
Delphi
Quick Syntax
Reference

A Pocket Guide to the Delphi and
Object Pascal Language
—
John Kouraklis

Delphi Quick Syntax
Reference

A Pocket Guide to the Delphi
and Object Pascal Language

John Kouraklis

Delphi Quick Syntax Reference: A Pocket Guide to the Delphi and Object

Pascal Language

ISBN-13 (pbk): 978-1-4842-6111-8		 ISBN-13 (electronic): 978-1-4842-6112-5
https://doi.org/10.1007/978-1-4842-6112-5

Copyright © 2020 by John Kouraklis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Victor Malyushev on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York,
NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484261118.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

John Kouraklis
London, UK

https://doi.org/10.1007/978-1-4842-6112-5

iii

About the Author���vii

About the Technical Reviewer��ix

Introduction��xi

Chapter 1: ��Delphi Pascal��1

Delphi As a Programming Language��1

Syntax���1

Programming Paradigms��2

Compilation to Native Code��3

Visual Applications���3

One Code Base for Multiple Platforms��3

Anatomy of a Delphi Program��4

Project Files��4

Units���5

Forms and Frames���6

Delphi As Integrated Development Environment (IDE)���7

A Simple Application (Console)��9

A Simple Application (Graphical)��11

Alternative IDEs��14

Delphi Style Guide��15

Summary���15

References���15

Table of Contents

iv

Chapter 2: ��Basics��17

Variables��17

Data Types��20

Integer��20

Char��21

Boolean���22

Enumerated Types��22

Subrange��23

Real��23

Strings��25

Sets��27

Arrays���28

Records��31

Pointers��35

Variant��36

Generics���37

Constants���40

Comments��41

Summary���42

References���42

Chapter 3: ��Looping, Conditional and Jump Statements����������������������43

Loops���43

While Statement���43

Repeat Statement���45

For Statement���46

Conditional Statements��48

If Statement��48

Case Statement��50

Table of ContentsTable of Contents

v

Jump Statements���51

Exit Statement��51

Break Statement���52

Continue Statement��52

Goto Statement���53

Summary���54

Chapter 4: ��Procedures and Functions���55

Declaration���55

Parameters��57

The Nature of Parameters��59

Default Values of Parameters���62

Interrupting the Normal Execution���64

Nested Methods���64

Typed Methods���65

Anonymous Methods���68

Method Overloading���71

Summary���72

References���72

Chapter 5: ��Object-Oriented Programming (OOP)���������������������������������73

Declaration���73

Object State (Fields)���75

Object Functionality (Methods)��78

Object State (Properties)��82

Class Members and Methods���86

Inheritance���87

Interfaces���93

Table of ContentsTable of Contents

vi

Cross-Platform Memory Management���97

Summary���101

References���102

Index��103

Table of ContentsTable of Contents

vii

About the Author

John Kouraklis started exploring computers when he was 16 and since

then has followed all the way from Turbo Pascal to the latest Delphi

versions as a hobby initially and as a profession for most of his adult life.

He has developed a wide range of applications, from financial software

to reverse engineering tools, including an application for professional

gamblers.

He is part of the Delphi community and participates in online

communities, forums, and many other events. For example, he is active

on Delphi-PRAXiS, which is perhaps the biggest English-speaking online

forum about Delphi. John also has a personal website where he posts

articles regularly. Lastly, he has written two more books about Delphi

published by Apress.

ix

About the Technical Reviewer

Dr. Holger Flick studied computer science at the Technical University

of Dortmund and received his doctorate from the Faculty of Mechanical

Engineering at the Ruhr-University Bochum. He has been programming

with Delphi since 1996 and has always been active in the community.

During and after his studies, he worked as a freelancer on numerous

projects for Borland and was able to exchange ideas directly with many

Delphi experts from Scotts Valley, CA. Mainly, he tested Delphi for the

QA department, but also programmed database applications and web

applications for the Borland Developer Network. Holger has also presented

at conferences and seminars on various Delphi topics. His commitment

and extensive knowledge of Delphi programming, gained through years of

theoretical and practical work in the area of object-oriented programming

with Delphi and other programming languages (e.g., C#, Objective-C), led

to his appointment as the Embarcadero Delphi MVP in 2016. From 2013 to

2018, Dr. Holger Flick was responsible for the entire software and hardware

architecture of a medium-sized business in Witten, Germany.

Among other things, he developed company-specific software

solutions with Delphi. Since 2017, he presents products and solutions

of TMS software as Chief Evangelist in the form of numerous technical

articles, bilingual video tutorials, and leads through seminars. In 2019,

he founded FlixEngineering LLC in the United States and is available for

Delphi contracting of any kind. The next year, he self-published several

books himself for web and desktop software development with Delphi.

xi

Introduction

Delphi is a modern general-purpose programming language which

enhances and supersedes Object Pascal. It is in the market for more

than two decades now, and it is used in a wide range of applications.

The language is maintained by Embarcadero and is backed by a large

community of developers.

The language is versatile, it supports different programming

paradigms, and it exhibits quick learning curve. It is easy to grasp the

main and fundamental concepts and start coding straightaway. Naturally,

as in every language, there is complexity down the line especially when

advanced libraries are utilized.

This book offers a guide to the fundamentals. It takes people with no

knowledge of the language all the way to what they need to know to start

their journey in Delphi. By the end of this book, you will have enough

knowledge to be able to read articles about Delphi and understand code

of intermediate complexity. In short, this book offers a fast-track induction

course to the language.

�Who This Book Is For
The typical reader of this book is the newcomer to Delphi with basic

knowledge of computer programming. The book offers all the necessary

knowledge to get you started with Delphi and provides a wide range of

references to allow you expand your knowledge.

xii

After reading this book, you will be able to

•	 Discuss the fundamental elements of the language

•	 Appreciate the different programming paradigms that

can be used in Delphi

•	 Write code to demonstrate the basic concepts of the

language

Although the newcomer is in the center of this book, the experienced

developer will benefit every time they are unsure or need a refresher on

topics around the fundamentals of the language.

�The Development Environment
The code in this book is written using the following environment:

•	 Embarcadero Delphi 10 Sydney (10.4)

•	 Microsoft Windows 10 Professional

I use the Professional edition, but there is nothing I do that exploits any

features specific to this edition. The code can be tested using even the free

Community Edition of Delphi. In fact, most of the code can be executed in

other editions of Object Pascal.

There are some topics that utilize features found in specific versions of

Delphi. Whenever this happens, I clearly flag the topics.

�The Book’s Structure
The book has five chapters. It starts with basic syntactical elements of

the language and gradually introduces how core concepts of modern

programming are managed in Delphi. Each chapter is independent to

previous chapters, which means you can start reading the most suitable

subject to your situation.

IntroductionIntroduction

xiii

�Chapter 1: Delphi Pascal
This chapter looks at Delphi as a programming language. It discusses the

syntax and structure of the code, and it introduces the basic development

workflow Delphi developers follow.

�Chapter 2: Basics
The second chapter provides the fundamental knowledge a newcomer

needs to get an understanding of how basic concepts in programming

work in Delphi. Variables, data types, and generics are introduced.

�Chapter 3: Looping, Conditional and Jump
Statements
Managing the execution flow of code in Delphi is the topic of this chapter.

Common structures like loops, conditional statements, and code jumps

are covered to provide to the reader different ways to control logic in code.

�Chapter 4: Procedures and Functions
In this chapter, we move to modular programming. We visit procedures

and functions and investigate the way they are implemented and used in

Delphi.

�Chapter 5: Object-Oriented Programming (OOP)
OOP is one of the most fundamental and widespread paradigms in

modern software development. In this chapter, we look at how OOP is

done in Delphi and expand the discussion to cover interfaces, another core

concept of contemporary programming.

IntroductionIntroduction

xiv

�Code Files
This book includes source code files that can be accessed via the

Download Source Code link located at www.apress.com/9781484261118.

The projects are named after the number of the chapter (ChapterXX) they

refer to. There is also a dedicated project group which loads all the projects

for all chapters. You can find it under the name DelphiQuickReference.

groupproj.

IntroductionIntroduction

http://www.apress.com/9781484261118

1© John Kouraklis 2020
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_1

CHAPTER 1

Delphi Pascal
Delphi Pascal or, simply, Delphi is the most popular version of Object Pascal

which, in turn, is an extension of the classic Pascal programming language

(Cantu, 2016). This chapter introduces the basic concepts of the language.

�Delphi As a Programming Language
Delphi is a general-purpose programming language. As a Pascal

descendent, it draws its strong typing and syntactical characteristics from

the original Pascal language developed by Niklaus Wirth in the early 1970s,

but it, loosely, relates to the ISO standard Pascal (i.e., it is not a superset).

Over the past decades, Delphi has evolved, and now it has features that

makes it a modern programming language capable of building professional

software in multiple platforms.

�Syntax
If you look at Delphi source code, you will notice that it is dominated by

words rather than symbols. Code appears inside a begin...end block

rather than inside symbols like curly brackets ({..}) as in other languages.

Typically, code flows from top to bottom and from left to right. This

implies that variables, objects, constants, and other elements need

first to be declared before they are used (with the exception of forward

declaration of classes).

https://doi.org/10.1007/978-1-4842-6112-5_1#DOI

2

Delphi is case insensitive, meaning that coding elements like variables,

objects, methods, and the like can be declared in small or capital letters or

in a combination of both. For example, the following declarations are all

valid in Delphi: delphiBook, delphi_Book, DelphiBook, DELPHIBOOK,

delphiBOOK. There are naming rules which prohibit the use of specific

characters (e.g., an identifier cannot start with a number, etc.), but the

limitations are very few, and, practically, when you code in Delphi, it is not

common to come across them.

A notable difference with other languages is the operator to assign

values to variables. In Delphi, a colon followed by the equal sign (:=) is

used for this purpose, and the simple equal sign (=) is used to test equality

in expressions.

Lastly, a convention that survived from the classic Pascal is the way the

end of code line is declared in Delphi. Most of the lines of code end with a

semicolon (;) with the exception of keywords (e.g., begin...end, if...then,

while...do, etc.) and the last keyword in a code file. Every code file ends

with the keyword end followed by a period (end.)

�Programming Paradigms
Delphi is a fully developed object-oriented programming (OOP) language

but does not force any specific development paradigm. You are free to

use the OOP approach, but if, for some reasons, you prefer to use pure

procedural programming, Delphi can fully support you. In fact, a huge part

of the native libraries in Delphi come as procedures rather than embedded

in objects and classes. This stands for Windows API calls, but, as the

language is moving to cross-platform code, more libraries come in classes

and records.

Chapter 1 Delphi Pascal

3

�Compilation to Native Code
The final artifact of compilation of Delphi code is binary files with native

code. In computing, this means that the final files represent machine code

instead of an intermediate form like the one you find in virtual machine

bytecode other languages produce. As a result, the executables run directly

on top of the operating system without any translation layers between the

executables and the underlying APIs of the operating systems.

�Visual Applications
Delphi provides two out-of-the-box frameworks to support the

development of visual applications: the Visual Component Library (VCL)

and, starting from Delphi XE2, the FireMonkey (FMX) framework. VCL

is used for Windows applications only, and FMX provides cross-platform

components to build graphical user interfaces. Apart from VCL and FMX,

there are third-party frameworks and libraries available to enrich the

development of visual applications.

�One Code Base for Multiple Platforms
One of the most distinguished characteristics of modern Delphi is the

ability to produce binaries for multiple platforms from the same code base.

At the time of writing, there are very few development tools in the market

that truly support this. This means that, as a developer, you write code

without any considerations as to which platform it will compile to, and

Delphi takes the task to produce the appropriate executables or libraries

for the platform of your choice. Currently, Delphi supports the following

platforms: Windows 32-bit, Windows 64-bit, macOS 32-bit, macOS 64-bit,

Android 32-bit, Android 64-bit, iOS, iOS 32-bit, iOS 64-bit, iOS Simulator,

Chapter 1 Delphi Pascal

4

and Linux 64-bit. It is worth mentioning that although you can create

applications for all the preceding platforms, the development is done on

Windows only; that is, the compilers are Windows programs themselves.

Note A lthough you can write cross-platform code without considering
the details of the target platform, it is almost inevitable that your code,
at some stage, will need to take advantage of the specificities of the
target operating system. For that matter, Delphi allows you to fine-tune
your code base using compiler directives and attributes.

�Anatomy of a Delphi Program
A typical Delphi program can generate a number of different files

depending on the nature of the program and the target platform.

�Project Files
A program in Delphi has one source code file saved under the name of the

application and with the .dpr extension. The code starts with the program

keyword followed by the name of the application, and it has one main block

of code enclosed in the begin..end keywords. The last end keyword is

followed by a period (end.), and this signifies the end of the code file. Any text

that appears after this generates a warning, but it is ignored by the compiler.

Delphi also generates a file with the .dproj extension. This file holds

vital information about the cross-platform configurations, and it can also

be used when the compilation of code is streamlined to MSBUILD.

There are a number of other support files with different extensions

(e.g., .local, .deployproj) you may find, but they are not vital for the

correct compilation of a Delphi program, or the compiler can regenerate

them automatically.

Chapter 1 Delphi Pascal

5

�Units
You can, very easily, create one big file and store all your code in it (with

the exception of visual elements like forms and frames). Delphi will not

complain and will compile your code correctly. However, this does not

sound something that scales up easily when you write complex software.

Instead, common practice suggests to organize your code in smaller

separate files or modules as they are known in software engineering.

Delphi is a modular language and provides support to modules via

unit files. In Pascal world, the term unit is used instead of module. The

term module still exists in Delphi, and it refers to a special component

(TDataModule) which sits in its own separate unit file. A unit is a separate

code file, it has the .pas extension, and it is linked back to the project

and is compiled to a binary file with the extension .dcu. DCUs are more

important than the source code files because the compiler is able to use

a .dcu file without the need to locate and access the corresponding .pas

file. The downside is that DCU files are tightly linked to the version of the

compiler that was used to create them. There were some exceptions in the

past, but this is the general rule.

The following snippet shows the minimum elements you can find in

a unit file (which, basically, does nothing). There are two distinct parts—

interface and implementation. The interface section is the part of the

unit that is visible to other units. For example, if you declare a variable in

this section, it will be accessible to any other units that refer to this unit. On

the other hand, any declarations made in the implementation section are

only available in this unit and not outside it. When it comes to OOP, classes

are typically declared in the interface section, and any method code

should appear in the implementation section in the same unit. Of course,

you can have the declaration and implementation of a class solely in the

implementation section, but it will be accessible only within the unit.

