
Chapter 1: Up and Running

Docker for PHP Developers

Paul Redmond

Copyright © 2018 Paul Redmond.
All rights reserved.

Do not reproduce any part of this publication or make it available online without prior

consent from the publisher.

Thanks for buying my book! If you're interested in the accompanying screencasts and

learning more about the full Docker for PHP Developers bundle, head on over to

https://bitpress.io/docker-for-php-developers.

I create books, screencasts, and online content to help you and your team create

fantastic software. Visit me at https://bitpress.io and follow along on Twitter

@paulredmond.

Thanks for reading, it was my pleasure writing this book, and I would love to hear from

you if you have praise, comments, or questions.

Paul Redmond
paul@bitpress.io

Chapter 1: Up and Running.. 1

Chapter 2: PHP Container Basics.. 10

Chapter 3: LAMP Baby!.. 21

Chapter 4: Development Tools... 40

Chapter 5: Using Composer with Docker... 66

Chapter 6: Web Servers and PHP­FPM... 86

Chapter 7: Legacy PHP Applications.. 111

Chapter 8: Custom Commands.. 143

Chapter 9: Docker Registry.. 166

Chapter 10: Deploying Docker..184

Contents

1

Chapter 1: Up and Running

Chapter 1: Up and Running

When I first started using Docker, the ecosystem was daunting and all brand new. While I

would argue that Docker is still daunting in many ways to developers, tooling and OS

support are improving the learning curve.

It has never been a better time to work with Docker. When I first started using Docker,

the only option on OS X was using Docker Machine with VirtualBox. The experience

was slow and never felt as good as running Docker natively on Linux. Overall, Docker

tools have improved drastically since the initial release of Docker, including native

support for both Mac and Windows 10 Pro.

Docker provides an extensive user guide (https://docs.docker.com/engine/userguide/)

which I highly recommend you go through later, but first, the goal in this chapter is to

get you up and running with Docker on your local machine.

The guide does not string together everything PHP-specific that this book covers in a

nice packaged way, but the documentation does provide a foundation for

understanding Docker that will be helpful to you if you're just starting out. It might

make more sense to you if you go through this book first. If you are anything like me,

you learn better by doing and then later going back for deeper understanding once you

see it in action.

In my opinion, local development is the most efficient way to work on applications,

and I want a Docker development environment that is as close to developing locally as

possible.

2

Chapter 1: Up and Running

The goal of this chapter is to install Docker and then introduce you to a few key

concepts that are different from more traditional environments you run PHP code

within. Then we can start learning how to incorporate Docker into PHP projects from

scratch!

Installing Docker on OS X

The first thing you need to do is grab the Docker Community Edition

(https://store.docker.com/editions/community/docker-ce-desktop-mac) DMG and run

the installer.

Once you are done installing Docker Community Edition for Mac, you should read

through the getting started (https://docs.docker.com/docker-for-mac/) documentation

to get familiar with Docker and managing docker through the provided menu bar

(Figure 1.1).

 Figure 1.1: The Mac OS X Docker Menu Bar

Once you install everything, fire up your terminal of choice, and you should be able to

run the following commands successfully (Listing 1.1).

3

Chapter 1: Up and Running

$ docker --version

Docker version 17. 09. 0-ce, build afdb6d4

$ docker-compose --version

docker-compose version 1. 16. 1, build 6d1ac21

$ docker-machine --version

docker-machine version 0. 12. 2, build 9371605

 Listing 1.1: Verifying a Mac Installation

You might want to read through the Linux installation regardless as that is the typical

environment on which Docker runs in production. You can run Docker on any machine

that supports it—which is one of its strongest benefits—but Linux tends to be the OS

running production Docker servers.

You have successfully installed Docker on Mac OS X!

Installing Docker on Linux

Docker's Linux installation documentation provides instructions for the most common

Linux distributions. You should be able to navigate to your distribution from the

Ubuntu installation instructions

(https://docs.docker.com/engine/installation/linux/ubuntu/), which is probably the

most common Linux desktop platform. I do not list each link here, but you should

easily find the instructions of your "distro" of choice.

I strongly recommend following the Post-installation steps for Linux

(https://docs.docker.com/engine/installation/linux/linux-postinstall/) after you

install Docker. Steps include managing Docker as a non-root user (otherwise

you would have to run sudo docker all the time) and starting Docker on system

boot, which are both a must in my opinion.

Post-Install Steps for Linux

4

Chapter 1: Up and Running

Linux users have a few extra steps that Mac and Windows users do not have to worry

about: installing docker-compose and docker-machine. To install Docker Compose and

Docker Machine follow the following guides:

1. Install Docker Compose (https://docs.docker.com/compose/install/)

2. Install Docker Machine (https://docs.docker.com/machine/install-machine/)

Once you have installed docker, docker-compose, and docker-machine you should

finally be able to test that everything worked (Listing 1.2).

$ docker --version

Docker version 17. 03. 1-ce, build c6d412e

$ docker-compose --version

docker-compose version 1. 11. 2, build dfed245

$ docker-machine --version

docker-machine version 0. 10. 0, build 76ed2a6

 Listing 1.2: Verifying a Linux Installation

You have successfully installed Docker on Linux!

Installing Docker on Windows

Like the OS X offering, Docker for Windows (https://docs.docker.com/docker-for-

windows/) has improved working with Docker on Windows drastically. Windows 10 Pro

users have access to Hyper-V which allows Docker to run natively on Windows.

Unfortunately, Windows 10 Home users must use a virtual machine.

If you have Windows 10 Pro, follow the Windows installation guide

(https://docs.docker.com/docker-for-windows/install/). VirtualBox will no longer work

after installing Docker (which installs Hyper-V). You can use the Windows 10 Home

instructions below if you can't or don't want to lose VirtualBox support.

5

Chapter 1: Up and Running

If you don't have Windows 10 Pro, but instead have Windows 10 Home, you need to

install Docker Toolbox (https://docs.docker.com/toolbox/overview/) for Windows. The

Docker Toolbox uses VirtualBox and other tools to help interact with Docker. It is not as

fast as native Docker support, but at least it is now possible to run Docker on Windows

10 Home. File permissions might be a challenge because of how your machine mounts

a volume with VirtualBox.

Once you have installed Docker, you should be able to confirm that Docker is working

as expected (Listing 1.3).

$ docker --version

Docker version 17. 03. 1-ce, build c6d412e

$ docker-compose --version

docker-compose version 1. 11. 2, build dfed245

$ docker-machine --version

docker-machine version 0. 10. 0, build 76ed2a6

 Listing 1.3: Verifying a Windows 10 Installation

Windows 10 Home users must use the shell provided by Docker Toolbox to run Docker

commands.

You might want to read through the Linux installation regardless as that is the typical

environment on which Docker runs in production. You can run Docker on any machine

that supports it—which is one of its strongest benefits—but Linux tends to be the OS

running production Docker servers.

You have successfully installed Docker on Windows!

6

Chapter 1: Up and Running

Running Your First Docker Container

Now that you have docker running on your platform of choice let's use it to run the

"Hello World" docker container and make sure docker is working properly (Listing 1.4):

$ docker run hello-world

Unable to find image ' hello-world: latest' locally

latest: Pulling from library/hello-world

78445dd45222: Pull complete

Digest: sha256: c5515758d4c5e1e838e9. . .

Status: Downloaded newer image for hello-world: latest

Hello from Docker!

This message shows that your installation appears to be working

correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the

Docker Hub.

3. The Docker daemon created a new container from the image

which is how Docker images run.

4. The Docker daemon streamed that output to the Docker client,

which sent it to your terminal.

 Listing 1.4: Running Docker's Hello World Container

When you run docker run hello-world, Docker looks for the image locally. If the Docker

image doesn't exist, Docker "pulls" the image and then runs it. After the image is

downloaded, run docker images to see the hello-world image locally (Listing 1.5):

7

Chapter 1: Up and Running

$ docker images | grep hello-world

hello-world latest 48b5124b2768 3 months ago 1. 84 kB

 Listing 1.5: Output Local Docker Images

You can remove docker images with docker rmi <hash>, so running docker rmi

48b5124b2768 in the example above would delete the local image as long as no

containers depend on it. If you try to remove it, you get an error (Listing 1.6):

$ docker rmi 48b5124b2768

Error response from daemon: conflict: unable to delete

48b5124b2768 (must be forced) - image is being used by stopped

container fd0d5cd7d793

 Listing 1.6: Attempt to Remove the Hello World Image

You cannot remove the image until you remove the stopped container; to remove the

container, we need to know the container's ID. The error message conveniently listed

the ID, but you should get used to getting a list of containers with the docker ps

command (Listing 1.7):

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

List all containers

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

fd0d5cd7d793 hello-world "/hello" 8 minutes ago Exited

. . .

 Listing 1.7: Listing Docker Containers

Running docker ps without any flags only lists running containers. In the second

example, docker ps -a lists all containers—both stopped and currently running. To

remove the image we first need to remove the container with the docker rm command,

8

Chapter 1: Up and Running

and then we can delete it (Listing 1.8):

$ docker rm fd0d5cd7d793

fd0d5cd7d793

$ docker rmi 48b5124b2768

Untagged: hello-world: latest

Untagged: hello-world@sha256: c5515758d4c5e1e838e9. . .

Deleted: sha256: 48b5124b2768d2b917ed. . .

Deleted: sha256: 98c944e98de8d3509710. . .

 Listing 1.8: Remove the Hello World Container and Image

The docker rmi command is used to remove one or more images. You can list multiple

image IDs separated by a space to remove multiple images with one command (Listing

1.9):

Example removing multiple image ids

$ docker rmi 48b5124b2768 8672b4215b84

Remove images by name: tag

$ docker rmi php: latest

 Listing 1.9: Removing multiple images

Ready to Ship

Hopefully, you don't get sick of my dry, witty conclusion title puns.

We walked through installing Docker on OS X, Linux, and Windows. You downloaded

your first Docker image and ran a container. Things might feel weird or confusing right

now, but these patterns quickly become second nature as you work through this book.

Although we run images with docker run in various parts of the text, we use Docker

compose to make it easier to repeat running your environments on other machines

including your coworkers' development machines. Everyone has the same repeatable

9

Chapter 1: Up and Running

environment. Using Docker does not mean you are free from all infrastructure or

environment issues, but it does mean your environments are more repeatable,

consistent, and easier to set up.

10

Chapter 3: LAMP Baby!

Chapter 2: PHP Container Basics

In this chapter we are going to cover the basics of running a PHP container with

Docker. Before we get into the more exciting stuff, we need to learn how to build

images, start containers, and copy files into them. Along the way, you'll work with basic

Docker commands and start to get a feel for how to work with Docker on the command

line.

Using the command line to build images, we'll extend our images from the official PHP

Docker images (https://hub.docker.com/_/php/). I find the official image simplifies my

setup and I can focus on configuring applications and not worrying about the low-level

details of installing PHP.

Creating a New Project

When creating a new Docker project, the main file used to build images is the

Dockerfile. This file is a set of instructions that define building images, each step

creating a new layer on top of the previous. If this doesn't make much sense right now,

don't worry, you don't need to be an expert to start being productive. I recommend that

you keep the Dockerfile reference (https://docs.docker.com/engine/reference/builder/)

handy as you work through this book.

The first task is creating the necessary files for our first Docker image. In the directory

of your choice, create the following files (Listing 2.1):

11

Chapter 2: PHP Container Basics

$ mkdir -p ~/Code/docker-phpinfo

$ cd ~/Code/docker-phpinfo

Create the project files

$ touch Dockerfile docker-compose. yml index. php

 Listing 2.1: Creating Docker files

The index.php file will be the only source file in this chapter that we'll use to

demonstrate changes to our builds, and in later chapters we will work with web

frameworks.

The docker-compose.yml file is a configuration file that will help you run containers with

the docker-compose CLI tool. If you are not familiar with Docker Compose, don't worry,

we will use it throughout this book.

To start, we will define the Dockerfile to extend the PHP Apache image and copy the

index.php file (Listing 2.2):

FROM php: 7. 1. 9-apache

LABEL maintainer="Paul Redmond"

COPY index. php /var/www/html

 Listing 2.2: Defining the Dockerfile Instructions

The FROM instruction means we are extending another image. Think of it like PHP class

inheritance. You inherit the base image which takes care of things like installing

Apache and building PHP from source. The official PHP image is doing most of the

work for us!

As outlined in the README found on https://hub.docker.com/_/php/, you copy the

source files of your project to /var/www/html using COPY. In our case we'll copy the

index.php file into the image at /var/www/html/index.php. Note that the COPY instruction

12

Chapter 2: PHP Container Basics

can take an individual file or a directory.

The LABEL instruction is how you add metadata to an image. In this case, we are

following the recommended guideline for setting a maintainer, which helps others

know who is maintaining the Dockerfile. You can see the metadata for an image by

running docker inspect:

docker inspect <image_name>

$ docker inspect php: 7. 1. 9-apache

Next, let's output PHP's configuration to the browser so we can verify our PHP setup

(Listing 2.3):

<?php phpinfo(); ?>

 Listing 2.3: Update the index.php File

Running the PHP Container

It's time to run our first image and inspect the PHP environment. In order to run it, we

need to build it using the docker build command (Listing 2.4):

$ docker build -t phpinfo .

$ docker run -p 8080: 80 -d --name=my-phpinfo phpinfo

 Listing 2.4: Build the Docker Image

The build command has a -t flag, which tags the image as phpinfo, and the last

argument (.) is the path where Docker will look for our files.

The run command runs a container with the tagged phpinfo image, using the -p flag to

map port 8080 on your machine to port 80 in the container, which means that we'll use

port 8080 locally to access our application.

13

Chapter 2: PHP Container Basics

The --name flag assigns a name to the running container that you can use to issue

further commands, like docker stop my-phpinfo. If you don't provide a name, Docker

creates a random auto-generated name for you.

The -d flag (detach) is used to run the container in the background. Without the -d flag

Docker runs in the foreground.

Next, point your browser to http://localhost:8080, and you should see the output from

phpinfo() (Figure 2.1):

 Figure 2.1: phpinfo

Our container is running, which means that we can inspect it from the command line

by issuing the docker ps command. Unless you are already running something with

Docker, you should see just one container (Listing 2.5):

$ docker ps

CONTAINER ID IMAGE COMMAND

88c6424ebb5b phpinfo "apache2-foreground"

 Listing 2.5: The docker ps Command (partial output)

14

Chapter 2: PHP Container Basics

The ps command outputs the names of the containers, which you can use to issue

commands like docker stop my-phpinfo and docker start my-phpinfo. The my-phpinfo

argument is the name we provided the container in the docker run command.

If a container is stopped, running docker ps does not show the container in the list;

however, you can still see all containers by running docker ps -a. To remove a container,

you could run docker rm my-phpinfo.

In practice, running containers with docker run isn't going to help your productivity. In

fact, it will be kind of clunky when you share the application with others. That's exactly

what Docker Compose will help us automate, so let's dive in!

Before we start working with Docker Compose, shut down the container you are

running:

Stop the container

$ docker stop my-phpinfo

Remove the container

$ docker rm my-phpinfo

Running Containers with Docker Compose

What is Docker Compose? From the Docker Compose overview page

(https://docs.docker.com/compose/overview/):

Compose is a tool for defining and running multi-container Docker applications.

One my biggest breakthroughs when I was learning about Docker was running

containers with Docker Compose (https://docs.docker.com/compose/), because it

simplifies running your stack over individually running containers with docker run.

Your applications will need dependencies like MySQL, Redis, etc., and with Docker

15

Chapter 2: PHP Container Basics

Compose, we can automate the orchestration of these services. Can you imagine

multiple docker run commands and networking everything together by hand? Me

neither.

In more traditional environments, all dependencies run on the same operating system

(or virtual machine). However, with Docker, you can break up your application into

multiple containers. This separation can simplify your setup and lets you scale parts of

your application independently.

Before we start adding services like MySQL in future chapters, let's just replicate what

we were doing with docker run inside the docker-compose.yml file to get started (Listing

2.6):

version: "3"

services:

phpinfo:

build: .

ports:

- "8080: 80"

 Listing 2.6: Your First docker-compose.yml File

The services key defines one service called phpinfo.

Inside the phpinfo service, the build key references a dot (.), which means we expect the

Dockerfile in the current path. Lastly, the ports key contains an array of port maps from

the host server, just like our previous docker run -p 8080:80 flag. The port format is:

<host_port>:<container_port>, which in our case means that port 8080 on the local

machine will map to port 80 inside the container.

We are using version three (https://docs.docker.com/compose/compose-file/), which is

the recommended version at the time of writing. I use the documentation frequently,

and I recommend that you bookmark it and use it as a reference.

16

Chapter 2: PHP Container Basics

With our service defined, now anyone that comes along and needs to run this project

can simply run docker-compose up (Listing 2.7):

$ docker-compose up --build

Or, if you want to run it in the background

$ docker-compose up -d --build

Now list all the containers running

$ docker-compose ps

 Listing 2.7: Using Docker Compose

After running the command, you should see the output from the phpinfo() function

when you visit http://localhost:8080.

If you ran your containers in the background (-d), you can use the stop command to

stop everything (Listing 2.8):

From the root of the project

$ docker-compose stop

 Listing 2.8: Stopping Containers with Docker Compose

Here are commonly used commands that you should become familiar with (Listing

2.9):

List running containers that Docker Compose is managing

$ docker-compose ps

Restart the containers

$ docker-compose restart

 Listing 2.9: Additional Docker Compose Commands



17

Chapter 2: PHP Container Basics

Restart a specific container

matches the service key in docker-compose. yml

$ docker-compose restart phpinfo

Remove stopped containers

$ docker-compose stop && docker-compose rm

Stop containers and remove containers, networks,

volumes, and images created

$ docker-compose down

Remove named volumes

$ docker-compose down --volumes

Don't worry about memorizing these commands. You can always run docker-compose --

help to get a list of commands, and run, for example docker-compose up --help to get help

on subcommands. You'll also get plenty of practice setting up Docker Compose and

running containers throughout this book.

Basic PHP INI Changes

We have the phpinfo() settings handy, so let's make a few small tweaks to the php.ini file

and validate our changes. We'll also jump into a running container and peek around,

which feels very much like SSH to me (but it's nothing like that).

According to the PHP image documentation, the php.ini file is located at

/usr/local/etc/php/php.ini, however, I want to show you how to find the location on your

own. We will then make a few adjustments, rebuild the image, and verify our INI

changes.

First we need to find out the PHP container's ID, so we can use it to run bash inside the

container (Listing 2.10):

18

Chapter 2: PHP Container Basics

Run the image if you are not already doing so

$ docker-compose up -d

Get the image ID

$ docker ps

CONTAINER ID

c0ee14f0c047

 Listing 2.10: Find the Running Container ID

The container ID that you see will be different. Copy the container ID for your output

and use it to run the following commands (Listing 2.11):

$ docker exec -it c0ee14f0c047 bash

Inside the container, run php --ini

root@c0ee14f0c047: /var/www/html# php --ini

Configuration File (php. ini) Path: /usr/local/etc/php

Loaded Configuration File: (none)

Scan for additional . ini files in: /usr/local/etc/php/conf. d

Additional . ini files parsed: (none)

root@c0ee14f0c047: /var/www/html#

 Listing 2.11: Run bash in the container

You can exit the container by hitting "Ctrl + D" or typing "exit."

Although the image has no INI configuration file defined, we can create our own in the

project, and then copy it into the image (Listing 2.12):

Create a config folder

$ mkdir config/

 Listing 2.12: Create a php.ini File and Set the Timezone



19

Chapter 2: PHP Container Basics

I am partial to Phoenix, I live here after all. . .

and we don't observe daylight savings time, win!

$ echo "date. timezone = America/Phoenix" >> config/php. ini

Our php.ini file has one date.timezone setting, which configures the timezone to

America/Phoenix. I prefer UTC, but I want to show you a non-default for demonstration

purposes.

We can now copy our php.ini file into the image at the correct path listed in the php --ini

command by adding a COPY instruction in the DO (Listing 2.13):

FROM php: 7. 1. 9-apache

LABEL maintainer="Paul Redmond"

COPY config/php. ini /usr/local/etc/php/

COPY index. php /var/www/html

 Listing 2.13: Copy the php.ini File Into the Container

In order to get our php.ini file into the container, we need to build the image again

(Listing 2.14):

$ docker-compose stop

$ docker-compose up -d --build

 Listing 2.14: Rebuild the phpinfo image

The image should now contain a php.ini config file and you should see the following

"datetime" change (Figure 2.2):

20

Chapter 2: PHP Container Basics

 Figure 2.2: phpinfo datetime changes

Composed and Ready for Adventure

We covered a bunch of ground quickly. In a nutshell, you learned the following:

- Extending an existing Docker image

- Building a custom Docker image

- Running custom docker images

- Using Docker Compose to automate running containers

- Executing a bash shell in a running container

- Debugging and adding PHP INI files

Using Docker requires a new way of thinking, and can be quite a transition. If you feel

overwhelmed or confused right now, don't worry. I've been there too. You'll get plenty

more wrench time running commands and making changes as you start going over

more practical uses of Docker by running real-world applications in this book!

21

Chapter 3: LAMP Baby!

Chapter 3: LAMP Baby!

We've learned how to build images and run containers, and we are ready to work on a

complete LAMP stack with Docker. Instead of just using an index.php file, we will install

an entire application framework and a database. We also need to configure the web

server to handle the application requests and copy the source code into the image.

Along the way, you will learn how to run multiple containers with Docker Compose and

expose ports locally in order connect to a MySQL server running in a Docker container.

We will also work on configuring the application to connect to a database, and learning

how Compose provides networking between them out-of-the-box.

Setting up the LAMP Project

A nice benefit of showing you examples with a complete application is that you can

start to figure out how you prefer to organize your projects using Docker. We will create

the core files we need for our LAMP Docker automation alongside our project and start

to get a feel for Docker file organization.

The framework we are going to use for this chapter is Lumen

(https://github.com/laravel/lumen), an API framework by Laravel. You will see other

frameworks later in the text, such as Laravel and Slim, but the core focus is around

showing you how to use Docker.

With all that explaining out of the way, let's create the initial project files. I am also

assuming that you already have PHP Composer (https://getcomposer.org/) installed on

your machine and know how to use it (Listing 3.1):

22

Chapter 3: LAMP Baby!

$ cd ~/Code

$ composer create-proj ect --prefer-dist laravel/lumen docker-lamp

$ cd ~/Code/docker-lamp

$ touch Dockerfile docker-compose. yml

Create a php and apache directory

$ mkdir -p . docker/{php, apache}

$ touch . docker/php/php. ini

$ touch . docker/apache/vhost. conf

 Listing 3.1: Creating the core files for our LAMP project

You can organize your Docker builds in various ways, and I will demonstrate a few

throughout this book. I prefer to keep my Docker files with my application code, so I

can efficiently work with the application and Docker configuration together.

In Listing 3.1, the mkdir command created a .docker folder, with two subfolders (php and

apache), which is where we'll put configuration files. The .docker folder is my personal

convention to organize Docker-specific files. I am not 100% sold on it, but it works well

most of the time. One downside is that your files are hidden, so you could just use

docker/ as the folder name instead.

Feel free to adapt file organization to your preferences, but you might consider sticking

with mine until you get more comfortable with what's going on.

Now that we've created our project files, our first goal is getting the default Lumen page

loaded in a browser. The first step is building a Docker image for our Lumen code,

much like we did in Chapter 2 (Listing 3.2):

FROM php: 7. 1. 9-apache

LABEL maintainer="Paul Redmond"

 Listing 3.2: The Initial LAMP Dockerfile



23

Chapter 3: LAMP Baby!

COPY . docker/php/php. ini /usr/local/etc/php/

COPY . /srv/app

COPY . docker/apache/vhost. conf /etc/apache2/sites-available/000-

default. conf

Not much is new here, except for the vhost.conf file and COPY instructions. The last

COPY instruction will replace the 000-default.conf file with the contents of vhost.conf. The

default.conf is the default Apache Vhost file, so we effectively make our configuration

the default. In the image, the name will still be 000-default.conf, but locally the project

file is vhost.conf. Think of the last line just like the cp command: cp foo.txt bar.txt.

The application source files get copied into the /srv/app folder inside the Docker image,

which is a convention I use as the path for my web application files. You are free to use

any convention you like, for example, you could use the default Apache path of

/var/www/html.

Like in the last chapter, the Dockerfile also expects to copy in a php.ini file, which we

will use to define the date.timezone setting (Listing 3.3):

date. timezone = UTC

 Listing 3.3: The php.ini file

We will add more configuration to this file later on, but for now, we'll just define the

date.timezone setting. There's something cool about having the PHP INI configuration

in a project right at developers' fingertips.

Now, we are going to override the default Apache Vhost file, creating a much more

interesting .docker/apache/vhost.conf file that will replace the default (Listing 3.4):

24

Chapter 3: LAMP Baby!

<VirtualHost *: 80>

ServerName www. example. com

ServerAdmin webmaster@localhost

DocumentRoot /srv/app/public

<Directory "/srv/app/public">

AllowOverride all

Require all granted

</Directory>

ErrorLog ${APACHE_LOG_DIR}/error. log

CustomLog ${APACHE_LOG_DIR}/access. log combined

</VirtualHost>

 Listing 3.4: The default Apache Virtual Host file

The VirtualHost definition is a slightly modified version of the default file that ships

with the official image. If you recall, we copied our source code to /srv/app, and we

defined our document root accordingly as DocumentRoot /srv/app/public.

We enable a directory override for development and use Apache 2.4's Require all granted

which you might know as Allow from all in previous versions. You can provide a

ServerName if you want, but for our purposes, we'll use localhost.

Next, we need to add our application service to the project's docker-compose.yml file. We

will map ports and mount a volume

(https://docs.docker.com/engine/tutorials/dockervolumes/) so that changes made

locally reflect immediately in the running container (Listing 3.5):

25

Chapter 3: LAMP Baby!

version: "3"

services:

app:

build: .

ports:

- "8080: 80"

volumes:

- . : /srv/app

 Listing 3.5: The docker-compose.yml File

We define an app service with the same port mapping we've already seen in the last

chapter. More interestingly, the volume key accepts an array of folders separated by a

colon (:). The first path is the local path to the folder or file, and the second is the

desired path inside the container. Volumes allow you to avoid running docker build

(which copies the files into the container) every time you make a source code change

while developing.

With our PHP and Vhost configurations updated, we're ready to run Docker Compose

and verify that our configuration is working (Listing 3.6):

$ docker-compose up --build

 Listing 3.6: Running the application with docker-compose

Adding the --build flag will build the images before running the containers defined

under the services key. After the containers are running, you can visit

http://localhost:8080 to verify everything is working as expected, and you should see

something like "Lumen (5.5.1) (Laravel Components 5.5.*).," which means that our

application is working.

Installing PHP Modules

Our next step in getting a LAMP environment going is installing PHP modules.

26

Chapter 3: LAMP Baby!

Specifically, we need to install the pdo_mysql extension to connect to a MySQL database

container.

So how do you install modules with the official PHP image?

The PHP Docker hub page (https://hub.docker.com/_/php/) mentions three helper

scripts to work with PHP extensions: docker-php-ext-configure, docker-php-ext-install, and

docker-php-ext-enable. To run these commands during a Docker build, you use the RUN

instruction.

Here's how the RUN instruction looks (Listing 3.7):

FROM php: 7. 1. 9-apache

LABEL maintainer="Paul Redmond"

COPY . docker/php/php. ini /usr/local/etc/php/

COPY . /srv/app

COPY . docker/apache/vhost. conf /etc/apache2/sites-available/000-

default. conf

RUN docker-php-ext-install pdo_mysql

 Listing 3.7: Installing the PDO MySQL Module

The RUN instruction executes commands in a new layer, and in our case runs the

docker-php-ext-install command. You will see more examples of the RUN command

going forward.

Docker creates a new layer for each RUN command. You can optimize the number of

layers by combining multiple commands within a single RUN instruction. This is best

explained with an example:

Valid but creates separate layers

RUN cp /srv/. env. example /srv/. env

RUN touch /tmp/foo 

27

Chapter 3: LAMP Baby!

$ docker-compose stop

$ docker-compose build

 Listing 3.8: Build the Image after the latest Dockerfile changes

Combines commands into one RUN instruction

RUN cp /srv/. env. example /srv/. env \

&& touch /tmp/foo

As you might have guessed, we need to run a new build to install the module (Listing

3.8):

When you run the build command, you should see some build output fly by about the

installation of the pdo_mysql PHP module from source. While the build finishes, you

can start configuring the application database container.

The Database Container

The database service will use the official MariaDB 10.1 image

(https://hub.docker.com/_/mariadb/), but feel free to use any MySQL variant you want.

Most MySQL variants (if not all of them) have official Docker Hub images.

The database will be another service in the Docker Compose file, which means that

when we run docker-compose up, both containers will start.

Defining The MariaDB Service

This is what the database service in docker-compose.yml looks like (Listing 3.9):

version: "3"

services:

app:

build: .

 Listing 3.9: Defining the Database Container



28

Chapter 3: LAMP Baby!

depends_on:

- mariadb

ports:

- "8080: 80"

volumes:

- . : /srv/app

links:

- mariadb: mariadb

mariadb:

image: mariadb: 10. 1. 21

ports:

- "13306: 3306"

environment:

- MYSQL_DATABASE=dockerphp

- MYSQL_ROOT_PASSWORD=password

The MariaDB service introduces the image key, which points to version 10.1.21 of the

MariaDB Docker Hub image. The image format is just like the Dockerfile format we've

been using for the PHP image: <name>:<tag>. If you provide image: mariadb with no tag,

Docker Compose will use the "latest" tag.

