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Луис Педро Коэльо (Luis Реdго Coellю) - специалист по компыо­

терной биологии, то есть человек, применяющий компьютеры для 
изуч ения биологических систем. Конкретно Луне анализирует ДНК 

микробных сообществ, чтобы охарактеризовап> н х поведен ие. Луис 

также много работал в области обработки биологических изображе­
н11й - приложения методов машинного обучения к анализу изобра­

жений билогических образцов. Сфера его научных и нтересов - об­

работка и агрегирование больших наборов данных . 
Луне защитил докторскую диссертацию в Ун11верситете Карнеги­

Меллон, одном из ведущих учебных заведений в области машинного 
обучения. Он автор нескольких научных публика ций. 

Разработкой программного обеспечения с открытым исходным ко­
дом Луне начал заниматься в 1998 году, постав 11 в целью применить 

на практнке методы кодирования, которые он изучал на курсах ин­

форматики в Лиссабонском техническом университете. В 2004 году 
он начал программировать на Pyt lюn и внес сво\1 вклад в несколько 
открытых библиотек на этом языке. Он всдущиr1 разработчик попу­

лярного пакета проt'рамм машинноt'О зрения для Pytl10п шahotas, а 
также соавтор ряда программ машин н ого обуL1ения. 

В настоящее время Луне живет то в Люксембурге, то в Гейдель­
берге. 

Благодарю свою жену Риту за любовь и поддержку и дочь 
Анлу за то, что она лучше всех. 

Вили Ричарт (Willi Riche гt) имеет степень доктора наук по машин­
ному обучению и робототехнике. Он применял методы обусrения с 
подкреплением, скрытые марковские модели и байесовские сети для 
обучения гетерогенных роботов путем подражания . В настоящее вре­
мя работает в корпорации Micгosoft в групп е основ релевантности в 
Biпg, где занимается различ ными приложениям1 1 машинного обуче­

ния , в том числе активным обучением, статистическим машинным 
переводом н решающими деревьям и. 



" •. Об авторах 

Эта книга не была бы написана без поддержки ;ноей жены 
Натали и моих сьтовей, Линуса и Морица. Я благодарю за 
полезные дискуссии моих предыдущих руководителей Ан ­
дреаса Боде (Апdтеаs Bode), Кле,иенса Маршнера (Cleтens 
Maтsclinei), Хон Янь Чжу (Нопgуап Zhoи) и Эрика Крестана 
(E1·ic Сгеstап), а также коллег и друзей Томаша Марциняка 
(Tomasz Магсiпiа/~), Кристиана Эйгеля (Cгistiaп Eigel), Оливе­
ра Нихёрстера (Oliveт Nielioeтsta) и Филиппа Эделта (Philipp 
Adelt). Интересные идеи, скорее всего, исходят от них, ошибки 
:же целиком иа моей совести. 
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Мэтыо Бруше лолучил диплом инженера во французской Высшей 

школе электрики (EcoJe Supeгieuгe d'Electгicite) (факультет инфор­
мации, обработки и измерения сигналов), а степень доктора наук по 

обучению без учителя на многообразиях - в Страсбургском универ­
ситете, Франция. В настоящее время он занимается высокопроиз­
водительными вычислениями в нефтяной компании и работает над 

программой модел ирования резервуаров следующего поколения. 

Морис НТ Линь программирует на Python с 2003 года . Он получил 

стелень доктора наук по биоинформатике и диплом с отличием бака­

лавра по молекулярной и клеточной биологии в Университете Мель­

бурна. В настоящее время работает научным сотрудником в Наньян­
ском технологическом университете, Сингапур, и почетным научным 

сотрудником в Университете Мельбурна, Австралия. Морис - глав­
ный редактор журнала «Co111pL1tatio11al апd Matheшatical Biology» и 
соредактор журнала «The Python Рарегs». Недавно Морис основал 
первый стартап по синтетической биологии в Сингапуре, AdvaпceSyп 

Pte. Ltd" и занимает в нем должность директора и техниtrеского ру­
ководителя. Область его научных интересов - изучение различных 

аспектов жизни - биологической, искусственно 1v1 и искусственного 

интеллекта - путем применения методов информатики и статистики . 

В свободное время Мори с любит читать, смаковать чашечку кофе, пи­

сать в свой персональный журнал или размышлять о многообразных 

проявлениях жизни. Его сайт находится по адресу J1 ttp://шaшice. 
vodieп.coш, а страница в Linkedlп - по адресу l1 ttp://\VW\'-'.liпkedi11 . 

coш/iп /шallгicel i пg. 

Ражим Ржезоржек - технический спец и разработчик по лризванию 

души. Он основал и возглавлял исследовател ьский отдел в ко~ша­

нии Seznaш.cz , ведущей поисковой системе в Центральной Европе. 

Защитив докторскую диссертацию, он решил не останавливаться на 

достигнутом, а создатыдля удовлетворения своей страсти к машин-
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ному обучению собственную иследовательскую компанию RaRe 
Consulting Ltd. Компания специализируется на заказных решениях в 
области добычи данных и разработке передовых систем для клиеитов 
самого разного ранга: от многонациональных корпораций до только 

что основанных стартапов. 

Радим - также автор ряда популярных проектов с открытым ис­

ходным кодом, в том числе gensim и smaгt_opeн. 
Большой любитель исследования разных культур, Радим в послед­

ние годы жил со своей женой в разных странах и намеревается пере­

браться к IОжную Корею. Но где бы Радим ни находился, он вместе 
со своей командой стремится всячески популяризировать методы 

обработки данных и помогать компаниям по всему миру извлекать 

максимум пользы из машинного обучения. 



•• 
ПРЕДИСJ10ВИЕ 

Кто-то скажет, что вы держите эту книгу в руках (или в своей читал­

ке) лишь благодаря счастливому совпадению. В конце концов , каж­
дый год выходят миллионы книг, и их читают миллионы людей. А 

эту книгу читаете вы. А кто-то возразит, что в вашей встрече с этой 

книгой - или книги с вами - сыграли роль кое-какие алгоритмы ма ­

шинного обучения . И мы, авторы, очень рад ы, что вы захотите под­

робнее узнать, как и почему. 

В основном, эта книга отвечает на вопрос «К<1К». Как следует об­

рабатывать данные, чтобы алгоритмы машинноL"О обучения могли 

извлечь из них максимум полезной информации? Как выбрать под­

ходящий алгоритм для решения задачи? 

Но иногда мы задаемся также вопросом « ПОLJему». Почему важно 

правильно производить и змерении? Почему в конкрепю!~L ситуации 

один алгоритм оказывается лучше другого? 

Мы знаем , что для превращении в сп ециал 11 ста в этой области нуж­

но знать гораздо больше. Ведь мы смогли затронуть лишь несколько 

«как» и уж совсем нем ного «почему» . Но мы надеемся, что эта ма­

лость поможет вам быстро встать на но1-и и двигаться дальше само­

стоятелыю. 

О содержании книги 
В глаае 1 «Введение а лtашинное обучение на языке Pytlion» читател ь 
знакомится с основной идеей машинного обучения на очень простом 
примере. Но , несмотря на простоту, в этом примере имеет место опас­

ность переобучения . 
В глаае 2 «Классификация в реальной жuзни1> мы используем реаль­

ные данные, чтобы продемонстрировать классификацию и научить 

компыотер различать различные классы цветов. 

В zлаае З «Кластеризация - поиск азаuмосвязшшых сообщенuй1> мы 
узнаем об эффективности модели набора слов , с помощью которой 
сумеем найти похожие сообщения, не « rюннмая » нх см ысла. 
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В главе 4 «Тематическое люделирование» мы не станем ограничи ­
ваться отнесением сообщения только к одному кластеру, а свяжем с 

ним несколько тем, поскольку политематичность характерна для ре­

альных текстов. 

В главе 5 «Классификация - выявление плохих ответов» мы узнаем, 

как применить дилемму смещения-дисперсии к отладке моделей ма­

шинного обучения, хотя эта глава посвящена в основном использова­

нию логистической регрессии для оценки того, хорош или плох ответ 

пользователя на заданный вопрос. 

В главе 6 «Классификация II - анализ элtационалыюй окраски» объ­
ясняется принцип работы наивного байесовского классификатора и 

1 
описывается, как с его помощью узнать, несет ли твит положитель-

ный или отрицательный эмоциональный заряд. 

В главе 7 «Регрессия» объясняется, как использовать классический, 
но не утративший актуальности метод - регрессию - при обработке 
данных. Вы узнаете и о более сложных методах регрессии, в частно­

сти Lasso и эластичных сетях. 
В главе 8 «Рекомендование» мы построим систему рекомендова­

ния на основе выставленных потребителями оценок. Мы также уз­
наем, как формировать рекомендации, имея только данные о покуп­

ках, безо всяких оценок (которые пользователи выставляют далеко 

не всегда). 

В главе 9 «Классификация по л·1узыкалы1ыл1 жанрал1» мы предполо­

жим, что кто-то сознательно внес хаос в нашу огромную коллекцию 

музыкальных произведеннй, и единственная надежда навести поря­

док - поручить машине их классификацию. Как выяснится, иногда 

лучше довериться чужому опыту, чем создавать признаки самостоя­

телыrо. 

В главе 10 «Машинное зрение» мы применим методы классифи­
кации к обработке изображений, выделяя признаки из данных. Мы 
также увидим, как с помощью этих методов можно находить похожие 

изображения в наборе . 

Из главы 11 «Понижение размерности» мы узнаем о методах, по­

зволяющих уменьшпть объем данных, чтобы алгоритмы машинного 

обучения могли с ними справиться. 
В главе 12 «Когда даюtых больше» мы рассмотрим некоторые под­

ходы, позволяющие успешно обрабатывать большие наборы данных, 

задействуя несколько ядер или вычислительные кластеры. Мы также 

познакомимся с основами облачных вычислений (на примере служб 

Aшazon Web ScгYices). 



Предисловие . " 
В приложении «!де получить дополиuтелы1ые сведет1я о ,1шши~лю.м 

обучении~ перечислены многоL1исленные полез ные ресурсы, посвя ­
щенные этой теме . 

Что необходимо для чтения этой 

книги 

Предполагается, что вы знаете язык Pythoп и умеете устанавливать 

библиотеки с помощью программы easy_i11stall или pip. Мы не при­
бегаем к сложной математике типа математического анализа или ма­

тричной алгебры . 

В этой книге используются следующие верс1ш программ, хотя бо-

лее поздние тоже должны подойти: 

• Pytl1011 2.7 (весь код совместим также с версия~и 3.3 и 3.4); 

• NumPy 1.8.1; 

• SciPy 0.13; 

• scikit-leaгп 0.14.0. 

На кого рассчитана эта книга 
Книга рассчитана на программистов , пишущих 11 а Руtlюп и желаю­

щих узнать о построении систем машинноt"О обучения с помощью би ­

блиотек с открытым исходным кодом. Мы рассматриваем основные 

модели машинного обучения на примерах, взятых из реальной жизни. 

Эта книга будет полезна также специалистам по машинному об­
учению, желающим использовать Pythoп для созда ния своих систем. 
Руtlюп - гибкий язык для быстрой разработки прототипов, сами же 
базовые алгоритмы написаны на С или С++ и хорошо оптимизиро­

ваны. Поэтому получается быстрый и надежный код, пригодный для 

производственных систем. 

Графические выделения 
В этой книге тип информации обозначается шрифтом . Ниже приве­
дено несколько примеров с пояснениями. 

Фрагменты кода внутри абзаца, имена таблиц базы данных, па­

пок и файлов, URL-aдpeca, данные, которые вводит пользователь, и 
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адреса в Твиттере выделяются следующим образом: ~далее мы с ло­
мощью метода polyld () стро11м модельную функцию ло лараметрам 

модели » . 

Кусок кода выглядит так: 

[aws info] 
AWS ACCES S КЕУ ID = AAKI IT 7HHF6IUSN30CAA - - -
AWS_ SECRET_ACCESS_ KEY = <ваш секретный ключ> 

Входная и выходная информация командных утилит выглядит так: 

>>> iтport nuтpy 

>>> nuтpy . version . full_version 

1 . 8 . 1 

Новые термины и важные фрагменты выделяются полужирным 

шрифтом. Например, элементы графического интерфейса в меню или 

диалоговых окнах выглядят в книге так: ~ после остановки машины 

становится доступной кнопка Clшnge instance type». 

·-~ -~~-- -- ----·----------
Советы и рекомендации выглядят так . -- ~- - ------·-----

Отзывы 
Мы всегда рады отзывам читателей. Расскажите нам , что вы думаете 

об этой книге - что вам понравилось или, быть может, не понрави­

лось. Читательск11е отзывы важны для нас, так как помогают выпу­

скать книги, из которых вы черпаете максимум полезного для себя. 

Чтобы отправить обычный отзыв, просто пошлите письмо на адрес 

feedba ck@ packtpub . сот, указав название книги в качестве темы . Если 

вы являетесь сnециал 11стом в некоторой области и хотели бы стать 

автором или соавтором книги, познакомьтесь с инструкциями для ав ­

торов ПО адресу www . packtpub . сот/ authors . 

Поддержка клиентов 
Счастливым обладателя~1 книг Packt мы може:v1 предложить ряд ус­

луг, которые позволят извлечr, из своего пр11обретения максимум 

пользы. 
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Загрузка кода примеров 

Вы можете скачать код примеров ко всем книгам издательства 

Packt, купленным на сайте http : //www . pac ktpub . сот. Если книга была 
куплена в другом месте, зайдите на стран1,щу http : //www. packtpub . 

coт/support , зарегистрируйтесь, и мы отправим файлы по электрон­

ной почте. 

Код к этой книге имеется также на странице сайта GitHt1b по адресу 
h ttps : //github . coт/ lu fspedro /Buildi ngMachi n e LearningSysteтsWith -

Python . Этот репозиторий поддерживается в актуальном состоянии, 

то есть включены исправления замеченных ошибок и обновления для 
новых версий Pythoп и испол ьзованных в книге пакетов. 

Опечатки 

Мы проверяли содержимое книги со всем тщаннем , но какие-то 

ошибки все же могли проскользнуть. Если вы найдете в нашей кни­

ге ошибку, в тексте или в коде, пожалуйста , сообщите нам о ней. Так 

вы избавите других читателей от разочарования и поможете нам сде­

лать следующие издания книги лучше. При обнаружении опеl1атки 

просьба зайти на страницу ht t p : ! /www . pack tpub . сот! support , выбрать 
книгу, щелкнуть по ссылке Errata Submission Form и ввести инфор­
мацию об опечатке. Проверив ваше сообщение, ~Iы поместим инфор­
мацию об опечатке на нашем сайте или добавим ее в список замечен­

ных опечаток в разделе Епаtа для данной книги. 

Список ранее отправленных опечаток можно просмотреть, выбрав 
название книги на странице ht tp : / / www. packtpub . coт/books / cont e n t/ 

support. Запрошенная информация появится в раздеJ 1 е Errata. 
Есть еще один отличный способ - зайти на сайт www . тwoтoRea l. сот, 

где авторы стараются предоставлять техническую поддержку читате­

лям и отвечать на их вопросы. 

Нарушение авторских прав 

Незаконное размещение защищенного авторским правом мате­

риала в Интернете - проблема для всех носителей ннформации. В 

издательстве Packt мы относимся к защите прав интеллектуальной 
собстве1пюсти и лицензированию очень серьез но . Если вы обнару­

жите незаконные копии наших изданий в любой форме в Интернете, 

пожалуйста, незамедлительно сообщите нам адрес или название веб­
сайта, чтобы мы могли предпринять соответствующне меры. 



Предисловие 

Просим отправить ссыл ку на вызывающий подозрение в пиратстве 

материал по адресу copyright@packtpub . сот. 

Мы будем признательны за помощь в защите прав наших авторов 
и содействие в наших ста раниях предоставлять читателям полезные 

сведения. 

Вопросы 

Если вас смущает что-то в этой книге, вы можете связаться с нами 

по адресу questions@ p acktpub . сот, и мы сделаем все возможное для 

решения проблемы . 



fЯАВА 1. 
Введение в маwинное 

обучение на языке Python 

Машинное обучение - это наука о том, как научить машину самосто­
ятельно решать задачи. Вот так все просто. Но д 1,явол кроется в дета­

лях, и именно поэтому пы читаете эту книгу. 

Быть может, данных слишком много, а априорных знаний о них 

слишком мало. И пы надеетесь, что алгоритмы машинного обучения 
помо tуr справиться с этой проблемой, а потому наLшнаете в них раз­

бираться . Но через иекоторое время впадаете u ступор: какой же из 
мириада алгоритмов выбрать? 

Или, быть может, вас заинтересовали общ11е вопросы машинного 
обучения , и вы начали ~итать блоги и статьи на эту тему. Все это по­
казалось вам таким крутым и волшебным , что вы приступили к соб­

ственным исследованиям и загрузили простенькие данные в реша­

ющее дерево или в машину опорных векторов. Но вот эксперимент 

завершился, и возникает вопрос: а правильно ли он был поставлен? 

Насколько оптимальны полученные результаты? И как узнать, не су­

ществует ли алгоритма получше? Да и вообще - правильно ли были 

подобраны данные? 
Вы не одиноки! Мы оба (авторы) проходили через это - искали 

сведения о том, как на практике выглядит то , о чем пишут в учебниках 
по машинному обуL1ению. Оказалось , что очень многое - «черная ма­

гия~. о которой авторы стандартных учебников забывают упомянуть. 
Так что в некотором роде эта книга написана нами для нас же, только 

на несколько лет моложе. Здесь вы найдете н е только краткое введе­

ние в методы машинного обучения, но и уроки, которые мы извлекли, 

идя по этому пути. Мы надеемся, что благодаря этой книге дорога, 
ведущая в самые захватывающие области Информатики, станет Liуть 
более гладкой. 
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Машинное обучение и Python 
команда мечты 

Цель машинного обучения - научить машину (точн ее, программу) 

решать задачу, предъяв ив ей несколько примеров (с правильными и 

неправильными решениями) . Предnолож11 м, что каждое утро, вклю­

чив компьютер, вы делаете одно и то же: сортируете пришедшую 

почту, раскладывая писы,1а в палки по темам . Через какое-то время 

эта работа вам надоест, и вы захотите ее а втоматизировать . Один из 
возможных подходов - проанали зировать собственное поведение и 

выписать правила , которь1ми вы руководствуетесь при сортировке 

писем . Однако это громоздкое и отнюдь не совершен ное решение. 

Некоторые правила вы упустите из виду, другие сформулируете из ­

лишне детально. Гораздо лучше выбратr, какой -то набор метаданных 

о письмах , задать пары (тело писы\1 а, имя папки) и поручить алго­

ритму вывести наилучший набор правил. Такие пары называются 
обучающими данными, а получившийся набор правил можно будет 
применить к будущим письмам, которых алгоритм еще н е видел. Это 
и есть машинное обучение в простейшем виде. 

Разумеется, машинное обучен11е (е го еще часто называют добы­

чей данных или прогностическим анализом) - не новая дисциплина . 

Наоборот, своими успехами в последние годы она обязана практиче­
скому применению проверенных временем методов и идей из других 

областей з нания, в частности математической статистики. Цел ь ч е­

ловека - извлечь полез ную информацию из данных, например, вы ­

явить скрытые закономерности и взаимосвязи. Чнтая об успешных 
применениях машинного обучения (Вы вед ь уже открыли для себя 
сайт www. ka ggle . сот , правда?), вы убедитес ь, что прикладная стати­
стика вовсю и спользуется специалист<1ми. 

Ниже вы увидите, что процесс поиска подходящего подхода к ма­

ШИJшому обучению вовсе не линеен. Напротив, приходится много­
кратно возвращаться назад , пробуя другие со,rета н ия исходных дан ­

ных и алгоритмов. Имен но изыскательская природа этого процесса 

делает применение Pytl10п чрезв ычайно уместным. Вед ь Pytl10п, 
будучи интерпретируемым высокоуровневым языком программиро­
вания , как будто с п ециально придуман для опробования разных ва ­

ри а нтов. К тому же, 01-1 работает 61, 1 стро. Конечно , он медленнее С и 

подобн 1,1 х ему стап 1 чески типизированных языков. Но при наличии 

огромного 'Iи сла просп, 1 х в испол 1,зо ва 1-1и 1 1 б и блиотек, за частую на­
писанных на С, вам н е п ридется жертвовать скоростью ради п1бкости . 
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Что вы узнаете 

(и чего не узнаете) из этой книги 
В этой книге вы найдете общий обзор обучающих алгоритмов, кото­
рые чаще всего лрименяются в различных отраслях машинного об­

учения, и узнаете, на что обращать вниманне при их применении. 

Но по своему опыту мы знаем, что такие <1и нтересные» вещи, как ис­

пользова ние и настройка отдельных алгорнтмов, например метода 

опорных векторов, классификации по ближайшим соседям, или их 

а нсамблей, - занимают лишь малую часть рабоч его времени слеци ­
алиста по машинному обучению. А основное время тратится на до­

вольно скучную работу: 

чтение и очистка данных ; 

• изучение исходных данные и попытки понять их; 

• размышления о том, как луч ше лодать данные на вход алго­

р11тма обучения; 

выбор подходящей модели и алгоритма ; 
правильное измерение качества работы ал гор1пма . 

В процессе изучения и осмысления исходных данных нам лонадо­

бится статистика и н е очень сложная математика. И, как вы убеди­

тесь, методы, казавшиеся такими скучными на занятиях по математи­

ке, могут стать по-настоящему увлекательным и, когда применяются 

для анализа интересных данных. 

Наше путешествие начинается с чтения данных. Вы поймете , что 

поиск ответа на вопрос, как быть с некорректными или отсутствую­
щими данными, - скорее искусство, чем тоlшая наука. Правильное ре­

шение воздастся сторицей , потому что позволит применить к данным 

больше обучающих алгоритмов, а, значит, повысит шансы на успех. 
Когда данные будут представлены в виде структур данных в про­

грамме, вы захотите понять , с чем же все-таки работаете. Достаточно 
ли данных для ответа на интересующие вас вопросы? Если нет, то как 

добыть до полн и тел 1,н ые данные? А, быть может, данных слишком мно­

го? Тогда нужно подумать, как лучше всею произвести выборку из них. 

Часто бывает, что данные не стоит подавать сразу на вход 
алгоритма машинного обуlrения, а надо предварительно улучшить 
их . Алгоритм с благодарностью ответит на это более качественными 
результатами . Иногда даже оказывается, что простой алгоритм на 

предварительно обработанных данных работает лучше, чем очень 
изощренный алгоритм на данных в п ервозданном виде. Эта часть 
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работы , называемая подготовкой признаков (featшe е пgiпее гiпg) , 

чаще всего оказывается безумно увлекателы-юй задачей, приносящей 
немедленные плоды . Вы сразу же видите результаты творческого 

нестандартного подхода . 

Таким образом, LJТобы выбрать подходящий обучающий алгоритм, 

недостаточно просто ткнуть наугад в од и и из трех-ч етырех имеющихся 

в вашем арсенале ( как вы скоро увидите, их вообще-то больше ). Это 
вдумчивый процесс взвешивания различных критериев - от качества 

работы до функциональных требований. Вы хотите получить 
результат быстро, даже в ущерб качеству? Или предпочитаете 

потратить больше времени, но получить наилучший возможный 

результат? У вас есть отчетливое представлеиие о будущих данных 

или лучше бы не делать слишком ограничительных предположений 

на этот счет? 

Наконец, измерение качества работы - то место, где начинающий 

изучать машинное обучение может наделать бол ьше всего ошибок. Есть 
ошибки простые, на пр11мер, контроль результатов на тех же данных, на 
которых производилось обучение . А есть и посложнее, например, подача 

на вход несбаланс1 tрованного обучающего набора. Как и раньше, именно 

данные определяют успех или неудачу всего предприятия . 

Как мы видим, лишь четвертый пункт в нашем списке относится 

собственно к возне с алгоритмами. И тем не менее, мы надеемся 
убедить вас в том, что 11 осталы-~ые четыре задачи могут быть не менее 
увлекательными. Нам хотелось бы, чтобы, прочитав книгу до конца, вы 
влюбились не столько в алгоритмы обучения, сколько в сами данные. 

Поэтому ~rы не ста нем нагружать вас теоретическими вопросам и 

раз нообразных алгоритмов машинного обучения, поскольку на эту 

тему существует немало отличных книг (их п еречень вы найдете 
1 

в приложении) , а вместо этого попытаемся развить интуицию 

иастолько , чтобы вы понял и идею и смогли сделать п ервые шаги. 

Так что эту книгу ни в коем случае нельзя считать ааторитетнъщ_ 

ру~соаодстаом по машинному обучению. Это скорее учебник для 
начинающих. Мы надеемся возбудит~) в вас л юбопытство настолько , 

чтобы вам захотелось продолжить изучение этоil интересней шей 

области зна ний. 
Далее в этой главе мы познакомимся с основами библиотек NumPy 

и SciPy для Pythoп и обучllм наш первый алгоритм с помощью 

библиотеки scikit-l ea гп. По ходу дела мы введем основные понятия 
машинного обучения, которы е будут использоваться на протяжении 

всей книги. В последующих главах мы подробно рассмотрим все 



Что делать, если вы застряли 11 •• " 
пять вышеперечисленных шагов, демонстр11руя разл ичные аспекты 

машинного обучения на примерах 11 з разных областей. 

Что делать, если вы застряли 
Мы старались как можно понятнее 11зложит 1, все 11деи, необходимые, 
чтобы воспроизвести описанные в книге пр1ш еры . Тем не менее, не 

и сключено, что вы зайдете в тупик . Прнчины могут быть разл ичны ­

ми: опечатки, н епредвиденные комбш1ации версий пакетов или недо­

понимание. 