Chapter 1 Delphi Pascal

6

unit QuickReference;

interface

// Declarations come here

implementation

// Declarations and Actual code come here

end.

This unit is named QuickReference, and the file name is and should

be under the same name (QuickReference.pas). Delphi allows the use of

dot notation in units which provides the ability to generate namespaces. As

a result, you can save the unit under the name Quick.Reference.Delphi.

pas. When you want to access the unit, you simply declare it using the

keyword uses as follows:

uses

 Quick.Reference.Delphi;

The uses clause can appear either in the interface or the

implementation part of a unit.

�Forms and Frames
A form in Delphi is a representation of the typical window you see in visual

applications. If you want to add a label or an edit field in the window, you

add them in a form, and, when the code is executed, you see a window

with the components.

Delphi creates two files for each form: a typical .pas file which

contains all the declarations and any custom code you want to add to alter

the behavior of the form and a .dfm (in VCL) or .fmx (in FireMonkey) file

which holds information about the components in a form. A valid form

needs both files.

Chapter 1 Delphi Pascal

7

Frames are very similar to forms with the difference that they do not

represent stand-alone windows and they do not have system menus and

icons. A frame can be embedded in forms or in other frames to build more

complex and reusable user interfaces. In terms of files, frames use the

same file structure as forms.

�Delphi As Integrated Development
Environment (IDE)
It is very possible to use a simple text editor to write Delphi code and

then compile it using the compiler. This is the typical workflow of writing

software in other programming languages.

However, the preceding approach is not scalable or even workable

for the Delphi developer. Perhaps if you only write console applications,

this may work, but the rule is that you write Delphi code in the integrated

development environment that comes with the compiler provided by

Embarcadero, the company behind Delphi. The IDE is branded as RAD

Studio or Delphi IDE. This is a Windows application with a fully developed

text editor (Figure 1-1), form designer (Figure 1-2), debugger, and project

management features. The figures show the Delphi 10.4 IDE. The compiler

and the form designer are very tightly coupled to the IDE, and, in practical

terms, development in Delphi means writing code in RAD Studio.

Chapter 1 Delphi Pascal

8

The Delphi IDE is one of the most feature-rich development

environments that exist in the market. If you would like to learn more,

please read the official documentation for the latest release of the IDE

(Embarcadero, n.d.) or download and install either the community edition

or the trial version from the product’s home page (Embarcadero, 2020).

Figure 1-1.  The Code View of Delphi IDE (Delphi 10.4 Sydney)

Figure 1-2.  The Form Designer in RAD Studio (Delphi 10.4 Sydney)

Chapter 1 Delphi Pascal

9

�A Simple Application (Console)
The simplest application you can create is a console application. This

type of application does not have any graphical environment. It provides

a text-only interface (Windows Console, macOS Terminal, etc.), and the

interaction with the user is done via the keyboard and the display screen.

We are going to get started in Delphi by creating a console application.

	 1.	 Open Delphi IDE.

	 2.	 Select the File ➤ New ➤ Console Application –

Delphi menu item.

This will create a simple console application with

the minimum code to support the development of a

console application.

	 3.	 Save the project under the name Cheers.

	 4.	 We just want to print a simple message in the

console. Go to the Code Editor by clicking on the tab

at the bottom of the main part of the screen and add

the following lines (in bold):

program Cheers;

{$APPTYPE CONSOLE}

{$R *.res}

uses
 System.SysUtils;

begin
 try
 { TODO -oUser -cConsole Main : Insert code here }
 Writeln('Hey Delphi, Cheers!');

 Writeln('Press Enter');

 Readln;

Chapter 1 Delphi Pascal

10

 except

 on E: Exception do

 Writeln(E.ClassName, ': ', E.Message);

 end;

end.

	 5.	 Then either go to Run ➤ Run menu item, press F9

or use the relevant button in the toolbar. This will

compile and execute the code, and you will be able

to see the output in a console window (Figure 1-3).

Press Enter to close it and return to the IDE.

Figure 1-3.  Simple Output to Console

Debugging is done inside the IDE as well. You can set a breakpoint at a

code line by clicking the gutter area in the text editor. When a breakpoint is

set, a red circle appears as shown in Figure 1-4. This area is the gutter area

of the editor.

Chapter 1 Delphi Pascal

11

Run again the project by pressing F9. This time the execution will stop

at the line with the breakpoint, and you will be able to step through the

code gradually by using the debugger buttons in the toolbar.

�A Simple Application (Graphical)
In the previous section, we created a simple console application. This time

we will create a graphical application to demonstrate how the IDE is used

at a very basic level.

	 1.	 Select File ➤ New ➤ Windows VCL Application –

Delphi or Multi-Device Application – Delphi from

the main menu.

The VCL, obviously, uses the VCL framework, and the

Multi-Device Application uses FireMonkey (FMX).

Figure 1-4.  Breakpoints in the Delphi IDE

Chapter 1 Delphi Pascal

12

	 2.	 If you select Multi-Device Application, you will be

offered a list of different types of FMX applications

(templates). Just select Blank Application.

	 3.	 Now the IDE will open the form designer.

	 4.	 Use the Palette panel (usually located on the

right-hand side of the screen), find the TButton

component (Figure 1-5), and drag and drop it to the

form. Alternatively, you can click once the TButton

and then click again somewhere in the form. This

will add a button (Figure 1-6).

Figure 1-5.  Selecting TButton from the Palette

	 5.	 Double-click the button. The designer will change to

the code editor and will add some code. Then, add

the following code:

procedure TForm1.Button1Click(Sender: TObject);

begin

 ShowMessage('Hey Delphi, Cheers!');

end;

Chapter 1 Delphi Pascal

13

Figure 1-6.  Form Designer in Delphi IDE (Delphi 10.4 Sydney)

	 6.	 Run the application and click the button. You are

greeted with a message (Figure 1-7).

The preceding two simple applications demonstrate the most basic

workflows in Delphi and present the basic editors (code, form) of the IDE.

Chapter 1 Delphi Pascal

14

�Alternative IDEs
As mentioned earlier, Delphi development is done in Delphi IDE, which

comes together with the compilers. The only other alternative to write pure

Delphi code is to use Visual Studio Code with the OmniPascal extension

(OmniPascal, 2020). OmniPascal adds to Visual Studio Code the capability

to understand Delphi syntax and then to compile, debug, and run Delphi

programs. The only downside is that it does not offer a form designer,

which means that the Delphi IDE remains the only way to develop

graphical applications in Delphi.

If we open the scope of the IDE and look at the domain of Object

Pascal more broadly, there is another IDE worth mentioning. The Free

Pascal community offers Lazarus (Lazarus, 2020) which is a cross-platform

open source IDE. Lazarus is highly compatible with Delphi, but it is

primarily made to support Free Pascal—another flavor of Object Pascal.

Figure 1-7.  VCL Application in Delphi IDE (Delphi 10.4 Sydney)

Chapter 1 Delphi Pascal

15

�Delphi Style Guide
Delphi allows coders to use any naming conventions (with some

exceptions as mentioned earlier) they feel work best for them and make

their code readable especially when teams of developers are involved.

As it happens in every programming language, over the years, specific

approaches to naming and other syntactical elements have emerged, and

they are now commonly used among Delphi developers. For a complete

guide, check this post (Calvert, n.d.). There are also some commonly

found approaches to naming variables which are summarized in this piece

(Riley, 2019).

�Summary
In this chapter, we started with a very basic introduction of Delphi as

a programming language. Then, we touched upon RAD Studio, the

integrated environment that is, almost exclusively, used to develop Delphi

software. In the next chapter, we review the basic elements of the language.

�References
Calvert, C., n.d.. Object Pascal Style Guide. [Online] Available at: http://

edn.embarcadero.com/article/10280#2.0 [Accessed 27 04 2020].

Cantu, M., 2016. Object Pascal Handbook. s.l.:s.n.

Embarcadero, 2020. RAD Studio Product Page. [Online] Available at:

www.embarcadero.com/products/rad-studio [Accessed 08 04 2020].

Embarcadero, n.d. RAD Studio Rio. [Online] Available at: http://

docwiki.embarcadero.com/RADStudio/Rio/en/Main_Page [Accessed 08

04 2020].

Chapter 1 Delphi Pascal

http://edn.embarcadero.com/article/10280#2.0
http://edn.embarcadero.com/article/10280#2.0
http://www.embarcadero.com/products/rad-studio
http://docwiki.embarcadero.com/RADStudio/Rio/en/Main_Page
http://docwiki.embarcadero.com/RADStudio/Rio/en/Main_Page

16

Lazarus, 2020. Lazarus. [Online] Available at: www.lazarus-ide.org/

[Accessed 08 04 2020].

OmniPascal, 2020. OmniPascal. [Online] Available at: www.

omnipascal.com/ [Accessed 08 04 2020].

Riley, M., 2019. What is the “A” prefix I see used on parameters?.

[Online] Available at: https://capecodgunny.blogspot.com/2019/03/

delphi-tip-of-day-what-is-a-prefix-i.html [Accessed 27 04 2020].

Chapter 1 Delphi Pascal

http://www.lazarus-ide.org/
http://www.omnipascal.com/
http://www.omnipascal.com/
https://capecodgunny.blogspot.com/2019/03/delphi-tip-of-day-what-is-a-prefix-i.html
https://capecodgunny.blogspot.com/2019/03/delphi-tip-of-day-what-is-a-prefix-i.html

17© John Kouraklis 2020
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_2

CHAPTER 2

Basics

�Variables
Variables, a term borrowed from mathematics, is what we use in software

development to store data that change in the course of a program. It

is, practically, hard to write code without using variables. Technically

speaking, variables represent memory addresses, and they have two

elements: an identifier and a data type.

The identifier is a convenient name that is used to access the value

of the variable, and the data type defines what sort of data the variable

holds. Delphi is a strongly and statically typed language. Strongly typed

means that the developer defines the (data) type of the variable, and the

variable cannot hold any other data type than the one defined; statically

typed means that the data type is imposed at compile time rather than at

runtime.

As an example, consider a variable that holds the age of a person.

In Delphi, we define a variable using the keyword var followed by the

identifier (name), a colon, and the data type. Traditionally, variables in

Delphi are declared before the main block of a program or a method. Of

course, all the conventions for naming identifiers and code lines apply

(naming conventions, capitalization, and the use of semicolon at the end

of the code line).

https://doi.org/10.1007/978-1-4842-6112-5_2#DOI

18

Building on the example from the previous chapter, we define our new

variable as it is shown in the following code (for simplicity, I have removed

the {..} text and the try...except block code):

program Cheers;

{$APPTYPE CONSOLE}

{$R *.res}

uses

 System.SysUtils;

var

 age: Integer;

begin

 Writeln('Hey Delphi, Cheers!');

 Writeln('Press Enter');

 Readln;

 age:=30;

end.

The age variable is defined outside the begin…end block by declaring

the data type (Integer), and then it is used by assigning the value

30. Variables can be used as part of expressions like in every other

programming language.

...

begin

 Writeln('Hey Delphi, Cheers!');

 Writeln('Press Enter');

 Readln;

Chapter 2 Basics

19

 age:=age + 10;

end.

Starting with Delphi 10.3 Rio, developers are able to declare variables

inside block codes (inline variables) and assign values directly. The code

now becomes as follows:

...

begin

 Writeln('Hey Delphi, Cheers!');

 Writeln('Press Enter');

 Readln;

 var age:Integer :=30;

end.

The age variable is valid in the specific block of code (begin...end).

In most cases, the compiler is able to infer the type of the variable.

Therefore, the code can be simplified even further, although if you are

making your first steps in Delphi, you may find useful to explicitly declare

the type of the variable as above. The declaration of an inline variable

which allows the compiler to work out the type looks like this:

 var age:=30;

A concept that comes together with variables (and constants) is the

idea of variable scope. This means that variables are not valid and, thus,

cannot be used anywhere in a code base. Instead, there are boundaries.

Typically, in Delphi, the scope is defined by the begin..end block

closest to the declaration of the variable. In all the examples we have

seen so far, we only have the main block of the console application. The

variables are valid within this scope, but also the scope is global in these

cases because there is only one block code.

Chapter 2 Basics

20

As we add more knowledge around how the language works, we will

see that the scope can be limited within a method (procedure/function), a

loop statement, or a class. In some more advanced code, the scope can be

the main block of a try...except/finally..end statement. Outside the scope, a

variable is not recognizable by the compiler.

�Data Types
�Integer
In Delphi, there is a good number of integer types that can be used

depending on how big you expect the number to be, whether you want

to carry the sign or not (signed/unsigned) and the target platform of the

application (Tables 2-1 and 2-2).

Table 2-1.  Platform-Independent Integer Types

Platform-Independent Integer Type

ShortInt (Int8) Signed 8-bit

SmallInt (Int16) Signed 16-bit

Integer (FixedInt) Signed 32-bit

Int64 Signed 64-bit

Byte Unsigned 8-bit

Word Unsigned 16-bit

Cardinal (FixedUInt) Unsigned 32-bit

UInt64 Unsigned 64-bit

Chapter 2 Basics

21

�Char
The Char data type represents a single character. For historical reasons,

when Unicode characters and strings were added to Delphi, a whole range

of char (and string) types was introduced to accommodate the different

requirements of non-Unicode and Unicode characters (and strings). This

led to some confusion among developers.

Modern Delphi development does not really look at such differences

(unless a very old compiler is used), and the data type char can be safely

used in desktop and mobile applications to handle Unicode characters.

Table 2-2.  Platform-Dependent Integer Types

Platform-Dependent Integer Platform Type

NativeInt (Integer) 32-bit (All Platforms) Signed 32-bit

NativeInt (Int64) 64-bit (All Platforms) Signed 64-bit

NativeUInt (Cardinal) 32-bit (All Platforms) Unsigned 32-bit

NativeUInt (UInt64) 64-bit (All Platforms) Unsigned 64-bit

LongInt (Integer) 32-bit (All Platforms)

64-bit (Windows)

Signed 32-bit

LongInt (Int64) 64-bit (iOS, Linux) Signed 64-bit

LongWord (Cardinal) 32-bit (All Platforms)

64-bit (Windows)

Unsigned 32-bit

LongWord (UInt64) 64-bit (All Platforms) Unsigned 64-bit

Chapter 2 Basics

22

�Boolean
Boolean values represent two states: True and False. As in the case of char

type, there are more than one Boolean types to facilitate communication

with other languages and operating systems, but, again, the vast majority of

code does not use them. True Boolean value translates to 1 and false to 0.

