e i
Ll e

Delphi
Quick Syntax
Reference

A Pocket Guide to the Delphi and
Object Pascal Language

John Kouraklis

ApPress’

Delphi Quick Syntax
Reference

A Pocket Guide to the Delphi
and Object Pascal Language

John Kouraklis

Apress’

Delphi Quick Syntax Reference: A Pocket Guide to the Delphi and Object
Pascal Language

John Kouraklis
London, UK

ISBN-13 (pbk): 978-1-4842-6111-8 ISBN-13 (electronic): 978-1-4842-6112-5
https://doi.org/10.1007/978-1-4842-6112-5

Copyright © 2020 by John Kouraklis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Victor Malyushev on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York,
NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484261118.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6112-5

Table of Contents

About the AUROFcccmmiemmmmssnnmssns s vii
About the Technical ReVIEWErccuvcesssessssmssssnsssassssnsssssssssssssnsssassssass ix
Introductionccccnniemmmmsmnmnssnmsssnnmssnnsas s xi
Chapter 1: Delphi Pascal..........cccuunmmmmmsmmnmmmmmmsssssssssmmmssmssssssssssssssnns 1
Delphi As a Programming LAnQUAQE.........ccecerreererierserrenneerersesseessesessesssessessessenns 1
L 1
Programming Paradigms..........cccecvvrneniirinsnne s sessee e sesessee s snennens 2
Compilation to Native COUEcvrerrererreriererersersesessesessessessessssessessesssssssessessens 3
Visual APPlICALIONSccocvverienerirr s 3

One Code Base for Multiple PIatforms........ccccccvverrernnensenserienssessessesesessessensens 3
Anatomy of a Delphi Program ... sessesnens 4
ProjECE FIleS.... oottt 4
T S 5
FOrms and Frames..........cooorenernncnnesesee s e 6
Delphi As Integrated Development Environment (IDE)..........cccocvvvnvninnnnsencnne, 7
A Simple Application (CONSOIE)ccvervrrinierinrnn e 9
A Simple Application (GraphiCal)........c.coovvrreriennnninien e 1
ARErNALIVE IDES.......cceceerrreiree e 14
Delphi StYle GUIE.......ccvverrererererreriere s sesse e e ss e sse e s e ssesaessssesaesness 15
1] 4= 7 15
RETBIBINCES ... e e 15

ii

TABLE OF CONTENTS

Chapter 2: BaSiCS.....uuusummmrmmsssnnnrsssssssnssssssnssssssssssssssssnnssssssssnsssssssnnnnss 17
ValTADIES ... 17
DAt TYPLS...eeerercrerereree e s 20

INTEET ... ——————— 20
1T T 21
3100] 7 T T 22
Enumerated TYPES ...t s 22
110 1 Lo OSSOSO 23
21T | T 23
STHINGS it ———————— 25
SIS et ————————————————— 27
AITAYS ..ottt b e e p e R e e ne s 28
2= T 0] (03N 31
0T 1T N 35
VaANT ... e 36
LCTS] =] 1 RS 37
[0 153 72 S 40
(0] =] 11 41
SUMMANY....ceiiieinesere s s e e r e e 42
REfEIBNCESeiveetretr et 42

Chapter 3: Looping, Conditional and Jump Statements...........cceceeeuee 43

010 oL OSSO RPRSSN 43
While Statement..........ooveinnnr e 43
Repeat Statement..........cccvivninnsrn e 45
FOr Statement..........ccccvirrr s 46

Conditional STatements...........ccoeerrenrcerrr e 48
IF STALEMENT ... 48
Case Statement ... 50

iv

TABLE OF CONTENTS

JUMP SEALEMENTS......cc v s 51
Exit Statement ... ————— 51
Break Statement............coovicnnnics s 52
Continue Statement..........ccoviiirnnr 52
GOTO STAtEMENL........ccvrir e ————— 53

1] 14 = 7 54

Chapter 4: Procedures and FUNCHIONSc.ccccusmmmsssmmmsssnsssssssssssnnsnnns 55

[0 LT o] S 55

Parameters........cccovererenrnsrse s s 57
The Nature of PArametersccverrenrnssnsessssessse s s sessssssssnens 59
Default Values of Parametersc.ccocvveenenenesernsessesesese s 62

Interrupting the Normal EXECULiON........c.ccccoeveenisennsennnesenese s 64

Nested Methods ... 64

Typed Methods.... ... 65

ANONYMOUS METhOUSccceceereririr e 68

Method OVerloading........c.ccuevevnininesnsrn e 71

SUMMANY.....eeieereerre e e se s e re e see e 72

REfBIBNCESciveeeecer et 72

Chapter 5: Object-Oriented Programming (00P)ccuusuesssssnnssssansssnns 73

DECIArALION.......ccccrrrirccce e 73

0bject STate (FIEIUS).....ccvvrrerererrerererrerersere s sre s ss e s snesessesaesaes 75

Object Functionality (Methods)ccccereernrrnenerescrsrerene e 78

Object State (Properties)........coveerrcrerenerresererese e 82

Class Members and Methods.........c.ccooererernrernnenesene e 86

INNEHTANCEcovecceccer e 87

INEEITACEScvcci e ———— 93

TABLE OF CONTENTS

Cross-Platform Memory Management..........ccoovvvvvierennsensesessesessessessessssessessens 97
31111117 o O 101
L) (=] (][102
INAEX . iiiiiiinnnmnnnnsrresssssssnsnnnsner s s s ssssnnsnnn s e e e s s s nnnnnnnnnensssssnnnnnnnnnnssssssnnn 103

About the Author

John Kouraklis started exploring computers when he was 16 and since
then has followed all the way from Turbo Pascal to the latest Delphi

versions as a hobby initially and as a profession for most of his adult life.

He has developed a wide range of applications, from financial software
to reverse engineering tools, including an application for professional
gamblers.

He is part of the Delphi community and participates in online
communities, forums, and many other events. For example, he is active

on Delphi-PRAXiS, which is perhaps the biggest English-speaking online

forum about Delphi. John also has a personal website where he posts
articles regularly. Lastly, he has written two more books about Delphi
published by Apress.

vii

About the Technical Reviewer

Dr. Holger Flick studied computer science at the Technical University
of Dortmund and received his doctorate from the Faculty of Mechanical
Engineering at the Ruhr-University Bochum. He has been programming
with Delphi since 1996 and has always been active in the community.
During and after his studies, he worked as a freelancer on numerous
projects for Borland and was able to exchange ideas directly with many
Delphi experts from Scotts Valley, CA. Mainly, he tested Delphi for the
QA department, but also programmed database applications and web
applications for the Borland Developer Network. Holger has also presented
at conferences and seminars on various Delphi topics. His commitment
and extensive knowledge of Delphi programming, gained through years of
theoretical and practical work in the area of object-oriented programming
with Delphi and other programming languages (e.g., C#, Objective-C), led
to his appointment as the Embarcadero Delphi MVP in 2016. From 2013 to
2018, Dr. Holger Flick was responsible for the entire software and hardware
architecture of a medium-sized business in Witten, Germany.

Among other things, he developed company-specific software
solutions with Delphi. Since 2017, he presents products and solutions
of TMS software as Chief Evangelist in the form of numerous technical
articles, bilingual video tutorials, and leads through seminars. In 2019,
he founded FlixEngineering LLC in the United States and is available for
Delphi contracting of any kind. The next year, he self-published several
books himself for web and desktop software development with Delphi.

ix

Introduction

Delphiis a modern general-purpose programming language which
enhances and supersedes Object Pascal. It is in the market for more
than two decades now, and it is used in a wide range of applications.
The language is maintained by Embarcadero and is backed by a large
community of developers.

The language is versatile, it supports different programming
paradigms, and it exhibits quick learning curve. It is easy to grasp the
main and fundamental concepts and start coding straightaway. Naturally,
as in every language, there is complexity down the line especially when
advanced libraries are utilized.

This book offers a guide to the fundamentals. It takes people with no
knowledge of the language all the way to what they need to know to start
their journey in Delphi. By the end of this book, you will have enough
knowledge to be able to read articles about Delphi and understand code
of intermediate complexity. In short, this book offers a fast-track induction
course to the language.

Who This Book Is For

The typical reader of this book is the newcomer to Delphi with basic
knowledge of computer programming. The book offers all the necessary
knowledge to get you started with Delphi and provides a wide range of
references to allow you expand your knowledge.

INTRODUCTION

After reading this book, you will be able to
o Discuss the fundamental elements of the language

e Appreciate the different programming paradigms that
can be used in Delphi

e Write code to demonstrate the basic concepts of the
language

Although the newcomer is in the center of this book, the experienced
developer will benefit every time they are unsure or need a refresher on
topics around the fundamentals of the language.

The Development Environment

The code in this book is written using the following environment:
e Embarcadero Delphi 10 Sydney (10.4)
e Microsoft Windows 10 Professional

I use the Professional edition, but there is nothing I do that exploits any
features specific to this edition. The code can be tested using even the free
Community Edition of Delphi. In fact, most of the code can be executed in
other editions of Object Pascal.

There are some topics that utilize features found in specific versions of
Delphi. Whenever this happens, I clearly flag the topics.

The Book’s Structure

The book has five chapters. It starts with basic syntactical elements of
the language and gradually introduces how core concepts of modern
programming are managed in Delphi. Each chapter is independent to
previous chapters, which means you can start reading the most suitable
subject to your situation.

xii

INTRODUCTION

Chapter 1: Delphi Pascal

This chapter looks at Delphi as a programming language. It discusses the
syntax and structure of the code, and it introduces the basic development
workflow Delphi developers follow.

Chapter 2: Basics

The second chapter provides the fundamental knowledge a newcomer
needs to get an understanding of how basic concepts in programming
work in Delphi. Variables, data types, and generics are introduced.

Chapter 3: Looping, Conditional and Jump
Statements

Managing the execution flow of code in Delphi is the topic of this chapter.
Common structures like loops, conditional statements, and code jumps
are covered to provide to the reader different ways to control logic in code.

Chapter 4: Procedures and Functions

In this chapter, we move to modular programming. We visit procedures
and functions and investigate the way they are implemented and used in
Delphi.

Chapter 5: Object-Oriented Programming (O0P)

OOP is one of the most fundamental and widespread paradigms in
modern software development. In this chapter, we look at how OOP is
done in Delphi and expand the discussion to cover interfaces, another core
concept of contemporary programming.

xiii

INTRODUCTION

Code Files

This book includes source code files that can be accessed via the
Download Source Code link located at www.apress.com/9781484261118.
The projects are named after the number of the chapter (ChapterXX) they
refer to. There is also a dedicated project group which loads all the projects
for all chapters. You can find it under the name DelphiQuickReference.

groupproj.

Xiv

http://www.apress.com/9781484261118

CHAPTER 1

Delphi Pascal

Delphi Pascal or, simply, Delphi is the most popular version of Object Pascal
which, in turn, is an extension of the classic Pascal programming language
(Cantu, 2016). This chapter introduces the basic concepts of the language.

Delphi As a Programming Language

Delphi is a general-purpose programming language. As a Pascal
descendent, it draws its strong typing and syntactical characteristics from
the original Pascal language developed by Niklaus Wirth in the early 1970s,
but it, loosely, relates to the ISO standard Pascal (i.e., it is not a superset).
Over the past decades, Delphi has evolved, and now it has features that
makes it a modern programming language capable of building professional
software in multiple platforms.

Syntax

If you look at Delphi source code, you will notice that it is dominated by

words rather than symbols. Code appears inside a begin. . .end block

rather than inside symbols like curly brackets ({ . . }) as in other languages.
Typically, code flows from top to bottom and from left to right. This

implies that variables, objects, constants, and other elements need

first to be declared before they are used (with the exception of forward

declaration of classes).

© John Kouraklis 2020
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_1

https://doi.org/10.1007/978-1-4842-6112-5_1#DOI

CHAPTER 1 DELPHI PASCAL

Delphi is case insensitive, meaning that coding elements like variables,
objects, methods, and the like can be declared in small or capital letters or
in a combination of both. For example, the following declarations are all
valid in Delphi: delphiBook, delphi Book, DelphiBook, DELPHIBOOK,
delphiB0OOK. There are naming rules which prohibit the use of specific
characters (e.g., an identifier cannot start with a number, etc.), but the
limitations are very few, and, practically, when you code in Delphi, it is not
common to come across them.

A notable difference with other languages is the operator to assign
values to variables. In Delphi, a colon followed by the equal sign (:=) is
used for this purpose, and the simple equal sign (=) is used to test equality
in expressions.

Lastly, a convention that survived from the classic Pascal is the way the
end of code line is declared in Delphi. Most of the lines of code end with a
semicolon (;) with the exception of keywords (e.g., begin...end, if...then,
while...do, etc.) and the last keyword in a code file. Every code file ends
with the keyword end followed by a period (end.)

Programming Paradigms

Delphi is a fully developed object-oriented programming (OOP) language
but does not force any specific development paradigm. You are free to

use the OOP approach, but if, for some reasons, you prefer to use pure
procedural programming, Delphi can fully support you. In fact, a huge part
of the native libraries in Delphi come as procedures rather than embedded
in objects and classes. This stands for Windows API calls, but, as the
language is moving to cross-platform code, more libraries come in classes
and records.

CHAPTER 1 DELPHI PASCAL

Compilation to Native Code

The final artifact of compilation of Delphi code is binary files with native
code. In computing, this means that the final files represent machine code
instead of an intermediate form like the one you find in virtual machine
bytecode other languages produce. As a result, the executables run directly
on top of the operating system without any translation layers between the
executables and the underlying APIs of the operating systems.

Visual Applications

Delphi provides two out-of-the-box frameworks to support the
development of visual applications: the Visual Component Library (VCL)
and, starting from Delphi XE2, the FireMonkey (FMX) framework. VCL

is used for Windows applications only, and FMX provides cross-platform
components to build graphical user interfaces. Apart from VCL and FMX,
there are third-party frameworks and libraries available to enrich the
development of visual applications.

