DOCKER

For PHP Developers

BY PAUL REDMOND

A Guide to Using Docker for PHP Development

Docker for PHP Developers

Paul Redmond

mmess

Thanks for buying my book! If you're interested in the accompanying screencasts and
learning more about the full Docker for PHP Developers bundle, head on over to

https://bitpress.io/docker-for-php-developers.

I create books, screencasts, and online content to help you and your team create
fantastic software. Visit me at https://bitpress.io and follow along on Twitter

@paulredmond.

Thanks for reading, it was my pleasure writing this book, and I would love to hear from

you if you have praise, comments, or questions.

Paul Redmond
paul@bitpress.io

Copyright © 2018 Paul Redmond.
All rights reserved.

Do not reproduce any part of this publication or make it available online without prior

consent from the publisher.

Contents

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

UP @Nd RUNNING. ..ot e e e e e e e e as 1

PHP CoNtaiNer BASICS.......cccoiiiiiiiiiiiiiii ettt 10
[= = 1) 21
DeVvelopment TOOIS.........oii i 40
Using Composer With DOCKETcoouuiiiiiiiiiiiiiiee e 66
Web Servers and PHP-FPM..........coooiiee 86
Legacy PHP APPlICALIONS.coooiiiiiiiiiiiiiiiiie e 111
CUSLOM COMMANTS.....eiiiiiiiiiie e 143
DOCKET REGISIIY ...ttt e e e e e e e e e e s 166

Chapter 10: Deploying DOCKET.........uuuiiiiiiiiiiie e e 184

Chapter 1: Up and Running

When | first started using Docker, the ecosystem was daunting and all brand new. While |
would argue that Docker is still daunting in many ways to developers, tooling and OS
support are improving the learning curve.

It has never been a better time to work with Docker. When I first started using Docker,
the only option on OS X was using Docker Machine with VirtualBox. The experience
was slow and never felt as good as running Docker natively on Linux. Overall, Docker
tools have improved drastically since the initial release of Docker, including native

support for both Mac and Windows 10 Pro.

Docker provides an extensive user guide (https://docs.docker.com/engine/userguide/)
which I highly recommend you go through later, but first, the goal in this chapter is to

get you up and running with Docker on your local machine.

The guide does not string together everything PHP-specific that this book covers in a
nice packaged way, but the documentation does provide a foundation for
understanding Docker that will be helpful to you if you're just starting out. It might
make more sense to you if you go through this book first. If you are anything like me,
you learn better by doing and then later going back for deeper understanding once you

see it in action.

In my opinion, local development is the most efficient way to work on applications,
and I want a Docker development environment that is as close to developing locally as

possible.

Chapter 1: Up and Running

The goal of this chapter is to install Docker and then introduce you to a few key
concepts that are different from more traditional environments you run PHP code
within. Then we can start learning how to incorporate Docker into PHP projects from

scratch!

Installing Docker on OS X

The first thing you need to do is grab the Docker Community Edition
(https://store.docker.com/editions/community/docker-ce-desktop-mac) DMG and run

the installer.

Once you are done installing Docker Community Edition for Mac, you should read
through the getting started (https://docs.docker.com/docker-for-mac/) documentation
to get familiar with Docker and managing docker through the provided menu bar

(Figure 1.1).

B a Tl O Q @ =

[E— [
@ Docker is running Restart
About Docker
Discover Docker Enterprise Edition
Preferences... 38,
Check for Updates...

Diagnose and Feedback...

Docker Store

Documentation
Kitematic

paulredmond : Sign out
Repositories >
Swarms

Quit Docker

[sa] Figure 1.1: The Mac OS X Docker Menu Bar

Once you install everything, fire up your terminal of choice, and you should be able to

run the following commands successfully (Listing 1.1).

Chapter 1: Up and Running

>_ Listing 1.1: Verifying a Mac Installation

$ docker --version
Docker version 17.09.0-ce, build afdbédu

$ docker-compose --version
docker-compose version 1.16.1, build édiac21

$ docker-machine --version
docker-machine version ©.12.2, build 9371665

You might want to read through the Linux installation regardless as that is the typical
environment on which Docker runs in production. You can run Docker on any machine
that supports it—which is one of its strongest benefits—but Linux tends to be the OS

running production Docker servers.

You have successfully installed Docker on Mac OS X!

Docker's Linux installation documentation provides instructions for the most common
Linux distributions. You should be able to navigate to your distribution from the
Ubuntu installation instructions
(https://docs.docker.com/engine/installation/linux/ubuntu/), which is probably the
most common Linux desktop platform. I do not list each link here, but you should

easily find the instructions of your "distro" of choice.

Post-Install Steps for Linux

I strongly recommend following the Post-installation steps for Linux
(https://docs.docker.com/engine/installation/linux/linux-postinstall/) after you
install Docker. Steps include managing Docker as a non-root user (otherwise
you would have to run sudo docker all the time) and starting Docker on system

boot, which are both a must in my opinion.

Chapter 1: Up and Running

Linux users have a few extra steps that Mac and Windows users do not have to worry
about: installing docker-compose and docker-machine. To install Docker Compose and

Docker Machine follow the following guides:

1. Install Docker Compose (https://docs.docker.com/compose/install/)

2. Install Docker Machine (https://docs.docker.com/machine/install-machine/)

Once you have installed docker, docker-compose, and docker-machine you should

finally be able to test that everything worked (Listing 1.2).

>_ Listing 1.2: Verifying a Linux Installation

$ docker --version
Docker version 17.63.1-ce, build cédul2e

$ docker-compose --version
docker-compose version 1.11.2, build dfed2u5

$ docker-machine --version
docker-machine version 0.10.0, build 76ed2aé

You have successfully installed Docker on Linux!

Installing Docker on Windows

Like the OS X offering, Docker for Windows (https://docs.docker.com/docker-for-
windows/) has improved working with Docker on Windows drastically. Windows 10 Pro
users have access to Hyper-V which allows Docker to run natively on Windows.

Unfortunately, Windows 10 Home users must use a virtual machine.

If you have Windows 10 Pro, follow the Windows installation guide
(https://docs.docker.com/docker-for-windows/install/). VirtualBox will no longer work
after installing Docker (which installs Hyper-V). You can use the Windows 10 Home

instructions below if you can't or don't want to lose VirtualBox support.

Chapter 1: Up and Running

If you don't have Windows 10 Pro, but instead have Windows 10 Home, you need to
install Docker Toolbox (https://docs.docker.com/toolbox/overview/) for Windows. The
Docker Toolbox uses VirtualBox and other tools to help interact with Docker. It is not as
fast as native Docker support, but at least it is now possible to run Docker on Windows
10 Home. File permissions might be a challenge because of how your machine mounts

a volume with VirtualBox.

Once you have installed Docker, you should be able to confirm that Docker is working

as expected (Listing 1.3).

>_ Listing 1.3: Verifying a Windows 10 Installation

$ docker --version
Docker version 17.03.1-ce, build cédui2e

$ docker-compose --version
docker-compose version 1.11.2, build dfed2us

$ docker-machine --version
docker-machine version ©.10.0, build 76ed2aé

Windows 10 Home users must use the shell provided by Docker Toolbox to run Docker

commands.

You might want to read through the Linux installation regardless as that is the typical
environment on which Docker runs in production. You can run Docker on any machine
that supports it—which is one of its strongest benefits—but Linux tends to be the OS

running production Docker servers.

You have successfully installed Docker on Windows!

Chapter 1: Up and Running

Now that you have docker running on your platform of choice let's use it to run the

"Hello World" docker container and make sure docker is working properly (Listing 1.4):

>_ Listing 1.4: Running Docker's Hello World Container

$ docker run hello-world

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
78445ddu5222: Pull complete

Digest: sha256:c5515758d4c5e1e838€e9. ..

Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working
correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the
Docker Hub.

3. The Docker daemon created a new container from the image
which is how Docker images run.

L. The Docker daemon streamed that output to the Docker client,
which sent it to your terminal.

When you run docker run hello-world, Docker looks for the image locally. If the Docker
image doesn't exist, Docker "pulls" the image and then runs it. After the image is

downloaded, run docker images to see the hello-world image locally (Listing 1.5):

Chapter 1: Up and Running

>_ Listing 1.5: Output Local Docker Images

$ docker images | grep hello-world
hello-world latest L4L8b5124b2768 3 months ago 1.84 kB

You can remove docker images with docker rmi <hash>, so running docker rmi
48b5124b2768 in the example above would delete the local image as long as no

containers depend on it. If you try to remove it, you get an error (Listing 1.6):

>_ Listing 1.6: Attempt to Remove the Hello World Image

$ docker rmi 48b5124b2768

Error response from daemon: conflict: unable to delete
48b5124b2768 (must be forced) - image is being used by stopped
container fded5cd7d793

You cannot remove the image until you remove the stopped container; to remove the
container, we need to know the container's ID. The error message conveniently listed
the ID, but you should get used to getting a list of containers with the docker ps

command (Listing 1.7):

>_ Listing 1.7: Listing Docker Containers

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
£ded5cd7d793 hello-world '"/hello" 8 minutes ago Exited

Running docker ps without any flags only lists running containers. In the second
example, docker ps -a lists all containers—both stopped and currently running. To

remove the image we first need to remove the container with the docker rm command,

Chapter 1: Up and Running

and then we can delete it (Listing 1.8):

>_ Listing 1.8: Remove the Hello World Container and Image

$ docker rm £dod5cd7d793
fdoed5cd7d793

$ docker rmi 48b5124b2768

Untagged: hello-world:latest

Untagged: hello-world@sha256:c5515758d4c5e1e838€e9. ..
Deleted: sha256:48b5124b2768d2b917ed. ..

Deleted: sha256:98c9LLe98de8d35097160. ..

The docker rmi command is used to remove one or more images. You can list multiple
image IDs separated by a space to remove multiple images with one command (Listing

1.9):

>_ Listing 1.9: Removing multiple images

$ docker rmi L8b5124b2768 8672bL215b84

$ docker rmi php:latest

Hopefully, you don't get sick of my dry, witty conclusion title puns.

We walked through installing Docker on OS X, Linux, and Windows. You downloaded
your first Docker image and ran a container. Things might feel weird or confusing right

now, but these patterns quickly become second nature as you work through this book.

Although we run images with docker run in various parts of the text, we use Docker
compose to make it easier to repeat running your environments on other machines

including your coworkers' development machines. Everyone has the same repeatable

Chapter 1: Up and Running

environment. Using Docker does not mean you are free from all infrastructure or
environment issues, but it does mean your environments are more repeatable,

consistent, and easier to set up.

Chapter 2: PHP Container Basics

In this chapter we are going to cover the basics of running a PHP container with
Docker. Before we get into the more exciting stuff, we need to learn how to build
images, start containers, and copy files into them. Along the way, you'll work with basic
Docker commands and start to get a feel for how to work with Docker on the command

line.

Using the command line to build images, we'll extend our images from the official PHP
Docker images (https://hub.docker.com/_/php/). I find the official image simplifies my
setup and I can focus on configuring applications and not worrying about the low-level

details of installing PHP.

Creating a New Project

When creating a new Docker project, the main file used to build images is the
Dockerfile. This file is a set of instructions that define building images, each step
creating a new layer on top of the previous. If this doesn't make much sense right now,
don't worry, you don't need to be an expert to start being productive. I recommend that
you keep the Dockerfile reference (https://docs.docker.com/engine/reference/builder/)

handy as you work through this book.

The first task is creating the necessary files for our first Docker image. In the directory

of your choice, create the following files (Listing 2.1):

10

Chapter 2: PHP Container Basics

>_ Listing 2.1: Creating Docker files

$ mkdir -p ~/Code/docker-phpinfo
$ cd ~/Code/docker-phpinfo

$ touch Dockerfile docker-compose.yml index.php

The index.php file will be the only source file in this chapter that we'll use to
demonstrate changes to our builds, and in later chapters we will work with web

frameworks.

The docker-compose.yml file is a configuration file that will help you run containers with
the docker-compose CLI tool. If you are not familiar with Docker Compose, don't worry,

we will use it throughout this book.

To start, we will define the Dockerfile to extend the PHP Apache image and copy the
index.php file (Listing 2.2):

</> Listing 2.2: Defining the Dockerfile Instructions

FROM php:7.1.9-apache

LABEL maintainer="Paul Redmond"
COPY index.php /var/www/html

The FROM instruction means we are extending another image. Think of it like PHP class
inheritance. You inherit the base image which takes care of things like installing
Apache and building PHP from source. The official PHP image is doing most of the

work for us!

As outlined in the README found on https://hub.docker.com/_/php/, you copy the
source files of your project to /var/www/html using COPY. In our case we'll copy the

index.php file into the image at /var/www/html/index.php. Note that the COPY instruction

11

Chapter 2: PHP Container Basics

can take an individual file or a directory.

The LABEL instruction is how you add metadata to an image. In this case, we are
following the recommended guideline for setting a maintainer, which helps others
know who is maintaining the Dockerfile. You can see the metadata for an image by

running docker inspect:

docken inspect <image_name>
$ docker inspect php:7.1.9-apache

Next, let's output PHP's configuration to the browser so we can verify our PHP setup

(Listing 2.3):

</> Listing 2.3: Update the index.php File

<?php phpinfo(); 7>

Running the PHP Container

It's time to run our first image and inspect the PHP environment. In order to run it, we

need to build it using the docker build command (Listing 2.4):

>_ Listing 2.4: Build the Docker Image

$ docker build -t phpinfo .
$ docker run -p 8080:80 -d --name=my-phpinfo phpinfo

The build command has a -t flag, which tags the image as phpinfo, and the last

argument (.) is the path where Docker will look for our files.

The run command runs a container with the tagged phpinfo image, using the -p flag to
map port 8080 on your machine to port 80 in the container, which means that we'll use

port 8080 locally to access our application.

12

Chapter 2: PHP Container Basics

The --name flag assigns a name to the running container that you can use to issue
further commands, like docker stop my-phpinfo. If you don't provide a name, Docker

creates a random auto—generated name for you.

The -d flag (detach) is used to run the container in the background. Without the -d flag

Docker runs in the foreground.

Next, point your browser to http://localhost:8080, and you should see the output from
phpinfo() (Figure 2.1):

[phpinfo()

= C' @ localhost:8080

System Linux de94fd7c41c6 4.9.49-moby #1 SMP Wed Sep 27 23:17:17 UTC 2017 x86_64

Build Date Sep 15 2017 00:10:35

Configure Command *.Jconfigure' --build=x86_64-linux-gnu' --with-config-file-path=/usr/local/etc/php' --with-config-file-scan-
dir=/usr/local/etc/php/conf.d’ '--disable-cgi' --enable-ftp' --enable-mbstring' '--enable-mysgind' --with-curl' --with-
libedit' --with-openssl' '--with-zlib' '--with-pcre-regex=/usr' '--with-libdir=lib/x86_64-linux-gnu' --with-apxs2'
‘build_alias=x86_64-linux-gnu'

Server AP| Apache 2.0 Handler

Virtual Directory Support disabled

Configuration File (php.ini) Path lusr/localletc/php

Loaded Configuration File Jusr/localletc/php/php.ini

Scan this dir for additional .ini files lusr/localletc/php/conf.d

Additional .ini files parsed (none)

PHP API 20160303

PHP Extension 20160303

Zend Extension 320160303

Zend Extension Build API320160303,NTS

PHP Extension Build API20160303,NTS

[sa] Figure 2.1: phpinfo
Our container is running, which means that we can inspect it from the command line
by issuing the docker ps command. Unless you are already running something with

Docker, you should see just one container (Listing 2.5):

>_ Listing 2.5: The docker ps Command (partial output)

$ docker ps
CONTAINER ID IMAGE COMMAND
88co6L2L4ebb5b phpinfo "apache2-foreground"

13

Chapter 2: PHP Container Basics

The ps command outputs the names of the containers, which you can use to issue
commands like docker stop my-phpinfo and docker start my-phpinfo. The my-phpinfo

argument is the name we provided the container in the docker run command.

If a container is stopped, running docker ps does not show the container in the list;
however, you can still see all containers by running docker ps -a. To remove a container,

you could run docker rm my-phpinfo.

In practice, running containers with docker run isn't going to help your productivity. In
fact, it will be kind of clunky when you share the application with others. That's exactly

what Docker Compose will help us automate, so let's dive in!

Before we start working with Docker Compose, shut down the container you are

running:

Stop the containen
$ docker stop my-phpinfo

Remove the containen
$ docker rm my-phpinfo

Running Containers with Docker Compose

What is Docker Compose? From the Docker Compose overview page

(https://docs.docker.com/compose/overview/):
Compose is a tool for defining and running multi-container Docker applications.

One my biggest breakthroughs when I was learning about Docker was running
containers with Docker Compose (https://docs.docker.com/compose/), because it

simplifies running your stack over individually running containers with docker run.

Your applications will need dependencies like MySQL, Redis, etc., and with Docker

14

Chapter 2: PHP Container Basics

Compose, we can automate the orchestration of these services. Can you imagine
multiple docker run commands and networking everything together by hand? Me

neither.

In more traditional environments, all dependencies run on the same operating system
(or virtual machine). However, with Docker, you can break up your application into
multiple containers. This separation can simplify your setup and lets you scale parts of

your application independently.

Before we start adding services like MySQL in future chapters, let's just replicate what
we were doing with docker run inside the docker-compose.yml file to get started (Listing

2.6):

</> Listing 2.6: Your First docker-compose.yml File

version: "3"
services:
phpinfo:
build:
ports:
"8080:80"

The services key defines one service called phpinfo.

Inside the phpinfo service, the build key references a dot (.), which means we expect the
Dockerfile in the current path. Lastly, the ports key contains an array of port maps from
the host server, just like our previous docker run -p 8080:80 flag. The port format is:
<host_port>:<container_port>, which in our case means that port 8080 on the local

machine will map to port 80 inside the container.

We are using version three (https://docs.docker.com/compose/compose-file/), which is
the recommended version at the time of writing. I use the documentation frequently,

and I recommend that you bookmark it and use it as a reference.

15

Chapter 2: PHP Container Basics

With our service defined, now anyone that comes along and needs to run this project

can simply run docker-compose up (Listing 2.7):

>_ Listing 2.7: Using Docker Compose

$ docker-compose up --build

$ docker-compose up -d --build

$ docker-compose ps

After running the command, you should see the output from the phpinfo() function

when you visit http://localhost:8080.

If you ran your containers in the background (-d), you can use the stop command to

stop everything (Listing 2.8):

>_ Listing 2.8: Stopping Containers with Docker Compose

$ docker-compose stop

Here are commonly used commands that you should become familiar with (Listing

2.9):

>_ Listing 2.9: Additional Docker Compose Commands

$ docker-compose ps

$ docker-compose restart

16

Chapter 2: PHP Container Basics

Restant a specific containen
matches the senvice key in docken-compose.ymé
$ docker-compose restart phpinfo

Remove Astopped containens
$ docker-compose stop && docker-compose rm

Stop containens and nemove containens, netwonks,
volumes, and images crneated
$ docker-compose down

Remove named volume:
$ docker-compose down --volumes

Don't worry about memorizing these commands. You can always run docker-compose --
help to get a list of commands, and run, for example docker-compose up --help to get help
on subcommands. You'll also get plenty of practice setting up Docker Compose and

running containers throughout this book.

Basic PHP INI Changes

We have the phpinfo() settings handy, so let's make a few small tweaks to the php.ini file
and validate our changes. We'll also jump into a running container and peek around,

which feels very much like SSH to me (but it's nothing like that).

According to the PHP image documentation, the php.ini file is located at
Jusr/local/etc/php/php.ini, however, I want to show you how to find the location on your
own. We will then make a few adjustments, rebuild the image, and verify our INI

changes.

First we need to find out the PHP container's ID, so we can use it to run bash inside the

container (Listing 2.10):

17

Chapter 2: PHP Container Basics

>__ Listing 2.10: Find the Running Container ID

$ docker-compose up -d

$ docker ps
CONTAINER ID
cOeelLfocoL7

The container ID that you see will be different. Copy the container ID for your output

and use it to run the following commands (Listing 2.11):

>_ Listing 2.11: Run bash in the container

$ docker exec -it cOeelufOcoOL7 bash

root@cOeeltfOcOL7: /var/www/html# php --ini

Configuration File (php.ini) Path: /usr/local/etc/php

Loaded Configuration File: (none)
Scan for additional .ini files in: /usr/local/etc/php/conf.d
Additional .ini files parsed: (none)

root@cOeellfOcOL7: /var/www/html#

You can exit the container by hitting "Ctrl + D" or typing "exit."

Although the image has no INI configuration file defined, we can create our own in the

project, and then copy it into the image (Listing 2.12):

>_ Listing 2.12: Create a php.ini File and Set the Timezone

$ mkdir config/

18

Chapter 2: PHP Container Basics

$ echo "date.timezone = America/Phoenix" >> config/php.ini

Our php.ini file has one date.timezone setting, which configures the timezone to
America/Phoenix. I prefer UTC, but I want to show you a non-default for demonstration

purposes.

We can now copy our php.ini file into the image at the correct path listed in the php --ini

command by adding a COPY instruction in the DO (Listing 2.13):

</> Listing 2.13: Copy the php.ini File Into the Container

FROM php:7.1.9-apache

LABEL maintainer="Paul Redmond"
COPY config/php.ini /usr/local/etc/php/
COPY index.php /var/www/html

In order to get our php.ini file into the container, we need to build the image again

(Listing 2.14):

>_ Listing 2.14: Rebuild the phpinfo image

$ docker-compose stop
$ docker-compose up -d --build

The image should now contain a php.ini config file and you should see the following

"datetime" change (Figure 2.2):

19

Chapter 2: PHP Container Basics

date

date/time support enabled

"Olson" Timezone Database Version 2017.2

Timezone Database internal

Default timezone America/Phoenix
. orwe [lecaVawe | Meservewe |
date.default_latitude 31.7667 81.7667
date.default_longitude 35.2333 35.2333
date.sunrise_zenith 90.583333 90.583333
date.sunset_zenith 90.583333 90.583333
date.timezone America/Phoenix America/Phoenix

(4] Figure 2.2: phpinfo datetime changes

Composed and Ready for Adventure

We covered a bunch of ground quickly. In a nutshell, you learned the following:

- Extending an existing Docker image

- Building a custom Docker image

- Running custom docker images

- Using Docker Compose to automate running containers
- Executing a bash shell in a running container

- Debugging and adding PHP INI files

Using Docker requires a new way of thinking, and can be quite a transition. If you feel
overwhelmed or confused right now, don't worry. I've been there too. You'll get plenty
more wrench time running commands and making changes as you start going over

more practical uses of Docker by running real-world applications in this book!

20

Chapter 3: LAMP Baby!

We've learned how to build images and run containers, and we are ready to work on a
complete LAMP stack with Docker. Instead of just using an index.php file, we will install
an entire application framework and a database. We also need to configure the web

server to handle the application requests and copy the source code into the image.

Along the way, you will learn how to run multiple containers with Docker Compose and
expose ports locally in order connect to a MySQL server running in a Docker container.
We will also work on configuring the application to connect to a database, and learning

how Compose provides networking between them out-of-the-box.

Setting up the LAMP Project

A nice benefit of showing you examples with a complete application is that you can
start to figure out how you prefer to organize your projects using Docker. We will create
the core files we need for our LAMP Docker automation alongside our project and start

to get a feel for Docker file organization.

The framework we are going to use for this chapter is Lumen
(https://github.com/laravel/lumen), an API framework by Laravel. You will see other
frameworks later in the text, such as Laravel and Slim, but the core focus is around

showing you how to use Docker.

With all that explaining out of the way, let's create the initial project files. I am also
assuming that you already have PHP Composer (https://getcomposer.org/) installed on

your machine and know how to use it (Listing 3.1):

21

Chapter 3: LAMP Baby!

>_ Listing 3.1: Creating the core files for our LAMP project

cd ~/Code

composer create-project --prefer-dist laravel/lumen docker-lamp
cd ~/Code/docker-lamp

touch Dockerfile docker-compose.yml

7 A B B

$ mkdir -p .docker/{php,apache?
$ touch .docker/php/php.ini
$ touch .docker/apache/vhost.conf

You can organize your Docker builds in various ways, and I will demonstrate a few
throughout this book. I prefer to keep my Docker files with my application code, so I

can efficiently work with the application and Docker configuration together.

In Listing 3.1, the mkdir command created a .docker folder, with two subfolders (php and
apache), which is where we'll put configuration files. The .docker folder is my personal
convention to organize Docker-specific files. I am not 100% sold on it, but it works well
most of the time. One downside is that your files are hidden, so you could just use

docker/ as the folder name instead.

Feel free to adapt file organization to your preferences, but you might consider sticking

with mine until you get more comfortable with what's going on.

Now that we've created our project files, our first goal is getting the default Lumen page
loaded in a browser. The first step is building a Docker image for our Lumen code,

much like we did in Chapter 2 (Listing 3.2):

</> Listing 3.2: The Initial LAMP Dockerfile

FROM php:7.1.9-apache

LABEL maintainer="Paul Redmond"

22

Chapter 3: LAMP Baby!

COPY .docker/php/php.ini /usr/local/etc/php/

COPY . /sxv/app

COPY .docker/apache/vhost.conf /etc/apache2/sites-available/000-
default.conf

Not much is new here, except for the vhost.conf file and COPY instructions. The last
COPY instruction will replace the 000-default.conf file with the contents of vhost.conf. The
default.conf is the default Apache Vhost file, so we effectively make our configuration
the default. In the image, the name will still be 000-default.conf, but locally the project

file is vhost.conf. Think of the last line just like the ¢p command: cp foo.txt bar.txt.

The application source files get copied into the /srv/app folder inside the Docker image,
which is a convention I use as the path for my web application files. You are free to use
any convention you like, for example, you could use the default Apache path of

Jvar/www/html.

Like in the last chapter, the Dockerfile also expects to copy in a php.ini file, which we

will use to define the date.timezone setting (Listing 3.3):

</> Listing 3.3: The php.ini file
date.timezone = UTC
We will add more configuration to this file later on, but for now, we'll just define the

date.timezone setting. There's something cool about having the PHP INI configuration

in a project right at developers' fingertips.

Now, we are going to override the default Apache Vhost file, creating a much more

interesting .docker/apache/vhost.conf file that will replace the default (Listing 3.4):

23

Chapter 3: LAMP Baby!

</> Listing 3.4: The default Apache Virtual Host file

<VirtualHost *:806>

ServerAdmin webmaster@localhost
DocumentRoot /srv/app/public

<Directory "/srv/app/public'">
AllowOverride all
Require all granted
</Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR3}/access.log combined
</VirtualHost>

The VirtualHost definition is a slightly modified version of the default file that ships
with the official image. If you recall, we copied our source code to /srv/app, and we

defined our document root accordingly as DocumentRoot /srv/app/public.

We enable a directory override for development and use Apache 2.4's Require all granted
which you might know as Allow from all in previous versions. You can provide a

ServerName if you want, but for our purposes, we'll use localhost.

Next, we need to add our application service to the project's docker-compose.yml file. We
will map ports and mount a volume
(https://docs.docker.com/engine/tutorials/dockervolumes/) so that changes made

locally reflect immediately in the running container (Listing 3.5):

24

Chapter 3: LAMP Baby!

</> Listing 3.5: The docker-compose.yml File

version: "3"

services:
app:
build:
ports:
- '"80860:80"

volumes:

- .:/srv/app

We define an app service with the same port mapping we've already seen in the last
chapter. More interestingly, the volume key accepts an array of folders separated by a
colon (:). The first path is the local path to the folder or file, and the second is the
desired path inside the container. Volumes allow you to avoid running docker build
(which copies the files into the container) every time you make a source code change

while developing.

With our PHP and Vhost configurations updated, we're ready to run Docker Compose

and verify that our configuration is working (Listing 3.6):

>_ Listing 3.6: Running the application with docker-compose

$ docker-compose up --build

Adding the --build flag will build the images before running the containers defined
under the services key. After the containers are running, you can visit
http://localhost:8080 to verify everything is working as expected, and you should see
something like "Lumen (5.5.1) (Laravel Components 5.5.*).," which means that our

application is working.

Installing PHP Modules

Our next step in getting a LAMP environment going is installing PHP modules.

25

Chapter 3: LAMP Baby!

Specifically, we need to install the pdo_mysql extension to connect to a MySQL database

container.

So how do you install modules with the official PHP image?

The PHP Docker hub page (https://hub.docker.com/_/php/) mentions three helper
scripts to work with PHP extensions: docker-php-ext-configure, docker-php-ext-install, and
docker-php-ext-enable. To run these commands during a Docker build, you use the RUN

instruction.

Here's how the RUN instruction looks (Listing 3.7):

</> Listing 3.7: Installing the PDO MySQL Module

FROM php:7.1.9-apache

LABEL maintainer="Paul Redmond"

COPY .docker/php/php.ini /usr/local/etc/php/

COPY . /sxv/app

COPY .docker/apache/vhost.conf /etc/apache2/sites-available/0006-
default.conf

RUN docker-php-ext-install pdo_mysql

The RUN instruction executes commands in a new layer, and in our case runs the
docker-php-ext-install command. You will see more examples of the RUN command

going forward.

Docker creates a new layer for each RUN command. You can optimize the number of
layers by combining multiple commands within a single RUN instruction. This is best

explained with an example:

RUN cp /srv/.env.example /srv/.env
RUN touch /tmp/foo

26

Chapter 3: LAMP Baby!

RUN cp /srv/.env.example /srv/.env \
&& touch /tmp/foo

As you might have guessed, we need to run a new build to install the module (Listing

3.8):

>_ Listing 3.8: Build the Image after the latest Dockerfile changes

$ docker-compose stop
$ docker-compose build

When you run the build command, you should see some build output fly by about the
installation of the pdo_mysql PHP module from source. While the build finishes, you

can start configuring the application database container.

The Database Container

The database service will use the official MariaDB 10.1 image
(https://hub.docker.com/_/mariadb/), but feel free to use any MySQL variant you want.
Most MySQL variants (if not all of them) have official Docker Hub images.

The database will be another service in the Docker Compose file, which means that

when we run docker-compose up, both containers will start.

Defining The MariaDB Service

This is what the database service in docker-compose.yml looks like (Listing 3.9):

</> Listing 3.9: Defining the Database Container

version: "3"
services:
app:
build:

27

Chapter 3: LAMP Baby!

depends_on:
- mariadb
ports:
"80860:80"
volumes:
- .:/srv/app
links:
- mariadb:mariadb
mariadb:
image: mariadb:10.1.21
ports:
"13306:3306"
environment:
- MYSQL_DATABASE=dockerphp
- MYSQL_ROOT_PASSWORD=password

The MariaDB service introduces the image key, which points to version 10.1.21 of the
MariaDB Docker Hub image. The image format is just like the Dockerfile format we've
been using for the PHP image: <name>:<tag>. If you provide image: mariadb with no tag,

Docker Compose will use the "latest" tag.

Using Tagged Image Versions

Providing a tag version is a good practice to avoid unexpected changes to your
application's environment without your explicit control. Using [atest should be

used with caution on a real project.

Another interesting line in this file is the database service ports key. We mapped port
13306 locally to 3306 inside the container. Using this non-standard local port avoids
collision with any local MySQL instances running, which is my convention. As you will
see in a second, exposing this port allows you to connect to the database container

from your computer.