Another interesting line in this file is the database service ports key. We mapped port

13306 locally to 3306 inside the container. Using this non-standard local port avoids

collision with any local MySQL instances running, which is my convention. As you will

see in a second, exposing this port allows you to connect to the database container

from your computer.

Next, the environment key defines environment variables for the container that we are

Providing a tag version is a good practice to avoid unexpected changes to your

application's environment without your explicit control. Using latest should be

used with caution on a real project.

Using Tagged Image Versions

29

Chapter 3: LAMP Baby!

using to set the root password and the name of the database that we want to use. The

MariaDB documentation outlines which environment variables are available that you

can use to configure the database.

Last, we added links to the app definition, which links to the database container. The

links configuration is the default, which means it's redundant, but I've left it so you can

understand how it works. The links format specifies the name and a link alias

(<service>:<alias>), which enables you to use the alias to communicate with the

container.

While links are not required for containers to communicate—they can reach each other

using the service name—it's important to understand that defining the link as "-

mariadb" is shorthand for "- mariadb:mariadb". If you want to define an alias for the

service, use the links key with something like "- mariadb:db", and then you would use db

as the hostname to communicate with MariaDB from the app container.

Official Docker images usually provide thorough README files, which outlines

relevant details like configuration, using the image, and getting technical

support. It's advisable to at least skim through the documentation on how to

use the image.

Offical Docker Image Readme File

Connecting to the Database Locally

Connecting to the database with a GUI tool is a must for my development workflow. I

use migrations with Laravel, but I use Sequel Pro (https://www.sequelpro.com/) all the

time to inspect the database.

We've exposed port 13306 to allow us to connect to the container database locally. If

you have MySQL installed locally, you can test the connection using the CLI or GUI

(listing 3.10):

30

Chapter 3: LAMP Baby!

Let' s delete and restart the containers

$ docker-compose stop

$ docker-compose rm -v # Remove anonymous volumes attached

$ docker-compose up --build

Once the database container finishes starting,

open another tab and connect via mysql-client or a GUI

$ mysql -u root -h 127. 0. 0. 1 -P13306 -ppassword

$ mysql> show databases;

+--------------------+

| Database |

+--------------------+

| dockerphp |

| information_schema |

| mysql |

| performance_schema |

+--------------------+

4 rows in set (0. 00 sec)

 Listing: 3.10: Connect to the MariaDB Database from the Host Machine

You should see a dockerphp database listed, which matches the MYSQL_DATABASE

environment variable we defined in docker-compose.yml.

Here's an example from Sequel Pro (Figure 3.1):

31

Chapter 3: LAMP Baby!

 Figure 3.1: Connecting to the MariaDB Container with a GUI

Application Database Connection

We are ready to configure the application to use MariaDB and run the built-in database

migrations provided in Lumen. To configure the database connection, Lumen uses a

.env file in the root of the project (Listing 3.11):

APP_ENV=local

APP_DEBUG=true

APP_KEY=

APP_TIMEZONE=UTC

DB_CONNECTION=mysql

DB_HOST=mariadb

DB_PORT=3306

DB_DATABASE=dockerphp

DB_USERNAME=root

DB_PASSWORD=password

 Listing 3.11: Update the Database Configuration

32

Chapter 3: LAMP Baby!

One thing that confused me when I first started using Docker was the peculiar

hostnames used to communicate between containers. If you look closely, we are using

the hostname mariadb in the container to connect to the database. The equivalent

console connection would look like this for a visualization:

Example using localhost

$ mysql -u root -h 127. 0. 0. 1 -ppassword

Using the Docker network alias

$ mysql -u root -h mariadb -ppassword

For now, just understand that the links key on the right side will be the name of the

MariaDB host you use to connect inside your app container. If you don't define a links

key, you can use the name of the service key (i.e., app or mariadb) to reach services. On

the other hand, if you configure an alias like the following:

services:

app:

links:

- mariadb: db

Then connecting to the container would look like this:

$ mysql -u root -h db -ppassword

If you want to learn more about how Docker Compose networking works, check out the

networking documentation (https://docs.docker.com/compose/networking/).

Migrating the Database

We are ready to run some database queries to test our database connection using

Lumen's built-in database migration command. We'll need to execute the commands

inside the app container for this to work properly because we've configured our .env

file to use the mariadb hostname, which is only available in the provided Docker

33

Chapter 3: LAMP Baby!

Compose network.

Let's run bash inside of the container and execute our migrations to test the database

connection (Listing 3.12):

Run the containers and jump into the app container

$ docker-compose up

$ docker ps # note the app container id

$ docker exec -it 6a50b2398826 bash

Inside the app container, navigate to the project

and run the migrate command

$ cd /srv/app

$ php artisan migrate

Migration table created successfully.

Nothing to migrate.

 Listing 3.12: Running Lumen's migrate Command

After running the migration, you should see a new table called migrations in the

database. Check with your local GUI by refreshing the tables or using the MySQL CLI

command.

Feel free to explore creating database migrations, models, and writing routes for

Lumen at this point. Our setup is capable enough to run a LAMP application, and you

can quickly add other container services like Redis or Memcache to practice running

different services together.

PHP Module Configuration

One of my favorite parts of using Docker is how close my server configuration is to my

codebase. I can quickly update PHP module configurations and rebuild the image to

get my new changes in place. With confidence, I know that when I release my new

changes, production will get the same configuration.

34

Chapter 3: LAMP Baby!

I install the OPcache (http://php.net/manual/en/book.opcache.php) module on every

project, so it's an excellent candidate to walk you through configuring PHP modules

with Docker.

You are probably familiar with APC and OPcache, but for those who are not familiar,

the OPcache module description is as follows:

OPcache improves PHP performance by storing precompiled script bytecode in shared

memory, thereby removing the need for PHP to load and parse scripts on each request.

That sounds great for production, but not so much for development environments. To

deal with this issue, we will cover how to make INI configuration more flexible in a

later chapter with environment variables. Right now we will just focus on enabling

and configuring PHP modules so you can get a feel for working with them.

If you run php -m | grep opcache inside the app container, the opcache module is not

installed yet, so let's go ahead and add it (Listing 3.13):

FROM php: 7. 1. 9-apache

LABEL maintainer="Paul Redmond"

COPY . docker/php/php. ini /usr/local/etc/php/

COPY . /srv/app

COPY . docker/apache/vhost. conf /etc/apache2/sites-available/000-

default. conf

RUN docker-php-ext-install pdo_mysql \

&& docker-php-ext-install opcache

 Listing 3.13: Installing the OPcache module

Next, we will provide some OPcache configuration settings in the php.ini file, which is

located at .docker/php/php.ini (Listing 3.14):

35

Chapter 3: LAMP Baby!

date. timezone = UTC

[opcache]

opcache. enable=1

opcache. revalidate_freq=0

opcache. fast_shutdown=1

; 0 or 1. 0 is recommended in production

; and will require a restart when files change.

opcache. validate_timestamps=1

; Keep this above the number of files in project

; You can check how many files you have with

; ` find . -type f -print | grep php | wc -l`

opcache. max_accelerated_files=6000

; Caches duplicate strings into one shared immutable value

opcache. interned_strings_buffer=16

 Listing 3.14: OPcache configuration

The INI values and comments are from an OPcache write-up on scalingphpbook.com

(https://www.scalingphpbook.com/blog/2014/02/14/best-zend-opcache-settings.html),

which is an excellent resource for scaling PHP applications.

Alternatively, we could have provided a custom opcache.ini file and copied it into the

directory configured to scan additional INI files (/usr/local/etc/php/conf.d). I prefer to

organize each extension's settings into separate files, but for this example, I kept it

simple. There's nothing wrong with keeping the settings in one php.ini file either, if you

prefer.

With our new Dockerfile and INI changes in place, we can now rebuild the image and

verify that the OPcache module is configured with our overrides.

36

Chapter 3: LAMP Baby!

You can build all images with docker-compose build. However, we can specify which

image to build based on the service name if we only want to build one (Listing 3.15):

$ docker-compose build app

$ docker-compose up

 Listing 3.15: Build the Latest App

At this point, if you add "phpinfo(); exit;" at the top of your project's public/index.php file,

you can verify that OPcache is installed and configured (Figure 3.2):

 Figure 3.2: Zend OPcache is Enabled

Enabling Apache Modules

To wrap up this chapter, we are going to get "pretty URLs" working in Apache. If you

look at the public/.htaccess file in our project, you can see that our application needs

mod_rewrite (Listing 3.16):

37

Chapter 3: LAMP Baby!

<IfModule mod_rewrite. c>

<IfModule mod_negotiation. c>

Options -MultiViews

</IfModule>

RewriteEngine On

Redirect Trailing Slashes If Not A Folder. . .

RewriteCond %{REQUEST_FILENAME} ! -d

RewriteRule ^(. *)/$ /$1 [L, R=301]

Handle Front Controller. . .

RewriteCond %{REQUEST_FILENAME} ! -d

RewriteCond %{REQUEST_FILENAME} ! -f

RewriteRule ^ index. php [L]

Handle Authorization Header

RewriteCond %{HTTP: Authorization} .

RewriteRule . * - [E=HTTP_AUTHORIZATION: %{HTTP: Authorization}]

</IfModule>

 Listing 3.16: The Application .htaccess File

The official Docker image doesn't enable mod_rewrite by default, but you almost

always want it with Apache. To enable the module, we can use a2enmod in the Dockerfile

(Listing 3.17):

FROM php: 7. 1. 9-apache

LABEL maintainer="Paul Redmond"

COPY . docker/php/php. ini /usr/local/etc/php/

COPY . /srv/app

COPY . docker/apache/vhost. conf /etc/apache2/sites-available/000-

default. conf

 Listing 3.17: Enable mod_rewrite

38

Chapter 3: LAMP Baby!

RUN docker-php-ext-install pdo_mysql \

&& docker-php-ext-install opcache \

&& a2enmod rewrite negotiation

When you rerun the build, you will see "Enabling module rewrite" on the last step. The

negotiation module is already enabled, but it doesn't hurt to add it to the Dockerfile just

in case.

Now, if you define a route in routes/web.php it should work correctly (Listing 3.18):

$router->get(' /test' , function () {

return [' test' => ' OK'] ;

}) ;

 Listing 3.18: Define a Route to Test mod_rewrite in routes/web.php

Make a request to /test and you should get a similar response (Listing 3.19):

$ curl -i http: //localhost: 8080/test

HTTP/1. 0 200 OK

Date: Mon, 09 Oct 2017 14: 04: 09 GMT

Server: Apache/2. 4. 10 (Debian)

X-Powered-By: PHP/7. 1. 9

Cache-Control: no-cache, private

Content-Length: 13

Connection: close

Content-Type: application/j son

{"test": "OK"}

 Listing 3.19: Verify mod_rewrite is working

The mod_rewrite module is working as expected, allowing us to define routes that will

be rewritten by the .htaccess file. You can also disable .htaccess files and set the

rewrite rules in your Vhost file for more performance.

39

Chapter 3: LAMP Baby!

LAMPed Up

We've covered the basics of running a Docker LAMP environment from scratch,

running multiple containers, communicating between containers, and customizing

PHP modules.

Using a full PHP framework to work through this chapter, we were able to see how the

Dockerfile builds our application code. When I first started trying to add Docker to my

applications, I felt perplexed about how to work with Docker and my application

together. An essential goal of this book is to ease that burden for you.

At this point, we have a working LAMP environment, but we need to improve our

development workflow. In the next chapter, we are going to continue building on our

LAMP application by making our configuration more flexible, installing Xdebug, and

working with profiling tools.

40

Chapter 4: Development Tools

In this chapter, we are going focus on our development environment. We will slowly

ramp up by learning more about environment variables, and by the end of the chapter,

you will have a full development environment with debugging capabilities using

XDebug. Along the way, we'll learn how to use environment variables in PHP INI files

to make module configuration easy to change in any environment.

Developing applications in containers might be a transition for you if you like to work

locally, but if you are using homestead or a virtual machine, you should catch on pretty

quick. We will run plenty of commands that will help you get more comfortable using

Docker to develop features, as well as debug and profile your applications.

One of the benefits of Docker I've touted is that you will have the same environment for

development and production. There's one caveat though: XDebug shouldn't be used in

production. Removing XDebug in production presents a bit of a problem in Docker, so

we will also look at how to make it disappear in production.

If you are following along, we will continue with the code from Chapter 3; just

continuing to work on the same project will do.

Environment Configuration

Environment variables help you create flexible Docker images by allowing you to

configure your applications for different environments. For example, in development,

you might be connecting to a database within a container, and in production, use

something like Amazon Relational Database Service (RDS). You can also use

environment variables to keep sensitive data out of your codebase.

41

Chapter 4: Development Tools

services:

mariadb:

. . .

environment:

- MYSQL_DATABASE=dockerphp

- MYSQL_ROOT_PASSWORD=password

 Listing 4.1: Example Environment configuration in docker-compose.yml

Listing 4.1 is how you define them with Docker Compose, and the equivalent with

docker run would look like the following (Listing 4.2):

Passing environment variables with the -e| --env flag

$ docker run -e MYSQL_ROOT_PASSWORD=password --name my-db \

-d mariadb

Using an external file in the same path

$ docker run --env-file . docker. env --name my-db -d mariadb

 Listing 4.2: Setting Environment Variables with docker run

In the last line, I demonstrated the --env-file flag. In Docker Compose, you can also pass

environment variables from an external file with the env_file

(https://docs.docker.com/compose/compose-file/#/envfile) configuration option:

An env_file configuration example

services:

mariadb:

env_file: . docker. env

You've already seen an example of how to use environment variables with Docker: the

MariaDB container from Chapter 3 used them to configure the database and root

password (Listing 4.1):

42

Chapter 4: Development Tools

Using an external file provides a starting point that works and yet allows developers to

maintain their custom settings.

Setting up Environment Variables

Let's take what we just learned about external environment files and apply it to our

project. We will use an external file that is ignored by version control, and provide

sensible defaults that each developer can copy as a starting point (Listing 4.3):

$ touch . docker. env. example . docker. env

Set an example value for demonstration

$ echo "HELLO=WORLD" >> . docker. env. example

$ cat . docker. env. example > . docker. env

Ignore the . docker. env file when using VCS

$ echo ". docker. env" >> . gitignore

 Listing 4.3: Create the Docker Environment Files

In Listing 4.3, we created an example environment file and a local environment file.

Later on, when a new developer first checks out your repository, they will copy the

versioned .docker.env.example file to the ignored .docker.env with cp .docker.env.example

.docker.env.

Let's add this environment file to docker-compose.yml so we can test it out our test

environment variable (Listing 4.4)

version: "3"

services:

app:

build: .

depends_on:

- mariadb

 Listing 4.4: Adding the .docker.env file



43

Chapter 4: Development Tools

ports:

- "8080: 80"

volumes:

- . : /srv/app

links:

- mariadb: mariadb

env_file: . docker. env

mariadb:

image: mariadb: 10. 1. 21

ports:

- "13306: 3306"

environment:

- MYSQL_DATABASE=dockerphp

- MYSQL_ROOT_PASSWORD=password

We added the env_file configuration pointing to the unversioned .docker.env file we

created earlier. Now you can manage your environment for Docker through this file,

and when you run docker-compose, the values will take effect in the container.

Trying out Environment Variables

Let's run the container with the new configuration option and verify that the

environment variable has been set (Listing 4.5):

$ docker-compose up -d

$ docker ps # note the app container id

$ docker exec -it 36b079b1aa04 bash

Inside the running container

root@36b079b1aa04: /var/www/html# echo $HELLO

WORLD

Shut down the docker containers

$ docker-compose stop

 Listing 4.5: Verify the Docker Env File is Working

44

Chapter 4: Development Tools

You should see "WORLD" printed when you echo the $HELLO environment variable

inside of the running container. If you change the value of the variable, you should see

the value reflected when you restart the container.

Environment variables are an excellent way to make your Docker setup more flexible

for applications like Laravel. For example, Laravel uses phpdotenv

(https://github.com/vlucas/phpdotenv) to read environment variables through a .env

file. Using this approach, you can override the values in the .env file with system

environment variables.

Xdebug Setup

I reach for Xdebug at least once a day, but when I moved my development to Docker, it

was a bit tricky getting debugging working consistently.

We will also learn how to configure Xdebug with environment variables, which is

compelling for developers wanting to customize the way Xdebug works during

runtime. Without changing the Docker image, we can tweak Xdebug's configuration at

runtime.

After this section, setting up Xdebug with Docker should be a breeze. Along the way,

we'll also ensure that the Docker builds don't have a trace of the Xdebug module when

you ship your code to non-development environments.

Installing Xdebug

The first thing we are going to tackle is installing the Xdebug module in our container.

Xdebug is a PECL extension, and the official PHP Docker image provides the pecl

command that we can use to install Xdebug, and then we'll enable it (Listing 4.6):

45

Chapter 4: Development Tools

FROM php: 7. 1-apache

LABEL maintainer="Paul Redmond"

COPY . docker/php/php. ini /usr/local/etc/php/

COPY . /srv/app

COPY . docker/apache/vhost. conf /etc/apache2/sites-available/000-

default. conf

RUN docker-php-ext-install pdo_mysql opcache \

&& pecl install xdebug-2. 5. 1 \

&& docker-php-ext-enable xdebug \

&& a2enmod rewrite

RUN chown -R www-data: www-data /srv/app

 Listing 4.6: Installing and Enabling Xdebug

After updating the Dockerfile, stop any running containers with docker-compose stop

and then rebuild the app service with docker-compose build app.

After completing the build, run the container to make sure the installation worked

(Listing 4.7):

$ docker-compose build app

$ docker-compose up -d

Note the container id from ` docker ps`

$ docker exec -it 00fded44032c bash

Inside the container. . .

root@00fded44032c: /var/www/html# php -i | grep ^extension_dir

extension_dir => /usr/local/lib/php/extensions/no-debug-non-zts-

20160303

root@00fded44032c: /var/www/html# ls -la

/usr/local/lib/php/extensions/no-debug-non-zts-20160303 | grep

xdebug

 Listing 4.7: Verify that Xdebug was installed and enabled

46

Chapter 4: Development Tools

You should see the xdebug module listed when you run php -m in the container, which

means it's working and we are now ready to configure it!

Configuring Xdebug

Installing Xdebug in the container provides an xdebug.ini file containing configuration

for Xdebug. To find out where this INI file is located, run php --ini inside the container

(Listing 4.8):

Still inside the running container

root@00fded44032c: /var/www/html# php --ini

Configuration File (php. ini) Path: /usr/local/etc/php

Loaded Configuration File: /usr/local/etc/php/php. ini

Scan for additional . ini files in: /usr/local/etc/php/conf. d

Additional . ini files parsed:

/usr/local/etc/php/conf. d/docker-php-ext-opcache. ini,

/usr/local/etc/php/conf. d/docker-php-ext-pdo_mysql. ini,

/usr/local/etc/php/conf. d/docker-php-ext-xdebug. ini

Output the contents of the xdebug file

root@00fded44032c: /var/www/html# cat

/usr/local/etc/php/conf. d/docker-php-ext-xdebug. ini

zend_extension=/usr/local/lib/php/extensions/no-debug-non-zts-

20160303/xdebug. so

 Listing 4.8: View the xdebug ini file

-rw-r--r-- 1 root staff 1086808 Feb 28 06: 03 xdebug. so

Lists all the lines mentioning xdebug in the ini settings

root@00fded44032c: /var/www/html# php -i | grep xdebug

root@00fded44032c: /var/www/html# php -m | grep xdebug

xdebug

47

Chapter 4: Development Tools

The Xdebug file contains one line to enable the extension, and the rest of the Xdebug

values are defaults.

We are going to override few default settings to provide some convenience around

working with Xdebug, so create a new .docker/php/xdebug-dev.ini file for our

customizations.

We will start out by adding hard-coded values to the INI file to verify everything works,

and then we'll move it to an environment-driven configuration (Listing 4.9):

[xdebug]

xdebug. default_enable=1

xdebug. remote_autostart=1

; remote_connect_back is not safe in production!

xdebug. remote_connect_back=1

xdebug. remote_port=9001

xdebug. remote_enable=1

xdebug. idekey=DOCKER_XDEBUG

 Listing 4.9: Adding an xdebug ini file

I like enabling remote_autostart so that Xdebug automatically tries to connect without a

GET, POST, or COOKIE variable.

The remote_connect_back setting will try to connect to the client that made the HTTP

request. The remote_connect_back setting, while not safe in production, is convenient

because you don't have to worry about the remote_host setting.

For xdebug.remote_port I select a non-default remote port (9001) because I have PHP-

FPM running locally and I need different port mapping.

Let's drop the created INI settings into the image by copying them in the Dockerfile

(Listing 4.10):

48

Chapter 4: Development Tools

FROM php: 7. 1-apache

LABEL maintainer="Paul Redmond"

COPY . docker/php/php. ini /usr/local/etc/php/

COPY . /srv/app

COPY . docker/apache/vhost. conf /etc/apache2/sites-available/000-

default. conf

RUN docker-php-ext-install pdo_mysql opcache \

&& pecl install xdebug-2. 5. 1 \

&& docker-php-ext-enable xdebug \

&& a2enmod rewrite

COPY . docker/php/xdebug-dev. ini /usr/local/etc/php/conf. d/xdebug-

dev. ini

RUN chown -R www-data: www-data /srv/app

 Listing 4:10: Copy the Xdebug INI file into the container

With our current configuration file saved, rebuild the container with docker-compose

build app. Once you finish building the container, you should see your Xdebug settings

by adding phpinfo() to the top of your public/index.php file. You should see the specific

settings we changed in our xdebug-dev.ini file reflected in the output.

Setting up PhpStorm

With the Xdebug configuration updated, it's time to verify that we can connect to

Xdebug with our editor. We are going to use PhpStorm to communicate with Xdebug in

this chapter, an excellent commercial IDE for PHP. I prefer PhpStorm's debugging UI

and capabilities, but adapting these instructions to any Xdebug client should be

relatively straightforward.

The first thing you'll do is open PhpStorm's preferences and navigate to "Languages &

Frameworks > PHP > Debug". Because we specified 9001 in our Xdebug configuration,

we need to change PhpStorm to use port 9001 as well (Figure 4.1).

49

Chapter 4: Development Tools

 Figure 4.1: Tweaking PhpStorm Xdebug Port

The next step is setting up a run configuration and server. In PhpStorm, click the

Xdebug bar (usually in the top right corner) drop-down and click "edit configurations..."

(Figure 4.2).

 Figure 4.2: Edit run configurations

On the following screen, click the plus (+) button in the top left and select "PHP Web

Application" to create a run configuration. Give the application a name (i.e., Localhost),

and then click the "..." button to add a server.

On the server screen, make sure and enter port "8080", select Xdebug as the debugger,

and map your local project path to the path on the server (/srv/app) so Xdebug knows

how to map files correctly (Figure 4.3).

50

Chapter 4: Development Tools

 Figure 4.3: Add a server to the run configuration

Once you have configured the web server and run configuration, toggle the "start

listening for PHP Debug Connections" icon (Figure 4.4):

 Figure 4.4: Toggle start listening for connections

You should be able to connect to Xdebug by setting a breakpoint or breaking on the

first line.

51

Chapter 4: Development Tools

Remember to rebuild the latest container with docker-compose build, so your INI

settings are copied into the Docker image.

Build The Latest Image

Using Environment to Configure Xdebug

The last part of this section is one of my favorite Docker tricks with PHP. Using

environment variables, we can make our INI values dynamic, allowing us to update

configuration without rebuilding an image each time you want to change something.

Open the .docker.env.example file and replace the contents of the file with the following

variables (Listing 4.11).

Xdebug

PHP_XDEBUG_DEFAULT_ENABLE=1

PHP_XDEBUG_REMOTE_AUTOSTART=1

PHP_XDEBUG_REMOTE_CONNECT_BACK=1

PHP_XDEBUG_REMOTE_PORT=9001

PHP_XDEBUG_REMOTE_ENABLE=1

PHP_XDEBUG_IDEKEY=DOCKER_XDEBUG

 Listing 4.11: Add Xdebug Environment Variables to .docker.env.example

Be sure to update your .docker.env file with the same values or this won't work!

You can name the environment variables anything you'd like. I like to prefix

my PHP environment variables with PHP_ and match the INI configuration

name by replacing dots (.) with underscores (_). This convention gives me an

idea of configuration values at a glance. For example, the environment

Variable Naming Convention



52

Chapter 4: Development Tools

With the variables in place, let's update the .docker/php/xdebug-dev.ini file to use them

(Listing 4.12):

[xdebug]

xdebug. default_enable = ${PHP_XDEBUG_DEFAULT_ENABLE}

xdebug. remote_autostart = ${PHP_XDEBUG_REMOTE_AUTOSTART}

; remote_connect_back is not safe in production!

xdebug. remote_connect_back = ${PHP_XDEBUG_REMOTE_CONNECT_BACK}

xdebug. remote_port = ${PHP_XDEBUG_REMOTE_PORT}

xdebug. remote_enable = ${PHP_XDEBUG_REMOTE_ENABLE}

xdebug. idekey = ${PHP_XDEBUG_IDEKEY}

 Listing 4.12: Use Environment Variables in the Xdebug INI File

PHP INI configuration files can read from the environment by wrapping environment

variables in curly brackets (${}).

Before we can test out our changes, we need to rebuild the Docker image so that our

latest xdebug-dev.ini file gets built into the image (Listing 4.13):

$ docker-compose build app

$ docker-compose up -d

 Listing 4.13: Rebuild the Application Image

With the container running, add "phpinfo(); exit;" to the top of your project's

public/index.php file so you can verify your settings in the browser; you should see

something like the following (Figure 4.5):

variable PHP_XDEBUG_REMOTE_AUTOSTART matches the Xdebug INI setting

xdebug.remote_autostart.

53

Chapter 4: Development Tools

 Figure 4.5: Verify Xdebug Settings via Environment

At this point, you should have a working environment configuration, but let's verify

that it's working as expected by changing a value and confirming that the value is

updated (Listing 4.15):

PHP_XDEBUG_REMOTE_AUTOSTART=0

 Listing 4.15: Change Remote Autostart to off in .docker.env

For environment changes to take effect in a container, you need to restart it with

docker-compose restart. Once the container is finished rebooting (which should be very

quick) you should see that remote autostart is disabled (Figure 4.6).

 Figure 4.6: Verify Xdebug Remote Autostart Changes

Now you have a flexible Xdebug configuration that each developer can change without

needing to rebuild the Docker image. Our setup is pretty sweet if you ask me!

54

Chapter 4: Development Tools

Xdebug Profiling

The Xdebug profiler (https://xdebug.org/docs/profiler) is an excellent way to find

performance bottlenecks, analyze your code, and find the most frequently called

methods. However, using the profiler with Docker poses a bit of a problem, because

profiler results (Cachegrind files) reside in the container.

Before we worry about getting the profiler results locally, let's first see how profiling

works and then add a volume to access profiling data locally.

First, let's see the what the configuration looks like by default (Listing 4.16):

Jump into the running app container

$ docker exec -it 902039ff5c41 bash

Inside the app container

$ php -i | grep xdebug. profiler

xdebug. profiler_aggregate => Off => Off

xdebug. profiler_append => Off => Off

xdebug. profiler_enable => Off => Off

xdebug. profiler_enable_trigger => Off => Off

xdebug. profiler_enable_trigger_value => no value => no value

xdebug. profiler_output_dir => /tmp => /tmp

xdebug. profiler_output_name => cachegrind. out. %p =>

cachegrind. out. %p

 Listing 4.16: The Default Xdebug Profiling Settings

If you look carefully, the profiler_output_dir is /tmp, and the profiler is not enabled by

default.

Let's first work on Getting the Xdebug profiler running by adding profiling

configuration to the .docker/php/xdebug-dev.ini file that allows us to tweak the directory

and enable profiling (Listing 4.17):

55

Chapter 4: Development Tools

[xdebug]

xdebug. default_enable = ${PHP_XDEBUG_DEFAULT_ENABLE}

xdebug. remote_autostart = ${PHP_XDEBUG_REMOTE_AUTOSTART}

; remote_connect_back is not safe in production!

xdebug. remote_connect_back = ${PHP_XDEBUG_REMOTE_CONNECT_BACK}

xdebug. remote_port = ${PHP_XDEBUG_REMOTE_PORT}

xdebug. remote_enable = ${PHP_XDEBUG_REMOTE_ENABLE}

xdebug. idekey = ${PHP_XDEBUG_IDEKEY}

; profiling

xdebug. profiler_enable = ${PHP_XDEBUG_PROFILER_ENABLE}

xdebug. profiler_output_dir = ${PHP_XDEBUG_PROFILER_OUTPUT_DIR}

 Listing 4.17: Add Profiler Configuration

You added two profiler values that will match up with two new environment variables

you need to add to .docker.env and .docker.env.example (Listing 4.18):

PHP_XDEBUG_DEFAULT_ENABLE=1

PHP_XDEBUG_REMOTE_AUTOSTART=1

PHP_XDEBUG_REMOTE_CONNECT_BACK=1

PHP_XDEBUG_REMOTE_PORT=9001

PHP_XDEBUG_REMOTE_ENABLE=1

PHP_XDEBUG_IDEKEY=DOCKER_XDEBUG

PHP_XDEBUG_PROFILER_ENABLE=1

PHP_XDEBUG_PROFILER_OUTPUT_DIR=/tmp

 Listing 4.18: Add Profiler Environment Values

We've enabled the profiler and configured the output directory. For now, we leave the

output directory set as the default /tmp path while we verify that profiling is working in

the container.

