Yii Project Blueprints

From conception to production, learn how to develop real-world
applications with the Yii framework

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Yii Project Blueprints

From conception to production, learn how to develop
real-world applications with the Yii framework

Charles R. Portwood Il

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Yii Project Blueprints

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014
Production Reference: 1190914

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-773-4

www . packtpub.com

Cover Image by Pratyush Mohanta (tysoncinematography@gmail . com)

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Charles R. Portwood Il

Reviewers
Amirsaman Memaripour

Atsushi Sakurai

Jonathan Weatherhead

Commissioning Editor
Antony Lowe

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Dayan Hyames

Technical Editor
Venu Manthena

Copy Editors
Sarang Chari

Insiya Morbiwala
Alfida Paiva

Stuti Srivastava

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Maria Gould
Ameesha Green
Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar

Graphics
Ronak Dhruv

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Charles R. Portwood II has over 10 years of experience in developing modern
web applications and is well versed in integrating PHP with native mobile
applications. An avid proponent for the Yii framework and open source software,
Charles has contributed multiple guides, extensions, and applications to the

Yii community. In addition to being a programmer, he is also a Linux system
administrator. When not in front of a computer, he can be found writing stories,
photographing nature, or spending time with his wife.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Amirsaman Memaripour is a second year PhD student at the Department of
Computer Science and Engineering of University of California, San Diego. Along
with his studies as an undergraduate and Master's student, he has been developing
web applications using PHP and ASP.NET. For the past 3 years, he has been actively
using the Yii framework to develop medium- and large-scale web applications.

I would like to thank my family for their invaluable presence and
continued support.

Atsushi Sakurai has been working on the design of microprocessors —including

a 32-bit CISC, RISC, and a 64-bit VLIW processor — for over 25 years at Fujitsu. In the
past, he has been the manager of the support project for ARM processors. He started
this project 13 years ago and built the support site using plain PHP, and then rebuilt
the system using Yii 5 years ago. He is a founder of the Japanese users group of Yii,
named Yii-Jan. He left Fujitsu in 2013, and then started a consulting company named
FS-Micro Corp that helps automotive suppliers in terms of the functional safety
based on the ISO 26262. Naturally, he built a website for the company by himself
using Yii, as Yii is a powerful framework that can reduce the development cost of
the portal site greatly.

Jonathan Weatherhead is a code scientist, software developer, Internet enthusiast,
and coffee addict. Specializing in web-driven technologies and object-oriented
architectures, he has been working with PHP since 2003 and maintains his blog
atplanetjon.ca.

He passionately feels that, "The great thing about software development is that you
get to play God with your very own sandbox."

www.it-ebooks.info

planetjon.ca
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[ﬂ]PA(:KT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: A Task-management Application 7
Describing the project 7
Tasks 8
Projects 8
Users 8
The database 8
The tasks table 8
The projects table 9
Users 10
Choosing a database technology 10
The tasks table 10
The projects table 10
The database overview 11
Initializing the project 1"
Creating the database with migrations 14
Creating models with Gii 16
Enhancing the models 16
Updating the default validation rules 17
Defined relations 18
Removing tasks when a project is deleted 19
Retrieving the project metadata 19
Automatically setting the created and updated time 20
Creating the presentation layer 21
Managing projects 21
Creating the layout 22
Creating the project index action 24
Changing a project's completion state 26
Deleting projects 27
Creating and updating projects 27
Viewing tasks 30

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Managing tasks 31
Preventing unauthorized access to our application 34
Requiring authentication with filters and access rules 34
Creating a controller for the authentication 35
Creating a login layout 36
Creating a login view 37
Identifying our users with the Userldentity CUserldentity class 38
Creating the login model 39
Finishing touches 40
Disabling Gii 41
Defining a default route 41
Adding extra routes 41
Summary 42
Chapter 2: Discovering What's Nearby 43
Describing the project 43
Searching nearby locations 43
Showing locations 44
Storing locations 44
Importing locations 44
Designing the database 44
Locations 44
Initializing the project 45
Creating the configuration file 46
Retrieving the sample data 47
Creating the database 47
Creating the locations model 48
Importing the data feed 49
Google APIs 51
Enabling Google APls 51
Generating an API key 52
Storing the API key 53
Creating the presentation layer 53
Interacting with the Google Maps JavaScript API 55
Searching nearby locations 59
Selecting a location 60
Showing locations on a map 61
Optimizing the performance with caching 63
Summary 65

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 3: Scheduled Reminders 67
Prerequisites 67
Describing the project 68

Users 68
Events 69
Reminders 69
The task runner 70
Initializing the project 70
Create a MySQL user and database 70
Creating a Yii configuration file 71
Creating a parameters configuration file 72
Adding Composer dependencies 72
Creating the database 73
The users migration 73
The reminders and events migration 74
Creating models 76
Model behaviors 76
The Users model 77
Bcerypt password hashing 78
The Reminders model 78
The Events model 79
Searching for events and displaying them 80
Custom routing for dates 81
Creating the controller for events 81
Creating the reminders controller 83
Creating the layout 85
Creating the main view 86
Creating the item view 87
Creating the event list view 87
Creating and saving events 91
Creating the controller to manage users 94
Creating users 94
Deleting users 95
Changing the user's password 96
Authenticating with Berypt 97
Requiring authentication 99
Sending e-mail reminders 99
Summary 102

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 4: Developing an Issue-tracking Application 103
Prerequisites 103
Describing the project 104

Users 105
Roles 105
Issues 105
Statuses 106
Updates 106
Receiving e-mails 106
Initializing the project 107
Managing users 108
Roles and authentication 108
Listing users 110
Deleting users 112
Creating and updating users 112
Viewing users and associated issues 114
Implementing the issue-management component 115
The Issues model 116
The Issues Update model 118
Showing issues that belong to the user 119
Searching for issues 120
Creating issues 121
Viewing and updating issues 123
E-mail views 125
Testing our application 127
Handling inbound e-mail parsing 127
Sending e-mails to SendGrid 127
Adjusting SendGrid Parse settings 128
Creating and updating issues over e-mail 129
Summary 132

Chapter 5: Creating a Microblogging Platform 133
Prerequisites 134
Describing the project 135

Users 135
Followers 135
Likes 136

Shares 136

Initializing the project 136
Making a better Yii bootstrap file 137

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Enabling users to manage their information 140
Upgrading our Userldentity class 140
Defining user relations 141

Determining whether a user is following another user 142
Implementing a secure registration process 142
Handling forgotten passwords 149
Resetting a forgotten password 151
Enabling users to manage their details 153
Verifying a new e-mail address 158

Viewing a timeline of shares 160
Retrieving shares 162

Sharing new content 166
Resharing 167
Liking and unliking shares 168
Viewing shares 170

Searching for shares 171

Sharing on Twitter with HybridAuth 172
Setting up a Twitter application 172
Configuring HybridAuth 174
Implementing HybridAuth social sign-on and sharing 176

Summary 179

Chapter 6: Building a Content Management System 181

Prerequisites 182

Describing the project 183
Users 183
Content 184
Categories 184
Search engine optimizations 185

Initializing the project 185

Exploring the skeleton project 186
Extending models from a common class 186
Creating a custom validator for slugs 187
View management with themes 188
Truly dynamic routing 189

Telling Yii to use our custom UrlIManager 189

Displaying and managing content 193
Rendering the sitemap 194
Displaying a list view of content 196

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Displaying content by ID 197
Adding comments to our CMS with Disqus 199
Searching for content 202
Managing content 203
Viewing and managing categories 205
Viewing entries in a category 206
Viewing an RSS feed for categories 206
Managing categories 208
Social authentication with HybridAuth 210
Validating remote identities 210
Remote registrations 211
Linking a social identity to an existing account 212
Authenticating with a social identity 214
Creating a Yii CWebUser object from a remote identity 216
Putting it all together 217
Exploring other HybridAuth providers 224
Summary 225
Chapter 7: Creating a Management Module for the CMS 227
Prerequisites 228
What are modules? 228
Describing the project 228
Initializing the module 229
Routing with a module 229
Moving the management functionality into the module 229
Adding file upload capabilities 229
Deploying modules 230
Initializing the project 230
Creating the module 231
Registering the module with Yii 232
Adding custom routes to a module 235
Creating the controllers 236
Migrating the functionality to the module 238
Migrating content management 238
Migrating categories 244
Implementing user management 247
Uploading files 250
Creating the File class 250
Creating the FileUploader class 251
Creating the FileUpload class 254
Creating the controller for the file manager 256

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Strategies for deploying our application 260
Deploying as the application 261
Deploying as a submodule 261
Deploying as a Composer dependency 261

Summary 262

Chapter 8: Building an API for the CMS 263

Prerequisites 264

Describing the project 264
Configuring the module 265
Extending Yii to render JSON or XML in a RESTful way 265
Handling data input 265
Authenticating users to the API 266
Handling API exceptions 266
Handling data responses 266
Implementing actions 267

Initializing the project 267

Extending Yii to return data 268
Rendering data 271
Calling actions in a RESTful way 274
Authenticating users 274

Overloading CAccessControlFilter 277
Processing the incoming data 279
Handling errors 280

Exception handling 280

Custom error handling 280
Testing whether everything works 281

Authenticating users 282
Testing the authentication 284
Sending authenticated requests 286

Implementing CRUD actions 287
Deleting users 288
Retrieving users 289
Creating and updating users 291
Implementing other controller actions from the main application 292
Implementing categories and content API controllers 293
Documenting our API 293

Summary 294

Index 295

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The Yii framework is a high-performance, fast, open source, and a rapid development
PHP framework that can be used to develop modern web applications. It provides the
toolkit for developing both personal projects and enterprise applications.

This book is a step-by-step guide to develop eight reusable real-world applications
using the Yii framework. Yii Project Blueprints will guide you through several projects,
from project conception to planning your project and finally implementing it. You will
explore the key features of the Yii framework and learn how to use it efficiently and
effectively to build solid core applications that you'll be able to reuse in real-world
projects. You'll also learn how to integrate Yii with third-party libraries and services,
create your own reusable code bases, and discover many more Yii features that will
expand your knowledge and expertise of Yii.

What this book covers

Chapter 1, A Task-management Application, covers developing a simple task-
management application from the ground up using SQLite and basic database
migrations. This chapter will cover all the moving parts of Yii and prepare you
for working with more complex applications.

Chapter 2, Discovering What's Nearby, covers how to integrate the Yii framework
with the Google Maps API to display information about what is near a given
user. You'll also learn how to create command-line tools to handle importing
and processing data.

Chapter 3, Scheduled Reminders, focuses on developing a multiuser web-based
scheduling and reminders application that can notify users via e-mail when a
scheduled event is about to occur.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 4, Developing an Issue-tracking Application, covers how to create a multiuser
issue-tracking and management system, complete with an e-mail notification system
using MySQL as a database backend. This chapter will also cover handling input
from e-mail submissions to trigger actions within the application.

Chapter 5, Creating a Microblogging Platform, covers how to create your own
microblogging platform similar to Twitter, complete with a robust user
authentication and registration system. You'll also learn how to integrate your
application with third-party social networks using Hybrid Auth, as well as how
to streamline your headless development time with Composer.

Chapter 6, Building a Content Management System, covers how to create a
feature-complete content management system and blogging platform that

expands using the knowledge built upon in the previous chapters. This chapter will
also demonstrate how to integrate with even more third-party open source libraries.

Chapter 7, Creating a Management Module for the CMS, focuses on the development
of a management module for the content management system built in the previous
chapter. In this chapter, you'll learn how to migrate data from controllers to a

Yii module that can be reused and managed independently of the content
management system.

Chapter 8, Building an API for the CMS, covers how to create a JSON REST API
module for the content management system that can be used for both client-side
web applications and native development. This chapter will cover the basics of
creating a secure and authenticated JSON REST API, and will demonstrate how
to adapt controller actions for JSON responses rather than web view responses.

What you need for this book

To ensure that you can run the examples provided on any operating system and
to ensure the accuracy of command-line entries, this book will use VirtualBox and
Vagrant to establish a common development platform. Provided with this book
are instructions on how to set up this cross-platform development environment.
For this book, you'll need the following;:

* VirtualBox 4.3.x

* Vagrant1.3.x

e Ubuntu Server 14.04 LTS
* MySQL 5.6.x

e PHP5.5.x

* Yii framework 1.1.x

* Composer

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Who this book is for

This book is for you if you are a PHP developer with a good knowledge of PHP5 and
some experience with the Yii framework and want to jump-start your knowledge of
Yii and start building reusable real-world applications and tools.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We'll also need to modify our UserIdentity class to allow for socially authenticated
users to sign in."

A block of code is set as follows:

<?php

// change the following paths if necessary
Sconfig=dirname(FILE).'/config/main.php';

Sconfig = require($config) ;

require once('/opt/frameworks/php/yii/framework/yiic.php');

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<div class="form-group">

<?php $selected = array('options' => array(isset ($_

GET['id']) ? $_GET['id'] : NULL => array('selected' => true))); ?>
<?php echo CHtml::dropDownList('id', array(), CH
tml::listData(Location: :model () ->findAll (), 'id', 'name'),

CMap: :mergeArray ($selected, array('empty' => 'Select a Location')));
?>

</div>

<button type="submit" class="pull-right btn btnprimary">Search</
button>

</form>

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Any command-line input or output is written as follows:
$ php protected/yiic.php migrate up

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the link titled Model Generator, and then fill in the form on the page that appears.'

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message. If there is a topic that
you have expertise in and you are interested in either writing or contributing to a
book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

[4]

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/77340S_ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/7734OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/7734OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management
Application

One of the best ways to get started with the Yii framework is by making useful
applications. The first application that will be covered in this book is a simple
task management application. In this chapter, we will cover the planning of the
development of this project, developing the application, and creating useful
components that we will reuse in later chapters.

Describing the project

One of the most important steps in starting a new project is planning it. By planning
the project before we begin programming, we can easily identify most (if not all)
models that our application will use, key features that we'll need to implement, as
well as any areas that may cause us problems while developing our applications.
Breaking down the project beforehand also helps us estimate how long it will take
to develop each part of our applications as well as the application as a whole. While
requirements and expectations for our application will most likely change during its
development, identifying the core components of your application will help ensure
that the core functionality of our application works as we intend.

For our task management application, there are two main components: tasks and
projects. Let's break each of these components down.

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Tasks

The first component of our application is tasks. A task is an item that needs to be
done by our user and usually consists of a brief, concise title, and a description of
what needs to be done to complete that task. Sometimes, a task has a due date or
time associated with it that lets us know when the task needs to be completed. Tasks
also need to indicate whether they have been completed or not. Finally, a task is
usually associated with a group or project that contains similar or related tasks.

Projects

The second component of our application is projects. Projects group related tasks
together and usually have a descriptive name associated with them. Projects may
also have a due date or time associated with them, which indicates when all tasks in
a project need to be completed. We also need to be able to indicate whether or not a
project is completed.

Users

By breaking down our project, we've also identified a third component of our
application: users. Users in our application will have the ability to create and manage
both projects and tasks as well as view the statuses and due dates of any given task.
While this component of our application may seem obvious, identifying it early

on allows us to better understand the interaction that our users will have with the
various components of our application.

The database

With the core components of our application identified, we can now begin to think
about what our database is going to look like. Let's start with the two database tables.

The tasks table

By looking at our requirements, we can identify several columns and data types for
our tasks table. As a rule, each task that we create will have a unique, incrementing
ID associated with it. Other columns that we can quickly identify are the task name,
the task description, the due date, and whether or not the task has been completed.
We also know that each task is going to be associated with a project, which means
we need to reference that project in our table.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There are also some columns we can identify that are not so obvious. The two

most useful columns that aren't explicitly identified are timestamps for the creation
date of the task and the date it was last updated on. By adding these two columns,
we can gain useful insights into the use of our application. It's possible that in the
future, our imaginary client may want to know how long an unresolved task has
been open for and whether or not it needs additional attention if it has not been
updated in several days.

With all the columns and data types for our table identified, our tasks table written
with generic SQL data types will look as follows:

ID INTEGER PRIMARY KEY
name TEXT

description TEXT
completed BOOLEAN
project id INTEGER

due date TIMESTAMP
created TIMESTAMP
updated TIMESTAMP

The projects table

By looking at our requirements for projects, we can easily pick out the major
columns for our projects table: a descriptive name, whether or not the project
has been completed, and when the project is due. We also know from our tasks
table that each project will need to have its own unique ID for the task to reference.
When the time comes to create our models in our application, we'll clearly define
the one-to-many relationship between any given project and the many tasks
belonging to it. If we keep a created and updated column, our projects table
written in generic SQL will look as follows:

ID INTEGER PRIMARY KEY
name TEXT

completed BOOLEAN

due date TIMESTAMP
created TIMESTAMP
updated TIMESTAMP

Downloading the example code
W You can download the example code files for all Packt books you
y have purchased from your account at http: //www.packtpub.com.
Q If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files e-mailed
directly to you.

[o]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

A Task-management Application

Users

Our application requirements also show us that we need to store users somewhere.
For this application, we're going to store our users in a flat file database. In Chapter 3,
Scheduled Reminders, we will expand upon this and store users in their own

database table.

Choosing a database technology

Now that we have decided what our database is going to look like, it's time to start
thinking about where we're going to store this information. To help familiarize
yourself with the different database adapters Yii natively supports, for this project,
we will be using SQLite. Since we now know where we're going to store our data,
we can identify all the correct data types for database tables.

The tasks table

Since SQLite only supports five basic data types (NULL, INTEGER, REAL, TEXT, and
BLOB), we need to convert a few of the data types we initially identified for this table
into ones that SQLite supports. Since SQLite does not support Boolean or timestamps
natively, we need to find another way of representing this data using a data type
that SQLite supports. We can represent a Boolean value as an integer either as 0
(false) or 1 (true). We can also represent all of our timestamp columns as integers by
converting the current date to a Unix timestamp.

With our final data types figured out, our tasks table now will look like this:

ID INTEGER PRIMARY KEY
name TEXT

description TEXT
completed INTEGER
project_id INTEGER
due_date INTEGER
created INTEGER
updated INTEGER

The projects table

By applying the same logic to our projects table, we can derive the following
structure for this table:

ID INTEGER PRIMARY KEY
name TEXT

completed INTEGER
due_date INTEGER

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

created INTEGER
updated INTEGER

The database overview

By spending a few minutes thinking about our application beforehand, we've
successfully identified all the tables for our application, how they interact with one
another, and all the column names and data types that our application will be using.
We've done a lot of work on our application already without even writing a single
line of code. By doing this work upfront, we have also reduced some of the work
we'll need to do later on when creating our models.

Initializing the project

With our final database structure figured out, we can now start writing code. Using
the instructions in the official guide (http://www.yiiframework.com/doc/guide/),
download and install the Yii framework. Once Yii is installed, navigate to your
webroot directory, and create a new folder called tasks. Next, navigate inside

the tasks folder, and create the following folder structure to serve as our
application's skeleton:

tasks/
assets/
protected/
commands/
components/
config/
controllers/
data/
migrations/
models/
runtime/
views/
layouts/
projects/
tasks/
site/

Yii has a built-in tool called yiic, which can automatically generate
~ a skeleton project. Refer to the quick start guide (http://www.

<;1 yiiframework.com/doc/guide/1.1/en/quickstart.
first-app) for more details.

[11]

www.it-ebooks.info

http://www.yiiframework.com/doc/guide/
http://www.yiiframework.com/doc/guide/1.1/en/quickstart.first-app
http://www.yiiframework.com/doc/guide/1.1/en/quickstart.first-app
http://www.yiiframework.com/doc/guide/1.1/en/quickstart.first-app
http://www.it-ebooks.info/

A Task-management Application

Depending upon the web server you are using, you may also need to create a
.htaccess file in the root directory of your tasks folder. Information about how to
set up your application for the web server you are using can be found in the quick
ﬁartguhie(http://www.yiiframework.com/doc/guide/l.l/en/quickstart.
apache-nginx-config).

After setting up our skeleton structure, we can first create our configuration file located
at protected/config/main.php. Our configuration file is one of the most important
files of our application as it provides Yii with all the critical information necessary to
load and configure our application. The configuration file informs Yii about the files to
be preloaded by Yii's built-in autoloader, the modules to be loaded, the component to
be registered, and any other configuration options we want to pass to our application.

For this application, we will be enabling the Gii module, which will allow us
to create models based upon our database structure. We will also enable two
components, urlManager and db, which will allow us to set up custom routes
and access our SQLite database. Have a look at the following code snippet:

<?php
return array (
'basePath'=>dirname(FILE) .DIRECTORY SEPARATOR.'..',
'name'=>'Task Application',
'import'=>array (
'application.models.>*',
'application.components.*',
),
'modules'=>array (
// Include the Gii Module so that we can
//generate models and controllers for our application
'gii'=>array(
'class'=>'system.gii.GiiModule',
'password'=>false,
'ipFilters'=>false
),
),
'components'=>array (
'urlManager'=>array (
'urlFormat'=>'path',
'showScriptName'=>false,
'rules'=>array (
'<controller:\w+>/<id:\d+>'=>"'<controller>/view',

'<controller:\w+>/<action:\w+>/<id:\d+>"'=>
'<controllers/<action>"',

[12]

www.it-ebooks.info

http://www.yiiframework.com/doc/guide/1.1/en/quickstart.apache-nginx-config
http://www.yiiframework.com/doc/guide/1.1/en/quickstart.apache-nginx-config
http://www.it-ebooks.info/

Chapter 1

'<controller:\w+>/<action: \w+>'=>
'<controllers/<action>',

),
),
// Define where our SQLite database is going to be
// stored, relative to our config file
'db'=>array (
'connectionString' =>
'sqglite:'.dirname(_ FILE).'/../data/tasks.db',

)i

Next, we can create our index.php file as follows, which will serve as our bootstrap
endpoint for our web application:

<?php

// change the following paths if necessary
Syii='/opt/frameworks/php/yii/framework/yii.php"';
$config=dirname(FILE).'/protected/config/main.php';

// remove the following lines when in production mode
defined('YII DEBUG') or define('YII DEBUG',true);

// specify how many levels of call stack should be shown in each log
message

defined ('YII TRACE LEVEL') or define('YII TRACE LEVEL',3);

require once ($yii) ;
Yii::createWebApplication($Sconfig) ->run() ;

Finally, we can create our applications yiic file in protected/yiic.php as follows,
which will allow us to run console commands native to Yii from our application:

<?php

// change the following paths if necessary
$config=dirname(_ FILE_).'/config/main.php';

Sconfig = require($config) ;

require once ('/opt/frameworks/php/yii/framework/yiic.php') ;

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Creating the database with migrations

Now that our application can be bootstrapped, we can create our database. To do
this, we are going to create a migration. Migrations are a feature of Yii that allow the
creation and modification of your database to be a part of your application. Rather
than creating schema modifications in pure SQL, we can use migrations to grow

our database as a part of our application. In addition to acting as a revision system
for our database schema, migrations also have the added benefit of allowing us to
transmit our database with our application without having to worry about sharing
data that would be stored in our database.

To create our database, open up your command-line interface of choice, navigate
to your tasks directory, and run the following command:

$ php protected/yiic.php migrate create tasks

The yiic command will then prompt you to confirm the creation of the
new migration:

Yii Migration Tool v1.0 (based on Yii v1.1.14)

Create new migration '/var/www/tasks/protected/migrations/m131213 013354
tasks.php'? (yes|no) I[nol:yes

New migration created successfully.

To prevent naming conflicts with migrations, yiic will create the
migration with the following naming structure: m<t imestamp>_<names.
~ This has the added benefit of allowing us to sequentially apply or remove
Q specific migrations based upon the order in which they were added. The
exact name of your migration will be slightly different than the one listed
in the preceding command.

After confirming the creation of the migration, a new file will be created in the
protected/migrations folder of our application. Open up the file, and add the
following to the up method:

Sthis->createTable('tasks', array(
'id' => 'INTEGER PRIMARY KEY',
'title' => 'TEXT',

'data' => 'TEXT',
'project_id' => 'INTEGER',
'completed' => 'INTEGER',
'due_date' => 'INTEGER',
'created' => 'INTEGER',

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

'updated' => 'INTEGER'
))

Sthis->createTable ('projects', array(

'id' => 'INTEGER PRIMARY KEY',
'name' => 'TEXT',
'completed' => 'INTEGER',
'due date' => 'INTEGER',
'created' => 'INTEGER',
'updated' => 'INTEGER'

))

Notice that our database structure matches the schema that we identified earlier in
the chapter.

Next, replace the contents of the down method with instructions to drop the
database table if we call migrate down from the yiic command. Have a look at
the following code:

Sthis->dropTable ('projects') ;
Sthis->dropTable ('tasks') ;

Now that the migration has been created, run migrate up from the command line to
create the database and apply our migration. Run the following commands:

$ php protected/yiic.php migrate up
Yii Migration Tool v1.0 (based on Yii v1.1.14)

Total 1 new migration to be applied:

ml31213 013354 tasks

Apply the above migration? (yes|no) [no]:yes
*** applying ml31213 013354 tasks
*** applied ml131213 013354 tasks (time: 0.009s)

Migrated up successfully.

Now, if you navigate to protected/data/, you will see a new file called tasks.db,
the SQLite database that was created by our migrations.

\ Migration commands can be run non-interactively by appending
~ --interactive=0 to the migrate command. This can be useful if you
Q want to automate deployments of your code to remote systems or if you
run your code through an automated testing service.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Creating models with Gii

Now that our database has been created, we can create models for our database
table. To create our models, we are going to use Gii, Yii's built-in code generator.

Open up your web browser and navigate to http://localhost/gii (in this book,
we will always use localhost as our working hostname for our working project. If
you are using a different hostname, replace localhost with your own). Once loaded,
you should see the Yii Code Generator, as shown in the following screenshot:

L
yii help | webapp | vi
’

Welcome to Yii Code Generator!

You may use the following generators to quickly build up your Yii application

« Controller Generator
« Crud Generator

« Form Generator

« Model Generator

« Module Generator

If you aren't able to access Gii, verify that your web server has rewriting
M . .
~ enabled. Information about how to properly configure your web server
for Yii can be found at (http://www.yiiframework.com/doc/
guide/1l.1/en/quickstart.apache-nginx-config).

Click on the link titled Model Generator, and then fill in the form on the page
that appears. The table name should be set to tasks. The model name should
prepopulate. If it doesn't, set the model name to Tasks, and then click on preview.
Once the page has reloaded, you can preview what the model will look like before
clicking on the Generate button to write your new model to your protected/
models/ directory. Once you have generated your model for tasks, repeat the
process for projects.

Enhancing the models

Now that our models have been created, there are several sections that should
be modified.

[16]

www.it-ebooks.info

http://www.yiiframework.com/doc/guide/1.1/en/quickstart.apache-nginx-config
http://www.yiiframework.com/doc/guide/1.1/en/quickstart.apache-nginx-config
http://www.it-ebooks.info/

Chapter 1

Updating the default validation rules

The first part of our model that needs to be modified is the validation rules.
Validation rules in Yii are stored in the model's rules () method and are
executed when the model's validate () method is called. Starting with our tasks
model, we can see that Gii has already prepopulated our validation rules for us
based upon our database.

There are several fields of this model that we would like to always have set, namely,
project_id, title, the task itself, and whether or not it has been completed. We can
make these fields required in our model by adding a new array to our rules section,
as follows:

array ('project id, title, data, completed',K 'required')

By making these fields required in our model, we can make client- and server-side
validation easier when we start making forms. Our final method for this model will
look as follows:

public function rules()

{

return array (
array ('project id, completed, due date, created, updated',

'numerical', 'integerOnly'=>true),
array ('project id, title, data, completed', 'required'),
array('title, data', 'safe'),

array('id, title, data, project id, completed, due date,
created, updated', 'safe', 'on'=>'search'),

)i
!

Our project's models should also be changed so that the project name and its
completed status are required. We can accomplish this by adding the following
to our validation rules array:

array ('name, completed', 'required')

Al

‘Q Additional validation rules can be found in the Yii wiki at http://

www.yliframework.com/wiki/56/

[17]

www.it-ebooks.info

http://www.yiiframework.com/wiki/56/
http://www.yiiframework.com/wiki/56/
http://www.it-ebooks.info/

A Task-management Application

Defined relations

Another component of our model that we should change is the relations ()
method. By declaring model relations in Yii, we can take advantage of the ability
of ActiveRecords to automatically join several related models together and retrieve
data from them without having to explicitly call that model for its data.

For example, once our model relations are set up, we will be able to retrieve the
project name from the Tasks model, as follows:

Tasks::model () ->findByPk ($id) ->project->name;

Before we can declare our relations though, we need to determine what the
relations actually are. Since SQLite does not support foreign key relations,
Gii was unable to automatically determine the relations for us.

In Yii, there are four types of relations: BELONGS_TO, HAS_MANY, HAS_ONE, and
MANY_ MANY. Determining the relation type can be done by looking at the foreign
key for a table and asking which relational type fits best based upon the data that
the table will store. For this application, this question can be answered as follows:

* Tasks belong to a single project

* A project has one or many tasks

Now that we have determined our relationship types between our two tables,
we can write the relations. Starting with the tasks table, replace the relations ()
method with the following:

public function relations()

{

return array (
'tasks' => array(self::HAS MANY, 'Task', 'project id')
) ;
}

The syntax for the relations array is as follows:

'var name'=s>array ('relationship type', 'foreign model', 'foreign key',
[... other options ..])

For our projects model, our relations () method looks like this:

public function relations()
{
return array (
'tasks' => array(self::HAS MANY, 'Tasks', 'project id')
) ;

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Removing tasks when a project is deleted

In our model's current state, whenever a project is deleted, all the tasks associated
with it become orphaned. One way of dealing with this edge case is to simply delete
any tasks associated with the project. Rather than writing code to handle this in the
controller, we can have the model take care of it for us by referencing the project's
model's beforeDelete () method as follows:

public function beforeDelete ()

{

Tasks::model () ->deleteAllByAttributes (array ('project id' => $this-
>id));

return parent::beforeDelete() ;

}

Retrieving the project metadata

There is also metadata about a project that we cannot obtain directly from the
projects database table. This data includes the number of tasks a project has, as
well as the number of completed tasks a project has. We can obtain this from our
model by creating two new methods in the project's model, as follows:

public function getNumberOfTasks ()

{
return Tasks::model () ->countByAttributes (array('project id' =»>
Sthis->id));

}

public function getNumberOfCompletedTasks ()

{

return Tasks::model () ->countByAttributes (array ('project id' =>
Sthis->id, 'completed' => 1));

}

Additionally, we can determine the progress of a project by getting a percentage of
completed tasks versus the total number of tasks, as follows:

public function getPercentComplete ()

{

SnumberOfTasks = S$this->getNumberOfTasks () ;
$SnumberOfCompletedTasks = Sthis->getNumberOfCompletedTasks () ;

if ($numberOfTasks == 0)
return 100;
return ($numberOfCompletedTasks / $SnumberOfTasks) * 100;

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Automatically setting the created and updated time

The last change needed to be made to the models is to enable them to automatically
set the created and updated timestamp in the database every time the model is
saved. By moving this logic into the models, we can avoid having to manage it
either in the forms that submit the data or in the controllers that will process this
data. This change can be made by adding the following to both models:

public function beforeSave ()
{
if ($this->isNewRecord)
Sthis->created = time() ;

Sthis-s>updated = time() ;

return parent::beforeSave() ;

}

In the beforesave () method, the updated property is always set every time the
model is saved, and the created property is only set if ActiveRecord considers this
to be a new record. This is accomplished by checking the isNewRecord property of
the model. Additionally, both properties are set to time (), the PHP function used
to get the current Unix timestamp.

The last piece of code that is important in this method is return

parent: :beforeSave () ;. When Yii's save () method is called, it checks that
beforeSave () returns true before saving the data to the database. While we could
have this method return true, it's easier to have it return whatever the parent model
(in this case cActiveRecord) returns. It also ensures that any changes made to the
parent model will get carried to the model.

Since the beforeSave () method is identical for both models, we
could also create a new model that only extended CActiveRecord and

M only implemented this method. The tasks and projects model will then
extend that model rather than CActiveRecord and will inherit this
functionality. Moving shared functionality to a shared location reduces
the number of places where code needs to be written and, consequently,
the number of places a bug can show up in.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Creating the presentation layer

Up until this point, all the code that has been written is backend code that the end
user won't be able to see. In this section, we will be creating the presentation layer
of our application. The presentation layer of our application is composed of three
components: controllers, layouts, and views. For this next section, we'll be creating
all the three components.

As a developer, we have several options to create the presentation layer. One way we
can create the presentation layer is using Gii. Gii has several built-in tools that can
assist you in creating new controllers, forms for our views, and even full create, read,
update, and delete (CRUD) skeletons for our application. Alternatively, we can write
everything by hand.

Managing projects

The first part of the presentation layer we are going to work on is the projects
section. To begin with, create a new file in protected/controllers/ called
ProjectControllerProjectController.php that has the following class signature:

<?php
class ProjectControllerProjectController extends CController {}

For our controllers, we will be extending Yii's base class called ccontroller. In future
chapters, we will create our own controllers and extend the controllers from them.

Before we can start displaying content from our new action, we'll need to create
a layout for our content to be rendered in. To specify our layout, create a public
property called $1ayout, and set the value to 'main':

public S$layout = 'main';
Next, let's create our first action to make sure everything is working:

public function actionIndex ()

{

echo "Hello!™";

}

Now, we should be able to visit http://localhost/projects/index from our web
browser and see the text Hello printed on the screen. Before we continue defining
our actions, let's create a layout that will help our application look a little better.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Creating the layout

The layout that we specified references the file located in protected/views/

layouts/main.php. Create this file and open it for editing. Then, add the following
basic HTML5 markup:

<!DOCTYPE html>
<html>
<head>
</head>
<body>
</body>
</html>

Then add a title within the <head> tag that will display the application name we
defined in protected/config/main.php:

<title><?php echo Yii::app()->name; ?></title>

Next, let's add a few meta tags, CSS, and scripts. To reduce the number of files we
need to download, we'll be including styles and scripts from a publicly available
Content Distribution Network (CDN). Rather than writing markup for these
elements, we're going to use CClientScript, a class made to manage JavaScript,
CSS, and meta tags for views.

For this application, we'll be using a frontend framework called Twitter Bootstrap.
This framework will style many of the common HTML tags that our application will
use, providing it with a cleaner overall look.

When you're ready to go live with your application, you should consider
moving the static assets you are using to a CDN, referencing popular
M libraries such as Twitter Bootstrap and jQuery from a publicly available
Q CDN. CDNss can help to reduce hosting costs by reducing the amount of
bandwidth your server needs to use to send files. Using a CDN can also
speed up your site since they usually have servers geographically closer
to your users than your main server.

First, we're going to call cclientScript, as follows:
<?php $cs = Yii::app()->clientScript; ?>

Secondly, we're going to set the Content-Type to text/html with a UTF-8 character
set, as follows:

<?php $cs->registerMetaTag('text/html; charset=UTF-8', 'Content-
Type'); ?>

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Next, we're going to register the CSS from Twitter Bootstrap 3 from a popular CDN,
as follows:

<?php $cs->registerCssFile('//netdna.bootstrapcdn.com/
bootstrap/3.0.3/css/bootstrap.min.css'); ?>

Then we'll register the JavaScript library for Twitter Bootstrap:

<?php $cs->registerScriptFile('//netdna.bootstrapcdn.com/
bootstrap/3.0.3/js/bootstrap.min.js'); ?>

Finally, we're going to register jQuery 2.0 and have Yii placed at the end of the
<body> tag, as follows:

<?php $cs->registerScriptFile('//code.jquery.com/jquery.js',
CClientScript::POS_END); ?>

cClientScript also supports method chaining, so you could also change the
preceding code to the following:

<?php Yii::app()->clientScript

->registerMetaTag('text/html; charset=UTF-8', 'Content-
Type')

->registerCssFile('//netdna.bootstrapcdn.com/
bootstrap/3.0.3/css/bootstrap.min.css’

->registerScriptFile('//netdna.bootstrapcdn.com/
bootstrap/3.0.3/js/bootstrap.min.js')

->registerScriptFile('https://code.jquery.com/jquery.js' ,
CClientScript::POS_END); °?>

For the last part of our layout, let's add a basic header within our <body> tag that will
help with navigation, as follows:

<div class="row">
<div class="container">

<nav class="navbar navbar-default navbar-fixed-top"
role="navigation">

<div class="navbar-header">
<?php echo

CHtml: :encode (Yii::app()->name); ?>
</div>
</navs
</divs>
</div>
[23]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

After the closing </div> tag, add the following:

<div class="row" style="margin-top: 100px;">
<div class="container">
<?php echo S$content; ?>
</divs>
</divs>

The $content variable that we've added to our layout is a special variable that
contains all the rendered HTML markup from our view files and is defined by the
CController class in the render () method. Yii will automatically populate this
variable for us whenever we call the render () method from within our controllers.

Creating the project index action

With our layout defined, we can get back to creating actions. Let's start by modifying
our actionIndex () method so that it renders a view.

First, create a variable to store a searchable copy of our model. Have a look at the
following code:

Smodel = new Projects('search');

Next, render a view called index, which references protected/views/projects/
index.php, and pass the model we created to this view, as follows:

Sthis->render('index', array('model' => S$model)) ;

Now, create the view file in protected/views/projects/index.php and open it
for editing. Begin by adding a button in the view as follows, which will reference
the save action that we will create later on:

<?php echo CHtml::link('Create New Project', Sthis->createUrl('/
projects/save'), array('class' => 'btn btn-primary pull-right')); ?>
<div class="clearfix"></div>

Then add a descriptive title so that we know what page we are on. Have a look at
the following line of code:

<hl>Projects</hl>

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Finally, create a new widget that uses cListView, a built-in Yii widget designed
for displaying data from CActiveDataProvider. In Yii, widgets are frontend
components that help us to quickly generate commonly used code, typically for
presentation purposes. This widget will automatically generate pagination for us
as necessary and will allow each of our items to look the same. Have a look at the
following code:

<?php S$this->widget ('zii.widgets.CListView', array(
'dataProvider'=>$model->search(),
'itemView'=>' project',

)) i 2>

The new widget that we created consists of two parts. The first is the dataProvider,
which provides data to the widget. This data comes from our project's model's
search () method, a piece of code automatically generated by Gii.

The second part of the widget is the itemview, which references the specific view
file that our items will be rendered out of. In this case, the view references a file in
the same directory of protected/views/projects called _project.php. Create
this file and then add the following code to it:

<div>
<div class="pull-left">
<p><?php echo CHtml::1link (CHtml: :encode ($Sdata->name),
Sthis->createUrl ('/projects/tasks', array('id' => $data->id))); ?></
strong></p>
<p>Due on <?php echo date('m/d/Y', $data->due date); ?></p>
<?php if ($data->completed): ?>
Completed
<?php else: ?>
<?php if ($data->numberOfTasks == 0): ?>
<p>No Tasks</p>
<?php else: ?>
<p><?php echo $data->getPercentComplete(); ?>%
Completed</p>
<?php endif; ?>
<?php endif; ?>
</divs>
<div class="pull-right">
<?php echo CHtml::1link (NULL, S$Sthis->createUrl('/projects/
save', array('id' => S$data->id)), array('title' => 'edit', 'class' =>
'glyphicon glyphicon-pencil')); ?>

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

<?php echo CHtml::1link (NULL, $this->createUrl('/projects/

complete', array('id' => S$data->id)), array('title' => S$data-
>scompleted == 1 ? 'uncomplete' : 'complete', 'class' => 'glyphicon
glyphicon-check')); ?>
<?php echo CHtml::1link (NULL, $this->createUrl('/projects/

delete', array('id' => $data->id)), array('title' => 'delete', 'class'
=> 'glyphicon glyphicon-remove')); ?>

</div>

<div class="clearfix"></div>
</div>
<hr/>

If we refresh our browser page now, our view will show us that no results were
found. Before we can see data, we need to create an action and view to create and
update it. Before we start creating new records, let's create two other actions that we
outlined in our item's view: complete and delete.

Changing a project's completion state

First, let's create an action to mark a project as completed or uncompleted. This
action will only be responsible for changing the completed field of the projects table
to 0 or 1, depending on its current state. For simplicity, we can just XOR the field by
1 and save the model. Have a look at the following code:

public function actionComplete ($id)
{
Smodel = S$Sthis->loadModel ($id) ;
$model ->completed "= 1;
$model->save () ;
$this->redirect ($this->createUrl (' /projects')) ;

}

Additionally, we'll create another private method called 1oadModel (), which will
load our appropriate model for us and throw an error if it cannot be found. For this
method, we'll use CHt tpException, which will create an HTTP exception with the
error message we provide if a model with the specified ID cannot be found. Have a
look at the following code:

private function loadModel ($id)
{
Smodel = Projects::model ()->findByPk ($id) ;
if ($model == NULL)
throw new CHttpException('404', 'No model with that ID could
be found.');
return S$model;

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Deleting projects

Next, we'll create a method to delete the project. This method will use the

loadModel () method we defined earlier. Additionally, if we encounter an error
deleting the model, we'll throw an HTTP exception so that the user knows something
went wrong. Here's how we go about it:

public function actionDelete ($id)

{

Smodel = S$Sthis->loadModel ($id) ;

if ($model->delete())
$this->redirect ($this->createUrl (' /projects')) ;

throw new CHttpException('500', 'There was an error deleting the
model. ') ;

}

Creating and updating projects

With the two other methods defined, we can now work on creating and updating a
project. Rather than creating two actions to handle both these tasks, we're going to
create one action that knows how to handle both by checking the ID that we'll pass
as a GET parameter. We can do that by defining a new action that looks as follows:

public function actionSave ($id=NULL) {

We can then either create a new project or update a project based upon whether or
not we were provided with an ID by the user. By taking advantage of 1oadModel (),
we also take care of any errors that would occur if an ID was provided but a project
with that ID didn't exist. Have a look at the following code:

if ($id == NULL)
$model = new Projects;
else
Smodel = S$Sthis->loadModel ($id) ;

Next, we can detect whether the user submitted data by checking the $_posT
variable for an array called projects. If that array is defined, we'll assign it to
our $model->attributes object. Before saving the model, however, we'll want
to convert whatever the user entered into a Unix timestamp. Have a look at the
following code:

if (isset($_POST['Projects']))

{

Smodel->attributes = $ POST|['Projects'];

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

$model->due date = strtotime($_POST['Projects'] ['due date']);
$model->save () ;

}
Finally, we'll render the view and pass the model down to it, as follows:

Sthis->render('save', array('model' => Smodel)) ;

Create a new file in protected/views/projects/ called save.php and open it to
edit. Begin by adding a header that will let us know whether we are editing a project
or creating a new one, as follows:

<hl><?php echo $model->isNewRecord ? 'Create New' : 'Update'; ?>
Project</hl>

Next, we'll create a new widget with cActiveForm, which will take care of the hard
tasks of creating and inserting form fields into our view file (such as what the names
and IDs of form fields should be):

<?php S$form=$this->beginWidget ('CActiveForm', array (
'id'=>'project-form',
'htmlOptions' => array(

'class' => 'form-horizontal',
'role' => 'form'
)
)) i 2>
<?php $this->endWidget(); 2>

Between the beginwidget and endwidget call, add an error summary if the
user encounters an error:

<?php echo $form->errorSummary ($Smodel); ?>

Then, after the error summary, add the form fields and their associated styles,
as follows:

<div class="form-group">

<?php echo $form->labelEx(Smodel, 'name', array('class' => 'col-
sm-2 control-label')); ?>
<div classg="col-sm-10">
<?php echo s$form->textField(Smodel, 'name', array('class' =>
'form-control')); ?>
</div>

</div>

<div class="form-group">

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

<?php echo $form->labelEx($Smodel, 'completed', array('class' =>
'col-sm-2 control-label')); ?>
<div class="col-sm-10">
<?php echo $form->dropDownList ($model, 'completed', array ('O’

=> 'No','l' => 'Yes'), array('class' => 'form-control')); ?>
</div>
</div>

<div class="form-group"s>
<?php echo $form->labelEx($model, 'due date', array('class' =>
'col-sm-2 control-label')); ?>
<div class="col-sm-10">
<div class="input-append date">
MM/DD/YYYY
<?php $this->widget ('zii.widgets.jui.CJuiDatePicker',
array (
'model' => S$model,
'attribute' => 'due date',
'htmlOptions' => array(
'size' => '10',
'maxlength' => '10',
'class' => 'form-control',
'value' => $model->due date == "" ? v
date ("m/d/Y", s$model->due date)

</div>
</div>
</div>

<div class="row buttons"x>
<?php echo CHtml::submitButton ($model->isNewRecord ? 'Create'
'Save', array('class' => 'btn btn-primary pull-right')); ?>

</div>

. Did you notice how we're taking advantage of the Yii widget called
% CJuiDatePicker? This widget will provide us with a clean interface for
s selecting dates from a calendar view, rather than requiring our end user

to type in the date manually and in the specified format we've requested.

Now we can create, update, view, and delete projects. Additionally, we've created
an easy action to mark them as completed. Before we're done with this controller,
we need to add an action that allows us to view tasks in our project.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Viewing tasks

Our tasks action for this controller will function in the same manner as our index
action but will instead use a view called tasks:

public function actionTasks ($id=NULL)

{
if ($id == NULL)
throw new CHttpException (400, 'Missing ID');
Sproject = S$this->loadModel ($id) ;
if ($project === NULL)
throw new CHttpException (400, 'No project with that ID
exists') ;
Smodel = new Tasks ('search') ;
$model->attributes = array('project id' => s$id);
Sthis->render ('tasks', array('model' => $model, 'project' =>
Sproject)) ;
}

The tasks.php view in protected/views/projects/tasks.php will look
as follows:

<?php echo CHtml::link('Create New Task', $this->createUrl ('/tasks/
save?Tasks [project idl=' . $project->id), array('class' => 'btn btn-
primary pull-right')); 2>
<div class="clearfix"></div>
<hl>View Tasks for Project: <?php echo $project-sname; ?></hl>
<?php $this->widget ('zii.widgets.CListView', array(
'dataProvider'=>$model->search(),
'itemView'=>"' tasks',
))

?>

The tasks.php item view in protected/views/projects/tasks.php will look
as follows:

<divs>
<div class="pull-left">
<p><?php echo CHtml::link (CHtml: :encode ($data->title),

$this->createUrl ('/tasks/save', array('id' => $data->id))); ?></
strong></p>

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

<p>Due on <?php echo date('m/d/Y', $data->due date); ?></p>
</div>
<div class="pull-right">

<?php echo CHtml::1link (NULL, Sthis->createUrl('/tasks/save',

array('id' => $data->id)), array('class' => 'glyphicon glyphicon-
pencil')); ?>
<?php echo CHtml::1link (NULL, Sthis->createUrl('/tasks/
complete', array('id' => S$data->id)), array('title' => S$data-
>scompleted == 1 ? 'uncomplete' : 'complete', 'class' => 'glyphicon
glyphicon-check')); ?>
<?php echo CHtml::1link (NULL, Sthis->createUrl('/tasks/delete',
array('id' => $data->id)), array('class' => 'glyphicon glyphicon-
remove')); ?>
</div>
<div class="clearfix"></div>
</div>
<hr/>

Managing tasks

Now that we can manage projects, let's work on managing tasks. Our
TasksController is going to be nearly identical to our project's controller with
only a few differences. Start by creating a new file in protected/controllers
called TasksController.php that has the following signature:

<?php class TasksController extends CController {}

By only making a small change to our loadModel () method, we can reuse the
delete and complete action from our projects controller, as follows:

private function loadModel ($id)
{
Smodel = Tasks::model () ->findByPk ($id) ;
if ($Smodel == NULL)
throw new CHttpException('404', 'No model with that ID could
be found.');
return Smodel;

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Our save action is almost identical to our project's save action. Have a look at the
following code:

public function actionSave ($id=NULL)

{
if ($id == NULL)
Smodel = new Tasks;
else
smodel = S$this->loadModel ($id) ;

if (isset($_GET['Tasks']))
$model->attributes = $§ GET['Tasks'];

if (isset($_POST['Tasks']))

{
$model->attributes = $ POST['Tasks'];
$model->due date = strtotime($ POST['Tasks'] ['due _date']) ;
$model->save () ;

}

Sthis->render ('save', array('model' => S$model)) ;

}

The view file for this action is almost the same as well. If you haven't already, create
a file called save.php in protected/views/tasks/, and then add the following
lines of code to finish the view:

<ol class="breadcrumb">

<?php echo CHtml::link('Project', sSthis-s>createUrl('/
projects')); ?>

<li class="active"><?php echo $model->isNewRecord ? 'Create New'
'Update'; ?> Task

<hr />

<hl><?php echo $model->isNewRecord ? 'Create New' : 'Update'; ?>
Task</hl>

<?php S$form=sSthis->beginWidget ('CActiveForm', array (
'id'=>'project-form',
'htmlOptions' => array(
'class' => 'form-horizontal',
'role' => 'form!'
)
))i 2>

<?php echo $form-serrorSummary (Smodel); ?>

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

<div class="form-group"s>
<?php echo $form->labelEx(Smodel, 'title', array('class' =>
'col-sm-2 control-label')); ?>
<div class="col-sm-10">

<?php echo $form->textField($Smodel, 'title', array('class'
=> 'form-control')); ?>

</div>
</div>

<div class="form-group"s>

<?php echo $form->labelEx($model, 'data', array('class' =>
'col-sm-2 control-label')); ?>

<div class="col-sm-10">

<?php echo $form->textArea($Smodel, 'data', array('class' =>
'form-control')); ?>
</div>

</div>

<div class="form-group"s>
<?php echo $form->labelEx($model, 'project id', array('class'
=> 'col-sm-2 control-label')); °?>
<div class="col-sm-10">
<?php echo $form->dropDownList ($model, 'project id',

CHtml::listData(Projects::model()->findAll (), 'id', 'nmame'),
array ('empty'=>'Select Project', 'class' => 'form-control')); ?>
</div>
</div>

<div class="form-group"s>

<?php echo $form->labelEx($Smodel, 'completed', array('class' =>
'col-sm-2 control-label')); ?>
<div class="col-sm-10">
<?php echo $form->dropDownList ($Smodel, 'completed’,
array('0' => 'No','l' => 'Yes'), array('class' => 'form-control')); ?>
</div>
</div>

<div class="form-group"s>

<?php echo $form->labelEx($model, 'due date', array('class' =>
'col-sm-2 control-label')); ?>
<div class="col-sm-10">
<div class="input-append date">
<?php $this->widget ('zii.widgets.jui.CJuiDatePicker',
array (
'model' => $model,
'attribute' => 'due date',
'htmlOptions' => array(

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

'size' => '10',
'maxlength' => '10"',
'class' => 'form-control',
'value' => $model->due date == "" ? ""
date("m/d/Y", $model->due date) a
),
)) i ?> </divs>
</div>
</div>

<div class="row buttons">
<?php echo CHtml::submitButton ($model->isNewRecord ? 'Create'

'Save', array('class' => 'btn btn-primary pull-right')); ?>
</div>
<?php $this->endWidget (); ?>

Preventing unauthorized access to our
application

Our tasks application can now do everything we defined in our requirements.
However, it is open to the world. Anyone who wants to edit our tasks could simply
visit our website and change anything without our knowledge. Before finishing up,
let's create a simple authentication system to protect our data.