В таком случае обратиться за помощью можно в раз ные места. Ско­

рее всего, кто-то уже сталкивался с вашей проблемой, и решение име­
ется на одном из следующих сайтов вопросов и ответов. 

http://metaoptimize . com/qa : этот -&айт посвящен исключи­

тельно машинному обучению. Почпr на каждый вопрос име­

ются квалифицированные ответы от спе ц11 алистов. Даже если 

у вас нет никаких вопросов, полезно взять за правило время от 

времени заходить сюда и чнтать ответы. 

http : / / stats. s tackexchange. com: этот сайт носит название 

Cгoss Validated, он похож на MetaOpti111ize, но посвящен боль­
ше вопросам из области стати сти ки. 

http : //stackoverflow . com: этот сайт во многом напоминает пре ­

дыдущий , но диапазон рассматриваемых вопросов программи­

рования гораздо шире. Так , на нем задается больше вопросов 

о некоторых используемых в этой книге пакетах, в частности , 

SciPy и 111atplotlib. 
Канал #machinelearning на сайте ht tps : 11 treenocte. net/: это 
IRС-канал, посвященный проблемам машинного обучения. 
Здесь собирается небольшое, но очень активное 11 все гда гото­

вое оказать помощь сообщество спец11аm 1 стов по машинному 

обучению. 
ht tp : ! /www. тwoToReal . com: это сайт мгновенных вопросов и 

ответов, созданны й авторами книги для оказания помощи по 

вопросам, н е попадающим ш1водну 11з оп и сан ных выше кате­

горий. Если вы зададите здесь вопрос , то один из авторов не­

медленно получит сообщение, если находится в сети, и будет 

готов вступить с вами в беседу. 

Как уже было сказано в начале книги, наша цел ь - помочь вам бы­

стро освоить азы машинного обучен ия и дальше двигаться уже само­

стоятельно. Поэтому мы горячо рекомендуем составить свой список 
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блогов, относящихся к машинному обучению, и регулярно загляды­
вать в них. Это лучший способ узнать, L!ТО работает, а LПО - нет. 

Единственный благ, о котором мы хотели бы упомянуть прямо 
сейчас (и подробнее рассказап, в приложении) - http: //Ыоg . kaggl e . 

сот , благ компании KaggJe, которая проводит конкурсы по машинно­
му обуче нию. Обычно победителям предлагается рассказать о своих 
подходах к конкурсным задачам , о том, какие стратегии не сработали, 

и как они пришл11 к победно~°~ стратег11и . Этот благ обязателен к про­

чтению, пусть даже он окажется единственным. 

Приступая к работе 
В предположении , что Python уже установлен (годится любая версия, 
начиная с 2.7), нам нужно еще установить пакеты Nu111Py и SciPy для 
численных расчетов и шatp] otli b для визуализации. 

Введение в NитРу, SciPy и matplotlib 
Прежде чем говорить о конкретных алгоритмах машинного обуче­

ния, следует определиться с тем , как лучше хранить да~1ные, которые 

мы будем обрабатывать. Это важно, потому что даже самый изощрен­

ный обучающий алгоритм ничем не поможет, если он не завершается . 

А так может случиться просто потому, что доступ к да н ным слишком 

медленный. Или потому, что выбра~1~юе представление данных за­

ставляет операционную систему постоянно пробуксовывать. Добавьте 
сюда тот факт, что Pyt lюn все-таки интерпретируемый язык (хотя и 

хорошо оптимизированный) , слишком медленный для численных рас­

четов по сравнению с С или FORTRAN. Но тогда возникает вопрос -
почему же так много ученых и компаний ставят свое благополучие на 
Pythoп, даже в задачах, требующих очень интенсивных вычислений? 

Дело в том , что, работая на Руt lюп, очень просто перепоручить чис­
ленные расчеты ннзкоуровневым расширениям, реализованным на С 

или FORTRAN. Именно так устроены библиотеки NumPy и SciPy 
(h ttp : //scipy . org/Downloact). В этом таидеме NL1111Py отвечает за вы­
соко оптимизированные многомерные массивы - основную струк­

туру данных для большинства современных алгоритмов. А SciPy на 
базе этих массивов реализует быстрые ч11сленные алгоритмы. Нако­
нец , 111atp]otli b ( http : //ma t plotlib. org/ ) - пожалуй, самая удобная 

и функционально развитая библиотека для построения высококаче­

ственных графиков на Pythoп. 
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Установка Python 
По счастыо , для всех популярных олерационных систем, то есть 

Wi11do\VS, Мае и Linнx, существуют готовые инсталляторы Nш11Ру, 

SciPy и 111atplotlib. Есл и вы не уверены , с~южете ли сп равиться с их 

установкой, то установите дистрибутив A 1ыconda Pythoп (его мож­
но скачать с сайта https : //store . co n tinuum . io/cshop/anaconda/ ) , 

созданный Трэвисом Олифантом (TгaY is O liplыпt), основателем и 
акти вным автором лроекта SciPy. От дру 1 ·11 х дистрибутивов, напри­

мер E 11 t l10нght Са пору ( https : / /www . enthought . com/down l oads/ ) ИЛИ 

Pyt lюn(x,y) ( http : / / code . googl e . com/p/python xy /wiki/Down l oads ), 

Anaconda отличается пол ной совмесп tмостыо с Pytlюn 3 - версией 
Руt lюп, которой мы будем пользоваться в этой книге. 

NumPy как средство эффективной 
и SciPy как средство интеллектуальной 
обработки данных 
Давайте разберем несколько простых примеров применения 

№111Ру, а затем посмотрим, что SciPy дает сверх того. Полутно мы 
сделаем первую лопытку п остроить граф11ки с помощью LJудесного 

пакета Matplotlib. 
Желающие углуб иться в тему могут ознакомиться с интересными 

примерами применения №шРу, лриведенн ыми в пособии по адресу 

http : //www . scipy . o rg/Tentative_ NumPy_Tutori a l . 

Весьма полезна также книга lYan Idгis «№шРу Begiпner ' s Gнide i.> 
( второе издание), вышедшая в издательстве Packt PнЬlishiпg. Допол­
нительные учебные материалы можно найти на сайте http : ! 1 sc ipy­