Save your INI and .docker.env changes, and then rebuild the image, so your xdebug-

dev.ini changes are part of the build (Listing 4.19):

56

Chapter 4: Development Tools

$ docker-compose down

$ docker-compose rm -v

$ docker-compose build app

$ docker-compose up -d

Find the container id

$ docker ps

Jump into the container

$ docker exec -it 8c2d771eacd8 bash

Now refresh http: //localhost: 8080

After refreshing the container, inspect the /tmp folder

$ ls /tmp/

cachegrind. out. 10 cachegrind. out. 8 pear

 Listing 4.19: Rebuild the Image

After refreshing the browser, you will see Cachegrind files in the "/tmp" path.

If you destroy the container, start a new one, and then inspect the /tmp path your files

will be gone. Docker container images are immutable, which means that when

containers are destroyed, the modifications are lost.

If you examine the owner of the Cachegrind files, you will notice that the Apache user

(www-data) owns the Cachegrind report. File ownership will be critical in a moment

when we move the profiler output path to our volume for local consumption.

Our next step is making the profiler data available locally by updating the output

directory (Listing 4.20):

PHP_XDEBUG_DEFAULT_ENABLE=1

PHP_XDEBUG_REMOTE_AUTOSTART=1

 Listing 4.20: Configure the Profiler Output Path



57

Chapter 4: Development Tools

PHP_XDEBUG_REMOTE_CONNECT_BACK=1

PHP_XDEBUG_REMOTE_PORT=9001

PHP_XDEBUG_REMOTE_ENABLE=1

PHP_XDEBUG_IDEKEY=DOCKER_XDEBUG

PHP_XDEBUG_PROFILER_ENABLE=1

PHP_XDEBUG_PROFILER_OUTPUT_DIR=/srv/app/storage/logs

On the last line, we point the output directory to our application's storage path which

has an attached volume. Since Cachegrind files are within the mounted volume path,

this means we can access cachegrind files locally right?

Well, maybe.

Depending on your setup, you might have a permissions issue. I am running the

examples on Ubuntu 16.04 LTS, and at this point, I cannot see Cachegrind files after

starting a new container and refreshing the browser.

With the new profile path when I refresh my browser and use ls -la /srv/app/storage/logs

I don't see any cachegrind files (Listing 4.21):

Inside a running container

$ php -i | grep xdebug. profiler_output_dir

$ ls -la /srv/app/storage/logs/

total 12

drwxrwxr-x 2 1000 1000 4096 Mar 9 05: 47 .

drwxrwxr-x 5 1000 1000 4096 Mar 9 05: 47 . .

-rwxrwxr-x 1 1000 1000 14 Mar 9 05: 47 . gitignore

-rwxrwxr-x 1 1000 1000 0 Mar 9 05: 47 lumen. log

The www-data user cannot write in the logs folder

$ id -u www-data

33

 Listing 4.21: Directory Permissions

58

Chapter 4: Development Tools

The volume might prevent the Apache user from saving Cachegrind files on your setup

depending on permissions. If you do not see cachegrind files, run the following

command for any folder that needs to be writable by the web server (Listing 4.22):

Allow "others" read and write access

$ chmod -R o+rw bootstrap/ storage/

Refresh the browser, you should see Cachegrind files locally

$ ls storage/logs

cachegrind. out. 8 lumen. log

 Listing 4.22: Fix Volume Permissions Issues

In the case of Lumen, we need to recursively make sure that "others" can write to the

defined storage/ path to sort out permission issues caused by volumes.

Allowing this level or read/write access is only needed for local development! When

running the container without a volume (i.e., production), the www-data user owns the

application files and directories are not world-writable.

The permission changes in Listing 4.22 should allow the container www-data user to

write to the storage/ paths on your local machine as needed. If you are running Docker

locally on Linux, the Cachegrind files will not be owned by your $USER but should be

readable. You can also remove them with rm -f storage/logs/cachegrind*.

Equipped with local Cachegrind files, you can now use PhpStorm (or the tool of your

choice) to visualize profiler data (Figure 4.7):

59

Chapter 4: Development Tools

 Figure 4.7: Cachegrind Output Example

Making Xdebug Disappear

When I first learned about Docker, one of the neatest selling points to me was the claim

that "Docker runs the same everywhere" and provides "more repeatable environments."

These claims are probably the closest thing to true as can be expected, but in the case

of Xdebug, you don't want any trace of Xdebug installed on production. Even if Xdebug

is a registered module and disabled, it has proven to cause overhead.

So far, the Dockerfile installs the Xdebug module, and we have no way of controlling

the build to only include Xdebug in development. We need a way to manage the

configuration of Xdebug at runtime.

How might we go about stopping that from happening in production-like environments

but not development?

While we can't conditionally control the installation of Xdebug during a build, there are

a few ways we can ensure that only development environments have the Xdebug

module enabled in PHP.

60

Chapter 4: Development Tools

One way of disabling Xdebug is using a custom bash script to start the container and

remove the Xdebug INI configuration before starting the web server. We are not ready

to talk about custom commands yet (we cover them in Chapter 8), so we will look at a

different way using the skills we've learned so far.

Later in the book, you can figure out how to remove Xdebug with a custom bash

command, which is probably the best way to remove Xdebug at runtime.

Enable Xdebug with Environment

The first way we will solve this is a slight trick in the Dockerfile coupled with

customizing the PHP_INI_SCAN_DIR environment variable. We will have a set of INI files

for development and another set for non-development.

First, we are going to modify our Dockerfile to provide a development-specific

configuration path for development that overrides the default location PHP looks for

INI files (Listing 4.23):

FROM php: 7. 1-apache

LABEL maintainer="Paul Redmond"

COPY . docker/php/php. ini /usr/local/etc/php/

COPY . /srv/app

COPY . docker/apache/vhost. conf /etc/apache2/sites-available/000-

default. conf

RUN docker-php-ext-install pdo_mysql opcache \

&& pecl install xdebug-2. 5. 1 \

&& docker-php-ext-enable xdebug \

&& a2enmod rewrite

COPY . docker/php/xdebug-dev. ini /usr/local/etc/php/conf. d/xdebug-

dev. ini

 Listing 4.23: Provide a Development-Specific Scan Dir Path



61

Chapter 4: Development Tools

RUN cp -R /usr/local/etc/php/conf. d \

/usr/local/etc/php/conf. d-dev \

&& rm -f /usr/local/etc/php/conf. d/*-dev. ini \

&& rm -f /usr/local/etc/php/conf. d/*xdebug. ini

RUN chown -R www-data: www-data /srv/app

We've copied the contents of the scan directory (/usr/local/etc/php/conf.d) into a

separate development path. The next line removes any INI files that end in -dev.ini and

also specifically the xdebug.ini file when we enable Xdebug with docker-php-ext-enable

xdebug.

You could consider this approach a hack (it wouldn't hurt my feelings), and you should

be careful about copying .ini files in a later part of the Dockerfile.

I wouldn't say this is the cleanest approach to solving this issue, but it works okay in my

opinion. The more appropriate way to solve this would be through a custom CMD script

that checks for which environment Docker is running and enables or disables Xdebug,

but we're not ready to go over the CMD instruction yet.

After you rebuild the image and jump into a running container, you can see that the

Xdebug module is now gone (Listing 4.24):

$ php -m | grep xdebug

Nothing. . .

$ export PHP_INI_SCAN_DIR=/usr/local/etc/php/conf. d-dev

$ php -m | grep xdebug

xdebug

 Listing 4.24: The Xdebug Module is Gone

The next step is changing your .docker.env (and .docker.env.example) file to use the

development scan dir (Listing 4.25):

62

Chapter 4: Development Tools

PHP_XDEBUG_DEFAULT_ENABLE=1

PHP_XDEBUG_REMOTE_AUTOSTART=1

PHP_XDEBUG_REMOTE_CONNECT_BACK=1

PHP_XDEBUG_REMOTE_PORT=9001

PHP_XDEBUG_REMOTE_ENABLE=1

PHP_XDEBUG_IDEKEY=DOCKER_XDEBUG

PHP_XDEBUG_PROFILER_ENABLE=1

PHP_XDEBUG_PROFILER_OUTPUT_DIR=/srv/app/storage/logs

PHP_INI_SCAN_DIR=/usr/local/etc/php/conf. d-dev

 Listing 4.25: Configure the Development INI Scan Directory

The configuration file will now take care of setting the PHP_INI_SCAN_DIR environment

variable. In production environments, the PHP_INI_SCAN_DIR will be the default.

After you restart the container, you should have the Xdebug module enabled (Listing

4.26):

$ docker-compose down

$ docker-compose build

$ docker-compose up -d

$ docker ps

Replace 8552cd067c83 with your container id

$ docker exec -it 8552cd067c83 bash

In the container

$ echo $PHP_INI_SCAN_DIR

/usr/local/etc/php/conf. d-dev

$ php -m | grep xdebug

xdebug

 Listing 4.26: Checking our Scan Dir Environment Setting

Our last step in this section is to create a "production" docker-compose file which will

help demonstrate how our container will run without volumes.

63

Chapter 4: Development Tools

The docker-compose.prod.yml file lives in the root of the project is just like the docker-

compose.yml file, minus the volume (Listing 4.27):

version: "3"

services:

app:

build: .

depends_on:

- mariadb

ports:

- "8080: 80"

links:

- mariadb: mariadb

environment:

DB_CONNECTION: mysql

DB_HOST: mariadb

DB_PORT: 3306

DB_DATABASE: dockerphp

DB_USERNAME: root

DB_PASSWORD: password

mariadb:

image: mariadb: 10. 1. 21

ports:

- "13306: 3306"

environment:

- MYSQL_DATABASE=dockerphp

- MYSQL_ROOT_PASSWORD=password

 Listing 4.27: A Production-Like Compose File

The production version doesn't have the env_file setting, which means we are no longer

using the .docker.env file to configure the environment.

We provide some hard-coded environment variables to override the values set in the

.env file, but this file is just to simulate production. Make sure that you are not hard-

coding your environment variables in the docker-compose file, but defining

64

Chapter 4: Development Tools

development-specific values isn't a big deal.

Before we build and run containers with this file, update your public/index.php file with

"phpinfo(); exit;" at the top so you can verify that Xdebug is not present.

Skipping the volume in the Docker compose file will demonstrate that you have to

rebuild the image to pick up code changes.

Let's try out our new Compose file and verify that Xdebug registered (Listing 4.28):

$ docker-compose down

Build so your phpinfo() call gets copied into the container

$ docker-compose --file=docker-compose. prod. yml build

$ docker-compose --file=docker-compose. prod. yml up -d

 Listing 4.28: Run Containers with docker-compose.prod.yml

Now that your container is running you will not find Xdebug enabled. Also, the PHP

scan directory is set to the default /usr/local/etc/php/conf.d path, and that the xdebug.ini

files are gone.

By default, Docker Compose looks for a docker-compose.yml file, but by using the docker-

compose --file flag, you can use an alternate Docker Compose file.

While using the docker-compose.prod.yml file, you can no longer modify your project

files and have them instantaneously update in the container via volumes. Try it. Your

changes will not take effect until you stop the container, rebuild the image, and then

start a new container while you are using the prod file.

It's imperative that you understand the immutable nature of containers. While we need

the convenience of mounted volumes in development, the build shouldn't rely on a

mounted volume. Because you cannot rely on local files (think saving file uploads and

65

Chapter 4: Development Tools

serving them) inside the container, I also use an external storage service like S3 for

uploads.

When a host machine (your development machine) mounts a host directory (volume)

on an existing path in the container (/srv/app in this case), it overrides the existing files

in that path.

According to the Docker Documentation tutorial, Manage Data in Containers

(https://docs.docker.com/engine/tutorials/dockervolumes/#mount-a-host-directory-as-

a-data-volume), "the mount overlays but does not remove the pre-existing content.

Once the mount is removed, the content is accessible again."

De-Debugged

This chapter got into the nitty-gritty of using and configuring Xdebug in containers.

Along the way, you learned a bunch about environment configuration, volumes,

permissions, and running Docker compose with alternate file names. You should be

getting more comfortable building, starting, stopping, and running bash inside your

containers at this point.

The next chapter will shift focus to a somewhat tricky topic of using PHP Composer

with Docker and installing private composer packages.

66

Chapter 5: Using Composer with Docker

In this chapter we explore installing Composer (https://getcomposer.org/) within a

Docker image, working with private repositories, and strategies to build your projects

with Composer and Docker.

It may or may not be apparent to you if you should install your Composer dependencies

before or during a build. Up to this point, we've been installing composer dependencies

locally and then copying them into the image during a build.

When you start installing composer dependencies as part of your Dockerfile builds, it

might become an annoyance to rebuild your docker images with each new composer

change. Composer is a relatively quick operation, but as you'll shortly see, building the

image over again can become time-consuming.

So should you manage your composer dependencies outside of Composer? The short

answer is that both approaches have tradeoffs.

One could make the argument that the composer.json file provides constraints for the

application code, PHP modules, and even PHP version; therefore, the dependencies

should be installed in the Dockerfile while running docker build every time.

One can also make a case for installing Composer dependencies outside of Docker to

make development quicker and more convenient, treating composer as a pre-build step

that happens before the docker build process on a CI server, which copies the results

into the image during docker build.

67

Chapter 5: Using Composer PHP with Docker

Project Setup

We are going to create a new project using the Laravel Framework (https://laravel.com/)

as we work through this chapter. The principles are the same for any Composer project

we use with Docker, not just Laravel.

Let's start by creating the project files (Listing 5.1):

$ mkdir -p ~/Code/composer-in-docker

$ cd $_

$ touch Dockerfile composer-installer. sh

Create a Composer project in an "app" subfolder

$ composer create-proj ect --prefer-dist laravel/laravel: 5. 5 app/

 Listing 5.1: Create the Project Files

This project is organized a little differently than the last chapter so you can see

different project organization styles. In this chapter, the Dockerfile is at the root of the

project, and our application is in an app/ folder.

There's no "wrong" way to organize Docker in your projects, but showing you a few

different styles gives you some perspective. If you recall in Chapter 4, we embedded the

Docker-specific files in a .docker/ folder and we return to that format in future chapters.

I prefer to organize Docker around my code, not the other way around.

Installing Composer in Docker

The first thing we work on is installing the Composer executable in a Docker image and

making it executable. We can then run composer commands during a docker build and

work with composer inside of a running container. Your local project has a vendor/

folder when you install the project, and the COPY command copies this folder during a

build, so I'll introduce you to ignoring this folder in Docker to ensure a pristine build.

There are a few caveats around COPY that you learn about along the way too.

68

Chapter 5: Using Composer PHP with Docker

Adding Composer to the Dockerfile

Let's work on the first part: installing Composer inside of a Docker image (Listing 5.2):

The RUN command downloads the Composer installer and installs the executable at

/usr/local/bin/composer. However, this technique doesn't actually verify the Composer

installation. According to Composer's documentation, here's how we can install

Composer programatically (https://getcomposer.org/doc/faqs/how-to-install-composer-

programmatically.md) as recommended. Add the following to composer-installer.sh

(Listing 5.3):

#! /bin/sh

EXPECTED_SIGNATURE=$(curl -s

https: //composer. github. io/installer. sig)

php -r "copy(' https: //getcomposer. org/installer' , ' composer-

setup. php'); "

ACTUAL_SIGNATURE=$(php -r "echo hash_file(' SHA384' , ' composer-

setup. php'); ")

if ["$EXPECTED_SIGNATURE" ! = "$ACTUAL_SIGNATURE"]

then

>&2 echo ' ERROR: Invalid installer signature'

rm composer-setup. php

exit 1

fi

 Listing 5.3: The programatic composer installer script

FROM php: 7. 1-apache

RUN curl -sS https: //getcomposer. org/installer \

| php -- --install-dir=/usr/local/bin --filename=composer \

&& chmod +x /usr/local/bin/composer

 Listing 5.2: Install the Composer Executable



69

Chapter 5: Using Composer PHP with Docker

php composer-setup. php --quiet

RESULT=$?

rm composer-setup. php

exit $RESULT

We slightly modified the script from the documentation, using cURL instead of wget

because cURL is already available. Using the -s flag we make the curl command silent

with no output. Other than this line, the rest of the script is identical to the official

documentation.

Here's how we can use the installer script to install composer and put it in the path

(Listing 5.4):

FROM php: 7. 1-apache

COPY composer-installer. sh /usr/local/bin/composer-installer

Install composer

RUN chmod +x /usr/local/bin/composer-installer \

&& composer-installer \

&& mv composer. phar /usr/local/bin/composer \

&& chmod +x /usr/local/bin/composer \

&& composer --version

 Listing 5.4: Verify and Install Composer

This technique copies an installer script we version locally and uses it to verify and

install composer. Once the script creates the composer.phar file, we move it to

/usr/local/bin and make it executable. Last, we output the version which verifies that

composer works.

For good measure, here's another technique that doesn't use an external script to

install composer, but still verifies the signature:

70

Chapter 5: Using Composer PHP with Docker

The last technique comes from a Stack Overflow answer

(https://stackoverflow.com/a/42147748) using cURL and PHP without an external script.

I prefer the script provided from Composer, but you have plenty of options.

Regardless of which method you use, let's build the image and check that Composer is

installed correctly (Listing 5.5):

FROM php: 7. 1-apache

RUN curl -o /tmp/composer-setup. php

https: //getcomposer. org/installer \

&& curl -o /tmp/composer-setup. sig

https: //composer. github. io/installer. sig \

&& php -r "if (hash(' SHA384' ,

file_get_contents(' /tmp/composer-setup. php')) ! ==

trim(file_get_contents(' /tmp/composer-setup. sig'))) {

unlink(' /tmp/composer-setup. php') ; echo ' Invalid installer' .

PHP_EOL; exit(1); }" \

&& php /tmp/composer-setup. php \

--no-ansi \

--install-dir=/usr/local/bin \

--filename=composer \

--snapshot \

&& rm -f /tmp/composer-setup. *

$ docker build -t ch05-composer .

$ docker run --rm ch05-composer /usr/local/bin/composer --version

Composer version 1. 5. 2 2017-09-11 16: 59: 25

 Listing 5.5: Verify the Composer executable

Although we are using a container that runs Apache by default, we passed the docker

run command an argument—the path to the Composer executable—which runs the

command in a new container. The --rm flag automatically removes the container on

exit, which means it does not show up when you run docker ps -a.

71

Chapter 5: Using Composer PHP with Docker

Installing Composer Dependencies

Now that we have the Composer executable in the image, let's copy our application and

install Composer dependencies during a build (Listing 5.6):

FROM php: 7. 1-apache

COPY composer-installer. sh /usr/local/bin/composer-installer

Install composer

RUN apt-get -yqq update \

&& apt-get -yqq install --no-install-recommends unzip \

&& chmod +x /usr/local/bin/composer-installer \

&& composer-installer \

&& mv composer. phar /usr/local/bin/composer \

&& chmod +x /usr/local/bin/composer \

&& composer --version

Add the project

ADD app /var/www/html

WORKDIR /var/www/html

RUN composer install \

--no-interaction \

--no-plugins \

--no-scripts \

--prefer-dist

 Listing 5.6: Install Composer Dependencies

We installed the unzip package so that Composer can download and unzip package

dependencies. Next, we add the app/ folder and set the WORKDIR to our application root

path.

The next new instruction is the ADD app /var/www/html, which adds files inside the root

72

Chapter 5: Using Composer PHP with Docker

app/ folder (the location of our application locally) into the image at /var/www/html.

The WORKDIR instruction sets the working directory for subsequent Docker commands

like RUN, CMD, ENTRYPOINT, COPY, and ADD Docker instructions. You can use WORKDIR

multiple times, in our case we are using it and then the next RUN command relatively

runs composer install in the /var/www/html directory.

At this point, any small changes to your source code require the Docker build to run

the composer install step without cache, which is very slow. We revisit this later in the

chapter and learn how to cache Composer dependencies in the image to speed up

builds.

Ignoring Local Vendor Files

If you run a Docker build, you might be surprised how quickly "composer install" runs

during a build. It should run much slower from scratch, but you instead see "Nothing

to install or update" when you run docker build. The mystery behind the quick builds is

the fact that we are copying all the local vendor files in from the initial composer create-

project command into the image before running composer install.

To get a clean Composer installation, we need to ignore the local vendor/ folder during

a build using a .dockerignore file. The .dockerignore file resides in the same directory as

the Dockerfile file and works similarly to a .gitignore file, ensuring that unintended files

are left out during a COPY or ADD instruction (Listing 5.7):

$ echo "app/vendor/" >> . dockerignore

Re-run the build with no cache

$ docker build --no-cache -t ch05-composer .

After the build, verify the files inside a container

$ docker run -it --rm ch05-composer bash

root@9cc40128b59f: /var/www/html# ls -la vendor/

 Listing 5.7: Ignore the vendor folder

73

Chapter 5: Using Composer PHP with Docker

We added the app/vendor/ path to the .dockerignore file, which means Docker ignores

this path when ADD app /var/www/html runs. Without the vendor folder copied into the

image, Composer installs everything from scratch. This nuance of copying files from

your local machine (or a build server) is hard to sometimes catch with Docker; pay

attention to which files get copied into an image.

Installing Private Composer Packages in Docker

When you try to move to Docker, you eventually run into the problem of providing

proper credentials while installing private Git repositories in your projects. There are a

couple of ways you could go about solving permissions issues, but all have security

concerns:

1. Copy an SSH key into the Docker image from a build machine

2. Install Composer dependencies on a credentialed machine and then copy the

vendor/ folder into the image during a build

3. Use an OAuth token with a Composer config file during a docker build

I hesitate to share the first one, because of the substantial security issues of embedding

SSH access into an image. However, I have seen this technique used in the wild, so I

bring it up for awareness.

For argument's sake, if you put aside the significant security risks, the first option does

work in the technical sense. However, copying an SSH key into your image at build time

is cumbersome at best. Each developer would require access to this SSH key for local

development builds. If you ever need to update or revoke the SSH key, everyone would

need to get a new copy of the private key.

I have found the best way to deal with this situation, due to the security risks and lack

of built-time secrets, is the second option: install composer dependencies on a

credentialed build server and then copy the vendor/ folder into the Docker image.

74

Chapter 5: Using Composer PHP with Docker

The landscape for using build-time secrets is still a work-in-progress (see

https://github.com/moby/moby/issues/13490) at the time of writing. I imagine that soon

build-time secrets make it possible to pass in sensitive credentials that you can use to

produce an auth.json file in the image, install composer, and remove the auth.json file

in the same layer, all without a trace of your secret key.

In the meantime, if you are adamant about installing private Composer dependencies

during a docker build I think the third option is the best, so we cover it in this text, and

you should be able to adapt these techniques as Docker improves the ability to handle

secrets at build time.

Here are the steps we take:

1. Create a private git project on Bitbucket.org

2. Create a read-only OAuth consumer on Bitbucket.org

3. Generate a unversioned auth.json config in our project

4. Define the private Composer dependency as a required package

5. Run our existing docker build command

Bitbucket offers free private repositories at the time of this writing, so we use Bitbucket

in our example, but you can also use Github and others. You need to sign up

(https://bitbucket.org/account/signup/) for a Bitbucket.org account if you want to

follow along.

After logging in, go to "Bitbucket Settings > OAuth" and then click "Add a Consumer."

Fill out a name and description, and lastly you must enter a callback URL for

Composer to work with this key! I fill out something like http://example.com, but it can

be anything. Composer won't use this callback, but it's mandatory for things to work

right. The particular grant flow that Composer utilizes does not use the callback.

75

Chapter 5: Using Composer PHP with Docker

Bitbucket provides documentation for setting up OAuth on Bitbucket Cloud if

you need assistance (https://goo.gl/jZqgkq).

Bitbucket OAuth Help

Once you set up BitBucket, you need to create a private repository and then clone a

local copy on your machine so we can set up the private package for consumption by

our Docker builds.

Setting up the Private Package

Once you create the project in version control, add a composer.json file to the root of the

project (Listing 5.8):

{

"name": "bitpressio/docker-private-package",

"description": "An example private composer package",

"license": "MIT",

"authors": [

{

"name": "Paul Redmond"

}

] ,

"require": {},

"autoload": {

"psr-4": {

"Bitpress\\DockerPrivatePackage\\": "src/"

}

},

"extra": {

"branch-alias": {

"dev-master": "1. 0. x-dev"

 Listing 5.8: Private composer.json File



76

Chapter 5: Using Composer PHP with Docker

}

}

}

Change the Composer name property to match your Bitbucket repository and modify

the namespace to match whatever you want to use. The autoload section autoloads the

package's namespace, and finally the extra key contains a branch alias so we can install

out dependency as 1.0.x-dev from the master branch.

Next, create the file in src/Example.php but update the namespace to match the

namespace you configured in the composer.json file (Listing 5.9):

<?php

namespace Bitpress\DockerPrivatePackage;

/**

* An example class demonstrating installing a private

* Composer package in Docker

*/

class Example {}

 Listing 5.9: The Example Class in our Private Package

If you are following along, commit your files and push them to your private Bitbucket

repository.

Authenticating the Private Package in Composer

We need to provide a way to authenticate our private Bitbucket repository using the

OAuth consumer we created at the beginning of this section.

The Composer documentation references how a bitbucket-oauth configuration key

(https://getcomposer.org/doc/06-config.md#bitbucket-oauth) should be defined.

77

Chapter 5: Using Composer PHP with Docker

This file lives in the root of your Composer project and Composer looks in that location

(among others) for an auth.json file.

We don't want to store private credentials in the repository, so we build a template

version of the auth.json file that can be distributed to all environments easily. Create a

file at app/auth.dist.json with the following contents (Listing 5.10):

{

"bitbucket-oauth": {

"bitbucket. org": {

"consumer-key": "%consumer-key%",

"consumer-secret": "%consumer-secret%"

}

}

}

 Listing 5.10: Composer auth.dist.json Template

The file has two tokenized values that we replace with a bash script so that developers

and build servers can keep secrets out of the repository.

To replace the tokenized values, let's create auth-setup.sh in the root of the project

alongside the Dockerfile and add the following (Listing 5.11):

78

Chapter 5: Using Composer PHP with Docker

#!/usr/bin/env bash

[-e app/auth. j son] && echo "auth. j son already exists.

Skipping. " && exit 0;

if [! -z "$BITBUCKET_CONSUMER_KEY"] && [! -z

"$BITBUCKET_CONSUMER_SECRET"] ; then

cp app/auth. dist. j son app/auth. j son

sed -i ' ' -e "s/%consumer-key%/$BITBUCKET_CONSUMER_KEY/"

app/auth. j son

sed -i ' ' -e "s/%consumer-

secret%/$BITBUCKET_CONSUMER_SECRET/" app/auth. j son

echo "Created the auth. j son file"

exit 0

fi

echo "You need to set ' \$BITBUCKET_CONSUMER_KEY' and

' \$BITBUCKET_CONSUMER_SECRET' environment variables! ";

exit 1;

 Listing 5.11: Bash Script to Automate Generating auth.json

The auth-setup.sh file checks for two environment variables and exit with a warning if

they don't exist. The script copies the auth.dist.json file to auth.json and replaces the

tokens with the Bitbucket key and secret.

Remember to make the file executable so you can run it (Listing 5.12):

$ chmod u+x auth-setup. sh

Replace key and secret with actual values

$ export BITBUCKET_CONSUMER_KEY=key

$ export BITBUCKET_CONSUMER_SECRET=secret

 Listing 5.12: Create the auth.json file



79

Chapter 5: Using Composer PHP with Docker

Be careful not to commit auth.json into version control–versioning it would defeat the

whole purpose (Listing 5.13):

$ echo "auth. j son" >> app/. gitignore

 Listing 5.13: Ignore auth.json

The next step is adding your private repository to composer, including additional

configuration for the location of the VCS repository in the repositories key (Listing 5.14):

Apply the key/secret to app/auth. json

$. /auth-setup. sh

Created the auth. j son file

{

"require": {

"php": ">=7. 0. 0",

"fideloper/proxy": "~3. 3",

"laravel/framework": "5. 5. *",

"laravel/tinker": "~1. 0",

"bitpressio/docker-private-package": "1. 0. x-dev"

},

"repositories": [

{

"type": "vcs",

"url": "https: //bitbucket. org/bitpressio/docker-

private-package. git"

}

]

}

 Listing 5.14: Add Your Private Repository to composer.json (partial file)

80

Chapter 5: Using Composer PHP with Docker

If you recall earlier, you used branch-alias in your private repository's composer.json to

alias the master branch to version 1.0.x-dev.

Even though you are running Composer while building a Docker image, you need to

update your Composer dependencies locally, and version control the composer.lock file.

Composer uses the lock file to install the desired set of packages during the docker build

command (Listing 5.15):

Locally

$ cd app/

$ composer update bitpressio/docker-private-package

Package operations: 1 install, 0 updates, 0 removals

- Installing bitpressio/docker-private-package (dev-master

4d9485b)

. . .

 Listing 5.15: Adding the Private Repository to the Composer lock file

Building with a Private Package

We are ready to build a private package defined in our Composer dependencies. Make

sure the auth.json file we created earlier exists with valid credentials, and run a build

from the root of the project (Listing 5.16):

$ docker build -t ch05-composer .

$ docker run --rm -it ch05-composer /bin/bash

Inside the docker image

$ ls -la vendor/bitpressio/docker-private-package

drwxr-xr-x 3 root root 4096 Apr 15 07: 48 .


 Listing 5.15: Adding the Private Repository to the Composer lock file

81

Chapter 5: Using Composer PHP with Docker

You can also run the ls command locally instead:

$ docker run --rm -it ch05-composer \

ls -la /var/www/html/vendor/bitpressio/docker-private-package

Installing the private package worked, because the auth.json file gets copied into the

image during builds, and Composer checks for the existence of the file to validate

credentials.