Requiring authentication with filters and
access rules

The first part in protecting our application is making sure that only authorized
people can visit our application. We can do this by adding a filter to our controller
called accesscontrol and defining access rules to access our content.

A filter is a piece of code that gets executed before (and/or after) a controller
action runs, which means that the user will be required to be authenticated before
accessing our content. To add the accessControl filter, add the following to both
TasksController and ProjectsController:

public function filters()
return array(
'accessControl',

)i

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Next, create a new method called accessRules (), which will define what users can
access our application. For our application, we want to deny access to anyone who
isn't authenticated. Have a look at the following code snippet:

public function accessRules ()
{
return array (
array('allow',
'users'=s>array('@'),
)
array('deny', // deny all users
'users'=sarray('*'),
)
) ;
}

In the preceding array, e is a shorthand reference to an authenticated user. Now if
we try to visit our web page, we'll be redirected to /site/login, the default 1ogin
action in Yii.

Creating a controller for the authentication

Create a file called siteController.php in protected/controllers, and then
create login and logout actions as follows:

<?php
class SiteController extends CController

{

public $layout = 'signin';

public function actionLogin ()

{

$model = new LoginForm;

if (isset ($_POST['LoginForm']))
{
$model->attributes = $ POST['LoginForm'];
if ($model->login())
$this->redirect ($this->createUrl (' /projects')) ;

}

Sthis->render('login', array('model' => $model)) ;

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

public function actionLogout ()
{
Yii::app()->user->logout () ;
Sthis->redirect ($this->createUrl('/site/login')) ;

Creating a login layout

For this controller, we're going to create a new layout called login.php in
protected/views/layouts. Copy the markup from protected/views/
layouts/main.php to our new layout, and replace the contents of the <body>
tag with the following;:

<div class="row">
<div class="container">
<?php echo $content; ?>
</div>
</div>

To make our login page look more like a login page, add the following CSS to
the layout either as an inline style or as a separate file in /css/signup.css:

body {
padding-top: 40px;
padding-bottom: 40px;
background-color: #eee;

}

.form-signin {
max-width: 330px;
padding: 15px;
margin: 0 auto;

}

.form-signin .form-signin-heading,

.form-signin .checkbox {
margin-bottom: 10px;

}

.form-signin .checkbox {
font-weight: normal;

}

.form-signin .form-control {
position: relative;

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

font-size: 16px;
height: auto;
padding: 10px;
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

}

.form-signin .form-control:focus {
z-index: 2;

}

.form-signin input [type="text"] {
margin-bottom: -1px;
border-bottom-left-radius: 0;
border-bottom-right-radius: 0;

}

.form-signin input [type="password"] {
margin-bottom: 10px;
border-top-left-radius: 0;
border-top-right-radius: 0;

}

Creating a login view
Create a new form in protected/views/site/login. php that will hold our login
model, as follows:

<?php $form=$this->beginWidget ('CActiveForm', array(
'id'=>'login-form',
'enableClientValidation'=>true,
'htmlOptions' => array(
'class' => 'form-signin',
'role' => 'form'
),
'clientOptions'=>array (
'validateOnSubmit'=>true,
),

)) i ?>

<?php if (!Yii::app()->user->isGuest): ?>
<h2 class="form-signin-heading"s>You are already signed in!
Please <?php echo CHtml::link('logout', S$this->createUrl('/site/
logout')); ?> first.</h2>
<?php else: ?>

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

<h2 class="form-signin-heading">Please sign in</h2>

<?php echo $form-s>errorSummary ($model); ?>

<?php echo $form->textField($model, 'username', array('class'
=> 'form-control', 'placeholder' => 'Username')); ?>

<?php echo $form->passwordField(Smodel, 'password’,
array('class' => 'form-control', 'placeholder' => 'Password')); ?>

<?php echo CHtml::tag('button', array('class' => 'btn btn-1g
btn-primary btn-block'), 'Submit'); ?>

<?php endif; ?>

<?php $this->endwWidget(); ?>

Identifying our users with the Userldentity
CUserldentity class

Before we create our login model, we need to create a way to identify our users.
Fortunately, Yii has a built-in class to handle this called cuseridentity. By easily
extending CUserIdentity, we can create a key-value login pair that will ensure
that only authenticated users can log in to our application.

Create a new file called UserIdentity.php in /components, and add the following:

<?php
class UserIdentity extends CUserIdentity

{

public function authenticate ()
{
Susers=array (
'demo'=>'demo"',
'admin'=>"'admin',
)
if (!isset (Susers[Sthis->username]))
$this->errorCode=self::ERROR_USERNAME INVALID;
elseif (Susers[$this->username] !==Sthis->password)
$this->errorCode=self::ERROR_PASSWORD INVALID;
else
Sthis->errorCode=self::ERROR_NONE;
return !S$this-serrorCode;

}

The authenticate () method of UserIdentity is what we'll use in our login model
to ensure that we have valid credentials. In this class, we are simply checking
whether the username that will be sent to this class by our login model matches the
key associated with it. If a user's password does not match the key in our $users
array, or if the user is not defined in our $users array, we return an error code.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Creating the login model

The last component we need to authenticate our users is to create a generic model
to authenticate the user against. Begin by creating a new file called LoginForm.php
in protected/models. This class will extend CFormModel, a generic model in Yii for
forms, as follows:

<?php class LoginForm extends CFormModel ({

Since CFormModel doesn't connect to a database, we defined attributes as public
properties, as follows:

public Susername;
public S$password;
private $ identity;

Our model also needs validation rules to verify that we have a valid user. In addition
to making sure username and password are provided, we're going to provide an
additional validation rule called authenticate, which will validate that we have a
valid username and password. Have a look at the following lines of code:

public function rules()
{
return array (
array ('username, password',6 'required'),
array ('password', 'authenticate'),
)
}

Because our authenticate () method is a custom validator, its method signature
has two parameters, $attribute and $params, which have information about the
attribute and parameters that may have been passed from the validator. This method
will determine whether our credentials are valid. Have a look at the following code:

public function authenticate($attribute, $Sparams)

{

if (!$this->hasErrors())
{
$this-> identity=new UserIdentity($this->username, $this-
>password) ;
if (I$this-> identity-s>authenticate())
Sthis->addError ('password', 'Incorrect username or
password. ') ;

}

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Finally, we'll create the 1ogin () method that our SiteController calls. In addition
to validating our credentials, it will do the heavy lifting of creating a session for the
user. Have a look at the following code:

public function login()

{
if (!$Sthis->validate())
return false;

if ($this-> identity===null)

{

$this-> identity=new UserIdentity(Sthis->username, $this-
>password) ;
$this-> identity->authenticate();

if ($this-> identity-serrorCode===UserIdentity::ERROR_ NONE)

Sduration = 3600%24*30;
Yii::app()->user->login($this-> identity, $duration) ;
return true;

}

else
return false;

}

Now you can visit our site and log in with the credentials provided in our
UserIdentity.php file.

Finishing touches

Before completing our project, there are a few things we need to take care of in our
protected/config/main.php file to enhance the security of our application and to
make our application easier to use.

It would be nice to also add some pictures of the final application.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Disabling Gii

At the beginning of our project, we enabled the Gii module to assist us in creating
models for our application. Since Gii has the ability to write new files to our project,
we should remove the following section from our config file:

'gii'=>array(
'class'=>'system.gii.GiiModule',
'password'=>false,

'ipFilters' => false

).

Defining a default route

Presently, if we try to visit the root URL of our application, we are presented with

an error. To avoid this, we can add a route in to the routes array of our URL Manager
component. With this addition, whenever we visit the root URL of our application,
we will be presented with the index action of the project's controller. Have a look

at the following code:

'components'=>array (

[...]

'urlManager'=>array (

[...]

'rules'=>array (

[...]

'/'" => 'projects/index'

) ’

Adding extra routes

Finally, add two more routes to our URL Manager routes array. These routes will
help us more easily access the 1ogin and logout actions for our site. Have a look

at the following code:

'login' => 'site/login',
'logout' => 'site/logout'

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

A Task-management Application

Summary

In this chapter, we covered quite a lot of information. We created an automated
way of creating and distributing our database, models to represent the tables in
the database, and a few controllers to manage and interact with our data. We also
created a simple key-value authentication system to protect our data. Many of
the methods we used in this chapter, and the code we wrote, can be reused and
expanded upon in later chapters. Before continuing, be sure to take a look at all
the classes we referenced in the chapter, in the official Yii documentation, so that
you can better understand them.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

When developing an application, we are often presented with the geolocation data
for a particular point of interest. Whether it's a business location or a job that the
end user is applying to, knowing what's around that particular location can provide
immediate value to the user when making a decision about that location. For
example, a user may want to know what restaurants are near a particular location
or what public services or public transportation options are near a particular job the
user is interested in. With the help of third-party location APIs, we can inform the
user what is near a given point of interest. For our second application, we develop
a web application that shows the user what is near a particular point of interest
using information from the Google Places API. In this chapter, we also cover how
to integrate third-party libraries into our application and how to improve the
performance of our application with caching.

Describing the project
As with our tasks application that was outlined in Chapter 1, A Task-management

Application, we begin the development by getting a high-level overview of what
the project will do and how our application will behave.

Searching nearby locations

The core component of this application is its ability to find other locations near an
existing location. The easiest way to find this information is to take advantage of a
third-party API. For this application, we'll be using the Google Places API, a web
API that can provide nearby locations from given latitude and longitude coordinates.

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

Showing locations

Rather than simply telling our users what locations are near a given point of interest,
we can enhance user experience by showing them the points of interest and nearby
locations on a map. Many different mapping sources exist to show a map. For this
application, we'll take advantage of another Google API, the Google Maps APL

Storing locations

To show the user the locations that are available for them to search nearby, we
need to store these locations first. For storing these locations, we'll need a database
that we can store imported locations into. Like our tasks application that we
developed in Chapter 1, A Task-management Application, we'll use SQLite as

our primary database again.

Importing locations

Finally, we're going to need a command-line tool to import locations from a data
feed. To accomplish this, we're going to create a console task that can be run from
the command line. This task will fetch information from the provided JSON feed and
import it into our database. By making this a command-line task, we can automate
and schedule the import via scheduled tasks on Windows or a Unix crontab.

Designing the database

With the core components of our application identified, we can now get started
with developing the database. Let's start with creating our locations table.

Locations

When developing applications that import data from an external source, you can
often take advantage of the structure of the external feed to determine what your
own database tables should look like. Provided with the chapter resources at
protected/data/ is a file called parks . json that serves as our external data source.
Since the data in this feed is consistent, let's take a look at a single item in the feed:

{

"name" : "Cancer Survivors' Garden",
"lat"™ : "41.884242",
"long" : "-87.617404",
"city" : "Chicago",
"state" : "IL"
}
[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

A single element in our data feed is composed of the name of the location, its
latitude and longitude coordinates, and the city and state of the location. To make
things simple, we can represent each of these attributes as a TEXT attribute in our
table. Once we have added an 1D column and created and updated columns, our
locations table will look as follows:

ID INTEGER PRIMARY KEY
name TEXT

lat TEXT

long TEXT

city TEXT

state TEXT

created INTEGER
updated INTEGER

Initializing the project
As we did in our tasks project, we begin the development by creating a few folders
in our application web root:

nearby/

assets/

is/

protected/
commands/
config/
controllers/
data/
extensions/
migrations/
models/
runtime/
views/

In this application, we added two new folders, commands and extensions. The
commands folder is a special folder in Yii that yiic will reference when running
console commands. The extensions folder is a special folder in Yii, where Yii
extensions or third-party classes can be placed.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

Next, let's go ahead and add our Yii Bootstrap file, index. php, to the root of our
application. We need to be sure to change the Yii path to the location on the system:

<?php

// change the following paths if necessary
Syii='/path/to/yii/framework/yii.php';
S$config=dirname(FILE).'/protected/config/main.php';

error reporting(E_ALL) ;

ini set('display_errors',6 '1l');

// remove the following lines when in production mode

defined('YII DEBUG') or define('YII DEBUG',true);

// specify how many levels of call stack should be shown in each log
message

defined('YII_TRACE_LEVEL') or define('YII_TRACE_LEVEL',3);

require once ($yii) ;
Yii::createWebApplication($Sconfig) ->run() ;

Now, let's create our yiic.php file within our protected folder that will run both
our migrations and console commands. Once again, we need to be sure to adjust
the path to the Yii framework in the require statement:

<?php

// change the following paths if necessary
Sconfig=dirname(FILE).'/config/main.php';

Sconfig = require($config) ;

require once('/path/to//yii/framework/yiic.php') ;

Creating the configuration file

Next, we need to create the configuration file that our Yii application will use.
Let's add the following to protected/config/main.php:

<?php
return array (
'basePath'=>dirname(FILE) .DIRECTORY SEPARATOR.'..',
'name'=>'Places Nearby',
'import'=>array (
'application.models.>*',

) ’

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

'components'=>array (

'db'=>array (

'connectionString' => 'sglite:'.dirname(FILE).'/../
data/locations.db',
),

'urlManager'=>array (
'urlFormat'=>'path',
'showScriptName'=>false,
'rules'=>array (
'<controller:\w+>/<id:\d+>'=>"'<controller>/view',

'<controller:\w+>/<action:\w+>/<id:\d+>'=>'<controller>/<actions', '<co

ntroller:\w+>/<action:\w+>'=>'<controllers/<action>"',

).

)i

In comparison to the configuration file we made in Chapter 1, A Task-management
Application, the only parts of the file that were changed are the location of the
database file for SQLite to use and the name of the application.

Retrieving the sample data

Provided with the chapter resources within the protected/data folder is a file
called parks. json; it contains the sample data that we will use for our application.
Let's go ahead and grab this file from the project resources and add it to the
protected/data folder.

Creating the database

To create the database, we again use migrations. From the command line,
let's navigate to the project root and create the migration using yiic:

$ php protected/yiic.php migrate create locations

After confirming the creation, we open up the new migration file in protected/
migrations and replace the contents up () method with the following:

return S$this->createTable('locations', array(
'id' => 'INTEGER PRIMARY KEY',
'name' => 'TEXT',
'lat' => 'TEXT',
'long' => 'TEXT',

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

'city' => 'TEXT',

'state' => 'TEXT',

'created' => 'INTEGER',

'updated' => 'INTEGER'
))

Then, we replace the contents of the down () method with the following;:

return Sthis->dropTable('locationsg') ;

From the command line, let's now apply the new migration:

$ php protected/yiic.php migrate up

Creating the locations model

To interact with our data, we need to create a model that once again references our
new database table. Using the instructions outlined in Chapter 1, A Task-management
Application, we enable the Gii module and create a new model called Location to
interact with the locations table in our database.

Once created, we add a beforesave () method to the generated file (protected/
modules/Location.php) to automatically set the created and updated time:

public function beforeSave ()

{

if (Sthis->isNewRecord)
Sthis->created = time() ;

$this-s>updated = time () ;

return parent::beforeSave() ;

}
Then, we modify the rules () method:

public function rules()

{

return array(

array('created, updated', 'numerical', 'integerOnly'=>true),
array ('name, lat, long, city, state', 'required'),
array('title, data', 'safe'),

array ('name, lat, long, city, state, created, updated',
'safe', 'on'=>'sgsearch'),

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Importing the data feed

Before creating the frontend controllers to display our data, we need to create a

tool to import our data feed. To create this tool, we create a class in our commands
directory that extends cConsoleCommand; this will enable us to import data from the
command line and automate it if we so choose.

To begin, we need to create a new class called ImportLocationsCommand inside of
our commands directory at /protected that extends cConsoleCommand. The filename
inside the commands directory should be ImportLocationscommand.php:

<?php
class ImportLocationsCommand extends CConsoleCommand {}

Next, we add a method to handle the retrieval of the data we want to import. To
provide the greatest amount of flexibility, we create two methods: the first will fetch
the data from our external data source and the second will actually import the data
into our database.

In a real-world application, the first method that we build might fetch the data from
a web resource via CURL. Alternatively, the data might be uploaded and provided
to us via FTP. Since our data is stored locally, however, our method will simply fetch
the contents of the file:

private function getData ()

{
$file = DIR__ . '/../data/parks.json';
return CJSON::decode (file get contents($file));

}

By moving this functionality into its own method, we can easily change this method
in future to fetch this data from another location, without having to change other
parts of our code.

Next, we create a new method called actionImportLocations () that will perform
the import:

public function actionImportLocations() {}

For simplicity, we assume that our getData () method will always return valid data
to this method. Inside the method, we add the following;:

echo "Loading Data...\n";
Sdata = $this->getDatal() ;

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

An important consideration when importing data is to make sure that we don't

accidentally create duplicate data within our application. There are several ways to
handle this.

The easiest way to handle this edge case is to simply truncate the database table
and perform a fresh import. While this type of import is incredibly simple, with
larger datasets, it could cause our application not to function properly while the
import is running.

A more reliable method would be to import this data into a temporary database
table and then delete the active table and rename the temporary one to the active
table's name. In addition to ensuring that we don't have duplicate data, this
method also ensures that if we have a problem importing the data, we can simply
abort the import with an error and not worry about having a corrupted database.
Additionally, this method should also reduce the downtime associated with
importing the raw data.

The most complex way of importing the data would be to compare your existing
database with the data from the feed and import only the difference between the
two. While significantly more complex, this method can reduce the overhead needed
to retrieve the data, and when put in combination with the previous method, should
reduce almost all of the downtime associated with an import.

To keep things simple, we're going to opt for the first method, which we can easily
implement, as follows. First, we're going to truncate the existing data in our database:

echo "Truncating old data...\n";
Location: :model () ->deleteAll () ;

Since our database matches our data feed, we'll simply iterate through the results
and import them row by row:

echo "Importing Data...\n";

foreach($data as $id=>Scontent)

{
Smodel = new Location;
Smodel->attributes = $Scontent;
Smodel->save () ;

}

From the command line, we can now import our data by running the
importlocations command we just created. Running command-line tasks
takes the following format:

$ php protected/yiic.php <command name> <action name>

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In our case, the full command looks as follows:

$ php protected/yiic.php importlocations importlocations

If the import went well, we will see the debug output that we added to the command
without any errors:

$ php protected/yiic.php importlocations importlocations
Loading Data...
Truncating old data...

Importing Data...

You can read more about CConsoleCommand from the official guide

athttp://www.yiiframework.com/doc/guide/1.1/en/
s

topics.console or from the Yii class reference at http: //www.
yiiframework.com/doc/api/1.1/CConsoleCommand.

Google APIs

Before we begin work at the frontend of our application, we need to create an API
key to interact with Google Maps and the Google Places API.

Enabling Google APIs

To enable the Google APIs our project is using, open up a web browser and navigate
to the Google API Console located at https://console.developers.google.com/
project. Once we have logged in to a Google account, we click on the Create Project
button and fill out the form with a unique project name and project ID, as shown in
the following screenshot:

New Project

Project name Places Api

Project ID ‘ places-api-ch2

[51]

www.it-ebooks.info

http://www.yiiframework.com/doc/guide/1.1/en/topics.console
http://www.yiiframework.com/doc/guide/1.1/en/topics.console
http://www.yiiframework.com/doc/api/1.1/CConsoleCommand
http://www.yiiframework.com/doc/api/1.1/CConsoleCommand
https://console.developers.google.com/project
https://console.developers.google.com/project
http://www.it-ebooks.info/

Discovering What's Nearby

Once the project has been created, we navigate to the newly created project and
click on the APIs & auth link in the sidebar. From the list of APIs, we toggle both
Google Maps JavaScript API v3 and Places API to ON, as shown in the following
screenshot:

Projects MAME QUOTA STATUS

- Google Maps JavaScript AP v3 0% n
Places API Project e e

Overview Places AP -

Permissions

Billing & settings Ad Exchange Buyer AP 1,000 requests/day OFF
APIls & auth Ad Exchange Seller AP 10,000 requests/day OFF

APl

Credentials Admin SDi 150,000 requests/day OFF

Consent screen

AdSense Host AP 100,000 requests/day OFF

Push

Generating an API key

With both APIs enabled for the project, we click on the Credentials link in the
sidebar. From this menu, we can create a new API key for our application to use.
Once on this page, we are presented with two options, either an OAuth Client ID or
a Public API key. Click on Create new Key under Public API access, as shown in the
following screenshot:

OAuth
OAuth 2.0 allows users to share specific data with you (for example,
contact lists) while keeping their usermames, passwords, and other

information private.

Learmn more

Create new Client 1D

Public APl access

Use of this key does not require any user action or consent, does not

grant access to any account information, and is not used for
authorization.
Leam more

Create new Key

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Then, from the next menu select Server key, which will generate a new client API
key for us to use in our application:

Create a new key

The APIs represented in the Google Developers Console require that
requests include a unigue project identifier. This enables the Console totie a
request to a specific project in order to monitor traffic, enforce quotas, and
handle billing.

Server key Browser key Android key 05 key

Once the page reloads, we copy the full API key to our clipboard.

Storing the API key

Next, we need to store our API in our application so that we can use it. Fortunately,
Yii provides a setting for static parameters in protected/config/main.php called
params that we can store our API key in. Let's add the following as a root element to
our configuration file and replace <your_api_key here> with the actual API key:

'params' => array(
'PlacesApi' => array(
'apiKey' => '<your api key heres'

)

This data is then available as an array through vii: :app () - >params, which we can
query against, as follows:

SapiKey = Yii::app()->params|['PlacesApi'] ['apiKey'];

Creating the presentation layer

Now, we're ready to start displaying content. To get started, we create a new
controller called siteController.php in the protected/controllers directory
that contains the following;:

<?php
class SiteController extends CController

{

public function actionIndex ()

{

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

Sthis->render ('index') ;

}

Next, let's create our main layout in protected/views/layouts/main.php.
For simplicity, we're once again going to use the jQuery and Twitter Bootstrap
styles from publicly available CDNS, as follows:

<!DOCTYPE htmls>
<html>
<head>
<title><?php echo CHtml::encode(Yii::app()->name); ?></title>

<?php Yii::app()->clientScript

->registerMetaTag ('text/html; charset=UTF-8',
'Content-Type')

->registerCssFile('//netdna.bootstrapcdn.com/
bootstrap/3.0.3/css/bootstrap.min.css')

->registerScriptFile('https://code.jquery.com/
jquery.js')

->registerScriptFile('//netdna.bootstrapcdn.com/
bootstrap/3.0.3/js/bootstrap.min.js')

->registerScriptFile('https://maps.googleapis.
com/maps/api/js?sensor=false&key="' . Yii::app()->params['PlacesApi']
['apiKey']) ;

?>
</head>
<body>
<div class="row">
<div class="container">
<nav class="navbar navbar-default navbar-fixed-top
navbar-inverse" role="navigation"s>
<div class="navbar-header">
<?php echo
CHtml: :encode (Yii::app () ->name); ?>
</div>
</navs>
</div>
</divs>
<div class="row" style="margin-top: 100px;">
<div class="container">
<?php echo S$content; ?>
</div>
</div>
</body>
</html>

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Since our application will have only one page, we will register the Google Maps
JavaScript API directly in our layout, as shown in the preceding code. Note that
when we registered this JavaScript file, we included our Google API key, which
we added to the params section of our configuration file:

->registerScriptFile('https://maps.googleapis.com/maps/api/
js?sensor=false&key=' . Yii::app()->params|['PlacesApi'] ['apiKey']) ;

Next, let's create a simple view file for our site/index action in protected/views/
sites/index.php to hold our maps container:

<div class="col-xs-12 col-sm-9">
<div id="map-canvas" style="width: 100%; min-height: 500px"></div>

</div>

Interacting with the Google Maps
JavaScript API

Since Google Maps is a JavaScript API, we need to write some JavaScript code to
interact with it.

To begin, create a new file in /js called Main. js. This JavaScript file will store
all of our JavaScript methods to create and interact with Google Maps. The utility
functions we create here will make interacting with the map easier later on.

Before we start writing any JavaScript, we need to load our JavaScript file from

our layout. To do this, we can register a new script from cclientScript by adding
the following to our call to cClientScript in our main.php file at protected/
views/layouts:

->registerScriptFile(Yii::app()->baseUrl .'/js/Main.js');

Now that our JavaScript file will be loaded, we open up our Main. js file and
create a new JavaScript object called Main:

var Main = {}

Within this object, we need to create three properties: a property to store the
Google Maps object, a property to store any options Google Maps may require,
and a property to store any marker we add to the map:

map : null,
mapOptions : {},
markers : [],

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

Next, we create a function that will actually load the Google Maps object. This
function will need to handle two separate loading cases.

The first case this function will need to handle is the loading of Google Maps without
any map markers. In this situation, we assume the user has arrived at the page for
the first time and has not selected the point of interest that they want to see nearby
locations for. The second case this function will need to handle is the initialization

of the map with a given point of interest centered and focused on.

To handle these two cases, our function will accept a latitude and longitude
location. If the latitude and longitude positions are given to the method, we will
center the map on that location. If they are not provided, we will center the map
on a zoomed-out location of where our data generally lies, which in this case is
the downtown Chicago area:

loadMap : function(lat, lng) {
zoom = 16;
if (lat == undefined && 1lng == undefined)
{
// Lat long of downtown Chicago area
lat = "41.878114";
lng = "-87.629798";

zoom = 13;

}

Then, within the same function, we're going to set our map options and load the map
in the placeholder that we set in our index.php file at protected/views/site:

Main.mapOptions =
zZoom: zoom,
center: new google.maps.Latlng(lat, 1lng),

Vi

Main.map = new google.maps.Map (document.getElementById ("map-canvas"),
Main.mapOptions) ;

So that we can see our map in action, we add the following to our index.php file at
protected/views/site and refresh the page:

<?php $cs->registerScript('loadMap', "Main.loadMap();"); ?>

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Once the page loads, we should see the Google Maps object displayed, as shown in
the following screenshot:

Places Nearby

by St 7 = - S
a | = Gouidy. o]
| ; , W Z 2 square Park | Map | satelite |
| Pulaski Park (+ Goose = =
! ¥ Island i 2 2
Polonia A £l L
W Divigion St Triangle (% {04} W Division St -
Jkrainian i Nea.
Krainia i
Viilage Morth Side Museum of
s & Contemporary.
icago Ave %"'q, MearMorth Art Stare Lake
West T . i
bR Jré; River Narth Streeterville Michigan
wk — WGrand Ave Bickerdike oy -
= Square Park W Kinzie St) Chicago
= 3 Dusable Hgarhor:
7 W Lake St 9 a0
3 = &)
> 2
Ed NF‘W 2 = (w) Lurie Garden
West Side piE
Breekionn 15
3 T CES Ao @ Monre
E s W .\an Buren St Foq MR S o} R T
= 250, ' Eligy g
ey kel Sam et
= i & 8
2 e & Ofis
g ilinais Medical | |- STty ar| g
= BBy Little Italy W Roosevelt A .-,i"lEdU_
y Central gt
Staticn
= Ping. Tom
— X A *
@ o & . Memorial Park o
. Northerl
+ - Wasthst e o 4
z g Near Island
& . 3 South Side
— z & @
= o = Dvorak Park & 2]
g z : ‘ g
& | @ @
> 3 Lower L54) = N
& ojepe) =3 west Side S @
Lty & = = Map dala ©2014 Gougle TenmsolUse

After verifying that our map has loaded, let's head back to our Main. js file and add
a few more utility functions.

First, let's add a simple wrapper to create the Google Maps latitude and longitude
coordinates. This method will help ensure that our Google Maps object loads when
we want to interact with it:

createlLocation : function(lat, lng) {
return new google.maps.LatLng(lat, 1lng) ;

b

Secondly, let's create a function to add map markers. This function will need to

display two types of markers, the first being the selected point of interest and the
second being the nearby points of interest:

addMarker : function(position, title, icon) {
if (icon == true)

{

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

var pinColor = "2F76EE"; // a random blue color that i picked
var icon = new google.maps.MarkerImage ("http://chart.apis.
google.com/chart?chst=d map pin letter&chld=%E2%80%A2|" + pinColor,
new google.maps.Size (21, 34),
new google.maps.Point (0,0),
new google.maps.Point (10, 34));

}
Within the function, we create a new marker object:

var marker = new google.maps.Marker ({
position: position,

title: title,

icon: icon

1
Then, we push this marker object onto the map:

Main.markers.push (marker) ;

Then, we add the marker object to the markers variable that we defined earlier.
This allows us to clear the map if we want to make our application more dynamic:

marker.setMap (Main.map) ;

Finally, let's create a function that will clear the map. This function will iterate
through all of the markers in the markers variable that we defined earlier and
remove the map marker we set with addMarker ():

clearMarkers : function() {
$ (Main.markers) .each (function () {
this.setMap (null) ;

IF;

Main.markers = [];

More information on how to interact with the Google Maps JavaScript
% API v3islocated at https://developers.google.com/maps/
T documentation/javascript/tutorial.

[58]

www.it-ebooks.info

https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial
http://www.it-ebooks.info/

Chapter 2

Searching nearby locations

To search nearby locations, we're going to take advantage of the Google Places
APIL Rather than implementing the API documentation ourselves, as outlined in
https://developers.google.com/places/documentation/, we're going to take
advantage of an open source wrapper for the API located at https://github.com/
joshtronic/php-googleplaces.

To take advantage of this wrapper, we download the repository to our extensions
folder, which should look as follows, once we have downloaded the repository:

protected/
extensions/
GooglePlaces.php

With the wrapper downloaded, we reopen siteController.php and create a
new private method called getPlaces (), which takes a location from our database
as an argument:

private function getPlaces($location) {}

To make Yii aware of this class, we need to first import it using vii: : import ().
This method is preferred over a require or include statement because it both
registers the class with Yii's autoloader and only loads the class once if we use it
multiple times. Since this class wasn't autoloaded in our configuration file, we
need to manually import it here:

Yii::import ('ext.GooglePlaces') ;

How does Yii know that ext . GooglePlaces represents protected/
extensions/GooglePlaces.php? Yii uses path aliases to easily
identify where files and folders are located within our application root.
%j%‘\ This enables us to easily reference these files and folders without having
g to specify an absolute path. You can read more about path aliases at
http://www.yiiframework.com/doc/guide/1.1/en/basics.
namespace.

Next, we instantiate the class with the API key that we created earlier:

Splaces = new GooglePlaces (Yii::app()->params|['PlacesApi'] ['apiKey']);

[59]

www.it-ebooks.info

https://developers.google.com/places/documentation/
https://github.com/joshtronic/php-googleplaces
https://github.com/joshtronic/php-googleplaces
http://www.yiiframework.com/doc/guide/1.1/en/basics.namespace
http://www.yiiframework.com/doc/guide/1.1/en/basics.namespace
http://www.it-ebooks.info/

Discovering What's Nearby

Then, we specify the radius and location that we want to search around:

Splaces->radius = 200;
Splaces->location = array($Slocation->lat, $location->long) ;

. Inadensely populated area with many different shops, it's safe to assume
% that we'd find several results within a 200-meter radius. In a less densely
" populated area, it would be wise to adjust our radius to something much
larger to find nearby results better.

Then, we search for nearby locations:
return S$places->search() ;

With a method in place to perform the search, we now need to update our index
action to call our new method. To do this, we assume that the client is going to
specify which location they want to search around by selecting a location from a
drop-down list and sending us the unique ID we created for the record when we
imported it. Within SiteController.php, we add the following action:

public function actionIndex()

{

Slocation = S$places = array();

if (isset($_GET['id']))

{

$location = Location::model ()->findByPk($_GET['id']) ;
Splaces = $Sthis->getPlaces($location) ;

Sthis->render ('index', array('location' => $location, 'places' =>
Splaces)) ;

}

Selecting a location

Now that our controller can search nearby locations, we need to update our view,
protected/views/site/index.php, with a form to allow the user to select a
location they're inserted in:

<div class="col-xs-6 col-sm-3 sidebar-offcanvas">
<h3>Locations</h3>
<hr />
<form role="form">

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

<div class="form-group"s>
<?php $selected = array('options' => array(isset($_
GET['id']) ? $_GET['id'] : NULL => array('selected' => true))); ?>
<?php echo CHtml::dropDownList('id', array(), CH
tml::listData(Location: :model()->findAl1 (), 'id', 'name'),
CMap: :mergeArray ($selected, array('empty' => 'Select a Location'))):;
?2>

</div>
<button type="submit" class="pull-right btn btn-
primary">Search</buttons>
</form>
<div class="clearfix"></div>
</div>

In the previous code sample, we used CHtml: :listData () to simultaneously
retrieve a list of locations from our database and populate the drop-down menu
with the appropriate ID name pairs to be displayed. Using cHtml: : listData (),
we can ensure that our data is fetched and displayed dynamically based on what
we have in our database.

Showing locations on a map

While our form is functional, we still need to update our view to actually display
the locations on the map. This is where we use the JavaScript code we created
earlier. Before the closing </div> tag of our sidebar, let's load cClientScript

to dynamically register the JavaScript with Yii:

<?php $cs = Yii::app()->getClientScript(); ?>

Now, there are two cases we need to handle. In the first case, the user has arrived
at our site for the first time and simply needs to be shown the map. In the second
case, we need to show a map that is centered around our point of interest. Since
our $places['results'] array will be empty in the first case, we can express
this as follows:

<?php

if (!empty(Splaces['results']))

{

$cs->registerScript ('loadMap', "Main.loadMap ({$location->lat},

{$location->long}) ;") ;

// Center the map with the origin marker
S$lat = Slocation->lat;
Slong = S$location->long;

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

Sname = S$location->name;
Scs->registerScript ('origin', "
Main.addMarker (

Main.createLocation('{$lat}', '{$long}'),
\"{$name}\",
true
) ;
")
}
else
{
Scs->registerScript ('loadMap', "Main.loadMap () ;") ;

}

Let's reload the page and try it out. If a location is selected, a blue marker will
indicate the position on the map. Otherwise, no marker will be shown.

Next, we need to add the nearby locations to the map. To do this, we simply iterate
through the $places['results'] array and register a unique script that will place a
marker on the map. For added clarity for the end user, we also add the item as a text
entry in the sidebar:

<hr />
<h3>What's Nearby?</h3>

<?php foreach (Splaces['results'] as $place): ?>
<?php echo $place['name']; ?>
<?php
// Add the nearby POI's
$lat = $place['geometry'] ['location'] ['lat'];
Slong = $place['geometry'] ['location'] ['1Ing'];
Sname = $place['name'];
$icon = $place(['icon'];
Scs->registerScript ('loadMarker-' . $place(['id'l, "
Main.addMarker (
Main.createLocation('{$lat}', '{$long}'),
\"{$name}\"
)i
")
?>
<?php endforeach; ?>

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

With everything in place, we can now search our locations database and see
nearby locations displayed on the map:

you!

W Polk St

Ma) Satellite
W Polk St P

L) = Dearborn
Station

A~ Colkst
>

Locations

Y USBOEM
m
S

any uebiy

v

S 2eSETS
15 21815 §

- Skate Park (x

T

Janil] 06290
e}

1S B S

0 East-West Q Roosevelt Park v

University
DEHI}OFH“
" @

W 9th St E9th St
What's Nearby?

Roosevelt Park Dearborn Park

§ &
W Taylor 5t g
2 MusEUmE
2] = Campus/11th St
Q Target Clinic Target The Lofis at

A
(T x L Roosevelt Collection South Loop
i Elementary School Target

W Foosavelt Rd W Rooselelt Rd Q Rooseveh [J) | F Roosevelt Rd E Roosevelt Pharmacy Starbucks Herbs Store
Cosmic Kratom Products Chicago
? Cambry Creative D & GLCD TV
Repair Service BaldSEQ, LLC US
0
Jones Park £13th St

+| (=S

Garden
Taylor §

&
-

@

E11th St

S S
any uebIyaIN §

nowAld s
15 e

=) LA fitness

Useqem S

village
Eyecare

any eueIpU| S

1SS S

Chicago Limousine Chicago
E13th St Development Group LLC

Roosevelt Park Artful

Photographer Near South Side

BCRILINE:S

215 S
eqems
v UGN §

Blackbuster

15 190N S

o Map dals B2011 Guugle. Sanbom TermsofUse Reporla map smor

Optimizing the performance with caching

As is often the case with third-party APIs, the Google Places API is a paid-for
resource that comes with a daily courtesy limit (currently at 1,000 requests per day),

which means that every time a user makes a request to our application, we're paying
for it.

However, since the likelihood of a new point of interest being created within the next
few hours, days, or even weeks is pretty small, we can cache this data locally rather
than making a request to Google each time the page is requested. Doing this will not
only save us money, but it will also speed up our application since this data can be
retrieved from a local resource rather than a third-party one.

To do this, we first need to enable a cache in our configuration file. There are several
different caches available for use in Yii, including file-based caches, memcache-based
caching, and a Redis cache. For this application, we'll keep things simple and use
file-based caching. To enable the cache, we add the following to the components
section of our configuration file:

'cache' => array(
'class' => 'CFileCache'

) I

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Discovering What's Nearby

With the cache enabled, we start using it within our application. Let's open up
SiteController.php and replace the getPlaces () method with the following:

private function getPlaces (&$location)
{
// Generate a hash
Shash = md5($location->lat . '-' . $location->long) ;

// Retrieve data from the cache
$cache = Yii::app () ->cache->get ($hash) ;

// If we don't have any cached data, perform a search
// against the API
if ($cache === false)
{
Yii::import ('ext.GooglePlaces') ;
Splaces = new GooglePlaces (Yii::app()->params|['PlacesApi']
['apiKey']l) ;
Splaces->radius = 200;
Splaces->location = array($location->lat, $location->long) ;
Scache = $places->search();
// And store the result in the cache
Yii::app () ->cache->set ($hash, S$cache);

}

return S$cache;

}

Let's walk through what we just did. First, we're going to generate a unique hash
that we'll store our hashes against. To do this, we're going to store the latitude and
longitude of any given location as an mds hash, which should provide sufficient
search space for us to store our results:

Shash = md5($location->lat . '-' . S$location->long) ;

Next, we're going to retrieve the cache result from the cache. In the event that data is
not returned, this method will return false:

Scache = Yii::app()->cache->get ($hash);

If we don't have any value presently stored in the cache, we'll perform a search
against the API:

if ($cache === false) {}

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

After retrieving the results from the API, we then store it against the mds hash that
we generated earlier:

Scache = $places->search();
Yii::app () ->cache->set ($hash, S$cache);

Finally, we return the data:

return Scache;

By adding this cache, our application should perform much better when

multiple users are searching against it, and we reduce the risk of hitting our daily
API limit. If we do need to upgrade our application to one that needs more requests,
we can be confident that we're only paying for what we absolutely need, rather than
for each request.

Summary

Throughout this chapter, we covered a lot of ground. We went over how to integrate
console commands into our application with cConsoleCommand as well as how to
import data into our database from an external source. We also went over how to
integrate with two popular Google APIs: Google Maps and the Google Places APIL.
Additionally, we covered caching the responses of these APIs. Finally, we went over
importing third-party code into our application.

In this chapter and in Chapter 1, A Task-management Application, we went over almost
all the basic components of building a Yii application. In the next chapter, we will
create a scheduling application that will automatically remind the user of events
before they occur'. We'll also expand on all of the topics we covered so far to build
and work with more complex topics. Before continuing, be sure to take a look at all
the classes we referenced in this chapter, in the official Yii documentation, so that
you can better understand them.

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

In the previous two chapters, we developed simple reactionary applications that
went over the basic components of the Yii framework. For our next project, we will
expand upon the concepts previously covered by creating a scheduled reminders
application that will allow our users to search for, create, and schedule both events
and reminders for themselves. This application will also send the user notifications
automatically when the reminder is scheduled to occur.

Prerequisites

Before we start, there are a couple of things that we'll need to install and acquire:

* Install the latest version of MySQL (at the time of writing this, MySQL 5.6).
MySQL is the most popular open source database and is a key part of LAMP
(Linux, Apache, MySQL, and PHP). Because of its popularity with web hosting
providers, MySQL is often the de facto choice for modern web applications.

~ MySQL can be installed from either your distributions package
% management system or downloaded from mysqgl . com. More
L details can be found at http://dev.mysqgl .com/doc/
refman/5.6/en/installing.html.

* Acquire an SMTP server or credentials to an SMTP server for our application
to send e-mails with. The key details that we will need are a SMTP host, port,
username, and password. Depending on the server, you may also need to
know the type of security your server uses (such as SSL or TLS). If you do
not have a SMTP server available, there is an abundant number of options
available, ranging from setting up a Postfix SMTP server, using Gmail as
an SMTP relay, or even obtaining a free SMTP account from SendGrid
(http://www.sendgrid.com).

www.it-ebooks.info

mysql.com
http://dev.mysql.com/doc/refman/5.6/en/installing.html
http://dev.mysql.com/doc/refman/5.6/en/installing.html
http://www.sendgrid.com
http://www.it-ebooks.info/

Scheduled Reminders

* Verify that our PHP instance has mcrypt libraries installed so that we can
properly hash the passwords we'll be using. If your PHP instance already
supports mcrypt, you should see an mcrypt section listed in phpinfo ().

If mcrypt is not enabled in your PHP instance, install it either from your
upstream provider, by enabling the mcrypt module, or by recompiling PHP.

* Finally, we'll need to download and install Composer from https://
getcomposer.org/. Composer is a PHP dependency manager that will allow
us to declare and automatically install libraries that our application will use.

Once we've obtained all of the prerequisites for our application, we can get started
with development.

Describing the project

Our scheduled reminders project can be broken down into four main components:

e Users who will create events and reminders
¢ Events that the user wants to be reminded of
* Reminders for the actual event (of which there could be many)

* A command-line task to process and send out the reminders to the user
via e-mail

Users

The first component of our application is the users who will be using it. Users
will be responsible to create both events and reminders for themselves. The users
will also be the recipients of the reminder e-mails that they created. Using this
information, we can simplify our database schema to the following structure:

ID INTEGER PRIMARY KEY
email STRING

password STRING
created INTEGER
updated INTEGER

In Chapter 1, A Task-management Application, we created a very primitive user
authentication system that we'll be reusing and expanding upon and reusing in

later chapters. In this chapter, we'll develop a system to create, delete, and manage
the passwords of users with our application. We'll also cover several basic guidelines
for properly securing, storing, and working with our users' credentials.

[68]

www.it-ebooks.info

https://getcomposer.org/
https://getcomposer.org/
http://www.it-ebooks.info/

Chapter 3

Events

The second component of our application is events. Events are things that a
particular user wants to be reminded of and will occur at a given time on a given
date. Events should be easy to search through and intuitive to find. Additionally,
events can have one, many, or no reminders associated with them. We can express
this in our database schema, as follows:

ID INTEGER PRIMARY KEY
user id INTEGER

title STRING

data TEXT

time INTEGER

created INTEGER
updated INTEGER

A new concept that we'll be introducing in this chapter is the concept of database
relations. Many times, data in our database will be associated with an attribute or
data in another table of our database. In this case, an event is something that belongs
to a given user. The relations that we create in this application will allow us to easily
represent data in our tables without having to store that data in multiple places.

Reminders

A reminder is a time-sensitive event that belongs to a user-created event and acts
as an indicator to our task runner to notify the user of the details of the event itself.
This can be expressed in our simplified database schema, as follows:

ID INTEGER PRIMARY KEY
event_id INTEGER
title STRING

offset INTEGER

time INTEGER

created INTEGER
updated INTEGER

When we set up our Reminders model, we'll define a relationship between a
reminder and the event. As events are already bound to a user, we can transitively
determine the user a reminder should be sent to without having to add the user_id
field to the reminder itself.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

The final piece of our reminders has to do with how we handle timestamps. In
previous chapters, timestamps served only as metadata to specific records. Our
reminders, however, will have to take into account the time that an event will be
triggered, which means that we'll be involving time zones. While using UTC solves
a lot of the issues when dealing with time, our reminders have to be aware of what
the time offset is for a particular reminder.

For our application, that means we'll need to store the time that the end user will
see in addition to either the time zone offset of the user or a conversion of that time
into the real UTC time.

The task runner

The final component of our application is the task runner that will find reminders

that need to be sent out and actually send them out to the user. While there are many
ways to go about creating this task runner, we will be creating a command-line task
that will run repeatedly after n minutes and will process all events between the trigger
time and the provided interval in minutes. This approach will allow us to define how
frequently or infrequently we want our reminders to be processed without having to
rewrite code.

Initializing the project

At this point, you should be fairly familiar with how to initialize a basic Yii
framework project. Go ahead and create the base folder structures, and create the
index.php, yiic, yiic.bat, and yiic.php files. Then in the webroot directory of
our application, create a folder called vendors. This folder will be used for all of
our Composer dependencies for us.

Create a MySQL user and database

If you haven't already created a MySQL user, password, and database for the project,
do so now. From the MySQL command line, you can run the following commands to
do this:

CREATE USER 'ch3_reminders'@'localhost' IDENTIFIED BY 'ch3_reminders';
CREATE DATABASE IF NOT EXISTS \Ch3_reminders\;

GRANT ALL PRIVILEGES ON \ch3_reminders\ . * TO 'Ch3_
reminders'@'localhost’';

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Creating a Yii configuration file

Our Yii configuration file will be slightly different than our previous configuration
files due to the use of our MySQL database. We'll start off with the base configuration
protected/config/main.php and add the new components afterwards:

<?php return array(
'basePath':>dirname(__FILE__).DIRECTORY_SEPARATOR.'..',
'name'=>'Scheduled Reminders',
'import'=>array (
'application.models.*',
)
'components'=>array (

'errorHandler'=>array (
'errorAction'=>'site/error'’,
),
'urlManager'=>array (
'urlFormat'=>'path',
'showScriptName'=>false,
'rules'=>array(
'/ => 'event/index',
'event/date/<date: [\w-]1+>' => 'event/index',
'<controller:\w+>/<action:\w+>/<id:\d+>'=>"'<controller>/<action>"',
<controller:\w+>/<action:\w+>'=>'<controllers>/<actions>"')

)

)i

In order for our application to interact with MySQL, we'll need to update the database
component so that Yii knows how to use the MySQL PDO adapter. We can do this by
adding the following to our components array:

'db' => array(
'class' => 'CDbConnection',
'connectionString' => 'mysgl:host=127.0.0.1;dbname=ch3 reminders',
'emulatePrepare' => true,
'username' => 'ch3 reminders',
'password' => 'ch3 reminders',
'charset' => 'utfsg’',
'schemaCachingDuration' => '3600'

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

In this configuration, we've added schemeaCachingDuration, which
outlines how long Yii will cache our MySQL schema. This will prevent
unnecessary SQL commands, such as DESCRIBE TABLE, which will
% slow down our application. It's important to note that if you are using
T~ this option, you'll need to clear Yii's internal cache. You can find out
more about MySQL-specific database configuration at http://www.
yiiframework.com/doc/api/1.1/CDhbConnection

Creating a parameters configuration file

Many times, we have sensitive information we'd like to store in our configuration
file that we wouldn't necessarily want to store with our version control software for
security reasons. One way we can get around this is by storing this information in a
separate file and then excluding it from being committed to source control. When
we deploy our application to our production servers, we can manually add this file.

In Yii, we can accomplish this by adding the following to our base array of our
configuration file:

'params' => array(
'smtp' => require DIR . '/params.php'
)

Next, create a new file in the config folder called params . php. This file will store
our SMTP credentials for our application. Have a look at the following code:

<?php return array(

'host' => '!',
'username' => '"',
'password' => '"',
'from' => '',
'port' => '!

)i

At this time, go ahead and add your SMTP credentials to the params. php file.

Adding Composer dependencies

The last configuration change we'll need to make is the inclusion of a file called
composer . json in our webroot directory. For this project, we'll be using a dependency
called pHPMailer that will help us send e-mails from our application. We'll also
include a package called password-compat, which will provide us with the necessary
userland functions for working with Berypt, a password hashing library that we'll
cover in more detail when we start working with users and authentication.

[72]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CDbConnection
http://www.yiiframework.com/doc/api/1.1/CDbConnection
http://www.it-ebooks.info/

Chapter 3

This file should look as follows:
{

"minimum-stability" : "dev",

"require": {
"phpmailer/phpmailer": "dev-master"
"ircmaxell/password-compat": "dev-master"

}

With our Composer dependencies defined, we can now install them by running the
following from our command line:

cd /path/to/project
php /path/to/composer.phar

If everything goes well, you should see something similar outputted to your screen.
If not, Composer will return and notify you of the error for you to correct:
Loading composer repositories with package information
Installing dependencies (including require-dev) from lock file
- Installing phpmailer/phpmailer (dev-master £9d229a)
Cloning £9d229af549d28d4c9£fdd3273bf6525cde3bc472

Generating autoload files

Finally, we need to load the dependencies into Yii. The easiest way to do this is to
add the following to our index. php file before require_once ($yii):

require once(_ DIR . '/vendor/autoload.php');

Creating the database

With our dependencies and configuration files in place, we can now create our
database. Using the yiic command, create a migration called users and a migration
called reminders.