Next, the environment key defines environment variables for the container that we are
28

Chapter 3: LAMP Baby!

using to set the root password and the name of the database that we want to use. The
MariaDB documentation outlines which environment variables are available that you

can use to configure the database.

Last, we added links to the app definition, which links to the database container. The
links configuration is the default, which means it's redundant, but I've left it so you can
understand how it works. The links format specifies the name and a link alias
(<service>:<alias>), which enables you to use the alias to communicate with the

container.

While links are not required for containers to communicate—they can reach each other
using the service name—it's important to understand that defining the link as "-
mariadb" is shorthand for "- mariadb:mariadb". If you want to define an alias for the
service, use the links key with something like "- mariadb:db", and then you would use db

as the hostname to communicate with MariaDB from the app container.

Offical Docker Image Readme File

Official Docker images usually provide thorough README files, which outlines
relevant details like configuration, using the image, and getting technical
support. It's advisable to at least skim through the documentation on how to

use the image.

Connecting to the Database Locally

Connecting to the database with a GUI tool is a must for my development workflow. I
use migrations with Laravel, but I use Sequel Pro (https://www.sequelpro.com/) all the

time to inspect the database.

We've exposed port 13306 to allow us to connect to the container database locally. If
you have MySQL installed locally, you can test the connection using the CLI or GUI
(listing 3.10):

29

Chapter 3: LAMP Baby!
>_ Listing: 3.10: Connect to the MariaDB Database from the Host Machine

$ docker-compose stop
$ docker-compose rm -v
$ docker-compose up --build

$ mysql -u root -h 127.6.6.1 -P13306 -ppassword
$ mysql> show databases;

dockerphp

| |
| information_schema |
| mysql |
| |

performance_schema

L rows in set (0.60 sec)

You should see a dockerphp database listed, which matches the MYSQL_DATABASE

environment variable we defined in docker-compose.yml.

Here's an example from Sequel Pro (Figure 3.1):

Chapter 3: LAMP Baby!

‘eoe (MySQL 5.5.5-10.1.21-MariaDB-1~jessie) localhost

¥ Choose Database... ._.:_: EEE :L; EvE D u

Add Databaze... cture Content Relations Triggers Table Info Query

Refresh Databases

information_schema T v Created at:
mysql Encoding: ¢ Updated at:
performance_schema o ~
dockerphp
Number of rows: Data size:
Row format: Max data size:
Avg. row length: Index size:
v,,} Auto increment: Free data size:
Comments:

Create syntax:

[s4] Figure 3.1: Connecting to the MariaDB Container with a GUI

Application Database Connection

We are ready to configure the application to use MariaDB and run the built-in database
migrations provided in Lumen. To configure the database connection, Lumen uses a

.env file in the root of the project (Listing 3.11):

</> Listing 3.11: Update the Database Configuration

APP_ENV=1local
APP_DEBUG=true
APP_KEY=
APP_TIMEZONE=UTC

DB_CONNECTION=mysql
DB_HOST=mariadb
DB_PORT=3306
DB_DATABASE=dockerphp
DB_USERNAME=root
DB_PASSWORD=password

31

Chapter 3: LAMP Baby!

One thing that confused me when I first started using Docker was the peculiar
hostnames used to communicate between containers. If you look closely, we are using
the hostname mariadb in the container to connect to the database. The equivalent

console connection would look like this for a visualization:

Example using fPocaflhost
$ mysgql -u root -h 127.0.0.1 -ppassword

Using the Docken netwonk aflias
$ mysgql -u root -h mariadb -ppassword

For now, just understand that the links key on the right side will be the name of the
MariaDB host you use to connect inside your app container. If you don't define a links
key, you can use the name of the service key (i.e., app or mariadb) to reach services. On

the other hand, if you configure an alias like the following:

services:

app:
links:
- mariadb:db

Then connecting to the container would look like this:

$ mysql -u root -h db -ppassword

If you want to learn more about how Docker Compose networking works, check out the

networking documentation (https://docs.docker.com/compose/networkingy/).

Migrating the Database

We are ready to run some database queries to test our database connection using
Lumen's built-in database migration command. We'll need to execute the commands
inside the app container for this to work properly because we've configured our .env

file to use the mariadb hostname, which is only available in the provided Docker

32

Chapter 3: LAMP Baby!

Compose network.

Let's run bash inside of the container and execute our migrations to test the database

connection (Listing 3.12):

>_ Listing 3.12: Running Lumen's migrate Command

Run the containens and jump into the app containen
docker-compose up

docker ps # note the app container id

docker exec -it 6a50b2398826 bash

G T - N -

Inside the app containern, navigate to the pnoject
and nun the mignate command

$ cd /srv/app

$ php artisan migrate

Migration table created successfully.

Nothing to migrate.

After running the migration, you should see a new table called migrations in the
database. Check with your local GUI by refreshing the tables or using the MySQL CLI

command.

Feel free to explore creating database migrations, models, and writing routes for
Lumen at this point. Our setup is capable enough to run a LAMP application, and you
can quickly add other container services like Redis or Memcache to practice running

different services together.

PHP Module Configuration

One of my favorite parts of using Docker is how close my server configuration is to my
codebase. I can quickly update PHP module configurations and rebuild the image to
get my new changes in place. With confidence, I know that when I release my new

changes, production will get the same configuration.

33

Chapter 3: LAMP Baby!

I install the OPcache (http://php.net/manual/en/book.opcache.php) module on every
project, so it's an excellent candidate to walk you through configuring PHP modules

with Docker.

You are probably familiar with APC and OPcache, but for those who are not familiar,

the OPcache module description is as follows:

OPcache improves PHP performance by storing precompiled script bytecode in shared

memory, thereby removing the need for PHP to load and parse scripts on each request.

That sounds great for production, but not so much for development environments. To
deal with this issue, we will cover how to make INI configuration more flexible in a
later chapter with environment variables. Right now we will just focus on enabling

and configuring PHP modules so you can get a feel for working with them.

If you run php -m | grep opcache inside the app container, the opcache module is not

installed yet, so let's go ahead and add it (Listing 3.13):

</> Listing 3.13: Installing the OPcache module

FROM php:7.1.9-apache

LABEL maintainer="Paul Redmond"
COPY .docker/php/php.ini /usr/local/etc/php/
COPY . /sxv/app
COPY .docker/apache/vhost.conf /etc/apache2/sites-available/0006-
default.conf
RUN docker-php-ext-install pdo_mysql \
&& docker-php-ext-install opcache

Next, we will provide some OPcache configuration settings in the php.ini file, which is

located at.docker/php/php.ini (Listing 3.14):

3L

Chapter 3: LAMP Baby!

</> Listing 3.14: OPcache configuration

date.timezone = UTC

[opcache]
opcache.enable=1
opcache.revalidate_freq=0
opcache.fast_shutdown=1

;0 on 1. 0 15 necommended in prnoduction
; and will nequine a nestant when §ifles change.
opcache.validate_timestamps=1

; Keep this above the numben of §ifes in pnoject
; You can check how many §ifles you have with

; “§ind . -type § -pnint | gznep php | we -€°
opcache.max_accelerated_files=60600

; Caches duplicate stnings into one shaned immutable value
opcache.interned_strings_buffer=16

The INI values and comments are from an OPcache write-up on scalingphpbook.com
(https://www.scalingphpbook.com/blog/2014/02/14/best-zend-opcache-settings.html),

which is an excellent resource for scaling PHP applications.

Alternatively, we could have provided a custom opcache.ini file and copied it into the
directory configured to scan additional INI files (/usr/local/etc/php/conf.d). I prefer to
organize each extension's settings into separate files, but for this example, I kept it
simple. There's nothing wrong with keeping the settings in one php.ini file either, if you

prefer.

With our new Dockerfile and INI changes in place, we can now rebuild the image and

verify that the OPcache module is configured with our overrides.

35

Chapter 3: LAMP Baby!

You can build all images with docker-compose build. However, we can specify which

image to build based on the service name if we only want to build one (Listing 3.15):

>_ Listing 3.15: Build the Latest App

$ docker-compose build app
$ docker-compose up

At this point, if you add "phpinfo(); exit;" at the top of your project's public/index.php file,

you can verify that OPcache is installed and configured (Figure 3.2):

fH phpinfo()

& C @ localhost:3080

Zend OPcache

Opcode Caching Up and Running
Optimization Enabled
SHM Cache Enabled
File Cache Disabled
Startup OK
Shared memory model mmap
Cache hits 1

Cache misses 1

Used memory 36098520
Free memory 31010344
Wasted memory 0
Interned Strings Used memory 110688
Interned Strings Free memory 16666528
Cached scripts 1

Cached keys 1

Max keys 7963
0OOM restarts 0

Hash keys restarts 0

Manual restarts 0

[4a] Figure 3.2: Zend OPcache is Enabled

To wrap up this chapter, we are going to get "pretty URLs" working in Apache. If you
look at the public/.htaccess file in our project, you can see that our application needs

mod_rewrite (Listing 3.16):

36

Chapter 3: LAMP Baby!

</> Listing 3.16: The Application .htaccess File

<IfModule mod_rewrite.c>

<IfModule mod_negotiation.c>

Options
</IfModule>

-MultiViews

RewriteEngine On

RewriteCond
RewriteRule

RewriteCond
RewriteCond
RewriteRule

RewriteCond
RewriteRule
</IfModule>

%{REQUEST_FILENAME} !-d
~(.*)/$ /$1 [L,R=301]

%{REQUEST_FILENAME} !-d
%{REQUEST_FILENAME} !-f
A~ index.php [L]

%{HTTP:Authorization} .
.* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

The official Docker image doesn't enable mod_rewrite by default, but you almost

always want it with Apache. To enable the module, we can use a2enmod in the Dockerfile

(Listing 3.17):

</> Listing 3.17: Enable mod_rewrite

FROM php:7.1.9-apache

LABEL maintainer="Paul Redmond"
COPY .docker/php/php.ini /usr/local/etc/php/

COPY . /srv/app

COPY .docker/apache/vhost.conf /etc/apache2/sites-available/0006-

default.conf

37

Chapter 3: LAMP Baby!

RUN docker-php-ext-install pdo_mysql \
&& docker-php-ext-install opcache \
&& a2enmod rewrite negotiation

When you rerun the build, you will see "Enabling module rewrite" on the last step. The
negotiation module is already enabled, but it doesn't hurt to add it to the Dockerfile just

in case.

Now, if you define a route in routes/web.php it should work correctly (Listing 3.18):

</> Listing 3.18: Define a Route to Test mod_rewrite in routes/web.php

$router->get('/test', function () §
return ['test' => '0OK'];

27

Make a request to /test and you should get a similar response (Listing 3.19):

>_ Listing 3.19: Verify mod_rewrite is working

$ curl -i http://localhost:8086/test
HTTP/1.0 200 OK

Date: Mon, 09 Oct 2017 1L4:0L:09 GMT
Server: Apache/2.4.10 (Debian)
X-Powered-By: PHP/7.1.9
Cache-Control: no-cache, private
Content-Length: 13

Connection: close

Content-Type: application/json

{”test” . HOKH}

The mod_rewrite module is working as expected, allowing us to define routes that will
be rewritten by the .htaccess file. You can also disable .htaccess files and set the

rewrite rules in your Vhost file for more performance.

38

Chapter 3: LAMP Baby!

LAMPed Up

We've covered the basics of running a Docker LAMP environment from scratch,
running multiple containers, communicating between containers, and customizing

PHP modules.

Using a full PHP framework to work through this chapter, we were able to see how the
Dockerfile builds our application code. When I first started trying to add Docker to my
applications, I felt perplexed about how to work with Docker and my application

together. An essential goal of this book is to ease that burden for you.

At this point, we have a working LAMP environment, but we need to improve our
development workflow. In the next chapter, we are going to continue building on our
LAMP application by making our configuration more flexible, installing Xdebug, and

working with profiling tools.

39

Chapter 4: Development Tools

In this chapter, we are going focus on our development environment. We will slowly
ramp up by learning more about environment variables, and by the end of the chapter,
you will have a full development environment with debugging capabilities using
XDebug. Along the way, we'll learn how to use environment variables in PHP INI files

to make module configuration easy to change in any environment.

Developing applications in containers might be a transition for you if you like to work
locally, but if you are using homestead or a virtual machine, you should catch on pretty
quick. We will run plenty of commands that will help you get more comfortable using

Docker to develop features, as well as debug and profile your applications.

One of the benefits of Docker I've touted is that you will have the same environment for
development and production. There's one caveat though: XDebug shouldn't be used in
production. Removing XDebug in production presents a bit of a problem in Docker, so

we will also look at how to make it disappear in production.

If you are following along, we will continue with the code from Chapter 3; just

continuing to work on the same project will do.

Environment Configuration

Environment variables help you create flexible Docker images by allowing you to
configure your applications for different environments. For example, in development,
you might be connecting to a database within a container, and in production, use
something like Amazon Relational Database Service (RDS). You can also use

environment variables to keep sensitive data out of your codebase.

Lo

Chapter 4: Development Tools

You've already seen an example of how to use environment variables with Docker: the
MariaDB container from Chapter 3 used them to configure the database and root

password (Listing 4.1):

</> Listing 4.1: Example Environment configuration in docker-compose.yml

services:
mariadb:
...
environment:
- MYSQL_DATABASE=dockerphp
- MYSQL_ROOT_PASSWORD=password

Listing 4.1 is how you define them with Docker Compose, and the equivalent with

docker run would look like the following (Listing 4.2):

>_ Listing 4.2: Setting Environment Variables with docker run

Passing enviznonment vaniables with the -e[--env §flag
$ docker run -e MYSQL_ROOT_PASSWORD=password --name my-db \
-d mariadb

Using an extennal §ifle in the same path
$ docker run --env-file .docker.env --name my-db -d mariadb

In the last line, I demonstrated the --env-file flag. In Docker Compose, you can also pass
environment variables from an external file with the env_file

(https://docs.docker.com/compose/compose-file/#/envfile) configuration option:

An env_gile congigunation example
services:
mariadb:
env_file: .docker.env

L1

Chapter 4: Development Tools

Using an external file provides a starting point that works and yet allows developers to

maintain their custom settings.

Setting up Environment Variables

Let's take what we just learned about external environment files and apply it to our
project. We will use an external file that is ignored by version control, and provide

sensible defaults that each developer can copy as a starting point (Listing 4.3):

>_ Listing 4.3: Create the Docker Environment Files

$ touch .docker.env.example .docker.env

$ echo "HELLO=WORLD" >> .docker.env.example
$ cat .docker.env.example > .docker.env

$ echo ".docker.env" >> .gitignore

In Listing 4.3, we created an example environment file and a local environment file.
Later on, when a new developer first checks out your repository, they will copy the
versioned .docker.env.example file to the ignored .docker.env with cp .docker.env.example

.docker.env.

Let's add this environment file to docker-compose.yml so we can test it out our test

environment variable (Listing 4.4)

</> Listing 4.4: Adding the .docker.env file

version: "3"
services:
app:
build:
depends_on:
- mariadb

L2

Chapter 4: Development Tools

ports:
"80860:80"
volumes:
- .:/srv/app
links:
- mariadb:mariadb
env_file: .docker.env
mariadb:
image: mariadb:10.1.21
ports:
"13306:3306"
environment:
- MYSQL_DATABASE=dockerphp
- MYSQL_ROOT_PASSWORD=password

We added the env_file configuration pointing to the unversioned .docker.env file we
created earlier. Now you can manage your environment for Docker through this file,

and when you run docker-compose, the values will take effect in the container.

Trying out Environment Variables

Let's run the container with the new configuration option and verify that the

environment variable has been set (Listing 4.5):

>_ Listing 4.5: Verify the Docker Env File is Working

$ docker-compose up -d

$ docker ps # note the app containen id

$ docker exec -it 36b679blaalu bash

Inside the nunning containen
root@36b079blaadL: /var/www/html# echo $HELLO
WORLD

Shut down the docken containezns
$ docker-compose stop

L3

Chapter 4: Development Tools

You should see "WORLD" printed when you echo the SHELLO environment variable
inside of the running container. If you change the value of the variable, you should see

the value reflected when you restart the container.

Environment variables are an excellent way to make your Docker setup more flexible
for applications like Laravel. For example, Laravel uses phpdotenv
(https://github.com/vlucas/phpdotenv) to read environment variables through a .env
file. Using this approach, you can override the values in the .env file with system

environment variables.

Xdebug Setup

I reach for Xdebug at least once a day, but when I moved my development to Docker, it

was a bit tricky getting debugging working consistently.

We will also learn how to configure Xdebug with environment variables, which is
compelling for developers wanting to customize the way Xdebug works during
runtime. Without changing the Docker image, we can tweak Xdebug's configuration at

runtime.

After this section, setting up Xdebug with Docker should be a breeze. Along the way,
we'll also ensure that the Docker builds don't have a trace of the Xdebug module when

you ship your code to non-development environments.

Installing Xdebug

The first thing we are going to tackle is installing the Xdebug module in our container.
Xdebug is a PECL extension, and the official PHP Docker image provides the pec!

command that we can use to install Xdebug, and then we'll enable it (Listing 4.6):

Lo

Chapter 4: Development Tools

</> Listing 4.6: Installing and Enabling Xdebug

FROM php:7.1-apache

LABEL maintainer="Paul Redmond"
COPY .docker/php/php.ini /usr/local/etc/php/
COPY . /sxv/app
COPY .docker/apache/vhost.conf /etc/apache2/sites-available/000-
default.conf
RUN docker-php-ext-install pdo_mysql opcache \
&& pecl install xdebug-2.5.1 \
&& docker-php-ext-enable xdebug \
&& a2enmod rewrite

RUN chown -R www-data:www-data /srv/app

After updating the Dockerfile, stop any running containers with docker-compose stop

and then rebuild the app service with docker-compose build app.

After completing the build, run the container to make sure the installation worked

(Listing 4.7):

>_ Listing 4.7: Verify that Xdebug was installed and enabled

$ docker-compose build app
$ docker-compose up -d

$ docker exec -it ©0fdedulLd32c bash

root@0fdedLtlo32c: /var/www/html# php -i | grep ~extension_dir
extension_dir => /usr/local/lib/php/extensions/no-debug-non-zts-
20160303

root@o0fdedLtlo32c: /var/www/html# 1s -1la
/usr/local/lib/php/extensions/no-debug-non-zts-20160303 | grep
xdebug

L5

Chapter 4: Development Tools

-rw-r--r-- 1 root staff 1086808 Feb 28 0©6:03 xdebug.so

root@o0fdedut032c: /var/www/html# php -i | grep xdebug
root@o0fdedult032c: /var/www/html# php -m | grep xdebug
xdebug

You should see the xdebug module listed when you run php -m in the container, which

means it's working and we are now ready to configure it!

Configuring Xdebug

Installing Xdebug in the container provides an xdebug.ini file containing configuration
for Xdebug. To find out where this INI file is located, run php --ini inside the container

(Listing 4.8):

>_ Listing 4.8: View the xdebug ini file

root@ofdedLtlo32c: /var/www/html# php --ini

Configuration File (php.ini) Path: /usr/local/etc/php

Loaded Configuration File: /usr/local/etc/php/php.ini
Scan for additional .ini files in: /usr/local/etc/php/conf.d
Additional .ini files parsed:
/usr/local/etc/php/conf.d/docker-php-ext-opcache.ini,
/usr/local/etc/php/conf.d/docker-php-ext-pdo_mysql.ini,
/usr/local/etc/php/conf.d/docker-php-ext-xdebug.ini

root@0fdedLtlo32c: /var/www/html# cat
/usr/local/etc/php/conf.d/docker-php-ext-xdebug.ini
zend_extension=/usr/local/lib/php/extensions/no-debug-non-zts-
20160303 /xdebug.so

L6

Chapter 4: Development Tools

The Xdebug file contains one line to enable the extension, and the rest of the Xdebug

values are defaults.

We are going to override few default settings to provide some convenience around
working with Xdebug, so create a new .docker/php/xdebug-dev.ini file for our

customizations.

We will start out by adding hard-coded values to the INI file to verify everything works,

and then we'll move it to an environment-driven configuration (Listing 4.9):

</> Listing 4.9: Adding an xdebug ini file

[xdebug]

xdebug.default_enable=1
xdebug.remote_autostart=1

; nemote_connect_back i34 not safe in production!
xdebug.remote_connect_back=1
xdebug.remote_port=9601

xdebug.remote_enable=1
xdebug.idekey=DOCKER_XDEBUG

I like enabling remote_autostart so that Xdebug automatically tries to connect without a

GET, POST, or COOKIE variable.

The remote_connect_back setting will try to connect to the client that made the HTTP
request. The remote_connect_back setting, while not safe in production, is convenient

because you don't have to worry about the remote_host setting.

For xdebug.remote_port I select a non-default remote port (9001) because I have PHP-

FPM running locally and I need different port mapping.

Let's drop the created INI settings into the image by copying them in the Dockerfile
(Listing 4.10):

L7

Chapter 4: Development Tools

</> Listing 4:10: Copy the Xdebug INI file into the container

FROM php:7.1-apache

LABEL maintainer="Paul Redmond"
COPY .docker/php/php.ini /usr/local/etc/php/
COPY . /sxv/app
COPY .docker/apache/vhost.conf /etc/apache2/sites-available/000-
default.conf
RUN docker-php-ext-install pdo_mysql opcache \
&& pecl install xdebug-2.5.1 \
&& docker-php-ext-enable xdebug \
&& a2enmod rewrite

COPY .docker/php/xdebug-dev.ini /usr/local/etc/php/conf.d/xdebug-
dev.ini

RUN chown -R www-data:www-data /srv/app

With our current configuration file saved, rebuild the container with docker-compose
build app. Once you finish building the container, you should see your Xdebug settings
by adding phpinfo() to the top of your public/index.php file. You should see the specific

settings we changed in our xdebug-dev.ini file reflected in the output.

Setting up PhpStorm

With the Xdebug configuration updated, it's time to verify that we can connect to
Xdebug with our editor. We are going to use PhpStorm to communicate with Xdebug in
this chapter, an excellent commercial IDE for PHP. I prefer PhpStorm's debugging UI
and capabilities, but adapting these instructions to any Xdebug client should be

relatively straightforward.

The first thing you'll do is open PhpStorm's preferences and navigate to "Languages &
Frameworks > PHP > Debug". Because we specified 9001 in our Xdebug configuration,

we need to change PhpStorm to use port 9001 as well (Figure 4.1).

L8

Chapter 4: Development Tools

e v

Xdebug

Debug port: 2 Can accept external connections

Force break at the first line when no path mapping specified

Force break at the first line when a script is outside the project
Fand Nahianar
[sa] Figure 4.1: Tweaking PhpStorm Xdebug Port
The next step is setting up a run configuration and server. In PhpStorm, click the
Xdebug bar (usually in the top right corner) drop-down and click "edit configurations..."

(Figure 4.2).

P
» Edit Cﬂnfﬁ]uraticns...

W Q

% Localhost

[sa] Figure 4.2: Edit run configurations

On the following screen, click the plus (+) button in the top left and select "PHP Web
Application" to create a run configuration. Give the application a name (i.e., Localhost),

and then click the "..." button to add a server.

On the server screen, make sure and enter port "8080", select Xdebug as the debugger,
and map your local project path to the path on the server (/srv/app) so Xdebug knows

how to map files correctly (Figure 4.3).

L9

Chapter 4: Development Tools

. Servers

+ - @8

Name; |L0|:alhnst | [] Shared
Host Port Debugger
|lncalhost | z |8080 | deehug n

Use path mappings (select if the server is remote or symlinks are used)

File/Directory | Absolute path on the server
Project files

/home/paul/Code/bitpress/docker-for-php /srv/app
Il Include path

n I Cancel] I Apply l I Help J

[sa] Figure 4.3: Add a server to the run configuration

Once you have configured the web server and run configuration, toggle the "start

listening for PHP Debug Connections" icon (Figure 4.4):

(% Localhost ~ | p @] Q
L3

[sa] Figure 4.4: Toggle start listening for connections

You should be able to connect to Xdebug by setting a breakpoint or breaking on the

first line.

50

Chapter 4: Development Tools

Build The Latest Image

Remember to rebuild the latest container with docker-compose build, so your INI

settings are copied into the Docker image.

Using Environment to Configure Xdebug

The last part of this section is one of my favorite Docker tricks with PHP. Using
environment variables, we can make our INI values dynamic, allowing us to update

configuration without rebuilding an image each time you want to change something.

Open the .docker.env.example file and replace the contents of the file with the following

variables (Listing 4.11).

</> Listing 4.11: Add Xdebug Environment Variables to .docker.env.example

PHP_XDEBUG_DEFAULT_ENABLE=1
PHP_XDEBUG_REMOTE_AUTOSTART=1
PHP_XDEBUG_REMOTE_CONNECT_BACK=1
PHP_XDEBUG_REMOTE_PORT=96001
PHP_XDEBUG_REMOTE_ENABLE=1
PHP_XDEBUG_IDEKEY=DOCKER_XDEBUG

Be sure to update your .docker.env file with the same values or this won't work!

Variable Naming Convention

You can name the environment variables anything you'd like. I like to prefix
my PHP environment variables with PHP_ and match the INI configuration
name by replacing dots (.) with underscores (_). This convention gives me an

idea of configuration values at a glance. For example, the environment

51

Chapter 4: Development Tools

variable PHP_XDEBUG_REMOTE_AUTOSTART matches the Xdebug INI setting

xdebug.remote_autostart.

With the variables in place, let's update the .docker/php/xdebug-dev.ini file to use them
(Listing 4.12):

</> Listing 4.12: Use Environment Variables in the Xdebug INI File

[xdebug]
xdebug.default_enable = $§{PHP_XDEBUG_DEFAULT_ENABLE}
xdebug.remote_autostart = ${PHP_XDEBUG_REMOTE_AUTOSTART}

xdebug.remote_connect_back = ${PHP_XDEBUG_REMOTE_CONNECT_BACK}
xdebug.remote_port = ${PHP_XDEBUG_REMOTE_PORT}
xdebug.remote_enable = ${PHP_XDEBUG_REMOTE_ENABLE}
xdebug.idekey = $§{PHP_XDEBUG_IDEKEY}

PHP INI configuration files can read from the environment by wrapping environment

variables in curly brackets (${}).

Before we can test out our changes, we need to rebuild the Docker image so that our

latest xdebug-dev.ini file gets built into the image (Listing 4.13):

>_ Listing 4.13: Rebuild the Application Image

$ docker-compose build app
$ docker-compose up -d

With the container running, add "phpinfo(); exit;" to the top of your project's
public/index.php file so you can verify your settings in the browser; you should see

something like the following (Figure 4.5):

52

Chapter 4: Development Tools

%5 [phpinfo()

— C @ localhos

xdebug.profiler_enable_trigger Off Off -
xdebug.profiler_enable_trigger_value no value no value
xdebug.profiler_output_dir ftmp ftmp
xdebug.profiler_output_name cachegrind.out.%p cachegrind.out.%p
xdebug.remote_addr_header no value no value
xdebug.remote_autostart On On
xdebug.remote_connect_back On On
xdebug.remote_cookie_expire_time 3600 3600
xdebug.remote_enable On On
xdebug.remote_handler dbgp dbgp
xdebug.remote_host localhost localhost
xdebug.remote_log no value no value
xdebug.remote_mode req req
xdebug.remote_port 9001 9001

4] Figure 4.5: Verify Xdebug Settings via Environment

At this point, you should have a working environment configuration, but let's verify
that it's working as expected by changing a value and confirming that the value is

updated (Listing 4.15):

</> Listing 4.15: Change Remote Autostart to off in .docker.env

PHP_XDEBUG_REMOTE_AUTOSTART=0

For environment changes to take effect in a container, you need to restart it with

docker-compose restart. Once the container is finished rebooting (which should be very

quick) you should see that remote autostart is disabled (Figure 4.6).

[3 phpinfo()
G @ localhosl
xdebug.profiler_output_dir ftmp ftmp -
xdebug.profiler_output_name cachegrind.out.%p cachegrind.out.%p
xdebug.remote_addr_header no value no value
xdebug.remote_autostart Off Off

[sa] Figure 4.6: Verify Xdebug Remote Autostart Changes

Now you have a flexible Xdebug configuration that each developer can change without

needing to rebuild the Docker image. Our setup is pretty sweet if you ask me!

Chapter 4: Development Tools

The Xdebug profiler (https://xdebug.org/docs/profiler) is an excellent way to find
performance bottlenecks, analyze your code, and find the most frequently called
methods. However, using the profiler with Docker poses a bit of a problem, because

profiler results (Cachegrind files) reside in the container.

Before we worry about getting the profiler results locally, let's first see how profiling

works and then add a volume to access profiling data locally.

First, let's see the what the configuration looks like by default (Listing 4.16):

>_ Listing 4.16: The Default Xdebug Profiling Settings

$ docker exec -it 902039ff5cuL4l bash

$ php -i | grep xdebug.profiler
xdebug.profiler_aggregate => 0ff => Off

> 0ff => off

> 0ff => off
xdebug.profiler_enable_trigger => 0ff => 0ff

xdebug.profiler_append

xdebug.profiler_enable

xdebug.profiler_enable_trigger_value => no value => no value
xdebug.profiler_output_dir => /tmp => /tmp
xdebug.profiler_output_name => cachegrind.out.%p =>
cachegrind.out.%p

If you look carefully, the profiler_output_dir is /tmp, and the profiler is not enabled by
default.

Let's first work on Getting the Xdebug profiler running by adding profiling
configuration to the .docker/php/xdebug-dev.ini file that allows us to tweak the directory
and enable profiling (Listing 4.17):

54

Chapter 4: Development Tools

</> Listing 4.17: Add Profiler Configuration

[xdebug]

xdebug.default_enable = ${PHP_XDEBUG_DEFAULT_ENABLE}
xdebug.remote_autostart = ${PHP_XDEBUG_REMOTE_AUTOSTART}

; nemote_connect_back 14 not safe in prnoduction!
xdebug.remote_connect_back = ${PHP_XDEBUG_REMOTE_CONNECT_BACK}
xdebug.remote_port = ${PHP_XDEBUG_REMOTE_PORT}
xdebug.remote_enable = ${PHP_XDEBUG_REMOTE_ENABLE}
xdebug.idekey = ${PHP_XDEBUG_IDEKEY}

; prnogiling
xdebug.profiler_enable = ${PHP_XDEBUG_PROFILER_ENABLE}?
xdebug.profiler_output_dir = ${PHP_XDEBUG_PROFILER_OUTPUT_DIR}

You added two profiler values that will match up with two new environment variables

you need to add to .docker.env and .docker.env.example (Listing 4.18):

</> Listing 4.18: Add Profiler Environment Values

PHP_XDEBUG_DEFAULT_ENABLE=1
PHP_XDEBUG_REMOTE_AUTOSTART=1
PHP_XDEBUG_REMOTE_CONNECT_BACK=1
PHP_XDEBUG_REMOTE_PORT=9601
PHP_XDEBUG_REMOTE_ENABLE=1
PHP_XDEBUG_IDEKEY=DOCKER_XDEBUG
PHP_XDEBUG_PROFILER_ENABLE=1
PHP_XDEBUG_PROFILER_OUTPUT_DIR=/tmp

We've enabled the profiler and configured the output directory. For now, we leave the
output directory set as the default /tmp path while we verify that profiling is working in

the container.

