter 6, Testing the API - PHPBrowser to the Rescue, gives an overview of functional
tests and then shows their expansion relative to the REST interface that Yii 2 allows
you to create.

Chapter 7, Having Fun Doing Browser Testing, finally shows some live action with
acceptance tests using Selenium WebDriver.

Chapter 8, Analyzing Testing Information, covers some more advanced topics about
tests and code optimization techniques, thanks to the reports generated
by Codeception and other tools.

Chapter 9, Eliminating Stress with the Help of Automation, is a more advanced
chapter and introduces continuous integration with the aim of automating tests
and displaying their reports using Jenkins CI.

What you need for this book

This book requires very little to start with. If you've got a decent development
machine, the only other thing that you need to install and set up for yourself is
a LAMP stack.

If you've worked in this field previously, you might be already aware that there
are many other variants that allow you to use a perfectly compatible LAMP stack,
such as Nginx, PostgreSQL, or something else. You can even run everything in a
VPS or a virtual machine sitting on your local hard drive. This book does not come
with instructions on how to set up everything as you need, so be prepared to get
something up and running before opening the browser.

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Who this book is for

Given the required understanding of the underlying software and service layer,
this book can be approached by anyone with some experience in web development
and knowledge of OOPHP programming. A seasoned programmer should have no
problems approaching this book, as it can be considered a way of increasing and
reaffirming their knowledge in testing techniques and practices.

Even though it will be beneficial to have knowledge of testing, it's not strictly
required because every aspect of it will be covered, from the theoretical side to
the deeply practical side.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Remember, there's always a README . md file you can consult."

A block of code is set as follows:

if (YII_ENV DEV) {
// configuration adjustments for 'dev' environment
Sconfig['bootstrap'] [] = 'debug';
Sconfig['modules'] ['debug'] = 'yiildebug\Module';

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// tests/codeception.yml

config:
test_entry url: https://basic.yii2.sandbox/index-test.php

Any command-line input or output is written as follows:

$ cd tests/codeception

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Just
remember to tick the Overwrite checkbox and click on Generate."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

[viii]

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[ix]

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Testing Mindset

This book has been written with the intention of teaching how to use Codeception in
conjunction with Yii 2. By using these two great frameworks, I confirmed that testing
could finally become something that anyone would appreciate doing, rather than
considering it an odd and not particularly clear appendix of development.

For this reason, this first chapter tries to address several aspects that are rarely
touched on but hopefully should give you the understanding and required push to
learn and adopt testing, and, on a larger scale, promote testing as a way to improve
development as a methodology.

In this chapter, you will see the reason for testing and why testing should be
planned into a project, and not done as an afterthought.

You will also see what will happen when you start testing: the implicit and
explicit benefits for the short and long term, such as a change of mentality toward
testing, the ability to improve component specifications, and architectural, design,
and implementation choices, as well as refactoring, redistribution, and overall
quality of code.

In order to explain why testing is so important, I'll also briefly dive into the
organizational part of the process where Test Driven Development (TDD) and
Behavior Driven Development (BDD) will be explained in relation to modern
project management techniques, such as Agile and XP in a multi-skilled, self-
organized team.

You will also see how the whole team environment can be improved and
re-organized to help share knowledge and speed up workflow.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

The Testing Mindset

This chapter has been divided into the following three sections:

* Understanding the importance of testing
* Involving project management

* Obtaining the testing mindset

Understanding the importance of testing

Since I started getting into quality assurance and testing in a professional way, I've
never faced myself with the question of "what is testing?"

I have to be honest, but during my time at university, testing wasn't part of any
course. I don't really know if this has changed recently, nor if what's being taught
is of any importance or relevance to the business world.

In this book, I've tried to combine the practicality of development and testing using
a great PHP framework, Yii at its version 2, and the testing suite of Codeception.

I will present each topic with a keen eye on the actual benefit for the team, while
showing from a higher perspective the planning and the organization of the work.
Throughout the chapters in this book, I'll shift back and forth, trying to give a clear
understanding of the details you will be working on and the scope of the work,

the overall aim from a testing perspective.

But, before we venture into this journey, what effectively is testing?
Google engineering director James Whittaker's words make a very
good answer to that:

"Although it is true that quality cannot be tested in, it is equally evident that
without testing, it is impossible to develop anything of quality."

There are aspects of testing that are so completely fused with development that the
two end up being practically indistinguishable from each other, and at other times
it is so independent that developers are not even aware that this is happening.

In the whole project lifespan, you start with ideas and transform them into

features or stories, breaking them down into tasks. From there you move into the
execution of each of these tasks that will hopefully grant you, at the end of them all,
a finished product.

At any point in our development process, we have tried to put some level of quality
in it, either by "checking" the page loaded or by doing some more smart and deep,
if not automated, testing.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Atlassian's QA team lead Penny Wyatt points out that teams where quality assurance
was not performed or left alone to perform small automation tasks, with unit tests
for instance, had the highest story rejection rate, which is when a story will have

to be re-opened after being completed because of wrong or missing functionality.

We are talking about a 100 percent of rejection rate.

When such a situation occurs, we are left in a state where we have to go back into
development and fix what we've done. This is not the only case: together with it, late
discovered bugs and defects, and fixing them, are possibly some of the most expensive
tasks in software development. In most cases, it has been shown that their cost is also
way higher than it would have been to prevent them in the first place. Unfortunately,
software development is rarely devoid of defects, and this should always be kept

in mind.

As developers and managers, one of the goals we should have is to reduce the
occurrence of defects to an economically acceptable level, and doing this also
reduces the resulting risk associated with it.

As a practical example, a large website might have thousands of software errors
but still be economically viable due to the fact that 99 percent of the website is
displayed correctly. For a Falcon rocket or a Formula 1 car, a defect rate that high
is not acceptable: the risk of having a single one in the wrong place might also cost
the lives of people.

The other implicit aim for defect reduction is an investment in teamwork. An error
introduced by one developer can have a ripple effect on the work of other team
members and, overall, trust in the code base and other colleagues' work. In this
chapter, and the later chapters, we are going to discuss this aspect in more detail
by introducing some concepts of project management and how it can cooperate in
ensuring that quality is ensured on many levels.

The last and possibly an equally important aspect is how testing can be used to
document the code by example. This is rarely discussed or brought to the attention

of developers, but we will see how tests can describe the functionality of our
implementations in a way more precise manner than what PHP documentation
comments can provide. I'm not saying documentation comments are useless, quite the
contrary: in modern integrated development environments (IDE) such as NetBeans
or PHPStorm, auto-completion and code hinting are a great way to improve the time
to discover the underlying framework without having the need to search through

a reference manual. Tests can and should in fact provide the much needed help a
developer might need when trying to combine and use yet unknown interfaces.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

The Testing Mindset

When working with open source software that is a result of the work of a small
self-organized team, having the ability to provide documentation without an
extensive effort might be the key to rapid and continuous delivery.

But how do we ensure a delivery can be met within constraints that are imposed
on the team? In order to explain this, we will have to take a quick detour into
project management, from where some of the practices that are discussed and
used in this book have been originating.

Involving project management

If you ever have been involved in the planning phase of software development, or
if you've worked as a project manager, you should have well in mind that there are
three basic variables that you can leverage upon in order to manage projects:

e Time
* Quality
e Cost

In most of the business scenarios described theoretically and practically,
the stakeholders decide to fix two of these variables, leaving the team to
estimate the third. In other words:

Time, Quality and Cost... pick two.

In reality, what normally happens is that time and cost end up being set outside the
project, thus leaving quality as the only variable developers can play on.

You might have already experienced that lowering quality doesn't eliminate work,

it will just postpone it. Bringing back what we said earlier regarding defect rates,
reducing quality might actually end up increasing the costs in the long run, leaving
technical debt to spiral out of control if not causing a lot of problems in the short term.

_ The term technical debt has been introduced as a metaphor referring to
the consequences of bad design, or architectural or development choices
= in a codebase. A number of books have been written specifically to
counterbalance bad practices that are not naturally aimed at managing it.

One of the agile methodologies that are nowadays not particularly talked about,
Extreme Programming (XP), has introduced, if not rather exposed, a new variable
into the equation: scope.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

By making scope explicit, it does the following:

* Creates a safe way to adapt
* Provides a way to negotiate

* Gives us a tool to keep requests and demands under control

From the XP point of view, after the breakdown phase, we will have to go through a
phase of estimating each single task, and based on the budget, you just keep adding
or removing tasks.

This discussion brings up a problem that is currently widely discussed in the
community, as estimating tasks is not as easy one might think. We'll dive into it
shortly, as I've seen too many misunderstandings of this topic.

Estimating tasks

As we've seen, estimation of the tasks has always been considered one of the
fundamental principles of how the delivery path of a project is scheduled. This is
especially valid in agile methodologies, as they use fixed time iterations and compute
the amount of features and tasks that can be fitted in the given sprint and adjusted

at each iteration using tools such as the burn down chart.

. Ifyou've worked in agile environments, this should be pretty
% much easy to understand, and if you haven't, then there's plenty
= of information that can be gained by reading books or articles on
SCRUM that are freely available online.

Unfortunately, with all the importance estimation has, it seems like nobody
really looked deeper into it: there are plenty of articles that warn how much
software development task estimations are always off by a factor of 2 or 3. So,
should we just swallow the fact that we won't get better at estimating or is there
something more to it?

The "estimations do not work" argument is probably not correct either, and recently
the hashtag #NoEstimates has sparked a bit of discussion online, which is probably
worth including here.

As a matter of fact, estimations do work. The only detail that is normally overlooked
is that the estimation is nearing the actual time spent on it depending on how much
knowledge the developer has and how much controllable the environment is.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

The Testing Mindset

In fact, the reality is twofold: from one side, we will get better at estimating the
greater our experience is, and, on the other side, our estimation will be closer to
reality if there are less unknowns in our path.

This is well-known in project management as the Cone of Uncertainty.

What we really need to do is admit and expose all the aspects that would increase
the risk and the uncertainty of our estimations, while trying to isolate what we
know is going to take a specific amount of time.

As an example, having a fixed time investigation period to create working
prototypes of the features we are going to implement sets a precedent for future
computations, while human factors will need to be factored in.

While estimations are particularly important from the business perspective of
software development and project management, we won't be touching them again in
this book. I'd rather focus on more practical aspects of the development work flow.

Testing approaches

Extreme Programming tries to stress the investment in defect reduction.
In order to do so, it introduces two basic principles: double-checking and
Defect Cost Increase (DCI).

Double-checking is software testing. We know how a particular feature should be
working, which can be represented through a test. When implementing such a feature,
we know in a quasi-deterministic way that what we've done is actually correct.

Extreme Programming makes use of values, principles, and practices to
outline the core structure of the methodology: in short, you pick values
- that describe you as a team; you adhere to certain principles that will
% lead you into using specific practices.
/ Principles can be considered the bridge between values and practices,
justifying the use of practices on something more concrete than a mere
"but everybody's using it."

The other principle of DCI can be used to increase the cost-effectiveness of testing.
What DCI states is the following:

"The sooner you find a defect, the cheaper it is to fix."
Kent Beck

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

To make this even more clearer with an example, if you find a defect after years

of development, it could take a lot of time to investigate both what the code was
originally meant to be doing and what was the context it was developed in the first
place. If, instead, you find the defect the minute it's being implemented, the cost

to fix it will be minimal. This, clearly, doesn't even take into consideration all the
hidden costs and risks that a severe bug can cause to critical sections of our code
base; think about security and privacy for instance.

Not only the longer we wait the more difficult the defects will be to be amended, but
also their cost will increase and have the potential to leave many residual defects.

This means that by adhering to DCI, firstly, we need to have shorter feedback cycles
so that we can continuously find as many defects as possible, and, secondly, we
will have to adopt different practices that can help us keep the cost and the quality
untouched as much as we can.

The idea of finding defects rapidly and often has been formalized as Continuous
Integration (CI) and requires bringing automated testing into play to avoid the
costs spiraling out of control. This practice has gained a lot of momentum outside
XP and it's currently used widely in many organizations regardless of the project
management methodology adopted. We will see how CI and automation can

be introduced in our work flow and development in more detail in Chapter 9,
Eliminating Stress with the Help of Automation.

These practices defy entirely the idea of working in a waterfall way, as shown in the
following figure:

development bugfixing

release date theoretical t

release date

The delivery path in a waterfall work flow

[71

www.it-ebooks.info

http://www.it-ebooks.info/

The Testing Mindset

In waterfall, we have a combination of factors that could impact the quality of
the work we're doing: in most of the situations where this was the norm, the
specifications are not set at the beginning nor frozen at any time. This means that
it's very likely we might not produce what the business is asking.

In other words, you would begin testing only after development, which is way too
late, as you can see from the preceding figure: you will be unable to actually catch

any of the defects in time for the release date. Unfortunately, as much as waterfall

might feel natural, its effectiveness has been disproved multiple times and I won't

invest more time on this topic.

. It's worth mentioning that the definition of "waterfall", although
% without using this term specifically, was formalized by Winston
L= W. Royce in 1970, when describing a flawed and non-working

model for software management.

Since the advent of agile methodologies, which XP is part of, there has been a great
effort to bring testing as early as possible.

Remember that testing is as important as development, so it should be quite clear
that we need to treat it as a first-class citizen.

One of the common situations you might find yourself in is that even if you start
testing right at the beginning while the code base is being developed, it could
potentially raise more issues than those that are needed or can be addressed. The
resulting situation will still generate a good amount of problems and technical debt
that won't fit within the delivery path, as you can see in the following figure:

development bugfixing

ARARERER R AR ERENENE
testing

theoretical

release date
release date t

The delivery path in an agile environment

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The team's goal is to eliminate all post-development testing and shift testing
resources to the beginning. If you have forms of testing such as stress or load testing
that highlight defects at the end of the development, try to bring them into the
development cycle. Try to run these tests continuously and automatically.

Transitioning into a work flow that has testing at the beginning brings to the surface
two main problems: the accumulation of technical debt and the inherent problem
that developers and testers are considered two separate entities. Don't forget that
there will be still some testing that will happen after development and will clearly
need to be performed by third parties, but, nonetheless, let's stress the fact that our
efforts are to reduce it as much as we can.

As I'll constantly remind you, testing is not someone else's problem. Instead, with
this book I'm aiming at giving the developers all the tools that can make him/her a
tester first. There are different approaches to this problem, and we'll address them
shortly at the end of this chapter, when talking about the testing mentality.

Introducing Test Driven Development

If you have ever developed with tests in mind, you might have appreciated that
getting it right from the beginning is crucial. So, what do we need to test?

Throughout the years, various methodologies have been created that provide a set of
rules for the developer that address how to include testing in the development cycle.

The first and most well-known is Test Driven Development.

The main objective of adopting TDD as a practice in your team is to achieve the
test-first mentality, and this is done using the concept of Red-Green-Refactor.
You implement the tests first, which shouldn't pass (red status), you implement
the interface being tested allowing the tests to pass (green status), and then you
refactor the interface to improve what the test has highlighted, if needed.

We've seen the benefits from the management point of view of using this approach,
but there's a more direct impact on the developer side. TDD in fact allows you to
achieve what is being taught in software development, that interfaces shouldn't be
influenced by the implementations. And, as a secondary effect, it provides, as we've
seen, a way to document the interface itself.

By implementing tests first, you focus on how the method, class, and interface should
be used by anyone inside or outside your team. This is called black box testing,
which means that our tests should be completely unaware of the implementation
details. This brings the implicit benefit of allowing the implementation to change
over time.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

The Testing Mindset

If you're interested in this topic, you might find worth exploring
M the Design by Contract (DbC) specification that allows you to
Q describe interfaces in a more formal way in specific object-oriented
programming languages. A good starting point might be found at
http://c2.com/cgi/wiki?DesignByContract.

Unfortunately, TDD tries to focus on the atomic part of the features being developed,
and it fails to give a broader vision of everything, of what has been tested and how
much, or, even better, if what has been tested is of any relevance for the business and
the product itself.

Once again, XP, in order to gain the full benefits of double-checking, introduces the
following two sets of tests:

* One set written from the perspective of the programmers

* Another set written from the perspective of the users

In the first case, it allows the programmers to test all the system's components
exhaustively, and in the latter case, the operation of the system as a whole.

The latter can in a way be seen as what Behavior Driven Development (BDD)
describes in a more formal way. We're going to cover BDD in more detail in
Chapter 2, Tooling up for Testing.

BDD tries to cover TDD's lack of overall scope and shifts the attention to the
behavioral aspect of the project. BDD is effectively an evolution of TDD but
requires some changes in the organization of the work and the way it's shipped,
which can be quite difficult to introduce in some environments without re-assessing
the whole workflow.

With BDD, you define what to test and how to test it on multiple levels, detailing the
scope of testing using a well-defined, business-oriented language called ubiquitous
language, borrowed by Domain-driven Design (DDD) that is shared among all
members of the team, both technical and non-technical. For the scope of this chapter,
it should suffice to say that BDD introduces the concept of stories and scenarios
giving the developer the ability to formally describe the user perspective and
functionality of your application. Tests should be written using the standard agile
framework of a user story: "As a [role] I want [feature] so that [benefit]." Acceptance
criteria should be written in terms of scenarios and implemented as classes: "Given
[initial context], when [event occurs], then [ensure some outcomes]."

[10]

www.it-ebooks.info

http://c2.com/cgi/wiki?DesignByContract
http://www.it-ebooks.info/

Chapter 1

Planning tests

Planning is, hence, critical when stepping into testing from a software development
point of view, and in not-so-recent years, there have been several solutions to
improve testing from a planning perspective that give a more detailed and compact
way to define the so-called test plan.

In a testing-oriented environment, test plans should give you the direction and
the indications of what and how much to test at any level. Moreover, the test plan
is something that should be exposed to the various stakeholders and its visibility
shouldn't live within the walls of development. Due to this, it's our responsibility
to maintain and let this document live throughout the life of the project.

In practice, I've seen this rarely happening because test plans are never formalized
or, if they are, they are too long and hard to maintain, suffering from a very short
lifespan since their initial conception.

As an example, Attributes-Components-Capabilities (ACC) has been created by
Google in order to solve some of the main problems that test plans have always
suffered, especially their maintainability. You can find more information about
ACC and Google Test Analytics software at https://code.google.com/p/test-
analytics/.

ACC test plans are short and compact, and the whole project tries to aim to test
plans that could be created in minutes and that are self-describing and valuable
to anyone close to the project.

For each component, you have a series of capabilities, which can be described with
one or more attributes; think, for instance, "secure", "fast", or "user-friendly". On top
of this, each capability and component has a relative risk level associated with it.
These two things together allow you to understand what is most important to test
and how thorough your testing should be.

Generating tests

Clearly, planning tests is just the beginning. Once you get into the implementation
side, you can pick up this book, which provides the knowledge of how to use the
tools available to create tests.

There isn't much more I can tell you about this aspect. You probably just need to
read it all, but it should be stressed that there are some basic principles you must
keep in mind when writing tests.

[11]

www.it-ebooks.info

https://code.google.com/p/test-analytics/
https://code.google.com/p/test-analytics/
http://www.it-ebooks.info/

The Testing Mindset

Good tests exhibit the following three important characteristics:

* Repeatability: Tests must be deterministic. This ensures tests aren't
dependent on external factors issues.

* Simplicity: Test only one thing. The smaller the test the more
controllable it is.

* Independence: Tests should execute in isolation. There should be no
dependency between tests. This also improves debugging of both the
tests and your code.

Once you've got a grip of how to approach a project, viewing it from the architectural
point of view, and once you've understood how test plans work and what you really
need to test, you can start implementing tests, discuss them, and improve

the tools and the way you're using them with the help of your colleagues.

Obtaining the testing mindset

So, up until now, we've seen how important testing is in current development
practices and we've seen all kind of aspects that revolve around development itself
from a project managing point of view, but still we don't know what's needed to
become a good tester.

Finding developers knowledgeable about testing is particularly difficult, and there
are a lot of talks online that address this problem: if that's so difficult, can't we do
better? How do we get developers to become testers in the first place, especially
when what you really want is to make developers responsible for the quality of the
code they ship since the very beginning?

I tend to agree with the general idea that a tester, or a developer knowledgeable in
testing, requires three basic things: mindset, skillsets, and knowledge.

So how do you get into acquiring or improving these three basic aspects?

Even if you can read all the books and listen to all the podcasts on testing, although
these will give you a good amount of skillsets on how to test things and how the
various testing suites and frameworks work, you won't be able to become a tester
simply with that.

Of course, practice can help you a lot, but, all in all, the quality mindset and the
knowledge of what to test are probably the hardest to acquire.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The knowledge part comes from a higher view of the product, both from the
technical side and the business end. Introducing project breakdowns and pitches
for the features that are going to be introduced in our software can be a starting
point in this process.

The quality mindset can be the trickiest of them all, as it ends up being baked into
all sort of aspects of software development from the technical point of view and
requires a proactive participation from all the parties involved, first of all starting
with the developer.

As previously said, there isn't a fixed definition of what you can achieve in terms of
quality. There's no upper limit on how much quality you can put into your project.
Hence, there's no limit on how much testing you can do in any project.

From what I've witnessed, there are two requirements that can speed up the process
of becoming a good tester on top of being a good developer: one of these comes from
the environment, the other comes from us.

The environment bit in my opinion is the one that could potentially cut the deal to
acquire the right testing mindset that we are talking about, and getting there should
probably be the priority of any company that decides that quality has value, and a

measurable one.

Surely, having someone that can do mentoring on testing has always worked the
best: learning by imitation and debating are probably the best team-oriented tools
around. Even if you don't have a tester in your team, you might have noticed that in
development, practices such as paired programming or code reviews can go a long
way to keep the team up to speed with the practices and knowledge required.

Let's have a closer look at what this would mean in practice, keeping in mind that
there is no silver bullet in terms of applied practices and methodologies, and it's
your task to experiment and adapt based on what you have at hand.

Starting with no testing culture — a practical
approach

In this series of practical examples on how to introduce testing in a team or
project, we are going to assume a couple of requirements that are indispensable
in getting you somewhere.

In this specific instance, we're going to assume you're working in a team. The ideal
situation is to have a team of at least three people.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

The Testing Mindset

If you're working with less than three people, or you're a lone
developer, most of the techniques and practices tend to have a
cost which might be higher than the perceived benefit.

%i%“ A test plan and a sound organization of your workflow (trying
! to keep things simple) will not only provide a solid ground
for working in a larger team if needed, but also grant you the
instrument to deliver quality at speed. -

First of all, you need support from the business and your direct managers; speaking
of direct and indirect experience, without that you won't get anywhere. The business
side of the company needs to understand what testing is, in the way that is has been
described at the beginning of this chapter, the value of testing, and all the good
things that this can bring. There is plenty of documentation online for you to build

a business case.

Secondly, you need to have some skillsets in testing. This book should cover that
part—hopefully quite well —and there are plenty of others that can teach you more
theoretical aspects of testing for programmers and engineers, without considering
the amount of online resources available on the topic.

A few good articles you can find online are as follows:
* Unit testing: Why bother? available at http://

soundsoftware.ac.uk/unit-testing-why-bother/

* Testing at Airbnb available at http://nerds.airbnb.com/
testing-at-airbnb/

Once you've got this, you can start moving into action.

One of the situations most might find themselves in is that there is no testing culture
whatsoever. Here you have two choices: either take the bottom-up approach, and get
yourself familiar with TDD as a starter, or take the top-down one, where you'll take
the higher perspective.

Either way you need to start having a compact test plan to adhere to. Taking as an
example the approach of ACC, you start by breaking down the application/project/
library into modules (components), each of them will be composed of features
(capabilities). Each feature will be denoted with a particular attribute. From there
you should have a compact enough representation of what you're trying to achieve.
On top of this, you can start assigning a relative risk level, which you will use to
give priority for your testing approach defining what and how much to test.

[14]

www.it-ebooks.info

http://soundsoftware.ac.uk/unit-testing-why-bother/
http://soundsoftware.ac.uk/unit-testing-why-bother/
http://nerds.airbnb.com/testing-at-airbnb/
http://nerds.airbnb.com/testing-at-airbnb/
http://www.it-ebooks.info/

Chapter 1

The resulting test plan should be signed off by all the stakeholders and updated as
frequently as possible, defining the aim of the project itself. The more this document
is official the better it is, as it will be considered the business card of the project.

As highlighted by many, the immediate aim is to start planting the culture of
testing in developers. Define the scope of your work, both in terms of testing and
development, proceed with caution and evaluate both risks and costs, and leverage
on those to take a decision on how to approach tests.

Thankfully, if you're finding yourself working with Yii and Codeception, you
should be spared a bit of headaches putting together different frameworks and
wasting a bit of time experimenting a working solution.

Team-wise, when the experience in testing is not widespread nor solid, additional
practices can be introduced that can help avoid bottlenecks or have all the knowledge
trapped in a single person, such as paired programming and code reviews.

Some companies, like Atlassian, introduced test engineers that could help the

teams, both from a mentoring perspective and a mere quality assurance side. Their
interventions in the development cycle ended up being confined to a more restricted
participation, at the very beginning and before completing the task. Their role is,
nonetheless, fundamental, as they became the guardians of the testing infrastructure,
the tools, and the practices to be adopted, while the developer grew to become a fully
fledged tester who can cover almost any aspect of testing without much support.

Summary

In this chapter, we've covered many aspects that are directly connected with testing,
but are not strictly necessary to start testing, although they are fundamental if

you want to understand why you've taken up this book and if it's necessary to go
through the rest of it.

You've seen why it's important to test, some project management methodologies,
how to estimate tasks and what it entails, and you've seen different testing
approaches such as TDD and BDD, which will be the basis for many of the remaining
chapters. At the end, I've tried to give an idea of what it takes to gain the testing
mindset required to become a master in this art.

In Chapter 2, Tooling up for Testing, we will start gearing up with the tools we are
going to use throughout the rest of this book, understanding the basics of Yii 2
and applying what we've learned in this chapter by outlining our test plan.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

In this chapter, we're going to have an overview of Yii 2, what has changed since
the last version, with which you might have become comfortable its new directory
structure and organization, as well as its new features and niceties.

We cannot introduce Yii 2 without looking at Composer, a new way to organize
and extend your projects in PHP.

Once we have had a look at all the basic tools we're going to use, let's review
our plan and consider what we will be working on in the rest of this book:
user authentication REST interface and user login from a modal window.

In order to start working on our features, we need to step aside and review our
plan from a project management and quality assurance point of view, that is,
introduce the master test plan. In other words, we need to consider what we are
going to test and how much before undertaking the actual implementation work.

We will be working through the following steps:

* Downloading and installing Yii 2
* Finding your way around Yii 2
* Defining our working strategy

* Introducing testing for our purposes

Downloading and installing Yii 2

If you've worked with Yii in the past, be prepared. The new version of Yii 2 can
be considered as a brand new framework, modern and robust.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

Yii 2 takes a long-awaited step forward in the right direction. It is the result of several
years of work, done collaboratively on the Internet, mostly on GitHub (https://
github.com/yiisoft/yii2), by developers from different parts of the world.

As a user of Yii, you can collaborate too, by simply filing bug reports, feature requests
athttps://github.com/yiisoft/yii2/issues, polishing off the documentation and
translations, and creating new extensions and features for review and inclusion on the
project. There are also many other non-officially supported subprojects that can benefit
from your support: some already there for you to use, and some that you may have
written yourself.

Environment and workflow

As a developer, you will have your own environment with which you need to feel
confident enough, and which can actually help you writing the code without
many worries. If you do feel that there's a gap between writing the code and
seeing the actual result, then there's something you need to fix.

It's quite important for the purpose of this book to outline my optimal
environment that I will use throughout the upcoming chapters and code
samples that you will find.

I will, of course, note when the environment might make a difference, but be
wary that, if your environment is different, you may need to check the developer's
documentation or reach out to anyone who might know the answer, in case
something is not working.

My personal development environment is composed of the following:

* A robust Integrated Development Environment (IDE), such as Intelli]
PHPStorm, rather than a simple code editor (for example, VIM): You get
some additional benefits from it, for example, an integrated debugger, a
syntax checker, a code hinting system, and so forth.

* A modern version control system (for example, GIT): Commit always and
often. It's the only way for you to understand the history and control the
changes in your project in a sensible way. Head over to http://git-scm.
com/doc if you need more information and learn by visually experimenting
with it at http://pcottle.github.io/learnGitBranching/.

[18]

www.it-ebooks.info

https://github.com/yiisoft/yii2
https://github.com/yiisoft/yii2
https://github.com/yiisoft/yii2/issues
http://git-scm.com/doc
http://git-scm.com/doc
http://pcottle.github.io/learnGitBranching/
http://www.it-ebooks.info/

Chapter 2

* Linux Apache MariaDB PHP (LAMP) box packaged as a virtual machine:
I've passed through the stage of having my own machine acting as my
LAMP box, but this has proved to be too unreliable for many reasons.
Mostly because after a while, you will end up confusing experimental
plugins and tools that are not meant to be used on certain projects,
potentially messing up your work.

A development or testing environment is usually quite simple to set up as
it won't require an extensive configuration, as it would do in a critical or
production environment.

One of the reasons in favor of having such an environment setup, in particular
with reference to the LAMP box, is the ability to configure it as you wish based on
the project you're working on, and in particular being able to replicate the live/
production environment as close as possible. This has a clear advantage when

it comes to the following;:

* Working within a team with more than one developer

* Replicating bugs occurring on any environment (for example, test, stage,
or live)

Vagrant is probably the tool you're looking for if you want to start easy (see http://
www . vagrantup . com/), and if it convinces you, it might be worth giving the book,
Creating Development Environments with Vagrant, Michael Peacock, Packt Publishing, a
shot (http://www.packtpub.com/creating-development -environments-with-
vagrant /book).

PHP does not need major adjustments, and I believe a default PHP installation will
suffice to get you started as this is the only constraint for running Yii 2. Be sure to
have a version equal to or above 5.4, and have a CLI PHP available on the command
line, by issuing the following command:

$ php -v

PHP 5.5.22-1+deb.sury.org~precise+l (cli) (built: Feb 20 2015 11:25:06)
Copyright (c) 1997-2015 The PHP Group

Zend Engine v2.5.0, Copyright (c) 1998-2015 Zend Technologies

with Zend OPcache v7.0.4-dev, Copyright (c) 1999-2015, by Zend
Technologies

with Xdebug v2.2.5, Copyright (c) 2002-2014, by Derick Rethans

The preceding output is from a Vagrant machine running Ubuntu 12.04 with
PHP 5.5 installed.

[19]

www.it-ebooks.info

http://www.vagrantup.com/
http://www.vagrantup.com/
http://www.packtpub.com/creating-development-environments-with-vagrant/book
http://www.packtpub.com/creating-development-environments-with-vagrant/book
http://www.it-ebooks.info/

Tooling up for Testing

The dollar sign ($) means the command can be run by a user and you won't need
administrative permissions to run it.

If you get a command not found error, be sure to refer to your distribution/OS
vendor for support on how to install it. Most of the distributions provide it by
default, while others require additional configuration parameters or packages.

Introducing Composer

As you might well know, Yii 1 was (initially) shipped as a standalone library that
needed installation on the target environment, and from there you could use its CLI
interface to create your web app. After that, the library would be sitting somewhere
in your filesystem to be directly called by the web app upon loading it.

When Yii started, this was common practice; there wasn't a way to keep the code
self-contained and you could easily get into several problems whenever you
needed to ship the code to shared hosting environments (I'm looking at you Plesk/
OpenBaseDir restriction).

Secondly, system-wide packages and dependencies were often restricting the
developers to embrace new features and work around existing bugs, without even
counting that these were (too) often overlooked. If you've been working on the web
with PHP for quite a while, I'm pretty sure you've experienced the sense of lagging
behind other big frameworks on the development scene (and not just in PHP-land).

Composer (http://getcomposer.org) solves the problem under many aspects,
and thanks to the efforts of Nils Adermann, Jordi Boggiano, and many community
contributions, it was first released in 2012.

Composer takes inspiration from Node.js' npm and Ruby's bundler. It provides
a way to define and install dependencies (that is, libraries), and install web
applications that are available from Packagist (https://packagist.org/) on

a per-project basis.

Installing and using it

Let's start by following the installation guide proposed on the Composer website
(https://getcomposer.org/doc/00-intro.md#installation-nix). Consider
the following command:

$ curl -s https://getcomposer.org/installer | php

[20]

www.it-ebooks.info

http://getcomposer.org
https://packagist.org/
https://getcomposer.org/doc/00-intro.md#installation-nix
http://www.it-ebooks.info/

Chapter 2

In the preceding command we are using curl to download the installer and php to
parse it and output an executable PHP file called composer.phar. Be mindful that
the installation under a different OS (in case you don't have a Linux box to play with)
varies, for example, under OS X, Composer is part of the homebrew-php project at
https://github.com/Homebrew/homebrew-php.

At this point, you can simply call Composer directly using a relative or absolute
path, as shown in the following:

$ php composer.phar

Or move it into a more appropriate position for easier invocation, as you will
see next.

If you can run sudo or log in as root, move it into a system wide bin folder,
as shown in the following:

$ sudo mv composer.phar /usr/local/bin/composer

If the preceding option does not apply, you can install it in user-space, for example,
~/bin/, and then add the path to your PATH environment variable, as shown in
the following;:

$ mv composer.phar ~/bin/composer

$ PATH=$PATH:~/bin/; export PATH

The last command is adding the path to your terminal environment, so it can be
invoked from anywhere you are in the filesystem. This specific command would
need to be issued every time you open a terminal.

Otherwise, you can add it permanently, as shown in the following;:

$ echo "export PATH=$PATH:~/bin/;" >> ~/.bashrc

By adding the export statement to your .bashrc (>> ~/.bashrc appends the output
of echo to the end of the .bashrc file), you are simply making the directory searchable
automatically every time you log in, given you are using BASH as shell interpreter.

If you're unsure which shell you're on, you can check using the
following command:

$ echo $0

However, while this will work on most shells and it's quite easy to remember,
it won't work if your shell is CSH, in which case, use the more complex but also
more portable ps invocation, as shown in the following: command

$ ps -p $$ -o cmd=""

[21]

www.it-ebooks.info

https://github.com/Homebrew/homebrew-php
http://www.it-ebooks.info/

Tooling up for Testing

Once you have installed Composer, you can simply invoke it using the
following command:

$ composer

The composer.json and composer.lock files

Composer works by reading the composer. json file found in the root of your
project, which will contain all the requirements and dependencies:

composer . json

{
"require": {
"twig/twig": "1.16.%"

}
}

The preceding snippet is quite clear: it's defining a dependency of our project

on Twig (http://twig.sensiolabs.org/). This is a template engine with a clear
and compact syntax. It's also defining a specific dependency on any version of
Twig starting with 1.16.