We could remove the auth file from the image with a subsequent RUN instruction, but

the file is still present in the ADD layer where we added the source code and technically

leaked. The file appears removed in the resulting image, but it is still part of the fabric

of the image.

Until build-time secrets progress, I prefer to build my composer dependencies outside

of the Dockerfile, copy them in during a build, and then to verify the image.

Caching Composer Dependencies for Faster Builds

In the last section, we installed Composer dependencies as part of our Dockerfile build

process. One problem so far is that if you make changes to your code and then run

docker build, the composer install step needs to install dependencies from scratch.

If your project hasn't changed since your last build, each layer is cached and builds

quickly. However, if you modify a project file, the ADD app /var/www/html step needs to

be updated. As a result, all the proceeding layers need to be updated, including

"composer install."

drwxr-xr-x 3 root root 4096 Apr 15 07: 48 . .

-rw-r--r-- 1 root root 8 Apr 11 07: 04 . gitignore

-rw-r--r-- 1 root root 435 Apr 11 07: 04 composer. j son

drwxr-xr-x 2 root root 4096 Apr 11 07: 04 src

82

Chapter 5: Using Composer PHP with Docker

Composer dependencies don't change much day-to-day in stable projects, so we can

adjust a few things to gain some caching benefits.

The basic idea is that we copy the composer.json and composer.lock files into the image to

cache dependencies in a layer above the ADD app /var/www/html step that needs to run

more often (Listing 5.21):

FROM php: 7. 1-apache

COPY composer-installer. sh /usr/local/bin/composer-installer

Install composer

RUN apt-get -yqq update \

&& apt-get -yqq install --no-install-recommends unzip \

&& chmod +x /usr/local/bin/composer-installer \

&& composer-installer \

&& mv composer. phar /usr/local/bin/composer \

&& chmod +x /usr/local/bin/composer \

&& composer --version

Cache Composer dependencies
WORKDIR /tmp

ADD app/composer. j son app/composer. lock app/auth. j son /tmp/

RUN mkdir -p database/seeds \

mkdir -p database/factories \

&& composer install \

--no-interaction \

--no-plugins \

--no-scripts \

--prefer-dist \

&& rm -rf composer. j son composer. lock auth. j son \

database/ vendor/



 Listing 5.21: Caching Composer Dependencies

83

Chapter 5: Using Composer PHP with Docker

Add the project

ADD app /var/www/html

WORKDIR /var/www/html

RUN composer install \

--no-interaction \

--no-plugins \

--no-scripts \

--prefer-dist

The new block of code in Listing 5.21 copies the composer.* and auth.dist.json files into

the temporary folder (/tmp/) with the ADD instruction. When using ADD with more

than one source file, the destination (/tmp/) must be a directory and end with a

forward slash.

Additionally, we need the database/ folder so the installation doesn't fail; the

database/seeds and database/factories paths are defined in the Composer autoload and

must exist, but we don't need to add the actual files quite yet.

Later in the build, we run composer install again to set up the project correctly, including

the autoloaded files in the database/ path. The goal of the caching step is to prime the

cache with vendor packages, making the second composer install very fast because it

uses cached versions of the repositories that we just installed every time. When the

auth.json, composer.json, or composer.lock file changes, the cache layer is rebuilt along

with all subsequent layers.

The final Docker instruction in the cache step removes the files installed in the

/tmp/vendor/ folder. We don't need them anymore because the vendor files get copied

from Composer's cache during the second composer install. The cached vendor files

remain in the layer (~/.composer/cache), so we can use them later.

84

Chapter 5: Using Composer PHP with Docker

If you run docker build a couple of times you should see your dependencies installed

from the cache and composer install should be relatively quick. Modify a few files, see

how the build changes, and which steps are cached based on your changes.

Caching reduces builds for unnecessary steps that haven't changed; however, some

people prefer to have a clean build without any Composer cache in their CI

environment. If you want to skip caching, you can create a fresh build every time by

running docker build --no-cache, which makes the entire Docker image from scratch.

Running Composer Locally

Another way you can develop applications with Docker is to run Composer (and other

development commands) locally. You might run into issues with required PHP versions

and modules not being installed on your machine, however, if you install modern PHP7

tools, and your project requirements are similar, I find that running local Composer

commands is decent workflow.

I can trust that the correct platform dependencies get installed at build-time, and it

works out for me. Since I develop Docker applications with a mounted volume, my

local command line changes reflect immediately in running containers.

Although I prefer to run commands locally, some projects fit running everything

through Docker; especially if the environment is complicated or a legacy project. Using

Docker for all Composer commands also ensures teams use the same Composer

environment.

The context of the project is essential in determining your workflow. For projects with

teams, I prefer to contain the entire workflow in Docker, but for smaller projects, on

my own, I work locally. These are my own rules; I recommend you come up with your

own as you experiment.

85

Chapter 5: Using Composer PHP with Docker

If you run commands locally, you can skip platform checks with:

$ composer install --ignore-platform-reqs

If you ignore platform requirements, be sure you run tests inside the container that

verify your platform and have a proper CI process in place.

Composer Gold Edition

Hopefully, this chapter provided a decent primer for working with Composer in

Docker. I think this is one of the more confusing and tricky parts of working with PHP

in Docker. You should have all the tools you need to build composer dependencies are

part of your Docker build, including private repositories.

I introduced the idea of building Composer dependencies outside of the image before

running docker build. If you're new to Docker, the chances are that your existing build

pipelines are already installing Composer dependencies outside of Docker. Keeping

your build in-tact and copying the result into Docker could be a good stop-gap as you

experiment with different build strategies with Docker.

86

Chapter 6: Web Servers and PHP-FPM

Up until this point, we've been using Apache as our web server. I like Apache, and

sometimes I use it just because it's very convenient to set up and it works well. Another

common server choice is Nginx, and so in this chapter, we focus on running Nginx in

Docker.

We also look at Caddy server—an HTTP/2 server written in Golang and offering

automatic SSL/TLS certifications—which another excellent option for your PHP

projects.

Creating the New Project

In this chapter, we design our Nginx project to run a Nginx container and a separate

PHP-FPM container. In this scenario, Nginx communicates with the PHP-FPM

container through networking in the same way we've linked our application to a

database container. We write the necessary Dockerfile configurations for both the PHP

and Nginx containers and then hook them up via Docker Compose. Along the way, we

cover serving static assets (i.e., JavaScript, CSS, etc.) with Nginx.

For this chapter, we will use the Slim (https://www.slimframework.com/) PHP

Framework as we work through the Docker setup (Listing 6.1):

$ cd ~/Code

$ composer create-proj ect slim/slim-skeleton: ^3. 0 ch6-nginx-fpm

$ cd ch6-nginx-fpm

 Listing 6.1: Project Setup

87

Chapter 6: Web Servers and PHP-FPM

Hello Nginx

Our first goal is getting Nginx running. The most simple way to do that with Docker is

to run the official Nginx image and expose a port mapped to 80 in the container (Listing

6.2), allowing us to dive in quickly and play around:

$ docker run --name nginx-container -p 8080: 80 -d nginx: 1. 12

Unable to find image ' nginx: stable' locally

. . .

1a103e90a864aa64ea2cab08b038f16744201bbd8296df11e61b5f41a297286e

 Listing 6.2: Running the Default Nginx Container

We created a container with the official Nginx image using the stable tag, which at the

time of this writing is 1.12. The -d flag detaches the container and prints the container

ID and the --name flag assigns a name to the container. If you open up

http://localhost:8080, you should see something similar to Figure 6.1.

 Figure 6.1: Welcome to Nginx

88

Chapter 6: Web Servers and PHP-FPM

The ability to quickly run Nginx with one command without installing it locally or

using a virtual machine is an excellent advantage over other environments. I love that

Docker makes hacking on new technologies so easy, but unless we plan on running a

static site, what we have won't get us very far. Let's stop and remove the container so we

can start working on getting our own Nginx configuration communicating with a

separate PHP-FPM container.

The container isn't running in the foreground because we used the docker run -d flag,

but we can stop it with the docker stop command (Listing 6.3):

$ docker stop $(docker ps -q)

1a103e90a864

$ docker rm $(docker ps -aq)

6a0e60855eaa

817263bf67d6

d74fbc765bfc

you might see multiple IDs here. . .

 Listing 6.3: Stop All Running Containers

I just introduced the -q flag, which stands for quiet and only displays numeric IDs. We

take advantage of this flag to stop and remove all containers. You could also run docker

ps, grab the container ID(s), and then pass the ID to the docker stop command.

The second command, docker rm, removes the containers using the same trick to

remove all containers. The remove command also requires the -a flag to return all

container IDs, instead of just the running containers.

If you run docker ps -a again at this point, you get an empty list. Keep a reference of the

commands in Listing 6.3 to clean up your local Docker environment quickly.

89

Chapter 6: Web Servers and PHP-FPM

Setting up Nginx and PHP-FPM

To use Nginx, we are going to run two containers: one for the PHP-FPM container and

the other for Nginx serving as a reverse-proxy for the PHP container. The Nginx

container communicates with PHP over the network on port 9000 on a default internal

network that Docker Compose automatically creates.

Let's start by creating the Docker project files (Listing 6.4):

$ cd ~/Code/ch6-nginx-fpm

$ mkdir -p . docker/php . docker/nginx/conf. d/

$ touch \

. docker/nginx/Dockerfile \

. docker/php/Dockerfile \

. docker/nginx/nginx. conf \

. docker/nginx/conf. d/app. conf \

docker-compose. yml

 Listing 6.4: Creating the Skeleton Files

After you create the files, here's what the project tree should look like:

| - -- . docker

| | --- nginx

| | | - -- Dockerfile

| | | - -- conf. d

| | | - -- nginx. conf

| | --- php

| | | - -- Dockerfile

| --- . gitignore

| --- CONTRIBUTING. md

| --- README. md

| --- composer. j son

| --- composer. lock

| --- docker-compose. yml


90

Chapter 6: Web Servers and PHP-FPM

| - -- logs

| --- phpunit. xml

| --- public

| --- src

| --- templates

| --- tests

| --- vendor

This chapter is the first time we are building multiple images in one project. I like to

organize each image into a separate subfolder inside of the main .docker/ folder,

keeping things tidy and easy to follow.

We created a few Nginx config files that we copy into the Nginx image, including the

main nginx.conf file and the app.conf file that allows us to customize the Nginx

configuration.

The Nginx Image

Were are going to create the Nginx image first to serve static assets like images, CSS,

and JavaScript, and everything else is proxied to the PHP-FPM container. We extend the

official Nginx image and add our configuration to provide some flexibility in our setup

and allow you to add custom configuration like different MIME types, enabling GZIP.

Our application has a versioned server configuration that we'll copy into the image as

well to serve the application.

Here's what the Dockerfile looks like for our Nginx image (Listing 6.5):

FROM nginx: 1. 12

LABEL maintainer="Paul Redmond"

RUN rm /etc/nginx/conf. d/default. conf

 Listing 6.5: The Nginx Dockerfile



91

Chapter 6: Web Servers and PHP-FPM

COPY . docker/nginx/nginx. conf /etc/nginx/nginx. conf

COPY . docker/nginx/conf. d/*. conf /etc/nginx/conf. d/

COPY . /srv/app/

We extend the nginx:1.12 tag, which is the stable version of Nginx at the time of this

writing. Next, we remove the default.conf server configuration, so we can version our

own Nginx settings in the project. The last three lines copy configuration files that are

version controlled in the project: the main nginx.conf and all files located in conf.d/ that

end in .conf.

Because we are overriding the main nginx.conf file contained in the Nginx image, let's

grab the contents of the nginx.conf as a starting point that we'll version. We can get the

configuration file contents by running a Nginx container and using docker cp to copy

the default files to our project (Listing 6.6):

$ docker run --name nginx-container -p 8080: 80 -d nginx: 1. 12

$ docker cp nginx-container: /etc/nginx/nginx. conf

. docker/nginx/nginx. conf

$ docker stop nginx-container

$ docker rm nginx-container

 Listing 6.6: Copy the Nginx Config Files from the Container

Next, update the .docker/nginx/conf.d/app.conf file with the following contents for our

server configuration (Listing 6.7):

server {

listen 80;

server_name localhost;

index index. php;

 Listing 6.5: The Nginx Dockerfile



92

Chapter 6: Web Servers and PHP-FPM

root /srv/app/public;

location / {

try_files $uri /index. php$is_args$args;

}

location ~ \. php {

try_files $uri =404;

fastcgi_split_path_info ^(. +\. php)(/. +)$;

include fastcgi_params;

fastcgi_param SCRIPT_FILENAME

$document_root$fastcgi_script_name;

fastcgi_param SCRIPT_NAME $fastcgi_script_name;

fastcgi_index index. php;

fastcgi_pass app: 9000;

}

}

We've taken the Nginx configuration from the Slim documentation

(https://www.slimframework.com/docs/start/web-servers.html#nginx-configuration)

and adjusted a few things to match our environment. The root points to the

application's public directory, and we've updated fastcgi_pass app:9000; to match the

service name of the PHP container.

The PHP Image

Our next task is creating a PHP Dockerfile using the base php:7.1-fpm tag that runs the

application with PHP-FPM. Because we are using the PHP image, we don't have to

worry about the details of running the php-fpm process; we only need to copy our

application code into the container and make sure the www-data user owns the files.

The base image is doing most of the work for us!

The Dockerfile should look familiar to you at this point, enter the following in the

.docker/php/Dockerfile file (Listing 6.8):

93

Chapter 6: Web Servers and PHP-FPM

FROM php: 7. 1-fpm

LABEL maintainer="Paul Redmond"

COPY . /srv/app/

WORKDIR /srv/app/

RUN chown -R www-data: www-data /srv/app

 Listing 6.8: The PHP Container

The Docker Compose File

The final step before we try out the code is defining our containers in the docker-

compose.yml file. As of this writing Slim ships with a docker-compose.yml file in the

root of the project, but we are going to replace it with our own services.

We need to link our containers together so that Nginx can proxy requests to PHP

through the network that we'll define in the docker-compose.yml file (Listing 6.9):

version: "3"

networks:

app-tier:

driver: bridge

services:

app:

build:

context: .

dockerfile: . docker/php/Dockerfile

networks:

- app-tier

ports:

- 9002: 9000

 Listing 6.9: The PHP Container



94

Chapter 6: Web Servers and PHP-FPM

nginx:

build:

context: .

dockerfile: . docker/nginx/Dockerfile

networks:

- app-tier

ports:

- 8080: 80

We've introduced the networks key, and configured our nginx and php services to use

this network. We've also added the context and dockerfile keys which allow us to

reference the root folder as the context of the Docker build, yet keep our Dockerfile for

each image tucked away in the .docker/ folder.

The context and dockerfile keys are equivalent to "docker build -f .doker/php/Dockerfile -t

<the-tag> .", the last dot being the current folder (context). By default, docker build looks

on the same path for the Dockerfile, so when you need to build multiple images in a

project, our technique works well to keep things organized.

Another thing to note in Listing 6.9 is the non-standard PHP-FPM port number on the

host machine. If you run a local environment containing PHP-FPM, port 9000 isn't

available. We can use 9002 instead which is relatively arbitrary but avoids conflicts.

Running the Containers

We have everything in place needed to run our networked containers and verify that

things are working as expected. This chapter is the first time we are building multiple

images, so you see build output for both php and nginx images (Listing 6.10):

$ docker-compose up --build

. . .

Attaching to ch6nginxfpm_nginx_1, ch6nginxfpm_app_1

 Listing 6.10: Running Docker Compose



95

Chapter 6: Web Servers and PHP-FPM

app_1 | [28-May-2017 08: 02: 32] NOTICE: fpm is running, pid 1

app_1 | [28-May-2017 08: 02: 32] NOTICE: ready to handle

connections

With any luck, you should see the default Slim response (Figure 6.2):

 Figure 6.2: Nginx + PHP-FPM Success!

Now that things are working let's add a volume so we can edit files locally while

developing (Listing 6.11):

version: "3"

networks:

app-tier:

driver: bridge

services:

app:

build:

context: .

 Listing 6.11: Add Volumes for Local Development



96

Chapter 6: Web Servers and PHP-FPM

dockerfile: . docker/php/Dockerfile

networks:

- app-tier

ports:

- 9002: 9000

volumes:

- . : /srv/app

nginx:

build:

context: .

dockerfile: . docker/nginx/Dockerfile

networks:

- app-tier

ports:

- 8080: 80

volumes:

- . /public: /srv/app/public

You need to restart the containers for the volumes to take effect. You can do so by

hitting "Ctrl+c" if you are running docker-compose in the foreground.

If you are running Docker Compose in the background you need to run the following:

$ docker-compose down

$ docker-compose up

The volumes (https://docs.docker.com/compose/compose-file/#volumes) configuration

option includes a host volume mounting your project code in the container path

/srv/app in the PHP container, and /srv/app/public in the Nginx container, allowing you

to edit files locally and have them reflect immediately.

97

Chapter 6: Web Servers and PHP-FPM

Depending on your environment, you might get write permission errors. If you

run into this issue, run chmod -R o+rw the/folder/ locally.

File Permissions

Serving Static Assets

The primary role of the Nginx container is serving static assets like JavaScript and CSS,

and proxying requests to the PHP container. We are copying the whole application into

both images, but all Nginx needs is the contents of the public folder.

Along the way, we focus on making Nginx configuration tweaks, learn how to define

additional custom mime types, and enable gzip compression for static assets. You will

start to see how versioning the Nginx configuration pays off.

The Nginx configuration might be a review for you, but let's focus on our Docker

workflow around configuration, updating images, and running and debugging

containers.

Before we start changing configuration, let's first change the Nginx Dockerfile to only

copy the public/ folder (Listing 6.12):

FROM nginx: 1. 12

LABEL maintainer="Paul Redmond"

RUN rm /etc/nginx/conf. d/default. conf

COPY . docker/nginx/nginx. conf /etc/nginx/nginx. conf

COPY . docker/nginx/conf. d/*. conf /etc/nginx/conf. d/

COPY public/ /srv/app/public

 Listing 6.12: Update the COPY step in the Nginx Dockerfile

98

Chapter 6: Web Servers and PHP-FPM

$ docker-compose down

$ docker-compose build nginx

$ docker-compose up

Find the nginx container id

$ docker ps

$ docker exec -it ca3f5aaab045 bash

Inside the container

$ ls -la /srv/app/public/

total 16

drwxr-xr-x 2 root root 4096 May 29 19: 08 .

drwxr-xr-x 3 root root 4096 May 29 19: 08 . .

-rw-r--r-- 1 root root 313 Sep 4 2016 . htaccess

-rw-r--r-- 1 root root 725 May 29 18: 31 index. php

 Listing 6.13: Rebuild the Nginx Image and Inspect It

Let's see how the change from Listing 6.12 affects the image (Listing 6.13):

Now we don't have any unnecessary PHP code in the Nginx image, keeping it small and

tidy.

Adding Gzip Compression

By default, Nginx doesn't enable Gzip compression, but we can easily modify our

configuration to reduce file size for faster network transfers, which speeds up your

applications and save on bandwidth costs.

To get a feel for working with static files, let's download jQuery and use it to verify

configuration changes we are going to make to enable Gzip compression (Listing 6.14):

99

Chapter 6: Web Servers and PHP-FPM

$ mkdir -p public/j s

Download jQuery

$ curl -sS https: //code. j query. com/j query-3. 2. 1. j s \

> public/j s/j query. j s

 Listing 6.14: Downloading jQuery for Testing

Before working on getting Gzip enabled, let's verify that Nginx is serving jQuery

correctly by running the updated Nginx container and making a request (Listing 6.15):

$ curl -H "Accept-Encoding: gzip" \

-I http: //localhost: 8080/j s/j query. j s

HTTP/1. 1 200 OK

Server: nginx/1. 12. 2

Date: Wed, 15 Nov 2017 14: 09: 59 GMT

Content-Type: application/j avascript

Content-Length: 268039

Last-Modified: Wed, 15 Nov 2017 14: 09: 16 GMT

Connection: keep-alive

ETag: "5a0c4a8c-41707"

Accept-Ranges: bytes

 Listing 6.15: Verify Nginx is Serving Static Files

Nginx isn't serving our JavaScript with gzip encoding because our nginx.conf file has

gzip commented out (#gzip on;). We want to be able to serve compressed responses, so

let's adjust our nginx.conf file and enable gzip (Listing 6.15):

user nginx;

worker_processes 1;

 Listing 6.15: Adding gzip Compression to Nginx



100

Chapter 6: Web Servers and PHP-FPM

error_log /var/log/nginx/error. log warn;

pid /var/run/nginx. pid;

events {

worker_connections 1024;

}

http {

include /etc/nginx/mime. types;

default_type application/octet-stream;

log_format main

' $remote_addr - $remote_user [$time_local] "$request" '

' $status $body_bytes_sent "$http_referer" '

' "$http_user_agent" "$http_x_forwarded_for"' ;

access_log /var/log/nginx/access. log main;

sendfile on;

#tcp_nopush on;

keepalive_timeout 65;

gzip on;

gzip_disable "msie6";

gzip_min_length 256;

gzip_types

text/plain

text/css

application/j son

application/x-j avascript

application/j avascript

text/xml

application/xml

application/xml+rss

text/j avascript

application/vnd. ms-fontobj ect 

101

Chapter 6: Web Servers and PHP-FPM

application/x-font-ttf

font/opentype

image/svg+xml

image/x-icon

;

include /etc/nginx/conf. d/*. conf;

}

Note that we disable gzip for older Internet Explorer browsers and target specific mime

types. Other than that, you can reference the Nginx documentation if you need a

refresher on gzip configuration or want to expand on what we have.

As you probably have guessed by now, we need to rebuild the image before we can

verify that our changes work (Listing 6.16):

$ docker-compose down

$ docker-compose build nginx

$ docker-compose up -d

$ curl -H "Accept-Encoding: gzip" \

-I http: //localhost: 8080/j s/j query. j s

HTTP/1. 1 200 OK

Server: nginx/1. 12. 2

Date: Wed, 15 Nov 2017 14: 12: 34 GMT

Content-Type: application/j avascript

Last-Modified: Wed, 15 Nov 2017 14: 09: 16 GMT

Connection: keep-alive

ETag: W/"5a0c4a8c-41707"

Content-Encoding: gzip

 Listing 6.16: Testing Out gzip

We have compressed assets in Nginx, excellent work! I recommend exploring the rest

102

Chapter 6: Web Servers and PHP-FPM

of the Nginx configuration, such as the /etc/nginx/mime.types file, to get familiar with

tweaking Nginx. I love how Docker makes it easy to experiment with technologies

without affecting my local computer.

Removing Server and PHP Version

You might have noticed the Server: nginx and X-Powered-By: PHP headers while we were

testing out gzip. Let's quickly disable those before we call our Nginx setup good.

First, disable server tokens in the Nginx server configuration to mask the Nginx version

(Listing 6.17):

server {

listen 80;

server_name localhost;

server_tokens off;

index index. php;

root /srv/app/public;

location / {

try_files $uri /index. php$is_args$args;

}

location ~ \. php {

try_files $uri =404;

fastcgi_split_path_info ^(. +\. php)(/. +)$;

include fastcgi_params;

fastcgi_param SCRIPT_FILENAME

$document_root$fastcgi_script_name;

fastcgi_param SCRIPT_NAME $fastcgi_script_name;

fastcgi_index index. php;

fastcgi_pass app: 9000;

}

}

 Listing 6.17: Remove the Nginx Version from the Server Header

103

Chapter 6: Web Servers and PHP-FPM

Next is the X-Powered-By PHP header. We haven't created a php.ini file for this project

yet, so let's create that file locally (Listing 6.18):

$ echo "expose_php = off" > . docker/php/php. ini

 Listing 6.18: Create the php.ini File

The "expose_php" setting removes the "X-Powered-By" header sent back in responses

from the application.

The last step is copying the php.ini file into the image (Listing 6.19):

FROM php: 7. 1-fpm

LABEL maintainer="Paul Redmond"

COPY . /srv/app/

COPY . docker/php/php. ini /usr/local/etc/php/php. ini

WORKDIR /srv/app/

RUN chown -R www-data: www-data /srv/app

 Listing 6.8: The PHP Container

After you rebuild your images, the X-Powered-By PHP header is gone, and the Nginx

header doesn't expose the Nginx version anymore. Hiding this server information from

prying eyes is ideal because would-be attackers have less knowledge about the specific

setup.

$ docker-compose down

$ docker-compose up -d --build

$ curl -I http: //localhost: 8080



104

Chapter 6: Web Servers and PHP-FPM

HTTP/1. 1 200 OK

Server: nginx

Date: Wed, 15 Nov 2017 14: 24: 01 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Set-Cookie: PHPSESSID=9e0ca0a6e324c92c38ab625e04c642b1; path=/

Expires: Thu, 19 Nov 1981 08: 52: 00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

We have an excellent foundation for a Nginx and PHP setup in that our images are

simple and easy to extend. You can add complexity as you need it, but I think this

chapter proves that Docker can provide an extensible setup that is not complicated.

Next, we'll check out another up-and-coming HTTP/2 web server, Caddy, which is

another alternative you can use besides Apache and Nginx.

Caddy Server

Another server you can use with PHP is my personal favorite right now: Caddy

(https://caddyserver.com/), an HTTP/2 server written in Golang. Caddy is a pleasure to

work with, and configuration feels clean and straightforward to me. I also feel that it

simplifies my application containers even further and I am going to show you a

technique to run Caddy and PHP-FPM without multiple containers.

You can also run Caddy just like we ran Nginx with a separate Caddy container and a

PHP-FPM container, but I'll let you figure that out on your own (hint, you just need to

modify the FastCGI directive to point to a separate PHP container).

Caddy Setup

We're going to pick up the pace a little in this section, but it should be a breeze! First

things first, let's create a new Laravel project for this section and start fresh (Listing

6.20):

105

Chapter 6: Web Servers and PHP-FPM

$ cd ~/Code

$ composer create-proj ect --prefer-dist \

laravel/laravel: 5. 5. * ch6-caddy

$ cd ch6-caddy

$ mkdir . docker/

$ touch . docker/Dockerfile . docker/Caddyfile

$ touch docker-compose. yml

 Listing 6.20: Creating the Laravel Project

We created a Dockerfile for our PHP code and Caddy binary, and a Caddyfile to

configure the Caddy server.

If you are running Docker on Linux, you might get write permission errors on

volume directories. If you run into this issue, run chmod -R o+rw storage/

bootstrap/ locally.

File Permissions

Next, let's create the docker-compose.yml file (Listing 6.21):

version: "3"

services:

app:

build:

context: .

dockerfile: . docker/Dockerfile

ports:

- 2015: 2015

volumes:

- . : /srv/app

 Listing 6.21: The Docker Compose File

106

Chapter 6: Web Servers and PHP-FPM

We map port 2015, which is the default port that Caddy uses to accept HTTP requests,

but you can quickly change which port Caddy runs on through the Caddyfile.

The Caddy Dockerfile

We don't need to extend a Caddy image like we are doing with Nginx, we can just use

the php-fpm image and install the Caddy binary.

Add the following in the Dockerfile to install Caddy (Listing 6.22):

FROM php: 7. 1-fpm

LABEL maintainer="Paul Redmond"

Install application dependencies

RUN curl --silent --show-error --fail --location \

--header "Accept: application/tar+gzip, application/x-gzip,

application/octet-stream" -o - \

"https: //caddyserver. com/download/linux/amd64?plugins=http. expire

s, http. realip&license=personal" \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

&& chmod 0755 /usr/bin/caddy \

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql

COPY . docker/Caddyfile /etc/Caddyfile

COPY . /srv/app/

WORKDIR /srv/app/

RUN chown -R www-data: www-data /srv/app

CMD ["/usr/bin/caddy", "--conf", "/etc/Caddyfile", "--log",

"stdout"]

 Listing 6.21: The Docker Compose File

107

Chapter 6: Web Servers and PHP-FPM

First, we download Caddy via cURL, using query string parameters to define the Caddy

plugins we want to use and the license type. You can adjust the plugins based on your

needs by visiting https://caddyserver.com/download and copying the download link

after selecting your configuration. We include the http.expires, http.git, and http.realip

plugins here. Make sure to read the EULA if you plan on using Caddy in a commercial

project!

After downloading Caddy, the command extracts the binary from the archive, makes it

executable, and moves it to /usr/bin/caddy. Last, we defined the CMD instruction with a

--conf flag pointing to our Caddyfile which we need to write, and the --log flag instructs

Caddy to send logs to stdout, which show up in the Docker console.

The Caddyfile

The Caddyfile is a text file that configures how Caddy runs, and I think you'll like the

simple syntax. Here's a basic Caddfile that will run our Laravel application (Listing

6.23):

0. 0. 0. 0

root /srv/app/public

gzip

fastcgi / 127. 0. 0. 1: 9000 php

rewrite {

regexp . *

ext /

to /index. php?{query}

}

header / -Server

log stdout

errors stdout

on startup php-fpm --nodaemonize

 Listing 6.23: The Caddyfile

108

Chapter 6: Web Servers and PHP-FPM

The first line defines the site address of our application, which is 0.0.0.0, or localhost.

We can use this line to specify the site address, which can take many forms. To learn

more, you should check out the HTTP Caddyfile (https://caddyserver.com/docs/http-

caddyfile) documentation.