Save your INI and .docker.env changes, and then rebuild the image, so your xdebug-

dev.ini changes are part of the build (Listing 4.19):

55

Tl A A A

#
#
$

Chapter 4: Development Tools

Listing 4.19: Rebuild the Image

docker-compose down
docker-compose rm -v
docker-compose build app
docker-compose up -d

Find the containen id
docker ps

Jump into the containen
docker exec -it 8c2d771eacd8 bash

Now negnesh http://Pocalhost:8560&6
Aften negneshing the containen, inspect the /tmp §oldexn

1s /tmp/

cachegrind.out.10 cachegrind.out.8 pear

After refreshing the browser, you will see Cachegrind files in the "/tmp" path.

If you destroy the container, start a new one, and then inspect the /tmp path your files

will be gone. Docker container images are immutable, which means that when

containers are destroyed, the modifications are lost.

If you examine the owner of the Cachegrind files, you will notice that the Apache user

(www-data) owns the Cachegrind report. File ownership will be critical in a moment

when we move the profiler output path to our volume for local consumption.

Our next step is making the profiler data available locally by updating the output

directory (Listing 4.20):

<>

Listing 4.20: Configure the Profiler OQutput Path

PHP_XDEBUG_DEFAULT_ENABLE=1
PHP_XDEBUG_REMOTE_AUTOSTART=1 1

56

Chapter 4: Development Tools

PHP_XDEBUG_REMOTE_CONNECT_BACK=1
PHP_XDEBUG_REMOTE_PORT=9601
PHP_XDEBUG_REMOTE_ENABLE=1
PHP_XDEBUG_IDEKEY=DOCKER_XDEBUG
PHP_XDEBUG_PROFILER_ENABLE=1
PHP_XDEBUG_PROFILER_OUTPUT_DIR=/srv/app/storage/logs

On the last line, we point the output directory to our application's storage path which
has an attached volume. Since Cachegrind files are within the mounted volume path,

this means we can access cachegrind files locally right?

Well, maybe.

Depending on your setup, you might have a permissions issue. I am running the
examples on Ubuntu 16.04 LTS, and at this point, I cannot see Cachegrind files after

starting a new container and refreshing the browser.

With the new profile path when I refresh my browser and use Is -la /srv/app/storage/logs
I don't see any cachegrind files (Listing 4.21):

>_ Listing 4.21: Directory Permissions

Inside a nunning containexn

$ php -i | grep xdebug.profiler_output_dir

$ 1s -1la /srv/app/storage/logs/

total 12

drwxrwxr-x 2 1000 1000 4B96 Mar 9 05:47
drwxrwxr-x 5 1000 1000 4O96 Mar 9 05:47
-ITWXIWXr-Xx 1 1000 1000 14 Mar 9 ©5:47 .gitignore
-ITWXIWXr-Xx 1 1000 1000 ® Mar 9 05:47 lumen.log

The www-data usen cannot wnite in the fogs golden
$ id -u www-data
33

57

Chapter 4: Development Tools

The volume might prevent the Apache user from saving Cachegrind files on your setup
depending on permissions. If you do not see cachegrind files, run the following

command for any folder that needs to be writable by the web server (Listing 4.22):

>_ Listing 4.22: Fix Volume Permissions Issues

$ chmod -R o+rw bootstrap/ storage/

$ 1s storage/logs
cachegrind.out.8 1lumen.log

In the case of Lumen, we need to recursively make sure that "others" can write to the

defined storage/ path to sort out permission issues caused by volumes.

Allowing this level or read/write access is only needed for local development! When
running the container without a volume (i.e., production), the www-data user owns the

application files and directories are not world-writable.

The permission changes in Listing 4.22 should allow the container www-data user to
write to the storage/ paths on your local machine as needed. If you are running Docker
locally on Linux, the Cachegrind files will not be owned by your $USER but should be

readable. You can also remove them with rm -f storage/logs/cachegrind*.

Equipped with local Cachegrind files, you can now use PhpStorm (or the tool of your

choice) to visualize profiler data (Figure 4.7):

58

Chapter 4: Development Tools

»x @ a

| ##- 1= | &} cachegrind.out.8 x |

selopers- g
Server: | <no servers HD Time: Eﬂ Refresh g'
Execution Statistics | call Tree | ’

callable - | Time | OwnTime | calls

mutes.php 158% 0 0.1% 101%
E'..?-_Iapp.php 13 61.1% 0 0.9% 101%
[index.php 2199.7% |0 0.4% 10.1%
[¢autoload.php 2 10.9% 0 0.3% 101%
[€ classLoader.php 0 0.0% 0 0.0% 101%
[¢autoload_real.php 0 0.0% 0 0.0% 101%
[¢ autoload_static.php 0 0.0% 0 0.0% 10
E'-?Hamcresl:.php 0 2.6% 0 2.6% 101%
E'-?Container.php 0 3.6% 0 0.3% 101%
E'-?Container.php 0 0.0% 0 0.0% 101%
[Arrayable.php 0 0.0% 0 0.0% 101%
E-?Ilequesl:.pllp 0 2.4% 0 0.2% 101%
E'-?Ilesponse.php 0 1.9% 0 0.2% 101%

- - e

Callees | callers |

o callable | Time | calls
[« routes.php 1 5.8%
» 'm Laravel\Lumen\Application->get 157% 10.1%

[sa] Figure 4.7: Cachegrind Output Example

Making Xdebug Disappear

When I first learned about Docker, one of the neatest selling points to me was the claim
that "Docker runs the same everywhere" and provides "more repeatable environments."
These claims are probably the closest thing to true as can be expected, but in the case
of Xdebug, you don't want any trace of Xdebug installed on production. Even if Xdebug

is a registered module and disabled, it has proven to cause overhead.

So far, the Dockerfile installs the Xdebug module, and we have no way of controlling
the build to only include Xdebug in development. We need a way to manage the

configuration of Xdebug at runtime.

How might we go about stopping that from happening in production-like environments

but not development?

While we can't conditionally control the installation of Xdebug during a build, there are
a few ways we can ensure that only development environments have the Xdebug

module enabled in PHP.

59

Chapter 4: Development Tools

One way of disabling Xdebug is using a custom bash script to start the container and
remove the Xdebug INI configuration before starting the web server. We are not ready
to talk about custom commands yet (we cover them in Chapter 8), so we will look at a

different way using the skills we've learned so far.

Later in the book, you can figure out how to remove Xdebug with a custom bash

command, which is probably the best way to remove Xdebug at runtime.

Enable Xdebug with Environment

The first way we will solve this is a slight trick in the Dockerfile coupled with
customizing the PHP_INI_SCAN_DIR environment variable. We will have a set of INI files

for development and another set for non-development.

First, we are going to modify our Dockerfile to provide a development-specific
configuration path for development that overrides the default location PHP looks for

INI files (Listing 4.23):

</> Listing 4.23: Provide a Development-Specific Scan Dir Path

FROM php:7.1-apache
LABEL maintainer="Paul Redmond"

COPY .docker/php/php.ini /usr/local/etc/php/
COPY . /srv/app
COPY .docker/apache/vhost.conf /etc/apache2/sites-available/0006-
default.conf
RUN docker-php-ext-install pdo_mysql opcache \
&& pecl install xdebug-2.5.1 \
&& docker-php-ext-enable xdebug \
&& a2enmod rewrite

COPY .docker/php/xdebug-dev.ini /usr/local/etc/php/conf.d/xdebug-
dev.ini

60

Chapter 4: Development Tools

RUN cp -R /usr/local/etc/php/conf.d \
/usr/local/etc/php/conf.d-dev \
&& rm -f Jusr/local/etc/php/conf.d/*-dev.ini \
&& rm -f Jusr/local/etc/php/conf.d/*xdebug.ini

RUN chown -R www-data:www-data /srv/app

We've copied the contents of the scan directory (/usr/local/etc/php/conf.d) into a
separate development path. The next line removes any INI files that end in -dev.ini and
also specifically the xdebug.ini file when we enable Xdebug with docker-php-ext-enable
xdebug.

You could consider this approach a hack (it wouldn't hurt my feelings), and you should

be careful about copying .ini files in a later part of the Dockerfile.

I wouldn't say this is the cleanest approach to solving this issue, but it works okay in my
opinion. The more appropriate way to solve this would be through a custom CMD script
that checks for which environment Docker is running and enables or disables Xdebug,

but we're not ready to go over the CMD instruction yet.

After you rebuild the image and jump into a running container, you can see that the

Xdebug module is now gone (Listing 4.24):

>_ Listing 4.24: The Xdebug Module is Gone

$ php -m | grep xdebug

$ export PHP_INI_SCAN_DIR=/usr/local/etc/php/conf.d-dev
$ php -m | grep xdebug
xdebug

The next step is changing your .docker.env (and .docker.env.example) file to use the

development scan dir (Listing 4.25):

61

Chapter 4: Development Tools

</> Listing 4.25: Configure the Development INI Scan Directory

PHP_XDEBUG_DEFAULT_ENABLE=1
PHP_XDEBUG_REMOTE_AUTOSTART=1
PHP_XDEBUG_REMOTE_CONNECT_BACK=1
PHP_XDEBUG_REMOTE_PORT=9601
PHP_XDEBUG_REMOTE_ENABLE=1
PHP_XDEBUG_IDEKEY=DOCKER_XDEBUG
PHP_XDEBUG_PROFILER_ENABLE=1
PHP_XDEBUG_PROFILER_OUTPUT_DIR=/sxv/app/storage/logs

PHP_INI_SCAN_DIR=/usr/local/etc/php/conf.d-dev

The configuration file will now take care of setting the PHP_INI_SCAN_DIR environment

variable. In production environments, the PHP_INI_SCAN_DIR will be the default.

After you restart the container, you should have the Xdebug module enabled (Listing

4.26):

>_ Listing 4.26: Checking our Scan Dir Environment Setting

docker-compose down

docker-compose build

docker-compose up -d

docker ps

Replace &552cd067c&3 with youn containen id
docker exec -it 8552cd067c83 bash

S R R G

In the containen

$ echo $PHP_INI_SCAN_DIR
/usr/local/etc/php/conf.d-dev
$ php -m | grep xdebug

xdebug

Our last step in this section is to create a "production" docker-compose file which will

help demonstrate how our container will run without volumes.

62

Chapter 4: Development Tools

The docker-compose.prod.yml file lives in the root of the project is just like the docker-

compose.yml file, minus the volume (Listing 4.27):

</> Listing 4.27: A Production-Like Compose File

version: "3"
services:
app:
build:
depends_on:
- mariadb
ports:
"80860:80"
links:
- mariadb:mariadb
environment:
DB_CONNECTION: mysql
DB_HOST: mariadb
DB_PORT: 3306
DB_DATABASE: dockexrphp
DB_USERNAME: root
DB_PASSWORD: password
mariadb:
image: mariadb:10.1.21
ports:
"13306:3306"
environment:
- MYSQL_DATABASE=dockerphp
- MYSQL_ROOT_PASSWORD=password

The production version doesn't have the env_file setting, which means we are no longer

using the .docker.env file to configure the environment.

We provide some hard-coded environment variables to override the values set in the
.env file, but this file is just to simulate production. Make sure that you are not hard-

coding your environment variables in the docker-compose file, but defining

63

Chapter 4: Development Tools

development-specific values isn't a big deal.

Before we build and run containers with this file, update your public/index.php file with

"phpinfo(); exit;" at the top so you can verify that Xdebug is not present.

Skipping the volume in the Docker compose file will demonstrate that you have to

rebuild the image to pick up code changes.

Let's try out our new Compose file and verify that Xdebug registered (Listing 4.28):

>_ Listing 4.28: Run Containers with docker-compose.prod.yml

$ docker-compose down

$ docker-compose --file=docker-compose.prod.yml build
$ docker-compose --file=docker-compose.prod.yml up -d

Now that your container is running you will not find Xdebug enabled. Also, the PHP
scan directory is set to the default /usr/local/etc/php/conf.d path, and that the xdebug.ini

files are gone.

By default, Docker Compose looks for a docker-compose.yml file, but by using the docker-

compose --file flag, you can use an alternate Docker Compose file.

While using the docker-compose.prod.yml file, you can no longer modify your project
files and have them instantaneously update in the container via volumes. Try it. Your
changes will not take effect until you stop the container, rebuild the image, and then

start a new container while you are using the prod file.

It's imperative that you understand the immutable nature of containers. While we need
the convenience of mounted volumes in development, the build shouldn't rely on a

mounted volume. Because you cannot rely on local files (think saving file uploads and

6L

Chapter 4: Development Tools

serving them) inside the container, I also use an external storage service like S3 for

uploads.

When a host machine (your development machine) mounts a host directory (volume)
on an existing path in the container (/srv/app in this case), it overrides the existing files

in that path.

According to the Docker Documentation tutorial, Manage Data in Containers
(https://docs.docker.com/engine/tutorials/dockervolumes/#mount-a-host-directory-as-
a-data-volume), "the mount overlays but does not remove the pre-existing content.

Once the mount is removed, the content is accessible again."

De-Debugged

This chapter got into the nitty-gritty of using and configuring Xdebug in containers.
Along the way, you learned a bunch about environment configuration, volumes,
permissions, and running Docker compose with alternate file names. You should be
getting more comfortable building, starting, stopping, and running bash inside your

containers at this point.

The next chapter will shift focus to a somewhat tricky topic of using PHP Composer

with Docker and installing private composer packages.

65

Chapter 5: Using Composer with Docker

In this chapter we explore installing Composer (https://getcomposer.org/) within a
Docker image, working with private repositories, and strategies to build your projects

with Composer and Docker.

It may or may not be apparent to you if you should install your Composer dependencies
before or during a build. Up to this point, we've been installing composer dependencies

locally and then copying them into the image during a build.

When you start installing composer dependencies as part of your Dockerfile builds, it
might become an annoyance to rebuild your docker images with each new composer
change. Composer is a relatively quick operation, but as you'll shortly see, building the

image over again can become time-consuming.

So should you manage your composer dependencies outside of Composer? The short

answer is that both approaches have tradeoffs.

One could make the argument that the composer.json file provides constraints for the
application code, PHP modules, and even PHP version; therefore, the dependencies

should be installed in the Dockerfile while running docker build every time.

One can also make a case for installing Composer dependencies outside of Docker to
make development quicker and more convenient, treating composer as a pre-build step
that happens before the docker build process on a CI server, which copies the results

into the image during docker build.

66

Chapter 5: Using Composer PHP with Docker

Project Setup

We are going to create a new project using the Laravel Framework (https://laravel.com/)
as we work through this chapter. The principles are the same for any Composer project

we use with Docker, not just Laravel.

Let's start by creating the project files (Listing 5.1):

>_ Listing 5.1: Create the Project Files

$ mkdir -p ~/Code/composer-in-docker
$ cd $_
$ touch Dockerfile composer-installer.sh

Cneate a Composen project in an "app" sub§olden
$ composer create-project --prefer-dist laravel/laravel:5.5 app/

This project is organized a little differently than the last chapter so you can see
different project organization styles. In this chapter, the Dockerfile is at the root of the

project, and our application is in an app/ folder.

There's no "wrong" way to organize Docker in your projects, but showing you a few
different styles gives you some perspective. If you recall in Chapter 4, we embedded the
Docker-specific files in a .docker/ folder and we return to that format in future chapters.

I prefer to organize Docker around my code, not the other way around.

Installing Composer in Docker

The first thing we work on is installing the Composer executable in a Docker image and
making it executable. We can then run composer commands during a docker build and
work with composer inside of a running container. Your local project has a vendor/
folder when you install the project, and the COPY command copies this folder during a
build, so I'll introduce you to ignoring this folder in Docker to ensure a pristine build.

There are a few caveats around COPY that you learn about along the way too.

67

Chapter 5: Using Composer PHP with Docker

Adding Composer to the Dockerfile

Let's work on the first part: installing Composer inside of a Docker image (Listing 5.2):

</> Listing 5.2: Install the Composer Executable

FROM php:7.1-apache

RUN curl -sS https://getcomposer.org/installer \
| php -- --install-dir=/usr/local/bin --filename=composer \
&& chmod +x /usr/local/bin/composer

The RUN command downloads the Composer installer and installs the executable at
/Jusr/local/bin/composer. However, this technique doesn't actually verify the Composer
installation. According to Composer's documentation, here's how we can install
Composer programatically (https://getcomposer.org/doc/fags/how-to-install-composer-
programmatically.md) as recommended. Add the following to composer-installer.sh

(Listing 5.3):

</> Listing 5.3: The programatic composer installer script

#!/bin/sh

EXPECTED_SIGNATURE=$(curl -s
https://composer.github.io/installer.siqg)

php -r "copy('https: etcomposer.org/installer', 'composer-
setup.php');"

ACTUAL_SIGNATURE=$(php -1 "echo hash_file('SHA38L', 'composer-
setup.php');")

if ["$EXPECTED_SIGNATURE" != "$ACTUAL_SIGNATURE"]
then
>&2 echo 'ERROR: Invalid installer signature'
rm composer-setup.php
exit 1
fi

68

Chapter 5: Using Composer PHP with Docker

php composer-setup.php --quiet
RESULT=%$7

rm composer-setup.php

exit $RESULT

We slightly modified the script from the documentation, using cURL instead of wget
because cURL is already available. Using the -s flag we make the curl command silent
with no output. Other than this line, the rest of the script is identical to the official

documentation.

Here's how we can use the installer script to install composer and put it in the path

(Listing 5.4):

>_ Listing 5.4: Verify and Install Composer

FROM php:7.1-apache

COPY composer-installer.sh /usr/local/bin/composer-installer

RUN chmod +x /usr/local/bin/composer-installer \
&& composer-installer \
&& mv composer.phar /usr/local/bin/composer \
&& chmod +x /usr/local/bin/composer \
&& composer --version

This technique copies an installer script we version locally and uses it to verify and
install composer. Once the script creates the composer.phar file, we move it to
Jusr/local/bin and make it executable. Last, we output the version which verifies that

composer works.

For good measure, here's another technique that doesn't use an external script to

install composer, but still verifies the signature:

69

Chapter 5: Using Composer PHP with Docker

FROM php:7.1-apache

RUN curl -o /tmp/composer-setup.php
https://getcomposer.org/installer \

&& curl -o /tmp/composer-setup.sig
https://composer.github.io/installer.sig \

&& php -r "if (hash('SHA384',
file_get_contents('/tmp/composer-setup.php')) !==
trim(file_get_contents('/tmp/composer-setup.sig'))) {
unlink('/tmp/composer-setup.php'); echo 'Invalid installer'
PHP_EOL; exit(1); 3" \

&& php /tmp/composer-setup.php \

--no-ansi \
--install-dir=/usr/local/bin \
--filename=composer \
--snapshot \

&& rm -f /tmp/composer-setup.*

The last technique comes from a Stack Overflow answer
(https://stackoverflow.com/a/42147748) using cURL and PHP without an external script.

I prefer the script provided from Composer, but you have plenty of options.

Regardless of which method you use, let's build the image and check that Composer is

installed correctly (Listing 5.5):

>_ Listing 5.5: Verify the Composer executable

$ docker build -t che5-composer
$ docker run --rm ch@5-composer /usr/local/bin/composer --version
Composer version 1.5.2 2017-09-11 16:59:25

Although we are using a container that runs Apache by default, we passed the docker
run command an argument—the path to the Composer executable—which runs the
command in a new container. The --rm flag automatically removes the container on

exit, which means it does not show up when you run docker ps -a.
70

Chapter 5: Using Composer PHP with Docker

Installing Composer Dependencies

Now that we have the Composer executable in the image, let's copy our application and

install Composer dependencies during a build (Listing 5.6):

>_ Listing 5.6: Install Composer Dependencies

FROM php:7.1-apache

COPY composer-installer.sh /usr/local/bin/composer-installer

RUN apt-get -yqq update \

&&
&&
&&
&&
&&
&&

apt-get -yqq install --no-install-recommends unzip \
chmod +x /usr/local/bin/composer-installer \
composer-installer \

mv composer.phar /usr/local/bin/composer \

chmod +x /usr/local/bin/composer \

composer --version

ADD app /var/www/html

WORKDIR /var/www/html

RUN composer install \

--no-interaction \

--no-plugins \

--no-scripts \

--prefer-dist

We installed the unzip package so that Composer can download and unzip package

dependencies. Next, we add the app/ folder and set the WORKDIR to our application root

path.

The next new instruction is the ADD app /var/www/html, which adds files inside the root

71

Chapter 5: Using Composer PHP with Docker

app/ folder (the location of our application locally) into the image at /var/www/html.

The WORKDIR instruction sets the working directory for subsequent Docker commands
like RUN, CMD, ENTRYPOINT, COPY, and ADD Docker instructions. You can use WORKDIR
multiple times, in our case we are using it and then the next RUN command relatively

runs composer install in the /var/www/html directory.

At this point, any small changes to your source code require the Docker build to run
the composer install step without cache, which is very slow. We revisit this later in the
chapter and learn how to cache Composer dependencies in the image to speed up

builds.

Ignoring Local Vendor Files

If you run a Docker build, you might be surprised how quickly "composer install" runs
during a build. It should run much slower from scratch, but you instead see "Nothing
to install or update" when you run docker build. The mystery behind the quick builds is
the fact that we are copying all the local vendor files in from the initial composer create-

project command into the image before running composer install.

To get a clean Composer installation, we need to ignore the local vendor/ folder during
a build using a .dockerignore file. The .dockerignore file resides in the same directory as
the Dockerfile file and works similarly to a .gitignore file, ensuring that unintended files

are left out during a COPY or ADD instruction (Listing 5.7):

>_ Listing 5.7: Ignore the vendor folder

$ echo "app/vendor/" >> .dockerignore

$ docker build --no-cache -t che5-composer .

$ docker run -it --rm ch@5-composer bash
root@ccl40128b59f: /var/www/html# 1s -la vendor/

72

Chapter 5: Using Composer PHP with Docker

We added the app/vendor/ path to the .dockerignore file, which means Docker ignores
this path when ADD app /var/www/html runs. Without the vendor folder copied into the
image, Composer installs everything from scratch. This nuance of copying files from
your local machine (or a build server) is hard to sometimes catch with Docker; pay

attention to which files get copied into an image.

Installing Private Composer Packages in Docker

When you try to move to Docker, you eventually run into the problem of providing
proper credentials while installing private Git repositories in your projects. There are a
couple of ways you could go about solving permissions issues, but all have security

concerns:

1. Copy an SSH key into the Docker image from a build machine
2. Install Composer dependencies on a credentialed machine and then copy the
vendor/ folder into the image during a build

3. Use an OAuth token with a Composer config file during a docker build

I hesitate to share the first one, because of the substantial security issues of embedding
SSH access into an image. However, I have seen this technique used in the wild, so I

bring it up for awareness.

For argument's sake, if you put aside the significant security risks, the first option does
work in the technical sense. However, copying an SSH key into your image at build time
is cumbersome at best. Each developer would require access to this SSH key for local
development builds. If you ever need to update or revoke the SSH key, everyone would

need to get a new copy of the private key.

I have found the best way to deal with this situation, due to the security risks and lack
of built-time secrets, is the second option: install composer dependencies on a

credentialed build server and then copy the vendor/ folder into the Docker image.

73

Chapter 5: Using Composer PHP with Docker

The landscape for using build-time secrets is still a work-in-progress (see
https://github.com/moby/moby/issues/13490) at the time of writing. I imagine that soon
build-time secrets make it possible to pass in sensitive credentials that you can use to
produce an auth.json file in the image, install composer, and remove the auth.json file

in the same layer, all without a trace of your secret key.

In the meantime, if you are adamant about installing private Composer dependencies
during a docker build I think the third option is the best, so we cover it in this text, and
you should be able to adapt these techniques as Docker improves the ability to handle

secrets at build time.

Here are the steps we take:

1. Create a private git project on Bitbucket.org

2. Create a read-only OAuth consumer on Bitbucket.org

3. Generate a unversioned auth.json config in our project

4. Define the private Composer dependency as a required package

5. Run our existing docker build command

Bitbucket offers free private repositories at the time of this writing, so we use Bitbucket
in our example, but you can also use Github and others. You need to sign up
(https://bitbucket.org/account/signup/) for a Bitbucket.org account if you want to

follow along.

After logging in, go to "Bitbucket Settings > OAuth" and then click "Add a Consumer."
Fill out a name and description, and lastly you must enter a callback URL for
Composer to work with this key! I fill out something like http://example.com, but it can
be anything. Composer won't use this callback, but it's mandatory for things to work

right. The particular grant flow that Composer utilizes does not use the callback.

74

Chapter 5: Using Composer PHP with Docker

® Bitbucket OAuth Help

Bitbucket provides documentation for setting up OAuth on Bitbucket Cloud if

you need assistance (https://goo.gl/jZqgkq).

Once you set up BitBucket, you need to create a private repository and then clone a
local copy on your machine so we can set up the private package for consumption by

our Docker builds.

Setting up the Private Package

Once you create the project in version control, add a composer.json file to the root of the

project (Listing 5.8):

</> Listing 5.8: Private composer.json File

€

"name'": "bitpressio/docker-private-package",
"description": "An example private composer package",
"license": "MIT",

"authors": [

€

"mame": "Paul Redmond"

1,
"require": {3},
"autoload": §
"psr-4": {
"Bitpress\\DockerPrivatePackage\\": "src/"

3,

"extra": §
"branch-alias": §
"dev-master": "1.0.x-dev" 1

75

Chapter 5: Using Composer PHP with Docker

Change the Composer name property to match your Bitbucket repository and modify
the namespace to match whatever you want to use. The autoload section autoloads the
package's namespace, and finally the extra key contains a branch alias so we can install

out dependency as 1.0.x-dev from the master branch.

Next, create the file in src/Example.php but update the namespace to match the

namespace you configured in the composer.json file (Listing 5.9):

</> Listing 5.9: The Example Class in our Private Package

<?php
namespace Bitpress\DockerPrivatePackage;

/**
* An exampfle class demonstrnating installing a private
* Composen package in Docke~n

*/
class Example {3

If you are following along, commit your files and push them to your private Bitbucket
repository.
Authenticating the Private Package in Composer

We need to provide a way to authenticate our private Bitbucket repository using the

OAuth consumer we created at the beginning of this section.

The Composer documentation references how a bitbucket-oauth configuration key

(https://getcomposer.org/doc/06-config.md#bitbucket-oauth) should be defined.

76

Chapter 5: Using Composer PHP with Docker

This file lives in the root of your Composer project and Composer looks in that location

(among others) for an auth.json file.

We don't want to store private credentials in the repository, so we build a template
version of the auth.json file that can be distributed to all environments easily. Create a

file at app/auth.dist.json with the following contents (Listing 5.10):

</> Listing 5.10: Composer auth.dist.json Template

¢
"bitbucket-oauth": §
"bitbucket.org": ¢
"consumer-key'": "%consumer-key%'",
"consumer-secret': '"%consumer-secret%"
3
3
3

The file has two tokenized values that we replace with a bash script so that developers

and build servers can keep secrets out of the repository.

To replace the tokenized values, let's create auth-setup.sh in the root of the project

alongside the Dockerfile and add the following (Listing 5.11):

77

Chapter 5: Using Composer PHP with Docker

</> Listing 5.11: Bash Script to Automate Generating auth.json

[-e app/auth.json] && echo "auth.json already exists.
Skipping." && exit ©;

if [! -z "$BITBUCKET_CONSUMER_KEY"] && [! -z
"$BITBUCKET_CONSUMER_SECRET"]; then
cp app/auth.dist.json app/auth.json

sed -1 "' -e "s/%consumer-key%/$BITBUCKET_CONSUMER_KEY/"
app/auth.json
sed -i '' -e "s/%consumer-

secret%/$BITBUCKET_CONSUMER_SECRET/" app/auth.json
echo "Created the auth.json file"
exit ©

fi

echo "You need to set '\$BITBUCKET_CONSUMER_KEY' and

"\$BITBUCKET_CONSUMER_SECRET' environment variables!";
exit 1;

The auth-setup.sh file checks for two environment variables and exit with a warning if
they don't exist. The script copies the auth.dist.json file to auth.json and replaces the

tokens with the Bitbucket key and secret.

Remember to make the file executable so you can run it (Listing 5.12):

>_ Listing 5.12: Create the auth.json file

$ chmod u+x auth-setup.sh

$ export BITBUCKET_CONSUMER_KEY=key
$ export BITBUCKET_CONSUMER_SECRET=secret

78

Chapter 5: Using Composer PHP with Docker

Apply the key/secnet to app/auth.json
$./auth-setup.sh
Created the auth.json file

Be careful not to commit auth.json into version control-versioning it would defeat the

whole purpose (Listing 5.13):

>_ Listing 5.13: Ignore auth.json

$ echo "auth.json" >> app/.gitignore

The next step is adding your private repository to composer, including additional

configuration for the location of the VCS repository in the repositories key (Listing 5.14):

</> Listing 5.14: Add Your Private Repository to composer.json (partial file)

¢
"require": {
"php": ">=7.0.0",
"fideloper/proxy'": "~3.3",
"laravel/framework": "5.5.*",
"laravel/tinker": "~1.0",
"bitpressio/docker-private-package": "1.0.x-dev"
3
"repositories": [
¢
"type'": "vcs",
"url": "https://bitbucket.org/bitpressio/docker-
private-package.git"
3
]
3

79

Chapter 5: Using Composer PHP with Docker

If you recall earlier, you used branch-alias in your private repository's composer.json to

alias the master branch to version 1.0.x-dev.

Even though you are running Composer while building a Docker image, you need to
update your Composer dependencies locally, and version control the composer.lock file.
Composer uses the lock file to install the desired set of packages during the docker build

command (Listing 5.15):

>_ Listing 5.15: Adding the Private Repository to the Composer lock file

$ cd app/
$ composer update bitpressio/docker-private-package
Package operations: 1 install, © updates, © removals
- Installing bitpressio/docker-private-package (dev-master
Ldoug8sb)

Building with a Private Package

We are ready to build a private package defined in our Composer dependencies. Make
sure the auth.json file we created earlier exists with valid credentials, and run a build

from the root of the project (Listing 5.16):

>_ Listing 5.15: Adding the Private Repository to the Composer lock file

$ docker build -t che@5-composer

$ docker run --rm -it che5-composer /bin/bash

$ 1s -1la vendor/bitpressio/docker-private-package
drwxr-xr-x 3 root root 4096 Apr 15 07:48

80

Chapter 5: Using Composer PHP with Docker

drwxr-xr-x 3 root root 40896 Apr 15 ©7:4L8 ..

-Tw-r--r-- 1 root root 8 Apr 11 ©7:04 .gitignore

-Irw-r--r-- 1 root root 435 Apr 11 ©7:0L composer.json
2

drwxr-xr-x root root 4096 Apr 11 07:0L src

You can also run the /s command locally instead:

$ docker run --rm -it ch@5-composer \
ls -1la /var/www/html/vendor/bitpressio/docker-private-package

Installing the private package worked, because the auth.json file gets copied into the
image during builds, and Composer checks for the existence of the file to validate

credentials.

We could remove the auth file from the image with a subsequent RUN instruction, but
the file is still present in the ADD layer where we added the source code and technically
leaked. The file appears removed in the resulting image, but it is still part of the fabric

of the image.