Modifying the composer. json file by hand can be prone to human errors, and
sometimes it might be necessary, as we will see later on, to add the packages to
your require or require-dev section via the command line using the following
command:

$ composer require "twig/twig:1l.16.*"

This way the composer. json file will be automatically created if it does not
already exist, and the package with its dependencies will be installed for you.
Alternatively, if you've created the file yourself or if you've received the file as
part of a project, you can invoke the install command as follows:
$ composer install
Loading composer repositories with package information
Installing dependencies (including require-dev)

- Installing twig/twig (1.6.5)

Downloading: 100%

Writing lock file

Generating autoload files

[22]

www.it-ebooks.info

http://twig.sensiolabs.org/
http://www.it-ebooks.info/

Chapter 2

The normal behavior of the preceding command is to fetch the required packages
as archives (called dist in composer jargon) for stable sources, or via repository if
either the dist is not available or if the package is in some stage that is not stable
(for example, beta or dev).

You can change this behavior by using the - -prefer-dist option to force
searching for the dist even for development packages, or --prefer-source
to force the checkout from repository rather than dist for stable packages.

As you will see by listing the content of the directory, Composer will install all
libraries into your project folder under the /vendor directory and create a composer.
lock file in the root folder that will hold a snapshot of the current state of the
installation, locking the installed libraries to the specific version defined in the

lock file, as shown in the following;:

$ tree -L 2

— composer.json
— composer.lock
L— vendor

— autoload.php

— composer
L— twig

When sharing your code, you need to commit the composer. lock file, so everyone
in your team and any other environment you will deploy to will run exactly the
same version of the dependencies you have, mitigating the risk of bugs affecting
only some environments. Composer will look for the lock file first before deciding
to use the JSON file to download a more up-to-date version based on the definitions.

On the other hand, it is not recommended to commit the /vendor directory to
your VCS as it can cause several problems, such as the following:
 Difficulty in handling revisions and updates
* Increased size of the repository without any benefit
* InGit, it could cause problems if you're adding packages checked out

via Git, as it will show them as submodules, while they're not.

This heavily depends on your deployment policy, but, in general, it will be better
to have your environments and team mates run the composer install command
on their own.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

If you ever need to update the dependencies, you can simply issue the following
command:

$ composer update

Or to update a specific package, the command will be the following;:

$ composer update twig/twig [...]

The [...] means you can add as many packages to be updated with a
single command.

Packages and Packagist

By creating the composer. json file, you are also defining your project as a package.
This is a package that depends on other packages. The only difference is that your
project is without a name, yet.

Composer can help you here in defining your project/ package in a more consistent
and clear way. Consider the following command:

$ composer init

This will start by asking you for some basic information regarding your project,
including the requirements that you want for your project, and then create (or
overwrite) the composer. json file, as shown in the following:

Package name (<vendor>/<name>) [peach/yii2composer]:
Description []: Installing Yii 2 from scratch with composer
Author [Matteo 'Peach' Pescarin <my@email.com>]:

Minimum Stability []: dev

License []: GPL-3.0

Among these, the one worth noticing is the Minimum Stability option: it provides
a way to control the stability of the packages. By omitting it, it defaults to stable.
This option combined with "prefer-stable": true (or false if you want to have
the dev versions of your dependencies) will give you enough power to decide the
policy of stability of the dependencies where this is not explicitly defined.

It will then move into setting the dependencies interactively, as shown in
the following:

Define your dependencies.

Would you like to define your dependencies (require) interactively I[yes]?

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Search for a package []: twig
Found 15 packages matching twig

[0] twig/twig

Enter package # to add, or the complete package name if it is not listed
[1: 0

Enter the version constraint to require []: @dev

The search can be anything, and it works the same way as you would by searching
on the website (https://packagist.org). If you want to have a more clear idea of
what you're going to install, you probably want to have a look at the website: you
need to be aware of the dependencies and browse the code to check it does what it
says on the tin.

Knowing how to use the version constraints can be quite important in any project
with just a few dependencies. According to https://getcomposer.org/doc/01-
basic-usage.md#package-versions, the following are the possible keywords
you need to be aware of:

* Exact version: For example, 1.0.23

* Range: For example, >=1.2 or >=1.0, <2. 0 or use the pipe as a logical
ORas >=1.0,<2.0 | >=3.0

* Wildcard: For example, 1.2.%

* Tilde operator: Here, ~1.2 is the same as >=1.2,<2.0; ~1.2.3 is the
same as >=1.2.3,<1.3 (semantically: [[[[...]lc.]1b.]la.]lx, wherex
is the only variable)

Composer provides further granularity when selecting specific packages, specifically
you can filter by stability by adding @dev (or alpha, beta, RC Or stable).

Sometimes, you are forced to use an unstable version, either because of the lack of a
stable version or because the stable version ships with a bug that has been fixed in
the master (dev)!

Together with require, which defines the list of fundamental packages that are a
direct dependency, require-dev defines instead the secondary packages used for
development, such as libraries for running tests, performing debugging, and so
on. However, these are not fundamental for the application to work, as shown in
the following:

Would you like to define your dev dependencies (require-dev)

[25]

www.it-ebooks.info

https://packagist.org
https://getcomposer.org/doc/01-basic-usage.md#package-versions
https://getcomposer.org/doc/01-basic-usage.md#package-versions
http://www.it-ebooks.info/

Tooling up for Testing

interactively [yes]?

You can also skip adding packages for require, and then add them later using the
following command:

$ composer require

While for require-dev, at least with the version I've got installed at the time of
writing this book, you need to add them manually as seen at the beginning.

At this point of the process, you'll be able to review the JSON that will be written
before confirming it, as shown in the following;:

"name": "peach/composer",

"description": "A Composer project",

"require": {

"twig/twig": "@dev"

"license": "GPL-3.0",

"authors": [
"name": "Matteo 'Peach' Pescarin",
"email": "my@email.com"

]l

"minimum-stability": "dev"

Do you confirm generation [yes]?
Would you like the vendor directory added to your .gitignore [yes]?

$

Once you've got your composer . json file created, you can edit it and tweak it
to your liking. There are many other options that can be specified. Refer to
https://getcomposer.org/doc/04-schema.md.

By compiling your composer. json file, you are actually creating a package
yourself that could be shared on Packagist with other developers.

[26]

www.it-ebooks.info

https://getcomposer.org/doc/04-schema.md
http://www.it-ebooks.info/

Chapter 2

The process itself is not particularly difficult, as you just need to add a few additional
options, as defined in the JSON schema documentation (https://getcomposer.
org/doc/04-schema.md#the-composer-json-schema), and publish your code
using a Git, subversion or mercurial repository. You can also decide to publish just

a dist package. Refer to the documentation at https://getcomposer.org/doc/

for more information if you want to take a step in this direction.

Once you've created your composer. json file, you can start installing all the
dependencies as follows:

$ composer install --prefer-dist

Composer lets you decide how to fetch all the requirements and, in this particular
case, we gave preference to dist files when available. The result is the following:

Loading composer repositories with package information
Installing dependencies (including require-dev)
- Installing twig/twig (dev-master 72aa82b)

Downloading: 100%

Writing lock file
Generating autoload files

$

Creating your first web app

At this point, you should have gained enough confidence with Composer to be able
to undertake the next step. But before doing this, forget what you've learned!

Creating a composer . json file and requiring a bunch of packages can be done by
anyone. With Composer, you can create a project from a given package. This means
that the package will be extracted into a specified directory (not /vendor anymore).
This new project will have all its dependencies checked out and saved within its
scope, that is, within its own directory.

The syntax for the command we're going to use to install Yii 2 and start working
with it is the following;:

composer create-project vendor/project target-directory

[27]

www.it-ebooks.info

https://getcomposer.org/doc/04-schema.md#the-composer-json-schema
https://getcomposer.org/doc/04-schema.md#the-composer-json-schema
https://getcomposer.org/doc/
http://www.it-ebooks.info/

Tooling up for Testing

Here, vendor/project is the Packagist name of the project, in our case, the name
will be yiisoft/yii2-app-basic, as we will see later, and target-directory
is where you want to install it. This command won't create a composer. json file,
so you can run it from anywhere in your environment, just be sure to specify the
correct target path.

Yii 2 developers have shared two packages that contain an initial application
you can start working with: a basic and an advanced one.

The difference between the two is the type of dependencies and what's already
been implemented.

Both projects come with a README . md file in Markdown format, which you can read
to understand the details. To keep it short:

* Basic: As the name says, it's a basic implementation, very close to what you
would get by installing Yii 1, ready to be used with a default Apache or
Nginx installation.

* Advanced: This is a very basic configuration if you need to build a multitiered
application. The one you will get with the advanced app consists of a frontend,
a backend, and a console application, all as separate Yii applications with some
common components. It would require a specific initialization, so refer to the
README . md file for details.

The advanced application features an additional script called
~ init, which wraps Composer and enables or disables the
% installation of require-dist.
A For a more detailed guide, check out the documentation at
http://www.yiiframework.com/doc-2.0/guide-
tutorial-advanced-app.html.

Consider the following command:

$ composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-
basic basic

We are now installing into /basic the yiisoft/yii2-app-basic package. There are
other ways to get you started, but this is definitely the most clean way I can think of,
as you won't be tied to a repository nor anything else.

There is no interaction required after this command, as it would carry on installing
the required packages including require-dev.

[28]

www.it-ebooks.info

http://www.yiiframework.com/doc-2.0/guide-tutorial-advanced-app.html
http://www.yiiframework.com/doc-2.0/guide-tutorial-advanced-app.html
http://www.it-ebooks.info/

Chapter 2

It might be that at this point, Composer will fail in installing some dependencies, or
you can fall in some runtime errors later on, so it's probably better if you check your
requirements are met by opening the requirement script in your browser, which will
check that everything is all right. The file is found in the root of the project and it's
called requirements.php.

In Ubuntu, there are some packages you might want to install, which are going to be
needed, such as php5-mcrypt, php5-xs1, and php5-xdebug. Each Linux distribution
ships these PHP extensions in different ways and their naming might be different;
please consult your Linux distro documentation if you're having problems on how
to find, install, or configure them.

At the end of the installation process, you will note some additional work being
done, as shown in the following:

Generating autoload files

Setting writable: runtime ...done
Setting writable: web/assets ...done
Setting executable: yii ...done

$

If you had memory of the previous version of Yii, this was something many were
looking for.

_ Please note that these steps need to be replicated manually if
% you're running Composer on a freshly checked out application,
= or you would need to run the init tool if you've got the
advanced application installed.

The CLI command line

In Yii 2, Composer is used both as a way to install the basic skeleton of your web
app, something you would have done with Yii 1 using the CLI interface instead,
as shown in the following sequence of commands, and as a way to manage the
dependencies of your projects:

$ cd protected/
$./yiic webapp ~/public_html/myproject

As you can imagine, the scope and functionality of the command line is now quite
different and has been expanded.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

First of all, the CLI is now found in the root of the project and it's called yii, as
shown here:

$./yii

By just running the preceding command, you will get a list of possible commands,
as shown in the following;:

- asset Allows you to combine and compress your JavaScript and CSS
files.
- cache Allows you to flush cache.

- fixture Manages loading and unloading fixtures.

- hello This command echoes the first argument that you have entered.
- help Provides help information about console commands.

- message Extracts messages to be translated from source files.

- migrate Manages application migrations.
To see the help of each command, enter:

yii help <command-name>

$

The ones you will recognize from Yii 1 are migrate and message, which
accomplish the same operations you were used to, albeit some have been improved.
The only real difference is the way you'll be calling its specific actions (for example,
migrate/create).

The shell and web app commands have now been replaced with a cache management
tool called cache, a fixtures creation tool called fixture, which we'll see later on, and
a demo command called hello, which you can use as inspiration to code one yourself
(for example, to create cronjob tasks).

Finding your way around Yii 2

Now you should have everything you need installed on your box, so let's start
looking around and see how Yii 2 is organized so that we will know where to
put our hands when needed.

Remember, there's always a README . md file you can consult: in the advanced
application, it will show you the structure and use of the various directories.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

By just listing the content of the root of the project, you will immediately spot
a big difference:

$ tree -L 1 -d

— assets

— commands
— config

— controllers
— mail

— models

— runtime

— tests

— vendor

F— views

L— web

11 directories

I've willingly excluded the files from the output of tree and displayed only
the directories.

It seems like all the content of what once was in /protected have been dropped
outside of the document root.

The project structure is now very similar to what could be a Django or a Ruby

on Rails application; the project root contains all the code, which is organized the
same way as it was in the protected folder (for example, controllers, modules,
config, and so on), some additional directories, such as for widgets, and the
document root for your web server.

The directory you will need to configure Apache to use is called web, and it's
used by Yii to ship only the static files, assets, and the entry scripts, as shown
in the following:

$ tree -L 2 web
web

— assets

— css

| L— site.css

— favicon.ico

— index.php

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

— index-test.php
L— robots.txt

2 directories, 5 files

I tend to prefer this organization as it gives the user the immediate idea of the
organization of the code by lowering down the nesting levels of the directories.

If you are keen on using Nginx, that's not a problem, and you will find

the required answers in the official documentation, which can be found at
http://www.yiiframework.com/doc-2.0/guide-start-installation.
html#fconfiguring-web-servers

The only two directories that require a bit of explanation are mail, which is
used to store the HTML template(s) for the e-mails (see documentation at
http://www.yiiframework.com/doc—2.0/guide—tutorial—mailing.html)
and, possibly, tests, which you will be learning soon.

Structure of the default web application

The basic application is composed of a SiteController with a couple of modules
and a login system.

The configuration files should be quite straightforward to understand and can
be found in the /config directory. We will be touching on them every now and
then in order to configure certain aspects and extensions we're going to use.

Regardless of whether you are using the manually installed basic application or
the Composer-driven method explained earlier, you will be required to set up the
database on your environment and configure the application.

In the configuration file web . php, be sure to have set up the cookievalidationKey,
and while in db . php, set up the DSN of your database as described in the
documentation at http://www.yiiframework.com/doc-2.0/guide-start-
databases.html#configuring-a-db-connection.

You will also note the following at the end of the web. php file:
// config/web.php

if (YII_ENV DEV) {
// configuration adjustments for 'dev' environment

Sconfig['bootstrap'] [] = 'debug';
$config['modules'] ['debug'] = 'yii\debug\Module';
Sconfig['bootstrap']l [] = 'gii';

[32]

www.it-ebooks.info

http://www.yiiframework.com/doc-2.0/guide-start-installation.html#configuring-web-servers
http://www.yiiframework.com/doc-2.0/guide-start-installation.html#configuring-web-servers
http://www.yiiframework.com/doc-2.0/guide-tutorial-mailing.html
http://www.yiiframework.com/doc-2.0/guide-start-databases.html#configuring-a-db-connection
http://www.yiiframework.com/doc-2.0/guide-start-databases.html#configuring-a-db-connection
http://www.it-ebooks.info/

Chapter 2

Sconfig['modules'] ['gii'] = 'yiilgii\Module';

}

By default, Yii 2 will provide you with a YII DEBUG global constant definition, and
an environment YII_ENV_<ENVIRONMENT> definition, which could come handy in
certain conditions. Be aware that its use should be limited to specific cases where

an alternative and more portable solution cannot be found, either by revisiting the
implementation or the initial requirements. In a production environment, YII_DEBUG
should be set to false and YII ENV to prod.

Documentation and sample code

With this version, Yii is now following more strict standards in the way that the
code is written and distributed.

Documentation and readability of the code is essential and is mainly dictated by
the PSR-1 and PSR-2 coding style guide (note that PSR-2 is explicitly depending
on PSR-1), published by PHP-FIG (http://www.php-£fig.org).

In PHPStorm, it is quite easy to set up the code style. Alternatively, you can use
PHP_Codesniffer (https://github.com/squizlabs/PHP_CodeSniffer) to
accomplish the same task and validate your code:

Feel free to browse the code and check what it does. It's not massively different to
what Yii 1 sample application did, apart from the use of PHP 5.4 syntactic sugar.

Defining our working strategy

Now we know most of our tools that we are going to use, but we still don't know
what we're going to do with them.

Let's have a look at the features we want to implement into Yii Playground, and
let's analyze the end-to-end structure of the final application and how we should
meet our quality assurance requirements.

Key features to be implemented

Given what we've seen in the previous sections, the base web app provided by Yii
contains just a basic infrastructure with which you can start playing around. For
the purpose of this book, we're going to add several features that in a real-world
environment would normally be requested by the client or stakeholders on the
project through a brief, discussed and analyzed by the internal teams and
scheduled to be developed.

[33]

www.it-ebooks.info

http://www.php-fig.org
https://github.com/squizlabs/PHP_CodeSniffer
http://www.it-ebooks.info/

Tooling up for Testing

We are going to follow these steps and outline the necessary work needed in order
to meet the desired level of quality assurance for the resulting application.

As previously said, the aim of testing is first and foremost to ensure that the code
we produce matches the desired requirements. Anything else outside our code is
not normally tested, but here exceptions apply and it really boils down to what the
third-party code is doing, its overall quality, and reliability.

We are going to aim to change the basic app in order to be able to login from a
modal window.

Once you've got the business requirements in place, we would break this feature
down into subfeatures, if needed.

In fact, the path we will take on how to implement the modal window and the
underlying infrastructure is quite important.

The code controlling the window from the client-side perspective needs to
communicate with the backend to validate and authenticate the user. On a very
basic level, this can be achieved by just adjusting the already existing controller
that deals with the login process.

But we can do better. We can decide to roll our new login system without changing
the existing one, thus avoiding introducing a breaking change that can affect our
users. If for some reason a bug will slip past our control, we can just disable the
new feature, while still letting the users log into the system.

This specific feature is also bringing up a series of implicit requirements, such
as security and portability of our code, and integration with the existing and
upcoming functionality. We want the user login application that sits on the
client side to be self-contained and reusable as much as possible. Same goes
for the backend authentication system.

The proposed approach is then the following, together with the high-level
assurance criteria we need to satisfy, which will outline the scope of the work
in much more detail when implementing it and, on the other side, will help us
create the required tests:

1. User REST interface to authenticate the user.

2. Modal login window.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

User authentication REST interface

The REST interface will define some entry points to our application that will be easy
to use. The URLs will then have a syntax of /resource/id/operation.

A GET retrieves information, a POST will store information. For example,

POST user/login to log in, POST user/logout to log out, POST user/update to
update some fields once if the user is logged in, and GET user/ details to display
user information.

The communication will work using JSON where needed.

User login from a modal window

Now let's piece together what we've done with the REST interface and code the
JavaScript code that will open the modal window, validate the form, communicate
the login credentials to the backend, and keep the user logged in until the browser
window is closed.

As previously said, the code needs to be self-contained and portable, and for
security reasons, it will not deal with any sensible information at any point, like
the actual authentication.

Introducing testing for our purposes

Now that we have defined what to do, we need to discuss what kind of testing
is needed and how much of it we want to test, based on the approaches we have
outlined in Chapter 1, The Testing Mindset.

We're going to cover the following areas of testing;:

* Unit tests: This is to achieve isolated components testing

* Integration tests: This is to ensure the various components are working
well together

* Acceptance tests: These are the most relevant types of tests from the user
perspective, as they try to meet the right requirements defined at the beginning

Clearly, without knowing how our application is structured, it is hard to understand
what kind of work we're going to endure.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

So, before getting into defining the actual tests, we need to start breaking down our
application into several modules, and overseeing the structure from an architectural
point of view.

There are many ways to perform an architectural breakdown, some might be stricter
and more detailed, using a textual list, while others might end up being a rough
sketch using a diagram. This heavily depends on the size and complexity of your
application, and, in our case, a diagram seems to fit our purposes.

We need to remember that we always want to balance the effort and the time spent on
these initial phases with the amount of detail required at any given point. For instance,
we might not know exactly how the modal window login will interact with the rest of
the application, whether we need to develop a user model that is more complex than
the one we will start with or even split it into different components so as to provide a
different functionality to the frontend, or whether this is out of scope with the work we
want to do and we can do it in a self-contained way.

Moreover, the diagram can miss small bits, which we might forget to test or consider
when evaluating our test plan. For example, the JavaScript side of our application
might include several small sets of utility functions that should be considered as
separate modules for manageability and reuse.

User web client

User login
modal window

Security
module

—

Partial view of the structure of our application

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As a solution to these problems, it is always advisable to revisit the structure of the
software module and its own breakdown when approaching the development of the
specific feature. This is something we will see in detail in the next chapters.

In the preceding diagram, we can see that our application comprises essentially
three main areas, starting from the bottom: a data storage system (database), a
model representing the data, and a functional part (the view/controller part of the
application). On top of everything sits our main interaction bit given by the user
browser. This is not representative of the whole application, rather just the specific
areas where we're going to work on.

As we've already seen, the unit tests are aimed at testing an atomic bit of the
application, such as a class or a small set of related functions: their purpose is to

be small and isolate, meaning they should have no external dependencies. Keep in
mind that totally isolated tests in web development are difficult to achieve, and we

are in fact not allowed to touch parts of our infrastructure, for instance, the database
interaction. These tests are actually called small tests in Google's internal terminology ,
which immediately indicates their scope and the time they will take to run.

Google is currently one of the publicly known companies that have
_ made testing one of their core values. Their approach makes constant
% use of adjectives to distinguish between types of tests.
/.

To read more about Google's way of testing, you might be interested in
How Google Tests Software, Addison Wesley, James Whittaker, Jason Arbon,
and Jeff Carollo.

In our application, the unit test can be represented in the following way:

Graphical representation of unit testing coverage

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

A practical example is the user model we're going to create, and, as stated before, we
might have other unit tests that we might want to write, for instance, in our JavaScript
layer in the frontend, in case we were dealing with a client-side application where part
of the business logic lives in the user browser.

Just remember, the tests covering the user model shouldn't make any use of external
dependencies (for example, external helpers, such as the security module) and,
secondly, they can avoid touching parts of the framework over which we don't have
any control, specifically those that have potentially already been covered by other tests.

When focusing a bit more on the global picture, we can now see how things stack
up and interact with each other. With integration tests, we might be required to use
mocks and fakes anyway, but this is not highly recommended as it would be used
for unit tests. In Google's terminology, these tests are called medium tests, as they
take a bit more when executed and are also trivial to develop in certain situations.

User API

Security
module

Graphical representation of integration tests coverage.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The last pieces of the jigsaw are the acceptance tests, as shown in the following:

b

Graphical overview of acceptance tests.

Acceptance tests are similar to system tests (or end-to-end tests), but they target the
user rather than the consistency of the overall system from an engineering point of
view. Acceptance tests are close to what could be a real-world use: these tests are
required to ensure that all components are working well together, and meet the
acceptance criteria defined at the beginning, as specific actions that outline the user
interaction with the application.

Acceptance criteria are those we have defined previously when outlining our
features: the user should be able to log in using a modal window.

I've intentionally avoided to use a business domain language, as we want to keep it
as wide as possible for this initial part, instead we're going to dive into that later on.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

At Google, acceptance (and end-to-end) tests are also called large or enormous tests
because they will take a lot more to implement and to execute. They also require an
infrastructure that could mimic a real-world scenario, which may not be trivial to
set up. Because of this, creating corner cases can be quite difficult as this means that
we're going to test only the defined scenarios and any specific case we think to be
meaningful to the area that we're testing.

In our case, this might be something along the lines of "The user will receive an
error when using wrong credentials."

Again, we will specifically dig into these details later on in this book.

Using a top-down approach versus a
bottom-up approach

It's important to reiterate that BDD has been created as an improvement over TDD
and quite an important one at that. It provides a better and more flexible language to
define acceptance criteria, which will also help define the scope of the testing needed.

We have two ways to define our testing strategy and our test plan: using either a
bottom-up (or outside-in) or a top-down (or inside-out) approach, as shown in the
following diagram:

[n

o
A ACCEPTANCE TESTS %

1)
o 2
-1} [i-]
-1} s
o 3
“ INTEGRATION TESTS s
c =
= =l
‘,;:' m
B 3
B ol

3

UNIT TESTS y

Comparison of different size of tests and their benefit.

It's not new for agencies and startups when trying to build up and improve their
QA to start from the bottom, implementing unit tests and trying to get a good
amount of coverage.

The use of TDD is encouraged and it's actually the first step in getting into the testing
mentality, by writing tests first and then going through the red, green, and refactor
phases. But its sole focus relies on the code, and the responsibility to implement

and ensure they're covering the right amount of code rests with the developer.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Unit tests will help you focus on small and atomic parts of your application, and the
tests, by being rather quick to be executed, will help you discover bugs frequently
and improve the quality of the code developed. Your architectural and design skills
will also improve significantly.

At a certain point, you will find yourself knowing that there's still something that is
not touched by tests. While the project grows, the amount of manual and exploratory
testing grows with it.

Integration tests can help you alleviate this problem, but please refrain yourself
from spawning an incredible amount of integration tests: these can quickly become
brittle and unmaintainable, especially when the external dependencies can become
out-of-sync.

Acceptance tests are going to keep everything together and eliminate the need for
the repetitive tasks you can perform when doing manual tests. Again, acceptance

tests are not a replacement for exploratory testing and should instead focus on the
acceptance criteria defined.

As you can imagine, the top-down approach gives you the following advantages:

1. A complete solution with a good enough coverage

2. A clear panoramic of the testing infrastructure

3. A good balance between effort, development, and tests
4

Most of all, the confidence that your system is solid, if not rock-solid

What to test and what not to test

The distribution of test coverage could end up being distributed as 100 percent-20
percent-10 percent, for unit, integration, and acceptance tests, respectively.

The percentage for integration and acceptance can grow quite a fair bit in
user-facing projects.

In this context, it is particularly important to understand what code coverage means.

If you haven't already, you will probably find some software engineer that will
convince you that 100 percent coverage is essential and not reaching it is some sort
of shame you have to wear for the rest of the project, looking down at the ground
for you're not a respectable developer.

Reaching full coverage is a noble aim, and that's where we will try to get, but we
need also to be realists and, as highlighted before, understand that there are many
situations where this is not possible at all.

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling up for Testing

The "what to test" question, or in other words the scope of the testing, is defined by
our acceptance criteria for each feature we are going to develop.

Using the top-down approach, we will also be able to highlight which bits are
important to be integration tested, while trying to achieve 100 percent for units.

The master test plan

At the end of this initial planning work, you will have everything needed to define
your master test plan.

The master test plan is a unified way to document the scope and details of what
needs to be tested and how.

You don't need to be formal, and there's no specific requirement or procedure
to follow, unless you're working for a big company where it's considered a
deliverable at the beginning of the project to be signed off by the stakeholders.

In our case, it will be roughly defined by the following;:

* User APl implementation:

o

Unit test as much as possible (aim for 100 percent, but 60 percent
to 70 percent is considered acceptable on a case-by-case basis)

Functional tests to cover all the entry points of the application

Well defined corner-cases —bad parameters and/or requests
(for example, GET instead of POST) as client-side errors, and
server-side errors handling (50* errors and similar)

* User login from modal window:

[e]

Functional tests to ensure we are getting the right markup

o

Well defined corner cases — for example, no e-mail specified,
e-mail with no Gravatar setup

Acceptance tests —user clicks on the login button, modal is displayed,
user logs in, user sees him/her as logged in; user is logged in, click
on the logout button, the user sees him/her as logged out

As you can imagine, the test plan should be a document that lives together with
the project, being expanded and amended upon necessity when introducing new
features or changing others. This requirement determines some constraints that
should be respected if you want to keep having a specification document that is
simple enough to be updated in a short time (10 minutes top) and, at a glance, lets
you know what the implied risk and importance of each component and feature is.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If you want to understand more of the topic, I would strongly suggest you read
more starting from Attributes-Components-Capabilities (ACC) at https://code.
google.com/p/test-analytics/wiki/AccExplained.

The ACC goes together with risk analysis and mitigation. By putting your
components, their relative capabilities (or features), and the attributes they

should provide, such as "secure", "stable", "elegant", and so on in a grid, you can
immediately understand where you should focus your testing attentions. For each
row, you can give a risk value, relative to the other features. We want to keep the
value relative to avoid making it too difficult to compute and also because it is

meaningful only in this context.

Summary

During this chapter, you saw many important things, which are the base of what we're
going to work on in the next chapters and the base of testing from a wider perspective:
you learned the importance of our workflow and environment setup, you saw how

to use Composer and use it to install Yii, and, finally, we've picked up the concepts
detailed in Chapter 1, The Testing Mindset, and made them concrete, applying them to
our specific application and the features that we're going to implement.

Now, before we dive into the actual implementation of the application, we need
to get first into the testing suite Codeception, the jargon it uses, and the various
features that it will provide, which we're going to use in the upcoming chapters.

[43]

www.it-ebooks.info

https://code.google.com/p/test-analytics/wiki/AccExplained
https://code.google.com/p/test-analytics/wiki/AccExplained
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Entering Codeception

After the installation of Yii 2, as discussed in the previous chapter, in this chapter
we will cover installation of the Codeception suite (http://codeception.com) and
go through the folder structure to describe how Codeception works, its extensions,
modularization, syntax, and the jargon used.

We will need to have a good grasp of its concepts and details as Codeception will
become the main tool we will use to interact with our tests throughout the rest of
this book. In this chapter, we will be covering the following topics:

* Getting started with Codeception
* Installing Codeception in Yii 2
* Finding your way around Codeception

* Interacting with Codeception

Please keep in mind that the folder structure of Yii 2 might change
. when it reaches a stable release (which might be after the release
% of this book) and together with it, the structure used to organize
L tests. Always try to take notes and understand what you're looking
at, since the way Codeception works and interacts with Yii won't
massively change, if not improve.

[45]

www.it-ebooks.info

http://codeception.com
http://www.it-ebooks.info/

Entering Codeception

Getting started with Codeception

Not everyone has been exposed to testing. The ones who actually have are aware of the
quirks and limitations of the testing tools they've used. Some might be more efficient
than others, and in either case, you had to rely on the situation that was presented to
you: legacy code, hard to test architectures, no automation, no support whatsoever

on the tools, and other setup problems, just to name a few. Only certain companies,
because they have either the right skillsets or the budget, invest in testing, but most

of them don't have the capacity to see beyond the point that quality assurance is
important. Getting the testing infrastructure and tools in place is the immediate step
following getting developers to be responsible for their own code and to test it.

Even if testing is something not particularly new in the programming world, PHP
always had a weak point regarding it. Its history is not the one of a pure-bred
programming language done with all the nice little details, and only just recently
has PHP found itself in a better position and started to become more appreciated.

Because of this, the only and most important tool that came out has been
PHPUnit, which was released just 10 years ago, in 2004, thanks to the efforts
of Sebastian Bergmann.

PHPUnit was and sometimes is still difficult to master and understand. It requires
time and dedication, particularly if you are coming from a non-testing experience.
PHPUnit simply provided a low-level framework to implement unit tests and,

up to a certain point, integration tests, with the ability to create mocks and

fakes when needed.

Although it still is the quickest way to discover bugs, given the limitations we've
seen in the previous chapters, it didn't cover everything and using it to create
large integration tests will end up being an almost impossible task.

On top of this, PHPUnit since version 3.7, when it switched to a different
autoloading mechanism and moved away from PEAR, caused several
headaches rendering most of the installations unusable.

Other tools developed since mostly come from other environments and requirements,
programming languages, and frameworks. Some of these tools were incredibly strong
and well-built, but they came with their own way of declaring tests and interacting
with the application, set of rules, and configuration specifics.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

A modular framework rather than just
another tool

Clearly, mastering all these tools required a bit of understanding, and the
learning curve wasn't promised to be the same among all of them.

So, if this is the current panorama, why create another tool if you will end up
in the same situation we were in before?

Well, one of the most important things to be understood about Codeception is
that it's not just a tool, rather a full stack, as noted on the Codeception site, a suite
of frameworks, or if you want to go meta, a framework for frameworks.

Codeception provides a uniform way to design different types of test by using as
much as possible the same semantic and logic, a way to make the whole testing
infrastructure more coherent and approachable.

Outlining concepts behind Codeception

Codeception has been created with the following basic concepts in mind:

* Easy to read: By using a declarative syntax close to the natural language, tests
can be read and interpreted quite easily, making them an ideal candidate to be
used as documentation for the application. Any stakeholder and engineer close
to the project can ensure that tests are written correctly and cover the required
scenarios without knowing any special lingo. It can also generate BDD-style
test scenarios from code test cases.

* Easy to write: As we already underlined, every testing framework uses its
own syntax or language to write tests, resulting in some degree of difficulty
when switching from one suite to the other, without taking into account
the learning curve each one has. Codeception tries to bridge this gap of
knowledge by using a common declarative language. Further, abstractions
provide a comfortable environment that makes maintenance simple.

* Easy to debug: Codeception is born with the ability to see what's behind
the scenes without messing around with the configuration files or doing
random print_r around your code.

On top of this all, Codeception has also been written with modularity and
extensibility in mind, so that organizing your code is simple while also
promoting code reuse throughout your tests.

But let's see what's provided by Codeception in more detail.

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Entering Codeception

Types of tests

As we've seen, Codeception provides three basic types of test:

¢ Unit tests
¢ Functional tests

* Acceptance tests

Each one of them is self-contained in its own folder where you can find anything
needed, from the configuration and the actual tests to any additional piece of
information that is valuable, such as the fixtures, database snapshots, or specific
data to be fed to your tests.

In order to start writing tests, you need to initialize all the required classes that
will allow you to run your tests, and you can do this by invoking codecept with
the build argument:

$ cd tests

$../vendor/bin/codecept build

Building Actor classes for suites: functional, acceptance, unit
\FunctionalTester includes modules: Filesystem, Yii2
FunctionalTester.php generated successfully. 61 methods added
\AcceptanceTester includes modules: PhpBrowser

AcceptanceTester.php generated successfully. 47 methods added
UnitTester includes modules:

UnitTester.php generated successfully. 0 methods added

$

. The codecept buildcommand needs to be run every time you
a modify any configuration file owned by Codeception when adding or
s removing any module, in other words, whenever you modify any of

the . suite.yml files available in the /tests folder.

What you have probably already noticed in the preceding output is the presence
of a very peculiar naming system for the test classes.

Codeception introduces the Guys that have been renamed in Yii terminology as
Testers, and are as follows:

* AcceptanceTester: This is used for acceptance tests

* FunctionalTester: This is used for functional tests

* UnitTester: This is used for unit tests

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

These will become your main interaction points with (most of) the tests and we will
see why. By using such nomenclature, Codeception shifts the point of attention from
the code itself to the person that is meant to be acting the tests you will be writing.

This way we will become more fluent in thinking in a more BDD-like mindset rather
than trying to figure out all the possible solutions that could be covered, while losing
the focus of what we're trying to achieve.

Once again, BDD is an improvement over TDD, because it declares in a more
detailed way what needs to be tested and what doesn't.

AcceptanceTester

AcceptanceTester can be seen as a person who does not have any knowledge
of the technologies used and tries to verify the acceptance criteria that have been
defined at the beginning.

If we want to re-write our previously defined acceptance tests in a more
standardized BDD way, we need to remember the structure of a so-called user story.
The story should have a clear title, a short introduction that specifies the role that

is involved in obtaining a certain result or effect, and the value that this will reflect.
Following this, we will then need to specify the various scenarios or acceptance
criteria, which are defined by outlining the initial scenario, the trigger event, and

the expected outcome in one or more clauses.