�Enumerated Types
Enumerated types need to be defined before used as data types in

variables. They are truly custom data type to fit the needs of the developer.

The values bear no meaning to the compiler and can be used to improve

readability and increase abstraction. Enumerated type can be defined as in

the following examples:

type

 TAnswer = (aYes, aNo);

 TChapter = (cChapter01, cChapter02, cChapter3, cChapter4);

The definition should appear outside the main block..end or an

application or a method. Once they are defined, a variable of TChapter

type is very easily declared:

var

 consent: TAnswer;

 currentChapter: TChapter;

and then we use them as before:

begin

 consent:=aYes;

 currentChapter:=cChapter02;

end.

Chapter 2 Basics

23

�Subrange
Subrange is a very handy data type. It provides the ability to declare data

types as a range (Low..High), and it is related to another (predefined) data

type. The code snippet that follows defines a subrange that represents the

adult ages and some chapters from the TChapter enumerated type:

Type

 TMyCoinsAge = 10..High(Byte);

 TMainPart = cChapter02..cChapter04;

Subranges can also resolve expressions:

type

 TExperimentTemp = -10..3 * (20 + 5);

�Real
This data type represents a floating-point number (decimal) of different

precision. Table 2-3 presents the available real data types in Delphi.

Chapter 2 Basics

24

Ta
bl

e
2-

3.
 F

lo
at

in
g-

P
oi

n
t D

at
a

T
yp

es

Ty
pe

Pl
at

fo
rm

Si
gn

ifi
ca

nt

De
ci

m
al

 D
ig

its
Si

ze
 (B

yt
es

)
No

te
s

Re
al

48
Al

l p
la

tfo
rm

s
11

–1
2

6
Le

ga
cy

 d
at

a
ty

pe

Si
ng

le
Al

l p
la

tfo
rm

s
7–

8
4

Re
al

 (D
ou

bl
e)

Al
l p

la
tfo

rm
s

15
–1

6
8

Ex
te

nd
ed

32
-b

it
In

te
l (

W
in

do
w

s)
10

–2
0

10

Ex
te

nd
ed

32
-b

it
In

te
l (

al
l p

la
tfo

rm
s)

10
–2

0
16

Ex
te

nd
ed

64
-b

it
In

te
l (

Li
nu

x)
10

–2
0

16

Ex
te

nd
ed

Al
l o

th
er

 C
PU

s
an

d
pl

at
fo

rm
s

15
–1

6
8

Co
m

p
Al

l p
la

tfo
rm

s
10

–2
0

8
Le

ga
cy

 d
at

a
ty

pe

Cu
rr

en
cy

Al
l p

la
tfo

rm
s

10
–2

0
8

64
-b

it
in

te
ge

r w
ith

 4

de
ci

m
al

 p
oi

nt
s.

 U
se

d
in

m
on

et
ar

y
ca

lc
ul

at
io

ns

Chapter 2 Basics

25

�Strings
Strings represent a sequence of characters. The transition to Unicode led

to a number of string data types. Similarly to the case of char, modern

development does not consider the different types, and we just use the

type string (unless an older compiler is used or there are other more

specific requirements).

...

var

 name: string;

begin

 name:='Delphi';

 var surname:='Quick Reference Guide';

end.

As you can see from the preceding code, strings in Delphi are enclosed

in single quotes ('').

If you want to print a single quote, then you have to escape it by using

two single quotes (not double quote mark) as in the following example:

begin

 ...

 Writeln('Delphi''s fantastic world!');

 ...

end.

Delphi carries the same philosophy as the original Pascal language in

regard to the index of the first letter of a string; string starts from 1 rather

than 0; but this is only for Windows. When more platforms were added,

the decision was made to revert to the most common indexing style in the

world of software and assign the value 0 to the first character of a string

(except for macOS which uses the Windows convention). Therefore, if you

want to access the first character of name, on Windows you write this:

Chapter 2 Basics

26

Writeln(name[1]);

but on any other platform, you access it this way:

 Writeln(name[0]);

This approach means that you need to differentiate the code based on

the platform you are compiling. There is another way to go around this.

You can use the function Low to allow the compiler to figure out the correct

starting index:

Writeln(name[low(name)]);

The manipulation of strings (e.g., concatenating, extracting substrings,

finding the position of a substring, etc.) is supported in all platforms by

simple calls to methods. For example, if you want to find the position of a

substring in a given string, the following call will do the job and return 14

on Windows and 13 on all other platforms:

Writeln(Pos('Reference', 'Delphi Quick Reference'));

Although this code works, in the cross-platform world, the use of

standard methods to manipulate strings is not recommended. Instead,

Delphi comes with a new set of methods optimized for speed and platform

compatibility and goes under TStringHelper in System.SysUtils unit.

These methods are accessed using the dot notation (.) on a string.

Therefore, the preceding code now becomes

 Writeln('Delphi Quick Reference'.IndexOf('Reference'));

Due to the fluent approach (dot notation), several methods can be

chained to manipulate strings. For example, check this code snippet:

Writeln('Delphi Quick Reference'

 .Substring(0,'Delphi'.Length)

 .ToUpper);

Chapter 2 Basics

27

This code first applies the SubString methods on 'Delphi Quick

Reference' string starting from index 0. It extracts as many characters as

the length of string 'Delphi' using the Length method. Then, it converts

the extracted part to uppercase using ToUpper method and prints out the

word DELPHI.

As mentioned, TStringHelper is the modern approach to string

manipulation, and it should replace the use of older methods as they may

be deprecated in future versions (Embarcadero, 2015).

�Sets
Sets are an extremely convenient way to manage groups of elements of the

same data type. A set is defined in relation to an enumerated data type.

Earlier when we discussed enumerated types, we defined TChapter. Now,

we need a set to represent the chapters we have read. We do this with the

following declarations:

type

 TChapter = (cChapter01, cChapter02, cChapter3, cChapter4);

 TChaptersRead = set of TChapter;

var

 progress: TChaptersRead;

begin

 progress:=[cChapter01, cChapter02];

end.

This time we declare TChaptersRead to represent a set of chapters, and

we assign the progress variable to this particular type. Then, populating

progress with chapters is a very simple step.

In fact, the power of sets becomes apparent when we consider

the easiness of manipulating that comes with the use of addition and

subtraction operators.

Chapter 2 Basics

28

Consider the case of user permissions. We want to create a group of

users and assign permissions like create a user, read the details of a user,

update user’s details, and delete a user. We declare the enumerated types:

type

 TPermission = (pCreate, pRead, pUpdate, pDelete);

 TGroup = set of TPermission;

Next, we define a new variable to hold TGroup data:

var

 admin: TGroup;

Now we clean the group (although it is not necessary):

 admin:=[];

Then, we are ready to add permissions to the admin group:

begin

 admin:=[];

 admin:=admin + [pCreate];

 admin:=admin + [pUpdate..pDelete];

end.

As the code illustrates, the addition of new permissions is very simple,

and the code is highly readable.

If we need to check whether a permission exists in admin group, we can

use the in operator:

writeln(pCreate in admin);

�Arrays
Arrays in programming languages are sequences of elements of the

same type. The order of the elements is defined by an index, and the first

element is at index 0 (zero-based arrays). In Delphi, arrays can be declared

in two ways depending on whether the size of the array is known or not.

Chapter 2 Basics

29

When you know the size of the array, you can declare it as follows:

var

 arrStatic: array[0..9] of string;

This type of array is called static array, and you can straightaway access

the elements of the array by referring to their indices:

begin

 arrStatic[0]:='Delphi';

 arrStatic[4]:='Quick Reference';

end.

Note that the elements in the array contain arbitrary values; do not

assume that they are empty (whatever this means for the type of data the

array holds).

Static arrays need not be of one dimension; Delphi supports

multidimensional arrays by concatenating arrays as in the following snippets:

var

 arrDual: array[0..9] of array[0..9] of string;

 arrDualAlt: array[0..9, 0..9] of string;

 arrMulti: array[0..9, 0..9, 0..9] of string;

Both 2x2 declarations work and are equivalent. As you can see in the

code, you can have truly multidimensional arrays, and the elements can

be accessed by attaching the dimension indices one next to the other. For

example, if we want to access the third element, in the second row at the

seventh position of arrMulti, we write

arrMulti[3][2][7]:='Multidimensional Array';

or simply

 arrMulti[3, 2, 7]:='Multidimensional Array';

Chapter 2 Basics

30

If you are not able to determine the size of the area beforehand, you

can define a dynamic array of a specific type by omitting the indices:

var

 arrDynamic: array of string;

Because arrDynamic is a dynamic array, we need to specify the size of

the array before we access any elements. We do this with SetLength:

 SetLength(arrDynamic, 10);

 arrDynamic[0]:='Delphi';

If you don’t use SetLength, any attempts to access the elements of

the array will generate an error because memory slots are not yet being

allocated.

Similar to multidimensional static arrays, multidimensional dynamic

arrays can be declared.

var

 arrDynamicMulti: array of array of String;

Again, the length needs to be defined before you attempt to access the

elements.

begin

 SetLength(arrDynamicMulti, 10, 10);

 arrDynamicMulti[5][3]:='Quick Reference';

 Writeln(arrDynamicMulti[5][3]);

end.

A very interesting implication of static and dynamic arrays is that

you can combine them and declare an array with one or more known

dimensions and other unknown ones. For example, the following first

statement defines a ten-element array which has expandable number of

strings per element. Similarly, the second statement declares an array of

unknown number of elements of ten strings:

Chapter 2 Basics

31

var

 arrMixed: array[0..9] of array of string;

 arrMixedReverse: array of array[0..9] of string;

You access the elements by setting the correct length first as we did before:

 SetLength(arrMixed[0], 10);

 arrMixed[0][5]:='Delphi';

 SetLength(arrMixedReverse, 10);

 arrMixedReverse[3][5]:='Quick Reference';

An alternative way to declare an array is to create a new data type:

type

 TMixedArray = array[0..9] of array of string;

Then, you define a new variable of this type and use it as normal:

var

 arrMixedAlt: TMixedArray;

begin

 SetLength(arrMixedAlt[3], 10);

 arrMixedAlt[3, 3]:='Delphi';

end.

�Records
Records (or structures as they are called in other languages) provide the

ability to group elements (fields) of different types together. We define a

record in the types section, and then we declare a variable.

type

 TBook = record

 Title: string;

 Pages: Integer;

 end;

Chapter 2 Basics

32

var

 thisBook: TBook;

begin

 thisBook.Title:='Delphi Quick Reference Book';

 thisBook.Pages:=100;

end.

Records are very useful when you have data structures with common

fields and additional fields that depend on conditions. In the TBook

example, we can have different formats of a book: a hard copy and a PDF

version. In the first case, we care to know whether the book is in stock, and

in the second case, we need to provide a download URL. In this scenario, it

is obvious that the two cases are mutually exclusive; when you have a hard

copy, you do not need the download URL.

We declare a new data type to differentiate the different book formats,

and then we use the case statement within the record declaration. Note

that if a field of string type is declared in the case options, you need to

provide the length of the string.

type

 TBookFormat = (bfHardCopy, bfPDF);

 TBook = record

 Title: string;

 Pages: Integer;

 case Format: TBookFormat of

 bfHardCopy: (InStock: Boolean);

 bfPDF: (DownloadURL: string[100]);

 end;

Then, we use Format to activate the different fields.

begin

 thisBook.Title:='Delphi Quick Reference Book';

 thisBook.Pages:=100;

Chapter 2 Basics

33

 thisBook.Format:=bfHardCopy;

 thisBook.InStock:=true;

 thisBook.Format:=bfPDF;

 thisBook.DownloadURL:='http://';

end.

Records share some common functionality with classes—but they

are not the same. Records have a default constructor that is called

automatically whenever the record is used. However, records do not

implement destructors.

To demonstrate the use of constructors, let’s declare a record that

generates a password. We want to be able to pass a salt value (which in

fact will not do anything meaningful in this example but will get the point

across). Note that when you define new record constructors, they must

carry a parameter; in other words, you cannot have a parameter-less

constructor in records, and you cannot override the default one.

type

 TRandomPassword = record

 Password: string;

 public

 constructor Create (const aSalt: string);

 end;

constructor TRandomPassword.Create(const aSalt: string);

begin

 inherited;

 Password:=aSalt + '$%HJKFbmnmn';

end;

var

 password: TRandomPassword;

Chapter 2 Basics

34

begin

 password:=TRandomPassword.Create('123');

 writeln(password.Password);

end.

Earlier I mentioned that you cannot override the default parameter-

less constructor and that records do not have destructors. Delphi 10.4

introduced a feature called custom managed records. Although you are

not able to override the default constructor and destructor, you can

add initialization and finalization code via the relevant operators. The

following code shows how custom managed records work. First, we

declare the Initialization and Finalization operators.

type

 TRandomPasswordCustom = record

 Password: string;

 public

 class operator Initialize (out Dest: TRandomPasswordCustom);

 class operator Finalize (var Dest: TRandomPasswordCustom);

 end;

class operator TRandomPasswordCustom.Initialize (out Dest:

TRandomPasswordCustom);

begin

 Dest.Password:='$%HJKFbmnmn';

end;

class operator TRandomPasswordCustom.Finalize (var Dest:

TRandomPasswordCustom);

begin

 Writeln('Record is finalised')

end;

Chapter 2 Basics

35

Initialization and Finalization are special types of methods

(operators). Note that they both need a reference to the record itself via the

Dest parameter.

We use TRandomPasswordCustom the usual way as with the classic

records.

var

 customPassword: TRandomPasswordCustom;

begin

 ...

 // *** This works in Delphi 10.4 and above ***

 Writeln('Custom Record Password: ' +

 customPassword.Password);

end.

If you run the code, Password is automatically initialized to the desired

value. We do not need any extra steps when we use the record in our code.

�Pointers
The declaration of variables, the association to specific data types, and the

ability to access the value of the variable at specific memory address are

all left to the compiler. It is pretty much what is happening under the hood

when variables are used—and they are used a lot. In the vast majority of

programming—even in complex programming—this is more than enough;

it is efficient and productive.