The users migration

The users migration will create the users database and ensure that no duplicate
e-mail address can be entered at the database level. Within the protected/
migrations folder, open up the users migration:

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

In the up () method, add the following:

Sthis->createTable('users', array(
rig! => 'pk',
'email! => 'string',
'password’ => 'string',
'created’ => 'integer',
'updated’ => 'integer'

You may notice that the column types we selected do not match up with
MySQL column types. This is because we are allowing Yii to determine
the appropriate column type for the database adapter we are using. This

+ allows interoperability between multiple database drivers, meaning that

%ji\ we could seamlessly swap the underlying database technology from a
g MySQL database to a SQLite or Postgres database without having to

change our migrations. The Yii manual has more information about
valid column types at http://www.yiiframework.com/doc/
api/1l.1/CDbSchema#fgetColumnType-detail.

Next, we want to create a unique index on the email column, which we can do
as follows:

Sthis->createIndex('email index', 'users', 'email', true);
Finally, in the down () method, add a call to drop the users table:

Sthis->dropTable ('users') ;

The reminders and events migration

Now, we'll create reminders and events migrations that will create the reminders
and events table in our database. These two tables will store the bulk of the data
for our application.

1. In our reminders migration, add the following to the up () method to
create the events table:

Sthis->createTable('events', array(
lidl => |pk|’
'user id' => 'integer',
'title! => 'string',
[74]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CDbSchema#getColumnType-detail
http://www.yiiframework.com/doc/api/1.1/CDbSchema#getColumnType-detail
http://www.it-ebooks.info/

Chapter 3

'data' => 'text',

'time' => 'integer',
'created’ => 'integer',
'updated' => 'integer'

))

2. Then create a foreign key relationship between events and users:

$this->addForeignKey ('event users', 'events',6 'user_ id', 'users',
'id', NULL, 'CASCADE', 'CASCADE') ;

3. Then create the reminders table, as follows:

Sthis->createTable ('reminders', array(
ridr => 'pk',

'event id! => 'integer',

'offset’ => 'integer',

'time' => 'integer',

'created’ => 'integer',

'updated' => 'integer'

));
4. Finally, create a foreign key relationship between reminders and events:

Sthis->addForeignKey ('reminder events', 'reminders', 'event id',
'events', 'id', NULL, 'CASCADE', 'CASCADE');

Notice that for both foreign keys, we want everything to be removed if a parent
record is removed. For instance, if we delete an event, all reminders associated with
that event should be removed as well. And if a user is deleted, all events and all
reminders associated with those events should also be removed.

Then, to the down () method, add the following to drop the foreign keys and the
tables. Once data has been added to our database, we won't be able to drop the
tables until the foreign key relationships have been removed:

$this->dropForeignKey ('event users',6 'events');
$this->dropForeignKey ('reminder events', 'reminders');
Sthis->dropTable ('events') ;

Sthis->dropTable ('reminders') ;

Once everything has been added, apply the migrations.

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

Creating models

By now, you should be familiar with using the Gii tool to create models for our
newly created tables. Go ahead and create the models for Users, Reminders, and
Events. After creating each model, there are several changes we need to make to
each of them.

Model behaviors

The first change that will need to be made to our newly created models is the
automatic setting of the created and updated timestamp. In previous chapters, we
modified the beforesave () method to do this; however, Yii provides an easier way
to implement this feature that is database-agnostic and reduces the amount of code
we have to add to our models. To do this, we are going to attach a behavior to each
of our models.

Behaviors in Yii are objects that have methods that can be attached to a component
(in our case, a model). These behaviors then listen for certain events on the attached
component (such as the beforesave () method) and execute when that event

is triggered.

The behavior that we'll be adding to each of our models is called cTimestampBehavior
and provides the necessary tools to automatically set the created and updated time. To
attach this behavior, simply add the following method to our Users. php, Events.php,
and Reminders . php files within the protected/models directory:

public function behaviors/()
{
return array (
'CTimestampBehavior' => array(

'class' => 'zii.behaviors.CTimestampBehavior',
'createAttribute’ => 'created',
'updateAttribute’ => 'updated',
'setUpdateOnCreate' => true

More information about CTimestampBehavior can be found in

the Yii documentation available at http: //www.yiiframework.
’ com/doc/api/1l.1/CTimestampBehavior/.

[76]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CTimestampBehavior/
http://www.yiiframework.com/doc/api/1.1/CTimestampBehavior/
http://www.it-ebooks.info/

Chapter 3

The Users model

The first change we'll need to make to our Users model is the definition of the
relations between users and events. If you used Gii to generate the models, it must
have prepopulated the relations () method for you. Otherwise, add the following
method to the Users.php model at protected/models/:

public function relations()

{

return array (
'events' => array(self::HAS MANY, 'Events',6 'user id'),
)i

Next, we'll need to add a private attribute to our model that will store the old
attributes of our model so that we can compare previous values to changed values
without having to requery the database. Have a look at the following line of code:

private $_ oldAttributes = array();

We can automatically populate this attribute by adding an afterFind () method to
our model:

public function afterFind()
{
if ($this !== NULL)
$this-> oldAttributes = $this-s>attributes;
return parent::afterFind() ;

}

Finally, we'll want to add a beforeSave () method to our model that will not modify
the user's password if we change the user's e-mail address, and that will properly
encrypt the password if we do change it:

public function beforeSave ()
{
if ($this->password == NULL)
$this->password = $this-> oldAttributes|['password'l];
else

$this->password = password hash($this->password, PASSWORD
BCRYPT, array('cost' => 13));

return parent::beforeSave() ;

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

Bcrypt password hashing

When storing passwords in a database, it is extremely important that you store those
passwords in such a way that makes it easy for us to verify that the user provided the
right password but makes it difficult for attackers to guess the password. Since most
users use the same e-mail address and password for all their online identities, it's
extremely important that we keep that information as secure as possible.

One way of doing this is by using a symmetric block cipher cryptographic
algorithm, such as Berypt. Berypt converts plain text passwords into a hash with

a salted value, iterated multiple times as defined by a cost factor. When using
Berypt, the cost factor increased the work effector required to both generate and
verify a password. By increasing the time it takes to generate and verify passwords,
we can make a brute force attack very costly to a potential attacker. This cost factor
also allows us as developers to adjust the difficulty of the password over time as
computing power increases.

You can read more about the password functions that were introduced in
i PHP 5.5 athttp://us2.php.net/manual/en/ref.password.php.

The Reminders model

Next, we need to make a few changes to our Reminders model. First, let's verify
that the relations have been properly set up. In protected/models/Reminders.php,
add the following:

public function relations()

{

return array (
'event' => array(self::BELONGS_TO, 'Events',6 'event id'),
)i

Then, add a beforevalidate () method to convert the user submitted time to an
integer timestamp and to store the offset time as UTC in our database:

public function beforevValidate ()

{
Sthig->time = (int)strtotime(Sthis->time) ;
Sthis->offset = (Sthis->offset*60 + Sthisg->time);

return parent::beforevalidate() ;

[78]

www.it-ebooks.info

http://us2.php.net/manual/en/ref.password.php
http://www.it-ebooks.info/

Chapter 3

The Events model

Next, we're going to add and update several methods in our protected/models/
Events.php model. The steps are as follows:

1. First verify that the relations have been properly set up:

public function relations()
{
return array(
'user' => array(self::BELONGS_TO, 'Users',6 'user_id'),
'reminders' => array(self::HAS MANY, 'Reminders',6 'event
id"),
)i
}

2. Then add abeforevalidate () method to automatically adjust the
submission and time and to automatically set the user to the currently
logged-in user:

public function beforeValidate ()

{

Sthis->time = (int)strtotime(Sthis->time) ;

// Set the user id to be the current user
Sthis->user id = Yii::app()->user->id;

return parent::beforevValidate() ;

. Yii::app()->user is areference to a CWebUser object that will

% handle the identity of our user once we are authenticated. To read

L more about CWebUser, check out http://www.yiiframework.
com/doc/api/1l.1/CWebUser.

3. Next, add the following getter method to our model. This method will
allow us to retrieve the requested data from the URL to search against
our events database:

private function getDate ()

{
if (isset($ _GET['date']))
return $ GET['date'];

return gmdate ("Y-m-d") ;

[79]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CWebUser
http://www.yiiframework.com/doc/api/1.1/CWebUser
http://www.it-ebooks.info/

Scheduled Reminders

4. Then, we're going to update our model's search () method to enable us to
search for all events that occur between a certain time, specifically over the
period of a single day. Modify the method signature to look as follows:

public function search($Sbetween = false)

5. Then, add the following before the method returns:

if ($Sbetween)

Scriteria->addBetweenCondition('time', strtotime(Sthis-
>getDate() . ' 00:00:00'), strtotime($Sthis->getDate() . '
23:59:59'"));

Searching for events and displaying them

Before we get too involved with our controllers, let's take a look at what our
frontend will look like to search for and display events as it will help to explain the
model changes to the Events model and will help us identify what we still need to
implement. Have a look at the following screenshot:

« < Feb 2014 > »

Sat Sum Mon Tue
16

Sunday February 16 2014 test

Reminders

m test 2014-02-16 15:55 x
UPDATE EVENT

Our frontend view is broken down into several different components. First, we have

a button in the top-right corner that should link to a simple CRUD form to create and
update events. We also have a month and year picker that shows the current selected
year and allows us to advance forwards or backwards in time by one month or one
year increments. Directly below that, we have a date picker that shows the currently
selected date (or the current date if none is selected) with fifteen days on each side of it.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

On the left-hand side, we have the currently selected date displayed in text, followed
by a sorter for both time and title of the events displayed below it, which occur on
the selected day.

Finally, on the right-hand side, we have an Ajax view, which will appear when

an event is clicked on showing the event details as well as all reminders associated
with that event with some extra functionality to immediately remove that reminder.
Additionally, we'll be providing the user with a link to edit the selected event.

To achieve this level of functionality, we're going to have to create a custom list
view, which will extend cListView, add a custom URL route, and create several
new controller methods. Let's get started.

Custom routing for dates

The first change that we'll need to make is a change to the urlManager in our main
configuration file. Within the urlManager['rules'] array, add the following route:

'event/date/<date: [\w-]1+>' => 'event/index',

This custom route will allow us to arbitrarily set a date string in the URL and
pass it as a $_GET parameter automatically to the indexAction () method of our
EventController class, which we will create shortly.

Creating the controller for events

Let's move on to our EventController. This controller will handle all of the actions
necessary for working with events in our application. Create a new file in protected/
controllers called EventController.php that has the following class definition:

<?php class EventController extends CController{}
Perform the following steps:

1. The first method we should create is our indexAction (). The $_GET
parameters passed to this method will determine what events will ultimately
be displayed on the page. To do this, we'll take advantage of our event model's
search () method. When searching, we'll also want to ensure that we only
display data for the currently logged-in user:

public function actionIndex ()

{

smodel = new Events('search');
Smodel ->unsetAttributes() ;

if (isset($_GET['Events']))

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

$model->attributes = $ GET['Events'];
$model->user id = Yii::app()->user->id;

Sthis->render ('index', array('model' => $model)) ;

}

2. Next, we need to create a utility method to load our model by a given
primary key. We'll be using this method throughout our model:

private function loadModel ($id)

{
if ($id == NULL)
throw new CHttpException (400, 'Bad Request') ;

Smodel = Events::model () ->findByPk($id) ;

if ($Smodel == NULL)
throw new CHttpException (404, 'No model with that ID was
found') ;

return Smodel;

}

3. Finally, we need to create an AJAX method to display the details of a
particular event within our list view:

public function actionDetails($id = NULL)

{

if (Yii::app()->request->isAjaxRequest)

{

Smodel = S$Sthis->loadModel ($id) ;

Sthis->renderPartial ('details', array('model' => $model)) ;
Yii::app()->end() ;

}

Throw new CHttpException (400, 'Bad Request');

}

4. While we are in our EventController, it's worthwhile implementing
the remaining functionality necessary to both save and delete events.
Our save () method will simply accept the $_PoST input from the view
file and should look as follows:

public function actionSave ($id = NULL)
{
if ($id != NULL)
Smodel = S$Sthis->loadModel ($id) ;
else
Smodel = new Events;

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

if (isset (s _POST['Events']))

{

$model->attributes = $ POST['Events'];

if ($model->save())
Sthis->redirect (Sthis->createUrl ('/event/save',
array('id' => $model->id)));

}

Sthis->render('save', array('model' => Smodel)) ;

}

5. Finally, there's our delete () method, which will facilitate the deletion of
events:

public function actionDelete($id = NULL)

{

Smodel = Sthis->loadModel ($id) ;

if (Smodel->delete())
$this->redirect ($this->createUrl ('/event')) ;

throw new CHttpException (400, 'Bad Request');

Creating the reminders controller

The next controller we'll want to implement is our ReminderController.
Unlike our EventController, this controller should only serve AJAX responses
and won't require any views.

We'll start by creating a new file at protected/controllers called
ReminderController.php and have the class extend cController.
Perform the following steps:

1. First, we'll want to make sure that only POST requests are sent to this
controller. An easy way to force all requests to the controller to be POST
requests is by checking the request type before each action runs. We can
implement that check by using the beforeaAction () method:

public function beforeAction ($action)

{
if (!Yii::app()->request->isPostRequest)
throw new CHttpException (400, 'Bad Request');

return parent::beforeAction($Saction) ;

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

2. Next, we should implement a method to load a particular reminder and
another method to verify that we have access to the associated event for a
particular reminder, as follows:

private function loadEvent ($Sevent id)

{

Sevent = Events::model () ->findByPk ($Sevent id);
if ($Sevent == NULL)
return false;

if (Sevent->user id != Yii::app()->user->id)
return false;

return true;

private function loadModel ($id)

{
if ($id == NULL)
throw new CHttpException (400, 'Bad Request');

Smodel = Reminders::model () ->findByPk ($id) ;

if ($Smodel == NULL)
throw new CHttpException (404, 'No model with that ID was
found') ;

return Smodel;

}

3. We'll then add in the functionality necessary to delete a reminder:
public function actionDelete($id = NULL)

{

smodel = $this->loadModel ($id) ;

if (!$this->loadEvent ($model->event id))
return false;

if (Smodel->delete())

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

return true;

throw new CHttpException (400, 'Bad Request');

}

4. Finally, we'll add in the functionality necessary to save and modify
a reminder:

public function actionSave ($id = NULL)

{
if ($id != NULL)
Smodel = S$Sthis->loadModel ($id) ;
else
Smodel = new Reminders;

if (isset (s _POST['Reminders']))

{

$model->attributes = $ POST['Reminders'];

if (!$this->loadEvent ($model->event id))
return false;

if ($model->save())
return true;

else
throw new CHttpException (400, print r($model-
>getErrors (), true));

}

return true;

}

Our save () method is built to allow reminders to both be created and modified
through a single action rather than multiple actions.

Creating the layout

The first view that we should implement is our main.php file at views/layouts/.
Since this file will look identical to the layout we created in the previous two
chapters, copy the views/layouts/main.php file from the project resources
folder into your application.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

Creating the main view

Next, we'll implement our list view that will display all of our events. To do this,
we'll be extending the cListView class. Perform the following steps:

1.

First, create the view file index.php in protected/views/events that

will call this custom class, and then add a button to allow the user to

create a new event:

<?php echo CHtml::link('Create New Event',6 S$this->createUrl('/
event/save'), array('class' => 'pull-right btn btn-primary')); ?>
<div class="clearfix"></div>

Then, add the following to implement the list view. First, we'll need to
instantiate a new widget that will contain our custom list view:

<?php Sthis->widget ('application.components.EventListView', array(

After that, we'll need to specify dataProvider that will populate our model.
This is where our previous changes to the event model's search () method
come into play:

'dataProvider'=>3Smodel->search (true),

Next, we'll want to specify the template that our list view will use and also
the element tag our list view should be contained in:

'template' => '{items}',

'itemsTagName' => 'ul',

Then, we'll enable sorting with the list view and specify which model
attributes can be sorted against:

'enableSorting' => true,
'sortableAttributes' => array(
'time',
'title!

).

Finally, we'll need to specify itemview, which will define what each
item in our list will look like:

'itemView'=>' event'

))

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

At the end of this file, we should also register the CSS that will be used to make our
view look pretty in addition to creating the CSS file /css/calendar.css so that Yii
doesn't throw an error during the next steps. Please refer to the source code of this
chapter to retrieve the calendar.css file:

Yii::app()->clientScript->registerCssFile(Yii::app()->baseUrl . '/
css/calendar.css') ;

Creating the item view

The next file that we need to create is our itemview file, protected/views/
events/ event.php, as follows:

<li class="event" data-attr-id="<?php echo S$data->id; ?>">

<div class="time"><?php echo gmdate ("H:i", S$data->time); ?></div>
<h2 class="title"><?php echo CHtml::encode ($data->title); ?></h2>
</1lis

To save some time later, let's go ahead and implement a view to show the details
of a particular event in protected/views/events/details.php. We'll add the
JavaScript bindings to show this when we create EventListView. Grab this file
from the project resources folder, and add it into your application.

Creating the event list view

With our views in place, we now need to implement our EventListView that will
display our calendar picker and our events. The steps are as follows:

1. To do this, create a new file in protected/components called
EventListView.php. This class should extend cListView, which we will
have to explicitly load to make Yii aware of it. By extending cListView,
we immediately get access to several useful functions, such as sorting and
displaying our events:
<?php
Yii::import('zii.widgets.CListView') ;
class EventListView extends CListView {}

2. Next, we'll need to create another custom getter to retrieve the current date
from the URL.:

public function getDate ()

{
if (isset($_GET['date']))
return $ GET['date'];

return gmdate ("Y-m-d") ;

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

3.

Now, we're going to overload the CListView renderItems () method,
which will allow us to display our events as we like. To do this, create the
renderItems () method, as follows:

public function renderItems ()
{

echo CHtml::openTag('div', array('class' => 'event
container')) ;

echo CHtml::closeTag('div');

}

Within the events_container div that we just created, we need to add our
month/year picker. These links will determine what the next and previous
month and year are by the current date, which it will retrieve from the
getDate () method we defined earlier:

echo CHtml::openTag('div', array('class' => 'month year picker'));

echo CHtml::1link (NULL, $this->controller-s>createUrl('/event',
array('date' => gmdate("Y-m-d", strtotime(Sthis->date ." previous
year")))), array('class' => 'fa fa-angle-double-left pull-left'));

echo CHtml::1link (NULL, $this->controller-s>createUrl('/event',
array('date' => gmdate("Y-m-d", strtotime(Sthis->date ." previous
month")))), array('class' => 'fa fa-angle-left pull-left'));

echo CHtml::tag('span', array(), date('M Y', strtotime (Sthis-
>date))) ;

echo CHtml::1link (NULL, $this->controller-s>createUrl('/event',
array('date' => gmdate("Y-m-d", strtotime(Sthis->date ." next
year")))), array('class' => 'fa fa-angle-double-right pull-
right'));

echo CHtml::1link (NULL, $this->controller-s>createUrl('/event',
array('date' => gmdate("Y-m-d", strtotime(Sthis->date ." next
month")))), array('class' => 'fa fa-angle-right pull-right'));

echo CHtml::closeTag('div');

Immediately following this closing div, we then need to add our date picker
that will show 15 days on each side of the currently selected date. We can
implement that as follows:

echo CHtml::openTag('div', array('class' => 'day picker'));
echo CHtml::openTag('ul') ;
Sthis->renderDays (gmdate ('Y-m-d', strtotime($this->date . '
-15 days')), S$this->date);
$this->renderDays ($this->date, gmdate('Y-m-d',
strtotime ($this->date . ' +15 days')));
echo CHtml::closeTag('ul');
echo CHtml::closeTag('div');

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

6. To make our lives easier, we can create a utility method that will display a
range of dates for us automatically, called renderDays (). This will allow
our code to be more readable and easier to debug should we need to. This
method should accept two arguments: a start date and an end date:

private function renderDays ($start, $end)

{

Sstart = new DateTime ($start) ;

Send = new DateTime ($Send) ;

Sinterval = new DateInterval ('P1D') ;

Speriod = new DatePeriod($start, $interval, S$end);

foreach ($period as $dt)
Sthis->renderDay ($dt->format ('Y-m-d')) ;

}

7. Then, we'll need to create another utility method to display a particular
date and provide a link to it:

private function renderDay ($date)

{

Sclass = 'day';
if ($this->date == $date)
Sclass .= ' selected';

echo CHtml::openTag('li', array('class' => S$class));
echo CHtml::tag('span', array('class' => 'day string'),
gmdate ('D', strtotime($date)));

echo CHtml::link(date('d', strtotime($date)), Sthis-
>controller->createUrl ('/event', array('date' => gmdate('Y-m-4d',
strtotime(sdate)))), array('class' => 'day date'));

echo CHtml::closeTag('li');

}

The final part of our custom view is a container to display the sorter, the items, and
the details for a particular item. We should add the day_picker div immediately
that we opened earlier. Because we took advantage of CListView, we can simply
reference the parent class' renderItems () method to display all of our items, and
the parent class' rendersSorter () method to display the sorter according to the
configuration we passed in our index view:

echo CHtml::openTag('div', array('class' => 'outer container'));
echo CHtml::openTag('div', array('class' => 'inner container'));
echo CHtml::openTag('div', array('class' => 'selected date'));
echo CHtml::tag('span', array('class' => 'selected date_
date'), gmdate ("l F d Y", strtotime($this->date)));
echo CHtml::closeTag('div');

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

$this->renderSorter () ;
parent: :renderItems () ;
echo CHtml::closeTag('div');

// Details container is populated via Ajax Request

echo CHtml::tag('div', array('class' => 'details'), NULL) ;

echo CHtml::tag('div', array('class' => 'clearfix'), NULL);
echo CHtml::closeTag('div');

Then, let's add some AJAX to display the details of an event when we click on an
event and to remove a reminder if the event has any attached to it. We can add this
right before we close our renderItems () method:

Yii::app()->clientScript->registerScript ('1li click',
$(".items 1i") .click (function() {
var id = $(this).attr("data-attr-id");
$.get ("/event/details/" + id, function(data) ({
$(".details") .replaceWith(data) ;

$(".fa-times") .click (function() {
var id = $(this) .parent () .attr("id");
var self = $(this) .parent();
$.post ("/reminder/delete/id/" + id, function() {
S (self) .remove () ;

1

Once you've added the CSS from the calendar. css file in the associated project
source code, our view should be complete. Have a look at the following screenshot:

sat i
u

&< Feb 2014 B

Saturday February 22 2014

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Creating and saving events

Now that we have a way to display events, we need to actually create them. This view
will allow us to both save events as well as dynamically add multiple reminders to an
existing event. Begin by creating protected/views/events/save.php, as follows:

1.

First we're going to create the functionality necessary to modify the core
attributes of the event: the title, date, and time:
<h3><?php echo $model->isNewRecord ? 'Create New' : 'Update'; ?>
Event</h3>
<?php S$form=sthis->beginWidget ('CActiveForm', array (
'id'=>'project-form',
'htmlOptions' => array(
'class' => 'form-horizontal',
'role' => 'form'
)
)) i 2>

<?php echo s$form-s>errorSummary (Smodel); ?>

<div class="form-group">
<?php echo $form->labelEx(Smodel, 'title', array('class' =>
'col-sm-2 control-label')); ?>
<div class="col-sm-10">
<?php echo $form->textField(smodel, 'title', array('class'
=> 'form-control')); ?>
</div>
</div>

<div class="form-group">
<?php echo $form->labelEx(Smodel, 'data', array('class' =>
'col-sm-2 control-label')); ?>
<div class="col-sm-10">
<?php echo $form->textArea($model, 'data', array('class'
=> 'form-control')); ?>
</div>
</div>

<div class="form-group">

<?php echo $form->labelEx(Smodel, 'time', array('class' =>
'col-sm-2 control-label')); ?>

<div classg="col-sm-10">

<div class="input-append date">
<?php echo $form->textField(Smodel, 'time',

array ('value' => Smodel->isNewRecord ? NULL : gmdate('Y-m-d
H:i:s', Smodel->time), 'class' => 'form-control')); ?>

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

</divs>
</div>
</divs>

2. Next, we'll want to display all of the reminders attached to our event if
the event has been created. Since we've already established a relationship
between reminders and events, we can do this simply by iterating through
the $events->reminders relations, which will be populated with all of the
reminders associated with our event:

<?php if (!$model->isNewRecord): ?>
<input type="hidden" id="event id" wvalue="<?php echo $model-
>id; ?>" />
<hr />
<h3>Reminders</h3>
<div class="reminders_ container"s>
<?php foreach (Smodel->reminders as Sreminder): ?>
<div class="form-group">
<?php echo CHtml::tag('label', array('class' => 'col-
sm-2 control-label'), 'Reminder'); °?>
<div class="col-sm-9">
<?php echo CHtml::tag('input', array(

'id' => Sreminder->id,
'name' => 'Reminders[' . Sreminder->id . ']
[time] ',
'class' => 'form-control',
'value' => gmdate('Y-m-d H:i:s', Sreminder-
>time)
), NULL); ?>

</div>

</div>
<?php endforeach; ?>
</div>
<?php endif; ?>

3. Within this i £ clause, we'll also want to create a template reminder that we
can attach and clone with JavaScript. This will allow us to create as many
reminders as we want for our events:

<div class="form-group template" style="display:none">
<?php echo CHtml::tag('label', array('class' => 'col-sm-2
control-label'), 'Reminder'); ?>
<div class="col-sm-9">
<?php echo CHtml::tag('input', array(
'id' => NULL,
'name' => 'Reminders[0] [time] ',

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

'class' => 'form-control'
), NULL); ?>
</divs>
</div>

4. Finally, we need to add some buttons and close our widget:

<div class="row buttons">
<?php echo CHtml::submitButton ($model->isNewRecord ? 'Create'
'Save', array('class' => 'btn btn-primary pull-right col-md-
offset-1')); ?>

<?php if (!Smodel->isNewRecord): ?>
<?php echo CHtml::link('Delete Event', $this->createUrl('/

event/delete', array('id' => S$model->id)), array('class' => 'btn
btn-danger pull-right col-md-offset-1')); ?>
<?php echo CHtml::1link('Add Reminder',6 '#',6 array('class' =>
'btn btn-success pull-right', 'id' => 'add reminder')); °?>
<?php endif; ?>
</divs>
<?php $this->endWidget(); 2>

In its present state, our time fields aren't very user friendly as the user has to
manually enter a specific date timestamp, such as 2014-02-21 19:50:00. To make
this experience easier on our users, we can download a plugin from GitHub called
bootstrap-datetimepicker. Simply clone the repository to the /js directory

of the application using git or download the package directly:

git clone https://github.com/smalot/bootstrap-datetimepicker

Then, register the relevant CSS and JavaScript:

<?php Yii::app()->clientScript->registerCssFile(Yii::app()->baseUrl

'/js/bootstrap-datetimepicker/css/bootstrap-datetimepicker.min.css') ;

?>

<?php Yii::app()->clientScript->registerScriptFile(Yii: :app()->baseUrl
'/js/bootstrap-datetimepicker/js/bootstrap-datetimepicker.js’',

CCLientScript::POS_END); ?>

Finally, we can add the JavaScript bindings necessary to display the date time picker
and to dynamically add new reminders. Within the project resources folder, copy
the remaining JavaScript code from the save.php file at protected/views/events/
into this file.

Since we've already created all the necessary controller actions to save and display
events, we can now create and modify new events, add reminders, and view them
in the interface that we built earlier. Check it out!

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

Creating the controller to manage users

Next, we'll need to implement the necessary methods to create and modify users
within our application. Since our users table doesn't have any concept of roles
yet, we'll manage our users from the command line through cconsoleCommand.
This method will ensure that only authenticated users (users who have access to
our server) can modify the user's information. In a real-world application, this
functionality can be moved to a secured UsersController in our application.

Creating users

To start with our user management, create a new console command in protected/
commands/UserCommand . php, and add the following:

<?php class UserCommand extends CConsoleCommand {}

The cconsoleCommand class is very similar to our controllers. In that, we can define
actions that we want to run as well as any parameters that we want added. The first
action we should create is an action to create our users. Since we've already set up
our Users model to handle the appropriate password hashing, we can simply use
the following;:

public function actionCreateUser ($email, S$password)
{
$model = new Users;
$model->attributes = array(
'email' => $Semail,
'password' => $password
)i

if (!Smodel->validate())

echo "Missing Required Attribute\n";
else
{

try {
if ($model->save())

echo "User Created\n";
else
print_r($model->getErrors) ;

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

return;
} catch (Exception $e) ({
print r(sSe->getMessage()) ;

}
We can then create new users from the command line, as follows:

php protected/yiic.php user createuser --email=test@test.com
--password=passwordl23

If successful, the command will output User Created; otherwise, it will return
an error.

Deleting users

Deletion of users can also be a callable action that takes a user's e-mail address as
an argument:

public function actionDeleteUser ($Semail)

{

$model = Users::model ()->findByAttributes (array('email' =>
Semail)) ;

if ($Smodel == NULL)
echo "No user with that email was found.\n";
return O;

if ($Smodel->delete())

echo "User has been deleted.\n";
else

echo "User could not be deleted.\n";

}

We can then call the action we just created by running the following command from
our command line:

php protected/yiic.php user deleteuser --email=test@test.com

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

Changing the user's password

Next, we'll want to provide the functionality to change a user's password. Before
we change the user's password, we need to verify the user's identity. Usually, we
accomplish this by verifying that they have the password to their account. We can
implement this, as follows, within protected/commands/UserCommand . php:

public function actionChangePassword ($email, $oldPassword,

SnewPassword)
{

Smodel = Users::model ()->findByAttributes (array('email' =>
Semail)) ;

if ($Smodel == NULL)

{

echo "No user with that email was found.\n";
return 0O;

if (password verify($oldPassword, $model->password))
{

$model->password = password hash ($newPassword, PASSWORD BCRYPT,
array('cost' => 13));

if ($model-s>save())

echo "Password has been changed.\n";
else

echo "Password could not be changed.\n";

}

else
echo "Unable to Verify 0ld Password.\n";

}

Once again, we're taking advantage of PHP's password_* functions, which include
the ability to verify a password:

if (password verify($oldPassword, s$model-s>password))

Assuming the user's password is valid, we can then hash the password they
provided on the command line and store it with the model:

$model->password = password hash ($newPassword, PASSWORD BCRYPT,
array('cost' => 13));

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

From the command line, this command can be run as follows:

php protected/yiic.php user changepassword --email=test@test.com
- -oldpassword=passwordl23 --newpassword=newsecurepassword

i While managing users from the command line is simple, it isn't very
% secure because user's passwords may be stored in plain text in your
=" terminal's command history. In a real-world application, consider
managing users from a web interface over a secure connection.

Authenticating with Bcrypt

The last thing that we need to implement for our users is authentication. To do
this, we'll expand upon the authentication process we developed in Chapter 1,
A Task-management Application, and modify it to work with our Berypt

hashed passwords.

First, copy the following files from the source code of Chapter 1, A Task-management
Application (or from the source code in this chapter) into our project:

® ccss/signin.css

® protected/views/layouts/signin.php

® protected/views/site/login.php

* protected/models/LoginForm.php

® protected/controllers/SiteController.php

®* protected/components/UserIdentity.php
Since the majority of the work involved in authenticating a user is done, the only
changes we need to make to our authentication process is in our UserIdentity

class. Begin by opening up protected/components/UserIdentity.php. We'll
start by defining the class as follows:

Yii may have already generated this file for you. If so, delete the
%i‘ contents of it entirely, and follow the instructions as outlined in
’ this section.

class UserlIdentity extends CUserIdentity {}

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

Perform the following steps:

1.

First, we want to ensure that each user's ID from the database is stored with
our WebUser property. To do this, create a new private attribute called $_ia:

private $_id;

Then, create a getter to retrieve it:

public function getId()

{

return $this-> id;

}

Next, we need to define our authenticate () method that will be called
from LoginForm:

public function authenticate() {}

Within this method, we'll need to find the appropriate user model using
the e-mail address that was provided to us by the user through LoginForm:

Srecord = Users::model () ->findByAttributes (array('email'=>Sthis-
>username)) ;

With this information, we can then verify that a user with that e-mail
address exists:
if ($Srecord == NULL)

Sthis->errorCode = self::ERROR_UNKNOWN_ IDENTITY;

Then, we need to verify that the user's password matches the one we have
on record. If it does, we should make sure that no errors are returned to the
LoginForm and set the WwebUser ID:

else if (password verify($this-s>password, S$record-s>password))

{

Sthis->errorCode = self::ERROR_NONE;
Sthis-> id = Srecord->id;

}
Then, we should reject anything else that comes through the method:

else
Sthis->errorCode = self: :ERROR_UNKNOWN_ IDENTITY;

Finally, return the error code back to the LoginForm:

return !Sthis-s>errorCode;

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In a real-world application, we will want to expose as little information
. as possible about a potential login attempt to the user or a potential
% attacker, which is why we return ERROR_UNKNOWN_IDENTITY. During
/— debugging of your application, you may find it useful to return either
ERROR_USERNAME_INVALID or ERROR PASSWORD INVALID to help
you better understand why a login request failed.

Requiring authentication

Finally, we can force our users to authenticate against our database by adding the
following to both EventController and ReminderController:

public function filters()
{
return array (
'accessControl',

)i

public function accessRules ()
{
return array (
array('allow',
'users'=sarray('@'),
)
array('deny', // deny all users
'users'=sarray('*'),
)
)i

Sending e-mail reminders

At this point, users can create new events and reminders for themselves through our
web interface; however, they aren't able to receive these reminders yet. To send out
these reminders, we'll create a new console command called RemindersCommand in
protected/commands/RemindersCommand . php. When we're done, we'll be able to
add this command to either our crontab or to our scheduled tasks and have it
automatically process reminders in the background.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduled Reminders

Once the RemindersCommand file has been created, create the class definition

in addition to an action to send the reminders that takes a time interval as an
argument. This interval will define the length of time in minutes that we should
run our command for. It will find all of the reminders within that interval's
timeframe to process:

class RemindersCommand extends CConsoleCommand

{

public function actionSendReminders ($interval) {}

}

Within our action, define the UNIX timestamp that we should begin at as well as
the time we should end at for the particular interval we are working with. The end
time should be all microseconds before the next interval begins so that we do not
send duplicate reminders out:

Stime = time() ;
$start = Stime - (Stime % Sinterval * 60);
Send = S$start + ((Sinterval *60) - 1));

With our time interval defined, we can now create a database search criteria
with cDBCriteria that we can pass to our reminders find () method:

Scriteria = new CDbCriteria;
Scriteria->addBetweenCondition('offset', $start, S$Send);
Sreminders = Reminders::model ()->findAll (Scriteria) ;

The £ind () method will return all reminders within the time interval that we
specified. We can now simply iterate through the $reminders array and send
an e-mail to the user the reminder belongs to:

foreach (Sreminders as Sreminder)
{
// Load the PHPMailer Class
Smail = new PHPMailer;

// Tell PHP Mailer to use SMTP with authentication
Smail->isSMTP () ;
Smail->SMTPAuth = true;

// Specify the Host and Port we should connect to
Smail->Host = Yii::app()->params['smtp'] ['host'];

Smail->Port = Yii::app()->params['smtp'] ['port'];

// Specify the username and password we should use

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

// (if required by our SMTP server)
Smail->Username = Yii::app()->params['smtp'] ['username'l];
Smail->Password = Yii::app()->params['smtp'] ['password'];

// Set the security type of required
Smail->SMTPSecure = 'tls';

// Set the from and to addresses
Smail->from = Yii::app()->params['smtp'] ['from'];
Smail->addAddress (Sreminder-s>event->user->email) ;

// This should be an HTML email
Smail->isHTML (true) ;

// Set the subject and body
Smail->Subject ='Reminder from Scheduled Reminders';

Smail->Body = 'This is a reminder that '.$reminder-sevent->title.'
is due on '. gmdate("Y-m-d H:i UTC", S$reminder-soffset) . '. This
event has the following details:
' . Sreminder-sevent->data;

// Then send the email

if (!Smail->send())
echo $mail->ErrorInfo . "\n";
else
echo ".";
}

If you are using a remote SMTP server and have already populated your
. protected/config/params.php file with your SMTP information,
the previous code should work for you. If you're using a local mail
o server, such as Postfix or another setup, be sure to read the PHPMailer
documentation at https://github.com/PHPMailer/PHPMailer
on how to propery configure PHPMailer.

From the command line, we can now send reminders by running the following
command (in the example we are using a 5-minute interval):

php protected/yiic.php reminders sendreminder --interval=5

Once you have created events in your database, you can run the command or
put this command on your crontab or scheduled tasks and have your application
automatically send reminders to your users.

[101]

www.it-ebooks.info

https://github.com/PHPMailer/PHPMailer
http://www.it-ebooks.info/

Scheduled Reminders

Summary

We covered quite a bit of information in this chapter! We learned how to integrate
our application with a MySQL database, started storing user information securely

in our database, and expanded upon our knowledge of console commands. We also
covered how to add behaviors and how to add relations to our models. Additionally,
we went over including Composer and Composer dependencies into our project to
reduce the amount of code that have to import manually.

In the next chapter, we'll be expanding on the knowledge we learned and the tools
we developed to build even more complex and integrated web applications. Before
continuing on, be sure to take a look at all the classes we referenced in the chapter

in the official Yii documentation located at http://www.yiiframework.com/doc/.

[102]

www.it-ebooks.info

http://www.yiiframework.com/doc/
http://www.it-ebooks.info/

Developing an
Issue-tracking Application

In the previous chapters, we worked on very simple and practical applications.
As we move forward, our applications will become more complex and intricate.
For our next project, we will develop an issue-tracking system that will allow
customers to report issues and allow us to manage those users and issues from a
single application. In this application, we will also provide support to create and
update issues over e-mail. Finally, we'll be expanding upon our user management
system to allow per-user roles.

In this chapter, we'll cover the following topics:

* Creating a user management interface
* Adding role-based authorization
* Sending and receiving e-mails from a Yii application

* Integrating third-party libraries and tools into our application

Prerequisites

Before we get started, there are a couple of things that we'll need to have set up
and working:

* Since we'll send and receive e-mails from our application, we're going
to need a registered and active domain name. If you do not already have
a working domain name, you can purchase one from a domain registrar
such as www.namecheap . com, www.name . com, Or www.gandi .net.

www.it-ebooks.info

www.namecheap.com
www.name.com
www.gandi.net
http://www.it-ebooks.info/

Developing an Issue-tracking Application

We'll also need the ability to modify the Domain Name System (DNS)
records for this domain. For our application to receive e-mails, we'll need to
be able to modify the DNS records for our domain. Most registrars provide
a rudimentary DNS management system. If yours does not, you can use a
free DNS hosting service, such as www.cloudflare.comor http://www.
rackspace.com/cloud/dns.

Next, you'll need to have a web server with a public facing I address.

This will allow e-mails to be sent to our application. Many cloud Virtual
Private Server (VPS) providers are available to use for low monthly or
hourly prices. Such services include www.digitalocean.com, www.linode.
com, and http://www.rackspace.com/cloud/servers.

Rather than create, configure, and maintain our own e-mail server and

SMTP relay, we can take advantage of third-party tools and libraries. This
will allow us to focus on the development of our application rather than the
maintenance of a secondary service. Using this service and its accompanying
PHP library, we can take advantage of code that has already been thoroughly
tested and vetted, which allows us as developers to get straight to coding. To
take advantage of SendGrid, we'll create a free SendGrid developer account,
which can be set up at https://www.sendgrid.com/developers. For now,
simply set up your account. Later in the chapter, we'll go through the process
of setting up our application to receive e-mails from this service.

In this chapter, we'll once again use the latest version of MySQL (at the
time of this writing, MySQL 5.6). Make sure that your MySQL server is
set up and running on your server.

Finally, we'll need to download and install Composer from
https://getcomposer.org/.

Once you have acquired everything listed in the preceding steps, create a subdomain
on the domain name you are using, and point it to your server. In this chapter, I'll be
using chapter4 .example.com to refer to this subdomain. After everything is set up
and your server is responding to that domain name, we can get started.

Describing the project
Our issue-tracking project can be broken down into the following three
main components:

Users who will create and respond to issues

Issues that can be updated by the end user or a supporter (a specific
type of user that will support our end users)

A publicly available endpoint for SendGrid to POST to with any emails
we may receive

[104]

www.it-ebooks.info

www.cloudflare.com
http://www.rackspace.com/cloud/dns
http://www.rackspace.com/cloud/dns
www.digitalocean.com
www.linode.com
www.linode.com
http://www.rackspace.com/cloud/servers
https://www.sendgrid.com/developers
https://getcomposer.org/
http://www.it-ebooks.info/

Chapter 4

Users

The first component of our application is the user who will be using it. For this
application, we will be using the same database structure that we did in Chapter 3,
Scheduled Reminders, with the addition of a new column called role id, which will
allow us to distinguish which position the user has within our application. For this
application, we will expand upon our login process to ensure that the user's role is
available for us to reference and manipulate within our application.

Roles

Rather than have a single administrator who is capable of managing our system, in this
application, we can have multiple users who we can promote or demote to different
roles within our application. The role that we associate with our user will allow us to
determine what users of that role are permitted to do within our application.

For this application, we will be supporting three basic roles: a customer who will
submit issues and updates, a supporter who has the same permissions as a customer
in addition to being able to update issues that belong to other customers, and an
administrator who has the same permissions as a supporter and can also manage
the roles of other users.

To store this information, we'll use a simple roles table in our database setup
as follows. We'll then set up a relationship between users and role so that this
information is automatically associated with our users.

ID INTEGER PRIMARY KEY
name STRING

created INTEGER
updated INTEGER

Issues

The second component of our application is the issue that users will create. An
issue is an item that can be created either within the application or from outside of
it by sending an e-mail to our application. Issues can also be updated from within
the application or by an e-mail sent by the customer. Issues will also have a status
associated with them that will help our supporters track the current project of a
particular issue. The database that we'll be using will look as follows:

ID INTEGER PRIMARY KEY
customer id INTEGER FK
title STRING

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

description TEXT
status_id INTEGER FK
created INTEGER
updated INTEGER

Statuses

Associated with each issue will be a unique status. These statuses will allow our
supporters to track the project of an issue and will allow us to trigger specific events
when an issue changes from one status to another. Our table for these records will
look identical to our roles table:

ID INTEGER PRIMARY KEY
name STRING

created INTEGER
updated INTEGER

Updates

Also associated with each issue is an update. Each issue can have one or many
updates attached to them, which will allow supporters to see what work has
been done to a particular issue and which will serve as a medium for the user
to communicate with our supporters. Each update will be associated with both
a user and an issue. Our database table for this information will look as follows:

ID INTEGER PRIMARY KEY
issue_id INTEGER FK
author id INTEGER FK
update TEXT

created INTEGER
updated INTEGER

Receiving e-mails

The final component of our application will allow customers to create new issues and
update existing issues via e-mail. To the end user, this process will feel seamless, yet
it will allow our supporters to keep track of the work and updates that are done to a
given issue. This custom endpoint will also allow us to seamlessly create new users
within our application and associate information with those users as necessary.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Initializing the project

By now, you should be comfortable with creating projects from scratch. To provide
us with a common starting ground, a skeleton project has been included with the
project resources for this chapter. Included with this skeleton project are the necessary
migrations, data files, controllers, and views to get us started. Also included is the
login system that we'll use for authentication throughout this chapter.

We'll start by copying the skeleton project included with the chapter resources to
our web server and configure it so that it responds to chapter4.example.comas
outlined in the beginning of the chapter, and then follow the next steps to make
sure everything is set up:

1.

Since a skeleton project was provided, begin by adjusting the path to Yii
framework in index.php to point to your Yii installation path. At this point,
you'll also want to adjust the permissions on the assets and protected/
runtime folders.

Next, create the MySQL user and database table that our application will
use. If you don't want to alter the main configuration file that is provided,
the following MySQL commands will create the database and user for you:

CREATE USER 'ch4 issue'@'localhost' IDENTIFIED BY 'ch4 issue';
CREATE DATABASE IF NOT EXISTS ~“ch4 issue”™ ;

GRANT ALL PRIVILEGES ON \ch4_issue\ . * TO 'ch4
issue'@'localhost';

FLUSH PRIVILEGES;

Next, we'll need to run the initial migrations and then import the sample
data that is provided in the protected/data folder. This sample data will
allow us to immediately log in to our application and start using it once the
application is running. Navigate to the root of the project, and then run the
following commands:

php protected/yiic.php migrate up --interactive=0

mysql -u ch4 issue -p ch4 issue < protected/data/combined.sql

We need to update params .php at protected/config/ with our SendGrid
information. Your username and password will correspond to your SendGrid

username and password. In keeping with our example domain, set the from
address to noreply@chapter4.example.com.

Finally, we need to install the necessary composer dependencies:

composer install

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

After performing these steps, you should be able to navigate to chapter4 .example.
com in your browser and see a login page to our application. After logging in to our
application using one of the credentials that are provided in the table just after this
paragraph, you should see the page following this table load:

Username Password
customer@example.com test
supporter@example.com test
admin@example.com test

lssue Tracking

Create New Issue
Search for Issues

It Works!

Create New User If you can see this message than that means you have successfully installed the project skeleton for Chapter
4 of Yii Project Blueprints

Managing users

Before we can begin working on issues, we first need to make sure that users can
be both created and managed from within our application. In Chapter 3, Scheduled
Reminders, we used a command-line tool to do this. In this chapter, we will create
a complete user management tool from a web interface to supplement that tool.

Roles and authentication

Before we get into managing our users, let's take a look at how authentication
and roles are handled within our application. Within the UserController and
IssueController provided with the skeleton application is a more complex
accessRules () method that has a new attribute added to it. Let's take a look at
this method within UserController:

public function accessRules ()
return array(
array('allow',
'actions' => array('search',K 'view'),

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

'users'=>array('@'),
'expression' => 'Yii::app()->user->role>=2"
),

array('allow',

'actions' => array('index',6 'save',6 ‘'delete'),
'users'=>array('@'),
'expression' => 'Yii::app()->user->role==3"

),

array('deny', // deny all users

'users'=sarray('*'),
),
)i
}

As you can see, we now have a new attribute called expression listed within this
method. Internally, Yii will evaluate this expression to a Boolean value. If that
expression resolves to true, and the actions and user condition match, then a

user is allowed to proceed to the action. In our case, we are checking that
Yii::app () ->user->role has a particular value.

Out of the box, Yii doesn't know what that value should be, so unless we define
it, it will be undefined. Since Yii: :app () ->user is a CWebUser object, we can add
additional information to it when we create the UserIdentity component. If we
take a look at the UserIdentity component supplied with the project, we can see
this attribute being added via the cUserIdentity setState () method:

public function authenticate ()

{

Srecord = User::model ()->findByAttributes (array('email'=>$this-
>username)) ;
if (Srecord == NULL)

$this->errorCode = self::ERROR_UNKNOWN IDENTITY;
else if (password verify($this->password, S$record-s>password))

{

$this->errorCode = self::ERROR_NONE;

$this-> id = Srecord->id;
Sthis->setState('email', S$Srecord->email) ;
Sthis->setState('role', Srecord->role id);
}
else

$this->errorCode = self::ERROR _UNKNOWN IDENTITY;

return !$this-serrorCode;

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

Yii will then store this information within our $_SESSION variable once the user logs
in, allowing us to reference it as long as the session is active.

While using simple Boolean expressions is easy, should we ever
want to change which users have access to our system, we would
» have to refactor our controller methods rather than data in our
%j%‘\ database. Consider instead creating a model method, such as
’ User: :isSupporter () or User: :isAdmin (). These methods
make it more clear who has access to our actions and will make
your application easier to maintain in the future.

Listing users

Now that we know how roles work within our application, let's start building our
controller methods for our UserController. Open protected/controllers/
UserController.php, and you can see that we already have definitions for the
methods we will be implementing.

To display a list of our users, we'll be using the User: : search () method within
our controller and a cGridview widget within our view:

public function actionIndex ()

{

Susers = new User ('search') ;
Susers->unsetAttributes() ;

if (isset($ _GET['User']))
Susers->attributes = $ GET['Users'];

Sthis->render ('index', array(
'model' => Susers
))
}

Within our index.php file at views/user/, we'll load a cGridview instance:

<h3>Manage Users</h3>
<?php S$this->widget ('zii.widgets.grid.CGridvView', array(

'itemsCssClass' => 'table table-striped’',
'enableSorting' => true,
'dataProvider' =>$Smodel->search(),

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

'columns' => array(
rid,
'email',
'name',
array (
'class'=>'CButtonColumn',
'template' => '{view}{update}{delete}",
'viewButtonOptions' => array(
'class' => 'fa fa-search!'
),
'viewButtonLabel' => false,
'viewButtonImageUrl' => false,
'viewButtonUrl' => 'Yii::app()->createUrl ("user/view",
array("id" => "$data->id"))',
'updateButtonOptions' => array(
'class' => 'fa fa-pencil'
),
'updateButtonLabel' => false,
'updateButtonImageUrl' => false,

'updateButtonUrl' => 'Yii::app()->createUrl ("user/save",
array("id" => "$data->id"))',
'deleteButtonOptions' => array(
'class' => 'fa fa-trash-o'

),

'deleteButtonLabel' => false,

'deleteButtonImageUrl' => false,

'deleteButtonUrl' => 'Yii::app()->createUrl ("user/delete",
array ("id" => "$data->id"))'

).

))

Within our cGridview instance's columns attribute, we've defined a custom column
called cButtonColumn. CButtonColumn allows us to add a series of useful buttons to
a CGridview instance, such as a view button, an update button, and a delete button,

with all the necessary JavaScript. By taking advantage of this column, we now have

quick access to these actions from within our view.

You can read more about CBut tonColumn on its Yii Class
%j%‘\ Reference page located at http: //www.yiiframework.
’ com/doc/api/1.1/CButtonColumn.