One Code Base for Multiple Platforms

One of the most distinguished characteristics of modern Delphi is the
ability to produce binaries for multiple platforms from the same code base.
At the time of writing, there are very few development tools in the market
that truly support this. This means that, as a developer, you write code
without any considerations as to which platform it will compile to, and
Delphi takes the task to produce the appropriate executables or libraries
for the platform of your choice. Currently, Delphi supports the following
platforms: Windows 32-bit, Windows 64-bit, macOS 32-bit, macOS 64-bit,
Android 32-bit, Android 64-bit, i0S, iOS 32-bit, iOS 64-bit, iOS Simulator,

CHAPTER 1 DELPHI PASCAL

and Linux 64-bit. It is worth mentioning that although you can create
applications for all the preceding platforms, the development is done on
Windows only; that is, the compilers are Windows programs themselves.

Note Although you can write cross-platform code without considering
the details of the target platform, it is almost inevitable that your code,
at some stage, will need to take advantage of the specificities of the
target operating system. For that matter, Delphi allows you to fine-tune
your code base using compiler directives and attributes.

Anatomy of a Delphi Program

A typical Delphi program can generate a number of different files
depending on the nature of the program and the target platform.

Project Files

A program in Delphi has one source code file saved under the name of the
application and with the . dpr extension. The code starts with the program
keyword followed by the name of the application, and it has one main block
of code enclosed in the begin. .end keywords. The last end keyword is
followed by a period (end.), and this signifies the end of the code file. Any text
that appears after this generates a warning, but it is ignored by the compiler.

Delphi also generates a file with the .dproj extension. This file holds
vital information about the cross-platform configurations, and it can also
be used when the compilation of code is streamlined to MSBUILD.

There are a number of other support files with different extensions
(e.g., .1ocal, .deployproj) you may find, but they are not vital for the
correct compilation of a Delphi program, or the compiler can regenerate
them automatically.

CHAPTER 1 DELPHI PASCAL

Units

You can, very easily, create one big file and store all your code in it (with
the exception of visual elements like forms and frames). Delphi will not
complain and will compile your code correctly. However, this does not
sound something that scales up easily when you write complex software.
Instead, common practice suggests to organize your code in smaller
separate files or modules as they are known in software engineering.

Delphi is a modular language and provides support to modules via
unit files. In Pascal world, the term unit is used instead of module. The
term module still exists in Delphi, and it refers to a special component
(TDataModule) which sits in its own separate unit file. A unit is a separate
code file, it has the . pas extension, and it is linked back to the project
and is compiled to a binary file with the extension .dcu. DCUs are more
important than the source code files because the compiler is able to use
a .dcu file without the need to locate and access the corresponding . pas
file. The downside is that DCU files are tightly linked to the version of the
compiler that was used to create them. There were some exceptions in the
past, but this is the general rule.

The following snippet shows the minimum elements you can find in
a unit file (which, basically, does nothing). There are two distinct parts—
interface and implementation. The interface section is the part of the
unit that is visible to other units. For example, if you declare a variable in
this section, it will be accessible to any other units that refer to this unit. On
the other hand, any declarations made in the implementation section are
only available in this unit and not outside it. When it comes to OOP, classes
are typically declared in the interface section, and any method code
should appear in the implementation section in the same unit. Of course,
you can have the declaration and implementation of a class solely in the
implementation section, but it will be accessible only within the unit.

CHAPTER 1 DELPHI PASCAL

unit QuickReference;

interface

// Declarations come here

implementation

// Declarations and Actual code come here
end.

This unit is named QuickReference, and the file name is and should
be under the same name (QuickReference.pas). Delphi allows the use of
dot notation in units which provides the ability to generate namespaces. As
aresult, you can save the unit under the name Quick.Reference.Delphi.
pas. When you want to access the unit, you simply declare it using the
keyword uses as follows:

uses
Quick.Reference.Delphi;

The uses clause can appear either in the interface or the
implementation part of a unit.

Forms and Frames

A form in Delphi is a representation of the typical window you see in visual
applications. If you want to add a label or an edit field in the window, you
add them in a form, and, when the code is executed, you see a window
with the components.

Delphi creates two files for each form: a typical . pas file which
contains all the declarations and any custom code you want to add to alter
the behavior of the form and a .dfm (in VCL) or . fmx (in FireMonkey) file
which holds information about the components in a form. A valid form
needs both files.

CHAPTER 1 DELPHI PASCAL

Frames are very similar to forms with the difference that they do not
represent stand-alone windows and they do not have system menus and
icons. A frame can be embedded in forms or in other frames to build more
complex and reusable user interfaces. In terms of files, frames use the
same file structure as forms.

Delphi As Integrated Development
Environment (IDE)

It is very possible to use a simple text editor to write Delphi code and
then compile it using the compiler. This is the typical workflow of writing
software in other programming languages.

However, the preceding approach is not scalable or even workable
for the Delphi developer. Perhaps if you only write console applications,
this may work, but the rule is that you write Delphi code in the integrated
development environment that comes with the compiler provided by
Embarcadero, the company behind Delphi. The IDE is branded as RAD
Studio or Delphi IDE. This is a Windows application with a fully developed
text editor (Figure 1-1), form designer (Figure 1-2), debugger, and project
management features. The figures show the Delphi 10.4 IDE. The compiler
and the form designer are very tightly coupled to the IDE, and, in practical
terms, development in Delphi means writing code in RAD Studio.

CHAPTER 1 DELPHI PASCAL

Trarsl; o Dot Progert

v kb, g
S M TR [e ' - R L

Figure 1-2. The Form Designer in RAD Studio (Delphi 10.4 Sydney)

The Delphi IDE is one of the most feature-rich development
environments that exist in the market. If you would like to learn more,
please read the official documentation for the latest release of the IDE
(Embarcadero, n.d.) or download and install either the community edition
or the trial version from the product’s home page (Embarcadero, 2020).

CHAPTER 1 DELPHI PASCAL

A Simple Application (Console)

The simplest application you can create is a console application. This

type of application does not have any graphical environment. It provides

a text-only interface (Windows Console, macOS Terminal, etc.), and the

interaction with the user is done via the keyboard and the display screen.

We are going to get started in Delphi by creating a console application.

1.
2.

Open Delphi IDE.

Select the File » New » Console Application -
Delphi menu item.

This will create a simple console application with
the minimum code to support the development of a
console application.

Save the project under the name Cheers.

We just want to print a simple message in the
console. Go to the Code Editor by clicking on the tab
at the bottom of the main part of the screen and add
the following lines (in bold):

program Cheers;
{$APPTYPE CONSOLE}
{$R *.res}

uses
System.SysUtils;

begin
try
{ TODO -oUser -cConsole Main : Insert code here }
Writeln('Hey Delphi, Cheers!');
Writeln('Press Enter');
Readln;

CHAPTER 1 DELPHI PASCAL

except
on E: Exception do
Writeln(E.ClassName, ': ', E.Message);
end;
end.

5. Then either go to Run » Run menu item, press F9
or use the relevant button in the toolbar. This will
compile and execute the code, and you will be able
to see the output in a console window (Figure 1-3).
Press Enter to close it and return to the IDE.

B C:\Users \Documents\Embarcadero\Studio\Projects\Win32\Debug\... - a X

Hey Delphi, Cheers! A
Press Enter

Figure 1-3. Simple Output to Console

Debugging is done inside the IDE as well. You can set a breakpoint at a
code line by clicking the gutter area in the text editor. When a breakpoint is
set, ared circle appears as shown in Figure 1-4. This area is the gutter area
of the editor.

10

CHAPTER 1 DELPHI PASCAL
8 = :
- Cprogram Cheers;
{$APPTYPE CONSOLE}
{$R *.res}

uses
System.SysUtils;

begin
try
- { TODO -oUser -cConsole Main : Insert code here }
@ . writeln('Hey Delphi, Cheers!');
. writeln('Press Enter’);
readln;
except
on E: Exception do
Writeln(E.ClassName, ': ', E.Message);
end;
end.

I
< >

Figure 1-4. Breakpoints in the Delphi IDE

Run again the project by pressing F9. This time the execution will stop
at the line with the breakpoint, and you will be able to step through the
code gradually by using the debugger buttons in the toolbar.

A Simple Application (Graphical)

In the previous section, we created a simple console application. This time
we will create a graphical application to demonstrate how the IDE is used
at a very basic level.

1. Select File » New » Windows VCL Application -
Delphi or Multi-Device Application - Delphi from

the main menu.

The VCL, obviously, uses the VCL framework, and the
Multi-Device Application uses FireMonkey (FMX).

11

CHAPTER 1

2.

DELPHI PASCAL

If you select Multi-Device Application, you will be
offered a list of different types of FMX applications
(templates). Just select Blank Application.

Now the IDE will open the form designer.

Use the Palette panel (usually located on the
right-hand side of the screen), find the TButton
component (Figure 1-5), and drag and drop it to the
form. Alternatively, you can click once the TButton

and then click again somewhere in the form. This
will add a button (Figure 1-6).

Figure 1-5. Selecting TButton from the Palette

5.

12

Double-click the button. The designer will change to
the code editor and will add some code. Then, add
the following code:

procedure TFormi.ButtoniClick(Sender: TObject);
begin

ShowMessage('Hey Delphi, Cheers!');
end;

CHAPTER 1 DELPHI PASCAL

Welcome Page ~
Lo == ECR <)

|

pPo@| 13: 37 |Insert |Medified Code Design History

Figure 1-6. Form Designer in Delphi IDE (Delphi 10.4 Sydney)

6. Run the application and click the button. You are
greeted with a message (Figure 1-7).

The preceding two simple applications demonstrate the most basic
workflows in Delphi and present the basic editors (code, form) of the IDE.

13

CHAPTER 1 DELPHI PASCAL

-

Projectl X

Hey Delphi, Cheers!

Figure 1-7. VCL Application in Delphi IDE (Delphi 10.4 Sydney)

Alternative IDEs

As mentioned earlier, Delphi development is done in Delphi IDE, which
comes together with the compilers. The only other alternative to write pure
Delphi code is to use Visual Studio Code with the OmniPascal extension
(OmniPascal, 2020). OmniPascal adds to Visual Studio Code the capability
to understand Delphi syntax and then to compile, debug, and run Delphi
programs. The only downside is that it does not offer a form designer,
which means that the Delphi IDE remains the only way to develop
graphical applications in Delphi.

If we open the scope of the IDE and look at the domain of Object
Pascal more broadly, there is another IDE worth mentioning. The Free
Pascal community offers Lazarus (Lazarus, 2020) which is a cross-platform
open source IDE. Lazarus is highly compatible with Delphi, but it is
primarily made to support Free Pascal—another flavor of Object Pascal.

14

CHAPTER 1 DELPHI PASCAL

Delphi Style Guide

Delphi allows coders to use any naming conventions (with some
exceptions as mentioned earlier) they feel work best for them and make
their code readable especially when teams of developers are involved.

As it happens in every programming language, over the years, specific
approaches to naming and other syntactical elements have emerged, and
they are now commonly used among Delphi developers. For a complete
guide, check this post (Calvert, n.d.). There are also some commonly
found approaches to naming variables which are summarized in this piece
(Riley, 2019).

Summary

In this chapter, we started with a very basic introduction of Delphi as

a programming language. Then, we touched upon RAD Studio, the
integrated environment that is, almost exclusively, used to develop Delphi
software. In the next chapter, we review the basic elements of the language.

References

Calvert, C., n.d.. Object Pascal Style Guide. [Online| Available at: http://
edn.embarcadero.com/article/10280#2.0 [Accessed 27 04 2020].
Cantu, M., 2016. Object Pascal Handbook. s.1.:s.n.
Embarcadero, 2020. RAD Studio Product Page. [Online] Available at:
www . embarcadero.com/products/rad-studio [Accessed 08 04 2020].
Embarcadero, n.d. RAD Studio Rio. [Online] Available at: http://
docwiki.embarcadero.com/RADStudio/Rio/en/Main_Page [Accessed 08
04 2020].

15

http://edn.embarcadero.com/article/10280#2.0
http://edn.embarcadero.com/article/10280#2.0
http://www.embarcadero.com/products/rad-studio
http://docwiki.embarcadero.com/RADStudio/Rio/en/Main_Page
http://docwiki.embarcadero.com/RADStudio/Rio/en/Main_Page

CHAPTER 1 DELPHI PASCAL

Lazarus, 2020. Lazarus. [Online] Available at: www.lazarus-ide.org/
[Accessed 08 04 2020].

OmniPascal, 2020. OmniPascal. [Online] Available at: www.
omnipascal.com/ [Accessed 08 04 2020].

Riley, M., 2019. What is the “A” prefix I see used on parameters?.
[Online] Available at: https://capecodgunny.blogspot.com/2019/03/
delphi-tip-of-day-what-is-a-prefix-i.html [Accessed 27 04 2020].

16

http://www.lazarus-ide.org/
http://www.omnipascal.com/
http://www.omnipascal.com/
https://capecodgunny.blogspot.com/2019/03/delphi-tip-of-day-what-is-a-prefix-i.html
https://capecodgunny.blogspot.com/2019/03/delphi-tip-of-day-what-is-a-prefix-i.html

CHAPTER 2

Basics

Variables

Variables, a term borrowed from mathematics, is what we use in software
development to store data that change in the course of a program. It

is, practically, hard to write code without using variables. Technically
speaking, variables represent memory addresses, and they have two
elements: an identifier and a data type.

The identifier is a convenient name that is used to access the value
of the variable, and the data type defines what sort of data the variable
holds. Delphi is a strongly and statically typed language. Strongly typed
means that the developer defines the (data) type of the variable, and the
variable cannot hold any other data type than the one defined; statically
typed means that the data type is imposed at compile time rather than at
runtime.

As an example, consider a variable that holds the age of a person.

In Delphi, we define a variable using the keyword var followed by the
identifier (name), a colon, and the data type. Traditionally, variables in
Delphi are declared before the main block of a program or a method. Of
course, all the conventions for naming identifiers and code lines apply
(naming conventions, capitalization, and the use of semicolon at the end
of the code line).

© John Kouraklis 2020
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_2

https://doi.org/10.1007/978-1-4842-6112-5_2#DOI

CHAPTER 2 BASICS

Building on the example from the previous chapter, we define our new
variable as it is shown in the following code (for simplicity, I have removed
the {..} text and the try...except block code):

program Cheers;
{$APPTYPE CONSOLE}
{$R *.res}

uses
System.SysUtils;

var
age: Integer;

begin
Writeln('Hey Delphi, Cheers!');
Writeln('Press Enter');
Readln;
age:=30;

end.