l ectures . g ithub . com, а также в официальном руководстве по SciPy ло 
адресу http : / / docs . scipy . o rg/ doc/ scipy/reference/tutor i a l. 

~~~~~~~~~~~~~- ~ 

~ В этой книге мы пользуемся версиями NumPy 1.8.1 и SciPy 0.14.0. -----··--- __ " __ 
Изучаем NumPy 
Итак, импортируем №111Ру и н ем н ого поэкспериментируем . Для 

этого нужно запустить интерактивную оболочку Pytl1011: 

>>> i mpo rt n umpy 
>>> numpy.version. f ull_ ve r s i o n 
1. 8 . 1 
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Поскольку мы не хотим за гряз нять пространство имен, то, конечно 

же, не станем писать такой код: 

>>> from numpy import * 

Так как, к примеру, пакет numpy . a rray мог бы замаскировать пакет 

array из стандартной библиотеки Python. Вместо этого мы будем 
пользоваться следующим удобным сокращением : 

>>> import numpy as np 
>>>а= np . array([0 , 1 , 2 , 3 , 4 , 5] ) 
>>> а 

array ([ О , 1 , 2 , 3 , 4 , 5] ) 
>>> a . ndim 
1 
>>> a.shape 
( 6 , ) 

Только что мы создали массив - точно так же, как список в Pythoп . 
Однако в массивах NнmPy хранится дополнительная информация о 

форме. В данном случае мы имеем одномерный массив с шестью эле­

ментами. Пока никаких сюрпризов . 

Теперь можно преобразовать этот массив в двумерную матрицу: 

>>> Ь = а . reshape ( (3 , 2)) 
>>> ь 
array ( [ [ O, 1] , 

(2 ' 3] ' 
[ 4 ' 5]]) 

>>> b . nd i m 
2 
>>> b.shape 
(3 , 2 ) 

Интересные вещи начинаются с осознанием того, как сильно опти­

мизирован пакет NLimPy. Например, в следующих операциях копиро­

вание по возможности не производится: 

>» b[l] [0] = 77 
>>> ь 

array ( [[ О , 1 ] , 

[7 7 ' 3] ' 
[ 4 ' 5]]) 

>>> а 

a rray ([ О , 1 , 77 , 3 , 4 , 5] ) 

В дан но\1 случае мы изменил и один элемент ь с 2 н а 77 и , как ви­

дим, это изменение отразилось и на массиве а. Но есл и копирование 

таки необходимо, то это можно организовать: 
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>>> с = a.reshape (( З , 2 )) . сору() 

>>> с 

ar ray([[ О , 

[77 ' 

[ 4 ' 
»> с [ О] [ О ] 

1]' 
3] ' 
5]] ) 

- 99 
>>> а 1 

arra y ([ О , 1, 77 , 3 , 4 , 5 ]) 
>>> с 

array ( [ [- 99 , 1 ] , 
[ 77 ' 3 ] ' 
[ 4 ' 5 ] ]) 

Теперь с 11 а - совершенно н еза висимые копии. 

Еще одно преимущество массивов NL1111Py - распространение 

операций на отдельные элементы . Нап р11 м ер, умножение массива 

NшnPy на число порождает массив такого же размера, в котором все 

элементы умножены на это число: 

>>> d = np.array([l , 2 , 3 , 4 , 5 ] ) 
>>> d*2 
a rray ( [ 2 , 4 , 6 , 8 , 10]) 

То же справедливо и для других операщ1li: 

>>> d** 2 
array([ 1 , 4 , 9 , 16 , 25]) 

Сравните с обычным списком Pythoп : 

>>> [1 , 2 , 3 , 4 , 5]* 2 
[1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 ] 
>> > [1 , 2 , 3 , 4, 5] **2 
Traceback (most r ecent call l a s t ) : 
File " <stdin>" , line 1, i n <modu le> 
TypeError: unsupported operand type( s ) for ** or pow (): ' list ' and ' int ' 

Разумеется , прибегая к массивам NшлРу, мы приносим в жертву 
гибкостъ списков Pytl1011. Такие простые олерации , как добавление 
или удаление элементов, для массивов NшпРу реализуются сложнее. 

Но, к сч астью, в нашем распоряжении есть и то , и другое, так что мож ­

но выбирать подходя щий и нструмент по ситуации. 

Индексирование 

Своей эффектив11остью библ иотека Nш11Ру отчасти обязана раз ­
нообразием способон доступа к массивам. Пом 11мо знакомо~-о по спи ­

скам индексирования, можно испол ьзовать в качестве индексов сами 

массивы : 
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>>> a[пp . array ([ 2 , 3 , 4])] 

a r ray( [77 , 3 , 4]) 

Учитывая , что логические условия также распространяются на 

отдельные элеменп,1, мы получаем оче нь удобный способ доступа к 

данным: 

>>> а>4 
array ([ False , False , Tr ue , False , Fa l se , True] , dtype=bool ) 
>>> а[а>4] 
array ( [ 77 , 5] ) 

Следующая команда позволяет ограничить выбросы: 

>>> а [ а> 4] = 
>>> а 

array( [0, 1 , 4, 3 , 4 , 4]) 

Поскольку эта бывает необходимо очень часто , существует специ­
альная функция clip, которая позволяет задать обе границы с помо­

щыо одного вызова: 

>>> a . clip (0 , 4 ) 
array( [ О , 1 , 4 , 3 , 4 , 4]) 

Обработка отсутствующих значений 
Средства индексирования №1111Ру оказываются особенно полезн ы, 

когда нужно произвести предварительную обработку данных, прочи­
танных из текстового файла. Чаще всего данные содержат некоррект­

ные значения , которые мы можем помети1ъ как н е -числа с помощыо 

константы пumpy . NAN: 

>>> с = пp . array ([l , 2 , пp . NAN , 3 , 4]) 1 допустим , что мы прочли 

это иэ текстового файла 

>>> с 

array([ 1 ., 2 . , пап , 3. , 4 . ]) 
>>> пр . isпап(с) 

array([False , False , Tru e , False , False ] , dtype=bool) 
>>> с[-пр . isпап ( с ) ] 

array ([ 1 . , 2 ., 3 ., 4 . ] ) 
>>> пp . mean( c [ -np . i sпaп( c ) ] ) 
2 . 5 

Сравнение времени работы 
Давайте сравним производител ьность Nш11Ру и обычных списков 

Pythoл. Следующая программа вычисляет сумму квадратов чисел от 

1 до 1000 и замеряет время работы. Для бол 1,шей точности мы про­

гоним ее 10 ООО раз и напечатаем общее время. 
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import timeit 
norma l _py_sec = timeit . timeit (' sum(x*x for х i n ra nge (l 000 )) ', 

numЬer=lOOOO) 

naive_np_sec 

good np sec 

timeit . timeit ( 
' sum (na*na ) ', 

setup= " import numpy as np ; na=np . arange (l OOO )", 
numbe r= l 0000 ) 

timeit . timeit ( 
' 11 a . dot (na ) ', 

se t up= " import numpy as np ; na =np . ara nge ( l000 ) ", 
number= lOOOO ) 

print ( " Normal Pytho n: %f sec " % normal_py_sec ) 
print (" Naive NumPy : %f sec " % naive_np_sec) 
print (" Good NumPy: %f sec " % good_np_sec ) 

Normal Python : 1 . 050749 sec 
Naive NumPy : 3 . 962259 sec 
Good Nu mPy : 0 . 040481 sec 

Сделаем два любопытных наблюдения. Во-первых, если ис­
пользовать NншРу только для хранения данных (Nai\le №111Ру), то 
программа работает в 3,5 раза дольше. Это странно, потому что мы 
ожидали , что написанное на С расширение будет работать гораздо 

быстрее. Одна из прич~1н заключается в том, что доступ к отдельным 

элементам массива из РуtЬоп обход1 1тся довольно дорого. Ускорение 

мы получим лишь в том случае, если сумеем применить алгоритм, 

не выходя за пределы оптимизированного код;:~ расширения. Другое 

наблюдение поражает: использование входящей в NLLmPy функции 
ctot ( 1, которая делает в точности то же самое, привод1~т к 25 -кратному 

ускорению . Вывод - реализуя любой алгоритм, нужно стремиться к 
том у, чтобы вместо цикла по отделы1 ым элементам массива на PytЬon 
воспользоваться какой -нибудь опп1мизированной функцией, входя ­
щей в состав NшпРу или SciPy. 

Однако за быстродействие приходиться расплачиваться. Работая 

с массивами №шРу, мы утрачиваем невероятную г11бкость списков 

Python, в которых можно хранить практичес1ш всё. Все элементы 
массива NшпРу должны иметь одн наковый тип. 

>>> а= np . array ([l , 2 , 3] ) 
>>> a . dtype 
dtype ( ' i n t64 ') 

Если мы попытаемся испол 1,зоват ь элементы разных типов, как в 

следующем примере, то NншРу постарается при вести их к одному и 

тому же, наиболее разумному в данных обстоятельствах , типу: 
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>>> np.array ( [1 , " stringy" ]) 
array ( [ ' l ', ' stringy ' ] , dtype= ' <U7 ') 
>>> np . array ( [l , " stringy", set ([l, 2 , 3 ] ) ] ) 
array ([l, st r ingy , {1 , 2 , 3}] , dtype=object ) 

Изучаем SciPy 
Поверх эффективных структур данных NL1mPy библиотека SciPy 

надстраивает многочисленные ал горитмы, работающие с массивами . 
Какой бы численныil алгоритм 11 з описываемых в современных учеб­

никах ни взять, с большой вероятностью он будет так или иначе под­
держан в SciPy. Это относится к операциям над матрицами, линейной 

алгебре, оптимизации, кластеризации, пространстве1н1ым операциям 

и даже быстрому преобразованию Фурье. Поэтому прежде чем при­
ступать к самостоятельной реализации численного алгоритма, обяза­
тел ьно посмотрите, нет ли его в модуле scipy. 

Для удобства полное пространство имен NнmPy доступно также 

через SciPy. Поэтому, начиная с этого места, мы будем обращаться ко 

всем средствам NнmPy с помо1дыо пространства имен SciPy. В кор­
ректности этого подхода легко убедиться , сравнив ссылки на любую 
фун кцию: 

>>> import scipy , numpy 
>>> scipy . ve r sion . full_vers ion 
о . 14 . о 
>>> scipy . dot is numpy.dot 
True 

Алгоритмы разбиты на следующие группы. 

Пакеты SciPy 

cluster 

constants 

fftpack 

integrate 

interpolate 

io 

linalg 

nd i mage 

Функциональность 

Иерархическая кластеризация (c l uster . hierarchy ) 
Векторное квантование/ метод К средних (cluster . vq) 

Физические и математические константы 

Методы преобразования 

Алгоритм дискретного преобразования Фурье 

Процедуры интегрирован ия 

Интерполяция (линейная, кубическая и т. п . ) 

Ввод-вывод данных 

Процедуры линейной алгебры на основе 

оптимизированных библиотек BLAS и LAPACK 

Обработка многомерных изображений 
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Пакеты SciPy 

odr 

optimize 

signal 

sparse 

spatia l 

special 

stats 

Функциональность 

Ортогональная регрессия 

Оптимизация (нахожден ие минимумов и корней) 

Обработка сигналов 

Разреженные матрицы 

Пространствен ные структуры данных и алгоритмы 

Специал ьные математические фун кции, нап ри мер, 

функция Бесселя и якобиан 

Математическая статистика 

Для нас наибольший интерес 11 редставляют пакеты scipy . stats, 

scipy . i n terpo l ate , scipy . c l uster и sc ipy . signal . Сеi'1 час МЫ вкратце 

рассмотрим возможности пакета stats, а изучени е остальных отло­

жим до тех глав, где они понадобятся. 

Наше первое (простенькое) 

приложение машинного обучения 
Хватит слов, возьмем для примера гипотетическую недавно образо­

ванную компанию MLaaS, которая предоставляет платные услуги 
машинного обуч ения ч ерез Интернет. Наша компания растет, и ей 
понадобилось улучшить инфраструктуру для обслуживания посту ­

пающих запросов. Мы не хотим выделять слишком много ресурсов , 

потому 'ПО это будет дорого стоить . С другой стороны, если не заре­

зервировать достатО'IНО ресурсов , то мы потеряем деньги из -за невоз­

можности обслужить все запросы. Вопрос заключается в том, когда 

мы достигнем предельной пропускной способности инфраструктуры, 
которую оценили в 100 ООО запросов в час. Хотелось бы заранее знать , 

когда запросить допошштельные серверы в облаке, чтобы обслужить 
все входящие запросы , но н е плат11ть за н еиспол ьзованные ресурсы. 

Чтение данных 
1 

Мы собрали и агрегировали статистику веб за последний месяц, 

эти данные находятся в файле chOl/data/ web_t raffic . tsv (расшире­

ние tsv оз начает, 'ПО значения разделены знаками табуляции). Дан­

ные представляют собой количество запросов в час. В каждой строке 

указан час (по порядку ) и количество запросов за этот час. 
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Ниже показаны первые несколько строк: 

· в '1 '1 ' 3 ' 4 ' 5' 

2272 
nаг. 

з 13E6f 
1 з.r:.s 

s 14 88 
6 1337 

1883 
2283 
13 3 5 

10 1025 
11 1139 
12 14 77 
13 1203 
н 1 311 
15 12 99 
16 1494 
17 1159 
18 1365 
19 1272 
20 1 24€ 

Метод genfromtxt ( ) и з библиотеки SciPy позволяет легко прочи­
тать эти данные: 

>>> import scipy as sp 
>>> data = sp . genfromtxt ( " web _ traffic . tsv ", de limi t er= " \ t ") 

Чтобы столбцы правильно распознавались, необходимо указать, 

что разделителем служит знак табуляции . 
Простая проверка показывает, что данные прочитаны верно: 

>>> print(data[ : lO ] ) 
[[ 1.ООООООООе+ОО 2 . 27200000е+0 3 ] 

[ 2 . ООООООООе+ОО nan] 
[ 3.ООООООООе+ОО 1. 38600000е+03] 

[ 4 . ООООООООе+ОО 1 . 36500000е+03] 

[ 5 . ООООООООе+ОО 1 . 48800000е+03] 

[ 6.ООООООООе+ОО 1 . 33700000е+03] 

[ 7 . ООООООООе+ОО 1.8 8300000е+03] 

[ 8 . ООООООООе+ОО 2 . 28300000е+0 3] 

[ 9. ОООООО ООе+ОО 1 . 33500000е+03] 

[ l.O OOOOOOOe+Ol 1.02500000е+03]] 

>>> print(data . shape) 
(743 , 2 ) 

Как видим, создан двумерный массив, содержащий 743 результата 
измерений. 
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Предварительная обработка и очистка 

данных 

Для SciPy удобнее представить данные в виде двух векторов дли ­

ной 743 каждый. Первый вектор, х , будет содержать часы , второй, 

у, - кол11чество запросов в течение соответствующего часа. Для та ­

кого разделения массива в SciPy предусмотрена специальная форма 
индексов, позволяющая выбирать отдельные столбцы: 

х = da ta [ : , О] 
у = data[ :,l ] 

В SciPy есть и много других способов выбрать данные из массива. 
Дополнительные сведения об индексировании , вырезании и итериро­

вании см . в руководстве по адресу h t tp :/ /w ww. scipy . o rg/ Te ntative_ 

Num Py _ Tuto rial. 

Проблема в том, что в векторе у встречаются недопустимые значе­

ния - na n. И что с ними делать? Посмотрим, сколько раз встречается 

такое значение: 

>>> sp . s um (sp . i s na n(y) ) 
8 

Как видим, отсутствуют всего 8 из 743 значений, так что можно спо­

койно удалить их . Напомним, что массив SciPy можно индексировать 
другим массивом . Метод sp . i s nan (у ) возвращает массив булевых ве­

личин, показывающих, является эл емент числом или нет. Оператор -
вычисляет логическое отрицание этого массива , то есть позволяет вы­

брать из векторов х и у только элементы, содержащие число: 

>>> х = x[ - s p . i s na n (y ) ] 
>>> у = y [ -sp. is nan( y ) J 

Чтобы состав11ть первое представлени е о данных , нанесем на 

график диаграмму рассеяния, воспользовавшись библиотекой 
111atplotli b. В этой библиотеке есть пакет pyplot, ныитирующий ин­
терфейс MATLAB - очень удобный и простой в использовании: 

>>> import matpl o tl i b . pypl o t a s p l t 
>>> # представляем точ ки ( х , у ) кружочками диаметра 10 
>>> pl t . scatt e r (x , у , s= l O) 
>>> pl t . titl e ( " We b traffic over the last mo n t h ") 
>> > p l t . x l abe l (" Ti me " ) 
>» plt . y l abe l( " Hits/h o u r") 
>> > p l t . xticks ( [w*7 *2 4 f o r w in range ( l O) ] , 

[' we ek %i ' % w f or w i n r ange ( l0 ) ] ) 
>>> pl t . auto s c al e ( t igh t=True ) 
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>>> # рисуем полупрозрачную сетку пун ктирными линиями 
>>> plt . grid (T rue , linestyle= '-', color= ' 0 . 75 ' ) 
>>> plt.show () 

Дополнительные сведения о построении графиков можно найти на 

странице http : //ma tplot lib . o r g/use r s/pyplot_tu to r ia l . 
html . 

, __ -----------
Из графика видно, что в пер вые несколько недель трафик был бо­

лее-менее стабильным, но в последнюю неделю наблюдался резкий 

рост. 
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Составив представление о данных, вернемся к исходному вопросу: 

как долго наш сервер сможет обслуживать входящий трафик? Для 

ответа на него нужно сделать следующее: 

1. Построить модель, отражающую зашумленные данные. 

2. С помощью этой модели экстраполировать данные на будущее 
и определ ить, в какой момент следует расширить инфраструк­

туру. 
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Прежде чем строить модель ... 
Можно считать , что модель - это упрощенное теоретическое при­

бл ижение к сложной реальности. Поэтому в модели всегда существу­

ет неточность, которую называют nогрешностыо аппроксимации. 

Именно величина погрешности и позволяет выбрать подходящую 

модель из множества возможных. Погрешность вычисляется как ква ­

драт расстояния между реальными и предсказанными моделью дан ­

ными; есл и t - обученная модельная функция, то погрешность равна: 

def error(f, х , у ) : 

return sp . sum ( (f (x )-y)* *2 ) 

Векторы х и у содержат подготовленные ранее статистические дан­

ных о запросах. Тут мы наглядно видим удобство векторных функций 
в SciPy. Предполагается, что обученная модель принимает вектор и 

возвращает резул ьтаты в виде ве ктора того же размера , так что раз­

ность между результатом и вектором у корректно определена. 

Начнем с прямой линии 

Предположим ненадолго, что данные можно смоделировать пря­

мой линией. Тогда наша задача - найти такую прямую, для кото­

рой погрешность аппроксимации минимальна. Именно это и делает 

функция polyfi t ( 1 из SciPy. Получив на входе векторы х, у и требуе­
мую степень полинома (для прямой линии степень равна 1), она на­

ходит модельную функцию, которая минимизирует определенную 

выше функцию погрешности: 

fp l , res idual s , r a nk , sv , rcond = sp .polyfit ( х , у , 1 , full=True) 

Функция polyfit 11 воз вращает параметры подобранной модельной 
функции fpl . Если задать fu l l=True , то мы получим дополн ительную 

информацию. Нас из нее интересуют только невязки, которые и опи­

сывают погрешность аппроксимаци11: 

>>> рrint (" Параметры модели : %s " % fpl) 
Параметры модели : [ 2 . 596 1 9213 989 . 0248 71 06] 
>>> prin t (residua l s ) 
[ 3 .1 7389767е+ 08] 

Это означает, что наилучшую линей ную аппроксимацию дает сле­

дующая функция: 

f(x) = 2 . 596192 13 * х + 989 . 02487106 . 

Затем мы воспользуемся функцией poly lct 1) для построения мо­

дельной функции по параметрам модели: 
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>>> fl = sp . polyld (fpl ) 
>>> print (error(f l, х , у )) 

317389767.34 

Мы задали full =True, чтобы получить детали процесса поиска ап­
проксимации . Обычно этого не делают, и тогда возвращаются только 
параметры модели. Теперь мы можем нанести на график функцию 

f1 о и посмотреть на свою первую обученную модель. К приведен­

ным ранее командам нужно всего лишь добавить следующий код: 

fx = sp.linspace (O,x[ - 1], 1000) #сгенерировать значения Х для графика 
plt . plot(fx, fl(fx), linewidth=4) 
plt.legend([ "d= %i " % fl.order] , l oc= "upper left " ) 

В результате получится такой график: 
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Сразу видно, что наше исходное предположение о линейности 

модели плохо вяжется с реальной картиной. И потом : погрешность 

317 389 767.34 - это хорошо или плохо? 

Абсолютная величина погрешности редко бывает полезна сама по 

себе. Но если сравнить две конкурирующие модели, то на основании 

погрешности можно судить, какая из них лучше. И хотя мы безуслов­
но не станем пользоваться своей первой моделью, в общей последо­
вательности действий она играет важную роль. Она станет эталоном, 

с которым будут сравниваться другие модели . 



Наше nервое (nростенькое) nриложение". 111 . " 
В поисках лучшего решения 

Попробуем теперь усложнить модель, взяв полином степ ени 2. 
Быть может, она сможет лучше отраз ить наши данные. 

»> f2p = sp .polyfit \х , у , 2 ) 
>» print(f2p) 
array([ 1 . 05322215е - 02, - 5 .2654 5650е+ОО , 1. 97476082е+03]) 

>>> f2 = sp.polyld (f2p) 
>>> print(error ( f2 , х , у)) 

179983507 . 878 

Получается такой график. 
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Погрешность составляет 179 983 507.878, ПОLПИ вдвое меньше по­
грешности линейной модел и. Это хорошо, но дается не даром: функ­

ция стала сложнее, а значит, polyfit () должна вычислять один допол­

нительный параметр. Аппроксимирующий полином теперь выглядит 

так: 

f(x) = 0 . 0105322215 * х**2 - 5. 2 6545650 * х + 1974.76082 

Но если усложнение функции улучшает результаты, то почему не 

пойти по этому пути дальше? Попробуем степени 3, 10 и 100. 
Интересно, что вместо полинома степени 100 мы видим на консоли 

многочисленные сообщения 
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RankWarning : Polyfit may Ье poor l y conditioned 

Это означает, что из-за погрешносте й при вычислениях polyfit не 

смогла найти аппроксимирующ11й пол ином степени 100 и сочла, что 
степени 53 вполне достаточно. 
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Похоже, что чем лучше кривая аппроксимирует данные , тем она 

сложнее . О точности аппроксимации говорят вычисленные погреш­

ности: 

Error d =l: 317 , 389 , 767.33977 8 
Error d=2 : 179, 983 , 507 . 878179 
Error d=3: 139, 350 , 144 . 031725 
Er ror d=lO : 121 , 942 , 326 . 363461 
Error d=53 : 1 09 , 318 , 004 . 475556 

Но внимательно приглядевшись к ап проксимирующим кривым, 

мы начинаем сомневаться в том, что они действительно описывают 

процесс, порождающий данные. Иначе говоря, правильно ли ~rаша 

модель представляет групповое поведение пользователей, посещаю­

щих наш сайт? Для полиномов степени 10 и 53 характерны резкие 
колебания. Складывается впечатление, что модель слишком уж близ ­
ко повторяет наблюдаемые данные. Настолько близ ко, что улавлива­
ет не только истинный процесс , но и шум. Этот феномен называется 

переобучением. 
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Придя к такому выводу, мы можем выбрать один из следующих 

путей: 

выбрать какую-то аппроксимирующую полиномиальную мо­

дель; 

п ерейти на более сложные модел и, например сплайновые ; 

п ереосмыслить данные и начать все сначала. 

Из пяти исследованных моделе й л иней ная сл1 1 шком проста , а мо­

дели степени 10 и 53 переобучены . Лишь полиномы второй и третьей 

степени более-м е нее соответствуют данным. Но если экстраполиро­

вать их в обе стороны , то поведение становится ни с ч ем не сообраз ­
ным . 

Переход на другой класс модел ей - более сложных - тоже не ка ­

жется шагом в правильном направлении. Какими аргументами мы 

могли бы подкрепить выбор класса? Похоже, мы не до конца понима­

ем природу наших данных. 

Отступить, чтобы двинуться вперед - другой 

взгляд на данные 

Итак, отступим на ш~r назад и взглянем на данные еще раз. Между 

третьей и четвертой неделей наблюдается явный изгиб. Так давайте 

разделим данные и обучим две прямые линии, взяв в качестве точки 
раздела неделю 3,5: 

i nflection = 3 . 5*7*24 
ха x[:inflection] 
уа y[ : inflection] 
хЬ 

уЬ 

x[ i nflect ion :] 
y [ inflection:] 

# вычислить положение точки изгиба в часах 
1 данные до точки изгиба 

данные после нее 

fa sp . po lyld (sp . polyfit (ха , уа , 1)) 
fb sp . polyld(sp . polyfit (xb , уЬ , 1)) 

fa_error = error (fa , ха , уа) 

fb_error = error (fb , хЬ , уЬ) 

print ("Error inflection=%f " % (fa_er ror + fb_error) ) 
Error inflection=l32950348 . 197616 

Первую прямую мы обучаем на данных до точки изгиба , а вторую -
на оставшихся. 

Очевидно, что такая комбинация двух пря ~1ых аппроксими рует 
данные гораздо лучше, чем любая нз рассмотренных выше моделей . 

Тем не м енее, погрешность больше, ч ем в случае полиномов высокой 
степени. Так можно ли вообще доверять погрешности? 
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Иначе говоря, почему прямой, аппроксимирующей только данные 

за последние полторы недели, мы доверяем больше, чем более слож­

ным моделям? Потому что полагаем, что она лучше аппроксимирует 

будущие данные. Если продолжить график в будущее, то будет видно, 
правы ли мы (d=1 соответствует самой первой прямой). 
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Ноше первое (простенькое) приложение". 1 . " 
Модели степени 10 и 53, похоже, не обещают нашему стартапу ра­

дужное будущее. Они так стремились как можно лучше соответство­

вать уже имеющимся данным, что оказались совершенно непригодны 

для экстраполяции . Это переобучение . С другой стороны, модели не­
больших степеней недостаточно хорошо улавливают характер дан­

ных. Это называется недообучением. 
Но давайте будем справедливы к моделям степени 2 и выше и по­

смотрим, как они поведут себя, если обучить их только на данных за 

последние полторы недели . Ведь мы исходим из того, что данные за 

последний период больше говорят о будущем, чем предшествующие 
данные. Результат показан на следующем бредовом графике, который 

еще раз подтверждает, насколько серьезной может оказаться пробле­
ма переобучения. 
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И все же, опираясь на погрешности моделей обученных только на 

данных за последние полторы недели, мы должны были бы выбрать 

самую сложную (отметkм , что и погрешность вычисляется только за 
период времени после точки изгиба): 

Error d=l: 22 ,1 43,941.1 0 7 618 
Error d =2 : 1 9 ,7 68 , 84 6 . 989 17 6 
Error d =3 : 1 9 , 766 , 452 . 36 102 7 
Er r or d =l O: 18 , 94 9 , 339 . 3 48539 
Er ror d =53 : 18 , 300 , 702 . 038 11 9 
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Обучение и тестирование 
Если бы у нас были какие-то будущие данные, на которых можно 

было бы проверить модель, то мы смогли бы оценить выбор модели, 
опираясь на одну лишь результирующую погрешность аппроксима­

ции. 

Но хотя нам не дано заглянуть в будущее , мы можем и даже долж­

ны имитировать его, зарезервировав часть имеющихся данных. К 

примеру, удалим какой-то процент данных и обучим модель на остав­
шихся. А затем воспользуемся отложенными в сторонку данными 

для вычисления погрешности. Поскольку обученная модел1, ничего 

не знает о зарезервированных данных, то мы сможем составить более 
реалистичную картину ее поведения в будущем. 

Погрешности для моделей, обученных только на данных после точ-
ки изгиба, дают совершенно иную картину : 

Error d= l: 639 7 694 . 38 6394 
Er r o r d=2 : 60 1 0775 .4 012 4 3 
Error d=3 : 604 7678. 658 525 
Error d= l O: 7037551 . 009 51 9 
Error d= 53 : 7052400 . 00 176 1 

Взгляните на график ниже: 
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Вот теперь, похоже , победитель окончательно определился: у моде­

ли степени 2 J'iаименьшая погрешность на тестовых да нных, то есть на 



Наше первое (простенькое) приложение .. . . " 
тех данных, которые не предъявлял ись во время обучення . И это дает 

надежду, что ее поведение на будущнх данных не ста 1·1ет сюрпризом. 

Ответ на первоначальный вопрос 

Наконец мы нашл и модель, которая, как нам 1·ажется, наилучшим 

образом описывает истинный процесс; теперь нетрудно определить, 

когда мы выйдем на уровень 100 ООО запросов в час. Нужно лишь вы ­

числить , когда модел ьная функция принимает з начени е 100 ООО. 
Для полинома сте пен11 2 мы можем просто н а йти обратную функ­

ц11ю и вычис.rшть ее з н ач ение в точке 100 ООО . Но, кон ечно, хотелось 

бы уметь решать эту задаLJУ для любой модель11ой функции. 

Для этого достаточно выч есть из полинома 100 ООО и найти корни 
нового поли н ома. В модуле SciPy opt imize им еется функция f so l ve , 

решающая эту задачу, ей нужно только указать начальную позицию 

с помощью параметра хо . Поскольку любая точка в нашем файле дан­

ных соответствует одном часу, а всего имеется 743 точки , в качестве 

н ачальной позиции зададим какое-то знач ение , большее ма ксимума . 

Пусть fbt2 - полином-победитет, степени 2. 

>>> fЬt2 = sp . polyld (sp . po l yfit(xb[train] , yb[t rain] , 2 )) 

>>> print( " fbt2 (x)= \n %s " % fbt 2 ) 
fЬt 2 (x) = 

2 
0 . 086 х - 94. 02 х + 2 . 7 44е+04 

»> print ( " fЬt2 ( х )-1 00 , ООО= \ n %s " % (fЬt 2 -1 00000 )) 

fЬt2(x) - 1 00 , 000= 

2 

0 . 086 х - 94 . 02 х - 7 . 256е+04 

>>> from scipy . optimi ze import f so lve 
>>> r eached_max = fsolve (fЬt 2 - 1 00000 , х0 = 8 00 ) / ( 7*24 ) 

>» pri nt (" l00 , 000 hit s/hour expected at wee k %f " % reached_max[O] ) 

Таким образом , мы ожидаем выхода на уровень 100 ООО запросов/ 
час в 11 едел ю 9.616071, то есть наш<t модель предсказ ывает, что есл и 

нынешнее поведение пользователей сохранится 11 компания не утра­
тит привлекательности, то до насыщения текущей пропускной спо­

собности остается еще месяц . 

Конечно , этот прогноз н е вполне достоверен. Для получения более 

реал истичной картины можно было бы собрать допол нител ьные ста­

тистические данные, которые позволили бы вычислить ожидаемую 

дисперсию при заглядывании во все более отдаленное будущее. 

Ну и кроме того, мы не можем построить точную модел ь динами­

ки поведения пол ьзователей. Однако на данныli момент прогноз нас 
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удовлетворяет. В конце концов, он дает возможность заранее пред­