Until build-time secrets progress, I prefer to build my composer dependencies outside

of the Dockerfile, copy them in during a build, and then to verify the image.

Caching Composer Dependencies for Faster Builds

In the last section, we installed Composer dependencies as part of our Dockerfile build
process. One problem so far is that if you make changes to your code and then run

docker build, the composer install step needs to install dependencies from scratch.

If your project hasn't changed since your last build, each layer is cached and builds
quickly. However, if you modify a project file, the ADD app /var/www/html step needs to
be updated. As a result, all the proceeding layers need to be updated, including

"composer install."

81

Chapter 5: Using Composer PHP with Docker

Composer dependencies don't change much day-to-day in stable projects, so we can

adjust a few things to gain some caching benefits.

The basic idea is that we copy the composer.json and composer.lock files into the image to

cache dependencies in a layer above the ADD app /var/www/html step that needs to run

more often (Listing 5.21):

</> Listing 5.21: Caching Composer Dependencies

FROM php:7.1-apache

COPY composer-installer.sh /usr/local/bin/composer-installer

RUN apt-get -yqq update \

&&
&&
&&
&&
&&
&&

apt-get -yqq install --no-install-recommends unzip \
chmod +x /usr/local/bin/composer-installer \
composer-installer \

mv composer.phar /usr/local/bin/composer \

chmod +x /usr/local/bin/composer \

composer --version

WORKDIR /tmp
ADD app/composer.json app/composer.lock app/auth.json /tmp/
RUN mkdir -p database/seeds \

mkdir -p database/factories \

&&

&&

composer install \

--no-interaction \

--no-plugins \

--no-scripts \

--prefer-dist \
rm -rf composer.json composer.lock auth.json \
database/ vendor/

82

Chapter 5: Using Composer PHP with Docker

ADD app /var/www/html
WORKDIR /var/www/html

RUN composer install \
--no-interaction \
--no-plugins \
--no-scripts \
--prefer-dist

The new block of code in Listing 5.21 copies the composer. and auth.dist.json files into
the temporary folder (/tmp/) with the ADD instruction. When using ADD with more
than one source file, the destination (/tmp/) must be a directory and end with a

forward slash.

Additionally, we need the database/ folder so the installation doesn't fail; the
database/seeds and database/factories paths are defined in the Composer autoload and

must exist, but we don't need to add the actual files quite yet.

Later in the build, we run composer install again to set up the project correctly, including
the autoloaded files in the database/ path. The goal of the caching step is to prime the
cache with vendor packages, making the second composer install very fast because it
uses cached versions of the repositories that we just installed every time. When the
auth.json, composer.json, or composer.lock file changes, the cache layer is rebuilt along

with all subsequent layers.

The final Docker instruction in the cache step removes the files installed in the
/tmp/vendor/ folder. We don't need them anymore because the vendor files get copied
from Composer's cache during the second composer install. The cached vendor files

remain in the layer (~/.composer/cache), so we can use them later.

83

Chapter 5: Using Composer PHP with Docker

If you run docker build a couple of times you should see your dependencies installed
from the cache and composer install should be relatively quick. Modify a few files, see

how the build changes, and which steps are cached based on your changes.

Caching reduces builds for unnecessary steps that haven't changed; however, some
people prefer to have a clean build without any Composer cache in their CI
environment. If you want to skip caching, you can create a fresh build every time by

running docker build --no-cache, which makes the entire Docker image from scratch.

Running Composer Locally

Another way you can develop applications with Docker is to run Composer (and other
development commands) locally. You might run into issues with required PHP versions
and modules not being installed on your machine, however, if you install modern PHP7
tools, and your project requirements are similar, I find that running local Composer

commands is decent workflow.

I can trust that the correct platform dependencies get installed at build-time, and it
works out for me. Since I develop Docker applications with a mounted volume, my

local command line changes reflect immediately in running containers.

Although I prefer to run commands locally, some projects fit running everything
through Docker; especially if the environment is complicated or a legacy project. Using
Docker for all Composer commands also ensures teams use the same Composer

environment.

The context of the project is essential in determining your workflow. For projects with
teams, I prefer to contain the entire workflow in Docker, but for smaller projects, on
my own, I work locally. These are my own rules; I recommend you come up with your

ow1m as you experiment.

8L

Chapter 5: Using Composer PHP with Docker

If you run commands locally, you can skip platform checks with:

$ composer install --ignore-platform-reqs

If you ignore platform requirements, be sure you run tests inside the container that

verify your platform and have a proper CI process in place.

Composer Gold Edition

Hopefully, this chapter provided a decent primer for working with Composer in
Docker. I think this is one of the more confusing and tricky parts of working with PHP
in Docker. You should have all the tools you need to build composer dependencies are

part of your Docker build, including private repositories.

I introduced the idea of building Composer dependencies outside of the image before
running docker build. If you're new to Docker, the chances are that your existing build
pipelines are already installing Composer dependencies outside of Docker. Keeping
your build in-tact and copying the result into Docker could be a good stop-gap as you

experiment with different build strategies with Docker.

85

Chapter 6: Web Servers and PHP-FPM

Up until this point, we've been using Apache as our web server. I like Apache, and
sometimes I use it just because it's very convenient to set up and it works well. Another
common server choice is Nginx, and so in this chapter, we focus on running Nginx in

Docker.

We also look at Caddy server—an HTTP/2 server written in Golang and offering
automatic SSL/TLS certifications—which another excellent option for your PHP

projects.

Creating the New Project

In this chapter, we design our Nginx project to run a Nginx container and a separate
PHP-FPM container. In this scenario, Nginx communicates with the PHP-FPM
container through networking in the same way we've linked our application to a
database container. We write the necessary Dockerfile configurations for both the PHP
and Nginx containers and then hook them up via Docker Compose. Along the way, we

cover serving static assets (i.e., JavaScript, CSS, etc.) with Nginx.

For this chapter, we will use the Slim (https://www.slimframework.com/) PHP

Framework as we work through the Docker setup (Listing 6.1):

>_ Listing 6.1: Project Setup

$ cd ~/Code
$ composer create-project slim/slim-skeleton:~3.8 ché6-nginx-fpm
$ cd ché-nginx-fpm

86

Chapter 6: Web Servers and PHP-FPM

Hello Nginx

Our first goal is getting Nginx running. The most simple way to do that with Docker is
to run the official Nginx image and expose a port mapped to 80 in the container (Listing

6.2), allowing us to dive in quickly and play around:

>_ Listing 6.2: Running the Default Nginx Container

$ docker run --name nginx-container -p 8680:80 -d nginx:1.12
Unable to find image 'nginx:stable' locally

13103e90a86LaabLea2cabo8b038f1674LL201bbd8296df11e61b5fL1a297286e

We created a container with the official Nginx image using the stable tag, which at the
time of this writing is 1.12. The -d flag detaches the container and prints the container
ID and the --name flag assigns a name to the container. If you open up

http://localhost:8080, you should see something similar to Figure 6.1.

[Welcome to nginx!

< C' @ localhost:8080

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

[sa] Figure 6.1: Welcome to Nginx

87

Chapter 6: Web Servers and PHP-FPM

The ability to quickly run Nginx with one command without installing it locally or
using a virtual machine is an excellent advantage over other environments. I love that
Docker makes hacking on new technologies so easy, but unless we plan on running a
static site, what we have won't get us very far. Let's stop and remove the container so we
can start working on getting our own Nginx configuration communicating with a

separate PHP-FPM container.

The container isn't running in the foreground because we used the docker run -d flag,

but we can stop it with the docker stop command (Listing 6.3):

>_ Listing 6.3: Stop All Running Containers

$ docker stop $(docker ps -q)
12103e90a86L4L

$ docker rm $(docker ps -aq)
6a0e60855eaa
817263bf67d6
d74fbc765bfc

I just introduced the -q flag, which stands for quiet and only displays numeric IDs. We
take advantage of this flag to stop and remove all containers. You could also run docker

ps, grab the container ID(s), and then pass the ID to the docker stop command.

The second command, docker rm, removes the containers using the same trick to
remove all containers. The remove command also requires the -a flag to return all

container IDs, instead of just the running containers.

If you run docker ps -a again at this point, you get an empty list. Keep a reference of the

commands in Listing 6.3 to clean up your local Docker environment quickly.

88

Chapter 6: Web Servers and PHP-FPM

Setting up Nginx and PHP-FPM

To use Nginx, we are going to run two containers: one for the PHP-FPM container and
the other for Nginx serving as a reverse-proxy for the PHP container. The Nginx
container communicates with PHP over the network on port 9000 on a default internal

network that Docker Compose automatically creates.

Let's start by creating the Docker project files (Listing 6.4):

>_ Listing 6.4: Creating the Skeleton Files

$ cd ~/Code/ché6-nginx-£fpm

$ mkdir -p .docker/php .docker/nginx/conf.d/
$ touch \
.docker/nginx/Dockerfile \
.docker/php/Dockerfile \
.docker/nginx/nginx.conf \
.docker/nginx/conf.d/app.conf \
docker-compose.yml

After you create the files, here's what the project tree should look like:

| --- .docker

| | --- nginx

| | | --- Dockerfile
| | |--- conf.d

| | |--- nginx.conf
|

| | | --- Dockerfile
|--- .gitignore

| --- CONTRIBUTING.md

| --- README.md

| --- composer.json

| --- composer.lock

| --- docker-compose.yml

89

Chapter 6: Web Servers and PHP-FPM

|--- logs

| --- phpunit.xml
| --- public

| --- src

| --- templates
|--- tests

| --- vendor

This chapter is the first time we are building multiple images in one project. I like to
organize each image into a separate subfolder inside of the main .docker/ folder,

keeping things tidy and easy to follow.

We created a few Nginx config files that we copy into the Nginx image, including the
main nginx.conf file and the app.conf file that allows us to customize the Nginx

configuration.

The Nginx Image

Were are going to create the Nginx image first to serve static assets like images, CSS,
and JavaScript, and everything else is proxied to the PHP-FPM container. We extend the
official Nginx image and add our configuration to provide some flexibility in our setup
and allow you to add custom configuration like different MIME types, enabling GZIP.
Our application has a versioned server configuration that we'll copy into the image as

well to serve the application.

Here's what the Dockerfile looks like for our Nginx image (Listing 6.5):
</> Listing 6.5: The Nginx Dockerfile
FROM nginx:1.12
LABEL maintainer="Paul Redmond"

RUN rm /etc/nginx/conf.d/default.conf

90

Chapter 6: Web Servers and PHP-FPM

COPY .docker/nginx/nginx.conf /etc/nginx/nginx.conf
COPY .docker/nginx/conf.d/*.conf /etc/nginx/conf.d/
COPY . /sxv/app/

We extend the nginx:1.12 tag, which is the stable version of Nginx at the time of this
writing. Next, we remove the default.conf server configuration, so we can version our
own Nginx settings in the project. The last three lines copy configuration files that are
version controlled in the project: the main nginx.conf and all files located in conf.d/ that

end in .conf.

Because we are overriding the main nginx.conf file contained in the Nginx image, let's
grab the contents of the nginx.conf as a starting point that we'll version. We can get the
configuration file contents by running a Nginx container and using docker cp to copy

the default files to our project (Listing 6.6):

>_ Listing 6.6: Copy the Nginx Config Files from the Container

$ docker run --name nginx-container -p 86806:80 -d nginx:1.12

$ docker cp nginx-container:/etc/nginx/nginx.conf
.docker/nginx/nginx.conf

$ docker stop nginx-container
$ docker rm nginx-container

Next, update the .docker/nginx/conf.d/app.conf file with the following contents for our

server configuration (Listing 6.7):

</> Listing 6.5: The Nginx Dockerfile

server §
listen 86;
server_name localhost;
index index.php;

921

Chapter 6: Web Servers and PHP-FPM

root /srv/app/public;

location / ¢
try_files $uri /index.php$is_argsgargs;

location ~ \.php {

try_files $uri =LoL;

fastcgi_split_path_info A(.+\.php)(/.+)$;

include fastcgi_params;

fastcgi_param SCRIPT_FILENAME
$document_root$fastcgi_script_name;

fastcgi_param SCRIPT_NAME $fastcgi_script_name;

fastcgi_index index.php;

fastcgi_pass app:96060;

We've taken the Nginx configuration from the Slim documentation
(https://www.slimframework.com/docs/start/web-servers.html#nginx-configuration)
and adjusted a few things to match our environment. The root points to the
application's public directory, and we've updated fastcgi_pass app:9000; to match the

service name of the PHP container.

The PHP Image

Our next task is creating a PHP Dockerfile using the base php:7.1-fom tag that runs the
application with PHP-FPM. Because we are using the PHP image, we don't have to
worry about the details of running the php-fpm process; we only need to copy our
application code into the container and make sure the www-data user owns the files.

The base image is doing most of the work for us!

The Dockerfile should look familiar to you at this point, enter the following in the

.docker/php/Dockerfile file (Listing 6.8):

92

Chapter 6: Web Servers and PHP-FPM

</> Listing 6.8: The PHP Container

FROM php:7.1-fpm
LABEL maintainer="Paul Redmond"

CoPY . /sxv/app/

WORKDIR /srv/app/

RUN chown -R www-data:www-data /srv/app

The Docker Compose File

The final step before we try out the code is defining our containers in the docker-
compose.yml file. As of this writing Slim ships with a docker-compose.yml file in the

root of the project, but we are going to replace it with our own services.

We need to link our containers together so that Nginx can proxy requests to PHP

through the network that we'll define in the docker-compose.yml file (Listing 6.9):

</> Listing 6.9: The PHP Container

version: "3"
networks:
app-tier:
driver: bridge
services:
app:
build:
context:
dockerfile: .docker/php/Dockerfile
networks:
- app-tier
ports:
- 9002:9000

93

Chapter 6: Web Servers and PHP-FPM

nginx:
build:
context:
dockerfile: .docker/nginx/Dockerfile
networks:
- app-tier
ports:
- 8080:860

We've introduced the networks key, and configured our nginx and php services to use
this network. We've also added the context and dockerfile keys which allow us to
reference the root folder as the context of the Docker build, yet keep our Dockerfile for

each image tucked away in the .docker/ folder.

The context and dockerfile keys are equivalent to "docker build -f.doker/php/Dockerfile -t
<the-tag>.", the last dot being the current folder (context). By default, docker build looks
on the same path for the Dockerfile, so when you need to build multiple images in a

project, our technique works well to keep things organized.

Another thing to note in Listing 6.9 is the non-standard PHP-FPM port number on the
host machine. If you run a local environment containing PHP-FPM, port 9000 isn't

available. We can use 9002 instead which is relatively arbitrary but avoids conflicts.

Running the Containers

We have everything in place needed to run our networked containers and verify that
things are working as expected. This chapter is the first time we are building multiple

images, so you see build output for both php and nginx images (Listing 6.10):

>_ Listing 6.10: Running Docker Compose

$ docker-compose up --build

Attaching to chénginxfpm_nginx_1, chénginxfpm_app_1

oL

Chapter 6: Web Servers and PHP-FPM

app_1 | [28-May-2017 ©8:02:32] NOTICE: fpm is running, pid 1
app_1 | [28-May-2017 ©8:02:32] NOTICE: ready to handle
connections

With any luck, you should see the default Slim response (Figure 6.2):

®® [sim3

< C' @ localhost:8080

Slim

SlimFramework

4] Figure 6.2: Nginx + PHP-FPM Success!

Now that things are working let's add a volume so we can edit files locally while

developing (Listing 6.11):

</> Listing 6.11: Add Volumes for Local Development

version: "3"
networks:
app-tier:
driver: bridge
services:
app:
build:
context:

95

Chapter 6: Web Servers and PHP-FPM

dockerfile: .docker/php/Dockerfile
networks:
- app-tier
ports:
- 9002:9000
volumes:
- .:/srv/app
nginx:
build:
context:
dockerfile: .docker/nginx/Dockerfile
networks:
- app-tier
ports:
- 80860:80
volumes:
- ./public:/srv/app/public

You need to restart the containers for the volumes to take effect. You can do so by

hitting "Ctrl+c" if you are running docker-compose in the foreground.

If you are running Docker Compose in the background you need to run the following:

$ docker-compose down
$ docker-compose up

The volumes (https://docs.docker.com/compose/compose-file/#volumes) configuration
option includes a host volume mounting your project code in the container path
/srv/app in the PHP container, and /srv/app/public in the Nginx container, allowing you

to edit files locally and have them reflect immediately.

96

Chapter 6: Web Servers and PHP-FPM

File Permissions

Depending on your environment, you might get write permission errors. If you

run into this issue, run chmod -R o+rw the/folder/ locally.

The primary role of the Nginx container is serving static assets like JavaScript and CSS,
and proxying requests to the PHP container. We are copying the whole application into

both images, but all Nginx needs is the contents of the public folder.

Along the way, we focus on making Nginx configuration tweaks, learn how to define
additional custom mime types, and enable gzip compression for static assets. You will

start to see how versioning the Nginx configuration pays off.

The Nginx configuration might be a review for you, but let's focus on our Docker
workflow around configuration, updating images, and running and debugging

containers.

Before we start changing configuration, let's first change the Nginx Dockerfile to only

copy the public/ folder (Listing 6.12):

</> Listing 6.12: Update the COPY step in the Nginx Dockerfile

FROM nginx:1.12
LABEL maintainer="Paul Redmond"

RUN rm /etc/nginx/conf.d/default.conf

COPY .docker/nginx/nginx.conf /etc/nginx/nginx.conf
COPY .docker/nginx/conf.d/*.conf /etc/nginx/conf.d/
COPY public/ /srv/app/public

97

Chapter 6: Web Servers and PHP-FPM

Let's see how the change from Listing 6.12 affects the image (Listing 6.13):

>_ Listing 6.13: Rebuild the Nginx Image and Inspect It

+

docker-compose down

+

docker-compose build nginx
$ docker-compose up

+A

docker ps
$ docker exec -it ca3f5aaabou5 bash

$ 1s -la /srv/app/public/

total 16

drwxr-xr-x 2 root root 4096 May 29 19:08
drwxr-xr-x 3 root root 4096 May 29 19:08 ..
-rw-r--r-- 1 root root 313 Sep L4 2016 .htaccess
-rw-r--r-- 1 root root 725 May 29 18:31 index.php

Now we don't have any unnecessary PHP code in the Nginx image, keeping it small and

tidy.

Adding Gzip Compression

By default, Nginx doesn't enable Gzip compression, but we can easily modify our
configuration to reduce file size for faster network transfers, which speeds up your

applications and save on bandwidth costs.

To get a feel for working with static files, let's download jQuery and use it to verify

configuration changes we are going to make to enable Gzip compression (Listing 6.14):

98

Chapter 6: Web Servers and PHP-FPM

>_ Listing 6.14: Downloading jQuery for Testing

$ mkdir -p public/js

$ curl -sS https://code.jquery.com/jquery-3.2.1.3s \
> public/js/jquery.js

Before working on getting Gzip enabled, let's verify that Nginx is serving jQuery

correctly by running the updated Nginx container and making a request (Listing 6.15):

>_ Listing 6.15: Verify Nginx is Serving Static Files

$ curl -H "Accept-Encoding: gzip" \
-I http://localhost:8080/js/jquery.js

HTTP/1.1 260 OK

Server: nginx/1.12.2

Date: Wed, 15 Nov 2017 14:09:59 GMT
Content-Type: application/javascript
Content-Length: 2680639

Last-Modified: Wed, 15 Nov 2017 14:09:16 GMT
Connection: keep-alive

ETag: "5a@cLka8c-L41707"

Accept-Ranges: bytes

Nginx isn't serving our JavaScript with gzip encoding because our nginx.conf file has
gzip commented out (#gzip on;). We want to be able to serve compressed responses, so

let's adjust our nginx.conf file and enable gzip (Listing 6.15):
</> Listing 6.15: Adding gzip Compression to Nginx

user nginx;
worker_processes 1;

929

Chapter 6: Web Servers and PHP-FPM

error_log /var/log/nginx/error.log warn;

pid /var/run/nginx.pid;
events §

worker_connections 102L4;
3
http {

include /etc/nginx/mime. types;
default_type application/octet-stream;

log_format main
'$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'""$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

sendfile on;
#tcp_nopush on;

keepalive_timeout 65;

gzip on;
gzip_disable "msie6";
gzip_min_length 256;
gzip_types
text/plain
text/css
application/json
application/x-javascript
application/javascript
text/xml
application/xml
application/xml+rss
text/javascript
application/vnd.ms-fontobject 1

100

Chapter 6: Web Servers and PHP-FPM

application/x-font-ttf
font/opentype
image/svg+xml
image/x-icon

include /etc/nginx/conf.d/*.conf;

Note that we disable gzip for older Internet Explorer browsers and target specific mime
types. Other than that, you can reference the Nginx documentation if you need a

refresher on gzip configuration or want to expand on what we have.

As you probably have guessed by now, we need to rebuild the image before we can

verify that our changes work (Listing 6.16):

>_ Listing 6.16: Testing Out gzip

+

docker-compose down

+

docker-compose build nginx

+

docker-compose up -d

$ curl -H "Accept-Encoding: gzip" \
-I http://localhost:8086/js/jquery.js

HTTP/1.1 200 OK

Server: nginx/1.12.2

Date: Wed, 15 Nov 2017 14:12:3L GMT
Content-Type: application/javascript
Last-Modified: Wed, 15 Nov 2017 14:09:16 GMT
Connection: keep-alive

ETag: W/"5a@cLka8c-L41707"

Content-Encoding: gzip

We have compressed assets in Nginx, excellent work! I recommend exploring the rest

101

Chapter 6: Web Servers and PHP-FPM

of the Nginx configuration, such as the /etc/nginx/mime.types file, to get familiar with
tweaking Nginx. I love how Docker makes it easy to experiment with technologies

without affecting my local computer.

Removing Server and PHP Version

You might have noticed the Server: nginx and X-Powered-By: PHP headers while we were

testing out gzip. Let's quickly disable those before we call our Nginx setup good.

First, disable server tokens in the Nginx server configuration to mask the Nginx version

(Listing 6.17):

</> Listing 6.17: Remove the Nginx Version from the Server Header

server §
listen 86;
server_name localhost;
server_tokens off;
index index.php;
root /srv/app/public;

location / {
try_files $uri /index.php$is_argsgargs;

location ~ \.php {
try_files $uri =LeL;
fastcgi_split_path_info A~(.+\.php)(/.+)$;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME
$document_root$fastcgi_script_name;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_index index.php;
fastcgi_pass app:960600;

102

Chapter 6: Web Servers and PHP-FPM

Next is the X-Powered-By PHP header. We haven't created a php.ini file for this project
yet, so let's create that file locally (Listing 6.18):

>_ Listing 6.18: Create the php.ini File

$ echo "expose_php = off" > .docker/php/php.ini

The "expose_php" setting removes the "X-Powered-By" header sent back in responses

from the application.

The last step is copying the php.ini file into the image (Listing 6.19):

</> Listing 6.8: The PHP Container

FROM php:7.1-fpm
LABEL maintainer="Paul Redmond"

COPY . /sxv/app/
COPY .docker/php/php.ini /usr/local/etc/php/php.ini

WORKDIR /srv/app/

RUN chown -R www-data:www-data /srv/app

After you rebuild your images, the X-Powered-By PHP header is gone, and the Nginx
header doesn't expose the Nginx version anymore. Hiding this server information from
prying eyes is ideal because would-be attackers have less knowledge about the specific

setup.

$ docker-compose down
$ docker-compose up -d --build

$ curl -I http://localhost:8086

103

Chapter 6: Web Servers and PHP-FPM

HTTP/1.1 200 OK

Server: nginx

Date: Wed, 15 Nov 2017 14:2L:01 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Set-Cookie: PHPSESSID=9e0cababe324c92c38ab625e0Lc6L42bl; path=/
Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

We have an excellent foundation for a Nginx and PHP setup in that our images are
simple and easy to extend. You can add complexity as you need it, but I think this

chapter proves that Docker can provide an extensible setup that is not complicated.

Next, we'll check out another up-and-coming HTTP/2 web server, Caddy, which is

another alternative you can use besides Apache and Nginx.

Caddy Server

Another server you can use with PHP is my personal favorite right now: Caddy
(https://caddyserver.com/), an HTTP/2 server written in Golang. Caddy is a pleasure to
work with, and configuration feels clean and straightforward to me. I also feel that it
simplifies my application containers even further and I am going to show you a

technique to run Caddy and PHP-FPM without multiple containers.

You can also run Caddy just like we ran Nginx with a separate Caddy container and a
PHP-FPM container, but I'll let you figure that out on your own (hint, you just need to

modify the FastCGI directive to point to a separate PHP container).

Caddy Setup

We're going to pick up the pace a little in this section, but it should be a breeze! First
things first, let's create a new Laravel project for this section and start fresh (Listing

6.20):

1oL

>_ Listing 6.20: Creating the Laravel Project

$ cd ~/Code

A

laravel/laravel:5.5.* ché6-caddy
cd ché6-caddy
mkdir .docker/

Tl A A A

touch docker-compose.yml

composer create-project --prefer-dist \

touch .docker/Dockerfile .docker/Caddyfile

Chapter 6: Web Servers and PHP-FPM

We created a Dockerfile for our PHP code and Caddy binary, and a Caddyfile to

configure the Caddy server.

File Permissions

If you are running Docker on Linux, you might get write permission errors on

volume directories. If you run into this issue, run chmod -R o+rw storage/

bootstrap/ locally.

Next, let's create the docker-compose.yml file (Listing 6.21):

</> Listing 6.21: The Docker Compose File

version: "3"
services:
app:
build:
context:
dockerfile: .docker/Dockerfile
ports:
- 2015:2015

volumes:
- .:/srv/app

105

Chapter 6: Web Servers and PHP-FPM

We map port 2015, which is the default port that Caddy uses to accept HTTP requests,
but you can quickly change which port Caddy runs on through the Caddyfile.

The Caddy Dockerfile

We don't need to extend a Caddy image like we are doing with Nginx, we can just use

the php-fpm image and install the Caddy binary.

Add the following in the Dockerfile to install Caddy (Listing 6.22):

</> Listing 6.21: The Docker Compose File

FROM php:7.1-fpm

LABEL maintainer="Paul Redmond"

RUN curl --silent --show-error --fail --location \
--header "Accept: application/tar+gzip, application/x-gzip,
application/octet-stream” -o - \

"https://caddyserver.com/download/linux/amdé4?plugins=http.expire
s,http.realip&license=personal” \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

&& chmod 0755 /usr/bin/caddy \

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql

COPY .docker/Caddyfile /etc/Caddyfile
COPY . /sxv/app/

WORKDIR /sxv/app/
RUN chown -R www-data:www-data /srv/app

CMD ["/usr/bin/caddy", "--conf", "/etc/Caddyfile", "--log",
"stdout"]

106

Chapter 6: Web Servers and PHP-FPM

First, we download Caddy via cURL, using query string parameters to define the Caddy
plugins we want to use and the license type. You can adjust the plugins based on your
needs by visiting https://caddyserver.com/download and copying the download link
after selecting your configuration. We include the http.expires, http.git, and http.realip
plugins here. Make sure to read the EULA if you plan on using Caddy in a commercial

project!

After downloading Caddy, the command extracts the binary from the archive, makes it
executable, and moves it to /usr/bin/caddy. Last, we defined the CMD instruction with a
--conf flag pointing to our Caddyfile which we need to write, and the --log flag instructs

Caddy to send logs to stdout, which show up in the Docker console.

The Caddyfile

The Caddyfile is a text file that configures how Caddy runs, and I think you'll like the
simple syntax. Here's a basic Caddfile that will run our Laravel application (Listing

6.23):

</> Listing 6.23: The Caddyfile

0.0.0.0
root /srv/app/public
9zip
fastcgi / 127.0.06.1:9000 php
rewrite §
regexp .*
ext /

to /index.php?{query}

header / -Server

log stdout
errors stdout
on startup php-fpm --nodaemonize

107

Chapter 6: Web Servers and PHP-FPM

The first line defines the site address of our application, which is 0.0.0.0, or localhost.
We can use this line to specify the site address, which can take many forms. To learn
more, you should check out the HTTP Caddyfile (https://caddyserver.com/docs/http-

caddyfile) documentation.

The next line, gzip, is known as a Caddy directive. We configure the gzip directive to use

the defaults, but you could customize the configuration with a block:

9zip {
ext extensions...
not paths
level compression_level

min_length min_bytes

Next, we are defining a FastCGI proxy so we can communicate with PHP-FPM. After
FastCGI, we define a main rewrite (https://caddyserver.com/docs/rewrite) rule that
rewrites everything to our app's public/index.php file. We wrap up the Caddyfile by

sending access and error logs to stdout and stderr which show up in Docker's console.

The last line starts PHP-FPM in the background with on startup event. The startup event

is triggered just before the server starts listening.

Learning more about the Caddyfile

You should check out the Caddyfile tutorial
(https://caddyserver.com/tutorial/caddyfile) and then the user guide
documenation (https://caddyserver.com/docs/http-caddyfile) to learn more

about the Caddyfile.

108

Chapter 6: Web Servers and PHP-FPM

Running the Application

We have all the components we need to run the application, so let's try it out (Listing

6.24):

>_ Listing 6.24: Running Caddy

$ docker-compose up --build

Attaching to chécaddy_app_1

app_1 | Activating privacy features... done.

app_1 | 2017/66/11 07:48:01 [INFO] Nonblocking Command:'"php-fpm "
app_1 | http://0.6.06.0:2015

app_1 | 2017/06/11 07:48:01 http://0.0.0.0:2015

app_1 | [11-Jun-2017 ©7:48:01] NOTICE: fpm is running, pid 14
app_1 | [11-Jun-2017 ©7:48:01] NOTICE: ready to handle
connections

app_1 | 127.0.0.1- 11/Jun/2017:07:L48:26 +0000 "GET /index.php"

200

If you decipher the logs, you can see that Caddy is running on port 2015. You are free to

change it in the configuration, but we just used the default for this application.

If you visit http://localhost:2015/, you should see the Laravel welcome page, which

means our application is working.

Logs to Stdout

In Laravel, you can configure the app log settings to errorlog to send logs to

the Docker console.

You can set the APP_LOG=errorlog environment variable in the docker-

compose.yml file to try it out. Afterwards, try running \Log::debug("Test Log"); to

see your application logs from the Docker CLI.

109

Chapter 6: Web Servers and PHP-FPM

Next let's test out our rewrite rule to make sure that other URLSs route to the laravel
application correctly. We can do that by adding a new route to the bottom of

routes/web.php (Listing 6.25):

</> Listing 6.25: Add a Route to Test the Caddy Rewrite

Route::get('/hello', function () §
return ['hello' => request('name', 'world')];

3);

The route returns an array, which Laravel will automatically convert into a JSON

response (Listing 6.26):

>_ Listing 6.26: Verify that the Rewrite is Working

$ curl http://localhost:2015/hello\?name\=paul
{"hello":"paul"}

That completes our whirlwind tour of using Caddy in Docker; I highly recommend that
you dig deeper into the plugin documentation and tinker around with Caddy to learn

more! I've been using Caddy in production for over a year, and it's an excellent server.

You've Been Served

Hopefully, this chapter was an excellent foundation for running PHP applications in a
variety of ways. We expanded beyond running Docker with Apache and learned how to
use containers to run Nginx and PHP-FPM separately. I hope you also give Caddy a try,

it is a pleasure to work with and I use it on a daily basis.