The age variable is defined outside the begin..end block by declaring
the data type (Integer), and then it is used by assigning the value
30. Variables can be used as part of expressions like in every other
programming language.

begin
Writeln('Hey Delphi, Cheers!');
Writeln('Press Enter');
Readln;

18

CHAPTER 2 BASICS

age:=age + 10;
end.

Starting with Delphi 10.3 Rio, developers are able to declare variables
inside block codes (inline variables) and assign values directly. The code

now becomes as follows:

begin
Writeln('Hey Delphi, Cheers!');
Writeln('Press Enter');
Readln;
var age:Integer :=30;
end.

The age variable is valid in the specific block of code (begin. . .end).
In most cases, the compiler is able to infer the type of the variable.
Therefore, the code can be simplified even further, although if you are
making your first steps in Delphi, you may find useful to explicitly declare
the type of the variable as above. The declaration of an inline variable
which allows the compiler to work out the type looks like this:

var age:=30;

A concept that comes together with variables (and constants) is the
idea of variable scope. This means that variables are not valid and, thus,
cannot be used anywhere in a code base. Instead, there are boundaries.

Typically, in Delphi, the scope is defined by the begin. .end block
closest to the declaration of the variable. In all the examples we have
seen so far, we only have the main block of the console application. The
variables are valid within this scope, but also the scope is global in these
cases because there is only one block code.

19

CHAPTER 2 BASICS

As we add more knowledge around how the language works, we will
see that the scope can be limited within a method (procedure/function), a
loop statement, or a class. In some more advanced code, the scope can be
the main block of a try...except/finally..end statement. Outside the scope, a
variable is not recognizable by the compiler.

Data Types
Integer

In Delphi, there is a good number of integer types that can be used
depending on how big you expect the number to be, whether you want
to carry the sign or not (signed/unsigned) and the target platform of the
application (Tables 2-1 and 2-2).

Table 2-1. Platform-Independent Integer Types

Platform-Independent Integer Type

Shortnt (Int8) Signed 8-bit
Smallint (Int16) Signed 16-bit
Integer (FixedInt) Signed 32-bit
Int64 Signed 64-bit
Byte Unsigned 8-bit
Word Unsigned 16-bit
Cardinal (FixedUInt) Unsigned 32-bit
UInt64 Unsigned 64-bit

20

CHAPTER 2 BASICS

Table 2-2. Platform-Dependent Integer Types

Platform-Dependent Integer Platform Type

Nativelnt (Integer) 32-bit (All Platforms) Signed 32-bit

Nativelnt (Int64) 64-bit (All Platforms) Signed 64-bit

NativeUInt (Cardinal) 32-bit (All Platforms) Unsigned 32-bit

NativeUInt (UInt64) 64-bit (All Platforms) Unsigned 64-bit

Longint (Integer) 32-bit (All Platforms) Signed 32-bit
64-bit (Windows)

Longint (Int64) 64-bit (i0S, Linux) Signed 64-bit

LongWord (Cardinal) 32-bit (All Platforms) Unsigned 32-bit
64-bit (Windows)

LongWord (UInt64) 64-bit (All Platforms) Unsigned 64-bit

Char

The Char data type represents a single character. For historical reasons,
when Unicode characters and strings were added to Delphi, a whole range
of char (and string) types was introduced to accommodate the different
requirements of non-Unicode and Unicode characters (and strings). This
led to some confusion among developers.

Modern Delphi development does not really look at such differences
(unless a very old compiler is used), and the data type char can be safely
used in desktop and mobile applications to handle Unicode characters.

21

CHAPTER 2 BASICS

Boolean

Boolean values represent two states: True and False. As in the case of char
type, there are more than one Boolean types to facilitate communication
with other languages and operating systems, but, again, the vast majority of
code does not use them. True Boolean value translates to 1 and false to 0.

Enumerated Types

Enumerated types need to be defined before used as data types in
variables. They are truly custom data type to fit the needs of the developer.
The values bear no meaning to the compiler and can be used to improve
readability and increase abstraction. Enumerated type can be defined as in
the following examples:

type
TAnswer = (aYes, aNo);
TChapter = (cChapteroi, cChapter02, cChapter3, cChapters);

The definition should appear outside the main block. .end or an
application or a method. Once they are defined, a variable of TChapter
type is very easily declared:

var
consent: TAnswer;
currentChapter: TChapter;

and then we use them as before:

begin
consent:=aYes;
currentChapter:=cChapter02;
end.

22

CHAPTER 2 BASICS

Subrange

Subrange is a very handy data type. It provides the ability to declare data
types as a range (Low. .High), and it is related to another (predefined) data
type. The code snippet that follows defines a subrange that represents the
adult ages and some chapters from the TChapter enumerated type:

Type
TMyCoinsAge = 10..High(Byte);
TMainPart = cChaptero02..cChapter04;

Subranges can also resolve expressions:

type
TExperimentTemp = -10..3 * (20 + 5);

Real

This data type represents a floating-point number (decimal) of different
precision. Table 2-3 presents the available real data types in Delphi.

23

BASICS

CHAPTER 2

suoie|nafed Asejasuow
ul pasq ‘siuiod |ewioap

¥ yum Jebayul 1g-+9 8 0¢—01L swofierd |1y fouauny

adAy e1ep Aoeba o 0201 swuoned v dwon

8 91-G1 swJoye|d pue sndg Jauio |1y papuslx3

9l 020!t (xnury) (e3ul 19-¥9 papuaix3

] 0¢—01 (swaopeyd |[e) [83u] Hg-g€ papusixy

1] 020!t (smopuip) 8| Ha-2€ papuaix3

8 91-G1 suLiope(d |1y (a1anoq) jeay

14 8-L swJopeld |1y 9|buig

adAy eyep Aoeba 9 2111 swuopeyd |1y ghleay
subiq jewidaq

sajoN (se1hg) azis jueaubig wJaopeld adf]

sadAT vy Jur0d-Sunvol] *g-g 319Vl

24

CHAPTER 2 BASICS

Strings

Strings represent a sequence of characters. The transition to Unicode led
to a number of string data types. Similarly to the case of char, modern
development does not consider the different types, and we just use the
type string (unless an older compiler is used or there are other more
specific requirements).

var
name: string;
begin
name:="'Delphi’;
var surname:='Quick Reference Guide';
end.

As you can see from the preceding code, strings in Delphi are enclosed
in single quotes (" ").

If you want to print a single quote, then you have to escape it by using
two single quotes (not double quote mark) as in the following example:

begin
Writeln('Delphi''s fantastic world!');

end.

Delphi carries the same philosophy as the original Pascal language in
regard to the index of the first letter of a string; string starts from 1 rather
than 0; but this is only for Windows. When more platforms were added,
the decision was made to revert to the most common indexing style in the
world of software and assign the value 0 to the first character of a string
(except for macOS which uses the Windows convention). Therefore, if you
want to access the first character of name, on Windows you write this:

25

CHAPTER 2 BASICS

Writeln(name[1]);

but on any other platform, you access it this way:
Writeln(name[0]);

This approach means that you need to differentiate the code based on
the platform you are compiling. There is another way to go around this.
You can use the function Low to allow the compiler to figure out the correct
starting index:

Writeln(name[low(name)]);

The manipulation of strings (e.g., concatenating, extracting substrings,
finding the position of a substring, etc.) is supported in all platforms by
simple calls to methods. For example, if you want to find the position of a
substring in a given string, the following call will do the job and return 14
on Windows and 13 on all other platforms:

Writeln(Pos('Reference', 'Delphi Quick Reference'));

Although this code works, in the cross-platform world, the use of
standard methods to manipulate strings is not recommended. Instead,
Delphi comes with a new set of methods optimized for speed and platform
compatibility and goes under TStringHelper in System.SysUtils unit.
These methods are accessed using the dot notation (.) on a string.
Therefore, the preceding code now becomes

Writeln('Delphi Quick Reference'.IndexOf('Reference'));

Due to the fluent approach (dot notation), several methods can be
chained to manipulate strings. For example, check this code snippet:

Writeln('Delphi Quick Reference'
.Substring(0, 'Delphi’.Length)
.ToUpper) ;

26

CHAPTER 2 BASICS

This code first applies the SubString methods on 'Delphi Quick
Reference' string starting from index 0. It extracts as many characters as
the length of string 'Delphi’ using the Length method. Then, it converts
the extracted part to uppercase using ToUpper method and prints out the
word DELPHI.

As mentioned, TStringHelper is the modern approach to string
manipulation, and it should replace the use of older methods as they may
be deprecated in future versions (Embarcadero, 2015).

Sets

Sets are an extremely convenient way to manage groups of elements of the
same data type. A set is defined in relation to an enumerated data type.
Earlier when we discussed enumerated types, we defined TChapter. Now,
we need a set to represent the chapters we have read. We do this with the
following declarations:

type
TChapter = (cChapteroi, cChapter02, cChapter3, cChapters);
TChaptersRead = set of TChapter;

var
progress: TChaptersRead;

begin
progress:=[cChaptero1, cChaptero2];
end.

This time we declare TChaptersRead to represent a set of chapters, and
we assign the progress variable to this particular type. Then, populating
progress with chapters is a very simple step.

In fact, the power of sets becomes apparent when we consider
the easiness of manipulating that comes with the use of addition and
subtraction operators.

27

CHAPTER 2 BASICS

Consider the case of user permissions. We want to create a group of
users and assign permissions like create a user, read the details of a user,
update user’s details, and delete a user. We declare the enumerated types:

type
TPermission = (pCreate, pRead, pUpdate, pDelete);
TGroup = set of TPermission;

Next, we define a new variable to hold TGroup data:

var
admin: TGroup;

Now we clean the group (although it is not necessary):
admin:=[1];
Then, we are ready to add permissions to the admin group:

begin
admin:=[];
admin:=admin + [pCreate];
admin:=admin + [pUpdate..pDelete];
end.

As the code illustrates, the addition of new permissions is very simple,
and the code is highly readable.

If we need to check whether a permission exists in admin group, we can
use the in operator:

writeln(pCreate in admin);

Arrays

Arrays in programming languages are sequences of elements of the

same type. The order of the elements is defined by an index, and the first
element is at index 0 (zero-based arrays). In Delphi, arrays can be declared
in two ways depending on whether the size of the array is known or not.

28

CHAPTER 2 BASICS
When you know the size of the array, you can declare it as follows:

var
arrStatic: array[0..9] of string;

This type of array is called static array, and you can straightaway access
the elements of the array by referring to their indices:

begin
arrStatic[0]:="Delphi’;
arrStatic[4]:="Quick Reference';
end.

Note that the elements in the array contain arbitrary values; do not
assume that they are empty (whatever this means for the type of data the
array holds).

Static arrays need not be of one dimension; Delphi supports
multidimensional arrays by concatenating arrays as in the following snippets:

var
arrDual: array[0..9] of array[0..9] of string;
arrDualAlt: array[0..9, 0..9] of string;
arrMulti: array[0..9, 0..9, 0..9] of string;

Both 2x2 declarations work and are equivalent. As you can see in the
code, you can have truly multidimensional arrays, and the elements can
be accessed by attaching the dimension indices one next to the other. For
example, if we want to access the third element, in the second row at the
seventh position of arrMulti, we write

arrMulti[3][2][7]:="Multidimensional Array';
or simply

arrMulti[3, 2, 7]:="Multidimensional Array';

29

CHAPTER 2 BASICS

If you are not able to determine the size of the area beforehand, you
can define a dynamic array of a specific type by omitting the indices:

var
arrDynamic: array of string;

Because arrDynamic is a dynamic array, we need to specify the size of
the array before we access any elements. We do this with SetLength:

SetLength(arrDynamic, 10);
arrDynamic[0]:="Delphi’;

If you don’t use SetLength, any attempts to access the elements of
the array will generate an error because memory slots are not yet being
allocated.

Similar to multidimensional static arrays, multidimensional dynamic
arrays can be declared.

var
arrDynamicMulti: array of array of String;

Again, the length needs to be defined before you attempt to access the

elements.

begin
SetLength(arrDynamicMulti, 10, 10);
arrDynamicMulti[5][3]:="Quick Reference';
Writeln(arrDynamicMulti[5][3]);

end.

A very interesting implication of static and dynamic arrays is that
you can combine them and declare an array with one or more known
dimensions and other unknown ones. For example, the following first
statement defines a ten-element array which has expandable number of
strings per element. Similarly, the second statement declares an array of
unknown number of elements of ten strings:

30

CHAPTER 2 BASICS

var
arrMixed: array[0..9] of array of string;
arrMixedReverse: array of array[0..9] of string;

You access the elements by setting the correct length first as we did before:

SetLength(arrMixed[0], 10);
arrMixed[0][5]:="Delphi’;

SetLength(arrMixedReverse, 10);
arrMixedReverse[3][5]:="Quick Reference';

An alternative way to declare an array is to create a new data type:

type
TMixedArray = array[0..9] of array of string;

Then, you define a new variable of this type and use it as normal:

var
arrMixedAlt: TMixedArray;
begin
SetLength(arrMixedAlt[3], 10);
arrMixedAlt[3, 3]:='"Delphi’;
end.

Records

Records (or structures as they are called in other languages) provide the
ability to group elements (fields) of different types together. We define a
record in the types section, and then we declare a variable.

type
TBook = record
Title: string;
Pages: Integer;
end;

31

CHAPTER 2 BASICS

var
thisBook: TBook;

begin
thisBook.Title:='Delphi Quick Reference Book';
thisBook.Pages:=100;

end.

Records are very useful when you have data structures with common
fields and additional fields that depend on conditions. In the TBook
example, we can have different formats of a book: a hard copy and a PDF
version. In the first case, we care to know whether the book is in stock, and
in the second case, we need to provide a download URL. In this scenario, it
is obvious that the two cases are mutually exclusive; when you have a hard
copy, you do not need the download URL.

We declare a new data type to differentiate the different book formats,
and then we use the case statement within the record declaration. Note
that if a field of string type is declared in the case options, you need to
provide the length of the string.

type
TBookFormat = (bfHardCopy, bfPDF);
TBook = record
Title: string;
Pages: Integer;
case Format: TBookFormat of
bfHardCopy: (InStock: Boolean);
bfPDF: (DownloadURL: string[100]);
end;

Then, we use Format to activate the different fields.

begin
thisBook.Title:="'Delphi Quick Reference Book';
thisBook.Pages:=100;

32

CHAPTER 2 BASICS

thisBook.Format:=bfHardCopy;
thisBook.InStock:=true;

thisBook.Format:=bfPDF;
thisBook.DownloadURL:="http://";
end.