принять требующие времени действия. Если еще и пристально сле­

дить за трафиком, то мы сможем вовремя понять, когда заказывать 

дополнительные ресурсы. 

Резюме 
Принимайте поздравления! Вы только что узнали две важные вещи , 

и з которых главная - что при решении типичных задач машинною 

обучения основное время уходит 1·1 а то, чтобы понять и улучшить 

данные, именно этим мы и занимал и с 1, в п ервом на 1.н ем простеньком 

примере. Надеемся, что он помог вам мыслеино перенести акцент с 

алгоритмов на данные. Еще вы поняли, как важно правил 1, но поста­

в 1 пь экспер.и м ент 11 не смешивать обучающие и тестовые данные. 
Конечно , полиномиальная аппроксимация - не самая интересная 

вещь в мире машинного обучения . Мы выбрали ее просто для того, 
чтобы довести до вас две важные мысли, не отвлекаясь на красоту 

какого-нибудь изысканного алгоритма. 

А в следующей главе мы с головой погрузимся в sc ikit- l ea гп, заме­

чательный пакет программ машинного обучения, опишем различные 

типы обучею 1 я и продемонстрируем , каким интересным делом может 

быть подготовка признаков . 
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К.nассификация 
..., 

в реа.nьн и жизни 

Тема этой главы - 1шассифюшция. Вероятно, вы уже встречались с 

этим видом маши н ного обучения как пользователь, даже не подозре­

вая об этом. Любая современная система электронной почты умеет 

автоматически распознавать спам. Это означает, LLТO система анализи­

рует все входящие сообщения и помечает 11х как спам или неспам. Ча­

сто конечному пользователю предоставляется возможность вручную 

помечать сообщения и тем сам ым улуч шать способность системы к 

распознаванию спама. В этом варианте машинного обучения системе 

предъявляются примеры сообщени~°1 двух типов : спам и неспам, и на 

этих примерах она учится автоматически классифицировать входя ­

щие сообщения. 

Общая методика классификаци н заключается в том, чтобы с по­

мощью набора примеров из каждого класса отыскать правила, кото­

рые могут быть применены к новым примерам. Этот - один из самых 

важных режимов машинного обучения - н яв~яется темой данной 

главы. 

Для работы с текстами, в частности почтовыми сообщениям11, тре­

буются особые приемы и навыки, которые мы обсудим в следующей 

главе. А пока будем иметь дело с небольшим набором данных, удоб­

ным для обработки. В этой главе мы поставим такой вопрос: «Может 

ли машина разли чить виды цветов, опираясь на их изображения?». 

Мы будем использовать два набора данных, в которых сведения о 

морфологии цветов сопровождаются образцами нескольких видов. 

Для исследования этих небольшнх наборов данных мы применим 

несколько простых алгоритмов. Сначала напишем код классифика­

ции самостоятельно , чтобы понять основные идеи, а затем перейдем к 

использованию scikit-l ea гn. Наша цель - уяснить базовые принципы 

классификации , после чего поз накомиться с современ1-1ыми реализа­

циями. 
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Набор данных lris 
Iгis - классическиlr набор данных, созданный еще в 1930 - х годах; это 

один из первых современных примеров статистической классифика­

ции . 

Он представляет собой собрание морфологических измерений не­

скольких сортов ирисов. Эти измерения поз воляют разл ичить разные 

сорта цветов. В наши дни образцы идентифицируются ге нетически ­

ми отпечатками ДНК, но в 1930-е годы роль ДНК в генетике еще не 

была открыта . 
Для каждого растения измерялись четыре характеристики: 

• дли на чашелистика; 

ширина чашелистика; 

• дли на лепестка; 

ширина лепестка. 

В общем случае числовые характеристики, используемые для 

описания данных, называются признаками . Приз наки можно из ­

мерять н епосредственно или вычислят~, на основе промежуточных 

данных. 

В этом числовом наборе четыре призн ака. Дополнительно для каж­

дого растения записывался его вид. ЗадаLrа ставится так: «Имея такие 

примеры, сможем ли мы уверенно определить вид нового цветка по 

измерениям его прнзнаков? ». 

Это так 11азываемая проблема обучения с учителем , или класси ­
фикации: располагая помеченными примерами, вывести правило , 

которое можно было бы применить к другим примерам . Современ ­

ным читателям , далеким от ботаник и , более з наком другой пример: 
фильтрация спама, когда пользователь может пометить почтовые 

сообщения как спам, а система использует эти и дру r·ие - н еспам­

ные - сообщения, чтобы опредеmпь, является новое сообщение спа­
мом или нет . 

Далее в этой книге ( прямо со следующей главы) мы рассмотрим 

задаLJИ обработки текста. А пока набор данных Iгi s нас вполне устра­

ивает. Он 1-rебольшой (150 примеров, по четыре приз нака в каждом), 

легко поддается визуализации и манипулированию. 

Визуализация - первый шаг к цели 

В наборах данных, которые встретятся нам далее, количество пр11-

з наков измеряется тысячами. А все двумерные проекции набора с 
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четырьмя признаками легко умещаются на одной странице. На этом 

небольшом примере м1:~1 разовьем интуицию, которую потом можно 

будет распространить и на такие наборы данных, где признаков куда 

больше. В предыдущей главе мы видели, что визуализация - отлич­

ный инструмент начального исследовательского этапа анализа, по­

скольку дает возможность уяснить общий характер задачи и на ран­

них стадиях выявить возможные проблемы со сбором данных. 
На каждом подграфике ниже показаны все точки в проекции на 

двумерную плоскость. Стоящая особняком группа (треугольники) -
растения вида Iгis Setosa, а в центре находятся Iгis Veгs icoloг plants 
(кружочки) и Iгis Viгgiпica (крестики ) . Как видим, выделяются две 

крупные группы: Iгis Setosa и Iгis Veгsico l or совместно с Iгis Viгgiпica. 
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Ниже показан код загрузки данных и построения графика: 

>>> fr om matpl o tl i b import pyp l ot a s p l t 
>>> i mpo rt пumpy as пр 

>>> # Загружаем данные фун кцией load iri s из s klearп 

>>> fro m skl earп. datasets i mpo r t l oad iri s 
>>> da ta = l oad_i r i s () 

>>> load i r i s возвращает объект с несколькими полями 
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>>> features = data.da ta 
>>> f eature пames = data . feature пames 
>>> target = data .target 
>>> ta rge t пames = data. target_пames 

>>> for t iп raпge (3) : 
if t == О : 

с= 1 r 1 

marker = 1 > 1 

elif t == 1 : 
с = ' g ' 
marker = 1 0 1 

elif t == 2 : 
с = ' Ь ' 

marker = ' х ' 

plt . scatter (features[target 
features[target 
marker=marke r, 
с=с) 

t , О] , 

t , 1]' 

построение первой модели 

классификации 

Если цель - различить три вида цветов, то можно сразу же пред­

ложить несколько подходов , стоит только взглянуть на данные . На­

пример , отличить Iгis Setosa от двух других видов можно по длине 
лепестка. Следующий код определяет, где проходит граница : 

>>> # Используем прихотливое индексирование NumPy , чтобы получить 

# массив строк 
>>> l abe ls = target_пames[target] 
>>> # Длина лепестка - признак в позиции 2 
>>> pleпgth = features[: , 2] 
>>> # Строим массив булевых з начений 

>>> is s etosa = (labels == ' setosa ' ) 
>>> # Это важный шаг 
>>> max_setosa = pleпgth[is_setosa] .max () 
>>> miп поп seto sa = p leпgth [ ~is setosa] . miп () 

>>> priпt ( ' Maximum of setosa : { О} . ' . forma t (max setosa ) ) 
Maximum of setosa : 1 . 9 . 

>>> pri п t ( ' Miпimum of others : {О} . '. format (m iп_пoп_setosa )) 

Mi п imum of others : 3 . 0 . 

Итак, мы може~t построить простую модель: если дл ина лепест­

ка меньше 2, то это Iris Setosa, инач е либо Iris Viгgini ca, либо Iгi s 

Veгsico l oг. Наша первая модел ь отлично справляется с отделением 
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I1·is Setosa от двух других видов, не делая ни одной ошибки. В данном 
случае мы вообще не пр1 1 бегал11 к машинному обучению, а просто из­

учили дан 11ы е самостоятелы·ю и нашли, как раздел ить классы. Ма­

ши11ное обучен 11 е начинается , когда мы пишем код, способный про­

извести такое разделение автоматически. 

Задача распознавания Iгis Setosa оказалась очень ле~-кой. Но вот 

как выбрать наилучший порог, позволяющий отличить Iгi s Viгgiпica 

от Iгi s Veгsicoloг, сразу н е ясн о. Более того, мы видим, что идеальное 

разделение по этим приз накам вообще невозможно. Но можно попы­

таться найти лучшее 11з возможного: такое разделение, при котором 

количество ошибок минимально. Для этого надо будет кое-что посчи­

тать. 

Сначала выберем только признаки и метки , не относящиеся к 

Setosa: 

>>> - - оператор логического отрицания 

>>> features = features[-is setosa] 
>>> l abels = labels\-is_setosa] 
>>> # Создаем новую целевую переменную is_virgiпica 
>>> is_virgiпica = (labels == ' virgiпica ' ) 

Здесь мы вовсю используем операции над масс11вами Nt1111Py. 
Масс11в is_setosa - это масснв булевых вел 11 чин, с его по~ющыо мы 

выбираем подмножества двух друг11х масс 11вов , features и labels . 

Наконец, мы создаем новый булев массив, сравнивая метки на ра­

венство. 

Далее в ци кле п еребираем все возможные приз н аки и пороги, что­

бы узнать, при каком достигается наилучшая верность. Верность 

это просто доля правильно классифицированных примеров. 

>>> # Инициализируем best_acc значением , меньшим минимально возможного 

>>> best а сс= - 1 . 0 
>>> for fi i п raпge (features.shape[ l]): 

# Мы будем проверять все возможные пороговые значения 
thresh = features [:,fi] 
for t i п thresh: 

# Получить вектор для признака 'fi' 
feature_ i = features [:, fi ] 
# применить порог ' t ' 
pred = (feature_ i > t) 
асс= (pred == is_virgiпica ) .mеап() 

rev_acc = (p red == -is_virgiпi ca) . mеап () 

if rev асс > асс : 

r everse = True 
асс rev асс 

else : 
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reverse = Fal se 

if асс > bes t асс : 

best ас с асс 

best fi = fi 
best t = t 
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best reve r se = reve r se 

Необходимо проверить два порога для каждого признака и 

значения: мы проверяем условие «бал ьше порога ~ и противоположное 

ему. Именно поэтому в показанном выше коде нужна переменная 

rev _ acc , в ней хранится верность обращенного сравн ения. 

В последних строках выбирается наилучшая модел ь. Сначала мы 

сравниnаем предсказанные метки pred с фактическими, i s _v irgi ni ca . 

Вычисление средtrсго значения результатоп сравне ния дает долю пра­

внлы-1ых результатов, то есть верность. В конце цикла все возмож1-1ые 

пороги для всех приз наков проверены , и переменные ьest_fi , ьest_t и 

ьe st_reve r se опис ывают модел ь. Этой информации достаточно для 

классиф11кации неизвестного ранее объекта, то есть отнесения его к 
определенному классу. Что и делается в следующем методе: 

de f i s _v i r gi n ica_ t est (fi , t , r eve rse , examp l e ): 
" Apply thresho ld mode l to а new e xampl e " 
test = exampl e [fi ] > t 
i f reverse : 

t e s t = not t est 
r e turn tes t 

Как устроена эта модель? Ecл rr прогнать этот код для всего набора 

данных, то модель, признанная лучшей, принимает решения путем 

разделения по ширине лепестка. Чтобы интуитивно представить , как 

это работает, полезно построить решающую границу. То есть мы ви­

дим, при ка ких значениях признака принимается одно решение, а при 

каких - другое , и где проходит граница. На рисунке ниже показаны 

две области: белая и серая. Точки, попадающие в белую область , клас­

сифицируются как I1·is Viгgiпica, а попадающие в серую область - как 

Iгis Veгsico l oг. 
В пороговой модели решающая граница всегда будет прямой, па­

раллельной одной из осей. На графике выше показана решающая гра­

ница и области по обе стороны от нее . Здесь же показан альтернатив­

ный порог (пунктирная линия) , при котором достrrгается точно такая 

же верность. Наш метод выбрал первы(1 порог, но это было абсолютно 

произвольное решение . 



Набор донных lr is •llШI 

7 • • • • 
о 

6 • • t 
Е • • • • • ~ • • • • 
.с • • о. о 

! j; 5 1 х • 
"' х ~ ~ 

х v 

~ 
х 

а. х х 

* 
х х 

4 

* * 
х 

х 
х 

х 

х 

3 х 

1.0 1.5 2.0 2.5 

petal V'11d th (cm) 

Оценка качества - резервирование 

данных и перекрестная проверка 

В предыдущем разделе была рассмотрена простая модель, она по­

зволяет добиться верности 94 % на всем наборе данных. Однако такая 
оценка может оказаться излишне оптимистичной. Мы сначала вос­

пользовались данными для определения порогового значения, а за­

тем теми же данными для оценки качества модели. Разумеется, такая 

модель будет вести себя лучше, чем любая другая. Мы попали в по­

рочный круг. 

А в действительности нам нужно оценить способность модели к 

обобщению на новые примеры . Мы должны измерить ее качество на 

примерах, которые не 1'/Редъявлялись алгоритму во время обучения. 

Следовательно, нужно более строгое оценивание и использование за­

резервированных данных. Для этого разобьем данные на две группы: 
на одной будем обучать модель, а на другой тестировать. Полный код, 

основанный на приведенном выше, имеется в сетевом репозитории. 

Он выводит такие результаты: 

Tra in i ng accura c y wa s 96 . 0%. 
Testi ng a ccurac y wa s 90 .0 % (N 50). 
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Результат, показанный на обучающих данных (подмножестве всего 

набора данных) оказался даже лучше, чем раньше. Но важно отме­

тит~" что результат на тестовых данных хуже. Начинающему это мо­

жет показаться странным, но вообще нет ничего н еожиданного в том, 

что верность на тестовых данных ниже, ч ем на обучаю 1цих. Чтобы по­

нять, почему это так , взгляните на график , где показана решающая 

граница . Подумайте, что произошло бы, если б ы пр11меров, располо­
жен11ых близко к границе, там не было или если бы какой -то пример , 

оказавшийся между двумя линиями, отсутствовал бы. Легко понять , 

что граница сдвинулась бы немного вправо или вле во, так что они 

оказались бы не по ту сторону от н ее. 

Верность на обучающих данных почти всегда дает чрезмер­

но оптимистичную оценку качества алгоритма. Измерять следует 

верность на тестовых данных, то есть на примерах, которые не 

предъявлялись на этапе обучения. _,,.._ - ·---- -·РТ'""" __________ _ 
Важность этих понятий возрастает с увели L1ением сложности мо­

дели. В данном примере различие между верностью на обучающих и 

на тестовых данных невелико. Но если модель сложна , то вполне воз­

можно на обучающпх данных получить стопроцентную верность, а на 

тестовых - не большую, чем при случайном угадывании! 

Выше , резервируя данные, мы решили использовать для обучения 

только полови ну имеющихся данных . Быть может, было бы лучше 
увеличить эту долю. С другой стороны , есл и оставить для тестиро­

вания слишком мало данных, то может не хвати т~, примеров для оце ­

нивания погрешности . В идеале было бы хорошо и спользовать все 
данные как для обучения, так и для тестирования , но это невозможно . 

Приемлемое приближение к недостижимому идеалу дает метод 

перекрестной проверI(И . Одна из е го форм называется перекрестной 

проверкой с ис~и110чением по однол,1у. Мы выбираем какой-нибудь при­

мер из имеющихся данных, обучаем модель на всех данных, кроме 

этого примера , а затем проверяем, правильно ли модель классифи ­

цирует этот п ример. Этот процесс повторяется для всех элементов 

набора данных. 

В показанном н иже коде реализована эта идея: 

>>> correct = О . О 

>>> for ei in range ( len ( features ) ) : 
#оставить все элементы , кроме находящегося в п озиции ' ei ' : 
training = np . ones (len (features) , bool) 
training[ei] = False 
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test in g = -t r ain i ng 
mode l = fit _ model ( features [training] , is_ virginica [ t r ai n i ng ] ) 
p r edict i ons = p redict(model , features [testing]) 
correct += np . sum (pr edictions == is_virginica [ testing]) 

>>>асс= correct/float (len (features )) 
>>> print ( ' Bepнocть : {0: . 1%) ' . format(acc )) 
Верност ь : 87 . 0 % 

В этом цикле мы тестируем последовательность моделей на всех 

примерах , а по его завершении печатаем усредненный результат. При 

использовании перекрестной проверки порочный кру г н е возникает, 

потому что каждая модель тестируется на примере, который она не 

видела при обуч ении. Поэтому полуLJенную таким образом оценку 

можно считать надежным по казателем обобщаемости модели на но­

вые данные. 

Основная проблема п ерекрестной проверки с исключением по од­

ному состоит в том , что нам приходится п роделы вать гораздо больше 
работы. По существу, мы должны обучать новую модель для каждого 
примера , и с ростом набора данных затраты оказываются очень велики. 

Получить преимущества исключен ия по одн ому с гораздо мень­

шими издержками позволя ет х-n роходная перекрестная проверка , 

где х - небольшое целое чи сл о . На п ример , в случае пятипроходной 
проверки мы разбиваем данные н а 5 групп . 

Затем мы обучаем пят ь моделей , каждый раз 11склю L1 ая из обуча­

ющего набора одну груп пу. Получающийся код похож на при веден ­
ный выше , но резервируем м ы сразу 20 проценто в данных, а не один 

элемент. Все обученные модели тестируются на данных , входящих в 

исключен ную групп у, и результаты усредняются . 

Набор Группа 1 Группа 2 Группа З Группа 4 Группа 5 
данных 

. Тестовь1е 
Обучаю- Обучаю- Обучаю- Обучаю-

1 
•·' ... ,~,.-~;, щие щие щие щие 

Обучаю- lестов~1е Обучаю- Обучаю- Обучаю-
2 щие ' . щие щие щие 

Обучаю- Обучаю- tестовые Обучаю- Обучаю-
3 щие щие , · щие щие 

•' 1 

4 
Обучаю- Обучаю- Обучаю-

Тесто~ые 
Обучаю-

щие • щие щие щие 

' " 

Обучаю- Обучаю-
' .. 

5 
Обучаю- Обучаю-

Тестовые 
щие щие щие щие 
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На этом рисунке показана пятипроходная проверка: набор данных 

разбит на пять групп. На каждом проходе мы резервируем одну груп­

пу для тестирования и обучаем модель на остальных четырех. Коли­
чество проходов может быть произвольным. Чем больше проходов, 

тем выше верность (поскольку мы приближаемся к идеалу - обуче­

нию на всех имеющнхся данных) , но и тем больше вычислительные 
затраты. Пят1, проходов - разумный компромисс. В этом случае мы 

используем для обучения 80 процентов да нных, результат должен по­

лучиться довольно близким к тому, что получился бы при обучении 
на всех данных . Если данных мало, то можно остановиться на 10 или 
20 проходах . В предельном случае, когда проходов столько же, сколь­

ко элементов дан ных, мы получаем просто перекрестную проверку 

с исключением по одному. С другой стороны, если время вычисле­

ний оказывается недопустимо большим, а данных достаточно, можно 

оrраннчиться 2 или 3 проходами. 
При отборе групп нужно следить за их сбалансированностью. Так , 

если в какой-то группе все примеры прина.f\лежат одному классу, то 

результат окажется нерепрезентативным. Мы не будем вдаваться в 
детали этого процесса , потому что пакет программ машинного обуче­

ния sc ikit-l ea гn все это умеет. 

Итак, мы сrенерllровал и не одну, а нескол r,ко моде.пе !~. Воз никает 

вопрос - какую из них использовать для классификации новых дан ­

ных? Простейшее решение - обучить одну модель на всех обучающих 
данных. Проведенная ранее перекрестная проверка уже показа.па, на­

сколько хорошо эта модель будет обобщаться. 

Перекрестная проверка позволяет использовать имеющиеся дан­

ные для оценки качества работы выбранного ал горитма. По завер­

шении цикла можно обучить окончательную модель на всех дан­

ных . 
- L - ,_, ______ -

Хотя не вполне понятно, когда машинное обучение впервые вы­

делилось в отдельную дисциплину, сегодня считается очень дурным 

тоном обсуждать даже саму возможность тестирования верности 
классификации на обучающих данных. Дело в том, что результаты 

могут оказаться совершенно неверными и одно лишь их упоминание 

выдает в вас новичка. Измерение и сравнение погрешности следует 

проводить либо на зарезервированном наборе данных , либо с помо­

щью метода перекрестной проверки. 



Построение более сложных классификаторов 1 
Построение более сложных 
классификаторов 

. " 
В предыдущем разделе мы использооали очень простую модель: по­

рог по одному призна ку. Существуют ли друп1е си стемы? А как же! 

И в изобилии . В этой книге мы увидим много разных моделей, но при 

этом даже не пытаемся охватить все разнообраз 11 е . 

Зададимся более абстрактным вопросом: «Как вообще можно оха-
рактеризовать модель классификацшr?» . Можно выделить три ltасти. 

Структура модели. Как именно модель пр11нимает решения? 

В данном случае решен11е зависело только от того , будет зна­

чение конкретного приз нака больше или меньше порогового. 
Это год11тся только для самых простых задач. 

Процедура поиска. Как мы находим подходящую модель? В 

нашем случае мы опробовали все комбинации признака и по­

рогового значения. Нетрудно сообразить , что с увеличением 
сложности модели 11 размера набора данных полный перебор 
всех комбинаций становится невозможным и приходится ис­
пользовать приближенные решения. Поэтому для поиска хо­
рошего решения часто используются изощренные методы оп­

тимизации (к СLJастыо, в scikit- l eaгп они уже реализованы, так 

что пользовап,ся ими просто , даже если uнутренний код очень 

сложен) . 

Функция выигрыша или функция потерь . Как мы решаем, 

какую из рассмотренных моделей возвращать? Редко удается 

найти идеальную модель , которая вообще н е делает ошибок, 

поэтому нужно решить , какую использовать. Мы брали в каче­
стве критерия верность, но иногда полез нее выбирать модель, 
которая делает наименьшее количество ошибок определенно­

го вида. Например, при фильтрации спама удалить хорошее со­

общение хуже, чем по ошибке оставить плохое . В таком случае 
нужно выбирать модел ь, которая с осторожностью отбрасыва ­

ет почтовые сообщения , а н е такую, которая просто миними­

зирует общее число ошибок. Эти проблемы можно обсуждать 
в терминах выигрыша (который мы хотим максимизировать) 

или потерь (которые мы хотим вести к минимуму). Оба взгля­

да экв111:1алентны, но ш-югда удобнее один, а иногда другой. 

Варьируя эти три аспекта, мы получаем разные системы класси ­

фикации . Пороговые модел и - одю 1 и з самых простых в машинном 
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обучении, они годятся только для совсем тривиальных задач типа 

классификации цветов в наборе данных Iгi ~. В следующем разделе 
мы рассмотр11м более трудную задачу классификации, для которой 
понадобится структура посложнее. 

В нашем примере порог выбирался, так чтобы минимизировать 

число ошибок. Но можно было бы взять и другую функцию потерь. 

Не исключено, что одни ошибки обходятся гораздо дороже других. 

В медицинских приложениях ложноположнтельные и ложноотрица­

тельные результаты не эквивалентны. Ложноотрицательный резул ь­

тат (когда модель возвращает отрицательное заключение, хотя это не­

вер 110) может означать, что пациент не получит лечен и~ от серьезной 
болезни. Ложноположительный результат (когда модель возвращает 

положительное заключение, хотя у пациента нет такой болезни) мо­
жет озиачать, что нужны дополнительные анализы или что пациента 

будут лечить без необходимости, чтобы подтвердить или опровер­
гнуть диагноз (тут тоже есть свои неприятности, в том числе побоч­

ные эффекты от лечения, но они все же менее серьезны, чем непо­

ставленн ый диагноз) . Таким образом, подход зависит от конкретной 

ситуации. В одном предельном случае, ко1-;.щ болез 1-1 1, смертелы·1а, а 

леч ение дешево и почти не имеет побочных эффектов, следует стре ­

миться к минимизации ложноотрицательных результатов. 

Выбор функции потерь (или выигрыша) всегда зависит от конкрет­

ной задачи. Представляя универсальный алгоритм, мы часто стре­

мимся к минимизации числа ошибок, то есть к достижению макси ­

мальной верности. Но если одн и ошибки обходятся дороже других , 

то, быть может, стоит смириться с уменьшением общей верности в 

пользу минимизации общих издержек. 

·-----·--·· 

Более сложный набор данных 

и более сложный классификатор 
Рассмотрим тепер1, несколько более слож11ы(1 набор данных. На его 

примере мы познакомимся еще с одним алгоритмом классификации 

и кое-какими новыми идеями. 

Набор данных Seeds 
Возьмем еще однн набор данных нз области ботани ки, тоже не­

большой, но уже не такой маленький, чтобы его можно было целиком 



Более сложны й набор данных и более сложны й ... 

изобразить на печатно~°~ стран1щы , как в случае набора I1·is. В этот на­
бор входят данные об 11змерениях семян пшен1щы . Всего есть семь 
признаков: 

• площадь А; 

периметр Р ; 

компактность С = 4лА/Р2 ; 

• длина зерн а; 

ширина зерна; 

• коэффициент асимметрии; 

• длина желобка зерна. 

Существует три класса, соответствующ11е трсы сортам пшеницы : 

Caпadian, Коша и Rosa. Как и раньше, наша цель - научиться клас­

сифицировать образцы по этим морфологическим измерениям. В от­

личие от набора данных Iгis , который был создан в 1930 -х годах, это 
совсем недавний набор, для которого признаки автоматически вы­
числялись путем обработки цифровых изображений. 

Вот как можно реализовать автоматическое распознавание обра­

зов: берем изображения , представленные в цифровом виде, вычисля­
ем по ним интересующие нас признаки и применяем общую систе­

му классификации. В главе 10 мы рассмотрим ту часть этой задаLJИ, 
которая относится к машинному зрению и вычислению признаков 

по изображению. А пока будем работать с признаками , которые уже 

имеются. 

Репоэиторий наборов данных для машинного обучения UCI 

В Калифорнийском университете в Ирвайне (UCI) ведется сетевой 
репозиторий наборов данных для машинного обучения (на момент 

написания этой книги там было 223 набора). Наборы lris и Seeds 
взяты именно оттуда. Адрес репозитория http : //a rchive . ics . 
uci. e du / ml/. 

Признаки и подготовка признаков 

У этих признаков есть интересная особенност ь : компактность -
не резул ьтат независ11мого и змерения , а функция двух предыдущих 

признаков , площади и периметра. Такое выведе н11 е новых признаков 

из существующих часто бывает очень полезно. Деятел ьность по соз ­

дан11ю новых признаков называют подготовкой признаков (featuгe 
e 11g i11eeriпg). Она не такая эффектная, как прим енение алгоритмов , 

но н ередко оказывает н а качество работы даже большее влияние 
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(простой алгоритм на хорошо подобра нных призна ках работает луч­

ше, чем изощренный алгоритм на плохих признаках) . 

В данном случае авторы набора вычисляли компактность - типич­

ный признак геометри<1еских фнгур. Иногда е го еще называют окруr­

ленностыо . Этот признак будет одинаков для двух зере н одинаковой 

формы, из которых одно вдвое больше друго го. Но для круглых и про­

долговатых зерен от различен (в первом случае компактность близка 
к единице, во втором - к нулю) . 

Хороший признак должен изменяться при изме 1·1ении того, что су ­

щественно (желательный резул ьтат), и быть инвариантным относи­

тельно того, что несущественно. Например, компактность не зависит 

от размера , но изменяется при измен ении формы. На практике до­

стичь обеих целей одновременно трудно, но стремиться к этому надо . 

Для проектирования хороших признаков нужны з н ания в пред­

метной области. К счастью, для многих предметных областей уже 
имеется обширная литература по приз накам и их типам , так что есть, 

что взять за основу. Если говорить об и зображениях, то все вышеупо­

мянутые признаки типичны, и библиотеки машинного зрения вычис­

ляют 11х автомат11чески . Для задач обрабопш текста также имеются 
стандартные решения , которые можно комбинировап) (мы позна ­

комимся с ними в следующей главе) . Когда проектируете признаки 

(или берете те , что упоминаются в литературе ), старайтесь применять 