Let's discuss login using a modal window, which is one of the two features we
are going to implement in our application.

Story title - successful user login
I, as an acceptance tester, want to log in into the application from any page.

* Scenario 1: Log in from the homepage
1. Tam on the homepage.

I click on the login link.

I enter my username.

I enter my password.

I press submit.

SRS

The login link now reads "logout (<username>)" and I'm still on
the homepage.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Entering Codeception

* Scenario 2: Log in from a secondary page

1. Tam on asecondary page.
I click on the login link.

I enter my username.

I enter my password.

I press Submit.

ARSI N

The login link now reads "logout (<username>)" and I'm still on the
secondary page.

As you might have noticed I am limiting the preceding example to successful cases.
There is more than this, and we will discuss in more detail all the relevant stories
and scenarios before we implement the actual features further on in this book.

The preceding story can be immediately translated into something along the lines
of the following code:

// SuccessfullLoginAcceptanceTest.php

$I = new AcceptanceTester ($Sscenario) ;
$I->wantTo("login into the application from any page") ;

// scenario 1

$I->amOnPage ("/") ;
$I->click("login") ;
$I->fillField("username", Susername) ;
$I->fillField("password", Spassword) ;
$I->click ("submit") ;
$I->canSee("logout (".Susername.")");
$I->seeInCurrentUrl ("/");

// scenario 2

$I->amOnPage ("/") ;

$I->click ("about") ;

$I->seelLink ("login") ;
$I->click("login") ;
$I->fillField("username", Susername) ;
$I->fillField("password", Spassword) ;
$I->click ("submit") ;
$I->canSee("logout (".Susername.")");
$I->amOnPage ("about") ;

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

As you can see this is totally straightforward and easy to read, to the point that anyone
in the business should be able to write any case scenario (this is an overstatement, but
you get the idea).

Clearly, the only thing that is needed to understand is what the AcceptanceTester
is able to do: The class generated by the codecept build command can be found

in tests/codeception/acceptance/AcceptanceTester . php, which contains all
the available methods. You might want to skim through it if you need to understand
how to assert a particular condition or perform an action on the page. The online
documentation available at http://codeception.com/docs/04-AcceptanceTests
will also give you a more readable way to get this information.

Don't forget that at the end AcceptanceTester is just a name of a class, which is
defined in the YAML file for the specific test type:

$ grep class tests/codeception/acceptance.suite.yml

class name: AcceptanceTester

Acceptance tests are the topmost level of tests, as some sort of high-level user-

oriented integration tests. Because of this, acceptance tests end up using an almost real
environment, where no mocks or fakes are required. Clearly, we would need some sort
of initial state that we can revert to, particularly if we're causing actions that modify
the state of the database.

As per Codeception documentation, we could have used a snapshot of the database

to be loaded at the beginning of each test. Unfortunately, I didn't have much luck in
finding this feature working. So later on, we'll be forced to use the fixtures. Everything
will then make more sense.

When we will write our acceptance tests, we will also explore the various modules
that you can also use with it, such as PHPBrowser and Selenium WebDriver and
their related configuration options.

FunctionalTester

As we said earlier, FunctionalTester represents our character when dealing with
functional tests.

You might think of functional tests as a way to leverage on the correctness of the
implementation from a higher standpoint.

The way to implement functional tests bears the same structure as that of acceptance
tests, to the point that most of the time the code we've written for an acceptance test
in Codeception can be easily swapped with that for a functional test, so you might
ask yourself: "where are the differences?"

[51]

www.it-ebooks.info

http://codeception.com/docs/04-AcceptanceTests
http://www.it-ebooks.info/

Entering Codeception

It must be noted that the concept of functional tests is something specific to
Codeception and can be considered almost the same as that of integration tests
for the mid-layer of your application.

The most important thing is that functional tests do not require a web server to

run, and they're called headless: For this reason, they are not only quicker than
acceptance tests, but also less "real" with all the implications of running on a specific
environment. And it's not the case that the acceptance tests provided by default by
the basic application are, almost, the same as the functional tests.

Because of this, and as highlighted in Chapter 2, Tooling up for Testing, we will end
up having more functional tests that will cover more use cases for specific parts of
our application.

FunctionalTester is somehow setting the $_GET, $_POST and $_REQUEST variables
and running the application from within a test. For this reason, Codeception ships
with modules that let it interact with the underlying framework, be it Symfony2,
Laravel4, Zend, or, in our case, Yii 2.

In the configuration file, you will notice the module for Yii 2 already enabled:

tests/functional.suite.yml

class_name: FunctionalTester

modules:
enabled:
- Filesystem
- Yii2
...

FunctionalTester has got a better understanding of the technologies used
although he might not have the faintest idea of how the various features he's
going to test have been implemented in detail; he just knows the specifications.

This makes a perfect case for the functional tests to be owned or written by the
developers or anyone that is close to the knowledge of how the various features
have been exposed for general consumption.

The base functionality of the REST application, exposed through the API, will
also be heavily tested, and in this case, we will have the following scenarios:

e I can use POST to send correct authentication data and will receive a J[SON
containing the successful authentication

e Ican use POST to send bad authentication data and will receive a J[SON
containing the unsuccessful authentication

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

e After a correct authentication, I can use GET to retrieve the user data

* After a correct authentication, I will receive an error when doing a GET for a
user stating that it's me

* Icanuse POST to send my updated hashed password

* Without a correct authentication, I cannot perform any of the preceding
actions

The most important thing to remember is that at the end of each test, it's your
responsibility to keep the memory clean: The PHP application will not terminate
after processing a request. All requests happening in the same memory container
are not isolated.

1
‘Q If you see your tests failing for some unknown reason when they

shouldn't, try to execute a single test separately.

UnitTester

I've left unitTester for the end as it's a very special guy. For all we know, until
now, Codeception must have used some other framework to cover unit tests, and
we're pretty much sure that PHPUnit is the only candidate to achieve this. If any
of you have already worked with PHPUnit, you will remember the learning curve
together with the initial problem of understanding its syntax and performing even
the simplest of tasks.

I found that most developers have a love-and-hate relationship with PHPUnit:
either you learn its syntax or you spend half of the time looking at the manual
to get to a single point. And I won't blame you.

We will see that Codeception will come to our aid once again if we're struggling

with tests: remember that these unit tests are the simplest and most atomic part of the
work we're going to test. Together with them come the integration tests that cover the
interaction of different components, most likely with the use of fake data and fixtures.

As we will see in Chapter 4, Isolated Component Testing with PHPUnit, if you're used
to working with PHPUnit, you won't find any particular problems writing tests;
otherwise, you can make use of unitTester and implement the same tests by using
the Verify and Specify syntax.

UnitTester assumes a deep understanding of the signature and how the
infrastructure and framework work, so these tests can be considered the
cornerstone of testing.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Entering Codeception

They are super fast to run, compared to any other type of test, and they should also
be relatively easy to write.

You can start with adequately simple assertions and move to data providers before
needing to deal with fixtures. More of this is covered in the following chapter.

Other features provided by Codeception

On top of the types of tests, Codeception provides some more aids to help you
organize, modularize, and extend your test code.

As we've seen, functional and acceptance tests have a very plain and declarative
structure, and all the code and the scenarios related to specific acceptance criteria
are kept in the same file at the same level and these are executed linearly.

In most of the situations, as it is in our case, this is good enough, but when your
code starts growing and the number of components and features become more and
more complex, the list of scenarios and steps to perform an acceptance or functional
test can be quite lengthy.

Further, some tests might end up depending on others, so you might want to start
considering writing more compact scenarios and promote code reuse throughout
your tests or split your test into two or more tests.

If you feel your code needs a better organization and structure, you might want to
start generating CEST classes instead of normal tests, which are called CEPT instead.

A cEST class groups the scenarios all together as methods as highlighted in the
following snippet:

<?php
// SuccessfulloginCest.php

class SuccessfullLoginCest

{
public function before (\Codeception\Event\TestEvent $event) {}
Codeception\Event\TestEvent Sevent

public function fail (Codeception\Event\TestEvent $event) {}

// tests
public function loginIntoTheApplicationTest (\AcceptanceTester S$I)

{

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

$I->wantTo("login into the application from any page");
$I->amOnPage ("/") ;

$I->click("login") ;

SI->fillField("username", Susername) ;
$I->fillField("password", S$Spassword) ;
SI->click("submit") ;

$I->canSee("logout (".Susername.")");
$I->seeInCurrentUrl ("/");

/] ...

}

?>

Any method that is not preceded by the underscore is considered a test, and the
reserved methods _before and _after are executed at the beginning and at the
end of the list of tests contained in the test class, while the fail method is used
as a cleanup method in case of failure.

This alone might not be enough, and you can use document annotations to
create reusable code to be run before and after the tests with the use of ebefore
<methodName> and @eafter <methodNames.

You can also be stricter and require a specific test to pass before any other by using
the document annotation @depends <methodNames.

We're going to use some of these document annotations, but before we start
installing Codeception, I'd like to highlight two more features: PageObjects and
StepObjects.

* The PageObject is a common pattern amongst test automation engineers.
It represents a web page as a class, where its DOM elements are properties
of the class, and methods instead provide some basic interactions with the
page. The main reason for using PageObjects is to avoid hardcoding CSS
and XPATH locators in your tests. Yii provides some example
implementation of the PageObjects used in /tests/codeception/_pages.

* StepObject is another way to promote code reuse in your tests: It will define
some common actions that can be used in several tests. Together with
PageObjects, StepObjects can become quite powerful. StepObject extends the
Tester class and can be used to interact with the PageObject. This way your
tests will become less dependent on a specific implementation and will save
you the cost of refactoring when the markup and the way to interact with
each component in the page changes.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Entering Codeception

For future reference, you can find all of these in the Codeception documentation in
the section regarding the advanced use at http://codeception.com/docs/07-
AdvancedUsage together with other features, like grouping and an interactive
console that you can use to test your scenarios at runtime.

Installing Codeception in Yii 2

Now that we've seen what we can theoretically do with Codeception, let's move
on and install it.

Yii comes with its own Codeception extension that provides a base class for
unit tests (yii\codeception\TestCase), a class for tests that require database
interaction (yii\codeception\DbTestCase), and a base class for Codeception
page objects (yii\codeception\BasePage).

As usual, our preferred method is using Composer:

$ composer require "codeception/codeception: 2.0.*" --prefer-dist --dev

There's a specific reason to use -prefer-dist; if you're using Git, you can get

into a hairy situation with Git submodules (but again excluding the /vendor folder
should solve most of these problems). To avoid repeating it every time we use
Composer, just add the following to your composer. json file:

// composer.json

{
"config": {
"preferred-install": "dist™"
}
}

Also, remember that using composer install will not work if you've added the
component manually to your composer. json file as it would consider it a mismatch
and raise an error. To install the package, you need to run composer update either
for all the packages you have installed, or specifically with this:

$ composer update codeception/codeception

[56]

www.it-ebooks.info

http://codeception.com/docs/07-AdvancedUsage
http://codeception.com/docs/07-AdvancedUsage
http://www.it-ebooks.info/

Chapter 3

As highlighted before, you might also be interested in two additional packages
codeception/specify and codeception/verify. These two packages provide a
further level of abstraction that allows you to write more human readable tests by
using a business-oriented syntax, close to what BDD definitions will look like.

Your composer. json file will contain the following;:

// composer.json

{

"require-dev": {
"yiisoft/yii2-codeception": "*",
"yiisoft/yii2-debug": "*",
"yiisoft/yii2-giin: "sn,
"codeception/codeception": "2.0.*",
"codeception/specify": "x",
"codeception/verify": "

Finding your way around Codeception

All our tests are available within the /tests/codeception folder. In version 2.0 this
folder contains directly all the suites and configuration files needed by them and
Codeception as well. The following configuration steps are based on this structure.

By listing the content of the /tests folder, we will see the main Codeception
configuration file, while each single suite has its own configuration file inside of
the /tests/codeception folder, which we can modify accordingly to override or
further configure our tests. Starting from our /tests folder, the following are the
configuration files we will be dealing with:

* codeception.yml: This is for all the suites and Codeception in general
* codeception/acceptance.suite.yml: This is for the acceptance tests
* codeception/functional.suite.yml: This is for the functional tests
* codeception/unit.suite.yml: This is for the unit tests
Together with these files, there are some additional configuration files that are
mostly needed by Yii: bootstrap.php and the content of the config/ folder.
The underscore prefixing some of these files just marks them in a way such that

Codeception will ignore them. Keep this in mind in case you need to create
new files in the various suite folders.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Entering Codeception

Within the /tests/codeception folder, you will find the folders containing the tests
for each single testing suite, unit/, functional/, and acceptance/. Each of them
will contain a _bootstrap.php file for the suite, the actual tests, and other folders
for fixtures for example.

The few other folders contained in /tests/codeception are as follows:

* Dbin/: It contains the test-bound yii CLI command, which we will use to
run migrations against our test database.

* _data/:It contains a snapshot of the database (dump . sql) normally used to
bring it to an initial state for the acceptance tests, but it can contain anything,
for instance, this folder will be used by Codeception in case you want it to
generate (and publish) the various scenarios from the tests you've created
in plain English (run the codecept help generate:scenarios command
for more information).

* _output/: This folder will become quite useful, as it will contain the output
of the fetched pages when your acceptance or functional tests are failing,
giving you another way to inspect and understand what's wrong.

* _pages/: This is where Codeception page objects are stored. There are already
three page objects provided by the basic application, namely AboutPage . php,
ContactPage.php, and LoginPage . php. We will explore this part further
down the line as they will prove to be extremely useful as they simplify our
lives quite substantially and promote modularity and reuse of code.

* _support/: This is used for additional support files, which currently
hold the FixtureHelper class used to populate the database with the
provided fixtures.

Configuring Codeception

Now, we should pretty much know where all the configuration files live, so
we're going to review their content and adjust it before we can start interacting
with Codeception and first run all the provided tests and then our own tests.

Let's start with the YAML configuration files for the different suites.

The acceptance tests are configured by default to use PHPBrowser. We will see
how things need to be adjusted to use Selenium WebDriver, but generally
speaking, both tools require at least a URL to access our application:

tests/codeception/acceptance.suite.yml

class name: AcceptanceTester

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

modules:
enabled:
- PhpBrowser
config:
PhpBrowser:
url: 'http://basic.yii2.sandbox’

The default URL is http://localhost : 8080, which you won't need to change
when, for instance, you're using Vagrant or the PHP built-in server. In the preceding
example, I've set up a custom domain name; this is not required in order to run your
tests as it might require additional configuration steps that won't be needed, unless
you're in a larger environment and your configuration is a bit more complex (for
instance in case your tests are being executed remotely). We'll see more of this in

the final chapters.

Please also note that you don't need to specify the entry file, index-test.php, as
you want Yii to resolve the routing for you.

The base URL for our application isn't needed for our functional tests, as I highlighted
before. In fact what Codeception cares about for our functional tests is the entry script
for the application: all the functionality is provided by the yii2-codeception package
(which should come pre-installed in your application), so in the configuration file, you
have just a reference pointing to the configuration of your test application:

tests/codeception/functional.suite.yml

modules:
config:
Yii2:
configFile: 'codeception/config/functional.php'

Heading over to this file, we will find that at the very beginning we have a couple of
$ SERVER variables set:

// tests/codeception/config/functional.php

// set correct script paths
$ SERVER(['SCRIPT FILENAME'] = YII TEST ENTRY FILE;
$_SERVER['SCRIPT NAME'] = YII TEST ENTRY URL;

These two constants have been defined in the overall Yii bootstrap file:

// tests/codeception/ bootstrap.php

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Entering Codeception

defined('YII TEST ENTRY URL') or define('YII TEST ENTRY URL',
parse_url (\Codeception\Configuration::config() ['config']
['test entry url'], PHP URL PATH)) ;

defined ('YII_TEST ENTRY FILE') or define('TEST TEST ENTRY FILE',
dirname(DIR_) . '/web/index-test.php');

In other words, the entry file is always the one found in /web/index-test.php
while the URL can be configured in the main configuration file:

// tests/codeception.yml

config:
test _entry url: https://basic.yii2.sandbox/index-test.php

Remember to adjust the hostname to the one you will use, or leave
L the default, which is localhost : 8080.

For unit tests, there isn't much to be configured, as Codeception is just wrapping
around PHPUnit, and the two packages, verify and specify, will work out of the box.

The only thing left to update is the configuration of the database: as we said earlier,
currently, you can simply update the DSN in /tests/codeception/config/
config.php, in the same way that the main Yii database configuration is defined.

Tests available in Yii 2

Compared to what Yii 1 was offering, Yii 2 now comes with examples of working
tests for any suite of tests available. This is a great thing as it would help us
understand how to structure and implement our tests.

Once we've got the server running and all the configuration set up properly, we
can just run the following command:

$ cd tests

$../vendor/bin/codecept run

This will run all the tests and see them passing. At the end, you will see a nice
summary:

Time: 6.92 seconds, Memory: 35.75Mb

OK (12 tests, 60 assertions)
$

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The tests provided for acceptance and functional tests are quite self-explanatory;
they're basically ensuring the four pages, namely the homepage, the about page, the
contact page and the login page, available in the basic application work as expected.

These tests are exactly the same, with the only difference that acceptance tests take
into consideration the ability for you to run the tests via Selenium and include
specific directives for it:

// tests/functional/ContactCept.php

if (method exists(SI, 'wait')) {
$I->wait(3); // only for selenium

}

This is just an example, and it shouldn't really matter to you right now, as we're
going to see how Selenium WebDriver works in detail further down the line in
Chapter 7, Having Fun Doing Browser Testing.

The unit tests shipped by Yii 2 are the ones that are unsurprisingly different; they
mostly cover integration tests between various components, for instance, for the
login form and the contact form, while they leave to us the burden of implementing
any test for the user. We will get there, in the next chapter.

The only thing worth noticing in the unit tests is that they make use of Specify for a
more declarative way to write units, instead of the more common PHPUnit syntax.
Again, this is just syntactic sugar and it might be easier for you to start with it.

Interacting with Codeception

So far, we've seen two arguments of the codecept command:

* build: This is used for building the "testers" and any additional code
when using any additional module
* run: This is used to execute the tests
There are a few parameters you can invoke run with that I'd like to bring to

your attention, as these will come handy when running and debugging the tests.
The syntax of the run command is as follows:

$ vendor/bin/codecept run [options] [suite] [test]

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Entering Codeception

First of all, you can run a specific suite, such as unit, acceptance, or functional,
or be more specific and run a single test file, for example:

$../vendor/bin/codecept run acceptance LoginCept.php
Time: 3.35 seconds, Memory: 13.75Mb

OK (1 test, 5 assertions)

In the preceding command, you can also use the - -steps option, which is a way to
be more verbose showing all the single steps taken by your tests while running them.

Alternatively, you also have - -debug, which will not only show the steps taken by
your application, but also display what's happening behind the scenes, such as the
POST request of data to a specific URL, the loading of a page, or the list of cookies set.

Creating tests

While running tests and seeing them passing will be all you care about once you've
written your tests, you first need to write them.

Codeception helps us get started by providing a code generation argument on the
command line:

* generate:cept: This is used for generating CEPT tests

* generate:cest: This is used for generating CEST tests

* generate:phpunit: This is used for generating PHPUnit tests, without
the Codeception additions

* generate:test: This is used for generating unit tests

All the preceding arguments will require as parameters the suite name and the name
of the file to create:

$../vendor/bin/codecept generate:cept acceptance ModalLoginCept

Test was created in ModallLoginCept.php

You can review these and more commands by running codecept without arguments.

Migrations on the test database

One of the things that I have found particularly handy and that we're going to
use extensively is the ability to run the same migrations that we will create for
our application on your test database.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Migrations are a concept that is not exclusive to Yii, and you can read
%ji\ more about it in the documentation at http://www.yiiframework.
’ com/doc-2.0/guide-db-migrations.html.

In the /tests/codeception/bin/ folder, you will find the yii CLI command
line that you can use against the test database you've configured previously to
run the migrations.

Assuming you're in the root of your project, the following sequence of commands
will show you how to run the migrations:

$ cd tests/codeception
$ php bin/yii migrate/up

Yii Migration Tool (based on Yii v2.0.0-dev)

Creating migration history table "migration"...done.

No new migration found. Your system is up-to-date.

The yii CLI is exactly the same as the main one residing in the root of your project,
with the only difference that it will read the test configuration, particularly the one
regarding the database.

Summary

In this chapter, we came to appreciate the breadth and the quality of Codeception.

We've seen the three types of tests, namely unit, functional, and acceptance, which
we'll be using throughout the rest of the book. We've also touched some additional
features provided by the tool and by the Yii 2 Codeception module. We've learned
how to interact with it, generate tests, and deal with debugging and keeping the test
databases in sync with the database of the main application.

In the next chapter, we're going to start refactoring our User class, adding our tests
first and progressing through all the most important PHPUnit features.

Downloading the example code

You can download the example code files from your account at

~ http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you

can visit http: //www.packtpub.com/support and register to

have the files e-mailed directly to you.

[63]

www.it-ebooks.info

http://www.yiiframework.com/doc-2.0/guide-db-migrations.html
http://www.yiiframework.com/doc-2.0/guide-db-migrations.html
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing
with PHPUnit

In this chapter, we will take a closer look at PHPUnit and how it is handled by
Codeception.

We will start with a brief introduction of the changes that we need to perform before
getting into the actual tests, and from there, go through the red, green, and refactor
phases to implement the tests and our code and refactor where needed.

We will introduce basic topics such as testing in isolation, integration tests of the
components, and more advanced topics such as data providers.

The following topics are covered in this chapter:

* Understanding the work to be done

* Using the User model

* Implementing the first unit test

* Component testing of the model

* Implementing the ActiveRecord class and its methods

* Seeing test passing

Understanding the work to be done

In the scope of our work, we're going to introduce PHPUnit by first discussing the
User model, how the authentication method works in Yii, and how it's going to be
used in our specific case.

After that, we will sketch our tests to cover all possible uses of the User class,
refactor the model, and then aim to get the test passed.

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

The current state of the framework that we have installed is not good enough for the
features we want to implement.

As underlined in the previous chapters, we're going to follow a TDD approach for
this first part.

Using the User model

Let's start by having a look at how the User model is used in Yii.
You can open the file located at /models/User.php.

The first thing to notice is that the User class extends from a generic Yii object class
and implements IdentityInterface:

// User.php
namespace app\models;

use yii\base\Object;
use yii\web\IdentityInterface;

class User extends Object implements IdentityInterface

{
//

The yii\base\Object class is the parent class of all classes, which implements the
concept of virtual attributes, with the use of dynamically invoked getters and setters,
while yii\web\IdentityInterface provides the signature for methods we need to
implement in our class to provide the authentication mechanism.

You will also notice by the private property susers that the model does not connect
to a database; instead, it holds all the authentication data within the class itself.

This has been done on purpose by the Yii developers, in order to have everything
working without additional effort. This not only alleviates the problem of massive
refactors in case you're not using any authentication in your app, but it's also a good
starting point if you need to learn how the authentication works.

Authentication in Yii is not particularly straightforward, and a lot of the mechanism
for authenticating a user is kept hidden from us; so, unless you need to implement
some level of robustness in your application, you don't normally have to worry

too much.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Instead, what is important to notice is that the authentication information is kept in an
object, separate from the User model. This mechanism provides a separate and clean
layer of security. From here, the authentication status is kept into a dynamically loaded
class of the \yii\web\User type, which is accessible throughout the whole life of the
application via Yii: : $app- >user. For instance, to check whether the user is logged in,
we can do the following:

use Yii;

// check the user is logged in
if (!Yii::$app->user->isGuest) ({
// do something

}

This is actually used in several views, and it's clearly similar to what was happening
before in Yii 1.

Having both static and private properties, as is the case with the $users variable in
the User class, could make the job of testing our class quite hard, if not impossible,
at times.

This is another reason why we need to modify the way it's defined entirely, and
instead, the User class is extended from the ActiveRecord class and deals directly
with the database. With this, we can make use of the fixtures that we can control
without having to hardcode configuration settings or parameters in our tests, which
could lead to unmaintainable tests, if not pointless ones.

Implementing the first unit test

Yii provides an empty UserTest class for us, so we're going to start working from
there. Head over to tests/codeception/unit/models/ and open the UserTest.
php file.

So now our question is: what are we going to implement at this point? Well, the
answer will be quite simple, once we've understood what the aim of the unit tests is.

Unit tests, as well as functional and acceptance tests, are a black box testing system:
The tests will simply use the interface provided by the object and will make sure that
the outputs are as expected. Since the implementation doesn't count if this changes
slightly, or even radically, the tests should still pass assuming the interface remained
the same.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

White box testing, which is provided by code coverage, will instead ensure that we
have covered all the possible branches of our code. We will discuss this further in
Chapter 8, Analyzing Testing Information.

M Unit tests also provide support for use cases that will
Q document effectively the use of your interfaces to anyone in or
outside your team.

So, whether we're starting from scratch, adding new tests, or refactoring some
existing ones, we have a few rules to help us achieve as much coverage as possible:

* Fix the existing broken tests (and raise relevant tickets if not related to our
code or if the work ends up being out of scope).

* Implement tests for the new smallest possible unit of code.
* Make tests independent from each other.

* Name tests properly. I've started using long names
to understand with accuracy what could be wrong
depending on which tests were failing, for example,
testMyMethodThrowsAnExceptionWhenInvokedWithNoParameters ();
you can clearly use any other naming standards, for instance, using _ as
a word separator instead of the camel case; the idea is to keep things
readable and maintainable.

We also want to have a few basic rules that could guarantee a 360 degree usage
overview so that we can see how to use our component and spot immediately if
any of its uses are forbidden, useless, or anything else. These rules are as follows:

* Cover normal usage of the class/method/whatever (positive test).

* Cover the extraordinary functionality of whatever you're testing, for
example, when it returns the exception (in other words, when it should fail)
(negative test).

This might be a bit off-putting, and this first step is possibly the most difficult that
I've witnessed, on myself and on my colleagues. Countless times I've seen negative
tests missing, creating a huge gap of potential vulnerabilities and fragility in the test.

Don't let yourself down; the reward, as we've seen in Chapter 1, The Testing Mindset,
is priceless.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

As soon as you start, consider yourself a tester, which is the first and most important
step for ensuring the quality of the code that you ship, you can see what you've
achieved with an improved sense of confidence in your code.

How much to care for other people's code
Not all the code you're going to test will be the product of your effort.

When working with Yii, we will start testing code or integrations with code that
comes from Yii itself, or most likely as in a real-world project, from someone else
internally or externally from your team.

Sometimes, it's safe to say that you don't need to test anything that is outside your
scope, for many reasons. But, it's also important to understand what the implied
risk of not testing these features is.

Think, for instance, about the password verification of the User model, which we
will be addressing a few pages further on: the possibility of being unable to verify
a saved password is something we need to avoid, as its risk could compromise the
overall functionality of our application and have as a consequence the inability of
the user to log into our application.

As explained in Chapter 1, The Testing Mindset, and in Chapter 2,
Tooling up for Testing, Attributes-Components-Capabilities (ACC)

might be something you should be starting to look into if you need
"~ this understanding of the risks related to the piece of functionality

that you're building.

In our specific case, our tests will be concentrating on bits of functionality provided
by the parent class and the interface, such as the following;:

* Validating the user model (this is clearly needed as it's a functionality that
is also triggered immediately by the save () method).

* Saving the User model in the database.

* Covering the basic usage for the functions we will have to implement from
the interface.

It should suffice to say that in some cases, this might fall out of scope. If we were
taking into consideration the higher level of abstraction from a BDD point of view,
the kind of tests we would be interested in would be the interaction with the User
class, as in reading it from the database and how it will be used by other components.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

Component testing of the model

Testing the validation of a model and any further data manipulation, until it reaches
the database and comes back, is the basic step in Yii to ensure that the model has
clear and well-defined validation rules implemented. This is effectively useful when
it comes down to preventing clients from being able to pass additional or wrong
data, when interacting with the system.

If you care about security, this is something you might need to investigate a bit
further, if you haven't done it already.

o I'd like to stress the position we've taken in the previous statement:
~ We're taking the consumer/ client perspective. At this particular
Q moment, we don't know how things are going to be implemented, so
it's better to focus on the usage of the model.

So, let's get back to /tests/codeception/unit/ models/UserTest.php: The file
should already be there, and it's more or less what you would get by running the
following command:

$../vendor/bin/codecept generate:phpunit unit models/UserTest

Test was created in /var/www/vhosts//htdocs/tests/unit/UserTest.php

Right now, if you were to run this command, you would end up with a test that
you would need to slightly change, so that we could use the Yii infrastructure.
In particular, you would need to change the class your test was extending from
with the following;:

// tests/codeception/unit/UserTest.php
namespace tests\codeception\unit\models;

use yiil\codeception\TestCase;

class UserTest extends TestCase

{
}

In other words, we need to use the provided \yii\codeception\TestCase class,
instead of the PHPUnit default \PHPUnit Framework TestCase class.

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

So, let's first sketch down a few tests within our tests\codeception\unit\models\
UserTest class:

// tests/codeception/unit/models/UserTest.php

public function testValidateReturnsFalseIlfParametersAreNotSet ()

Suser = new User;
Sthis->assertFalse (Suser->validate (), "New User should not
validate") ;
}
public function testValidateReturnsTruelfParametersAreSet () {
SconfigurationParams = [
'username' => 'a valid username',
'password' => 'a valid password',

'authkey' => 'a valid authkey'
1;
Suser = new User ($configurationParams) ;

Sthis->assertTrue (Suser->validate (), "User with set parameters
should validate") ;

}

As you can see, knowing what to test requires insight on how Yii works. So, it might

be completely fine to actually get the first test sketches completely wrong, if you
don't know how things are intended to work.

In the preceding code snippet, we've defined two tests; the first is what we've called
the negative and the second is the positive one.

M Please note that passing the second parameter to the various assert
Q commands will help you debug the tests in case they're failing. Writing
a descriptive and meaningful message could save time.

» In the code snippets of this book, the second parameter of the various
assert methods will not be passed, in order to keep the code snippets
"~ more compact.

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

What's testing for PHPUnit

Before we continue with the rest of our tests, let's review what we've got up until
here: The test file is a class with a name in the <Component >Test format, which
collects all tests relating to the component we want to test; each method of the class
is a test of a specific feature, either positive or negative.

Each method/test in the class should have at least one assertion, and PHPUnit
provides a long list of assertion statements that you can trigger to assert that an
actual value matches an expected value, together with methods to expect for a
specific exception.

These methods are provided by the parent class TestCase. You can get the full list
at https://phpunit.de/manual/current/en/appendixes.assertions.html.

Some basic assertions are as follows:

* assertTrue (actualvalue) and its opposite assertFalse(...)

* assertEquals (expectedValue, actualValue) and its opposite
assertNotEquals(...)

® aggertNull (actualValue)

The result of your test is based on the output of these methods. You should also try
to avoid wrapping some assertions within one or more conditions. Think carefully
about what you're trying to achieve and what you're actually testing.

As for exceptions, you need to use some documentation annotation:

PHPUnit uses documentation annotations extensively to cover what's
not normally doable with in-test assertions.

_ On top of what we will see, there's plenty of other functionalities, such
% as testing dependencies with @depends, @before, and @after or
' grouping with egroup.

For a full list of annotations you can use, head over to https://
phpunit.de/manual/current/en/appendixes.annotations.
html.

Consider the following example:

/**
* @expectedException yiilbase\InvalidParamException
*/

public function

[72]

www.it-ebooks.info

https://phpunit.de/manual/current/en/appendixes.assertions.html
https://phpunit.de/manual/current/en/appendixes.annotations.html
https://phpunit.de/manual/current/en/appendixes.annotations.html
https://phpunit.de/manual/current/en/appendixes.annotations.html
http://www.it-ebooks.info/

Chapter 4

testValidatePasswordThrowsInvalidParamExceptionIfPasswordIsIncorrect ()

{

Suser = new User;
Suser-s>password = 'some password';

Suser->validatePassword('some other password');

}

On top of @eexpectedException, you can also use @expectedExceptionCode and
@expectedExceptionMessage, in case you need to ensure that the content of the
exception is what you are expecting it to be.

Another way to do this is to use the setExpectedException () method, which
might provide a higher level of flexibility when you have more complex exception
cases to deal with.

o Although very generic, we can also expect language-specific errors
~ when passing a different type to a method with a typed formal
Q parameter, or when trying to include a non-existing file by using @
expectedException PHPUnit Framework Error.

Assertion testing in PHPUnit is quite straightforward once you've got a grip on
how your class, model, and method are going to be used.

On top of this, PHPUnit provides some clever functionality to help us speed
up testing and solve some intricacies. Data providers, fixtures, stubs, and mocks
will be covered later on and in Chapter 5, Summoning the Test Doubles.

Testing the methods inherited by
Identityinterface

Now that we know everything we need to in order to start,

we would normally decide to implement the rules to make

the testvalidateReturnsTruelfParametersAreSet () and
testValidateReturnsTruelfParametersAreNotSet () tests pass, although at

this occasion, it seems much easier to just continue sketching the remaining

methods that we would need to implement later on, such as getId (), getAuthKey (),
validateAuthKey (), findIdentity (), and findIdentityByAccessToken (),

plus two more methods that have been implemented and used already, namely
validatePassword () and £indByUsername (), both used by the LoginForm model.

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

We can immediately decide to get rid of the simplest methods to cover. We're not
going to make any use of the access token, and normally, if we weren't forced to
implement the method by the interface, we could have just avoided this bit. In this
case, instead, we need to get it sorted and the best way to document this missing
functionality is to raise Not SupportedException from the method and expect
such an exception:

/**
* @expectedException yii\base\NotSupportedException
*/
public function
testFindIdentityByAccessTokenReturnsTheExpectedObject ()

{

User::findIdentityByAccessToken ('anyAccessToken') ;

}
Following this method, we test get1d ():

public function testGetIdReturnsTheExpectedId () {
Suser = new User () ;
Suser->id = 2;

Sthis->assertEquals ($SexpectedId, Suser->getId()) ;

}
We can use the exact same logic to test $user->getAuthkey ().

While for findIdentity (), we can do the following;:

public function testFindIdentityReturnsTheExpectedObject () {
SexpectedAttrs = [
'username' => 'someone',
'password' => 'else',
'authkey' => 'random string'
1;

Suser = new User (SexpectedAttrs) ;
Sthis->assertTrue (Suser->save ()) ;

SexpectedAttrs['id'] = Suser->id;
Suser = User::findIdentity(SexpectedAttrs(['id']) ;

Sthis->assertNotNull (Suser) ;
Sthis->assertInstanceOf ('yii\web\IdentityInterface', S$user);

Sthis->assertEquals (SexpectedAttrs['username'], Suser-
>username) ;

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Sthis->assertEquals (SexpectedAttrs['password'], Suser-
>password) ;

Sthis->assertEquals ($SexpectedAttrs['authkey'], Suser-
>authkey) ;

}

With findIdentity (), we want to make sure the object returned is the one we were
expecting, so our assertions ensure that
1. there's a record retrieved

2. it's of the right class (IdentityInterface is what most of the methods
interacting with the user at authentication time will expect it to be)

3. it contains what we've passed when creating it

Using data providers for more flexibility

The negative test for £indIdentity () is quite straightforward:

public function testFindIdentityReturnsNullIfUserIsNotFound () {
Sthis->assertNull (User: :findIdentity(-1)) ;

}

Implementing a test like this might raise some eyebrows, as we've hardcoded a
value, -1, which might not be representative of any actual real-world case.