Records share some common functionality with classes—but they
are not the same. Records have a default constructor that is called
automatically whenever the record is used. However, records do not
implement destructors.

To demonstrate the use of constructors, let’s declare a record that
generates a password. We want to be able to pass a salt value (which in
fact will not do anything meaningful in this example but will get the point
across). Note that when you define new record constructors, they must
carry a parameter; in other words, you cannot have a parameter-less
constructor in records, and you cannot override the default one.

type
TRandomPassword = record
Password: string;
public
constructor Create (const aSalt: string);
end;

constructor TRandomPassword.Create(const aSalt: string);
begin

inherited;

Password:=aSalt + '$%HIKFbmnmn';
end;

var
password: TRandomPassword;

33

CHAPTER 2 BASICS

begin
password:=TRandomPassword.Create('123");
writeln(password.Password);

end.

Earlier mentioned that you cannot override the default parameter-
less constructor and that records do not have destructors. Delphi 10.4
introduced a feature called custom managed records. Although you are
not able to override the default constructor and destructor, you can
add initialization and finalization code via the relevant operators. The
following code shows how custom managed records work. First, we
declare the Initialization and Finalization operators.

type
TRandomPasswordCustom = record
Password: string;
public
class operator Initialize (out Dest: TRandomPasswordCustom);
class operator Finalize (var Dest: TRandomPasswordCustom);
end;

class operator TRandomPasswordCustom.Initialize (out Dest:
TRandomPasswordCustom);
begin
Dest.Password:="$%HIKFbmnmn';
end;

class operator TRandomPasswordCustom.Finalize (var Dest:
TRandomPasswordCustom);
begin
Writeln('Record is finalised")
end;

34

CHAPTER 2 BASICS

Initialization and Finalization are special types of methods
(operators). Note that they both need a reference to the record itself via the
Dest parameter.

We use TRandomPasswordCustom the usual way as with the classic
records.

var
customPassword: TRandomPasswordCustom;
begin

// *** This works in Delphi 10.4 and above ***
Writeln('Custom Record Password: ' +
customPassword.Password);
end.

If you run the code, Password is automatically initialized to the desired
value. We do not need any extra steps when we use the record in our code.

Pointers

The declaration of variables, the association to specific data types, and the
ability to access the value of the variable at specific memory address are
all left to the compiler. It is pretty much what is happening under the hood
when variables are used—and they are used a lot. In the vast majority of
programming—even in complex programming—this is more than enough;
it is efficient and productive.

However, there are cases that can be achieved by directly accessing
the memory where the value of a variable is stored instead of allowing the
compiler to manage this. Such cases are achieved by declaring a pointer
variable (pointers).

In the part with the records, we declared password, a variable to hold
an instance of TRandomPassword. Let’s find out the address of the variable.

35

CHAPTER 2 BASICS

var
password: TRandomPassword;
passAddress: Pointer;

begin
password:=TRandomPassword.Create('123");

passAddress:=@password;
writeln(integer(passAddress).ToHexString);
end.

We first declare passAddress, a pointer variable, and point it to the
address of password. This is achieved by using the @ (address) operator.
Instead of @, you can use the method Addr. When you run the code, you
will see the address in hex format (004FA7EO in my system).

There is much more into pointers as the topic is very complicated and
yet very powerful. This is an introductory book, and, therefore, diving into
pointers is out of its scope. There are many good resources available online
with this blog post (Velthuis, 2019) by late Rudy Velthuis, a legendary figure
in Delphi world, being one of the best explanations available.

Variant

In the beginning of this chapter, we saw that Delphi is a strongly typed
language, meaning that a variable is declared to represent a specific data
type. The Variant data type circumvents this requirement and allows
developers to assign different types of data that are being automatically
converted at runtime.

Consider the following:

var
flex: Variant;
begin
flex:= 30;

36

CHAPTER 2 BASICS

Writeln('Flex as integer: ', flex);

flex:= 'Thirty';

Writeln('Flex as string: ', flex);
end.

We declare flex as Variant, and in the beginning, we assign an
integer. Then, we are able to assign a value of a totally different type.
Variants, although flexible structures, are slow, and they should not be
used widely or as a replacement to proper variable declarations. They are
used for specific purposes (e.g., COM programming on Windows) and,
as with pointers, require some level of expertise and experience to utilize
them safely.

Generics

Generic programming allows the declaration and manipulation of
variables by not specifying the exact type until needed. The biggest
advantage of such approach is that algorithms can be created in an
abstract (generic) way that works with a number of data types. This is an
attempt to reduce duplication. This concept is found under the same term
in other languages. Additionally, the terms template and parameterized
types are also common.

We define generics using a set of angle brackets (<T>), where T is used
to define the exact data type of interest. The letter T is more a convention
than a requirement. As an example, let’s look at the declaration of the
dynamic arrays we used earlier and how we can take advantage of
generics.

We declared arrStatic as in the following lines:

var
arrDynamic: array[0..9] of string;

37

CHAPTER 2 BASICS
In a more generic way, we would write:

var
genArray: TArray<string>;

We declare genArray to be of TArray<string> type. Then, we would
treat genArray as we would treat a classic dynamic array. Delphi comes
with a number of predefined types of arrays for different data types
(e.g., TStringDynArray, TBooleanDynArray, etc.), and we can declare
multidimensional arrays by declaring the generic type T to be of another
array. In the following example, arrTypedDual demonstrates how this can
be done:

var
arrTyped: TArray<string>; // or, arrTyped: TStringDynArray
arrTypedDual: TArray<TArray<string>>;

begin
SetLength(arrTyped, 10);
arrTyped[3]:="Typed"';

SetLength(arrTypedDual, 10, 10);
arrTypedDual[5, 5]:="Typed Dual’;
end.

The real advantage of generics comes when we combine them with
records (and classes). We are going to implement a record that receives a
generic data type and logs (prints out) the type of the generic.

Let’s declare the record which has only one method.

type
TLogType<T> = record
procedure logType;
end;

38

CHAPTER 2 BASICS

procedure TLogType<T>.logType;
begin

end;

I have omitted the actual implementation for two reasons: firstly,
we have not talked yet about methods in Delphi and, secondly, printing
out the type of T requires some deeper knowledge of Run-Time Type
Information (RTTTI). It is not as complicated as it sounds as this is done,
literally, in one line. At this stage, it would only destruct us from focusing
on generics. In the code that comes with the book, you can find the full
implementation.

Having declared TLogType<T>, we define variables that pass different
data types to TLogType.

var
logInteger: TLogType<integer>;
logString: TLogType<string>;
logRandomPassword: TLogType<TRandomPassword>;

begin
logInteger.logType;
logString.logType;
logRandomPassword.logType;
end.

The preceding code will print the types of logInteger, logString,
and logRandomPassword (Integer, String, TRandomPassword). As you can
observe, it has significantly increased the reusability of our code.

Generics is a very flexible feature, and there is way more that you can do
with them. For a more detailed discussion, visit the relevant wiki page in this
source (Embarcadero, 2015) and read Nick Hodges’s book (Hodges, 2014).

39

CHAPTER 2 BASICS

Constants

Constants are values that coders define, and they remain unchanged
during the execution of an application. In Delphi, constants are defined
using the const keyword and the equal sign:

const
PUBLISHER = 'Apress’;

You can include expressions in constants that can be resolved by
the compiler; that is, they can be evaluated without the execution of the
program. Examples of constants with expressions can be seen in the
following snippet:

const
EXTENDED _SHIFT = 12;
WAGE_PER_HOUR = 10;
NORMAL DAILY WAGE = NORMAL SHIFT * WAGE_PER_HOUR;
EXTENDED DAILY WAGE = EXTENDED SHIFT * WAGE_PER_HOUR *
1.30;

More complex constants that include arrays and records can be
defined, but the data types need to be explicitly declared.

const
CHAPTER TITLES : array[0..2] of string =
('Introduction','Chapter 1','Chapter 2');

On a more technical note, when a constant is declared, Delphi reserves
the required memory slot, and then it treats it as a variable. This means
that you can change the value of a constant in the code. This may defeat
the concept of a constant, but it is not uncommon in programming
languages. In the C-family languages, this treatment is called static
variable.

40

CHAPTER 2 BASICS

Comments

There are four ways to add comments to the code:

e Using //: This type of comment is interpreted as a line
comment; that is, anything after this is discarded by the
compiler.

o Using (*..*): This is a multiline comment identifier.
e Using{..}: This is also a multiline comment identifier.

o Using///: This s a special type of comments
(documentation comments) and is used to document
the code in such way that the IDE and documentation
software understand. In order to work, it follows
specific structure and pattern.

Comments are ignored by the compiler and can appear anywhere in
a Delphi unit. The use of (*..*) and {. .} allows for multiline and nested
comments as in the following example:

// Line comment
{ Some other comment}
(* Yet another comment type *)

(* Comments in
Multiple lines
{ and in multiple levels }

*)

41

CHAPTER 2 BASICS

Summary

In this chapter, we looked at the most fundamental elements that define
Delphi—variables, data types, constants, and comments—and discussed
some ways to use them. The next chapter focuses on ways to control the
order of execution.

References

Embarcadero, 2015. Overview of Generics. [Online] Available at: http://
docwiki.embarcadero.com/RADStudio/Sydney/en/Overview of
Generics [Accessed 03 06 2020].

Embarcadero, 2015. System.SysUtils.TStringHelper. [Online] Available
at: http://docwiki.embarcadero.com/Libraries/Sydney/en/System.
SysUtils.TStringHelper [Accessed 03 06 2020].

Hodges, N., 2014. Coding in Delphi. s.1.:Nepeta Enterprises.

Velthuis, R., 2019. Addressing Pointers. [Online] Available at: http://
rvelthuis.de/articles/articles-pointers.html [Accessed 27 04 2020].

42

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Overview_of_Generics
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Overview_of_Generics
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Overview_of_Generics
http://docwiki.embarcadero.com/Libraries/Sydney/en/System.SysUtils.TStringHelper
http://docwiki.embarcadero.com/Libraries/Sydney/en/System.SysUtils.TStringHelper
http://rvelthuis.de/articles/articles-pointers.html
http://rvelthuis.de/articles/articles-pointers.html

CHAPTER 3

Looping, Conditional
and Jump Statements

Loops

Loops allow a chunk of code to be executed as long as a control condition
is valid (true) or for specific number of iterations. In Delphi, you manage
loops either by using awhile, a repeat, or a for statement.

While Statement

Awhile. .do statement executes the designated code as long as the
condition that appears between the keywords while and do (control
condition) is true. The evaluation of the control statement is done in the
very beginning of the loop, which means that the relevant code may or
may not be executed at all.

var
whileControl: Integer;
begin
whileControl:=0;
while whileControl <=10 do

© John Kouraklis 2020 43
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_3

https://doi.org/10.1007/978-1-4842-6112-5_3#DOI

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

begin
writeln(whileControl);
whileControl:=whileControl + 1;
end;
end.

In the preceding code, the while loop first evaluates the expression
whileControl<=10, and if true it goes ahead and executes the statements
in the begin. .end block. If you change the initial value of whileControl to
anything bigger than 10, the code in the begin. .end will not be executed.

There are two points to emphasize. Firstly, in while loops, we can
change the control variable (whileControl) because the control condition
is evaluated at the beginning of every iteration. Secondly, in while loops,
the code that is executed is the statement that appears immediately after
the do keyword. In the following code, only the writeln(whileControl)
will be executed:

begin
whileControl:=0;
while whileControl <=10 do
writeln(whileControl);
whileControl:=whileControl + 1;
end.

Consequently, the control variable will never be incremented and
the while loop will never stop. To deal with this, we use a begin..end
block as in the first example. In general, the use of such blocks is good
programming practice; it costs nothing in terms of compiling load, and it
makes the code far more readable.

44

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

Repeat Statement

A repeat..until statement executes the designated statements that
appear between the keywords repeat and until as long as the control
statement is not true. In other words, the iterations stop when the control
statement is true. The control statement follows the until keyword. The
direct implication of this construct is that the code is executed at least once
before the control condition is evaluated.

As an example, let’s use the same condition we used in the case of the
while statement:

begin
whileControl:=0;
repeat
writeln(whileControl);
whileControl:=whileControl + 1;
until whileControl<=10;
end.

In the beginning, the control variable is 0. The code enters the repeat
block and executes the two lines of code until it hits the until keyword.
Then, it evaluates the whileControl<=10 statement. In this very first
iteration, the statement is true and, therefore, the iterations finish. As a
result, the code is executed only once.

If we change the control condition to whileControl>=10, the code
will run a number of times. As mentioned earlier, the evaluation is done
at the end of the first pass. This makes the loop to be executed 10 times
rather than 11 as in the case of while. This is a consequence of the way
the control statements are evaluated. Another difference with the while
statement is that all the statements that appear in the repeat. .until block
will be executed.

45

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

For Statement

The For statement executes statements the exact number of iterations you
specify. You do this by providing an initial and a final value to a counter
variable instead of explicitly declaring the number of iterations. For
example, if you want a block of code to run 10 times, you pass to for the
initial value of 1 and the final value of 10. The code will run

finalValue - initialValue + 1times
or,10-1+1 =10 times

If the final value is smaller than the initial value, then the for loop is
not executed at all. The next code chunk shows how for is used:

var
forControl: integer;
begin
for forControl := 1 to 10 do
writeln(forControl);
end.

Note that we need to declare the control variable the usual way we
follow for every other variable; that is, by declaring it outside the main
begin..end block. The data type of this variable must be the same as or
assignment compatible to the structure you iterate. For example, if you
iterate through integers, the control variable must be declared as integer.
Delphi 10.3 introduced inline variables, and this opened the possibility to
use them in a for loop as follows:

for var newForControl := 1 to 10 do
writeln(newForControl);

In order to make a for loop execute in the case you have smaller final
value than the initial one, then use the keyword downto instead of to.

46

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

for forControl := 10 downto 1 do
Writeln(forControl);

The number of iterations is evaluated at the beginning of the loop
and only once, and you are not allowed to change the value of the control
variable (forControl) within the for loop.