[111]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CButtonColumn
http://www.yiiframework.com/doc/api/1.1/CButtonColumn
http://www.it-ebooks.info/

Developing an Issue-tracking Application

Deleting users

Next, we should implement an actionDelete () method to work with our delete
button. To make things easier, we can add a helpful 1oadModel () method as well
to perform all the necessary checks for us. Have a look at the following code:

public function actionDelete ($id=NULL)

{

if ($id == Yii::app()->user->id)
throw new CHttpException (403, 'You cannot delete yourself');

Suser = S$this->loadModel ($id) ;

if ($user->delete())
$this->redirect ($this->createUrl ('user/index"')) ;

throw new CHttpException (400, 'Bad Request');

private function loadModel ($id=NULL)

{

if ($id == NULL)
throw new CHttpException (400, 'Missing ID');

$model = User::model () ->findByPk ($id) ;

if (Smodel == NULL)
throw new CHttpException (404, 'No user with that ID could be

found') ;

return Smodel;

Creating and updating users

Next, we can create our actionSave () method that will handle both creating and
updating our users. Since our view will be passing us all the information we need,
we use a simple $user->save () call to save our information. Have a look at the
following code:

public function actionSave ($id=NULL)

if ($id == NULL)

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Suser = new User;
else

Suser Sthis->loadModel ($id) ;

if (isset (s _POST['User']))

{

Suser->attributes = $ POST(['User'];

try
{

if ($user->save())

{

Yii::app()->user->setFlash('success', 'The user has
sucessfully been updated') ;

$this->redirect ($this->createUrl ('user/save', array('id'
=> Suser->id))) ;
!
} catch (Exception $e) ({
Suser->addError ('email', 'A user with that email address
already exists');

}

Sthis->render ('save', array(
'model' => Suser
))
}

In this action, we've also deliberately thrown a try/catch block around our save
method. We've done this because we've put a unique index constraint on the email
field of our database. If we attempt to save two users to our database with the same
e-mail, Yii will throw an internal error since it doesn't know how to handle the
constraint. Within our controller, we can catch this error and simply return a more
friendly error to the user in $form->errorSummary ($model) in our view via the
$user->addError () method.

Then, copy the view/user/save.php file from the project resources folder into
your project. Within our view, we can populate a select dropdown of all the roles
currently in our database using CHtml: : 1istData (). Using this method allows
us to add new roles to our database without having to alter a view in the future:

CHtml: :listData (Role::model () ->findAll (), 'id', 'name');

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

Viewing users and associated issues

Finally, we should create a view to display a particular user and all the
unresolved issues currently assigned to them. For our actionview () method,
add the following code:

public function actionView ($id=NULL)
{
Suser = S$this->loadModel ($id) ;
Sissues = new Issue('search');
Sissues->unsetAttributes() ;

if (isset ($_GET['Issue']))
$issues->attributes=$ GET['Issue'l;
$issues->status_id = '<5';

$issues->customer_ id = Suser->id;

Sthis->render ('view', array(
'user' => sSuser,
'issues' => Sissues
)) i
}

Then, copy the view.php file at views/user/ from the project resources folder
into our project, and open it. At the bottom of this file, you'll see a call to
renderPartial () torender a view that we haven't created yet:

<?php $this->renderPartial('//issue/issues', array('model' =>
$issues)); ?>

_InYii, the // notation before a layout indicates that Yii should search
% for the view file in the main application views folder. You can read
e more about how Yii loads view filesat http://www.yiiframework.
com/doc/api/l.1/CController#igetLayoutFile-detail.

We'll use this view file across our application to ensure that all of our lists look
consistent. Before moving on, let's create this issue view. Create a new file in
views/issues/issue.php and add the following cGridview widget:

<?php $this->widget ('zii.widgets.grid.CGridView', array(
'itemsCssClass' => 'table table-striped',
'enableSorting' => true,

[114]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CController#getLayoutFile-detail
http://www.yiiframework.com/doc/api/1.1/CController#getLayoutFile-detail
http://www.it-ebooks.info/

Chapter 4

'dataProvider'=>$model->search(),

'columns' => array(
ridr',
'customer id' => array(
'name' => 'Customer',
'value' => 'S$data->customer->name'’
)
'title',
'status_id' => array(
'name' => 'Status’',
'value' => 'S$data->status->name'’

),
'updated' => array(
'name' => 'Last Updated',
'value' => 'date("F m, Y @ H:1i", S$data-s>updated) . " UTC"'
)
array (
'class'=>'CButtonColumn',
'template' => '{update}',
'updateButtonOptions' => array(
'class' => 'fa fa-pencil'
),
'updateButtonLabel' => false,
'updateButtonImageUrl' => false

))

While our view will now render, we don't yet have any issues in our database to
display, so results will not be shown. Once we've added issues, we can come back
to this view to see all the issues associated with a user.

Implementing the issue-management
component

At the core of our application are the issues that users will submit. For this application,
we'll assume that users will submit new issues for themselves, and that supporters
will be supporting those issues. To ensure that issues are created for just the logged-in
user, we have to make a few changes to our Issues model. Open protected/models/
Issues.php, and let's get started.

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

The Issues model

Provided at the top of our skeleton model are properties designed to help us later in
the model:

private $ isNewRecord = false;
public $ isEmailCreate = false;

The first property $_isNewRecord is a Boolean value that we'll use within our
aftersave () method to determine what e-mail will be sent. While cActiveRecord
provides a property called $isNewRecord, Yii changes this value to FALSE before
the afterSave () method.

The second property $_isEmailCreate is also a Boolean value. Since the e-mails we
receive won't have a session associated with them, we need to know what user to
associate the issue with. Since we'll restrict issues' owners to the currently logged-in
user, we need a way to override this behavior for e-mail submissions.

After verifying that these properties are added, we can begin work on the other
methods that we need to add to this model:

1. The first method we'll need to implement in our Issue model is a
beforeSave () method to restrict the customer of an issue. Within this
method, we'll want to also set the status of new issues to New, and flag
our $_isNewRecord property so that we can use it in our aftersave ()
method. Additionally, we'll want to prevent accidental changes to
customer_id should it somehow be changed on an existing issue:

public function beforeSave ()

{
if ($this->isNewRecord)
{
// If this is a new issue, set the customer_id to be the
currently logged in user
if (!$this-> isEmailCreate)
Sthis->customer id = Yii::app()->user->id;

// And set the status to 'New'
$this->status_id = 1;

// Set IsNewRecord so that afterSave can pick this up
$this-> isNewRecord = true;
}
else // Otherwise reset the customer id back to what it
previously was (prevent it from being changed)
$this->customer id = $this-> oldAttributes|['customer id'];

return parent::beforeSave() ;

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Next, we need to update the aftersave () method so that it sends e-mails
to the customer. For this model, we'll send an e-mail to the user if an issue
has been created for them or if an issue's status has been resolved. To do
this, we'll use SendGrid. Before adding this method, verify that your
params.php file at protected/config/ has the correct credentials in it:

public function afterSave ()

{
Suser = User::model ()->findByPk ($this->customer id) ;
$sendgrid = new SendGrid(Yii::app () ->params['sendgrid']

['username'], Yii::app()->params['sendgrid'] ['password']) ;
Semail = new SendGrid\Email () ;
Semail->setFrom(Yii: :app () ->params['sendgrid'] ['from'])

->addTo (Suser->email) ;

if ($this->_ isNewRecord)
Semail->setSubject (" [Issue #S$Sthis->id] S$this->subject | A
New Issue Has Been Created For You")
->setText ('Issue has been created!')

->setHtml (Yii::app () ->controller->renderPartial ('//
email/created', array('issue' => $this, 'user' => Suser), true));

// Send the SendGrid email
$sendgrid->send($Semail) ;

}

else
{
if ($this->status_id == 5 && S$this-> oldAttributes['status']
1= 5)

Semail->addTo (Suser->email)

->gsetSubject (" [Issue #Sthis->id] Issue has been
resolved")

->setText ('Issue has been resolved')

->setHtml (Yii::app () ->controller->renderPartial ('//
email/resolved', array('issue' => Sthis, 'user' => Suser), true));

// Send the SendGrid email
Ssendgrid-s>send (Semail) ;

return parent::afterSave() ;

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

3. The final change we'll need to make to the Issue model is in the search ()
method. Ideally, we'd like our supporters to be able to search for an issue
by either the ID of the issue or a keyword in the title or description. To
do this, we can simply repurpose the Issue: :search() method by
changing the $criteria->compare () call on those two attributes to
Scriteria->addSearchCondition():

Scriteria->addSearchCondition('title',$this->title,true, 'OR');

Scriteria->addSearchCondition('description', $this->title, true,
'OR') ;

The Issues Update model

Before working on the IssueController, we'll also need to make a few changes
to our protected/models/Update.php model. These changes will allow us to
automatically assign the correct owner of an update to the update and help us
send an e-mail to the user when an update is added to the issue.

Once again in our model, we have a property that we can use to find out whether
this update came from an e-mail or not:

public $isEmailUpdate = false;

In this model, we're using this attribute to determine whether an e-mail should be sent
to the user or not as we shouldn't notify the user of an update that they submitted.

Additionally, we'll need to make two updates to our model methods:

1. The first update we need to make to our model is in the beforeSave ()
method. If the user is logged in, the author of that update should be
assigned to that user. Have a look at the following code:

public function beforeSave ()

{
// Allow the author id to be set, but reset it to the logged in
user->id if it isn't set
if ($this->author id == NULL)
$this->author id = Yii::app()->user->id;

if ($this->update == '"'")
return false;

return parent::beforeSave() ;

}

2. Then we should update our aftersave () method so that the e-mail is sent
to the user in the appropriate instances:

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

public function afterSave ()

{

// If the issue was created by the currently logged in user,
or this is an email update, don't send an email

Sissue = Issue::model ()->findByPk ($this->issue id);

// Don't send an email if the customer provides an update, if
this came from email, or the status of the issue is resolved
if ($issue->customer id == Yii::app()->user->id || $this-
>isEmailUpdate || $issue->status_id == 5)
return parent::afterSave() ;

// If this is a NEW issue, send the user an email with the
detais
Suser = User::model () ->findByPk ($issue->customer id) ;

// Init the SendGrid object and the Email Object
$sendgrid = new SendGrid(Yii::app()->params['sendgrid']

['username'], Yii::app()->params['sendgrid'] ['password']) ;
Semail = new SendGrid\Email () ;

Semail->setFrom(Yii: :app () ->params['sendgrid'] ['from'])

->addTo (Suser->email)

->setSubject (" [Issue #$issue->id] $this->subject | Issue
has been updated")

->setText ('Issue has been updated')

->setHtml (Yii::app()->controller->renderPartial ('//email/
updated', array('issue' => S$issue, 'update' => S$this, 'user' =>
Suser), true));

Ssendgrid-s>send (Semail) ;

return parent::afterSave() ;

Showing issues that belong to the user

With the updates to our models completed, we can now start working on the
IssueController. The first method that we should implement is actionIndex (),
which will show the logged-in users all the unresolved issues currently assigned
to them:

public function actionIndex ()

{

$issues = new Issue('search');
Sissues->unsetAttributes() ;

if (isset ($_GET['Issue']))

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

$issues->attributes=$ GET['Issue'l;

// Don't search resolved issues
$issues->status _id = '<5';

$issues->customer id = Yii::app()->user->id;

Sthis->render ('index', array(
'issues' => $issues
))
}

Then in our index.php file at views/issue/, we can reuse the partial view that we
created earlier to display all of these issues:

<h3>My Issues</h3>
<?php S$this->renderPartial ('issues', array('model' => $issues)); ?>

Searching for issues

The next method we need to implement is the actionSearch () method that will
allow us to search for issues either by the issue ID or by a keyword in the title or
description. To do this, we'll create a search view that will post to our action with
the search parameters. If that $_GET parameter is numeric, and we can find

an issue with that ID, we'll immediately redirect to it. Otherwise, we'll use the
Issue::search () method that we modified earlier to search through all the
issues in our database. Our controller action will look as follows:

public function actionSearch ()
Sigssues = new Issue('search!');
Sissues->status_id = '<5';

if (isset($_GET['issue']))
{
if (is_numeric($_GET['issue']))
{
Sissue = Issue::model()->findByPk($ GET['issue'l) ;
if ($issue != NULL)
Sthis->redirect (Sthis->createUrl ('issue/update’',
array('id' => $issue->id)));

}

$issues->title = $ GET['issue'];
$issues->description = $ GET['issue'];

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Sthis->render ('search', array(
'issues' => $issues
))
}

Then, our search.php file at views/issue/ will look as follows:

<h3>Search for Issues</h3>
<?php S$form=$this->beginWidget ('CActiveForm', array (
'id'=>'project-form',
'method' => 'get',
'htmlOptions' => array(
'class' => 'form-horizontal',
'role' => 'form',
)
V)i 2>
<p>Search for issues...</p>
<div class="form-group">
<?php echo CHtml::textField('issue', isset($ _GET['issue']l) ? $_

GET['issue'] : NULL, array('class' => 'form-control', 'placeholder' =>
'Search for Issues by ID, Title, or Description...')); ?>
</div>

<div class="row buttons">
<?php echo CHtml::submitButton('Search', array('class' => 'btn

btn-primary pull-right col-md-offset-1')); ?>
</div>
<?php $this->endWidget(); 2>
<?php if ($issues != NULL): ?>
<?php $this->renderPartial('issues', array('model' => $issues)); ?>

<?php endif; ?>

Creating issues

Next, we'll need to implement an action and view to create new issues. Since new
issues won't have updates associated with them, create and update actions will need
to be separate. For the actionCreate () method, we'll simply populate the values
from the $_POST parameters:

public function actionCreate ()

{

Sissue = new Issue;
if (isset($_POST['Issue'l))

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

{

$issue->attributes = $ POST['Issue'l;

if ($issue->save())

{

Yii::app()->user->setFlash('success', "Issue #{$issue->id}
has successfully been created");

Sthis->redirect ($this->createUrl ('issue/update', array('id'
=> S$igsue->id)));

}

Sthis->render ('create', array/(
'model' => Sissue
))
}

Then, copy the create.php file located at views/issue/ from our project resources
folder into your project.

Within this controller action is another reference to our CwebUser object. In previous
chapters, every time we made a change to a database item from our controllers, we
either reloaded the page or redirected to a new page. To make our applications more
user friendly, we can set flash messages that will only show up once. To set these
messages, we'll use the setFlash () method of our CWebUser object:

Yii::app()->user->setFlash(skey, S$Svalue) ;

Then, from within our views, we can see whether a flash message exists for a
particular key using hasFlash():

Yii::app () ->user->hasFlash (skey) ;
Then, display that flash message using getFlash():
Yii::app () ->user->getFlash (Skey) ;

Alternatively, if we don't want to look for flash messages in a particular view, we
can tell our layout to find all flash messages and display them. Have a look at the
following code:

foreach (Yii::app()->user->getFlashes() as Skey => Smessage)
echo '<div class="flash-' . S$key . '">' . S$message . "</div>";

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Viewing and updating issues

Now that we can create and find issues, we need to be able to view and update
them. For this action, we'll be consolidating both functions into a single action.
Because users of different roles will be accessing this action, we need to adjust it
so that users of a particular role can only perform certain tasks:

1. First, we should generate a 1oadModel () method:

private function loadModel ($id=NULL)

{
if ($id == NULL)
throw new CHttpException (400, 'Missing ID');

Smodel = Issue::model ()->findByPk ($id) ;

if (Smodel == NULL)
throw new CHttpException (404, 'No issue with that ID was
found!') ;

return Smodel;

}

2. Then we'll need to create the actionUpdate () function. We'll start by
loading the model with that ID and creating a new Update object in case
an update is sent over $ POST:

public function actionUpdate ($id=NULL)
{
// Load the necessary models
Sissue = Sthis->loadModel ($id) ;
Supdate = new Update;
Supdate->update = NULL;
Scustomer id = $issue->customer id;

3. Then, we should make sure that only administrators, supporters, or the
issue owner can view the issue. Have a look at the following code:

if (Yii::app()->user->role == 1)
{
if (Yii::app()->user->id != $Scustomer_ id)
throw new CHttpException (403, 'You do not have permission to

view this issue');

}

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

4.

Then, we should allow administrators and supporters to modify the Issue
object itself as follows:

if (Yii::app()->user->role >= 2)
{
if (isset($s_POST['Issue'l))
{
$issue->attributes = $ POST['Issue'l];
if ($issue->save())

Yii::app()->user->setFlash('success', "Issue #{$issue-
>id} has successfully been updated");

}
}

Then, allow any user to submit an update as follows:
if (isset($_POST['Update']))

{
Supdate->issue_id = $issue->id;
Supdate->update = $ POST['Update'] ['update'];
if (Supdate-s>save())
{
Yii::app()->user->setFlash('success', "Issue #{$issue—>id}
has successfully been updated") ;
Sthis->redirect (Sthis->createUrl ('issue/update', array('id’'
=> Sissue->id)));
}
}

Finally, we should render the view. When rendering the view, we are also
going to pass down a CMarkdownParser object. Rendering the issue updates
in Markdown syntax will allow us to easily have access to many different
formatting features, such as line breaks, text styles, and quoting features.
Rendering the updates in Markdown will also give us protection against
simple XSS attacks, such as JavaScript injection attempts:

Sthis->render ('update', array(
'issue' => S$issue,
'update' => Supdate,
'md' => new CMarkdownParser

))

You can learn more about the Markdown syntax and how

to use Markdown at http://daringfireball .net/

projects/markdown/.

[124]

www.it-ebooks.info

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://www.it-ebooks.info/

Chapter 4

Finally we'll create an update view that will allow us to see the issue and updates
from different roles. Copy the update.php view located at view/issue/ from the
project resources folder into your project.

E-mail views

Before we can start using our application, we need to create three different e-mail
views, one for each type of e-mail that will be sent to the user. These views will
contain information about the issue itself and information about whatever change
was applied to it. It will also contain special formatting that will enable the user to
reply to that e-mail and allow us to understand what parts of the e-mail should be
included as an update:

1.

The first view that we should create is a created view. This view will have
information about a newly created issue. It will also contain a special marker
that our application will be able to identify so that only the user's response is
included in the update. Create a new file in views/email/created.php, and
add the following code:

——————————————— DO NOT EDIT BELOW THIS LINE ---------------
<div class="email">

Hello <?php echo $user-sname; ?>,

This is a notification that a new issue (#<?php echo S$issue-
>id; ?>) has been opened for you. A member of our team will review
this shortly.

As a reminder, here is the description of the issue you
provided:

<?php echo $issue->title; ?>
<blockquote>

<?php echo $issue->description; ?>
</blockquotes>

To add additional information to this issue, you may either
reply to this email, or login <?php echo CHtml::link('here',
Sthis->createAbsoluteUrl ('issue/update', array('id' => S$Sissue-
>id))); ?>.

Thank you,

Issue Tracking System
</div>

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

2.

Then create an updated view in views/email/updated.php. This e-mail
will tell the user that their issue was updated and will contain the update
that was applied to the issue. Once again, it will contain a special marker so
that if the user replies to our e-mail, we know what content to include in the
update and what content to ignore:

--------------- DO NOT EDIT BELOW THIS LINE ---------------
<div class="email">
Hello <?php echo S$user-sname; ?>,

This is a notification that a new issue (#<?php echo $issue-
>id; ?>) has been updated with the following message:

<blockquotes>
<?php echo Supdate->update; ?>
</blockquote>
<hr />
As a reminder, here is the description of the issue you
provided:

<?php echo $issue->title; ?>
<blockquotes>

<?php echo $issue->description; ?>
</blockquote>

To reply to this issue you may either reply to this
email, or login <?php echo CHtml::link('here', $this-
>createAbsoluteUrl ('issue/update', array('id' => Sissue->id)));
?>.

Thank you,

Issue Tracking System
</divs>

Finally, we need to create a view to notify the user that their issue has been
resolved. Open resolved.php at views/email/ and add the following:

--------------- DO NOT EDIT BELOW THIS LINE ---------------
<div class="email">
Hello <?php echo S$user-sname; ?>,

This is a notification that a new issue (#<?php echo $issue-
>id; ?>) has been resolved.

Thank you,

Issue Tracking System
</divs>

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Testing our application

Since the domain example.com is not a valid domain to send e-mails, create for
yourself a new user with a valid e-mail address, log in as that user, and create
several issues. For each issue you create, a new e-mail will be sent to you notifying
you that the issue has been created. Moreover, updating an issue as any supporter
or administrator will notify the current supporter of the issue via e-mail with the
provided update. Finally, if you have a supporter or an administrator resolve an
issue, then you will receive an e-mail to notify you that the issue was resolved.

Once you have verified that all the functionality is working, we can move on to
handling and parsing inbound e-mails with SendGrid.

Handling inbound e-mail parsing

While there are many different ways of handling inbound e-mail parsing, one of the
easiest ways is to send that e-mail to a third party, who will then parse the contents
for us, and send it as a $_POST request to an open endpoint in our application. This is
exactly what SendGrid will do for us. However, before we can start using SendGrid,
we need to make a couple of changes to our DNS server for our domain and to our
SendGrid account.

Sending e-mails to SendGrid

To direct our e-mails to SendGrid in order to pass, we first need to make a change
to our DNS settings. In keeping with our example domain chapter4 .example.com,
we first need to log in to our DNS host and add a new Mail Exchange (MX) record
to our subdomain. Specifically, we need to add an MX record with a priority of 10
to mx.sendgrid.net. In most DNS systems, that record would look as follows:

chapter4 IN MX 10 mx.sendgrid.net.

Alternatively, if you're using a service like CloudFlare to handle your DNS, your
entry may look as follows:

mail handled by [L L Ry Automatic

with priority 10

_ Depending upon your DNS provider, DNS settings may take up to 24 to
% 48 hours to propagate. Before leaving this step, verify that the MX record
L was added and propagated using either a command-line tool, such as a

DIG or a free, online web tool.

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

Adjusting SendGrid Parse settings

Once you've updated your DNS settings, you then need to update your SendGrid
Parse API settings so that SendGrid knows where to send your e-mails. Navigate
to www. sendgrid. com/developer/reply, and then fill in the parse settings page
as follows and submit the record:

Parsing Incoming Emails

Hostname

st specify a hostname you would like to receive emails

chapterd example.com

Url

Now add a URI for that hostname

http:/fchapterd example.com/fissue/emailUpdate

Spam Check

Check incoming emails for spam

Add host & URL

Once you've added the record, you should see confirmation at the bottom
of the page. Once this has been completed, you can now send e-mails to
*@chapter4 .example.com, and SendGrid will parse it and forward it onto
your actionEmailUpdate () method of our IssueController.

You can read more about the SendGrid Parse API webhook at http://
s sendgrid.com/docs/API Reference/Webhooks/parse.html.

[128]

www.it-ebooks.info

www.sendgrid.com/developer/reply
http://sendgrid.com/docs/API_Reference/Webhooks/parse.html
http://sendgrid.com/docs/API_Reference/Webhooks/parse.html
http://www.it-ebooks.info/

Chapter 4

Creating and updating issues over e-mail

Now that our DNS settings and SendGrid account are set, we need to add the
necessary functionality to both create and update issues over e-mail. Then, the
action that we create will also create new users in our database if a new user
creates an issue for us:

1.

With SendGrid configured, our actionEmailUpdate () method will receive

a pOST request from SendGrid anytime someone sends an e-mail to our
application.. All the information that we will need to work with will be in

a $_POST variable once it arrives. However, some of this information may not
be readily accessible. For instance, the e-mail address will reach us as Example
User" <test@chapter4.example.com>" which isn't very useful to us. To
make this e-mail more useful, we need to create a utility function that will
break this information apart for us in our IssueController as follows:

private function parseEmailAddress (Sraw)

{

}

$name = nn.
Semail = trim($raw, " '\"");
if (preg_match("/”(.*)<(.*)>.*$/", $raw, $matches))

{

array shift ($Smatches) ;
$name = trim($matches[0], " '\"");
Semail = trim(Smatches([1], " '\"");

return array (

"name" => S$Sname,
"email" => Semail,
"full" => Sname . " <" . Semail . ">"

)i

Then, within our actionEmailUpdate () method, we'll begin by retrieving
this information:

$from = $this-> parseEmailAddress($_POST['from'l]) ;

Ssubject = $ POST['subject'];

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

3.

Then, we'll need to search for the subject of the e-mail for the ID of our issue.
In the e-mails we're sending out, the subject has the format [Issue #<ID>]
<info>. Have a look at the following code:

$idString = NULL;

preg match('/\[Issue #.*?\]/', S$subject, $idString);

$id = str_replace(']l', '', str_replace('[Issue #', '',

(isset ($idString[0]) ? $idString[0] : 0)));

Then, we need to find a user in our system with that e-mail address. If we are
unable to find that user, we need to create a new user with that e-mail address:

Suser = User::model () ->findByAttributes (array('email' =>
Sfrom['email'])) ;

if (Suser == NULL)
{
Suser = new User;
Suser->attributes = array(
'name' => S$from['name'],
'email' => S$from['email'],
'password' => 'changeme9',
'role id' => 1

if (!Suser->save())
return true;

}

Then, we need to locate an issue with that ID. If an issue with that ID doesn't
exist, or the issue doesn't belong to the user we're working with, we should
create a new issue rather than updating an existing one:

Sissue = Issue::model () ->findByPk($id) ;

// If the user or ID are NULL, or that email address doesn't
belong to that customer, Create a new issue
if ($issue == NULL || $id == NULL || $issue->customer_ id != Suser-
>id)
{

// create the issue, save it, then return - no further work
needs to be done.

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Sissue = new Issue;
Sissue-> isEmailCreate = true;

Sissue->attributes = array(
'title' => S$subject,

'description' => $ POST['text'],

'customer id' => Suser->id

)i

Sissue->save() ;
return true;

}

6. Finally, if we have a good user and issue, we should apply the update. At
this point, we'll split the contents of our e-mail along our special marker and
only include the contents above it in our update. This reduces the amount of
data we need to store in our database and keeps our interface looking clean

and clear of e-mail clutter:

$body = explode('--------------- DO NOT EDIT BELOW THIS LINE

__________ ', $_POST['text']);
$body = $body[0];

// Set the update

Supdate = new Update;
Supdate->author id = $user->id;
Supdate->issue _id = $issue->id;
Supdate->update = sbody;
Supdate->isEmailUpdate = true;

Supdate->save () ;
return true;

Now that our application can receive e-mails, reply to one of the e-mails you

received earlier. After a short while, you will be able to navigate to that issue and
see that your update sent over e-mail was indeed applied. Alternatively, you can
send a new e-mail to your application. In a short while, a new issue will be created,
and the application will respond to you with an e-mail notifying you that a new

issue was created.

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Developing an Issue-tracking Application

Summary

We covered a lot of ground in this chapter! We went over creating and managing
users from within our application, sending e-mails about certain events, and how to
receive e-mails and incorporate that information into our application. We also added
roles to our users and made our application only respond to certain actions of users
with a particular role.

Before continuing, think of ways in which you could improve this application, and
try to implement them. For example, you could change it so that the access rules
expressions are answered by the models rather than hard-coded values. Alternatively,
you could add new statuses to the application and send out different e-mails when
those statuses change. Think of all the ways you could make this application better

to use for the end user.

After adding some new features, go through the Yii documentation located at
http://www.yiiframework.com/doc/ to help you better understand some of
the methods and properties we used in this chapter.

In the next chapter, we will be expanding upon our knowledge to implement a
micro blogging platform similar to Twitter. To our micro-blogging platform, we'll
add a registration and password reset system for our end users and allow our end
users to manage their own accounts. Once you're ready, turn the page and get ready
to dive deeper into Yii!

[132]

www.it-ebooks.info

http://www.yiiframework.com/doc/
http://www.it-ebooks.info/

Creating a Microblogging
Platform

For our next project, we will be developing a scalable microblogging platform
similar to Twitter. This platform will allow users to share content with others,
mention other users in their share, and view a timeline of their shares. Additionally,
users will be able to register, manage, and change certain account details such as
their e-mail address and password. Finally, our platform will enable users to share
content with other external social networks such as Twitter.

By the end of this chapter, we'll have a social network that will allow us to share
content and manage our accounts, as shown in the following screenshot:

Socialii Search My Profile Logout
Share Something ‘ f;\ 5 minutes ago
"\.. @user! @user2 check out this site hitps:/iww.erianna.com
_r?::‘ Share your thoughts here oy

&

Ak) 7 minutes ago

{7y Hi @kjw #Socialii
v

Hi @charlesportwoodil #Socialil #is #neat
L wmy

@charlesportwoodii cool site!

L dad

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

Our users will also have the ability to directly reply to and share individual posts
that they make, as shown in the following screenshot:

Socialii Search My Profile Logout

) & minutes ago

I\-I @user! @user2 check out this site hitps://wuw erianna com

)

vy
Reply To This Share

@charlesportwoodii

Replies
@charlesportwoodii cool site!
-y
@charlesportwoodii @useri That's neat!
L Lo

Prerequisites

Before we get started, there are a couple of things that we'll need to set up and
have working:

* Since we'll be sending and receiving e-mails from our application, we're
going to need a registered and active domain name. If you do not already
have a working domain name, you can purchase one from a domain registrar
such as https://www.namecheap.com, www.name .com, Of www.gandi .net.

* Next, you'll need to have a web server with a public-facing IP address.
This will allow e-mails to be sent to our application. Many cloud Virtual
Private Server (VPS) providers are available for use for low monthly or
hourly prices. Such services include https://www.digitalocean.com,
https://www.linode.com, and www.rackspace.com/cloud/servers.

* Inorder to send e-mails in our application, we'll once again be
utilizing a free SendGrid Developer Account, which can be set up
at https://www.sendgrid.com/developers.

* In this chapter, we'll once again be using the latest version of MySQL
(at the time of writing this, it is MySQL 5.6). Make sure that your MySQL
server is set up and running on your server.

[134]

www.it-ebooks.info

https://www.namecheap.com
www.name.com
www.gandi.net
https://www.digitalocean.com
https://www.linode.com
www.rackspace.com/cloud/servers
https://www.sendgrid.com/developers
http://www.it-ebooks.info/

Chapter 5

* For this project, we'll once again be managing our dependencies
through Composer, which you can download and install from
https://getcomposer.org/.

* Finally, you'll need a Twitter Developer account, which can be obtained from
https://dev.twitter.com/. This account will allow us to enable the sharing
of our content to Twitter as the logged-in user via Twitter's OAuth APL

Once you have acquired the listed items, create a subdomain on the domain
name you are using and point it to your server. In this chapter, I'll be using
chapter5. example.com to refer to this subdomain. After everything is set
up and your server is responding to that domain name, we can get started.

Describing the project

Our microblogging platform can be broken down into two big components:

* Users who will be following other users and creating, sharing,
and liking content

* Text-based shares that will be created by the users

Users

The first component of our application is the set of users who will be performing all
the tasks in our application. For this application, we're going to be largely reusing
the user database and authentication system that we expanded upon in Chapter 4,
Developing an Issue-tracking Application. In this chapter, we'll be expanding upon the
users database table, and adding several new relations such as followers and likes.

Followers

In this application, users will be able to follow and be followed by other users.

This relationship will allow users to stay up-to-date with other users by showing
content that other users have recently created. Moreover, it will allow them to know
how many people are following them and see how much of an influence they have
over their network. For this application, our followers table will just contain the
primary keys of users who are either following or being followed by another user.
Our database table will look as follows:

ID INTEGER PRIMARY KEY
follower id INTEGER
followee id INTEGER
created INTEGER
updated INTEGER

[135]

www.it-ebooks.info

https://getcomposer.org/
https://dev.twitter.com/
http://www.it-ebooks.info/

Creating a Microblogging Platform

Likes

In this application, users will also be able to indicate that they like a particular
share. Similar to our followers table, the 1ikes table will only contain the primary
keys of the users and the shares table. Our database table will look as follows:

ID INTEGER PRIMARY KEY
user id INTEGER
share id INTEGER
created INTEGER
updated INTEGER

Shares

The second component of our application will be the shares that users create. For our
purposes, we will define a share as a piece of text that can contain unique markers such
as the @ sign for mentioning other users, and the # character for tagging a share. Shares
can also be in reply to another share, which will allow them to be viewed on the share's
view page. Finally, shares can be reshared users who wish to share another user's share
with their network. Our database table will look as follows:

ID INTEGER PRIMARY KEY
text STRING

author id INTEGER
reshare id INTEGER
reply id INTEGER
created INTEGER
updated INTEGER

Initializing the project

By now, you should be comfortable with creating projects from scratch. To provide

us with a common starting ground, a skeleton project has been included with the
project resources for this chapter. Included with this skeleton project are the necessary
migrations, data files, controllers, and views that we need to get started. The login
system that we'll be using for authentication throughout this chapter is also included.
Copy the skeleton project from the project resources folder to your web server and
configure it so that it responds to chapters. example. com as outlined at the beginning
of the chapter, and then perform the following steps to make sure everything is set up:

1. Adjust the permissions on the assets and protected/runtime folders so
that they are writable by your web server.

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

2. Next, create the MySQL user and database table that our application will
use. If you don't want to alter the provided main configuration file, the
following MySQL commands will create the database and user for you:

CREATE USER 'ch5 socialii'@'localhost' IDENTIFIED BY ''ch5

socialii'';
CREATE DATABASE IF NOT EXISTS \'ChS_SOCialii'\ ;
GRANT ALL PRIVILEGES ON \'Ch5_Socialii'\ . * TO ''ch5

socialii''@'localhost’';
FLUSH PRIVILEGES;

3. Next, we'll need to run the initial migrations and then import the sample
data that is provided in the protected/data folder. This sample data will
allow us to immediately log in to our application and start using it once the
application is running. Navigate to the root of the project, and then run the
following commands:
php protected/yiic.php migrate up --interactive=0
mysqgl -u ch5 socialii -pch5 socialii ch5 socialii < protected/

data/combined.sql

4. Then, we will need to update params. php located at protected/config/
with our SendGrid information. Your username and password will correspond
to your SendGrid username and password. Keeping in line with our example
domain, set the from address to socialii@chapters5.example.com.

5. Finally, we will need to install the necessary Composer dependencies:

composer install

At this point, you should be able to open http://chapters.example. comin your
browser and see the following page:

Sociali Search Login Register

Homepage

Making a better Yii bootstrap file

One thing you may have noticed was that we didn't have to declare where the
Yii framework was located for our site to work. That's because we included Yii
framework as a dependency in our composer. json file, as follows:

nyiisoft/yiin: "1.1.14n

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

There are several benefits to including Yii as a dependency in our project rather than
hardcoding it in our bootstrapper, which are as follows:

* Including it in our bootstrapper as a Composer dependency means that
we don't have to bother installing Yii framework on our server before
we push our code to it

* We can now automate our deployment process, and be certain that the
dependencies in our development environment match those of
our production environment

* The code used for this project is now separate from other projects that
might also use Yii framework

* Finally, this separation allows us to upgrade Yii or use a different fork of Yii
without having to worry about how we're going to deploy Yii framework to
our server — Composer will simply take care of the installation for us

We've also made a few improvements and changes to our Bootstrap file to make
developing and debugging easier for us. Let's take a look at the changes in our
index.php file

1. First, we include our configuration file:

Sconfig=require dirname(FILE).'/protected/config/main.php"';
defined('DS') or define('DS', DIRECTORY SEPARATOR) ;

2. Next, we're going to set YII_DEBUG and YII_TRACE to variables that are
defined in our main.php file at protected/config/. This will allow us to
toggle the debug mode and the trace level without having to alter the code
in index.php:
defined ('YII_DEBUG') or define('YII DEBUG', isset ($Sconfig['params']

['debug']) ? Sconfig['params'] ['debug']l : false);

defined ('YII TRACE LEVEL') or define('YII TRACE

LEVEL', isset (Sconfig['params'] ['trace']) ? Sconfig['params']
['trace'] : 0);

3. Inourmain.php file at protected/config/, we can toggle these variables
by setting params [debug] and params [trace]:

'params' => array(
'includes' => require _ DIR . '/params.php',
'debug' => true,
'trace' => 3

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Then, we're going to load our Composer dependencies. Depending on
whether YII DEBUG is set or not, load yii.php or yiilite.php. For most
configurations, and when coupled with APC Cache or Zend OPcache,
yiilite.php should improve the performance of your application:

require once(_DIR . '/vendor/autoload.php') ;
require(_ DIR__ .DS.'vendor'.DS.'yiisoft'.DS.'yii'.DS.'framework'.
DS. (YII DEBUG ? 'yii.php' : 'yiilite.php'));

If you want to learn more about yiilite, take a look at the official
% Yii documentation at http: //www.yiiframework.com/doc/
e guide/1l.1/en/topics.performance#using-x-9x.

Next, we're going to automatically enable logging, and turn error reporting to
its maximum value when we're in the debug mode. This will allow us to easily
view full stack traces when an error occurs and get detailed log messages about
what's going on in our application. This option will help with development
and won't be loaded when we are running in a production environment:

if (YII_DEBUG && YII TRACE LEVEL ==)
{

error reporting(-1);

ini set('display errors', 'true');

// Enable WebLogRouteLogging
Sconfig['preload']l [] = 'log';
Sconfig['components'] ['log'] ['routes'] [0] ['enabled'] = true;

}

For the preceding step to work, we then need to define a logging method
that we want to use. In our development environment, it makes sense to
use CWebLogRoute so that we can see our log messages in our browser.
To enable this route, we'll add the following to the components section of
our main.php file located at protected/config/:
'log' => array(
'class' => 'CLogRouter',
'routes' => array(
array (
'class' => 'CWebLogRoute',
'levels' => 'error, warning, trace, info',

'enabled' => false

[139]

www.it-ebooks.info

http://www.yiiframework.com/doc/guide/1.1/en/topics.performance#using-x-9x
http://www.yiiframework.com/doc/guide/1.1/en/topics.performance#using-x-9x
http://www.it-ebooks.info/

Creating a Microblogging Platform

. Yii provides several different logging methods that you can use in
% both production and development environments. To learn more about
L logging, take a look at the official Yii documentation at http://www.

yiiframework.com/doc/guide/1.1/en/topics.logging.

7. Finally, we're going to bootstrap our application:

Yii::createWebApplication($Sconfig)->run() ;

Enabling users to manage their
information

In the previous chapters, our users haven't been able to do much besides interacting
with content. In this chapter, we'll be expanding upon the base User model so that
they can register with our application, securely activate their accounts, reset their
passwords if they forget them, and change their e-mail address.

Upgrading our Userldentity class

Before implementing the previously mentioned functionality, we need to make sure
that we can address our users appropriately without having to ask our database for
some basic information about the currently logged-in user. To do this, we're going
to add some information to our UserIdentity.php file located at protected/
components/ as shown next in the highlighted sections of our authenticate ()
method. Additionally, we're going to enhance this class so that if YII_DEBUG is
enabled, we can get more information about what is going on if authentication fails:

public function authenticate ()
{

$record = User::model () ->findByAttributes (array('email'=>Sthis-
>username)) ;

if ($record == NULL)
$this->errorCode = YII DEBUG ? this->errorCode=self::ERROR_
USERNAME INVALID : self::ERROR UNKNOWN IDENTITY;
else if (password verify($this->password, S$record-s>password))
{
$this->errorCode = self::ERROR_NONE;
$this->_id = $record->id;

[140]

www.it-ebooks.info

http://www.yiiframework.com/doc/guide/1.1/en/topics.logging
http://www.yiiframework.com/doc/guide/1.1/en/topics.logging
http://www.it-ebooks.info/

Chapter 5

Sthis->setState('email', S$Srecord->email) ;
$this->setState('role', S$Srecord->role id);
$this->setState('username', $record->username);
$this->setState('name', $record->name);

}

else
$this->errorCode = YII DEBUG ? self::ERROR PASSWORD INVALID

self::ERROR UNKNOWN IDENTITY;

return !$this-serrorCode;

Defining user relations

Next, we'll want to make sure that our relations are set up so that we can tell
which data is associated with our users. This includes shares, followers, and
followees. Within our protected/models/User. php file, make sure the following
is set to our relations () method:

return array (
'followees' => array(self::HAS MANY, 'Follower',K 'followee id'),
'followers' => array(self::HAS MANY, 'Follower', 'follower id'),
'shares' => array(self::HAS MANY, 'Share', 'author id'),
'role' => array(self::BELONGS TO, 'Role', 'role id'),

)

We're also going to add a new relational type to our relations () method so that
we can quickly retrieve the number of shares, followers, and followees a user has.
This relation type is called STAT, and behaves the same as a HAS_MANY relation,
except that it performs a count at the database level and returns a number rather
than returning an array of objects:

'followeesCount' => array(self::STAT, 'Follower', 'followee id'),
'followersCount' => array(self::STAT, 'Follower', 'follower id'),
'sharesCount' => array(self::STAT, 'Share', 'author id')

By using the STAT relation, we can reduce the strain on our database when we

want to know how many followers a user has. In a small database with a few users, a
HAS_MANY relationship isn't very significant; however, when dealing with thousands of
users, repeatedly running a HAS_MANY query will result in a large number of results to
be returned, which can result in our application running out of memory and crashing.

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

Determining whether a user is following
another user

The last change we need to make to our model for our relations is to add a

quick method that will allow us to determine whether the currently logged-in
user is following another user. We'll use this information later on to adjust what's
displayed in our views. Add the following method to your User. php file located
at protected/models/:

public static function isFollowing ($id=NULL)
{
if ($id == NULL || Yii::app()->user->isGuest)
return false;

$following = Follower::model () ->findByAttributes (array ('follower
id' => Yii::app()->user->id, 'followee id' => $id));

return $following != NULL;

Implementing a secure registration process

One of the more difficult parts of creating a secure web application is ensuring that
the users who register on our site are really the users they claim to be. Often, this is
accomplished by sending an e-mail to the user with a unique single-use token. If the
user is able to visit our site with that secure token, we can assume that they are real
users, and that they have access to the e-mail address. By employing this method of
validation, we can ensure that the users who register on our site are who they claim
to be, and that they choose to engage with our application.

While we could handle the majority of this functionality directly within our controller
and bloat our User model with unnecessary methods, our tool of choice for this task
will be cFormModel. In this book, we've only utilized CFormModel for our LoginForm
model, which we've been using for logging users in. Before moving forward, let's take
a deeper look into what CFormModel is and explore how we can use it.

CFormModel is very similar to CActiveRecord, in that it extends cModel and
inherits many of the methods that CActiveRecord has, such as attributeLabels,
attributes, and rules. The primary difference between CFormModel and
CActiveRecord is that CFormModel is used to collect information from an HTML
form, and the data submitted to CFormModel is acted upon rather than stored and
manipulated in a database. By taking advantage of the methods inherited from
CModel, we can cleanly and easily use CFormModel to validate input and reduce
the amount of code clutter in our controllers and models.

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

To learn more about CFormModel, check out the official Yii
% documentation at http://www.yiiframework.com/doc/
tad api/1.1/CFormModel.

To get started, create a new file in protected/models/RegistrationForm.php
and add the following to it:

<?php class RegistrationForm extends CFormModel {}

The next steps are as follows:

1.

The first item we'll be placing in this class is our attributes. These model
attributes are publicly exposed, and can be set from our controllers:
public Semail;

public $name;

public $password;

public S$Susername;

Next, we'll define our attribute labels for these attributes:

public function attributeLabels ()

{

return array (

'email' => 'Your Email Address',
'name' => 'Your Full Name',
'password' => 'Your Password',
'username' => 'Your Username'

)i
!

Then, we'll want to set up our validation rules. For new users, we want
to verify that all attributes are set, the e-mail address is a valid one, the
password is at least 8 characters long, and the username the user's trying
to register with is not already taken:

public function rules()

{

return array (

array('email, username, name, password',6 'required'),
array ('password', 'length', 'min'=>8),
array('email', 'email'),
array ('username', 'validateUsername') ,
array('email', 'verifyEmailIsUnique')
)i
}
[143]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CFormModel
http://www.yiiframework.com/doc/api/1.1/CFormModel
http://www.it-ebooks.info/

Creating a Microblogging Platform

4. Since Yii doesn't provide a native validator for usernames, we will then
need to define our own validateUsername () method, which will do a
simple existence check against our database:

public function validateUsername (Sattributes, Sparams)

{

Suser = User::model () ->findByAttributes (array ('username' =>
Sthis->username)) ;

if (Suser === NULL)
return true;
else

{

Sthis->addError ('username', 'That username has already been
registered') ;
return false;

}

5. We'll also want to define a validator to ensure that our e-mail address is not
already taken:

public function verifyEmailIsUnique ($Sattributes, S$params)

{

Suser = User::model () ->findByAttributes (array('email' => $this-
>email)) ;
if (Suser === NULL)
return true;
else
{
Sthis->addError ('email', 'That email address has already

been registered');
return false;

Notice that when validation fails, we're not only returning false but
. also adding an error to our model. We're doing this for three reasons: to
% enhance the user experience and ensure that the user knows what went
L= wrong, to ensure that the validate () method of CModel fails when an
error is thrown (it will return true unless $this->addError () is called),
and to ensure that we can run these validators independently of the form.

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

6. Out of preference, the last method we'll be creating is a save () method,
which will perform the validation, send a verification e-mail to the user,
and insert the new record into our database. To achieve this, start by
creating a new method called save ():

public function save ()

Then, within the method, first perform the validation:

if (!S$this->validate())
return false;

Then, create a new User object:

Suser = new User;
Suser-s>attributes = array(
'email' => $this->email,
'name' => $this->name,
'password' => $this->password,
'username' => str replace(' ', '',$this->username),
'activated' => 0

)i

Then, attempt to save the user and send that user an e-mail address with
the activation details:

if (Suser->save())

{

// Send an email to the user

$sendgrid = new SendGrid(Yii::app()->params['includes']
['sendgrid'] ['username'], Yii::app()->params|['includes']
['sendgrid'] ['password']) ;

Semail = new SendGrid\Email () ;

Semail->setFrom(Yii::app()->params['includes'] ['sendgrid']
["from'])

->addTo (Suser->email)
->setSubject ("Activate Your Socialii Account")
->setText ('Activate Your Socialii Account')

->setHtml (Yii::app()->controller->renderPartial ('//email/
activate', array('user' => $user), true));

// Send the email
$sendgrid-s>send (Semail) ;

// Return true if we get to this point
return true;

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

7. Next, we'll want to update our User models so that the activation key is
set when the user is first created. To generate the activation key, we'll be
using a library that was included in our composer. json file that securely
generates strings:

public function beforeSave ()

{

if ($Sthis->isNewRecord)

{
Sthis->generateActivationKey () ;
$this->role id = 1;

return parent::beforeSave() ;

public function generateActivationKey ()
{

$factory = new CryptLib\Random\Factory;

Sthis->activation key = $factory->getHighStrengthGenerator () -
>generateString (16) ;

return $this-sactivation key;

}

8. Now, we can add a register action to our UserController.php file located
at protected/controllers/ that will allow the user to register with our site.
Since majority of the work has already been done in our form, all we have to
do is collect the data from the $_POST request, apply it to the model, and call
the save () method on the model. To provide a better user experience, we
can also attempt to automatically log the user in using their new credentials:

public function actionRegister ()

{
// Authenticated users shouldn't be able to register
if (!Yii::app()->user->isGuest)
$this->redirect ($this->createUrl ('timeline/index')) ;

S$form = new RegistrationForm;
if (isset($_POST['RegistrationForm']))

{

$form->attributes = $ POST['RegistrationForm'];

// Attempt to save the user's information
if (sform->save())

{

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

// Try to automagically log the user in, if we fail
though just redirect them to the login page

Smodel = new LoginForm;

Smodel->attributes = array(
'username' => $form->email,
'password' => $form->password

)i

if (Smodel->login())

{

// Set a flash message associated to the new
Yii::app()->user

Yii::app()->user->setFlash('sucess', 'You successfully
registred an account!');

// Then redirect to their timeline
$this->redirect ($this->createUrl ('timeline/index"')) ;

}

else
Sthis->redirect ($this->createUrl('site/login')) ;

Sthis->render ('register', array('user' => $form)) ;

}

9. Then, from the project resources folder, copy the following view files into
yourproﬁmt:protected/views/user/register.php,protected/views/
email/activate.php, and protected/views/site/index.php. Now,
either from the site/index or user/register route, you can register a
new account in your site.

10. Finally, create a new method in your UsercController.php file located
at protected/controllers/ called actionActivate () that will actually
activate our user. To do so, we're simply going to verify that the ID parameter
sent to us in the route matches with what we have on file for the user:

public function actionActivate ($id=NULL)

if ($id == NULL)
throw new CHttpException (400, 'Activation ID is missing');

Suser = User::model ()->findByAttributes (array('activation key'
=> $id));

if (Suser == NULL)

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

throw new CHttpException (400, 'The activation ID you
supplied is invalid');

// Don't allow activations of users who have a password reset
request OR have a change email request in
// Email Change Requests and Password Reset Requests require an
activated account
if (Suser-sactivated == -1 || $user-sactivated == -2)
throw new CHttpException (400, 'There was an error fulfilling
your request') ;

Suser->activated = 1;

Suser-s>password = NULL; // Don't reset the password

Suser->activation key = NULL; // Prevent reuse of their
activation key

if ($Suser->save())

{

Sthis->render ('activate') ;
Yii::app()->end() ;

throw new CHttpException (500, 'An error occurring activating
your account. Please try again later');

}

We can also reuse the form we just created on our home page to allow users to log
in or register a new account from there. Since we've already copied the view over,
we simply need to adjust the SiteController actionIndex () method:

public function actionIndex ()
{
if (!Yii::app()->user->isGuest)
Sthis->redirect ($this->createUrl ('timeline/index')) ;

$Sthis->layout = 'main';
Sthis->render ('index', array('loginform' => new LoginForm, 'user'
=> new RegistrationForm)) ;

}

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Handling forgotten passwords

As previously shown, using CFormModel to handle input from an HTML form
makes it very easy to validate submitted information and act upon it while keeping
our models and controllers very clear. We can once again use CFormModel to handle
forgotten password requests from a user.