The best way would be to use a data provider, which can feed our test with a list of
values that should make the test pass. This is quite convenient as we can tailor edge
cases when it comes down to doing some regression testing on the existing features:

/**
* @dataProvider nonExistingIdsDataProvider
*/
public function testFindIdentityReturnsNullIfUserIsNotFound (
SinvalidId

)

Sthis->assertNull (User: :findIdentity ($invalidId)) ;

public function nonExistingIdsDataProvider() {
return [[-1], [null]l, [30]1];

}

In a data provider, each second-level array is a call to the function requesting it and
the content of these arrays is the ordered list of the actual parameters of the method.

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

So, in our preceding case, the test will receive -1, null, and 30 in consecutive
invocations.

If we were to use a data provider for our initial test
testFindIdentityReturnsTheExpectedObject (), we could test whether the
username contains UTF-8 or invalid characters, for instance.

So, using data providers is a good thing! It gives us the ability to use a single test to
check more complex situations that require a certain level of flexibility.

But here comes the problem: The database that is used during all tests (with $user-
>save ()) will continue to grow, as there is no instruction to tell it to do otherwise.

As a result, we can add the following to the setUp () function:

// tests/codeception/unit/models/UserTest.php

protected function setUp ()
{
parent: :setUp() ;
// cleanup the User db
User::deleteAll () ;

}

Remember to clean up after yourself: You might be impacting someone else's test.
For now, with this call to deleteall () in place, we are fine.

The setUp () function is called at the beginning before every single test contained in
the class. PHPUnit provides several layers of methods for setting things up before
one or more tests, and unsetting them after. The sequence of calls can be summed up
with the following;:

tests\codeception\unit\models\UserTest: :setUpBeforeClass () ;
tests\codeception\unit\models\UserTest:: before() ;
tests\codeception\unit\models\UserTest: :setUp() ;
tests\codeception\unit\models\UserTest: :testSomething() ;
tests\codeception\unit\models\UserTest: :tearDown () ;
tests\codeception\unit\models\UserTest:: after();
tests\codeception\unit\models\UserTest: :tearDownAfterClass () ;

Here, setUpBeforeClass () is the most external call possible that is run before the
class is instantiated. Please also note that before and _after are Codeception
TestCase methods, while the rest are standard PHPUnit methods.

Since we are here, we could also add a test-wide User class that will be instantiated
before each test; it can be used by any of our tests. For this to happen, we need to
add a private variable and add the related statement, where needed:

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

// tests/codeception/unit/models/UserTest
/** @var User */

private $ user = null;

protected function setUp ()

{
parent: :setUp() ;
// setup global User
$this-> user = new User;
// cleanup the User db
User: :deleteAll () ;

}

Now, we just need to amend the relevant tests to use $this->_user when needed.

M Try to keep private variables and methods clearly visible; this
Q could also help you avoid naming conflicts, as we will see when
introducing fixtures.

Using fixtures to prepare the database

As we've seen, the data provider solution helps you run the same test with a
different dataset each time, which ends up being extremely useful. Another and
possibly complimentary solution is to use fixtures that let you preload some well-
defined data and keep tests even more simple. This would mean being able to test
methods such as User: : findIdentity () without having to rely on $user->save (),
which is not a part of the test itself.

Fixtures are used to set the database at a fixed /known state so that your tests can
run in a controlled environment. In doing this, we will also eliminate the need to
delete all users in the setUp function or rely on static values that might be
influenced by other previously run tests.

The fixture is just a class that is dynamically loaded in the setUp () method, and
you're left with only the task of creating the fixture class and the actual content for
the database.

Let's start by creating the fixture class:

// tests/codeception/unit/fixtures/UserFixture.php
namespace app\codeception\tests\unit\fixtures;

use yii\test\ActiveFixture;

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

class UserFixture extends ActiveFixture

{

public $modelClass = 'app\models\User';

}

In this case, we're extending from ActiveFixture as it will provide some additional
functionality that might be useful, so the only thing we need to do is to define

the model it will mimic. The alternative, as for login forms or other custom-made
models, is to extend from yii\test\Fixture, where you have to define the table
name by using the public property $tableName. With ActiveFixture, by just
defining $className, the fixture will figure out the table name by itself.

The next step is to define the actual fixture that will define the content we want to fill
into our database. By default, Yii will try to look for a file named <table names>.php
within the fixtures/data/ folder. The fixture is just a return statement of an array,
such as the following:

// tests/codeception/unit/fixtures/data/user.php

return [
'admin' => [
rid' => 1,
'username' => 'admin',
'password' => Yii::$Sapp->getSecurity() -

>generatePasswordHash ('admin'),
'authkey' => 'valid authkey'

1;

Each entry of the fixture can be key-indexed to quickly reference it in our tests. You
don't also normally need to specify the primary key as they will be automatically
created, as in the case of ActiveRecord.

As a last step, we need to implement the fixtures () method to define which
fixtures we want to use in our tests. To do so, we can use the following code:

// tests/codeception/unit/models/UserTest.php

public function fixtures() ({
return [
'user' => UserFixture::className (),

1;

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

By doing this, our setUp () method will initialize the database with the content of
the fixture we've just defined. If we were in need to use more than one fixture for the
same fixture class, then we could have specified which fixture to load in the current
test by also returning a dataFile key that specified the path of the fixture, as in the
following example:

public function fixtures/()
{
return [
'user' => [
'class' => UserFixture::className (),
'dataFile' => '@app/tests/codeception/unit/
fixtures/data/userModels.php'

1;
}

Now that we have the fixture defined and ready to be used, we can access its content
via the $this->user variable (and now you can see why it's better to keep private
and public variables well defined and separate). You can normally use it as an array
and access the index or key you need, or let it return an ActiveRecord object as with
Sthis->user ('admin').

Now, we can see it in action by refactoring our previously implemented test:

public function testFindIdentityReturnsTheExpectedObject ()
SexpectedAttrs = $this->user['admin'];

/** @var User Suser */
Suser = User::findIdentity(SexpectedAttrs(['id']) ;

Sthis->assertNotNull (Suser) ;

Sthis->assertInstanceOf ('yii\web\IdentityInterface', S$user);

Sthis->assertEquals (SexpectedAttrs['id'], Suser->id);

Sthis->assertEquals (SexpectedAttrs|['username'], Suser-
>username) ;

Sthis->assertEquals (SexpectedAttrs['password'], Suser-
>password) ;

Sthis->assertEquals (SexpectedAttrs['authkey'], Suser-
>authkey) ;

}

This way, we can carry on with our tests without worrying about calling save ()
every time we need to ensure that a record is in the database.

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

This also means that we won't need to clean up the database, as the fixture will
do so for us:

protected function setUp ()

{

parent: :setUp() ;
$this-> user = new User;

}

Following what we just said, it should be quite straightforward to implement tests
for £indByUsername () in the same way as we did for findIdentity (). So, I'll
leave this for you as an exercise.

Adding the remaining tests

By now, we should have almost all the tests created, apart from the ones covering
validateAuthKey (), which you should be able to implement without any particular
problem, and validatePassword (), which we will take a closer look at in Chapter 5,
Summoning the Test Doubles.

Implementing the ActiveRecord class and
its methods

Now, we can try the tests and see them not passing before we go through the
implementation of the class. So, just run the following command, as we learned in
the previous chapter:

$ cd tests

$../vendor/bin/codecept run unit

It's very probable that the preceding command will fail with the following error:
PHP Fatal error: Call to undefined method app\models\User::tableName ()
This is because our class has not yet been regenerated as ActiveRecord.

In the next section, we will start the work of making our tests pass by starting with
the migrations to move some information into the database and progress from there.

Dealing with migrations

So, the best step forward is to define a user table in the database, fill it with the data
we would need, and then implement the user model on top of it with the required
methods from the interface.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

. There is more to be said about migrations and the documentation about
% it is being improved and expanded every day. Be sure to head over and
L have a read for yourself at http://www.yiiframework.com/doc-

2.0/guide-db-migrations.html.

Let's start by creating the migration:

$./yii migrate/create table create user

Yii Migration Tool (based on Yii v2.0.0-dev)

Create new migration '/var/www/vhosts/htdocs/migrations/m140906 172836
table create user.php'? (yes|no) [nol:yes

New migration created successfully.

$

Now that we have the migration, let's implement the up () and down () methods
as needed:

// migrations/ml140906_ 172836 table create user.php

class m140906_ 172836 table create user extends Migration

{

public function up ()
{
Sthis->createTable('user', [

'id' => 'pk',
'username' => 'varchar(24) NOT NULL',
'password' => 'varchar(128) NOT NULL',
'authkey' => 'varchar(255) NOT NULL',
'accessToken' => 'varchar (255)"'

1);

Sthis->insert ('user', [
'username' => 'admin',
'password' => Yii::$Sapp->getSecurity() -
>generatePasswordHash ('admin'),
'authkey' => uniqgid()
1)

public function down ()

[81]

www.it-ebooks.info

http://www.yiiframework.com/doc-2.0/guide-db-migrations.html
http://www.yiiframework.com/doc-2.0/guide-db-migrations.html
http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit
{

Sthis->dropTable ('user') ;
1
1

We use the Security component provided by Yii to create the password. There are
many other functions that are quite handy and avoid the need to reinvent the wheel.

Please note that it's important to implement the down () method correctly and test
it before pushing your changes, as it will be fundamental if you need to revert to
a previous state of the application, also called a roll back.

In addition to up () and down (), you can use safeUp () and
M
~ safeDown (), which will allow you to run the migration up or down
using transactions, which in turn means that in the case of an error, all
prior operations will be rolled back automatically.

The migrations are implemented and used in the same way as in the case of Yii 1,
and if you've never used them before, they're a great tool as they give you the ability
to define specific steps that can be easily missed when deploying your application.
The syntax used should also be quite straightforward to understand and the methods
self-explanatory: createTable (), renameColumn (), addForeignKey (), and so on.

Now that we have our migration in place, it's time to apply it by running the
following command:

$./yii migrate/up

Yii Migration Tool (based on Yii v2.0.0-dev)

Creating migration history table "migration"...done.
Total 1 new migration to be applied:

ml40906_ 172836 table create_ user

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Apply the above migration? (yes|no) I[no]:yes
*** applying ml40906 172836 table create user
> create table user ... done (time: 0.022s)
> insert into user ... done (time: 0.008s)
*** agpplied ml140906 172836 table create user (time: 0.585s)

Migrated up successfully.

Now that we have the structure and the data in the database, we can start refactoring
the model accordingly.

The Gii code generation tool

Yii continues to provide and improve its system of code generation tools, particularly
Gii. Gii is a code generator that helps you create the basic code structure for models,
controllers, CRUD, modules, and so forth, so that you don't have to think too much
about what needs to be done and instead, get to the implementation part as quickly
as possible.

The basic application that we're using comes with Gii (and it's defined as a
require-dev package). And, since in our case we're running the tests in a (virtual)
hosted environment, we need to adjust the configuration a little bit; we need to
allow our client IP to access the tool:

// config/web.php

if (YII_ENV DEV) {

//
Sconfig['bootstrap'] [] = 'gii';
Sconfig['modules'] ['gii']l = [

'class' => 'yiilgii\Module',
'allowedIPs' => ['127.0.0.1', '::1', '192.168.56.*'],
1:
}

192.168.56.* should be the default case if you're using VirtualBox.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

Now that we have made this change, we can head our browsers to http://basic.
yii2.sandbox/gii. From there, we can click on the Model Generator section,
where we can create the new model, as shown in the following screenshot:

Model Generator

This generator generates an ActiveRecord class for the specified database table

Table Name

app\madels

Base Class

yihdb\ActiveRecord

Database Connection ID

default (/mntworkspace/testlyii2composer/basic/ivendorlyiisoft/yii2-giifgenerators/ma

del/default)
Click on the above Generate button to generate the files selected below < Unchanged
Code File Action
madels/User php overwrite

The model generator interface

When clicking on the Preview button, Gii will first check whether the file(s) to be
generated already exist and give us the opportunity to see the difference and decide
whether we want to override the file(s) before we actually hit the Generate button.

Since our User model is so thin at the moment, we won't have any problems in
overwriting it and re-implementing the needed methods ourselves. Just remember
to tick the Overwrite check box and click on Generate. Otherwise, you can just
adjust it accordingly with the hints given in the following paragraphs.

[84]

www.it-ebooks.info

http://basic.yii2.sandbox/gii
http://basic.yii2.sandbox/gii
http://www.it-ebooks.info/

Chapter 4

After clicking on Generate, you should be able to see the The code has been
generated successfully notice at the end of the page.

Now let's head back to our User. php class and see what's been changed, and refine
the implementation.

First of all, we will notice that the class now extends from the ActiveRecord class;
this is the default class for database-facing models. There is a series of default
methods already implemented, which we won't need to change. What we would
need instead is to make the class implement IdentityInterface, as follows:

// models/User.php

use Yii;
use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface

{

Now, implement the five required methods from IdentityInterface at the end
of the class:

// models/User.php

/**
* @inheritdoc
*/
public static function findIdentity($id) ({
return self::findOne ($id) ;

}

As we can see, the way to find a record in the database is quite straightforward,
as ActiveRecord exposes some very nifty and easy-to-understand methods to
interact with the database. We will be seeing plenty of these use cases across the
upcoming pages.

It's probably worth noticing that findIdentity () returns an IdentityInterface
object. The previous implementation that we overwrote invoked new static(),
which, in turn, triggered the magic method _ construct () from the yii\base\
Object class.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

The new static () method has been available since PHP 5.3 and
. provides a way to instantiate a child class statically from a parent, which
Q wasn't possible earlier. This methodology is called Late Static Binding.
L

More information can be found in the PHP manual at http://php.
net/manual/en/language.oop5.late-static-bindings.php.

As mentioned earlier, findIdentityByAccessToken is not needed as accessToken
will not be used anywhere in our code, so let's implement it:

public static function findIdentityByAccessToken ($Stoken, S$type =
null) {
throw new NotSupportedException('Login by access token not
supported. ') ;

}

The remaining three methods from the interface should be straightforward to
implement and understand, and to do so, we can use the following code:

public function getId() {
return $this->id;

public function getAuthKey () {
return $this->authkey;

public function validateAuthKey (SauthKey)
return $this->authkey === $authKey;

}

Left out from the obvious methods from the interface are a couple of methods that
are used in LoginForm.php; one of them is findByUsername, which is as follows:

/**
* Finds user by username
*
* @param string Susername
* @return static|null
*/
public static function findByUsername ($username)

{

return self::findOne(['username' => Susername]) ;

[86]

www.it-ebooks.info

http://php.net/manual/en/language.oop5.late-static-bindings.php
http://php.net/manual/en/language.oop5.late-static-bindings.php
http://www.it-ebooks.info/

Chapter 4

Another is validatePassword, which is as follows:

/**
* Validates password
*

* @param string S$password password to validate

* @return boolean if password provided is valid for current user

*/
public function validatePassword ($Spassword)

{

return Yii::S$app->getSecurity()->validatePassword ($password,

Sthis->password) ;

}

Here, we again use the validatePassword () method from the Security component,
which makes the use of cryptography and any additional level of security that we

want to add transparent to the user.

Seeing tests pass

As you might have guessed, it's again time to run Codeception against our UserTest

class:

$../vendor/bin/codecept run unit models/UserTest.php
Codeception PHP Testing Framework v2.0.6

Powered by PHPUnit 4.4-dev by Sebastian Bergmann.

Unit Tests (14) ------------—------—----—-----

Trying to test validate returns false if parameters

are not set (tests\codeception\unit\models\
UserTest::testValidateReturnsFalseIfParametersAreNotSet)
Ok

[snip]

Time: 3.61 seconds, Memory: 28.75Mb

OK (27 tests, 53 assertions)

You should have all tests passing without problems, and you should also be able to

fix them in case an error is raised.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

If we decide to run all the tests, including those that were already there, we might
see that some tests are not passing anymore. Don't worry, this is quite normal as
we've changed the way the User model works and behaves internally. In particular,
the error I'm getting is the following regarding LoginFormTest, but Codeception/
PHPUnit is quite prompt in informing us what's wrong;:

There was 1 error:

1) tests\unit\models\LoginFormTest::testLoginCorrect | user should be
able to login with correct credentials

yii\base\InvalidParamException: Hash is invalid.

FAILURES!

Tests: 31, Assertions: 64, Errors: 1.

As I've underlined previously, it's quite important to fix any tests that do not work
well. This will make us understand if we've touched anything that wasn't meant to
break or that can potentially break when committing our changes.

Using global fixtures

In this case, it's quite clear that our tests have impacted the state of the database:

The solution will be able to create a new fixture with the expected data for the admin
user, which replicates what the migration is doing, and to update LoginFormTest
and UserTest.

We will now use the default fixture user.php as the global fixture with the admin
user, as follows:

// tests/codeception/unit/fixtures/data/user.php

return [
'admin' => [
rid' => 1,
'username' => 'admin',

'password' => Yii::$app->getSecurity()->
generatePasswordHash ('admin'),
'authkey' => 'valid authkey'

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The previous fixture will be renamed as userModels.php; it contains additional
users that we might end up adding to our application in the future. The code for
doing so is as follows:

return [
'user basic' => [
'username' => '-=[valid username]=-"',
'password' => 'This is a valid password!!!"',
'authkey' => '00%am|%1lk;@P .'
1,
'user_accessToken' => [
'username' => '-=[valid username]=-"',
'password' => 'This is another valid password!!! :) <script></
scripts>',
'authkey' => uniqgid()
1,
'user_ id' => [
rid' => 4,
'username' => '-=[valid username]=-"',
'password' => 'This is another wvalid password!!! :)',

'authkey' => uniqgid()
]I
1;

We could have fallen into the trap of just amending the initial fixture to contain the
admin user, which would have solved the problem but would have made multiple
tests rely on fixtures that were designed for specific tests. So, let's try to keep things
as separate and independent as possible.

Now, we can load the previously mentioned fixture in LoginFormTest as a global
fixture, as follows:

// tests/codeception/unit/models/LoginFormTest.php

public function globalFixtures ()

{

return [
'user' => UserFixture::className (),

1;

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Isolated Component Testing with PHPUnit

Furthermore, we can amend the previously implemented methods to load the
fixtures in the UserTest, as follows:

// tests/codeception/unit/models/UserTest.php

public function globalFixtures ()
return [
'user' => UserFixture::className (),

1;

public function fixtures|()
return [
'user' => [
'class' => UserFixture::className (),

'dataFile' => '@app/tests/codeception/unit/fixtures/
data/userModels.php'

1;
!

Our new fixtures () implementation will need to expand on the parameters passed
and define both class and dataFile; otherwise, it won't load it properly.

The globalFixtures () method is run before the fixtures () method, which means
that the $this->user variable will only contain the latest fixtures and not the admin.

Summary

We've discussed a wide variety of things concerning PHPUnit such as assertions,
data providers, and fixtures. We've seen how to make tests pass and how to
preventively catch errors that might cause bigger problems.

There are many more things you can discover on both Codeception unit tests and
PHPUnit, but what we've seen up until now should be enough to give you the
confidence required to start creating tests with clarity.

In the next chapter, we'll see how to test components that rely on external code
and classes, in order to get the best controlled environment needed by using stubs
and mocks.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Summoning the Test Doubles

In this chapter, we are going to take a close look at test doubles in order to control
our tests with more accuracy and avoid having to rely on interfaces we don't know
anything about.

We're going to complete the work we started in the previous chapter and understand
how to deal with external dependencies, particularly the difference between stubs
and mocks.

We will then spend the rest of the chapter on understanding how to organize our
tests to improve legibility and maintainability, using some BDD-oriented tools
we've introduced earlier in the book, such as Specify and Verify.

On a high level, these are the topics that we will cover in this chapter:

* Dealing with external dependencies
* Isolating components with stubs
* Listening for calls with an observer

* Writing maintainable unit tests

Dealing with external dependencies

We left our suite of unit tests at an almost complete status. What we had left to cover
with tests was the validatePassword () method from our User model class.

The problem that this method is giving us is that we are planning to use our beloved
security component, kindly provided by Yii, to encrypt and decrypt the password
and verify its correctness. This component is available throughout the life of the
application via Yii: : $app->getSecurity ().

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Summoning the Test Doubles

The yii\base\Security class exposes a series of methods to help you strengthen
your application. The use we will make of it is quite limited, but I would recommend
reading a bit more about it on the official documentation available at http: //www.
yiiframework.com/doc-2.0/guide-security-authentication.html and the
following sections that will cover all aspects of authentication, encryption, and

so forth.

Let's then define how we think our implementation should work for this method.
The documented use for validating the password is the following;:

public function
testValidatePasswordReturnsTruelfPasswordIsCorrect ()
SexpectedPassword = 'valid password';

$this-> user-s>password = Yii::$app->getSecurity()->
generatePasswordHash ($SexpectedPassword) ;

$this->assertTrue ($this-> user-»>
validatePassword ($SexpectedPassword)) ;

}

This means that we will need to create the password hash first by using the
aforementioned helper class, set it in the user, and then can use the $user-
>validatePassword () method to check whether the actual cleartext password

that is passed matches the internal one. Some sort of encryption/decryption should
happen behind the curtains, ideally by using Security: :validatePassword () from
the security component.

A possible implementation of User: : validatePassword () in the user model can be
the following;:

// models/User.php

/**
* Validates password
*
* @param string $password password to validate
* @return boolean if password provided is valid for current user
*/
public function validatePassword ($password)

{

return Yii::S$app->getSecurity () ->validatePassword ($Spassword,
$Sthis->password) ;

}

[92]

www.it-ebooks.info

http://www.yiiframework.com/doc-2.0/guide-security-authentication.html
http://www.yiiframework.com/doc-2.0/guide-security-authentication.html
http://www.it-ebooks.info/

Chapter 5

If we try to run the tests, this specific method will pass without problems.

This might be a good solution, but we need to be extremely conscious that this is
not a true unit test; it's more of an integration test, as we still have the dependency
on the security component.

Isolating components with stubs

The problem we are facing right now is that we don't really want to use the actual
security component, as it's not part of the test itself. Keep in mind that we're
working in a black box environment, and we don't know what other dependencies
the security component might have in the future. We just need to ensure that our
implemented method will behave correctly, given the interface of the (fake) object
works as expected. We can later add an integration method to ensure that the
security component actually works, but that's a completely different matter.

In order to do that, PHPUnit provides an interesting system for stubbing and
mocking classes and injecting them into your application to provide a more
controlled environment. Generically, these are normally called test doubles and
the method used to create them is through the Mock Builder.

The latest versions of PHPUnit (4.x or above) suggest the use of the Mock Builder
in order to configure the stub and behavior. Previously, this was done through a
lengthy series of arguments to be passed to it. | won't indulge in saying that if
you're working with PHPUnit 3.x or earlier versions, it might be time to upgrade!

Please note that the final, private, and static methods cannot be
stubbed or mocked as a PHPUnit test double functionality does not
g support this.

Stubbing in particular refers to the practice of replacing an object with a test double
that might return configured values.

So, how are we doing this? I've decided to take the approach of using a separate
private function to delegate the stubbing logic to a reusable piece of code:

/**
* Mocks the Yii Security module,
* g0 we can make it return what we need.

* @param string SexpectedPassword the password used for encoding

* also used for validating if the
* second parameter is not set
*/

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Summoning the Test Doubles

private function mockYiiSecurity ($expectedPassword)
{
$security = $this->getMockBuilder (
'yii\base\Security"')
->getMock () ;

We start by creating the stub of our security class by using getMockBuilder ().
By default, the Mock Builder will replace all the class methods with test doubles
that return null.

We can also decide selectively which ones are to be replaced by specifying
them in an array and then passing it to setMethods () ; for example:
setMethods (['validatePassword', 'generatePasswordHash']).

We can also pass null to it; we can avoid any method from having a test double,
but without it, we won't be able to set any expectation.

If the class you're mocking performs unneeded initializations
inthe _ constructor () method, you can disable it by using

M disableOriginalConstructor () or passing custom arguments
with setConstructorArguments (). There are more methods that
can be applied to modify the behavior of the Mock Builder; refer to the
following documentation: https://phpunit.de/manual/current/
en/test-doubles.html#itest-doubles.stubs.

Any method that is a test double can be configured and be monitored with the use
of expects():

Ssecurity->expects (Sthis-sany())
->method ('validatePassword')
->with ($SexpectedPassword)
->willReturn (true) ;

Ssecurity->expects (Sthis-sany())
->method ('generatePasswordHash')
->with ($SexpectedPassword)
->willReturn ($expectedPassword) ;

Yii::Sapp->set('security', S$security);

}

This seems to be pretty much straightforward to read: any (any ()) time the method
(method ()) 'validatePassword' is invoked with (with()) the SexpectedPassword,
it will return (willReturn()) true.

[94]

www.it-ebooks.info

https://phpunit.de/manual/current/en/test-doubles.html#test-doubles.stubs
https://phpunit.de/manual/current/en/test-doubles.html#test-doubles.stubs
http://www.it-ebooks.info/

Chapter 5

There are a number of ways you can configure your replaced functions: having them
return only once a certain value, or different values in consecutive calls, or throw
exceptions, when invoked.

Much more is available and documented in the official PHPUnit
@@j%‘\ documentation available at https://phpunit .de/manual/
’ current/en/test-doubles.html.

We can then implement the negative test to cover a wrong password passed to
validatePassword () with the logic we wanted:

/**

* @expectedException yiilbase\InvalidParamException

*/
public function
testValidatePasswordThrowsInvalidParamExceptionIfPasswordIsIncorrect ()

{

Spassword = 'some password';
SwrongPassword = 'some other password';
$this-> mockYiiSecurity ($password, $wrongPassword) ;

$this-> user->password = $password;
$this-> user->validatePassword ($wrongPassword) ;

}

For this to happen, we will need to slightly refactor the private method we
just implemented:

/**
* Mocks the Yii Security module,
* go we can make it returns what we need.

* @param string SexpectedPassword the password used for encoding

* also used for validating if the

* second parameter is not set

* @param mixed SwrongPassword if passed, validatePassword will

* throw an InvalidParamException

* when presenting this string.

*/
private function mockYiiSecurity ($SexpectedPassword, S$wrongPassword =
false)

{

S$security = $this->getMockBuilder (
'yii\base\Security')

[95]

www.it-ebooks.info

https://phpunit.de/manual/current/en/test-doubles.html
https://phpunit.de/manual/current/en/test-doubles.html
http://www.it-ebooks.info/

Summoning the Test Doubles

->getMock ()
) ;
if ($wrongPassword) {
$Ssecurity->expects (Sthis-sany())
->method ('validatePassword!')
->with ($wrongPassword)
->willThrowException (new InvalidParamException()) ;
} else {
$Ssecurity->expects (Sthis-sany())
->method ('validatePassword!')
->with ($expectedPassword)
->willReturn (true) ;
}
$Ssecurity->expects ($Sthis-sany())
->method ('generatePasswordHash')
->with ($expectedPassword)
->willReturn ($expectedPassword) ;

Yii::Sapp->set('security', S$security);

}

Here, we can finally see how to configure our replaced method to throw the
exception using willThrowException (). With it, we can ensure an exception is
being thrown by a method; for this reason, tests that check for exceptions are to be
separated from the others.

The official documentation provides a more detailed explanation of the
use of the Mock Builder API and it is available at https: //phpunit.

de/manual/current/en/test-doubles.html.

Listening for calls with an observer

As User: :validatePassword () is now using Security::validatePassword () in
its implementation in a transparent way, we don't want to expose any of this when
setting the password to whoever is going to use the User model.

So, we'd like to think that when setting the password, our implementation will
use Security: :generatePasswordHash () in some way, so that when calling
User: :validatePassword (), we close the circle and everything should work
without having to worry too much about encryption schemes and what not.

[96]

www.it-ebooks.info

https://phpunit.de/manual/current/en/test-doubles.html
https://phpunit.de/manual/current/en/test-doubles.html
http://www.it-ebooks.info/

Chapter 5

An immediate, somewhat logical, but quite abused way to implement a test that
could cover this bit is the following;:

public function testSetPasswordEncryptsThePasswordCorrectly ()

{

SclearTextPassword = 'some password';
SencryptedPassword = 'encrypted password';

// here, we need to stub our security component
$this-> user->setPassword($clearTextPassword) ;

$Sthis->assertNotEquals (
$clearTextPassword, $this-> user-s>password
)i
Sthis->assertEquals (
$encryptedPassword, s$this-> user-s>password
)i
}

Let's stop one second and understand what we're doing here: ideally we want to set
a password and read it back encrypted, doing the related and needed assertions. This
means that we are both testing the setter and the getter of the password in the same
test, which, once again, defies the basic principle of doing unit testing.

As a side note, however we implement the stubbing of the security component,
our logic won't look much different from the initial implementation we had at the
beginning of this chapter.

Introducing mocking

Mocking refers to the act of replacing an object with a test double that verifies the
expectations, for instance ensuring that a method has been called. This seems to meet
our needs exactly.

In a proper black box scenario, we won't know what setpPassword () does and we
would need to rely on the code coverage purely to understand if we've covered any
possible branch of the programming flow, as previously said in Chapter 4, Isolated
Component Testing with PHPUnit.

Purely as an example for our purposes, we want to make sure that when calling
setPassword (), we call Security: :generatePasswordHash () atleast once and
that the argument is passed over to the method without any modification.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Summoning the Test Doubles

Let's try the following approach to test this:

public function testSetPasswordCallsGeneratePasswordHash ()

{

SclearTextPassword = 'some password';

S$security = $this->getMockBuilder (
'yii\base\Security')

->getMock (
) ;
Ssecurity->expects (Sthis->once())
->method ('generatePasswordHash')
->with($this->equalTo(SclearTextPassword)) ;
Yii::Sapp->set('security', S$security);

$this-> user->setPassword($clearTextPassword) ;

}

As you might have noticed, we don't have any specific assertion in this test. Our
mocked class will just mark the test as passed once its method has been called
with the specified value.

Getting to know the Yii virtual attributes

In the example we just discussed, it would have been great if we could have hidden
the functionality of transforming the cleartext password into an hash from the user.

There are multiple reasons why this isn't happening, but the most important of
them is that Yii already provides a quite interesting and well-done system for virtual
attributes. This system is in place since Yii 1, and once you get used to it, you can
achieve satisfying results.

By implementing a model that inherits from yii\base\Component, such as
ActiveRecord or Model, you will also inherit the already implemented magic
functions __get () and __set () that help you deal with virtual attributes. This
ends up being particularly useful when you are in need of creating additional
attributes without any effort.

Let's see a more practical example.

Let's assume that our User model had a first name and a last name field in the
database, but we would need to create the full name attribute without adding a
new column in the user table:

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

namespace app\models;

class User extends ActiveRecord

{
/**
* Getter for fullname
*/
public function getFullname ()

{

return Sthis->firstname . ' ' . S$this->lastname;

// rest of the class

}

So, we can access the field as if it was a normal attribute of the class:

public function testGetFullnameReturnsTheCorrectValue ()
Suser = new User;
Suser->firstname = 'Rainer’';
Suser->lastname = 'Wolfcastle';

Sthis->assertEquals (
Suser->firstname . ' ' . Suser->lastname,
Suser->fullname

)i

Plain and simple public attributes work as you would expect them to. In the

following snippets of code, I'm introducing a new class Dog, purely for example
purposes, which extends from Mode1l:

namespace app\models;

use Yii;
use yii\base\Model

class Dog extends Model

{

public Sage;

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Summoning the Test Doubles

Therefore, our tests would pass without problems:

public function testDogAgelsRecordedCorrectly ()

{
SexpectedAge = 7;
$dog = new Dog;
Sdog->age = S$expectedAge;

Sthis->assertEquals ($SexpectedAge, sSdog-s>age) ;

}
This shouldn't be a surprise to you at all, but let's see what happens if we have both:

namespace app\models;

class Dog extends ActiveRecord

{

const AGE MULTIPLIER = 7;
public S$age;

public function setAge ($Sage)

{

// let's record it in dog years
$this->age = $age * self::AGE MULTIPLIER;

// rest of the class

}

Now, we are expecting setAge () to be triggered on assignment, while reading
directly the value of the public attribute:

public function testDogAgelsRecordedInDogYears ()

{

$dog = new Dog;
$dog->age = 8;

Sthis->assertEquals (
56,
$dog->age

)i

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

However, running this test will only reveal the sad truth:

$../vendor/bin/codecept run unit models/DogTest.php

1) tests\codeception\unit\models\DogTest::testAgeIsRecordedInDogYears
Failed asserting that 8 matches expected 56.

Yes, the test is exactly the same.

Having getters and setters automatically handled by our classes comes at an expense.
The sequence of checks that are performed by the magic setter can be summarized
with the following:

BaseActiveRecord:: set ($name, $value)
if (BaseActiveRecord: :hasAttribute (Sname))
$this-> attributes[$name] = $value;
else
Component:: set ($name, $value)
if (method exists($this, 'set'.S$name))
Sthis->'set'.$name (Svalue) ;
if (method exist ($this, 'get'.$name))
throw new InvalidCallException(...);
else
throw new UnknownPropertyException(...);

If you have implemented a model extending from yii\base\ActiveRecord, its base
class will first check if the attribute is already available as a table column; otherwise,
it will pass the call over to Component: :__set (). This method is available not only
for models extending from yii\base\Model, but also for any other that implicitly
inherits from yii\base\Component, such as behaviors and events.

Following this, we can see that the setter will ensure that the 'set ' . $name method is
available in our class, and if there's only a getter, then it will raise an exception.

In our initial definition of the firstname getter, we could have had the following
additional test:

/**
* @expectedException yiil\base\InvalidCallException
*/
public function testSetFullnameThrowsException ()
{
Suser = new User;
Suser->firstname = 'Fido';
Suser->lastname = 'Smith';

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Summoning the Test Doubles

// setter not available
Suser->fullname = 'Something Else';

}

There are a couple or more things regarding events and behaviors done in the setter,
but we won't touch them as of now.

So, going back to our setPassword () conundrum, we need to be aware that if we
were to trigger the magic method by using $user->password for the left assignment,
this won't trigger our method.

So, the best solution would ideally have been to call the stored password in a more
declarative way, such as password_hash.

Writing maintainable unit tests

As the last part, before leaving the unit tests behind, I wanted to show some
additional features provided by Codeception that have been already introduced in
Chapter 1, The Testing Mindset.