However, there are cases that can be achieved by directly accessing

the memory where the value of a variable is stored instead of allowing the

compiler to manage this. Such cases are achieved by declaring a pointer

variable (pointers).

In the part with the records, we declared password, a variable to hold

an instance of TRandomPassword. Let’s find out the address of the variable.

Chapter 2 Basics

36

var

 password: TRandomPassword;

 passAddress: Pointer;

begin

 password:=TRandomPassword.Create('123');

 ...

 passAddress:=@password;

 writeln(integer(passAddress).ToHexString);

end.

We first declare passAddress, a pointer variable, and point it to the

address of password. This is achieved by using the @ (address) operator.

Instead of @, you can use the method Addr. When you run the code, you

will see the address in hex format (004FA7E0 in my system).

There is much more into pointers as the topic is very complicated and

yet very powerful. This is an introductory book, and, therefore, diving into

pointers is out of its scope. There are many good resources available online

with this blog post (Velthuis, 2019) by late Rudy Velthuis, a legendary figure

in Delphi world, being one of the best explanations available.

�Variant
In the beginning of this chapter, we saw that Delphi is a strongly typed

language, meaning that a variable is declared to represent a specific data

type. The Variant data type circumvents this requirement and allows

developers to assign different types of data that are being automatically

converted at runtime.

Consider the following:

var

 flex: Variant;

begin

 flex:= 30;

Chapter 2 Basics

37

 Writeln('Flex as integer: ', flex);

 flex:= 'Thirty';

 Writeln('Flex as string: ', flex);

end.

We declare flex as Variant, and in the beginning, we assign an

integer. Then, we are able to assign a value of a totally different type.

Variants, although flexible structures, are slow, and they should not be

used widely or as a replacement to proper variable declarations. They are

used for specific purposes (e.g., COM programming on Windows) and,

as with pointers, require some level of expertise and experience to utilize

them safely.

�Generics
Generic programming allows the declaration and manipulation of

variables by not specifying the exact type until needed. The biggest

advantage of such approach is that algorithms can be created in an

abstract (generic) way that works with a number of data types. This is an

attempt to reduce duplication. This concept is found under the same term

in other languages. Additionally, the terms template and parameterized

types are also common.

We define generics using a set of angle brackets (<T>), where T is used

to define the exact data type of interest. The letter T is more a convention

than a requirement. As an example, let’s look at the declaration of the

dynamic arrays we used earlier and how we can take advantage of

generics.

We declared arrStatic as in the following lines:

var

 arrDynamic: array[0..9] of string;

Chapter 2 Basics

38

In a more generic way, we would write:

var

 genArray: TArray<string>;

We declare genArray to be of TArray<string> type. Then, we would

treat genArray as we would treat a classic dynamic array. Delphi comes

with a number of predefined types of arrays for different data types

(e.g., TStringDynArray, TBooleanDynArray, etc.), and we can declare

multidimensional arrays by declaring the generic type T to be of another

array. In the following example, arrTypedDual demonstrates how this can

be done:

var

 arrTyped: TArray<string>; // or, arrTyped: TStringDynArray

 arrTypedDual: TArray<TArray<string>>;

begin

 SetLength(arrTyped, 10);

 arrTyped[3]:='Typed';

 SetLength(arrTypedDual, 10, 10);

 arrTypedDual[5, 5]:='Typed Dual';

end.

The real advantage of generics comes when we combine them with

records (and classes). We are going to implement a record that receives a

generic data type and logs (prints out) the type of the generic.

Let’s declare the record which has only one method.

type

 TLogType<T> = record

 procedure logType;

 end;

Chapter 2 Basics

39

procedure TLogType<T>.logType;

begin

 ...

end;

I have omitted the actual implementation for two reasons: firstly,

we have not talked yet about methods in Delphi and, secondly, printing

out the type of T requires some deeper knowledge of Run-Time Type

Information (RTTI). It is not as complicated as it sounds as this is done,

literally, in one line. At this stage, it would only destruct us from focusing

on generics. In the code that comes with the book, you can find the full

implementation.

Having declared TLogType<T>, we define variables that pass different

data types to TLogType.

var

 logInteger: TLogType<integer>;

 logString: TLogType<string>;

 logRandomPassword: TLogType<TRandomPassword>;

begin

 logInteger.logType;

 logString.logType;

 logRandomPassword.logType;

end.

The preceding code will print the types of logInteger, logString,

and logRandomPassword (Integer, String, TRandomPassword). As you can

observe, it has significantly increased the reusability of our code.

Generics is a very flexible feature, and there is way more that you can do

with them. For a more detailed discussion, visit the relevant wiki page in this

source (Embarcadero, 2015) and read Nick Hodges’s book (Hodges, 2014).

Chapter 2 Basics

40

�Constants
Constants are values that coders define, and they remain unchanged

during the execution of an application. In Delphi, constants are defined

using the const keyword and the equal sign:

const

 PUBLISHER = 'Apress';

You can include expressions in constants that can be resolved by

the compiler; that is, they can be evaluated without the execution of the

program. Examples of constants with expressions can be seen in the

following snippet:

const

 EXTENDED_SHIFT = 12;

 WAGE_PER_HOUR = 10;

 NORMAL_DAILY_WAGE = NORMAL_SHIFT * WAGE_PER_HOUR;

 EXTENDED_DAILY_WAGE = EXTENDED_SHIFT * WAGE_PER_HOUR *

 1.30;

More complex constants that include arrays and records can be

defined, but the data types need to be explicitly declared.

const

 CHAPTER_TITLES : array[0..2] of string =

 ('Introduction','Chapter 1','Chapter 2');

On a more technical note, when a constant is declared, Delphi reserves

the required memory slot, and then it treats it as a variable. This means

that you can change the value of a constant in the code. This may defeat

the concept of a constant, but it is not uncommon in programming

languages. In the C-family languages, this treatment is called static

variable.

Chapter 2 Basics

41

�Comments
There are four ways to add comments to the code:

•	 Using //: This type of comment is interpreted as a line

comment; that is, anything after this is discarded by the

compiler.

•	 Using (*..*): This is a multiline comment identifier.

•	 Using {..}: This is also a multiline comment identifier.

•	 Using ///: This is a special type of comments

(documentation comments) and is used to document

the code in such way that the IDE and documentation

software understand. In order to work, it follows

specific structure and pattern.

Comments are ignored by the compiler and can appear anywhere in

a Delphi unit. The use of (*..*) and {..} allows for multiline and nested

comments as in the following example:

// Line comment

{ Some other comment}

(* Yet another comment type *)

(* Comments in

 Multiple lines

 { and in multiple levels }

*)

Chapter 2 Basics

42

�Summary
In this chapter, we looked at the most fundamental elements that define

Delphi—variables, data types, constants, and comments—and discussed

some ways to use them. The next chapter focuses on ways to control the

order of execution.

�References
Embarcadero, 2015. Overview of Generics. [Online] Available at: http://

docwiki.embarcadero.com/RADStudio/Sydney/en/Overview_of_

Generics [Accessed 03 06 2020].

Embarcadero, 2015. System.SysUtils.TStringHelper. [Online] Available

at: http://docwiki.embarcadero.com/Libraries/Sydney/en/System.

SysUtils.TStringHelper [Accessed 03 06 2020].

Hodges, N., 2014. Coding in Delphi. s.l.:Nepeta Enterprises.

Velthuis, R., 2019. Addressing Pointers. [Online] Available at: http://

rvelthuis.de/articles/articles-pointers.html [Accessed 27 04 2020].

Chapter 2 Basics

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Overview_of_Generics
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Overview_of_Generics
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Overview_of_Generics
http://docwiki.embarcadero.com/Libraries/Sydney/en/System.SysUtils.TStringHelper
http://docwiki.embarcadero.com/Libraries/Sydney/en/System.SysUtils.TStringHelper
http://rvelthuis.de/articles/articles-pointers.html
http://rvelthuis.de/articles/articles-pointers.html

43© John Kouraklis 2020
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_3

CHAPTER 3

Looping, Conditional
and Jump Statements
�Loops
Loops allow a chunk of code to be executed as long as a control condition

is valid (true) or for specific number of iterations. In Delphi, you manage

loops either by using a while, a repeat, or a for statement.

�While Statement
A while..do statement executes the designated code as long as the

condition that appears between the keywords while and do (control

condition) is true. The evaluation of the control statement is done in the

very beginning of the loop, which means that the relevant code may or

may not be executed at all.

var

 whileControl: Integer;

begin

 whileControl:=0;

 while whileControl <=10 do

https://doi.org/10.1007/978-1-4842-6112-5_3#DOI

44

 begin

 writeln(whileControl);

 whileControl:=whileControl + 1;

 end;

end.

In the preceding code, the while loop first evaluates the expression

whileControl<=10, and if true it goes ahead and executes the statements

in the begin..end block. If you change the initial value of whileControl to

anything bigger than 10, the code in the begin..end will not be executed.

There are two points to emphasize. Firstly, in while loops, we can

change the control variable (whileControl) because the control condition

is evaluated at the beginning of every iteration. Secondly, in while loops,

the code that is executed is the statement that appears immediately after

the do keyword. In the following code, only the writeln(whileControl)

will be executed:

begin

 whileControl:=0;

 while whileControl <=10 do

 writeln(whileControl);

 whileControl:=whileControl + 1;

end.

Consequently, the control variable will never be incremented and

the while loop will never stop. To deal with this, we use a begin..end

block as in the first example. In general, the use of such blocks is good

programming practice; it costs nothing in terms of compiling load, and it

makes the code far more readable.

Chapter 3 Looping, Conditional and Jump Statements

45

�Repeat Statement
A repeat..until statement executes the designated statements that

appear between the keywords repeat and until as long as the control

statement is not true. In other words, the iterations stop when the control

statement is true. The control statement follows the until keyword. The

direct implication of this construct is that the code is executed at least once

before the control condition is evaluated.

As an example, let’s use the same condition we used in the case of the

while statement:

begin

 whileControl:=0;

 repeat

 writeln(whileControl);

 whileControl:=whileControl + 1;

 until whileControl<=10;

end.

In the beginning, the control variable is 0. The code enters the repeat

block and executes the two lines of code until it hits the until keyword.

Then, it evaluates the whileControl<=10 statement. In this very first

iteration, the statement is true and, therefore, the iterations finish. As a

result, the code is executed only once.

If we change the control condition to whileControl>=10, the code

will run a number of times. As mentioned earlier, the evaluation is done

at the end of the first pass. This makes the loop to be executed 10 times

rather than 11 as in the case of while. This is a consequence of the way

the control statements are evaluated. Another difference with the while

statement is that all the statements that appear in the repeat..until block

will be executed.

Chapter 3 Looping, Conditional and Jump Statements

46

�For Statement
The For statement executes statements the exact number of iterations you

specify. You do this by providing an initial and a final value to a counter

variable instead of explicitly declaring the number of iterations. For

example, if you want a block of code to run 10 times, you pass to for the

initial value of 1 and the final value of 10. The code will run

finalValue – initialValue + 1 times

or, 10 – 1 + 1 = 10 times

If the final value is smaller than the initial value, then the for loop is

not executed at all. The next code chunk shows how for is used:

var

 forControl: integer;

begin

 for forControl := 1 to 10 do

 writeln(forControl);

end.

Note that we need to declare the control variable the usual way we

follow for every other variable; that is, by declaring it outside the main

begin..end block. The data type of this variable must be the same as or

assignment compatible to the structure you iterate. For example, if you

iterate through integers, the control variable must be declared as integer.

Delphi 10.3 introduced inline variables, and this opened the possibility to

use them in a for loop as follows:

for var newForControl := 1 to 10 do

 writeln(newForControl);

In order to make a for loop execute in the case you have smaller final

value than the initial one, then use the keyword downto instead of to.

Chapter 3 Looping, Conditional and Jump Statements

47

 for forControl := 10 downto 1 do

 Writeln(forControl);

The number of iterations is evaluated at the beginning of the loop

and only once, and you are not allowed to change the value of the control

variable (forControl) within the for loop.

When you iterate more complex structures like arrays or collections,

you can use the very convenient in syntax as you can observe in the

following lines:

var

 forArray: array[0..9] of Integer =

 (10,20,30,40,50,60,70,80,90,100);

 forINControl: integer;

begin

 for forINControl in forArray do

 writeln(forINControl);

end.

We declare an array which can be either static or dynamic. For

simplicity, I declared and initialized a static array in this example. Then,

we need the variable forINControl to use in the for loop. The variable

must be of the same data type as the elements of the array or the collection

(integer). Finally, the for..in form is used to iterate through the

elements of the array.

In Delphi 10.3 and above, the inline variable declaration can also be

used as shown in the following example. With this approach, you do not

have to declare the type of the control variable because the compiler is

able to infer it automatically.

for var newForINControl in forArray do

 writeln(newForINControl);

Chapter 3 Looping, Conditional and Jump Statements

48

�Conditional Statements
Conditional statements allow the execution of code when a statement (or

condition) is true, following the usual pattern we saw in while and repeat

statements. In Delphi, conditional statements take the form of if or case

statements.

�If Statement
In its simplest form, If statements follow the natural language: if

something is valid, then this happens.

var

 grade: integer;

begin

 grade:=10;

 if grade > 5 then

 Writeln('Greater than 5');

end.

In this case, the expression grade > 5 is true, and the next line is

executed. If executes only the next line of code; thus, if more lines need to

run when the expression is valid, you need to use a begin..end block as in

the following example:

if grade > 5 then

begin

 writeln('Greater than 5');

 writeln('You pass');

end;

Chapter 3 Looping, Conditional and Jump Statements

49

Following the natural language analogy, the statement can be

expanded to include the alternative course of action: if something is valid,

then this happens; otherwise something else happens. This otherwise

branch is implemented in Delphi with the else keyword.

if grade > 5 then

begin

 writeln('Greater than 5');

 writeln('You pass');

end

else

 writeln('You fail');

Note that the statement right before else should not end with a

semicolon (;). You can freely nest if-then-else statements to cover cases

relevant to your code as in the following snippet:

if grade > 5 then

begin

 writeln('Greater than 5');

 writeln('You pass');

end

else

begin

 if grade = 5 then

 writeln('This is borderline pass')

 else

 if grade >=3 then

 writeln('This can be improved easily')

 else

 writeln('This is of very poor quality');

end;

Chapter 3 Looping, Conditional and Jump Statements

50

�Case Statement
A case statement is an alternative approach to if statements and provides

a more readable form of selecting routes of action based on an expression.