The next line, gzip, is known as a Caddy directive. We configure the gzip directive to use

the defaults, but you could customize the configuration with a block:

gzip {

ext extensions. . .

not paths

level compression_level

min_length min_bytes

}

Next, we are defining a FastCGI proxy so we can communicate with PHP-FPM. After

FastCGI, we define a main rewrite (https://caddyserver.com/docs/rewrite) rule that

rewrites everything to our app's public/index.php file. We wrap up the Caddyfile by

sending access and error logs to stdout and stderr which show up in Docker's console.

The last line starts PHP-FPM in the background with on startup event. The startup event

is triggered just before the server starts listening.

You should check out the Caddyfile tutorial

(https://caddyserver.com/tutorial/caddyfile) and then the user guide

documenation (https://caddyserver.com/docs/http-caddyfile) to learn more

about the Caddyfile.

Learning more about the Caddyfile

109

Chapter 6: Web Servers and PHP-FPM

Running the Application

We have all the components we need to run the application, so let's try it out (Listing

6.24):

$ docker-compose up --build

. . .

Attaching to ch6caddy_app_1

app_1 | Activating privacy features. . . done.

app_1 | 2017/06/11 07: 48: 01 [INFO] Nonblocking Command: "php-fpm "

app_1 | http: //0. 0. 0. 0: 2015

app_1 | 2017/06/11 07: 48: 01 http: //0. 0. 0. 0: 2015

app_1 | [11-J un-2017 07: 48: 01] NOTICE: fpm is running, pid 14

app_1 | [11-J un-2017 07: 48: 01] NOTICE: ready to handle

connections

app_1 | 127. 0. 0. 1- 11/Jun/2017: 07: 48: 26 +0000 "GET /index. php"

200

 Listing 6.24: Running Caddy

If you decipher the logs, you can see that Caddy is running on port 2015. You are free to

change it in the configuration, but we just used the default for this application.

If you visit http://localhost:2015/, you should see the Laravel welcome page, which

means our application is working.

In Laravel, you can configure the app log settings to errorlog to send logs to

the Docker console.

You can set the APP_LOG=errorlog environment variable in the docker-

compose.yml file to try it out. Afterwards, try running \Log::debug("Test Log"); to

see your application logs from the Docker CLI.

Logs to Stdout

110

Chapter 6: Web Servers and PHP-FPM

Next let's test out our rewrite rule to make sure that other URLs route to the laravel

application correctly. We can do that by adding a new route to the bottom of

routes/web.php (Listing 6.25):

Route: : get(' /hello' , function () {

return [' hello' => request(' name' , ' world')] ;

}) ;

 Listing 6.25: Add a Route to Test the Caddy Rewrite

The route returns an array, which Laravel will automatically convert into a JSON

response (Listing 6.26):

$ curl http: //localhost: 2015/hello\?name\=paul

{"hello": "paul"}

 Listing 6.26: Verify that the Rewrite is Working

That completes our whirlwind tour of using Caddy in Docker; I highly recommend that

you dig deeper into the plugin documentation and tinker around with Caddy to learn

more! I've been using Caddy in production for over a year, and it's an excellent server.

You've Been Served

Hopefully, this chapter was an excellent foundation for running PHP applications in a

variety of ways. We expanded beyond running Docker with Apache and learned how to

use containers to run Nginx and PHP-FPM separately. I hope you also give Caddy a try,

it is a pleasure to work with and I use it on a daily basis.

Now, we move on to working with legacy PHP applications you still might have in your

life. Hopefully, you can wrangle your applications in a contained Docker environment,

which is a big step into refactoring and replacing them.

111

Chapter 7: Legacy PHP Applications

We all have that legacy application in our lives. You know, the one of which you are

afraid to restart Apache? Yeah. We've all been there! I find it odd that I am dedicating a

whole chapter in my brand-spanking-new book on legacy code?! In this case, Docker

might help you wrangle that project (and learn how to set it up) without destroying

your local machine.

It's annoying when you have the latest-and-greatest PHP version on your laptop, and

you get that dreaded request to update the legacy project. Maybe you are using Vagrant,

but Vagrant is only helping you in development. You still have to make sure you have

environment parody.

This chapter is handy when you need to set up an environment from scratch. We've

been relying on the official PHP image—I recommend you stick with that in your PHP

projects—but you probably noticed that the official PHP image doesn't support PHP <=

5.4. In fact, the official image only goes back to PHP 5.6 at the time of writing. We'll

have to use an older OS version that supports our madness.

Working with older code gets harder as time goes on (and less secure); requiring you to

build EOL versions of PHP from source, or using an older OS version (i.e., CentOS 6)

that ships with an older PHP package.

112

Chapter 7: Legacy PHP Applications

Running end-of-life software is bad. We've all been there, but I still think it's

worth noting.

I am not showing you these techniques to encourage you to keep old software

around longer. I am teaching you these methods because realistically everyone

deals with these types of projects.

End of Life (EOL) Software

Setting Up

As we work through this chapter, we use an example PHP project to build a Docker

environment and retrofit configuration to work well with a container paradigm.

Specifically, we are going to work with an older version of CakePHP—CakePHP 2 to be

exact (https://book.cakephp.org/2.0/en/index.html). Newer versions of CakePHP 2 work

on PHP 7, but older versions also work with PHP 5.3 which is perfect for this lesson.

I have a place in my heart for CakePHP. It was my first MVC framework, and I am not

trying to pick on it by any means. In fact, I chose it for this chapter since the

documentation is still available, and they do a great job of keeping older releases

accessible. CakePHP is under active development at the time of this writing and is a

robust MVC PHP framework.

As always, the first thing we do is create a project directory structure and add a few

files we'll use to build the Docker environment (Listing 7.1).

$ cd ~/Code

$ curl -LOk https: //github. com/cakephp/cakephp/archive/2. 6. 0. zip

$ unzip 2. 6. 0. zip -d . /

$ rm 2. 6. 0. zip

 Listing 7.1: Project Setup



113

Chapter 7: Legacy PHP Applications

$ cd cakephp-2. 6. 0

$ mkdir . docker/

$ touch docker-compose. yml

$ touch . docker/Dockerfile \

. docker/vhost. conf \

. docker/httpd-foreground

According to the CakePHP documentation, CakePHP 2.6 and below support PHP

>=5.2.8 (https://book.cakephp.org/2.0/en/installation.html#requirements). We use a

version of PHP 5.3 in this chapter, but you could adapt this to other versions, which

requires building PHP and needed extensions from source.

The Dockerfile

We have been extending from the official Docker PHP image up to this point, but in

this chapter, we are going to extend the official Ubuntu image.

There are two common ways we can install older versions of PHP. First, we can use a

PHP package from an older Linux version. Second, we can build PHP (and the required

modules) from source.

In our case, we are going to use Ubuntu 12 LTS to install a more hardened version of

PHP 5.3, but the tradeoff is that the package version installs PHP 5.3.10. A huge positive

for taking this route is that you benefit from PHP security patches provided by

Canonical maintainers, and the package already includes Suhosin

(https://suhosin.org/). I highly suggest you take this route if possible.

If your application depends on >= 5.3.10, you need to install a newer version of PHP 5.3

from source. I'm not going to cover that here, but if you are in this predicament, I am

guessing you're used to building PHP from source. The bad news is that you'll miss out

on some of the security patching prepared by Canonical.

With that bit of explanation out of the way, let's start by installing PHP 5.3 from a

package using Ubuntu 12.04 as the base image (Listing 7.2):

114

Chapter 7: Legacy PHP Applications

FROM ubuntu: 12. 04

LABEL maintainer="Paul Redmond"

RUN apt-get -yqq update \

&& apt-get -yqq install \

apache2 \

libapache2-mod-php5 \

php5 \

php5-mysql \

php5-mcrypt \

php5-suhosin \

&& a2enmod rewrite

 Listing 7.2: Install PHP 5.3 from Ubuntu 12.04 Packages

We are starting out by installing apache2, mod_php, some PHP packages. Lastly, we

enable mod_rewrite using the a2enmod command.

Let's build the image and investigate a little to see what we get. This command will take

a little longer the first time because Docker needs to pull Ubuntu 12 from the official

Docker repository (Listing 7.3):

$ docker build -t cakephp-app -f . docker/Dockerfile .

. . .

Let' s run a container

$ docker run --rm -it cakephp-app /bin/bash

Inside the container, run ` php -v`

root@55318cb78516: /# php -v

PHP 5. 3. 10-1ubuntu3. 26 with Suhosin-Patch (cli) (built: Feb 13

2017 20: 37: 53)

Copyright (c) 1997-2012 The PHP Group

 Listing 7.3: Build the Docker Image



115

Chapter 7: Legacy PHP Applications

Zend Engine v2. 3. 0, Copyright (c) 1998-2012 Zend Technologies

with Suhosin v0. 9. 33, Copyright (c) 2007-2012, by SektionEins

GmbH

Let' s look at Apache

$ ls -la /etc/apache2/

Running Apache

We've already included the apache2 package in our Dockerfile, so let's get Apache

running in the container. We are going to do a couple of things to make this happen:

1. Add an application service to the docker-compose.yml file

2. Create a script that will run Apache in the container

I am of the opinion that running Apache with a legacy version of PHP is probably the

best choice because it's easy to install and many legacy PHP applications were designed

to work with Apache.

Let's get started by creating a docker-compose.yml file that should look familiar to you at

this point. You can try and create it on your own, or use the following (Listing 7.4):

version: "3"

services:

app:

build:

context: .

dockerfile: . docker/Dockerfile

ports:

- 8888: 80

volumes:

- . : /srv/cakephp

 Listing 7.4: Adding the docker-compose.yml File

116

Chapter 7: Legacy PHP Applications

We are setting the build context to the root of the project and specifying the path to the

Dockerfile. We've already used this style, which allows you to organize your Docker

build files in a subfolder.

The next file we need to work on is the script we created in Listing 7.1, .docker/httpd-

foreground, that will be used to run Apache (Listing 7.5):

#!/bin/bash

set -e

Apache gets grumpy about PID files pre-existing

rm -f /usr/local/apache2/logs/httpd. pid

source /etc/apache2/envvars && exec apachectl -D FOREGROUND

 Listing 7.5: The httpd-foreground File

We make sure that the Apache environment variables are sourced and run Apache in

the foreground so that the Docker container won't exit.

Next, we need to copy this file into the container and make it executable (Listing 7.6):

FROM ubuntu: 12. 04

LABEL maintainer="Paul Redmond"

RUN apt-get -yqq update \

&& apt-get -yqq install \

apache2 \

libapache2-mod-php5 \

php5 \

php5-mysql \

php5-mcrypt \

php5-suhosin \

 Listing 7.6: Copy the http-foreground script into the image



117

Chapter 7: Legacy PHP Applications

&& a2enmod rewrite

COPY . docker/httpd-foreground /usr/local/bin/

RUN chmod +x /usr/local/bin/httpd-foreground

EXPOSE 80

CMD ["httpd-foreground"]

Because the http-foreground script is in the $PATH, we can reference it without the full

path.

The CMD provides defaults for an executing container, and in our case, the default is

our custom bash script. Up to this point, we've relied on the CMD instruction from the

base PHP images we extend, which is why this is the first time you've seen it in this text.

We go over providing custom commands more in-depth in the next chapter.

Now that we have a way to run Apache in the container by default, we are ready to

rebuild the image and verify that Apache is working as expected (Listing 7.7):

$ docker-compose up --build

 Listing 7.7: Run the Container to Verify Apache

If you visit http://localhost:8888 you should see the default Apache response which

means Apache is running in the container (Figure 7.1):

118

Chapter 7: Legacy PHP Applications

 Figure 7.1: The Default Apache Page

The default Apache response means our setup is working and we can move on to

creating a Virtual Host configuration for our application. Add the following VirtualHost

configuration to .docker/vhost.conf (Listing 7.8):

<VirtualHost *: 80>

ServerName www. example. com

DocumentRoot /srv/cakephp/app/webroot

<Directory "/srv/cakephp/app/webroot">

DirectoryIndex index. php

Options -Indexes

Order allow, deny

allow from all

RewriteCond %{REQUEST_FILENAME} ! -d

RewriteCond %{REQUEST_FILENAME} ! -f

RewriteRule ^ index. php [L]

 Listing 7.8: The Virtual Host File



119

Chapter 7: Legacy PHP Applications

</Directory>

ErrorLog /dev/stderr

CustomLog /dev/stdout combined

</VirtualHost>

We are matching up the DocumentRoot to the webroot folder of the application. We

have yet to define the COPY instruction to copy the application into the image, which

we address shortly.

The Ubuntu 12.04 Apache package is Apache version ~ 2.2, so the "allow" syntax

matches that version. Last, we configure the ErrorLog and CustomLog to go to stderr

and stdout respectively so that logs go to the Docker console instead of piling up in the

container.

Next, we need to update the Dockerfile to copy the source code into the path we

defined for the DocumentRoot. We also need to enable the VirtualHost configuration

too so that Apache can serve our application (Listing 7.9):

FROM ubuntu: 12. 04

LABEL maintainer="Paul Redmond"

RUN apt-get -yqq update \

&& apt-get -yqq install \

apache2 \

libapache2-mod-php5 \

php5 \

php5-mysql \

php5-mcrypt \

php5-suhosin \

&& rm -f /etc/apache2/sites-available/* \

&& rm -f /etc/apache2/sites-enabled/* \

 Listing 7.9: The Updated Dockerfile



120

Chapter 7: Legacy PHP Applications

&& a2enmod rewrite

COPY . docker/httpd-foreground /usr/local/bin/

COPY . docker/vhost. conf /etc/apache2/sites-available/000-

default. conf

COPY . /srv/cakephp

RUN ln -s /etc/apache2/sites-available/000-default. conf \

/etc/apache2/sites-enabled/000-default. conf \

&& chmod +x /usr/local/bin/httpd-foreground \

&& chown -R www-data: www-data /srv/cakephp

WORKDIR /srv/cakephp

EXPOSE 80

CMD ["httpd-foreground"]

Our latest Dockerfile adds in two rm commands to remove the Apache default v-host

file; we don't need it. Next, we copy the all the source code to /srv/cakephp which

matches the path in our Vhost. Because our code's webroot is at app/webroot, the final

path is /srv/cakephp/app/webroot.

Although the vhost.conf is the only virtual host, we name it 000-default.conf in the image

because we want Apache to make this the default. Apache determines the first Vhost

(alphabetically sorted) as the default.

The last RUN command symlinks our Virtual Host file into the sites-enabled folder and

enables the Vhost. Lastly, we change ownership of the application files to the www-

data user, which allows Apache read and write access.

We should now be able to run our CakePHP application after rebuilding the Docker

image with docker-compose up --build (Figure 7.2).

121

Chapter 7: Legacy PHP Applications

 Figure 7.2: CakePHPWorking with PHP 5.3

As you can see, our application is running, but there are a few warnings and

suggestions that need some work. Let's look at how we might retrofit modern

configuration patterns into the application.

Development Workflow and Commands

You probably don't have PHP 5.3 on your local machine, so will need to run all of our

console commands inside of the container to work with PHP. You've already seen

plenty of examples jumping into a running container within this book.

We can also run commands in our container from a local terminal with docker run. Let's

create another service in our docker-compose.yml file to see how it all works together

(Listing 7.10):

version: "3"

services:

 Listing 7.10: Adding a Cake Service to docker-compose.yml



122

Chapter 7: Legacy PHP Applications

app:

image: cakephp-app

container_name: cakephp-app

build:

context: .

dockerfile: . docker/Dockerfile

ports:

- 8888: 80

volumes:

- . : /srv/cakephp

cake:

image: cakephp-app

container_name: cakephp-console

volumes:

- . : /srv/cakephp

entrypoint: [

"/srv/cakephp/app/Console/cake",

"-app", "/srv/cakephp/app"

]

The cake service is the biggest change here. We added an entrypoint which changes the

way the container works when we run it. Because we didn't define an ENTRYPOINT in

our Dockerfile, we have some flexibility in how we run the application container. By

default, we can run Apache, and then we can customize other containers to run the

cake CLI.

According to the CakePHP 2 console documentation

(https://book.cakephp.org/2.0/en/console-and-shells.html), you can pass the -app

argument to customize the location of the application. We add it to the entrypoint just

to be sure the Cake CLI knows how to locate the application.

We also added an image: key to both the app and cake services, so they run from the

same image instead of building the same image twice. Using the container_name key on

both services was added make the names of containers a little more comfortable on the

eyes.

123

Chapter 7: Legacy PHP Applications

If you run the cake service you can see how the entrypoint setting works in Docker

Compose (Listing 7.11):

$ docker-compose run cake

Welcome to CakePHP v2. 6. 0 Console

. . .

Current Paths:

-app: app

-working: /srv/cakephp/app

-root: /srv/cakephp

-core: /srv/cakephp/lib

. . .

 Listing 7.11: Running the Cake Console

Since the entrypoint points to the CakePHP console you can pass arguments that will

run in the container and use the cake shell as expected (Listing 7.12):

From your local machine

$ docker-compose run cake command_list

 Listing 7.12: Running cake Commands

The other way we could run this without defining a docker-compose service is using

the --entrypoint flag. You can start a container with bash and execute console

commands within the container, which feels similar to SSH (Listing 7.13):

From your local machine

$ docker-compose run --entrypoint=/bin/bash app

 Listing 7.13: Customize the Entrypoint with the Compose Command

You are now free to move about the container, and you benefit from the volume mount

defined in the Docker Compose file to keep your local files in sync. To exit the

124

Chapter 7: Legacy PHP Applications

container, hit Control + d or type "exit" at the prompt.

Improving Configuration

Let's jump into working with legacy configuration and making it work well with

Docker. We don't have any databases or application configuration yet, and we should go

over a few things related to a configuration issue that I see in most legacy projects

migrating to Docker.

You might have noticed a few configuration warnings in Figure 7.2, and one standard

challenge I've faced on every project is dealing with configuration between

environments. There are a couple of strategies I've used to make configuration easier

to deal with that I want to cover.

Those strategies include:

1. Having separate configuration files for each environment (ie. prod.config.php,

dev.config.php, etc.).

2. Provide a tokenized configuration file that gets updated during build-time.

3. Integrating updated configuration patterns like environment variables

(https://en.wikipedia.org/wiki/Environment_variable).

I personally dislike having production settings in the repository; it's not a right way of

promoting security on an already aging codebase. In my experience, I've often seen a

combination of configuration files per environment in a code repository combined

with tokenized replacements for sensitive values like database passwords. However, in

my experience, retrofitting your code to work with environment variables is probably

the best approach if you can salvage it.

Using environment variables gets around annoying build-time token replacements of

sensitive passwords or using something like Ansible to generate the configuration file

that gets copied into an image. With environment variables, you just define them, and

the code adapts.

125

Chapter 7: Legacy PHP Applications

Let's go with the last option, and retrofit our codebase to work with environment

variables. At the time of this writing, there is a composer package, vlucas/phpdotenv,

which supports our application's version of PHP! CakePHP 2.6 doesn't use Composer

for its autoloading, but we can use it for adding the PHP dotenv package (Listing 7.14):

$ composer install

Ignore vendor/

$ echo "vendor/" >> . gitignore

$ composer require vlucas/phpdotenv: ~2. 4. 0

 Listing 7.14: Installing Composer Dependencies and Adding phpdotenv

You need to install the Mcrypt extension locally to run composer commands

with CakePHP. For example, if you are on OS X with PHP 7.1 installed from

Homebrew, you can run brew install php71-mcrypt.

Using the strategies we learned in Chapter 6, you could also run all the

commands—including composer—inside a container with a mounted volume.

Mcrypt Extension

If you are following along, you now have a new composer.lock file, a Plugins folder

created from the cakephp/debug_kit dependency, and the vendor/ folder with PHPUnit.

Now that we have the package installed, we need to include Composer's autoloader. In

CakePHP 2.6, the framework does not use Composer's autoloader, so we add the

autoloader to the top of the entrypoint of the application.

Edit the app/webroot/index.php file with the following at the very top (Listing 7.15):

126

Chapter 7: Legacy PHP Applications

<?php

// Load Dotenv

require __DIR__. ' /. . /. . /vendor/autoload. php' ;

$dotenv = new Dotenv\Dotenv(__DIR__. ' /. . /. . /') ;

$dotenv->load();

// . . .

 Listing 7.15: Adding dotenv to app/webroot/index.php

The Dotenv instance looks in the root of the project for the .env file and fail if it cannot

find the file.

Next, let's create our .env file, add an example .env.example file, and ignore the .env file

in Git (Listing 7.16):

$ cd ~/Code/cakephp-2. 6. 0

$ echo "APP_DEBUG=1" > . env > . env. example

$ echo ". env" >> . gitignore

 Listing 7.16: Adding the .env files

Now we have a way of setting environment variables in our application on the system

and through a .env file. A system-defined variable takes precedence over a value in the

.env file, and like modern applications, we can now set some defaults and override

things with environment variables for production.

Now that we've brought the environment library into the project, we still have some

work to do on the integration. The PHP dotenv package doesn't perform type

conversions on values, so MY_ENV=true is a string value "true."

Let's work on a helpers file that includes a few utility functions for working with our

environment configuration. We borrow a little from the Laravel Support helpers.php

127

Chapter 7: Legacy PHP Applications

file to make our integration support type conversions (https://git.io/vb9sx).

We will provide some helper functions to read environment variables and autoload the

file through composer's autoloader. Create a app/helpers.php file and add the following

helper functions (Listing 7.17):

<?php

if (! function_exists(' value')) {

/**

* Return the default value of the given value.

*

* @param mixed $value

* @return mixed

*/

function value($value)

{

return $value instanceof Closure ? $value() : $value;

}

}

if (! function_exists(' cakeenv')) {

function cakeenv($key, $default = null) {

$value = getenv($key);

if ($value === false) {

return value($default);

}

switch (strtolower($value)) {

case ' true' :

case ' (true)' :

return true;

case ' false' :

 Listing 7.17: Adding a helpers.php File



128

Chapter 7: Legacy PHP Applications

case ' (false)' :

return false;

case ' empty' :

case ' (empty)' :

return ' ' ;

case ' null' :

case ' (null)' :

return;

}

if (

strlen($value) > 1 &&

strpos($value, ' "') === 0 &&

strpos(strrev($value), ' "') === 0

) {

return substr($value, 1, -1);

}

return $value;

}

}

Our helper file defines two functions: value() and cakeenv(). The value() function allows

the cakeenv() function to get the default value from a string or a Closure, and lucky for

us, closures are supported as of >= PHP 5.3.0. Whew!

In order to get the helper loaded, we need to add an autoload key to our project's

composer.json file (Listing 7.18):

"require-dev": {

"phpunit/phpunit": "3. 7. *",

"cakephp/debug_kit": "2. 2. *"

},

 Listing 7.18: Autoloading the helpers.php File to composer.json (Partial)



129

Chapter 7: Legacy PHP Applications

"autoload": {

"files": ["app/helpers. php"]

},

"bin": [

"lib/Cake/Console/cake"

]

We are ready to rebuild the image and verify our environment configurations.

Remember to run composer dump-autoload after you add the helpers file, so the

autoloader picks it up:

$ composer dump-autoload

$ docker-compose down

$ docker-compose up --build

After you are running the latest image, you can test things out by adding a var_dump to

the top of app/Config/core.php (Listing 7.19):

<?php

var_dump(cakeenv("APP_DEBUG")); exit;

 Listing 7.19: Testing out Our Environment Config in app/Config/core.php

At this point, you should see string(1) "1" output, which means that our cakeenv helper is

picking up environment configuration from the .env file.

Basic Configuration with Environment

Now that we have the PHP dotenv library in place let's use our helper function to

configure the debug setting found in app/Config/core.php. CakePHP accepts the

following configuration for debug: 0 (production), 1 (development), or 2 (full

debugging).

Update the debug line in your core.php file with the following code to configure the

130

Chapter 7: Legacy PHP Applications

debug setting from environment (Listing 7.20):

Configure: : write(' debug' , (int) cakeenv(' APP_DEBUG' , 0)) ;

var_dump(Configure: : read(' debug')) ; exit;

 Listing 7.20: Using Environment for the Debug Setting

You should see int(1) if you refresh your browser. If the APP_DEBUG value isn't defined, it

defaults to 0. Note that we have to cast the value to an integer because PHPDotenv

doesn't convert them for you.

I would recommend updating the .env file and .env.example files to APP_DEBUG=2 now,

which is CakePHP's default value. You should see your debug settings change after

tweaking your .env file.

Adding More Configuration

We have a basic example in place for using environment variables, so let's use our new

helpers to go back to the CakePHP warnings found when visiting http://localhost:8888

and update them with environment variables.

Before we update our .env file, we need to generate a random salt value that we can add

to our .env file (Listing 7.21):

$ openssl rand -base64 40

1aEimZhGcF09PGHiuGKlT8Oe3i1JeuHpwxpa19WNGJWgZlgsg0Tj eg==

 Listing 7.21: Generate a random Salt

Feel free to use the OpenSSL command like I've done, or generate the random salt in

any manner that you prefer, such as mashing your keyboard.

For the security cipher, be sure that the value only includes numbers.

Next, grab those values and add them to .env (Listing 7.22):

131

Chapter 7: Legacy PHP Applications

APP_DEBUG=2

APP_SECURITY_SALT="77VqmY4DzX5UKRnYIZj eLe2RVtbc7Il3Aq5I3Y9SKxb8PDF

OVmULnA=="

APP_SECURITY_CIPHER="7649012263570945823051154087660"

 Listing 7.22: Adding the Security Values to .env

Next, find the configuration for Security.salt and Security.cipherSeed (they are right next

to each other) in the app/Config/core.php file and update them with the following

(Listing 7.23):

/**

* A random string used in security hashing methods.

*/

Configure: : write(

' Security. salt' ,

cakeenv(

' APP_SECURITY_SALT' ,

' DYhG93b0qyJfIxfs2guVoUubWwvniR2G0FgaC9mi'

)

) ;

/**

* A random numeric string (digits only) used to encrypt/decrypt

strings.

*/

Configure: : write(

' Security. cipherSeed' ,

cakeenv(

' APP_SECURITY_CIPHER' ,

' 76859309657453542496749683645'

)

) ;

 Listing 7.23: Using the .env Values in core.php

132

Chapter 7: Legacy PHP Applications

The default values we've set are the defaults that ship with CakePHP, which means that

we'll have the same warnings when a new environment hasn't defined these values in

an environment configuration. The warnings are helpful to guide developers just

setting up an environment, and the application setup works as you'd expect.

At this point, you should set the salt and cipher environment variables in .env.example

with the default values. New developers have the values already defined when they

copy the example file, and they can change them during setup. It's also a good idea to

continually keep the .env.example file updated as you add new values.

Database Configuration

If you look closely at app/Config/database.php.default, notice that the database

connections are properties of the DATABASE_CONFIG class. We need to update it slightly

because we can't set the array properties with a dynamic cakeenv() function.

Before we change the file, we need to copy it to app/Config/database.php, the filename

that CakePHP expects (Listing 7.24):

$ cp app/Config/database. php. default app/Config/database. php

 Listing 7.24: Copy the Default Database Config

The CakePHP project ignores /app/Config/database.php for a good reason, but since we

are using environment variables for connections, we can safely remove it from the

.gitignore file and adapt the class to the following (Listing 7.25):

<?php

class DATABASE_CONFIG {

function __construct()

{

 Listing 7.25: Update the database.php file with environment config



133

Chapter 7: Legacy PHP Applications

$this->default = array(

' datasource' => cakeenv(

' DB_DATASOURCE' ,

' Database/Mysql'

) ,

' persistent' => false,

' host' => cakeenv(

' DB_HOST' ,

' localhost'

) ,

' login' => cakeenv(

' DB_USER' ,

' user'

) ,

' password' => cakeenv(

' DB_PASSWORD' ,

' password'

) ,

' database' => cakeenv(

' DB_DATABASE' ,

' database_name'

) ,

' prefix' => cakeenv(' DB_PREFIX' , ' ') ,

// 'encoding' => cakeenv('DB_ENCODING' , ' utf8') ,

) ;

$this->test = array(

' datasource' => ' Database/Mysql' ,

' persistent' => false,

' host' => ' localhost' ,

' login' => ' user' ,

' password' => ' password' ,

' database' => ' test_database_name' ,

' prefix' => ' ' ,

) ;

}

}

134

Chapter 7: Legacy PHP Applications

We moved the public class properties to the constructor and set them dynamically. We

didn't use the environment to change the test values, but you can adjust those on your

own if you'd like. I recommend using the same environment variables and overriding

them with a phpunit.xml file. You can also create separate environment variables for

your testing database connection; I'll leave that up to you.

Next, let's get a working database configuration; CakePHP is warning us that the

application is not able to connect to the database. We have the class configuration in

place; now we just need to update our environment with working connection

information.

First, let's update the .env.example file with our new database connection variables that

help people get started with the application (Listing 7.26):

APP_DEBUG=2

APP_SECURITY_SALT="77VqmY4DzX5UKRnYIZj eLe2RVtbc7Il3Aq5I3Y9SKxb8PDF

OVmULnA=="

APP_SECURITY_CIPHER="7649012263570945823051154087660"

Database

DB_DATASOURCE="Database/Mysql"

DB_HOST=localhost

DB_USER=user

DB_PASSWORD=password

DB_DATABASE=database_name

DB_PREFIX=""

 Listing 7.26: Database .env.example Variables

We define the default CakePHP database values in our example file, but our Docker

Compose file takes care of assigning these values automatically. The values in the

.env.example provide an example template for other non-development environments.