Codeception has been created with modularity and flexibility in mind, so anything
else is your responsibility. In particular, you might have already noticed that our
UserTest class has grown quite a bit.

So, what would happen if a change in the interface or in the way our model works
breaks our tests?

It's quite clear, especially if you're working in a team or even more if your code gets
handed over to other people to maintain, that you need clear rules so that everybody
agrees on how to write the code, as a starter, and tests.

I've already highlighted in Chapter 4, Isolated Component Testing with PHPUnit, that
one of the very basic things I've started doing with the teams I've worked with and
with my own code, is to define precise and simple rules, which aim at the clarity
and readability of the code. I've seen way too many "developer rockstars" that show
off how good they are at writing compressed code, nesting variables, and hiding
multiple assignments. Writing code that ends up being obfuscated might be fun if
that code is a throwaway.

Code legibility ends up being one of the ways I've seen companies select candidates,
and a very quick test is to have someone read your code and be able to get what it
does without asking.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Tests shouldn't be treated with less care than your application code: if done properly,
tests represent a way of documenting how things are supposed to be working

and how they should be used. As soon as your class provides more and more
functionality, your test classes will start to grow and you need to be prepared to

face a refactor and introduce regression testing when a change in the application
happens or a bug is introduced.

Using BDD specification testing

Codeception provides a nice and compact tool called Specify, which we have
already introduced previously.

With PHPUnit alone, we only have methods to split our tests; using Specify,
we have another layer of organization: The method becomes our story and our
specification blocks our scenarios.

Just for documentation purposes, it should be noted that PHPUnit has its own
BDD-compatible syntactic sugar with the given (), when () and then () methods,
as explained at https://phpunit.de/manual/3.7/en/behaviour-driven-
development .html. You can still use this syntax, if you are more used to it.

As a clearer example, we can group all validation rules within the same test and
split the definition of what we're doing by using Specify blocks, as follows:

use Specify;

public function testValidationRules ()
{
Sthis->specify(
'user should not validate if no attribute is set',
function () {
verify not ($this-> user->validate()) ;
1
) ;

Sthis->specify(
'user should validate if all attributes are set',
function () {

Sthis-> user-sattributes = [
'username'=>'valid username',
'password'=>'valid password',

'authkey' =>'valid authkey'

1

verify that ($this-> user->validate());

[103]

www.it-ebooks.info

https://phpunit.de/manual/3.7/en/behaviour-driven-development.html
https://phpunit.de/manual/3.7/en/behaviour-driven-development.html
http://www.it-ebooks.info/

Summoning the Test Doubles

1
)i
!

As we can see, we are now aggregating two of our previous tests within a single
method and grouping them within two blocks of specify () calls.

Specify is defined as a trait; this is the reason why you need to both use the
namespace in the outermost global scope and load it within the test class:

namespace tests\codeception\unit\models;

use Codeception\Specify;
use yiil\codeception\TestCase;
// other imported namespaces

class UserTest extends TestCase

{

use Specify;

// our test methods will follow
// we can now use $this->specify()

}

As you can see specify () requires only two arguments: a simple description of
the scenario that we are about to define, and an anonymous function that contains
the assertions we want to do.

At this point, we can either use the PHPUnit classic assertions we've used until
now or try to empower BDD style assertions. Verify, a small and nifty package,
will provide you this capability, allowing you to use methods such as verify (),
verify that(),and verify not ().

From the earlier specified scenarios, consider the following line of code:
verify not ($this-> user->validate());

This is exactly the same as using the PHPUnit assertion:
Sthis->assertFalse ($this-> user->validate());

In order to perform more elaborate assertions, we can instead use verify () in
the following way:

Sthis->specify(
'user with username too long should not validate',
function () {

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

$this-> user->username = 'this is a username longer than
24 characters';

verify not ($this-> user->validate('username')) ;

verify ($this-> user->getErrors('username')) ->notEmpty () ;
}
)i
M There are plenty of other assertions that can be used and can be found
Q at the project homepage at https://github.com/Codeception/
Verify.

Summary

In this chapter, we've covered the long-awaited mocks and stubs that will allow
you to perform proper component tests. In the final part, we've taken a better look
at code organization for your tests and a BDD-like way of writing them by using
Specify and Verify.

In the following chapter, we're going to take a look at the next step of implementing
the functional tests that should define the REST interface for our user.

[105]

www.it-ebooks.info

https://github.com/Codeception/Verify
https://github.com/Codeception/Verify
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API —
PHPBrowser to the Rescue

We are now going to delve into functional testing. In the previous chapter, we
created the initial steps that deal with the user model, but now we will be creating
the REST interface that deals with the user.

Before we even start to worry about the REST interface and its tests, we will be
analyzing what's already available in the Yii basic app and later expand on the topic
to create more awesome stuff.

This chapter is hence divided into three sections with an increasing level of
difficulty, so keep your eyes peeled and feel free to revisit it multiple times until you
understand each section which are:

* Functional tests in Yii 2

* Functional tests for REST interfaces

* Creating a RESTful web service with Yii 2

Functional tests in Yii 2

As you saw in Chapter 3, Entering Codeception, we have some basic functional tests
preloaded in our basic application.

Let's start digging into that and once you acquire the required knowledge, we're
going to move on to the tests for the REST interface.

As you know, the basic application is composed of a few pages, a login system,
and a contact form.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

The functional tests cover almost everything, so let's start to see what files we have
and what's their content.

Understanding and improving the available
CEPTs

The tests contained in codeception/functional/HomeCept . php are quite
straightforward to understand. Thanks to the syntax used by Codeception, you can
easily understand what the intention of the test is, so let's break it down and see
what each bit does:

$SI = new FunctionalTester ($scenario) ;

You would start by initializing the actor under which the tests will be performed. Yii
uses a slightly different naming than the one officially used in the documentation
and guide of Codeception, which is TestGuy, so keep that in mind when you're
confronted with documentation outside of Yii's.

M Remember that you can name the actors whatever you want, and their
Q configuration is found in the suite YAML file, which for functional
tests is tests/codeception/functional.suite.yml.

This class is located within the same folder as that of the other functional tests and is
generated automatically by running codecept build:

$I->wantTo ('ensure that home page works');

The very first step is to declare the scope of the test in a compact but detailed way; this
will help you and non-technical people to understand what went wrong and if the test
is effectively doing what it is meant to be doing in a strong and comprehensive way.
The method wantTo () should be called only once, as any following invocations will
override what has been set previously:

$I->amOnPage (Yii::$app->homeUrl) ;

Our tests need a starting point; the method amonpPage () does nothing but load the
given URL where our actual test will take place:

$I->see('My Company') ;
SI->seelLink ('About') ;

In Codeception, assertions are performed through see* and dontSee* actions,
ensuring a particular portion of text or link is present/absent in the page.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

These actions can be as descriptive as needed, and in the preceding example with
see ('My Company'), we are just checking that the text is present somewhere in the
markup rather than in a particular tag while seeLink ('About ') would be the same
as writing see ('About', 'a').We will shortly see that we could pass a second
parameter to seeLink (), which will allow us to check the URL where the link
should point to.

Interaction with the page in the form of triggering, clicking links with click (),
filling fields with £i11Field (), checkOption (), submitForm(), and so onis all
you can do with Codeception functional tests. Anything more complicated must
be re-evaluated carefully, as you might actually need to move it into acceptance
tests instead:

$I->click ('About') ;
$I->see('This is the About page.');

In the preceding lines, we are triggering the link of the "About" page and expecting
that the resulting page has a specific copy in it. This specific test just makes a point
in using links to navigate through our application, as it could have been done as
described earlier by using seeLink ('About', '/about') and to leave any assertion
with the About page within its own test.

We might as well extend the test a bit more and make it more relevant to what
we're trying to test; what are the functionality parts that we want to make sure exist,
without which we can consider the page "non-functional"? In our instance, we are
talking about the title of the page (as it's already been done), the menu, and any
other links we always want to have there:

$I = new FunctionalTester ($scenario) ;
$I->wantTo ('ensure that home page works');
$I->amOnPage (Yii: :Sapp->homeUrl) ;

The beginning is the same, but then we ensure that the title for the page contains
what we expect it to be:

$I->expect ('the title to be set correctly');
$I->seeInTitle('My Yii Application');

The next section instead makes sure that the menu contains all the required links to
the various pages:

SI->expectTo('see all the links of the menu');

$I->seelLink ('Home', '/');
$I->seelLink ('About', '/about') ;
$I->seeLink ('Login', '/login');
$I->seelLink ('Contact', '/contact');

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

You have to keep in mind that the links are not strictly checked; this means that if
you have $I->seeLink ('Something', '/something') , it will match any link that
contains Something; for example, it can be Something Else and any href attribute
like /something/else, or even http://something.com.

In our case, it clearly renders the check for the link to the home page a bit irrelevant,
so we might well grab the current URL and check against it in the following way:

Surl = $I->grabFromCurrentUrl () ;
$I->seelLink ('Home', Surl);

There are different ways to grab content to be reused dynamically in the rest of the
tests, such as grabAttributeFrom(), grabCookie (), grabResponse (), and so on.
Once again, your FunctionalTester class will contain the details of these methods
in case your IDE does not support code hinting.

We can do the same for any other link that is pointing to the homepage:

SI->expectTo('see a self-referencing link to my company homepage') ;
$I->seelLink ('My Company', Surl);

For the rest of the links, it might also be useful to check that our routes are well
configured; for instance, you need to check if the name of the controller doesn't
show up:

$I->dontSeeLink ('About', 'site/about') ;
$I->dontSeelLink ('Login', 'site/login') ;
$I->dontSeeLink ('About', 'site/contact');

The last bit we want to make sure of is that the Home link is marked as selected.

For this test, we need to use a very prescriptive selector as the active class that
identifies the status of our link is in the parent of the actual anchor, and as there's
no way to assert that in a simple way, so making use of XPath expressions comes
particularly handy:

SI->expectTo('see the link of the homepage as selected');
S$I->seeElement ('//li[@class="active"] /a[contains(.,"Home")]"');

Most of the methods available that require a context selector such as click (), see (),
and, seeElement () can accept this parameter in various formats, mostly as CSS
selectors, XPath queries or Locators, which are specific objects made available

by Codeception.

In its simplest form, selectors can be just a simple word or sentence, which means
"find me the first context where this word/sentence appears". As you saw earlier,
see ("Something") will return the first element that contains Something as its
value (for example, Something Else).

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

CSS selectors are probably the ones you might be more comfortable with, but for
more complex stuff, XPath is generally the winner.

In the preceding example, the XPath query //1i [eclass="active"]/
alcontains (., "Home")], can be read as shown here:
* Find me all the 1i nodes at any level (//11)

* Filter them by a specific class attribute ([@class="active"]);—mind that is
literal and case-sensitive

* Within those find me the direct descendant a nodes (/a)

* Filter them if they contain a specific text ([contains (., "Home") 1)

XPath 2.0 has been a W3C recommendation since December 2010, and
s you can read more about it at http: //www.w3.org/TR/xpath20/.

Locators can ease the process of writing even more complex queries in your DOM
and let you combine CSS and XPath queries via OR:

use \Codeception\Util\Locator;

$I->see('Title', Locator::combine('hl','h2','h3'));

With the preceding statement, we can check the presence of the Title string in any
h1, h2, or h3 tag.

Another possibly useful feature is a method available in Locator that you can use to
browse the page via tabIndex:

<?php
use \Codeception\Util\Locator;

$I->fillField(Locator: :tabIndex (1), 'davert');
$I->fillField(Locator: :tabIndex(2) , 'gwerty');
$I->click('Login') ;

The preceding example has been deliberately taken from the
documentation page of Locator, available at http: //codeception.
com/docs/reference/Locator.

[111]

www.it-ebooks.info

http://www.w3.org/TR/xpath20/
http://codeception.com/docs/reference/Locator
http://codeception.com/docs/reference/Locator
http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

Writing reusable page interactions

Testing forms is probably one of the most strenuous tasks any developer and tester
has probably ever done. You can feel the pain if you think of forms as questionnaires
of several single and multiple choice questions, spread across several pages.

You can clearly see the direct benefit of automating using functional tests.

The two examples already available, LoginCept .php and ContactCept .php, are a
good starting point. Let's have a closer look at LoginCept . php; if you scan through
the content of the test, you will immediately notice that the £i11Field () method is
never called, and in its place we have the following command:

$loginPage = LoginPage: :openBy ($I) ;

$I->see('Login', 'hl');
$I->amGoingTo('try to login with empty credentials');
$loginPage->login('', '');

Pages are, in fact, one of the easiest ways to reuse components across tests. The
sequence of actions that are repeated several times in the same test are likely to be
taken and put into a page like the one used in our test:

namespace tests\codeception_ pages;
use yii\codeception\BasePage;

/**

* Represents login page

* @property \AcceptanceTester|\FunctionalTester S$Sactor
*/
class LoginPage extends BasePage

{

public S$route = 'site/login';

/**
* @param string Susername
* @param string S$Spassword
*/
public function login(Susername, S$password)
{
Sthis->actor->fillField(
'input [name="LoginForm[username] "] ', Susername
)
Sthis->actor->fillField(
'input [name="LoginForm[password] "] ', Spassword

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

)i

Sthis->actor->click('login-button') ;

}

The only thing needed is the route associated to it and then you can implement as
many methods as you need to achieve whatever you need, which is the login process
in the preceding case.

Within the Page class, $this->actor is a reference to the actor that is currently in
use in the test.

You have two ways to use pages; the first is by opening the page immediately and
associate it with the current actor, as seen earlier with LoginPage: : openBy ($I),
otherwise, you can simply call its constructor and load the page (also with different
parameters) when needed:

$loginPage = new LoginPage ($I) ;
$loginPage->getUrl () ;

Now, as you saw while working with unit tests, being able to keep the content of the
database under a controlled state is very useful. And, once again, fixtures come to
our help, even here.

Implementing fixtures

In Chapter 4, Isolated Component Testing with PHPUnit, you saw how to implement a
fixture. In functional tests the same classes can be used; the only difference is that
Codeception's PHPBrowser and its underlying infrastructure doesn't know how to
load fixtures, so each framework using Codeception, like what Yii does, needs to
provide the bridging to fill in this gap.

The advanced app provides the implementation for FixtureHelper that implements
the Codeception Module class and imports the methods from FixtureTrait:

<?php
namespace tests\codeception\ support;

use tests\codeception\fixtures\UserFixture;
use Codeception\Module;
use yii\test\FixtureTrait;

/**

* This helper is used to populate database with needed

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

* fixtures before any tests should be run.
* For example - populate database with demo login user
* that should be used in acceptance and functional tests.
* A1l fixtures will be loaded before suite will be
* started and unloaded after it.
*/
class FixtureHelper extends Module

{

/**
* Redeclare visibility because Codeception includes
* all public methods that not starts from " "
* and not excluded by module settings, in actor class.
*/
use FixtureTrait {
loadFixtures as protected;
fixtures as protected;
globalFixtures as protected;
unloadFixtures as protected;
getFixtures as protected;
getFixture as public;

* Method called before any suite tests run.
* Loads User fixture login user
* to use in acceptance and functional tests.
* @param array S$settings
*/

public function beforeSuite($settings = [])

{

$this->loadFixtures () ;

[**
* Method is called after all suite tests run
*/

public function _afterSuite()

{

$this->unloadFixtures () ;

/**

* @inheritdoc

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

*/
public function fixtures|()

{

return [
'user' => [
'class' => UserFixture::className (),
'dataFile' => '@tests/codeception/fixtures/data/init
login.php',

1,
1;

}

The preceding code is quite simple, and the only important bit is that in the
FixtureHelper, we implement the fixtures () method that returns the list

of models handled and their data files that contain all the rows we want in the
database. The only difference with the original code that is found in the advanced
app is the import of the getFixture () method as public, and we'll later see why this
is so.

The following code is for the init_login.php file:
<?php

return [
'basic' => [
'username' => 'user',
'authkey' => uniqgid(),
'password' => Yii::$Sapp->security->generatePasswordHash (
'something’
)
1,
1;

As we imported the trait getFixture () as public, we can access the fixture through
$I->getFixture ('user') ina similar way to what we did in our unit tests.

M If you need to load additional fixtures, you can similarly expose the
Q loadFixtures () method from the FixtureTrait trait and use it
directly in your tests.

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

The last step is about loading the module in Codeception configuration:

tests/codeception/functional.suite.yml

modules:
enabled:

- tests\codeception\ support\FixtureHelper

And after running codecept build, the fixture will be automatically loaded when
running the tests in the _beforeSuite () and _afterSuite () methods.

Pitfalls of functional tests

A word of advice is that there's plenty of information on functional tests, as well as
what cannot be tested, in the official documentation.

The most important thing to grab there is all about the underlying technology that

is used to perform tests; PHPBrowser is in fact a powerful tool, but as the whole
functional test does not rely on the presence of a web server like you would have in a
normal client-server situation, your application and functional tests will be running
in the same memory space.

R Normally the memory is cleaned during the _after () method
~ execution, but remember that if you see any of your tests failing,
Q remember to execute the test file separately, before starting to
doubt your sanity.

Functional tests for REST interfaces

Up until now, you have seen what's already been implemented, what is possible to
do out of the box, and some additional functionalities like the fixtures.

Now let's have a look at what testing a REST interface entails; the default functional
tests available in Codeception are executed by PHPBrowser, and the interface
exposed to interact with it is quite limited and can only be used to deal and

interact with the markup output by the web server. The REST module provided by
Codeception is something we would love.

Just to cite a few of the features available, you'll have functions to set and read
headers, such as seeHttpHeader () and haveHttpHeader (), and specific methods
to call HTTP requests towards our interface, such as sendGET (), sendPUT (), and
sendOPTIONS ().

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Specifically for our interface of the user, our tests will be split into two parts:

* Tests on the actual functionality —authentication and interaction with
the application

* Some additional tests to ensure that we are exposing the right endpoints

Now, with this in mind, let's start having a look at the configuration part; in the
functional.suite.yml file, just add the REST module and configure it as shown in
the following code:

tests/codeception/functional.suite.yml

modules:
enabled:

- Filesystem
- Yii2
- REST
- tests\codeception\ support\FixtureHelper
config:
Yii2:
configFile: 'codeception/config/functional.php'
PhpBrowser:
url: 'http://basic-dev.yii2.sandbox'
REST:
url: 'http://basic-dev.yii2.sandbox/v1l/"

The last line is quite important, as we will end up making calls by specifying only
our endpoint without the need of naming the module base path. Clearly things need
to be adjusted accordingly in case you have more than one REST endpoint you need
to test.

Now, once again we need to run codecept build in order to get everything ready
before starting to run our tests. This command, as already seen, will take all the
module's methods and merge them into our actor's class (which in this case is
FunctionalTester).

Let's generate our new test file with the following commands:

$ cd tests/
$../vendor/bin/codecept generate:cept functional UserAPICept

Test was created in UserAPICept.php

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

Now that we have the file, we can start implementing our tests:

<?php
// tests/codeception/functional/UserAPICept.php

$I = new FunctionalTester ($scenario) ;
$I->wantTo ('test the user REST API');

We start the file with the initialization of the FunctionalTester and the definition of
the scope of our test.

Defining the API endpoints

As it's now time to implement the tests for our API endpoints, we need to define
what these will look like and take our architectural decisions if these haven't been
taken beforehand.

The basic interaction we want to provide to our clients interacting with our APlIs is
the ability to retrieve the user information, and modify it with the specific ability to
change the password.

The client would normally know only the username and password. Since our update
method will leverage on the ID of the user, we need to find a way for the client to get
it in advance. Depending on the type of authentication protocol you decide to use,
you can decide to return it right after the authentication has happened, otherwise
you need to find a different way.

As you will later see, you're going to use the simplest of the authentication methods
available, that is HTTP Basic Auth, which means that all our requests require a
username and password to be sent along with them in a header. By doing so we
clearly can't return the user ID in the response as this should contain the answer to
the call and not the authentication header, so we can decide to provide a "search

by username" endpoint. This will clearly make the username a unique field in

the database, but that's not an issue, rather it's something you need to take into
consideration if you're providing a user creation interface.

Now, we have the following endpoints to test:

®* GET users/search/<usernames: This is used to retrieve the ID of the user.

* GET users/<id>: This is used to retrieve any other information associated
with the user.

* PUT users/<ids>: This is used to update the password.

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Implementing the tests for the API

As our passwords are passed as encrypted in the fixtures, we need to hardcode them
in the tests, in order to authenticate appropriately.

This is not a good practice as we are going to make things a bit harder to maintain.
On the other end, if things get more complex, we might want to refactor the code
and find a better, more unified solution:

SuserFixtures = $I->getFixture('user');
Suser = SuserFixtures|['basic'];
SuserPassword = 'something';

Now that we have some basic information about the user, we can try to grab its ID
and check if its authentication works altogether:

$I->amGoingTo ('authenticate to search for my own user');
S$I->amHttpAuthenticated (Suser['username'], SuserPassword) ;
$I1->sendGET ('users/search/'.Suser['username']) ;

The first step is to prepare the request, which is composed of the Authorization
header and the actual request. We don't need to explicitly generate the
Authorization header, as we have an abstraction over it provided by
amHttpAuthenticated (), which would do that for us.

The header is then sent alongside the GET request over our endpoint; note how the
URL omits the /v1/ part that we would normally use to prefix the API:

$I->seeResponseCodels (200) ;
$I->seeResponselsdson() ;
$I->seeResponseContains (Suser['username'l]) ;
$I->seeResponseContains ('password') ;
$I->seeResponseContains ('id') ;

Once we've sent the request, we can start analyzing the response and do various
assertions on it:

SuserId = SI->grabDataFromJsonResponse ('id') ;
Finally, we grab the user ID from the response, so we can reuse it afterwards.

The next step is about fetching the user's own information knowing their ID, which
looks particularly straightforward to implement:

$I->amGoingTo('ensure I can fetch my own information while being
authenticated') ;

$I->amHttpAuthenticated (Suser['username'], SuserPassword) ;
$I->sendGET ('users/'.SuserId) ;

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

$I->seeResponseCodels (200) ;
$I->seeResponselsdson() ;
$I->seeResponseContains ($Suser['username'l) ;
$I->seeResponseContains ('password') ;
$I->seeResponseContains ('id') ;

As the last step, we have kept the tests on updating the password and ensuring that
the new password works as expected:

$I->amGoingTo ('update my own password') ;
$I->amHttpAuthenticated($user['username'], SuserPassword) ;

SnewPassword = 'something else';
$I->sendPUT (
'users/' . Suserld,
['password' => $newPassword, 'authkey' => 'updated']

)

$I->seeResponselsdson() ;
$I->seeResponseContains('true') ;
$I->seeResponseCodels (200) ;

$I->amGoingTo ('check my new password works') ;
$I->amHttpAuthenticated ($user['username'], S$newPassword) ;
SI->sendHEAD ('users/'.Suserld) ;

$I->seeResponselsdson() ;

$I->seeResponseContains ($Suser['username'l) ;
$I->seeResponseCodels (200) ;

Please note that due to the length of the tests, we will be keeping them all
% in one file as it won't affect their legibility, but you can clearly split them
o~
in more CEST files to aggregate them in a more concise and logical way.

This should be all you really need to know. We can check that none of the tests will
pass at this point, and at the end of the chapter, we will ensure that all of them are
finally passing.

_ Also note that it's not necessary to call amHttpAuthenticated () to
% send the authentication header every time as it will be cached after the
= first call in the CEPT file, and should only be required when the header
needs to be updated.

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Now that we have seen how easy it is to write a functional test, I can leave the
creation of additional tests to you. If you want, you can start by checking that the rest
of the interfaces have not been exposed, such as the ability to request the list of all
users and retrieve or change their passwords.

In the following section of this chapter, we are going to focus on the implementation
side of the things by looking at some new, shiny features provided by Yii 2.

Creating a RESTful web service with Yii 2

It's important to remember that a REST web service is by definition a stateless
service, this will imply some requirements in the way we will test things and deal
with the information we need to POST or GET.

The big step forward that Yii made with version 2 can be seen in the built-in
REST classes that provide an immediate solution once provided by third-party
implementations.

This means we'll have to introduce several changes to what we've achieved so far;
the REST part of the application will be developed as a separate module, which will
give us the ability to extend it and contain its logic. Because of this, the routes will be
rearranged appropriately as well.

Before seeing what the Yii REST functionality is capable of doing, we'll need to first
have a quick look at modules in Yii, which we will use to develop our API to be tested.

Writing modular code in Yii

If you've never used modules since you've started working with Yii, well, I think it's
time to do so. Right now, modules are really easy and straightforward to use, and
they will help you keep your code architecturally well organized and separated from
the other components of your application.

Modules are self-contained software units that contain models, views and controllers,
and other software components, and the end user will be able to access the controller
once it is installed in the main application. For this reason, modules are considered
mini-applications, only difference being that they cannot live on their own. As an
example, a forum or an administrative area can be developed as modules.

Modules can also be composed of submodules; a forum might have an admin
submodule that contains all the logic and interfaces to moderate and customize the
main forum module.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

Modules can be quite complex in their structure; I would always strongly suggest an
architectural analysis before deciding to keep everything under the same module,

in the same way as you need to question your choices if you were to keep all the
code in the same controller. Always try to keep in mind that you should be able to
understand your code in one year's time.

Creating a module with Gii

Developing the REST interface using Yii modules is the easiest way to achieve
versioning of the API. This way, we can easily switch and make an improved
version of the API while still continuing to support the old version with minimal
maintenance, until full deprecation.

So we will start with the creation of the module, using the web interface to the code
generator called Gii. In case you skipped a few pages, the configuration for that is
available in Chapter 4, Isolated Component Testing with PHPUnit, where you saw how
to create a model with it.

Now, we will see how to create a module and what this will mean in terms of
generated code.

So, head over to the Gii application, which in my case is http://basic.yii2.
sandbox/gii and log in, if you are configured to do so and click on the Module
Generator button.

The only two fields we have to fill in are these:

* Module Class: This represents the main name-spaced class name of the
module, which will be set to app\modules\vi1\Module.

* Module ID: This will be (automatically) set to v1.

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Have a look at the following screenshot:

Model Generatar > M d | G t
CRUD Generator >
This generator helps you ta generate the skeleton code needed by a Yil module.
Controller Generator > Module Class
Form Generator 3 app\modulesivivodule
Module Generatar > Module ID
. I vl
Extension Generatar >
Code Template
default (/mntiworkspace/ftestiyiiZcomposer/basic-devivendarlyiisoftiyvii2-gilgenerator
s/imodule/default)
Click on the above Generate button ta generate the files selected below (e F 8 ¥ Unchanged
Code File Action
modulesivi le php create 4
modules/ivifcantrollers/DefaultController. php create <
modulesivi Aviews/default/index.php create O
A Product of Yii Software LLC Powered by i Frameworlk

Module generator page within the Gii code generation tool

You can avoid creating the view by deselecting the related checkbox, as we're not
going to need one. We're going to make more changes to what has been generated.

Click on the Generate button, once ready.

If your application will end up being more complex than what we have
here, you still have a few options.

You can simply adjust the routes for the module, as explained in the
documentation at http://www.yiiframework.com/doc-2.0/
% guide-runtime-routing.html#adding-rules-dynamically.
S

Otherwise, you can create a module within a module (for example, a
container module called api which will contain the various versions
as modules such as v1, v2, and so on). Just remember to namespace it
correctly when creating it. This is usually the solution I'd recommend
from the code organization point of view.

[123]

www.it-ebooks.info

http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#adding-rules-dynamically
http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#adding-rules-dynamically
http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

The next step is to configure the module in order to be able to use it, and then we will
see how to transform it into a REST module.

Using modules in Yii 2

Now that we have our basic code for our module ready, we need to see how we can
use it.

Ideally, the created module can be used straight away without much hassle, which is
quite helpful in an environment where you want to be able to create reusable and, of
course, modular code.

The only step that's really needed is instructing Yii that there is a new module,
and in return, it will take care of auto-loading and calling our module controller
at the right time.

So let's head over to our configuration file located in /config/web.php and add the
following code:

// /config/web.php

Sconfig = [
/] ...
'modulesg' => [
'vli' => [
'class' => 'app\modules\vl\Module',
1,
1,
/] ...

1;

With this, you're ready to go. In order to convert the newly created module to act
as a REST controller, it requires some additional changes, which we will explore
immediately.

Converting our controller to be a REST
controller

This much anticipated feature of Yii 2 lets you create a REST interface in a clear and
easy way.

The REST controller we will inherit from will deal with our models without much
configuration needed and even if there was, it's quite straightforward to do and keep
in mind.

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Our first step is to create UserController which will be dealt with the user model.

Let's start by defining the namespace and the basic classes we're going to use in our
new controller:

// /modules/vl/controllers/UserController.php
namespace app\modules\vl\controllers;

use app\models\User;
use yii\rest\ActiveController;

As we can clearly see, we're going to use the User model and on top of it the REST
ActiveController. This controller is where the magic happens, and we're going to
illustrate what it is all about in a moment.

Now, let's implement the actual class:

// /modules/vl/controllers/UserController.php

class UserController extends ActiveController

{

public $modelClass = 'app\models\User';

}

The only thing needed at this point is just the definition of the model class that the
REST controller is going to manage and that's it.

yii\rest\ActiveController is the controller that will deal with Active Records
models, such as our User model. If you were to manage custom classes (non active
records) that do not connect to a database or do connect to a custom data source
(for instance, an online service), you can use the class that ActiveController is
inheriting from, which is yii\rest\Controller.

The beauty of ActiveController is that it provides already implemented actions
that are available immediately, which are:

* index, which is accessed via GET or HEAD and returns the list of the models
and their (database-bound) attributes

e view, which is accessed via GET and HEAD and returns the details of a
single model

* create, which can be accessed only via POST and lets you create a new model
* update, which is accessed via PUT or PATCH and does what it says on the tin
* delete, which is used to delete a model and can be invoked using DELETE

* OPTIONS, which, lastly, you can invoke to see all the allowed HTTP methods

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

In the actions that you'll be able to implement yourself, you will be dealing with the
raw models, which are rendered by default in XML and JSON (depending on the
Accept header that was sent along with the request).

We know we'll need to modify the list of exposed endpoints, and we'll see how to do
it in a moment.

Before getting there, there are a few other bits that need to be addressed first, in
particular the access credentials, as we don't want anybody to access our endpoints
without being authenticated.

Adding the access check and security layer

You might already have asked yourself how to prevent non-authenticated users from
using certain endpoints of your application. For instance, we might want to give a
client access to the user endpoint only if it's authenticated and authorized.

The authorization and authentication happen at two different phases.

Authorization is done at controller level by simply overriding the checkAccess ()
method and performing the right checks, which might involve establishing if the
user has been authenticated and if he/she is active, in case this flag exists in the
user model.

In our case, we can simply add the following method to our controller:

// /modules/vl/controllers/UserController.php

public function checkAccess($Saction, $model = null, $params

{

Il
—

if (\Yii::$app->user->isGuest) ({
throw new UnauthorizedHttpException;

}

This means that if the user is a guest, we raise a 401 response.

Yii will automatically call the method on each request as we can see in the
actions () method in its parent class, which is \yii\rest\ActiveController:

class ActiveController extends Controller

{
/...

public function actiomns ()

{

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

}

return [
'index' => [
'class' => 'yiil\rest\IndexAction',
'modelClass' => $this->modelClass,
'checkAccess' => [$Sthis, 'checkAccess'],
1,
//

/] ...

Instead, the authentication is done in a completely different way and varies
depending on the implementation and level of security you want to implement
in the application.

As far as it goes, in case you haven't touched the argument in depth, you have
different possibilities, which are:

HTTP Basic Auth: This is basically the same that you would have by using
htpasswd and configuring Apache accordingly and is the simplest one
available, but needs the username and password to be sent in a header with
every request. This requires the communication to work over HTTPS for
obvious reasons.

Query parameter: Here, the client is already possessing an access token,
which will be sent to the server as a query parameter as https://server.
com/users?access-token=xxxxxxx, which is quite handy if you don't
have the ability to send additional tokens with the request.

There are some other ways that use a combination of different techniques and/
or asymmetric and symmetric encryption or different types of handshakes to
authenticate a client. One of the most well-known, although potentially complex,
is OAuth 2, which has different implementations as it's considered more of a
framework than a well-defined protocol. Most of the well-known social websites
such as Google, Twitter, Facebook, and so on implement it. Its Wikipedia page,
available at http://en.wikipedia.org/wiki/OAuth, provides some good links
and references to help you explore it further.

As encryption and authentication protocols are outside the scope of this book,
I've decided to use the simplest solution, which will anyway give us enough hints
on where to put our hands, should we want to implement something more robust
or complex.

[127]

www.it-ebooks.info

http://en.wikipedia.org/wiki/OAuth
http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

Building the authentication layer

As Yii uses sessions by default, which will violate the stateless constraints of a RESTful
server according to the fielding dissertation (http://www.ics.uci.edu/~fielding/
pubs/dissertation/rest_arch style.htm#sec_5_1_3), we will want to disable the
session in the module's init () method:

// /modules/vl1l/Module.php

public function init ()

{

}

parent::init () ;

// custom initialization code goes here
// disable the user session
\Yii::Sapp->user->enableSession = false;

In Yii the actual authentication is then done via the available authenticator behavior.

Yii provides four different authenticators which are:

HttpBasicAuth: This is used for HTTP Basic Auth, which we will use here
QueryParamAuth: This is used for query parameter authentication
HttpBearerauth: This is used for OAuth and similar methods

CompositeAuth: This is a way to use multiple cascading authentication
methods

Again open our UserController and let's define the one we want to use:

// /modules/vl/controllers/UserController.php

public function behaviors()

{

}

Sbehaviors = parent::behaviors() ;
Sbehaviors['authenticator'] = [
'class' => HttpBasicAuth::className (),

1;

return Sbehaviors;

If you were to run the tests against this implementation, you will have
problems making them pass; the default implementation will use
findIdentityByAccessToken () and use the $username part of the header
as an access token. So, there's no real password check.

[128]

www.it-ebooks.info

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_3
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_3
http://www.it-ebooks.info/

Chapter 6

HTTP Basic Auth defines that, together with your request, you will also have to send an
Authorizationh@aderGnﬁahﬁng'Basic ' .baseb4 (Susername.':'.S$password) ;.

As explained in the documentation of the HttpBasicauth class at https://github.
com/yiisoft/yii2/blob/master/framework/filters/auth/HttpBasicAuth.
php#L55, you need to override the $auth attribute in order to perform the password
authentication in the way that you want.

As you saw, findIdentityByAccessToken () is not a method we're going to need,
and we have the unit tests that clearly state that. The best way to address this is by
adding our authenticator method straight in the definition of the behavior in the
following way:

// modules/vl/controllers/UserController.php

public function behaviors()

{

Sbehaviors = parent::behaviors() ;

Sbehaviors|['authenticator'] = [
'class' => HttpBasicAuth::className (),
'auth' => function (Susername, $password) {
/** @var User Suser */
Suser = User::findByUsername (Susername) ;
if ($user && $user->validatePassword ($password)) ({
return Suser;

1;

return $behaviors;

}

As explained in the documentation, the auth attribute should be a function that
expects $username and $password as actual parameters, and returns the user
identity if the authentication is verified.