However, if is much more flexible in terms of what sort of expressions you

can have. Case selects a path if the expression is of ordinal type, that is, the

possible options can be somehow presented in an order. The previous if-

then-else statements with the grade can, now, be expressed as follows:

begin

 case grade of

 0..2: writeln('This is of very poor quality');

 3..4: writeln('This can be improved easily');

 5: writeln('This is borderline pass');

 else

 begin

 writeln('Greater than 5');

 writeln('You pass');

 end;

 end;

end.

We have put the grades in order and took appropriate action for each

level of grade. As it is demonstrated, you can have a single ordinal value

(e.g., 5) or a range of values (e.g., 0..2). Case supports an optional else

branch to allow you to cover a range of options in a collective way. Note

that each option should include one and only statement or a block of

statements wrapped with begin..end.

Practically, the only data types you cannot use in a case expression are

strings and very long integers (64-bit). For the strings, there is a very useful

method named IndexStr in System.StrUtils unit. It receives a string and

an array of strings as parameters and returns the index of the array element

that matches the string.

Chapter 3 Looping, Conditional and Jump Statements

51

case IndexStr('Pass', ['Fail', 'Pass', 'Honors']) of

 0: writeln('You fail');

 1: writeln('You pass');

 2: writeln('You pass with honors');

end;

IndexStr will look for the value Pass in the array of the string (Fail,

Pass, Honors) and return the relevant index, which is 1 in this case. Then,

the case statement will execute the code linked to this index. This is an

example that shows how to convert arbitrary values to ordinal values.

�Jump Statements
Jump statements are commands that allow you to change the flow of the

execution of your code. They usually appear in loop statements (while,

repeat, for). In Delphi, there are four such statements: exit, break,

continue, goto.

�Exit Statement
When an exit statement is triggered, the code leaves the current execution

block. If it is in the main execution block, the application ends. In

procedures and functions, exit statement will cause the execution of the

code to return to the point where the procedure or the function was called,

as we will see in the next chapter.

begin

 if grade = 5 then

 Exit;

end.

Chapter 3 Looping, Conditional and Jump Statements

52

�Break Statement
A Break statement inside a loop causes the loop to stop and the code to

resume at the point right after the last statement of the loop.

var

 loopVar: integer;

begin

 loopVar:=0;

 while loopVar<=10 do

 begin

 if loopVar = 3 then

 Break;

 loopVar:=loopVar + 1;

 end;

 writeln(loopVar);

end.

In the preceding code, the while loop is set to run until loopVar

reaches the value of 10, but the break statement will interrupt it when the

variable goes to 3.

�Continue Statement
Continue is similar to Break in the sense that it breaks a loop and does not

allow more lines to be executed. The difference is that it does not cause the

execution of the code to leave the loop, but instead it moves the execution

to the next iteration. The following code will skip value 3 because when

loopVar is equal to 3, continue takes the execution back to the while

statement to allow the next iteration.

Chapter 3 Looping, Conditional and Jump Statements

53

var

 loopVar: integer;

begin

 while loopVar<=10 do

 begin

 loopVar:=loopVar + 1;

 if loopVar = 3 then

 Continue;

 writeln(loopVar);

 end;

end.

�Goto Statement
Goto statement is another way to alter the normal execution flow of the

code and direct it elsewhere. In order to use goto, you need to define a

label using the label keyword outside the begin..end block.

var

 loopVar: integer;

label

 outsideWhile;

begin

 loopVar:=0;

 while loopVar<=10 do

 begin

 loopVar:=loopVar + 1;

 if loopVar = 3 then

 goto outsideWhile;

 writeln(loopVar);

 end;

Chapter 3 Looping, Conditional and Jump Statements

54

outsideWhile:

 writeln('Now outside while with a goto statement');

end.

When loopVar reaches the value of 3, goto will redirect the execution

to outsideWhile label, and thus the last writeln statement will be

executed.

The use of labels to redirect the execution of code is not considered a

modern programming approach; in fact, the use of goto today indicates

bad programming practices and code of low quality. Delphi supports it

due to legacy ties to traditional Pascal.

�Summary
This chapter offered a review of the most commonly used statements to

support and control the execution of code. It visited loops and conditional

and jump statements—all very important elements to develop more

structured and meaningful code. In the next chapter, we look at how

procedural programming is implemented in Delphi and ways to write

more complex code.

Chapter 3 Looping, Conditional and Jump Statements

55© John Kouraklis 2020
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_4

CHAPTER 4

Procedures
and Functions
Modular programming in Delphi is implemented by handling two types

of routines (or methods): procedures and functions. The two types have

many similarities and one difference; functions return a value to the

point of call. The idea is that the code uses this value to proceed with the

algorithm it implements. Procedures just execute the code. This is the rule;

however, as we will see, there is a way to use procedures to modify values

at the point of call.

�Declaration
In practice, this difference may become blurry as you can call a function

and just ignore the return value, and, as a matter of fact, you can call a

procedure and modify a value, a behavior which is caused by a function.

A procedure is declared with the procedure keyword and a function

with the function keyword followed by the name you give. The name

follows all the standard conventions in Delphi.

Procedures and functions that appear in the interface section in a unit

are accessible in units that refer to this particular one. The implementation

section holds the actual code for those procedures and functions.

Procedures and functions can also be declared and implemented only in

https://doi.org/10.1007/978-1-4842-6112-5_4#DOI

56

the implementation section, but they are only accessible in this particular

unit. In all other cases where you add code directly to the project file (e.g.,

console applications), the declarations and the code come together.

You can declare a procedure like this:

procedure simpleProc;

begin

 Writeln('This is the simplest procedure ever');

end;

Then, you invoke it by simply referring to its name as in the following

code snippet:

begin

 simpleProc;

end.

A function is declared in a similar way, but you need to define the data

type it returns:

function isNetworkAvailable: Boolean;

begin

 // Use some code to determine if network is available

 Result:=true; // or false

end;

In this example, the function returns a Boolean type (true or false).

Delphi declares result, a very specific variable to capture the return

value from a function. Every function should modify result; otherwise,

the return value is undefined and may lead to unexpected effects in more

complex code base. The result of the function can be assigned in a variable

or can be used anywhere the specific return data type is needed as in the

following if statement:

Chapter 4 Procedures and Functions

57

var

 netExists: Boolean;

begin

 netExists:=isNetworkAvailable;

 if isNetworkAvailable then

 Writeln('Network is available')

 else

 Writeln('There is no network available');

end.

As mentioned elsewhere, you can call a function without caring about

the return value; just use the name to invoke it. This is a perfectly valid

statement in Delphi, but the compiler issues a warning to let you know.

�Parameters
The idea of routines in programming is that there is code that can

be reused under different conditions because the algorithm that it

implements is the same. The conditions are passed to routines in the form

of parameters (or arguments as they are often called) and, in Delphi, they

are enclosed in parentheses right after the name of the routine. As it can

be seen in the previous examples, parameters are not necessary to declare

routines. The next lines declare a procedure and function with parameters:

procedure updateLogs(logMessage: string);

begin

 // Normally you have some more sophisticated log container

 // This simple implementation is for demonstration

 Writeln(logMessage);

end;

function getLanguage(country: string): string;

begin

Chapter 4 Procedures and Functions

58

 if country = 'UK' then

 Result:='English';

end;

When a method takes more than one parameter, you declare them one

after the other separated by a semicolon (;) as in the following cases:

procedure updateLogs(logMessage: string; logType: TLogType);

function getLanguage(country: string; showMostUsed: boolean):

string;

If your adjacent parameters are of the same type, then Delphi offers a

less verbose way to declare them; you can separate them with a comma

(,) before you declare the data type. The following declarations are

equivalent:

procedure updateLogs(logMessage: string; logPrefix: string;

logType: TLogType);

procedure updateLogs(logMessage, logPrefix: string; logType:

TLogType);

The way to call them is exactly the same:

updateLogs('Image is not found', 'WARN', ltWarning);

The order of the parameters is important in terms of the data type they

declare and must be followed when you call the methods. For updateLogs,

the first parameter you pass must be of string value and the second of

TLogType, whereas for getLanguage, the first must be a string and the

second boolean.

updateLogs('There is an error', ltError);

Writeln(getLanguage('UK', true));

Chapter 4 Procedures and Functions

59

As we have already seen, parameter-less methods can be invoked

by simply using their names. In Delphi, you can include a set of empty

parentheses; in practice, it does not make any difference, and it is a

convention to omit them.

simpleProc;

simpleProc(); // Equivalent calls

�The Nature of Parameters
By now, we have recognized the need to declare the data type of the

parameters. In Delphi, you can tweak the nature of the parameters in

terms of how the compiler passes them from the point a method is called

to the method itself. There are a number of options as discussed in the

following sections.

�Classic Parameters

The most typical and classic (default) way to pass parameters is just to

declare the name and the data type. This is what we have done so far. In

this instance, the compiler passes the parameters by value, which means

that a copy of the value is passed to the method. Consider the following

example:

procedure add100Classic(value: integer);

begin

 value:=value + 100;

 Writeln('The value in the procedure is ', value);

end;

var

 value: integer;

begin

 value:=100;

Chapter 4 Procedures and Functions

60

 add100Classic(value);

 Writeln('The value in the main block is ', value);

end.

This code shows that the value is 200 in the procedure, but it reverts

back to 100 outside it. This is because the compiler passes a copy of value

to add100, and therefore the addition of 100 affects the variable only within

the context of the procedure. This is also a good example of the scope of a

variable.

�Constant Parameters

Prefixing the declaration of a parameter with the keyword const tells the

compiler that the parameter is not to be altered inside the method. It

behaves like a local constant. This means that the following code does not

compile:

procedure add100Const(const value: integer);

begin

 value:=value + 100; // This does not compile

 Writeln('The value in the procedure is ', value);

end;

This is the rule but there are some exceptions. If the parameter is

an object or a dynamic array, then const doesn’t stop you from being

able to modify the parameter. This has to do with the way the different

compilers pass the parameters. In general, it is advisable to use const with

parameters for two reasons: first, the compiler optimizes the generated

code, and second, it prevents you from mistakenly modifying values when

you should not.

Chapter 4 Procedures and Functions

61

�Variable Parameters

When you pass a parameter to a method with the var prefix, the method

can change the value of the parameter.

procedure add100Var(var value: integer);

begin

 value:=value + 100;

 Writeln('The value in the procedure is ', value);

end;

Now, the same code as in the classic approach shows that the value

parameter is modified within add100Var.

�Out Parameters

The only difference between var and out is that the latter simply tells the

compiler to ignore any previous values of the parameter and clear it out.

Then, it proceeds with any modifications that take place in the method.

procedure add100ToString(out value: string);

begin

 value:=value + '100';

 Writeln('Out: The value in the procedure is ', value);

end;

var

 valueStr: string;

begin

 valueStr:='300';

 �Writeln('Out: The value in the main block before the

procedure is ', valueStr);

 add100ToString(valueStr);

 Writeln('Out: The value in the main block is ', valueStr);

end.

Chapter 4 Procedures and Functions

62

In this case, add100ToString ignores the value valueStr has when it

enters the procedure and assumes it is an empty string. Then, it just adds

the 100 string, which is what the main block accessed at the return point of

the procedure.

There is more to the out parameters depending on the type of data the

procedure expects, but it goes beyond the scope of this book. You can find

more in the official documentation (Embarcadero, 2016).

The cases of var and out show that the boundaries between functions

and procedures can get blurry. Normally, you would expect to use a

function to return a modified value which is then consumed in the code,

but now even procedures can provide variables that are altered within

them. Equally, you can have functions that modify variables using var and

out in their parameter list and, yet, return one more value as they normally

do. This opens the possibility to construct functions that return more than

one value.

�Default Values of Parameters
Every parameter of every type and nature can have a default value

(with a few exceptions) flagging the parameter as optional. You define

default values by using the assignment symbol (=) within the parameter

declaration as in the following example:

function addValue(const Value: integer; const Increment:

integer = 100): Integer;

begin

 result:=Value + Increment;

end;

Chapter 4 Procedures and Functions

63

begin

 Writeln('Default increment of 100 to 200: ',

 addValue(200));

 Writeln('Custom increment of 500 to 200: ',

 addValue(200, 500));

end.

If more than one optional parameter is declared, access to subsequent

parameters requires you to add values to earlier parameters despite

the existence of default values. This means you cannot skip parameters

with default values when you call a procedure or a function. Suppose we

declare the following function:

function moreThanOneDefault(const Value: integer;

 const Iterations: Integer = 3;

 const Increment: integer = 100):

 integer;

var

 num: Integer;

begin

 Result:=Value;

 for num := 1 to Iterations do

 Result:=result + Increment;

end;

The idea is that there are default values for the Iterations and the

Increment step. If I want to pass a different increment step than the

default, I need to provide a value for the Iterations parameter; I cannot

simply skip it.

Writeln('Default increment of 100 for 3 iterations: ',

 moreThanOneDefault(0));

Writeln('Custom increment of 500 for default iterations: ',

 moreThanOneDefault(0, 3, 500));

Chapter 4 Procedures and Functions

64

�Interrupting the Normal Execution
As suggested in the previous chapter, a call to Exit at any stage in a

procedure or a function interrupts the normal execution of the method,

and the code returns to the point of call of the method. The use of Exit is

exactly the same as we have already seen in the previous chapter.

If Exit is called in a function, a parameter that matches the return type

of the function can be passed as in the following example. If the function is

declared as

function exitFunc: string;

then exiting and passing a result value can take place in the following form

of Exit:

function exitFunc: string;

begin

 Exit('Just Exited the Function');

end;

�Nested Methods
Procedures and functions can be declared (nested) within other

procedures or functions. This is a situation we encounter often in recursive

algorithms. Nested methods can be useful in a number of occasions.

The declaration follows the same rules, but they need to be declared

and defined before the main begin..end block of the host method. Then,

they can be called normally. Note that they are relevant and recognizable

only within the scope of the host method.