свои знания о задач е; ваша цел ь - выбрать призна ки , макс !!мал ьно 

соответствующие данным. 

Еще до того как вы приступите к сбору данных , решите, какие дан­

ные стоит собирать. Затем подайте признаки м<1шине , и пусть она 

найдет наилучший классификатор. 

Возникает естественный вопрос - нельзя ли отбирать признаки 

автоматически. Эта задача называется отбором признаков. Предло­
жено много методов ее решения , но на практи ке лу<ш1е всего работа­

ют самые простые идеи. Для небольших зада ч, которыми мы сей час 
занимаемся, применять отбор приз наков вообще не имеет смысла, но 
есл и признаков тысячи, то, отбросив большинство из них , мы суще­

ственно ускорим последующие этапы процесса. 

Классификация по ближайшему соседу 
Для работы с этим набором данных мы рассмотрим новый клас ­

сифи катор - по ближайшему соседу . Это очень простой классиф11-

катор. Когда требуется классифицировать нов 1) 1 й образец , он про­
сматри вает обучающие данные и 1 1 аход1п ближай ши1vr к нему объект. 



Классификация с помощью scikit-lea rn .1 . " 
В качестве ответа возвращается метка этого объекта. Отметим, что 

11 а самих обучающих данных эта модель работает идеально! Для лю­

бой точки ближайшей является она сама, поэтому метка всегда будет 

правильной (если только не существует двух примеров с одинако­

nыми наборам11 признаков и разными метками, но это означало бы, 

LJТO опllсательная способность признаков остаnляет желать лучшего). 

Поэтому для тестирования этого алгоритма классификации прим е­

ннть п ерекрестную проверку просто необходимо. 

Метод бл 11жайшего соседа можно обобщить - некать н е одного , а 

несколько ближайших соседей и проводить между ними голосование. 

Это повы шает устойчиnость к выбросам и н еnравиль~ю помеченным 

примерам. 

Классификация с помощью 

scikit-learn 1 

Выше мы писали код классификации вручную, 1-ю Pyt\1011 - очен1, 

подходящиii яз ык для машинного обучения , потому что располагает 

отличными библиотеками. В частности, scikit-l eaгn стала стандарт­

ной библ11отекой для ы1югнх задач маш11нного обучения , включая 

классификацию. В этом разделе мы воспользуемся имеющейся в ней 

реализацией классификации по ближайшим соседям. 

АР! классификации в scikit- lea гп построен на основе объектоn-

классификаторов. У такого объекта есть два основных метода: 

fit ( features , labels): это этап обуtrения и подгонки парамет­

ров модели ; 

predict (features): вызывается только после fit и возвращает 

предсказание для одного или нескольких входных образцов. 

Вот как можно было бы применить эту ре<1ли зацню метода ll 
ближайших соседей к нашим данным. Начнем с импорта класса 

KneighborsClassifier ИЗ подмодуля sklearn . neighbo r s : 

>>> from s klearn . neighbors import KNeighborsClassifie r 

Модуш, sc i kit- l eaгп импортируется как sk l eaг11 ( и~101-да для ссылки 
на scikit-leaгn употребляется именно это сокращение). Вся функцио­

нальность sk l eaгп распределена по подмодулям - таким , как skl earn . 

neighbors. 

Теперь можно создать объект классификатора. Конструктору мы 

передаем количество соседе !~ : 
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>>> classifie r = KNeighbo rs C la ssifie r(п_пeighbors= l) 

Если количество соседей не задано , то по умолчанию подразумева­

ется 5, <по обычно является неплохим выбором. 
Мы хотим воспользоваться перекрестной проверкой (а как же ина­

ч е ?) . Модуль sc ikit-leaгn легко поз воля ет это сделать: 

>>> fr om skl earп . c ross_val idatioп import KFo l d 
>>> kf = KFo ld(leп(features ) , п_folds=S , shu f fle=True ) 
>>> # ' meaпs ' - список усредненных верностей (по одной для J<а)t(ЦОЙ группы) 

>> > meaпs = [ ] 
>>> f or tra iпiпg , testiпg iп kf : 

# Обучаем модель на этой групп е , за тем приме ня ем ее к 

# тес то вым да нным с помощью метода ' p r edict ' : 
c la ssifier . fit (f e a t ures [ t rai п iпg] , labels [t rai п i пg ] ) 

p redict i oп = class ifie r . p redict (features [ testi п g ]) 

# мет од пр .mеа п, приме ненный к массиву булевых величин, 

# возвращае т долю правильных реше ний для этой группы 

curmeaп = np . mea п( prediction == l abels [testi ng]) 
mea п s . appeпd ( cu rmeaп ) 

>>> рriпt( " Средняя вернос т ь : { : . 1%) ". format (n p . mea n( mea ns ))) 
Средняя вер ность : 90 . 5% 

Использование пятипроходной перекрестной проверки для этого 

набора данных и этого алгоритма дает верность 90.5 %. Выше мы уже 
говорили , что верность п ерекрестной проверки меньше, чем верность 

на обучающих данных, но при этом заслуживает гораздо больше до­

верия в качестве показателя кач ества модели. 

Решающие границы 

Рассмотрим теперь решающие границы. Чтобы 1-Jарисоватr, их на 

бумаге, мы упростим задачу, оставив только два 11 зм ерения. Вз гляни ­

те на следующую диаграмму: 

Образцы сорта Canadian представлены ромбами , со рта Кота -
кружочками , а сорта Rosa - треугольниками. Соответственные им 

области окрашены белым, черным и серым цветом . Воз никает вопрос , 
почему области до странности вертикальны. Дело в том, что по оси х 

(площадь) отложен диапазона от 10 до 22, а по оси у (компактность) -
от 0,75 до 1,0. Это означает, что малое изменение х на графике оказы ­

вается гораздо значимее малого изме н ения у. Поэтому в расстояние 

между точкам и на11 больший вклад вносит х. Вот вам н еплохая 11ллю­

страция того, почему всегда имеет см ысл визуализировать данные и 

смотреть , не будет mr какого-ю1буд 1, сюрприза . 
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Если вы изучали физику (и еще не все забыли), то, наверное, об­
ратили внимание, что мы суммируем длины, площади и безразмер­

ные величины, не обращая внима~1 ия на единицы измерения (чего в 

реальной физической системе ни в коем случае нельзя делать). Необ­

ходимо привести все признаки к единой шкале. Решать эту проблему 
можно по-разному; проще всего воспользоваться норАtuрован:ны.ми 

z-оценкшш. Z -оценка некоторого значения показывает, насколько 

далеко оно отстоит от среднего в единицах, равных стандартному от­

клонению. Вычисляется она следующим образом: 

f'= /-µ 
(J 

Здесь f - исходное знаl1ение признака, f' - нормированное зна­
чение, µ - среднее значение признака, а а - стандартное отклоне­

ние. Величиныµ и а вычисляются по обучающим данным. Каковы 
бы ни были исходные данные, после нормировки нулевое знаl1ение 
z -оценки соответствует среднему значению обучающих данных, по­

ложительные значения - значениям больше среднего , а отрицатель­
ные - значениям меньше среднего. 
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С помощью модуля scikit-leaгn ничего не стоит произвести такую 
нормировку на этапе предобработки. Мы применим конвейер опера­
ций : первый его элемент выполняет преобразование, второй - клас­
сификацию. Сначала импортируем классы конвейера и шкалирова­
ния признаков : 

>>> fr om sklearn.pipeline import Pipeline 
>>> from sklearn.preprocessing import StandardScaler 

Теперь можно построить конвейер: 

>>> classifie r = KNeighborsClassifier ( n _neighbors=l ) 
>>> classifier = Pipel i ne([( ' norm ', StandardScaler() ), 

( ' knn ', classifier) ] ) 

Конструктор класса Pipeline принимает список пар ( str , clf ). 
Каждой паре соответствует один этап конвейера; первый элемент -
строка, именующая этап , второй - объект, выполняющий операцию. 
В более сложных приложениях по именам можно ссылаться на этапы 
конвейера. 

После нормировки все признаки измеряются в одних и тех же еди­
ницах (строго говоря, они теперь безразмерны , то есть говорить о еди­
ницах измерения бессмысленно), и над ними можно беспрепятствен ­
но производить математические операции. Если теперь прогнать 
классификатор по ближайшим соседям, то получится верность 93% 
при той же самой пятипроходной перекрестной проверке ! 

..о 
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Бинарная и многоклассовая классификация 1 ••IШI 
Теперь границы пыглядят сопсем по-другом у, 11 ыы п1щим, что на 

результат пл 1 1яют оба измерения . Полному набору данных соответ­

ствует ссмимср11ое пространство, изобразить которое затруднитель­

но , но принцип тот же: если в исходных данных некоторые измерения 

дом 11нируют, то пос 1 е нормировки все становятся равноправны. 

Бинарная и многоклассовая 

классификация 
Наш первый пороговый классифи катор был простым бинарным 

классификатором. На выходе он дает один из двух классов, поскольку 

любое з начение либо больше порога , либо меньше. Второй наш клас­

сификатор - по ближайшим соседям - естественно оказался много­

классовым , его результатом может быть од11н из нескольких классов. 

Часто бывает легче определить простой бинарный метод, чем ме­

тод, применяемый к многоклассовым задачам. Однако л юбую мно­

гоклассовую задачу можно свести к последовательности бинарных 

решений. Именно так мы поступили с набором данных Iгis, хотя это 

получилось случай но : мы заметили, что один класс легко отделяется, 

и сосредоточили внимание на двух других, сведя задачу к двум бинар­

ным решениям : 

1. Это Iгi Setosa (да или нет)? 

2. Еслн нет, проверить , что это Iгi s Viгgini ca (да 1 1л 11 н ет). 

Разумеется, мы хотел11 бы поручить такого рода рассуждения ком­

пьютеру. Как обычно, ест ь несколько подходов к решению задачи о 

многоклассово 1u1 редукции . 

Проще всего воспользоваться последовательност 1,ю классифика­

торов одии против остальиых. Для каждой возможно\1 метки С стро­

им классификатор вида это l WlU что-то другое? Если в ходе при­

менения этого правила ровно один классификатор отвечает да, то 

решение получ е но. К сожалению, так бывает не всегда , и приходится 
решать , как быть, когда есть нескол ько полож11тел ьных ответов или 

нет ни ОДНОГО. 

Можно вместо этого постро11ть дерево класс11фикаu и11 . Разобьем 

множество всех меток на два подмножества и п остроим классифика­

тор, который спраши вает: «Куда отправить этот п ример - налево или 

направо? ~>. Такое разбие н и е можно продолжать рекурси вно, пока не 

останется одна метка. На рисунке выше изображено дерево рассужде-
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ний для набора данных Iгis. Каждый ромб - это один бинарный клас­
сификатор. Понятно , что дерево могло бы быть больше и охватывать 

много решений. Таким образом , любой классификатор, который го­
дится для бинарной классификации, можно легко обобщить на любое 
число классов. 

Результат - lris Vers\color 

Есть много других способов превратить бинарный алгоритм в 

многоклассовый. Нн один из них не является однозначно предпочти­

тельным во всех случаях. В модуле scikit- l ea гп реализовано несколько 
таких алгоритмов с подмодуле sk l ear n.multiclass. 

----- --·------
Некоторые классификаторы являются бинарными, тогда как многие 

реальные задачи естественно оказываются многоклассовыми. Су­

ществует несколько простых протоколов сведения многоклассовой 

задачи к последовательности бинарных решений, что позволяет 

применить бинарные модели к многоклассовым задачам . Это озна­

чает, что методы, которые, на первый взглs:~д, работают только для 

би нарных данных, можно без особых усилий обобщить на много­

классовые данные. 

Резюме 
Под классификацией понимается обобщение примеров для построе­

ния модели (то есть набор правил , которые могут быть применены к 
новым, ранее н е классифицированным объектам). Это один из важ­

нейших инструментов маш11нно1-о обучения, и мы еще неоднократно 

с ним встретимся на страницах этой юн1ги. 



Резюме 

Эта глава была в каком-то смысле теоретической, 1юскольку мы 

ввели общ11е понятия на простых примерах. Мы проделали несколько 

операций с набором данных I1·is. Это небол ьшой набор, но он облада­

ет тем преимущество~~ . что его можно изобразить и uo всех деталях 
понять , что мы делаем. Это 11реимущество теряется при переходе к 

многомерным задачам с тысячами примеров. Однако приобретенная 

интуиция останется с нами. 

Мы также узнали, что погрешность на обучающих данных - вещь 

обманчивая, поскольку дает излишне оптимист11ческую оценку пове­

дения модели. Модель следует оценивать на тестовых данных, кото­

рые не использовались для обучения . Чтобы не расходовать слишком 

много Примеров на тестирование, приме няется метод перекреспюй 

проверки, благодаря которому мы получаем лучшее из обоих миров 

(ценой увел 11 чения объема вычислений). 

Мы также рассмотрели проблему подготош< 11 признаков . Призна­

ки вовсе не являются предопределенными , их пыбор и проектирова­

ние - неотъемлемая LJасть конструирования кошзейера машинного об­

учения. На самом деле, именно в этой области часто можно добиться 

наибольшего увеличения верности, потому что качественные данные 

лучше изощренных алгоритмов. В главах, посвященных классифика­

ции текстов, распознаванию музыкальных жанров и машинному зре ­

нию, мы приведем дополнительные примеры подготовки приз 11аков. 

В следующей главе мы поговорим о том , что делать, когда в данных 

нет бросающихся в глаза классов. 



fЯАВАЗ. 

К11астеризация - поиск 

взаимосвязанных 

сообщений 

В предыдущей главе мы узнали, как находить классы, или категории 

отдельных образцов. Имея набор обучающих образцов, которым уже 

сопоставлены классы, мы обучили модель и затем можем воспользо­

ваться ей для классификации новых образцов. Мы назвали этот про­

цесс обучением с учителем, в нашем случае роль учителя сводилась к 

правильной классификации примеров. 

Теперь допустим, что мы не располагаем метками, с помощью ко­

торых можно было бы обучить модель классификации, например, 

потому что разметка обошлась бы слишком дорого. Что, если един ­
ственный способ получить миллионы меток - попросить, чтобы их 

вручную проставил человек? Как быть в таком случае? 
Конечно, обучить модель классификации мы не сможем. Но тем 

не менее можно попытаться найти какие-то закономерности в самих 

данных. То есть возложить на данные задачу самоописания. Именно 

этим мы и займе\1ся в этой главе, а в качестве примера рассмотрим 

вопросно-ответный сайт. Когда пользователь будет искать на нашем 

сайте какую-то информацию, поисковая система, скорее всего, сразу 

покажет нужный ему ответ. Если имеющиеся ответы пользователя не 

устраивают, то сайт должен хотя бы показать близкие ответы, чтобы 
пользователь быстро понял, какие ответы существуют, и не ушел с 

сайта. 

Наивный подход - просто взять сообщение, вычислить его схо­

жесть со всеми остальными сообщениями и показать первые п самых 

похожих сообщений в виде ссылок. Но очень скоро такое реш ение 
станет слишком накладным. Нужен метод, который быстро находит 

все взаимосвязанные сообщения. 



Измерение сходство сообщений 

Для достижения этой цели мы вос 11ол ьзуемся кластериза ци ей . Это 
u 1 

метод такои организации данных, когда похож и е элеме нты оказ ыва-

ются в одном кластере, а непохожи е - в разных. Первая проблема, 

которую нам предстоит решить, - как превратить текст в нечто такое, 

для чего можно вычисл ить сходство. Располагая способом измерения 

похожести , мы далее можем подумать , как с его помощью быстро по­

строить кластер , содержащий похожне сообщения . Ну а потом оста­

нется тол ько проверить , каки е еще документы принадлежат этому 

кластеру. Всю эту программу реализует замечательная библиотека 

SciKit, в которой представлены разл ичные алгоритмы машинного об­
учения , с которыми мы будем работать в последующих главах . 

Измерение сходства сообщений 
С точки зрения машинного обучения «голый» те кст абсолютно бес­

полезен . Лишь преобразовав его в осмысленные числа, мы сможем 
подать их на вход ал горитмам машинного обучения, например кла­

стеризации. Это относится и к более приземленным операциям с тек­
стом, в частности , изм ерению сходства. 

Как не надо делать 

Одной из мер сходства является расстояние Левенштейна, или ре­

дакционное расстояние. Пусть есть д ва слова: «шас]1iп е» и «111chie11e». 
Их сходство можно определить как минимальное LlИСло операций ре­

дактирования, необходимых для перехода от одного слова к другому. 
В данном случае нужно всего две операции : добав ить «а» после «Ш» 

и удалить первое «е». Однако это весьма дорого(~ алгоритм, потому 

что время е го работы определя ется произведением дли н обоих слов. 
Возвращаясь к сообщениям , мы могли бы схитрить : рассматривать 

слова целиком как символ ы и выпол нять операu11и редактирования 

на уровне слов. Пусть есть два сообщення (для простоты ограничимся 
тол ько заголовками): «I-low to fогшаt шу lыгd disk» ( « Как мне отфор­

матировать жесткий диск») и « I-la гd disk foпnat pl'OЬleшs» ( « Пробле ­

мы с форматированием жесткого ди ска» ). Редакционное расстояние 

между ними равно 5, потому что нужно удалить слова «110\\'», «to», 
« foпnat», «ту», а затем добавить в конец слова « fогшаt» и «ргоЫешs». 
Следовательно , можно было бы определить разл иl1 ие между двумя 
сообщениями , как КОJIИ<Jество слов, которые следует добавить или 
удалить, чтобы преобразовать один текст в друга(~ . Эту идею мож-
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но было бы немного усовершенствовать, но по существу временная 

сложность остается той же самой. 

Но даже если бы мы могли доб 1 1 ться достаточного быстродействия, 
существует еще одна проблема. В нашем прнмере слово « foгmat» дает 

вклад 2 в расстояние, потому что мы снаl1ала удалили его, а потом 
с1-rова добавили. Следовательно , такое расстояние неустойчиво отно­
сительно изменения порядка слов. 

Как надо делать 
Более надежное редакционl-rое расстояние дает так называемый 

набор слов . При таком подходе порядок слов полностью игнориру­
ется, а в основу кладутся просто счетlrики вхождений слов. Каждому 

встречающемуся в сообщении слову сопоставляется количество его 

вхождений, и эти пары сохраняются в векторе. Неудивительно , что 

эта операция называется векторизацией. Обычно вектор получает­

ся очень большиы, потому LJТO содержит столько элементов, сколько 
есть слов во всем наборе данных. Возьмем, к примеру, два сообщения 
с такими счетчиками слов: 

Слово 

disk 

format 

how 

hard 

ту 

proЫems 

to 

Вхождений в сообщение 1 Вхождений в сообщение 2 j 

о 

о 

о 

о 

Столбцы «Вхождений в сооб 1_цени е 1» и «Вхождений в сообще­
ние 2» можно рассматривать как простые векторы. Можно вычислить 

евклидово расстояние между вектором вопроса и векторами всех со­

общений и взяп, ближайшее сообщение (правда, как мы уже выясни­

л и , это слишком медленно). А, кро 1v1е того, мы можем испол 1,зовать 

их как векторы прнзнаков на этапе кластеризации, применяя следу­

ющую процедуру: 

1. Выделнть характерные пр 11 знаки 11 з каждого сообщен 11 я и со­

хранить их в виде ассоциированного с сообщен нем вектора. 



Предварительная обработка - количество общих ... 1 . " 
2. Произвести кластериза ц11ю эп1х векторов. 

3. Определ ить кластер , в который входит сообщение-вопрос. 

4. Выбрать из этого кластера сколько-то сообщений, имеющих 

разл ичное сходство с сообщением -вопросом. Это повышает 

раз11ообраз 11 е. 

Но для реал изации этой программы нужно проделать еще кое- ка­

кую работу. А для этого нам понадобятся данные. 

Предварительная обработка 

количество общих слов как мера 

сходства 

Как мы уже видел и, подход на основе набора сл ов является и бы­

стрым, и надежным. Однако и он не без минусов. Давайте разберем-
' ся. 

Преобразование простого текста 

в набор слов 

Нам нет нужды писать свой код подСLJ ета слов и представления 

набора слов в виде вектора. Метод countVec t orizer из библиотеки 

SciKit не только умеет делать это эффективно, но и обладает очень 
удобным и11терфейсом. Функции и классы нз SciКit импортируются 

посредством пакета sklearn: 

>>> fr om sklearn . feat ure_extrac tion . text import CountVectorizer 

>>> vector i ze r = CountVectorizer (min_df=l) 

Параметр min_df (минимальная частота в документе ) определяет, 

как Cou ntVectorizer должен обходиться с редко встречающимися сло­

вами. Если его значен 11ем является целое число , то слова с меньшим 

числом вхождений, отбрасываются . Если з начен1 1 е - дробное число, 

то отбрасываются слова, доля которых во всем документе меньше 

этого числа. Параметр max_df интерпретируется аналогично. Распе­

чатав объект, мы увидим все остальные параметры , которым SciKit 
присвоила значе1шя по умолчанию: 

>>> print (vectorizer) 
CountVectorizer (analyze r = ' word ', binary=False , charset=No ne , 

charset_error=None , decode_error= ' strict ', 
dtype=<class ' numpy.int64 ' > , e ncoding= ' utf - 8 ', 
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input= ' content ', 
l owercase=True , max_df=l . 0 , max_fe atures=None , min_df=l , 
ngram_range=(l , 1 ), preproces sor=None , stop_words =None , 
strip_accents=None , to ke n_patte rn= ' (? u ) \ \Ь\ \ w\ \ w+ \ \Ь ', 

token ize r=None , vocabulary=None) 

Как и следовало ожидать, подсчитываются именно слова 

( ana l yzer=word ), а что считать словом, определяется регулярным вы­

ражением token_patte r n. Например, строка «cгoss -valid a ted » будет 

разбита на два слова : «cгoss» и «validated». Пока н е будем обращать 

внимания на прочие параметры и рассмотрим две строки из нашего 

примера , содержащие темы сообщений: 

>>> content = [ " How to format my hard disk ", " Hard disk format 
proЬlems " ] 

Этот список строк можно подать на вход метода векторизатора 

fit _ transform (), который и проделает всю работу : 

>>> Х = vectorizer . fit_tr a nsform( cont e nt ) 
>>> vectori ze r.get f eatu re names( ) 
[u 1 disk 1

, u ' format ', u ' ha r d 1
, u ' how ' , u ' my ', u 1 pr0Ыems 1 , u •to ' } 

Векторизатор распознал семь сло в, для каждого которых мы мо­

жем получить сч етчи ки: 

>>> print (X.toa rra y () . transpose ()) 
[ [ 1 1] 

[ 1 1] 
( 1 1] 
[ 1 о] 

[ 1 о] 

( 0 1 ] 

[ 1 о]] 

Это оз начает, что первое предложени е содержит все слова , кроме 

« ргоЫешs», а второе - все слова , кроме «l10w», « шу» и «tO». На самом 
деле, это как раз те столбцы, которые присутствовали в предыдущей 

таблице . Из х мы можем выделить вектор приз наков, которым вос­

пользуемся дл я сравнения документов. 

Сначала применим наивный подход , чтобы показать проблемы, с 
которыми придется стол кнуться на этапе предварительной обработ­

ки . Случ а йно выберем какое-то сообщение и создадим для него ве к­

тор счетчиков . Затем вычислим расстояния от не го до всех векторов 

счетчиков и выберем сообщен не, для которого расстоя 1-Jи е минималь­

но . 
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Подсчет слов 
Для экспериментов возьмем игрушечный набор дан ных, содержа ­

щи й такие сообщения . 

Имя файла 

01 . txt 

02 . txt 

03 . txt 

04 . txt 

05 . txt 

Текст сообщения 

This is а toy post about machine learning. Actually, it contains not 
much interesting stuff. 

lmaging databases сап get huge. 

Most imagiпg databases save images permanently. 

lmaging databases store images. 

lmaging databases store images. lmaging databases store images. 
lmaging databases store images. 

В этом наборе мы хотим найти сообщен и е, которое больше других 

похоже на сообщение <1 i111agiпg databases». 
В предположении , что сообщения находятся в каталоге DIR, мы мо­

жем задействовать для этой цели Cou ntVecto r ize r : 

>>> posts = [open (os . path . join( DIR , f)) . r ead( ) for f in 
os . listdi r( DIR) ] 
>>> from sklearn . f e ature ext r action . text import Cou n tVectorizer 
>>> vectorizer = Coun tVecto r izer (min df= l) 

Нам нужно уведомить векторизатор о полном наборе данных , что ­

бы он заранее з нал, каких слов ожидать : 

>>> X_train = vectori ze r . fit_tran s form (posts) 
>>> num_samples , n um_features = X_train . shape 
>>> print ( «# samples : %d , # features : %d» % (num _ samp l e s , 
num features )) 
#s amples : 5 , #features : 25 

Получилось 5 сообщений н 25 различных слов - всё правильно . 
Подсчитаны следующи~ выделенные из текста слова: 

>>> print (vectori zer . get feature_names ()) 
[u ' about ', u ' a ctua lly ', u ' capabilities ', u ' contains ', u ' data ', 
u ' databases ' , u ' images ' , u ' imagi ng ', u ' intere s ting ' , u ' is ', u ' it ' , 
u ' learning ', u ' ma c hine ' , u • most ', u 'much ', u ' not ', u ' permanently ', 
u ' post ', u ' provide ' , u ' save •, u ' storage ', u ' store ' , u ' stuff ', 
u ' this ', и ' toy ' ] 

Теперь векторизуем новое сообщение: 

>>> new_post = « i maging datab ases » 
>>> ne w post_vec vec torize r. transform([n ew post]) 
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Отметим, что метод t r ansform возвращает разреженные векторы 
счетчиков, то есть в векторе не хранятся счетчики для кюкдо~-о слова, 

потому что большая 11х часть равна нулю (в сообщении такое слово 
не встречается). Вместо этого используется потребляющая меиьше 
памяти структура данных coo_mat r i x (от слова «COOгd i nate » ). Так, 
для нашего сообщения вектор содержит всего два элемента: 

>>> print(ne w_post_ve c ) 
(0 , 7) 1 
(0, 5 ) 1 

Воспользовавшись методоl\•! t oar ray ( >, мы можем восстановить 
весь массив nda rray: 

>>> p r i nt( new_ post_vec .toa r ray ()) 
[ [0 О О О О 1 О 1 О О О О О О О О О О О О О О О О О]] 

Весь массив 1-1ам понадобится , есл и мы захотим использовать век­
тор для вычисления сходства. Чтобы измерить сходство (при наи ­
вном подходе) , мы вычисляем евклидово расстояние между вектора­

ми счетчиков нового и всех старых сообщений: 

>>> impor t scipy as sp 
>>> de f dist_raw( vl , v2 ): 

de l ta = vl - v2 
r eturn sp.l i na l g .no rm( de l ta . toar ray()) 

Метод norm () вычисляет евклидову норму (кратчайшее расстоя­

ние ) . Это самая очев 11дная метр11ка, но есть и много друп1х опреде­

лений расстоян ия. Почитайте статыо «Distance Coeffi cie п ts bet\veen 
Tvvo Lists ог Sets» на сайте The Pyt ho11 Рарегs Sошсе Codes, где Морис 
Линь (Машiсе Ling) описывает 35 разных расстояний. 

Имея функцию cti st_ ra w, мы теперь должны перебрать все сообще­
ния и запомнить самое близкое: 

>>> impo r t sys 
>>> b e s t doc = None 
>>> bes t_dist = sys .max i nt 
>>> bes t i = No ne 
>>> f or i, post in enumerate (num_ samp l es ) : 

if post == new_post : 1 
conti nue 

post_ vec = X_ t r ai n. getrow (i ) 
d = dist_ raw (post_ vec , new_post_ vec ) 
pr i n t (" === Post %i with d i st=%. 2 f : %s " %( i , d , post )) 
if d<best dist : 

best dist = d 
best i = i 
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>>> print( "Best post is %i with dist= %. 2 f " %(be s t _ i , best_dist)) 

=== Post О with dist=4 . 00 : This i s а toy post abou t machine learning . 
Actually , it contains not much i ntere s ting stu ff . 

=== Post 1 with dist= l . 73 : Imaging da t abases provide storage 
capabili ties . 

=== Post 2 with dist=2 . 00 : Most imaging d atabases save images 
permanently . 

Post З with dist=l . 41: Imaging databases store data . 

Post 4 wi th dist=S .1 0 : Imag ing databases s tore da ta. Imaging 
databases store data . Imaging databases store data . 
Best post i s З with di st= l .4 1 

Вот мы и произвели первое измерение сходства , примите поздрав­

ления. Сообщение О сильнее всего отличается от нового. Что и по­
няп-ю , ведь в них нет ни одного общего слова. Понятно также, что 

сообщение 1 очень похоже на новое, но не является лучшим, т. к . со ­
держит на одно отсутствующее в новом сообщени е слово больше, чем 

сообщение 3. 
Но при сравнении сообщений 3 и 4 все уже не так очев11дно. Со­

общение 4 - это просто сообщение 3, повторенное тр11жды. Поэтому 
его сходство с новым сообщени ем должно быть точно таким же, как 
у сообщения 3. 

Расп ечатка соответствующих векторов приз наков объясняет, по-

чему это не так: 

>> > print(X_tra in . ge trow ( З ) . toarray ()) 
[ [о о о о 1 1 о 1 о о о о о о о о о о о о о 1 о о о]] 

>> > print (X_t r ain . getrow ( 4 ) . toarray()) 
[ (0 о о о з з о з о о о о о о о о о о о о о з о о о ] ] 