To handle forgotten passwords, we're going to request that the user provides us
with the e-mail address they used to register their account. Next, we'll verify that
we have an e-mail address on file, and then send the user an e-mail with a single
use token that will allow them to securely reset their password. To start, create a
new file called ForgotForm.php in protected/models and add the following to it:

<?php class ForgotForm extends CFormModel {}
The next steps are as follows:

1. Begin by declaring the public attributes of our form:

public Semail;
public function attributelabels()

{

return array(
'email' => 'Your Email Address'
)i

2. We're also going to declare a private property for our User model that we'll
be reusing throughout this model:

private $_user;

3. Next, we'll declare our validation rules and custom validator:

public function rules()

{

return array (

array('email', 'required'),
array('email', 'email'),
array('email', 'checkUser'),

)i

public function checkUser (Sattribute, $params)

{

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

Sthis-> user = User::model()->findByAttributes(array('email' =>
$this->email)) ;

if ($this-> user == NULL)

Sthis->addError ('email', 'There is no user in our system

with that email address.');
return false;

return true;

}

4. Then, we will declare our save () method that will send the user the
e-mail and indicate that they have asked for their password to be reset:

public function save ()
{
if (!S$this->validate())
return false;

// Set the activation details
Sthis-> user->generateActivationKey () ;
Sthis-> user-sactivated = -1;

if ($this-> user-s>save())
{
$sendgrid = new SendGrid(Yii::app()->params['includes']
['sendgrid'] ['username'], Yii::app()->params|['includes']
['sendgrid'] ['password']) ;

Semail = new SendGrid\Email () ;
Semail->setFrom(Yii::app () ->params['includes'] ['sendgrid']
["from'])

->addTo ($this-> user->email)

->setSubject ('Reset Your Socialii Password')

->setText ('Reset Your Socialii Password')

->setHtml (Yii::app()->controller->renderPartial ('//email/
forgot', array('user' => $this-> user), true));

// Send the email
$sendgrid->send ($email) ;

return true;

}

else

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Sthis->addError('email', 'Unable to send reset link. This is
likely a temporary error. Please try again in a few minutes.');

return false;

}

Then, create an action in protected/controllers/UserController.php
to handle the form submission:

public function actionForgot ()

{

Sform = new ForgotForm;

if (isset($_POST|['ForgotForm']))

{

$form->attributes = $ POST['ForgotForm'];

if ($form-s>save())

{

Sthis->render ('forgot success');
Yii::app()->end() ;

Sthis->render ('forgot', array('forgotform' => $form)) ;

}

Finally, copy protected/views/user/forgot .php, protected/views/
user/forgot success.php and protected/views/email/forgot.php
from the project resources folder into your application.

Resetting a forgotten password

Once the user has the single-use token we sent them, we can then allow the user to
securely change their password to whatever they want. Start by creating a new file
in protected/models called PasswordReset form.php with the following:

<?php class PasswordResetForm extends CFormModel {}

The next steps are as follows:

1.

Begin by declaring the public attributes for this form:
public S$password;

public $pasword repeat;

public Suser;

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

2.

Then, add the validation rules. The user's new password should have

the same requirements as when the user registered. Since we're requesting
the password twice, we'll want to compare the two passwords using the
compare validator. This validator validates the first attribute against the
attribute repeat attribute

public function rules()

{

return array (

array ('password', 'length', 'min' => 8),
array ('password, password repeat, user', 'required'),
array ('password', 'compare',6 'compareAttribute' =>

'password repeat'),
)
}

Then, add the save () method to reset the user's password:

public function save ()

{

if (!S$this->validate())
return false;

Sthis->user->password = $this-spassword;

// Verify that this activation key can't be used again
Sthis->user->activated = 1;
Sthis->user->activation key = NULL;

if ($this->user->save())

return true;

return false;

}

Then, create our controller action:

public function actionResetPassword($id = NULL)

{
if ($id == NULL)
throw new CHttpException (400, 'Missing Password Reset ID');

Suser = User::model ()->findByAttributes (array('activation key'
=> $id)) ;
if (Suser == NULL)
[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

throw new CHttpException (400, 'The password reset id you
supplied is invalid');

Sform = new PasswordResetForm;

if (isset($_POST|['PasswordResetForm']))

{

Sform->attributes = array(
'user' => S$Suser,
'password' => $ POST['PasswordResetForm'] ['password'],

'password repeat' => $ POST['PasswordResetForm']
['password repeat']

)i

if ($form-s>save())

{

Sthis->render ('resetpasswordsuccess') ;

Yii::app()->end() ;

Sthis->render ('resetpassword', array(
'passwordresetform' => $form,
'id' => $id
))
}
5. Finally, copy protected/views/user/resetpassword.php and protected/
views/user/resetpassword_success.php from the project resources folder

into your application.

Enabling users to manage their details

At this point, we can now log in, register an account, and reset our passwords if

we forgot them. Now, let's work on allowing users to manage their own details. This
includes allowing them to change their password, e-mail address, and the other pieces
of information that we collect during the registration process. The steps are as follows:

1. We'll start by once again creating a new CFormModel in protected/models

called ProfileForm.php:
<?php class ProfileForm extends CFormModel {}

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

2.

Then, we'll add our attributes and labels:
public Semail;

public Spassword;

public S$name;

public S$newpassword = NULL;

public $newpassword repeat = NULL;
private $_ user;

public function attributelLabels ()

{

return array (

'email' => 'Your New Email Address',
'password’ => 'Your Current Password',
'name'’ = 'Your Name',

'newpassword' => 'Your NEW password',
'newpassword_repeat' => 'Your NEW password (again)'

)i
}
We'll then add our basic validation rules:

public function rules()

{

return array (

array('email, name, password', 'required'),

array ('newpassword', 'length', 'min' => 8),
array('email', 'email'),

array ('password', 'verifyPassword'),

array ('newpassword', 'compare',6 'compareAttribute' =>

'newpassword repeat')
)i
}

Before allowing the user to change any of their information (including their
password and e-mail address), we're going to require them to enter their
current password. This will validate that they have control over the account:

public function verifyPassword(Sattribute, Sparams)

{

// Only allow change requests from the currently logged inuser
Sthis-> user = User::model()->findByPk(Yii::app()->user->id);

// User doesn't exist. Something bad has happened
if (Sthis-> user == NULL)

return false;

// NULL the new password if it isn't set

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

if (Sthis->newpassword == '' || $this-s>newpassword == NULL)
$this->newpassword == NULL;

// Validate the password
if (!password verify($this->password, $this-> user->password))

{

Sthis->addError ('password', 'The password you entered is
invalid') ;
return false;

}

return true;

}

We'll then add our save () method that will update the user's information:

public function save ()
{
if (!S$this->validate())
return false;

// Set the user attributes
Sthis-> user-sattributes = array(
// If the email submitted is different than the current
email, change the new email field
'new email' => S$this->email == S$this-> user-semail ? NULL
$this—>ema§l, B

// Set the new password if validation passes

'password' => $this->newpassword == NULL ? NULL : Sthis-
>newpassword,
'name' => $this->name

)i

// Save the user's information
if (Sthis-> user->save())

{

// If the user's password has changed, send the user an
email so that they can be aware of it
if ($this->newpassword != NULL && Sthis->password != S$this-
>newpassword)
$this->sendPasswordChangeNotification() ;

// If the user entered a NEW email address, and we haven't
already sent them a change email notification

// Send them a change email notification

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

if ($this->email != $this-> user-> oldAttributes['email'] &&
$this-> user-sactivated != -2)

Sthis->sendEmailChangeNotification() ;

return true;

}

return false;

}

6. In the save () method, we declared two new
methods: sendPasswordChangeNotification () and
sendEmailChangeNotification (). These two methods
will send e-mails to the user when the event occurs:

private function sendPasswordChangeNotification ()

{

Ssendgrid = new SendGrid(Yii::app()->params['includes']
['sendgrid'] ['username'], Yii::app()->params|['includes']
['sendgrid'] ['password']) ;

Semail = new SendGrid\Email () ;

Semail->setFrom(Yii::app () ->params['includes'] ['sendgrid']
["from'])

->addTo ($this-> user->email)
->setSubject ("Your Socialii Password Has Been Changed")
->setText ('Your Socialii Password Has Been Changed')

->setHtml (Yii::app()->controller->renderPartial ('//email/
passwordchange', array('user' => $this-> user), true));

// Send the email
return $sendgrid->send($email) ;

}

7. The second method, sendEmailChangeNotification () sends an e-mail
to the user when the user's e-mail address changes. This allows us to verify
their new e-mail address before we start using it in our application:

private function sendEmailChangeNotification ()

{

// Change the user's activation status for the verification
link

Sthis-> user-sactivated = -2;

$this-> user-s>activation key = Sthis-> user-
>generateAZtivationKey(); a a

// Save the user's information
if (Sthis-> user->save())

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

$sendgrid = new SendGrid(Yii::app()->params['includes']

['sendgrid'] ['username'], Yii::app()->params|['includes']
['sendgrid'] ['password']) ;
Semail = new SendGrid\Email () ;
Semail->setFrom(Yii::app()->params['includes'] ['sendgrid']
["from'])

->addTo ($this-> user->new email)

->setSubject ("Verify Your New Email Address")

->getText ('Verify Your New Email Address')

->setHtml (Yii::app () ->controller->renderPartial ('//email/
verify', array('user' => $this-> user), true));

// Send the email
return $sendgrid->send($email) ;

}

return false;

}

Then, within our UserController, we'll define our actionIndex ()
method that will collect this information:

public function actionIndex ()

{

Suser = User::model () ->findByPk (Yii: :app () ->user->id) ;
Sform = new ProfileForm;
if (isset($_POST|['ProfileForm']))
{
S$form->attributes = $ POST['ProfileForm'];
$form->newpassword repeat = $ POST['ProfileForm']
['newpassword repeat'];

if ($form-s>save())

Yii::app()->user->setFlash('success', 'Your information
has been successfully changed') ;
else
Yii::app()->user->setFlash('danger', 'There was an error

updating your information') ;

}

Sthis->render ('index', array(
'user' => Suser,
'profileform' => $form

)) i

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

9. Finally, we need to copy protected/views/user/index.php, protected/
view/email/passwordchange.php and protected/views/email/verify.
php from our project resources folder into our project.

Verifying a new e-mail address

Now, our users can change their own information without having to go through
us. Before we close UserController, there are a couple of more methods that
we need to implement.

One secure way of changing a user's e-mail address is to store the new e-mail
address in a temporary table or column in our database and then send to that
e-mail address a verification e-mail (this is what we implemented in our
profileForm class). This allows us to indicate that we're aware that the user wants
to change their password, but we require them to prove that they have access to the
new e-mail address. The e-mail that we sent them contains a secure activation token
and a link to the actionverify () method, which will verify that the token belongs
to the user, and then move the new e-mail address to the main e-mail address field
in our database. We can implement the actionverify () method as follows:

public function actionVerify ($id=NULL)
{
if ($id == NULL)
throw new CHttpException (400, 'Activation ID is missing');

Suser = User::model ()->findByAttributes (array('activation key' =>
$id)) ;

if (Suser == NULL)
throw new CHttpException (400, 'The verification ID you supplied is
invalid') ;

Suser->attributes = array(
'email' => Suser-s>new email,
'new _email' => NULL,
'activated' => 1,
'activation key' => NULL

)i

// Save the information
if (Suser->save())

{

Sthis->render ('verify');

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Yii::app()->end() ;

}

throw new CHttpException (500, 'There was an error processing your
request. Please try again later');

}

The last actions we'll implement for this controller will allow a user to follow
and unfollow another user. We'll use these actions in our views later in the chapter.
For now, implement the actions as follows:

public function actionFollow ($id=NULL)
{
if ($id == NULL)
throw new CHttpException (400, 'You must specify the user you
wish to follow') ;

if ($id == Yii::app()->user->id)
throw new CHttpException (400, 'You cannot follow yourself');

sfollower = new Follower;

$sfollower->attributes = array(
'follower id' => Yii::app()->user->id,
'followee id' => $id

)i

if ($follower->save())
Yii::app()->user->setFlash('success', 'You are now following '
User: :model () ->findByPk ($id) - >name) ;

// Redirect back to where they were before
Sthis->redirect (Yii: :app () ->request->urlReferrer) ;

}

public function actionUnFollow ($id=NULL)
{

if ($id == NULL)

throw new CHttpException (400, 'You must specify the user you wish
to unfollow') ;

if ($id == Yii::app()->user->id)
throw new CHttpException (400, 'You cannot unfollow yourself');

$follower = Follower::model () ->findByAttributes (array('follower id'
=> Yii::app()->user->id, 'followee id' => $id));

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

if ($follower != NULL)

{

if ($follower->delete())

Yii::app()->user->setFlash('success', 'You are no longer
following ' . User::model ()->findByPk ($id) ->name) ;

}

// Redirect back to where they were before
Sthis->redirect (Yii: :app () ->request->urlReferrer) ;

}

Before closing this controller, verify that the accessRules () method is set
up correctly:

public function accessRules ()

{

return array (
array('allow',

'actions' => array('register', 'forgot',6 'wverify', 'activate',
'resetpassword'),
'users' => array('*"'")

),

array('allow',
'actions' => array('index',6 'follow', 'unfollow'),
'users'=>array('@'),

),

array('deny', // deny all users
'users'=>array('*'),

).

Viewing a timeline of shares

The easiest way to display new content is to simply list it so that the newest items are
shown first. On our timeline page, we want to provide the user with the ability to share
something, view information about the user they are viewing (such as the number of
shares, followers, and followees), and view things that the user has recently shared. To
do this, we're going to take advantage of cListView loaded asynchronously from our
main timeline view. This will allow us to reuse this view later on by simply making a
GET request to an endpoint that we'll create later. In our TimelineController.php file
located at protected/controllers/, implement the actionIndex () method:

public function actionIndex($id = NULL)

{

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

// If the ID is not set, set this to the currently logged in user.
if ($id == NULL)
{
if (Yii::app() ->user->isGuest)
Sthis->redirect (Sthis->createUrl ('site/login')) ;

$id = Yii::app()->user->username;

// Get the user's information
Suser = User::model () ->findByAttributes (array ('username' => $id)) ;
if (Suser == NULL)
throw new CHttpException (400, 'Unable to find a user with that
ID');

Sthis->render ('index', array(

'user' => Suser,
'share' => new Share,
'id' => Suser->id

)) i
!

All that we're doing in this action is retrieving the user ID (in this case, the username
of the user) from the route and then passing some information down to our view.
From the project resources folder, copy the index.php file located at protected/
views/timeline/ into your project. Let's take a look at some of the more interesting
parts of this file.

The first thing to notice in this file is that we're simply using CActiveForm to display
the new share container. Moreover, at the bottom of this file, we've implemented some
JavaScript to do some rudimentary form validation checking, to clear the text field
upon asynchronous submission, to adjust the number of shares we have, and finally,
to prepend the new share to the top of our shares list.

The second thing to notice is that we've implemented conditional follow and
unfollow button links to allow our users to simply click on a link to follow or
unfollow a particular user:

<?php if (Yii::app()->user->isGuest): ?>
<?php echo CHtml::link('Login to follow ' . Suser->name, Sthis-
>createUrl ('site/login'), array('class' => 'btn btn-primary')); ?>

<?php else: ?>
<?php if (!User::isFollowing($id)): ?>

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

<?php echo CHtml::link('Follow This User',6 S$Sthis-
>createUrl ('user/follow/', array('id' => $id)), array('class' => 'btn
btn-success')); ?>

<?php else: ?>

<?php echo CHtml::1link('Stop Following This User',6 S$this-
>createUrl ('user/unfollow/', array('id' => $id)), array('class' =>
'btn btn-danger')); ?>

<?php endif; ?>

<?php endif; ?>

The last thing to notice in this file is our use of the count relations we set up earlier in
our User model:

Followers: <?php
echo Suser->followeesCount; ?>

Following: <?php
echo Suser->followersCount; ?>

Shares: <?php echo Suser->sharesCount; ?>

Finally, we're loading our shares for this user by registering an asynchronous
callback to fetch the appropriate shares, regardless of which user we are viewing the
share for:

<?php Yii::app()->clientScript->registerScript ('loadshares', 'S.get ("'
$this->createUrl ('share/getshares', array('id' => $id)) . '",
function(data) { $(".shares").html (data); }); '); ?>

Retrieving shares

Now, let's implement our action that will display our shares. This action will have
slightly different behaviors depending on whether we're viewing our timeline

or a timeline of another user. Within our ShareController.php file located at
protected/controllers/, implement actionGetShares, as follows:

public function actionGetShares ($id=NULL) {}
The next steps are as follows:

1. Since this is an asynchronous callback, we don't want to render anything
from our layout:

Sthis->layout = false;

2. Next, we're going to either throw an error if a user wasn't provided and
we're not logged in, or set the user to ourselves if we are logged in and
an ID was given to us:

if ($id == NULL)

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

if (Yii::app() ->user->isGuest)
throw new CHttpException (400, 'Cannot retrieve shares for
that user');

$id = Yii::app()->user->id;

}

Then we're going to implement cListView, which will retrieve data from our
GET parameters:

$myFollowers = array();

// CListView for showing shares
Sshares = new Share('search');
Sshares->unsetAttributes|() ;

if (isset ($_GET['Share']))
$shares->attributes=$ GET['Share'];

When viewing another user's timeline, we only care about the shares
that they have shared with the world. However, when we're viewing our
timeline, we want to view both our shares and the shares of the user we are
following. We can implement the controller portion of this as follows:

// If this is NOT the current user, then only show stuff that
belongs to this user

if ($id != Yii::app()->user->id)

$shares->author id = $id;
else

{

// Alter the criteria to do a search of everyone the current
user is following

SmyFollowers[] = Yii::app()->user->id;

Sfollowers = Follower::model () ->findAl1ByAttributes (array ('f
ollower id' => Yii::app()->user->id)) ;
if ($followers != NULL)

{

foreach ($followers as $follower)

SmyFollowers[] = $follower->followee id;
}
}
Sthis->render ('getshares', array('shares' => $shares,
'myFollowers' => SmyFollowers)) ;
}
[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

5.

Then, we'll need to implement our getshares. php view file at
protected/views/shares/ as CListView. Notice that we're passing
down $myFollowers as a custom parameter to our Share model's
search () method:
<?php S$this->widget ('zii.widgets.CListView', array(
'dataProvider'=>$shares->search (SmyFollowers) ,
'itemView'=>"'ghare',
'emptyText' => '<div class="center">This user hasn\'t shared
anything yet!</divs>"',
'template' => '{items}{pager}',
rafterAjaxUpdate' => 'js:function() { init(); }

1
’

'pager' => array(
'header' => ' ',
'selectedPageCssClass' => 'active',
'htmlOptions' => array('class' => 'pagination')

)) i

Yii::app()->clientScript->registerScript ('init', '
function init ()
s(".fa-heart")

var i1d = $(this) .parent () .parent () .parent () .attr("data-
attr-id") ;

var self = this;

$.post ("' . $this->createUrl ('share/like') . '/" + id,
function (data)

$ (self) .toggleClass ("liked") ;

.click (function() {

3N
3N

$(".fa-mail-forward") .click (function()
var id = $(this) .parent () .parent () .parent () .attr ("data-
attr-id") ;
var self = this;

$.post ("' . $this->createUrl ('share/re-share') . '/" + id,

function (data)
$ (self) .toggleClass ("liked") ;

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

6. Then, within our model, we're going to adjust our search () method so that
it conditionally loads the appropriate data:

public function search($items = array())

{

Scriteria=new CDbCriteria;

Scriteria->compare('id', $this->id);
Scriteria-s>compare ('text',6 Sthis->text, true);
Scriteria->compare('reply id',$this->reply id);
Scriteria->compare ('created', $this->created) ;

if (empty($items))
$criteria->compare('author id', $this->author id);
else
$criteria->addInCondition('author id', $items);

Scriteria->order = 'created DESC';

return new CActiveDataProvider ($Sthis, array(
'criteria' => $criteria,

)) i

7. Finally, we can implement our individual share view by copying protected/
views/share/share.php from our project resources folder into our project.

Within this file, we're going to implement some custom logic so that hashtags (#)
and @ mentions are displayed as links. This will allow us to store unformatted

text in our database, which in turns means we could adjust the way our views
work without having to modify our data. We're also going to render our text in
Markdown to allow our users to add links or other custom formatting, but prevent
them from attempting XSS injection:

<?php
$data->text = preg replace("/#([A-Za-z0-9\/\.1*)/", "<a target=\"_
new\" href=\"" . Yii::app()->controller->createAbsoluteUrl ('timeline/
search') ."?g=$1\">#$1", S$data->text);
$data->text = preg replace("/@([A-Za-z0-9\/\.1*)/", "<a href=\""
Yii::app()->controller->createAbsoluteUrl ('timeline/index"') .

"/81\">@31", Sdata->text);
smd = new CMarkdownParser;
echo $md->safeTransform(Sdata->text) ;

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

Sharing new content

At this point, if we had shares in our database, we'd be able to see them. So let's
work on sharing new content! From within our controller, the action to handle
sharing is simply going to be loading a new Share model and populating it. Have
a look at the following code:

public function actionCreate ()

{

$share = new Share;

if (isset($_POST['Share'l]l))

{

$share->attributes = array(
'text' => $ POST['Share'] ['text'],
'reply id' => isset($ POST['Share'] ['reply id'l) ? §$_
POST['Share'] ['reply id'] : NULL,
'author id' => Yii::app()->user->id

)i

// Share the content
if ($share-ssave())

{

Sthis->renderPartial ('share', array('data' => $share));
Yii::app()->end() ;

throw new CHttpException (500, 'There was an error sharing your
content') ;

}

Though, the real power behind sharing content happens in the beforesave ()
method of our Share model. From here, we handle all the mentioning that may
occur within our model, and send an e-mail to everyone who was mentioning in
the share. The code is as follows:

public function afterSave ()

{

preg match all('/@([A-Za-z0-9\/\.1*)/', S$this->text, S$matches);
Smentions = implode(',', $matches[1]);

if (!empty ($matches[1]))

{

Scriteria = new CDbCriteria;

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Scriteria->addInCondition('username', Smatches[1]);
Susers = User::model()->findAll (Scriteria);

foreach (Susers as Suser)

{

Ssendgrid = new SendGrid(Yii::app()->params['includes']

['sendgrid'] ['username'], Yii::app()->params|['includes'] ['sendgrid']
['password']l) ;
Semail = new SendGrid\Email () ;

Semail->setFrom(Yii::app () ->params['includes'] ['sendgrid']

["from'])

->addTo (Suser->email)

->setSubject ("You've Been @mentioned!")

->setText ("You've Been @mentioned!")

->setHtml (Yii::app()->controller->renderPartial ('//email/
mention', array('share' => $this, 'user' => $user), true));

// Send the email
Ssendgrid-s>send (Semail) ;

return parent::afterSave() ;

Resharing

Since everything in our model is already implemented, we can easily implement
resharing now as a new controller action within protected/controllers/
ShareController.php. Resharing allows a user to share something another user
shared, while still giving that user credit for the original share. In our controller,
what we're going to do is load the share we want to reshare with our network,
change the author to us, and then indicate that this is a reshare of another share.

First, let's create a 1oadModel () utility method:

private function loadModel ($id=NULL)

{
if ($id == NULL)
throw new CHttpException (400, 'Missing Share ID');

return Share::model () ->findByPk ($id) ;

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

Then, we'll implement the resharing ability as described in the Describing the
project section:

public function actionReshare ($1d=NULL)
{

// Load the share model

Sshare = $this->loadModel ($id) ;

// You can't reshare your own stuff
if ($share-sauthor id == Yii::app()->user->id)
return false;

// You can't reshare stuff you've already reshared
Sreshare = Share::model () ->findByAttributes (array (

'author id' => Yii::app()->user->id,
'reshare_id' => $id

))

if (Sreshare !== NULL)

return false;

// Create a new Share as a reshare
smodel = new Share;

// Assign the shared attributes
Smodel->attributes = $share-sattributes;

// Set the reshare other to the current user
Smodel->author id = Yii::app()->user->id;

// Propogate the reshare if this isn't original
if (Smodel->reshare id == 0 || $model->reshare id == NULL)
Smodel->reshare id = $share->id;

// Then save the reshare, return the response. Yii will set a 200
or 500 response code automagically if false

return $Smodel->save() ;

Liking and unliking shares

Next, we'll implement the actions and methods necessary for a user to like and
unlike a given share. The only restriction on likes should be that a user can't like a
share more than once.

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We can implement the action for liking in ShareController as follows:

public function actionLike ($id=NULL)

{

S$share = $this->loadModel ($id) ;
if ($share->isLiked())
return S$share->unlike() ;

return S$Sshare->like() ;

}

Then, within our Share model, we'll implement the method necessary to check
whether an action has already been liked by a user or not:

public function isLiked()

{

$Slike = Like::model () ->findByAttributes (array (
'user id' => Yii::app()->user->id,
'share id' => s$this->id

))

return $like != NULL;

}
Then, we will implement the 1ike () method:

public function like ()
{
$like = Like::model () ->findByAttributes (array (
'user_ id' => Yii::app()->user->id,
'share id' => s$this->id
))

// Share is already liked, return true
if ($like != NULL)

return true;

Slike = new Like;
$like->attributes = array(
'share id' => s$this->id,
'user id' => Yii::app()->user->id

)i

// Save the like
return $like->save() ;

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

Finally, we will implement the unlike () method:

public function unlike ()

{
Slike = Like::model () ->findByAttributes (array (
'user id' => Yii::app()->user->id,
'share id' => s$this->id

))

// Item is not already liked, return true
if ($like == NULL)
return true;

// Delete the Like
return $like->delete() ;

Viewing shares

At this point, we can do everything with a share except dive into one and view all
the replies to a share. Let's implement the actionview () method so that our users
can view a particular share. In shareController, we'll implement this as follows:

public function actionView ($id=NULL)

{

Sshare = $this->loadModel ($id) ;

if ($share == NULL)
throw new CHttpException (400, 'No share with that ID was
found') ;
Sthis->render ('view', array(

'share' => S$share,
'replies' => Share::model ()->findAllByAttributes (array('reply
id' => $id), array('order' => 'created DESC')),
'reply' => new Share
))
}

Then, we will copy protected/views/share/view.php from our project resources
folder into the project. Within our view, we can now share something and click on
the eye icon on the share in order to view it in more detail.

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Searching for shares

One of the most important parts of any application is the ability to search for and
discover new content. For this application, we'll be implementing a search method
that will allow users to search for content and users. To do this, we'll check whether
the query string in our search method contains the @ character. If it does, we'll
perform a second search for that user and display information about that user in
our view. We'll implement that method as follows:

1.

We'll start by implementing actionSearch () as follows:

public function actionSearch() {}

We'll then retrieve the query string from our $_GET parameters and define
the scope for our models:

Squery = isset($_GET['gq']l) ? $ _GET['g']l : NULL;

Susers = $shares = NULL;

Then, as long as there is a query to run against, we'll create two cDbCriteria
objects; one for users and the other for shares:
if ($query != NULL)

{

SuserCriteria = new CDbCriteria;
SsearchCriteria = new CDbCriteria;

}

Within this if bracket, we'll first check whether there were any mentions in
our query string, by using preg_match_all:
preg match all('/@([A-Za-z0-9\/\.1*)/', Squery, Smatches);
Smentions = implode(',', S$matches[1]) ;

If there are any results, we'll build a query to find all the users who
were mentioned in the query, and then, we'll remove that criteria from
our query string:

if (!empty ($matches[1]))

{

SuserCriteria->addInCondition ('username', Smatches[1]);
Susers = User::model()->findAll (SuserCriteria) ;
foreach (Smatches[1l] as S$u)
Squery = str replace('@'.$u,'', squery);
}
[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

6. Then, we'll perform a LIKE query search against the text field of our
Share model:

$searchCriteria->addSearchCondition('text', S$query);
SsearchCriteria->1limit = 30;
Sshares = Share::model ()->findAll ($SsearchCriteria) ;

7. Then, we'll render our view:

Sthis->render ('search', array(
'users' => Susers,
'shares' => S$shares

))

8. Finally, we'll need to copy our view file from protected/views/timeline/
search.php into our project folder.

Sharing on Twitter with HybridAuth

Since our application doesn't have a large following yet, it's important to enable

our users to share content that they generate on our site to other places. A great way
to spread the word about a particular site or service is to take advantage of Twitter.
One way to integrate with Twitter is by utilizing their OAuth API. This will allow
us to authenticate as a given user and post content on their behalf, at just a click of

a button.

To do this, we'll be taking advantage of Hybrid Auth. Hybrid Auth is an open
source library that allows developers to integrate with multiple third-party social
networks, and enables developers to make their application more social. For our
purposes, we're going to utilize Hybrid Auth to impersonate a given user (with
their permission, of course) and submit content on their behalf upon their request.

If you want to learn more about Hybrid Auth, check out the official
s documentation at http://hybridauth.sourceforge.net/.

Setting up a Twitter application

Before we start using Hybrid Auth though, we first need to set up a Twitter application
and obtain our OAuth credentials. These credentials will allow our application to
communicate securely with Twitter, and enable us to sign in and post as our users.
The steps are as follows:

[172]

www.it-ebooks.info

http://hybridauth.sourceforge.net/
http://www.it-ebooks.info/

Chapter 5

What is OAuth? OAuth is an open standard for authentication, and
provides client applications such as the one we are building in this
application, secure delegated access to server resources on behalf of
, that owner, in this case, Twitter. By using OAuth, we can communicate
% securely with a server without having to transmit our user's credentials
T to our application. In our application, we'll be using Hybrid Auth to
take care of most of the leg work when dealing with Twitter's OAuth
endpoint. Check out http://oauth.net/about/ for more information
about what OAuth is and how it works.

1. To begin, open up your web browser, navigate to https://apps.twitter.
com/, and sign in using your Twitter credentials.

2. Once authenticated, click on the Create New App button in the top-right
corner of the page body.

3. On this page, fill out the fields as shown in the next screenshot. Adjust
the website URL and Callback URL to match what you are using in
your application. Note that the endpoint you provide to Twitter must
be publicly accessible.

W Application Management ﬂ'

Create an application

Application details
Name *

Socialii

Your application name. Ti used to attribute the source of a tweet and in user-facing authorization screens. 32 characters max.

Description *
Socialli is a Microblogging Platform for Sharing Content

ing authorization screens. Between 10 and 200 characters max

Your application descripti

1, which will be sho

Website *

https://chapter5.example.com

Callback URL

https://ichapter5 example com/share/hybrid/callback

[173]

www.it-ebooks.info

http://oauth.net/about/
https://apps.twitter.com/
https://apps.twitter.com/
http://www.it-ebooks.info/

Creating a Microblogging Platform

4. On the next page, click on the Settings tab, check the Allow this application
to be used to sign into Twitter checkbox, and click on the Update Settings
button at the bottom of the page.

5. Then, click on the Permissions tab and change the access level to Read and
Write and save the form.

Configuring HybridAuth

With our Twitter application configured, we now need to install and configure
Hybrid Auth. Fortunately, Hybrid Auth is available as a Composer dependency,
so we can include its source code into our project by adding the following to the
require section of our composer. json file:

"hybridauth/hybridauth": "2.2.0.*@dev"
The next steps are as follows:

1. Run the composer update command from your command line:

composer update

2. You should see something similar to the following output:
Loading composer repositories with package information
Updating dependencies (including require-dev)
- Installing hybridauth/hybridauth (2.2.0.x-dev 5774600)
Cloning 57746000e5b2f96469b229b366e56eb70ab7b£f20

Writing lock file

Generating autoload files

3. Next, we'll configure Hybrid Auth so that it knows what information to
use. Open up protected/config/params.php, and add the following
after our SendGrid information:

'hybridauth' => array(

'baseUrl' => '"',
'base url' => '',
'providers' => array(
'Twitter' => array(
'enabled' => true,
'keys' => array(

'key' => '<twiter key>',

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

'secret' => '<twitter secrets'

)

4. Then, retrieve your Twitter API key and Twitter Secret key from the
API Keys tab of our Twitter application, as shown in the next screenshot,
and replace <twitter_key> and <twitter_ secret> with them in your
configuration file:

Your Twitter OAuth Key and Secret are confidential pieces of
. information and should be kept out of your DCVS provider. If you
% ever suspect that your OAuth credentials have been compromised,
s you should immediately regenerate your API keys. This will
prevent potential attacks from gaining the ability to sign on and
tweet as your users.

Socialii Chapter 5 Test oA

Details Seftings =~ APIKeys Permissions

Application settings

APl key |

AP| secret |
Access level Read, write (modify app permissions)

Owner charlesportwood

Owner 1D 56934224

Application actions

Regenerate AP keys Change App Permissions

. HybridAuth can be configured with several different options. Be sure to
% look at a few of the examples if you're interested in implementing social
L sharing for other providers at http: //hybridauth.sourceforge.

net/userguide/Configuration.html.

[175]

www.it-ebooks.info

http://hybridauth.sourceforge.net/userguide/Configuration.html
http://hybridauth.sourceforge.net/userguide/Configuration.html
http://www.it-ebooks.info/

Creating a Microblogging Platform

Implementing HybridAuth social sign-on and
sharing

Now that our application has Twitter's OAuth credentials, we can implement the
social sign-on and sharing features:

1.

Begin by adjusting our accessRules () method to only allow authenticated
users to share content on Twitter:

array('allow',

'actions' => array('create', 'reshare', 'like', 'delete’',
'hybrid'),
'users' => array('@')

) ’

Then, implement the actionHybrid () method:
public function actionHybrid ($id=NULL) {}

We'll start this action by looking for some specific HybridAuth $_GET

parameters, and calling Hybrid Endpoint::process () if either of the

two are detected:

if (isset($_GET['hauth start']) || isset($_GET['hauth done']))
Hybrid Endpoint::process() ;

We'll then wrap the next section in a try/catch block to catch any errors
that Hybrid Auth may throw if it encounters an error:

try {

} catch (Exception $e) ({

$this->redirect ($this->createUrl ('timeline/index"')) ;

}

Within our try/catch block, we'll then load our configuration we set in
our params . php file, and set the base URL for Hybrid Auth to use internally
within our application. This base URL should correspond to the location
from where Hybrid Auth will be called:

Sconfig = Yii::app()->params['includes'] ['hybridauth'];
Sconfig['baseUrl'] = $config['base url'] = S$this-
>createAbsoluteUrl ('share/hybrid') ;

We'll initialize Hybrid Auth with our configuration:
Shybridauth = new Hybrid Auth($config, array());

Then, we'll create a Hybrid Auth adapter for us to talk to Twitter:
Sadapter = Shybridauth->authenticate('Twitter');

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

8. Next, we should check whether the adapter is connected to Twitter:

if ($adapter->isUserConnected()) {}

9. Within this if block, we should load the share we want to share on Twitter:

Sshare = $this->loadModel ($id) ;

10. Then, share our content on Twitter:

$response = $adapter-s>setUserStatus ($share->text . ' | #Socialii

Sthis->createAbsoluteUrl ('share/view', array('id' => $id)))

7

Yii::app()->user->setFlash('success', 'Your status has been shared

to Twitter') ;

Sthis->redirect (Yii::app () ->user->returnUrl) ;

Now, if you share something on our site, then click on the Twitter icon for that share;

you'll be redirected to Twitter to sign in, as shown in the following screenshot:

Sign up for Twitter »

You can use your Twitter account to sign in to other sites and services.
By signing in here, you can use Socialii Chapter & without sharing your Twitter password

Authorize Socialii Chapter 5 o
to use your account? %&

Socialii Chapter 5
ch5_home erianna. net

This application will be able to

« Read Tweets from your timeline

+ See who you follow, and follow new people
« Update your profile

+ Post Tweets for you

Socialii Chapter & Pack Project

|Username or email
Password

Remember me - Forgot password?

This application will not be able to

« Access your direct messages
+ See your Twitter password

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Microblogging Platform

After signing in, you'll need to authorize our application to update our Twitter
profile, as shown in the following screenshot:

You can use your Twitter account to sign in to other sites and services.
By signing in here, you can use Socialii Chapter 5 without sharing your Twitter password.

Authorize Socialii Chapter 5 S
to use your account? u

Socialii Chapter 5

This application will be able to: - }
chb.home_erianna.net

+ Read Tweets from your timeline.

« See who you follow, and follow new people.
+ Update your profile.

« Post Tweets for you.

This application will net be able to

Socialii Chapter 5 Pack Project

+ Access your direct messages
« See your Twitter password

You can revoke access to any application at any time from the Applications tab of your Settings page.

By authorizing an application you continue to operate under Twitter's Terms of Service. In particular, some
usage information will be shared back with Twitter. For more, see our Privacy Policy.

Then, our content will be shared on Twitter on our behalf, as shown in the

next screenshot. Moreover, if we click on the Twitter button again within our
application, our content will be automatically shared on Twitter for us, without
us having to reauthenticate against Twitter.

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

@charlesportwood cool site! | #Socialii
share/view/46

+ Reply W Delete % Favorite ses More

Summary

Wow, we covered quite a bit in this chapter! We expanded upon our user
authentication and management to include secure activation and password resets

if a user forgets their password, and enabled our users to securely and safely change
both their own e-mail address and password with proper verification and notifications.
Moreover, we implemented all of these actions using cFormModel, which enabled

us to cleanly isolate the logic for handling these actions in forms rather than in our
controllers. Finally, we implemented an asynchronous cListViews and utilized
Hybrid Auth to share on Twitter using our OAuth credentials.

The user components that we developed in this chapter can easily be used and
adapted for almost any application that will require user authentication and
management. In the next chapter, we'll be utilizing these components to build a
full-scale content management system that will allow us to upload content and
photos and also allow us to share this content with others. The CMS that we'll
be building will also be SEO-optimized and will include dynamic content slugs
and a sitemap feature that can be submitted to the search engines. Before
proceeding to the next chapter, be sure to review the Yii Class Reference at
http://www.yiiframework.com/doc/api/ and review all the classes that

we used in this chapter. Then, when you're ready, head over to the next
chapter where you'll build a CMS!

[179]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content
Management System

For our next project, we will develop a scalable, multiuser content management system
that will allow our users to create and update blog posts and enable them to comment
on these blog posts. In addition to reutilizing many of the features we've developed

for previous applications, this system will be optimized for optimal placement in
search engines. Moreover, this system will feature a social sign-on feature that will
allow users to register and log in from a third-party social network provider. We'll

also explore the use of themes within our application, which will enable us to change
the presentation layer of our application with minimal effort.

When we're finished, our CMS will look as follows:

CMs Login Register

YiiCMS

A CMS written in Yii Framework

Quis condimentum tortor. About

This is my blog where I write

Mar 16, 2014 by User 1 in Uncategorized about things I find interesting

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi congue arcu id

dui consectetur molestie. Cras molestie erat fringilla metus dignissim
vulputate. Phasellus tortor elit, cursus vel sapien et, pharetra facilisis sem.

Nam quis felis at nibh auctor ultrices. In hac habitasse platea dictumst. Morbi

A s Recent Posts
accumsan accumsan lacus, ut luctus odio interdum et. Fusce velit nisi,
. B - test
vehicula in ullamcorper nec, porttitor quis eros. In scelerisque imperdiet Morbi nee sollicitudin risus

elementum. Vivamus at ligula nec nunc fermentum sagittis.\r\n\r\nMauris Nullam suscipit
vulputate, urna et lacinia suscipit, leo risus commodo neque, in viverra tortor Lorem ipsum dolor
Quis condimentum tortorz

mi eget risus. Sed aliquam vulputate augue a ornare. Nam eget purus urna.
Integer a condimentum tellus. Fusce ullamcorper arcu vitae leo commodo
molestie. Quisque blandit varius odio. quis ornare metus viverra eget. Sed

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Prerequisites

Before we get started, there are a couple of things that we'll need to have set up
and working:

Once again, we'll need to have a web server with a public-facing IP address.
This will allow e-mails to be sent to our application. Many cloud Virtual
Private Server (VPS) providers are available to use for low month or hourly
prices. Such services include https: //www.digitalocean.com, www.linode.
com, and www . rackspace.com/cloud/servers.

In order to send e-mails in our application, we'll once again utilize a free
SendGrid Developer Account, which can be set up at https://www.
sendgrid.com/developers.

In this chapter, we'll once again use the latest version of MySQL (at the
time of this writing, MySQL 5.6). Make sure that your MySQL server is set
up and running on your server.

Do you want to try something more challenging? After completing

this project, try to figure out what changes you need to make to
’ this application to make it work with Postgres rather than MySQL.

For this project, we'll once again manage our dependencies
through Composer, which you can download and install from
https://getcomposer.org/.

We'll also be using Disqus, a third-party commenting system that
we will integrate with to display comments on our site. For this project,
you'll need to register an account with https://www.disqus.com.

Finally, you'll need a Twitter Developer account, obtained from
https://dev.twitter.com/. This account will allow us to enable the
social sign-on feature of our application through Twitter's OAuth APL

Once you have acquired the listed prerequisites, create a subdomain on the domain
name you are using and point it to your server. In this chapter, I'll use chapters.
example.com to refer to this subdomain. After everything is set up and your server
is responding to that domain name, we can get started.

[182]

www.it-ebooks.info

https://www.digitalocean.com
www.linode.com
www.linode.com
www.rackspace.com/cloud/servers
https://www.sendgrid.com/developers
https://www.sendgrid.com/developers
https://getcomposer.org/
https://www.disqus.com
https://dev.twitter.com/
http://www.it-ebooks.info/

Chapter 6

Describing the project

Our CMS can be broken down into several different components:

* Users who will be responsible for viewing and managing the content
* Content to be managed

* Categories for our content to be placed into

* Metadata to help us further define our content and users

* Search engine optimizations

Users

The first component of our application is the users who will perform all the

tasks in our application. For this application, we're going to largely reuse the

user database and authentication system we expanded upon in Chapter 5, Creating

a Microblogging Platform. In this chapter, we'll enhance this functionality by allowing
social authentication. Our CMS will allow users to register new accounts from the
data provided by Twitter; after they have registered, the CMS will allow them

to sign-in to our application by signing in to Twitter.

To enable us to know if a user is a socially authenticated user, we have to make
several changes to both our database and our authentication scheme. First, we're
going to need a way to indicate whether a user is a socially authenticated user.
Rather than hardcoding a isAuthenticatedviaTwitter column in our database,
we'll create a new database table called user metadata, which will be a simple
table that contains the user's ID, a unique key, and a value. This will allow us to
store additional information about our users without having to explicitly change
our user's database table every time we want to make a change:

ID INTEGER PRIMARY KEY
user id INTEGER

key STRING

value STRING

created INTEGER
updated INTEGER

We'll also need to modify our Useridentity class to allow socially
authenticated users to sign in. To do this, we'll be expanding upon this class

to create a RemoteUserIdentity class that will work off the OAuth codes that
Twitter (or any other third-party source that works with HybridAuth) provides
to us rather than authenticating against a username and password.

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Content

At the core of our CMS is our content that we'll manage. For this project, we'll
manage simple blog posts that can have additional metadata associated with them.
Each post will have a title, a body, an author, a category, a unique URI or slug, and
an indication whether it has been published or not. Our database structure for this
table will look as follows:

ID INTEGER PRIMARY KEY
title STRING

body TEXT

published INTEGER
author id INTEGER
category id INTEGER
slug STRING

created INTEGER
updated INTEGER

Each post will also have one or many metadata columns that will further describe
the posts we'll be creating. We can use this table (we'll call it content_metadata)
to have our system store information about each post automatically for us, or add
information to our posts ourselves, thereby eliminating the need to constantly
migrate our database every time we want to add a new attribute to our content:

ID INTEGER PRIMARY KEY
content id INTEGER

key STRING

value STRING

created INTEGER
updated INTEGER

Categories

Each post will be associated with a category in our system. These categories will
help us further refine our posts. As with our content, each category will have its

own slug. Before either a post or a category is saved, we'll need to verify that the
slug is not already in use. Our table structure will look as follows:

ID INTEGER PRIMARY KEY
name STRING
description TEXT

slug STRING

created INTEGER
updated INTEGER

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Search engine optimizations

The last core component of our application is optimization for search engines so
that our content can be indexed quickly. SEO is important because it increases our
discoverability and availability both on search engines and on other marketing
materials. In our application, there are a couple of things we'll perform to improve
our SEO:

¢ The first SEO enhancement we'll add is a sitemap.xml file, which we can
submit to popular search engines to index. Rather than crawl our content,
search engines can very quickly index our sitemap.xml file, which means
that our content will show up in search engines faster.

* The second enhancement we'll be adding is the slugs that we discussed
earlier. Slugs allow us to indicate what a particular post is about directly
from a URL. So rather than have a URL that looks like http://chapters6.
example.com/content /post/id/5, we can have URL's that look like:
http://chapter6.example.com/my-awesome-article. These types of
URLs allow search engines and our users to know what our content is about
without even looking at the content itself, such as when a user is browsing
through their bookmarks or browsing a search engine.

Initializing the project

To provide us with a common starting ground, a skeleton project has been included
with the project resources for this chapter. Included with this skeleton project are

the necessary migrations, data files, controllers, and views to get us started with
developing. Also included in this skeleton project are the user authentication classes
we worked on in Chapter 5, Creating a Microblogging Platform. Copy this skeleton project
to your web server, configure it so that it responds to chapteré.example.comas
outlined at the beginning of the chapter, and then perform the following steps to

make sure everything is set up:

1. Adjust the permissions on the assets and protected/runtime folders so
that they are writable by your web server.

2. In this chapter, we'll once again use the latest version of MySQL (at the time
of writing MySQL 5.6). Make sure that your MySQL server is set up and
running on your server. Then, create a username, password, and database
for our project to use, and update your protected/config/main. php file
accordingly. For simplicity, you can use ché_cms for each value.

3. Install our Composer dependencies:

Composer install

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

4. Run the migrate command and install our mock data:
php protected/yiic.php migrate up --interactive=0
psql ch6é cms -f protected/data/postgres.sql

5. Finally, add your SendGrid credentials to your protected/config/params.
php file:

'sendgrid' => array(
'username' => '<username>',
'password' => '<passwords',
'from' => 'noreply@ché6.home.erianna.net'

)

If everything is loaded correctly, you should see a 404 page similar to the following:

YiCMS

Error 404

The system is unable to find the requested action "index".

Exploring the skeleton project

There are actually a lot of different things going on in the background to make this
work even if this is just a 404 error. Before we start doing any development, let's take
a look at a few of the classes that have been provided in our skeleton project in the
protected/components folder.

Extending models from a common class

The first class that has been provided to us is an ActiveRecord extension called
CMSActiveRecord that all of our models will stem from. This class allows us to reduce
the amount of code that we have to write in each class. For now, we'll simply add
CTimestampBehavior and the afterFind () method we've used in previous chapters
to store the old attributes for the time the need arises to compare the changed attributes
with the new attributes:

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

class CMSActiveRecordCMSActiveRecord extends CActiveRecord

{

public $ oldAttributes = array();

public function behaviors ()

{

return array (

'CTimestampBehavior' => array(
'class' => 'zii.behaviors.CTimestampBehavior',
'createAttribute’ => 'created',
'updateAttribute’ => 'updated',
'setUpdateOnCreate' => true

)i
!

public function afterFind()
{
if (sthis !== NULL)
Sthis-> oldAttributes = s$this-sattributes;
return parent::afterFind() ;

Creating a custom validator for slugs

Since both content and Category classes have slugs, we'll need to add a custom
validator to each class that will enable us to ensure that the slug is not already

in use by either a post or a category. To do this, we have another class called
CMSSlugActiveRecord that extends CMSActiveRecord with a validateSlug ()
method that we'll implement as follows:

class CMSSLugActiveRecord extends CMSActiveRecord

{

public function validateSlug(Sattributes, S$params)
{
// Fetch any records that have that slug
Scontent = Content::model () ->findByAttributes (array('slug' =>
Sthis->slug)) ;
Scategory = Category::model () ->findByAttributes (array('slug' =>
Sthis->slug)) ;

$class = strtolower (get class($this));

if ($Scontent == NULL && S$Scategory == NULL)

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

return true;

else if (($content == NULL && Scategory != NULL) || (Scontent !=
NULL && S$Scategory == NULL))
{
Sthis->addError ('slug', 'That slug is already in use');

return false;

}

else
{
if ($this->id == $Sclass->id)
return true;

}

$this->addError ('slug', 'That slug is already in use');
return false;

}

This implementation simply checks the database for any item that has that slug.

If nothing is found, or if the current item is the item that is being modified, then the
validator will return true. Otherwise, it will add an error to the slug attribute and
return false. Both our Content model and Category model will extend from this class.

View management with themes

One of the largest challenges of working with larger applications is changing their
appearance without locking functionality into our views. One way to further separate
our business logic from our presentation logic is to use themes. Using themes in Yii,
we can dynamically change the presentation layer of our application simply by
utilizing the Yii: :app () - >setTheme (' themename) method. Once this method

is called, Yii will look for view files in themes/themename/views rather than
protected/views. Throughout the rest of the chapter, we'll be adding views to a
custom theme called main, which is located in the themes folder. To set this theme
globally, we'll be creating a custom class called cMscontroller, which all of our
controllers will extend from. For now, our theme name will be hardcoded within
our application. This value could easily be retrieved from a database though,
allowing us to dynamically change themes from a cached or database value rather
than changing it in our controller. Have a look at the following lines of code:

class CMSController extends CController

{

public function beforeAction (Saction)

{

Yii::app () ->setTheme ('main') ;

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

return parent::beforeAction($Saction) ;

Alternatively, you can use the theme attribute from within the
protected/config/main.php file as outlined in the official
documentation http://www.yiiframework.com/doc/guide/1.1/
en/topics.theming. While manipulating the theme there is simple,
% it requires our end user to have knowledge of how to manipulate PHP
= arrays. If you intend on allowing your end users to manipulate the theme
of their site, it is recommended that you do so programmatically via
Yii::app () ->setTheme from a cached or database value. Be sure to
check out the documentation for more information about using themes.

Truly dynamic routing

In our previous applications, we had long, boring URLs that had lots of IDs and
parameters in them. These URLs provided a terrible user experience and prevented
search engines and users from knowing what the content was about at a glance,
which in turn would hurt our SEO rankings on many search engines. To get around
this, we're going to heavily modify our Ur1Manager class to allow truly dynamic
routing, which means that, every time we create or update a post or a category,

our URL rules will be updated.