As an example, the following procedure calculates the average of

integers using a nested function:

Chapter 4 Procedures and Functions

65

function calculateAverage(const Values: array of Integer):

 double;

 function calculateSum: Integer;

 var

 num: Integer;

 begin

 Result:=0;

 for num := 0 to Length(Values) - 1 do

 Result:=Result + Values[num];

 end;

begin

 if Length(Values) > 1 then

 result:=calculateSum / Length(Values)

 else

 Result:=0.00;

end;

calculateSum is declared inside the host function. Note that the nested

function can still access parameters and variables that belong to the host

function. Because of this, there is an argument among developers that

suggests nested functions slow down the execution of the code and they

should be avoided.

�Typed Methods
Typed method is a way to assign procedures or functions to a variable.

In reality, what is being assigned is a pointer to the methods. This is why

they are, often, called procedural pointers. From that point onward, the

variable can be used to access and invoke the methods. The advantage of

such approach is that the actual method can be changed on the spot and at

runtime as long as declared conventions are followed. This allows Delphi

code to implement callback functions.

Chapter 4 Procedures and Functions

66

To demonstrate the use of typed methods, let’s assume we want to

calculate the tax on income for two countries: the UK and Italy. The tax

bands and the tax rates are different. First, we declare the blueprint of the

tax function we are going to implement for each country. You can find the

code in the TypedMethods unit in the code that comes with the book.

type

 TTaxFunc = function (const Amount: Double): Double;

This declaration indicates what our tax functions for each country

should look like. In accordance to this line, we implement the two tax

functions. For simplicity, I do not include the full code here, just the

snippets to give you an idea that the algorithms are different. Note that the

income bands and the tax rates are all fictitious.

function taxUK(const Amount: Double): Double;

begin

 Result:=0.00;

 if CompareValue(Amount, 10001) = LessThanValue then

 // Calculations; see source code

 else

 if CompareValue(Amount, 50001) = LessThanValue then

 begin

 // Calculations; see source code

 end

 else

 begin

 // Calculations; see source code

 end;

end;

Chapter 4 Procedures and Functions

67

function taxItaly(const Amount: Double): Double;

begin

 Result:=0.00;

 if CompareValue(Amount, 100001) = LessThanValue then

 begin

 // Calculations; see source code

 end

 else

 begin

 // Calculations; see source code

 end;

end;

We access the two functions via a variable of TTaxFunc type:

var

 taxFunc: TTaxFunc;

Once we have the variable, we can assign and, consequently, invoke

the correct function as in the code that follows:

begin

 taxFunc:=taxUK;

 Writeln('For UK: ', taxFunc(80000));

 taxFunc:=taxItaly;

 Writeln('For Italy: ', taxFunc(80000));

end.

In this example, TTaxFunc receives parameters. In the case of

parameter-less functions and procedures, nothing changes. You invoke

them simply by referring to their names. In the example code of this book,

check the showMenu procedure.

Chapter 4 Procedures and Functions

68

�Anonymous Methods
Anonymous method is a technique that allows a block of code (the body

of the method) to be passed to a variable without the need to explicitly

declare and name a method. There are many benefits from an approach

like this; methods are declared only when they are needed, dynamic

change of methods can occur, and more extensible code can evolve.

The declaration of an anonymous method follows the same pattern as

in the case of typed methods with the addition of the keyword reference.

type

 TAnonProc = reference to procedure;

 �TAnonFunc = reference to function (const switch: string):

string;

Then, in the code, a procedure or a function is assigned to a variable,

and the method is invoked by directly referring to the variable as in the

following example:

var

 proc: TAnonProc;

begin

 proc:=procedure

 begin

 Writeln('A call from inside an anonymous procedure');

 end;

 proc;

end.

The approach allows access to variables that do not belong to the

anonymous method but are available in the same scope where the method

exists (variable binding). In other words, if I declare a variable in the main

begin..end block in the preceding code, I can access it in the begin..end

block of the anonymous method. Consider the following anonymous

Chapter 4 Procedures and Functions

69

function. It is able to capture the temperature variable although it is not

part of the function.

var

 func: TAnonFunc;

 temperature: integer;

begin

 func:= function(const switch: string): string

 begin

 �Write('The temperature is '+temperature.ToString+'

and the heating is '+switch+'. ');

 if temperature <= 24 then

 begin

 if switch='ON' then

 writeln('The room will get warm soon');

 if switch='OFF' then

 writeln('Maybe you need to turn the heating on?');

 end

 else

 begin

 if switch='ON' then

 writeln('This may be getting very hot...');

 if switch='OFF' then

 �writeln('Nice...you save energy and help the

environment');

 end;

 end;

 Randomize;

 for temperature := 16 to 28 do

 begin

 if Random(100) < 50 then

 func('ON')

 else

Chapter 4 Procedures and Functions

70

 func('OFF');

 end;

end.

Lastly, since anonymous methods start with a type declaration, they

can very well serve as parameters in other methods increasing their

flexibility.

procedure anonFuncWithParam(const func: TAnonFunc);

begin

 func('INTERMEDIATE SWITCH STATE');

end;

Here we define anonFuncWithParam which accepts an anonymous

function of TAnonFunc type as a parameter. Then, it simply invokes func

with a hard-coded string.

We can pass a TAnonFunc to the procedure either by declaring a

variable first and then passing it as a parameter or, more directly, by

writing the function code right at the place of the parameter.

begin

 anonFuncWithParam(function (const switch: string): string

 begin

 Writeln('The current swith state is:

 '+switch);

 end);

end.

In this implementation, note that we do not need to add a semicolon

(;) after the declaration of the function and after the final end as we would

expect if we had a normal function defined.

In the code we developed in this section, we declared our own typed

method (TAnonFunc). Delphi provides a set of predefined methods already

available to developers. You will find them in System.SysUtils unit, and

Chapter 4 Procedures and Functions

71

they are generic; this means that we can define the actual type of variables

they can handle in parameters and the result type.

type

 ...

 TFunc<T,TResult> = reference to function (Arg1: T):

 TResult;

Therefore, in the preceding examples, we could declare func by simply

writing this line:

var

 func: TFunc<string, string>;

Note that Arg1 in the definition of TFunc is not declared as constant

parameter. If we use this approach, we need to remove the keyword const

when we assign the actual function to the func variable.

This is a quick introduction to the way anonymous methods work. You

can find more information in the official documentation (Embarcadero,

2016) and have a look at Nick Hodges’s book (Hodges, 2014).

�Method Overloading
Overloading a method means that you can declare two or more methods

with the same name but different parameter list or, in the case of functions,

different return types. The difference can be either in the number of the

parameters or the type of the parameters. In Delphi, we use the keyword

overload to declare such methods.

procedure multiProc; overload;

procedure multiProc(const Value: string); overload;

procedure multiProc(const Value: string; const SubElement:

integer); overload;

Chapter 4 Procedures and Functions

72

When the procedure is invoked, the compiler determines which

version should be called by scanning through the declarations and

matching the number and the types of the parameters. These are the only

two criteria the compiler uses for this purpose. Consequently, overloading

cannot work for parameters of different nature (e.g., const and var).

procedure multiProc(const Value: string); overload;

// This overloading approach does not work

procedure multiProc(var Value: string); overload;

�Summary
In this chapter, we looked at how procedures and functions work in

Delphi. We differentiated between them, discussed the different types of

parameters they can manage, and visited different ways to use them in the

code.

�References
Embarcadero, 2016. Anonymous Methods in Delphi. [Online] Available at:

http://docwiki.embarcadero.com/RADStudio/Sydeny/en/Anonymous_

Methods_in_Delphi [Accessed 03 06 2020].

Embarcadero, 2016. Parameters (Delphi). [Online] Available at:

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Parameters_

(Delphi)#Out_Parameters [Accessed 03 06 2020].

Hodges, N., 2014. Coding in Delphi. s.l.:Nepeta Enterprises.

Chapter 4 Procedures and Functions

http://docwiki.embarcadero.com/RADStudio/Sydeny/en/Anonymous_Methods_in_Delphi
http://docwiki.embarcadero.com/RADStudio/Sydeny/en/Anonymous_Methods_in_Delphi
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Parameters_(Delphi)#Out_Parameters
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Parameters_(Delphi)#Out_Parameters

73© John Kouraklis 2020
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_5

CHAPTER 5

Object-Oriented
Programming (OOP)
Delphi supports full object-oriented programming (OOP). In OOP, the

most fundamental entity is an object. An object is characterized by its state

(implemented by data) and what sort of capabilities it has (functionality).

For example, a computer can be described as an object in a particular state

(e.g., available memory, screen resolution, computational power, etc.)

being able to provide several functions (e.g., connect to the Internet, edit

a text file, convert an image, etc.). In the rest of the chapter, we look at the

fundamentals of OOP in Delphi.

�Declaration
The theoretical concept in OOP of an object is implemented in Delphi (as

in most of the languages) by declaring a class and an instance of the class.

This instance is the object and is accessed via a variable. The following

lines define a class and an object:

type

 TComputer = class

 end;

var

 myComputer: TComputer;

https://doi.org/10.1007/978-1-4842-6112-5_5#DOI

74

You can declare a class in either the interface or implementation

section of a unit. The difference is that if it appears in the latter, the class is

only available to the unit, whereas a declaration in interface makes the

class available anywhere the unit appears in the uses clause. You can also

declare a class within another class to serve your coding needs.

The variable provides access to the class, but we are not ready to

use it yet. We first need to create an instance of the class (an object) by

calling Create. Note that this is the most fundamental way to instantiate

an object. Create does a couple of things behind the scene with the most

important being that it allocates memory for the object. When we finish

with the object, we need to make this memory available for other objects

and applications. In Delphi, we do this by calling Free. The following code

snippet demonstrates a typical flow when we deal with objects:

begin

 myComputer:=TComputer.Create;

 // use myComputer here

 myComputer.Free;

end.

If you use Delphi 10.3 and above, you can take advantage of the inline

variables and declare the variable and instantiate the object in one line.

begin

 // This works only in 10.3 and above

 var myComputer:=TComputer.Create;

 // use myComputer here

 myComputer.Free;

end.

If you try to access the state and functionality of an object without first

calling Create, the application will crash by generating an access violation

exception. If you forget to call Free, the application will continue working

Chapter 5 Object-Oriented Programming (OOP)

75

perfectly fine, but the memory chunk that was reserved for the object will

not be released, and therefore memory leaks will occur.

When you declare an object (but before you instantiate), it is not yet

initialized. Recent versions of Delphi signify this by setting the reference

variable to nil. It is easy to check the state of an object using the Assigned

function.

if Assigned(myComputer) then

 ...

Assigned returns True if myComputer has been instantiated. As

mentioned earlier, only recent versions set the objects to nil. In older

ones, the state of objects is undetermined until Create is called.

�Object State (Fields)
The state of an object is held internally in fields and properties. In Delphi,

a field and a property can be of any data type or of other classes. In this

next line, we declare a field:

type

 TComputer = class

 Memory: Word;

 end;

We, then, access the field using the dot notation:

myComputer.Memory:=32;

One of the cornerstone ideas in OOP is that when objects are used

in code, the fields and the properties (class members) are not always

accessible (encapsulation). This depends on the visibility level of the fields

and the properties.

Chapter 5 Object-Oriented Programming (OOP)

76

In Delphi, there are four levels of visibility growing from the very

restrictive private members to openly accessible public and published

members:

•	 private: Accessible only to the class.

•	 protected: Accessible only to descendent classes

(more on this in the section “Inheritance”).

•	 public: Accessible to any instance of the class.

•	 published: Same as public with additional compiler

information and ability to show them in the form

designer. Note that not all data types can be publishable.

There are more levels of visibility (e.g., strict, automated, etc.), but

they serve more specific requirements. The declaration of members with

different visibility can be done in any order you see relevant, but best

coding practice suggests that fields and properties appear in the class in

the order of less restrictive to least restrictive visibility.

type

 TComputerBuild = class

 private

 fDisplayedMemory: string;

 protected

 public

 Memory: Word;

 published

 end;

As mentioned elsewhere, the fields can be of other class types. This

implies that this class type must be defined before referenced. In most of

the cases, you will be able to maintain an order in the declarations to meet

Chapter 5 Object-Oriented Programming (OOP)

77

this requirement. On the downside, this creates a form of dependency

which may not be needed or may be impossible to keep in mutually

dependent classes as in the following example:

type

 TComputerBuild = class

 private

 ...

 protected

 ...

 public

 HardDrive: THardDrive;

 ...

 published

 ...

 end;

 THardDrive = class

 public

 Capacity: Word;

 HostComputer: TComputerBuild;

 end;

The preceding code will not compile because THardDrive is referenced

before declared. Moving the declaration before TComputerBuild poses the

same problem. The way to deal with this situation is to forward declare

a class, that is, to provide the name but defer the full declaration. This is

done by adding this line right after the type keyword:

type

 THardDrive = class;

 TComputerBuild = class

 ...

 end;

Chapter 5 Object-Oriented Programming (OOP)

78

�Object Functionality (Methods)
The functionality (or capabilities) of an object is revealed by class methods;

that is, procedures and functions that serve the purpose and scope of

the object. The declarations follow the typical procedure and function

semantics we visited in previous chapters. As an example, let’s introduce

methods to shut down our computer (class):

type

 TComputerBuild = class

 ...

 public

 ...

 procedure shutDown;

 published

 ...

 end;

shutdown is a publicly available method, and it is implemented under

the name TComputerBuild.shutDown. In the IDE, you can type in the full

procedure declaration, or you can click somewhere inside the class and

press Ctrl-Shift-C. RAD Studio will create the blueprint for you.

procedure TComputerBuild.shutDown;

begin

 // Now shut the computer down

end;

Methods in classes can have different levels of accessibility in the same

way fields and properties do. In the code that follows, killAllPrograms is

a private method and can only be called from inside the class. If you try to

access it outside the class, the code will not compile.

Chapter 5 Object-Oriented Programming (OOP)

79

type

 TComputerBuild = class

 private

 ...

 procedure killAllPrograms;

 public

 ...

 published

 ...

 end;

procedure TComputerBuild.killAllPrograms;

begin

 ...

end;

procedure TComputerBuild.shutDown;

begin

 killAllPrograms;

 ...

end;

We access the methods in the class using the dot notation which is

what we did when we wanted to access the class fields.

var

 buildComputer: TComputerBuild;

begin

 buildComputer:=TComputerBuild.Create;

 // This does not compile

// buildComputer.killAllPrograms;

 buildComputer.shutDown;

 buildComputer.Free;

end.