We have the example environment variables defined, but we need to either define

135

Chapter 7: Legacy PHP Applications

proper connection strings in the .env file, or through the Docker compose file to

configure the connection (Listing 7.27):

version: "3"

services:

app:

image: cakephp-app

container_name: cakephp-app

build:

context: .

dockerfile: . docker/Dockerfile

ports:

- 8888: 80

volumes:

- . : /srv/cakephp

environment:

DB_HOST: mysql

DB_USER: root

DB_PASSWORD: password

DB_DATABASE: cakephp_example

cake:

image: cakephp-app

container_name: cakephp-console

volumes:

- . : /srv/cakephp

entrypoint: [

"/srv/cakephp/app/Console/cake",

"-app", "/srv/cakephp/app"

]

mysql:

image: mysql: 5. 5

ports:

- "13306: 3306"

environment:

MYSQL_DATABASE: cakephp_example

 Listing 7.27: Add a MySQL Database to docker-compose.yml



136

Chapter 7: Legacy PHP Applications

MYSQL_ROOT_PASSWORD: password

I've purposely demonstrated the mysql:5.5 version because it's possible that your

application code only supports an older version of MySQL. Being able to use different

versions of software on the same development system is an excellent benefit of

containers, and can also aide your effort in upgrading parts of your infrastructure.

We've set the database environment variables in the container configuration to match

the MySQL environment variables for the database and root password. These

environment variables get defined on the system; therefore, PHP dotenv will not

mutate these values (see https://github.com/vlucas/phpdotenv#immutability). What this

means, is that you can override values found in the .env file by setting system

environment variables.

With our environment settings in place, new developers picking up our codebase will

get a working database without needing to make any changes. Making Docker easy to

use by developers is an often overlooked, but important part of using Docker. Try to

make setting up Docker as convenient and comfortable in development with as little

manual work as possible.

The docker-compose.yml file in our project is for developers; therefore, it's fine to set

environment variables in the database container. You can use the .env file instead if you

don't prefer to define environment values directly in the Compose file. I just wanted to

demonstrate that you can override settings through system variables.

Verifying the Database Connection

The environment variable configuration for the database is all set, and we can finally

verify that the application can connect to the database. If you rebuild the application

and run your containers (you should be familiar with how to do that now), you should

see the confirmation "CakePHP is able to connect to the database" if you visit

http://localhost:8888 (Figure 7.3).

137

Chapter 7: Legacy PHP Applications

 Figure 7.3: CakePHP is able to connect to the database

Suhosin

PHP continues to patch security vulnerabilities until a version end of life (EOL), which

is one reason why a legacy PHP application running an EOL version of PHP can

become a growing liability. That's one reason why I've shown you the "most secure"

version of PHP 5.3 I can think of, with the Canonical patches.

Suhosin describes itself as "an advanced protection system for PHP installations."

Suhosin is another essential part of protecting an older version of PHP, and ships with

smart defaults, including a simulation mode that helps learn how your application

breaks while running Suhosin. We'll cover simulation mode in more detail later in this

section.

There are a few common things you'll need to deal with to get your application to work

with Suhosin, so let's go over them real quick.

Running PHAR Files

As part of a security measure, Suhosin will not allow you to run phar (PHP Archive)

138

Chapter 7: Legacy PHP Applications

files. If you run the application container and try to install Composer, for example, you

will get a similar error (Listing 7.28):

$ docker-compose down

$ docker-compose run --rm app /bin/bash

Creating network "cakephp260_default" with the default driver

Inside the container

$ apt-get -y install curl

$ curl -S https: //getcomposer. org/installer | php -- \

--install-dir=/usr/local/bin \

--filename=composer \

&& chmod +x /usr/local/bin/composer

Some settings on your machine make Composer unable to work

properly.

Make sure that you fix the issues listed below and run this

script again:

The value for ` suhosin. executor. include. whitelist` is incorrect.

Add the following to the end of your ` php. ini` or suhosin. ini

(Example path [for Debian] : /etc/php5/cli/conf. d/suhosin. ini) :

suhosin. executor. include. whitelist = phar

. . .

Exit the container

$ exit

 Listing 7.28: Trying to Run a .phar File

It's pretty clear that we need to make an INI file change. You can either update the

php.ini file or suhosin.ini file, but let's just create a separate configuration file just for the

CLI.

You can organize your INI files however you want; the following is just one way of

many. Create an app.ini file from your local machine that we'll copy into the image

139

Chapter 7: Legacy PHP Applications

(Listing 7.29):

$ mkdir -p . docker/php/cli/

$ touch . docker/php/cli/app. ini

 Listing 7.29: Create the app.ini file for the CLI

Add the following configuration to the newly created app.ini file (Listing 7.30):

; Application PHP settings

; Allow phar files

suhosin. executor. include. whitelist = phar

 Listing 7.30: Enable .phar on the CLI

Last, copy the new file into the container (Listing 7.31):

FROM ubuntu: 12. 04

LABEL maintainer="Paul Redmond"

RUN apt-get -yqq update \

&& apt-get -yqq install \

apache2 \

libapache2-mod-php5 \

php5 \

php5-mysql \

php5-mcrypt \

php5-suhosin \

&& rm -f /etc/apache2/sites-available/* \

&& rm -f /etc/apache2/sites-enabled/* \

&& a2enmod rewrite

COPY . docker/httpd-foreground /usr/local/bin/

 Listing 7.31: Copy the app.ini file



140

Chapter 7: Legacy PHP Applications

COPY . docker/vhost. conf /etc/apache2/sites-available/000-

default. conf

Copy INI files for the command line

COPY . docker/php/cli/*. ini /etc/php5/cli/conf. d

COPY . /srv/cakephp

RUN ln -s /etc/apache2/sites-available/000-default. conf \

/etc/apache2/sites-enabled/000-default. conf \

&& chmod +x /usr/local/bin/httpd-foreground \

&& chown -R www-data: www-data /srv/cakephp

WORKDIR /srv/cakephp

EXPOSE 80

CMD ["httpd-foreground"]

If you rebuild the image and run the container, you should be able to download and

execute the composer.phar file from the CLI like we tried in Listing 7.28:

$ docker-compose build app

$ docker-compose run --rm app /bin/bash

Inside the container

$ apt-get -y install curl

$ curl -S https: //getcomposer. org/installer | php -- \

--install-dir=/usr/local/bin \

--filename=composer \

&& chmod +x /usr/local/bin/composer

. . .

All settings correct for using Composer

Downloading. . .

Composer (version 1. 5. 2) successfully installed to:

/usr/local/bin/composer

Use it: php /usr/local/bin/composer

141

Chapter 7: Legacy PHP Applications

We just configured the Suhosin to whitelist the phar stream wrapper with Suhosin,

which allows us to run composer commands from the CLI environment. The executor

error is one example of how Suhosin locks down your PHP environment, which is a

good thing when working with EOL versions of PHP.

Simulating Suhosin

You might run into other issues that prevent your application from working with

Suhosin. Some of these matters might be that your application is using functionality

that Suhosin prevents due to security risks.

One thing you can do is run your application with the suhosin.simulation = On setting.

The description of the simulation setting

(https://suhosin.org/stories/configuration.html#suhosin-simulation) is defined as

follows:

If you fear that Suhosin breaks your application, you can activate Suhosin's simulation

mode with this flag. When Suhosin runs in simulation mode, violations are logged as

usual, but nothing is blocked or removed from the request.

Using simulation mode is an excellent way to run your application and collect

violations so that you can address them. If your application doesn't work with Suhosin,

I would suggest reading through the extensive configuration options to at least get as

much security as possible without disabling Suhosin completely. The simulation might

reveal some critical security fixes that you should address.

The Born Legacy

This chapter was chalk-full of examples, and it was vital that we go through more than

just getting Docker running. Porting legacy applications to Docker requires thinking

about configuration differently. When working with an older application, be prepared

to deal with issues unique to your codebase and level of technical debt. Be patient in

getting Docker working with legacy systems because years of bad decisions start to rear

their ugly head when trying to shift things into Docker.

142

Chapter 7: Legacy PHP Applications

Another consideration we didn't cover in this chapter is writing to the file system. You

need to adjust your application to either start uploading files to Amazon S3 for example

or persist your uploads to a host machine with a volume.

I want to reiterate how important you should treat upgrading your applications.

Sometimes upgrading can be a daunting process, but building a consistent

environment is an excellent way to get the process in motion. Hopefully, I've provided

enough tools to help you get your legacy applications running Docker so you can more

easily replicate the environment and make it a little more portable between

environments.

143

Chapter 8: Custom Commands

In this chapter, we'll look more in depth at how we can customize the way our PHP

containers start up and run. Up to this point, we have mostly been relying on the

official PHP Docker image to run our containers. Under the hood, however, the PHP

image we extend from is running either Apache or PHP-FPM.

The way that we can do this in our Dockerfile is by defining a CMD instruction—which

you caught a glimpse of in the last chapter. If you view the source of the official php-

fpm Dockerfile you will notice the instruction CMD ["php-fpm"] at the bottom. Our

Dockerfiles have been inheriting this CMD instruction, but we can define our own to

override it.

According to the official Docker CMD documentation:

The main purpose of a CMD is to provide defaults for an executing container. These

defaults can include an executable, or they can omit the executable, in which case you

must specify an ENTRYPOINT instruction as well.

We won't go into how the CMD and ENTRYPOINT interact in this text, but you can learn

more about CMD, ENTRYPOINT, and all the other instructions in the Dockerfile

reference documentation (https://docs.docker.com/engine/reference/builder/).

For our purposes, we are going to create a custom bash executable that allows us more

customization in running our applications in Docker. To demonstrate, we are going to

use a CLI program Confd (https://git.io/nCjQ3w) to manage application configuration

144

Chapter 8: Custom Commands

files to provide some configuration setup before running a web server. For the web

server we use Caddy for the web server, which I introduced in Chapter 6.

Introduction to Confd

Confd is a lightweight configuration management tool that allows you to keep

configuration files up to date from data stored in backends like environment variables,

Consul (https://www.consul.io/), Etcd (https://github.com/coreos/etcd), Redis

(https://redis.io/), and others. You can also reload applications to pick up changes

during runtime without restarting the container. With Confd, we can separate our

configuration management from infrastructure code.

To start out, we are going to use environment variables with Confd to simplify the

example and then improve upon it using Consul.

I recommend going through the quick start guide (https://git.io/vbrK8) to get

an overview of setting up Confd. We cover the basics in this chapter, but the

overview is highly recommended reading.

Confd Quickstart

Let's get started by creating a project for our work (Listing 8.1):

$ mkdir -p ~/Code/ch8-custom-commands

$ cd $_

$ touch Dockerfile docker-compose. yml start. sh index. php

$ mkdir -p confd-configs/{conf. d, templates}

$ touch confd-configs/conf. d/caddyfile. toml

$ touch confd-configs/templates/caddyfile. tmpl

 Listing 8.1: Creating the Project

We've created our typical Docker files and Confd configuration files and templates.

145

Chapter 8: Custom Commands

Lastly, we created the start.sh file that serves as our custom CMD command in our

Dockerfile.

Installing Confd

Let's start out by installing the confd binary in our image (Listing 8.2):

FROM php: 7. 1-fpm

ENV CADDY_HOSTNAME=0. 0. 0. 0

ADD

https: //github. com/kelseyhightower/confd/releases/download/v0. 11.

0/confd-0. 11. 0-linux-amd64 /usr/local/bin/confd

RUN chmod +x /usr/local/bin/confd \

&& mkdir -p /etc/confd/conf. d /etc/confd/templates

 Listing 8.2: Installing Confd

Listing 8.2 is the first example we've shown using a URI with the ADD instruction. We

link to the Confd binary for Linux (64 bit) in the first argument, and the second

argument is the path to which we want to add Confd. Last, we make confd executable

and create the conf.d and templates folders which houses our Confd configuration and

template files.

Let's build the image and take Confd for a spin (Listing 8.3):

$ docker build -t custom-commands .

$ docker run --rm -it custom-commands bash

root@30f95181fed3: /var/www/html# confd --version

confd 0. 11. 0

 Listing 8.3: Building the Docker Image

146

Chapter 8: Custom Commands

Confd Templates

Let's add a template that we can use with Confd so you can see how it works. To

demonstrate, let's generate a Caddyfile template that can be dynamically changed with

configuration—even during runtime.

Enter the following in a new file created at confd-configs/conf.d/caddyfile.toml in your

project (Listing 8.4):

[template]

src = "caddyfile. tmpl"

dest = "/etc/Caddyfile"

owner = "www-data"

mode = "0644"

 Listing 8.4: Create the TOML configuration file for Caddy

We created a TOML (https://github.com/toml-lang/toml) file, which is a configuration

file that describes the actual template-generated file. The destination file is generated

from the src = "caddyfile.tmpl". The owner and mode set the owner of the source file and

the file permissions.

So what is TOML?

On the TOML Github page provides the following description:

TOML aims to be a minimal configuration file format that's easy to read due to obvious

semantics. TOML is designed to map unambiguously to a hash table. TOML should be easy

to parse into data structures in a wide variety of languages.

Next, we need the create caddyfile.tmpl as referenced in the TOML configuration, which

is used to generate our web server Caddyfile. Confd template files are golang text

templates (https://golang.org/pkg/text/template/#pkg-overview) using variables that

make the template dynamic based on configuration.

147

Chapter 8: Custom Commands

We've already seen an example of a Caddyfile in Chapter 6, so the following Caddyfile

template should look familiar. Open the file we created in Listing 8.1, confd-

configs/templates/caddyfile.tmpl, and add the following (Listing 8.5):

http: //{{getenv "CADDY_HOSTNAME"}}: 80

root /srv/app/public

gzip

fastcgi / 127. 0. 0. 1: 9000 php

rewrite {

regexp . *

ext /

to /index. php?{query}

}

log stdout

errors stdout

on startup php-fpm --nodaemonize

 Listing 8.5: Editing the caddyfile.tmpl

The first line is the getenv function, which replaces everything within the double curly

braces ({{ }}) with the value of the CADDY_HOSTNAME environment variable. The rest is

pretty much the same Caddyfile we used in Chapter 6.

Before we test out our new files, we need to copy them into the container by updating

the Dockerfile (Listing 8.6):

FROM php: 7. 1-fpm

ENV CADDY_HOSTNAME=0. 0. 0. 0

ADD

https: //github. com/kelseyhightower/confd/releases/download/v0. 11.

0/confd-0. 11. 0-linux-amd64 /usr/local/bin/confd

 Listing 8.6: Copy the Confd Config and Template Files



148

Chapter 8: Custom Commands

RUN chmod +x /usr/local/bin/confd \

&& mkdir -p /etc/confd/conf. d /etc/confd/templates

COPY confd-configs/conf. d/ /etc/confd/conf. d/

COPY confd-configs/templates/ /etc/confd/templates/

We added two lines copying the new Confd configuration files into their respective

folders within the image. The src = "caddyfile.tmpl" line looks in /etc/confd/templates for

the file when generating the file by default. Also, note the ENV CADDY_HOSTNAME=0.0.0.0

defined in the Dockerfile, which is the default environment value our confd template

uses when creating the Caddyfile.

Let's build the latest image and jump back into our container so we can experiment

with our new changes (Listing 8.7):

$ docker build -t custom-commands .

$ docker run --rm -it custom-commands bash

Run Confd to apply the changes

$ confd -onetime -backend env

2017-07-04T17: 16: 55Z 6b6cd93aa161 confd[15] : INFO Backend set to

env

2017-07-04T17: 16: 55Z 6b6cd93aa161 confd[15] : INFO Starting confd

2017-07-04T17: 16: 55Z 6b6cd93aa161 confd[15] : INFO Backend nodes

set to

2017-07-04T17: 16: 55Z 6b6cd93aa161 confd[15] : INFO Target config

/etc/Caddyfile out of sync

2017-07-04T17: 16: 55Z 6b6cd93aa161 confd[15] : INFO Target config

/etc/Caddyfile has been updated

$ cat /etc/Caddyfile

http: //0. 0. 0. 0: 80

root /srv/app/public

 Listing 8.7: Updating the Image and Testing the Changes



149

Chapter 8: Custom Commands

gzip

fastcgi / 127. 0. 0. 1: 9000 php

rewrite {

regexp . *

ext /

to /index. php?{query}

}

log stdout

errors stdout

on startup php-fpm --nodaemonize

By running confd once with the -backend env, we are using environment variables to

populate our template. If you exit the image and jump back in, notice that the

/etc/Caddyfile is gone, because of the ephemeral nature of Docker containers.

While still in the image, let's change the environment variable and see what happens

(Listing 8.8):

$ export CADDY_HOSTNAME=foo. com

$ confd -onetime -backend env

INFO Backend set to env

INFO Starting confd

INFO Backend nodes set to

INFO /etc/Caddyfile

has md5sum a4b9b46b6130bc9ec6123361eb0452c9

should be b393c5c1e80f466749e4797a2ebd71a5

INFO Target config /etc/Caddyfile out of sync

INFO Target config /etc/Caddyfile has been updated

$ cat /etc/Caddyfile

http: //foo. com: 80

 Listing 8.8: Changing the Environment Variable and Running Again



150

Chapter 8: Custom Commands

root /srv/app/public

gzip

fastcgi / 127. 0. 0. 1: 9000 php

rewrite {

regexp . *

ext /

to /index. php?{query}

}

log stdout

errors stdout

on startup php-fpm --nodaemonize

As you can see, we can separate our configuration management (infrastructure config)

from infrastructure code. We've used environment variables to make the example

simple, but we'll expand on that later with a backend like Consul where we poll for

changes and apply them automatically while the container is running.

Before we expand on our Confd usage, let's shift focus to the goal of this chapter:

providing a custom CMD instruction when we need a little more advanced strategy in

running our containers.

The Custom CMD

Now that we have our Confd templates in place, it's time to automate running them

when the container starts. For this to work, our bash script needs to run a process in

the foreground because as soon as the main process exits, our container stops.

Let's first fill in the start.sh file that we created in Listing 8.1 with our Confd command

so you can see what happens to the container when our process exits (Listing 8.9):

151

Chapter 8: Custom Commands

#!/usr/bin/env bash

set -e

confd -onetime -backend env

 Listing 8.9: The custom start.sh File

We just run the same Confd command we ran earlier in the new bash script during

container startup.

Next, let's update the Dockerfile in order to get the start.sh file into the image and

define it as the CMD instruction (Listing 8.10):

FROM php: 7. 1-fpm

ENV CADDY_HOSTNAME=0. 0. 0. 0

ADD

https: //github. com/kelseyhightower/confd/releases/download/v0. 11.

0/confd-0. 11. 0-linux-amd64 /usr/local/bin/confd

RUN chmod +x /usr/local/bin/confd \

&& mkdir -p /etc/confd/conf. d /etc/confd/templates

COPY confd-configs/conf. d/ /etc/confd/conf. d/

COPY confd-configs/templates/ /etc/confd/templates/

COPY start. sh /usr/local/bin/start. sh

RUN chmod +x /usr/local/bin/start. sh

CMD ["/usr/local/bin/start. sh"]

 Listing 8.10: Copy the start.sh File and Define a CMD

We copy the start.sh script into /usr/local/bin, make it executable and reference it in the

CMD instruction. If we don't make it executable you will get an error like

152

Chapter 8: Custom Commands

"exec: /usr/local/bin/start.sh: Permission denied."

Let's try to run a container with our updates (Listing 8.11):

$ docker build -t custom-commands .

$ docker run -it custom-commands

INFO Backend set to env

INFO Starting confd

INFO Backend nodes set to

INFO Target config /etc/Caddyfile out of sync

INFO Target config /etc/Caddyfile has been updated

The container exits and brings us back to our prompt

$

 Listing 8.11: Run the Container with the new start.sh CMD

If you run docker ps -a you should see that the container has exited.

Let's update our start.sh file to keep a process running in the foreground so we can

demonstrate how our custom CMD script works. The current state of our script is just

for demonstration purposes, but eventually, we run the caddy binary process in the

foreground (Listing 8.12):

#!/usr/bin/env bash

set -e

confd -onetime -backend env

trap : TERM INT; sleep infinity & wait

 Listing 8.12: Update the start.sh to Keep a Process Running

We are running sleep infinitely and then exiting on an interrupt signal. As I mentioned,

153

Chapter 8: Custom Commands

this is just for our debugging purposes, and you wouldn't run a container like this in a

real project. However, it's a helpful tool for debugging purposes.

Let's rerun the container and verify that the confd command applies the changes

(Listing 8.13):

$ docker build -t custom-commands .

$ docker run --rm -it custom-commands

INFO Backend set to env

INFO Starting confd

INFO Backend nodes set to

INFO Target config /etc/Caddyfile out of sync

INFO Target config /etc/Caddyfile has been updated

 Listing 8.13: Running the Container with an Infinite Sleep

Our container is running now because of the sleep process in the foreground, so open a

new terminal window or tab and run the following to verify that our script applied the

changes to the Caddyfile (Listing 8.14):

$ docker ps # get the container id

$ docker exec -it c617831ae756 cat /etc/Caddyfile

http: //0. 0. 0. 0: 80

root /srv/app/public

gzip

fastcgi / 127. 0. 0. 1: 9000 php

rewrite {

regexp . *

ext /

to /index. php?{query}

}

log stdout

 Listing 8.14: Verify the Confd Changes from start.sh



154

Chapter 8: Custom Commands

errors stdout

on startup php-fpm --nodaemonize

When the container starts, our Confd command creates the template from the passed

environment configuration, and we learn how to keep the container running with our

sleeping foreground process. If you get stuck, the sleep technique is an excellent way to

debug a custom CMD.

Running Caddy

We are in a position to swap the sleep command with a Caddy process running in the

foreground. Our goal is to run Caddy using the generated Caddyfile based on

environment configuration.

First, let's install Caddy and update a few other things in the Dockerfile (Listing 8.15):

FROM php: 7. 1-fpm

ENV CADDY_HOSTNAME=0. 0. 0. 0

ADD

https: //github. com/kelseyhightower/confd/releases/download/v0. 11.

0/confd-0. 11. 0-linux-amd64 /usr/local/bin/confd

RUN chmod +x /usr/local/bin/confd \

&& mkdir -p /etc/confd/conf. d /etc/confd/templates

RUN curl --silent --show-error --fail --location \

--header "Accept: application/tar+gzip, application/x-gzip,

application/octet-stream" -o - \

"https: //caddyserver. com/download/linux/amd64?plugins=http. expire

s, http. realip&license=personal" \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

 Listing 8.15: Update the Dockerfile with Caddy



155

Chapter 8: Custom Commands

&& chmod 0755 /usr/bin/caddy \

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql

COPY confd-configs/conf. d/ /etc/confd/conf. d/

COPY confd-configs/templates/ /etc/confd/templates/

COPY start. sh /usr/local/bin/start. sh

COPY index. php /srv/app/public/index. php

RUN chmod +x /usr/local/bin/start. sh \

&& chown -R www-data: www-data /srv/app

EXPOSE 80

CMD ["/usr/local/bin/start. sh"]

Just like Chapter 6, we install the caddy binary and some PHP modules. The next

addition is copying an index.php file into the image that is served by Caddy. We change

ownership of the /srv/app path to the www-data user and expose port 80.

The contents of the index.php file is just <?php phpinfo(); ?> in the root of your project

for this chapter. It doesn't matter what is running—we are focused on the startup script

in this chapter—but the PHP info is a helpful indicator.

In order to get Caddy working, next we need to replace the infinite loop with the caddy

executable in our start.sh script (Listing 8.16):

#!/usr/bin/env bash

set -e

confd -onetime -backend env

 Listing 8.16: Adding Caddy to the start.sh File



156

Chapter 8: Custom Commands

/usr/bin/caddy -validate --agree=true --conf=/etc/Caddyfile

exec /usr/bin/caddy --agree=true --conf=/etc/Caddyfile

We added two lines to the end of the file:

1. A validation check of the generated Caddyfile that ensures our configuration is valid

2. Running caddy in the foreground with our generated configuration

If there's a validation error, start.sh will exit, otherwise, Caddy will run in the

foreground. The exec command replaces the current process without forking a new

process.

Running the Container

Everything is in place to test out our custom CMD script with Caddy. Let's build the

image and then execute the container with the docker run command (Listing 8.17):

Build the image

$ docker build -t custom-commands .

Run the container

$ docker run --rm -it -p 8080: 80 custom-commands

INFO Backend set to env

INFO Starting confd

INFO Backend nodes set to

INFO Target config /etc/Caddyfile out of sync

INFO Target config /etc/Caddyfile has been updated

Caddyfile is valid

Activating privacy features. . . done.

http: //0. 0. 0. 0

NOTICE: fpm is running, pid 25

NOTICE: ready to handle connections

 Listing 8.14: Verify the Confd Changes from start.sh

157

Chapter 8: Custom Commands

I've shortened the output a little, but you can see that start.sh runs confd to generate the

/etc/Caddyfile file, validates the Caddyfile, and then runs caddy. The Caddyfile defines

http://0.0.0.0:80 so our docker run command maps port 80 to 8080. If you open

http://localhost:8080 in your browser, you should see the phpinfo() output (Figure 8.1):

 Figure 8.1: PHP Info Output

If you change the CADDY_HOSTNAME environment variable when you run docker run

you can dynamically change the hostname defined in the Caddyfile:

$ docker run \

-e "CADDY_HOSTNAME=example. dev" \

--rm -it -p 8080: 80 \

custom-commands

We've successfully created a custom CMD script and learned about Confd in the

process. I think you can see the power Confd brings to our setup, allowing us to change

158

Chapter 8: Custom Commands

the hostname(s) in the Caddyfile based on environment. Let's improve upon our Confd

implementation adding in a different backend.

Confd With a Consul Backend

Now that we have a working CMD script let's expand on the Confd setup with Consul.

We are going to swap out our Confd backend with consul's key/value storage

(https://www.consul.io/intro/getting-started/kv.html).

You might be familiar with Consul's service discovery and integrated health checking,

but in addition to those features, Consul also provides an easy-to-use key-value store.

We are going to run consul in a development mode so that we can demonstrate how to

hot-swap a configuration in Confd and restart Caddy after the configuration is

updated—all without restarting the container.

Our Dockerfile doesn't need to be updated, but we are going to make small changes to

our Confd template and config files, and add in a docker-compose.yml file so we can run

the official consul (https://hub.docker.com/_/consul/) Docker image and link

containers more efficiently.

Let's get to work!

Docker Compose File

Docker Hub provides an official Consul image, which we can define in our Docker

Compose file. Create the docker-compose.yml file if you haven't already and let's get our

services going (Listing 8.18).

version: "3"

services:

app:

 Listing 8.18: The docker-compose.yml file



159

Chapter 8: Custom Commands

build: .

ports:

- 8080: 80

consul:

image: consul: 1. 0. 1

ports:

- 8500: 8500

We are mapping port 80 to 8888 because our Caddyfile template uses port 80 instead of

2015 (the default). We also defined a Consul service and map port 8500 so we can make

requests to Consul locally on port 8500.

Consul Backend

We need to wire up our startup script to use the Consul backend instead of

environment variables. Because we are starting up a fresh consul container, our Confd

command cannot succeed until we define the keys on which the template is dependent.

Thus, we need to wait until the Confd command succeeds before starting Caddy

process (Listing 8.19):

#!/usr/bin/env bash

set -e

function shutdown {

kill -s SIGTERM $CONFD_PID

wait $CONFD_PID

kill -s SIGTERM $PHP_FPM_PID

wait $PHP_FPM_PID

}

Wait until the initial configuration succeeds

until confd -onetime -backend consul -node consul: 8500; do

 Listing 8.19: Changing the Confd Backend to Consul in start.sh



160

Chapter 8: Custom Commands

echo "Waiting for the initial confd configuration"

sleep 5

done

confd -interval 10 -backend consul -node consul: 8500 &

CONFD_PID=$!

php-fpm &

PHP_FPM_PID=$!

trap shutdown SIGTERM SIGINT

/usr/bin/caddy -validate --agree=true --conf=/etc/Caddyfile

exec /usr/bin/caddy --agree=true --conf=/etc/Caddyfile

We introduced a few things here, in fact, most lines have been updated. We define a

shutdown function so that we can properly kill the Confd and php-fpm background

processes running when an interrupt signal is sent (Ctrl+C). Next, we run the confd

-onetime command every 5 seconds until it succeeds. Our script isn't perfect, but you

can expand upon it and exit on "X" number of retries if you prefer.

The Confd command references consul:8500, which is how the application container

makes requests to the Consul service on the network, but this could be configurable via

environment in a similar way that we defined environment on docker run to change the

Caddyfile.

Once Confd succeeds, we run it in the background and poll consul every 10 seconds (-

interval 10). When the Consul backend is updated, Confd detects the changes and

regenerates the Caddyfile.

Revisiting the Confd Config

Now that start.sh updates the Caddyfile on a value change in Consul, we need a way to

restart Caddy after a template update. You might have experience with Apache or Nginx

161

Chapter 8: Custom Commands

requiring a restart when configuration changes and Caddy has a similar feature.

The way we trigger a change with Confd is with the reload_cmd property in the TOML

file. When Confd reloads the template, the reload_cmd sends the proper signal to Caddy

for a restart. We also need to add a keys= config which matches the consul key/value

store (Listing 8.20):

[template]

src = "caddyfile. tmpl"

dest = "/etc/Caddyfile"

owner = "www-data"

mode = "0644"

keys = [

"/example. com/hostname",

]

reload_cmd = "pkill -USR1 caddy"

 Listing 8.4: Create the TOML configuration file for Caddy

The keys= config is defined as an array of template keys that match the path in Consul,

or any other backend store that you use, except environment variables.

The reload_cmd configuration is triggered when the template is updated; in our case

when Confd polls Consul, notices a change, and updates the Caddyfile.

To restart Caddy, we need to send the USR1 signal to the running caddy process using

pkill to reference the process by name.