When you iterate more complex structures like arrays or collections,
you can use the very convenient in syntax as you can observe in the
following lines:

var

forArray: array[0..9] of Integer =
(10,20,30,40,50,60,70,80,90,100);

forINControl: integer;

begin
for forINControl in forArray do

writeln(forINControl);
end.

We declare an array which can be either static or dynamic. For
simplicity, I declared and initialized a static array in this example. Then,
we need the variable forINControl to use in the for loop. The variable
must be of the same data type as the elements of the array or the collection
(integer). Finally, the for..in form is used to iterate through the
elements of the array.

In Delphi 10.3 and above, the inline variable declaration can also be
used as shown in the following example. With this approach, you do not
have to declare the type of the control variable because the compiler is
able to infer it automatically.

for var newForINControl in forArray do
writeln(newForINControl);

47

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

Conditional Statements

Conditional statements allow the execution of code when a statement (or
condition) is true, following the usual pattern we saw in while and repeat
statements. In Delphi, conditional statements take the form of if or case
statements.

If Statement

In its simplest form, If statements follow the natural language: if
something is valid, then this happens.

var
grade: integer;
begin
grade:=10;

if grade > 5 then
Writeln('Greater than 5');
end.

In this case, the expression grade > 5 is true, and the next line is
executed. If executes only the next line of code; thus, if more lines need to
run when the expression is valid, you need to use a begin. .end block as in
the following example:

if grade > 5 then

begin
writeln('Greater than 5');
writeln('You pass');

end;

48

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

Following the natural language analogy, the statement can be
expanded to include the alternative course of action: if something is valid,
then this happens; otherwise something else happens. This otherwise
branch is implemented in Delphi with the else keyword.

if grade > 5 then

begin
writeln('Greater than 5');
writeln('You pass');

end

else
writeln('You fail');

Note that the statement right before else should not end with a
semicolon (;). You can freely nest if-then-else statements to cover cases
relevant to your code as in the following snippet:

if grade > 5 then
begin
writeln('Greater than 5');
writeln('You pass');
end
else
begin
if grade = 5 then
writeln('This is borderline pass')
else
if grade »=3 then
writeln('This can be improved easily')
else
writeln('This is of very poor quality');
end;

49

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

Case Statement

A case statement is an alternative approach to if statements and provides
a more readable form of selecting routes of action based on an expression.
However, if is much more flexible in terms of what sort of expressions you
can have. Case selects a path if the expression is of ordinal type, that is, the
possible options can be somehow presented in an order. The previous if-
then-else statements with the grade can, now, be expressed as follows:

begin
case grade of
0..2: writeln('This is of very poor quality');
3..4: writeln('This can be improved easily');
5: writeln('This is borderline pass');
else
begin
writeln('Greater than 5');
writeln('You pass');
end;
end;
end.

We have put the grades in order and took appropriate action for each
level of grade. As it is demonstrated, you can have a single ordinal value
(e.g., 5) or arange of values (e.g., 0. . 2). Case supports an optional else
branch to allow you to cover a range of options in a collective way. Note
that each option should include one and only statement or a block of
statements wrapped with begin. .end.

Practically, the only data types you cannot use in a case expression are
strings and very long integers (64-bit). For the strings, there is a very useful
method named IndexStr in System.StrUtils unit. It receives a string and
an array of strings as parameters and returns the index of the array element
that matches the string.

50

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

case IndexStr('Pass', ['Fail', 'Pass', 'Honors']) of
0: writeln('You fail');
1: writeln('You pass');
2: writeln('You pass with honors');

end;

IndexStr will look for the value Pass in the array of the string (Fail,
Pass, Honors) and return the relevant index, which is 1 in this case. Then,
the case statement will execute the code linked to this index. This is an
example that shows how to convert arbitrary values to ordinal values.

Jump Statements

Jump statements are commands that allow you to change the flow of the
execution of your code. They usually appear in loop statements (while,
repeat, for).In Delphi, there are four such statements: exit, break,
continue, goto.

Exit Statement

When an exit statement is triggered, the code leaves the current execution
block. If it is in the main execution block, the application ends. In
procedures and functions, exit statement will cause the execution of the
code to return to the point where the procedure or the function was called,
as we will see in the next chapter.

begin
if grade = 5 then
Exit;
end.

51

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

Break Statement

A Break statement inside a loop causes the loop to stop and the code to
resume at the point right after the last statement of the loop.

var
loopVar: integer;
begin
loopVar:=0;
while loopVar<=10 do
begin
if loopVar = 3 then
Break;
loopVar:=loopVar + 1;
end;
writeln(loopVar);
end.

In the preceding code, the while loop is set to run until loopVar
reaches the value of 10, but the break statement will interrupt it when the
variable goes to 3.

Continue Statement

Continue is similar to Break in the sense that it breaks a loop and does not
allow more lines to be executed. The difference is that it does not cause the
execution of the code to leave the loop, but instead it moves the execution
to the next iteration. The following code will skip value 3 because when
loopVar is equal to 3, continue takes the execution back to the while
statement to allow the next iteration.

52

CHAPTER 3

var
loopVar: integer;
begin
while loopVar<=10 do
begin
loopVar:=loopVar + 1;
if loopVar = 3 then
Continue;
writeln(loopVar);
end;
end.

Goto Statement

LOOPING, CONDITIONAL AND JUMP STATEMENTS

Goto statement is another way to alter the normal execution flow of the

code and direct it elsewhere. In order to use goto, you need to define a
label using the label keyword outside the begin. .end block.

var
loopVar: integer;
label
outsideWhile;
begin
loopVar:=0;
while loopVar<=10 do
begin
loopVar:=loopVar + 1;
if loopVar = 3 then
goto outsideWhile;
writeln(loopVar);
end;

53

CHAPTER 3 LOOPING, CONDITIONAL AND JUMP STATEMENTS

outsidelWhile:
writeln('Now outside while with a goto statement');
end.

When loopVar reaches the value of 3, goto will redirect the execution
to outsideWhile label, and thus the last writeln statement will be
executed.

The use of labels to redirect the execution of code is not considered a
modern programming approach; in fact, the use of goto today indicates
bad programming practices and code of low quality. Delphi supports it
due to legacy ties to traditional Pascal.

Summary

This chapter offered a review of the most commonly used statements to
support and control the execution of code. It visited loops and conditional
and jump statements—all very important elements to develop more
structured and meaningful code. In the next chapter, we look at how
procedural programming is implemented in Delphi and ways to write
more complex code.

54

CHAPTER 4

Procedures
and Functions

Modular programming in Delphi is implemented by handling two types

of routines (or methods): procedures and functions. The two types have
many similarities and one difference; functions return a value to the

point of call. The idea is that the code uses this value to proceed with the
algorithm it implements. Procedures just execute the code. This is the rule;
however, as we will see, there is a way to use procedures to modify values
at the point of call.

Declaration

In practice, this difference may become blurry as you can call a function
and just ignore the return value, and, as a matter of fact, you can call a
procedure and modify a value, a behavior which is caused by a function.

A procedure is declared with the procedure keyword and a function
with the function keyword followed by the name you give. The name
follows all the standard conventions in Delphi.

Procedures and functions that appear in the interface section in a unit
are accessible in units that refer to this particular one. The implementation
section holds the actual code for those procedures and functions.
Procedures and functions can also be declared and implemented only in

© John Kouraklis 2020 55
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_4

https://doi.org/10.1007/978-1-4842-6112-5_4#DOI

CHAPTER 4 PROCEDURES AND FUNCTIONS

the implementation section, but they are only accessible in this particular
unit. In all other cases where you add code directly to the project file (e.g.,
console applications), the declarations and the code come together.

You can declare a procedure like this:

procedure simpleProc;
begin

Writeln('This is the simplest procedure ever');
end;

Then, you invoke it by simply referring to its name as in the following
code snippet:

begin
simpleProc;
end.

A function is declared in a similar way, but you need to define the data
type it returns:

function isNetworkAvailable: Boolean;

begin
// Use some code to determine if network is available
Result:=true; // or false

end;

In this example, the function returns a Boolean type (true or false).
Delphi declares result, a very specific variable to capture the return
value from a function. Every function should modify result; otherwise,
the return value is undefined and may lead to unexpected effects in more
complex code base. The result of the function can be assigned in a variable
or can be used anywhere the specific return data type is needed as in the
following if statement:

56

CHAPTER 4 PROCEDURES AND FUNCTIONS

var
netExists: Boolean;
begin
netExists:=isNetworkAvailable;
if isNetworkAvailable then
Writeln('Network is available')
else
Writeln('There is no network available');
end.

As mentioned elsewhere, you can call a function without caring about
the return value; just use the name to invoke it. This is a perfectly valid
statement in Delphi, but the compiler issues a warning to let you know.

Parameters

The idea of routines in programming is that there is code that can

be reused under different conditions because the algorithm that it
implements is the same. The conditions are passed to routines in the form
of parameters (or arguments as they are often called) and, in Delphi, they
are enclosed in parentheses right after the name of the routine. As it can
be seen in the previous examples, parameters are not necessary to declare
routines. The next lines declare a procedure and function with parameters:

procedure updatelogs(logMessage: string);

begin
// Normally you have some more sophisticated log container
// This simple implementation is for demonstration
Writeln(logMessage);

end;

function getlLanguage(country: string): string;
begin

57

CHAPTER 4 PROCEDURES AND FUNCTIONS

if country = 'UK' then
Result:="English';
end;

When a method takes more than one parameter, you declare them one
after the other separated by a semicolon (;) as in the following cases:

procedure updatelogs(logMessage: string; logType: TLogType);
function getlLanguage(country: string; showMostUsed: boolean):
string;

If your adjacent parameters are of the same type, then Delphi offers a
less verbose way to declare them; you can separate them with a comma
(,) before you declare the data type. The following declarations are
equivalent:

procedure updatelogs(logMessage: string; logPrefix: string;
logType: TLogType);

procedure updatelogs(logMessage, logPrefix: string; logType:
TLogType);

The way to call them is exactly the same:
updateLogs('Image is not found', 'WARN', ltWarning);

The order of the parameters is important in terms of the data type they
declare and must be followed when you call the methods. For updatelogs,
the first parameter you pass must be of string value and the second of
TLogType, whereas for getLanguage, the first must be a string and the
second boolean.

updateLogs('There is an error', 1ltError);
Writeln(getLanguage('UK', true));

58

CHAPTER 4 PROCEDURES AND FUNCTIONS

As we have already seen, parameter-less methods can be invoked
by simply using their names. In Delphi, you can include a set of empty
parentheses; in practice, it does not make any difference, and it is a

convention to omit them.

simpleProc;
simpleProc(); // Equivalent calls

The Nature of Parameters

By now, we have recognized the need to declare the data type of the
parameters. In Delphi, you can tweak the nature of the parameters in
terms of how the compiler passes them from the point a method is called
to the method itself. There are a number of options as discussed in the
following sections.

Classic Parameters

The most typical and classic (default) way to pass parameters is just to
declare the name and the data type. This is what we have done so far. In
this instance, the compiler passes the parameters by value, which means
that a copy of the value is passed to the method. Consider the following
example:

procedure add100Classic(value: integer);
begin

value:=value + 100;

Writeln('The value in the procedure is ', value);
end;

var

value: integer;
begin

value:=100;

59

CHAPTER 4 PROCEDURES AND FUNCTIONS

add1o0oClassic(value);
Writeln('The value in the main block is ', value);
end.

This code shows that the value is 200 in the procedure, but it reverts
back to 100 outside it. This is because the compiler passes a copy of value
to add100, and therefore the addition of 100 affects the variable only within
the context of the procedure. This is also a good example of the scope of a
variable.

Constant Parameters

Prefixing the declaration of a parameter with the keyword const tells the
compiler that the parameter is not to be altered inside the method. It
behaves like a local constant. This means that the following code does not
compile:

procedure add100Const(const value: integer);
begin
value:=value + 100; // This does not compile
Writeln('The value in the procedure is ', value);
end;

This is the rule but there are some exceptions. If the parameter is
an object or a dynamic array, then const doesn’t stop you from being
able to modify the parameter. This has to do with the way the different
compilers pass the parameters. In general, it is advisable to use const with
parameters for two reasons: first, the compiler optimizes the generated
code, and second, it prevents you from mistakenly modifying values when
you should not.

60

CHAPTER 4 PROCEDURES AND FUNCTIONS

Variable Parameters

When you pass a parameter to a method with the var prefix, the method
can change the value of the parameter.

procedure add100Var(var value: integer);
begin

value:=value + 100;

Writeln('The value in the procedure is ', value);
end;

Now, the same code as in the classic approach shows that the value
parameter is modified within add100Var.

Out Parameters

The only difference between var and out is that the latter simply tells the
compiler to ignore any previous values of the parameter and clear it out.
Then, it proceeds with any modifications that take place in the method.

procedure add100ToString(out value: string);
begin

value:=value + '100';

Writeln('Out: The value in the procedure is ', value);
end;

var
valueStr: string;
begin
valueStr:='300";
Writeln('Out: The value in the main block before the
procedure is ', valueStr);
add100ToString(valueStr);
Writeln('Out: The value in the main block is ', valueStr);
end.

61

CHAPTER 4 PROCEDURES AND FUNCTIONS

In this case, add100ToString ignores the value valueStr has when it
enters the procedure and assumes it is an empty string. Then, it just adds
the 100 string, which is what the main block accessed at the return point of
the procedure.

There is more to the out parameters depending on the type of data the
procedure expects, but it goes beyond the scope of this book. You can find
more in the official documentation (Embarcadero, 2016).

The cases of var and out show that the boundaries between functions
and procedures can get blurry. Normally, you would expect to use a
function to return a modified value which is then consumed in the code,
but now even procedures can provide variables that are altered within
them. Equally, you can have functions that modify variables using var and
out in their parameter list and, yet, return one more value as they normally
do. This opens the possibility to construct functions that return more than
one value.

Default Values of Parameters

Every parameter of every type and nature can have a default value
(with a few exceptions) flagging the parameter as optional. You define
default values by using the assignment symbol (=) within the parameter
declaration as in the following example:

function addValue(const Value: integer; const Increment:
integer = 100): Integer;
begin
result:=Value + Increment;
end;

62

CHAPTER 4 PROCEDURES AND FUNCTIONS

begin
Writeln('Default increment of 100 to 200: ',
addValue(200));
Writeln('Custom increment of 500 to 200: ',
addvalue(200, 500));
end.