Telling Yii to use our custom UrlIManager

Before we can start working on our controllers, we need to create a custom
UrlManager to handle routing of our content so that we can access our content
by its slug. The steps are as follows:

1. The first change we need to make to allow for this routing is to update the
components section of our protected/config/main.php file. This will tell
Yii what class to use for the Ur1Manager component:

'urlManager' => array(

'class' => 'application.components.
CMSUrlManager',

'urlFormat' => 'path',

'showScriptName' => false

)

2. Next, within our protected/components folder, we need to create
CMSUrlManager .php:

class CMSUrlManager extends CUrlManager {}

[189]

www.it-ebooks.info

http://www.yiiframework.com/doc/guide/1.1/en/topics.theming
http://www.yiiframework.com/doc/guide/1.1/en/topics.theming
http://www.it-ebooks.info/

Building a Content Management System

3.

CUrlManager works by populating a rules array. When Yii is bootstrapped,
it will trigger the processRules () method to determine which route should
be executed. We can overload this method to inject our own rules, which will
ensure that the action that we want to be executed is executed.

To get started, let's first define a set of default routes that we want loaded.
The routes defined in the following code snippet will allow for pagination
on our search and home page, enable a static path for our sitemap.xml file,
and provide a route for Hybrid Auth to use for social authentication:

public S$defaultRules = array(
'/sitemap.xml' => '/content/sitemap’',
' /search/<page:\d+>"' => '/content/search’',
' /search' => '/content/search',
'/blog/<page: \d+>" => '/content/index',
'/blog! => '/content/index',
v/ => '/content/index',

'/hybrid/<provider:\w+>' => '/hybrid/index',
)i

Then, we'll implement our processRules () method:

protected function processRules() {}

CUrlManager already has a public property that we can interface to modify
the rules, so we'll inject our own rules into this. The rules property is

the same property that can be accessed from within our config file. Since
processRules () gets called on every page load, we'll also utilize caching
so that our rules don't have to be generated every time. We'll start by trying
to load any of our pregenerated rules from our cache, depending upon
whether we are in debug mode or not:

Sthis->rules = !YII_DEBUG ? Yii::app()->cache->get ('Routes"')
array () ;

If the rules we get back are already set up, we'll simple return them; otherwise,
we'll generate the rules, put them into our cache, and then append our basic
URL rules that we've used throughout the previous chapters:

if ($this->rules == false || empty($this->rules))
{

Sthis->rules = array();

Sthis->rules = Sthis->generateClientRules() ;

Sthis->rules = CMap::mergearray (Sthis->addRssRules(), S$this-
>rules) ;

Yii::app()->cache->set ('Routes', sSthis->rules);

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

}

$this->rules|['<controller:\w+>/<action:\w+>/<id:\w+>'] =
'<controllers/<action>';
$this->rules|['<controller:\w+>/<action:\w+>'] =
'<controllers/<action>';

return parent::processRules() ;

For abstraction purposes, within our processRules () method, we've
utilized two methods we'll need to create: generateClientRules, which
will generate the rules for content and categories, and addrRSSRules,
which will generate the RSS routes for each category.

The first method, generateclientRules (), simply loads our default rules
that we defined earlier with the rules generated from our content and
categories, which are populated by the generateRules () method:

private function generateClientRules ()

{

Srules = CMap::mergeArray (Sthis->defaultRules, S$this->rules);
return CMap: :mergeArray (Sthis->generateRules (), Srules);

}

private function generateRules ()

{
return CMap::mergeArray (Sthis->generateContentRules (), Sthis-
>generateCategoryRules()) ;

}

The generateRules () method, that we just defined, actually calls the
methods that build our routes. Each route is a key-value pair that will
take the following form:
array (

'<slug>' => '<controllers/<action>/id/<id>"'

)

Content rules will consist of an entry that is published. Have a look at the
following code:

private function generateContentRules ()

{

$rules = array();
Scriteria = new CDbCriteria;
Scriteria-s>addCondition('published = 1');

Scontent = Content::model ()->findAll (Scriteria) ;

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

foreach (Scontent as $el)

{

if ($el->slug == NULL)
continue;

$pageRule = $el->slug.'/<page:\d+>';
Srule = $el->slug;

if ($el->slug == '/")
SpageRule = S$rule = '';

$pageRule = $el->slug . '/<page:\d+>';
Srule = S$el->slug;

$rules [$pageRule] = "content/view/id/{$el->id}";
$rules[$rule] = "content/view/id/{$el->id}";
!

return Srules;

}

9. Our category rules will consist of all categories in our database. Have a look
at the following code:

private function generateCategoryRules ()
{

$rules = array();
Scategories = Category::model () ->findAll () ;

foreach ($categories as Sel)

{

if ($el->slug == NULL)
continue;

$pageRule = $el->slug.'/<page:\d+>';
Srule = $el->slug;

if ($el->slug == '/")
SpageRule = S$rule = '';

$pageRule = $el->slug . '/<page:\d+>';
Srule = S$el->slug;

$rules [$pageRule] = "category/index/id/{$el->id}";
$rules[$rule] = "category/index/id/{$el->id}";

}

return Srules;

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

10. Finally, we'll add our RSS rules that will allow RSS readers to read all content

for the entire site or for a particular category, as follows:

private function addRSSRules ()

{
Scategories = Category::model () ->findAll () ;
foreach ($categories as $category)

Sroutes [$Scategory->slug.'.rss'] = "category/rss/id/
{$category->id}";

Sroutes['blog.rss'] = '/category/rss';
return S$Sroutes;

. CUrlManager has many different components. If you have
questions, be sure to reference the Yii Class Reference for this
i classathttp://www.yiiframework.com/doc/api/1.1/
CUrlManager

Displaying and managing content
Now that Yii knows how to route our content, we can begin work on displaying
and managing it. Begin by creating a new controller called contentController in

protected/controllers that extends cMSController. Have alook at the following
line of code:

class ContentController extends CMSController {}

To start with, we'll define our accessRules () method and the default layout that
we're going to use. Here's how:

public $layout = 'default';

public function filters()

{

return array(
'accessControl',
)i

public function accessRules|()

{

return array(
array('allow',

[193]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CUrlManager
http://www.yiiframework.com/doc/api/1.1/CUrlManager
http://www.it-ebooks.info/

Building a Content Management System

'actions' => array('index',6 'view',6 'search'),
'users' => array('*')
),

array('allow',

'actions' => array('admin',6 'save',6 ‘'delete'),
'users'=>array('@'),
'expression' => 'Yii::app()->user->role==2"

),

array('deny', // deny all users

'users'=>array('*'),

).

Rendering the sitemap

The first method we'll be implementing is our sitemap action. In our
ContentController, create a new method called actionSitemap ():

public function actionSitemap() {}

The steps to be performed are as follows:

1.

Since sitemaps come in XML formatting, we'll start by disabling webLogRoute
defined in our protected/config/main.php file. This will ensure that our
XML validates when search engines attempt to index it:

Yii::app()->log->routes[0] ->enabled = false;

We'll then send the appropriate XML headers, disable the rendering of the
layout, and flush any content that may have been queued to be sent to the
browser:

ob_end clean() ;

header ('Content-type: text/xml; charset=utf-8');
Sthis->layout = false;

Then, we'll load all the published entries and categories and send them to
our sitemap view:

$content = Content::model () ->findAllByAttributes (array ('published’
=> 1));

Scategories = Category::model ()->findAll () ;

Sthis->renderPartial ('sitemap', array(
'content' => Scontent,

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

'categories' => S$categories,

'url' => 'http://'.Yii::app()->request->serverName
Yii::app() ->baseUrl
))

Finally, we have two options to render this view. We can either make it a
part of our theme in themes/main/views/content/sitemap.php, Or we
can place it in protected/views/content/sitemap.php. Since a sitemap's
structure is unlikely to change, let's put it in the protected/views folder:

<?php echo '<?xml version="1.0" encoding="UTF-8"?>'; ?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<?php foreach (Scontent as S$v): ?>

<urls>
<loc><?php echo Surl .'/'. htmlspecialchars(str_
replace('/', '', $v(['slug'l), ENT QUOTES, "utf-8"); ?></loc>

<lastmod><?php echo date('c',
strtotime ($v['updated']l)) ;?></lastmod>

<changefreg>weekly</changefreqg>
<prioritys>l</priority>
</urls>
<?php endforeach; ?>
<?php foreach (Scategories as $v): ?>

<urls>
<loc><?php echo Surl .'/'. htmlspecialchars(str_
replace('/', '', $v(['slug']l), ENT QUOTES, "utf-8"); ?></loc>

<lastmod><?php echo date('c',
strtotime ($v['updated'])) ;?></lastmod>

<changefreg>weekly</changefreqg>
<priority>0.7</priority>
</urls>
<?php endforeach; ?>
</urlset>

Even though we've told Yii to look for view files within a theme,
* it's still going to look in the protected/views folder if it cannot
% find the view file within the themes folder. This feature allows us
= to separate views that shouldn't change (such as sitemaps and RSS
feeds) from views that will actually be presented to a user.

You can now load http://chapter6.example.com/sitemap.xml in your browser
to see the sitemap. Before you make your site live, be sure to submit this file to search
engines for them to index.

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Displaying a list view of content

Next, we'll implement the actions necessary to display all of our content and
a particular post. We'll start by providing a paginated view of our posts. Since
cListView and the Content model's search () method already provide this
functionality, we can utilize those classes to generate and display this data:

1.

To begin with, open protected/models/Content .php and modify the
return value of the search () method as follows. This will ensure that Yii's
pagination uses the correct variable in our cListView, and tells Yii how
many results to load per page.

return new CActiveDataProvider ($this, array(

'criteria’ =>$Scriteria,
'pagination' => array(
'pageSize' => 5,
'pageVar' =>'page'

)
))

Next, implement the actionIndex () method with the $page parameter.
We've already told our UrlManager how to handle this, which means that
we'll get pretty URI's for pagination (for example, /blog, /blog/2, /blog/3,
and so on):

public function actionIndex ($page=1)

{
// Model Search without $_GET params
Smodel = new Content ('search') ;
Smodel->unsetAttributes() ;
Smodel->published = 1;

$this->render('//content/all', array(
'dataprovider' => $model->search()
)) i
}

Then we'll create a view in themes/main/views/content/all.php; this will
display the data within our dataProvider:
<?php $this->widget ('zii.widgets.CListView', array(
'dataProvider'=>$dataprovider,
'itemView'=>"'//content/list"',

'summaryText' => '',
'pager' => array(
'htmlOptions' => array(
'class' => 'pager'
),
'header' => '',

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

'firstPageCssClass'=>'hide',
'lastPageCssClass'=>'hide"',
'maxButtonCount' => 0

)) i

4. Finally, copy themes/main/views/content/all.php from the project
resources folder so that our views can render.

Since our database has already been populated with some sample data, you can start
playing around with the results right away, as shown in the following screenshot:

CMS Login Register

YiiCMS

A CMS written in Yii Framework

Nullam suscipit7 Asout

This is my blog where T write

Mar 16, 2014 by User 1 in Personal Thoughts about things I find interesting

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi congue arcu id
dui consectetur molestie. Cras molestie erat fringilla metus dignissim
vulputate. Phasellus tortor elit, cursus vel sapien et, pharetra facilisis sem.
Nam quis felis at nibh auctor ultrices. In hac habitasse platea dictumst. Morbi
- o Recent Posts
accumsan accumsan lacus, ut luctus odio interdum et. Fusce velit nisi,

test

Morbi nec sellieitudin risus
elementum. Vivamus at ligula nec nunc fermentum sagittis.\r\n\r\nMauris Nullam suscipit

vehicula in ullamcorper nec, porttitor quis eros. In scelerisque imperdiet

vulputate, urna et lacinia suscipit, leo risus commodo neque, in viverra tortor Lorem ipsum dolor
)) . Quis condimentum tortors
mi eget risus. Sed aliquam vulputate augue a ornare. Nam eget purus urna.
Integer a condimentum tellus. Fusce ullamecorper arcu vitae leo commodo
molestie. Quisque blandit varius odio, quis ornare metus viverra eget. Sed

ornare neque risus, a posuere mauris tincidunt euismod. Aenean mollis

tortor vel enim elementum, sed fermentum leo dictum. Nunc a justo in risus

Displaying content by ID

Since our routing rules are already set up, displaying our content is extremely
simple. All that we have to do is search for a published model with the ID passed
to the view action and render it:

public function actionView ($id=NULL)
{

// Retrieve the data

Scontent = Content::model () ->findByPk ($id) ;

// beforeViewAction should catch this

if ($content == NULL || !$content->published)

throw new CHttpException (404, 'The article you specified does

not exist.');

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Sthis->render ('view', array(
rid! => $id,
'post' => $content
)) i
}

After copying themes/main/views/content/view.php from the project resources
folder into your project, you'll be able to click into a particular post from the home
page. In its present form, this action has introduced an interesting side effect that
could negatively impact our SEO rankings on search engines — the same entry can
now be accessed from two URI's. For example, http://chapter6.example.com/
content/view/id/1 and http://chapter6.example.com/quis-condimentum-
tortor now bring up the same post. Fortunately, correcting this bug is fairly easy.
Since the goal of our slugs is to provide more descriptive URIs, we'll simply block
access to the view if a user tries to access it from the non-slugged URI.

We'll do this by creating a new method called beforeviewaction () that takes
the entry ID as a parameter and gets called right after the actionview () method
is called. This private method will simply check the URI from CHt tpRequest to
determine how actionview was accessed and return a 404 if it's not through our
beautiful slugs:

private function beforeViewAction ($1d=NULL)

{

// If we do not have an ID, consider it to be null, and throw a 404
error

if ($id == NULL)
throw new CHttpException (404, 'The specified post cannot be
found. ') ;

// Retrieve the HTTP Request
Sr = new CHttpRequest () ;

// Retrieve what the actual URI
SrequestUri = str replace($r->baseUrl, '', S$r->requestUri);

// Retrieve the route
Sroute = '/' . S$this->getRoute() . '/' . $id;
SrequestUri = preg replace('/\?(.*)/','', SrequestUri) ;

// If the route and the uri are the same, then a direct access
attempt was made, and we need to block access to the controller

if (SrequestUri == S$Sroute)
throw new CHttpException (404, 'The requested post cannot be
found. ') ;

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

return str replace($r->baseUrl, '', S$r->requestUri);

}

Then, right after our actionview starts, we can simultaneously set the correct return
URL and block access to the content if it wasn't accessed through the slug as follows:

Yii::app () ->user->setReturnUrl ($Sthis->beforeViewAction($id)) ;

Adding comments to our CMS with Disqus

Presently, our content is only informative in nature —we have no way for our

users to communicate with us what they thought about our entry. To encourage
engagement, we can add a commenting system to our CMS to further engage with
our readers. Rather than writing our own commenting system, we can leverage
comment through Disqus, a free, third-party commenting system. Even through
Disqus, comments are implemented in JavaScript and we can create a custom widget
wrapper for it to display comments on our site. The steps are as follows:

1. To begin with, log in to the Disqus account you created at the beginning
of this chapter as outlined in the prerequisites section. Then, navigate
tohttp://disqus.com/admin/create/ and fill out the form fields as
prompted and as shown in the following screenshot:

DIsQUSs

Add Disqus to your site

Site profile

Site name

Choose your unique Disqus URL
_disgus.com
This is where you'll access moderation tools and site settings. This
will also become your site's "shortname”.
Category

Please select a category v

[199]

www.it-ebooks.info

http://disqus.com/admin/create/
http://www.it-ebooks.info/

Building a Content Management System

2.

Then, add a disqus section to your protected/config/params.php file
with your site shortname:
'disqus' => array(

'shortname' => 'ché6édisqusexample'’,

)

Next, create a new widget in protected/components called DisquswWidget.

php. This widget will be loaded within our view and will be populated by
our Content model:

class DisqusWidget extends CWidget {}

Begin by specifying the public properties that our view will be able to inject
into as follows:

public S$shortname = NULL;
public Sidentifier = NULL;
public S$url = NULL;

public S$title = NULL;

Then, overload the init () method to load the Disqus JavaScript callback
and to populate the JavaScript variables with those populated to the widget
as follows:

public function init ()
{
parent::init () ;
if ($this->shortname == NULL)
throw new CHttpException (500, 'Disqus shortname is
required') ;

echo "<div id='disqus_thread's</divs>";
Yii::app()->clientScript->registerScript('disqus', "
var disqus_shortname = '{$this->shortname}';
var disqus_identifier = '{Sthis->identifier}"';
var disqus_url = '{$this->url}';
var disqus_title = '{$this->title}';

/* * * DON'T EDIT BELOW THIS LINE * * */
(function()
var dsg = document.createElement ('script'); dsqg.type
'text/javascript'; dsg.async = true;
dsg.src = '//' + disqus_shortname + '.disqus.com/
embed.js';

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

(document .getElementsByTagName ('head') [0] || document.
getElementsByTagName ('body') [0]) .appendChild (dsq) ;

O
")
!

6. Finally, within our themes/main/views/content/view.php file, load the
widget as follows:

<?php $this->widget ('DisqusWidget', array(

'shortname' => Yii::app()->params['includes'] ['disqus']
['shortname'],
'url' => Sthis->createAbsoluteUrl('/'.$post->slug),
'title! => S$post->title,
'identifier' => S$post->id
)) ;2>

Now, when you load any given post, Disqus comments will also be loaded with that
post. Go ahead and give it a try!

et porta justo vehicula sed. Class aptent taciti sociosqu ad litora torquent per
conubia nostra, per inceptos himenaeos.

Vestibulum tincidunt magna est, id pulvinar justo molestie id. Quisque
consectetur mi ipsum, in scelerisque neque condimentum id. Etiam id tellus
lorem. Nunc sed vehicula quam. Nulla ligula dui, viverra eget eleifend non,
condimentum ut est. Mauris sagittis nibh at laoreet malesuada. Quisque
aliquet eleifend eros vitae iaculis. Integer in est eu risus adipiscing semper id
nec tellus. Cras egestas ligula massa, eu feugiat libero euismod in. Mauris
condimentum nulla laoreet dictum porta. Proin non condimentum lectus,

quis condimentum tortor.

0 Comments
[
ol

Be the first to comment

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

a service, we can save a lot of time and money. When relying on a third
L

The greatest benefit of using Disqus as a service provider is that it
enables us to focus solely on the integration of a product rather than raw
implementation. By not having to reinvent the wheel each time we need

party, however, be cognizant of the fact that the service provider may not
exist the next day. While unlikely, a large service provider can go out of
business overnight, so be prepared to have a plan in place to replace or
substitute any third-party service you integrate into your application.

Searching for content

Next, we'll implement a search method so that our users can search for posts. To do
this, we'll implement an instance of CActiveDataProvider and pass that data to our
themes/main/views/content/all.php view to be rendered and paginated:

public function actionSearch ()

{

Sparam = Yii::app()->request->getParam('qg') ;

Scriteria = new CDbCriteria;

Scriteria->addSearchCondition('title', $param, 'OR') ;
Scriteria->addSearchCondition ('body', $param, 'OR') ;

Sdataprovider = new CActiveDataProvider ('Content', array(
'criteria'=>$criteria,
'pagination' => array(
'pageSize' => 5,
'pageVar'=>"'page'

)) i

$Sthis->render('//content/all', array/(
'dataprovider' => $dataprovider
)) i
!
[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Since our view file already exists, we can now search for content in our CMS.

In previous chapters, we would have simply queried the $_POST array
for our search parameter. A more Yii way of retrieving these variables
istousethe Yii: :app () ->request->getParam() method from
the CHt tpRequest class. Be warned, however, that this method
% operates on both $ GET and $_POST parameters. If the same parameter

T is sent via both HTTP methods (you should avoid doing this when
possible), only the $_GET method will be returned. Be sure to read
the CHt tpRequest Class Reference page for more information at
http://www.yiiframework.com/doc/api/1.1/CHttpRequest.

Managing content

Next, we'll implement a basic set of management tools that will allow us to create,
update, and delete entries:

1. We'll start by defining our 1oadModel () method and the actionDelete ()
method:

private function loadModel ($id=NULL)

if ($id == NULL)
throw new CHttpException (404, 'No category with that ID
exists');

$Smodel = Content::model () ->findByPk ($id) ;
if (Smodel == NULL)
throw new CHttpException (404, 'No category with that ID

exists');

return $model;

public function actionDelete ($id)

{

Sthis->loadModel ($id) ->delete() ;

Sthis->redirect (Sthis->createUrl ('content/admin')) ;

[203]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CHttpRequest
http://www.it-ebooks.info/

Building a Content Management System

2. Next, we can implement our admin view, which will allow us to view all
the content in our system and to create new entries. Be sure to copy the
themes/main/views/content/admin.php file from the project resources
folder into your project before using this view:

public function actionAdmin ()

{

smodel = new Content ('search') ;
smodel->unsetAttributes() ;

if (isset($_GET['Content']))
$model->attributes = $ GET;

Sthis->render ('admin', array(
'model' => $model
))
}

3. Finally, we'll implement a save view to create and update entries. Saving
content will simply pass it through our content model's validation rules.
The only override we'll be adding is ensuring that the author is assigned
to the user editing the entry. Before using this view, be sure to copy the
themes/main/views/content/save.php file from the project resources
folder into your project:

public function actionSave ($id=NULL)

{
if ($id == NULL)
Smodel = new Content;
else
smodel = S$this->loadModel ($id) ;

if (isset($_POST['Content']))

{

$model->attributes = $ POST['Content'];
$model->author id = Yii::app()->user->id;

if (Smodel->save())

{

Yii::app()->user->setFlash('info', 'The articles was
saved') ;
Sthis->redirect ($this->createUrl ('content/admin')) ;
}
}
Sthis->render ('save', array(

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

'model' => Smodel
)) i
!

At this point, you can now log in to the system using the credentials provided in the
following table and start managing entries:

Username Password
userl@example.com test
user2@example.com test

Viewing and managing categories

Now, let's move to viewing and managing categories. As outlined previously,
each category will be accessible via a dedicated route and will only display content
within that category. We'll start by defining our default access rules and layout
name in protected/controllers/CategoryController.php:

public $layout = 'default';

public function filters()
return array (
'accessControl',
)i

public function accessRules ()
{
return array (
array('allow',
'actions' => array('index',6 'wview',6 'rss'),
'users' => array('*"'")
),
array('allow',

'actions' => array('admin',6 'save',K ‘'delete'),
'users'=sarray('@'),
'expression' => 'Yii::app()->user->role==2"

),

array('deny', // deny all users

'users'=sarray('*'),

) I

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Viewing entries in a category

Displaying entries in each category will be nearly identical to displaying all entries,
so we can implement our index action as follows. Note that the parameters passed
to this method are simply passed from the routes we generated earlier.

public function actionIndex($id=1, Spage=1)

{

Scategory = S$this->loadModel ($id) ;

// Model Search without $_GET params
$model = new Content ('search');
$model->unsetAttributes () ;

Smodel->attributes = array(
'published' => 1,
'category id' => $id

)i

$ GET['page'l = S$Spage;

Sthis->render ('//content/all', array(
'dataprovider' => $model->search()
)) i

Viewing an RSS feed for categories

An alternative way of viewing entries in a particular category is through an RSS

feed. RSS feeds are a very popular medium that allows your users to subscribe to
your content and be regularly notified of updates without having to visit each site
individually. Our action to display our category entries in an RSS feed look as follows:

public function actionRss ($1d=NULL)
{

Yii::app()->log->routes[0] ->enabled = false;

ob_end clean() ;
header ('Content-type: text/xml; charset=utf-8');

Sthis->layout = false;
Scriteria = new CDbCriteria;

if ($id != NULL)

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

$criteria->addCondition("category id = " . s$id);

Scriteria->order = 'created DESC';
Sdata = Content::model ()->findAll (Scriteria) ;

Sthis->renderPartial ('rss', array(
'data' => S$data,
'url' => 'http://'.Yii::app()->request->serverName

Yii::app() ->baseUrl
))
}

Then, add the following to your protected/views/category/rss.php file:

<?php echo '<?xml version="1.0" encoding="UTF-8" ?>'; ?>
<rss version="2.0" xmlns:atom="http://www.w3.0rg/2005/Atom" >
<channel>
<atom:1link href="<?php echo Surl.Yii::app()->request-
>requestUri; ?>" rel="sgelf" type="application/rss+xml" />
<title><?php echo Yii::app()->name; ?></titlex>
<link><?php echo S$url; ?></links>
<description><?php echo Yii::app()->name; ?> Blog</description>
<language>en-us</language>

<pubDate><?php echo date('D, d M Y H:i:s8 T'); ?></pubDate>
<lastBuildDate><?php echo date('D, d M Y H:i:s8 T'); ?></
lastBuildDates>

<docs>http://blogs.law.harvard.edu/tech/rss</docs>

<?php foreach ($data as Sk=>Sv): ?>

<item>
<title><?php echo htmlspecialchars(str_replace('/', '',
Sv(['title']), ENT QUOTES, "utf-8"); ?></title>
<link><?php echo $url.'/'.htmlspecialchars(str_
replace('/', '', $v['slug']l), ENT QUOTES, "utf-8"); ?></link>
<description>
<?php

$md = new CMarkdownParser;
echo htmlspecialchars(strip tags ($md-

>transform(sv['body']l)), ENT QUOTES, "utf-8");
?>
</description>
<category><?php echo htmlspecialchars (Category: :model () -
>findByPk ($v['category id'])->name, ENT QUOTES, "utf-8"); ?></
category>
[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

<author><?php echo User::model () ->findByPk ($v['author
id']) ->email; ?> (<?php echo User::model () ->findByPk ($v['author id']) -
>username; ?>)</author>

<pubDate><?php echo date('D, d M Y H:i:s T',

strtotime (Sv['created'])); ?></pubDate>
<guid><?php echo $url.'/'.htmlspecialchars(str_
replace('/', '', $v['slug']l), ENT QUOTES, "utf-8"); ?></guids>
</item>
<?php endforeach; ?>
</channel>
</rss>

Now, if you navigate to 3, you can view an RSS feed of all uncategorized entries.
Each category will have its own RSS feed, allowing users to subscribe to the content
they are interested in rather than all the content on your site.

Managing categories

Next, we need to implement management of our categories:

1. We'll start with our loadModel () and actionbDelete () methods:

public function actionDelete ($id)

{

Sthis->loadModel ($id) ->delete() ;

Sthis->redirect (Sthis->createUrl ('content/admin')) ;

public function loadModel ($1d=NULL)

{
if ($id == NULL)
throw new CHttpException (404, 'No category with that ID

exists');
$Smodel = Category::model () ->findByPk ($id) ;
if ($Smodel == NULL)
throw new CHttpException (404, 'No category with that ID

exists');

return S$model;

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

2. Then, we'll implement the admin action. Be sure to copy the themes/main/
views/category/admin.php file from the project resources folder. Have a
look at the following code:

public function actionAdmin ()

{

Smodel = new Category('search');
smodel->unsetAttributes() ;

if (isset($_GET['Category'l))
S$model->attributes = $ GET;

Sthis->render ('admin', array(
'model' => $model
)) i
}

3. Finally, we'll implement the save () method. Be sure to copy the themes/
main/views/category/save.php file from the project resources folder.
Have a look at the following code:

public function actionSave ($id=NULL)

{
if ($id == NULL)
$Smodel = new Category;
else
smodel = S$this->loadModel ($id) ;

if (isset($_POST['Category']))

{

$model->attributes = $ POST['Category'l];

if (Smodel->save())

{

Yii::app()->user->setFlash('info', 'The category was
saved') ;
Sthis->redirect (Sthis->createUrl ('category/admin')) ;

}

Sthis->render('save', array(
'model' => $model
)) i
}

We've now finished the core of our content management system. The structure that
we've built for our CMS, while being extremely simple, provides a lot of flexibility
for us to expand upon with very minimal effort.

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Social authentication with HybridAuth

In the previous chapter, Chapter 5, Creating a Microblogging Platform, we used
Hybrid Auth to sign in as a user to, and share content with, Twitter. In this chapter,
we use HybridAuth to register accounts in our CMS and to sign in to our CMS
without having to enter a username and password. To achieve this, we'll create
three new forms, a new UserIdentity class, and a control that will enable us to
take advantage of all the providers that Hybrid Auth has to offer.

Before we get started with any coding, however, we need to first create a

new Twitter application similar to the one we created in Chapter 5, Creating a
Microblogging Platform. This will allow us to focus on development rather than
configuration once we start writing code. Once your Twitter application has

been created and permissions have been set, add a hybridauth section to your
protected/config/params.php file, containing your OAuth secret token and key:

'hybridauth' => array(

'providers' => array(

'Twitter' => array(
'enabled' => true,

'keys' => array(

'key' => '<key>',

'secret!' => '<secrets>

When we're done, you'll be able to add any of the supported
%ji\ Hybrid Auth providers listed in the Hybrid Auth documentation at
’ http://hybridauth.sourceforge.net/userguide.html.

Validating remote identities

For our application, we need to register users from a social network, authenticate
users from a social network to users in our database, and link existing users to a
social identity. We're also going to authenticate users into our system. To achieve
this, we're going to create three separate forms, RemoteRegistrationForm,
RemoteLinkAccountForm, and RemoteIdentityForm, which will serve as our
LoginForm for remote users. We'll also create a RemoteUserIdentity class that
we'll use to authenticate users into our system. Let's get started.

[210]

www.it-ebooks.info

http://hybridauth.sourceforge.net/userguide.html
http://www.it-ebooks.info/

Chapter 6

Remote registrations

The first class we'll need to create is RemoteRegistrationForm. This form will
allow us to register users using information from their social identity. The steps
are as follows:

1. To get started, create a new class in protected/models called
RemoteRegistrationForm.php with the following definition. To keep things
simple, we're going to be reusing much of the functionality already available
from our RegistrationForm class. Have a look at the following line of code:

class RemoteRegistrationForm extends RegistrationForm {}

2. We'll then specify two additional attributes, the Hybrid Auth adapter that
we'll provide from the controller we'll create later on and the provider name
that we're authenticating with. We'll also set up validators for these attributes
to ensure that they are set. Notice that we're using the mergeArray () method
from the cMap class to take advantage of the validation rules that are already
in place:
public $adapter;

public Sprovider;

public function rules()
{
return CMap: :mergeArray (parent::rules(), array
array ('adapter, provider', 'required')
))
}

3. Finally, we'll overload our save () method so that the provider name and
OAuth token are written to our database. We'll take advantage of this
metadata when we create our RemoteIdentityForm class:

public function save ()
{
// If the parent form saved and validated
if (parent::save())
{
// Then bind the identity to this user permanently
Smeta = new UserMetadata;

Smeta->attributes = array(
'user id' => $this-> user->id,
[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

'key' => S$Sthis->provider.'Provider',
'value' => (string) S$this->adapter->identifier

)i

// Save the associative object
return Smeta->savel() ;

return false;

Linking a social identity to an existing account

To assist in linking a social identity to an existing account in our system, we're
going to create a new class called RemoteLinkAccountForm. This form will prompt
an already logged-in user for their password to verify their identity and then bind
the OAuth token provided by HybridAuth to that user, so that they can log in using
their social identity in the future. The steps are as follows:

1.

To get started, create a new class in protected/models called
RemoteLinkAccountForm.php with the following definition:

class RemoteLinkAccountForm extends CFormModel {}

We'll then define the public attributes we'll want to collect and create a
validator for them. We'll also define a private attribute to store the user
information of the user we want to link our social identity to. Have a look
at the following lines of code:

public Spassword;
public Sadapter;

public Sprovider;
private $ user;

public function rules()

{

return array(

array ('password, adapter, provider', 'required'),
array ('password', 'validateUserPassword')
)
}
[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

For security reasons, we only want the authenticated user to be able to link a
social identity to their account. To verify that we are dealing with the account
owner, we'll prompt the user for their password. To validate their password,
we'll create a custom validator called validateUserpPassword. Have a look
at the following lines of code:

public function validateUserPassword ($Sattributes, S$params)

{

$this-> user = User::model()->findByPk(Yii::app()->user->id);
if ($this-> user == NULL)
{

Sthis->addError ('password', 'Unable to identify user.');

return false;

}

Sresult = password verify($this->password, $this-> user-
>password) ;

if (Sresult == false)

{

Sthis->addError ('password', 'The password you entered is
invalid.');
return false;

}

return true;

}

Finally, we create a save () method that will save the social identity
information to our user_metdata table provided that the user is able
to verify their identity:

public function save ()
{
if (!Sthis->validate())
return false;

Smeta = new UserMetadata;
Smeta->attributes = array(
'user id' => $this-> user->id,
'key' => Sthis->provider.'Provider',
'value' => (string)S$this->adapter->identifier

) ;

// Save the associative object
return Smeta->save() ;

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Authenticating with a social identity

To authenticate with a social identity, we'll need to create a form similar to our
LoginForm; however, instead of taking a username and password as inputs, it will
take the provider name and the Hybrid Auth adapter we're working with. The steps
are as follows:

1.

Begin by creating a new form in protected/models called
RemoteIdentityForm.php:

class RemoteldentityForm extends CFormModel {}

As stated previously, we'll collect the provider name and the HybridAuth
adapter instead of a username and password, so let's declare those properties.
We'll also declare properties to store our user's information if they exist and
the RemoteUserIdentity class, which we'll ultimately authenticate with:

public Sadapter;
public S$provider;
private $ identity;
public $ user;

We'll then define our validation rules and create a custom validator that

will retrieve the appropriate user from within our system. This will prevent
unauthorized users from authenticating into our CMS without being able to
first authenticate with the social network that the user's account is linked to:

public function rules()
{
return array (
array ('adapter, provider', 'required'),
array ('adapter', 'validateIdentity')
) ;
}

public function validateIdentity ($Sattributes, S$params)
{
// Search the database for a user with that information
Smetadata = UserMetadata::model () ->findByAttributes (array (
'key' => S$Sthis-s>provider.'Provider',
'value' => (string)S$this->adapter->identifier

))

// Return an error if we didn't find them
if ($metadata == NULL)

{

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Sthis->addError ('adapter', 'Unable to determine local user
for identity');
return false;

}

// Otherwise load that user

$this-> user = User::model ()->findByPk ($metadata->user id);
if ($this-> user == NULL)
{
Sthis->addError ('adapter', 'Unable to determine local user

for identity');
return false;

}

// And return true
return true;

}

Then we'll create an authenticate () method that will behave in the same
manner as the authenticate () method of our LoginForm; however, it will
use the RemoteUserIdentity class as opposed to the UserIdentity class.
Have a look at the following code:

public function authenticate ()
{
if (!Sthis->validate())
return false;

// Load the RemoteUserIdentity model, and return if we
successfully could authenticate against it

$this-> identity = new RemoteUserIdentity($this->adapter,
$this->provider, $this-> user);

return S$this-> identity->authenticate() ;

}

Finally, we'll create a 1ogin () method that will actually log our user in to
our CMS:

public function login()

{

if (!$this->authenticate())
return false;

if (sthis-> identity->errorCode===RemoteUserIdentity: :ERROR
NONE)

{

Sduration = 3600%24*30;

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Yii::app()->user-s>allowAutoLogin = true;
Yii::app()->user->login($this-> identity, $duration);
return true;

}

else
return false;

Creating a Yii CWebUser object from a remote
identity

The last class we'll need to create before linking everything together is a
RemoteUserIdentity class. This class will retrieve all the information from

our forms; if validated, it will log the user in to our CMS in the same way that
our UserIdentity class does. The steps are as follows:

1. To get started, create a new class in protected/components called
RemoteUserIdentity.php.

class RemoteUserIdentity extends CUserIdentity {}

2. Then, define the attributes that we'll be collecting from our constructor
as follows:

public Sadapter;
public S$provider;
public $ user;

public function __ construct ($adapter, $provider, S$user)

{

Sthis->adapter = S$adapter;
Sthis->provider = S$provider;

$this-> user Suser;

}

3. We should also define a way to retrieve the user's ID as stored in our
system. We'll follow the pattern laid out in our UserIdentity class to
keep things consistent:

private $_id;

public function getId()

{
}

return S$this-> id;

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Finally, we'll create an authenticate () method that will set our cwebUser
states. As we need to check that the data is available to us, the information
provided to us should already be validated:

public function authenticate ($force=false)
{
// Set the error code first
this->errorCode = self::ERROR_UNKNOWN IDENTITY;

// Check that the user isn't NULL, or that they're not in a
locked state

if ($this-> user == NULL)
Sthis->errorCode = Yii DEBUG ? self::ERROR_USERNAME
INVALID : self::ERROR_UNKNOWN IDENTITY;

// The user has already been provided to us, so immediately
log the user in using that information

$this->errorCode = self::ERROR_NONE;

S$this-> id = $this-> user->id;
S$this->setState('email', $this-> user->email);
Sthis->setState('role', $this-> user->role id);

return !Sthis-s>errorCode;

Putting it all together

With all of the necessary components in place, we can now create our controller that
will handle the authentication component with Hybrid Auth. The steps are as follows:

1.

To begin with, create a new controller in protected/controllers called
HybridController.php:

class HybridController extends CMSController {}

Next, we'll create three properties to hold the Hybrid Auth adapter, the
provider name, and the user profile that we'll get back from Twitter:

protected $ provider;
private $ adapter = NULL;

private $ userProfile = NULL;

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

We'll also create custom getter and setter methods to set the adapter as follows:

public function setAdapter (Sadapter)

{

return S$this-> adapter = $adapter;

public function getAdapter ()

{

return S$this-> adapter;

}

3. Then we'll add in a block to retrieve the user's profile information from the
social network they are signing in from:

public function getUserProfile()

{
if ($this-> userProfile == NULL)
$this-> userProfile = $this->getAdapter() -
>getUserProfile() ;

return S$this-> userbProfile;

}

4. Then, to get and set the provider's name that will be provided from the URI,
the following code needs to be used:

public function setProvider ($provider=NULL)

{

// Prevent the provider from being NULL
if ($provider == NULL)
throw new CException("You haven't supplied a provider");

// Set the property
$this-> provider = $provider;

return S$this-> provider;

public function getProvider ()

{

return S$this-> provider;

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

By referencing the Hybrid Auth documentation (http://hybridauth.
sourceforge.net/userguide/Configuration.html), we can determine
what variables Hybrid Auth will require to initialize correctly. Rather

than hardcoding all of this information in our configuration file, we can
dynamically populate it from within our controller. This method will ensure
that our base URLs will always be set correctly, and that logging information
will be sent to the correct place. It has the additional benefit of only logging
when we enable YII_DEBUG, which means we only have to make one change
to our configuration file when debugging rather than multiple changes.
Have a look at the following code:

public function getConfig()
{
return array (
'baseUrl' => Yii::app()->getBaseUrl (true),
'base url' => Yii::app()->getBaseUrl (true) . '/hybrid/
callback', // URL for Hybrid Auth callback
'debug_mode' => YII_ DEBUG,
'debug file' => Yii::getPathOfAlias('application.runtime.
hybridauth') .'.log',
'providers' => Yii::app()->params['includes']
['hybridauth'] ['providers']
)i
}

Next, we'll define our actionIndex (). This action will serve both as the
initialization URL for Hybrid Auth and our callback URL for our social
networks to authenticate against. Within this action, we'll set the provider
and start the Hybrid Auth process:

public function actionIndex ($provider=NULL)

{

// Set the provider
Sthis->setProvider ($provider) ;

if (isset($_GET['hauth start']) || isset($_GET['hauth done']))
Hybrid Endpoint::process|() ;

try {
Sthis->hybridAuth() ;
} catch (Exception $e) ({
throw new CHttpException (400, $Se->getMessage());

}

[219]

www.it-ebooks.info

http://hybridauth.sourceforge.net/userguide/Configuration.html
http://hybridauth.sourceforge.net/userguide/Configuration.html
http://www.it-ebooks.info/

Building a Content Management System

Internally, Hybrid Auth will throw an exception whenever it

encounters an error while dealing with the remote network.
% To prevent our application from exposing too much information,

we can simply inform the user that an error occurred.

7. Then, we'll define the hybridauth () method we started to use earlier.
We'll start by initializing the Hybrid Auth object and setting the adapter
if it is not already set:

private function hybridAuth ()
{

// Preload some configuration options

if (strtolower ($Sthis->getProvider()) == 'openid')

{

if (!isset ($ _GET['openid-identity']))
throw new CException("You chose OpenID but didn't provide

an OpenID identifier");

else
Sparams = array("openid identifier" => $ GET['openid-
identity'l) ;
}
else
$params = array();

Shybridauth = new Hybrid Auth($this->getConfig()) ;

if (!$this->adapter)
Sthis->setAdapter (Shybridauth-s>authenticate ($this-
>getProvider (), $params)) ;

}

We've declared a custom getter and setter for our adapter so that

& we only load it once during our flow. This will prevent us from

g hitting the rate limits of the Twitter API during a single request.

8. At this point, Hybrid Auth is going to perform several different redirects to
authenticate our user against their system. When the request is returned to
us, we'll be able to verify that a user is connected to our adapter. If one isn't,
it's safe to throw an exception. Have a look at the following code:

if ($this->adapter->isUserConnected())

{

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

10.

// We'll add our actions here...
}
else

throw new CHttpException (403, 'Failed to establish remote
identity!');

Within our if statement, we'll try to authenticate the user using our
RemoteIdentityForm class that we created earlier. We'll display a flash
message and redirect the user to the home page if we're able to. If we're
not able to authenticate the user, we'll either display the LinkAccountForm
class if the user is authenticated in our system but not socially, or the
RemoteRegistrationForm class so that the user can register a new
account in our CMS:

if ($this-s>authenticate())

{

Yii::app()->user->setFlash('success', 'You have been
successfully logged in!');

Sthis->redirect (Yii::app () ->getBaseUrl (true)) ;
}
else
{
if (!Yii::app()->user->isGuest)
$this->renderLinkForm() ;
else
Sthis->renderRegisterForm() ;

}

Our authenticate () method will simply return the result of the
RemoteIdentityForm login () method:

private function authenticate()
Sform = new RemoteIdentityForm;
Sform->attributes = array(
'adapter' => $this->getUserProfile(),
'provider' => $this->getProvider ()
)

return $form->login() ;

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

11. If a user is already authenticated in our CMS but hasn't been
authenticated with this provider, we'll assume that they want to link
their social network identity to their login information; thus, we'll present
RemoteLinkAccountForm and prompt them for their password. Then,
besuretocopgfoverthemes/main/views/users/linkaccount.php
from the project resources folder into your project:

private function renderLinkForm/()

{

Sform = new RemoteLinkAccountForm;

if (Yii::app () ->request->getParam('RemoteLinkAccountForm'))

{

// Populate the model
Sform->Attributes = Yii::app () ->request->getParam('RemoteL

inkAccountForm') ;
Sform->provider = $this->getProvider() ;
$form->adapter = $this->getUserProfile() ;

if (s$form->save())

{

if (sthis->authenticate())

{

Yii::app()->user->setFlash('success', 'You have
been successfully logged in');

$this->redirect ($this->createAbsoluteUrl ('content/
index"')) ;

// Reuse the register form
$this->render('//user/linkaccount', array('model' => $form)) ;

}

12. Finally, if a user is not logged in to our CMS, we'll display our
RemoteRegisterForm and reutilize the view from themes/main/views/
user/register.php:

private function renderRegisterForm()

{

Sform = new RemoteRegistrationForm;

if (Yii::app () ->request->getParam('RemoteRegistrationForm'))

{

// Populate the model

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Sform->attributes = Yii::app () ->request-
>getParam('RemoteRegistrationForm') ;

Sform->provider = $this->getProvider() ;

Sform->adapter = $this->getUserProfile() ;

if ($form-s>save())
{

if ($this->authenticate())

{

Yii::app()->user->setFlash('success', 'You have
been successfully logged in');

$this->redirect ($this->createUrl ('content/
index"')) ;

// Reuse the register form
$this->render('//user/register', array('user' => $form)) ;

}

Now that we have everything in place, we can test our social authentication. For our
first test, log out of our CMS, navigate to http://chapteré.example.com/site/
login, and click on the sign in with Twitter link at the bottom. Click on the link, and
enter your Twitter credentials. Upon being redirected, you should see a registration
form where you can enter your information for a new account, as shown in the
following screenshot:

CMS Login Register

YiiCMS

A CMS written in Yii Framework

Need an Account?

Signup here for a free account.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Content Management System

Enter your new user's information and then click on Register. If successful, you'll
be logged in to the CMS as the user you just created, and the activation e-mail we
created in the previous chapter will be sent to that e-mail address. Now, if you log
out of the CMS and log in using the Login with Twitter link, you'll be automatically
logged in to the CMS without having to enter your username and password.

After verifying that registering with a social identity works, log out of the CMS
and then log in as userl@example.com using the credentials previously provided.
Log out of Twitter and then navigate to http://chapter6.example.com/hybrid/
twitter. After signing in to Twitter with a different account from the one you
previous signed in with, you'll be prompted to enter your current password as
shown in the following screenshot:

CMS My Profile Logout

YIems

Link Your Account

Enter your current password to link your profile to this social identity

After entering your password, your social identity will be linked to your account,
and you'll be able to login via Twitter rather than having to enter your username
and password.

Exploring other HybridAuth providers

Due to the way we implemented our controller, we can easily and seamlessly add
additional providers to the hybridauth section of our protected/config/params.
php file without having to modify any other code in our system. Be sure to check
out the HybridAuth user guide located at http: //hybridauth.sourceforge.net/
userguide.html#index for more information on how to integrate with other
third-party providers, such as Google+ and Facebook, and give it a try!

[224]

www.it-ebooks.info

http://hybridauth.sourceforge.net/userguide.html#index
http://hybridauth.sourceforge.net/userguide.html#index
http://www.it-ebooks.info/

Chapter 6

Summary

Wow, we really did implement a lot in this chapter. In this chapter, we created a

very robust and reusable content management system that featured both content and
categories. We also dug deeper into Yii framework by manipulating our CUr1Manager
class to generate completely dynamic and clean URIs. We also covered the use of Yii's
built-in theming to dynamically change the frontend appearance of our site by simply
changing a configuration value. Finally, we learned how to integrate with third-party
social networks to provide a social sign-on functionality that seamlessly integrates
without our application.

In the next chapter, we'll be reusing much of the code built in this chapter to further
separate the management functionality of our application from the presentation
logic. We'll also dig deeper into Yii framework by learning how to create modules.
Before continuing to the next chapter, be sure to go over the Yii Class Reference at
http://www.yiiframework.com/doc/api/ and review all the classes that we used
in this chapter. Then, when you're ready, head over to the next chapter, and let's
build a custom dashboard module for our CMS!

[225]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management
Module for the CMS

For our next project, we will be expanding upon the content management

system we built in Chapter 6, Building a Content Management System, by migrating
the management functionality into a module. Moving this functionality into a
module will decouple administrative behaviors from the presentation layer of our
application. This change will also enable us to develop and deploy administrative
changes without having to make changes to our main application.

Our finished project will look as follows:

CMS Dashboard

Manage Posts

Displaying 1-5 of 3g results.

ID Title Published Username

1 Quis condimentum tortor. Ves useri DS
2 Lorem ipsum dolor Ves useri DS
3 Morbi nec sollicitudin risus Ves useri oS n
4 Nullam suseipit Yes useri DS
5 Quis condimentum tortorz Ves useri DS

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

Prerequisites

Since we'll expanding upon the work we did in Chapter 6, Building a Content
Management System, the only prerequisite for this chapter is the completed source
code from the previous chapter. You can either build the project yourself, or you
can use the completed source code available in the project resources folder from
the previous chapter.

What are modules?

In Yii, modules are self-contained packages that operate independently of a Yii
application but must reside within an existing application or module. Modules can
additionally have as much or as little integration with our core application as we
desire. In many aspects, modules are identical to Yii applications in that they have
controllers, models, views, configurations, and components. This functionality allows
us to deploy and manage code independently of our main application. It also provides
us with greater usability if we choose to reuse our module across multiple projects.
For our application, we'll be using our modules solely to separate the management

of our application from the presentation layer and to independently deploy our
application without having to make changes to our main application code.

More information about Yii modules can be found in the official
% Yii guide located at http://www.yiiframework.com/doc/
g guide/1.1/en/basics.module.

Describing the project

Our dashboard module can be broken down into several components:

* Initializing and configuring the dashboard module
* Enabling custom routing for our module

* Moving the management functionality out of our application
and into the module

* Adding file upload capabilities
* Module deployment

[228]

www.it-ebooks.info

http://www.yiiframework.com/doc/guide/1.1/en/basics.module
http://www.yiiframework.com/doc/guide/1.1/en/basics.module
http://www.it-ebooks.info/

Chapter 7

Initializing the module

The first component of this project will consist of creating and configuring our module
so that it integrates with our primary application. We'll accomplish this by making
several changes to our main configuration file as well as creating the basic structure
for the module that we'll be using. We'll also go over managing our module assets
independently of our main application.

Routing with a module

In the Yii framework, the default routes are defined by the name of the

module combined with the default routes that are specified within curlManager.
Unfortunately, Yii does not natively provide the functionality to define our own
custom routes for a module without modifying the routes specified in cUr1Manager.
To get around this restriction, we'll be modifying our CMSURLManager, which we
defined in Chapter 6, Building a Content Management System, in order to allow us to
store and configure routes independently of our main application. When completed,
we'll have a routes.php file in the protected/modules/<modules/config/ file;
this will contain all the custom routes for our module and will integrate with

our main application without altering the application's behavior.

Moving the management functionality into
the module

The third component of this project will entail moving the management functionality
from our controls to the module's controllers. This will additionally involve moving
the presentation layers out of the theme we created in the previous chapter and into
the module itself. For additional security and user experience, we'll also be modifying
how our module handles errors for both unauthenticated and unauthorized users.

Adding file upload capabilities

To make our content management system more versatile, we'll also be adding a file
upload capability that will allow us to upload files from our content page and store
them in our database. We'll also implement the functionality necessary to view these
files in a file manager and additionally, to delete them.

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

Deploying modules

Finally, we'll go over the different deployment options that we can use to easily
deploy our module independently of our main application. Using a combination of
both Git and Composer, we can deploy our module in a way that makes the most
sense for the type of project we are using.