Как видим, одних лишь счетчиков слов недостаточно . Необхощ 1мо 

нормировать векторы на едш-1ичную длин у. 

Нормировка векторов счетчиков слов 

В функции dist_ raw мы будем вычислять расстоя н ие не между ис­
ходными, а между нормированными векторами: 

>>> def dist_norm (vl , v2 ): 
vl_normalized = v l /sp . linalg . norm (vl. toa r r ay ()) 
v2_normalized = v2/sp .l i na l g . norm (v2 . toa r ray ()) 
de l ta = vl no rmalized - v 2 no rmalized 

- -
r eturn sp .l inalg . norm (delta .toarray()) 
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Тогда резул ьтаты измерения сходства и зменятся следующим об­

разом : 

=== Post О with dist=l. 41 : This is а toy post about machine l earning. 
Actually , it contains not muc h interesting stuff . 

=== Post 1 with dist=0 . 86 : Imaging databases provide storage 
capaЬilities . 

=== Post 2 with dist=0 . 92 : Most imaging databases save images 
permanent l y . 

Post 3 with dist=0 . 77 : Imaging database s store data . 

Post 4 with dis t =0.77 : Imaging databases store data . I maging 
databases store da ta. I maging databases sto r e data . 
Best post is 3 with d i st=0.77 

Так уже лучше . Теперь сходство сообщениi\ 3 и 4 в точности одина­

ково. Кто-то, возможно, сочтет, что многократное повторение вызовет 

восторг у читателя, но с точки зрения подсчета слов в сообщениях 
этот результат представляется правильным. 

Удаление малозначимых слов 

Взглянем еще раз на сообщение 2. В нем встречаются следующие 

слова, отсутствующие в новом сообщении: «most» (большиство) , 

«save» (сохра нят~>), «images» (и зображения) и « peпnaпen tl y» (посто­

янно) . Но их значимость в сообщении соnершенно различна . Слова 
типа « пюst», встречающиеся в самых разных конте кстах, называются 

стоп -словами. Они несут мало информации и потому должны весить 

меньше слов ти па «images», которые встреч<1ются отнюдь не во всех 
коитекстах. Лучше всего вообще удалить слова , которые употребля­
ются настолько широко, что не помогают выявить различия между 

текстами . 

Этот шаг весьма типичен для обработки текста , поэтому в Cou n t ­

vectorize r для него предусмотрен с п ециальный параметр : 

>>> vectorizer = CountVectorizer(min_df=l , stop_words= ' e ngli sh ' ) 

Если вы точно знаете , какие стоп-слова хотели бы удалить , то мо­
жете передать их полный список . Если параметр stop_words раве н 

english , то список будет состоять из 318 английских слов. Каких 
именно , п окажет метод get_stop _words ( ) : 

>>> sorted(vectorizer . g et_stop_words ()) [ 0 : 20] 
[ ' а ', 1 about 1

, ' above ', ' across ', ' after ', ' afterwards ', ' again ', 
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, ' along ', ' already ' , 1 a l so ', 

' although ', ' a l ways ', 1 am ' , ' among ', ' amongst 1
, ' amoungst 1

] 

Новый сnисок содержит на семь слов меньше: 

[u ' actuall y ', u ' capaЬi l ities ', u ' contains ', u ' data ', u ' databases ', 
u ' images ', u ' imaging ' , u ' interesting 1

, u 1 learning 1
, u ' machine ', 

u ' permane nt l y ', u ' post ', u 'provide ', u ' save 1
, u ' storage ', и ' stor e ', 

u ' stu ff ', u ' toy ' ] 

После исключения стоп-слов полуLJаем такие результаты измере­

ния сходства: 

=== Post О with dist=l. 41 : Thi s is а toy post about ma chine l earni ng . 
Actua ll y , it contains not much interesting stu ff . 

=== Post 1 with dist=0 . 86: I maging databases pr ovide storage 
capaЬi l ities . 

=== Post 2 with dist=0 . 86 : Most i mag ing databases save images 
permanently . 

Post 3 with d i st=0 . 77 : Imaging databases store data. 

Post 4 with dist=0 . 77 : Imaging databases store data . Imaging 
databases store data . Imaging databases s tore data . 
Best post is 3 with dist=0 . 77 

Теnерь сообщения 1и2 сравнялись. Но расстояния изменились не­
существенно, потому что наши демонстрационные сообщения очень 

короткие. Картина будет совершенно другой, если взять реальные 
тексты . 

Стемминг 
Но одну вещь мы упустили. Одно и то же слово в раз ных грамма­

тических формах мы считаем разными словами . Например, в сообще­
нии 2 есть слова « iшaging» и « iшages» . Имеет смысл считать их, как 

одно слово, вед 1, они обозначают одно и то же понятие . 

Нам нужна функция , которая производит стемминг, то есть выде­

ляет из слова его основу. В библиотеке SciKit стеммера нет. Но можно 
скачать бесплатную библиотеку Natural Language Toolki t (NLTK ), где 

имеется стеммер , который легко подключить к Countvectorizer . 

Установка и использование NLTK 
Порядок установки NLTK в конкретную операционную систему 

подробно описан на странице ht tp : / /n l tk . org/ i nstall . html . К сожа­

лению, для Руtlюл 3 эта библиотека пока официально не поддержи -
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вается , а, значит, и pip для нее работать н е будет. Но можно скачать 
пакет со страницы http : //www . nl tk . org/nl tkЗ -alpha/ , распаковать и 

установить вручную с помощью скрипта setup . ру . 

Для проверки успешности установки запустите интерпретатор 

Python и введите команду: 

>>> import nltk 

Очень неплохое пособие по NLTK имеется в книге Jacob Perkiпs 
«Python 3 Text Processiпg with NLTK 3 Cookbook», изданной Packt 
Pu Ыishing . Если хотите поэкспериментировать со стеммером, зай -

дите на страни цу ht tp : / /text -processing.com/demo/ stem/ . 

В NLTK есть несколько стеммеров. И это необходимо, потому что в 
каждом языке свои правила стеммннга. Для англ 1r йского языка возь­

мем класс SnowballStemmer. 

>>> import nltk.stem 
>>> s = nltk.stem.SnowballStemmer( ' english ' ) 
>>> s.stem ( " graphics " ) 
u ' graphic ' 
>>> s.stem( " imaging " ) 
u 1 imag 1 

>>> s.stem( " image " ) 
u 1 imag ' 
>>> s.stem( " imagination " ) 
u ' imagin ' 
>>> s.stem( " imagine " ) 
u ' imagin ' 

Отметим, что результатом стемминга вовсе необязательно являют­

ся допустимые английские слова. 

Стем мер работает и для глаголов: 

>>> s . stem ( " buy s " ) 
u ' buy ' 
>>> s.stem( " buying " ) 
u ' buy ' 

В большшr стве случаев, но не всегда': 

>>> s . s t em ( " bought " ) 
u ' bought ' 

boнgl1 t - фор~1 а прошедшего в рсме 1111 11 с п рав 1 1 ль~юго глагола IJLI Y (покупат1, ). К;ш 

видю1, в этом случае стеммер 0 1ш·1 6; 1сто1 . - При.м. перев. 
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Совместное использование векторизатора и стеммера 

из библиотеки NLTK 
Нам нужно произвесп1 стемминг сообщени1°1 п еред их подачей 

классу countvecto r izer . В этом классе есть несколько точек подклю­

чения, позволяющих настроить этапы предварительной обработк11 и 
лексического анализа . Препроцессор и лексический а нал изатор мо­

гут быть п ереданы конструктору в качестве параметров. Мы не хотим 

помещать стеммер ни туда, ни сюда, потому что тогда нам пришлось 

бы заниматься лексическим а нализом и нормировкой сам остоятель­

но. Вместо этого мы переопредел им метод bu i ld_ana l yze r: 

>>> impo r t nl t k. stem 
>>> english_stemmer = nl tk . stem.Snowba llStemmer (' english ' )) 
>>> c l ass StemmedCountVectorizer (CountVectorizer ): 

def bui l d_a nalyzer (self ): 
ana l yzer = super (StemmedCountVectorizer , self ) . bui l d_ana l yzer() 
return lamЬda doc : ( english_steпrner . stem (w) for w in ana l yzer (doc )) 

>>> vectorizer = StemmedCountVectorizer (min_df =l , stop_wor ds= ' english ' ) 

При этом каждое сообщение будет подвергнуто следующей обра­

ботке. 

1. Сначала на шаге предварител ьной обработки (в родительском 

классе) все буквы сообщения будут переведены в нижний ре­

ги стр . 

2. На шаге лексического а нализа выделяются отдельные слова 

(в родительском классе) . 

3. И в завершение из каждого слова будет в1,щелена основа. 

В результате у нас получится на один признак меньше, потому что 

слова «iшages» и «iшaging» сольются . Останется такой список при­

знаков: 

{u ' actua l ', u ' сараЫ ' , u 1 contain ', u ' data ' , u 'data ba s ' , u ' imag ', 
u ' i nterest ', u ' l earn ', u 'mach in' , u 1 pe rman ', u ' post ', u ' p r ovid ', 
u ' save ', u ' storag ', u ' store 1

, u ' stuff ' , u ' toy ' ] 

Если после объединения слов «i111ages» и «imaging» прогнать но­
вый векторизатор со стеммингом для всех сообщений , то выяснится, 

что теперь на новое сообщение больше всего похоже сообщение 2, по­
скол ьку оно дважды содержит понятие «irnag»: 

=== Post О with dist=l . 41: This is а toy post about machi ne l ear ning . 
Act ua ll y , i t c ontai ns not much i nteresti ng stuff . 

=== Post 1 with dist=0 . 86 : Imaging databa ses provide storage 
capaЬil it ies . 

=== Post 2 wit h dist=0 . 63 : Most imaging databases save images 
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permanently . 

Post З wi t h dist=0 . 77 : Imagi ng databases store data . 

Post 4 with dist=0 . 77 : Imagi ng databases store data . Imaging 
databases store data . Imaging databases store data . 
Best post is 2 with dist=0 .63 

Развитие концепции стоп-слов 

Теперь, когда у нас есть разумный сnособ построить комnактный 

вектор по зашумленному текстовому сообщению, вернемся назад и 

подумаем, в чем на самом деле смысл значений признаков. 

Значения признаков - это просто счетчики вхождения термов в со­

общение. Мы молчаливо предполагали, что чем больше это значение, 
тем важнее терм для данного сообщения. Но как быть, наnример, со 

словом «sнbject» (тема), которое естественно встречается в каждом 

сообщении? Можно, конечно, поnросить countVectori ze r удалить 
его, воспользовавшись nараметром max _ df . Например, если задать для 

него значение о. 9, то слова, встречающиеся в 90 и более nроцентах 
сообщений, будут игнорироваться. А если слово встречается в 89 про­
центах сообщений? Как выбрать nравил1,ную величину max_df? Про­
блема в том, что какое бы значение ни выбрать, всегда какие-то термы 

будут важнее для различения документов, чем другие. 

Решить эту проблему можно только одним сnособом - nодсl1итав 

частоты термов для каждого сообщения и «оштрафовав» те, которые 

встречаются во многих сообщениях. Иными словами, мы хотим, что­

бы данному терму в данном сообщении было соnоставлено большое 

значение, если он встречается в этом сообщении и мало где еще. 
Именно в этом состоит смысл характеристики « частота терма -

обратная частота документа» (terш r·геqнепсу - in veгse docuшent 
fJ"eqнeпcy, или TF-IDF). Здесь TF относится к подсчету, а IDF - к 

«н.прафу». Наивная реализация могла бы выглядеть так: 

>>> import scipy as sp 
>>> def tfidf (term, doc , corpus ): 

tf = doc .count (te rm) / len (doc ) 
num_docs_with_term = len ([d for d i n corpus i f term in d] ) 
idf = sp . log(len (corpus) / num_docs_with_term) 
return t f * idf 

Как видите , мы не просто nодсчитали термы, но и нормировали 

счетчию 1 1-1а длину документа. Поэтому длин 1·1ые докуме1-1ты 1-1е полу­

чат ~1 есnраведливоrо nреимущества перед короп<11ми. 



Предварительная обработка - количество общих ... 11 . " 
Если взять показанный ниже сп11 сок о уже разбитых на лексемы 

документов, то мы увидим, что термы обрабатываются по-разному, 
хотя в каждом документе встречаются с одинаковой частотой: 

>>>а , аЬЬ , аЬс = [" а 11 ] , ( " а ", " Ь ", " Ь ' 1 ] , [ " а ", " Ь ", " с " ] 

>>> О = [а , аЬЬ , аЬс] 

>» p rin t (tfidf (" a ", а , 0) ) 
о . о 

»> pri nt (tfidf (" а ", аЬЬ , О )) 

о . о 

>>> print ( tfidf (" a ", аЬс , О )) 

о . о 

>>> print (t fi df ( "b ", аЬЬ , О )) 

0 . 2703 1007 20 7 2 
>>> print ( t fid f ( " а ", аЬс , О )) 

о .о 

>>> p r i nt ( t fidf ( " Ь " , аЬс , О )) 

0 .1 35 1550360 36 
>>> print (t fi df (" c " , 

1 
аЬс , О ) ) 

0 . 36620 40962 23 

Видно, что терм а не значим ни для одного документа, потому что 

встречается во всех. Терм ь важнее для документа аьь , чем для аЬс , 

потому что встречается там дважды. 

На практике t-раничных слуL1аев больше, чем показано в этом при­

ме ре. Но благодаря SciKit мы можем о них не думать, потому что все 
они учтены в классе TfidfVecto r izer , наследующем Coun tVectorizer . 

Разумеется, не нужно забывать про наш стеммер: 

>>> from sklearn.feature_extraction.text impo r t TfidfVecto rize r 
>>> class StemmedTfidfVectorizer (TfidfVectorizer ) : 

def build_analyzer (se lf): 
a nal yzer = supe r (TfidfVectorizer , self) .build_analyzer () 
return lambda doc : ( 

eng l ish_stemmer . stem(w) for w in analyzer (doc) ) 
>>> vectorizer = StemmedTfidfVectori zer (min _ df= l, 

stop_words = ' e ngl ish ', decode_ e rror= ' igno r e ' ) 

Теперь векторы документов вообще не содержат счетчиков . А со­
держат они значения TF-I DF для каждого терма . 

Чего мы достигли и к чему стремимся 

Пока что этап предварител ьной обработки включает следующие 

шаги: 

1. Лексический анализ те кста и разбиение его на лексемы. 
2. Отбрасывание слов, которые встречаются слишком LJacтo и по ­

тому не помогают находить релевантные сообщения . 
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3. Отбрасывание слов, которые встречаются так редко, что вряд 
ли встретятся в будущих сообщениях . 

4. Подсчет оставшихся слов . 

5. Вычисление TF-IDF по счетч1 1кам с учетом всего корпуса 

текстов. 

Можем снова поздравить себя. Этот процесс позволяет преобра­

зовать исходный зашумленный текст в компактное представление в 

виде зна ч е ний приз наков . 

Но при всей простоте и эффективности подхода на основе набора 
слов с дополнительными расширениями у него имеется ряд недостат­

ков, о которых следует знать. 

Не учитываются связи между словами. Если принять опи ­

са1i1·1ый подход к векторнзации, то у фраз «Саг hits \Va li» (Ма­
шина врезалась в стену) и «Wall hits саг» (Стена врезалась в 
машину) будет один и тот же набор признаков . 

Не улавливается отрицание. Например, фразы «l \Vill eat ice 
сгеаm » (Я стану есть мороженое) и «l \Vill not eat ice сгеаm » 
(Я не стану есть мороженое) с точки зрения векторов призна­

ков ОL1ень похожи, но имеют противоположный смысл. Впро­

чем, эту проблему легко решить , если подсчитывать не только 

отдельные слова (униграмм ы) , но также пары слов (биграм ­

мы) и тройки слов (триграммы). 

Никак не обрабатываются ошиб1ш в правописании. Хотя че­

ловеку совершенно понятно , что слова «database» и «databas» 
означают одно и то же, в принятом подходе они считаются раз ­

личными. 

Но, чтобы не отвлекаться, мы все же останемся верны описанному 

подходу и воспользуемся им для эффективного построен ия класте­

ров. 

Кластеризация 
Итак, у нас имеются векторы, которые, как нам кажется, достаточ­

но адекватно отражают содержание сообщений. Не должно выз ы ­
вать удивления, что есть много способов сгруппировать эти векторы. 
Большинство алгоритмов кластеризации относятся к одной из двух 

категорий: плоские и иерархические. 

Алгор11тмы плоской кластер11зации разбивают множество сообще­

н11й на несколько кластеров, н1 1 как н е связанных между собой. Цель 
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проста - найти такое разбиение, чтобы все сообщения , попавшие в 

один кластер, были похожи друг на друга и в то же время отлиtrались 

от сообщен11й из других кластеров. Во многих алгоритмах плоской 
кластеризации требуется задавать число кластеров заранее . 

В алгоритмах иерархической кластеризации ч11сло кластеров зада ­

ва1ъ не нужно - алгор11тм сам строит иерархию кластеров. Похожие 

сообщения собираются в одном кластере, а затем похожие класте­
ры объединяются в суперкластер. Это делается рекурсивно, пока не 
останется один кластер, содержащий все сообщения. По завершении 
процесса можно выбрать нужное число кластеров из лострое1шой ие­
рархии. Однако эффективность такого процесса невысока. 

В пакете s klearn. c l uste r из библиотеки SciKit реализованы раз ­

личные подходы к кластеризации. Прочитать о достоинствах и недо­

статках каждого из них можно на странице http : / / sciki t -lea r n . org/ 

dev/ mod ules/c l uste r i ng .h t ml . 

В следующих разделах мы будем пользоваться методом К сред­

них -одним из алгоритмов плоской кластеризац11и - и поэксперимен­

тируем с числом кластеров. 

Метод К средних 

Метод К средних - самый распространенный алгоритм плоской 

кластеризации. Получив требуемое число кластеров, num_c lu s t e r s , 

он создает именно столько так называемых центроидов кластеров. 

Сначала алгоритм произвольно выбирает num_c luste r s сообщений 

и в качестве центроидов берет их векторы признаков. Затем каждое 
из оставшихся сообщений соотносится с ближайшим к нему центро ­

идом , и так образуются кластеры. После этого вычисляются новые 
положения центроидов - путем усреднения по всем векторам каж­

дого кластера. Разуме~тся, при этом изменяется распределение со­
общений по кластерам . Некоторые сообщения оказываются ближе к 

другому кластеру. Поэтому происходит перемещение таких сообще­

ний из одного кластера в другой. Это делается до тех пор, пока поло­

жен11е центроидов не стабилизируется. После нескольких итераций 

расстояния между старым н новым положением каждого центроида 

оказывается мен 1,ше порогового значения, и мы считаем, что процесс 

построения кластеров сошелся . 

Рассмотрим простенький пример, когда сообщения состоят всего 

из двух слов. Каждая точка на следующем рисунке представляет один 

документ. 
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Вхождения слова 1 

После одной итерации метода К средних, то есть выбора двух 

произвольных векторов в качестве начальных точек, распределения 

остальных по кластерам и изменения положения центроидов класте­

ров получается такая картина: 
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Поскольку центроиды кластеров сместились, мы должны переме­

стить некоторые точки в другие кластеры и пересчитать положения 

центроидов. После второй итерации получаются такие кластеры: 

1 0 
Итерация кл~стеризации 2 
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Вхождения слова 1 

Стрелками показано перемещение центроидов. После пяти итера­
ций центроиды практически перестают смещаться (в SciKit порого­

вое отклонение по умолчанию равно 0.0001). 
После стабилизации кластеров нам остается только запомнить по­

ложения центроидов и то, к каким кластерам они относятся . Когда 

поступает новый документ, мы векторизуем его, вычисляем расстоя­

ние до каждого центроида и относим документ к тому кластеру, цен­

троид которого окажется ближе всего. 

Тестовые данные для проверки наших 

идей 
Чтобы протестировать алгоритм кластеризации, мы расстанемся 

с игруше,1ными примерами и подыщем данные, напоминающие те, с 

которыми ожидаем столкнуться в реал ьности . Нам нужны уже сгруп­

пированные документы на технические темы, чтобы мы могли про­

верить , будет ли алгоритм работать , как мы предполагаем, когда ему 

предъявят новые документы. 
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Одним из стандартных для машинного обучения является набор 

данных 20newsgroup, содержащий 18 826 сообщений из 20 новостных 
групп по разным тематикам - как техническим, например comp. sys . 

mac. hardware или sci . c rypt , так и относящимся к политике и рели­

гии, шшример talk . politics . gu ns или soc .religion. Мы ограничим­

ся только техническими группами. Если считать каждую новостную 

группу кластером , то нам будет очень легко проверить, какой подход 

к поиску вза 11:-.10связанных сообщений окажется наилучшим . 

Скачать набор данных можно со страницы http://people. csail . 

mi t . edu/j rennie/20Newsgroups . Но гораздо удобнее скачать его с саl1-

та MLComp по адресу ht tp: //mlcomp .org/datasets /3 79 (обязател1,на 
бесплатная регистрация). В библиотеке SciKit уже есть специальный 
загрузчик для этого набора с очень удобными параметрами. 

Этот набор поставляется в формате ZIР-файла dataset - 379-

20news -1 8828_WJQIG . zip, который мы распакуем в каталог 379. Нужно 

будет еще сообщить SciKit путь к каталогу данных. Там находится 
файл метаданных и три подкаталога: test , trai n и r a w. В каталоге train 

находится 60 % данных, предназначенных для обучения , а в каталоге 
test - 40 %, предназначенных для тест11рования. Путь к каталогу 
указывается либо в переменной окружения мLсомР_одтдsЕтs_номЕ , 

либо непосредстве нно в параметре ml comp_rьot команды за грузки на­
бора. 

Сайт ht tp : / /ml comp . org организован для сравнения программ 
машинного обучения на разнообразных наборах данных. У него 

две цели: помочь в поиске подходящего набора для настройки про­

граммы и узнать, как другие использовали некий набор. Например, 

можно посмотреть, насколько хорошо работали придуманные дру­

гими алгоритмы на том или ином наборе , и сравнить с ними свой 

собственный. 

Для удобства модуль sklearn . datasets включает функцию 
fetch_20newsgroup s , которая автоматически скачивает данные: 

>>> import sklearn . datasets 
>>> a ll_data = sk learn . datasets . fetch_20newsgroups (subset= ' all ' ) 
>>> p rin t ( len (all_da ta . filename s )) 
18846 
>>> print(all_ data .target_ names) 
[ • al t . atheism ', ' comp . graphics ', ' comp . os. ms - windows . misc ', 
' comp. sys . ibm . ре. hardware ', • comp. sys . mac . ha r dware ', 
' comp . windows . х ', 'misc . forsale ', ' rec . autos •, 1 rec. motorcyc l es ', 
' rec . sport . baseball ', • rec . sport . hockey ', ' sci . cryp t ', 
' sci . electronics ', ' sci .rned ', ' sci . space •, ' soc . religion. christian ', 
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' talk .politics .guns ', ' talk . pol itics . mideast ', ' ta lk .politics.misc ' , 
' talk .religion .misc ' ] 

Мы можем выбрать обучающий или тестовый набор: 

>>> train_data = sklearn .datasets . fetch_20newsgroups(subset= ' train ', 
categories=groups ) 
>>> prin t (l en (train_data . filenames) ) 
11314 
>>> test data = sklearn .datasets.fetch_ 20newsgroups (subset= ' test ') 
>>> print (l e n( test_data . filenames ) ) 
7532 

Для простоты воз 1,мем не все группы , чтобы цикл эксперимента 
был короче . Для этого служит параметр catego r ies: 

>>> groups = [ ' comp.graphics ', ' comp.os .ms -windows .misc ', 
' comp.sys .ibm.pc.hardware ', ' comp.sys .mac.hardware ' , 
1 comp . windo ws . х ', ' sci . space ' ] 
>>> train_data = sklearn.datasets . fetch_20newsgroups (subset= ' train ' , 
categories=groups ) 
>>> print(len(train_data . filenames)) 
3529 

>>> test_data = sklearn .da t a sets . fetch_20newsgroups(subset= ' test ' , 
categories=g roups ) 
>>> prin t (len(test_data . filenames )) 
2349 

Кластеризация сообщений 
Вы, наверное, уже обратили внимание, что реальные данные обыч­

но зашумлены . И набор данных из новостных групп - н е исключение . 

Он даже содержит недопустимы е символы, приводящие к ошибке 
UnicodeDecodeEr r o r. 

Мы должн ы сказать векторизатору, что такне ошибки следует иг­
норировать: 

>>> vecto ri ze r 

>>> vectorized 

StemmedTfidfVectorizer (min df=lO , max df=0 . 5 , 
stop_words= ' english ', decode_error= ' ignore ' ) 
vectorizer . fit transform(train data . data) 

>>> num_samples , num_features = vectorized . shape 
>>> print («# s amples: %d , Heatures : %d» % (num_samples , num_features )) 
#samples : 3529 , #features: 4712 

Теперь у нас есть пул из 3529 сообщений и построенный по ним 
4172-мерный вектор приз наков. Это и будет подано на вход алгоритма 

К средних. В этой главе мы будем испол ьзовать 50 кластеров, но на­
деемся, что любознательные читател и попробуют н другие значения. 
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>>> num c lusters = 50 
>>> from sklearn . c luster import KMeans 
>>> km = KMeans(n_clusters=num_clusters , init= ' random ', n_init=l , 
verbose=l , random_state=3 ) 
>>> km .fit(vectorized) 

Вот и все. Мы зафикси ровали параметР~ random_state, чтобы вы 
могли получить точно таки е же резул 1паты. В реальных приложе­

ниях этого делать не нужно. После обучения модели информацию о 
кластерах можно получить из полей объекта km. Каждому вектори ­

зованному сообщению, участвовавшему в обучении, соответствует 

целочисленная метка в массиве km . l abels_: 

>>> print(km.labels_) 
[48 23 31 ... , 6 2 22] 
>>> print(km.labels_. s hape ) 
3529 

Центроиды кластеров можно получить с помощью km.cluster_ 

centers_. В следующем разделе мы увидим, как соотнести с кластером 

новое сообщение с помощью метода km. predict . 

Решение исходной задачи 
А теперь соберем все вместе и продемонстрируем работу с11стемы 1·1 а 
примере следующего сообщения, которое мы запишем в п еременную 

new_post: 

Disk dгiue pтohlems. Hi, I haue а pmhlem <шith ту liшd disk 
Afteг 1 уеаг it is <vo1·king only spoгaclically паш 
I tгied to f onnat it, but nmv it doesn 't boot апу тоге . 
Апу ideas? T/1(lnks. 

Мы уже знаем, что перед тем как вычисляп, кластер сообщения , 

его нужно векторизовать: 

>>> new_post_vec = vectorizer . transform ( [new_post] ) 
>>> new_post_label = km .predict (ne w_post_ve c ) [0] 

Теперь, когда у нас имеются кластеры, уже нет н еобходимосп1 
сравнивать new_post_vec с векторам11 всех сообщений. Можно огра­

ничиться лншь сообщениями в одном с ним кластерами. Давайте вы­
берем индексы этих сообщений в исходном наборе данн ых: 

>>> similar_indi ces = (km.labels_==new_post_label ) .no nzero () [0] 

Резул ьтатом сравнения в круглых скобках является булев массив , 
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а метод nonzero возвра щ;:~ет м е 11ьшн1°1 массив , содержащий индексы 

элементов, рапных тrue . 

С помощью метода similar_indices мы затем стро 11м список со­

общений вместе с оценками сходства: 

>>> similar = [] 
>>> for i in simi lar i ndi ces : 

dist = sp. l inalg.norm( (new_post_vec - vectorized[i] ) .toarray()) 
similar . append((dist , datase t . data[i ] )) 

>>> s imi l ar = sorted (s imilar) 
>>> print(len (similar)) 
131 

В том кластере , куда попало наше сообщени е , н аходится 131 со­
общен11 е. Чтобы пользователь мог соста1шть представление о том, ка­

кие есть похожие сообщения, мы покажем одно самое похожее ( show _ 

at_l ) и два не так похожих, но все-таки не совсем посторонних - все 

берутся из одного и того же кластера. 

>>> show_at_l similar [O ] 
>>> s how_at_2 = similar[int(len(similar ) /10)] 
>>> show at З = simila r [int(len(similar ) /2)] 

В следующей таблице показан ы эти сообще1111я и их оценки сход­

ства. 

2 

Выдержка из сообщениЯ · 

1.038 ВООТ PROBLEM with IDE coпtroll er 

Hi, 

1.150 

l've got а Multi 1/ 0 card (IDE controller + serial/ parallel 
iпterface) апd two floppy drives (5 1/ 4, 3 1/ 2) апd а Quaпtum 
ProDrive 80АТ соппесtеd to it. 1 was аЫе to format the hard 
disk, but 1 could поt boot from it . 1 сап boot from drive А: 
(wl1ich disk drive does поt matter) but if 1 remove the disk 
from drive А апd press the reset switch, the LED of drive А: 
coпtiпues to glow, апd the hard disk is поt accessed at all . 
1 guess this must Ье а proЫem of either the Multi 1 /о card 
ог floppy disk drive settiпgs (jumper coпfiguratioп?) Does 
someoпe have апу hiпt what could Ье the геаsоп for it. [ ". ] 

Bootiпg from В drive 
1 have а 5 1/ 4" drive as drive А. How сап 1 make the system 
boot from my 3 1 / 2" В drive? (Optimally, the computer would 
Ье аЫе to boot: from either А or В, check i пg them iп order 
for а ЬооtаЫе disk. But: if 1 have to switch саЫеs arouпd апd 
sirnply switch the drives so that: it сап't boot 5 1/4" disks, 
that's ОК. Also, boot_b woп't do the trick for me. [". ] 
[".] 



Глава 3 . Кластеризация - поиск взаимосвязанных". 

Позиция Сходство Выдержка из сообщения 

3 1.280 IBM PS/ 1 vs ТЕАС FD 
Hello , 1 already tried our national news group without 
success. 1 tried to rep lace а friend s original IBM floppy disk 
in his PS/ 1-PC with а normal ТЕАС drive. 1 already identified 
the power supply on pins 3 (5V) and 6 ( 12V), shorted pin 6 
(5.25"/3.5" switch) and inserted pu llup resistors (2К2) on 