With this last method, implementation of our authentication and authorization
scheme should be complete.

[129]

www.it-ebooks.info

https://github.com/yiisoft/yii2/blob/master/framework/filters/auth/HttpBasicAuth.php#L55
https://github.com/yiisoft/yii2/blob/master/framework/filters/auth/HttpBasicAuth.php#L55
https://github.com/yiisoft/yii2/blob/master/framework/filters/auth/HttpBasicAuth.php#L55
http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

Modifying the existing actions

Now that we've restricted access to any other user, we need to re-implement the
view and update actions, in order to allow only the currently logged in user to view
just his/her details and allow him to update only the password. If you have already
started implementing the actions, this won't be enough as the parent class, yii\
rest\Controller, already implements all the default actions, so we need to redefine
their configuration, which happens to be set within the actions () method:

public function actions()

Sactions = parent::actions() ;
unset (Sactions['view'], Sactions|['update']);
return Sactions;

}

Once we unset the two actions, our own overridden methods will be picked up
automatically without much else to do:

public function actionView($id)

{
if ($id == Yii::$app->user->getId())
return User::findOne ($id) ;

}

throw new ForbiddenHttpException;

}

The view action just adds a check on the ID of the user and returns a 403 error, while
the update action can be something along the lines of the following code:

public function actionUpdate ($id)

{
if (! Yii::$app->request->isPut)
return new HttpRequestMethodException() ;

}

/** @var User S$Suser */
Suser = User::findIdentity($id) ;

if (Yii::$app->request-spost ('password') !== null) {
Suser->setPassword (Yii: :S$app->request->post ('password')) ;

return Suser->save() ;

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In the update, we only allow changing of the password, after which we return the
value of the save method. We could have returned a more comprehensive status,
but for our cause, this is good enough.

 We won't actually need to add the check if the request is not a PUT, as
% the current internal implementation restricts it by default. We'll see in
=" Chapter 8, Analyzing Testing Information, how this will be fixed, using
the coverage report information.

Adding a new endpoint with parameters

With all we have done, if we try to run the tests on UserarPICept, we will see that it
will fail immediately at the first sendGET ('user/search') command.

Implementing the new actionSearch () method won't be a problem, and it can be
implemented in the following way:

public function actionSearch (Susername)

{

/** @var User S$Suser */

Suser = User::findByUsername (Susername) ;

if ($user && $user->id === Yii::$app->user->getId())
return Suser;

}

throw new ForbiddenHttpException;

}

What is important to note is how we will customize the routes to add this new action
in a "compliant" way.

Switch to the configuration file located at config/web.php and let's start by adding
the search action to the list of allowed methods:

'only' => ['view', 'update', 'search', ‘'options']

The urlrule class that is used to create routes exposes some variables that you can
configure, either to extend or entirely re-define the patterns and the structure of the
tokens. The first are extraPatterns and patterns respectively. Tokens can be used
in the patterns and represent the parameters passed to the action.

In Yii terminology, a pattern is a tuple composed of allowed HTTP method(s), the
actual structure of the resource to identify, and the corresponding action to be called.
The following is an example of this:

'GET search/{username}' => 'search'

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the API - PHPBrowser to the Rescue

A token is one or more parameters that can be as complex as a regular expression.

In the preceding example, {username} is a token and can be defined as shown in the
following code:

"{username}' => '<username:\\w+>'

Our final list of rules will end up looking like the following code:
// config/web.php
'rules' => [

[

'class' => 'yii\rest\UrlRule',

'controller' => 'vl/user',
'tokens' => [
{id}r => r<id:\\d\\d,1*>',
'{username}' => '<username:\\w+>'
1,
'extraPatterns' => [
'GET search/{username}' => 'search',
1,
'only' => ['view', 'update', 'search', 'options']
1,
/' => 'site/index’',
'<action:\w+>' => 'site/<action>',
'<controller:\w+>/<id:\d+>' => '<controllers/view',
'<controller:\w+>/<action:\w+>/<id:\d+>' => '<controllers>
/<actions>"',
'<controller:\w+>/<action:\w+>' => '<controllers/<actions>',

]

The first thing to note is that we had to re-define all the tokens rather than adding
them as we are doing with extrapPatterns.

In the list of rules, we have defined the REST interface rules before any other as rules
are read top to bottom, and the first one that is found matching will be captured.
This means that specific rules must stay at the top, while generic catch-all rules are
at the bottom.

The preceding configuration will be fed to urlManager, as explained in the official
gukkzathttp://www.yiiframework.com/doc—2.0/guide—runtime—routing.
html#using-pretty-urls:

'urlManager' => [
'enablePrettyUrl' => true,
'showScriptName' => false,

[132]

www.it-ebooks.info

http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#using-pretty-urls
http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#using-pretty-urls
http://www.it-ebooks.info/

Chapter 6

'enableStrictParsing' => true,
'rules' => [...]

]

Now we can check that the tests are passing using the following command:

../vendor/bin/codecept run functional UserAPICept.php
Codeception PHP Testing Framework v2.0.8

Powered by PHPUnit 4.5-ge3692ba by Sebastian Bergmann and contributors.

Functional Tests (1) ----------mmmmm e e o e - -

Trying to test the user REST API (UserAPICept) Ok

Time: 9.8 seconds, Memory: 14.50Mb

OK (1 test, 18 assertions)

Summary

In this chapter, you saw many things such as how to write basic functional tests, how
to test a REST interface, and the implementation side of things. Given the amount of
knowledge condensed here, it might be useful for you to revisit the chapter later on
and give yourself enough time to experiment on the single features in more detail
and adapt them to your likings.

In the next chapter, you're going to see how to create acceptance tests for your
interfaces that will overcome some of the limitations of working with PHPBrowser.

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Having Fun Doing Browser
Testing

We have finally arrived at the last stage of testing: acceptance testing. This is the
topmost way of testing your application with Codeception in Yii.

As we saw in the initial chapters , functional and acceptance tests are quite
similar in form and implementation, so you won't see anything particularly new
in this chapter.

It is important to grasp the nature of the tests that we are going to create. We can
recall from Chapter 6, Testing the API - PHPBrowser to the Rescue, that functional

tests are used to ensure the technical correctness of what we've built from a higher
standpoint than unit tests. Whereas acceptance tests are the best way of ensuring that
the acceptance criteria that were defined at the very beginning are still standing after
everything is implemented and put together.

In this chapter, we are going to review the existing tests, install and configure
Selenium, and then implement a small feature that will tie everything together
with the work that has already been done.

In this chapter, we will discuss two main topics:

* Introducing Selenium WebDriver

* Creating acceptance tests

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Having Fun Doing Browser Testing

Introducing Selenium WebDriver

Yii is shipped with some acceptance tests. They cover the same elements as the
functional tests that we've already seen. The only difference between these two
tests is technical, and by looking at the configuration you can see that they've been
configured to run with PHPBrowser. This setup may be good enough for you, or it
may even be better because PHPBrowser runs faster than the available acceptance
testing suites.

Setting aside PHPBrowser, which we've covered in Chapter 6, Testing the
API - PHPBrowser to the Rescue, Codeception can be used with other testing suites,
which can perform more realistic frontend tests, including the JavaScript interaction.

Two of the choices you can have are Selenium WebDriver and Phantom]S. We won't
touch Phantom]S, and it should be sufficient to know that it is a headless browser
testing suite, which uses the WebDriver interface definition.

Selenium WebDriver is also known as Selenium 2.0 + WebDriver. Together with
Cucumber, it is probably the most well-known frontend testing tool available. Their
use has been improved by some big companies, such as Google. They are stable and
have lots of features.

This is a somewhat natural evolution of Selenium 1.0, which had limitations, such
as using JavaScript for interacting with web pages. For this reason, it was running
on the JavaScript sandbox. This meant that, in order to get around the same-origin
policy, it had to run in conjunction with a Selenium RC server, which had some
issues with the browser setup.

Now the Selenium Server has replaced the RC, while remaining retro-compatible
and supporting WebDriver natively.

WebDriver uses a native implementation of the browser to interact with it. This
means that it might not always be available for a specific combination of language
/device. However, it provides the best flexibility for controlling a page without
needing emulation.

Codeception uses a PHP implementation called php-webdriver, which was
developed by Facebook; its source code and issue tracker can be found at https://
github.com/facebook/php-webdriver.

In its simplest implementation and configuration, the Selenium Server just listens
for calls as a service on a specific machine, and fires up the browser on the request to
perform the tests.

[136]

www.it-ebooks.info

https://github.com/facebook/php-webdriver
https://github.com/facebook/php-webdriver
http://www.it-ebooks.info/

Chapter 7

So, as a first step, we need to install the Selenium Server, run it, configure it in
Codeception, adjust the already existing tests such that they work with it, and then
add the new tests to it.

Installing and running Selenium Server

From version 1.7 onwards, Codeception includes the out-of-the-box
php-webdriver library.

As reported in the documentation, which can be found either from Codeception
(http://codeception.com/11—20—2013/webdriver—tests—with—codeception.
html) or from the official page of Selenium (http://docs.seleniumhg.org/
docs/03_webdriver. jsp), you need to download the server binary and then run it
on the machine from, which you intend to run your browser.

Head to http://www.seleniumhq.org/download/ and download the latest version of
the software. In my case, it would be selenium-server-standalone-2.44.0.jar.

Where you save it doesn't matter because once it starts, its server will be listening to
any network interface:

$ java -jar selenium-server-standalone-2.44.0.jar
22:03:31.892 INFO - Launching a standalone server
22:03:31.980 INFO - Java: Oracle Corporation 24.65-b04
22:03:31.980 INFO - OS: Linux 3.17.1 amdé64

22:03:32.002 INFO - v2.44.0, with Core v2.44.0. Built from revision
76d78cf

Configuring Yii to work with Selenium

In order to have Codeception automatically pick up and use WebDriver, we need to
adjust our acceptance suite configuration:

tests/codeception/acceptance.suite.yml
class name: AcceptanceTester
modules:
enabled:
- WebDriver
config:
WebDriver:
url: 'http://basic-dev.yii2.sandbox'
browser: firefox
host: 192.168.56.1
restart: true
window size: 1024x768

[137]

www.it-ebooks.info

http://codeception.com/11-20-2013/webdriver-tests-with-codeception.html
http://codeception.com/11-20-2013/webdriver-tests-with-codeception.html
http://docs.seleniumhq.org/docs/03_webdriver.jsp
http://docs.seleniumhq.org/docs/03_webdriver.jsp
http://www.seleniumhq.org/download/
http://www.it-ebooks.info/

Having Fun Doing Browser Testing

This is a straightforward process. We need to replace the PHPBrowser module with
WebDriver and configure it.

* url (required): This is the hostname used to connect to your application to
perform the tests.

* Dbrowser (required): This will specify the browser that you want to use. Some
other drivers are also available for mobile phones (Android and iOS), and
more information about these can be obtained from the online Selenium
documentation, available at http://docs.seleniumhqg.org/docs/03
webdriver.jsp#selenium-webdriver-s-drivers.

* host: This key specifies the machine that will run the Selenium Server.
By default, it will connect to your localhost. For example, I am using the
VirtualBox host machine IP address. You can also specify the port and by
default, it will use 4444.

* restart: This tells WebDriver to reset a session when a test is performed.
This is particularly handy if you don't want a state to be carried over from
one test to another. For instance, you can use this when you need to (re)set
the cookies to test the auto login functionality.

* window_size: This just specifies the size of the window.

There are other options, some of which will be quite handy for testing with
multiple browsers. In particular, you have the ability to set the desired capabilities
for Selenium 2.0, such as being able to pass a specific profile for the browser (quite
handy when performing regression testing) and so on. More information about
the WebDriver module, albeit not as much as I'd love to see, can be found on the
Codeception documentation page at http://codeception.com/docs/modules/
WebDriver.

Implementing WebDriver-led tests

Before we start implementing the interface that will hook into the API, which we
implemented in Chapter 6, Testing the API - PHPBrowser to the Rescue, it would be
quite useful to look at the existing acceptance tests and see if there's anything new
that we need to take into consideration.

You will find four tests: HomeCept, AboutCept, LoginCept, and ContactCept.

As stated previously, the syntax is not unusual, and we can see that the level of
knowledge of the underlying structure is more limited than the functional tests that
we've covered.

[138]

www.it-ebooks.info

http://docs.seleniumhq.org/docs/03_webdriver.jsp#selenium-webdriver-s-drivers
http://docs.seleniumhq.org/docs/03_webdriver.jsp#selenium-webdriver-s-drivers
http://codeception.com/docs/modules/WebDriver
http://codeception.com/docs/modules/WebDriver
http://www.it-ebooks.info/

Chapter 7

The important thing that we need to stress on once again is that all the actions that
our AcceptanceTester can perform on the page, such as click (), fillField(),
and the assertions that it can perform, such as see (), seeLink () and so on, accept a
so-called Locator as one of its actual parameters.

The Locator parameter can be either a string or an array.

When passed as a string or a fuzzy locator, as it is called in the Codeception
terminology, it tries to guess what you're looking for by formally going through a
series of steps. If you write click (' foo'), then it will do the following;:

1. It tries to find the element with the ID #foo.

2. It tries to find the class . foo.

3. Then, it interprets it as an XPath expression.

4

Finally, it will throw an ElementNotFound exception.

You can be more prescriptive when using the array notation or a strict locator.

e ['id' => 'foo'] matches <div id="foo">
* ['name' => 'foo'l] matches <div name="foo">
* ['css' => 'input[type=input] [value=foo] '] matches <input

type="input" value="foo">

* ['xpath' => "//input [@type='submit'] [contains (@value, 'foo')]"]
matches <input type="submit" value="foobar"s

* ['link' => 'Click here'] matches Click
here
i ['class' => 'foo'l] matches <div class="foo">

The preceding examples have been taken from the Codeception documentation,
which can be found at http://codeception.com/docs/modules/WebDriver.

This explains clearly how to interact with the webpage. Now, the other important
bit can be found in the already existing tests, such as LoginCept and ContactCept.
Here, right before asserting the presence of the validation errors, we have the
following condition-led statement:

if (method exists(SI, 'wait')) {
$I->wait(3); // only for selenium

}

Selenium introduces two types of wait: an implicit one and an explicit one. These
cause the information to be fetched from the server, and then this information is
interpreted and rendered.

[139]

www.it-ebooks.info

http://codeception.com/docs/modules/WebDriver
http://www.it-ebooks.info/

Having Fun Doing Browser Testing

The implicit wait can be configured in the acceptance.suite.yml file, and it silently
tells Selenium to poll for X seconds if the element it's looking for is not immediately
available. By default, no implicit wait is set.

The explicit wait is similar to the preceding code snippet. Doing a simple
$I->wait (X) triggers a sleep (), and allows the browser to perform the required
operation. For example, it would help the browser in completing animations or
finishing fetching and manipulating the server-side data.

There are other ways in which you can wait for something, and some of

these ways can be a little more proactive, such as waitForElement (),
waitForElementChange (), waitForElementVisible () and
waitForElementNotVisible (). All these methods take a locator, using the
aforementioned format, and a timeout in seconds as parameters. We will see how
we can use these later on.

There are other methods provided by the WebDriver Codeception module that you
can use, along with the ability to debug your tests, in case something doesn't go as
you want.

Now, let's try to run the available tests and see them pass:

$../vendor/bin/codecept run acceptance
Codeception PHP Testing Framework v2.0.9

Powered by PHPUnit 4.6-dev by Sebastian Bergmann and contributors.

Acceptance Tests (5) -----------mmmmm e - -

Trying to ensure that about works (AboutCept) Ok
Trying to ensure that contact works (ContactCept) Ok
Trying to ensure that home page works (HomeCept) Ok
Trying to ensure that login works (LoginCept) Ok

Time: 38.54 seconds, Memory: 13.00Mb

OK (4 tests, 23 assertions)

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Depending on which machine you'll be using for running these tests,

their speed will change sensibly, although it will never be as fast as it's
VS when performing unit tests, mostly because the whole browser stack

has to be started for running these tests.

You will briefly see the browser opening and closing several times while performing
the tests. Everything should look good at the end, and if it doesn't, then look into
the tests/codeception/_output/ folder. Here, you will find a markup and a
screenshot of the page taken at the time of the failure. This debugging behavior is
also found in the functional tests while using PHPBrowser.

Creating acceptance tests

Now that we have seen how the acceptance tests that use Selenium WebDriver are
structured, we can start integrating the work done in the previous chapter and begin
adding the tests we want.

For these kinds of tests, where normally the definition of the markup is left to
whoever implements the layout, you would need to define the functionality of
your interface, implement the tests, and then implement the markup and add the
JavaScript functionality, if needed. After you've performed these, you will add
the specifics of the DOM interaction.

Knowing how many developers leave the frontend functionality definition for
the very end, working "tests first" will force you to change your way of working,
anticipating with as much detail as needed what lies ahead and discovering
immediately any critical aspects of the design.

We will try to implement something that is simple enough to get you started with
from scratch and then you can improve upon or extend it later. We know that the
HTTP Basic Auth, which we have used, does not permit a stateful login. Therefore,
we will have to keep some sort of a session object in JavaScript to simulate it. How
this is going to work can be taken from the tests that we have written for the User
API. This is practical documentation at its best.

So, our scenario can be described as follows:
I WANT TO TEST MODAL LOGIN
am on homepage

see link 'Login'
don't see link 'Logout' # i.e. I'm not logged

H H H H

am going to 'test the login with empty credentials'

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Having Fun Doing Browser Testing

.I click 'Login'

I wait for modal to be visible

I submit form with empty credentials

I see 'Error'

H H H

H H H H H

H H H H

am going to 'test the login with wrong credentials'
submit form with wrong credentials
see 'Error'

am going to 'test the login with valid credentials'
submit form with valid credentials

don't see the modal anymore

see link 'Logout'

don't see link 'Login'

am going to 'test logout'
click 'Logout'

don't see link 'Logout'
see link 'Login'

The preceding syntax has been taken explicitly from the generated text version of
our tests.

Implementing the modal window

The work of implementing the modal window will be made easy by Bootstrap,
which is a default framework bundled with the basic app.

The modal window is composed by an almost pre-determined markup and an
additional JS, which provides the interaction part, thereby hooking it to the rest of
the interface. I hope that the simplicity of its implementation will let you focus on
the aim that lies behind it.

The following code has deliberately been taken from the Bootstrap documentation,
which can be found at http://getbootstrap.com/javascript/#modals. Since
the modal window can be opened from any part of the website without going to the
login page, we will have to add it to the overall layout template:

<!-- views/layouts/main.ph -->
</footers>

<div class="modal fade" id="myModal" tabindex="-1"
role="dialog" aria-labelledby="myModalLabel" aria-
hidden="true">

<div class="modal-dialog">

[142]

www.it-ebooks.info

http://getbootstrap.com/javascript/#modals
http://www.it-ebooks.info/

Chapter 7

<div class="modal-content">
<div class="modal-header">
<button type="button" class="close" data-
dismiss="modal">
×
Close</button>
<h4 class="modal-title">Login</h4>
</div>
<div class="modal-body">
<?= S$this->render('/site/login-modal.php',
['model' => Yii::$app->controller-
>loginForm]); ?>
</div>
</div>
</div>
</div>

<?php $this->endBody () ?>

<l-- ... =-=->

As you can see, we have moved the modal form to a separate template, which will
receive the model of the form as a variable, keeping everything self-contained and
organized. Please note from where the model takes its value. We're going to discuss
it while implementing the controller.

The login-modal.php template is just a rip-off of the original 1ogin.php template,
which can be found in the same directory without H1 in the title and the "remember
me" checkbox. We just need to add a placeholder to show the error that is coming
from the API. This is done to inform and debug it.

<!-- views/site/login-modal.php
<l-=- ... =-=->
<div class="alert alert-danger alert-dismissible fade in">

<button type="button" class="close" data-dismiss="alert">x
Close</button>

<p class="error"></p>
</div>

<l-- ... =-=->

We can place this snippet right after the first paragraph of the copied markup.

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Having Fun Doing Browser Testing

Making the server side work

As we have said before, we want the modal window to be available everywhere.
We are going to accomplish this by saving a publicly accessible property in the
SiteController, so that we can retrieve it from the view. Remember that if
you're coming from Yii 1, then views are now separate objects and not a part of
the controller.

Let's use the init () method to do so:

// controllers/SiteController.php
public $loginForm = null;

public function init ()

{

Sthis->loginForm = new LoginForm() ;

}

Once this is done, we can load our page without errors.

In the next step, we will add the interaction to JavaScript.

Adding the JavaScript interaction

We will cover a couple of things in this section. We will discuss the basic functional
interaction with the modal, the interaction with the form, and then learn how to close
everything with the corner cases and error scenarios.

The interaction with the modal will be achieved by reusing the already existing login
button, which is at the top right side of the menu. We will disable it, but remember
that it will provide a fallback compatibility in case something goes wrong.

The basic open-and-close of the modal window is provided out-of-the-box. We will
only trigger it when required, for example upon authentication success.

Let's add the first basic skeleton for the JS module:

// web/js/main.js

var YII = YII || {};

For this part of our application, we will need the module pattern for creating a
self-contained application.

YII.main = (function ($) {
'use strict';

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Let's start by caching all the jQuery elements that we are going to need along the way:

var $navbar = $('.navbar-nav.nav'),
$modal = $('#myModal'),
SmodalBody = $modal.find('.modal-body"'),
SmodalAlertBox = Smodal.find('.alert') .hide(),
SmodalError = S$modalAlertBox.find('.error'),
SCTALogin = $navbar.find('.login'),

Once we have logged in, we will swap the link with a "fake" logout button:

SCTALogout = $('<li class="logout">
Logout</1li>"),

We will need some data fields for holding our login information and creating some
sort of a session:

authorization = null,
username = null,

userID = null;

Now comes the main part of our script, in which we will initialize our event listeners
to the click and submit actions:

/**
* initialise all the events in the page.
*/
(function init()
S$navbar.append ($CTALogout) ;
$SCTALogout .hide () ;

Let's start by appending and hiding our logout button; we will show it only when
the login succeeds, and define the click action it should have:

$navbar.on('click', '.logout a', function (e) {
e.preventDefault () ;

// unset the user info
authorization = null;
username = null;

userID = null;

// restore the login CTA
$SCTALogout .hide () ;
$SCTALogin.show () ;

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Having Fun Doing Browser Testing

We need to disable the click event for the login button. Otherwise, we will be taken
to the login page, instead of opening the modal:

$navbar.on('click', '.login a', function (e) {
e.preventDefault () ;

3N

The modal triggering event is done automatically by modifying the markup of the
login button. So, navigate to views/layouts/main.php and then adjust it as follows:

'label' => 'Login',

'url' => ['/site/login'],

'options' => [
'data-toggle'=>'modal"',
'data-target'=> '#myModal',
'class' => 'login'

]
Next, we will deal with the form submission:

SmodalBody.on ('submit', '#login-form', function (e) {
e.preventDefault () ;

After disabling the default submit event, we will need to capture the username and
the password, and then save it for future use:

username = this['loginform-username'] .value;
// we don't care to store the password... sorta

authorization = btoa(username + ':' + this['loginform-
password'] .value) ;

The authorization variable will hold our authorization header that is ready
for dispatch:

S.ajax(
{
method: 'GET',
url: '/vl/users/search/' + username,
dataType: 'json',
async: false,
beforeSend: authorize,
complete: function (xhr, status) {

if (status === 'success')
// save the user ID
userID = xhr.responseJSON.id;
// set the logout button

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

SCTALogin.hide() ;
$CTALogout . show () ;
// clear the status errors
SmodalError.html (''") ;
SmodalAlertBox.hide () ;
// close the modal window
Smodal .modal ('hide') ;

}

else {
// display the error

$SmodalError.html ('Error
: ' + xhr.statusText) ;

$modalAlertBox.show () ;

0 O;
}) (jQuery) ;

This code is simple enough. In case of success, we save the user ID for subsequent
calls, we hide the login button and display the logout one, clear the error message,
and hide the modal window. Otherwise, we just display the error message.

The beforesend option will be initialized by the authorize function, which is
defined as follows:

/**

* modifies the XHR object to include the authorization
headers.

*

* @param {jgXHR} xhr the jQuery XHR object, is automatically
passed at call time

*/

function authorize (xhr)

xhr.setRequestHeader ('Authorization', 'Basic ' +
authorization) ;

}

After doing this, we won't need anything else to interact with the page. So, let's put
everything together.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Having Fun Doing Browser Testing

Tying everything together
At this point, we only have to add our JS to the page and then finalize our tests. In
order to add our file to the page, we need to know what assets and asset bundles are.

Dealing with Yii 2 assets bundles

Yii 2 has radically changed the way assets are handled. It has introduced the concept
of the asset bundle.

Asset bundles are collections of scripts and style sheets that can have a higher degree
of configurability as compared to the past.

This basic app already has a basic implementation. So, let's navigate to /assets/
AppAsset . php and see how the content is structured:

<?php // assets/AppAsset.php
namespace app\assets;
use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
public S$basePath = '@webroot';
public SbaseUrl = '@web';
public $css = [
'css/site.css',
1
public $js = [I;
public S$depends = [
'yii\web\YiiAsset',
'yii\bootstrap\BootstrapAsset',
1
}

The Appasset extends from the yii\web\AssetBundle class and it simply defines a
series of public properties.

The first two properties, $basebath and $baseUrl, are the most important ones.
$basePath defines where the assets are located on a publicly accessible location,
while $baseUrl defines how their resource is linked to the web pages, that is,
their URL.

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

This asset, by using these two properties, defines the so called "published asset".
In other words, it defines a bundle of assets, which are available at a publicly
accessible location.

You can have "external assets", which are comprised of resources from external
locations, and "source assets", which are not comprised of resources from publicly
available locations. These assets define only a $sourcepath property and Yii copies
them to the publicly accessible assets folder, and names them accordingly.

Source assets are normally provided by libraries and widgets, and for this reason, we
won't be covering them here. Published assets are recommended for incorporating
assets into the page or pages by putting them somewhere in the web/ folder.

In the example earlier, you saw that we defined the asset dependencies, and in our
case, it's done with jQuery and Bootstrap. This is exactly why we've used them for
developing the main JavaScript module.

Lastly, we need to see how we can use the asset bundle for our markup. This can
be done by looking at the top of the template view. For this, navigate to /views/
layouts/main.php. Here, we can see these two lines:

// views/layouts/main.php
use app\assets\AppAsset;
AppAsset::register (Sthis) ;

Remember that the old way of associating any asset with a specific layout, although
it's not particularly advisable, hasn't been removed. This works in the same way as it
was working in Yii 1, that is, by using registerCssFile () and registerdsFile ().

Assets have many other options, such as the ability to compress and compile SASS
and LESS files, use Bower or NPM assets, and so on. Go to the documentation page,
which is currently in a good shape and is quite comprehensive, at http://www.
yiiframework.com/doc-2.0/guide-structure-assets.html.

For our work, we need to slightly adjust the asset bundle provided by adding the
JS file and tweak it where it's going to be added to the page, otherwise we will
encounter some problems in running it before the page is parsed. Consider the
following code snippet:

public $js = [
'js/main.js"',
1;
public $jsOptions = [
'position' => \yii\web\View::POS_ END
1;

[149]

www.it-ebooks.info

http://www.yiiframework.com/doc-2.0/guide-structure-assets.html
http://www.yiiframework.com/doc-2.0/guide-structure-assets.html
http://www.it-ebooks.info/

Having Fun Doing Browser Testing

Once you've added the preceding lines to the asset bundle, you need to head back
to the form template that is included in the modal. This, in fact, will generate some
problems because it requires injecting some script into the page in order to make the
client-side validation work. This is a major problem; most of the time you will have
to override the way ActiveForms works, so you should learn how to do it.

// views/site/login-modal.php

<?php $form = ActiveForm: :begin([

'id' => 'login-form',
'options' => ['class' => 'form-horizontal'],
'enableClientScript' => false,

'enableClientValidation' => false,
'fieldConfig' => [

'template' => "{label}\n<div class=\"col-1g-
4\">{input}</div>\n<div class=\"col-1g-
5\">{error}</divs>",

'labelOptions' => ['class' => 'col-lg-offset-1 col-1g-
2 control-label'],

’

1); 2>

The two options shown here will disable both the client-side validation and any
additional scripting facility. Disabling only one option won't do the trick.

We can now load the page and no error message will be displayed on the console.

Finalizing the tests

At this point, we just have to convert our scenarios into live code.

Let's start creating the test in the same way as we created unit tests and
functional tests:

$../vendor/bin/codecept generate:cept acceptance LoginModalCept

Test was created in LoginModalCept.php

Navigate to the file and let's start by asserting the initial statements: where we are
and ensure that we are not logged in:

<?php

// tests/codeception/acceptance/LoginModalCept.php
$I = new AcceptanceTester ($Sscenario) ;
$I->wantTo('test modal login');

$I->amOnPage (Yii: :Sapp->homeUrl) ;

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

$I->seelLink ('Login') ;
$I->dontSeelLink ('Logout') ;

Although this might seem like a simplistic way of determining whether the user is
logged in, it serves the purpose. If we find that anything more complex is needed,
then we can always add it to the mix later:

$I->amGoingTo('test the login with empty credentials');
$I->click('Login') ;

$I->waitForElementVisible ('.modal') ;
$I->fillField('#loginform-username', '');
$I->fillField('#loginform-password', '');
$I->click('#login-form button') ;

S$I->see('Error', '.alert .error');

The most important part of this test is the use of an explicit wait,
waitForElementVisible () . It does what it says on the tin: waits until the DOM
element with class .modal is rendered and visible.

The assertion made at the end does not check for any specific errors. So feel free to
add any level of customization here, as I've tried to be as generic as possible.

The same goes for the following test:

$I->amGoingTo('test the login with wrong credentials');
$I->fillField('#loginform-username', 'admin') ;
$I->fillField('#loginform-password', 'wrong password') ;
$I->click('#login-form button') ;

SI->see('Error', '.alert .error');

This interesting part of the test comes when we're trying to access using valid
credentials. In fact, as we've seen in the script we created previously, the modal
window will be dismissed and the login button will be replaced by the logout link:

$I->amGoingTo('test the login with valid credentials');
$I->fillField('#loginform-username', 'admin') ;
$I->fillField('#loginform-password', 'admin');
$I->click('#login-form button') ;

$I->wait (3);

$I->dontSeeElement ('.modal') ;

$I->seelLink ('Logout') ;

$I->dontSeelLink ('Login') ;

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Having Fun Doing Browser Testing

In order to do this, we need to add another explicit wait for the AJAX call to complete
and then the window will disappear. Using waitForElementNotVisible () might
not do the trick because it involves animation. It also depends on the responsiveness
of the system you're testing on because it might not work as expected and fail from
time to time. So, wait () seems like the simplest solution for the problem. Consider
this code snippet:

$I->amGoingTo('test logout') ;
$I->click('Logout') ;
$I->dontSeelink ('Logout') ;
$I->seelink ('Login') ;

The last test doesn't need much attention and you should be able to understand it
without facing any problems.

Now that we have put together our tests, let's run them:

$../vendor/bin/codecept run acceptance
Codeception PHP Testing Framework v2.0.9

Powered by PHPUnit 4.6-dev by Sebastian Bergmann and contributors.

Acceptance Tests (6) ------------ - e e - -
Trying to ensure that about works (AboutCept) Ok

Trying to ensure that contact works (ContactCept) Ok

Trying to ensure that home page works (HomeCept) Ok

Trying to ensure that login works (LoginCept) Ok

Trying to test modal login (LoginModalCept) Ok

Time: 47.33 seconds, Memory: 13.00Mb

OK (5 tests, 32 assertions)

Testing multiple browsers

Version 1.7 onwards, Codeception also provides a method for testing multiple
browsers. This is not particularly difficult, and it can ensure that cross-browser
compatibility is achieved.

This is normally done by configuring environments in the acceptance.suite.yml
file by adding something similar to the following at the bottom of the file:

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

env:
chrome39:
modules:
config:
WebDriver:
browser: chrome
firefox34:
nothing changed
iel0:
modules:
config:

WebDriver:
host: 192.168.56.102
browser: internetexplorer

Each key under the env variable represents a specific browser you want to run the
test on, and this is done by overriding the default configuration that we have
already defined.

~

Within env, you can override just about any other key that was
specified in the YAML configuration files.

You can have several machines, each having different versions of the browsers, with
Selenium Server listening on them, so you can also perform retro-compatibility tests
when deciding which polyfills to use for the new features introduced recently and
also depending on your browser support chart.

In order to trigger the various environments, just append the --env <environments>
parameter to the run command:

$../vendor/bin/codecept run acceptance --env chrome39 --env firefox34
--env iel0

Internet Explorer requires its own driver to be installed on the host machine and
a few more steps to be performed to set it up correctly, which is covered in the
Selenium documentation, which can be found at https://code.google.com/p/
selenium/wiki/InternetExplorerDriver

[153]

www.it-ebooks.info

https://code.google.com/p/selenium/wiki/InternetExplorerDriver
https://code.google.com/p/selenium/wiki/InternetExplorerDriver
http://www.it-ebooks.info/

Having Fun Doing Browser Testing

Understanding Selenium limits

By now, you have probably seen how powerful Selenium is. By using the browser
natively, you can finally interact with the website programmatically. This will save
a huge portion of time that is normally spent by human beings on doing repetitive
tasks. Repetitiveness is only a cause of problems when it comes into the hands of
humans, so this is effectively a good thing.

Unfortunately Selenium can't do everything, and if you have already started looking
into it and researching its full use and potential, then you might have noticed that
there are some limitations of its use.

Clearly any kind of "pixel-perfect" tests are nearly impossible to recreate with
Selenium, although some types of tests on designs can be created, specifically
for responsive designs. Other frameworks, such as Galen cover this functionality
(http://galenframework.com/).

A few words need to be spent on hover effects, as they might be quite difficult to
achieve and you may need to use the moveMouseover () method for triggering it.

Summary

We have covered the final aspect of testing in this chapter. We've gone through
the provided tests. We have also understood any additional syntax, configured
Selenium, run the first batch of tests, and then moved on to implementing and
tying the API previously developed into the interface with a modal login feature.

In the next chapter, we are going to learn about a lot of logs and how information can
be generated by our tests to better our understanding of testing. We will also see if
we've missed anything.

[154]

www.it-ebooks.info

http://galenframework.com/
http://www.it-ebooks.info/

Analyzing Testing Information

In the last three chapters, we covered the topic of writing tests at different levels:
unit, functional, and acceptance. So far, we have tested the new interface that we
created, and we learned to apply all the new methods. This was a relatively easy
task, but we don't know how good we did in our testing. There are some specific
metrics that we can analyze to generate a direct and immediate report on the quality
of the tests. These reports will help us in taking informed decisions regarding the
architecture of our code.