Now, we move on to working with legacy PHP applications you still might have in your
life. Hopefully, you can wrangle your applications in a contained Docker environment,

which is a big step into refactoring and replacing them.

110

Chapter 7: Legacy PHP Applications

We all have that legacy application in our lives. You know, the one of which you are
afraid to restart Apache? Yeah. We've all been there! I find it odd that I am dedicating a
whole chapter in my brand-spanking-new book on legacy code?! In this case, Docker
might help you wrangle that project (and learn how to set it up) without destroying

your local machine.

It's annoying when you have the latest-and-greatest PHP version on your laptop, and
you get that dreaded request to update the legacy project. Maybe you are using Vagrant,
but Vagrant is only helping you in development. You still have to make sure you have

environment parody.

This chapter is handy when you need to set up an environment from scratch. We've
been relying on the official PHP image—I recommend you stick with that in your PHP
projects—but you probably noticed that the official PHP image doesn't support PHP <=
5.4. In fact, the official image only goes back to PHP 5.6 at the time of writing. We'll

have to use an older OS version that supports our madness.

Working with older code gets harder as time goes on (and less secure); requiring you to
build EOL versions of PHP from source, or using an older OS version (i.e., CentOS 6)

that ships with an older PHP package.

111

Chapter 7: Legacy PHP Applications

End of Life (EOL) Software

Running end-of-life software is bad. We've all been there, but I still think it's

worth noting.

I am not showing you these techniques to encourage you to keep old software
around longer. I am teaching you these methods because realistically everyone

deals with these types of projects.

As we work through this chapter, we use an example PHP project to build a Docker
environment and retrofit configuration to work well with a container paradigm.
Specifically, we are going to work with an older version of CakePHP—CakePHP 2 to be
exact (https://book.cakephp.org/2.0/en/index.html). Newer versions of CakePHP 2 work

on PHP 7, but older versions also work with PHP 5.3 which is perfect for this lesson.

I have a place in my heart for CakePHP. It was my first MVC framework, and I am not
trying to pick on it by any means. In fact, I chose it for this chapter since the
documentation is still available, and they do a great job of keeping older releases
accessible. CakePHP is under active development at the time of this writing and is a

robust MVC PHP framework.

As always, the first thing we do is create a project directory structure and add a few

files we'll use to build the Docker environment (Listing 7.1).

>_ Listing 7.1: Project Setup

cd ~/Code
curl -LOk https://github.com/cakephp/cakephp/archive/2.6.06.zip
unzip 2.6.0.zip -d ./

Tl A A B

m 2.6.0.zip

112

Chapter 7: Legacy PHP Applications

cd cakephp-2.6.0

mkdir .docker/

touch docker-compose.yml

touch .docker/Dockerfile \
.docker/vhost.conf \
.docker/httpd-foreground

T A B B

According to the CakePHP documentation, CakePHP 2.6 and below support PHP
>=5.2.8 (https://book.cakephp.org/2.0/en/installation.html#requirements). We use a
version of PHP 5.3 in this chapter, but you could adapt this to other versions, which

requires building PHP and needed extensions from source.

The Dockerfile

We have been extending from the official Docker PHP image up to this point, but in

this chapter, we are going to extend the official Ubuntu image.

There are two common ways we can install older versions of PHP. First, we can use a
PHP package from an older Linux version. Second, we can build PHP (and the required

modules) from source.

In our case, we are going to use Ubuntu 12 LTS to install a more hardened version of
PHP 5.3, but the tradeoff is that the package version installs PHP 5.3.10. A huge positive
for taking this route is that you benefit from PHP security patches provided by
Canonical maintainers, and the package already includes Suhosin

(https://suhosin.org/). I highly suggest you take this route if possible.

If your application depends on >= 5.3.10, you need to install a newer version of PHP 5.3
from source. I'm not going to cover that here, but if you are in this predicament, I am
guessing you're used to building PHP from source. The bad news is that you'll miss out

on some of the security patching prepared by Canonical.

With that bit of explanation out of the way, let's start by installing PHP 5.3 from a
package using Ubuntu 12.04 as the base image (Listing 7.2):

113

Chapter 7: Legacy PHP Applications

<[> Listing 7.2: Install PHP 5.3 from Ubuntu 12.04 Packages

FROM ubuntu:12.04
LABEL maintainer="Paul Redmond"

RUN apt-get -yqq update \

&& apt-get -yqgq install \
apache2 \
libapache2-mod-php5 \
php5 \
php5-mysql \
php5-mcrypt \
php5-suhosin \

&& a2enmod rewrite

We are starting out by installing apache2, mod_php, some PHP packages. Lastly, we

enable mod_rewrite using the a2enmod command.

Let's build the image and investigate a little to see what we get. This command will take
a little longer the first time because Docker needs to pull Ubuntu 12 from the official

Docker repository (Listing 7.3):

>_ Listing 7.3: Build the Docker Image

$ docker build -t cakephp-app -f .docker/Dockerfile

$ docker run --rm -it cakephp-app /bin/bash

root@55318cb78516:/# php -v

PHP 5.3.10-1ubuntu3.26 with Suhosin-Patch (cli) (built: Feb 13
2017 20:37:53)

Copyright (c) 1997-2012 The PHP Group

114

Chapter 7: Legacy PHP Applications

Zend Engine v2.3.0, Copyright (c) 1998-2012 Zend Technologies
with Suhosin v@.9.33, Copyright (c) 2067-2012, by SektionEins
GmbH

Let's Pook at Apache
$ 1s -1la /etc/apache2/

Running Apache

We've already included the apache?2 package in our Dockerfile, so let's get Apache

running in the container. We are going to do a couple of things to make this happen:

1. Add an application service to the docker-compose.yml file

2. Create a script that will run Apache in the container

I am of the opinion that running Apache with a legacy version of PHP is probably the
best choice because it's easy to install and many legacy PHP applications were designed

to work with Apache.

Let's get started by creating a docker-compose.yml file that should look familiar to you at

this point. You can try and create it on your own, or use the following (Listing 7.4):

</> Listing 7.4: Adding the docker-compose.yml File

version: "3"
services:
app:
build:
context:
dockerfile: .docker/Dockerfile
ports:
- 8888:860
volumes:
- .:/srv/cakephp

115

Chapter 7: Legacy PHP Applications

We are setting the build context to the root of the project and specifying the path to the
Dockerfile. We've already used this style, which allows you to organize your Docker

build files in a subfolder.

The next file we need to work on is the script we created in Listing 7.1, .docker/httpd-

foreground, that will be used to run Apache (Listing 7.5):

</> Listing 7.5: The httpd-foreground File

set -e

rm -f /usr/local/apache2/logs/httpd.pid
source /etc/apache2/envvars && exec apachectl -D FOREGROUND

We make sure that the Apache environment variables are sourced and run Apache in

the foreground so that the Docker container won't exit.

Next, we need to copy this file into the container and make it executable (Listing 7.6):

</> Listing 7.6: Copy the http-foreground script into the image

FROM ubuntu:12.04
LABEL maintainer="Paul Redmond"

RUN apt-get -yqq update \

&& apt-get -yqq install \
apache2 \
libapache2-mod-php5 \
php5 \
php5-mysql \
php5-mcrypt \
php5-suhosin \

116

Chapter 7: Legacy PHP Applications

&& a2enmod rewrite
COPY .docker/httpd-foreground /usr/local/bin/
RUN chmod +x /usr/local/bin/httpd-foreground
EXPOSE 86

CMD ["httpd-foreground"]

Because the http-foreground script is in the $PATH, we can reference it without the full

path.

The CMD provides defaults for an executing container, and in our case, the default is
our custom bash script. Up to this point, we've relied on the CMD instruction from the
base PHP images we extend, which is why this is the first time you've seen it in this text.

We go over providing custom commands more in-depth in the next chapter.

Now that we have a way to run Apache in the container by default, we are ready to

rebuild the image and verify that Apache is working as expected (Listing 7.7):

>_ Listing 7.7: Run the Container to Verify Apache

$ docker-compose up --build

If you visit http://localhost:8888 you should see the default Apache response which

means Apache is running in the container (Figure 7.1):

117

Chapter 7: Legacy PHP Applications

[localhost:8888

< C' @ localhost:8888

It works!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

[sa] Figure 7.1: The Default Apache Page

The default Apache response means our setup is working and we can move on to
creating a Virtual Host configuration for our application. Add the following VirtualHost

configuration to .docker/vhost.conf (Listing 7.8):

</> Listing 7.8: The Virtual Host File

<VirtualHost *:80>

DocumentRoot /srv/cakephp/app/webroot

<Directory "/srv/cakephp/app/webroot">
DirectoryIndex index.php
Options -Indexes
Order allow,deny
allow from all
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule »~ index.php [L]

118

Chapter 7: Legacy PHP Applications

</Directory>

ErrorLog /dev/stderr
CustomLog /dev/stdout combined
</VirtualHost>

We are matching up the DocumentRoot to the webroot folder of the application. We
have yet to define the COPY instruction to copy the application into the image, which

we address shortly.

The Ubuntu 12.04 Apache package is Apache version ~ 2.2, so the "allow" syntax
matches that version. Last, we configure the ErrorLog and CustomLog to go to stderr
and stdout respectively so that logs go to the Docker console instead of piling up in the

container.

Next, we need to update the Dockerfile to copy the source code into the path we
defined for the DocumentRoot. We also need to enable the VirtualHost configuration

too so that Apache can serve our application (Listing 7.9):
</> Listing 7.9: The Updated Dockerfile

FROM ubuntu:12.04
LABEL maintainer="Paul Redmond"

RUN apt-get -yqq update \
&& apt-get -yqq install \
apache2 \
libapache2-mod-php5 \
php5 \
php5-mysql \
php5-mcrypt \
php5-suhosin \
&& rm -f Jetc/apache2/sites-available/* \
&& rm -f Jetc/apache2/sites-enabled/* \

119

Chapter 7: Legacy PHP Applications

&& a2enmod rewrite

COPY .docker/httpd-foreground /usr/local/bin/

COPY .docker/vhost.conf /etc/apache2/sites-available/060-
default.conf

COPY . /sxv/cakephp

RUN 1n -s /etc/apache2/sites-available/000-default.conf \
/etc/apache2/sites-enabled/000-default.conf \
&& chmod +x /usr/local/bin/httpd-foreground \
&& chown -R www-data:www-data /srv/cakephp

WORKDIR /sxv/cakephp
EXPOSE 806

CMD ["httpd-foreground"]

Our latest Dockerfile adds in two rm commands to remove the Apache default v-host
file; we don't need it. Next, we copy the all the source code to /srv/cakephp which
matches the path in our Vhost. Because our code's webroot is at app/webroot, the final

path is /srv/cakephp/app/webroot.

Although the vhost.conf is the only virtual host, we name it 000-default.conf in the image
because we want Apache to make this the default. Apache determines the first Vhost

(alphabetically sorted) as the default.

The last RUN command symlinks our Virtual Host file into the sites-enabled folder and
enables the Vhost. Lastly, we change ownership of the application files to the www-

data user, which allows Apache read and write access.

We should now be able to run our CakePHP application after rebuilding the Docker

image with docker-compose up --build (Figure 7.2).

120

Chapter 7: Legacy PHP Applications

L [% CakePHP: the rapid develop

< C @ localhost

' CakePHP: the rapid development php framework

Release Notes for CakePHP 2.6.0.
Read the changelog
: Please change the value of 'Security.salt' in APP/Config/core.php to a salt value specific to your application.

[CORE/Cake/Utility/Debugger.php, line 846]

: Please change the value of 'Security.cipherSeed' in APP/Config/core.php to a numeric (digits only) seed value
specific to your application. [CORE/Cake/Utility/Debugger.php, line 850]

Your version of PHP is 5.2.8 or higher.

Your tmp directory is writable.

The FileEngine is being used for core caching. To change the config edit APP/Config/core.php

Your database configuration file is NOT present.
{ Rename APP/Config/database.php.default to APP/Config/database.php

DebugKit is not installed. It will help you inspect and debug different aspects of your application.

‘ You can install it from GitHub !

[sa] Figure 7.2: CakePHP Working with PHP 5.3

As you can see, our application is running, but there are a few warnings and
suggestions that need some work. Let's look at how we might retrofit modern

configuration patterns into the application.

Development Workflow and Commands

You probably don't have PHP 5.3 on your local machine, so will need to run all of our
console commands inside of the container to work with PHP. You've already seen

plenty of examples jumping into a running container within this book.

We can also run commands in our container from a local terminal with docker run. Let's
create another service in our docker-compose.yml file to see how it all works together

(Listing 7.10):

</> Listing 7.10: Adding a Cake Service to docker-compose.yml

version: "3"

services:

121

Chapter 7: Legacy PHP Applications

app:
image: cakephp-app
container_name: cakephp-app
build:
context:
dockerfile: .docker/Dockerfile
ports:
- 8888:860
volumes:
- .:/srv/cakephp
cake:
image: cakephp-app
container_name: cakephp-console
volumes:
- .:/srv/cakephp
entrypoint: [
"/srv/cakephp/app/Console/cake",

"-app", "/srv/cakephp/app"

The cake service is the biggest change here. We added an entrypoint which changes the
way the container works when we run it. Because we didn't define an ENTRYPOINT in
our Dockerfile, we have some flexibility in how we run the application container. By
default, we can run Apache, and then we can customize other containers to run the

cake CLI.

According to the CakePHP 2 console documentation
(https://book.cakephp.org/2.0/en/console-and-shells.html), you can pass the -app
argument to customize the location of the application. We add it to the entrypoint just

to be sure the Cake CLI knows how to locate the application.

We also added an image: key to both the app and cake services, so they run from the
same image instead of building the same image twice. Using the container_name key on
both services was added make the names of containers a little more comfortable on the

eyes.

122

Chapter 7: Legacy PHP Applications

If you run the cake service you can see how the entrypoint setting works in Docker

Compose (Listing 7.11):

>_ Listing 7.11: Running the Cake Console

$ docker-compose run cake

Welcome to CakePHP v2.6.0 Console

Current Paths:
-app: app
-working: /srv/cakephp/app

-root: /srv/cakephp
-core: /srv/cakephp/lib

Since the entrypoint points to the CakePHP console you can pass arguments that will

run in the container and use the cake shell as expected (Listing 7.12):

>_ Listing 7.12: Running cake Commands

$ docker-compose run cake command_list

The other way we could run this without defining a docker-compose service is using
the --entrypoint flag. You can start a container with bash and execute console

commands within the container, which feels similar to SSH (Listing 7.13):

>_ Listing 7.13: Customize the Entrypoint with the Compose Command

$ docker-compose run --entrypoint=/bin/bash app

You are now free to move about the container, and you benefit from the volume mount

defined in the Docker Compose file to keep your local files in sync. To exit the

123

Chapter 7: Legacy PHP Applications

container, hit Control + d or type "exit" at the prompt.

Improving Configuration

Let's jump into working with legacy configuration and making it work well with
Docker. We don't have any databases or application configuration yet, and we should go
over a few things related to a configuration issue that I see in most legacy projects

migrating to Docker.

You might have noticed a few configuration warnings in Figure 7.2, and one standard
challenge I've faced on every project is dealing with configuration between
environments. There are a couple of strategies I've used to make configuration easier

to deal with that I want to cover.
Those strategies include:

1. Having separate configuration files for each environment (ie. prod.config.php,
dev.config.php, etc.).

2. Provide a tokenized configuration file that gets updated during build-time.

3. Integrating updated configuration patterns like environment variables

(https://en.wikipedia.org/wiki/Environment_variable).

I personally dislike having production settings in the repository; it's not a right way of
promoting security on an already aging codebase. In my experience, I've often seen a
combination of configuration files per environment in a code repository combined
with tokenized replacements for sensitive values like database passwords. However, in
my experience, retrofitting your code to work with environment variables is probably

the best approach if you can salvage it.

Using environment variables gets around annoying build-time token replacements of
sensitive passwords or using something like Ansible to generate the configuration file
that gets copied into an image. With environment variables, you just define them, and

the code adapts.

124

Chapter 7: Legacy PHP Applications

Let's go with the last option, and retrofit our codebase to work with environment
variables. At the time of this writing, there is a composer package, vlucas/phpdotenv,
which supports our application's version of PHP! CakePHP 2.6 doesn't use Composer

for its autoloading, but we can use it for adding the PHP dotenv package (Listing 7.14):
>_ Listing 7.14: Installing Composer Dependencies and Adding phpdotenv
$ composer install
$ echo "vendor/" >> .gitignore
$ composer require vlucas/phpdotenv:~2.4.0
Mcrypt Extension

You need to install the Mcrypt extension locally to run composer commands
with CakePHP. For example, if you are on OS X with PHP 7.1 installed from

Homebrew, you can run brew install php71-mcrypt.

Using the strategies we learned in Chapter 6, you could also run all the

commands—including composer—inside a container with a mounted volume.

If you are following along, you now have a new composer.lock file, a Plugins folder

created from the cakephp/debug_kit dependency, and the vendor/ folder with PHPUnit.

Now that we have the package installed, we need to include Composer's autoloader. In
CakePHP 2.6, the framework does not use Composer's autoloader, so we add the

autoloader to the top of the entrypoint of the application.

Edit the app/webroot/index.php file with the following at the very top (Listing 7.15):

125

Chapter 7: Legacy PHP Applications

</> Listing 7.15: Adding dotenv to app/webroot/index.php

<?php

require __DIR__.'/../../vendor/autoload.php';
$dotenv = new Dotenv\Dotenv(__DIR__.'/../../');
$dotenv->load();

The Dotenv instance looks in the root of the project for the .env file and fail if it cannot
find the file.

Next, let's create our .env file, add an example .env.example file, and ignore the .env file

in Git (Listing 7.16):

>_ Listing 7.16: Adding the .env files

$ cd ~/Code/cakephp-2.6.90
$ echo "APP_DEBUG=1" > .env > .env.example
$ echo ".env" >> .gitignore

Now we have a way of setting environment variables in our application on the system
and through a .env file. A system-defined variable takes precedence over a value in the
.env file, and like modern applications, we can now set some defaults and override

things with environment variables for production.

Now that we've brought the environment library into the project, we still have some
work to do on the integration. The PHP dotenv package doesn't perform type

conversions on values, so MY_ENV=true is a string value "true."

Let's work on a helpers file that includes a few utility functions for working with our

environment configuration. We borrow a little from the Laravel Support helpers.php

126

Chapter 7: Legacy PHP Applications

file to make our integration support type conversions (https://git.io/vb9sx).

We will provide some helper functions to read environment variables and autoload the

file through composer's autoloader. Create a app/helpers.php file and add the following

helper functions (Listing 7.17):

</> Listing 7.17: Adding a helpers.php File
<?php

if (! function_exists('value')) ¢

/X—X-

* Retunn the defauflt value of the given value.

*

* @anam mixed fvalue
* @retunn mixed

*/

function value($value)

€

return $value instanceof Closure ? $value() : $value;

if (! function_exists('cakeenv')) {
function cakeenv(key, sdefault
$value = getenv($key);

if ($value === false) {
return value($default);

switch (strtolower(f$value))
case 'true':

case '(true)':
return true;

case 'false':

= null) {

127

Chapter 7: Legacy PHP Applications

case '(false)':
return false;

case 'empty':

case '(empty)':
return '';

case 'null':

case '"(null)':

return;
3
if (
strlen($value) > 1 &&
strpos($value, '""') === 0 &&
strpos(strrev($value), '"') === 9
) £
return substr($value, 1, -1);
3

return $value;

Our helper file defines two functions: value() and cakeenv(). The value() function allows
the cakeenv() function to get the default value from a string or a Closure, and lucky for

us, closures are supported as of >= PHP 5.3.0. Whew!

In order to get the helper loaded, we need to add an autoload key to our project's

composer.json file (Listing 7.18):

</> Listing 7.18: Autoloading the helpers.php File to composer.json (Partial)

"require-dev": §
"phpunit/phpunit": "3.7.*",
"cakephp/debug_kit": "2.2.*"
3, 1

128

Chapter 7: Legacy PHP Applications

"autoload": {
"files": ["app/helpers.php"]

3,
"bin": [
"lib/Cake/Console/cake"

We are ready to rebuild the image and verify our environment configurations.
Remember to run composer dump-autoload after you add the helpers file, so the

autoloader picks it up:

$ composer dump-autoload
$ docker-compose down
$ docker-compose up --build

After you are running the latest image, you can test things out by adding a var_dump to

the top of app/Config/core.php (Listing 7.19):

</> Listing 7.19: Testing out Our Environment Config in app/Config/core.php

<?php
var_dump(cakeenv("APP_DEBUG")); exit;

At this point, you should see string(1) "1" output, which means that our cakeenv helper is

picking up environment configuration from the .env file.

Basic Configuration with Environment

Now that we have the PHP dotenv library in place let's use our helper function to
configure the debug setting found in app/Config/core.php. CakePHP accepts the
following configuration for debug: 0 (production), 1 (development), or 2 (full

debugging).

Update the debug line in your core.php file with the following code to configure the

129

Chapter 7: Legacy PHP Applications

debug setting from environment (Listing 7.20):

</> Listing 7.20: Using Environment for the Debug Setting

Configure::write('debug', (int) cakeenv('APP_DEBUG', 0));
var_dump(Configure::read('debug')); exit;

You should see int(1) if you refresh your browser. If the APP_DEBUG value isn't defined, it
defaults to 0. Note that we have to cast the value to an integer because PHPDotenv

doesn't convert them for you.

I would recommend updating the .env file and .env.example files to APP_DEBUG=2 now,
which is CakePHP's default value. You should see your debug settings change after

tweaking your .env file.

Adding More Configuration

We have a basic example in place for using environment variables, so let's use our new
helpers to go back to the CakePHP warnings found when visiting http://localhost:8888

and update them with environment variables.

Before we update our .env file, we need to generate a random salt value that we can add

to our .env file (Listing 7.21):

>_ Listing 7.21: Generate a random Salt

$ openssl rand -baseélL LO
1aEimZhGcFO9PGHiuUGK1T80e31i1JeuHpwxpaloWNGIWgZ1lgsgoTjeg==

Feel free to use the OpenSSL command like I've done, or generate the random salt in

any manner that you prefer, such as mashing your keyboard.

For the security cipher, be sure that the value only includes numbers.

Next, grab those values and add them to .env (Listing 7.22):

130

Chapter 7: Legacy PHP Applications

</> Listing 7.22: Adding the Security Values to .env

APP_DEBUG=2
APP_SECURITY_SALT="77VamY4DzX5UKRNYIZjeLe2RVtbc7I13Aq5I3Y9SKxb8PDF
OVmULnA=="

APP_SECURITY_CIPHER="76L901226357094582305115L087660"

Next, find the configuration for Security.salt and Security.cipherSeed (they are right next
to each other) in the app/Config/core.php file and update them with the following
(Listing 7.23):

</> Listing 7.23: Using the .env Values in core.php

/*X—
* A nandom stning used in Aecunity hashing methods.
*/
Configure: :write(
'Security.salt',
cakeenv(
"APP_SECURITY_SALT',
'DYhG93beqyJlfIxfs2guVoUubWwvniR2GOFgaComi'

Vs

/*X—
* A nandom numenic Atning (digits onfy) used to encrypt/decrnypt
stnings.
*/
Configure: :write(
'Security.cipherSeed',
cakeenv(
"APP_SECURITY_CIPHER',
'768593096574535L24967L96836L5'

Vs

131

Chapter 7: Legacy PHP Applications

The default values we've set are the defaults that ship with CakePHP, which means that
we'll have the same warnings when a new environment hasn't defined these values in
an environment configuration. The warnings are helpful to guide developers just

setting up an environment, and the application setup works as you'd expect.

At this point, you should set the salt and cipher environment variables in .env.example
with the default values. New developers have the values already defined when they
copy the example file, and they can change them during setup. It's also a good idea to

continually keep the .env.example file updated as you add new values.

Database Configuration

If you look closely at app/Config/database.php.default, notice that the database
connections are properties of the DATABASE_CONFIG class. We need to update it slightly

because we can't set the array properties with a dynamic cakeenv() function.

Before we change the file, we need to copy it to app/Config/database.php, the filename
that CakePHP expects (Listing 7.24):

>_ Listing 7.24: Copy the Default Database Config
$ cp app/Config/database.php.default app/Config/database.php
The CakePHP project ignores /app/Config/database.php for a good reason, but since we

are using environment variables for connections, we can safely remove it from the

.gitignore file and adapt the class to the following (Listing 7.25):

</> Listing 7.25: Update the database.php file with environment config

<?php

class DATABASE_CONFIG §
function __construct()

¢

132

Chapter 7: Legacy PHP Applications

$this->default = array(
'"datasource' => cakeenv(
"DB_DATASOURCE"',
'Database/Mysql’
)
'persistent' => false,
"host' => cakeenv(

'DB_HOST',
'localhost'

)

'login' => cakeenv(
'DB_USER',
'user'

)

"password' => cakeenv(
'DB_PASSWORD ',
"password’
)
'"database' => cakeenv(
"DB_DATABASE',
'database_name'
)
'prefix' => cakeenv('DB_PREFIX', ''),
// 'encoding' => cakeenv('DB_ENCODING', 'utg§s'),
)i

$this->test = array(
'datasource' => 'Database/Mysql’,
'persistent' => false,
'"host' => 'localhost',
'login' => 'user',
"'password' => 'password',
'database' => 'test_database_name’',
'prefix' => "'

)

)

133

Chapter 7: Legacy PHP Applications

We moved the public class properties to the constructor and set them dynamically. We
didn't use the environment to change the test values, but you can adjust those on your
own if you'd like. I recommend using the same environment variables and overriding
them with a phpunit.xml file. You can also create separate environment variables for

your testing database connection; I'll leave that up to you.

Next, let's get a working database configuration; CakePHP is warning us that the
application is not able to connect to the database. We have the class configuration in
place; now we just need to update our environment with working connection

information.

First, let's update the .env.example file with our new database connection variables that

help people get started with the application (Listing 7.26):

</> Listing 7.26: Database .env.example Variables

APP_DEBUG=2
APP_SECURITY_SALT="77VgmY4DzX5UKRNYIZjeLe2RVtbc7I13Aq5I3Y9SKxb8PDF
OVmULnA=="

APP_SECURITY_CIPHER="76L90122635709L45823051154087660"

Database
DB_DATASOURCE="Database/Mysql"
DB_HOST=1localhost

DB_USER=user
DB_PASSWORD=password
DB_DATABASE=database_name
DB_PREFIX=""

We define the default CakePHP database values in our example file, but our Docker
Compose file takes care of assigning these values automatically. The values in the

.env.example provide an example template for other non-development environments.

We have the example environment variables defined, but we need to either define

134

Chapter 7: Legacy PHP Applications

proper connection strings in the .env file, or through the Docker compose file to

configure the connection (Listing 7.27):

</> Listing 7.27: Add a MySQL Database to docker-compose.yml

version: "3"
services:
app:
image: cakephp-app
container_name: cakephp-app
build:
context:
dockerfile: .docker/Dockerfile
ports:
- 8888:860
volumes:
- .:/srv/cakephp
environment:
DB_HOST: mysql
DB_USER: root
DB_PASSWORD: password
DB_DATABASE: cakephp_example
cake:
image: cakephp-app
container_name: cakephp-console
volumes:
- .:/srv/cakephp
entrypoint: [
"/srv/cakephp/app/Console/cake",
"-app", "/srv/cakephp/app"
]
mysql:
image: mysql:5.5
ports:
- "13306:3306"
environment:
MYSQL_DATABASE: cakephp_example 1

135

Chapter 7: Legacy PHP Applications

MYSQL_ROOT_PASSWORD: password

I've purposely demonstrated the mysql:5.5 version because it's possible that your
application code only supports an older version of MySQL. Being able to use different
versions of software on the same development system is an excellent benefit of

containers, and can also aide your effort in upgrading parts of your infrastructure.

We've set the database environment variables in the container configuration to match
the MySQL environment variables for the database and root password. These
environment variables get defined on the system; therefore, PHP dotenv will not
mutate these values (see https://github.com/vlucas/phpdotenv#immutability). What this
means, is that you can override values found in the .env file by setting system

environment variables.

With our environment settings in place, new developers picking up our codebase will
get a working database without needing to make any changes. Making Docker easy to
use by developers is an often overlooked, but important part of using Docker. Try to
make setting up Docker as convenient and comfortable in development with as little

manual work as possible.

The docker-compose.yml file in our project is for developers; therefore, it's fine to set
environment variables in the database container. You can use the .env file instead if you
don't prefer to define environment values directly in the Compose file. I just wanted to

demonstrate that you can override settings through system variables.

Verifying the Database Connection

The environment variable configuration for the database is all set, and we can finally
verify that the application can connect to the database. If you rebuild the application
and run your containers (you should be familiar with how to do that now), you should
see the confirmation "CakePHP is able to connect to the database" if you visit

http://localhost:8888 (Figure 7.3).

136

Chapter 7: Legacy PHP Applications

& CakePHP: the rapid development php framework

Release Notes for CakePHP 2.6.0.

Read the changelog

Your version of PHP is 5.2.8 or higher.

Your tmp directory is writable.

The FileEngine is being used for core caching. To change the config edit APP/Config/core.php

Your database configuration file is present.
CakePHP is able to connect to the database.

Debugkit is not installed. It will help you inspect and debug different aspects of your application. 1

You can install it from GitHub

Editing this Page

To change the content of this page, edit: APP/View/Pages/home.ctp.
To change its layout, edit: APP/View/Layouts/default.ctp.
You can also add some CSS styles for your pages at: APP/webroot/css.

Getting Started

New CakePHP 2.0 Nnrs
[sa] Figure 7.3: CakePHP is able to connect to the database

Suhosin

PHP continues to patch security vulnerabilities until a version end of life (EOL), which
is one reason why a legacy PHP application running an EOL version of PHP can
become a growing liability. That's one reason why I've shown you the "most secure"

version of PHP 5.3 I can think of, with the Canonical patches.

Suhosin describes itself as "an advanced protection system for PHP installations."
Suhosin is another essential part of protecting an older version of PHP, and ships with
smart defaults, including a simulation mode that helps learn how your application
breaks while running Suhosin. We'll cover simulation mode in more detail later in this

section.

There are a few common things you'll need to deal with to get your application to work

with Suhosin, so let's go over them real quick.

Running PHAR Files

As part of a security measure, Suhosin will not allow you to run phar (PHP Archive)
137

Chapter 7: Legacy PHP Applications

files. If you run the application container and try to install Composer, for example, you

will get a similar error (Listing 7.28):

>_ Listing 7.28: Trying to Run a .phar File

$ docker-compose down
$ docker-compose run --rm app /bin/bash
Creating network '"cakephp260_default" with the default driver

$ apt-get -y install curl
$ curl -S https://getcomposer.org/installer | php -- \
--install-dir=/usr/local/bin \
--filename=composer \
&& chmod +x /usr/local/bin/composer

Some settings on your machine make Composer unable to work
properly.

Make sure that you fix the issues listed below and run this
script again:

The value for “suhosin.executor.include.whitelist™ is incorrect.