pins 8, 26 , 28, 30 , and 34. The computer doesn 't complain 
about а missing FD, but the FD s light stays on all the time. 
The drive spins up o.k. when 1 insert а disk, but 1 can't access 
it. The ТЕАС works fine iп а normal РС . Аге there any points 
1 missed? [" .] 
[".] 

Интересно, как оценка схожести зависит от сообщения . Первое со­

общение содержит все характерные слова, встречающиеся в новом 
сообщегr ии. Второе относится к проблемам загрузки (booting) , но с 
гибких, а не с жестких дисков. Наконец, третье вообще не про жесткие 

диски и н е про за груз ку. И тем не менее , все они без сомнен ия написа­
ны на ту же тему, что и новое сообщение . 

Другой взгляд на шум 

Не следует ожидать, что кластеризация окажется идеальной, то 

есть что все сообщения из одной новостной группы (например, сотр . 

graphics ) попадут в один кластер. Ниже при веден пример , показыва­

ющий, какой бывает шум. Для простоты ограничимся одним корот­

ким сообщением. 

>>> pos t_group = z ip( trai n_data . data , trai n_data . target ) 
>>> all = [ (le n( post [O]) , post[O ], trai n_data . target_names [post [l) J ) 
fo r post i n post_group] 
>>> graphi cs = so rted ( [post for post i n al l if 
post [2 ]== ' comp . g raphics ' ] ) 
>>> p r int(graphics [5] ) 
(245 , ' From : SITUNAYA@IBM30 90 . BHAM . AC .UK\nSubject : 
test .. .. (sorry ) \nOrganizat i on : The University of Birmingham, United 
Ki ngdom\ nLines : 1 \nNNTP- Posting- Host : ibm3090 . bham . ас . uk<".snip".> ', 
' comp.graphics ' ) 

Здесь 1-1ет 1-rи ка rтх указаний на принадлежность к группе comp . 

graphics, есл 11 рассматривать только слова, остав 11шеся после этапа 

предварительной обработки: 

>>> noise_post = g raphics [5] [1 ] 
>>> analyze r = vectori zer . bui l d ana lyzer() 



Решение исходной задач и 1 . " >>> pr1nt(l1st (analyzer(no1se post}} } 
[ ' situ naya •, 1 ibm3090 ' , ' bham ', ' ас ', ' uk ', ' subj e ct ', ' tes t ', 
' sorri ', ' organ ' , ' uni v e r s ', ' Ьirmingham ', ' uni t ' , ' kingdom ' , 'l ine ', 
' nntp ', ' post ', ' host ' , ' ibm3090 ' , ' bham ' , ' ас ' , ' uk ' ) 

И это мы произ вели только разбиение на л ексемы, приведение 

к 1шжнему регистру и удаление стоп -сл ов. А если к тому же ис­

ключить слова, которые на следующем этапе - при вызове метода 

fi t _ transform - будут отфильтрованы за сч ет параметров min df и 

max_df , то ситуация станет еще хуже: 

>>> usefu l = set (analyzer(noise_post}} . intersection 
(v ec torizer . get feature names ( } } 
>>> print (sorted (useful ) ) 
[' ас ', ' Ьirmingham ', ' host ' , ' kingdo m', 'nntp ', ' sorr i ', ' test ', 
' uk ' , ' unit ' , ' univ€r s 1

] 

Но и этого мало. Большинство этих слов часто встречаются и в дру­

гих сообщениях, о чем свидетельствуют оценки IDF. Напомним, что 
чем выше показатель TF-IDF, тем лучше данный терм характеризует 

именно это сообщение . IDF является мультипли кативным фактором: 
если его значение мало , значит, ценность терма невелика. 

>>> for term in sorted(useful }: 
print ('I DF (%s }=%. 2f ' %(term , 

vector1zer._tfidf . 1df [ve ctorizer . vocabulary_[term]] } } 
I DF(ac } =З . 51 

I DF ( birmingham } =б . 7 7 

IDF (h ost ) = l . 74 
I D F ( kingdom ) =б . 68 

IDF(nn t p }=l.77 
I DF ( sorr i } =4 . 14 
IDF ( test } =З . 83 

IDF ( uk ) =З . 70 

IDF (unit }=4.42 
IDF(univers }= l . 9 1 

Таким образом, термы с наивысшей различающей способностью, 
Ьi rmi ngham и kingdom, О'rевидно, не относятся к компьютерной гра­

фике, как и термы с низкими оценками IDF. Поэтому понятно, по­
чему сообщения из разных новостных групп могут попасть в один 

кластер. 

Нам, впрочем, это не так уж важно , потому что наша цель - со­

кратить коли'rество сообщений, с которыми нужно сравнивать новое. 
А то , из какой новостной гр у пл ы взяты обучающие данные, большого 
интереса не представляет. 
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Настройка параметров 

Ну а как на счет остальных параметров? Нел ьзя ли их подкоррек­

тировать, чтобы улучшить результаты? 

А как же ! Конечно, мы можем подобрать количество кластеров или 

попробовать разные значения параметра max_features векторизатора 

(обязательно попробуйте!) . Кроме того, можно поиграть с разными 

начальными положениями центроидов . Ну и , н аконец, на самом ал­

горитме К средних свет клином не сошелся . Например, можно ис­

пользовать для кластеризации другие меры сходства: коэффициент 

Отиаи, коэффициент корреляции Пирсона, меру Жаккара. Есть про­

стор для экспериментов. 

Но прежде чем двигаться в этом направлении, нужно решить, что 

значит <1лучше». В SciKit есть целый пакет, посвященный этому во­
просу. Он называется sklearn . met r ics и содержит полный спектр 

метрик для измерения качества кластеризации. Бьлъ может, с начала 

стоит заглянуть туда - прямо в исходный код этого пакета. 

Резюме 
Это было непростое путешествие, начавшееся с предварительной об­
работки, продолжившееся обсуждением кластеризации и завершив­

шееся решением, которое позволяет преобразовать зашумлен1-1ый 

текст в компактное векторное представлени е , допускающее класте­

ризацию. Собственно на кластеризацию было потрачено больше по­

ловины усиm 1 1~1 . Но попутно мы кое-что узнали об обработке текстов 

и о том, как далеко может завести просто~"~ подсчет в мире реальных 

данных. 

Наше путешествие оказалось бы куда трудн ее, н е будь библиотеки 

SciKit и входящих в нее замечательных пакетов. Но области для ис­
следоваиия остались. В этой главе мы лишь скол 1,з 1·1 ули по поверхно­

спr , возможности б 11блиотеки гораздо шире. В последующих главах 

мы познакомимся с ними получше. 
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fЯАВА4. 

Тематическое 

модеnирование 

В предыдущей главе мы занимались группировкой текстовых доку­

ментов с применением методов кластеризации. Это средство весьма 

полезное, но не всегда наилучшее . Оно приводит к тому, что каждый 

текст попадает в один и только один кластер. Но вот эта книга по­

священа машинному обучению и языку Pythoп . Куда ее отнести - к 

работам по теме «Руt!юп >.> или по теме «машинное обучение>.>? В ре­

альном книжном магаз ине книгу нужно поместить на какую-то одну 

полку. Но в Интернет-магази н е она должна присутствовать в обеих 
рубриках . Это, конечно, н е з н а,1ит, что ее следует включать во все во­

обще рубрн ки, скажем, в раздел , посвященный. кулинарии . 

В этой. главе мы познакомимся с методами, которые позволяют от­

носить каждый документ к нескольким темам, а н е помещать в один­

единствен ный кластер . Темы будут определяться автоматически по 
имеющемуся набору документов . Документами могут быть как кни­

ги , так и более короткие тексты , на пр11мер , сообщение в блоге, но­

вость или электронное rисьмо. 

Хотелось бы ум ет ь определять центральную и второстепенные 

темы документа. В этой книге часто упоминается построение графи­

ков , но централ ьной темой является все же не оно, а машинное об ­

учение. Отрасль машинного обучения , в которо1i рассматриваются 

подобные проблемы и которой посвя щена эта глава, называется те­

матическим моделированием . 

Латентное размещение Дирихле 
Так получилось, 'ПО в машинном обучении есть два метода с аббре­
виатурой LDA: латеюное размещение Дирихле (lateпt Diгichl et 
allocatioп), один из алгоритмов тематического моделирования, и ли­
нейный дискриминантны й анализ (\iпеа г discгi111iпaпt aпa l ysi s ) - ал -
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горитм классификации. Кроме аббревиатуры, у них нет ниLrего обще­

го, и иногда это приводит к недоразумениям. В модуле scikit- l eaгn 
есть подмодуль sklearn . lda, в котором реализован линейный дискри­

минантный анализ. В настоящее время метод латентно1·0 размещения 

Дирихле в scikit-leaгп не реализова н. 
Математические идеи, лежащие в основе метода латентного 

размещения Дир 1 1хле, довольно сложны, и мы не будем вдаваться в 
детали. Интересующиеся читатели с авантюрным складом ума най­

дут все относящиеся к делу уравнения в википедии по адресу http : // 

en.wikipedia . org/w~ki/ La tent_Di richlet_allocatio n. 

Однако можно составить общее представление о LDA на инту ­
итивном уровне. LDA принадлежит к классу так наз ываемых по­
рождающих моделей, поскольку они сопровождаются пояснением , 

описывающим, как были сгенерированы данные. Разумеется , это по­

яснение - всего лишь приближение к реалыюсти, призванное упро­

стить машинное обучение. В LDA мы сначала создаем темы, назначая 
словам веса в форме вероятностей. В каждой теме одному и тому же 

слову ~~азначены разные веса . Так , в теме «Pythoп» у слова «vaгiaЬle» 
(переменная) будет высокая вероятность, а у слова « in ebгiated » (под­
выпивший) - низкая. Желая сгенерировать новый документ, мы сна­

чала выбираем соответствующие ему темы, а затем комбинируем сло­

ва, относящиеся к этим темам. 

Пусть, например, в книгах обсуждаются всего трн темы : 

машинное обучение; 

язык Pythoп ; 

кулинария. 

С каждой темой ассоциирован список слов. В той книге, что вы 

сейчас читаете, будут встречаться слова и з п ервых двух тем, поло­
жим, в пропорци11 50/ 50. Доли нсобязател 1,rю должны быть одина­

ковыми, возможно и соотношение 70/ 30. Порождая новый текст, мы 
выбираем слово за словом. Сначала решаем, из какой темы брать сло­

во; решение приниJ\,rается случайно, но в соответствии с весами тем. 

Определивши сь с темой, мы выбираем слово из сr111ска английских 

слов, ассоциированных с этой темой. 

В этой модели порядок слов не играет роли. То есть это модель на­

бора слов, с которой мы уже встречались в предыдущей главе. Это 
очень грубое приблпжение к реальному языку, но часто оно оказыва­

ется достаточным, потому что одно л 1rшь з нан11 е частот слов, встре ­

чающихся в документе, позволяет пр11нима·1ъ решения в ал горитмах 

машинного обучен11я. 



Построение тематической модели 

На практике темы нам заранее неизвестны . Наша задача - полу­

чить набор текстов и восстановить по нему поясне ние, то есть выяс­

нить, какие темы вообще представлены и к каким из них относится 

каждый документ. 

По__строение тематической 

модели 

К сожалению, scikit-leam не поддерживает метод латентного разме­

щения Дирихле. Поэтому мы воспользуеN1ся нап11санным на Руtlюп 
пакетом geпsim. Этот пакет разработан Радимом Ржехоржеком - ис­

следователем в области машинного обучения и консультантом из Ве­

ликобритании. Сначала установим пакет командой 

pip i nstall ge nsim 

В качестве данных мы возьмем собрание новостей агентства 
Associated Press (АР). Это стандартный набор данных для исследо­
ваний по машинному обуl1ен11ю, который использовался в некоторых 

ранних работах по тематическому моделированию. Скачав данные, 

загруз им их в память: 

>>> f rom ge nsim i mport corpora , models 
>>> corpus = corpora .ВleiCorpus ('. /data/ap/ap .dat ', ' . /data/ap/vocaЬ. t xt ' ) 

В переменно й co r pus хранятся все текстовые документы в фор1'<1а­

те, удобном для обработки. Теперь мы можем построить на основе 

этого объекта тематическую модель: 

>>> mode l = mode l s . l damode l.LdaMode l( 
corpus , 
num_topics=lOO , 
id2word=corpus . id2 word ) 

В результате этого вызова конструктора производится статистиlJе­

ская обработка корпуса текстов и выявляется, какие темы в нем пред­

ставлены. Получ ившуюся модел ь можно исследовать с разных точек 

зрения. Можно с помощью конструкции mo cte l [doc J вывести список 

тем, ассоциированных с документом: 

>>> doc = co r pus . docbyo f fset (O) 
>>> topics = mode l[ doc] 
>>> p r i n t (topics ) 
[ (3 , 0 . 023607255776894751 ) ' 

(13 , 0 . 1167 9936618551275 )' 
(19 , о . 075935855202707 1 39 )' 
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( 92 , о .1 078 1 541687 00 1292 ) ] 

На вашем компьютере результат почти наверняка будет другим! 

В обучающем алгоритме используются случайные величины, поэто­

му при многократном обучении тематической модели на одних и тех 

же данных всякий раз получается новый результат. Но если данные 

ведут себя хорошо, то некоторые J<аlrественные свойства модели бу­

дут неизменны. Например, если использовать темы для сравнения 

документов, что мы и делаем, то сходство будет устойчивым, слабо 

изменяющимся свойством. С другой стороны, порядок тем будет со­

вершенно различным. 

Результат выдается в виде списка пар ( topic _ i ndex , topic _ weight). 

Мы видим, что с каждым документом ассоциирова 11а лишь часть всех 

тем (в примере выше для тем О, 1 и2 вес не указан, то есть равен нулю). 

Тематическая модель разрежена, то есть всего тем много, но каждый 

отдельный документ принадлеж11 т лишь немногим. Строго говоря, 

это не совсем так, поскольку в модели LDA у любой темы ненулевая 
вероятность, но для некоторых она настолько мала, что можно счи­

тать ее равной нулю, tre жертвуя качеством аппроксимации. 

Можно продолжить исследова ние и построить гистограмму тем, 

ассоциированных с документом: 

>>> num_topics used = [ len (model [ doc] ) f or doc in corpus] -
>>> plt . hist (num_topics_used) 

Получится такой график: 
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--------------, -
Вектор или матрица называют разреженными , если большая часть 
элементов равна нулю (или настолько мала, что можно без ущерба 
для точности решения считать их нулевыми). Поэтому релевантны 

лишь немногие значения . 

Часто задачу, кажущуюся неподъемно большой, удается решить, 

потому что данные разрежены. Например, любая веб-страница тео­
ретически может ссылаться на любую другую, но на практике граф 

ссылок очень сильно разрежен , потому что имеются ссылки лишь на 

небол*шое число страниц . ·------_____ " -------
На рисунке выше видно, что примерно 150 документов относятся 

к 5 темам, а с большинством ассоциировано от 10 до 12 тем. Нет 

ни одного документа, в котором бы шла речь более чем о 20 разных 
темах. 

Это в з начительной степени связано с выбором параметра a l pha . 

Его точный смысл выражается в очень абстрактных терминах , но чем 
больше знач ение alpha, тем больше тем будет у каждого документа. 

Параметр a lpha должен быть больше нуля, и обыLIНО берется значе ­
ние меньше 1. Чем меньше a l pha , тем меньше ожидаемое количество 

тем документа. По умолчанию в ge11siш alpha принимается равным 

l/num_topics, но можно задать значение явно, передав конструктору 

LdaModel одноименный параметр : 

>>> mode l = models .ldamodel . LdaModel ( 
corpus , 
num_topics=lOO , 
id2word=corpus . id2word , 
a l pha=l ) 

Это значение alpha больше подразумеваемого по умолчанию, по­
этому у каждого документа должно быть больше тем. На комбиниро­
ванной гистограмме ниже мы видим, что gensiш ведет себя в соответ­

ствии с ожиданиями - с каждым документом теперь ассоциировано 

больше тем. 
Сейчас для многих документов количество тем варьируется от 20 

до 25. Если уменьшить з начение, то будет наблюдаться противопо­
ложная тенденция (скачав код из сетевого репозитория , вы сможете 

сами поэкспериментировать с заданием параметров) . 

Что это за темы? Технически это мультиномиальное распределе­

ние по словам, то есть каждому слову из словаря назначается веро­

ятность относител ьно некоторой темы. Чем выше вероятность, тем 

больше шансов , что слово связано с данной темой. 
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alpha по умолчанию 

alpha=1.0 

10 15 20 25 за 35 40 45 

Число тем 

Наш мозг плохо приспособлен для рассуждений о распределениях 

вероятности, но список слов мы воспринимаем легко. Поэтому обыч­

но темы описываются списком слова с наибольшими вероятностями. 

В таблице ниже перечислены первые десять тем: 

' 
Номер темы Тема 

dress military soviet president new state capt carlucci states leader 
stance government 

2 koch zambia lusaka oneparty orange kochs party i government 
mayor new political 

3 human turkey rights abuses royal thompson threats new state wrote 
garden president 

4 bill employees experiments levin taxation federal measure 
legislation senate president whistleЫowers sponsor 

5 ohio july drought jesus disaster percent hartford mississippi crops 
northern valley virginia 

6 united percent billion year president world years states people i 
bush news 

7 Ь hughes affidavit states united ounces squarefoot саге delaying 
charged unrealistic bush 

8 yeutter dukakis bush convention farm subsidies urugL1ay percent 
secretary general i told 

9 kashmir government people srinagar india dumps city two 
jammukashmir group moslem pakistan 

1 О workers vietnamese irish wage immigrants percent bargaining last 
island police hutton 1 



Построение тематической модели 

На первый взгляд , пол ная неразбериха, но, вчитавшись в список 

слов, мы начинаем понимать , что темы - не просто произвольно вы-

. хваченные слова, а образуют логические группы. Мы также видим, 
что темы относятся к старым новостям - к тому времени, когда еще 

существовал Советский Союз, а Горбачев был Генеральным секрета­

рем. Темы можно представить также в виде облака слов, в котором 
слова с большей вероятностью набраны более крупным шрифтом. 
Вот, например , как выглядит тема, относящаяся к политике на Ближ­

нем Востоке: 

Видно также, что некоторые слова имело бы смысл удалить (на­
пример, слово «l» ), потому что они малоинформативны - являются 

стоп -словами. При построении тематической модели полезно от­

фильтровывать стоп-слова, иначе могут появиться темы, целиком 

составленные из таких слов. Кроме того, желательно произвести 

предварительную обработку - стемминг для нормализации форм 

множественного числа и глагольных форм. Этот процесс подробно 
освещался в предыдущей главе . Интересующийся читатель может 

скаt1ать код с сайта книги и поэкспериментировать с различными ва­

риациям и н а эту тему. 

Для построения облака слов имеются различные инструменты. Ри­

сунки в этой главе были созданы с помощью пакета pytagcloud. Он 

зависит от нескольких других пакетов и не связан с машинным обу-

чением как таковым, поэтому в основном тексте не рассматривает­

ся . Однако в сетевом репозитории имеется весь код, необходимый 

для построения рисунков. 
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Сравнение документов по темам 
Темы могут быть полезны сами по себе для пост1)оения своего рода 

виньеток из слов, как на рисунке выше. Такие наглядные представ ­

ления можно использовать для навигации по большим наборам до­
кументов. Например, на сайте разные тем ы можно показать в виде 

разных облаков слов, позволяющих пользователю с помощью не­
скольких щелLrков мышью добраться до документов. На самом деле, 

именно такая методика реалы-ю применялась для анализа бол 1,ши х 

наборов документов. 

Однако ч аще темы служат промежуточным средством для дости­

жения другой цел и. Теперь, когда у н ас для каждого документа име­

ется оценка соотнесенности его с разными темами, мы можем сравни­

вать документы в пространстве тем . Это оз начает, что мы срав ниваем 

документы не по отдельным словам, а по тому, н аскол ько близки за­

трагиваемые в них темы. 

И это очень эффективный подход, потому LJТO два текстовых доку­

мента, п очти не имеющие общих слов могут, тем не менее, относиться 

к одной и той же теме! Возможно, в них просто используются раз­

ные словесные конструкции (скажем, в одном документе говорится о 

«президенте США», а в другом - о « Бара ке Обаме» ) . 

Тематические модели хороши сами по себе для визуализации и ис­

следования данных . Но они полезны и в качестве промежуточного 

ша га при решении многих других задач . 

·--~-------·--------

Сейчас мы можем по -другому подойти к упражнению из предыду­

щей главы и поискать сообщение , больше всего похожее на заданное 

в вопросе, исходя из сходства по темам. Если ра н1,ше при сравнении 

двух документов мы использовали их векторы слов, то теперь срав ­

ним векторы тем. 

Для этого спроецируем документы в простра нство тем . Иначе го­

воря, мы хотим построить вектор тем, описывающий документ. Как 

решается такая задача понижения размерности в общем случае - во­

прос сам по себе важ1iый и интересный, которому мъ1 посвятим це­

лую главу. А лака просто покажем, как использовать для этой цели 

тематические модел и ; вычислив для каждого докуме нта вектор тем, 

мы сможем п1юизводи·1ъ над этими векторами различные операции , 

забыв об исходных словах. Если темы знач1rмы , то они потенциально 

могут оказаться более информатив11 1, 1 м и , ч ем сами слова . Кроме того, 



Сравнение документов по темам 

так мож1-10 и сэкономить на вычислениях , потому что сравнить векто­

ры с вероятностям и сотни тем rораздо быстрее, чем векторы, размер 

которых срапним с размером словаря (тысячи термов). 

Мы видели, как с помощью пакета gensiш вычислить темы всех до­

кументов из корпуса. Сделаем это, сохраним результаты в массивах 

Nш11Ру и вычислим попарные расстояния: 

>>> fr om gensim import ma tu tils 
>>> topics = matuti l s . co r pus2dense (model [corpus) , 

num_terms=model .num_t opics) 

Переменная topic s 1 содержит матрицу тем. Для вычисления 

попарных расстояний можно воспользоваться функцией pdist 

из библиотеки SciPy. Один ее вызов ВЬJLJисляет все заачения 

sum( (topics [ ti) - topics [ tj) ) **2 ): 

>>> f rom scipy.spatia l import distance 
>>> pairwise = distance . squareform (distance . pdist(topics )) 

Далее применим еще один трюк; присвоим диагональным элемен­

там матрицы ctistance некое большое значение (оно должно быть 
больше всех остальных элементов матрицы): 

>>> larges t = pairwise . max () 
>>> f o r ti i n range(l en ( t opics) ) : 

pairwise [ ti , ti) = largest+ l 

Вот и всё ! Для каждого документа можно леrко найти ближай ­

ший к нему (получился вариант классификатора по ближайшему 

соседу): 

>>> def c l osest_to (doc_ id ): 
retu rn pa i rwise[doc_id) . argmin() 

Отметим, что это решение не сработало бы , если бы мы не присво­

или диагональным элементам большое значение: функция всегда 

возвращала бы сам документ, потому что он больше всего похож на 

себя самого (за исключением маловероятного случая, когда у двух 

элементов в точности одинаковое распределение вероятностей 

тем , что практически невозможно, если только 'они не совпадают 

буквально). 

Приведем для примера такой документ-запрос (это второй доку­

ме1-1т в нашем наборе): 

From: geb@cs . pitt . edu (Gordo n Banks ) 
Subject : Re : r equest for i n f o r mation оп " essential t r emor " a nd 
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I nd r ol? 

I n a r ticle <l qltbnI NNn fn @life . ai . mit . edu> su ndar@ai . mit . edu 
wri t es : 

Esse ntial t r emo r i s а progressive heredita ry tre mo r that gets 
wo r se 
wh en t he patient t r ies t o use the effected memЬer . Al l limbs , 
voca l 
cords , a nd hea d ca n Ье i nvolved . Inderal is а beta-Ьl ocke r a nd 
i s usua ll y effective i n dimi n ishing the tremor . Al cohol a nd 
my so l i ne 
are a l s o ef f ectiv e , but a l coh o l is too toxic to use as а 

tre a t me n t . 

Go r don Banks NЗJXP 1 " S kepticism is the chastity of t he 
i n tellect , a nd 
g e b @cadr e . ds l. pitt . e d u 1 i t is shamefu l to surrende r it too 
soon . 11 

Если мы попросим найти наиболее похожий документ - c l osest_ 

to ( 1) - то получим такой резул ьтат : 

From : geb@cs . pitt . e d u (Gordon Banks ) 
Subject : Re : High Pr olactin 
I n artic l e <93088 . l l2203JER4@psuvm . psu . edu> JER4@psuvm . psu . edu 
(Joh n Е . Rodway) writes : 
>A n y comments on the use of the drug Parlode l for high prolactin 
i n the Ыооd? 

> 

It ca n supp r ess sec ret i o n of p r o l actin . I s useful i n cases o f 
gal ac t o r r h e a. 
Some adenomas o f t he pituitary secret too much. 

Go r don Banks NЗJXP 1 " Skepticism is the chastity of the 
in te ll e c t , a nd 
geb@ca d r e . ds l . pitt . edu 1 it is shamef u l to su r re nde r it too 
soon . '1 

Система возвращает сообщени е того же автора, в котором обсужда­

ются побочные действия лекарства . 
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Моделирование всей википедии 

Первые реализации LDA были медленными , поэтому их приме­

нение ограничивалось лишь небольшими корпусами документов, 

1-ю современные алгоритмы отлично работают и с ОL1ень большими 

наборами данных. Следуя документации по geпsiin, мы построим те­

матическую модель всего англоязычного сегмента в:икипедии. На это 

уйдет несколько Ltacoв, но задача решаема даже на ноутбуке! Имея 
кластер компьютеров, это можно было бы сделать гораздо быстрее, но 
рассмотрение такой конфигурации мы отложим на потом . 

Сначала скачаем все данные викип едии с сайта ht tp : ! /ctumps . 

wikimectia . org . Это большой файл (бол 1,ше 10 ГБ) , так что на его ска ­

чивание уйдет некоторое время, если только вы не являетесь счастли­

вым пользователем очень быстрого подключення к Интернету. Затем 

проиндексируем данные: 

python -m gens1m.scr1pts . make_wiki \ 
enwiki - latest - pages - a r tic les . xml . bz2 wiki_en_output 

Эту команду следует запускать из оболочки ОС, а не из оболоч ­
ки Python. Спустя нескол ько часов в том же каталоге , что исходный 

файл, появится индекс . Те перь можно приступать к построению соб­

ственно тематической модели. Процесс выглядит точно так же, как 

для небольшого набора данных АР. Сначала импортируем несколько 

пакетов: 

>>> import l ogging , gensim 

Теперь настроим прdтоколирование, воспользовавшись стандарт­
ным модулем Python (с помощью которого gens im выводит сообще­
ния о состоянии) . Этот шаг необязателен, но хорошо бы все-таки ви­
деть , что происходит: 

>>> l ogging . basicConfig ( 
format= ' %(a sctime)s : %(leve lname)s : %(message ) s ', 
level=logging.INFO ) 

Далее загрузим предварительно обработанные данные: 

>>> id2word = gensim.corpora.Dictionary . load_from_ text ( 
' wiki en output_wordids . txt ') 

>>> mm = gensim . corpora . MmCorpus ( ' wiki _ en _output_ tfidf . mm ') 

Наконец , построим LDА-модель, как и раньше : 

>>> model = gensim . models . ldamodel . LdaModel( 
corpus=mm , 
id2word=id2word , 



num topics=lOO , 
update_ every=l , 
chunksize=l OOOO , 
passes=l ) 
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Это тоже займет пару часов. Сообщения о ходе работы выводятся 
на консоль, так что вы будете знать, сколько еще ждать. 

Созданную тематическую модель можно сохранить в файле, чтобы 

не пришлось строить ее заново: 

>>> model . save( ' wiki_lda . pkl ' ) 

Если вы завершите сеанс и возобновите работу позже , то сможете 
загрузить модель такой командой (предва рительно нужно, конечно, 

импортировать необходимые пакеты): 

>>> mode l = gensim . models . ldamodel . LdaModel .load ( ' wiki lda.pkl ') 

Объект model поз воляет исследовать набор документов и постро­

ить матрицу topics , как мы уже делали раньше . 

Видно, что и эта модель является разреженной, хотя документов 

гораздо больше , чем раньше (на момент написания книги свыше 

4 миллионов): 

>>> l ens = (topics > 0 ) . sum(axis=O) 
>>> print(np . mean(lens)) 
6 . 4 1 
>>> print(np.mean(lens <= 1 0 )) 
0.941 

Таким образом, в среднем в документе упом 11 н ается 6.4 тем и в 94% 
документов упоминается не более 10 тем. 
Можно поинтересоваться, какая самая обсуждаемая тема в вики ­

пед ии. Сначал а выч11слим суммарный вес каждой темы (просумми­

ровав веса по всем документам), а затем выберем сло ва , относящи ­
еся к теме с наибол 1, шим весом. Для этого нуж но выпол н ить такой 

код: 

>>> weights = topics .sum (axis =O ) 
>>> words = model . show_topic (weights . argma x() , 64 ) 

С помощью тех же инструм ентов визуализации , что и выше, мы 

видим, что больше всего стате (1 посвящено музыке, причем это ОL1е н1, 

компактная тема. Целых 18% стран и ц в викип едии так ил и иначе свя­

заны с музыкой (с этой темой ассоци11ровано 5,5% всех слов в википе­

дии) . Взгляните на рисунок: 