Revisiting the Confd Template

Using the Consul backend with Confd means that we need to update our template to

use the getv function instead of getenv, which is specific to using environment

variables. The other Confd backends use getv, so you could change out Consul for

another backend, and the template wouldn't change.

162

Chapter 8: Custom Commands

Let's update our confd-configs/templates/caddyfile.tmpl file to use getv with the new

consul key, and also remove the on startup php-fpm event (Listing 8.21):

http: //{{getv "/example. com/hostname"}}: 80

root /srv/app/public

gzip

fastcgi / 127. 0. 0. 1: 9000 php

rewrite {

regexp . *

ext /

to /index. php?{query}

}

log stdout

errors stdout

 Listing 8.21: Update the caddyfile.tmpl with the New Key Reference

We needed to remove the on startup php-fpm event because when we send the restart

signal to Caddy, it tries to start php-fpm again. We avoid this by just starting php-fpm in

the start.sh file. You can keep the startup script if you'd like instead of moving php-fpm

to the script, however, you get warnings each time Caddy restarts that php-fpm can't

start because it's already running and bound to port 9000.

Putting it All Together

We are ready to start using the Consul backend in a running container with Docker

Compose. When we first run the containers, the application cannot find the consul key,

so the CMD script runs the until loop until it running confd succeeds.

Let's run the container and manually populate consul to get the container running

(Listing 8.22):

163

Chapter 8: Custom Commands

$ docker-compose up --build

app_1: INFO Backend set to consul

app_1: INFO Starting confd

app_1: INFO Backend nodes set to consul: 8500

app_1: ERROR Get

http: //consul: 8500/v1/kv/example. com/hostname?recurse=: dial tcp

172. 21. 0. 2: 8500: connection refused

app_1: Waiting for the initial confd configuration

 Listing 8.22: Building the Image and Running the Containers

You should notice some error output and our CMD script output that it's waiting for an

initial valid Confd configuration. The loop continues to run until we populate Consul

with the template keys.

Let's use curl to create the keys and values utilized in the template. Open another

terminal tab and make the following curl request (Listing 8.23):

$ curl -X PUT -d ' www. example. com' \

http: //localhost: 8500/v1/kv/example. com/hostname

true

 Listing 8.23: Create a hostname key in Consul

You should be able to see and edit the value from the UI after running the curl

command above (http://localhost:8500/ui/#/dc1/kv/example.com/hostname/edit). Once

you run the command you should also see something similar to the following in your

Docker logs (Listing 8.24):

app_1: INFO Backend set to consul

app_1: INFO Starting confd

app_1: INFO Backend nodes set to consul: 8500

 Listing 8.24: Confd Getting the Configuration from Consul and Starting Caddy



164

Chapter 8: Custom Commands

app_1: INFO /etc/Caddyfile has md5sum

7c1c08a6be1130f9a3ff0bb16d9126ce should be

bc4277f5647f438ec22c9c142288bc7f

app_1: INFO Target config /etc/Caddyfile out of sync

app_1: Waiting for the initial confd configuration

app_1: 2017-07-05T06: 17: 26Z e22a6dae61ce confd[269] : INFO Backend

set to consul

app_1: 2017-07-05T06: 17: 26Z e22a6dae61ce confd[269] : INFO

Starting confd

app_1: 2017-07-05T06: 17: 26Z e22a6dae61ce confd[269] : INFO Backend

nodes set to consul: 8500

app_1: Caddyfile is valid

app_1: http: //www. example. com

app_1: [05-J ul-2017 06: 17: 26] NOTICE: fpm is running, pid 290

app_1: [05-J ul-2017 06: 17: 26] NOTICE: ready to handle connections

If you update your hosts file and point www.example.com to 127.0.0.1, you should be

able to see your phpinfo() screen when you request http://www.example.com:8080.

If you update the key with another value via a curl request (or through the UI) you

should see the Docker logs output that the /etc/Caddyfile file has been updated (Listing

8.25):

$ curl -X PUT -d ' foo. com' \

http: //localhost: 8500/v1/kv/example. com/hostname

true

You should see something similar to the

following output for the app container. . .

app_1: INFO /etc/Caddyfile has md5sum

bc4277f5647f438ec22c9c142288bc7f should be

b393c5c1e80f466749e4797a2ebd71a5

app_1: INFO Target config /etc/Caddyfile out of sync

 Listing 8.25: Updating the Consul Key to Change the Caddyfile



165

Chapter 8: Custom Commands

app_1: INFO Target config /etc/Caddyfile has been updated

Now if you request http://www.example.com:8080 you should get the following

response from caddy: "404 Site www.example.com:8080 is not served on this interface".

Note, that this only works if you update your hosts file to make www.example.com

point to 127.0.0.1.

We now have a pretty robust configuration management tool inside of Docker. Granted,

we wouldn't want to hot-swap the hostname of an application regularly, but I believe

you can see the power of separating the configuration from infrastructure code. We

have a flexible template system that allows configuration changes without needing to

update infrastructure code in some cases.

One of a Kind

We just dove into customizing the CMD instruction in Docker with a bash script. We

just scratched the surface, but don't get too carried away with bash scripts for CMD and

ENTRYPOINT. Keep it as simple as possible!

Our next step is learning how to share Docker images with others using Docker

registries, and automatically building those images when changes get pushed to a git

repository. Onward!

166

Chapter 9: Docker Registry

A Docker registry is what we have been using to pull down official Docker images

like MySQL and PHP. We've already been interacting with a Docker registry

transparently: Docker Hub. This registry is the default when you don't specify a registry

explicitly. While you can run your own Docker registry, this chapter is about using

existing Docker registries to host your images, not running your own. Docker has a

zero maintenance, hosted solution which includes free unlimited public repositories,

and a paid version if you need to host multiple private images.

At a basic level, think of a Docker registry

(https://docs.docker.com/registry/introduction/) as the following:

A registry is a storage and content delivery system, holding named Docker images,

available in different tagged versions.

When you run docker build -t my-image . you are tagging the image as my-image:latest. If

you run docker build -t my-image:1.0.0, you are tagging 1.0.0. You have been using Docker

image tags in the Dockerfile already: when we use FROM php:7.1-fpm we are using the

7.1-fpm tag.

Let's dive deeper and learn how to interact with registries, push our images to them,

and automate the process.

Setting Up a Repository and Project

If you want to follow along in this chapter, you need to register for a Docker account

167

Chapter 9: Docker Registry

(https://cloud.docker.com/). We also look at GitLab's private registry so you can learn

how to use other registries to host your images, so register for a GitLab account too.

This chapter focuses more on interacting with registries than the actual Docker image,

but eventually, you need to host your images somewhere so you can work with them

and share them with your team privately. You might even build a base image from

which your projects extend, and your projects benefit from sharing common image

functionality, for example, installing the base set of PHP modules.

To demonstrate how to create images we need to create a simple Dockerfile. We make a

simple PHP-FPM image and continue to use Caddy as the web server, using the same

Caddy installation we've already been using, but we re-create the files here, so you don't

have to go back and reference them.

First, let's set up the skeleton files for the project folder (Listing 9.1):

$ mkdir -p ~/Code/ch9-php-caddy

$ cd $_

$ touch Dockerfile Caddyfile

 Listing 9.1: Setting up the Project

Next, let's define the Dockerfile (Listing 9.2):

168

Chapter 9: Docker Registry

FROM php: 7. 1-fpm

LABEL maintainer="Paul Redmond"

RUN curl --silent --show-error --fail --location \

--header "Accept: application/tar+gzip, application/x-gzip,

application/octet-stream" -o - \

"https: //caddyserver. com/download/linux/amd64?plugins=http. expire

s, http. realip&license=personal" \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

&& chmod 0755 /usr/bin/caddy \

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql

COPY Caddyfile /etc/Caddyfile

WORKDIR /srv/app/

RUN chown -R www-data: www-data /srv/app

CMD ["/usr/bin/caddy", "--conf", "/etc/Caddyfile", "--log",

"stdout"]

 Listing 9.2: The Dockerfile

Finally, we define the Caddyfile configuration as follows (Listing 9.3):

0. 0. 0. 0

root /srv/app/public

gzip

fastcgi / 127. 0. 0. 1: 9000 php

rewrite {

regexp . *

ext /

to /index. php?{query}

}

 Listing 9.3: The Caddyfile



169

Chapter 9: Docker Registry

header / -Server

log stdout

errors stdout

on startup php-fpm --nodaemonize

Our project could become a stand-alone repository that you use as the foundation. In

fact, later in this chapter, we consume our image in a different project as an example so

you can see how to extend your images. I use Caddy for most of my applications, so it

makes sense to extract my base setup into an image that I extend in my projects.

To push images to Docker Cloud you need to create a repository after you login to

Docker Cloud (https://cloud.docker.com/). You should be able to find a "Create

Repository" button on the dashboard (at the time of this writing) after you log in. Fill

out the required inputs, which are probably something similar to the following (Figure

9.1):

 Figure 9.1: Create the PHP Caddy Repository

For now, leave the project as public and ignore the build settings for Github and

BitBucket. We come back to these settings later so you can automate Docker builds

170

Chapter 9: Docker Registry

with a GitHub webhook.

Once you create the repository, you are redirected to the repository's main page in your

Docker Closue account. Take note of the docker push paulredmond/demo-php-

caddy:tagname instruction (which differs based on your login) for a reminder of how to

push images to Docker Hub.

That's it for this section; we have all the foundational pieces in the place to build and

push our images to a registry.

Pushing the Image to Docker Hub

In each chapter of the book so far you have been building images on your machine.

After you create your images, the next part is pushing your images with the docker push

command.

Before we automate building images, let's build and tag the image locally and then push

it to the Docker repository (Listing 9.4):

Replace ` paulredmond` with your own username

$ docker build -t paulredmond/demo-php-caddy: 1. 0. 0 .

$ docker tag paulredmond/demo-php-caddy: 1. 0. 0 paulredmond/demo-

php-caddy: latest

 Listing 9.4: Build and Tag the Image

After we build the 1.0.0 image, we tag latest to that image as well. You should see the

tagged image if you run docker images after the build completes. Be sure to run the

command with your own username: <your_user>/demo-php-caddy:1.0.0.

To push the image to Docker Hub, you need to verify your credentials on the command

line with the docker login command. By default running the login command logs you

into the Docker Hub registry. You can also specify the server, for example: docker login

registry.gitlab.com. You can learn more about the ins-and-outs of docker login

171

Chapter 9: Docker Registry

(https://docs.docker.com/engine/reference/commandline/login/) in the documentation.

Next, we will push our image to the Docker Hub registry (Listing 9.5):

This should be your Docker account login

$ docker login -u paulredmond

Password:

Login Succeeded

 Listing 9.5: Login to Docker Hub

You can also pass the -p flag to specify a password or just enter it when prompted.

Now that we've logged in we can push the image that we built in Listing 9.4 to the

registry (Listing 9.6):

$ docker push paulredmond/demo-php-caddy

The push refers to a repository [docker. io/paulredmond/demo-php-

caddy]

1d74acdd1655: Pushed

9d6fec3ec5e6: Pushed

0fb5e3bf0e56: Pushed

4fd9e9b3007e: Pushed

4d30cdcc06fc: Pushed

8377c955bbe0: Pushed

ad76b6a711fc: Pushed

ba2e080162fa: Pushed

d5231feae7c4: Pushed

b56c638d6e6a: Pushed

958c46160919: Pushed

c4066de46cb2: Pushed

0d960f1d4fba: Pushed

1. 0. 0: digest:

 Listing 9.6: Push the Image to Docker Hub



172

Chapter 9: Docker Registry

sha256: dd312b9f99eb461d369cf1d4ec22b7f3122054ad20f7ee76ef745c0961

43b72d size: 3035

The rough image size is about 400mb, which might take a little time depending on your

connection speed. When the image finishes, you should see the new version on the

Docker Hub registry page.

Now, let's remove the image locally and make sure we can pull it down from the

registry (Listing 9.7):

$ docker rmi paulredmond/demo-php-caddy: 1. 0. 0

Untagged: paulredmond/demo-php-caddy: 1. 0. 0

Untagged: paulredmond/demo-php-caddy@sha256

. . .

 Listing 9.7: Remove the Image

If you run docker images you shouldn't see the tagged image anymore. Let's bring it back

again with docker pull this time, just like our base images when we run a build (Listing

9.8):

$ docker pull paulredmond/demo-php-caddy: 1. 0. 0

1. 0. 0: Pulling from paulredmond/demo-php-caddy

. . .

17b671f61b72: Pull complete

f48bdef0222c: Pull complete

e352b2399abc: Pull complete

6c34833cb82a: Pull complete

Digest: sha256: dd312b9f99. . .

Status: Downloaded newer image for paulredmond/demo-php-

caddy: 1. 0. 0

 Listing 9.8: Pulling Down the Docker Image from Docker Hub

173

Chapter 9: Docker Registry

You just built a docker image, pushed it to Docker Hub with your credentials, deleted

the local build, and then pulled the image down from the Docker Hub registry. Making

images by hand is good practice, but it's time to automate.

Automating the Image Build

You might have noticed the BitBucket and GitHub integration when you created your

repository. Let's set up some automation to create a new version of the image when we

push changes to Github.

Before you can follow along, you need to create an example repository on GitHub (or

Bitbucket) and push your project files to your repository. My source files are located on

GitHub at paulredmond/demo-php-caddy (https://github.com/paulredmond/demo-php-

caddy) if you want a reference.

Authorizing GitHub

The first step to automating our Docker repository build is approving GitHub. From the

settings on cloud.docker.com, you can select source providers and connect GitHub to

allow Docker Cloud to access your repositories (Figure 9.2):

 Figure 9.2: Authorize Docker Cloud Access to GitHub

Once you allow GitHub or BitBucket, you can then go to your repository's build settings

and select the code repository you want to link to Docker Cloud. For now, choose

174

Chapter 9: Docker Registry

Docker Cloud's infrastructure as the build location (the small node size), and you can

change it later if you want to experiment with building on nodes that you control

(Figure 9.3):

 Figure 9.3: Setting up builds

The last part of the setup is configuring build rules. We will have two: master for the

latest tag and a git tag/release for versioning (Figure 9.4):

 Figure 9.4: Configuring build rules

175

Chapter 9: Docker Registry

Once you add the tag build rule, you can click "Save and Build" to start making master;

make sure that you push your code to GitHub before starting the build. If all goes well,

you should see a successful build!

At the time of this writing, Docker Cloud build nodes are in beta and free. If

Docker Cloud changes the pricing structure in the future, you might have to

configure infrastructure nodes that you own to run builds.

Free Docker Cloud Build Nodes

Using tags and releases allows you, the developer, to focus the code while Docker Cloud

takes care of building and tagging images that match your code versioning scheme

automatically.

Releasing a New Version

Let's make a small change to the Dockerfile and tag a release version to test our tag

build configuration. We add the opcache module to the Dockerfile to trigger a change

(Listing 9.9):

FROM php: 7. 1-fpm

LABEL maintainer="Paul Redmond"

RUN curl --silent --show-error --fail --location \

--header "Accept: application/tar+gzip, application/x-gzip,

application/octet-stream" -o - \

"https: //caddyserver. com/download/linux/amd64?plugins=http. expire

s, http. realip&license=personal" \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

&& chmod 0755 /usr/bin/caddy \

 Listing 9.9: Adding the Opcache Module



176

Chapter 9: Docker Registry

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql opcache

COPY Caddyfile /etc/Caddyfile

WORKDIR /srv/app/

RUN chown -R www-data: www-data /srv/app

CMD ["/usr/bin/caddy", "--conf", "/etc/Caddyfile", "--log",

"stdout"]

Commit your changes and push them to your repository in the master branch. You

should see a build triggered in Docker Cloud for the master branch (Figure 9.5):

 Figure 9.5: Automatic Master Build in Progress

After you push your code, create a tag or release of 1.1.0. For example, I used GitHub to

create the release (https://github.com/paulredmond/demo-php-

caddy/releases/tag/1.1.0). You can also tag a release from the command line and push it

to your repository.

After the build finishes, you should see a new version of 1.1.0 in your dashboard

(Figure 9.6):

177

Chapter 9: Docker Registry

 Figure 9.6: Dashboard Build List

We've successfully automated our builds with Docker Hub, wasn't that easy? Docker

Hub isn't the only container registry, so let's learn how to work with other registries.

Working with Other Docker Registries

There are many Docker repositories our there, such as Quay, Google Container

Registry, Amazon EC2 Container Registry, and GitLab, to name a few. Since GitLab.com

has a free plan available at the time of this writing, we use the GitLab registry to work

through this section.

You need to register for an account (https://gitlab.com/users/sign_in) if you want to

follow along. How you interact with a registry on the command line is the same

regardless of which registry you use, so your knowledge applies to other registries.

Setting up a GitLab Repository

We can use the same git repository we already have to work with GitLab. It's just a

matter of setting up another remote and creating a private repository in your account.

Once you have the repository set up in GitLab, add another remote (Listing 9.10):

$ git remote add gitlab \

git@gitlab. com: paulredmond/demo-php-caddy. git

$ git push gitlab master && git push gitlab --tags

 Listing 9.10: Adding a new remote to git

178

Chapter 9: Docker Registry

If you sign in to GitLab, you should see a "Registry" tab in the project. This tab has some

good instructions on how to login to the registry. Let's log in to GitLab's registry and

push the latest image in master (Listing 9.11):

$ docker login registry. gitlab. com

Username: paulredmond

Password:

Login Succeeded

Now build the image and tag it for GitLab' s Registry

$ docker build -t \

registry. gitlab. com/paulredmond/demo-php-caddy .

 Listing 9.11: Pushing the Image to GitLab

We've already built our image locally, so we could also just tag the image with docker

tag. However, in most situations you only build in one registry, so most of the time you

are building and then tagging at the same time. However, it's also useful to tag an image

for a registry from an existing image (Listing 9.12):

We built the 1. 0. 0 image earlier in the chapter

$ docker tag \

paulredmond/demo-php-caddy: 1. 0. 0 \

registry. gitlab. com/paulredmond/demo-php-caddy: 1. 0. 0

You can also pull down the 1. 1. 0 image and tag it for GitLab

Remember, it was built in Docker Cloud

So you don't have a local build of 1. 1. 0 yet

$ docker pull paulredmond/demo-php-caddy: 1. 1. 0

$ docker tag \

paulredmond/demo-php-caddy: 1. 1. 0 \

registry. gitlab. com/paulredmond/demo-php-caddy: 1. 1. 0

 Listing 9.12: Tagging an Existing Image



179

Chapter 9: Docker Registry

Push them to Gitlab

$ docker push registry. gitlab. com/paulredmond/demo-php-caddy

In Listing 9.12, we tagged our image with registry.gitlab.com. You must include the

hostname, or it is assumed a Docker Hub image. We also pulled down version 1.1.0

from Docker Hub, tagged it for GitLab, and then pushed it up to GitLab's registry.

Automating Builds on GitLab

We can automate our image builds and push to GitLab's registry automatically, just like

we did with Docker Cloud. With GitLab we configure our builds with a .gitlab-ci.yml file

in the root of the project with three separate build scenarios: master, tag, and branch.

What's neat about the branch build, is that you can pull down a work-in-progress image

and collaborate on it with your team. The other two build scenarios are just like the

Docker Cloud builds we've already seen.

First, we need to create the .gitlab-ci.yml file for the project based on the GitLab Docker

Template (https://gitlab.com/gitlab-org/gitlab-ci-yml/blob/master/Docker.gitlab-ci.yml).

This build uses a Docker image (https://hub.docker.com/_/docker/) (yes, Docker

running inside of Docker) to build our image and then push it to the GitLab registry

automatically (Listing 9.13):

Official Docker image.

image: docker: latest

services:

- docker: dind

before_script:

- docker login -u "$CI_REGISTRY_USER" -p "$CI_REGISTRY_PASSWORD"

$CI_REGISTRY

 Listing 9.13: The .gitlab-ci.yml file



180

Chapter 9: Docker Registry

Master

build-master:

stage: build

script:

- docker build --pull -t "$CI_REGISTRY_IMAGE" .

- docker push "$CI_REGISTRY_IMAGE"

only:

- master

Tags

build-tag:

stage: build

only:

- tags

script:

- docker build --pull -t "$CI_REGISTRY_IMAGE: $CI_COMMIT_TAG" .

- docker push "$CI_REGISTRY_IMAGE: $CI_COMMIT_TAG"

Branch Builds

build-branch:

stage: build

script:

- docker build --pull -t

"$CI_REGISTRY_IMAGE: $CI_COMMIT_REF_SLUG" .

- docker push "$CI_REGISTRY_IMAGE: $CI_COMMIT_REF_SLUG"

except:

- tags

- master

Let's break down this configuration file; it's quite straightforward actually. The file

contains three build stages: build-master, build-tag, and build-branch. All the variables

that start with a dollar sign ($) are GitLab build variables which we can use to reference

our registry image URI and the tag (https://docs.gitlab.com/ee/ci/variables/).

Each job builds a Docker image and then pushes it to the GitLab registry in different

scenarios. First, the build-master build tags the Docker image with latest when the code

181

Chapter 9: Docker Registry

is pushed to master. Second, the build-tag tags the image with the commit tag (i.e. ch09-

sample-project:1.0.2). Moreover, last, the build-branch build tags with the image branch

name.

As an example of how the branch configuration works, let's say that you have the

branch feature/test. The $CI_COMMIT_REF_SLUG variable would end up being feature-test,

and the tagged image would be paulredmond/demo-php-caddy:feature-test. Branch builds

are kind of neat in my opinion but might be overkill for your situation. Branch builds

can add up when GitLab automatically makes an image when you push code to Gitlab

for each branch.

Take note of the except: key in the branch build, which excludes tags and the master

branch. The only and except keys help you define where each build runs.

At the time of this writing, I am not sure how to get cached builds working

with GitLab. If you recall when we set up our Docker Cloud pipeline, we were

able to select a cached image. This speeds up builds significantly, including

downloading the base php image.

For base images, this probably won't be a problem on GitLab, but for a more

extensive project, builds might take longer. There's a discussion on this topic

on GitLab.com (https://gitlab.com/gitlab-org/gitlab-ce/issues/17861).

Build Caching

Now, when you push your image changes to GitLab, an automatic build is triggered,

and you can see the build jobs in the "pipelines" section of your project.

Extending Your Images

Now that we have an image in a private GitLab registry let's extend it to see how you

can build on top of a base image. It's the same as we have already been doing with the

182

Chapter 9: Docker Registry

Now, when you push your image changes to GitLab, an automatic build is triggered,

and you can see the build jobs in the "pipelines" section of your project.

Extending Your Images

Now that we have an image in a private GitLab registry let's extend it to see how you

can build on top of a base image. It's the same as we have already been doing with the

PHP image, but let's go over it real quick before the end of this chapter.

You can create your project in another folder, all we need is a Dockerfile and an

index.php file with "<?php phpinfo(); ?>" (Listing 9.14):

FROM registry. gitlab. com/paulredmond/demo-php-caddy

COPY index. php /srv/app/public/index. php

 Listing 9.14: Extending our own image

We've extended the GitLab image, and then just copy an index.php file into the image.

The FROM pulls our base image and then runs the COPY instruction on top of it. If you

build this image and run it, you should see the PHP info screen (Listing 9.15):

$ docker build -t ch09-sample-proj ect .

$ docker run --rm -it -p 8080: 2015 ch09-sample-proj ect

Open http: //localhost: 8080

 Listing 9.15: Run the Extended Image

If all went well, you should see the output from phpinfo() in your browser! Although we

just added an index.php file, this could be an entire application that has a Dockerfile,

except instead of extending the PHP Docker image directly we extend our base image

that we can use on multiple projects.

183

Chapter 9: Docker Registry

Registered Docker Image Builder

That's it for registries; you made it! You've now played around with pushing your own

Docker images to the world. You may likely build public images that you want to open-

source, and you have many options for storing your private images too. Either way,

learning how to log in and work with repositories enables you to work with any Docker

registry. Learning how to automate Docker builds not only takes manual work off your

plate but makes it more consistent and automatic. Plus, it merely feels neat to automate

Docker image builds.

We also explored GitLab, which is a great place to experiment with private Docker

registries and CI build pipelines for Docker images you don't want to share with others.

Using GitLab allows you to automate the entire build pipeline of your applications

pretty easily!

184

Chapter 10: Deploying Docker

You are ready to take everything you've learned so far and combine it all into the

grand finale: we're going to deploy a Docker application to the cloud.

This book's focus is on developing with Docker—where you probably spend most of

your time—but eventually, you'll need to deploy your applications. Even if you are not

the primary person deploying Docker to production in your organization, you should

learn about the strategies around deploying Docker.

Docker deployment can be as simple as pulling an image from a registry (just like we

did in Chapter 9 on a server in the cloud. More complicated setups might need to

operate at scale, run clusters of servers, and provide container management tools. The

most notable Docker tools (typically for larger deployments) include Rancher,

Kubernetes, and Docker Swarm. Both Amazon and Google have container services

(Google's is powered by Kubernetes).

These Docker deployment tools have similarities, yet each one has unique capabilities

and quirks that we can't possibly cover in this text. Don't worry; I have provided plenty

of next steps at the end of this book. The concepts that we cover in this chapter should

establish a good foundation to explore other tools.

We are going to walk through an actual deployment of Rancher (http://rancher.com/)

and running an application within our Rancher installation. We cover Rancher in this

book because the setup can be relatively minimal, yet extensive when you need it, and

you can run Rancher in any cloud provider you want. We use Digital Ocean in this text,

185

Chapter 10: Deploying Docker

but you could even adapt this to work with a VirtualBox VM running Linux if you don't

want to use a cloud provider for this chapter.

Rancher Overview

Rancher describes itself as:

Simple, easy-to-use container management.

Rancher provides a nice UI that you can use to deploy containers in the Cloud and scale

them; Rancher Server also takes care of issues like networking and load balancing. You

can also automate your infrastructure deployments with the Rancher compose

(http://rancher.com/docs/rancher/v1.6/en/cattle/rancher-compose/) CLI, giving you lots

of automation options to truly optimize your deployments.

Rancher has two primary components: the Rancher server

(http://rancher.com/docs/rancher/v1.2/en/installing-rancher/installing-server/) and a

Rancher host. As outlined in the Rancher Overview, the server component "provides

infrastructure orchestration, container orchestration, an application catalog, and

authentication control."

The server works with Rancher hosts (http://rancher.com/docs/rancher/v1.6/en/hosts/)

that run an agent and communicate with the Rancher server over HTTP. You can create

a new host from within the Rancher server UI in your cloud provider of choice, or by

running the Rancher agent image with docker run on a server. Rancher doesn't care if

your servers running the agent are virtual or physical as long as they meet the

requirements outlined in the documentation.

With that brief overview of Rancher out of the way, it's time to get started. We have a

server that we need to build!

186

Chapter 10: Deploying Docker

Setting up the Server

Digital Ocean has a Docker Droplet (https://www.digitalocean.com/products/one-click-

apps/docker/) that makes getting Docker in the cloud one click. If you want to install

Docker manually on the cloud or server of your choice, you can reference Chapter 1's

Linux instructions.

Pick a Droplet with enough RAM (1 GB of RAM is the requirement) to run Rancher

Server. The $10 per month droplet is probably barely large enough, so the $20 droplet is

more ideal. You can shut it down afterward if you want, so it shouldn't be costly

($0.030/hour at the time of this writing).

I am assuming that you are comfortable using SSH to access a Digital Ocean server, but

if you need a little guidance you can add an ~/.ssh/config file on Linux or Mac with

something like the following (change the IP address to the public IP of your droplet):

host rancher-server

hostname 159. 203. 121. 76

user root

IdentityFile ~/. ssh/id_rsa

ForwardAgent yes

With the above SSH configuration, you can use the host alias with ssh rancher-server

from the command line.

Once you have your droplet created, SSH into the box and run the following command

(Listing 10.1):

Set firewall rules

$ ufw allow 8080

$ ufw allow 500/udp

$ ufw allow 4500/udp

 Listing 10.1: Start the Rancher Server



187

Chapter 10: Deploying Docker

$ sudo docker run -d --restart=unless-stopped -p 8080: 8080 \

rancher/server

We ran the familiar docker run command, which executes the official rancher/server

(https://hub.docker.com/r/rancher/server/) image with a restart policy that restarts the

container unless you manually stop it. Even if you reboot your droplet, the container

will restart afterward. Last, we configure two ports Rancher uses for networking

between hosts with Ubuntu's UncomplicatedFirewall (UFW).

After the container starts running, be patient as it can take a bit of time to finish

initializing the first time. Once the Rancher server image is done downloading and

initializing, the first thing you'll do is lock down the Rancher control panel. Find the

public IP address of your server and visit it on port 8080. For example, mine while

writing this chapter is http://45.55.184.106:8080.

You can set up a DNS A record for your server instead of going to the IP

address (i.e., rancher.yoursite.com).

Rancher Server Hostname

If you aren't sure what is happening with the Rancher server setup, you can check out

the logs from the command line:

Find the rancher server container

$ docker ps

$ docker logs -f b9c6a69e7eb3

Hit Ctrl + c to stop following the container logs when you are done to get back to a

prompt.

Add Authentication

To lock down the Rancher server, visit "Admin > Access Control" and pick an

188

Chapter 10: Deploying Docker

authentication scheme. Selecting local authentication works perfectly for this tutorial

(Figure 10.1):

 Figure 10.1: Local Authentication

You can select any access control that you want as long as you pick something! Once

you select your authentication method, set up an administrator account to secure your

control panel.

Setting up Infrastructure

Now that you have a protected server, you need to add some Rancher agents to run

Docker containers. In this chapter, we use Digital Ocean to create a new Droplet

(virtual machine) to house our demo application containers. For this chapter, we have

one server running Rancher and another running the Rancher agent. However, in

practice, you might have more than one Rancher agent running, and the setup is the

same.