Add the following to the end of your “php.ini” or suhosin.ini

(Example path [for Debian]: /etc/php5/cli/conf.d/suhosin.ini):
suhosin.executor.include.whitelist = phar

$ exit

It's pretty clear that we need to make an INI file change. You can either update the
php.ini file or suhosin.ini file, but let's just create a separate configuration file just for the

CLI.

You can organize your INI files however you want; the following is just one way of

many. Create an app.ini file from your local machine that we'll copy into the image

138

Chapter 7: Legacy PHP Applications

(Listing 7.29):

>_ Listing 7.29: Create the app.ini file for the CLI

$ mkdir -p .docker/php/cli/
$ touch .docker/php/cli/app.ini

Add the following configuration to the newly created app.ini file (Listing 7.30):

</> Listing 7.30: Enable .phar on the CLI

suhosin.executor.include.whitelist = phar

Last, copy the new file into the container (Listing 7.31):

</> Listing 7.31: Copy the app.ini file

FROM ubuntu:12.04
LABEL maintainer="Paul Redmond"

RUN apt-get -yqq update \
&& apt-get -yqq install \
apache2 \
libapache2-mod-php5 \
php5 \
php5-mysql \
php5-mcrypt \
php5-suhosin \
&& rm -f Jetc/apache2/sites-available/* \
&& rm -f /Jetc/apache2/sites-enabled/* \
&& a2enmod rewrite

COPY .docker/httpd-foreground /usr/local/bin/

139

Chapter 7: Legacy PHP Applications

COPY .docker/vhost.conf /etc/apache2/sites-available/060-
default.conf

COPY .docker/php/cli/*.ini /etc/php5/cli/conf.d
COPY . /sxv/cakephp

RUN 1n -s /etc/apache2/sites-available/000-default.conf \
/etc/apache2/sites-enabled/000-default.conf \
&& chmod +x /usr/local/bin/httpd-foreground \
&& chown -R www-data:www-data /srv/cakephp

WORKDIR /srv/cakephp
EXPOSE 806

CMD ["httpd-foreground"]

If you rebuild the image and run the container, you should be able to download and

execute the composer.phar file from the CLI like we tried in Listing 7.28:

$ docker-compose build app
$ docker-compose run --rm app /bin/bash

$ apt-get -y install curl
$ curl -S https://getcomposer.org/installer | php -- \
--install-dir=/usr/local/bin \
--filename=composer \
&& chmod +x /usr/local/bin/composer

All settings correct for using Composer
Downloading...

Composer (version 1.5.2) successfully installed to:
/usr/local/bin/composer

Use it: php /usr/local/bin/composer

140

Chapter 7: Legacy PHP Applications

We just configured the Suhosin to whitelist the phar stream wrapper with Suhosin,
which allows us to run composer commands from the CLI environment. The executor
error is one example of how Suhosin locks down your PHP environment, which is a

good thing when working with EOL versions of PHP.

Simulating Suhosin

You might run into other issues that prevent your application from working with
Suhosin. Some of these matters might be that your application is using functionality

that Suhosin prevents due to security risks.

One thing you can do is run your application with the suhosin.simulation = On setting.
The description of the simulation setting
(https://suhosin.org/stories/configuration.html#suhosin-simulation) is defined as

follows:

If you fear that Suhosin breaks your application, you can activate Suhosin's simulation
mode with this flag. When Suhosin runs in simulation mode, violations are logged as

usual, but nothing is blocked or removed from the request.

Using simulation mode is an excellent way to run your application and collect
violations so that you can address them. If your application doesn't work with Suhosin,
I would suggest reading through the extensive configuration options to at least get as
much security as possible without disabling Suhosin completely. The simulation might

reveal some critical security fixes that you should address.

The Born Legacy

This chapter was chalk-full of examples, and it was vital that we go through more than
just getting Docker running. Porting legacy applications to Docker requires thinking
about configuration differently. When working with an older application, be prepared
to deal with issues unique to your codebase and level of technical debt. Be patient in
getting Docker working with legacy systems because years of bad decisions start to rear

their ugly head when trying to shift things into Docker.

141

Chapter 7: Legacy PHP Applications

Another consideration we didn't cover in this chapter is writing to the file system. You
need to adjust your application to either start uploading files to Amazon S3 for example

or persist your uploads to a host machine with a volume.

I want to reiterate how important you should treat upgrading your applications.
Sometimes upgrading can be a daunting process, but building a consistent
environment is an excellent way to get the process in motion. Hopefully, I've provided
enough tools to help you get your legacy applications running Docker so you can more
easily replicate the environment and make it a little more portable between

environments.

142

Chapter 8: Custom Commands

In this chapter, we'll look more in depth at how we can customize the way our PHP
containers start up and run. Up to this point, we have mostly been relying on the
official PHP Docker image to run our containers. Under the hood, however, the PHP

image we extend from is running either Apache or PHP-FPM.

The way that we can do this in our Dockerfile is by defining a CMD instruction—which
you caught a glimpse of in the last chapter. If you view the source of the official php-
fpm Dockerfile you will notice the instruction CMD ["php-fpm"] at the bottom. Our
Dockerfiles have been inheriting this CMD instruction, but we can define our own to

override it.
According to the official Docker CMD documentation:

The main purpose of a CMD is to provide defaults for an executing container. These
defaults can include an executable, or they can omit the executable, in which case you

must specify an ENTRYPOINT instruction as well.

We won't go into how the CMD and ENTRYPOINT interact in this text, but you can learn
more about CMD, ENTRYPOINT, and all the other instructions in the Dockerfile

reference documentation (https://docs.docker.com/engine/reference/builder/).

For our purposes, we are going to create a custom bash executable that allows us more
customization in running our applications in Docker. To demonstrate, we are going to

use a CLI program Confd (https://git.io/nCjQ3w) to manage application configuration

143

files to provide some configuration setup before running a web server. For the web

Chapter 8: Custom Commands

server we use Caddy for the web server, which I introduced in Chapter 6.

Confd is a lightweight configuration management tool that allows you to keep

configuration files up to date from data stored in backends like environment variables,

Consul (https://www.consul.io/), Etcd (https://github.com/coreos/etcd), Redis

(https://redis.io/), and others. You can also reload applications to pick up changes

during runtime without restarting the container. With Confd, we can separate our

configuration management from infrastructure code.

To start out, we are going to use environment variables with Confd to simplify the

example and then improve upon it using Consul.

Confd Quickstart

I recommend going through the quick start guide (https://git.io/vbrK8) to get

an overview of setting up Confd. We cover the basics in this chapter, but the

overview is highly recommended reading.

Let's get started by creating a project for our work (Listing 8.1):

mkdir
cd $_
touch
mkdir
touch

T A A B B B

touch

We've created our typical Docker files and Confd configuration files and templates.

_ Listing 8.1: Creating the Project

-p ~/Code/ch8-custom-commands

Dockerfile docker-compose.yml start.sh index.php
-p confd-configs/{conf.d, templates?
confd-configs/conf.d/caddyfile. toml
confd-configs/templates/caddyfile. tmpl

144

Chapter 8: Custom Commands

Lastly, we created the start.sh file that serves as our custom CMD command in our

Dockerfile.

Installing Confd

Let's start out by installing the confd binary in our image (Listing 8.2):

</> Listing 8.2: Installing Confd

FROM php:7.1-fpm

ENV CADDY_HOSTNAME=0.0.0.0

ADD
https://github.com/kelseyhightower/confd/releases/download/vo.11.
0/confd-0.11.0-1inux-amdé4 /usr/local/bin/confd

RUN chmod +x /usr/local/bin/confd \
&& mkdir -p /etc/confd/conf.d /etc/confd/templates

Listing 8.2 is the first example we've shown using a URI with the ADD instruction. We
link to the Confd binary for Linux (64 bit) in the first argument, and the second

argument is the path to which we want to add Confd. Last, we make confd executable
and create the confd and templates folders which houses our Confd configuration and

template files.

Let's build the image and take Confd for a spin (Listing 8.3):

>_ Listing 8.3: Building the Docker Image

¢ docker build -t custom-commands

¢ docker run --rm -it custom-commands bash
root@30f95181fed3: /var/www/html# confd --version
confd 0.11.0

145

Chapter 8: Custom Commands

Confd Templates

Let's add a template that we can use with Confd so you can see how it works. To
demonstrate, let's generate a Caddyfile template that can be dynamically changed with

configuration—even during runtime.

Enter the following in a new file created at confd-configs/conf.d/caddyfile.toml in your

project (Listing 8.4):

</> Listing 8.4: Create the TOML configuration file for Caddy

[template]

src = "caddyfile.tmpl"”
dest = "/etc/Caddyfile"
owner = "www-data"

mode = "e@éLL"

We created a TOML (https://github.com/toml-lang/toml) file, which is a configuration
file that describes the actual template-generated file. The destination file is generated
from the src = "caddyfile.tmpl". The owner and mode set the owner of the source file and

the file permissions.

So what is TOML?

On the TOML Github page provides the following description:

TOML aims to be a minimal configuration file format that's easy to read due to obvious
semantics. TOML is designed to map unambiguously to a hash table. TOML should be easy

to parse into data structures in a wide variety of languages.

Next, we need the create caddyfile.tmpl as referenced in the TOML configuration, which
is used to generate our web server Caddyfile. Confd template files are golang text
templates (https://golang.org/pkg/text/template/#pkg-overview) using variables that

make the template dynamic based on configuration.

146

Chapter 8: Custom Commands

We've already seen an example of a Caddyfile in Chapter 6, so the following Caddyfile
template should look familiar. Open the file we created in Listing 8.1, confd-

configs/templates/caddyfile.tmpl, and add the following (Listing 8.5):

</> Listing 8.5: Editing the caddyfile.tmpl

http://{{getenv "CADDY_HOSTNAME"33%:86
root /srv/app/public

gzip
fastcgi / 127.0.06.1:9000 php
rewrite §
regexp .*
ext /
to /index.php?{query}?
3
log stdout

errors stdout
on startup php-fpm --nodaemonize

The first line is the getenv function, which replaces everything within the double curly
braces ({{ }}) with the value of the CADDY_HOSTNAME environment variable. The rest is

pretty much the same Caddyfile we used in Chapter 6.

Before we test out our new files, we need to copy them into the container by updating

the Dockerfile (Listing 8.6):

</> Listing 8.6: Copy the Confd Config and Template Files

FROM php:7.1-fpm

ENV CADDY_HOSTNAME=0.0.0.0

ADD
https://github.com/kelseyhightower/confd/releases/download/vo.11.
0/confd-6.11.06-1inux-amdé4 /usr/local/bin/confd

147

RUN chmod +x /usr/local/bin/confd \
&& mkdir -p /etc/confd/conf.d /etc/confd/templates

COPY confd-configs/conf.d/ /etc/confd/conf.d/

Chapter 8: Custom Commands

COPY confd-configs/templates/ /etc/confd/templates/

We added two lines copying the new Confd configuration files into their respective

folders within the image. The src = "caddyfile.tmpl" line looks in /etc/confd/templates for

the file when generating the file by default. Also, note the ENV CADDY_HOSTNAME=0.0.0.0

defined in the Dockerfile, which is the default environment value our confd template

uses when creating the Caddyfile.

Let's build the latest image and jump back into our container so we can experiment

with our new changes (Listing 8.7):

>_ Listing 8.7: Updating the Image and Testing the Changes

¢ docker build -t custom-commands

$ docker run --rm -it custom-commands bash

$ confd -onetime -backend env
2017-087-04T17:16:55Z 6b6cd93aalel
env

2017-07-04T17:16:55Z 6b6cd93aalel
2017-07-04L4T17:16:55Z 6b6cd93aalel
set to

2017-07-04L4T17:16:55Z 6b6cd93aalel
/etc/Caddyfile out of sync
2017-07-04T17:16:55Z 6b6cd93aalel
/etc/Caddyfile has been updated

$ cat /etc/Caddyfile
http://0.0.0.0:80
root /srv/app/public

confd[15]:

confd[15]:
confd[15]:

confd[15]:

confd[15]:

INFO Backend set to

INFO Starting confd
INFO Backend nodes

INFO Target config

INFO Target config

148

Chapter 8: Custom Commands

gzip
fastcgi / 127.6.6.1:9600 php
rewrite §
regexp .*
ext /
to /index.php?{query}
3
log stdout

errors stdout
on startup php-fpm --nodaemonize

By running confd once with the -backend env, we are using environment variables to
populate our template. If you exit the image and jump back in, notice that the

/etc/Caddyfile is gone, because of the ephemeral nature of Docker containers.

While still in the image, let's change the environment variable and see what happens

(Listing 8.8):

>_ Listing 8.8: Changing the Environment Variable and Running Again

$ export CADDY_HOSTNAME=foo0.com

$ confd -onetime -backend env

INFO Backend set to env

INFO Starting confd

INFO Backend nodes set to

INFO /etc/Caddyfile

has md5sum aLb9bLé6b6130bc9ec6123361ebOL52c9

should be b393c5c1e80fL667L9eL797a2ebd71a5

INFO Target config /etc/Caddyfile out of sync

INFO Target config /etc/Caddyfile has been updated

$ cat /etc/Caddyfile
http://foo.com:86

149

Chapter 8: Custom Commands

root /srv/app/public

9zip
fastcgi / 127.0.6.1:9600 php
rewrite §
regexp .*
ext /
to /index.php?{query}
3
log stdout

errors stdout
on startup php-fpm --nodaemonize

As you can see, we can separate our configuration management (infrastructure config)
from infrastructure code. We've used environment variables to make the example
simple, but we'll expand on that later with a backend like Consul where we poll for

changes and apply them automatically while the container is running.

Before we expand on our Confd usage, let's shift focus to the goal of this chapter:
providing a custom CMD instruction when we need a little more advanced strategy in

running our containers.

The Custom CMD

Now that we have our Confd templates in place, it's time to automate running them
when the container starts. For this to work, our bash script needs to run a process in

the foreground because as soon as the main process exits, our container stops.

Let's first fill in the start.sh file that we created in Listing 8.1 with our Confd command

so you can see what happens to the container when our process exits (Listing 8.9):

150

Chapter 8: Custom Commands

</> Listing 8.9: The custom start.sh File

set -e

confd -onetime -backend env

We just run the same Confd command we ran earlier in the new bash script during

container startup.

Next, let's update the Dockerfile in order to get the start.sh file into the image and

define it as the CMD instruction (Listing 8.10):

</> Listing 8.10: Copy the start.sh File and Define a CMD

FROM php:7.1-fpm

ENV CADDY_HOSTNAME=0.0.0.0

ADD
https://github.com/kelseyhightower/confd/releases/download/ve.11.
0/confd-0.11.0-1inux-amdé4 /usr/local/bin/confd

RUN chmod +x /usr/local/bin/confd \
&& mkdir -p /etc/confd/conf.d /etc/confd/templates

COPY confd-configs/conf.d/ /etc/confd/conf.d/
COPY confd-configs/templates/ /etc/confd/templates/
COPY start.sh /usr/local/bin/start.sh

RUN chmod +x /usr/local/bin/start.sh

CMD ["/usxr/local/bin/start.sh"]

We copy the start.sh script into /usr/local/bin, make it executable and reference it in the

CMD instruction. If we don't make it executable you will get an error like

151

Chapter 8: Custom Commands

"exec: /usr/local/bin/start.sh: Permission denied."

Let's try to run a container with our updates (Listing 8.11):

>_ Listing 8.11: Run the Container with the new start.sh CMD

¢ docker build -t custom-commands

$ docker run -it custom-commands

INFO Backend set to env

INFO Starting confd

INFO Backend nodes set to

INFO Target config /etc/Caddyfile out of sync

INFO Target config /etc/Caddyfile has been updated

If you run docker ps -a you should see that the container has exited.

Let's update our start.sh file to keep a process running in the foreground so we can
demonstrate how our custom CMD script works. The current state of our script is just
for demonstration purposes, but eventually, we run the caddy binary process in the

foreground (Listing 8.12):

</> Listing 8.12: Update the start.sh to Keep a Process Running

set -e
confd -onetime -backend env

trap : TERM INT; sleep infinity & wait

We are running sleep infinitely and then exiting on an interrupt signal. As I mentioned,

152

Chapter 8: Custom Commands

this is just for our debugging purposes, and you wouldn't run a container like thisin a

real project. However, it's a helpful tool for debugging purposes.

Let's rerun the container and verify that the confd command applies the changes

(Listing 8.13):

>_ Listing 8.13: Running the Container with an Infinite Sleep

¢ docker build -t custom-commands

$ docker run --rm -it custom-commands

INFO Backend set to env

INFO Starting confd

INFO Backend nodes set to

INFO Target config /etc/Caddyfile out of sync

INFO Target config /etc/Caddyfile has been updated

Our container is running now because of the sleep process in the foreground, so open a
new terminal window or tab and run the following to verify that our script applied the

changes to the Caddyfile (Listing 8.14):

>_ Listing 8.14: Verify the Confd Changes from start.sh

$ docker ps

$ docker exec -it ¢617831ae756 cat /etc/Caddyfile
http://0.0.0.0:80

root /srv/app/public

9zip
fastcgi / 127.0.0.1:9000 php
rewrite §
regexp .*
ext /
to /index.php?{query}
3
log stdout

153

Chapter 8: Custom Commands

errors stdout
on startup php-fpm --nodaemonize

When the container starts, our Confd command creates the template from the passed
environment configuration, and we learn how to keep the container running with our
sleeping foreground process. If you get stuck, the sleep technique is an excellent way to

debug a custom CMD.

Running Caddy

We are in a position to swap the sleep command with a Caddy process running in the
foreground. Our goal is to run Caddy using the generated Caddyfile based on

environment configuration.

First, let's install Caddy and update a few other things in the Dockerfile (Listing 8.15):

</> Listing 8.15: Update the Dockerfile with Caddy

FROM php:7.1-fpm

ENV CADDY_HOSTNAME=0.0.0.0

ADD
https://github.com/kelseyhightower/confd/releases/download/ve.11.
0/confd-06.11.0-1inux-amdé4 /usr/local/bin/confd

RUN chmod +x /usr/local/bin/confd \
&& mkdir -p /etc/confd/conf.d /etc/confd/templates

RUN curl --silent --show-error --fail --location \
--header "Accept: application/tar+gzip, application/x-gzip,
application/octet-stream” -o - \

"https://caddyserver.com/download/linux/amdéL4?plugins=http.expire

s,http.realip&license=personal” \
| tar --no-same-owner -C /usr/bin/ -xz caddy \

154

Chapter 8: Custom Commands

&& chmod 0755 /usr/bin/caddy \

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql
COPY confd-configs/conf.d/ /etc/confd/conf.d/
COPY confd-configs/templates/ /etc/confd/templates/
COPY start.sh /usr/local/bin/start.sh
COPY index.php /srv/app/public/index.php

RUN chmod +x /usr/local/bin/start.sh \
&& chown -R www-data:www-data /srv/app

EXPOSE 86

CMD ["/usxr/local/bin/start.sh"]

Just like Chapter 6, we install the caddy binary and some PHP modules. The next
addition is copying an index.php file into the image that is served by Caddy. We change

ownership of the /srv/app path to the www-data user and expose port 80.

The contents of the index.php file is just <?php phpinfo(); 7> in the root of your project
for this chapter. It doesn't matter what is running—we are focused on the startup script

in this chapter—but the PHP info is a helpful indicator.

In order to get Caddy working, next we need to replace the infinite loop with the caddy

executable in our start.sh script (Listing 8.16):

</> Listing 8.16: Adding Caddy to the start.sh File

set -e

confd -onetime -backend env

155

Chapter 8: Custom Commands

/usr/bin/caddy -validate --agree=true --conf=/etc/Caddyfile

exec Jusr/bin/caddy --agree=true --conf=/etc/Caddyfile

We added two lines to the end of the file:

1. A validation check of the generated Caddyfile that ensures our configuration is valid

2. Running caddy in the foreground with our generated configuration

If there's a validation error, start.sh will exit, otherwise, Caddy will run in the
foreground. The exec command replaces the current process without forking a new

process.

Running the Container

Everything is in place to test out our custom CMD script with Caddy. Let's build the

image and then execute the container with the docker run command (Listing 8.17):

>_ Listing 8.14: Verify the Confd Changes from start.sh

¢ docker build -t custom-commands

$ docker run --rm -it -p 80860:80 custom-commands
INFO Backend set to env

INFO Starting confd

INFO Backend nodes set to

INFO Target config /etc/Caddyfile out of sync
INFO Target config /etc/Caddyfile has been updated
Caddyfile is valid

Activating privacy features... done.
http://0.0.0.0

NOTICE: fpm is running, pid 25

NOTICE: ready to handle connections

156

Chapter 8: Custom Commands

I've shortened the output a little, but you can see that start.sh runs confd to generate the
/etc/Caddyfile file, validates the Caddyfile, and then runs caddy. The Caddyfile defines
http://0.0.0.0:80 so our docker run command maps port 80 to 8080. If you open
http://localhost:8080 in your browser, you should see the phpinfo() output (Figure 8.1):

[phpinfo()

C @ localhost:z

System Linux 4b372111bc64 4.4.0-72-generic #33-Ubuntu SMP Fri Mar 31 14:07:41 UTC 2017 x86_64

Build Date Jul 3 2017 22:40:26

Configure Command *Jconfigure” -build=x86_64-linux-gnu' —with-config-file-path=/usr/localletc/php’ -with-config-file-scan-
dir=/usr/local/etc/phpfconf.d’ --disable-cgi’ '--enable-ftp' --enable-mbstring' *-enable-mysgind” '-with-curl' "--with-
libedit "--with-openssl' -with-zlib" '—-with-pcre-regex=/usr' --with-libdir=lin/x86_&4-linux-gnu' '-enable-fpm' *--with-
fpm-user=www-data' '--with-fpm-group: data’ ‘build_ali _B4-linux-gnu’

Server APl FPM/FastCGI

Virtual Directory Support disabled

Configuration File (php.ini) Path Iustflocalietc/php

Loaded Configuration File (none)

Scan this dir for additional .ini files fusrflocalfetc/phpiconf.d

Additional .ini files parsed Jfusrflocalfetc/phpiconf.didocker-php-exi-pdo_mysql.ini

PHP API 20160303

PHP Extension 20160303

Zend Extension 320160303

Zend Extension Build API320160303,NTS

PHP Extension Build API20160303,NTS

Debug Build no

Thread Safety disabled

Zend Signal Handling enabled

Zend Memory Manager enabled

Zend Multibyte Support provided by mbstring

IPv6 Support enabled

DTrace Support disabled

Registered PHP Streams hitps, fips, compress.zlin, php, file, glob, data, hitp, fip, phar

Registered Stream Socket Transports fcp, udp, unix, udg, ssl, tis, isv1.0, tisvl.l, tisvl.2

Registered Stream Filters zlib.*, convert.iconv.*, string.rotl3, string.toupper, string.tolower, string.strip_tags, convert.*, consumed, dechunk

This program makes use of the Zend Scripting Language Engine: o =

Zend Engine va.1.0, Capyright (c) 1998-2017 Zend Technologies Ze nd e ngl n e

[sa] Figure 8.1: PHP Info Output

If you change the CADDY_HOSTNAME environment variable when you run docker run
you can dynamically change the hostname defined in the Caddyfile:

$ docker run \
-e "CADDY_HOSTNAME=example.dev" \
--rm -it -p 80860:80 \
custom-commands

We've successfully created a custom CMD script and learned about Confd in the

process. I think you can see the power Confd brings to our setup, allowing us to change

157

Chapter 8: Custom Commands

the hostname(s) in the Caddyfile based on environment. Let's improve upon our Confd

implementation adding in a different backend.

Confd With a Consul Backend

Now that we have a working CMD script let's expand on the Confd setup with Consul.
We are going to swap out our Confd backend with consul's key/value storage

(https://www.consul.io/intro/getting-started/kv.html).

You might be familiar with Consul's service discovery and integrated health checking,

but in addition to those features, Consul also provides an easy-to-use key-value store.

We are going to run consul in a development mode so that we can demonstrate how to
hot-swap a configuration in Confd and restart Caddy after the configuration is

updated—all without restarting the container.

Our Dockerfile doesn't need to be updated, but we are going to make small changes to
our Confd template and config files, and add in a docker-compose.yml file so we can run
the official consul (https://hub.docker.com/_/consul/) Docker image and link

containers more efficiently.

Let's get to work!

Docker Compose File

Docker Hub provides an official Consul image, which we can define in our Docker
Compose file. Create the docker-compose.yml file if you haven't already and let's get our

services going (Listing 8.18).

</> Listing 8.18: The docker-compose.yml file

version: "3"

services:
app:

158

Chapter 8: Custom Commands

build:
ports:
- 80860:80
consul:
image: consul:1.0.1
ports:
- 8500:85600

We are mapping port 80 to 8888 because our Caddyfile template uses port 80 instead of
2015 (the default). We also defined a Consul service and map port 8500 so we can make

requests to Consul locally on port 8500.

Consul Backend

We need to wire up our startup script to use the Consul backend instead of
environment variables. Because we are starting up a fresh consul container, our Confd
command cannot succeed until we define the keys on which the template is dependent.
Thus, we need to wait until the Confd command succeeds before starting Caddy

process (Listing 8.19):

</> Listing 8.19: Changing the Confd Backend to Consul in start.sh

#!/usn/bin/env bash
set -e

function shutdown {
kill -s SIGTERM $CONFD_PID
wait $CONFD_PID
kill -s SIGTERM $PHP_FPM_PID
wait $PHP_FPM_PID

Wait untif the initial configuration succeeds
until confd -onetime -backend consul -node consul:8500; do

159

Chapter 8: Custom Commands

echo "Waiting for the initial confd configuration”
sleep 5
done

confd -interval 10 -backend consul -node consul:8500 &
CONFD_PID=%!

php-fpm &
PHP_FPM_PID=%!

trap shutdown SIGTERM SIGINT
/usr/bin/caddy -validate --agree=true --conf=/etc/Caddyfile

exec /usr/bin/caddy --agree=true --conf=/etc/Caddyfile

We introduced a few things here, in fact, most lines have been updated. We define a
shutdown function so that we can properly kill the Confd and php-fpm background
processes running when an interrupt signal is sent (Ctrl+C). Next, we run the confd
-onetime command every 5 seconds until it succeeds. Our script isn't perfect, but you

can expand upon it and exit on "X" number of retries if you prefer.

The Confd command references consul:8500, which is how the application container
makes requests to the Consul service on the network, but this could be configurable via
environment in a similar way that we defined environment on docker run to change the

Caddyfile.

Once Confd succeeds, we run it in the background and poll consul every 10 seconds (-
interval 10). When the Consul backend is updated, Confd detects the changes and
regenerates the Caddyfile.

Revisiting the Confd Config

Now that start.sh updates the Caddyfile on a value change in Consul, we need a way to

restart Caddy after a template update. You might have experience with Apache or Nginx

160

Chapter 8: Custom Commands

requiring a restart when configuration changes and Caddy has a similar feature.

The way we trigger a change with Confd is with the reload_cmd property in the TOML
file. When Confd reloads the template, the reload_cmd sends the proper signal to Caddy
for a restart. We also need to add a keys= config which matches the consul key/value

store (Listing 8.20):

</> Listing 8.4: Create the TOML configuration file for Caddy

[template]
src = "caddyfile.tmpl"
dest = "/etc/Caddyfile"

owner = "www-data"
mode = "oéLL"
keys = [

"/example.com/hostname",

]
reload_cmd = "pkill -USR1 caddy"

The keys= config is defined as an array of template keys that match the path in Consul,

or any other backend store that you use, except environment variables.

The reload_cmd configuration is triggered when the template is updated; in our case

when Confd polls Consul, notices a change, and updates the Caddyfile.

To restart Caddy, we need to send the USRI signal to the running caddy process using

pkill to reference the process by name.

Revisiting the Confd Template

Using the Consul backend with Confd means that we need to update our template to
use the getv function instead of getenv, which is specific to using environment
variables. The other Confd backends use getv, so you could change out Consul for

another backend, and the template wouldn't change.

161

Chapter 8: Custom Commands

Let's update our confd-configs/templates/caddyfile.tmpl file to use getv with the new

consul key, and also remove the on startup php-fpm event (Listing 8.21):

</> Listing 8.21: Update the caddyfile.tmpl with the New Key Reference

http://{{getv "/example.com/hostname"3}3:80
root /srv/app/public

gzip
fastcgi / 127.6.06.1:9000 php
rewrite §
regexp .*
ext /
to /index.php?{query}
3
log stdout

errors stdout

We needed to remove the on startup php-fpom event because when we send the restart
signal to Caddy, it tries to start php-fpm again. We avoid this by just starting php-fpm in
the start.sh file. You can keep the startup script if you'd like instead of moving php-fpom
to the script, however, you get warnings each time Caddy restarts that php-fpm can't

start because it's already running and bound to port 9000.

Putting it All Together

We are ready to start using the Consul backend in a running container with Docker
Compose. When we first run the containers, the application cannot find the consul key,

so the CMD script runs the until loop until it running confd succeeds.

Let's run the container and manually populate consul to get the container running

(Listing 8.22):

162

Chapter 8: Custom Commands

>_ Listing 8.22: Building the Image and Running the Containers

$ docker-compose up --build

app_1: INFO Backend set to consul

app_1: INFO Starting confd

app_1: INFO Backend nodes set to consul:8500

app_1l: ERROR Get
http://consul:8500/vl/kv/example.com/hostname?recurse=: dial tcp
172.21.0.2:8500: connection refused

app_1: Waiting for the initial confd configuration

You should notice some error output and our CMD script output that it's waiting for an
initial valid Confd configuration. The loop continues to run until we populate Consul

with the template keys.

Let's use curl to create the keys and values utilized in the template. Open another

terminal tab and make the following curl request (Listing 8.23):

>_ Listing 8.23: Create a hostname key in Consul

$ curl -X PUT -d 'www.example.com' \
http://localhost:8500/v1/kv/example.com/hostname
true

You should be able to see and edit the value from the UI after running the curl
command above (http://localhost:8500/ui/#/dc1/kv/example.com/hostname/edit). Once
you run the command you should also see something similar to the following in your

Docker logs (Listing 8.24):

>_ Listing 8.24: Confd Getting the Configuration from Consul and Starting Caddy

app_1: INFO Backend set to consul
app_1: INFO Starting confd
app_1: INFO Backend nodes set to consul:85600

163

Chapter 8: Custom Commands

app_1l: INFO /etc/Caddyfile has md5sum
7c1c08a6bbel130f9a3ffObb16d9126ce should be
bct277f5647f438ec22c9¢c1L42288bc7f

app_1: INFO Target config /etc/Caddyfile out of sync

app_1: Waiting for the initial confd configuration

app_1: 2017-07-05T06:17:26Z e22a6daeblce confd[269]: INFO Backend
set to consul

app_1: 2017-07-05T06:17:26Z e22a6daeblce confd[269]: INFO
Starting confd

app_1: 2017-07-05T06:17:26Z e22a6daeblce confd[269]: INFO Backend
nodes set to consul:8500

app_1: Caddyfile is valid

app_1: http://www.example.com

app_1: [05-Jul-2017 ©6:17:26] NOTICE: fpm is running, pid 290
app_1: [©65-Jul-2017 06:17:26] NOTICE: ready to handle connections

If you update your hosts file and point www.example.com to 127.0.0.1, you should be

able to see your phpinfo() screen when you request http:/www.example.com:8080.