If more than one optional parameter is declared, access to subsequent
parameters requires you to add values to earlier parameters despite
the existence of default values. This means you cannot skip parameters
with default values when you call a procedure or a function. Suppose we
declare the following function:

function moreThanOneDefault(const Value: integer;
const Iterations: Integer = 3;
const Increment: integer = 100):
integer;
var
num: Integer;
begin
Result:=Value;
for num := 1 to Iterations do
Result:=result + Increment;
end;

The idea is that there are default values for the Iterations and the
Increment step. If I want to pass a different increment step than the
default, I need to provide a value for the Iterations parameter; I cannot
simply skip it.

Writeln('Default increment of 100 for 3 iterations: ',
moreThanOneDefault(0));

Writeln('Custom increment of 500 for default iterations: ',
moreThanOneDefault(o, 3, 500));

63

CHAPTER 4 PROCEDURES AND FUNCTIONS

Interrupting the Normal Execution

As suggested in the previous chapter, a call to Exit at any stage in a
procedure or a function interrupts the normal execution of the method,
and the code returns to the point of call of the method. The use of Exit is
exactly the same as we have already seen in the previous chapter.

If Exit is called in a function, a parameter that matches the return type
of the function can be passed as in the following example. If the function is
declared as

function exitFunc: string;

then exiting and passing a result value can take place in the following form
of Exit:

function exitFunc: string;
begin

Exit('Just Exited the Function');
end;

Nested Methods

Procedures and functions can be declared (nested) within other
procedures or functions. This is a situation we encounter often in recursive
algorithms. Nested methods can be useful in a number of occasions.

The declaration follows the same rules, but they need to be declared
and defined before the main begin. .end block of the host method. Then,
they can be called normally. Note that they are relevant and recognizable
only within the scope of the host method.

As an example, the following procedure calculates the average of
integers using a nested function:

64

CHAPTER 4 PROCEDURES AND FUNCTIONS

function calculateAverage(const Values: array of Integer):
double;
function calculateSum: Integer;
var
num: Integer;
begin
Result:=0;
for num := 0 to Length(Values) - 1 do
Result:=Result + Values[num];
end;
begin
if Length(Values) > 1 then
result:=calculateSum / Length(Values)
else
Result:=0.00;
end;

calculateSumis declared inside the host function. Note that the nested
function can still access parameters and variables that belong to the host
function. Because of this, there is an argument among developers that
suggests nested functions slow down the execution of the code and they
should be avoided.

Typed Methods

Typed method is a way to assign procedures or functions to a variable.

In reality, what is being assigned is a pointer to the methods. This is why
they are, often, called procedural pointers. From that point onward, the
variable can be used to access and invoke the methods. The advantage of
such approach is that the actual method can be changed on the spot and at
runtime as long as declared conventions are followed. This allows Delphi
code to implement callback functions

65

CHAPTER 4 PROCEDURES AND FUNCTIONS

To demonstrate the use of typed methods, let’s assume we want to
calculate the tax on income for two countries: the UK and Italy. The tax
bands and the tax rates are different. First, we declare the blueprint of the
tax function we are going to implement for each country. You can find the
code in the TypedMethods unit in the code that comes with the book.

type
TTaxFunc = function (const Amount: Double): Double;

This declaration indicates what our tax functions for each country
should look like. In accordance to this line, we implement the two tax
functions. For simplicity, I do not include the full code here, just the
snippets to give you an idea that the algorithms are different. Note that the
income bands and the tax rates are all fictitious.

function taxUK(const Amount: Double): Double;
begin
Result:=0.00;
if CompareValue(Amount, 10001) = LessThanValue then
// Calculations; see source code
else
if CompareValue(Amount, 50001) = LessThanValue then
begin
// Calculations; see source code
end
else
begin
// Calculations; see source code
end;
end;

66

CHAPTER 4 PROCEDURES AND FUNCTIONS

function taxItaly(const Amount: Double): Double;
begin
Result:=0.00;
if CompareValue(Amount, 100001) = LessThanValue then
begin
// Calculations; see source code
end
else
begin
// Calculations; see source code
end;
end;

We access the two functions via a variable of TTaxFunc type:

var
taxFunc: TTaxFunc;

Once we have the variable, we can assign and, consequently, invoke
the correct function as in the code that follows:

begin
taxFunc:=taxUK;
Writeln('For UK: ', taxFunc(80000));
taxFunc:=taxItaly;
Writeln('For Italy: ', taxFunc(80000));
end.

In this example, TTaxFunc receives parameters. In the case of
parameter-less functions and procedures, nothing changes. You invoke

them simply by referring to their names. In the example code of this book,

check the showMenu procedure.

67

CHAPTER 4 PROCEDURES AND FUNCTIONS

Anonymous Methods

Anonymous method is a technique that allows a block of code (the body
of the method) to be passed to a variable without the need to explicitly
declare and name a method. There are many benefits from an approach
like this; methods are declared only when they are needed, dynamic
change of methods can occur, and more extensible code can evolve.

The declaration of an anonymous method follows the same pattern as
in the case of typed methods with the addition of the keyword reference.

type
TAnonProc = reference to procedure;
TAnonFunc = reference to function (const switch: string):
string;

Then, in the code, a procedure or a function is assigned to a variable,
and the method is invoked by directly referring to the variable as in the
following example:

var
proc: TAnonProc;

begin
proc:=procedure

begin
Writeln('A call from inside an anonymous procedure');
end;
proc;
end.

The approach allows access to variables that do not belong to the
anonymous method but are available in the same scope where the method
exists (variable binding). In other words, if I declare a variable in the main
begin..end block in the preceding code, I can access it in the begin. .end
block of the anonymous method. Consider the following anonymous

68

CHAPTER 4 PROCEDURES AND FUNCTIONS

function. It is able to capture the temperature variable although it is not
part of the function.

var
func: TAnonFunc;
temperature: integer;
begin
func:= function(const switch: string): string
begin
Write('The temperature is '+temperature.ToString+'
and the heating is '+switch+'. ');
if temperature <= 24 then
begin
if switch="ON' then
writeln('The room will get warm soon');
if switch="OFF' then
writeln('Maybe you need to turn the heating on?');
end
else
begin
if switch="ON' then
writeln('This may be getting very hot...");
if switch="OFF' then
writeln('Nice...you save energy and help the
environment');
end;
end;

Randomize;
for temperature := 16 to 28 do
begin
if Random(100) < 50 then
func('ON")
else
69

CHAPTER 4 PROCEDURES AND FUNCTIONS

func('OFF");
end;
end.

Lastly, since anonymous methods start with a type declaration, they
can very well serve as parameters in other methods increasing their
flexibility.

procedure anonFuncWithParam(const func: TAnonFunc);
begin

func("INTERMEDIATE SWITCH STATE');
end;

Here we define anonFuncWithParam which accepts an anonymous
function of TAnonFunc type as a parameter. Then, it simply invokes func
with a hard-coded string.

We can pass a TAnonFunc to the procedure either by declaring a
variable first and then passing it as a parameter or, more directly, by
writing the function code right at the place of the parameter.

begin
anonFuncWithParam(function (const switch: string): string
begin
Writeln('The current swith state is:
"+switch);
end);
end.

In this implementation, note that we do not need to add a semicolon
(;) after the declaration of the function and after the final end as we would
expect if we had a normal function defined.

In the code we developed in this section, we declared our own typed
method (TAnonFunc). Delphi provides a set of predefined methods already
available to developers. You will find them in System. SysUtils unit, and

70

CHAPTER 4 PROCEDURES AND FUNCTIONS

they are generic; this means that we can define the actual type of variables
they can handle in parameters and the result type.

type

TFunc<T,TResult> = reference to function (Argl: T):
TResult;

Therefore, in the preceding examples, we could declare func by simply
writing this line:

var
func: TFunc<string, string>;

Note that Arg1 in the definition of TFunc is not declared as constant
parameter. If we use this approach, we need to remove the keyword const
when we assign the actual function to the func variable.

This is a quick introduction to the way anonymous methods work. You
can find more information in the official documentation (Embarcadero,
2016) and have a look at Nick Hodges’s book (Hodges, 2014).

Method Overloading

Overloading a method means that you can declare two or more methods
with the same name but different parameter list or, in the case of functions,
different return types. The difference can be either in the number of the
parameters or the type of the parameters. In Delphi, we use the keyword
overload to declare such methods.

procedure multiProc; overload;

procedure multiProc(const Value: string); overload;
procedure multiProc(const Value: string; const SubElement:
integer); overload;

71

CHAPTER 4 PROCEDURES AND FUNCTIONS

When the procedure is invoked, the compiler determines which
version should be called by scanning through the declarations and
matching the number and the types of the parameters. These are the only
two criteria the compiler uses for this purpose. Consequently, overloading
cannot work for parameters of different nature (e.g., const and var).

procedure multiProc(const Value: string); overload;
// This overloading approach does not work
procedure multiProc(var Value: string); overload;

Summary

In this chapter, we looked at how procedures and functions work in
Delphi. We differentiated between them, discussed the different types of
parameters they can manage, and visited different ways to use them in the
code.

References

Embarcadero, 2016. Anonymous Methods in Delphi. [Online| Available at:
http://docwiki.embarcadero.com/RADStudio/Sydeny/en/Anonymous
Methods_in Delphi [Accessed 03 06 2020].

Embarcadero, 2016. Parameters (Delphi). [Online] Available at:
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Parameters_
(Delphi)#0ut_Parameters [Accessed 03 06 2020].

Hodges, N., 2014. Coding in Delphi. s.1.:Nepeta Enterprises.

72

http://docwiki.embarcadero.com/RADStudio/Sydeny/en/Anonymous_Methods_in_Delphi
http://docwiki.embarcadero.com/RADStudio/Sydeny/en/Anonymous_Methods_in_Delphi
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Parameters_(Delphi)#Out_Parameters
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Parameters_(Delphi)#Out_Parameters

CHAPTER 5

Object-Oriented
Programming (OOP)

Delphi supports full object-oriented programming (OOP). In OOP, the
most fundamental entity is an object. An object is characterized by its state
(implemented by data) and what sort of capabilities it has (functionality).
For example, a computer can be described as an object in a particular state
(e.g., available memory, screen resolution, computational power, etc.)
being able to provide several functions (e.g., connect to the Internet, edit

a text file, convert an image, etc.). In the rest of the chapter, we look at the
fundamentals of OOP in Delphi.

Declaration

The theoretical concept in OOP of an object is implemented in Delphi (as
in most of the languages) by declaring a class and an instance of the class.
This instance is the object and is accessed via a variable. The following
lines define a class and an object:

type
TComputer = class

end;

var
myComputer: TComputer;

© John Kouraklis 2020 73
J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5_5

https://doi.org/10.1007/978-1-4842-6112-5_5#DOI

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

You can declare a class in either the interface or implementation
section of a unit. The difference is that if it appears in the latter, the class is
only available to the unit, whereas a declaration in interface makes the
class available anywhere the unit appears in the uses clause. You can also
declare a class within another class to serve your coding needs.

The variable provides access to the class, but we are not ready to
use it yet. We first need to create an instance of the class (an object) by
calling Create. Note that this is the most fundamental way to instantiate
an object. Create does a couple of things behind the scene with the most
important being that it allocates memory for the object. When we finish
with the object, we need to make this memory available for other objects
and applications. In Delphi, we do this by calling Free. The following code
snippet demonstrates a typical flow when we deal with objects:

begin
myComputer:=TComputer.Create;
// use myComputer here
myComputer.Free;

end.

If you use Delphi 10.3 and above, you can take advantage of the inline
variables and declare the variable and instantiate the object in one line.

begin
// This works only in 10.3 and above
var myComputer:=TComputer.Create;
// use myComputer here
myComputer.Free;

end.

If you try to access the state and functionality of an object without first
calling Create, the application will crash by generating an access violation
exception. If you forget to call Free, the application will continue working

74

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

perfectly fine, but the memory chunk that was reserved for the object will
not be released, and therefore memory leaks will occur.

When you declare an object (but before you instantiate), it is not yet
initialized. Recent versions of Delphi signify this by setting the reference
variable to nil. It is easy to check the state of an object using the Assigned
function.

if Assigned(myComputer) then

Assigned returns True if myComputer has been instantiated. As
mentioned earlier, only recent versions set the objects to nil. In older
ones, the state of objects is undetermined until Create is called.

Object State (Fields)

The state of an object is held internally in fields and properties. In Delphi,
afield and a property can be of any data type or of other classes. In this
next line, we declare a field:

type
TComputer = class
Memory: Word;
end;

We, then, access the field using the dot notation:
myComputer.Memory:=32;

One of the cornerstone ideas in OOP is that when objects are used
in code, the fields and the properties (class members) are not always
accessible (encapsulation). This depends on the visibility level of the fields
and the properties.

75

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

In Delphi, there are four levels of visibility growing from the very
restrictive private members to openly accessible public and published
members:

o private: Accessible only to the class.

o protected: Accessible only to descendent classes
(more on this in the section “Inheritance”).

e public: Accessible to any instance of the class.

e published: Same as public with additional compiler
information and ability to show them in the form
designer. Note that not all data types can be publishable.

There are more levels of visibility (e.g., strict, automated, etc.), but
they serve more specific requirements. The declaration of members with
different visibility can be done in any order you see relevant, but best
coding practice suggests that fields and properties appear in the class in
the order of less restrictive to least restrictive visibility.

type
TComputerBuild = class
private
fDisplayedMemory: string;
protected

public
Memory: Word;
published

end;

As mentioned elsewhere, the fields can be of other class types. This
implies that this class type must be defined before referenced. In most of
the cases, you will be able to maintain an order in the declarations to meet

76

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

this requirement. On the downside, this creates a form of dependency
which may not be needed or may be impossible to keep in mutually
dependent classes as in the following example:

type
TComputerBuild = class
private

prééécted
public
HaxrdDrive: THardDrive;
pugiished
end;

THardDrive = class
public

Capacity: Word;

HostComputer: TComputerBuild;
end;

The preceding code will not compile because THardDrive is referenced
before declared. Moving the declaration before TComputerBuild poses the
same problem. The way to deal with this situation is to forward declare
a class, that is, to provide the name but defer the full declaration. This is
done by adding this line right after the type keyword:

type
THaxdDrive = class;
TComputerBuild = class

end;

77

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

Object Functionality (Methods)

The functionality (or capabilities) of an object is revealed by class methods;
that is, procedures and functions that serve the purpose and scope of

the object. The declarations follow the typical procedure and function
semantics we visited in previous chapters. As an example, let’s introduce
methods to shut down our computer (class):

type
TComputerBuild = class

public
procedure shutDown;
published

end;

shutdown is a publicly available method, and it is implemented under
the name TComputerBuild.shutDown. In the IDE, you can type in the full
procedure declaration, or you can click somewhere inside the class and
press Ctrl-Shift-C. RAD Studio will create the blueprint for you.

procedure TComputerBuild.shutDown;
begin

// Now shut the computer down
end;

Methods in classes can have different levels of accessibility in the same
way fields and properties do. In the code that follows, kil1A11Programs is
a private method and can only be called from inside the class. If you try to
access it outside the class, the code will not compile.