Codeception is bundled with most of these report generation tools, and it's quite easy
as it's been until now.

In this chapter, we will primarily cover the code coverage metrics, and we'll briefly
touch on some other metrics, which can be obtained through various software.

* Improving the quality of your tests

* Improving our code with the aid of additional tools

Improving the quality of your tests

Since the beginning of programming and, in particular, testing, many programmers
started questioning themselves on what it means to write good tests, or in other
words, how do I know that the test I have written is good? What are the metrics

for this?

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Testing Information

It's definitely not a question of personal preference or skill.

One of the first methods that was created for analyzing the quality of the tests was
called code coverage. From a wider perspective, code coverage measures how much
of the code is covered by the tests. There is a correlation between software bugs

and the test code coverage, where the software with more code coverage has fewer
bugs, although the tests won't remove the possibility of bugs being introduced, for
instance, as a manifestation of complex interactions between modules or unexpected
inputs and corner cases. This is why you need to be careful when planning and
designing your tests, and you need to take into consideration that this won't remove
the need for regression and exploratory testing, at least, not entirely.

There are several code coverage criteria that are normally used for the code
coverage programs.

* Line coverage: This is based on the number of executable lines that
were executed.

* Function and method coverage: This calculates the number of functions or
methods that were executed.

* C(Class and trait coverage: This measures the covered classes and traits when
all of their methods are executed.

* Opcode coverage: This is similar to line coverage, although a single line
might generate more than one opcode. The line coverage considers a line to
have been covered as soon as one of its opcodes are executed.

* Branch coverage: This measures if each possible combination of Boolean
expression in the control structures are being evaluated when the tests
are run.

* Path coverage: This is also called Decision-to-Decision (DD) path, and it
considers all the possible execution paths, in terms of its unique sequence of
branch execution from the beginning to the end of each method or function.

* Change Risk Anti-Patterns (C.R.A.P.) Index: This is based on the cyclomatic
complexity and the code coverage of a unit of code. This index can be
lowered by refactoring the code or by incrementing the number of tests.
Either way, it's primarily used for unit tests.

Since Codeception uses PHP_CodeCoverage, it does not support opcode coverage,
branch coverage, and path coverage.

With this in mind, if we go back to our unit tests, we will understand a bit better the
structure of our tests and how they are currently working.

Let's start by enabling the code coverage in our unit tests and then looking
at their results.

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Later, we will look at the functional and acceptance coverage reports, and then
explore some other interesting information, which we can extract from our code.

Enabling code coverage in Codeception

Codeception provides a global and a specific configuration for code coverage.
Depending on the structure of your application and the type of test you are going to
implement based on your test plan, you can have either a generic configuration in
/tests/codeception.yml, or a specific configuration for each suite configuration
file, such as /tests/codeception/unit.suite.yml. You can also have both of these
configurations. However, in this case, the single suite configuration will override the
setting of the global configuration.

We are going to use the global configuration file. So at the end of the file, append the
following lines:

tests/codeception.yml

coverage:
enabled: true
white list:
include:
- ../models/*
- ../modules/vl/controllers/*
- ../controllers/*
- ../commands/*
- ../mail/*
blacklist:
include:
- ../assets/*
- ../build/*
- ../config/*
- ../runtime/*
- ../vendor/*
- ../views/*
- ../web/*
- ../tests/*

This should be enough for getting started. The first option enables the code coverage,
while the rest of the options tell Codeception and the code coverage program which
files to include when writing the report for the white list and the black list. This

will ensure that the results aggregate the information that is relevant to us, in other
words, what we've written, rather than the framework itself.

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Testing Information

We won't need to run the build command of Codeception, as there isn't a new
module that has to be imported into our tester guys.

If we look at the help option for the run action of Codeception, then we will notice
that it has two main options for generating the reports that we are interested in.

* --coverage: This generates the actual coverage report, and it is accompanied
by a series of other options for controlling the format and the verbosity of
the report

* --report: This generates an overall report of the tests that were run

In conjunction with these two options, we will be able to generate the HTML

and XML test and coverage reports, depending on the use. In particular, the XML
report will be quite handy when we get to Chapter 9, Eliminating Stress with the Help
of Automation.

It's important to keep in mind that currently the coverage reports of
* the acceptance tests are not merged with the reports generated for
the functional and unit tests. This is due to the way in which the code
e coverage is calculated and intercepted. Later, we will see what will be
needed for generating the coverage reports for acceptance tests.

Extracting the code coverage information for
unit tests

In the Codeception documentation, this is normally referred to as the local coverage
report and it is applied to both the unit and functional tests. We'll touch upon remote
coverage when talking about the coverage for acceptance tests.

We can easily generate the coverage by appending the - -coverage flag to the
command shown here:

$../vendor/bin/codecept run unit --coverage

This will end with an output similar to the following:

Time: 44.93 seconds, Memory: 39.75Mb

OK (32 tests, 68 assertions)

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Code Coverage Report:

2015-01-05 21:43:13

Summary:

Classes: 25.00% (2/8)
Methods: 45.00% (18/40)
Lines: 26.42% (56/212)

\app\models: :ContactForm

Methods: 33.33% (1/ 3) Lines: 80.00% (12/ 15)
\app\models: :Dog

Methods: 100.00% (2/ 2) Lines: 100.00% (3/ 3)
\app\models: :LoginForm

Methods: 100.00% (4/ 4) Lines: 100.00% (18/ 18)
\app\models: :User

Methods: 84.62% (11/13) Lines: 79.31% (23/ 29)

The execution time you see here is based on a machine with an i7-m620
processor, on which runs the Linux kernel. The coverage increases the
time exponentially. On the same machine, running the unit tests takes
less than 10 seconds.

%‘ There are methods for shortening the execution time. This can be done
by using Robo, which is a task runner, and its specific Codeception
plugin is robo-paracept. More information can be found in the official
Codeception documentation at http://codeception. com/
docs/12-ParallelExecution.

This report gives us a succinct and immediate output of the code coverage of our
unit tests.

The coverage for classes, methods, and lines (and where the percentage is calculated
from), and a slightly detailed breakdown per class can be seen from the summary.

We can see that we succeeded in covering 100 percent of the Dog and LoginForm
classes, and we nonetheless achieved a good 84.62 percent of the methods of the

User class, but disappointingly, we covered only 33.33 percent of the methods of
the contactForm.

[159]

www.it-ebooks.info

http://codeception.com/docs/12-ParallelExecution
http://codeception.com/docs/12-ParallelExecution
http://www.it-ebooks.info/

Analyzing Testing Information

But, what did we miss?

Well, there's only one way to find out, and that is by generating the HTML
coverage report.

Generating a detailed coverage report of the
unit tests

With the help of the - -coverage-html option, we can generate a detailed code
coverage report. Then, we can inspect it in order to understand what was covered
and what was missed:

$../vendor/bin/codecept run unit --coverage-html

This will now end with the following output line:

HTML report generated in coverage

The report will be saved in the _output/coverage/ directory, where you will find
two files: dashboard.html and index.html. The first gives you some nice graphs,
which are a little more interesting than the coverage report summary printed on the
console, but it is mostly used for showing off and it is not useful for understanding
what's wrong with the tests. There's, in fact, an open request for suppressing

this output on the console (https://github.com/Codeception/Codeception/
issues/1592).

Insufficient Coverage

Method Coverage
0%
0%
els 0%

attributeLab

Details of the Insufficient Coverage panel on the dashboard

As you can see from the preceding screenshot, the bit that you might be interested
in at this level of detail is the Insufficient Coverage panel, (currently) sitting at
bottom-left of the page.

[160]

www.it-ebooks.info

https://github.com/Codeception/Codeception/issues/1592
https://github.com/Codeception/Codeception/issues/1592
http://www.it-ebooks.info/

Chapter 8

We will discuss the other panels later.

You will be really interested in the index.html file. From there, you can see some of
the detailed statistics and you can dig into every single file that has been analyzed, to
see what lines the tests have covered and so improve your tests from there.

Code Coverage
Lines Functions and Methods Classes and Traits
Total] s6.15% s6/65 (I s1e2% 18722 (N 50.00% 2/4
B ContactForm.php o sooor 12/15 ([33.33% 113 000% 0/1
E Dog.php s roo00% 33 [10000% 22 R o000 101
B LoginForm php S oo 112 (N tooo0% 44 N o000 101
B Userphp o 7ea1% 23/29 ([8462% 11/13 000% 0/1
Legend
Low: 0% to 35% Medium: 35%to 70% High: 70% to 100%

Summary of the coverage across all files analyzed

The summary of the coverage shows what's been covered, in some detail. This
helped us in discovering immediately what was wrong with our testing, and in our
case, one of the tests provided by Yii for ContactForm was not covered sufficiently.
In the preceding screenshot, we can see that it shows 80 percent coverage of lines,
33.33 percent coverage of the methods, but it does not show anything regarding the
classes. This is because, unless you have all the methods covered, you won't have
the class marked as covered.

This may not prove be a problem. There are methods that are not a part of our
implementation and these can only be tested by using an integration test, and then
there are others that can be covered by paying a bit of attention. If we click on the
ContactForm.php link, then we would see the following;:

Code Coverage
Classes and Traits Functions and Methods Lines
Total ooo% o1 ([s3as% 1/3 crap (N 8000% 12/15
ContactForm oo0% o1 ([33.33% 1/3 443 [] 80.00% 12/15
rules() _ 10000% 141 1 _ 100.00% 44
attributeLabels() 0.00% 0/1 2 0.00% /2
contact({$email) 0.00% 0/1 201 _ BB.89% 8/9
Legend
Low: 0% fo 35% Medium: 35% to 70% High: 70% to 100%

Summary of the coverage of the code in the selected file

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Testing Information

Of the two methods that have not been covered, we don't really need to cover the
first method, attributeLabels (). Technically, this is because of two reasons: the
first reason is that as it is a part of the Yii framework, we assume that it will work;
the second reason is that it's a trivial method, and it always returns an internal
variable, which can't be controlled in any way.

The other method is the contact () method and it has been covered partially. So,
we're going to fix this. It may well be possible that this specific test will get corrected
in a future version of the framework. This might be something that you need to look
out for.

By clicking on the contact($email) link, or by just scrolling to the bottom of the
page, we will find our method, and this will show us that all the paths have not
been covered.

49 public function contact($email)

50 {

51 if ($this-»validate()) {

52 Yii::$app->mailer->compose()

53 ->setTo($email)

54 -=setFrom([$this-=email == $this-=name])
55 ->setSubject($this->subject)
56 ->setTextBody($this-=body)
57 -=send() ;

59 return true;

60 } else {

61 return false;

62 }

63 }

64 }

Legend

Executed Not Executed Dead Code

Discovering what needs to be covered with the aid of color coded lines

Our case is quite simple, so we will try to fix these errors either by adding the
@codeCoverageIgnore directive to the documentation of the method that we want
to exclude, or by adjusting or adding a new test to it in order to reach as close as
possible to 100 percent. Remember, this is what we will be aiming for, but this is not
necessarily our target.

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

// /tests/codeception/unit/models/ContactFormTest.php

/**
* @return array customized attribute labels
* @codeCoveragelgnore
*/
public function attributeLabels ()
{
return [
'verifyCode' => 'Verification Code',
1;
}

The solution to cover the remaining branch of the if statement is to add a test similar
to the following;:

// /tests/codeception/unit/models/ContactFormTest.php

public function testContactReturnsFalseIfModelDoesNotValidate ()

{
$Smodel = $this->getMock (
'app\models\ContactForm', ['validate']
) ;
Smodel ->expects ($this->any())
->method ('validate')

->will ($this->returnValue (false)) ;

Sthis->specify('contact should not send', function () use
(&$model)

expect ($model->contact (null), false);
expect ($model->contact ('admin@example.com'), false);
3N
!
[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Testing Information

Now, let's run our tests again, and we will see the screenshot shown here:

Code Coverage
Lines Functions and Methods Classes and Traits
Total B ocooo se/se [tooco 2020 (N toco0% 444
I ContactForm.php B occox 1313 [10000% 2.2 R ocoox 11
B Dog.php B o000 33 (N 10000 22 [ooo0% 11
Bk LoginForm.php D occow 118 [N t0000% 44 N o000 10t
B User.php S rvooow 242 [ooco 121z (N oo00% 141
lLegend
Low: 0%to 35% Medium: 35%to 70% High: 70% to 100%

We've reached 100 percent coverage! Yay!

I'll leave it to you to fix the remaining errors. Certain situations might be hard to
cover, and you may need additional hints and suggestions on how to restructure
your tests.

Aggregating functional tests to unit tests

Now that we've seen what is going on in our unit tests and how to visually
understand if we have effectively covered as much as we could, we can move
to the functional tests that we wrote previously.

As we saw earlier, we can just add the functional suite to the command line for
generating the aggregated reports.

$../vendor/bin/codecept run unit, functional --coverage

We will also see that by omitting the suites we will end up with the same result, but
we don't know when the Codeception developers will merge all the three suites into
a single coverage report, so just keep this in mind and consult the documentation.

Our unit tests have covered the models in their entirety. Our functional tests should
focus on the controllers. You should be able to spot that the login page and the REST
module controller have not been covered completely. So, let's discuss these one

by one.

The login page will display the missing coverage for the login and the logout action.

In the first case, it seems pretty easy to cover that. We have to make sure that we
reach that action after logging in. So, let's add the following assertion right after the
successful login at the end of the test file:

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

// tests/codeception/functional/LoginCept.php

$I->amGoingTo ('ensure I cannot load the login page if I am logged
in');

$I->amOnPage ('/index-test.php/login') ;

$I->seeCurrentUrlEquals ('/index-test.php') ;

As we can see, we're using a few specific paths for testing the website. This isn't a
problem when interacting with the Codeception REST module, but here we have to
be verbose.

The other portion that we have to cover is a little more complex. Once we are logged
in, notice that the logout button has a JS click event attached to it, and that will send
a POST request to /logout.

Since PHPBrowser won't be able to read JS, nor will it have the ability to do a
specific POST call, we won't be able to cover this piece of code. Don't even think
about using sendPost () as it's a specific method, which comes from the REST
module of Codeception.

The only solution for this is to leave the coverage of this bit to the acceptance tests or
to WebDriver.

Due to the fact that acceptance and functional tests have not been merged, we can
exclude this method from the coverage report by using @codeCoverageIgnore.
However, make sure that this isn't a case anymore and discuss it with your
colleagues before excluding the method coverage from all the tests.

The last part that we need to cover is the controller of the REST interface. Here, we
have a mixed situation. We have uncovered the functions that are mostly a part of
our framework, such as the anonymous function that performs the authentication
and checkAccess (), we have a small bit in actionUpdate (), which forbids
anything but a PUT, and we have another control statement in actionSearch (),
which controls who can search what.

In the first two cases we'll gladly avoid them from getting covered, as we've
explicitly excluded the framework files which these two are part of.

For actionupdate () , we'll find out that we won't even need a specific check,
as Yii already defines the type of HTTP call that is allowed against the default
REST interfaces.

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Testing Information

We can add a test that ensures that we can't perform a POST on the interface and it
can be added to any of the already present tests. This could be something along the
lines of the following code block:

// tests/codeception/functional/UserAPIEndpointsCept.php

// I must be authenticated at this point.
$I->amGoingTo('I cannot update using POST') ;
$I->sendPOST ('users/' . SuserId);
$I->seeResponseCodels (405) ;

Lastly, we want to ensure that the user can only search for his own username to get
the ID, as we outlined in Chapter 6, Testing the API - PHPBrowser to the Rescue. In
order to do this, we can simply add something similar to the code block shown here:

// tests/codeception/functional/UserAPICept.php

// I must be authenticated at this point.
$I->amGoingTo('ensure I cannot search someone else');
$I->sendGET ('users/search/someoneelse’) ;
$I->seeResponseCodels (403) ;

If we run the tests with coverage, then we'll get a 100 percent on all the files that we
wanted to see the coverage on.

Code Coverage
Lines Functions and Methods Classes and Traits
Total] 100.00% 126126 (NN 100.00% s3/33 (D 100.00% 717
W controllers] 100.00% so/09 (N 100.00% 77 [100.00% 11
& models [] 100.00% se/58 (NI 100.00% 20/z0 (D 100.00% 4l4
& modules] 100.00% 20/20 (N 100.00% I 00] 100.00% 272
Legend
Low: 0% t0 35% Medium: 35%to 70% High: 70% to 100%

The final overview of the coverage for unit and functional tests

Generating acceptance tests' coverage report

Now that we've seen what to make of our coverage reports, we'll quickly look at
the configuration that will help us in obtaining the coverage reports for the
acceptance tests.

These coverage reports might not be the most important ones, but if constructed
correctly, then they should prove that our scenarios are well written. Normally, the
focus of acceptance tests is on ensuring browser cross- and preserving
retro-compatibility.

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

As we've seen in Chapter 7, Having Fun Doing Browser Testing, Codeception talks to
the Selenium standalone server, which in turn launches the browser and performs
the required tests through the browser driver. Because of this architecture, the 3
project has been created, which basically listens to the browser calls and understands
which bit of our code is being executed remotely.

So, first of all, let's get c3. We can either download it from Composer or from the
official website (https://github.com/Codeception/c3) by running this command
from the root of the project:

$ wget https://raw.github.com/Codeception/c3/2.0/c3.php

If you're downloading it through Composer, then you'll have to add some additional
instructions to the composer. json file. You should take the official documentation as
the main reference point.

Once you have it, include it in the index-test . php file:

// web/index-test.php

Y

include once @ DIR . '/c3.php';

$config = require(DIR . '/../tests/codeception/config/acceptance.
php') ;

(new yii\web\Application ($config))->run() ;

With this, we have hooked ¢3 to Yii. Now, we just need to make Codeception aware
of it. So open the codeception.yml file, and add the following options to the
coverage section of the file:

tests/codeception.yml
...
coverage:
enabled: true
remote: true
remote config: ../tests/codeception.yml
whitelist:
blacklist:
c3 url: 'https://basic-dev.yii2.sandbox/index-test.php/"

We need to enable the remote coverage, set the configuration of the file by using
remote_config, and then specify the URL c3 should be listening on.

[167]

www.it-ebooks.info

https://github.com/Codeception/c3
http://www.it-ebooks.info/

Analyzing Testing Information

The detailed explanation of the remote code coverage and its
configuration can be read from the official documentation of
Codeception, which can be found at http://codeception. com/
% docs/11-Codecoverage, and from the README . md file, which is
T~ either located in the tests/ directory of your project or at https://
github.com/yiisoft/yii2-app-basic/tree/master/
tests#remote-code-coverage

Now, all our remote calls will go through the index-test.php file, and they will use
c3 to generate the coverage data.

Additionally, we may want to get a trimmed down report for specific acceptance
tests, and in our case, we can decide to focus our attention only on the controllers
that are being hit, and then choose to remove any reporting for the models.

In order to do so, consider what we already have in the main configuration file.
We just need to add the following to our acceptance. suite.yml file:

tests/codeception/acceptance.suite.yml
coverage:
blacklist:
include:
- ../models/*

At this point, you can generate the reports separately by using the code block
shown here:

$../vendor/bin/codecept run acceptance --coverage-html

You can also do this by simply running the tests for the whole suite, as follows:

$../vendor/bin/codecept run --coverage-html

As we saw earlier, both of these methods will generate a separate report for the
acceptance tests. It might happen that in the future this is no longer valid, so be sure
to head over to the official documentation and check that.

Once we generate the reports, we will notice two things: the tests with the coverage
report might take ages, so we don't want to run this every time we make a change
to the interface. Secondly, we will have to cover the missing logout test that we have
highlighted before.

So, let's go to our LoginCept .php file and add what's missing.

$I->amGoingTo ('ensure I cannot load the login page if I am logged in') ;
$I->amOnPage ('/index-test.php/login') ;

[168]

www.it-ebooks.info

http://codeception.com/docs/11-Codecoverage
http://codeception.com/docs/11-Codecoverage
https://github.com/yiisoft/yii2-app-basic/tree/master/tests#remote-code-coverage
https://github.com/yiisoft/yii2-app-basic/tree/master/tests#remote-code-coverage
https://github.com/yiisoft/yii2-app-basic/tree/master/tests#remote-code-coverage
http://www.it-ebooks.info/

Chapter 8

$I->seeCurrentUrlEquals ('/index-test.php') ;

$I->amGoingTo('try to logout') ;

$I->click('Logout (admin)');

if (method exists($I, 'wait')) {
$I->wait(3); // only for selenium

}

$I->seeCurrentUrlEquals ('/index-test.php') ;

Please note that we need to be very specific while using the URLSs, just as we were
with the functional tests.

Once this is done, we should find ourselves with the complete coverage of all
the suites.

In the next section, we'll see what else we can generate, and then we'll take it to the
next level with the aid of automation in the next chapter.

Improving our code with the aid of
additional tools

In addition to code coverage and test reports, we have a range of additional tools,
which we can use for improving the quality of our code.

The two tools that we're going to talk about are the check style and the cyclomatic
complexity through the C.R.A.P. index.

We are going to add more examples and tools to these in Chapter 9, Eliminating Stress
with the Help of Automation, as each command would require too much knowledge
from the developer's side, and it is something that can be automated and triggered
by the flick of a switch.

PHP Checkstyle (PHPCS)is a great tool, albeit it is rather complex at first . This will
help us in maintaining a style of code that is uniform for all developers. You might
care too much about this, and I've seen situations where decisions on which style to
use have resulted in a big fight. However, the benefits of this are quite evident, as it
forces the developers to control their style of coding. When used with the cyclomatic
complexity, it can standardize the code and avoid any situation involving intricate
and difficult code.

There are some already existing code standards available for your use and these
have been configured according to your needs. PHPCS only needs a reference for
the configuration file or the name of the standard to follow.

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Testing Information

We are going to install and use Yii 2 own code standards, which you can use as a
base for specifying the rules that are more suited to your needs.

You can install the Yii 2 code standards by using Composer, which will include the
actual binary that we need as a dependency:

// composer.json
"require-dev": {

"yiisoft/yii2-coding-standards": "*n

Once we have installed both of them, we can invoke them through the console by
using the following command:

$ vendor/bin/phpcs \--standard=vendor/yiisoft/yii2-coding-standards/Yii2/
ruleset.xml \ --extensions=php \--ignore=autoload.php \models controllers
modules

The last three arguments are the folders that we want PHPCS to scan.

If you want to improve your code, then you should make use of the C.R.A.P.
index, which is included in the coverage reports generated by Codeception. In the
following chapter, we'll see how the cyclomatic complexity index can be used for
basing the decisions for modifying your code.

The C.R.A.P. index has been designed for analyzing and predicting the amount of
effort, pain, and time required for maintaining an existing body of code.

It is mathematically defined as shown here:
C.R.A.P.(m) = comp(m)"2 * (1 - cov(m)/100)"3 + comp(m)

Where comp(m) is the cyclomatic complexity, and cov(im) is the test code coverage
provided by the automated tests. The cyclomatic complexity is calculated as 1 plus
the number of unique decisions in the method.

Alow C.R.AP. index indicates a relatively low change and maintenance risk,
because it's either not too complex or sufficiently covered by tests. To keep it
practical, if your method is a straight sequence of calls, then it is likely that it will
have a C.R.A.P. index that is close to 1. The more if, for, and while clauses it has,
the more complex it will be, and hence it will have a higher C.R.A.P. index.

This is where testing lets the potential problems emerge and points you in
the direction that you should be taking for keeping your code maintainable
and modular.

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Summary

In this chapter, we've discussed the basic steps needed for configuring and
generating the code coverage for the project. We've seen how to use the reports
generated for discovering potential problems with the code. We've also covered
some additional tools for improving our code quality.

In Chapter 9, Eliminating Stress with the Help of Automation, we'll complete this
journey. We will discuss the topic of additional tools, how to integrate them into
a continuous integration system, and then display the results for better access
and browsing.

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Eliminating Stress with the
Help of Automation

So far, we've covered almost every aspect of what testing in practice is. We've learned
what can be done with Codeception at all the levels of testing: unit, functional, and
acceptance. We've covered additional resources on how to improve and debug your
tests while looking at architectural choices and long-term considerations.

To keep it short, in this chapter, we're going to take the final step, which is
nowadays considered as the best practice: continuous integration.

We are going to understand what a continuous integration system is, and what the
choices that we have are. We'll also start working with Jenkins.

In this chapter, we will discuss everything that we need to install and configure.
We will run our builds and obtain the required level of automation for our project.
We'll cover the following topics:

* Automating the build process

* Creating the required build files

* Configuring the Jenkins build

* Going forward

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

Automating the build process

There are two aspects that you should always take into consideration when planning
and implementing your tests. Firstly, 100 percent code coverage won't help you in
removing the possibility of having or introducing a bug, which means that exploratory
manual testing will always be needed, and it will have to be factored in while writing
your initial draft of the master test plan. Secondly, until now, all the tests and reports
that we've generated for such a small project can be run manually by whoever changes
the code.

When the size of your code starts to grow and you start to support hundreds of
classes and multi-faceted frontend functionalities, when your code lives past the first
month and more than one developer will need to access it over and over again, all
the knowledge related to tests and how they work or what kind of information can
be extracted from them will become more and more difficult to maintain. The worst
part is that most likely nobody will use it without any struggle.

Here, you have two choices: accept the fate that your tests will be long forgotten
and nobody will know what's been covered and what needs to be covered, or start
automating all this by forcing some sort of automated code revision, which might
trigger reports and e-mails to warn about anything that can potentially go wrong,
or has already gone wrong.

Introducing continuous integration systems

Extreme Programming (XP) has introduced the concept of continuous integration
(CI). Nowadays, it's used in many companies as a part of their QA procedures,
regardless of the practice adopted.

Whether frequent integration is better than continuous integration is something
I'd prefer to leave out of this discussion. The main difference between the two is
based on the frequency at which the integration happens. On top of this, CI has
been conceived to be a part of TDD, and it is specifically aimed at running tests
before merging any features into the active branch. This is done to ensure that
the new functionality won't break the existing one.

Systems like Jenkins (formerly known as Hudson), Bamboo, CruiseControl, and
Travis, have been created so that the work of the different developers can be
integrated and tested before being shipped. This also ensures that certain quality
standards are reached so that we can avoid introducing incoherence in the code
base, and we can report the results to the developers.

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

These software systems perform a multitude of tasks. They're made in such a way
that they can support any programming language and testing framework.

Usually, they're built for providing a flexible way of defining your integration work
flow: code check out, preparation, build (which usually includes testing and other
quality assurance-related tasks), report publishing, artifact creation, and eventually
deployment. All of these steps can be controlled within the system and/or through
scripting of various types. For instance, you can use Ant or Maven in Travis,
Bamboo, or Jenkins. Apart from the basic functionality, several plugins are normally
available in these systems for extending the functionality of integrating additional
third-party applications, libraries, and services.

Before getting into the nitty-gritty details of configuring the continuous integration
system of our choice, we may want to first see what's available and how we
can choose.

Available systems

There are a number of CI systems, and many of them have been created specifically
for certain programming languages; therefore, they can perform only a restricted
set of operations.

The more complex the system is, the more time it takes to prepare it to behave as
we want it to, but you'll have the ability to perform as many functions as required,
and you will also have the ability to switch them on or off on a per-project basis.

The most well-known system is Jenkins. It is an open source system (http://
jenkins-ci.org). It was forked in 2011 from Hudson, after a dispute with
Oracle. It is a CI system written in Java, and it became popular as an alternative to
CruiseControl. It has always been regarded as the most polyfunctional CI system
available. This is also because its huge community provides hundreds of different
plugins for any kind of functionality.

The only problem I see with Jenkins, apart from configuring it, is hosting it,
although, installing and maintaining it has always been easy for me.

You might be unable to host the system yourself, so you may want to look for
something that provides a hosted solution. Bamboo is another choice that is said

to be particularly straightforward if you are migrating from Jenkins. It also provides
out-of-the-box integration with other Atlassian products, such as Jira, BitBucket,
HipChat, and so on.

As a matter of choice, we'll be looking into Jenkins, installing the required plugins,
and then creating the build by using the Apache Ant scripts.

[175]

www.it-ebooks.info

http://jenkins-ci.org
http://jenkins-ci.org
http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

Installing and configuring Jenkins

There isn't much to be said about the installation of Jenkins. As the installation
page shows, it's cross-compatible and it can be run on operating systems, such
as Windows, Linux, Unix, and Docker. For more information, check out
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins.

It's important to remember that its only requirement is Java, so you
o should have up-to-date versions of JDK and JRE.

Most distributions already package Jenkins and provide it with their official package
repositories, thereby solving most of the problems of dependencies.

The installation on *nix systems will create its own dedicated user genkins, which
will be used for doing all the operations that will be run through its interface. Never
run Jenkins as a superuser. This can cause security issues. The workspace where

the projects will be checked out is normally located at /var/1ib/jenkins/home/
workspace, which you can inspect manually if something goes wrong.

When started, Jenkins will be listening on port 8080 (not always, be sure to read the
post-installation instructions, if any, or check the opened ports using netstat -1ltn
on Linux), and it will be accessible from the web browser.

o If you want to expose your service to a wider audience, then you might
~ want to install a proxy in order to serve it from port 80, with whichever
Q hostname you want. We won't cover this aspect, but Jenkins provides
additional documentation on how to achieve this.

So, let's open http://<yourhostname>:8080 in our browser, and let's start
configuring the basics.

Understanding the Jenkins organization

Before doing this, you may need to understand how Jenkins is organized. If you are
already experienced with it, then you may want to skip over to the next section.

There are only two sections that you need to keep an eye out for:

* Thejobs list

* The management panel

The first one is where you will normally land, and it is what you will be working
on most of the time.

[176]

www.it-ebooks.info

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
http://www.it-ebooks.info/

Chapter 9

In the Jenkins terminology, a job is a specific set of rules and operations that

needs to be performed in a specific project. You can have different jobs for the same
project, which perform slightly or completely different operations, and these can
be triggered sequentially.

A build is the process of executing a job. We will cover this and see what we can
achieve with a single build by configuring the various aspects of the job. The build
can result in the creation of one or more artefacts, deploy the build result somewhere
or trigger some other job or process within Jenkins itself, or outside of it.

You need to fix Jenkins' security immediately after installing it, unless you will
be the only person accessing it and the server where it's installed will have

no external access, it's probably better to navigate to http://jenkins:8080/
configureSecurity/.

You can set up whichever authentication system you want, using PAM, LDAP, or its
internal user database. We will be using the latter, but remember that if you're willing
to do something a bit stronger or interconnected, there may be additional steps that
you may need to follow. Most of the interface forms have a few small info buttons
that you can use to display some information, as shown in the following screenshot:

Jenking Configure Global Security

) Configure Global Security
¥ Enabls security L7
TCP port for JNLP slave agents © Fixed * Random (Disabie [0
Disable remember me L1}
Access Control Security Realm

Delegate to senvet container (7]

& Jenkins' own user databaze 7]
¥ Abow users to sign up 2]

By default, Jenkins allows users to create accounts by themselves, via the "sign up®
ink on the top nght shouider of the page. But i you'd bee to prevent random ueers
from creating accounts, and instead tightly control how user accounts are created,
uncheck this box

Wihen this checkbox is unchecked, somecne with the administrator role would have to
create accounts.

By default, Jenkins does not use captcha verification if the user creates an account by
themself |f you'd ke to enable captcha verification, install a captcha support plgin,
¢.g. the Jenkins JCaptcha Plugin.

LDAP

Unix userigroup database &

Authorization

View of the Configure Global Security page with an open info box

The second aspect that requires a little thinking from your side is how Jenkins will
be accessing and checking your repository.

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

Any major online repository provider, such as GitHub and BitBucket will let
you create a so-called deployment key, which is used for a read-only access to
the repository.

For anything more complex, such as merging and pushing your branches, you
would need to set up its own user, as shown in the following screenshot:

EBitbucket Dashboard - Teams - Repositories - | Create

Settings
SEERAL Deployment keys
ail Repository details . Al
Use deployment keys to gain read-only access to this repositery. Learn more about using SSH keye.
D Access management
8 h management Add key
v Username aliases Key Added
Deployment keys
i o jenkins @ lifetree 2015-01-11 Edit &
ch ransfar repository
jenkins & mangotree 2 days ago Edit €
<@ Delete repository
INTEGRATIONS
i} HipChat integraticn

The deployment keys setup page in BitBucket, available from the settings of each repository

If you have more repositories that are hosted by different places, then you need to
set up as many credentials as needed for Jenkins. This can be accomplished by going
tohttp://jenkins:8080/credential-store/ (or Home | Credentials | Global
Credentials). As you can see, there's a lot behind the scenes, so feel free to explore
and read the documentation for understanding what's needed. Normally starting
with the setup of the global credentials may be enough, but there are cases where

a non-global configuration is needed.

In order to do so, we need to create the SSH key pairs for the user jenkins first.

peach ~ $ sudo -s

root peach # su jenkins -

jenkins peach $ cd -~

jenkins ~ $ pwd

/var/lib/jenkins

jenkins ~ $ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/var/lib/jenkins/.ssh/id rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Your identification has been saved in /var/lib/jenkins/.ssh/id rsa.
Your public key has been saved in /var/lib/jenkins/.ssh/id rsa.pub.
The key fingerprint is:
ff:be:bl:ee:c2:69:82:96:00:e4:9d:dd:67:cf:1le:d7 jenkins@mangotree
The key's randomart image is:

+---[RSA 2048]----+

O.

|
|
|
|+ . *.o00

|+ o .+0

|

|

|

|

| .0 o .0+8. E |
|

|+*. . o. |
|

|

Now that you have your SSH key, you need to grab the public key, which is stored
at /var/lib/jenkins/.ssh/id_rsa.pub, and then copy it to your repository as a
deployment key. You can copy it to the clipboard by using the following command:

root jenkins # xclip -sel clip < /var/lib/jenkins/.ssh/id rsa.pub

This has been done through the root user because the jenkins user won't have the
X display setup in its environment and this is likely to cause the error shown here:

No protocol specified

Error: Can't open display: :0

M If you are on a headless server, then you won't have many choices.
Q You can either scp on the file to your local machine or cat the file
and then paste it in the browser manually.

Now that you have your deployment key set up, you need to go back to Jenkins
and then navigate to the credentials store. Once there, set the username as jenkins
(which is the system's user name), and set the private key as From the Jenkins
master ~/.ssh.

The following sections will cover the installation of additional plugins and the
configuration of the job.

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

Installing the required plugins

Now that you have covered the basic configuration of Jenkins, you need to install
the required plugins so that everything works as expected.

This section is normally handled easily by Jenkins. There's a project that is specifically
for the PHP projects on Jenkins. You can find it at http://jenkins-php.org. Not
only does the project list the following plugins, but it also lists a meta plugin, which
is available on Jenkins, and it will download all the required plug-ins.