If you update the key with another value via a curl request (or through the UI) you
should see the Docker logs output that the /etc/Caddyfile file has been updated (Listing
8.25):

>_ Listing 8.25: Updating the Consul Key to Change the Caddyfile

$ curl -X PUT -d 'foo.com' \
http://localhost:8500/v1/kv/example.com/hostname
true

app_1: INFO /etc/Caddyfile has md5sum
bct277f5647f438ec22c9c142288bc7f should be
b393c5c1e80fL667L9elt797a2ebd71a5

app_1: INFO Target config /etc/Caddyfile out of sync

164

Chapter 8: Custom Commands

app_1: INFO Target config /etc/Caddyfile has been updated

Now if you request http://www.example.com:8080 you should get the following
response from caddy: "404 Site www.example.com:8080 is not served on this interface".
Note, that this only works if you update your hosts file to make www.example.com

point to 127.0.0.1.

We now have a pretty robust configuration management tool inside of Docker. Granted,
we wouldn't want to hot-swap the hostname of an application regularly, but I believe
you can see the power of separating the configuration from infrastructure code. We
have a flexible template system that allows configuration changes without needing to

update infrastructure code in some cases.

One of a Kind

We just dove into customizing the CMD instruction in Docker with a bash script. We
just scratched the surface, but don't get too carried away with bash scripts for CMD and

ENTRYPOINT. Keep it as simple as possible!

Our next step is learning how to share Docker images with others using Docker
registries, and automatically building those images when changes get pushed to a git

repository. Onward!

165

Chapter 9: Docker Registry

A. Docker registry is what we have been using to pull down official Docker images
like MySQL and PHP. We've already been interacting with a Docker registry
transparently: Docker Hub. This registry is the default when you don't specify a registry
explicitly. While you can run your own Docker registry, this chapter is about using
existing Docker registries to host your images, not running your own. Docker has a
zero maintenance, hosted solution which includes free unlimited public repositories,

and a paid version if you need to host multiple private images.

At a basic level, think of a Docker registry

(https://docs.docker.com/registry/introduction/) as the following:

Aregistry is a storage and content delivery system, holding named Docker images,

available in different tagged versions.

When you run docker build -t my-image . you are tagging the image as my-image:latest. If
you run docker build -t my-image:1.0.0, you are tagging 1.0.0. You have been using Docker
image tags in the Dockerfile already: when we use FROM php:7.1-fpm we are using the

7.1-fpm tag.

Let's dive deeper and learn how to interact with registries, push our images to them,

and automate the process.

Setting Up a Repository and Project

If you want to follow along in this chapter, you need to register for a Docker account

166

Chapter 9: Docker Registry

(https://cloud.docker.com/). We also look at GitLab's private registry so you can learn

how to use other registries to host your images, so register for a GitLab account too.

This chapter focuses more on interacting with registries than the actual Docker image,
but eventually, you need to host your images somewhere so you can work with them
and share them with your team privately. You might even build a base image from
which your projects extend, and your projects benefit from sharing common image

functionality, for example, installing the base set of PHP modules.

To demonstrate how to create images we need to create a simple Dockerfile. We make a
simple PHP-FPM image and continue to use Caddy as the web server, using the same
Caddy installation we've already been using, but we re-create the files here, so you don't

have to go back and reference them.

First, let's set up the skeleton files for the project folder (Listing 9.1):

>_ Listing 9.1: Setting up the Project

$ mkdir -p ~/Code/ch9-php-caddy
$ cd $_
$ touch Dockerfile Caddyfile

Next, let's define the Dockerfile (Listing 9.2):

167

Chapter 9: Docker Registry

</> Listing 9.2: The Dockerfile

FROM php:7.1-fpm
LABEL maintainer="Paul Redmond"

RUN curl --silent --show-error --fail --location \
--header "Accept: application/tar+gzip, application/x-gzip,
application/octet-stream” -o - \

"https://caddyserver.com/download/linux/amdé4?plugins=http.expire
s,http.realip&license=personal” \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

&& chmod 0755 /usr/bin/caddy \

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql

COPY Caddyfile /etc/Caddyfile
WORKDIR /sxv/app/

RUN chown -R www-data:www-data /srv/app

CMD ["/usr/bin/caddy", "--conf", "/etc/Caddyfile", "--log",
"stdout"]

Finally, we define the Caddyfile configuration as follows (Listing 9.3):

</> Listing 9.3: The Caddyfile

0.0.0.0
root /srv/app/public
9zip
fastcgi / 127.0.0.1:9000 php
rewrite §
regexp .*
ext /

to /index.php?{query}

168

header / -Server

log stdout

errors stdout

on startup php-fpm --nodaemonize

Chapter 9: Docker Registry

Our project could become a stand-alone repository that you use as the foundation. In

fact, later in this chapter, we consume our image in a different project as an example so

you can see how to extend your images. I use Caddy for most of my applications, so it

makes sense to extract my base setup into an image that I extend in my projects.

To push images to Docker Cloud you need to create a repository after you login to

Docker Cloud (https://cloud.docker.com/). You should be able to find a "Create

Repository" button on the dashboard (at the time of this writing) after you log in. Fill

out the required inputs, which are probably something similar to the following (Figure

9.1):

I

Swarm
Mode

® B

=

@ docker cloud
Repositories / Create

Create Repository

paulredmond , demo-php-caddy

A demo PHP + Caddy image from https://bitpress.io/docker-for-php-developers/

Visibility

Using 0 of 1 private repositories. Get more

@ Public @ O Private &
Public repositories appear in Docker Sto Only you can s
search results

Build Settings (optional)

Autobuild triggers a new build with every git push to your source code repository Learn more

0O ©

Disconnected

+ Get Help ~ ‘1 paulredmond ~

Pro tip

You can always push a new image to this repository using
the CLI

$ docker tag local-image:tagname new-
repo:tagname
$ docker push new-repo:tagname

Make sure to change tagname with your desired image
repository tag.

4] Figure 9.1: Create the PHP Caddy Repository

For now, leave the project as public and ignore the build settings for Github and

BitBucket. We come back to these settings later so you can automate Docker builds

169

Chapter 9: Docker Registry

with a GitHub webhook.

Once you create the repository, you are redirected to the repository's main page in your
Docker Closue account. Take note of the docker push paulredmond/demo-php-
caddy:tagname instruction (which differs based on your login) for a reminder of how to

push images to Docker Hub.

That's it for this section; we have all the foundational pieces in the place to build and

push our images to a registry.

Pushing the Image to Docker Hub

In each chapter of the book so far you have been building images on your machine.
After you create your images, the next part is pushing your images with the docker push

command.

Before we automate building images, let's build and tag the image locally and then push

it to the Docker repository (Listing 9.4):

>_ Listing 9.4: Build and Tag the Image

Replace " paulrnedmond™ with youn own useznname

$ docker build -t paulredmond/demo-php-caddy:1.6.0 .

$ docker tag paulredmond/demo-php-caddy:1.0.06 paulredmond/demo-
php-caddy:latest

After we build the 1.0.0 image, we tag latest to that image as well. You should see the
tagged image if you run docker images after the build completes. Be sure to run the

command with your own username: <your_user>/demo-php-caddy:1.0.0.

To push the image to Docker Hub, you need to verify your credentials on the command
line with the docker login command. By default running the login command logs you
into the Docker Hub registry. You can also specify the server, for example: docker login

registry.gitlab.com. You can learn more about the ins-and-outs of docker login

170

Chapter 9: Docker Registry

(https://docs.docker.com/engine/reference/commandline/login/) in the documentation.

Next, we will push our image to the Docker Hub registry (Listing 9.5):

>_ Listing 9.5: Login to Docker Hub

$ docker login -u paulredmond
Password:
Login Succeeded

You can also pass the -p flag to specify a password or just enter it when prompted.

Now that we've logged in we can push the image that we built in Listing 9.4 to the

registry (Listing 9.6):

>_ Listing 9.6: Push the Image to Docker Hub

$ docker push paulredmond/demo-php-caddy

The push refers to a repository [docker.io/paulredmond/demo-php-
caddy]

1d7Lacdd1655: Pushed
9d6fec3ec5e6: Pushed
0fb5e3bfee56: Pushed
Lfd9e9b3007e: Pushed
Ld30cdccob6fc: Pushed
8377c955bbe0d: Pushed
ad76b6a711fc: Pushed
ba2ed80162fa: Pushed
d5231feae7ck4: Pushed
b56c638d6eba: Pushed
958c46160919: Pushed
cLhoebdelbecb2: Pushed
0d9eofidufba: Pushed
1.0.0: digest:

171

Chapter 9: Docker Registry

sha256:dd312b9f99ebL61d369cflduec22b7£3122054ad20f7ee76ef7L5c0961
L3b72d size: 3035

The rough image size is about 400mb, which might take a little time depending on your
connection speed. When the image finishes, you should see the new version on the

Docker Hub registry page.

Now, let's remove the image locally and make sure we can pull it down from the

registry (Listing 9.7):

>_ Listing 9.7: Remove the Image

$ docker rmi paulredmond/demo-php-caddy:1.6.0
Untagged: paulredmond/demo-php-caddy:1.0.0
Untagged: paulredmond/demo-php-caddy@sha256

If you run docker images you shouldn't see the tagged image anymore. Let's bring it back
again with docker pull this time, just like our base images when we run a build (Listing

9.8):

>_ Listing 9.8: Pulling Down the Docker Image from Docker Hub

$ docker pull paulredmond/demo-php-caddy:1.0.0
1.0.0: Pulling from paulredmond/demo-php-caddy

17b671f61b72: Pull complete

fu8bdef0222c: Pull complete

e352b2399abc: Pull complete

6c3L833cb82a: Pull complete

Digest: sha256:dd312b9f99. ..

Status: Downloaded newer image for paulredmond/demo-php-
caddy:1.0.0

172

Chapter 9: Docker Registry

You just built a docker image, pushed it to Docker Hub with your credentials, deleted
the local build, and then pulled the image down from the Docker Hub registry. Making

images by hand is good practice, but it's time to automate.

Automating the Image Build

You might have noticed the BitBucket and GitHub integration when you created your
repository. Let's set up some automation to create a new version of the image when we

push changes to Github.

Before you can follow along, you need to create an example repository on GitHub (or
Bitbucket) and push your project files to your repository. My source files are located on
GitHub at paulredmond/demo-php-caddy (https://github.com/paulredmond/demo-php-

caddy) if you want a reference.

Authorizing GitHub

The first step to automating our Docker repository build is approving GitHub. From the
settings on cloud.docker.com, you can select source providers and connect GitHub to

allow Docker Cloud to access your repositories (Figure 9.2):

Source providers

Provider Account

General GitHub No account linked ﬁ
Cloud providers Bitbucket No account linked ¥
Source providers
Notifications
Default Privacy Notifications
Billing paulrredmond@gmail.com T

EMAIL
Plan

@ off O Only failures O Everything

Coupon Codes
Quotas SLACK ¥

4] Figure 9.2: Authorize Docker Cloud Access to GitHub

Once you allow GitHub or BitBucket, you can then go to your repository's build settings

and select the code repository you want to link to Docker Cloud. For now, choose

173

Chapter 9: Docker Registry

Docker Cloud's infrastructure as the build location (the small node size), and you can
change it later if you want to experiment with building on nodes that you control

(Figure 9.3):

Build configurations

G
5’\‘:";’" SOURCE REPOSITORY) paulredmond x - demo-php-caddy x>
ode
NOTE: Changing source repository may affect existing build rules.
Q) BUILD LOCATION O Buid on my own nodes
(® Build on Docker Cloud's infrastructure
— DOCKER VERSION Stable a ®
AUTOTEST Off
® ®
O nternal Pull Requests
(O Internal and External Pull Requests
i BUILD RULES +
The build rules below specify how to build your source into Docker images.
Source Type Source Docker Tag Dockerfile Build (@ Autobuild Build Caching
location Context
granch T master 2 latest Dackerfile ! ® 1] B

[sa] Figure 9.3: Setting up builds

The last part of the setup is configuring build rules. We will have two: master for the

latest tag and a git tag/release for versioning (Figure 9.4):

BUILD RULES +

The build rules below specify how to build your source into Docker images.

Source Type Source Docker Tag Dockerfile Build () Autobuild Build Caching
location Context
Branch 7 master [latest Dockerfile / L] @ B
Tag T NO-9.J+$/ {sourceref} Dockerfile / D @]

~ View example build rules

Scenario Source Type Source Docker Tag Matches Docker Tag Built
Exact match Branch master latest master latest

Match versions Tag IM0-9.]+%/ release-{sourceref} 1.2.0 release-1.2.0
Trailing modifiers Tag IMO-9.]+ release-{sourceref} 1.2.0-rc release-1.2.0-rc
Extract version number Tag IM([0-9.]+4)%/ version-{\1} v1.2.3 version-1.2.3

BUILD ENVIRONMENT VARIABLES +

[sa] Figure 9.4: Configuring build rules
174

Chapter 9: Docker Registry

Once you add the tag build rule, you can click "Save and Build" to start making master;
make sure that you push your code to GitHub before starting the build. If all goes well,

you should see a successful build!

Free Docker Cloud Build Nodes

At the time of this writing, Docker Cloud build nodes are in beta and free. If
Docker Cloud changes the pricing structure in the future, you might have to

configure infrastructure nodes that you own to run builds.

Using tags and releases allows you, the developer, to focus the code while Docker Cloud
takes care of building and tagging images that match your code versioning scheme

automatically.

Releasing a New Version

Let's make a small change to the Dockerfile and tag a release version to test our tag
build configuration. We add the opcache module to the Dockerfile to trigger a change

(Listing 9.9):

</> Listing 9.9: Adding the Opcache Module

FROM php:7.1-fpm
LABEL maintainer="Paul Redmond"

RUN curl --silent --show-error --fail --location \
--header "Accept: application/tar+gzip, application/x-gzip,
application/octet-stream” -o - \

"https://caddyserver.com/download/linux/amdé4?plugins=http.expire
s,http.realip&license=personal” \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

&& chmod 0755 /usr/bin/caddy \

175

Chapter 9: Docker Registry

&& /usr/bin/caddy -version \
&& docker-php-ext-install mbstring pdo pdo_mysql opcache

COPY Caddyfile /etc/Caddyfile
WORKDIR /sxv/app/
RUN chown -R www-data:www-data /srv/app

CMD ["/usr/bin/caddy", "--conf", "/etc/Caddyfile", "--1log",
"stdout"]

Commit your changes and push them to your repository in the master branch. You

should see a build triggered in Docker Cloud for the master branch (Figure 9.5):

Automated Builds

Autobuild triggers a new build with every git push to your source code repository Learn more

O paulredmond/demo-php-caddy | Use Docker Cloud's infrastructure | Autotests: Off

Docker Tag Source Build Status Autobuild Build caching
latest master BUILDING v v
{sourceref} IM[0-9.]+%/ - v v

Recent Builds
Build in ‘master' (BBc7f3ch) © a few seconds ago S
° Github Ping @ Z minutes ago

Q Build in ‘master' (986a1799) © 2 minutes ago N

[sa] Figure 9.5: Automatic Master Build in Progress

After you push your code, create a tag or release of 1.1.0. For example, I used GitHub to
create the release (https://github.com/paulredmond/demo-php-
caddy/releases/tag/1.1.0). You can also tag a release from the command line and push it

to your repository.

After the build finishes, you should see a new version of 1.1.0 in your dashboard

(Figure 9.6):

176

Chapter 9: Docker Registry

Tags Recent builds

This repository contains 3 tag(s). O paulredmond/demo-php-caddy
latest {'\ @ an hour ago ° Build in 'master’ (cf7bb6eQ
1.1.0) ® an hour ago ° Build in '1.1.0" (88¢7f3¢6)

1.00 N @ an hour ago © Build in 'master' (88c7f3c6)
Seeall

° Github Ping

© Build in 'master' (986a1799)

(4] Figure 9.6: Dashboard Build List

We've successfully automated our builds with Docker Hub, wasn't that easy? Docker

Hub isn't the only container registry, so let's learn how to work with other registries.

Working with Other Docker Registries

There are many Docker repositories our there, such as Quay, Google Container
Registry, Amazon EC2 Container Registry, and GitLab, to name a few. Since GitLab.com
has a free plan available at the time of this writing, we use the GitLab registry to work

through this section.

You need to register for an account (https://gitlab.com/users/sign_in) if you want to
follow along. How you interact with a registry on the command line is the same

regardless of which registry you use, so your knowledge applies to other registries.

Setting up a GitLab Repository

We can use the same git repository we already have to work with GitLab. It's just a
matter of setting up another remote and creating a private repository in your account.

Once you have the repository set up in GitLab, add another remote (Listing 9.10):

>_ Listing 9.10: Adding a new remote to git

$ git remote add gitlab \
git@gitlab.com:paulredmond/demo-php-caddy.git
$ git push gitlab master && git push gitlab --tags

177

Chapter 9: Docker Registry

If you sign in to GitLab, you should see a "Registry" tab in the project. This tab has some
good instructions on how to login to the registry. Let's log in to GitLab's registry and

push the latest image in master (Listing 9.11):

>_ Listing 9.11: Pushing the Image to GitLab

$ docker login registry.gitlab.com
Username: paulredmond

Password:

Login Succeeded

$ docker build -t \
registry.gitlab.com/paulredmond/demo-php-caddy .

We've already built our image locally, so we could also just tag the image with docker
tag. However, in most situations you only build in one registry, so most of the time you
are building and then tagging at the same time. However, it's also useful to tag an image

for a registry from an existing image (Listing 9.12):

>_ Listing 9.12: Tagging an Existing Image

$ docker tag \
paulredmond/demo-php-caddy:1.06.06 \
registry.gitlab.com/paulredmond/demo-php-caddy:1.0.0

$ docker pull paulredmond/demo-php-caddy:1.1.0

$ docker tag \
paulredmond/demo-php-caddy:1.1.0 \
registry.gitlab.com/paulredmond/demo-php-caddy:1.1.90

178

Chapter 9: Docker Registry

Push them to Gitflab
$ docker push registry.gitlab.com/paulredmond/demo-php-caddy

In Listing 9.12, we tagged our image with registry.gitlab.com. You must include the
hostname, or it is assumed a Docker Hub image. We also pulled down version 1.1.0

from Docker Hub, tagged it for GitLab, and then pushed it up to GitLab's registry.

Automating Builds on GitLab

We can automate our image builds and push to GitLab's registry automatically, just like
we did with Docker Cloud. With GitLab we configure our builds with a .gitlab-ci.yml file
in the root of the project with three separate build scenarios: master, tag, and branch.
What's neat about the branch build, is that you can pull down a work-in-progress image
and collaborate on it with your team. The other two build scenarios are just like the

Docker Cloud builds we've already seen.

First, we need to create the .gitlab-ci.yml file for the project based on the GitLab Docker
Template (https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/Docker.gitlab-ci.yml).
This build uses a Docker image (https://hub.docker.com/_/docker/) (yes, Docker
running inside of Docker) to build our image and then push it to the GitLab registry

automatically (Listing 9.13):

</> Listing 9.13: The .gitlab-ci.yml file

0fFicial Docken image.
image: docker:latest

services:
- docker:dind

before_script:

- docker login -u "$CI_REGISTRY_USER" -p "$CI_REGISTRY_PASSWORD"
$CI_REGISTRY

179

Chapter 9: Docker Registry

Masten
build-master:
stage: build
script:
- docker build --pull -t "$CI_REGISTRY_IMAGE"
- docker push "$CI_REGISTRY_IMAGE"
only:
- master

Tags
build-tag:
stage: build
only:
- tags
script:
- docker build --pull -t "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG"
- docker push "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG"

Bnanch Buiéds
build-branch:
stage: build
script:
- docker build --pull -t
"$CI_REGISTRY_IMAGE: $CI_COMMIT_REF_SLUG"
- docker push "$CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG"
except:
- tags
- master

Let's break down this configuration file; it's quite straightforward actually. The file

contains three build stages: build-master, build-tag, and build-branch. All the variables

that start with a dollar sign ($) are GitLab build variables which we can use to reference

our registry image URI and the tag (https://docs.gitlab.com/ee/ci/variables/).

Each job builds a Docker image and then pushes it to the GitLab registry in different

scenarios. First, the build-master build tags the Docker image with latest when the code

180

Chapter 9: Docker Registry

is pushed to master. Second, the build-tag tags the image with the commit tag (i.e. ch09-
sample-project:1.0.2). Moreover, last, the build-branch build tags with the image branch

name.

As an example of how the branch configuration works, let's say that you have the
branch feature/test. The SCI_COMMIT_REF_SLUG variable would end up being feature-test,
and the tagged image would be paulredmond/demo-php-caddy:feature-test. Branch builds
are kind of neat in my opinion but might be overkill for your situation. Branch builds
can add up when GitLab automatically makes an image when you push code to Gitlab

for each branch.

Take note of the except: key in the branch build, which excludes tags and the master

branch. The only and except keys help you define where each build runs.

Build Caching

At the time of this writing, I am not sure how to get cached builds working
with GitLab. If you recall when we set up our Docker Cloud pipeline, we were
able to select a cached image. This speeds up builds significantly, including

downloading the base php image.

For base images, this probably won't be a problem on GitLab, but for a more
extensive project, builds might take longer. There's a discussion on this topic

on GitLab.com (https://gitlab.com/gitlab-org/gitlab-ce/issues/17861).

Now, when you push your image changes to GitLab, an automatic build is triggered,

and you can see the build jobs in the "pipelines" section of your project.

Now that we have an image in a private GitLab registry let's extend it to see how you

can build on top of a base image. It's the same as we have already been doing with the

181

Chapter 9: Docker Registry

Now, when you push your image changes to GitLab, an automatic build is triggered,

and you can see the build jobs in the "pipelines" section of your project.

Extending Your Images

Now that we have an image in a private GitLab registry let's extend it to see how you
can build on top of a base image. It's the same as we have already been doing with the

PHP image, but let's go over it real quick before the end of this chapter.

You can create your project in another folder, all we need is a Dockerfile and an

index.php file with "<?php phpinfo(); ?>" (Listing 9.14):

<[> Listing 9.14: Extending our own image

FROM registry.gitlab.com/paulredmond/demo-php-caddy

COPY index.php /srv/app/public/index.php

We've extended the GitLab image, and then just copy an index.php file into the image.
The FROM pulls our base image and then runs the COPY instruction on top of it. If you

build this image and run it, you should see the PHP info screen (Listing 9.15):

>_ Listing 9.15: Run the Extended Image

$ docker build -t che9-sample-project .
$ docker run --rm -it -p 86086:2015 ch@9-sample-project
Open http://fPocalhost:&5050

If all went well, you should see the output from phpinfo() in your browser! Although we
just added an index.php file, this could be an entire application that has a Dockerfile,
except instead of extending the PHP Docker image directly we extend our base image

that we can use on multiple projects.

182

Chapter 9: Docker Registry

Registered Docker Image Builder

That's it for registries; you made it! You've now played around with pushing your own
Docker images to the world. You may likely build public images that you want to open-
source, and you have many options for storing your private images too. Either way,
learning how to log in and work with repositories enables you to work with any Docker
registry. Learning how to automate Docker builds not only takes manual work off your
plate but makes it more consistent and automatic. Plus, it merely feels neat to automate

Docker image builds.

We also explored GitLab, which is a great place to experiment with private Docker
registries and CI build pipelines for Docker images you don't want to share with others.
Using GitLab allows you to automate the entire build pipeline of your applications

pretty easily!

183

Chapter 10: Deploying Docker

You are ready to take everything you've learned so far and combine it all into the

grand finale: we're going to deploy a Docker application to the cloud.

This book's focus is on developing with Docker—where you probably spend most of
your time—but eventually, you'll need to deploy your applications. Even if you are not
the primary person deploying Docker to production in your organization, you should

learn about the strategies around deploying Docker.

Docker deployment can be as simple as pulling an image from a registry (just like we
did in Chapter 9 on a server in the cloud. More complicated setups might need to
operate at scale, run clusters of servers, and provide container management tools. The
most notable Docker tools (typically for larger deployments) include Rancher,
Kubernetes, and Docker Swarm. Both Amazon and Google have container services

(Google's is powered by Kubernetes).

These Docker deployment tools have similarities, yet each one has unique capabilities
and quirks that we can't possibly cover in this text. Don't worry; I have provided plenty
of next steps at the end of this book. The concepts that we cover in this chapter should

establish a good foundation to explore other tools.

We are going to walk through an actual deployment of Rancher (http://rancher.com/)
and running an application within our Rancher installation. We cover Rancher in this
book because the setup can be relatively minimal, yet extensive when you need it, and

you can run Rancher in any cloud provider you want. We use Digital Ocean in this text,

184

Chapter 10: Deploying Docker

but you could even adapt this to work with a VirtualBox VM running Linux if you don't

want to use a cloud provider for this chapter.

Rancher Overview

Rancher describes itself as:

Simple, easy-to-use container management.

Rancher provides a nice Ul that you can use to deploy containers in the Cloud and scale
them; Rancher Server also takes care of issues like networking and load balancing. You
can also automate your infrastructure deployments with the Rancher compose

(http://rancher.com/docs/rancher/v1.6/en/cattle/rancher-compose/) CLI, giving you lots

of automation options to truly optimize your deployments.

Rancher has two primary components: the Rancher server
(http://rancher.com/docs/rancher/v1.2/en/installing-rancher/installing-server/) and a
Rancher host. As outlined in the Rancher Overview, the server component "provides
infrastructure orchestration, container orchestration, an application catalog, and

authentication control."

The server works with Rancher hosts (http://rancher.com/docs/rancher/v1.6/en/hosts/)
that run an agent and communicate with the Rancher server over HTTP. You can create
a new host from within the Rancher server Ul in your cloud provider of choice, or by
running the Rancher agent image with docker run on a server. Rancher doesn't care if
your servers running the agent are virtual or physical as long as they meet the

requirements outlined in the documentation.

With that brief overview of Rancher out of the way, it's time to get started. We have a

server that we need to build!

185

Chapter 10: Deploying Docker

Setting up the Server

Digital Ocean has a Docker Droplet (https://www.digitalocean.com/products/one-click-
apps/docker/) that makes getting Docker in the cloud one click. If you want to install
Docker manually on the cloud or server of your choice, you can reference Chapter 1's

Linux instructions.

Pick a Droplet with enough RAM (1 GB of RAM is the requirement) to run Rancher
Server. The $10 per month droplet is probably barely large enough, so the $20 droplet is
more ideal. You can shut it down afterward if you want, so it shouldn't be costly

($0.030/hour at the time of this writing).

I am assuming that you are comfortable using SSH to access a Digital Ocean server, but
if you need a little guidance you can add an ~/.ssh/config file on Linux or Mac with

something like the following (change the IP address to the public IP of your droplet):

host rancher-server
hostname 159.203.121.76
user root
IdentityFile ~/.ssh/id_rsa
ForwardAgent yes

With the above SSH configuration, you can use the host alias with ssh rancher-server

from the command line.

Once you have your droplet created, SSH into the box and run the following command

(Listing 10.1):

>_ Listing 10.1: Start the Rancher Server

Set finewal?l nules
ufw allow 8086

ufw allow 506/udp
ufw allow 4500/udp

T B B

186

Chapter 10: Deploying Docker

$ sudo docker run -d --restart=unless-stopped -p 806860:8080 \
rancher/server

We ran the familiar docker run command, which executes the official rancher/server
(https://hub.docker.com/r/rancher/server/) image with a restart policy that restarts the
container unless you manually stop it. Even if you reboot your droplet, the container
will restart afterward. Last, we configure two ports Rancher uses for networking

between hosts with Ubuntu's UncomplicatedFirewall (UFW).

After the container starts running, be patient as it can take a bit of time to finish
initializing the first time. Once the Rancher server image is done downloading and
initializing, the first thing you'll do is lock down the Rancher control panel. Find the
public IP address of your server and visit it on port 8080. For example, mine while

writing this chapter is http://45.55.184.106:8080.

Rancher Server Hostname

You can set up a DNS A record for your server instead of going to the IP

address (i.e., rancher.yoursite.com).

If you aren't sure what is happening with the Rancher server setup, you can check out

the logs from the command line:

$ docker ps
$ docker logs -f b9cé6aé9e7eb3

Hit Ctrl + c to stop following the container logs when you are done to get back to a

prompt.

Add Authentication

To lock down the Rancher server, visit "Admin > Access Control" and pick an

187

Chapter 10: Deploying Docker

authentication scheme. Selecting local authentication works perfectly for this tutorial

(Figure 10.1):

supported version Add a host

Access Control

&> @ —
S

Active Directory Azure AD GITHUB LOCAL \LDAP SHIBBOLETH

Local Authentication is not confizures

Rancher can be configured to restrict access to a set of accounts defined in the Rancher database. This is not currently set up, so anybody that
reach this page (or the API) has full control over the system.

1. Setup an Admin user

Login Username™ Full Name

Password* Confirm Password*

[a4] Figure 10.1: Local Authentication

You can select any access control that you want as long as you pick something! Once
you select your authentication method, set up an administrator account to secure your

control panel.

Setting up Infrastructure

Now that you have a protected server, you need to add some Rancher agents to run
Docker containers. In this chapter, we use Digital Ocean to create a new Droplet
(virtual machine) to house our demo application containers. For this chapter, we have
one server running Rancher and another running the Rancher agent. However, in
practice, you might have more than one Rancher agent running, and the setup is the

same.

To manage infrastructure in Rancher server, navigate to "Infrastructure > Hosts" and

188

Chapter 10: Deploying Docker

click the "Add Host" button. You are then prompted to add a host registration URL, with
a pre-populated option with your IP address (or hostname if you set up DNS) and all you
do is click "Save." Next, pick "Digital Ocean" from the list of machine drivers, and next it

prompts you to enter a personal access token from Digital Ocean.

Within your Digital Ocean control pane, visit the API settings
(https://cloud.digitalocean.com/settings/api/tokens) and create a new personal access
token (both read and write scopes) and then paste it into your admin access token field

back in the Rancher UI (Figure 10.2):

mE ¢ Default v STACKS CATALOG INFRASTRUCTURE~ ADMIN~ APlw

Before adding your first service or launching a container, you'll need to add a Linux host with a of Docker.

Hosts: Add Host

Custom AMAZON EC2 DigitalOcean pad@

Manage available machine drivers

ACCOUNT ACCESS

Access Token*

Apps & API

Next: Configure Droplet Cancel

[sa] Figure 10.2: Add a Digital Ocean host

Next, you are prompted to configure your droplet. Just name the droplet hostname
something like "rancher-agent-01", or whatever you want to identify it as a Rancher
host. You can pick different sizes but just go with the defaults for now. Once you

confirm the droplet, Rancher polls the host while the Droplet is being created and

shows you a bunch of information once the host is active (Figure 10.3):

189

Chapter 10: Deploying Docker

TF O Defaultv STACKSv CATALOGw INFRASTRUCTUREv ADMIN v

Hosts # Show System

ACTIVE Il :

Stack: healthcheck

) .healthcheck-1

Stack: ipsec
_ipsec-1

Sidekicks

Stack: network-services
) ..network-manager-1

metadata-1

Sidekicks C

Stack: scheduler

scheduler-1 104211215 3
[sa] Figure 10.3: Rancher active Digital Ocean host

If you create expensive droplets, you can destroy them at the conclusion of this chapter,

so they don't continue to cost you hourly. Don't forget about them!