To manage infrastructure in Rancher server, navigate to "Infrastructure > Hosts" and

189

Chapter 10: Deploying Docker

click the "Add Host" button. You are then prompted to add a host registration URL, with

a pre-populated option with your IP address (or hostname if you set up DNS) and all you

do is click "Save." Next, pick "Digital Ocean" from the list of machine drivers, and next it

prompts you to enter a personal access token from Digital Ocean.

Within your Digital Ocean control pane, visit the API settings

(https://cloud.digitalocean.com/settings/api/tokens) and create a new personal access

token (both read and write scopes) and then paste it into your admin access token field

back in the Rancher UI (Figure 10.2):

 Figure 10.2: Add a Digital Ocean host

Next, you are prompted to configure your droplet. Just name the droplet hostname

something like "rancher-agent-01", or whatever you want to identify it as a Rancher

host. You can pick different sizes but just go with the defaults for now. Once you

confirm the droplet, Rancher polls the host while the Droplet is being created and

shows you a bunch of information once the host is active (Figure 10.3):

190

Chapter 10: Deploying Docker

 Figure 10.3: Rancher active Digital Ocean host

If you create expensive droplets, you can destroy them at the conclusion of this chapter,

so they don't continue to cost you hourly. Don't forget about them!

You might have noticed the tag settings when creating the Digital Ocean host

in Rancher. You can label hosts to track and organize them however you want.

You don't need tags if you're only running a couple of servers.

Tagging Hosts in Rancher

Introduction to Stacks

So far we have a Rancher server and a Rancher host in Digital Ocean, but we don't have

any software running. Rancher provides a bunch of automated software called "stacks"

that you can install with the click of a button.

Navigate to "Stacks > All," and then click "Add from Catalog" to see popular stacks. You

can browse and install various services from the catalog found in infrastructure stacks,

191

Chapter 10: Deploying Docker

such as Cloudflare external DNS, Digital Ocean external DNS service, and so on.

Next, if you navigate to "Stacks > User" and click "Browse Catalog," you can install user

stacks from a catalog such as a Consul cluster, WordPress, or even a GitLab CE

instance.

The catalogs in Rancher are common services and software that you can install by

clicking a button from the Rancher interface, which is pretty convenient!

For our purposes, we are going to create our user stack from scratch, but nothing is

stopping you from installing premade stacks via the interface if you want to

experiment. We could create our custom stack from the user interface, but we are

going to get it running through Rancher Compose to demonstrate creating repeatable,

custom stacks.

Using Rancher Compose

Rancher Compose (http://rancher.com/docs/rancher/v1.6/en/cattle/rancher-compose/)

is very similar to Docker Compose, except Rancher Compose operates across multiple

hosts. In our example, we only have one rancher agent host, but Rancher starts

containers across hosts based on scheduling rules when you have multiple. You can

read more about Rancher compose in the documentation, but suffice it to say that we

can automate the creating of stacks through a repeatable rancher-compose YAML file

in our project.

The Docker images that run in your containers are from a GitLab registry account if

you are following along. We've covered how to create Docker images in the GitLab

registry already, but feel free to use a different registry if you want to.

To deploy the stack, you need to have a few sets of credentials:

1. Enter your GitLab registry credentials

2. Create Environment API Key credentials for Rancher Compose

192

Chapter 10: Deploying Docker

First, we need to provide GitLab credentials so that Rancher can pull our registry

images from Gitlab. Navigate to "Infrastructure > Registries," then select "Custom" and

enter your login details for the Gitlab registry (Figure 10.4):

 Figure 10.4: Adding the GitLab registry

Now that you've saved your GitLab registry credentials, we need to set up a demo

project to run in production. Later, we come back to creating environment-specific API

credentials for Rancher Compose. For now, it's time to shift focus from Rancher to

creating a demo project to deploy code into Rancher.

If you are working in a team environment, it might be advisable to use a

separate account for your automation, including registry login. The separate

account helps separate the automation from regular user accounts.

Registry Accounts

193

Chapter 10: Deploying Docker

Setting Up the Project

Rancher is ready and waiting for a project that we're going to deploy in this section.

We'll use a demo Laravel (https://laravel.com/) project, and use Docker compose in

combination with a Rancher Compose file to deploy our application. We'll have a

typical Dockerfile along with two files that Rancher uses in tandem: docker-

compose.prod.yml and rancher-compose.prod.yml.

Let's kick this off by creating the Laravel and project and the files we need to deploy to

Rancher (Listing 10.2):

$ cd ~/Code

$ composer create-proj ect laravel/laravel: 5. 5. * \

rancher-laravel-demo

$ cd rancher-laravel-demo/

$ mkdir docker/

$ touch docker/Dockerfile \

docker/Caddyfile \

docker-compose. yml \

docker-compose. prod. yml \

rancher-compose. prod. yml

 Listing 10.2: Creating the Rancher Demo Project

We are going to use Caddy with PHP-FPM for this application, and the same Dockerfile

that we used in Chapter 9. Let's knock out the Dockerfile before we look at the Rancher

Compose file (Listing 10.3):

FROM php: 7. 1-fpm

LABEL maintainer="Paul Redmond"

 Listing 10.3: The Dockerfile



194

Chapter 10: Deploying Docker

RUN curl --silent --show-error --fail --location \

--header "Accept: application/tar+gzip, application/x-gzip,

application/octet-stream" -o - \

"https: //caddyserver. com/download/linux/amd64?plugins=http. expire

s, http. realip&license=personal" \

| tar --no-same-owner -C /usr/bin/ -xz caddy \

&& chmod 0755 /usr/bin/caddy \

&& /usr/bin/caddy -version \

&& docker-php-ext-install mbstring pdo pdo_mysql

COPY . /srv/app

COPY docker/Caddyfile /etc/Caddyfile

WORKDIR /srv/app/

RUN chown -R www-data: www-data /srv/app

CMD ["/usr/bin/caddy", "--conf", "/etc/Caddyfile", "--log",

"stdout"]

Next, we need to create the Caddy server configuration file at docker/Caddyfile (Listing

10.4):

0. 0. 0. 0

root /srv/app/public

gzip

fastcgi / 127. 0. 0. 1: 9000 php

rewrite {

regexp . *

ext /

to /index. php?{query}

}

header / -Server

 Listing 10.4: The Caddyfile



195

Chapter 10: Deploying Docker

log stdout

errors stdout

on startup php-fpm --nodaemonize

Before we work with the Rancher Compose files, let's edit the docker-compose.yml and

make sure that the Docker setup is working as expected (Listing 10.5):

version: "3"

services:

app:

build:

context: .

dockerfile: docker/Dockerfile

ports:

- 8080: 2015

 Listing 10.5: The Development docker-compose.yml file

We set the build context to the root of the project so Docker can copy the files correctly,

yet the Dockerfile can be tucked away in the docker/ folder. We've seen a few examples

of using context with a Dockerfile already. Lastly, we map Caddy's default port of 2015

to port 8080 on the host machine.

You can run a local version of the application with docker-compose up --build and then

visit http://localhost:8080 to verify. If all goes well, you should see Laravel's default

application page (Figure 10.5):

196

Chapter 10: Deploying Docker

 Figure 10.5: Laravel welcome page

In this section, we created a separate Docker Compose file for development and

production-like builds that we can use independently with the docker-compose --file flag

(we briefly demoed this flag in Chapter 4). We use the default docker-compose.yml file

for development environments and the other environment-specific files for

deployment automation. As you work with Docker more, you start to build workflows

that might differ slightly (and that is perfectly fine), but this is a convention that has

worked well for me.

Project Version Control and Registry Builds

If you recall when we set up Rancher, we logged into the GitLab registry. To pull in our

Docker images that we're pushing to GitLab, we need to create a new project in GitLab

and select images to GitLab's Docker registry.

Let's initialize a git repository and push our files to GitLab (Listing 10.6):

197

Chapter 10: Deploying Docker

$ cd ~/Code/rancher-laravel-demo

$ git init

$ git add .

$ git commit -m"First commit"

$ git remote add origin \

git@gitlab. com: paulredmond/rancher-laravel-demo. git

$ git push origin master

 Listing 10.6: Pushing the Code to a GitLab project

With our code under version control on GitLab, let's create a build.sh file in the root of

the project in order to automate the build (Listing 10.7):

$ touch build. sh

$ chmod u+x build. sh

 Listing 10.7: Build and tag the Docker image

Next, add the following build script to build.sh (Listing 10.8):

#! /usr/bin/env bash

tag=${1: -latest}

echo "Enter your Gitlab Credentials. . . "

docker login registry. gitlab. com

docker build -f docker/Dockerfile -t \

registry. gitlab. com/paulredmond/rancher-laravel-demo: $tag .

docker push \

registry. gitlab. com/paulredmond/rancher-laravel-demo: $tag

echo "Build $tag complete"

 Listing 10.8: The Build Script

198

Chapter 10: Deploying Docker

First, we define a tag variable with the default of latest. Next, we log in to the GitLab

registry so the script can interact with private registries. Lastly, the script builds the

image with a tag and pushes it to the GitLab registry. Be sure to substitute your registry

URL based on the project you created in GitLab!

We're ready to run the build script, which if you execute the build command without

any arguments, it tags the image as latest by default (Listing 10.9):

Tag the latest

$. /build. sh

Example of tagging a version

$. /build. sh 1. 0. 0

 Listing 10.9: Build the Image

Go ahead and build the latest tag by running ./build.sh with no arguments so you can

verify that your build is working.

Setting up the Stack Deployment

Our registry build is working, and we are ready to get builds running with Rancher

Compose. If you recall, Rancher Compose is a way that we can run Docker in a similar

way to Docker Compose. Rancher Compose works with Docker Compose to deploy

services to Rancher and allows you to scale containers (multiple instances of the same

containers). In the end, we run the rancher-compose CLI to deploy our containers.

To run the rancher-compose command locally, you will need to download it and put it in

your path. You can download the latest version of rancher-compose for your operating

system by logging into your Rancher server and clicking the link at the very bottom

right. Select the appropriate operating system and copy the file to /usr/local/bin/rancher-

compose and make it executable (Listing 10.10):

199

Chapter 10: Deploying Docker

$ sudo cp path/to/rancher-compose /usr/local/bin/rancher-compose

$ sudo chmod u+x /usr/local/bin/rancher-compose

$ rancher-compose --help

 Listing 10.10: Set up the rancher-compose binary

Now that you have the rancher-compose correctly installed let's work on the

production Docker Compose and Rancher Compose files in tandem. As I've already

mentioned, rancher-compose collaborates with a Docker Compose file. We haven't

edited either file, so let's do so now!

First, let's define the docker-compose.prod.yml file (Listing 10.11):

version: "2"

services:

rancher-laravel-demo:

image: registry. gitlab. com/paulredmond/rancher-laravel-

demo: latest

labels: {io. rancher. container. pull_image: always}

stdin_open: true

tty: true

 Listing 10.11: The docker-compose.prod.yml file

You might have noticed that we are using Docker compose version two here instead of

version three. Rancher is compatible with V1, and V2 of the Docker Compose manifest,

so we use V2.

Our Docker Compose file defines one service which points to our GitLab image. The

stdin_open: true and tty: true are the same as docker run -it (interactive and tty).

Next, let's fill out our rancher-compose.prod.yml file (Listing 10.12):

200

Chapter 10: Deploying Docker

version: "2"

services:

rancher-laravel-demo:

scale: 2

 Listing 10.12: The rancher-compose.prod.yml file

The key matches the service defined in the Docker Compose production file. We define

a scale: 2, meaning two containers running the rancher-laravel-demo service by default.

Writing the Deployment Script

We are ready to deploy our laravel service scaled to two instances. I prefer to create a

deploy script (deploy.sh) that we can use to apply deployments quickly (Listing 10.13):

$ touch deploy. sh

$ chmod u+x deploy. sh

 Listing 10.13: Create the deploy script

Here's the contents of the deploy script (Listing 10.14):

#!/usr/bin/env bash

ACCESS_KEY=$1

SECRET_KEY=$2

RANCHER_URL=$3

ENVIRONMENT=$4

rancher-compose \

-f docker-compose. $ENVIRONMENT. yml \

-r rancher-compose. $ENVIRONMENT. yml \

--url=$RANCHER_URL \

 Listing 10.14: The Rancher compose deploy script



201

Chapter 10: Deploying Docker

--access-key=$ACCESS_KEY \

--secret-key=$SECRET_KEY \

--proj ect-name=rancher-laravel-demo \

up --upgrade --pull --confirm-upgrade -d

The deploy script accepts four arguments:

- A Rancher access key

- A Rancher secret key

- A Rancher Endpoint URL

- An environment

We can get the first three from the Rancher server UI, and $ENVIRONMENT is used to

match our YAML files. We defined the Docker and Rancher files that end in .prod.yml,

and this allows us to add configuration for other environments (i.e., staging)

independently.

The rancher-compose up command in the deploy script also has quite a few flags. Some

of them are pretty obvious, but I want to point out a few. You can get similar info by

running rancher-compose --help:

-f specify an alternate Docker compose file (default is docker-compose.yml)

-r specify an alternate Rancher compose file (default is rancher-compose.yml)

--url the Rancher API endpoint URL

--project-name customize the project name seen in Rancher

After the up command, you can learn more about the flags used by running rancher-

compose up --help.

Setting Up Rancher API Credentials

To get the deploy script working, you need to go back to the Rancher server UI and

create an environment API key. The environment key provides an access key

202

Chapter 10: Deploying Docker

(Username) and an access secret (Password).

Navigate to "API > Keys" and expand the "Advanced Options" section, then click "Add

Environment API Key" and enter a name (i.e., rancher-compose) and an optional

description. Once you submit, you get a one-time modal with your access key and

secret (Figure 10.6):

 Figure 10.6: Create a Rancher environment API key

Don't lose track of these settings and don't add them to version control! You are

required to regenerate these API credentials if you forget them. These credentials

typically live in your CI environment, and you need to keep them backed up in a safe

place if you plan on keeping your Rancher installation around after this chapter.

After creating the environment API key, take note of the Endpoint (v1) URL, we use that

value in the deploy script for the --url flag of the Rancher API (Figure 10.7):

203

Chapter 10: Deploying Docker

 Figure 10.7: Copy the Endpoint URL (V1)

Running the Deployment

Now that we have the deploy script and keys in place, we are finally ready to automate

the deployment of our stack. We need to run rancher-compose to create the stack via the

API, and then we need to set up a load balancer in our Rancher stack to accept web

traffic.

Make sure you build the image and push it to the GitLab registry. You can just

build it manually with the build.sh for this chapter, or you can set up build

automation as we did in Chapter 9.

Remember to Build the Image

Here we go! Let's use the deploy.sh file to run Rancher compose now. If you forgot to

install Rancher Compose earlier, and you want to follow along, download the latest

executable from the bottom right of the Rancher interface (Listing 10.15):

make sure deploy. sh is executable if you haven't done so

$ chmod u+x . /deploy. sh

 Listing 10.15: Running Rancher compose



204

Chapter 10: Deploying Docker

$. /deploy. sh \

505D04F4DD9C9E7254FA \

AYbu2q5CJ qwpD64onzq9MkfJrj WEzmTz7aj Uc255 \

http: //45. 55. 184. 106: 8080/v1/proj ects/1a5 \

prod

INFO[0000] [0/1] [rancher-laravel-demo] : Creating

INFO[0001] [0/1] [rancher-laravel-demo] : Created

INFO[0001] [0/1] [rancher-laravel-demo] : Starting

INFO[0001] [1/1] [rancher-laravel-demo] : Started

Once again, we pass the API key, API secret, endpoint URL, and the environment name.

By the time you read this my API key and the secret will no longer work, and I've used

them for a complete demonstration.

If everything went according to plan, you should see a new stack if you navigate to

"Stacks > User" (Figure 10.8):

 Figure 10.8: Laravel Demo Stack

Based on our Rancher Compose file we have two containers running. Click on the stack

you created, and you should see that the status of the service is active.

While the stack is technically running, it's not accessible publicly yet. We need to

205

Chapter 10: Deploying Docker

define a load balancer service in Rancher that sits in front of our application and routes

traffic to each container instance. Think of a load balancer as gateway routing to each

of your defined services that you intend to make public.

Load Balancer Service

We have two containers running Laravel, but we need to load balance traffic to them.

Rancher uses HAProxy (http://www.haproxy.org/) internally to define load balancers.

Simply put, the load balancer service has one IP address and behind the scenes takes

care of routing traffic to your pool of application servers in the rancher-laravel-demo

stack.

You can define a load balancer from the Rancher compose file, but before we do that,

let's use the UI to create the load balancer manually. You can get pretty far with

Rancher by using the UI and since this is an introductory text that's the simplest way

for us to move forward. After we get the load balancer running, I'll show you how to get

the equivalent Rancher/Docker compose files from the UI that you can copy and paste

into your YAML configuration files.

Navigate to your user stacks from the menu by going to "Stacks > User." In the "rancher-

laravel-demo" stack, you should see an "Add Service" button; click the arrow and select

"Add Load Balancer" (Figure 10.9):

 Figure 10.9: Adding a load balancer service

206

Chapter 10: Deploying Docker

Adding a load balancer brings you to a setup screen. First, for the scale pick "Always

run one instance of this container on every host." Next, name the service something

like "laravel-demo-load-balancer" and describe if you want.

The main setup for the load balancer is defining port rules and then mapping them to

other services. Our demo is simple, so we are only going to pick public HTTP on port

80, and target our rancher-laravel-demo service on port 2015. We leave the "Request

Host" input empty, but generally, you would provide your application's DNS hostname

here, so Rancher knows how to route it correctly when you have multiple hosts.

The Rancher UI provides hints that take you to the documentation. Look for

the circular question mark links ("?") near headings. The UI might change in

the future, but Rancher is good about providing contextual help links.

Rancher Help

In the end, you should have something similar to the following load balancer setup

(Figure 10.10):

 Figure 10.10: Add a Load Balancer

Once you create your load balancer service, you should see it activating from the User

207

Chapter 10: Deploying Docker

stacks screen, which might take a few minutes to finish. You can click on the load

balancer service to get the host IP address on the "Ports" tab (Figure 10.11).

 Figure 10.11: Load Balancer Service Details

If defining a hostname for the load balancer rule, you would grab the IP address from

the ports tab and add an A record pointing to this IP. If you click the IP address link

from the "Ports" tab in the load balancer service you should see the default Laravel

homepage. We've successfully deployed a stack and made it publicly accessible!

Rancher UI Tricks

We've seen how the Rancher UI makes deploying and scaling services as simple as

clicking a few buttons. One thing we haven't covered in the UI is how to take a stack or

service built from the UI and recreate stacks through a Rancher Compose

configuration. If you don't quite know how to automate through the Rancher Compose

configuration, you can use the UI to experiment. Once you have the setup, you like you

can convert it into a repeatable YAML configuration.

Creating the load balancer through the UI was a good exercise, but it breaks down

when you want to re-create the stack in a repeatable way. The Rancher UI provides a

way for you can copy what you've done in the UI to an equivalent YAML config.

208

Chapter 10: Deploying Docker

First, navigate to "Stacks > User" and then click on the "rancher-laravel-demo" stack.

The main stack page listing the load balancer and service has a document icon on the

top right "Compose YAML," click it to see the files (Figure 10.12):

 Figure 10.12: Copy the Compose YAML files

If you click the icon next to the YAML, you can copy it to your clipboard. Replace what

you have in your compose files inside the project. If you keep your Rancher UI visible

inside of the stack page, you can see the services update when you run them from the

command line (Listing 10.16):

$. /deploy. sh \

505D04F4DD9C9E7254FA \

AYbu2q5CJ qwpD64onzq9MkfJrj WEzmTz7aj Uc255 \

http: //45. 55. 184. 106: 8080/v1/proj ects/1a5 \

prod

INFO[0000] [0/2] [rancher-laravel-demo] : Creating

 Listing 10.16: Running the updated Rancher Compose Script



209

Chapter 10: Deploying Docker

INFO[0001] [0/2] [rancher-laravel-demo] : Created

INFO[0001] [0/2] [laravel-demo-load-balancer] : Creating

INFO[0001] [0/2] [laravel-demo-load-balancer] : Created

INFO[0001] [0/2] [rancher-laravel-demo] : Starting

INFO[0001] [1/2] [rancher-laravel-demo] : Started

INFO[0001] [1/2] [laravel-demo-load-balancer] : Starting

INFO[0001] [2/2] [laravel-demo-load-balancer] : Started

Now you can update your entire stack with the Rancher compose command. The

updated compose file allows you to re-create your stack from scratch quickly in a more

repeatable fashion. In fact, let's do just that!

Delete the entire stack via the UI by going to "Stacks > User" and on the far right vertical

ellipsis icon select "Delete" from the drop-down menu of the rancher-docker-demo stack.

You can also export the YAML files from this menu too (Export Config) if you want to

download the compose files. Keep the browser window open so you can magically see

it re-appear when you run deploy from the command line.

If you re-run the deploy command after deleting the stack it will create the application

containers and the load balancer (Listing 10.17):

$. /deploy. sh \

505D04F4DD9C9E7254FA \

AYbu2q5CJ qwpD64onzq9MkfJrj WEzmTz7aj Uc255 \

http: //45. 55. 184. 106: 8080/v1/proj ects/1a5 \

prod

INFO[0000] Creating stack rancher-laravel-demo

INFO[0001] [0/2] [rancher-laravel-demo] : Creating

INFO[0001] Creating service rancher-laravel-demo

INFO[0001] [0/2] [rancher-laravel-demo] : Created

INFO[0001] [0/2] [laravel-demo-load-balancer] : Creating

 Listing 10.17: Re-create the Laravel Demo Stack



210

Chapter 10: Deploying Docker

INFO[0001] Creating service laravel-demo-load-balancer

INFO[0002] [0/2] [laravel-demo-load-balancer] : Created

INFO[0002] [0/2] [rancher-laravel-demo] : Starting

INFO[0006] [1/2] [rancher-laravel-demo] : Started

INFO[0006] [1/2] [laravel-demo-load-balancer] : Starting

INFO[0009] [2/2] [laravel-demo-load-balancer] : Started

Now you have a repeatable stack, including the public load balancer. I'd encourage you

to update your stack via the UI and then export/copy the compose files so you can learn

how to automate what you change.

Environment Variables

If you want to set environment variables in your Rancher stack, you can use

environment interpolation (http://rancher.com/docs/rancher/v1.6/en/cattle/rancher-

compose/environment-interpolation/) on the machine running Rancher compose. In

this chapter, you've been using your computer, but imagine a continuous integration

server (i.e., Jenkins) running Rancher compose to deploy a stack.

We can use environment interpolation to our advantage to change application

configuration per-environment without changing our Docker Compose file. Let's try it

out by updating the docker-compose.prod.yml file with the following environment

changes (Listing 10.18):

version: "2"

services:

rancher-laravel-demo:

image: registry. gitlab. com/paulredmond/rancher-laravel-

demo: latest

stdin_open: true

tty: true

labels:

io. rancher. container. pull_image: always

 Listing 10.18: Adding an Environment Variable



211

Chapter 10: Deploying Docker

environment:

RELEASE_VERSION: "${RELEASE_VERSION}"

laravel-demo-load-balancer:

image: rancher/lb-service-haproxy: v0. 7. 15

ports:

- 80: 80/tcp

labels:

io. rancher. container. agent. role: environmentAdmin, agent

io. rancher. container. agent_service. drain_provider: ' true'

io. rancher. container. create_agent: ' true'

You can reference environment variables in both the Rancher and Docker Compose

files defined on the machine running the commands. We added a version variable, but

other environment variables could include database credentials, API keys, etc.

Let's re-run the deploy and then check the containers to make sure they have the

environment variable defined (Listing 10.19):

$ export RELEASE_VERSION="1. 0. 0"

$. /deploy. sh \

505D04F4DD9C9E7254FA \

AYbu2q5CJ qwpD64onzq9MkfJrj WEzmTz7aj Uc255 \

http: //45. 55. 184. 106: 8080/v1/proj ects/1a5 \

prod

. . .

 Listing 10.19: Adding the Environment Variables to Running Containers

Once rancher-compose is finished, we can verify that the containers have the release

version variable by running a terminal session from the UI. Navigate to your stack and

select the "rancher-laravel-demo" service that has two containers. You can run a shell

by clicking the far right icon on one of the containers (Figure 10.13):

212

Chapter 10: Deploying Docker

 Figure 10.13: Open a container shell

In the shell, run echo $RELEASE_VERSION and you should see the output 1.0.0.

Environment variables are an excellent way to power configuration in our Laravel

applications, and Rancher makes it a breeze to use them. The shell is also a great way

to debug your stacks if you are having issues in production that you need to debug.

Homework

We've covered much ground in this chapter, but just barely scratched the surface at the

same time. On your own, you can pick MySQL from the built-in catalog and install it in

your cluster. Try setting it up and adding environment variables so that you can

connect to MySQL from your Laravel application.

We also didn't install the Rancher server in high availability mode or use an external

MySQL database to power our Rancher server. Read the installation instructions

(https://rancher.com/docs/rancher/v1.6/en/installing-rancher/installing-server/) on

different configurations you can use to install the Rancher server.

213

Chapter 10: Deploying Docker

Learning more about Rancher secrets is a good exercise in learning more about the

Rancher UI and provides a place for you to store your application secrets. You can also

use a continuous integration pipeline to run rancher compose and provide your secrets

from that service (i.e., GitLab or Jenkins). We've already worked with Gitlab, which you

could use to automatically deploy to your stack after a merge to master or a tag.

Yeeeee-haaaa!

You now have an application running Docker in the cloud. Not too shabby! Rancher

makes it simple to get going, yet, has many advanced features as you dive deeper into

the documentation. We walked through how to deploy stacks with Rancher compose,

use images from GitLab in our Rancher cluster, and automate deployments.

Implementing and managing Docker at scale is an advanced topic that deserves a book

of its own. The appendix provides you with next steps so you can continue your

learning with Docker. While you should have most of the tools you need to develop PHP

applications with Docker, there's so much to learn about running Docker at scale in

production.

i

Eject

Eject

Congratulations! Making it this far means you have a solid understanding of the

fundamentals of using Docker and implementing Docker in your PHP projects.

Hopefully, you've got all you need to start using Docker on your projects.

This chapter marks is the end of our journey learning how to use Docker in

Development, but I hope that it's just the start of your journey with Docker. As a

developer, you might be content with knowing how to work with Docker in

development, and that's perfectly fine! However, if you are interested in learning more

about deploying and managing Docker, I've compiled a list of resources you can use.

I have no affiliation with any of the included resources, nor do I get any kick-back for

recommending them.

Docker Documentation

The official Docker documentation (https://docs.docker.com/) has a wealth of

information, and you will need to refer to it often as you build out your images, Docker

Compose configurations, and other topics. You can learn about Docker Swarm

(https://docs.docker.com/engine/swarm/) in the official documentation.

Docker Tutorials and Labs

Docker labs is a GitHub repository (https://github.com/docker/labs) of labs and tutorials

authored by Docker employees and members of the community. This GitHub repo has

a beginner tutorial and a tutorial on Docker Swarm mode, and other Docker-related

tutorials.

ii

Eject

Docker Up and Running

Docker Up and Running (http://shop.oreilly.com/product/0636920036142.do) is a book

by Karl Matthias and Sean Kane, published by O'Reilly Media.

Servers for Hackers

The Servers for Hackers website by Chris Fidao has some free Docker screencasts

online (https://serversforhackers.com/t/containers). Chris also has an in-depth

screencast series called Shipping Docker (https://serversforhackers.com/shipping-

docker) which covers developing, testing, and deploying PHP applications with Docker.

He is also the author of Vessel (https://vessel.shippingdocker.com/), a simple Docker

development environment for Laravel.

Kubernetes

Kubernetes (https://kubernetes.io/) is an open-source project for automating

deployment, scaling, and management of containerized applications. The official site

has plenty of detailed documentation (https://kubernetes.io/docs/home/), and an

interactive tutorial (https://kubernetes.io/docs/tutorials/kubernetes-basics/).

Kubernetes might be a bit of a deep-dive depending on how much you know about

deploying server-based applications, so you might also benefit from Kubernetes Up and

Running (http://shop.oreilly.com/product/0636920043874.do) by Kelsey Hightower,

Brendan Burns, and Joe Beda.

Google Cloud

Google Cloud (https://cloud.google.com) is an excellent place to experiment with

Kubernetes using Google's managed Kubernetes installation. Google provides a free

tier (https://cloud.google.com/free/) to get started with Google's cloud technologies. At

the time of writing the free tier gives you 12 months and a 300 dollar credit to try out

their products and they offer an always free tier of specific products.

Another benefit of using Google Cloud is Google's container registry product for storing

iii

Eject

and deploying private Docker images. Google's container registry is very fast, and you

can use the registry with Google's Kubernetes engine with no authentication setup

required.

I recommend a few PHP-specific tutorials that will help you learn using PHP and

Docker in Google Cloud. First, go through the Create a Guestbook with Redis and PHP

tutorial (https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook), which

shows you how to run a simple PHP application with Redis on a Kubernetes. Second,

the Running a PHP Bookshelf on Kubernetes Engine tutorial

(https://cloud.google.com/php/tutorials/bookshelf-on-kubernetes-engine).

The Twelve-Factor App

The Twelve-Factor App (https://12factor.net/)—written by Heroku Co-Founder Adam

Wiggins—is a document that describes a specific methodology for building web

applications, or software-as-a-service that is suitable for deployment on modern cloud

platforms.