Initializing the project

For this project, we'll be starting where we left off in the previous chapter, Chapter

6, Building a Content Management System. For your convenience, a skeleton project
has been included in the project resources folder for this chapter that contains the
foundation that we'll be starting with. Begin by copying the source code over to a
new folder, and make sure that it is available at a different URL. In this chapter, ']
be using http://chapter7.example. comas our example URL. After importing the
database and updating the database configuration using the instructions provided in
the previous chapter, you should see the home page of our blog;:

CMS Login Register

YiiCMS

A CMS written in Yii Framework

Quis condimentum tortor. Aoout
This is my blog where I
Mar 16, 2014 by User 1in Uncategorized write about things T find
interesting

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Morbi congue areu id dui consectetur molestie. Cras

molestie erat fringilla metus dignissim vulputate. Phasellus

tortor elit, cursus vel sapien et, pharetra facilisis sem. Nam

quis felis at nibh auctor ultrices. In hac habitasse platea Recent Posts
dictumst. Morbi accumsan accumsan lacus, ut luctus odio cost
interdum et. Fusce velit nisi, vehicula in ullamcorper nec, Quis condimentum
tortor.

porttitor quis eros. In scelerisque imperdiet elementum.
Lorem ipsum dolor

Vivamus at ligula nec nunc fermentum sagittis. Morbi nee sollicitudin

risus

Mauris vulputate, urna et lacinia suscipit, leo risus . .
Nullam suseipit

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Creating the module

Now that our application is set up, we can begin to create our module. We'll start
by creating the basic folder structure within our protected/modules directory:

protected/

[...]
modules/
/dashboard

assets/

components/

config/

controllers/

views/
layouts/
user/
category/
filemanager/
default/

As you can see, the basic structure of our module looks identical to that of our
main application. With our folder structure in place, we now need to create the
DashboardModule class that we'll later tell Yii about so that it knows what to load.
The steps are as follows:

1.

Start by creating a new file, called DashboardModule. php, within
protected/modules/dashboard with the following definition:
<?php class DashboardModule extends CWebModule {}

Then, create an init () method for the module:
public function init() {}

Within the module, we'll want to set the layoutPath so that our module
knows what layout to provide our views with:

Sthis->layoutPath = Yii::getPathOfAlias ('dashboard.views.
layouts') ;

We'll also want to tell our module to automatically import the contents of
the components directory in which we'll be storing classes later:
Sthis->setImport (array (

'dashboard.components.*!',
))

This will tell Yii's autoloader to automatically load classes in the components
folder. This is the same behavior that is used within Yii to load the classes
registered in the import section of our protected/config/main. php file.

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

5. Finally, we'll want to set a few custom components for our module —mainly
the error handler —so that we can handle errors that occur within our module
in a different manner from the errors that occur within our main application:

Yii::app () ->setComponents (array (
'errorHandler' => array(
'errorAction' => 'dashboard/default/error',
)
))

We'll then need to create two new classes; the first will be a controller component
that all controllers within our module will extend from, and the second will

be the default controller that will be accessed when no routes are specified.
Within protected/modules/dashboard/components/, create a new file called
DashboardController.php with the following definition. We'll be adding more
information to this component once we've registered our module with Yii:

<?php class DashboardController extends CMSController {}

Then, create befaultController.php inside protected/modules/dashboard/
controllers. We'll also specify our actionIndex () method so that, once we
register our module with Yii, we can see something:

<?php class DefaultController extends DashboardController

{

public function actionIndex ()

{

echo "Hello World!";

}

Registering the module with Yii

Before we can see anything in our module, we first need to tell Yii about our module.
For this, we simply need to specify the module name within the modules section of
our main.php file at protected/config/:

<?php return array(

[...]

'modules' => array(

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

'dashboard!

Now, if you navigate to http://chapter7.example.com/dashboard, you

should see the text Hello World displayed. This is the simplest way to register a
module with Yii. Unfortunately, this method requires us to make a change to our
configuration file every time we want to use a new module, which in turn means
we have to change the application code every time we use a new module. Another
method of loading our module is to create a protected/config/modules.php file
that we register in the modules section, instead. This allows us to simply change a
cache setting outside our application without having to modify the code within our
configuration file.

For this, first change the modules section of main.php at protected/config/
so that it looks as follows:

<?php return array(

[...1]

'modules' => require once _ DIR__ . DIRECTORY_ SEPARATOR . 'modules.
php',

[...1]

)i

Then, create a modules. php file at protected/config/. We'll start by declaring
where the modules directory is located, and the location where our generated
configuration file should be cached:

<?php

// Set the scan directory

$directory = _ DIR__ . DIRECTORY SEPARATOR . '..' . DIRECTORY
SEPARATOR . 'modules';
$cachedConfig = _ DIR__.DIRECTORY SEPARATOR.'..'.DIRECTORY

SEPARATOR. 'runtime' .DIRECTORY SEPARATOR. 'modules.config.php';

We'll then check to see whether a cached file already exists. If it does, we'll simply
return it:

// Attempt to load the cached file if it exists
if (file exists($cachedConfig))
return require once ($cachedConfig) ;

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

If a cached file doesn't exist, we'll iterate through all the folders in the
protected/modules directory to retrieve all the module names and push them

to an array. Since some Yii modules require additional configuration, we'll tell our
loader to inject anything in main.php at protected/modules/<module>/config/
as options for the module to use. When we've compiled a list of all the modules
we're going to load, we'll write that out as a serialized array to a file within our
protected/runtime directory:

else
// Otherwise generate one, and return it
Sresponse = array();

// Find all the modules currently installed, and preload them
foreach (new IteratorIterator (new DirectoryIterator ($directory))
as S$filename)
{
// Don't import dot files
if (!$filename->isDot ())

{

Spath = $filename->getPathname () ;

if (file exists($path.DIRECTORY SEPARATOR. 'config'.
DIRECTORY_ SEPARATOR.' main.php'))
Sresponse [$filename->getFilename ()] = require (Spath.
DIRECTORY SEPARATOR. 'conf ig'. DIRECTORY_ SEPARATOR.' main.php') ;

else
array push(Sresponse, $filename->getFilename()) ;

Sencoded = serialize (Sresponse) ;
file put contents($cachedConfig, '<?php return unserialize(\''.Sen
coded.'\'");"');

// return the response
return S$Sresponse;

}

The resulting file that is generated then looks as follows and is returned all the way
up to our main.php file at protected/config/:

<?php return unserialize('a:1:{i:0;s:9:"dashboard";}');

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

If we ever want to add a new module, we simply need to delete the module.config.
php file at protected/runtime/. The first request to hit the system will immediately
regenerate the updated file.

While slightly more expensive in terms of disk operation, this method of loading
modules enables us to dynamically load modules with Yii just by adding them

to the modules directory. It also eliminates any changes we need to make to our
application in order to add a new module, which in turn means that we'll be less
likely to introduce new behaviors or bugs to our main application while adding a
new module.

Adding custom routes to a module

While Yii will perform a lot of module routing for free, we have to add our routes

to our CUrlManager configuration in main.php at protected/config/ in order for
our module to have any custom routing. While it's easy to execute, this method does
not keep our module and application configurations sufficiently separated. To get
around this limitation in Yii, we need to modify the cMSUr1Manager class that we
created in the previous chapter in order to retrieve custom module routes that we
define. This enables us to write routes as part of our module rather than as part of
our application. The steps are as follows:

1. Start by creating a new file, routes. php, in protected/modules/
dashboard/config/, that contains the following. For this module,
we'll define a custom route for our save actions to be loaded from:

<?php return array(

' /dashboard/<controller:\w+>/save' => '/dashboard/<controllers/
save',

)i

This example is purely to illustrate how to add custom routing to a
L module, since Yii does not support it natively.

With our custom route defined, we'll next update CMSUr1Manager
to automatically import these rules. Open CMSUr1Manager . php at
protected/components/, and add the following to the if block of
the processRules () method:

Sthis->rules = CMap: :mergearray ($this->addModuleRules (), S$this-
>rules) ;

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

3. Welll finally define a addModuleRules () method that will search all of our
installed modules for a routes.php file at config/ and register them with Yii:

private function addModuleRules ()
{
// Load the routes from cache
$moduleRoutes = array () ;

Sdirectories = glob(Yii::getPathOfAlias('application.modules')
'/*' , GLOB_ONLYDIR) ;

foreach ($directories as $dir)
{
SroutePath = $dir .DS. 'config' .DS. 'routes.php';
if (file exists($routePath))
{
$routes = require_ once ($routePath) ;
foreach (Sroutes as S$k=>$Vv)
$moduleRoutes [$k] = Sv;

return S$moduleRoutes;

}

Now, our dashboard module will be able to handle nonstandard routes without
having to update a configuration file within our main application.

Creating the controllers

Now that we have registered our application with Yii and defined our custom
routes, we can start working on our controllers. First, we should work on our
DashboardController component so that our controllers automatically inherit
some common behaviors. The steps are as follows:

1. Within our DashboardController.php component, we should first define
our accessRules () method. This will ensure that only administrators have
access to the dashboard:

public function filters()

{

return array (
'accessControl!

)i

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

public function accessRules ()
{
return array (
array('allow', // allow authenticated admins to perform any
action
'users'=>array('@'),
),
array('deny', // deny all users
'users'=>array('*'),
'deniedCallback' => array($this, 'actionError')
),
)i
}

Next, we'll define the default layout that we'll want to use throughout
the module:

public S$layout='default';

Then, we'll create a custom error action that will prevent both unauthenticated
users and unauthorized users from accessing our module. By default, if Yii
encounters an unauthorized error, it will simply return a 403 error. Our error
action will improve the user experience by redirecting unauthenticated users to
the login page with a next $_GET parameter so that they can be returned to the
exact page they wanted to go to after they have been authenticated. If a user is
simply unauthorized, on the other hand, it will display the appropriate error
and deny them access:

public function actionError ()

{

if (Yii::app() ->user->isGuest)
return Sthis-s>redirect (Sthis->createUrl('/site/login?next="
Yii::app () ->request->requestUri)) ;
if (Serror=Yii::app()->errorHandler->error)
{
if (Yii::app () ->request->isAjaxRequest)
echo Serror['message'l];
else
Sthis->render ('error', array('error' => $error)) ;

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

4.

To complete this, redirect the $_GET parameter. We also need to make a change
to our SiteController.php file at protected/controllers/ so that it knows
how to handle the parameter. Simply replace the redirect with the following;:

Sthis->redirect (Yii::app () ->request->getParam('next', sSthis-
>createAbsoluteUrl ('content/index'))) ;

Finally, we need to implement a way to manage our assets independently
of our main application. Many module implementations simple add assets
to a globally available assets folder. This implementation makes it very
difficult to ensure that all traces of a module have been removed. An

easier way of managing assets for modules is to create a folder for all of

our module-specific assets to reside in, and then, publish that folder using
CAssetManager independently of our application. This way, if we make any
changes to our module assets, they won't affect our main application. In our
SiteController, we should define the following method:

public function getAsset ()

{

return Yii::app()->assetManager->publish(YiiBase::getPathOfAlia
s('application.modules.dashboard.assets'), true, -1, YII DEBUG) ;

}

Since this method is a getter and since it returns the path where the assets
are published, we can call it from our layout file as follows (using the
dashboard.css file that should be copied from the project resources folder
to your module's assets folder):

Yii::app()->clientScript->registerCssFile (Sthis->getAsset().'/
dashboard.css"') ;

Migrating the functionality to the module

Now that our module is set up, we can start by moving the functionality from
our application controllers and theme into our dashboard module. We'll go over
everything that is needed for each model: Categories, Content, and Users.

Migrating content management

In this next section, we will migrate all of the management functionalities we
built in the previous chapter into our new module:

1.

Starting with our ContentController, we first want to remove the
actionAdmin (), actionSave (), and actionDelete () methods from
the contentController.php file at protected/controllers/.

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

2. Next, we should remove the access control properties for the actions we just
deleted from our ContentController. The restored accessRules () method
should look as follows:

public function accessRules ()

{

return array (
array('allow',

'actions' => array('index',6 'view',6 'search'),
'users' => array('*"')

)

array('deny', // deny all users

'users'=sarray('*'),
)
)i
}

3. With our ContentController stripped of our administrative behaviors, we
can begin moving the functionality into our DefaultController.php file
at protected/modules/dashboard/controllers/, which we'll be using as
our ContentController. We'll start by adding our accessRules () method
to our DefaultController. Since we want to inherit the rules defined in
DashboardController.php at components/, we'll use CMap: :mergeArray ()
to merge the parent rules with our newly defined rules:

. Do the naming conventions have you confused? If you don't want to

% store the content-related functionality in DefaultController, you

I can set the $defaultController property in DashboardModule
to content. This will override Yii's default behavior.

public function accessRules ()

{

return CMap::mergeArray (parent::accessRules(), array(
array('allow',
'actions' => array('index',6 'save',6 ‘'delete'),
'users'=>array('@'),
'expression' => 'Yii::app()->user->role==2"
),
array('deny', // deny all users

'users'=>array('*'),

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

4. Then, we'll redefine our 1oadModel () method:
private function loadModel ($id=NULL)

{
if ($id == NULL)
throw new CHttpException (404, 'No category with that ID
exists');

Smodel = Content::model () ->findByPk ($id) ;

if ($Smodel == NULL)
throw new CHttpException (404, 'No category with that ID
exists');

return Smodel;

}

5. Then, we'll define our actionDelete () method:

public function actionDelete ($id)

{

Sthis->loadModel ($id) ->delete() ;

$this->redirect ($this->createUrl ('/dashboard')) ;

}

6. Then we'll write an index method to display all of the content entries on
our database:

public function actionIndex ()

{

smodel = new Content ('search');
smodel->unsetAttributes() ;

if (isset($_GET['Content']))
$model->attributes = $ GET;

Sthis->render ('index', array(
'model' => $model
)) i

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

7. Finally, we'll write a method to both create new content entries and edit
existing content entries:

public function actionSave ($id=NULL)

{
if ($id == NULL)
Smodel = new Content;
else
smodel = S$this->loadModel ($id) ;

if (isset($_POST['Content']))

{
$model->attributes = $ POST['Content'];
$model->author id = Yii::app()->user->id;

if (Smodel->save())

{

Yii::app()->user->setFlash('info', 'The articles was
saved') ;
Sthis->redirect ($this->createUrl ('/dashboard')) ;
}
}
Sthis->render ('save', array(

'model' => $model
))
}

8. Next, we should copy our save.php file located at protected/modules/
dashboard/views/default/ from our project resources folder into our
module. If you haven't done so already, copy the default.php layout
file located at protected/modules/dashboard/views/layouts/ into
your project.

9. Finally, we need to make sure that our index view file is properly updated
so that it links to the appropriate controller actions. If you were simply to
copy the view from the theme file, you'd notice that none of the links work.
To correct these links, we need to update our createurl calls to point to
the save () method our module's DefaultController, and update the
CButtonColumn links to point to our module:

<?php echo CHtml::link('Create New Post', S$this->createUrl('/
)

dashboard/default/save'), array('class' => 'btn btn-primary')); ?>

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

<?php $this->widget ('zii.widgets.grid.CGridvView', array(
'dataProvider'=>$model->search(),
'htmlOptions' => array(
'class' => 'table-responsive'

).

'itemsCssClass' => 'table table-striped’',

'columns' => array(
ridr,
'title"',
'published' => array(
'name' => 'Published’',

'value' => 'Sdata->published==1?"Yes":"No"'
)
'author.username',
array (
'class'=>'CButtonColumn',
'viewButtonUrl'=>'Yii::app() -
>createUrl ("/".$data["slug"]) "',

'deleteButtonUrl'=>'Yii::app()->createUrl ("/dashboard/
default/delete", array("id" => $datal"id"l))'"',

'updateButtonUrl'=>'Yii::app()->createUrl ("/dashboard/
default/save", array("id" => $datal"id"]l))'"',
),
),

'pager' => array(
'htmlOptions' => array(
'class' => 'pager'
)
'header' => '"!

'firstPageCssClass'=>'hide',
'lastPageCssClass'=>'hide"',
'maxButtonCount' => 0

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Now that we're finished, we'll be able to view all the articles in our CMS, delete
them, edit them, and navigate to the frontend view —all from a single interface,
as shown in the following screenshot:

CMS Dashboard

Categories
Content
Title *

Users

Slug *

Category

Body *

Published

Update Post

Quis condimentum tortor.

quis-condimentum-tortor

Uncategorized v

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi
congue arcu id dui consectetur molestie. Cras molestie erat fringilla
metus dignissim vulputate. Phasellus tortor elit, cursus vel sapien et,
pharetra facilisis sem. Nam quis felis at nibh auctor ultrices. In hae
habitasse platea dictumst. Morbi accumsan accumsan lacus, ut luctus
odio interdum et. Fusce velit nisi, vehicula in ullamcorper nec,
porttitor quis eros. In scelerisque imperdiet elementum. Vivamus at
ligula nec nune fermentum sagittis.

Mauris vulputate, urna et lacinia suscipit, leo risus commodo neque,
in viverra tortor mi eget risus. Sed aliguam vulputate augue a ornare.
Nam eget purus urna. Integer a condimentum tellus. Fusee
ullameorper areu vitae leo commodo molestie. Quisque blandit varius
odio, quis ornare metus viverra eget. Sed ornare neque risus, a
posuere mauris tincidunt euismod. Aenean mollis tortor vel enim
elementum, sed fermentum leo dictum. Nunc a justo in risus
dignissim iaculis. Nullam vel mauris at ipsum commodo laorest at vel
nibh. Nam suscipit commodo libero, vitae iaculis erat pharetra vitae.
Phasellus laoreet eleifend nibh, vitae rutrum nunc pretium vitae. Duis
faueibus, lacus in posuere euismod, nulla erat tristique metus, sed
facilisis lectus ante in libero. Etiam faeilisis purus non dui gravida
accumsan. Ut eu accumsan enim, sed facilisis nulla. In hac habitasse
platea dictumst.

Cras aliquet accumsan purus eget tempus. Aliquam commodo

v

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

Migrating categories
The changes for our users and categories controllers are going to be very
similar —let's work through them. The steps are as follows:

1. Starting with our categoryController, we first want to remove the
actionAdmin (), actionSave (), and actionDelete () methods from
the categoryController.php file at protected/controllers/.

2. Next, we should remove the access control properties for the actions we
just deleted from our categoryController. The restored accessRules ()
method should look as follows:

public function accessRules ()

{

return array (
array('allow',

'actions' => array('index',6 'view',6 'search'),
'users' => array('*')

),

array('deny', // deny all users

'users'=>array('*'),
),
)i
}

3. Our new accessRules () method for our CategoryController.php file at
protected/modules/dashboard/controllers/ will then look as follows:

public function accessRules ()

{

return CMap::mergeArray (parent::accessRules(), array(
array('allow',
'actions' => array('index',6 'save',6 'delete'),
'users'=>array('@'),
'expression' => 'Yii::app()->user->role==2"
),
array('deny', // deny all users

'users'=sarray('*'),

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

4. Next, we'll reimplement all of the management actions with updated
redirects, starting with our actionIndex () method:

public function actionIndex ()

{

$model = new Category('search');
smodel->unsetAttributes() ;

if (isset($_GET['Category'l]l))
$model->attributes = $ GET;

Sthis->render ('index', array(
'model' => $model
))
}

5. We'll then re-implement the save method and modify it to work in
our module:

public function actionSave ($id=NULL)

{

if ($id == NULL)
Smodel = new Category;
else
smodel = S$this->loadModel ($id) ;

if (isset($s_POST['Category']))

{

$model->attributes = $ POST['Category'l];

if (Smodel->save())

{

Yii::app()->user->setFlash('info', 'The category was
saved') ;
Sthis->redirect ($this->createUrl ('/dashboard/category')) ;
}
}
Sthis->render ('save', array(
'model' => $model

)) i

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

6.

We'll then reimplement the delete method in our module and update
the redirects:

public function actionDelete ($id)

{

Sthis->loadModel ($id) ->delete() ;

Sthis->redirect ($this->createUrl ('/dashboard/category')) ;

}

Finally, we'll update the 1oadModel () method so that it works without
our module:

private function loadModel ($id=NULL)
{
if ($id == NULL)
throw new CHttpException (404, 'No category with that ID
exists') ;

$model = Category::model () ->findByPk ($id) ;

if ($model == NULL)
throw new CHttpException (404, 'No category with that ID
exists') ;

return $model;

}

Then copy the view files' index.php located at protected/modules/
dashboard/views/category/ and save.php located at protected/
modules/dashboard/views/category/ from the project resources
folder into our module.

Notice once again that we've updated our cBut tonColumn links to point
to our module rather than to the home page routes we had defined earlier:

array (
'class'=>'CButtonColumn',
'viewButtonUrl'=>'Yii::app()->createUrl ("/".3data["slug"]) "',
'deleteButtonUrl'=>'Yii::app()->createUrl ("/dashboard/category/
delete", array("id" => S$datal["id"]))',
'updateButtonUrl'=>'Yii::app () ->createUrl ("/dashboard/category/
save", array("id" => $datal["id"]l))',

)

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Our final category management interface will look as follows and will behave
identically to how our content management interface behaves:

CMS Dashboard

Manage Categories

_

Lees Displaying 1-3 of 3 results.
D Name
1 Uncategorized ol
2 Interesting Articles P rx
3 Personal Thoughts ol ™}

Implementing user management

In the previous chapter, we didn't implement a Ul for user management; let's go
ahead and implement that functionality now so that our dashboard module fully
encompasses all the management functionality. The steps are as follows:

1. Begin by creating a new controller, UserController.php, in protected/

modules/dashboard/controllers with the following definition:

<?php class UserController extends DashboardController {}

2. Next, we'll define our accessRules () method for this controller:

public function accessRules ()

{

return CMap::mergeArray (parent::accessRules(), array(
array('allow',
'actions' => array('index',6 'save',6 ‘'delete'),
'users'=>array('@'),
'expression' => 'Yii::app()->user->role==2"
)
array('deny', // deny all users

'users'=sarray('*'),

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

3.

Then, we'll implement a 1oadModel () utility method:
private function loadModel ($id=NULL)

{
if ($id == NULL)
throw new CHttpException (404, 'No category with that ID
exists');

Smodel = User::model () ->findByPk ($id) ;

if ($Smodel == NULL)
throw new CHttpException (404, 'No category with that ID
exists');

return Smodel;

}

Next, we'll update our delete action so that it redirects properly within
our module:

public function actionDelete ($id)

{

Sthis->loadModel ($id) ->delete() ;

Sthis->redirect (Sthis->createUrl ('/dashboard/user')) ;

}

Then we'll reimplement the index action to display a listing of all of
our users:

public function actionIndex ()

{

Smodel = new User ('search');
Smodel->unsetAttributes () ;

if (isset($_GET['User']))
Smodel->attributes = $ GET;

Sthis->render ('index', array(
'model' => S$model
)) i
}

Finally, we'll migrate our save method into our module. Since we've
already implemented all the core functionality of how our users behave
into our User model class, the implementation of our actionSave ()
method is straightforward:

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

public function actionSave ($id=NULL)
{
if ($id == NULL)
Smodel = new User;
else
Smodel = S$Sthis->loadModel ($id) ;

if (isset (s _POST['User']))

{

$model->attributes = $ POST['User'];

if ($model->save())

{

Yii::app()->user->setFlash('info', 'The user was saved');
Sthis->redirect (Sthis->createUrl ('/dashboard/user')) ;

Sthis->render ('save', array(
'model' => Smodel
))
}

7. Finally, copy the index.php view file located at protected/modules/
dashboard/views/user/ and the save.php view file located at protected/
modules/dashboard/views/user/ from the project resources folder into
your application. Once again, we're left with an interface that is identical
to our content and category management interfaces:

CMS Dashboard
Manage Users
Content
Create New User
Users
Displaying 1-3 of 3 results.
ID Name
1 User1 P
2 User = S w
3 test1234 e
[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

Uploading files

The final component that we'll be adding to our module is a file manager with file
upload capabilities. For this component, we'll be creating a dedicated controller to
view all of our uploaded files in paginated format, several new classes to handle the
actual file upload, and a few view changes to our content save view so that we can
associate files with a particular article.

Rather than bundling all of this functionality into our FileController that
we'll be building, we'll start by building three different components to handle
the various aspects of uploading a file. The first class File will represent a
$_FILES['file'] object and will provide the functionality for saving the file.
The second class, FileUpload, will be our call point for uploading our file and
will return the appropriate database to us. The final class, FileUploader, will
handle the interactions between the File and FileUpload class. These three
classes will ensure that our FileController class is clean and will make
working with the file upload extremely easy.

Creating the File class

We'll start by creating the File class, a simple object that represents
$_FILES['file'], that we'll be sending via a POST request. Create the
File.php file in protected/modules/dashboard/components/:

<?php

class File {
public function save ($path)

{

if (!move uploaded file($_FILES['file'] ['tmp name'], $path))
return false;

return true;

}

public function __ get ($name)

{

if (isset ($_FILES['file'] [$Sname]))
return $_FILES['file'] [$Sname] ;

return NULL;

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

For simplicity, we'll be storing all of our files in the root directory of our main

application called /uploads. Go ahead and create this folder now, and make sure

that your web server has write access to it.

Creating the FileUploader class

The next class we'll be building out is the FileUploader class. This class will
handle the validation and will call the File class that we just created in order

to save the file to the uploads directory. The steps are as follows:

1. Start with the class definition in FileUploader.php located at
protected/modules/dashboard/components/:
<?php class FileUploader {}

2. Then, define some private attributes to be used as validators:
private S$allowedExtensions = array(
'png’,
'jpeg’,
'Jpg’,
'gif',
1 bmp 1
)i

private $sizelLimit = 10485760;

private $file;

3. Next, we'll create a constructor for this new object that will set some
basic variables for the validator later on and will also create the File

object using the $_FILES['file'] array:

function _ construct (array $allowedExtensions = array(),

SgizelLimit = 10485760)

{

$allowedExtensions = array map ("strtolower",
SallowedExtensions) ;

If (!empty(sallowedExtensions))
Sthis->allowedExtensions = S$allowedExtensions;
Sthis->sizelLimit = $sizelLimit;

$Sthis->checkServerSettings () ;

Sthis->file = false;
if (isset($_FILES['file']))
Sthis->file = new File() ;

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

4. Next, we'll create the checkServerSettings () method that we defined
earlier. This will ensure that we don't try to upload files that are larger
than what is defined in our php. ini file:

private function checkServerSettings ()

{
SpostSize = $this->toBytes(ini get ('post max size'));
SuploadSize = $this->toBytes(ini get ('upload max filesize'));

if ($postSize < $this->sizeLimit || $uploadSize < $this-
>sizeLimit) {
$size = max(1l, Sthis->sizeLimit / 1024 / 1024) . 'M';

$Sjson = CJSON: :encode (array (
'error' => 'increase post max size and upload max
filesize'
));

die($json) ;

}

5. Finally, we'll create the validators that will validate that the file meets
the restrictions we put in place earlier. This class will ultimately return
an array to our FileUpload class that we'll be creating next:

private function toBytes($str)
{
Sval = trim(S$Sstr) ;
Slast = strtolower ($Sstrstrlen($str)-11);
switch($last)
{
case 'g': $val *= 1024;
case 'm': $val *= 1024;
case 'k': sval *= 1024;
}

return $val;

public function handleUpload (SuploadDirectory, $replaceOldFile =
FALSE)

{

if (!is_writable(SuploadDirectory))

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

return array('error' => "Server error. Upload directory
isn't writable.");

if (!S$this->file)

return array('error' => 'No files were uploaded.');
Ssize = Sthis->file->size;
if ($size == 0)

return array('error' => 'File is empty');

Spathinfo = pathinfo($this->file->name) ;

sfilename Spathinfo['filename'];
//$filename = md5 (unigid()) ;
Sext = S$pathinfol['extension'];

if (lin array(strtolower ($Sext), S$this->allowedExtensions))
{
Sthese = implode(', ', S$this->allowedExtensions) ;
return array('error' =>"File has an invalid extension") ;

$filename = 'upload-'.md5 ($filename) ;

if (!$SreplaceOldFile)
{
/// don't overwrite previous files that were uploaded
while (file exists($uploadDirectory . $filename . '.'
$ext))
Sfilename .= rand (10, 99);

if ($this->file->save(SuploadDirectory . $filename . '.'
$ext))
return array('success'=>true,'filename'=>$filename."'.'.Se
xt) ;
else
return array('error'=> 'Could not save uploaded file. The
upload was cancelled, or server error encountered');

}

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

Creating the FileUpload class

The last component that we'll create is the FileUpload class that will act as an
intermediary between our FileUploader class and our FileController class:

1. Begin by creating the FileUpload.php file in protected/modules/
dashboard/components/ with the following definition:

<?php class FileUpload {}

2. Then, declare a few properties and the constructor:
private $ id = NULL;

private $ response = NULL;
public $ result = array();

public function _ construct ($id)
{
$this-> id = $id;
$this-> uploadFile() ;

}

3. Wel'll then create our uploadFile () method that we called in our
constructor. This method will instantiate a FileUploader object and
will perform the upload before passing it off to our ContentMetadata
object, where we'll store the reference to the file:

private function _uploadFile()
{
$path = '/';
$folder = Yii::app()->getBasePath() .'/../uploads' . $path;

$sizeLimit = Yii::app()->params['max_fileupload size'];

SallowedExtensions = array('jpg', 'Jjpeg', 'png', 'gif',
'bmp') ;

Suploader = new FileUploader (SallowedExtensions, $sizeLimit) ;

Sthis-> result = $uploader->handleUpload(sfolder) ;

if (isset($this-> result['error']))

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

throw new CHttpException (500, $this-> result['error']);
return $this-> handleResourceUpload('/uploads/' . $this->_
result['filename']) ;

}

Finally, we'll create the _handleResourceUpload () method. This method
will take the response object returned by the FileUploader object and, if the
file was successfully uploaded, will store the filename of the uploaded file in
our database so that we can manage it easily. It will also link a particular file
to a given article:

private function handleResourceUpload ($value)

{

if ($this-> result['success'] == true)

{
Smeta = ContentMetadata::model () ->findbyAttributes (array ('
content id' => $this-> id, 'key' => $this-> result['filename']l));

if ($meta == NULL)
Smeta = new ContentMetadata;

Smeta->content id = $this-> id;
Smeta->key = $Sthis-> result['filename'];
Smeta->value = $value;
if (Smeta->save())
{
S$this-> result['filepath'] = svalue;
return S$this-> result;
}
else
throw new CHttpException (400, 'Unable to save
uploaded image.') ;
}

else

{
return htmlspecialchars (CJSON: :encode ($this-> result),
ENT NOQUOTES) ;
throw new CHttpException (400, $this-> result['error']);

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

Creating the controller for the file manager

Now that we have the functionality in place to upload a file, we need to create the
controller actions to manage it. We'll be creating three separate actions: an index
action where all files and their associations can be viewed; a delete action; and
an upload action. The steps are as follows:

1. Begin by creating the FileController class in protected/modules/
dashboard/controllers with the following definition:

<?php class FileController extends DashboardController {}

2. We'll then define the accessRules () method:

public function accessRules|()

{

return CMap::mergeArray (parent::accessRules (), array(

array('allow',
'actions' => array('index', 'upload',K ‘'delete'),
'users'=sarray('@'),
'expression' => 'Yii::app()->user->role==2"

),

array('deny', // deny all users
'users'=sarray('*'),

)) i
}

3. Next, we'll define our index action that will allow us to view all files
uploaded into our CMS. Since our ContentMetadata table might contain
other attributes, we'll only be searching against items that have a key
of upload:

public function actionIndex()

{
$model = new ContentMetadata ('search');
Smodel->unsetAttributes () ;
$model->key = 'upload';

if (isset ($_GET['ContentMetadata'l]))
$model->attributes = $_GET;

Sthis->render ('index', array(
'model' => Smodel
)) i

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

4. Then, we'll create an upload action that will call our FileUpload class.
After uploading the file or having an error, the action will redirect the user
to where they came from with either the relative URI to the file, or a useful
error message generated from our FileUploader class:

public function actionUpload($id = NULL)

{
if ($id == NULL)
throw new CHttpException (400, 'Missing ID');

if (isset (s _FILES['file']))

{

$file = new FileUpload($id) ;

if ($file->_result['success'])
Yii::app()->user->setFlash('info', 'The file uploaded to
' . $file-> result['filepath']);
elseif ($file-> result['error'])
Yii::app()->user->setFlash('error', 'Error: ' . $file->
result['error']) ; a

}

else

Yii::app()->user->setFlash('error', 'No file detected');

Sthis->redirect ($this->createUrl ('/dashboard/default/
save?id="'.%id)) ;

}

5. Then we'll create a 1loadModel () method and a delete action to remove
files from our database:

public function actionDelete ($id)

{

if (Sthis->loadModel ($id) ->delete())

{

Yii::app()->user->setFlash('info', 'File has been deleted');
$this->redirect ($this->createUrl ('/dashboard/file/index')) ;

throw new CHttpException (500, 'The server failed to delete the
requested file from the database. Please retry');

}

private function loadModel ($id=NULL)

{

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

if ($id == NULL)
throw new CHttpException (400, 'Missing ID');

Smodel = ContentMetadata::model () ->findByAttributes (array ('id’'
=> $id));
if (Smodel == NULL)
throw new CHttpException (400, 'Object not found');

return Smodel;

}

6. We'll then move on to creating the views for our file manager. The first
view we'll create will be an index view, which will consist of a CListView
container that will allow us to easily browse through our images. Add the
following to index.php located at protected/modules/dashboard/
views/file/:
<?php Sthis->widget ('zii.widgets.CListView', array(

'dataProvider'=>$model->search (),
'itemView'=>' file',

)) i

7. We'll also create the corresponding itemvView file called _file.php located
at protected/modules/dashboard/views/file/:
<div classg="file">

<a href="<?php echo $data->value; ?>"><img src="<?php echo
S$data->value; ?>" style="width: 150px; height: 150px;"/>

<?php echo CHtml::link('Article ID: '. $data->content id,
$this->createUrl ('/dashboard/default/save', array('id' => $data-
>content_id))); ?>

<?php echo CHtml::link('Delete', Sthis->createUrl ('/dashboard/
file/delete', array('id' => S$data->id)), array('class' => 'btn
btn-danger')); ?>
</div>

8. Finally, we'll need to update save.php at protected/modules/dashboard/
views/default/ with a file upload form so that files can be uploaded:

<?php if (!$model->isNewRecord): ?>
<hr />
<?php S$form=$this->beginWidget ('CActiveForm', array (
'id'=>'file-upload-form',
'action' => Sthis->createUrl ('/dashboard/file/upload’',
array('id' => S$model->id)),

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

'htmlOptions' => array(
'class' => 'form-horizontal',
'role' => 'form',
'enctype'=>'multipart/form-data’

)
)); 2>
<div class="form-group"s>
<div class="col-sm-10">
<input type="file" name="file" />
</div>
</div>

<div class="row buttons"x>
<?php echo CHtml::submitButton('Upload file',
array('class' => 'btn btn-primary pull-right col-md-offset-1'));
?>

</div>

<?php $this->endWidget (); ?>
<?php endif; ?>

Now, if you upload a file from the content save screen, the URL of the file will be
returned back to you for you to add it to your article:

Categories The file uploaded to /uploads/upload-g6défzeveifrosabsesgeBqabdeoogba. png
Content
Users U pd ate POSt
Files
Title * Lorem ipsum dolor
Slug * lorem-ipsum-dolor
Category Uncategorized v
Body * Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi
congue arcu id dui consectetur molestie. Cras molestie erat
fringilla metus dignissim vulputate. Phasellus tortor elit, cursus

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

Additionally, if you want to view all files uploaded to the CMS, or if you want

to delete a file, you can navigate to http://chapter7.example.com/dashboard/
files in your web browser or add a link to the sidebar in your default.php

file at protected/modules/dashboard/views/layouts/, as shown in the
following screenshot:

CMS Dashboard

= : Displaying 1-3 of 3 results.
Categories

Content

Strategies for deploying our application

The last topic we should discuss is how we want to deploy our new module
alongside our application. There are several different deployment strategies that

we can make use of, each of which has its own advantages and disadvantages. In

the next section, we'll go over the benefits and downfalls of a few different strategies.
When the time comes to deploy your module alongside your application, be sure to
give careful thought to how you want your module and application to be integrated.

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Deploying as the application

The simplest deployment strategy we can use is to simply commit our module's
source code directly to our main application. When the time comes to deploy our
application, our module is automatically included. While incredibly simple and
basic, this strategy has several disadvantages.

First and foremost, it binds the state of our module to our application, which makes
it more likely that we'll unintentionally introduce bugs or incomplete features when
we deploy our application. The second disadvantage is that it tightly couples our

module's state at any given time to our application. The final disadvantage is that it
makes it very difficult to deploy a module update independently of our application.

Deploying as a submodule

The second deployment strategy is to commit our module code to a completely
separate repository and include it in our project as a submodule. This method not
only ensures that our project retrieves the latest code, but it also ensures that our
module code and application code are properly separated. The alternative to using
a submodule is to simply clone the module repository into the protected/modules
directory every time we want to run a deployment. While this method is simple, it
does increase the complexity of our application and requires us to have a detailed
understanding of Git submodules. Additionally, it is difficult to automate while
ensuring that deployments don't result in downtime.

Deploying as a Composer dependency

A third strategy is to create a completely separate repository for our module, include
it into our project as a Composer dependency, and use the composer/installers
package to ensure that the module is placed in the correct directory. While it is
significantly more complex than the other strategies, this strategy has the advantage
of ensuring that our module and application code remain separated. It also has the
advantage of moving deployment-related tasks back to the application rather than
the module.

[261]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Management Module for the CMS

Summary

We covered a lot of information on working with modules and overcoming some
of the limitations that they have. We discussed how to create a module, how to
integrate it with our application, how to handle custom routing for modules, how
to migrate the management functionality from a regular Yii application into our
module, and we also added a file manager and upload capabilities to our CMS.
Additionally, we covered different strategies for deploying our module alongside
our application.

In the next chapter, we will create an API module for our application that will allow
for web services and native applications to connect to our CMS. We'll expand upon

the topics covered in this chapter, and we'll also cover how we can override several

core Yii components to make our API flexible and easy to develop with.

Before continuing to the next chapter, be sure to review the Yii Class Reference
athttp://www.yiiframework.com/doc/api/ and review all the classes that we
used in this chapter.

[262]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/
http://www.it-ebooks.info/

Building an API for the CMS

Throughout this book, we've covered the development of view-oriented

applications —applications that the user can interact with directly. Our view-oriented
approach, however, doesn't allow us to easily integrate with other services or
provide functionalities for native applications. This view-oriented approach often
leaves us with hardcoded functionality and makes integrations significantly more
difficult. The Yii framework, however, is extremely adaptable and enables us to
build API-driven applications rather than view-driven applications. An API reduces
the amount of code we have to maintain; if executed properly, it reduces the amount
of code that needs to change when we want to add a feature. Ultimately, this allows
us to work faster and be more adaptable to changes.

Building an API-driven application also enables us to easily develop both web and
native clients that work with our API, thus completely separating view-oriented
logic from our application. In this chapter, we'll go over what we'll need to do in
order to build an API-driven module for our content-management system that we
created earlier. By fostering an ecosystem around our application, we can provide
value to both developers and users, and increase the value of our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

The following is the demonstration:

Responsive Web

Applications Native Applications

Third-party Services

In this chapter, we'll go over what we'll need to do to build an API-driven module
for our content management system that we created earlier.

Prerequisites

Since we'll be expanding upon the work we did in Chapter 7, Creating a Management
Module for the CMS, we'll need the completed source code from the previous chapter.
You can either build the project yourself, or you can use the completed source code
available in the project resources folder in the previous chapter. We'll also need

a URL request client that will allow us to send GET, POST, and DELETE requests

with JSON-encoded data to our application. You can either use cURL, or you can
download a Google Chrome extension called RESTClient available at https://
chrome.google.com/webstore/detail /rest-console/cokgbflfommojglbmbpenp
phppikmonn?hl=en. The examples throughout this chapter will use RESTClient.

Describing the project
In this chapter, we'll be building an API module for our content-management
system. The development of this module can be broken down into several pieces:

* Configuring the module
* Extending Yii to "RESTfully" render JSON or XML instead of a view file

[264]

www.it-ebooks.info

https://chrome.google.com/webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn?hl=en
https://chrome.google.com/webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn?hl=en
https://chrome.google.com/webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn?hl=en
http://www.it-ebooks.info/

Chapter 8

* Handling data input

* Handling user authentication

* Handling exceptions and errors

* Specifying what data will be returned with each response

* Implementing authentication, deauthentication, and basic CRUD actions

Configuring the module

The first component of this project will consist of creating and configuring our module
so that it integrates with our main application. Since we added the functionality that
seamlessly integrates modules into our application in the previous chapter, the only
work required for this section will be to clear out our module cache, initialize the
module, and add in the necessary routes.

Extending Yii to render JSON or XML in a
RESTful way

Since the Yii framework is designed to work with view files, we'll need to extend
several components of the Yii framework in order to get it to output and render
JSON or XML documentations. We'll also need to make several different changes

to Yii so that it knows how to handle GET, POST, and DELETE actions independently
of one another. To accomplish this, we'll create a new controller that will extend
cMSController, which we created in the previous chapters. This will overload several
key methods from ccontroller, namely runAction (), filterAccessControl (),
createAction (), and beforeaction (). We'll also extend several other classes —
CInlineAction, CAccessControlFilter, and CAccessRule —to implement all the
functionality we need. Finally, we'll also change the way the renderer works so that
we can return data from our actions and have our base controller handle the output,
thus reducing the amount of echoing we need to perform in each controller.

Handling data input

For any request that modifies data in our application, we'll need to handle the
acceptance of that data to the RESTful endpoint. To keep things simple, we'll accept
JSON-encoded data, or we'll accept data encoded with application/x-www-form-
urlencoded or HTML form fields for our convenience. In our application, we'll turn
either of these data sources into usable attributes that we can modify and work from
in order to complete tasks.

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

Authenticating users to the API

In Yii, user authentication and identification are typically handled by our
UserIdentity class and cookies. By convention, RESTful API's don't send or accept
any cookies, which means that we'll have to change the way we perform authentication
within our application. For this, we'll create a custom AccessControlFilter that
will initially authenticate our users using their username and password. If a user
successfully authenticates against our API, we'll return to them a unique token that
the user will use for all future requests that require authentication. This token, and
the user's email address will be sent via two custom headers, Xx-auth-Token and
X-Auth-Email, and will allow us to identify the user in our API without requiring
them to resend their password information. This token will be stored alongside

our user in the user_metadata table we created in the previous chapters.

Handling APl exceptions

The next components we'll need to handle are errors and exceptions. These will range
from errors that Yii will encounter naturally, such as 404 errors when an action isn't
found, to exceptions that we throw within our application to notify clients interacting
with our API of either an unexpected error or a warning that something has happened.
Since we'll be changing the way rendering works within our application, we'll simply
reroute our errors the same way we would for the response of any action.

Handling data responses

With every request, we'll return the HTTP status code, a message if an error occurred,
and a mixed content response attribute that will contain all the information that we
want to return to the client for consumption. The response will look as follows:

{

"status": <integer::http status codes,
"message": "<string::null or error message>",
"response": <mixed::boolean string or array response"

}

We'll also have our actions return a method that will allow us to define what
attributes should be returned with each request. This will allow us to return only
a limited amount of information, preventing accidental information disclosure,
and will enable us to protect private information such as passwords or credentials.

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Implementing actions

The last big part that we'll handle is the implementation of all of our controller actions.
This will include our authentication endpoint, all the user actions such as registering
and resetting their password, and the management of our three core data models:
Users, Categories, and Content.

Initializing the project
For this project, we'll be starting where we left off in Chapter 7, Creating a Management
Module for the CMS. The steps are as follows:

1.

For your convenience, a skeleton project has been included in the project
resources folder for this chapter that contains the foundation that we'll be
starting with. Begin by copying the source code to a new folder, and make
sure that it is available at a different URL from the one we used in the
previous chapter. In this chapter, I'll be using http://chapters.example.
com as our example URL.

After importing the database and updating the database configuration using
the instructions provided in the previous chapter, create a new folder called
api in protected/modules and also create the following directory structure:
api/

components/

config/

controllers/

Next, create the ApiModule class, ApiModule.php, in protected/modules/
api/, which will bootstrap our module:

<?php

class ApiModule extends CWebModule

{

public function init ()

{

// import the module-level models and components
Sthis->setImport (array (
'api.components.*!',

)) i

Yii::app()->log->routes[0] ->enabled = false;

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

Yii::app () ->setComponents (array (
'errorHandler' => array(
'errorAction' => 'api/default/error',

4. Next, create routes.php in protected/modules/api/config/,
and populate it with the following information:

<?php return array(
'/api/<controller:\w+>/<action:\w+>' => '/
api/<controllers>/<action>"',
'/api/<controller:\w+>/<action:\w+>/<id:\w+>' => '/
api/<controllers>/<action>'

)i

Finally, remove modules. config.php in the protected/runtime/ directory, and
the contents of the protected/runtime/cache directory, to clear the modules cache
that we implemented in the previous chapter. This will ensure that Yii recognizes
and caches our new module. The next time we access Yii, this file will be regenerated
and will contain the appropriate module configuration for our application.

Extending Yii to return data

There are two approaches to having Yii render the JSON or XML data. The first and
the easiest approach is to create a JSON or XML view file and, from every action, call
$this->render ('json'). While this is simple, it forces us to store a lot of information
and explicitly call the render () method in each action. If we're extending a class that
modifies the render () method, this can be extremely problematic if we want to make
changes later. Another issue with this approach is that it treats errors as separate
response types. When throwing an error with this approach, Yii will want to render
the error as HTML rather than JSON. Depending upon our logging and debug level,
this can cause our API to return the wrong data to our client.

A more preferable approach is to simply return the data that we want to present to
the client in each action and have our parent controller class handle the rendering
and output. This approach makes it easier to identify what data is being presented
from each action and ensures that our API consistently returns the right data format
even when exceptions or errors happen.

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

To get this working, however, we need to extend a few classes from the Yii
framework and modify them so that they return data instead of outputting
it. The first class we need to extend is CInlineAction. CInlineAction. It
represents the actual action method within our controllers and is called by
the runAction () controller method. To make our API return data instead
of outputting it, we first need to intercept the response of our actions by
modifying the CInlineAction runWithParamsInternal () method, which
we'll then return to the runAction () method in the parent controller.

We'll do this by creating a new class called ApiInlineAction that extends
CInlineAction and overloads the runWithParamsInternal () method.
For our convenience, we'll put this code in ApiInlineAction.php, located
at protected/modules/api/components/:

<?php

class ApiInlineAction extends CInlineAction

{

protected function runWithParamsInternal (Sobject, S$method,
Sparams)

{
Sps=array () ;
foreach ($method->getParameters () as $i=>$param)
{
Sname=Sparam->getName () ;
if (isset ($Sparams [$Sname]))
{
if ($param->isArray())
$ps[l=is_array(sparams[$name]) ?
Sparams [$Sname] : array ($params [$Snamel) ;
elseif (!is_array($params [$name]))
$ps[]=%$params [$name] ;
else
return false;
}
elseif ($param->isDefaultValueAvailable())
Sps[]=$Sparam->getDefaultValue () ;
else
return false;

return $method-s>invokeArgs ($object, $ps) ;

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

3.

Next, we'll need to create a base controller class that all of our API
controllers will extend from. This parent class will be what ultimately
class runwWithParamsInternal. Begin by creating a new class in
protected/modules/api/components called ApiController.php
with the following definition:

<?php class ApiController extends CMSController {}

Throughout this class, we'll be referencing the private $_action variable,
which we'll need to redefine from the parent class. We'll define the status
and message variables at this time as well. These variables will hold the
HTTP status code as well as any error messages that we want to present
to the client:

private $_action;

public $status = 200;

public S$message = null;

We'll then overload our runAction () method to call our output method
instead of Yii's rendering methods:

public function runAction(Saction)

{

Sresponse = null;
$priorAction=$this-> action;
$this-> action=$Saction;

if ($this->beforeAction($Saction))

{

Sresponse = S$Saction->runWithParams (Sthis-
>getActionParams ()) ;
if ($response===false)

Sthis->invalidActionParams (Saction) ;
else
Sthis->afterAction (Saction) ;

$this-> action=$priorAction;
Sthis->renderOutput ($response) ;
Have questions about CInlineAction? Be sure to check out

% the class documentation at http: //www.yiiframework.
g com/doc/api/1.1/CInlineAction

[270]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CInlineAction
http://www.yiiframework.com/doc/api/1.1/CInlineAction
http://www.it-ebooks.info/

Chapter 8

Rendering data

The next part in outputting our data is to create the renderoutput () method that
we called earlier:

1.