78

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

type
TComputerBuild = class
private

procedure killAllPrograms;
public

published
end;

procedure TComputerBuild.killAllPrograms;
begin

end;

procedure TComputerBuild.shutDown;
begin
killAllPrograms;

end;

We access the methods in the class using the dot notation which is
what we did when we wanted to access the class fields.

var
buildComputer: TComputerBuild;

begin
buildComputer:=TComputerBuild.Create;
// This does not compile

// buildComputer.killAllPrograms;
buildComputer.shutDown;
buildComputer.Free;

end.

79

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

Overloading of procedures and functions works in classes as well. In
theory, you can have overloaded methods with any visibility, but in OOP
context, it usually makes sense with protected and public methods.

type
TComputerBuild = class

public
procedure add(const aUser: string); overload;

procedure add(const aHD: THardDrive); overload;
end;

We have already discussed how we create a new instance of an object
and destroy it. The constructor (Create) and the destructor (Destroy)
are special methods for objects as they run a lot of initialization and
finalization code for objects. Constructors can be overloaded to allow
developers to add their own initialization code. But there is a small twist
in Delphi; you cannot use the same name for the overloaded constructor
(Create). In the following example, we introduce a new constructor
(CreateWithHD) that receives a THardDrive class in a typical dependency
injection fashion.

type
TComputerBuild = class

public
constructor CreateWithHD(const aHardDrive: THardDrive);

end;

80

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

constructor TComputerBuild.Create(const aHardDrive:
THardDrive);
begin
inherited Create;
// Add more initialisation code here
end;

There are three points worth mentioning: firstly, there is a specific
order to declare fields and methods within a visibility block; fields appear
first with methods following. Otherwise, the code does not compile.

Secondly, a constructor in classes is defined with the constructor
keyword, and, lastly, it is very important to call the default constructor
using the statement inherited Create inside the new one. This will allow
the object to be initialized correctly.

Destructors in Delphi, as in every programming language, cannot be
overloaded. When we want to execute code before the object is destroyed,
we override the destructor using the override keyword. The last call
should always be inherited or inherited Destroy.

type
TComputerBuild = class

Public
destructor Destroy; override;

end;

destructor TComputerBuild.Destroy;
begin

// Add code here

inherited;
end;

81

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

Object State (Properties)

In the previous section, we saw how fields can be used to store the state of
an object. Although they are sufficient for this purpose, fields are limited in
scope as they purely work as data storage.

Delphi extends the idea of fields and offers properties—a field-like
declaration with the ability to manipulate the stored data. Properties,
as all other class elements, can be managed in terms of visibility and
accessibility by following the private, protected, public, and published
grouping. A property that resembles fields is declared as follows:

type
THardDrive = class
private

public
property Manufacturer: string read fManufacturer write

fManufacturer;
end;

Properties can do much more than simply refer to a field. As seen in
the preceding code line, each property has a setter (write) and a getter
(read) part which can be a field (as shown here) or a method. If the setter
is omitted, then the property is read-only, and if the getter is omitted, the
property is considered as write-only.

In the case of a method, the setter is a procedure with one parameter of
the same data type as the property, and the getter is a function that returns
an item of the same data type as the property.

type
THardDrive = class
private

82

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

fSerial: string;

function getSerial: String;

procedure setSerial(const Value: String);
public

property Serial: String read getSerial write setSerial;
end;

function THardDrive.getSerial: String;
begin

result:=fSerial;
end;

procedure THardDrive.setSerial(const Value: String);
begin

fSerial:=Value.Tolower;
end;

Serial property sets the value of a holder field (fSerial) via
setSerial and returns the value of the field via getSerial. The ability to
use setter and getter methods for properties allows for ad hoc modification
of the value of the properties. In the following code, we create a new
instance of THardDrive and pass the serial in block capital:

var
hardDrive: THardDrive;

begin
hardDrive:=THardDrive.Create;
hardDrive.Serial:="XHHIU-56748-ABC" ;
Writeln(hardDrive.Serial);
hardDrive.Free;

end.

83

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

The call to assign the string to the Serial property passes the value to
fSerial field after it converts the string to lowercase (ToLower). Then, the
writeln statement retrieves the value by triggering getSerial.

Properties do not have to be monodimensional. They can handle
declarations that look like an array (array properties). For example, let’s
introduce property Content in THardDrive that gives access to the byte of a
specific cylinder and sector.

type
THardDrive = class
private

fContent: array[0..1000, 0..10000] of Byte;
function getContent(Cylinder, Sector: Word): byte;
procedure setContent(Cylinder, Sector: Word; const Value:
byte);

public

property Content[Cylinder, Sector: Word]: byte read
getContent write setContent;
end;

function THardDrive.getContent(Cylinder, Sector: Word): byte;
begin
// Note that there is no check of boundary values for
fContent
Result:=fContent[Cylinder, Sector];
end;

procedure THardDrive.setContent(Cylinder, Sector: Word; const
Value: byte);
begin

84

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

// Note that there is no check of boundary values for
fContent
fContent[Cylinder, Sector]:=Value;
end;

The logic behind the setter and getter is the same as in the case of a
simple property. Note that array properties cannot be mapped directly
to a field, and thus the use of a getter and setter is compulsory. Although
the examples here and in most of other textbooks and articles show that a
property declaration goes together with a local and private field, this is not
necessary. In more complex implementations and in different scenarios,
the getter method may access a dataset to retrieve database entries, and a
setter may use a cloud storage to pass the value of a property.

The only step that is left is to provide some initial values to fContent.
We can simply use the constructor for this purpose.

type
THardDrive = class
public

constructor Create;

end;

constructor THardDrive.Create;
var
cyl: Integer;
sec: integer;
begin
inherited;
Randomize;
for cyl := Low(fContent) to High(fContent) do
for sec := Low(fContent[cyl]) to High(fContent[cyl]) do
fContent[cyl, sec]:=Random(255);
end;

85

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

Then, accessing the content of THardDrive is a matter of a simple call
as follows:

writeln(hardDrive.Content[100, 100]);

Published properties are, fundamentally, public properties with added
runtime compiler information. In graphical applications and especially
in code that supports graphical components, published properties are
used by Delphi IDE to provide design-time properties and events. For the
interested reader who wants to dive into the world of component writing,
Delphi Component Writer’s Guide (Anon., n.d) and Thorpe’s book (1996)
on the subject provide very good insight on the topic.

Class Members and Methods

The typical use of objects indicates the instantiation of an object via a call
to a constructor and, when the object is not needed anymore, a call to
destructor in order to free up the reserved memory, as we have already seen.

In Delphi, we can introduce fields, properties, and methods that can
be accessible without the need to follow this memory management cycle.
They are declared using the class keyword, and they can be helpful in
cases where a property or a field needs to hold a value among different
instances of an object. Class methods give the option to organize methods
in classes but without the need to create and destroy them all the time.

To demonstrate the concept, the following code declares a class to
represent a custom application and defines a class property to hold the
operating systems the application supports.

type
TOSList = array[0..2] of string;
TCustomApplication = class
private

86

https://doc.lagout.org/programmation/Delphi/Delphi/Delphi - Delphi Component Writer's Guide- Delphi for Windows.pdf

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

class function getSupported0S: TOSList; static;
public

class property Supported0S: TOSList read getSupported0S;
end;

Supported0S is a read-only property which uses a function
(getSupported0S) to populate itself.

class function TCustomApplication.getSupported0S: TOSList;
begin

Result[0]:="Windows 7';

Result[1]:="Windows 8';

Result[2]:="Windows 10';
end;

As mentioned already, a class property needs the class keyword.
The same is required for the getter and setter methods of the property.
Moreover, these methods need to be static as can be seen in the
preceding code. Now, we do not need to create the class object or destroy
it; a simple call to the property will work perfectly.

var
os: string;
begin
for os in TCustomApplication.Supported0S do
Writeln(os);
end.

Inheritance

Inheritance in OOP is an implementation feature that allows new classes
(subclasses or child classes) to be defined based on already defined classes
that act as base (parent or super) classes. The importance of inheritance

87

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

comes from the fact that this approach allows shared state (properties) and
functionality (methods) among the parent and child classes. Moreover,
inherited classes are able to modify the shared properties and methods
making them extensible.

We have already defined TCustomApplication. This time we want to
derive classes that represent different types of applications based on this
class. The derived classes will have a property called AppType to indicate
the application type (financial, game, utility). AppType’s data type is
TApplicationType. First, let’s define a base class for our applications that
extends TCustomApplication.

type
TApplicationType = (atUndefined, atFinancial, atGame, atUtility);
TBaseApplication = class (TCustomApplication)
private
fAppType: TApplicationType;
public
property AppType: TApplicationType read fAppType write fAppType;
end;

Nothing new here apart from the first line of the class definition
which says that TBaseApplication is a subclass of (or inherits from)
TCustomApplication.

TBaseApplication needs to initialize the application type to
atUndefined. The most natural place to do this is in the constructor of
the class. This time, though, we want the subclasses to be able to modify
this value. In order to achieve this, we need to declare the constructor as
virtual. This tells the compiler that the constructor can be modified in
inherited classes.

88

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

type
TBaseApplication = class (TCustomApplication)
public
constructor Create; virtual;

end;

In this case, we set the application type to atUndefined. Note in the
following code that we first call inherited before we do anything else in
the constructor.

constructor TBaseApplication.Create;
begin

inherited;

TAppType:=atUndefined;
end;

In terms of how we access AppType property, we follow the same
pattern: we declare a variable, create an instance of the object, and process
the property.

var
app: TBaseApplication;

begin
app:=TBaseApplication.Create;
// Access the property with app.AppType
app.Free;

end.

Let’s create a new financial application by subclassing
TBaseApplication as there is no limit to how many subclasses you can
have.

89

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

type
TFinApplication = class (TBaseApplication)
public
constructor Create; override;
end;

TFinApplication inherits from TBaseApplication. This means that
the new class has the AppType property, which we need to modify. In order
to do this, we override the constructor using the override keyword.

constructor TFinApplication.Create;
begin

inherited;

fAppType:=atFinancial;
end;

One more time, the call to inherited is the first step. This will make the
compiler go back to the inheritance tree and invoke the initial constructor.
This is done with all the base classes.

Managing TFinApplication as an object is simple, and it is done by
declaring a variable of TFinApplication. Additionally, another concept
from OOP (polymorphism) allows us to use TFinApplication where
TBaseApplication is expected. Therefore, the following code is valid:

var
app: TBaseApplication;

begin
app:=TFinApplication.(Create;

app.Free;
end.

90

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

Overriding methods also works when methods have different levels
of visibility. Our applications, surely, have version numbers. We can add a
relevant property (Version) to TBaseApplication which defines the getter
method to be virtual and protected. This means that the method can be
overridden by ancestors but only by them as indicated by the protected
nature of it.

type
TBaseApplication = class (TCustomApplication)
private
protected
function getVersion: string; virtual;
public

property Version: string read getVersion;
end;

function TBaseApplication.getVersion: string;
begin

Result := '0.0.0';
end;

TFinApplication can now override getVersion to declare its own
version status.

type
TFinApplication = class (TBaseApplication)
protected
function getVersion: string; override;
public
end;

91

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

function TFinApplication.getVersion: string;
begin

Result:='3.2.2-alpha’;
end;

The following code demonstrates which getVersion functions are
called. In the first call, the TBaseApplication function is invoked, and in
the second, the inherited one as defined by TFinApplication.

var
app: TBaseApplication;

begin
app:=TBaseApplication.Create;
Writeln(app.Version); // Prints 0.0.0
app.Free;

app:=TFinApplication.Create;
Writeln(app.Version); // Prints 3.2.2-alpha
app.Free;

end.

You may, now, wonder how we can differentiate which class is assigned
to app. In this example, the two classes are the same (TBaseApplication,
TFinApplication) but, in general, we create descendants because we want
to add additional extensions. Let’s go ahead and create a game application
(TGameApplication). This class has one more property called MultiPlayer
of Boolean type. I omit the constructor here, which initializes the property
as it is not important at this stage. You can see the full implementation in
the code file that accompanies this book.

type
TGameApplication = class (TBaseApplication)
private
fMultiPlayer: boolean;

92

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

public
property MultiPlayer: boolean read fMultiPlayer write
fMultiPlayer;

end;

Consistent to OOP principles, we can create a TGameApplication using
the app variable. This time we want to check if the game is multiplayer or
not, but the app is basically a TBaseApplication variable.

TBaseApplication does not have the MultiPlayer property, but
TGameApplication does. Thus, we need to check whether the app is of
TGameApplication type. We do this using the is operator. Once we are
certain we have the correct class, we can use the as operator to access the
MultiPlayer variable. This method of enforcing the compiler to treat a
specific variable as of specific type is called type casting.

begin

if app is TGameApplication then

writeln('MultiPlayer: ',
(app as TGameApplication).MultiPlayer);

end.

Interfaces

Class inheritance is fundamental to extending a class and adding new
functionality. In recent years, the OOP landscape is moving toward writing
classes that are more decoupled between each other. This leads to more
flexibility and higher level of abstraction.