Chapter 5 Object-Oriented Programming (OOP)

80

Overloading of procedures and functions works in classes as well. In

theory, you can have overloaded methods with any visibility, but in OOP

context, it usually makes sense with protected and public methods.

type

 TComputerBuild = class

 ...

 public

 ...

 procedure add(const aUser: string); overload;

 procedure add(const aHD: THardDrive); overload;

 end;

We have already discussed how we create a new instance of an object

and destroy it. The constructor (Create) and the destructor (Destroy)

are special methods for objects as they run a lot of initialization and

finalization code for objects. Constructors can be overloaded to allow

developers to add their own initialization code. But there is a small twist

in Delphi; you cannot use the same name for the overloaded constructor

(Create). In the following example, we introduce a new constructor

(CreateWithHD) that receives a THardDrive class in a typical dependency

injection fashion.

type

 TComputerBuild = class

 ...

 public

 constructor CreateWithHD(const aHardDrive: THardDrive);

 ...

 end;

Chapter 5 Object-Oriented Programming (OOP)

81

constructor TComputerBuild.Create(const aHardDrive:

THardDrive);

begin

 inherited Create;

 // Add more initialisation code here

end;

There are three points worth mentioning: firstly, there is a specific

order to declare fields and methods within a visibility block; fields appear

first with methods following. Otherwise, the code does not compile.

Secondly, a constructor in classes is defined with the constructor

keyword, and, lastly, it is very important to call the default constructor

using the statement inherited Create inside the new one. This will allow

the object to be initialized correctly.

Destructors in Delphi, as in every programming language, cannot be

overloaded. When we want to execute code before the object is destroyed,

we override the destructor using the override keyword. The last call

should always be inherited or inherited Destroy.

type

 TComputerBuild = class

 ...

 Public

 destructor Destroy; override;

 ...

 end;

destructor TComputerBuild.Destroy;

begin

 // Add code here

 inherited;

end;

Chapter 5 Object-Oriented Programming (OOP)

82

�Object State (Properties)
In the previous section, we saw how fields can be used to store the state of

an object. Although they are sufficient for this purpose, fields are limited in

scope as they purely work as data storage.

Delphi extends the idea of fields and offers properties—a field-like

declaration with the ability to manipulate the stored data. Properties,

as all other class elements, can be managed in terms of visibility and

accessibility by following the private, protected, public, and published

grouping. A property that resembles fields is declared as follows:

type

 THardDrive = class

 private

 ...

 public

 ...

 �property Manufacturer: string read fManufacturer write

fManufacturer;

 end;

Properties can do much more than simply refer to a field. As seen in

the preceding code line, each property has a setter (write) and a getter

(read) part which can be a field (as shown here) or a method. If the setter

is omitted, then the property is read-only, and if the getter is omitted, the

property is considered as write-only.

In the case of a method, the setter is a procedure with one parameter of

the same data type as the property, and the getter is a function that returns

an item of the same data type as the property.

type

 THardDrive = class

 private

 ...

Chapter 5 Object-Oriented Programming (OOP)

83

 fSerial: string;

 function getSerial: String;

 procedure setSerial(const Value: String);

 public

 ...

 property Serial: String read getSerial write setSerial;

 end;

function THardDrive.getSerial: String;

begin

 result:=fSerial;

end;

procedure THardDrive.setSerial(const Value: String);

begin

 fSerial:=Value.ToLower;

end;

Serial property sets the value of a holder field (fSerial) via

setSerial and returns the value of the field via getSerial. The ability to

use setter and getter methods for properties allows for ad hoc modification

of the value of the properties. In the following code, we create a new

instance of THardDrive and pass the serial in block capital:

var

 hardDrive: THardDrive;

begin

 hardDrive:=THardDrive.Create;

 hardDrive.Serial:='XHHJU-56748-ABC';

 Writeln(hardDrive.Serial);

 hardDrive.Free;

end.

Chapter 5 Object-Oriented Programming (OOP)

84

The call to assign the string to the Serial property passes the value to

fSerial field after it converts the string to lowercase (ToLower). Then, the

writeln statement retrieves the value by triggering getSerial.

Properties do not have to be monodimensional. They can handle

declarations that look like an array (array properties). For example, let’s

introduce property Content in THardDrive that gives access to the byte of a

specific cylinder and sector.

type

 THardDrive = class

 private

 ...

 fContent: array[0..1000, 0..10000] of Byte;

 function getContent(Cylinder, Sector: Word): byte;

 �procedure setContent(Cylinder, Sector: Word; const Value:

byte);

 public

 ...

 �property Content[Cylinder, Sector: Word]: byte read

getContent write setContent;

 end;

function THardDrive.getContent(Cylinder, Sector: Word): byte;

begin

 // �Note that there is no check of boundary values for

fContent

 Result:=fContent[Cylinder, Sector];

end;

procedure THardDrive.setContent(Cylinder, Sector: Word; const

Value: byte);

begin

Chapter 5 Object-Oriented Programming (OOP)

85

 // �Note that there is no check of boundary values for

fContent

 fContent[Cylinder, Sector]:=Value;

end;

The logic behind the setter and getter is the same as in the case of a

simple property. Note that array properties cannot be mapped directly

to a field, and thus the use of a getter and setter is compulsory. Although

the examples here and in most of other textbooks and articles show that a

property declaration goes together with a local and private field, this is not

necessary. In more complex implementations and in different scenarios,

the getter method may access a dataset to retrieve database entries, and a

setter may use a cloud storage to pass the value of a property.

The only step that is left is to provide some initial values to fContent.

We can simply use the constructor for this purpose.

 type

 THardDrive = class

 public

 constructor Create;

 ...

 end;

constructor THardDrive.Create;

var

 cyl: Integer;

 sec: integer;

begin

 inherited;

 Randomize;

 for cyl := Low(fContent) to High(fContent) do

 for sec := Low(fContent[cyl]) to High(fContent[cyl]) do

 fContent[cyl, sec]:=Random(255);

end;

Chapter 5 Object-Oriented Programming (OOP)

86

Then, accessing the content of THardDrive is a matter of a simple call

as follows:

 writeln(hardDrive.Content[100, 100]);

Published properties are, fundamentally, public properties with added

runtime compiler information. In graphical applications and especially

in code that supports graphical components, published properties are

used by Delphi IDE to provide design-time properties and events. For the

interested reader who wants to dive into the world of component writing,

Delphi Component Writer’s Guide (Anon., n.d) and Thorpe’s book (1996)

on the subject provide very good insight on the topic.

�Class Members and Methods
The typical use of objects indicates the instantiation of an object via a call

to a constructor and, when the object is not needed anymore, a call to

destructor in order to free up the reserved memory, as we have already seen.

In Delphi, we can introduce fields, properties, and methods that can

be accessible without the need to follow this memory management cycle.

They are declared using the class keyword, and they can be helpful in

cases where a property or a field needs to hold a value among different

instances of an object. Class methods give the option to organize methods

in classes but without the need to create and destroy them all the time.

To demonstrate the concept, the following code declares a class to

represent a custom application and defines a class property to hold the

operating systems the application supports.

type

 TOSList = array[0..2] of string;

 TCustomApplication = class

 private

Chapter 5 Object-Oriented Programming (OOP)

https://doc.lagout.org/programmation/Delphi/Delphi/Delphi - Delphi Component Writer's Guide- Delphi for Windows.pdf

87

 class function getSupportedOS: TOSList; static;

 public

 class property SupportedOS: TOSList read getSupportedOS;

 end;

SupportedOS is a read-only property which uses a function

(getSupportedOS) to populate itself.

class function TCustomApplication.getSupportedOS: TOSList;

begin

 Result[0]:='Windows 7';

 Result[1]:='Windows 8';

 Result[2]:='Windows 10';

end;

As mentioned already, a class property needs the class keyword.

The same is required for the getter and setter methods of the property.

Moreover, these methods need to be static as can be seen in the

preceding code. Now, we do not need to create the class object or destroy

it; a simple call to the property will work perfectly.

var

 os: string;

begin

 for os in TCustomApplication.SupportedOS do

 Writeln(os);

end.

�Inheritance
Inheritance in OOP is an implementation feature that allows new classes

(subclasses or child classes) to be defined based on already defined classes

that act as base (parent or super) classes. The importance of inheritance

Chapter 5 Object-Oriented Programming (OOP)

88

comes from the fact that this approach allows shared state (properties) and

functionality (methods) among the parent and child classes. Moreover,

inherited classes are able to modify the shared properties and methods

making them extensible.

We have already defined TCustomApplication. This time we want to

derive classes that represent different types of applications based on this

class. The derived classes will have a property called AppType to indicate

the application type (financial, game, utility). AppType’s data type is

TApplicationType. First, let’s define a base class for our applications that

extends TCustomApplication.

type

 TApplicationType = (atUndefined, atFinancial, atGame, atUtility);

 TBaseApplication = class (TCustomApplication)

 private

 fAppType: TApplicationType;

 public

 property AppType: TApplicationType read fAppType write fAppType;

 end;

Nothing new here apart from the first line of the class definition

which says that TBaseApplication is a subclass of (or inherits from)

TCustomApplication.

TBaseApplication needs to initialize the application type to

atUndefined. The most natural place to do this is in the constructor of

the class. This time, though, we want the subclasses to be able to modify

this value. In order to achieve this, we need to declare the constructor as

virtual. This tells the compiler that the constructor can be modified in

inherited classes.

Chapter 5 Object-Oriented Programming (OOP)

89

type

 TBaseApplication = class (TCustomApplication)

 public

 constructor Create; virtual;

 ...

 end;

In this case, we set the application type to atUndefined. Note in the

following code that we first call inherited before we do anything else in

the constructor.

constructor TBaseApplication.Create;

begin

 inherited;

 fAppType:=atUndefined;

end;

In terms of how we access AppType property, we follow the same

pattern: we declare a variable, create an instance of the object, and process

the property.

var

 app: TBaseApplication;

begin

 app:=TBaseApplication.Create;

 // Access the property with app.AppType

 app.Free;

end.

Let’s create a new financial application by subclassing

TBaseApplication as there is no limit to how many subclasses you can

have.

Chapter 5 Object-Oriented Programming (OOP)

90

type

 TFinApplication = class (TBaseApplication)

 public

 constructor Create; override;

 end;

TFinApplication inherits from TBaseApplication. This means that

the new class has the AppType property, which we need to modify. In order

to do this, we override the constructor using the override keyword.

constructor TFinApplication.Create;

begin

 inherited;

 fAppType:=atFinancial;

end;

One more time, the call to inherited is the first step. This will make the

compiler go back to the inheritance tree and invoke the initial constructor.

This is done with all the base classes.

Managing TFinApplication as an object is simple, and it is done by

declaring a variable of TFinApplication. Additionally, another concept

from OOP (polymorphism) allows us to use TFinApplication where

TBaseApplication is expected. Therefore, the following code is valid:

var

 app: TBaseApplication;

begin

 app:=TFinApplication.Create;

 ...

 app.Free;

end.

Chapter 5 Object-Oriented Programming (OOP)

91

Overriding methods also works when methods have different levels

of visibility. Our applications, surely, have version numbers. We can add a

relevant property (Version) to TBaseApplication which defines the getter

method to be virtual and protected. This means that the method can be

overridden by ancestors but only by them as indicated by the protected

nature of it.

type

 TBaseApplication = class (TCustomApplication)

 private

 ...

 protected

 function getVersion: string; virtual;

 public

 ...

 property Version: string read getVersion;

 end;

function TBaseApplication.getVersion: string;

begin

 Result := '0.0.0';

end;

TFinApplication can now override getVersion to declare its own

version status.

type

 TFinApplication = class (TBaseApplication)

 protected

 function getVersion: string; override;

 public

 ...

 end;

Chapter 5 Object-Oriented Programming (OOP)

92

function TFinApplication.getVersion: string;

begin

 Result:='3.2.2-alpha';

end;

The following code demonstrates which getVersion functions are

called. In the first call, the TBaseApplication function is invoked, and in

the second, the inherited one as defined by TFinApplication.

var

 app: TBaseApplication;

begin

 app:=TBaseApplication.Create;

 Writeln(app.Version); // Prints 0.0.0

 app.Free;

 app:=TFinApplication.Create;

 Writeln(app.Version); // Prints 3.2.2-alpha

 app.Free;

end.

You may, now, wonder how we can differentiate which class is assigned

to app. In this example, the two classes are the same (TBaseApplication,

TFinApplication) but, in general, we create descendants because we want

to add additional extensions. Let’s go ahead and create a game application

(TGameApplication). This class has one more property called MultiPlayer

of Boolean type. I omit the constructor here, which initializes the property

as it is not important at this stage. You can see the full implementation in

the code file that accompanies this book.

type

 TGameApplication = class (TBaseApplication)

 private

 fMultiPlayer: boolean;

Chapter 5 Object-Oriented Programming (OOP)

93

 public

 �property MultiPlayer: boolean read fMultiPlayer write

fMultiPlayer;

 end;

Consistent to OOP principles, we can create a TGameApplication using

the app variable. This time we want to check if the game is multiplayer or

not, but the app is basically a TBaseApplication variable.

TBaseApplication does not have the MultiPlayer property, but

TGameApplication does. Thus, we need to check whether the app is of

TGameApplication type. We do this using the is operator. Once we are

certain we have the correct class, we can use the as operator to access the

MultiPlayer variable. This method of enforcing the compiler to treat a

specific variable as of specific type is called type casting.

begin

 ...

 if app is TGameApplication then

 writeln('MultiPlayer: ',

 (app as TGameApplication).MultiPlayer);

 ...

end.

�Interfaces
Class inheritance is fundamental to extending a class and adding new

functionality. In recent years, the OOP landscape is moving toward writing

classes that are more decoupled between each other. This leads to more

flexibility and higher level of abstraction.