* Checkstyle: This is used for processing the PHP_CodeSniffer log files in
the Checkstyle format

* Clover PHP: This is used for processing the PHPUnit's Clover XML log file

* Crap4]: This is used for processing the PHPUnit's Crap4] XML log file

* DRY: This is used for processing the phpcpd log files in the
PMD-CPD format

* HTML Publisher: This is used for publishing the documentation generated
by phpDox

* JDepend: This is used for processing the PHP_Depend log files in the
JDepend format

* Plot: This is used for processing the phploc CSV output

* PMD: This is used for processing the PHPMD log files in the PMD format

* Violations: This is used for processing the various log files

* xUnit: This is used for processing the PHPUnit's JUnit XML log file

The preceding list is taken from http://jenkins-php.org/installation.html,
and it might change in the future, so keep that in mind.

If you navigate to Manage Jenkins | Manage Plugins, then you can search for the
plugin php and select Install without restart. When you are on the installation page,
select the Restart Jenkins when installation is complete and no jobs are running
option (sometimes the installation page does not refresh itself automatically, so you
might have to refresh the page; a list of plugins will get installed even if you navigate
away from this page).

Now, you need to install the tools needed by these plugins, so open the composer.
json file and then add the following to your require-dev section:

// composer.json
"phploc/phploc": "@stable",

[180]

www.it-ebooks.info

http://jenkins-php.org
http://jenkins-php.org/installation.html
http://www.it-ebooks.info/

Chapter 9

"pdepend/pdepend": "@stable",
"phpmd/phpmd" : "estable",
"sebastian/phpcpd": "edev",
"yiisoft/yii2-coding-standards": "*",
"theseer/phpdox": "estable"

Now, run the composer update to install these effectively.

Creating the required build files

A part of the configuration of the build will be stored in Jenkins, but it's mostly for
publishing the reports and the documentation (if you need it). We saw the actual
configuration on how to run the various scripts in Chapter 8, Analyzing Testing
Information. This is in the build.xm1 file. This default name can be picked up by
Jenkins automatically. This can be configured, but it's pointless to do so unless
you already have a file with that name.

The build file should sit at the root of the project repository, and it should have a
valid XML.

The language we are going to use to write the build file is Apache Ant. There are
either more complex solutions, such as Maven, or more ad-hoc solutions such as
Phing for this, but I still prefer Ant. This is because it's simple and flexible (it's
verbose, but once you've written it, there isn't much to be said). It also allows
you to run anything that is not specific for a particular language.

We're going to create the build file by copying the basic structure from the
jenkins-php project (available at http://jenkins-php.org/automation.

html), and then by amending it with the corrections that I'll explain in the next few
paragraphs. I'll be splitting the functionality of Composer, Yii, and Codeception in
separate files, while the main functionality (from jenkins-php) will remain as it is.

Understanding the basic Ant structure

Ant is quite simple because it's a collection of directives. The root of the XML is a
<projects> tag, which contains a series of <target> tags that can be called from the
Jenkins job, and you can choose the <property> option for defining the properties,
and then choose the <include> statements for including separate files.

There is no default name for the targets, but the main target is usually called build.
It comes with a series of dependencies, which trigger the other targets sequentially.

[181]

www.it-ebooks.info

http://jenkins-php.org/automation.html
http://jenkins-php.org/automation.html
http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

Each directive has a series of additional attributes and tags, and these can be nested
in them. The user contributed directives can also be downloaded separately for
these (and most of the Linux distributions provide the common ones in a separate
package). This can help you in avoiding the effort that is put in when you have to
create these by hand. For instance, you can use this for archiving and packaging a
collection of files, which are normally wrappers for the actual command-line tools.

Remember that Ant is not an imperative programming language, so
» check its documentation if you want to extend and modify the language.
The documentation for the core Ant directives is available online
athttp://ant.apache.org/manual/, and it's probably a good
starting point for understanding it.

Adjusting the build.xml file

Compared to the file you have copied from jenkins-php, we are going to keep most
of the targets, albeit the phpunit target, which can be safely deleted. This is because
we're going to switch to a custom target specifically for Codeception. The rest of the
changes will be made in separate files, and they will be discussed after this.

The most important changes that need to be made are relative to the folders
you want these programs to work on. Every single command accepts different
arguments, so include all the directories you want. Let's start amending the first
target, which will do a syntax check of all the files that we specify:

<target name="lint" description="Perform syntax check of
sourcecode files">
<apply executable="php" failonerror="true">
<arg value="-1" />

<fileset dir="${basedir}/models">
<include name="**/* php" />
<modified />

</fileset>

<fileset dir="${basedir}/modules">
<include name="**/* php" />
<modified />

</fileset>

<fileset dir="${basedir}/controllers">
<include name="**/* php" />
<modified />

</fileset>

<fileset dir="${basedir}/tests">

[182]

www.it-ebooks.info

http://ant.apache.org/manual/
http://www.it-ebooks.info/

Chapter 9

<include name="**/* php" />
<modified />
</fileset>
</apply>
</target>

Next, we can add our code directories to be picked up by phploc, which will give us
an idea of the complexity of our project:

<target name="phploc-ci"
depends="prepare"
description="Measure project size using PHPLOC and log
result in CSV and XML format. Intended for usage within
a continuous integration environment.'">

<exec executable="${toolsdir}phploc"s>

<arg value="--count-tests" />

<arg value="--log-csv" />

<arg path="${basedir}/build/logs/phploc.csv" />
<arg value="--log-xml" />

<arg path="${basedir}/build/logs/phploc.xml" />
<arg path="${basedir}/models" />
<arg path="${basedir}/controllers" />
<arg path="${basedir}/modules" />
<arg path="${basedir}/tests" />
</exec>
</target>

pdepend uses a different syntax in defining new directories; as you can see, if you
need to make changes, you will need to invoke the commands' help manually:

<target name="pdepend"

depends="prepare"

description="Calculate software metrics using PHP Depend
and log result in XML format. Intended for usage within
a continuous integration environment.'">

<exec executable="${toolsdir}pdepend">

<arg value="--jdepend-xml=${basedir}/build/
logs/jdepend.xml" />

<arg value="--jdepend-chart=${basedir}/build/
pdepend/dependencies.svg" />

<arg value="--overview-pyramid=${basedir}/build/
pdepend/overview-pyramid.svg" />

<arg path="${basedir}/models, ${basedir}/controllers,
${basedir}/modules, ${basedir}/tests" />

</exec>
</target>

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

Next in line is PHP Mess Detection (PHPMD), which will help us keep the code clean
and tidy. Once again, the syntax is slightly different than the previous ones:

<target name="phpmd-ci"

depends="prepare"

description="Perform project mess detection using PHPMD
and log result in XML format. Intended for usage within
a continuous integration environment.'">

<exec executable="${toolsdir }phpmd">

<arg path="${basedir}/models, ${basedir}/
controllers, ${basedir}/modules" />

<arg value="xml" />

<arg path="${basedir}/build/phpmd.xml" />

<arg value="--reportfile" />
<arg path="${basedir}/build/logs/pmd.xml" />
</exec>
</target>

PHP Code Sniffer (PHPCS) can be also taken as an additional and more important
step for linting your code. As explained, we also need to specify the specific Yii
coding standard:

<target name="phpcs-ci"
depends="prepare"
description="Find coding standard violations using
PHP CodeSniffer and log result in XML format. Intended
for usage within a continuous integration environment.">

<exec executable="${toolsdir}phpcs" output="/dev/null"s

<arg value="--report=checkstyle" />

<arg value="--report-file=${basedir}/build/
logs/checkstyle.xml" />

<arg value="--standard=${basedir}/vendor/yiisoft/yii2-
coding-standards/Yii2/ruleset.xml" />

<arg value="--extensions=php" />

<arg value="--ignore=autoload.php" />

<arg path="${basedir}/models" />
<arg path="${basedir}/controllers" />
<arg path="${basedir}/modules" />
<arg path="${basedir}/tests" />
</exec>
</target>

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The last one is PHP Copy-Paste Detector (PHPCPD), which does exactly what it says
on the label:

<target name="phpcpd-ci"
depends="prepare"
description="Find duplicate code using PHPCPD and log
result in XML format. Intended for usage within a
continuous integration environment.">
<exec executable="${toolsdir }phpcpd">
<arg value="--log-pmd" />
<arg path="${basedir}/build/logs/pmd-cpd.xml" />
<arg path="${basedir}/models" />
<arg path="${basedir}/controllers" />
<arg path="${basedir}/modules" />
</exec>
</target>

As you have probably noticed, some of the targets that I've pasted here are the -ci
targets. These targets are required by Jenkins in order to generate all the necessary
reports. We will pick these up and publish them in our build later. Remember to
mirror the changes on the other targets as well; I have excluded them here to
avoid redundancy.

In addition to these changes, it's worth noticing that I've selected the Yii 2 CheckStyle
rule set for validating the syntax. This step is quite useful for maintaining the overall
code style and for keeping it in sync with the one used by the developers of the
framework, and cross-team.

Now that we've made the basic changes, let's go to the Composer, Yii, and the
Codeception files.

Preparing the environment for the build

The build command, which is the default invoked target, has a chain of
dependencies that will sequentially trigger the prepare target, run some other
targets for the build, run the tests, and then generate the required documentation
with phpDox.

The prepare target depends on the clean target. These two steps will clean up

the environment, generate the required folder structure to accommodate the results
that will be produced by the following steps, and set some properties to avoid
invoking the target twice.

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

For instance, the prepare target has the following property set at the end:

<property name="prepare.done" value="true"/>

While the target definition is:

<target name="prepare"
unless="prepare.done"
depends="clean, composer.composer, yii.migrate-all™"
description="Prepare for build">

It has now become clear that unless the property is set, we can execute the content
of the target. The same thing happens with the clean target.

In these two targets, we need to update the list of directories that are cleaned
and recreated every time the job is run. You should, at least, have the following
directories, and you can also include any other directories that are relevant to
your project for clean.

<target name="clean"
unless="clean.done"
description="Cleanup build artifacts">
<delete dir="${basedir}/runtime/*"/>
<delete dir="${basedir}/web/assets/*"/>
<delete dir="${basedir}/vendor"/>
<delete dir="${basedir}/build/api"/>
<delete dir="${basedir}/build/logs"/>
<delete dir="${basedir}/build/pdepend"/>
<delete dir="${basedir}/build/phpdox"/>
<delete dir="${basedir}/tests/codeception/ output"/>
<property name="clean.done" value="true"/>
</target>

And for prepare, the following directories will be recreated:

<target name="prepare"
unless="prepare.done"
depends="clean, composer.composer, yii.migrate-all™"
description="Prepare for build"s>
<mkdir dir="${basedir}/build/api"/>
<mkdir dir="${basedir}/build/logs"/>
<mkdir dir="${basedir}/build/pdepend"/>
<mkdir dir="${basedir}/build/phpdox"/>
<mkdir dir="${basedir}/tests/codeception/ output"/>
<property name="prepare.done" value="true"/>
</target>

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Adding the required configuration settings

Before we start adding our custom files, we need to add some of the configuration
tiles, which some of the executables, namely phpmd and PHPDox, will expect to
be in the /build directory.

The jenkins-php project will provide most of these configuration files, and these
can be copied from http://jenkins-php.org/configuration.html.

In case of phpmd, you can adjust the level of the cyclomatic complexity threshold.

<!-- build/phpmd.xml -->
<rule ref="rulesets/codesize.xml/CyclomaticComplexity">
<prioritys>l</prioritys>
<propertiess
<property name="reportLevel" value="7" />
</properties>
</rule>

The default value is normally 10, but the suggested value is 5.

For PHPDox, the story is a little complex. The current configuration is not
particularly flexible, so I've decided to go through the longest possible route,
which is, generating the skeleton file with the help of the following command:

$ vendor/bin/phpdox --skel > build/phpdox.xml

This created a file that has all the documented options, and from there, I created
my own configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<!-- build/phpdox.xml -->
<phpdox xmlns="http://xml.phpdox.net/config" silent="false">

<project name="Yii2" source="${basedir}/.." workdir=
"${basedir}/phpdox">

<collector publiconly="false">

<include mask="${phpDox.project.source}/models/*.php"
/>

<include mask="${phpDox.project.source}/modules/*.php"
/>

<include mask="${phpDox.project.source}/
controllers/*.php" />

<include mask="${phpDox.project.source}/vendor/
yiisoft/yii2/*.php" />

[187]

www.it-ebooks.info

http://jenkins-php.org/configuration.html
http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

</collectors>

<generator output="${basedir}/api">
<build engine="html" enabled="true">
<file extension="html" />
</build>
</generator>

</project>
</phpdox>

Regardless of my efforts, the current version that I'm using (0.7) had a bug that
caused it to crash when run from Jenkins. This has been fixed in the current
dev-master version, but this has caused other problems for me. I'm pretty sure
that you should be fine when the next version will be released. In our case, the
documentation is less critical from the perspective of the non-working tests.

Adding Composer, Yii, and Codeception
support in Ant

Now we need to integrate the changes that are needed to prepare our application
for testing. We will be using Composer to install the required dependencies and Yii
to run the needed migrations. After this we will need support for Codeception, as
it's the main tool for running the tests.

As we've seen in the definition of prepare, the target is dependent on clean,
composer . composer and yii.migrate-all.

The first target is taken from https://github.com/shrikeh/ant -phptools, which
provides a wrapper for Composer. It's not the best, but it was the only one that showed
up on a quick search. The package does what it does quite well, and it's dependent on
a properties file called composer.properties, and an example of it is provided by the
project author.

There are some built-in properties that are accessible in an Ant
M script, which can be useful for understanding, for instance, the
Q current directory and building up the appropriate paths in a more
distributable fashion. This is available at http://ant .apache.
org/manual /properties.html.

[188]

www.it-ebooks.info

https://github.com/shrikeh/ant-phptools
http://www.it-ebooks.info/

Chapter 9

Calling the composer . composer target will install Composer, if not found in the
specified directory, and use it to update all the dependencies. I would prefer if
it wiped the installation directory of the dependencies and then ran composer
install. Unfortunately, that's the only way to install the dependencies defined
in the composer. lock, instead of updating them.

M If you have any doubts about the differences between composer . lock
Q and composer. json, feel free to step back for a second, and skim
through Chapter 2, Tooling up for Testing.

I've put the composer.xml and the composer.properties file in the /build
directory, and I've added the following at the beginning of the project defined in
build.xml.

<include file="${basedir}/build/composer.xml" as="composer"/>

Now, we can add the dependency of composer . composer to the list of the targets
defined in the prepare target without any problems.

The second step is resetting the database to a state that we can use, and we will do it
by re-running all of the migrations and applying all of the missing ones.

For this, I've created a simple Ant project. You can place it in your /build directory,
which you can download from https://github.com/ThePeach/Yii2-Ant. The
project provides a wrapper for the Yii CLI interface for running the migrations.

I won't go into the details of this project, as it's simple and it can be understood
quite easily.

We can include it like we did in the Composer project earlier, as follows:

<!-- build.xml -->
<include file="${basedir}/build/yii.xml" as="yii"/>

You can invoke it either by calling the ready-made target migrate-all, as we did
for the dependencies of prepare in our build.xml, or by calling the migrate
MacroDef the way you want:

<migrate exec="${yii.script}" action="down"/>

.script}" action="up"/>
.tests.script}" action="down"/>

<migrate exec="${y

{
<migrate exec="${y
{
<migrate exec="${y

ii
ii
ii
ii

.tests.script}" action="up"/>

[189]

www.it-ebooks.info

https://github.com/ThePeach/Yii2-Ant
http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

_Ant has to extend its basic syntax, which defines new tasks like
MacroDef. You can read more about this in the official Apache Ant
o documentation, which can be found at https://ant .apache.

org/manual /Tasks/macrodef .html.

The migrate action will always pass all as an argument to the yii script, and this
is enough for what we need to achieve, but this could be improved.

Codeception is added in a similar way. You can grab a copy from the repository
I've created at https://github.com/ThePeach/CodeCeption-Ant.

This Ant project provides a main target called run-tests, which you can
execute without worrying too much about the parameters and such. You can
also dynamically pass some parameters at run time to fine-tune the invocation of
Codeception, such as codeception.suites and codeception.options.

$ ant -Dcodeception.suites=unit -Dcodeception.options=--coverage-html
build

If not set, these will be assigned an empty value and --xml --coverage-xml
--coverage-html respectively.

Configuring the Jenkins build

The easiest way to configure the build is by starting with the jenkins-php project
template. You can always import it separately and integrate it with your own
project later.

The Integration page available at the jenkins-php website (http://jenkins-php.
org/integration.html) will explain how to import the project. Remember to
adjust the parameters to your own configuration.

Now go to the dashboard, click on the new project jenkins-php, and then select
Configure from the menu.

If you've never used Jenkins, then you might get a little scared by the length of the
configuration page. However, there are only three sections that you need to keep in
mind, and we'll cover them now.

[190]

www.it-ebooks.info

https://ant.apache.org/manual/Tasks/macrodef.html
https://ant.apache.org/manual/Tasks/macrodef.html
https://github.com/ThePeach/CodeCeption-Ant
http://jenkins-php.org/integration.html
http://jenkins-php.org/integration.html
http://www.it-ebooks.info/

Chapter 9

Generic build settings

Generic build settings contains settings for the enable/disable switch for the
build, how many builds to keep, when to discard the build and the repository
configuration, and so on.

If you're using Git, then you will have the ability to configure almost anything,
such as being able to merge branches, committing and pushing back integrated
changes, and so on.

We will just need to specify the branch as * /master and the deployment key as
we what saved before, from our repository provider.

Build settings

The build settings are the only thing that you need to care about when deciding
what to run; here you specify the target names and any additional options.

In our case, this is build, and by clicking Advanced, we can fill in the Properties
field with codeception.suites=unit. This will allow us to run a test build without
having to wait for long.

Postbuild settings

This is the longest section of the configuration. All the steps that will be performed
for publishing the reports in the dashboard of the build, such as linking the
documentation that you need to the various pieces, choosing what the thresholds
required to decide are, and deciding when to mark the job failed, and so on are
defined here.

The default threshold values defined here are quite high, so there isn't much that
you should be worried about.

The only changes that we will need to make are regarding the reports generated
by Codeception, which will provide the JUnit XML reports, the Clover XML reports,
and the coverage in the HTML format.

Toward the end of the configuration page, you will find a section titled Publish
Clover PHP Coverage Report, here update the Clover XML report path to tests/
codeception/ output/coverage.xml, and the Publish HTML Report to tests/
codeception/_output/coverage/.If you click on Advanced panel, then you
will be able to modify the thresholds, and you can use them to decide how much
coverage you require from your tests.

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

Just after this step, you will see Publish xUnit test results report, here change
PHPUnit-3.x Patternto tests/codeception/ output/report.xml. As you
have done before, in the next step, you can configure the thresholds for the failed
tests. By default, there shouldn't be any failed tests. So, all the fields will be set to 0.
Do not change this setting, unless you want to live in shame.

Executing the job

Let's test everything and check if it is working as expected. Save the configuration,
and click on Build Now to execute the job.

Once finished, you can head back to the page of the build, and then you will see
the following graphs:

Project Yii 2 Basic App

as1abilily

00 01 02 03 04 05 0F OF OF 09 10
®low @ Average @ High Genwrated Ly Phepend Ahstraction Gevevated by Plapend

Checkstyle Trend

o, oo
g
P APl Dotumentation ®
ELL
)
i
= [ecent Changss = El] E
= z S)
Enlaras Corfigurs
PMD Trend
Jest Test Basyll (no failures) 23
PR .
g .
Permalinks
= Last build #14) 1 br 16 min a0 &
» Last stab ¢ 1€ min_ago 2 2 2 2
» Lasl success #14) 1 hr 16 muin agg ¥ * > = . %
5 ilad by \ b & min aga] Enlargs Corfigure
o Laslunsuscussiul buld (013], 1 he 43 min age Duplicate Code Trend

The project dashboard at a glance

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Most of the graphs that appear on the right-hand side of the column are a quick
way of understanding what triggered a failed build.

The two graphs, which are generated by PDepend, displayed at the very top show
the so-called Overview Pyramid and the Abstraction Instability Chart. Both of
them show interesting stats about your project, which you can depend on for
taking some decisions in terms of performance, scalability, and maintainability.

PDepend documentation provides further information about both of
these graphs, and I highly recommend reading the following sources:

N * The Overview Pyramid at http: //pdepend.org/
=~ documentation/handbook/reports/overview-
pyramid.html

* The Abstraction Instability Chart at http://pdepend. org/
documentation/handbook/reports/abstraction-
instability-chart.html

At this point, you should have all the tools required for stepping forward and
implementing, improving and excelling at testing and at automating your projects.

Going forward

If you've managed to get to this point, then you might need to make some
additional considerations.

As we've seen, automation incorporates a lot of reporting tools, suites for testing,
and other projects to help you understand, improve, and analyze your project.

One of the biggest gripes of automation is the speed at which it performs all the tests.

There are techniques to halve the time it takes to perform these tests. While Jenkins
and jenkins-php provide targets for running the targets in parallel, by executing
build-parallel. With Codeception, the story is a bit different and you would
need to take a different route by extending the Ant project we've created before.
Codeception uses robo-paracept to parallelize the tests.

If you want to discover more about Codeception, then there's a nice article available
athttp://codeception.com/docs/12-ParallelExecution. You'll notice that it
will work by marking groups of tests together and aggregating them so that Paracept
will be able to run in parallel.

[193]

www.it-ebooks.info

http://pdepend.org/documentation/handbook/reports/overview-pyramid.html
http://pdepend.org/documentation/handbook/reports/overview-pyramid.html
http://pdepend.org/documentation/handbook/reports/overview-pyramid.html
http://pdepend.org/documentation/handbook/reports/abstraction-instability-chart.html
http://pdepend.org/documentation/handbook/reports/abstraction-instability-chart.html
http://pdepend.org/documentation/handbook/reports/abstraction-instability-chart.html
http://codeception.com/docs/12-ParallelExecution
http://www.it-ebooks.info/

Eliminating Stress with the Help of Automation

Summary

You've seen most of what you need to know about automation. The topic is quite
vast, and we've covered Jenkins, how it works, and how it is configured. We've
learned to make use of Ant to decide what to do, and how to drive your build.
We've also looked at what is being generated by the build and displayed it in the
Jenkins dashboard.

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

--coverage option 158
--report option 158

A

Abstraction Instability Chart
URL 193
AcceptanceTester
about 49
implementing 49-51
online documentation 51
acceptance tests
about 35, 39
creating 141, 142
finalizing 150-152
JavaScript interaction, adding 144-147
modal window, implementing 142, 143
multiple browsers, testing 152, 153
Selenium limits 154
server side, making work 144
Yii 2 assets bundles, dealing with 148-150
actions, ActiveController 125
ActiveRecord class
Gii code generation tool 83-87
implementing 80
migrations, dealing with 80-83
Ant directives
URL 182
Attributes-Components-Capabilities (ACC)
about 69
URL 43
authenticators
CompositeAuth 128
HttpBasicAuth 128

Index

HttpBearerAuth 128
QueryParamAuth 128

B

BDD specification testing
using 103, 104
Behavior Driven Development (BDD) 1
black box testing 9
Bootstrap documentation
URL 142
build 177
build files
basic Ant structure 181
build.xml file, adjusting 182-185
Codeception support, adding in
Ant 188-190
Composer support, adding in Ant 188-190
configuration settings, adding 187, 188
creating 181
environment, preparing 185
Yii support, adding in Ant 188-190
build process, automating
about 174
CI systems 175
continuous integration systems 174, 175
Jenkins, configuring 176
Jenkins, installing 176

Cc

calls
listening, with observer 96, 97
Checkstyle plugin 180
CLI command line 29
Clover PHP plugin 180

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

code

improving, with additional tools 169, 170
codecept build command 48
Codeception

about 46

basic concepts 47

code generation arguments 62

configuring 58-60

features 54-56

installing, in Yii 2 56, 57

interacting with 61, 62

migrations, on test database 62

modular framework 47

tests, creating 62

types of tests 48

URL 45

working tests 60, 61
code coverage criteria

branch coverage 156

Change Risk Anti-Patterns (C.R.A.P.)

Index 156

class and trait coverage 156

function and method coverage 156

line coverage 156

opcode coverage 156

path coverage 156
components

isolating, with stubs 93-96
component testing, of model

data providers, using 75-77

fixtures, using for preparing database 77-79

methods inherited by IdentityInterface,

testing 73-75

performing 70, 71

remaining tests, adding 80

testing, for PHPUnit 72,73
Composer

about 20

advanced web app 28

basic web app 28

CLI command line 29, 30

composer.json file 22-24

composer.lock file 22-24

Exact version 25

installing 20, 21

packages 24-27

Packagist 24-27

Range 25

URL 20

using 21

web app, creating 27-29

Wildcard 25
concepts, Codeception

easy to debug 47

easy to read 47

easy to write 47
continuous integration (CI) 174
Crap4] plugin 180

D

data providers
about 65
using 75,76
default web application
documentation 33
sample code 33
structuring 32, 33
Defect Cost Increase (DCI) 6
deployment key 178
Design by Contract (DbC) specification
about 10
URL 10
development environment 18
Domain-driven Design (DDD) 10
double-checking 6
DRY plugin 180

E

enormous tests 40
external dependencies
dealing with 91-93

F

FunctionalTester 51, 52
functional tests, in Yii 2
about 107
CEPTs 108
CEPTs, improving 108-111
fixtures, implementing 113-116
pitfalls 116
reusable page interactions, writing 112, 113

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

functional tests,, REST interfaces
about 116-118
API endpoints, defining 118
implementing, for API 119, 120
fuzzy locator 139

G

Galen
URL 154
Gii 83
Gii code generation tool 83-87
global fixtures
used, for passing tests 88-90
Google Test Analytics software
URL 11

H

headless 52
homebrew-php project
URL 21
HTML Publisher plugin 180
HTTP Basic Auth 127

integration tests 35, 38

J

JDepend plugin 180

Jenkins
configuring 176
installing 176
organization 176-179
plugins, installing 180
URL 175

Jenkins build
build settings 191
configuring 190
generic build settings 191
job, executing 192, 193
postbuild settings 191

jenkins-php project
URL 181

job 177

L

large tests 40

Late Static Binding 86

Linux Apache MariaDB PHP (LAMP) 19
local coverage report 158

MacroDef
URL 190
maintainable unit tests
BDD specification testing, using 103, 104
writing 102
master test plan 42
medium tests 38
migrations
about 63
URL 63
mocking 97

(0

OAuth
URL 127
OAuth 2 127
Overview Pyramid
URL 193

P

Packagist
URL 25
PageObject 55
PHP Checkstyle (PHPCS) 169
PHP_Codesniffer
URL 33
PHP-FIG
URL 33
PHP manual
URL 86
PHPUnit
about 46
URL, for documentation 95
Plot plugin 180
PMD plugin 180

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

project management
approaches, testing 6-9
involving 4,5
tasks, estimating 5, 6
tests, generating 11
tests, planning 11

Q

query parameter 127

R

RESTful web service, creating with Yii 2
about 121
access check and security layer,
adding 126, 127
authentication layer, building 128, 129
controller, converting to REST
controller 124-126
existing actions, modifying 130
modular code, writing in Yii 121
module, creating with Gii 122-124
modules, creating in Yii 2 124
new endpoint, adding with
parameters 131-133
roll back 82

S

scope 4
Selenium 135
Selenium WebDriver
about 136
installing 137
running 137
WebDriver-led tests, implementing 138-141
Yii, configuring 137, 138
small tests 37
Specify 91,103
StepObject 55
strict locator 139
stubbing 93

T

technical debt 4
test doubles 93

Test Driven Development (TDD) 1
testers, Codeception
AcceptanceTester 48, 49
FunctionalTester 48, 51
UnitTester 48, 53
testing
about 2, 35
acceptance tests 35, 39
code coverage 41
importance 2, 3
integration tests 35
integration tests coverage 38
master test plan 42
partial view, of application 36, 37
scope 42
top-down approach, versus bottom-up
approach 40
unit testing coverage 37, 38
unit tests 35
testing mindset
obtaining 12,13
practical examples 13-15
test quality, improving
about 155
acceptance tests' coverage report,
generating 166-168
code coverage criteria 156
code coverage, enabling in
Codeception 157, 158
code coverage information, extracting
for unit tests 158-160
functional tests, aggregating to unit
tests 164-166
unit tests coverage report,
generating 160-164
tests
characteristics 12
passing 87, 88
passing, global fixtures used 88-90
tests, Codeception
acceptance tests 48
functional tests 48
types 48
unit tests 48
tests, in Yii 2 60, 61
Tilde operator 25

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Twig
URL 22

U

ubiquitous language 10
unit test
about 35
code testing 69
implementing 67
UnitTester 53
User model
using 66, 67

Vv

Vagrant

about 19

URL 19
Verify

about 91, 104

URL 105
Violations plugin 180

w

WebDiriver-led tests
implementing 138-141

Wildcard 25

working strategy
defining 33

X

XPath 2.0

about 111

URL 111
xUnit plugin 180

Y

Yii 2
about 1
Codeception, installing 56
development environment 18
downloading 17
environment 18
features 33, 34
installing 18
URL 18
work flow 19
working with 30, 31

Yii configuration, for Selenium
about 137,138
browser (required) 138
host 138
restart 138
url (required) 138
window_size 138

Yii virtual attributes 98-102

user authentication REST interface 35

user login, from modal window 35

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning Yii Testing

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career, or
simply get some additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Yii Project Blueprints
ISBN: 978-1-78328-773-4 Paperback: 320 pages

From conception to production, learn how to develop
real-world applications with the Yii framework

1. Develop real-world web applications through
easy-to-follow, step-by-step processes.

2. Create eight projects from beginning to end
to help you explore the full power of Yii.

Yii Project Blueprints

3. Build a fast, user-based, database-driven
content management system with a
dashboard and RESTful API.

Beginning Yii [Video]
ISBN: 978-1-78216-448-7 Duration: 02:44 hours

Fast track your web application development by
harnessing the power of the Yii PHP framework

1. Develop sophisticated Web 2.0 apps using
PHP and Yii.

2. Ideal for PHP developers new to Yii and
framework-based development.

3. Build powerful, reliable, and scalable
apps fast.

4. Clear and concise video tutorials from
an experienced Yii developer.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Yii Application Development

Cookbook

Second Edition
ISBN: 978-1-78216-310-7 Paperback: 408 pages

A Cookbook covering both practical Yii application
development tips and the most important Yii features

1. Learn how to use Yii even more efficiently.

Yii Application Development Cookbook)

Editian

Full of practically useful solutions and
concepts you can use in your application.

3. Both important Yii concept descriptions
and practical recipes are inside.

Web Application Development

with Yii and PHP
ISBN: 978-1-84951-872-7 Paperback: 332 pages

Learn the Yii application development framework
by taking a step-by-step approach to building a Web-
based project task tracking system from conception
through production deployment

Web Application Development 1. A step-by-step guide to creating a modern
with Yii and PHP Web application using PHP, MySQL, and Yii.

Second Edition

2. Build a real-world, user-based, database-driven
project task management application using the
Yii development framework.

3. Start with a general idea, and finish
with deploying to production, learning
everything about Yii in between, from
"A'ctive record to "Z"ii component library.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Testing Mindset
	Understanding the importance of testing
	Involving project management
	Estimating tasks
	Testing approaches
	Introducing Test Driven Development

	Planning tests
	Generating tests

	Obtaining the testing mindset
	Starting with no testing culture – a practical approach

	Summary

	Chapter 2: Tooling up for Testing
	Downloading and installing Yii 2
	Environment and work flow
	Introducing Composer
	Installing and using it
	The composer.json and composer.lock files
	Packages and Packagist

	Creating your first web app
	The CLI command line

	Finding your way around Yii 2
	Structure of the default web application
	Documentation and sample code

	Defining our working strategy
	Key features to be implemented
	User authentication REST interface
	User login from modal window

	Introducing testing for our purposes
	Using a top-down approach versus a
bottom-up approach
	What to test and what not to test
	The master test plan

	Summary

	Chapter 3: Entering Codeception
	Getting started with Codeception
	A modular framework rather than just
another tool
	Outlining concepts behind Codeception
	Types of test
	AcceptanceTester
	FunctionalTester
	UnitTester

	Other features provided by Codeception

	Installing Codeception in Yii 2
	Finding your way around Codeception
	Configuring Codeception
	Tests available in Yii 2

	Interacting with Codeception
	Creating tests
	Migrations on the test database

	Summary

	Chapter 4: Isolated Component Testing with PHPUnit
	Understanding the work to be done
	Using the User model
	Implementing the first unit test
	How much to care for other people's code

	Component testing of the model
	What's testing for PHPUnit
	Testing the methods inherited by IdentityInterface
	Using data providers for more flexibility
	Using fixtures to prepare the database
	Adding the remaining tests

	Implementing the ActiveRecord class and its methods
	Dealing with migrations
	The Gii code generation tool

	Seeing tests pass
	Using global fixtures

	Summary

	Chapter 5: Summoning the Test Doubles
	Dealing with external dependencies
	Isolating components with stubs
	Listening for calls with an observer
	Introducing mocking
	Getting to know Yii virtual attributes

	Writing maintainable unit tests
	Using BDD specification testing

	Summary

	Chapter 6: Testing the API – PHPBrowser to the Rescue
	Functional tests in Yii 2
	Understanding and improving the available CEPTs
	Writing reusable page interactions
	Implementing fixtures
	Pitfalls of functional tests

	Functional tests for REST interfaces
	Defining the API endpoints
	Implementing the tests for the API

	Creating a RESTful web service with Yii 2
	Writing modular code in Yii
	Creating a module with Gii
	Using modules in Yii 2
	Converting our controller to be a REST controller
	Adding the access check and security layer
	Building the authentication layer

	Modifying the existing actions
	Adding a new endpoint with parameters

	Summary

	Chapter 7: Having Fun Doing Browser Testing
	Introducing Selenium WebDriver
	Installing and running Selenium Server
	Configuring Yii to work with Selenium

	Implementing WebDriver-led tests

	Creating acceptance tests
	Implementing the modal window
	Making the server side work
	Adding the JavaScript interaction
	Tying everything together
	Dealing with Yii 2 assets bundles

	Finalizing the tests
	Testing multiple browsers
	Understanding Selenium limits

	Summary

	Chapter 8: Analyzing Testing Information
	Improving the quality of your tests
	Enabling code coverage in Codeception
	Extracting the code coverage information for unit tests
	Generating a detailed coverage report of the unit tests
	Aggregating functional tests to unit tests
	Generating acceptance tests' coverage report

	Improving our code with the aid of additional tools
	Summary

	Chapter 9: Eliminating Stress with the Help of Automation
	Automating the build process
	Introducing the continuous integration systems
	Available systems
	Installing and configuring Jenkins
	Understanding Jenkins organization
	Installing the required plugins

	Creating the required build files
	Understanding the basic Ant structure
	Adjusting the build.xml file
	Preparing the environment for the build
	Adding the required configuration settings
	Adding Composer, Yii, and Codeception support in Ant

	Configuring the Jenkins build
	Generic build settings
	Build settings
	Post-build settings
	Executing the job

	Going forward
	Summary

	Index