In Delphi and, as a matter of fact, in almost all OOP languages,
abstraction is achieved by defining interfaces (or object interfaces). An
interface can indicate the state of the class (properties and fields) and

93

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

what the class can do (methods). The important message here is that
implementation details are separated from the manifest that indicates the
properties and methods of a class. For example, in the case of password
generation, there are quite many encryption algorithms in use. Interfaces
allow us to switch to alternative implementations. The following snippet
defines IPasswordGenerator and IPassword interfaces:

type
TPasswordAlgorithm = (paAES, paSHA);
IPasswordGenerator = interface

['{16C5CD04-5051-4557-BA3C-3AE932147C6A}"]

function getAlgorithm: TPasswordAlgorithm;
function encrypt (const aValue: string): string;

property Algorithm: TPasswordAlgorithm read getAlgorithm;
end;

IPassword = interface
['{6C85FF1F-C5BC-4E66-974D-1622A6F908A7}"]
function encryptPassword (const aPassword: string): string;
end;

It is customary, but not enforced by Delphi, to use the letter 'I" at the
beginning of the name of an interface. What is important though is that
each interface requires a unique number (GUID)*—again, not enforced by
Delphi, but it saves from a lot of troubles in complex code base. You can
see the GUIDs enclosed in the square brackets in the preceding examples.
You can use your own GUIDs, but they need to adhere to the letter
grouping shown in the preceding code. If you are in Delphi IDE, hitting
Ctrl-Shift-Gwill add one for you. The preceding code also demonstrates
that we can use both properties and methods in interfaces.

*There is one exception to this; the consensus among Delphi developers is that
interfaces with generics better not be given a GUID.

94

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

We, now, need to add the implementation classes. We create two
classes that implement the two different algorithms as indicated by
TPasswordAlgorithm. When classes implement interfaces, they should
derive from an interface supporting class with TInterfacedObject being
the most common:

type
TAESAlgorithm = class (TInterfacedObject, IPasswordGenerator)
private
fAlgorithm: TPasswordAlgorithm;
public
constructor Create;
function encrypt (const aValue: string): string;
function getAlgorithm: TPasswordAlgorithm;
end;

constructor TAESAlgorithm.Create;
begin

inherited;

fAlgorithm:=paAES;
end;

function TAESAlgorithm.encrypt(const aValue: string): string;
begin

// use AES algorithm

Result:=aValue+' - AES Encrypted';
end;

function TAESAlgorithm.getAlgorithm: TPasswordAlgorithm;
begin

Result:=fAlgorithm;
end;

95

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

Classes that bind to interfaces must implement all the methods of an
interface; otherwise, the code does not compile. Only what is described
in the interface declaration is accessible from consumers of the class, and
they all come with public visibility.

You can check whether a class implements an interface using the
Supports function as in the next lines.

if Supports(password, IPassword) then
Writeln('Interface is supported')

else
Writeln('Interface is not supported');

Let’s implement one more password algorithm. This time, the interface
methods are declared as private in the class, but this has no actual effect.
Since methods and properties are declared in an interface, they are all
public.

type
TSHAAlgorithm = class (TInterfacedObject, IPasswordGenerator)
private
fAlgorithm: TPasswordAlgorithm;
function encrypt (const aValue: string): string;
function getAlgorithm: TPasswordAlgorithm;
public
constructor Create;
end;

Using interfaced classes is slightly different to using non-interfaced
ones. Instead of declaring the variable to be of the class type, we declare it
against the interface.

var
generatorAES: IPasswordGenerator;
generatorSHA: IPasswordGenerator;

96

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

password: IPassword;

begin
generatorAES:=TAESAlgorithm.Create;
generatorSHA:=TSHAAlgorithm.Create;

password:=TPassword.Create(generatorAES);
writeln(password.encryptPassword('tywgeri'));

password:=TPassword.Create(generatorSHA);
Writeln(password.encryptPassword('435'));
end.

Then, they are instantiated using the (interfaced) classes and the
typical call to Create. password instance shows how abstraction works; the
constructor receives IPasswordGenerator as parameter which accepts any
class that implements this particular interface. Therefore, we can supply
any of the generators we wish.

The second point to raise is the difference in managing the life cycle
of interfaces compared to objects. When we manage objects, we follow
the pattern Create. .Free in order to return any reserved memory to the
system. With interfaces, this is done automatically as they are reference
counted, and the compiler can release the reserved memory. Therefore,
we do not call Free with interfaces as it will lead to compilation error.

Cross-Platform Memory Management

Developers are responsible to manage the memory of the objects, as we
have already seen. The classic and standard way to do this is to follow the
pattern we have seen a few times already.

var
newObj: TMyClass;
begin

97

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

newObj:=TMyClass.Create;
// Use newObj
newObj.Free;

end.

An object is instantiated by the constructor (Create), and the memory
is released by a call to destructor (Free). In fact, this is not the complete
pattern coders in Delphi use; it comes with a safety check in case of
exceptions.

An exception is the error management model Delphi uses, and it is in
contrast to models where errors are indicated by error codes. In the case
where a runtime error occurs, Delphi will signal the whole application
about this error by forcibly interrupting the execution of the application at
the point where the error is detected. Developers in Delphi talk about this
situation by saying that an exception has been raised (or thrown).

For example, if we try to access a database, all sort of things can go
wrong that do not depend on the stability and quality of our code. Suppose
we attempt to execute an SQL query and pass the results to a TMyClass
object.

var
newObj: TMyClass;
begin
newObj:=TMyClass.Create;
// Retrieve data from the database
// This line executes the SQL query and raises exception
newObj.Free;
end.

If an exception occurs, the code will exit by skipping the call to Free.
This means that newObj will never get the chance to release the memory it
occupies. In this way, a classic memory leak will occur.

98

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

The proper way to deal with this situation is to wrap the execution code

inatry..finally block.

begin
newObj:=TMyClass.Create;
try

// Retrieve data from the database
// This line executes the SQL query and raises exception
finally
newObj.Free;
end;
end.

This pattern guarantees that the code inside the finally branch is
always executed regardless whether an exception is thrown or not.

The memory management model that was described earlier and
indicated that the developer is responsible for the memory allocation of
objects is called the Manual Reference Counting model. We have also seen
a slightly different memory management model when interfaces are used.
In this case, the developer does not need to free an interface manually
because the compiler is able to automatically track the references on the
object instances in memory and release them accordingly. If the compiler
is able to do this, then it uses the Automatic Reference Counting (ARC)
model.

The Delphi compilers for desktop applications (Windows 32-bit,
Windows 64-bit, macOS 32-bit, macOS 64-bit, Linux 64-bit) do not use
ARC for classes. In versions Delphi XE4 up until 10.3, the ARC model has
been introduced for mobile platforms. This means that code without
explicit calls to Free is perfectly suitable to manage objects; when the
object instance goes out of scope, the compiler frees it automatically.

99

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

var
newObj: TMyClass;
begin
newObj:=TMyClass.Create;
// Use newObj
// We do not need to call newObj.Free
end.

According to the official documentation (Embarcadero, 2015), in the
vast majority of the cases, the preceding approach is sufficient. There are
some special scenarios where more need to be done to trigger the release
of the object. This can be done with a call to DisposeOf method. DisposeOf
can also be called in the classic compilers (Windows, macOS) without any
harm, but the official recommendation is to use Free in desktop compilers
and DisposeOf with mobile compilers.

In practical terms, writing cross-platform code that manages objects
looks like the one in the following lines. The code takes advantage of
a compile directive ({$IFDEF}..{$ENDIF}) to supply the correct code
according to the compilation platform. For completeness, the code
includes a call to try..finally which deals with exceptions.

var
newObj: TMyClass;
begin
newObj:=TMyClass.Create;
try
// Use newObj
finally
{$IFDEF AUTOREFCOUNT}
newObj.DisposeOf;
{$ELSE}

newObj.Free;

100

CHAPTERS5 OBJECT-ORIENTED PROGRAMMING (OOP)

{$ENDIF}
end;
end.

Starting from Delphi version 10.4, the ARC model for classes on mobile
platforms has been deactivated, and the classic approach to managing the
lifetime of objects is now the only way to instantiate and destroy objects
(Cantu, 2018) that are not implemented via interfaces.

This is a short discussion on the topic of memory management on
classic and mobile compilers. There is a wealth of sources to allow you to
further your knowledge. I would recommend the book by Chris Rolliston
(Rolliston, 2012). It comes in three parts and it is based on Delphi XE2,
but it covers quite extensively a breadth of topics, and it includes a very
good discussion on objects. The book that investigates the memory
management models in Delphi to great extent and explores different
coding approaches is written by Prasnikar and Prasnikar Jr. (Prasnikar &
Prasnikar, 2017), and it is highly recommended.

Summary

In this chapter, we started object-oriented programming (OOP) from
scratch. We saw how we declare classes and define objects. Then, we
looked at how Delphi implements object states and functionality to
deploy full OOP support. We covered interfaces—an abstract way to define
functionality loosely coupled to implementation details. Lastly, we looked
at ways to manage the life cycle of objects.

101

CHAPTER 5 OBJECT-ORIENTED PROGRAMMING (OOP)

References

Anon., n.d. Delphi Component Writer's Guide. [Online] Available at:
https://doc.lagout.org/programmation/Delphi/Delphi/Delphi%20
-%20Delphi%20Component%20Writer's%20Guide-%20Delphi%20for%20
Windows.pdf [Accessed 23 04 2020].

Cantu, M., 2018. Directions for ARC Memory Management in Delphi.
[Online] Available at: https://blog.marcocantu.com/blog/2018-
october-Delphi-ARC-directions.html [Accessed 24 04 2020].

Embarcadero, 2015. Automatic Reference Counting in Delphi Mobile
Compilers. [Online] Available at: http://docwiki.embarcadero.com/
RADStudio/Rio/en/Automatic_Reference Counting_in Delphi Mobile_
Compilers [Accessed 24 04 2020].

Prasnikar, D. & Prasnikar, N. J., 2017. Delphi Memory Management: For
Classic and ARC Compilers. 1st Edition ed. s.l.:s.n.

Rolliston, C., 2012. Delphi XE2 Foundations: Part 1. s.l.:s.n.

Thorpe, D., 1996. Delphi Component Design. s.l.:s.n.

102

https://doc.lagout.org/programmation/Delphi/Delphi/Delphi - Delphi Component Writer
https://doc.lagout.org/programmation/Delphi/Delphi/Delphi - Delphi Component Writer
https://blog.marcocantu.com/blog/2018-october-Delphi-ARC-directions.html
https://blog.marcocantu.com/blog/2018-october-Delphi-ARC-directions.html
http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers
http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers
http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers

Index

A, B
Anonymous method, 68-70

Automatic Reference Counting
(ARC) model, 99

C

Case statement, 32, 50-51
Comments, 41
Conditional statement
case, 50
definition, 48
if, 48-49
Constants, 40
Custom managed records, 34

D, E

Data types
arrays, 28-31
boolean values, 22
char, 21
enumerated types, 22
floating-point, 24
generics, 37-39
integer, 20
pointers, 35, 36
real, 23

© John Kouraklis 2020

records, 31-35
sets, 27, 28
strings, 25-27
subrange, 23
variant, 36, 37
Delphi Pascal
definition, 1
forms/frames, 6
IDEs, 7, 8, 14
multiple
platforms, 3, 4
naming conventions, 15
native code, 3
OOP language, 2
project files, 4
simplest application
(console), 9-11
simplest application
(graphical), 11, 12, 14
syntax, 1, 2
units, 5, 6
VCL, 3
DisposeOf method, 100

F

FireMonkey (FMX) framework, 3
For statement, 46

103

J. Kouraklis, Delphi Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-6112-5

https://doi.org/10.1007/978-1-4842-6112-5#DOI

INDEX

G H,I

Generic programming, 37

J, K

Jump statements
break, 52
continue, 52
definition, 51
exit, 51
goto, 53, 54

L,M

Loops
For statement, 46, 47
repeat statement, 45
while..do statement, 43, 44

N

Nested methods, 64-65

O

Object-oriented
programming (OOP)

class members/methods, 86, 87

cross-platform memory

management, 97, 99-101

declaration, 73-75

104

functionality/capabilities, 78-81

inheritance

interfaces, 93, 94, 96, 97

object state, 75-77

state (properties), 82, 84-86
Override keyword, 81, 90

P,Q

Parameter-less methods, 59
Paramaters
classic, 59
constant, 60
default values, 62, 63
examples, 57
out, 61
updateLogs, 58
variable, 61
procedure keyword, 55
Procedures/functions
anonymous methods, 68-71
declarations, 55-57
nested methods, 64
normal execution,
interrupts, 64
overloading, 71
parameter (see Parameters)
typed methods, 65-67

R,S, T,U

Repeat..until statement, 45

\'/

Variables
age, 19
definition, 17
example, 18

identifier, 17

INDEX

scope, 19
Visual Component
Library (VCL), 3

W XY,Z

while..do statement, 43

105

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Delphi Pascal
	Delphi As a Programming Language
	Syntax
	Programming Paradigms
	Compilation to Native Code
	Visual Applications
	One Code Base for Multiple Platforms

	Anatomy of a Delphi Program
	Project Files
	Units
	Forms and Frames

	Delphi As Integrated Development Environment (IDE)
	A Simple Application (Console)
	A Simple Application (Graphical)
	Alternative IDEs
	Delphi Style Guide
	Summary
	References

	Chapter 2: Basics
	Variables
	Data Types
	Integer
	Char
	Boolean
	Enumerated Types
	Subrange
	Real
	Strings
	Sets
	Arrays
	Records
	Pointers
	Variant
	Generics

	Constants
	Comments
	Summary
	References

	Chapter 3: Looping, Conditional and Jump Statements
	Loops
	While Statement
	Repeat Statement
	For Statement

	Conditional Statements
	If Statement
	Case Statement

	Jump Statements
	Exit Statement
	Break Statement
	Continue Statement
	Goto Statement

	Summary

	Chapter 4: Procedures and Functions
	Declaration
	Parameters
	The Nature of Parameters
	Classic Parameters
	Constant Parameters
	Variable Parameters
	Out Parameters

	Default Values of Parameters

	Interrupting the Normal Execution
	Nested Methods
	Typed Methods
	Anonymous Methods
	Method Overloading
	Summary
	References

	Chapter 5: Object-Oriented Programming (OOP)
	Declaration
	Object State (Fields)
	Object Functionality (Methods)
	Object State (Properties)
	Class Members and Methods
	Inheritance
	Interfaces
	Cross-Platform Memory Management
	Summary
	References

	Index