Tagging Hosts in Rancher

You might have noticed the tag settings when creating the Digital Ocean host
in Rancher. You can label hosts to track and organize them however you want.

You don't need tags if you're only running a couple of servers.

Introduction to Stacks

So far we have a Rancher server and a Rancher host in Digital Ocean, but we don't have
any software running. Rancher provides a bunch of automated software called "stacks"

that you can install with the click of a button.

Navigate to "Stacks > AlL," and then click "Add from Catalog" to see popular stacks. You

can browse and install various services from the catalog found in infrastructure stacks,

190

Chapter 10: Deploying Docker

such as Cloudflare external DNS, Digital Ocean external DNS service, and so on.

Next, if you navigate to "Stacks > User" and click "Browse Catalog," you can install user
stacks from a catalog such as a Consul cluster, WordPress, or even a GitLab CE

instance.

The catalogs in Rancher are common services and software that you can install by

clicking a button from the Rancher interface, which is pretty convenient!

For our purposes, we are going to create our user stack from scratch, but nothing is
stopping you from installing premade stacks via the interface if you want to
experiment. We could create our custom stack from the user interface, but we are
going to get it running through Rancher Compose to demonstrate creating repeatable,

custom stacks.

Using Rancher Compose

Rancher Compose (http://rancher.com/docs/rancher/v1.6/en/cattle/rancher-compose/)
is very similar to Docker Compose, except Rancher Compose operates across multiple
hosts. In our example, we only have one rancher agent host, but Rancher starts
containers across hosts based on scheduling rules when you have multiple. You can
read more about Rancher compose in the documentation, but suffice it to say that we
can automate the creating of stacks through a repeatable rancher-compose YAML file

in our project.

The Docker images that run in your containers are from a GitLab registry account if
you are following along. We've covered how to create Docker images in the GitLab

registry already, but feel free to use a different registry if you want to.
To deploy the stack, you need to have a few sets of credentials:

1. Enter your GitLab registry credentials

2. Create Environment API Key credentials for Rancher Compose

191

Chapter 10: Deploying Docker

First, we need to provide GitLab credentials so that Rancher can pull our registry
images from Gitlab. Navigate to "Infrastructure > Registries," then select "Custom" and

enter your login details for the Gitlab registry (Figure 10.4):

Add Registry

CusTtom

Address*®

https://registry.gitlab.com

Username

yourname

Password

[sa] Figure 10.4: Adding the GitLab registry

Now that you've saved your GitLab registry credentials, we need to set up a demo
project to run in production. Later, we come back to creating environment-specific API
credentials for Rancher Compose. For now, it's time to shift focus from Rancher to

creating a demo project to deploy code into Rancher.

Registry Accounts

If you are working in a team environment, it might be advisable to use a
separate account for your automation, including registry login. The separate

account helps separate the automation from regular user accounts.

192

Chapter 10: Deploying Docker

Setting Up the Project

Rancher is ready and waiting for a project that we're going to deploy in this section.
We'll use a demo Laravel (https://laravel.com/) project, and use Docker compose in
combination with a Rancher Compose file to deploy our application. We'll have a
typical Dockerfile along with two files that Rancher uses in tandem: docker-

compose.prod.yml and rancher-compose.prod.yml.

Let's kick this off by creating the Laravel and project and the files we need to deploy to
Rancher (Listing 10.2):

>_ Listing 10.2: Creating the Rancher Demo Project

$ cd ~/Code
$ composer create-project laravel/laravel:5.5.* \
rancher-laravel-demo

$ cd rancher-laravel-demo/

$ mkdir docker/

$ touch docker/Dockerfile \
docker/Caddyfile \
docker-compose.yml \
docker-compose.prod.yml \
rancher-compose.prod.yml

We are going to use Caddy with PHP-FPM for this application, and the same Dockerfile
that we used in Chapter 9. Let's knock out the Dockerfile before we look at the Rancher

Compose file (Listing 10.3):

</> Listing 10.3: The Dockerfile

FROM php:7.1-fpm

LABEL maintainer="Paul Redmond"

193

Chapter 10: Deploying Docker

RUN curl --silent --show-error --fail --location \
--header "Accept: application/tar+gzip, application/x-gzip,
application/octet-stream” -o - \

"https://caddyserver.com/download/linux/amdé4?plugins=http.expire
s,http.realip&license=personal” \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

&& chmod 0755 /usr/bin/caddy \

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql

COPY . /sxv/app
COPY docker/Caddyfile /etc/Caddyfile

WORKDIR /sxv/app/
RUN chown -R www-data:www-data /srv/app

CMD ["/usr/bin/caddy", "--conf", "/etc/Caddyfile", "--log",
"stdout"]

Next, we need to create the Caddy server configuration file at docker/Caddyfile (Listing

10.4):

</> Listing 10.4: The Caddyfile

0.0.0.0
root /srv/app/public
gzip
fastcgi / 127.0.06.1:9000 php
rewrite §
regexp .*
ext /

to /index.php?{query}

header / -Server

194

Chapter 10: Deploying Docker

log stdout
errors stdout
on startup php-fpm --nodaemonize

Before we work with the Rancher Compose files, let's edit the docker-compose.yml and

make sure that the Docker setup is working as expected (Listing 10.5):

</> Listing 10.5: The Development docker-compose.yml file

version: "3"

services:
app:
build:
context:
dockerfile: docker/Dockerfile
ports:
- 80860:2015

We set the build context to the root of the project so Docker can copy the files correctly,
yet the Dockerfile can be tucked away in the docker/ folder. We've seen a few examples
of using context with a Dockerfile already. Lastly, we map Caddy's default port of 2015
to port 8080 on the host machine.

You can run a local version of the application with docker-compose up --build and then
visit http://localhost:8080 to verify. If all goes well, you should see Laravel's default
application page (Figure 10.5):

195

Chapter 10: Deploying Docker

%o . [Laravel

<« C @ localhost:8080

_aravel

DOCUMENTATION LARACASTS NEWS FORGE GITHUB

[sa] Figure 10.5: Laravel welcome page

In this section, we created a separate Docker Compose file for development and
production-like builds that we can use independently with the docker-compose --file flag
(we briefly demoed this flag in Chapter 4). We use the default docker-compose.yml file
for development environments and the other environment-specific files for
deployment automation. As you work with Docker more, you start to build workflows
that might differ slightly (and that is perfectly fine), but this is a convention that has

worked well for me.

Project Version Control and Registry Builds

If you recall when we set up Rancher, we logged into the GitLab registry. To pull in our
Docker images that we're pushing to GitLab, we need to create a new project in GitLab

and select images to GitLab's Docker registry.

Let's initialize a git repository and push our files to GitLab (Listing 10.6):

196

Chapter 10: Deploying Docker

>_ Listing 10.6: Pushing the Code to a GitLab project
$ cd ~/Code/rancher-laravel-demo

$ git init

$ git add

$ git commit -m"First commit"

$ git remote add origin \

git@gitlab.com:paulredmond/rancher-laravel-demo.git
$ git push origin master

With our code under version control on GitLab, let's create a build.sh file in the root of

the project in order to automate the build (Listing 10.7):

>_ Listing 10.7: Build and tag the Docker image

¢ touch build.sh
$ chmod u+x build.sh

Next, add the following build script to build.sh (Listing 10.8):

</> Listing 10.8: The Build Script
#!/usr/bin/env bash
tag=${1:-latest?

echo "Enter your Gitlab Credentials..."
docker login registry.gitlab.com

docker build -f docker/Dockerfile -t \
registry.gitlab.com/paulredmond/rancher-laravel-demo:$tag

docker push \
registry.gitlab.com/paulredmond/rancher-laravel-demo:$tag

echo "Build $tag complete”

197

Chapter 10: Deploying Docker

First, we define a tag variable with the default of latest. Next, we log in to the GitLab
registry so the script can interact with private registries. Lastly, the script builds the
image with a tag and pushes it to the GitLab registry. Be sure to substitute your registry

URL based on the project you created in GitLab!

We're ready to run the build script, which if you execute the build command without

any arguments, it tags the image as latest by default (Listing 10.9):

>_ Listing 10.9: Build the Image

$./build.sh

$./build.sh 1.0.0

Go ahead and build the latest tag by running ./build.sh with no arguments so you can

verify that your build is working.

Setting up the Stack Deployment

Our registry build is working, and we are ready to get builds running with Rancher
Compose. If you recall, Rancher Compose is a way that we can run Docker in a similar
way to Docker Compose. Rancher Compose works with Docker Compose to deploy
services to Rancher and allows you to scale containers (multiple instances of the same

containers). In the end, we run the rancher-compose CLI to deploy our containers.

To run the rancher-compose command locally, you will need to download it and put it in
your path. You can download the latest version of rancher-compose for your operating
system by logging into your Rancher server and clicking the link at the very bottom
right. Select the appropriate operating system and copy the file to /usr/local/bin/rancher-

compose and make it executable (Listing 10.10):

198

Chapter 10: Deploying Docker

>_ Listing 10.10: Set up the rancher-compose binary

$ sudo cp path/to/rancher-compose /usr/local/bin/rancher-compose
$ sudo chmod u+x /usr/local/bin/rancher-compose

$ rancher-compose --help

Now that you have the rancher-compose correctly installed let's work on the
production Docker Compose and Rancher Compose files in tandem. As I've already
mentioned, rancher-compose collaborates with a Docker Compose file. We haven't

edited either file, so let's do so now!

First, let's define the docker-compose.prod.yml file (Listing 10.11):

</> Listing 10.11: The docker-compose.prod.yml file

version: "2"
services:
rancher-laravel-demo:
image: registry.gitlab.com/paulredmond/rancher-laravel-
demo:latest
labels: {io.rancher.container.pull_image: always}
stdin_open: true
tty: true

You might have noticed that we are using Docker compose version two here instead of
version three. Rancher is compatible with V1, and V2 of the Docker Compose manifest,

so we use V2.

Our Docker Compose file defines one service which points to our GitLab image. The

stdin_open: true and tty: true are the same as docker run -it (interactive and tty).

Next, let's fill out our rancher-compose.prod.yml file (Listing 10.12):

199

Chapter 10: Deploying Docker

</> Listing 10.12: The rancher-compose.prod.yml file

version: "2"
services:
rancher-laravel-demo:
scale: 2

The key matches the service defined in the Docker Compose production file. We define

a scale: 2, meaning two containers running the rancher-laravel-demo service by default.

Writing the Deployment Script

We are ready to deploy our laravel service scaled to two instances. I prefer to create a

deploy script (deploy.sh) that we can use to apply deployments quickly (Listing 10.13):

>_ Listing 10.13: Create the deploy script

$ touch deploy.sh
$ chmod u+x deploy.sh

Here's the contents of the deploy script (Listing 10.14):

</> Listing 10.14: The Rancher compose deploy script

ACCESS_KEY=%1
SECRET_KEY=%2
RANCHER_URL=%3
ENVIRONMENT=$L4L

rancher-compose \
-f docker-compose.$ENVIRONMENT .yml \
-r rancher-compose.$ENVIRONMENT .yml \
--url=$RANCHER_URL \

200

Chapter 10: Deploying Docker

--access-key=$ACCESS_KEY \
--secret-key=$SECRET_KEY \
--project-name=rancher-laravel-demo \

up --upgrade --pull --confirm-upgrade -d

The deploy script accepts four arguments:

- A Rancher access key
- A Rancher secret key
- A Rancher Endpoint URL

- An environment

We can get the first three from the Rancher server Ul, and SENVIRONMENT is used to
match our YAML files. We defined the Docker and Rancher files that end in .prod.ymi,
and this allows us to add configuration for other environments (i.e., staging)

independently.

The rancher-compose up command in the deploy script also has quite a few flags. Some
of them are pretty obvious, but I want to point out a few. You can get similar info by

running rancher-compose --help:

-f specify an alternate Docker compose file (default is docker-compose.yml)
-r specify an alternate Rancher compose file (default is rancher-compose.yml)
--url the Rancher API endpoint URL

--project-name customize the project name seen in Rancher

After the up command, you can learn more about the flags used by running rancher-

compose up --help.

Setting Up Rancher API Credentials

To get the deploy script working, you need to go back to the Rancher server Ul and

create an environment API key. The environment key provides an access key

201

Chapter 10: Deploying Docker

(Username) and an access secret (Password).

Navigate to "API > Keys" and expand the "Advanced Options" section, then click "Add
Environment API Key" and enter a name (i.e., rancher-compose) and an optional
description. Once you submit, you get a one-time modal with your access key and

secret (Figure 10.6):

API| Key Created
Access Key (Username)

bE AL =

Secret Key (Password)
od MJG4ADWRcFcG6sQzSLhBfFEGOUWWSSAqundKS

Close

(4] Figure 10.6: Create a Rancher environment API key

Don't lose track of these settings and don't add them to version control! You are
required to regenerate these API credentials if you forget them. These credentials
typically live in your CI environment, and you need to keep them backed up in a safe

place if you plan on keeping your Rancher installation around after this chapter.

After creating the environment API key, take note of the Endpoint (v1) URL, we use that
value in the deploy script for the --url flag of the Rancher API (Figure 10.7):

202

Chapter 10: Deploying Docker

Environment API Keys

Environment API keys are tied to this specific Environment (Default) and can only manipulate resources within there. Other accounts with access
to this Environment can also manage these keys.

Endpoint (v2-beta): http://45.55.184.106:8080/v2-beta/projects/1as [

Endpoint (v1): http://45.55.184.106:8080/v1/projects/1a5

State Name & Description Access Key Created
Active demo e 648E2D3180938152DC%4
(O Active Laravel Demo C57604D0798910521610

(4] Figure 10.7: Copy the Endpoint URL (V1)

Running the Deployment

Now that we have the deploy script and keys in place, we are finally ready to automate
the deployment of our stack. We need to run rancher-compose to create the stack via the
API, and then we need to set up a load balancer in our Rancher stack to accept web

traffic.

Remember to Build the Image

Make sure you build the image and push it to the GitLab registry. You can just
build it manually with the build.sh for this chapter, or you can set up build

automation as we did in Chapter 9.

Here we go! Let's use the deploy.sh file to run Rancher compose now. If you forgot to
install Rancher Compose earlier, and you want to follow along, download the latest

executable from the bottom right of the Rancher interface (Listing 10.15):

>_ Listing 10.15: Running Rancher compose

$ chmod u+x ./deploy.sh

203

Chapter 10: Deploying Docker

$./deploy.sh \
SO5DOLFLDD9CIE725LFA \
AYbu2q5CIqwpD6éLtonzq9MkfIrjWEzmTz7ajuc255 \
http://45.55.184.106:8080/v1/projects/1a5 \
prod

INFO[0060] [0/1] [rancher-laravel-demo]: Creating
INFO[©061] [6/1] [rancher-laravel-demo]: Created
INFO[©061] [0/1] [rancher-laravel-demo]: Starting
INFO[©061] [1/1] [rancher-laravel-demo]: Started

Once again, we pass the API key, API secret, endpoint URL, and the environment name.
By the time you read this my API key and the secret will no longer work, and I've used

them for a complete demonstration.

If everything went according to plan, you should see a new stack if you navigate to

"Stacks > User" (Figure 10.8):

PBF N Default~ STACKSw CATALOGv INFRASTRUCTUREw ADMINw APlv
User Stacks EXCECE S R ETETere Sort By:
< 4 Default b o .
< <4 rancher-laravel-demo 1 2 0 :

(4] Figure 10.8: Laravel Demo Stack

Based on our Rancher Compose file we have two containers running. Click on the stack

you created, and you should see that the status of the service is active.

While the stack is technically running, it's not accessible publicly yet. We need to

204

Chapter 10: Deploying Docker

define a load balancer service in Rancher that sits in front of our application and routes
traffic to each container instance. Think of a load balancer as gateway routing to each

of your defined services that you intend to make public.

Load Balancer Service

We have two containers running Laravel, but we need to load balance traffic to them.
Rancher uses HAProxy (http://www.haproxy.org/) internally to define load balancers.
Simply put, the load balancer service has one IP address and behind the scenes takes
care of routing traffic to your pool of application servers in the rancher-laravel-demo

stack.

You can define a load balancer from the Rancher compose file, but before we do that,
let's use the Ul to create the load balancer manually. You can get pretty far with
Rancher by using the Ul and since this is an introductory text that's the simplest way
for us to move forward. After we get the load balancer running, I'll show you how to get
the equivalent Rancher/Docker compose files from the UI that you can copy and paste

into your YAML configuration files.

Navigate to your user stacks from the menu by going to "Stacks > User." In the "rancher-

laravel-demo" stack, you should see an "Add Service" button; click the arrow and select

"Add Load Balancer" (Figure 10.9):

B Defaut~ STACKSw CATALOGw INFRASTRUCTUREN ADMINv APlw
(S gt lCl AddStack | Addfrom Catalog PRI State
< <+ Default Add Service | w Y 0
< <+ rancher-laravel-demo Add Service .-.1 ; = o

Add Load Balancer
Add Service Alias

Add External Service

4] Figure 10.9: Adding a load balancer service

205

Chapter 10: Deploying Docker

Adding a load balancer brings you to a setup screen. First, for the scale pick "Always
run one instance of this container on every host." Next, name the service something

like "laravel-demo-load-balancer" and describe if you want.

The main setup for the load balancer is defining port rules and then mapping them to
other services. Our demo is simple, so we are only going to pick public HTTP on port
80, and target our rancher-laravel-demo service on port 2015. We leave the "Request
Host" input empty, but generally, you would provide your application's DNS hostname

here, so Rancher knows how to route it correctly when you have multiple hosts.

Rancher Help

The Rancher UI provides hints that take you to the documentation. Look for
the circular question mark links ("?") near headings. The Ul might change in

the future, but Rancher is good about providing contextual help links.

In the end, you should have something similar to the following load balancer setup

(Figure 10.10):

Name Description
laravel-demo-load-balancer A public load balancer for the Rancher Larave! Demol |
Port Rules @Add Service Rule @Add Selector Rule
Access* Protocol*® Request Host Port* Path Target* Port*

~
Public ~ HTTP 80 rancher-laravel-der ¥ 2015 =

Show custom backend names. Show host IP address options.

SSLTermination | Stickiness =~ Custom haproxy.cfg =~ Labels = Scheduling
There are no SSL/TLS ports configured.
[sa] Figure 10.10: Add a Load Balancer

Once you create your load balancer service, you should see it activating from the User

206

Chapter 10: Deploying Docker

stacks screen, which might take a few minutes to finish. You can click on the load

balancer service to get the host IP address on the "Ports" tab (Figure 10.11).

Service: - laravel-demo-load-balancer ~ inrancher-laravel-demo — Active
Description:
A public load balancer for the Ports Balancer Rules Certificates Containers Labels Links Log
Rancher Laravel Demo
Type: Port Host IP
Load Balancer 80 104.131.122.108
Scale:
Global
Image:
rancher/lb-service-haproxy:v0.7.5
Entrypoint:

None

Command:

None

(4] Figure 10.11: Load Balancer Service Details

If defining a hostname for the load balancer rule, you would grab the IP address from
the ports tab and add an A record pointing to this IP. If you click the IP address link
from the "Ports" tab in the load balancer service you should see the default Laravel

homepage. We've successfully deployed a stack and made it publicly accessible!

Rancher Ul Tricks

We've seen how the Rancher UI makes deploying and scaling services as simple as
clicking a few buttons. One thing we haven't covered in the UI is how to take a stack or
service built from the UI and recreate stacks through a Rancher Compose
configuration. If you don't quite know how to automate through the Rancher Compose
configuration, you can use the UI to experiment. Once you have the setup, you like you

can convert it into a repeatable YAML configuration.

Creating the load balancer through the UI was a good exercise, but it breaks down
when you want to re-create the stack in a repeatable way. The Rancher Ul provides a

way for you can copy what you've done in the UI to an equivalent YAML config.

207

Chapter 10: Deploying Docker

First, navigate to "Stacks > User" and then click on the "rancher-laravel-demo" stack.
The main stack page listing the load balancer and service has a document icon on the

top right "Compose YAML," click it to see the files (Figure 10.12):

H‘ 1 Default v STACKS~ CATALOG~ INFRASTRUCTUREw ADMINw APlw

Stack: =zrancher-laravel-demo P

docker-composeyml rancher-composeyml =

(4] Figure 10.12: Copy the Compose YAML files

If you click the icon next to the YAML, you can copy it to your clipboard. Replace what
you have in your compose files inside the project. If you keep your Rancher Ul visible
inside of the stack page, you can see the services update when you run them from the

command line (Listing 10.16):

>_ Listing 10.16: Running the updated Rancher Compose Script

$./deploy.sh \
SO5DOLFLDD9COE725LFA \
AYbu2q5CIqwpDéLonzq9MkfIrjWEzmTz7ajuc255 \
http://45.55.184.106:8080/v1/projects/1a5 \
prod

INFO[©00060] [0/2] [rancher-laravel-demo]: Creating

208

INFO[0001]
INFO[0001]
INFO[0001]
INFO[0001]
INFO[0001]
INFO[0001]
INFO[0001]

[6/2]
[6/2]
[6/2]
[6/2]
[1/2]
[1/2]
[2/2]

Chapter 10: Deploying Docker

[rancher-laravel-demo]: Created
[laravel-demo-load-balancer]: Creating
[laravel-demo-load-balancer]: Created
[rancher-laravel-demo]: Starting
[rancher-laravel-demo]: Started
[laravel-demo-load-balancer]: Starting
[laravel-demo-load-balancer]: Started

Now you can update your entire stack with the Rancher compose command. The

updated compose file allows you to re-create your stack from scratch quickly in a more

repeatable fashion. In fact, let's do just that!

Delete the entire stack via the UI by going to "Stacks > User" and on the far right vertical

ellipsis icon select "Delete" from the drop-down menu of the rancher-docker-demo stack.

You can also export the YAML files from this menu too (Export Config) if you want to

download the compose files. Keep the browser window open so you can magically see

it re-appear when you run deploy from the command line.

If you re-run the deploy command after deleting the stack it will create the application

containers and the load balancer (Listing 10.17):

>_ Listing 10.17: Re-create the Laravel Demo Stack

$./deploy.sh \
S505DOLFLDD9CIE725LFA \
AYbu2q5CIqwpDéLonzq9MkfIrjWEzmTz7ajuUc255 \
http://45.55.184.106:8080/v1l/projects/1a5 \

prod

INFO[0000] Creating stack rancher-laravel-demo
INFO[©061] [0/2] [rancher-laravel-demo]: Creating
INFO[0001] Creating service rancher-laravel-demo
INFO[©0061] [6/2] [rancher-laravel-demo]: Created
INFO[©061] [06/2] [laravel-demo-load-balancer]: Creating

209

Chapter 10: Deploying Docker

INFO[0001] Creating service laravel-demo-load-balancer
INFO[©062] [06/2] [laravel-demo-load-balancer]: Created
INFO[©062] [0/2] [rancher-laravel-demo]: Starting
INFO[©066] [1/2] [rancher-laravel-demo]: Started
INFO[©066] [1/2] [laravel-demo-load-balancer]: Starting
INFO[0069] [2/2] [laravel-demo-load-balancer]: Started

Now you have a repeatable stack, including the public load balancer. I'd encourage you
to update your stack via the UI and then export/copy the compose files so you can learn

how to automate what you change.

Environment Variables

If you want to set environment variables in your Rancher stack, you can use
environment interpolation (http://rancher.com/docs/rancher/vl1.6/en/cattle/rancher-
compose/environment-interpolation/) on the machine running Rancher compose. In
this chapter, you've been using your computer, but imagine a continuous integration

server (i.e., Jenkins) running Rancher compose to deploy a stack.

We can use environment interpolation to our advantage to change application
configuration per-environment without changing our Docker Compose file. Let's try it
out by updating the docker-compose.prod.yml file with the following environment

changes (Listing 10.18):

</> Listing 10.18: Adding an Environment Variable

version: "2"
services:
rancher-laravel-demo:

image: registry.gitlab.com/paulredmond/rancher-laravel-
demo:latest

stdin_open: true

tty: true

labels:

io.rancher.container.pull_image: always

210

Chapter 10: Deploying Docker

environment:

RELEASE_VERSION: "$§RELEASE_VERSION3"
laravel-demo-load-balancer:

image: rancher/lb-service-haproxy:ve.7.15

ports:

- 80:80/tcp

labels:
io.rancher.container.agent.role: environmentAdmin,agent
io.rancher.container.agent_service.drain_provider: 'true'
io.rancher.container.create_agent: 'true'

You can reference environment variables in both the Rancher and Docker Compose
files defined on the machine running the commands. We added a version variable, but

other environment variables could include database credentials, API keys, etc.

Let's re-run the deploy and then check the containers to make sure they have the

environment variable defined (Listing 10.19):

>_ Listing 10.19: Adding the Environment Variables to Running Containers

$ export RELEASE_VERSION="1.6.0"

$./deploy.sh \
S505DOLFLDD9CIE725LFA \
AYbu2q5CIqwpDéLtonzq9MkfIrjWEzmTz7ajuUc255 \
http://u5.55.184.106:8080/vl/projects/1a5 \
prod

Once rancher-compose is finished, we can verify that the containers have the release
version variable by running a terminal session from the UI. Navigate to your stack and
select the "rancher-laravel-demo" service that has two containers. You can run a shell

by clicking the far right icon on one of the containers (Figure 10.13):

211

Chapter 10: Deploying Docker

mE O Defaultv STACKS~ CATALOGwv INFRASTRUCTUREs ADMIN~ APlv
Service: % rancher-laravel-demo ~ inrancher-laravel-demo & Active
Type:
Service Ports | Containers | Labels = Log
Scale:
2 + State T Name $ IP Address < Host & Image < Stats
Image: L
registry.gitlab.com/paulredmond/rancher- . .) E n
laravel-demo:latest 1° _ Running rancher-lara.. 10.42.104.128 rancher-age., registry.gitla.. ‘ :
Restart
Entrypoint: — Sstop o
None Delete I
AT - Executeshﬁ
Rion O Running rancher-lara.. 10.42.214.85 rancher-age.. registry.gitla.. View Logs
N
View in API
— Edit
v1.6.5 Help Documentation File an Issue Forums Slack @Englishv & Download CLIV

(4] Figure 10.13: Open a container shell

In the shell, run echo SRELEASE_VERSION and you should see the output 1.0.0.
Environment variables are an excellent way to power configuration in our Laravel
applications, and Rancher makes it a breeze to use them. The shell is also a great way

to debug your stacks if you are having issues in production that you need to debug.

Homework

We've covered much ground in this chapter, but just barely scratched the surface at the
same time. On your own, you can pick MySQL from the built-in catalog and install it in
your cluster. Try setting it up and adding environment variables so that you can

connect to MySQL from your Laravel application.

We also didn't install the Rancher server in high availability mode or use an external
MySQL database to power our Rancher server. Read the installation instructions
(https://rancher.com/docs/rancher/v1.6/en/installing-rancher/installing-server/) on

different configurations you can use to install the Rancher server.

212

Chapter 10: Deploying Docker

Learning more about Rancher secrets is a good exercise in learning more about the
Rancher UI and provides a place for you to store your application secrets. You can also
use a continuous integration pipeline to run rancher compose and provide your secrets
from that service (i.e., GitLab or Jenkins). We've already worked with Gitlab, which you

could use to automatically deploy to your stack after a merge to master or a tag.

Yeeeee-haaaa!

You now have an application running Docker in the cloud. Not too shabby! Rancher
makes it simple to get going, yet, has many advanced features as you dive deeper into
the documentation. We walked through how to deploy stacks with Rancher compose,

use images from GitLab in our Rancher cluster, and automate deployments.

Implementing and managing Docker at scale is an advanced topic that deserves a book
of its own. The appendix provides you with next steps so you can continue your
learning with Docker. While you should have most of the tools you need to develop PHP
applications with Docker, there's so much to learn about running Docker at scale in

production.

213

Eject

Congratulations! Making it this far means you have a solid understanding of the
fundamentals of using Docker and implementing Docker in your PHP projects.

Hopefully, you've got all you need to start using Docker on your projects.

This chapter marks is the end of our journey learning how to use Docker in
Development, but I hope that it's just the start of your journey with Docker. As a
developer, you might be content with knowing how to work with Docker in
development, and that's perfectly fine! However, if you are interested in learning more

about deploying and managing Docker, I've compiled a list of resources you can use.

I have no affiliation with any of the included resources, nor do I get any kick-back for

recommending them.

Docker Documentation

The official Docker documentation (https://docs.docker.com/) has a wealth of
information, and you will need to refer to it often as you build out your images, Docker
Compose configurations, and other topics. You can learn about Docker Swarm

(https://docs.docker.com/engine/swarm/) in the official documentation.

Docker Tutorials and Labs

Docker labs is a GitHub repository (https://github.com/docker/labs) of labs and tutorials
authored by Docker employees and members of the community. This GitHub repo has
a beginner tutorial and a tutorial on Docker Swarm mode, and other Docker-related

tutorials.

Eject

Docker Up and Running

Docker Up and Running (http://shop.oreilly.com/product/0636920036142.do) is a book
by Karl Matthias and Sean Kane, published by O'Reilly Media.

Servers for Hackers

The Servers for Hackers website by Chris Fidao has some free Docker screencasts
online (https://serversforhackers.com/t/containers). Chris also has an in-depth
screencast series called Shipping Docker (https://serversforhackers.com/shipping-
docker) which covers developing, testing, and deploying PHP applications with Docker.
He is also the author of Vessel (https://vessel.shippingdocker.com/), a simple Docker

development environment for Laravel.

Kubernetes

Kubernetes (https://kubernetes.io/) is an open-source project for automating
deployment, scaling, and management of containerized applications. The official site
has plenty of detailed documentation (https://kubernetes.io/docs/home/), and an

interactive tutorial (https://kubernetes.io/docs/tutorials/kubernetes-basics/).

Kubernetes might be a bit of a deep-dive depending on how much you know about
deploying server-based applications, so you might also benefit from Kubernetes Up and
Running (http://shop.oreilly.com/product/0636920043874.do) by Kelsey Hightower,

Brendan Burns, and Joe Beda.

Google Cloud

Google Cloud (https://cloud.google.com) is an excellent place to experiment with
Kubernetes using Google's managed Kubernetes installation. Google provides a free
tier (https://cloud.google.com/free/) to get started with Google's cloud technologies. At
the time of writing the free tier gives you 12 months and a 300 dollar credit to try out

their products and they offer an always free tier of specific products.

Another benefit of using Google Cloud is Google's container registry product for storing

Eject

and deploying private Docker images. Google's container registry is very fast, and you
can use the registry with Google's Kubernetes engine with no authentication setup

required.

I recommend a few PHP-specific tutorials that will help you learn using PHP and
Docker in Google Cloud. First, go through the Create a Guestbook with Redis and PHP
tutorial (https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook), which
shows you how to run a simple PHP application with Redis on a Kubernetes. Second,
the Running a PHP Bookshelf on Kubernetes Engine tutorial

(https://cloud.google.com/php/tutorials/bookshelf-on-kubernetes-engine).

The Twelve-Factor App

The Twelve-Factor App (https://12factor.net/)—written by Heroku Co-Founder Adam
Wiggins—is a document that describes a specific methodology for building web
applications, or software-as-a-service that is suitable for deployment on modern cloud

platforms.

iii