We'll begin by defining the method. In order to make it as adaptable
as possible, we'll want the ability to manually call this method with the
status and message that we want to present:

public function renderOutput (Sresponse = array (), S$status=NULL,
$message=NULL) {}

At this time, we'll define several response headers that will allow web clients
to talk to our API and get the same-origin policy settings that modern web
browsers have in place in order to protect users. Without these cross-origin
resource-sharing headers (CORS, for short), web clients won't be able to

talk to our API. This will also allow web browsers to send our API custom
authentication headers that we'll define later:

header ("Access-Control-Allow-Origin: *");

header ("Access-Control-Allow-Headers: x-auth-token, x-auth-
email") ;

header ('Access-Control-Allow-Methods: PUT, PATCH, DELETE, POST,
GET, OPTIONS') ;

We'll then define our base data response:

Sdata = array(
'status' => $status != NULL ? $status : S$this->status,
'message' => Smessage != NULL ? Smessage : (Sthis->message
== NULL ? 'Your request was successfully fulfilled' : $this-
>message) ,

'response' => $response

)i

Then, we'll determine the data format in which we want to return our data
from a GET parameter called format and render the data appropriately:
Sformat = Yii::app()->request->getParam('format', 'json');
if ($format == 'xml')
{
header ("Content-Type:text/xml") ;
echo $this->renderXML (Sdata) ;
}
else
echo $this->renderJSON (Sdata) ;
Yii::app()->end() ;

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

5. Torender JSON data, we'll simply take the data response that we built
in the previous steps and output it with CgSoN: :encode () :

private function renderJSON ($data)

{
header ('Content-Type: application/json') ;
return CJSON: :encode ($data) ;

}

6. Rendering the XML data is slightly more involved but can easily be done
with the following recursive method:

private function renderXML (Sarray, S$level=1)
{
Sxml = '';
if ($level==1)
$xml .= '<?xml version="1.0" encoding="ISO0-8859-1"?>"'."\
n<datas>\n";

foreach ($array as S$key=>$value)
{
Skey = strtolower (Skey) ;
if (is_array(svalue))
{
$multi tags = false;
foreach($value as Skey2=>$value2)
{
if (is_array(svalue2))

{

$xml .= str repeat ("\t",$level)."<Skey>\n";
Sxml .= Sthis->renderXML (Svalue2, S$Slevel+l);
$xml .= str repeat ("\t",$level)."</$key>\n";

Smulti_tags = true;
!
else
{
if (trim(Svalue2) !='")
{
if (htmlspecialchars ($value2) |=$value2)
$xml .= str repeat ("\t",$level)."<Skey
><! [CDATA [$value2]]>"."</Skey>\n";
else

[272]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

$xml .= str repeat ("\t",$level)."<Skey
>$value2</$key>\n";
!
$multi tags = true;
!
1
if (!$multi tags and count ($value)>0)
{
$xml .= str repeat ("\t",$level)."<Skey>\n";
Sxml .= Sthis->renderXML(S$value, S$level+1l);
$xml .= str repeat ("\t",S$level)."</$key>\n";
1
1
else
{
if (trim(Svalue) !='")
{
if (htmlspecialchars ($value) I=Svalue)
$xml .= str repeat ("\t",$level)."<skey>"."<![C
DATA [$value]] ></$key>\n";
else
$xml .= str repeat ("\t",$level)."<Skeys>Svalue<
/$key>\n";
1
1

if (Slevel==1)
$xml .= "</datas>\n";

return $Sxml;

* Have questions about the methods we're extending from
CController? Be sure to take a look at the guide for this class at
’ http://www.yiiframework.com/doc/api/1.1/CController.

[273]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CController
http://www.it-ebooks.info/

Building an API for the CMS

Calling actions in a RESTful way

In a RESTful AP, a single endpoint might respond differently to different kinds of
HTTP requests. For instance, the /api/user/index endpoint might return a list of
users or a particular user if a GET request is called with an ID parameter. However,

if a POST request is called, a new user will either be created or modified. If a DELETE
request was called to that endpoint with an ID, it would delete a user from the system.

To emulate this behavior in Yii, we need to overload the createaction () method
of our ApiController so that it calls the correct action. In our controllers, this will
allow us to separate functionality by the request type. Internally, our API will be
calling actions in the format of action<Name><Method>, with the default GET action
hitting the raw action method (for example, actionIndex (), actionIndexPost ()
and actionIndexDelete ()). This method will also call the ApiInlineAction class
that we defined earlier instead of CInlineAction:

public function createAction ($SactionlID)

{
if ($actionID==="'")
SactionID=Sthis->defaultAction;

if (Yii::app()->request->getRequestType() != 'GET' && SactionID !=
'error')
SactionID .= Yii::app()->request->getRequestType () ;
if (method exists($this, 'action'.$actionID) &&
strcasecmp ($SactionID, 's')) // we have actions method
return new ApiInlineAction(sSthis, SactionID) ;
else
{
Saction=3Sthis->createActionFromMap ($this->actions (), SactionID
,SactionID) ;
if ($action!==null && !method exists($action, 'run'))
throw new CException(Yii::t('yii', 'Action class
{class} must implement the "run" method.', array('{class}'=>get

class ($action)))) ;
return Saction;
1

Authenticating users

Since RESTful APIs don't pass the cookie information between the API and

the client, we need to make several modifications to our controller in order to
separate authenticated users from unauthenticated users. For this, we'll overload
CAccessControlFilter so that it operates against the user information that we'll
populate in our controller:

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We'll begin by adding a few more public properties to our ApiController.
The xauth attributes will store the X-Auth-Token and X-Auth-Email
headers that we'll send for authentication, and the user property will store
the raw user model for the authenticated user. We'll pass this information
down to the child controllers for authentication and also to our overloaded
CAccessControlFilter class:

public $xauthtoken = null;

public $xauthemail = null;

public S$user = null;

Next, we'll load our accessControl filter. We'll also define another filter
called cHttpCacheFilter that will tell clients not to cache the responses
our API returns:

public function filters()

{

return array (

array (
'CHttpCacheFilter',
'cacheControl'=>'public, no-store, no-cache, must-
revalidate',
),
'accessControl'

) ;
1

We'll then define our base accessRules () that will deny access to any
method other than our error action:

public function accessRules ()

{

return array (
array('allow',
'actions' => array('error')
)
array('deny')
) ;
}

Next, we'll need to handle the authentication in our controller before
passing it to cInlineActionFilter. We'll begin by overloading the
filterAccessControl () method in our ApiController

public function filterAccessControl ($filterChain) {}

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

5. We'll then retrieve the X-Auth-Token and X-Auth-Email headers:

Sthis->xauthtoken = isset ($_SERVER['HTTP_X AUTH TOKEN']) ? $
SERVER ['HTTP_X AUTH TOKEN'] : NULL;

Sthis->xauthemail =isset ($_SERVER['HTTP_ X AUTH EMAIL']) ? $_
SERVER ['HTTP_X AUTH EMAIL'] : NULL;

6. Now well validate these against our database. For this, we'll look up a user in
our database with the x-Auth-Email address; if this is found, we'll then check
for the API token that we'll generate later on in the user_metadata table. If an
API token is found, we'll populate $this->user with the raw user model:

if (Sthis->xauthemail != NULL)

{

// If a user exists with that email address

Suser = User::model () ->findByAttributes (array('email' =>
Sthis->xauthemail)) ;
if (Suser != NULL)

{

$q = new CDbCriterial() ;
$g->addCondition('t.key LIKE :key');

$g->addCondition ('value = :value');
$g->addCondition('user id = :user id');
$g->params = array (

':user id' => Suser->id,
':value' => $this->xauthtoken,
':key' => 'api key!'

) ;

Smeta = UserMetadata::model ()->find(3$q) ;

// And they have an active XAuthToken, set $this->user =
the User object

if (Smeta != NULL)
Sthis->user = Suser;

}

7. Finally, we'll call our custom CAccessControlFilter class, pass the user
to it, set rules, and call the filter:

Sfilter=new ApiAccessControlFilter;
$filter->user = $this-s>user;
$filter->setRules (Sthis->accessRules()) ;
Sfilter->filter($filterChain) ;

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Overloading CAccessControlFilter

We need to create a new class called the ApiAccessControl filter within protected/
modules/api/components/ so that we can continue using the accessRules array
in our controllers. This class will operate on the user object we passed to it from our
controller and will make our accessRules array work with our new user object:

1.

After creating the ApiAccessControlFilter.php file, define it as follows:

<?php class ApiAccessControlFilter extends CAccessControlFilter {}

We'll then need to add the user attribute to store the user as passed from our
controller and redefine the private $_rules property that the parent class
operates on:

public Suser;
private $ rules;

Since the $_rules array in the parent class is private, we'll need to redefine
the getter and setter for the rules array as well as the preFilter () method
that uses the private property. We'll start with the preFilter () method:

protected function preFilter ($filterChain)
{
Sapp=Yii::app() ;
Srequest=Sapp->getRequest () ;
Suser=sthis->user;
Sverb=Srequest->getRequestType () ;
Sip=Srequest->getUserHostAddress () ;

foreach($this->getRules () as Srule)

{

if ((Sallow=Srule->isUserAllowed (Suser, SfilterChain-
>controller, $filterChain->action, $ip, Sverb))>0) // allowed
break;
elseif (Sallow<0) // denied
{
if (isset (Srule->deniedCallback))
call user func($rule->deniedCallback, s$rule);
else
Sthis->accessDenied (Suser, Sthis-
>resolveErrorMessage (Srule)) ;
return false;

}

return true;

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

4. We'll then create both a getter and setter for our rules array:

public function getRules ()

{

return S$this-> rules;

public function setRules(Srules)

{

foreach (Srules as Srule)
{
if (is_array($rule) && isset($rule[0]))
{
Sr=new ApiAccessRule;
Sr->allow=Srule[0]==="'allow';
foreach(array slice($rule,1l) as $name=>$value)
{
if ($name==="'expression' || $name==='roles' ||
$name==='message' || $name==='deniedCallback')
Sr->sname=Svalue;
else
Sr->$name=array map ('strtolower', $value) ;

}

$this-> rules[]=8$r;

}

5. At this time, we'll also want to redefine the accessbenied behavior that
gets called when a user doesn't have access to a particular action. Here,
we'll simply call the renderoutput () method of ApiController:

protected function accessDenied ($Suser, $message=NULL)

{

http_response_code (403) ;
Yii::app()->controller->renderOutput (array (), 403, S$message) ;

}

6. To follow the same convention as Yii, we will also add a second class,
ApiAccessRule, that extends CAccessRule inside the same file. This is just
a simple modification that ensures that our information is loaded instead of
the information that is passed to CAccessRule:

class ApiAccessRule extends CAccessRule

{

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

public function isUserAllowed (Suser, $controller, $action, $ip, $v
erb)
{
if ($this->isActionMatched (Saction)
&& Sthis->isIpMatched ($ip)
&& Sthis->isVerbMatched (Sverb)
&& Sthis->isControllerMatched (Scontroller)
&& Sthis->isExpressionMatched (Suser))
return Sthis->allow ? 1 : -1;
else
return O0;

- Want to learn more about CAccessControlFilter? Take a look at

the class documentation at http://www.yiiframework.com/doc/
’ api/l.1/CAccessControlFilter.

Processing the incoming data

Since our RESTful API will be returning JSON, it's only appropriate that it should
accept JSON as well. For convenience, we'll configure our API to accept application/
x-www-form-urlencoded from the data (data sent from a form), so that our web clients
can simply POST directly to our API without having to perform data conversion.

To make our API accept this data, we'll overload the beforeAction () method

in order to take the raw JSON body, if supplied, and populate it into our $_posT
data if it is a valid JSON request. If invalid JSON is sent, we'll return an HTTP 400
error, indicating that something was wrong with the request. The error will hit our
actionError () method and bubble up to our runAction () method, which will
finally display the error:

public function beforeAction ($Saction)

{

// If content was sent as application/x-www-form-urlencoded,
use it. Otherwise, assume raw JSON was sent and convert it into

// the $ POST variable for ease of use
if (Yii::app()->request->rawBody != "" && empty (S POST))
{

// IF the rawBody is malformed, throw an HTTP 500 error.
Use json_encode so that we can get json_ last_error

$ POST = json decode(Yii::app () ->request->rawBody) ;
if (json last error() != JSON ERROR_NONE)

{

[279]

www.it-ebooks.info

http://www.yiiframework.com/doc/api/1.1/CAccessControlFilter
http://www.yiiframework.com/doc/api/1.1/CAccessControlFilter
http://www.it-ebooks.info/

Building an API for the CMS

header ('HTTP/1.1 400 Bad Request');

Sthis->status = 400;

Sthis->message = 'Request payload not properly formed
JSON. ';

return null;

}

$ POST = CJSON: :decode (Yii::app () ->request->rawBody) ;

}

return parent::beforeAction($Saction) ;

Handling errors

Before moving on to creating controllers, we need to make sure that our parent
class can handle any errors that get sent to it. There are two types of errors we'll
want to handle — the first being errors that Yii encounters either internally, or
through exceptions we call, and the second being errors that we want to present
to the user but that we don't want to send through an exception.

Exception handling

To handle exceptions that either we throw or that Yii throws internally, we'll define
the base actionError () method as follows. The data set here will simply populate
the runAction () method that we overloaded earlier and will ensure that the
appropriate error is displayed in the correct format:

public function actionError ()

{

if (Serror=Yii::app()->errorHandler->error)
{
Sthis->status = Serror['code'l];
Sthis->message = Serror['message'l];

Custom error handling

Within our controllers, there will be situations that we'll want to return an error
to the user without triggering an exception. A great example of this is a model
validation error. We want to inform the user that something went wrong, but we
want to return from the error gracefully without stalling our application. For this,
we'll create a returnError () method that we'll call from our controller that will
populate back up to the runaction () method we defined earlier:

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

public function returnError ($status, S$Smessage = NULL, Sresponse)

{

header ('HTTP/1.1 '. $status);
Sthis->status = $status;

if ($message === NULL)

Sthis->message = 'Failed to set model attributes.';
else

Sthis->message = $message;

return Sresponse;

Testing whether everything works

Before we start creating other controllers and actions, let's create a very simple
controller in order to verify that our API is working the way we want it to. For
this, let's create a class called DefaultController in protected/modules/api/
controllers with the following setup:

class DefaultController extends ApiController

{

public function accessRules ()

{
return array (
array('allow',
'actions' => array('index',6 ‘'error')
),
array('deny')
)
}

public function actionIndex ()

{

return "test";

}

If your APl is set up correctly, you should be able to open your browser to
http://chapter8.example.com/api and see the following displayed:

{

"status":200,
"message":"Your request was successfully fulfilled",
"response":"test"

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

As you can see, whatever data we returned from our action is now in the response
attribute of our JSON object. Additionally, if we want to render XML instead of
JSON, we can add the format=xml GET parameter to the http://chapters.
example.com/api?format=xml URL as follows:

<data>
<status>200</status>
<message>Your request was successfully fulfilled</message>
<response>test</response>

</data>

. Most load balancers and health-check services verify that endpoints
% return a 200 status. For this reason, it's recommended that you
= simply return true from this default method if you're going to add
a health check to your APL

Authenticating users

Now that our API is functional, let's add the ability for users to be authenticated
against our API. For this, we're going to create an endpoint that accepts the
following JSON request body:

{

"email": "user@example.com",
"password": "<example passwords>"

}

With this information, the API will be authenticated using LoginForm, which we
worked on in previous chapters. If the user is valid, we'll generate a new API token
that will be stored in the user metadata table. This token will be returned to the client
who is making the request and will be used to authenticate for all future requests:

1. To get started, create a new controller in protected/modules/api/
controllers/ called UserController.php with the following definition:

<?php class UserController extends ApiController {}

2. Next, we'll need to define a default set of access rules so as to allow our
authentication method to be used without authentication:

public function accessRules ()

{

return array (

[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

array('allow',
'actions' => array('tokenPost'),
)
array('deny')
) ;
}

3. Since this is a POST endpoint, we'll define our new method as follows:

public function actionTokenPost () {}

4. We'll then instantiate a new instance of LoginForm and retrieve our
e-mail address and password from the JSON body. Remember that, in
our ApiController class, we transformed the raw JSON body directly
into our $_POST parameters in order to make things easier to work with:
$model = new LoginForm;
$model->username = Yii::app()->request->getParam('email', NULL) ;

$model->password = Yii::app()->request->getParam('password',
NULL) ;

5. After retrieving this information, we'll attempt to log in:
if ($model->login()) {}

6. If successful, we'll load the user information:

Suser = User::model ()->findByAttributes (array('email' => Smodel-
>username)) ;

7. Try to either update an existing API token, or generate a new one:

Stoken = UserMetadata::model () ->findByAttributes (array (
'user id' => Suser->id,
'key' => 'api key'

))

if ($token == NULL)
Stoken = new UserMetadata;

Stoken->attributes = array(

'user id' => Suser->id,

'key' => 'api key',

'value' => $Suser->generateActivationKey () // Reuse this method
for cryptlib
)

[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

8. If we are able to save the token to the database, we'll return it:

if (Stoken-s>save())
return Stoken->value;

9. Outside our if ($model->login()) condition, we'll simply return an
error to the user, indicating that something went wrong. Since this is an
authentication method, we don't want to give away too much information
in order to prevent people from attempting to brute-force our API endpoint:

return $this-s>returnError (401, S$Smodel->getErrors(), null);

Testing the authentication

Before proceeding, let's make sure that our authentication endpoint works. To test
this, we'll be using a Google Chrome extension called RestConsole and that can

be downloaded from the Chrome App Store at https://chrome.google.com/
webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn?hl=

en. If you do not already have Google Chrome installed, you can download it from
https://www.google.com/intl/en-US/chrome/browser/. After installing, navigate
to the RestConsole download page and install the plugin. Once it's installed, you can
click on the Launch App button in the Chrome App Store to load RestConsole. Once
it's loaded, you'll see several different sections:

A tool such as RestConsole will allow us to quickly test our API

endpoints from a nice GUI interface. If you prefer, you can test the
=" endpoints directly from your command line using the cURL utility,

available through most package managers.

1. In the Target section, fill out the form as shown in the following screenshot.
Be sure to adjust to your local environment. The key detail in this section is

the Request URI field.
@ Target
Target Accept
Request URI Content-Type

Request Method Language

Request Timeout

seconds

[284]

www.it-ebooks.info

https://chrome.google.com/webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn?hl=en
https://chrome.google.com/webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn?hl=en
https://chrome.google.com/webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn?hl=en
https://www.google.com/intl/en-US/chrome/browser/
http://www.it-ebooks.info/

Chapter 8

2. Then, scroll down to the Body section, and fill out the section as follows:

2 Body
Content Headers
Content-Type

applicationfjson

Encoding

Request Payload
RAW Body
¥

"email": "user1l@example.com”,
"password": "test”

}

utf-g|

See HTTP compression.

Content-MD5
O

The key part of this section is the Request Payload section. This is

where you'll add the raw JSON body that will be sent to the server.
s

In this example, we're using the credentials that we established in
Chapter 7, Creating a Management Module for the CMS.

"email":

"userl@example.com",

"password": "test"

}

If you've changed these credentials since then, be sure to change them in
your JSON body.

3. Finally, click on the Post button at the bottom of the page. This will send the
request to the server. If successful, you'll receive an HTTP 200 status code in
response with your API token in the response body:

Response

-

Response Headers Response Preview Request Body Request Headers

Color Theme Force Syntax Highlighting

Bootstrap ¥ Oaute ®JsoN Oxme O HML O css
{
"status": 200,
"message™: "Your reguest was succeasfully fulfilled”,
"response™: "aRwiTYyK1Mm2SDaK™

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

{

"status": 200,
"message": "Your request was successfully fulfilled",
"response": "aRwETYyK1lMm2SDaK"

}

generated on each authentication request.

[Your response body will differ slightly as the API token is randomly]
K

Sending authenticated requests

Now that we can authenticate against our AP, let's make sure that we can send
authenticated requests. For this, we'll be creating an API endpoint in order to
deauthenticate our user. This will accept the user's credentials and then delete
the API token from the database in order to prevent future use:

1.

Creating this endpoint consists of two parts. First, we need to add an item
to our accessRules array that allows authenticated users to send a DELETE
request to the token endpoint. We'll do this by adding the following to our
accessRules array:
array('allow',

'actions' => array('tokenDelete'),

'expression' => 'S$Suser!=NULL'

)

Then we'll add the delete method for our token endpoint that will be
available over the HTTP DELETE method:

public function actionTokenDelete ()

{

Smodel = UserMetadata::model ()->findByAttributes (array ('user
id' => $this->user->id, 'value' => $this->xauthtoken)) ;
if (Smodel === NULL)

throw new CHttpException (500, 'An unexpected error occured
while deleting the token. Please re-generate a new token for
subsequent requests.');

return Smodel->delete() ;

}

Now that are endpoint is set up, return to RestConsole, remove the request body,
and add the following custom headers to the Custom Headers section below the
request body, as shown in the following screenshot:

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

X-Auth-Email: userl@example.com
X-Auth-Token: aRwfTYyK1Mm2SDaK

Custom Headers

Request Parameters

Rt
ILN-c all ol 1

i T T
th-Token aRwiTYyKIMm2SDaK

oo

Then, hit the Delete button at the bottom of the page to send a DELETE request.
You should receive the following response:

{

"status": 200,
"message": "Your request was successfully fulfilled",
"response": true

}

We've now successfully tested user authentication and added the ability to
deauthenticate from our API. Notice that, if you try to submit a DELETE request
again, our acccessRules array will kick in and will block the request for us,
thus returning the following response:

{

"status": 403,
"message": "You are not authorized to perform this action.",
"response": []

Implementing CRUD actions

Now that we can authenticate and work with our API, we can work on
implementing the four basic CRUD actions in a RESTful manner. The RESTful
actions boil down to three main HTTP request types —GET, POST, and DELETE.
We'll implement each one for our users.

[287]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

The first method we need to implement is our loadModel () method. This method
will be loaded in our User model and will throw the appropriate errors if something
goes wrong;:

private function loadModel ($id=NULL)

{

if ($id == NULL)
throw new CHttpException (400, 'Missing ID');

Smodel = User::model () ->findByPk ($id) ;

if ($model == NULL)
throw new CHttpException (400, 'User not found');

return Smodel;

Deleting users
The first method that we'll implement is our DELETE method. Remember that, for each

method, we'll be hitting a single endpoint, /api/user/index , with different HTTP
request types:

1.

The first change that we need to make is to our accessRules. We want only
administrators to have the ability to delete a user. We'll do this by setting up
an expression that checks whether the user is an admin:
array('allow',

'actions' => array('indexDelete'),

'expression' => 'Suser!=NULL&&Suser->role->id==2"

)

Then, we'll implement the delete action. We want to make sure that users
are not able to delete themselves:

public function actionIndexDelete ($1d=NULL)

{
if ($id == S$this->user->id)
return Sthis->returnError (401, 'You cannot delete
yourself', null);

return Sthis->loadModel ($id) ->delete() ;

}

Sending a DELETE request to /api/user/index/id/<user_id> will now delete a
user with the given ID.

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Retrieving users

The second method that we'll implement is a GET method that will either retrieve
a single user if an ID is provided, or multiple users if a user is an administrator.
In either case, we'll want to make sure that a user is authenticated:

1.

The first change, once again, will be to our accessRules array. We'll check
to see whether a user is an admin, or whether the given ID belongs to the
currently authenticated users:

array('allow',

'actions' => array('index'),
'expression' => 'Suser!=NULL&&(Suser->role->id==2]||Yii::app() -
>request->getParam("id")==$user->id) "'

)

We'll then set up a GET method in our controller. Remember, we set up our
createAction () method in our ApiController class so that GET requests
don't require the HTTP verb at the end of the method:

public function actionIndex ($id=NULL) {}

Then, if an ID was provided, we'll simply load the requested user. If the user
is not an admin and they requested another user, we'll throw an exception;
otherwise, we'll return the appropriate data:

array('allow',

'actions' => array('index',6 'indexPost'),
'expression' => 'Suser!=NULL&&(Suser->role->id==2]||Yii::app() -
>request->getParam("id")==$user->id) "'
if ($id !== NULL)
{
if ($this->user->role->id != 2 && S$this->user->id != $id)
throw new CHttpException (403, 'You do not have access to

this resource') ;

return Sthis->loadModel ($id) -
>getApiAttributes (array ('password'), array('role', 'metadata'));

}

If you recall, we made changes to our CMSActiveRecord model in order to
add a getapiAttributes () method. Calling this method now allows us to
exclude certain elements that we don't want to send in the request, such as
the user password. This also allows us to return metadata about the user,
such as the role and any metadata associated with the user.

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

4. Carrying on, if an ID was not specified, we'll make sure that the user is
an admin:
if (sthis->user->role->id != 2)
throw new CHttpException (403, 'You do not have access to this
resource') ;

5. If so, we'll load up a search instance of our model. This extends our endpoint
to allow for dynamic searching;:
smodel = new User('search');
$model->unsetAttributes(); // clear any default values
if (isset ($_GET['User']))
$model->attributes = $ GET['User'];

6. To allow for pagination, we'll instance a copy of CActiveDataProvider
from the $model->search () method and set the page variable to the GET
parameter page. This will allow us to paginate through our users rather
than dumping all of them in a single request:

SdataProvider = $model->search();

$dataProvider-s>pagination = array(
'pageVar' => 'page'

)i

7. To handle pagination, we'll simply continue to display results until no results
are found. When no results are found, we'll throw an HTTP 404 error. This
will allow for infinite scrolling on the client side and will let our clients know
when to stop asking for data:

if ($dataProvider->totalltemCount == 0 || ($dataProvider-
>totalItemCount / ($dataProvider->itemCount * Yii::app()->request-
>getParam('page', 1))) < 1)

throw new CHttpException (404, 'No results found');

8. Wel'll then iterate through our dataProvider using the getData () method
and generate an array of all the user objects in the current page:

Sresponse = array();

foreach ($dataProvider->getData() as S$Suser)

Sresponse[] = Suser->getAPIAttributes(array('password'),
array('role', 'metadata')) ;

9. Finally, we'll return the entire response:

return Sresponse;

Now, make a few requests to the API endpoint in order to test everything out. You
should be able to log in as an admin and view all users or any user. You should also
be able to log in as a regular user and only retrieve information about yourself.

[290]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Creating and updating users

The last endpoint we'll need to implement is a POST method that will serve as an
endpoint to both creating and updating existing users:

1.

We'll begin by updating the accessRules array that we defined in the
previous section in order to include indexPost:

array('allow',

'actions' => array('index',6 'indexPost'),
'expression' => 'Suser!=NULL&&(Suser->role->id==2]|
Yii::app()->request->getParam("id")==Suser->id) '

)

We'll then create a POST endpoint that will branch off into two separate
methods —one that creates users and one that modifies users:

public function actionIndexPost ($id=NULL)
{
if ($id == NULL)
return Sthis->createUser () ;
else
return $this->updateUser ($id) ;

}

Since all the information for creating users will be coming from a normal
POST response, all we need to do to create a new user is verify that they are
an admin, instantiate a new User model, validate it, and save it. If, for any
reason, we encounter an error (such as an invalidate attribute), we'll simply
return the errors from $model->getErrors () in the JSON response:

private function createUser ()
if ($this-s>user->role->id != 2)
throw new CHttpException (403, 'You do not have access to
this resource');

Smodel = new User;
$model->attributes = $ POST;

if ($model->save())
return User::model () ->findByPk (Smodel->id) -

>getApiAttributes (array ('password'), array('role', 'metadata'));
else
return $this-s>returnError (400, Smodel->getErrors(), null);
}
[291]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

4. As it turns out, updating users is as simple as loading an existing User
model and doing the same thing as creating a new user. The only difference
in this endpoint is that we need to make sure that the user is either an admin,
or that they are trying to modify their own data:

private function updateUser ($id=NULL)
{
if ($this->user->role->id != 2 && $this->user->id != $id)
throw new CHttpException (403, 'You do not have permission
to modify this user');

smodel = S$this->loadModel ($id) ;
$model->attributes = $ POST;

if (Smodel->save())
return User::model () ->findByPk (Smodel->id) -
>getApiAttributes (array ('password'), array('role', 'metadata'));
else
return $this->returnError (400, $model->getErrors(), null);

}

At this point, go ahead and verify that you can create new users as an admin and
that existing users can modify their own data.

Implementing other controller actions from
the main application

At this point, we've created the basic CRUD interface for our User data model.
While this takes care of a lot of the administrative tasks, there are a couple of
other methods that we can move from the frontend of our application to our
API. These methods include actions such as registration, account verification,
and password reset requests. Moving these methods from our frontend and into
our API immediately makes this functionality available to any consumer of our
API, which makes our API more valuable to both web and native clients.

For example, we can easily adapt our registration action from our frontend to our
API by simply replacing the render actions with either a Boolean value indicating
that the registration was successful, or a list of errors generated by the model.
Because all of our validation rules and verification checks are performed in the
model, adapting the action is fairly simple, as shown:

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

public function actionRegisterPost ()
Sform = new RegistrationForm;
S$form->attributes = $ POST;

if ($form->save())
return true;
else
return $this->returnError (400, $form->getErrors(), null);

}

Go ahead and try implementing the other actions from our frontend controller,
such as actionverifyPost, actionActivate, actionForgotPost, and
actionResetPasswordPost.

Implementing categories and content API
controllers

Our CMS is made up of more than user-related actions —we also have to manage
content and categories. Once again, moving this functionality from our dashboard
controllers to our API is fairly simple. We simply strip out the view-related
functionality and return either Boolean values, or errors generated from the model.
In the case of our GET method, we simply add in some pagination using the already
provided pagination functionality of CActiveDataProvider and return the relevant
results. Both of these controllers will look nearly identical to our UserController,
as they work in the same way except with different data models. Go ahead and try
to complete these controllers on your own.

Remember that a fully completed application is included with the
=" project resources. If you get stuck, take a look at the resources folder.

Documenting our API

While our API can be fun to work with and easy to integrate with, it means nothing
to developers who want to work with our API if the available endpoints, details, and
examples aren't documented clearly. Before sharing your API with the world, be sure
to document what endpoints clients can access. It's also a good idea to thoroughly
document what users need to do in order to authenticate against the API. Generally,
this is done by providing detailed example requests and detailed example responses.

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API for the CMS

Summary

As shown throughout this book, the Yii framework is an extremely powerful, flexible,
and easy PHP framework to work with. In this chapter, we completely overhauled
how the Yii framework handles user authentication through JSON requests and adapts
it to return both JSON and XML document types for an API that can be consumed by
both web and native applications. In this chapter, we also covered what changes we
needed to make in order to migrate functionality that was previously designed to be
rendered directly to the client to our API to be rendered as JSON or XML. Finally, we
adapted our API to respond to different types of HTTP requests on the same endpoint,
allowing us to make a RESTful JSON API that is well documented.

Thank you for reading this book. Throughout this book, we've shown countless
examples of how powerful and flexible Yii is. From working with third-party

APIs to performing database-agnostic migrations and all the way to developing
feature-complete applications complete with an API, the Yii framework enables us
to quickly work, develop, and adapt our code to meet our objectives and end goals
in a timely manner. I hope that you found the information contained within this
book informative, useful, and fun. I also hope that you've learned how to use the
Yii framework to do more than just create simple web applications.

On the about page of the Yii framework, Yii is described as an acronym for "Yes
It Is" that answers some of the most basic questions asked about Yii. Is Yii fast?
Is Yii secure? Is Yii professional? Is Yii right for your next project? I hope this
book has shown you that the answer to those questions is a simple "Yes, it is".

[294]

www.it-ebooks.info

http://www.it-ebooks.info/

A

access rules
used, for creating authentication
system 34, 35
accessRules() method 34
actionDelete() method 112
actionIndex() method
implementing 160
actionSave() method 112
actionSearch() method 120
actionView() method
implementing 170
API
building 264
building, for CMS 263, 264
CMS categories, implementing 293
CMS content, implementing 293
controller actions, implementing 267, 292
data input, handling 265
data responses, handling 266
documenting 293
exceptions handling 266
initializing 267
module, configuring 265
prerequisites 264
testing 281, 282
URL, for documentation 59
user authentication 266
Yii extending, for rendering
JSON/XML 265
API key
generating 52, 53
storing 53

Index

authenticate() method 38
authentication system, task management
application
controller, creating 35
creating 34
creating, with access rules 34, 35
creating, with filters 34, 35
login layout, creating 36
login model, creating 39, 40
login view, creating 37
users, identifying with Userldentity
CUserldentity class 38

B

Bcrypt password

hashing 78
beforeAction() method 279
beforeSave() method 20, 76
beforeValidate() method 78

Cc

CAccessControlFilter
overloading 277, 278
URL, for documentation 279
caching
what's nearby application performance,
optimizing with 63, 64
categories, CMS
about 184
entries, viewing 206
entries, viewing with RSS feed 206-208
implementing, to API 293
managing 205-209
viewing 205

www.it-ebooks.info

http://www.it-ebooks.info/

CButtonColumn
about 111
URL 111
CConsoleCommand
about 94
reference link 51
CController class
URL, for guide 273
CFormModel 142
CHtml::listData() method 61
CHttpRequest Class Reference
reference link 203
CInlineAction class
URL, for documentation 270
CMS
about 181
AP, building for 263, 264
components 183
initializing 185, 186
prerequisites 182
social authentication, with Hybrid Auth 210
CMS, skeleton project
custom UrlManager class, using 189-193
custom validator, creating for
slugs 187, 188
exploring 186
models, extending from common class 186
themes, using 188
truly dynamic routing 189
components, CMS
categories 184
content 184
SEO 185
users 183
components, issue tracking application
e-mails 104-106
issues 104, 105
users 104, 105
components, scheduled reminders
events 68, 69
reminders 68-70
task runner 68, 70
users 68
components, task management application
projects 7,8
tasks 7,8

users 7,8
Composer

URL, for downloading 68, 104, 182
content, CMS

about 184

comments, adding with Disqus 199-202

displaying 193

displaying, with ID 197-199

implementing, to API 293

list view, displaying 196

managing 193, 203-205

searching 202, 203

sitemap, rendering 194, 195
Content Distribution Network (CDN) 22
content management system. See CMS
controllers, CMS

creating 236-238
controller, scheduled reminders

creating, for user management 94

user authentication, creating with

Berypt 97-99

user authentication, requiring 99

users, creating 94, 95

users, deleting 95

users password, modifying 96, 97
createAction() method 274
CRUD actions

implementing 287

users, creating 291, 292

users, deleting 288

users, retrieving 289, 290

users, updating 291, 292
CTimestampBehavior

about 76

reference link 76
custom error handling 280
custom routes

adding, to modules 235, 236
custom UrlManager class

URL 193

using 189-193
custom validator

creating, for slugs 187, 188
CWebUser object

creating, from remote identity 216

URL 79

[296]

www.it-ebooks.info

http://www.it-ebooks.info/

D

database, scheduled reminders
creating 73
events migration 74, 75
reminders migration 74,75
users migration 73, 74
database, task management application
creating, SQLite used 10
creating, with migration 14, 15
overview 11
projects table 9
tasks table 8,9
users 10
database, what's nearby application
creating 47
designing 44
locations table 44, 45
default route
defining 41
Disqus
about 182
URL 182
URL, for creating account 199
used, for adding comments to
CMS 199-202
DNS hosting service
reference link 104
domain registrar
reference link 103
down() method 75
dynamic routing 189

E

e-mail reminders
sending 99-101
e-mails, issue tracking application
about 104
inbound e-mail parsing, handling 127
issues, creating 129-131
issues, updating 129-131
receiving 106
SendGrid Parse settings, adjusting 128
sending, to SendGrid 127
error handling
about 280
custom error handling 280

exception handling 280
events, scheduled reminders
about 69
controller, creating 81-83
creating 91-93
custom route, adding 81
displaying 80, 81
event list view, creating 87-90
item view, creating 87
layout, creating 85
main view, creating 86, 87
reminders controller, creating 83-85
saving 91-93
searching 80, 81
exception handling 266, 280

F

File class
creating, for uploading files 250
files
controller, creating 256-260
File class, creating 250
FileUpload class, creating 254, 255
FileUploader class, creating 251, 252
uploading 250
file upload capability
adding, to modules 229
FileUpload class
creating, for uploading files 254, 255
FileUploader class
creating, for uploading files 251, 252
filters
used, for creating authentication
system 34, 35
find() method 100
functionality, CMS
categories, migrating to modules 244-247
content management, migrating to
modules 238-243
migrating, to modules 238
user management, implementing to
modules 247-249

G

generateRules() method 191
GET method 289

[297]

www.it-ebooks.info

http://www.it-ebooks.info/

Gii
about 16
disabling 41
models, creating with 16
Google API Console
URL 51
Google APIs
about 51
API key, generating 52, 53
API key, storing 53
enabling 51
Google Chrome
URL, for downloading 284
Google Maps
interacting with 55
what's nearby application, interacting
with 55-58
Google Maps JavaScript API v3
URL 58
Google Places API
used, for creating what's nearby
application 43

H

HybridAuth
about 172
additional providers, adding 224
authenticating, with social identity 214, 215
configuring 174, 175
CWebUser object, creating from remote
identity 216
existing account, linking to social
identity 212, 213
implementing 217-224
remote identities, validating 210
remote registrations 211
sharing, implementation 176-178
social sign-on, implementing 176-178
URL, for documentation 172, 210, 219
used, for social authentication in CMS 210

initialization, API 267
initialization, CMS 185, 186
initialization, issue tracking application 107

initialization, modules 229, 230
initialization, scheduled reminders
Composer dependencies, adding 72, 73
database, creating 70
MySQL user, creating 70
parameters configuration file, creating 72
Yii configuration file, creating 71
installation, MySQL 67
issues, issue tracking application
about 104, 105
creating 121, 122
displaying, to users 119, 120
e-mail views, creating 125, 126
implementing 115
Issues model 116-118
Issues Update model 118
searching 120, 121
statuses 106
updating 106, 123-125
viewing 114, 115, 123-125
issue tracking application
components 104
creating 103
initializing 107
prerequisites 103, 104
testing 127

loadModel() method 26,112, 288

logging
reference link 140

Main.js file 55
Markdown
URL 124
microblogging platform
creating 133
description 135
initializing 136, 137
prerequisites 134, 135
shares 136
sharing on Twitter, with HybridAuth 172
timeline of shares, viewing 160-162
users 135
Yii bootstrap file, modifying 137-139

[298]

www.it-ebooks.info

http://www.it-ebooks.info/

microblogging platform, sharing on Twitter
HybridAuth, configuring 174, 175

URL, for guide 228
user management, implementing 247-249

HybridAuth sharing, MySQL

implementation 176-178
HybridAuth social sign-on,
implementing 176-178

installing 67
URL, for downloading 67

Twitter application, setting up 172-174 P
migration
about 14 PHP 5.5

task management application database,
creating with 14, 15
models
creating, with Gii 16
default validation rules, updating 17
enhancing 16
project metadata, retrieving 19
relations, defining 18
tasks, removing 19
timestamp, setting 20
timestamp, updating 20
models, scheduled reminders
behaviors, adding 76
creating 76
Events model 79, 80
Reminders model 78
Users model 77
module, API
configuring 265

URL, for password functions 78

PHPMailer

URL, for documentation 101

POST method 291
presentation layer, task management

application
creating 21
projects, managing 21
tasks, viewing 30

presentation layer, what's nearby

application
creating 53-55
Google Maps, interacting with 55-58
nearby locations, displaying on map 61-63
nearby locations, searching 59, 60
nearby locations, selecting 60
performance, optimizing with

caching 63, 64

processRules() method 190

modules projects

about 228

CMS categories, migrating to 244-247
CMS functionality, migrating to 238
content management, migrating to 238-243
creating 231, 232

custom routes, adding 235, 236

deploying 230

about 8

completion state, modifying 26
creating 27-29

deleting 27

layout, creating 22, 23

project index action, creating 24, 26
updating 27-29

deploying, as application 261 projects table

deploying, as Composer dependency 261
deploying, as submodule 261
deploying, with CMS 260

about 9
creating, SQLite used 10

file upload capability, adding 229 R

initializing 229, 230
management functionality,

moving 229
prerequisites 228
registering, with Yii 232-234
routing 229

relations() method 18
ReminderController 83
RemindersCommand 99

reminders, scheduled reminders 69, 70
renderItems() method 89

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

render() method 24
renderSorter() method 89
RESTClient
URL 264
RestConsole
about 284
URL, for downloading 284
roles, issue tracking application users
administrator 105
customer 105
supporter 105
routing
with module 229
RSS feed
used, for viewing entries in CMS
categories 206-208
rules() method 17

S

scheduled reminders
about 67, 68
components 68
database, creating 73
e-mail reminders, sending 99-101
initializing 70
models, creating 76
prerequisites 67, 68
search engine optimizations. See SEO
search() method 196
SendGrid
e-mails, sending to 127
Parse settings, adjusting 128

URL, for creating developer account 104

URL, for creating SMTP account 68
SendGrid Developer
URL 182
SendGrid Parse API webhook
URL 128
SEO 185
shares, microblogging platform
about 136
content, sharing 166
liking 168
resharing, implementation 167, 168
retrieving 162-165

searching 171

timeline page, viewing 160-162
unliking 170

viewing 170

SQLite

used, for creating projects table 10

used, for creating task management
application database 10

used, for creating tasks table 10

T

task management application

about 7

authentication system, creating 34
components 7

database 8

default route, defining 41

extra routes, adding 41

finishing 40

Gii, disabling 41

initializing 11-13

presentation layer, creating 21
unauthorized access, preventing 34

task runner, scheduled reminders 70
tasks

about 8
managing 31, 32
viewing 30

tasks table

about 8,9
creating, SQLite used 10

theme attribute

reference link 189

themes

using 188

Twitter application

setting up 172

Twitter Bootstrap 22
Twitter Developer

URL 182

U

user authentication, API

about 266
authenticated requests, sending 286, 287

[300]

www.it-ebooks.info

http://www.it-ebooks.info/

CAccessControlFilter, overloading 277, 278

creating 282, 283
handling 274-276
testing 284, 285
users, task management application 8
users, CMS 183
users, issue tracking application
about 104, 105
authentication, managing 108-110
creating 112, 113
deleting 112
listing 110, 111
managing 108
roles 105
roles, managing 108-110
updating 112, 113
viewing 114, 115
users, microblogging platform
about 135
e-mail address, verifying 158-160
enabling, for managing
information 140, 153-158
followers 135
forgotten password, resetting 151-153
forgotten passwords, handling 149-151
likes 136
secure registration process,
implementing 142-148
user follow up, determining 142
Userldentity class, upgrading 140
user relations, defining 141
Users model, scheduled reminders
Berypt password, hashing 78
users, scheduled reminders 68

Vv

validate() method 17
Virtual Private Server (VPS)
about 104
reference link 182

w

what's nearby application
about 43
configuration file, creating 46
creating, Google Places APl used 43
database, designing 44
data feed, importing 49, 50
initializing 45, 46
locations, displaying 44
locations, importing 44
locations model, creating 48
locations, storing 44
nearby locations, searching 43
presentation layer, creating 53-55
sample data, retrieving 47

Y

Yii
benefits 138
extending, for error handling 280
extending, for implementing controller
actions 274
extending, for processing incoming
data 279
extending, for rendering data 271-273
extending, for rendering JSON/XML in
RESTful way 265
extending, for rendering JSON /XML
data 268-270
extending, for user authentication 274-276
modules, registering with 232-234
URL, for documentation 140
URL, for loading view file 114
URL, for official guide 11
URL, for quick start guide 11
URL, for valid column types 74
URL, for validation rules 17
yiic command 73
yiic file 13
yiic tool 11

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Yii Project Blueprints

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

community experience distilled

[open source

PUBLISHING

Yii Application

Development Cookbook

Second Edition

ISBN: 978-1-78216-310-7 Paperback: 408 pages

A Cookbook covering both practical Yii application
development tips and the most important Yii features

1. Learn how to use Yii even more efficiently.
Application Development Cookbook
2. Full of practically useful solutions and concepts

you can use in your application.

3. Both important Yii concept descriptions and
practical recipes are inside.

Instant Building Multi-Page Forms
with Yii How-to

ISBN: 978-1-78216-642-9 Paperback: 50 pages
Learn to create multi-page AJAX enabled forms
using Yii

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

Building Multi-Page Forms . . .
with Yii How-to 2. Quick, easy-to-follow recipes with

immediate results.

3. Filled with useful tasks to improve

Py Sl maintainability of web applications.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Short | Fast | Focuse

Yii 1.1 Application
Development Starter

Jacob Mumm Mark Safronov [l‘l :.

Instant Yii 1.1 Application

Development Starter
ISBN: 978-1-78216-168-4 Paperback: 62 pages

Get started with building attractive PHP web
applications with the Yii framework

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Setup your development environment
and plan your application.

3. Use Yii's automatic code generators to
scaffold routes, forms, and list views.

Web Application Development
with Yii and PHP

Second Edition

Web Application Development
with Yii and PHP

Second Edition
ISBN: 978-1-84951-872-7 Paperback: 332 pages

Learn the Yii application development framework
by taking a step-by-step approach to building a
Web-based project task tracking system from
conception through production deployment

1. A step-by-step guide to creating a modern
Web application using PHP, MySQL, and Yii.

2. Build a real-world, user-based, database-driven
project task management application using the
Yii development framework.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Task Management Application
	Describing the project
	Tasks
	Projects
	Users

	The database
	The tasks table
	The projects table
	Users
	Choosing a database technology
	The tasks table
	The projects table

	The database overview

	Initializing the project
	Creating the database with migrations
	Creating models with Gii
	Enhancing the models
	Updating the default validation rules
	Defined relations
	Removing tasks when a project is deleted
	Retrieving project metadata
	Automatically setting the created and updated time

	Creating the presentation layer
	Managing projects
	Creating the layout
	Creating the project index action
	Changing a project's completion state
	Deleting projects
	Creating and updating projects
	Viewing tasks

	Managing tasks
	Preventing unauthorized access to our application
	Requiring authentication with filters and
access rules
	Creating a controller for authentication
	Creating a login layout
	Create a login view
	Identifying our users with the UserIdentity CUserIdentity class
	Creating the login model

	Finishing touches
	Disabling Gii
	Defining a default route
	Adding extra routes

	Summary

	Chapter 2: Discovering What's Nearby
	Describing the project
	Searching nearby locations
	Showing locations
	Storing locations
	Importing locations

	Designing the database
	Locations

	Initializing the project
	Creating the configuration file
	Retrieving the sample data

	Creating the database
	Creating the locations model
	Importing the data feed
	Google APIs
	Enabling Google APIs
	Generating an API key
	Storing the API key

	Creating the presentation layer
	Interacting with the Google Maps
JavaScript API
	Searching nearby locations
	Selecting a location
	Showing locations on a map
	Optimizing performance with caching

	Summary

	Chapter 3: Scheduled Reminders
	Prerequisites
	Describing the project
	Users
	Events
	Reminders
	Task runner

	Initializing the project
	Create a MySQL user and database
	Creating a Yii configuration file
	Creating a parameters configuration file
	Adding Composer dependencies

	Creating the database
	The users migration
	The reminders and events migration

	Creating models
	Model behaviors
	The Users model
	Bcrypt password hashing

	The Reminders model
	The Events model

	Searching for events and displaying them
	Custom routing for dates
	Creating the controller for events
	Creating the reminders controller
	Creating the layout
	Creating the main view
	Creating the item view
	Creating the event list view
	Creating and saving events

	Creating the controller to manage users
	Creating users
	Deleting users
	Changing the user's password
	Authenticating with Bcrypt
	Requiring authentication

	Sending e-mail reminders
	Summary

	Chapter 4: Developing an Issue-tracking Application
	Prerequisites
	Describing the project
	Users
	Roles

	Issues
	Statuses
	Updates

	Receiving e-mails

	Initializing the project
	Managing users
	Roles and authentication
	Listing users
	Deleting users
	Creating and updating users
	Viewing users and associated issues

	Implementing the issue management component
	The Issues model
	The Issues Update model
	Showing issues belonging to the user
	Searching for issues
	Creating issues
	Viewing and updating issues
	E-mail views
	Testing our application

	Handling inbound e-mail parsing
	Sending e-mails to SendGrid
	Adjusting SendGrid Parse settings
	Creating and updating issues over e-mail

	Summary

	Chapter 5: Creating a Microblogging Platform
	Prerequisites
	Describing the project
	Users
	Followers
	Likes

	Shares

	Initializing the project
	Making a better Yii bootstrap file

	Enabling users to manage their information
	Upgrading our UserIdentity class
	Defining user relations
	Determining whether a user is following
another user

	Implementing a secure registration process
	Handling forgotten passwords
	Resetting a forgotten password
	Enabling users to manage their details
	Verifying a new e-mail address

	Viewing a timeline of shares
	Retrieving shares

	Sharing new content
	Resharing
	Liking and unliking shares
	Viewing shares

	Searching for shares
	Sharing on Twitter with HybridAuth
	Setting up a Twitter application
	Configuring HybridAuth
	Implementing HybridAuth social sign-on and sharing

	Summary

	Chapter 6: Building a Content Management System
	Prerequisites
	Describing the project
	Users
	Content
	Categories
	Search engine optimizations

	Initializing the project
	Exploring the skeleton project
	Extending models from a common class
	Creating a custom validator for slugs
	View management with themes
	Truly dynamic routing
	Telling Yii to use our custom UrlManager

	Displaying and managing content
	Rendering the sitemap
	Displaying a list view of content
	Displaying content by ID
	Adding comments to our CMS with Disqus

	Searching for content
	Managing content

	Viewing and managing categories
	Viewing entries in a category
	Viewing an RSS feed for categories

	Managing categories

	Social authentication with HybridAuth
	Validating remote identities
	Remote registrations
	Linking a social identity to an existing account
	Authenticating with a social identity
	Creating a Yii CWebUser object from a remote identity

	Putting it all together
	Exploring other HybridAuth providers

	Summary

	Chapter 7: Creating a Management Module for the CMS
	Prerequisites
	What are modules?
	Describing the project
	Initializing the module
	Routing with a module
	Moving the management functionality into
the module
	Adding file upload capabilities
	Deploying modules

	Initializing the project
	Creating the module
	Registering the module with Yii

	Adding custom routes to a module
	Creating the controllers
	Migrating the functionality to the module
	Migrating content management
	Migrating categories
	Implementing user management

	Uploading files
	Creating the File class
	Creating the FileUploader class
	Creating the FileUpload class
	Creating the controller for the file manager

	Strategies for deploying our application
	Deploying as the application
	Deploying as a submodule
	Deploying as a Composer dependency

	Summary

	Chapter 8: Building an API for the CMS
	Prerequisites
	Describing the project
	Configuring the module
	Extending Yii to render JSON or XML in a RESTful way
	Handling data input
	Authenticating users to the API
	Handling API exceptions
	Handling data responses
	Implementing actions

	Initializing the project
	Extending Yii to return data
	Rendering data
	Calling actions in a RESTful way
	Authenticating users
	Overloading CAccessControlFilter

	Processing incoming data
	Handling errors
	Exception handling
	Custom error handling

	Testing that everything works

	Authenticating users
	Testing the authentication
	Sending authenticated requests

	Implementing CRUD actions
	Deleting users
	Retrieving users
	Creating and updating users
	Implementing other controller actions from the main application
	Implementing categories and content API controllers
	Documenting our API

	Summary

	Index