In Delphi and, as a matter of fact, in almost all OOP languages,

abstraction is achieved by defining interfaces (or object interfaces). An

interface can indicate the state of the class (properties and fields) and

Chapter 5 Object-Oriented Programming (OOP)

94

what the class can do (methods). The important message here is that

implementation details are separated from the manifest that indicates the

properties and methods of a class. For example, in the case of password

generation, there are quite many encryption algorithms in use. Interfaces

allow us to switch to alternative implementations. The following snippet

defines IPasswordGenerator and IPassword interfaces:

type

 TPasswordAlgorithm = (paAES, paSHA);

 IPasswordGenerator = interface

 ['{16C5CD04-5051-4557-BA3C-3AE932147C6A}']

 function getAlgorithm: TPasswordAlgorithm;

 function encrypt (const aValue: string): string;

 property Algorithm: TPasswordAlgorithm read getAlgorithm;

 end;

 IPassword = interface

 ['{6C85FF1F-C5BC-4E66-974D-1622A6F908A7}']

 function encryptPassword (const aPassword: string): string;

 end;

It is customary, but not enforced by Delphi, to use the letter 'I' at the

beginning of the name of an interface. What is important though is that

each interface requires a unique number (GUID)*—again, not enforced by

Delphi, but it saves from a lot of troubles in complex code base. You can

see the GUIDs enclosed in the square brackets in the preceding examples.

You can use your own GUIDs, but they need to adhere to the letter

grouping shown in the preceding code. If you are in Delphi IDE, hitting

Ctrl-Shift-G will add one for you. The preceding code also demonstrates

that we can use both properties and methods in interfaces.

*�There is one exception to this; the consensus among Delphi developers is that
interfaces with generics better not be given a GUID.

Chapter 5 Object-Oriented Programming (OOP)

95

We, now, need to add the implementation classes. We create two

classes that implement the two different algorithms as indicated by

TPasswordAlgorithm. When classes implement interfaces, they should

derive from an interface supporting class with TInterfacedObject being

the most common:

type

 TAESAlgorithm = class (TInterfacedObject, IPasswordGenerator)

 private

 fAlgorithm: TPasswordAlgorithm;

 public

 constructor Create;

 function encrypt (const aValue: string): string;

 function getAlgorithm: TPasswordAlgorithm;

 end;

constructor TAESAlgorithm.Create;

begin

 inherited;

 fAlgorithm:=paAES;

end;

function TAESAlgorithm.encrypt(const aValue: string): string;

begin

 // use AES algorithm

 Result:=aValue+' - AES Encrypted';

end;

function TAESAlgorithm.getAlgorithm: TPasswordAlgorithm;

begin

 Result:=fAlgorithm;

end;

Chapter 5 Object-Oriented Programming (OOP)

96

Classes that bind to interfaces must implement all the methods of an

interface; otherwise, the code does not compile. Only what is described

in the interface declaration is accessible from consumers of the class, and

they all come with public visibility.

You can check whether a class implements an interface using the

Supports function as in the next lines.

 if Supports(password, IPassword) then

 Writeln('Interface is supported')

 else

 Writeln('Interface is not supported');

Let’s implement one more password algorithm. This time, the interface

methods are declared as private in the class, but this has no actual effect.

Since methods and properties are declared in an interface, they are all

public.

type

 TSHAAlgorithm = class (TInterfacedObject, IPasswordGenerator)

 private

 fAlgorithm: TPasswordAlgorithm;

 function encrypt (const aValue: string): string;

 function getAlgorithm: TPasswordAlgorithm;

 public

 constructor Create;

 end;

Using interfaced classes is slightly different to using non-interfaced

ones. Instead of declaring the variable to be of the class type, we declare it

against the interface.

var

 generatorAES: IPasswordGenerator;

 generatorSHA: IPasswordGenerator;

Chapter 5 Object-Oriented Programming (OOP)

97

 password: IPassword;

begin

 generatorAES:=TAESAlgorithm.Create;

 generatorSHA:=TSHAAlgorithm.Create;

 password:=TPassword.Create(generatorAES);

 writeln(password.encryptPassword('tywqeri'));

 password:=TPassword.Create(generatorSHA);

 Writeln(password.encryptPassword('435'));

end.

Then, they are instantiated using the (interfaced) classes and the

typical call to Create. password instance shows how abstraction works; the

constructor receives IPasswordGenerator as parameter which accepts any

class that implements this particular interface. Therefore, we can supply

any of the generators we wish.

The second point to raise is the difference in managing the life cycle

of interfaces compared to objects. When we manage objects, we follow

the pattern Create..Free in order to return any reserved memory to the

system. With interfaces, this is done automatically as they are reference

counted, and the compiler can release the reserved memory. Therefore,

we do not call Free with interfaces as it will lead to compilation error.

�Cross-Platform Memory Management
Developers are responsible to manage the memory of the objects, as we

have already seen. The classic and standard way to do this is to follow the

pattern we have seen a few times already.

var

 newObj: TMyClass;

begin

Chapter 5 Object-Oriented Programming (OOP)

98

 newObj:=TMyClass.Create;

 // Use newObj

 newObj.Free;

end.

An object is instantiated by the constructor (Create), and the memory

is released by a call to destructor (Free). In fact, this is not the complete

pattern coders in Delphi use; it comes with a safety check in case of

exceptions.

An exception is the error management model Delphi uses, and it is in

contrast to models where errors are indicated by error codes. In the case

where a runtime error occurs, Delphi will signal the whole application

about this error by forcibly interrupting the execution of the application at

the point where the error is detected. Developers in Delphi talk about this

situation by saying that an exception has been raised (or thrown).

For example, if we try to access a database, all sort of things can go

wrong that do not depend on the stability and quality of our code. Suppose

we attempt to execute an SQL query and pass the results to a TMyClass

object.

var

 newObj: TMyClass;

begin

 newObj:=TMyClass.Create;

 // Retrieve data from the database

 // This line executes the SQL query and raises exception

newObj.Free;

end.

If an exception occurs, the code will exit by skipping the call to Free.

This means that newObj will never get the chance to release the memory it

occupies. In this way, a classic memory leak will occur.

Chapter 5 Object-Oriented Programming (OOP)

99

The proper way to deal with this situation is to wrap the execution code

in a try..finally block.

begin

 newObj:=TMyClass.Create;

 try

 // Retrieve data from the database

 // �This line executes the SQL query and raises exception

finally

 newObj.Free;

 end;

end.

This pattern guarantees that the code inside the finally branch is

always executed regardless whether an exception is thrown or not.

The memory management model that was described earlier and

indicated that the developer is responsible for the memory allocation of

objects is called the Manual Reference Counting model. We have also seen

a slightly different memory management model when interfaces are used.

In this case, the developer does not need to free an interface manually

because the compiler is able to automatically track the references on the

object instances in memory and release them accordingly. If the compiler

is able to do this, then it uses the Automatic Reference Counting (ARC)

model.

The Delphi compilers for desktop applications (Windows 32-bit,

Windows 64-bit, macOS 32-bit, macOS 64-bit, Linux 64-bit) do not use

ARC for classes. In versions Delphi XE4 up until 10.3, the ARC model has

been introduced for mobile platforms. This means that code without

explicit calls to Free is perfectly suitable to manage objects; when the

object instance goes out of scope, the compiler frees it automatically.

Chapter 5 Object-Oriented Programming (OOP)

100

var

 newObj: TMyClass;

begin

 newObj:=TMyClass.Create;

 // Use newObj

 // We do not need to call newObj.Free

end.

According to the official documentation (Embarcadero, 2015), in the

vast majority of the cases, the preceding approach is sufficient. There are

some special scenarios where more need to be done to trigger the release

of the object. This can be done with a call to DisposeOf method. DisposeOf

can also be called in the classic compilers (Windows, macOS) without any

harm, but the official recommendation is to use Free in desktop compilers

and DisposeOf with mobile compilers.

In practical terms, writing cross-platform code that manages objects

looks like the one in the following lines. The code takes advantage of

a compile directive ({$IFDEF}..{$ENDIF}) to supply the correct code

according to the compilation platform. For completeness, the code

includes a call to try..finally which deals with exceptions.

var

 newObj: TMyClass;

begin

 newObj:=TMyClass.Create;

 try

 // Use newObj

 finally

 {$IFDEF AUTOREFCOUNT}

 newObj.DisposeOf;

 {$ELSE}

 newObj.Free;

Chapter 5 Object-Oriented Programming (OOP)

101

 {$ENDIF}

 end;

end.

Starting from Delphi version 10.4, the ARC model for classes on mobile

platforms has been deactivated, and the classic approach to managing the

lifetime of objects is now the only way to instantiate and destroy objects

(Cantu, 2018) that are not implemented via interfaces.

This is a short discussion on the topic of memory management on

classic and mobile compilers. There is a wealth of sources to allow you to

further your knowledge. I would recommend the book by Chris Rolliston

(Rolliston, 2012). It comes in three parts and it is based on Delphi XE2,

but it covers quite extensively a breadth of topics, and it includes a very

good discussion on objects. The book that investigates the memory

management models in Delphi to great extent and explores different

coding approaches is written by Prasnikar and Prasnikar Jr. (Prasnikar &

Prasnikar, 2017), and it is highly recommended.

�Summary
In this chapter, we started object-oriented programming (OOP) from

scratch. We saw how we declare classes and define objects. Then, we

looked at how Delphi implements object states and functionality to

deploy full OOP support. We covered interfaces—an abstract way to define

functionality loosely coupled to implementation details. Lastly, we looked

at ways to manage the life cycle of objects.

Chapter 5 Object-Oriented Programming (OOP)

102

�References
Anon., n.d. Delphi Component Writer's Guide. [Online] Available at:

https://doc.lagout.org/programmation/Delphi/Delphi/Delphi%20

-%20Delphi%20Component%20Writer's%20Guide-%20Delphi%20for%20

Windows.pdf [Accessed 23 04 2020].

Cantu, M., 2018. Directions for ARC Memory Management in Delphi.

[Online] Available at: https://blog.marcocantu.com/blog/2018-

october-Delphi-ARC-directions.html [Accessed 24 04 2020].

Embarcadero, 2015. Automatic Reference Counting in Delphi Mobile

Compilers. [Online] Available at: http://docwiki.embarcadero.com/

RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_

Compilers [Accessed 24 04 2020].

Prasnikar, D. & Prasnikar, N. J., 2017. Delphi Memory Management: For

Classic and ARC Compilers. 1st Edition ed. s.l.:s.n.

Rolliston, C., 2012. Delphi XE2 Foundations: Part 1. s.l.:s.n.

Thorpe, D., 1996. Delphi Component Design. s.l.:s.n.

Chapter 5 Object-Oriented Programming (OOP)

https://doc.lagout.org/programmation/Delphi/Delphi/Delphi - Delphi Component Writer
https://doc.lagout.org/programmation/Delphi/Delphi/Delphi - Delphi Component Writer
https://blog.marcocantu.com/blog/2018-october-Delphi-ARC-directions.html
https://blog.marcocantu.com/blog/2018-october-Delphi-ARC-directions.html
http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers
http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers
http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers

103© John Kouraklis 2020
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5

Index

A, B
Anonymous method, 68–70
Automatic Reference Counting

(ARC) model, 99

C
Case statement, 32, 50–51
Comments, 41
Conditional statement

case, 50
definition, 48
if, 48–49

Constants, 40
Custom managed records, 34

D, E
Data types

arrays, 28–31
boolean values, 22
char, 21
enumerated types, 22
floating-point, 24
generics, 37–39
integer, 20
pointers, 35, 36
real, 23

records, 31–35
sets, 27, 28
strings, 25–27
subrange, 23
variant, 36, 37

Delphi Pascal
definition, 1
forms/frames, 6
IDEs, 7, 8, 14
multiple

platforms, 3, 4
naming conventions, 15
native code, 3
OOP language, 2
project files, 4
simplest application

(console), 9–11
simplest application

(graphical), 11, 12, 14
syntax, 1, 2
units, 5, 6
VCL, 3

DisposeOf method, 100

F
FireMonkey (FMX) framework, 3
For statement, 46

https://doi.org/10.1007/978-1-4842-6112-5#DOI

104

G, H, I
Generic programming, 37

J, K
Jump statements

break, 52
continue, 52
definition, 51
exit, 51
goto, 53, 54

L, M
Loops

For statement, 46, 47
repeat statement, 45
while..do statement, 43, 44

N
Nested methods, 64–65

O
Object-oriented

programming (OOP)
class members/methods, 86, 87
cross-platform memory

management, 97, 99–101
declaration, 73–75

functionality/capabilities, 78–81
inheritance
interfaces, 93, 94, 96, 97
object state, 75–77
state (properties), 82, 84–86

Override keyword, 81, 90

P, Q
Parameter-less methods, 59
Paramaters

classic, 59
constant, 60
default values, 62, 63
examples, 57
out, 61
updateLogs, 58
variable, 61

procedure keyword, 55
Procedures/functions

anonymous methods, 68–71
declarations, 55–57
nested methods, 64
normal execution,

interrupts, 64
overloading, 71
parameter (see Parameters)
typed methods, 65–67

R, S, T, U
Repeat..until statement, 45

INDEX

105

V
Variables

age, 19
definition, 17
example, 18
identifier, 17

scope, 19
Visual Component

Library (VCL), 3

W, X, Y, Z
while..do statement, 43

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Delphi Pascal
	Delphi As a Programming Language
	Syntax
	Programming Paradigms
	Compilation to Native Code
	Visual Applications
	One Code Base for Multiple Platforms

	Anatomy of a Delphi Program
	Project Files
	Units
	Forms and Frames

	Delphi As Integrated Development Environment (IDE)
	A Simple Application (Console)
	A Simple Application (Graphical)
	Alternative IDEs
	Delphi Style Guide
	Summary
	References

	Chapter 2: Basics
	Variables
	Data Types
	Integer
	Char
	Boolean
	Enumerated Types
	Subrange
	Real
	Strings
	Sets
	Arrays
	Records
	Pointers
	Variant
	Generics

	Constants
	Comments
	Summary
	References

	Chapter 3: Looping, Conditional and Jump Statements
	Loops
	While Statement
	Repeat Statement
	For Statement

	Conditional Statements
	If Statement
	Case Statement

	Jump Statements
	Exit Statement
	Break Statement
	Continue Statement
	Goto Statement

	Summary

	Chapter 4: Procedures and Functions
	Declaration
	Parameters
	The Nature of Parameters
	Classic Parameters
	Constant Parameters
	Variable Parameters
	Out Parameters

	Default Values of Parameters

	Interrupting the Normal Execution
	Nested Methods
	Typed Methods
	Anonymous Methods
	Method Overloading
	Summary
	References

	Chapter 5: Object-Oriented Programming (OOP)
	Declaration
	Object State (Fields)
	Object Functionality (Methods)
	Object State (Properties)
	Class Members and Methods
	Inheritance
	Interfaces
	Cross-Platform Memory Management
	Summary
	References

	Index