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Рисунки и числа получены на момент написания книги. Поскольку 

википедия не стоит на месте, у вас могут получиться другие резуль­

таты. Мы полагаем, что общие тенденции сохранятся, но детали мо­

гут измениться. 

Можно также найти наименее обсуждаемую тему: 

>>> words = mode l . show_topic (weights . argmin() , 64 ) 
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Понять, что это за тема, труднее, но многие наиболее у потребител ь­

ные слова касаются аэропортов в восточных странах . Тема затрагива­

ется лишь в 1,6 % документов , и к ней относится 0,1 % слов . 

Выбор числа тем 
До сих пор в этой главе мы задавали фиксированное число тем - 100. 
Это LJи сло выбрано совершенно произвольно, с тем же успехом можно 
б 1,1ло взять 10 или 200. По счастыо, для многи х прим ен ений число тем 

не слишком существенно. Если вы собираетесь использовать темати­

ческую модель только в качестве промежуточ наго ша га , как мы дела ­

ли при поиске похожих сообщений, то поведение конечной системы 

редко оказывается сильно зависящим от точного числа тем в модели. 

Это означает, что пр 1 1 наличии достаточно большого числа тем, н е­

важно будет их 100 или 200, рекомендации не слишком разл ичаются; 

обычно 100 - впол не приемлемая вел ичина ( а 20 для набора тексто­
вых документов общего вида сл ишком мало). То же самое относится 
к выбору параметра alpha . Конечно , распределение по темам зависит 

от него, но окончательные резул ьтаты устойчивы к его измен ению. 

Тематическое моделирование часто является лишь одним из этапов 

на пути к конечной цели . В таком случае не слишком важно , какие 

конкретно параметры используются . Вне зависимости от числа тем 

или значения параметра alpha конечная система выдает практиче ­

ски идентичные результаты. 

С другой стороны , если вы планируете исследовать сами темы или 

построить систему их визуализации, то следует попробовать нескол 1,­
ко знач ений и посмотреть, при каком получ аются наиболее полезные 
или привлекающие внимание результаты . 

Существуют также методы, которые автоматически определяют 

число тем в зависимости от набора данны х. Одна и з наиболее по­

пулярных моделей та кого рода называется иерархический процесс 

Дирихле . Ее пол ное математическое описание слишком сложно для 

этой книги, но в пояснении мы можем сказать, что вместо выбора 

фиксированного числа тем , как в случае LDA, нужно генерировать 
темы вместе с данными - поочередно. Когда генератор при сту пает к 

новому документу, он может л ибо выбрать уже существую 1_цую тему, 

либо создать новую. Чем больше создано те~·I , тем меньш е вероят­

ность создания ново~\ хотя она всегда ненулевая . 



Резюме 

Это означает, LJТO LJeм больше имеется документов, тем больше бу­

дет тем . Это утверждение, на лервый взгляд, прот11воречит интуиции, 

но , немного поразмыслив, мы придем к выводу, что оно совершенно 

правильно. Мы группируем документы и LJeм больше у нас приме­

ров, тем к большему числу рубрик мы сможем их отнести. Если у нас 

есть всего несколько новостей , то все их можно отнести к рубрике 
«Спорн. Но по мере увеличения числа примеров выделяются более 
точные рубрики: «Хоккей», « Футбол» и т. д. Имея еще больше дан­

ных, мы можем различить такие нюансы, как отдельные команды или 

даже отдель н ые игроки . То же относится и к людя~1. В группе людей 

с разным образованием, где мало «коылыотерщ11ков», можно их всех 

поместить в одну категорию. Из группы большего размера можно вы­
делить программистов и системных администраторов, а в реальном 

мире есть даже разные категории для программ11стов на Python и на 
Rllby. 
В пакете gensi111 реализован иерархический процесс Дирихле 

(HDP). Воспользоваться им очень просто. В написанном ранее коде 
для LDA достаточно лишь заменить обращение к ge nsim.mode l s . 

ldamode l. LdaMode l на обращение к конструктору HdpModel : 

>>> hdp = ge nsim .models . hdpmodel.HdpModel(mm , id2word ) 

И это всё (правда, вычисление займет больше вреыени - бесплат­
ных завтраков не бывает). Использовать полуL1ипшуюся модель мож­

но точно так же, как LDА-модель , только задавать количество тем за­

ранее уже не нужно. 

Резюме 
В этой главе мы обсудили тематическое моделирование. Это методи­

ка, более гибкая , чем кластеризация, потому что позволяет относить 
документ сразу к нескольким группам . Для иссл едования этих мето­

дов мы воспользовались новым пакетом, geпsi111. 

Первоначально тематическое моделирование было разработа­
но для анализа текстов, и в этом контексте понять его проще всего , 

но в главе о машинном зрении мы увидим, что некоторые методы 

можно применить и к изображениям. Тематические модели играют 

важную роль в современных исследованиях по машинному зрению. 

Вообще, эта глава , в отличие от предыдущих, очень близка к пере­
довым рубежам исследований в области алгоритмов машинного об­

учения. Первоначальный вариант алгоритма LDA был олубликован 
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в научном журнале за 2003 год, метод, испол ьзуемый в пакете geлsiш 

для обработки данных википедии, разработан толы<0 в 2010 году, а 
алгоритм HDP - в 2011. Исследования на эту тему продолжаются, 

так что вы можете найти много разных вариаций и моделей с таки­

ми причудливыми названиями , как индийский буфет (не путат ь с 
китайскил1 рестораном, это другая модель) или размеzценuе патиико 

(пати нко - японская игра, нечто среднее между игорным автоматом 

и пинболлом). 
Мы рассмотрели несколько основных моделей машинного обуче­

ния : классификация , кластеризация и темапчrеское моделирование . 

В следующе й главе мы вернемся к классификации, но на этот раз 

будем изуtrать п ередовые алгоритмы и подходы . 
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Кnассификация - выявnение 

nnoxиx ответов 

Научившись выделять полезные признаки из текста, мы можем 

взяться за построение классификатора на основе реальных данных. 

Вернемся к введенному в главе 3 воображаемому сайту, на котором 
пользователь может задавать вопросы и получать на них ответы. 

Перед владельцами таких вопросно-ответных сайтов стоит вечная 

проблема: как обеспечить достойное качество получаемого от пользо­

вателей материала. Такие сайты, как StackOveгf\ o,v, прилагают значи­
тельные усилия, чтобы побудить пользователей с помощью различ­

ных средств оценивать содержимое. Они предлаL'ают знаки отличия 

и бонусные очки за шлифовку текста вопроса и за предложенные от­

веты. 

Особенно удачной ишщиативой следует признать имеющуюся у 

автора вопроса возможность пометить один ответ как принятый (за 

это также полагаются поощрения). Автор помеч енного ответа полу ­

чает дополнительные очки . 

А не правда ли, было бы здорово, если бы пользователь, еще только 
набирая текст ответа, видел , насколько этот ответ хорош? Это означа­

ет, что сайт постоянно оценивает ответ по мере его ввода и сообщает о 
наличии признаков плохо го ответа. Тогда у пользователя будет сти­

мул усерднее поработать над ответом (быть может, добавить пример 
кода или картинку) и тем самым улучшить систему в целом. 

В этой главе мы создадим такой механизм. 

План действий 
Поскольку мы строим систему на основе сильно зашумленных реаль­

ных данных, эта глава не для слабых духом. Мы не найдем идеальный 
классификатор, дающнй столроцентную верность, поскольку часто 
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даже люди не могут прийти к согласию относительно кач.ества отве­

та (достаточно посмотреть на комментарии на сайте StackOveгtlo\v). 

Напротив, мы обнаружим, что некоторые задачи и, в LJастности, эта 

настолько трудны, LfТO по ходу дела приходится корректировать ис­

ходные цели . Мы начнем с классификац11и по ближайшим соседям , 

выясним, что этот подход не слишком пригоден для данной задачи, 

перейдем на логистнческую регрессию и в конце концов отыщем ре­

шение, которое дает прогноз достаточно высоко~-о качества, но н е на 

всех ответах. Напоследок мы посмотрим, как выявит ь победителя и 
развернуть его на целевой системе. 

Учимся классифицировать 

классные ответы 

Задача классификации - поставить в соответствие образцам данных 

подходящие классы, или метки. Для этого нужно ответить на два 

вопроса: 

как представлять образцы данных? 
какая модель или структура лежит в основе классификатора? 

Подготовка образца 
В простейшем варианте образец - это текст ответа, а метка - би ­

нарное значение, показывающее принял автор вопроса этот ответ или 

нет. Но простой текст - крайн е неудобное представление входных 

данных для большинства алгоритмов машинного обучения. Алгорит­
мам нужны числа. Поэтому наша задача - извлечь из текста полезные 

признаки, которые алгоритм сможет использовать для выработки 

метки. 

Настройка классификатора 
Подобрав достаточное количество пар (текст, метка), мы можем об­

учить классификатор. Вариантов существует множество, у каждого 

свои плюсы 11 минусы. Назовем лишь самые употребительные алго­
ритмы: логистическая регрессия, решающие деревья, метод опорных 

векторов (SVM), наивны1v1 байесовский классификатор. В этой главе 

мы сравним рассмотренный ранее метод, основанный на образцах, -
классиф11кацию по ближайшим соседяы - и метод лоп1сп1ческоl1 ре ­

грессии, основаннш\ на ~10дели. 
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Получение данных 
К счастью для нас, разработчики сайта StackOveгflo\v предоставля­
ют большую часть данных, обитающих во вселенной StackExcЬange, 
частью которой является и Stack0veгt1ow, на условиях лицензии 
cc->viki. На момент написания этой книги посл еднюю выгрузку дан ­

ных можно было скачать по адресу h ttps : //a r c hi ve . org/details / 

stac ke xcha nge . В нее входят данные со всех вопросно -ответных сайтов 

из семейства StackExcl1ange. Для StackOveгflo>\' имеется несколько 
файлов, нам из них пdнадобится только stac koverflow. com- Po s ts. 7z 

размером 5,2 ГБ . 

После распаковки мы получим примерно 26 ГБ данных в формате 
XML, содержащих все вопросы и ответы в виде элементов r ow, рас­

положенных внутри корневого элемента p o st s : 

<?xml version='l . 0' encoding= ' utf-8'?> 
<posts> 

<row Id=" 4572748" PostTypeid=" 2 " Parentid= "4 568987 " 
CreationDate= " 2011-01-01TO O : Ol : OЗ.387" Score = " 4 " ViewCount=" " 
Body=" &lt ; p&gt ; IANAL , but &lt ; a 
href=&quot ; http : //support.apple . com/kЬ/HT293l&quot ; 

rel=&quot ; nofollow&quot ; &gt ; this&lt ; /a&gt ; indica tes to те that you 
cannot use the loops in your 
application : &lt ; /p&gt ; &#xA ; &#xA ; &lt ; Ыockquote&gt ; &#xA ; 

&lt;p&gt ; . .. however, individual audio loops may&#xA ; not Ье 
commercially or otherwise&#xA ; distributed on а standalone basis, 
nor&#xA ; may they Ье repackaged in whole or in&#xA ; part as audio 
samples , sound effects&#xA ; or music beds . &quot ; &lt ; /p&gt ; &#xA ; 
&#хА; &lt ; p&gt ; So don ' t worry, you can make&#xA ; commercial music 
with GarageBand , you&#xA ; just can ' t distribute the loops as&#xA ; 
loops . &lt ; /p&gt ; &#xA ; &lt ; /Ьlockquote&gt ; &#xA ;" OwnerUserid="203568 " 
LastActivityDate=" 2011-01-01T00 : 01 : 03 . 387 " CommentCount=" l" /> 

</posts> 

Id 

PostType i d 

In teg e r 

In teger 

Уникальный идентифи катор 

Тип сообщения. Нам интересны 

только значения: 

• вопрос; 
· ответ. 

Остальные значения игнорируются . 



Имя 

Parent i d 

CreationDate 

Scor e 

ViewCount 

Body 

OwnerUserid 

Title 
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Тип 

In t eger 

DateTime 

In t eger 

Описание 

Идентификатор воп роса, к кото­

рому относится ответ (для вопро­

сов отсутствует) 

Дата отправки 

Оценка сообщения 

Integer или Empty Количество просмотров сообще­

ния 

Str i ng 

Id 

St r ing 

П олный текст сообщения в НТМL­

кодированном виде 

Уникальный идентификатор авто ­

ра сообщения. Если 1, то это во­
прос из вики 

Заголовок вопроса (для ответов 

отсутствует) 

AcceptedAnswerid Id Идентификатор принятого ответа 

(для ответов отсутствует) 

Comme ntCount Integer Количество комментариев к дан­

ному сообщению 

Сокращение объема данных 
Для ускорения экспериментов не стоит проверять идеи на всем ги­

гантском ХМL-файле. Нужно подумать, как извлеч1, из него репре ­

зентативную выборку, позволяющую все же решить, хороша идея или 
нет. Если оставить только элементы row с датой создан ия в 2012 году, 

то получится больше 6 миллионов сообщений (2 323 184 вопросов и 
4 055 999 ответов), этого достаточно для выборк и обучающих дан­
ных . Кроме того, мы не хотим работать с форматом XML, поскольку 
он тоже замедляет обработку. Чем формат проще , тем лучше. Поэто­

му мы разберем оставшуюся часп, ХМL-файла с помощью класса 

Python cE l ementTree и создадим файл с полями, разделенными зна­

ками табуляции. 

Предварительная выборка и обработка 

атрибутов 
Чтобы еще бол ьше сократнть объем дан ных, мы можем просто опу­

сппь атрибуты, которые , как нам кажется, помогут классификатору 
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отличить хорошие ответы от плохих. Но тут важно не переусердство­

вать. Некоторые атрибуты напрямую не влияют на классификацию, 
но сохранить их тем не менее необходимо. 

Так , атрибут PostTypeid нуже н, чтобы отличить вопрос от ответа. 

Как признак он не представляет ценности, но необходим для филь­

трации данных . 

Атрибут CreationDate может представлять интерес для определе­

ния промежутка времени между вопросом и ответом, поэтому оста­

вим его . Атрибут score , безусловно, важен - это индикатор мнения 

сообщества. 
А вот атрибут viewcount для нас, скорее всего , бесполезен. Даже 

если бы его и можно было использовать для разл ичения хороших и 

плохих ответов, эта информация недоступна н момент отправки от­

вета. В топку его! 

Понятно, что атрибут восtу содержит самую ценную информацию. 

Поскольку он представлен в НТМL-кодированном виде, нам нужно 

будет декодировать его и получить простой текст. 

Атрибут ownerlJserid был бы полезен, только если бы мы собира­
лись принимать в расчет признаки, зависящие от пользователя, чего 

мы делать не станем . Сейчас мы его отбросим , но рекомендуем по­

искать способы его использования для создания более качествен­
ного классификатора (быть может, совместно с данными из файла 
stackoverflow . com-lJsers . 7z ) . 

Атрибут тitle такжQ игнорируется , хотя он мог бы сообщить до­
полнительные сведения о вопросе . 

Игнорируется и атрибут CommentCount . Как и Viewcount , он мог бы 

помочь при классификации сообщений , существующих уже доста ­
точно долго (больше комментариев = менее понятный ответ? ). Но в 
момент отправки ответа он ничем не поможет. 

Атрибут AcceptedAnswerid аналогичен sco r e в том смысле , что яв­

ляется показателем качества сообщения. Поскольку он будет нужен 
нам в каждом ответе, то вместо сохранения этого атрибута мы заведем 
новый - IsAccepted, равный О или 1 для ответов и игнорируемый для 
вопросов (если Parentid=- 1 ). 

В итоге получается такой формат: 

Id <ТАВ> Pa rentid <ТАВ> IsAccepted <ТАВ> TimeToAnswe r <ТАВ> Score 
<ТАВ> Text 

Конкретные детали разбора смотрите в файлах so_xml_to_tsv. py 

и choose_instance . py . Скажем лишь, что для ускорения обработки 
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мы распределяем данные по двум файлам. В фа 1u1 ле meta . j so n хра­

нится словарь в формате JSON, отображающий идентификатор со­
общения на прочне данные, кроме техt. Например , оценку сообще­

ния можно получ11ть в виде meta [ Id] [ ' Score ' ] . В файле d ata . ts v 

хранятся з начения атрибутов I ct и тех t , который легко проl1итать 

таким методом: 

de f f e t c h _ post s () : 
f o r line in open( " data. tsv " , " r ") : 

pos t _i d , text = line . s pl it ( " \t " ) 
y i eld i n t (pos t _ i d ), tex t . str i p () 

Что считать хорошим ответом? 

Прежде чем обучить классификатор отличать хорошие ответы от 

плохих , нужно создать обучающие данные. Пока что у нас есть тол ь ко 

сами данные, а предстоит еще снабди1ъ их метками. 

Можно, конечно, просто :испол r,зовать в качестве метки атрибут 
I sAccepted. Ведь именно так помечается правильный ответ на вопрос. 

Однако это всего т 1 шь мнение автора вопроса. Естественно , спраши ­

вающему нужен ответ как можно быстрее, и он принимает первы й по­

нравившийся ему ответ. Но со временем могут быть поданы и дру 1-и е 

ответы, приl1ем некоторые из них могут быть лучше уже принятого . 

Но автор вопроса редко возвращается к своему вопросу, чтобы изм е ­
нить свое мнение. Поэтому образуется много вопросов, для которых 

принятым является вовсе не ответ с наивысшей оценкой. 

Другая крайность - взять ответы с самой высокой и самой низкой 

оценкой как положительный и отри цательный примеры соответ­

стве~-rно. Но что делать с вопросами, на которые есть только хорошие 

ответы, скажем оди н , заслуживший два балла, и другой с четырьмя 

баллами? Действительно ли следует считать ответ с двумя баллам и 
отрицательным примером только потому, что у него оказалась самая 

низкая оценка? 

Нужно найти что-то среднее. Есл и считать все ответы с оценками, 

большими нуля, положительными прим ерами, а ответы с оценками, 

меньшими или равными нулю, - отрицательными, то получаются 

вполне разумные метки: 

>>> a l l_answer s = [q f or q , v in meta . i tems () if v [ ' Pare n tid ' ] ! =- 1] 
>>> У = np . asa r ray ( [me t a [answe r i d] [ ' Score ' ] >O for answer i d in 
a ll_ an s we r s ] ) 
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Создание первого 

классификатора 
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Начнем с простого и элеганп-rоrо метода ближайших соседей, рассмо­

тренного в предыдущей главе. Хотя и не такой продвинутый, как дру­

гие методы, он все же весьма эффективен: поскольку он не основан на 

модели, обучить его можно практически по любым данным. Но у этой 
элегантности есть и оборотная сторона, с которой мы очень скоро по­

знакомимся . 

Метод k ближайших соседей 
На этот раз мы не станем реализовывать его сами , а возьмем из 

библиотеки sk l ea rn . Классификатор находится в пакете sk l earn. 

neighbors . Начнем с простого классификатора по двум ближайшим 

соседям: 

>>> f r om s kl ea rn i mport neighbors 
>>> knn = neighbo rs . KNeighbo r sClassiher (n neighbors=2) 
>> > print (kn n ) 
KNe i ghborsC lass ifie r (algori t hm= ' auto ', l eaf _siz e=ЗO , 

met ri c= 'mi nkows ki', n_n e i ghbors =2 , р= 2, we i ghts= ' uniform ' ) 

Интерфейс этого классиф11катора такой же, как у всех других про­

гностических моделей в sk l earn: обучаем с помощью метода fit ( J, 

после чего можем предсказывать класс новых образцов методом 

predict (): 

» > kn n. fi t ( [ [ 1] , [ 2] , [ 3] , [ 4 ] , [ 5] , [ 6 ] ] , [О , О , О , 1, 1 , 1 ] ) 
>>> knn . p r edict (l . 5 ) 
array ( [ О] ) 
>>> knn . predict (37 ) 
arra y ( [1 ] ) 
>>> kn n. predict ( З J 

ar r ay ([ О] ) 

Для получения вероятностей классов служит метод predict_ 

proba ( J. В случае двух классов , О и 1, он вернет массив из двух эле­

ментов: 

>>> knn . predict_proba(l . 5) 
a r ray ( [ [ 1., О . ] ] ) 
>>> kn n. predict_proba (37 ) 
array ( [ [ О. , 1 . ] ] ) 
>>> . knn. predict_p roba ( З . 5 ) 

ar r ay ([[ 0 . 5 , 0 . 5]] ) 
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Подготовка признаков 

Так каким11 приз н аками мы можем снабдить н аш классификатор? 

У каких предположительно будет максимальиая разл ичающая спо­
собность? 

Атрибут TimeToAns wer уже имеется в нашем словаре me ta, но мало­
вероятно, что сам по себе он представляет большую ценность. Есть 

еще атрибут техt, но просто так мы не можем передать его классифи­
катору, потому что признаки должны быть числовыми. Необходимо 
проделать грязную (и увлекательную!) работу по выделению призна­

ков из текста. 

В касrестве одной из характеристик качества можно было бы взят~, 

число гиперссылок в ответе . В осtюве этого решения лежит предполо­

жение о том , что чем больше гиперссылок, тем тщател ьнее продуман 
ответ и тем выше шансы, что за н его проголосуют. Конечио, учиты­

вать нужно только ссылки в обычном тексте , а н е в примерах кода: 

import re 

code match 

link match 

tag_match 

re . comp i le('<pre> (.*?) </p re > ', 
re . MULT ILI NE 1 r e . DOTALL) 

r e . compile( ' <a href= " http : // . *? " .* ?> (.* ? ) </ a> ', 
re . MULTI LINE 1 r e . DOTALL) 

re . compile ( ' <[л>]*> ', 

re . MULT ILINE re . DOTALL) 

def extract_features_ from_body (s): 
l i nk count in code = О 

~ подс читываем число ссылок в коде , ~тобы потом вычесть его 
for ma tch_st r in code_match . findal l( s ): 

l i nk_coun t_in_code += len(link_match.findall(match_str)) 

return len(l i nk_match . findall(s)) - link_cou nt in code 

В производственной системе не следует разбирать НТМL-код с по ­

мощью регулярных выражений. Есть отличные библиотеки, нап ри ­

мер BeautifulSoup, которые прекрасно сп равляются с различными 
странностями , которыми изобилует ти пичная НТМL-разметка . 

Это поз воляет сгенерировать один признак для каждого ответа. Но 

прежде чем приступать к обучен11ю классификатора, разберемся, н а 
каких данных мы будем его обучать. Первое представление можно 

составить н а основании распределения частот нашего приз нака. Для 

этого нужно построить графнк процентной встречаемости каждого 

з наче ния в данных. Вот он: 



Создание первого классификатора 
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Оказывается, LIТO в большинстве сообщений нет ни одной ссылки, 

так что, имея только этот признак, хороший классификатор не обу­
чить. Тем не менее, попробуем - и посмотрим, что получится . 

Обучение классификатора 
Чтобы получить классификатор , мы должны передать обучающе­

му алгоритму kNN (k ближайших соседей ) массивы признаков Х и 
сопоставленных им меток У: 

Х = np.asarray([extract_ features_from_body(text) for post_id, text in 
fetch_posts () if post_id i n all_answers ]) 

knn = ne ighbors . KNeighborsClassifier () 
knn.fit ( Х , У) 

Поскольку использовались параметры по умолчанию, то получил­

ся обученный классификатор SNN (то есть по 5 ближайшим соседям). 
Почему именно SNN? Потому что при нынешнем состоянии знаний 

о данных мы понятия не имеем , каким должно быть k. Когда узнаем 
побольше , тогда и решим, какое взять значение k. 

Измерение качества классификатора 

Нужно точно решить, что именно мы собираемся измерять. Наив­
ный, но самый простой способ - измерить среднее качество пред-
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сказания по всему тестовому набору. Получ11тся число между О (все 

предсказания неверны) и 1 (все предсказания правильны). Верность 
можно получить с помощью метода knn . score (). 

Но, как было сказано ранее, недостаточно сделать это один раз, 

нужно применить перекрестную проверку, воспользовавшись гото­

вым классом KFold из модуля sklearn . c r oss_ validation . Затем мы 

смотрим, насколько расходятся средние оценки, получею1ые на каж­

дом проходе, в терминах стандартного отклонения. 

from sk l ea rn . cross validation import KFo ld 
sco r es = [] 

cv = KFol d (n=l e n(X) , k= lO, indices=True ) 

for train , test i n cv : 
X_train , y_ train = X[train] , Y[trai n ] 
X_test , y_test = X[test] , Y[test] 
clf = neighbors .KNeighborsClassifier () 
clf . fit(X , У) 

scores . append(clf . score (X_test , y_test )) 

print ( " Mean (scores ) =%. 5 f \tStddev (scores ) =%. 5f " \ 
%(np.mean(scores ), np . std(scores ))) 

Получается такой результат: 

Mean(score s )= 0 . 502 50 Stddev (scores ) =0.055591 

Никуда не годится . Верность 55% н емногим лучше по1tбрасывания 

монетки . Очевидно, количество ссылок в сообщении - не лучши1! 

индикатор качества ответа. То есп, различающая способность этого 

признака мала - по крайней мере , для классификатора kNN с k=5 . 

Проектирование дополнительных 

признаков 

В дополнение к числу rи:перссылок неплохим показателем может 

оказаться число строк кода в ответе . По край н ей мере, для автора во­

проса это, скорее всего , важно. Фрагменты кода находятся между те ­

гами <p re > и </pre>. А после выделен11я кода подсчитаем число слов в 

сообщении без учета слов в коде. 

def extract_features_from_body (s ): 
num code lines = О 

link count in code = О - - -
code free s = s 

~ извлечь исходный код и подсчитать число строк 



Создание первого классификатора 

for match_str in code_match . findall(s ): 
num_code_lines += match str.count ( ' \n') 
code free s = code_ma tch . sub ("" , code free s ) 

# Иногда в исходном коде встречаются ссылки , которые 

# мы не хотим учитывать 
link_ count in_code += len (link_ match .finda ll (match str)) 

links = l ink_match .findall(s ) 
l ink count = len (l i nks) 
link count - = l i nk count in code 
html f r ee s re . sub ( " +", "", 

l ink f r ee s 
tag_match.sub( ", code free_s)) .replace (" \n ", "" ) 
html free s 

# перед подсчетом слов удалить ссылки из текста 
for l ink in links : 

if link.lower () . startswith (" http : // " ): 
link free s = link _ free s . replace ( link , ' ' ) 

num text tokens html free s . count( " " ) 

return num text tokens , num_ code_ lines , l ink_ coun t 

Из графика видно, что, по крайней мере, число слов в сообщении 
варьируется в более широких пределах: 
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Значение 

Обучение на большем пространстве признаков несколько повыша­
ет верность: 

Mean (scores ) =0.59800 Stddev(scores)=0.02600 

Конечно, это означает, что 4 из 10 предсказаний будут неверны. Но 

мы хотя бы движемся в правильном направлении. Чем больше при-
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знаков, тем выше верность, а , знач11т, надо добавить новые признаки. 

Возьмем такие признаки. 

AvgSentLen: среднее число слов в предложе~1ии. Быть может, 

особенно хорошими считаются ответы, которые не перегружа­

ют мозги читателя слишком длинными предложениями? 

AvgwordLen : среднее число символов в словах, составляющих 

сообще1ше. 
NumAllCaps: LJисло слов, записанных только заглавными буква­

ми; это считается дурным тоном . 

NumExclams : число восклицательных знаков. 

На графиках ниже показаны распределения средних длин предло­

жения и слова, количества слов, залиса1шых заглавными буквами, и 
количества восклицательных знаков. 
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Теперь каждое сообщение характеризуется семью признаками. По­
смотрим, чего мы добились: 

Mean(scores )=0 . 61400 Stddev (scores)= 0.02154 



Как поправить дело? ••IШ 
Любопытно. Мы добавили четыре лризнака и ничего не получили 

взамен. С чего бы это? 
Чтобы понять, в чем дело, нужно вспомнить, как работает клас­

сификатор kNN. Наш классификатор SNN определяет класс ново­

го сообщения , вычисляя семь приз наков: L inkCou n t, NumTextтoken s , 

NumCodeL i nes , AvgSe n t L e n, AvgWo rdLen , NumAl lCaps И NumEx c l ams , ПОСЛе 

чего находит пять ближайших сообщений. В качестве класса нового 

сообщения берется класс, к которому относится большинство бли-
u u А б i 

жаиших соседеи . лизость определяется путем ВЫLJИ сления евкли-

дова расстояния (поскольку мы не сказали нич его другого, принято 

знач ение по умолчанию р=2 , где р - п араметр метрики Минковско­

го). Это означает, что все семь признаков считаются равноправными. 
В частности , kNN не понял , что признак NumTe x t Token s хорош, но го­

раздо менее важен, чем NumL inks. Рассмотрим два сообщения А и В, 
отличающиеся только показанными ниже признаками, и сравним их 

с новым сообщением: 

Сообщение Numlinks 

А 

в 

новое 

2 

о 

NumTextТok'ens 

20 

25 

23 

Мы считаем , что ссылки ценнее обычного текста, однако класси­

фикатор думает, что сообщение В больше похоже на новое, ч ем А. 

Очевидно, у классификатора kNN имеются трудности в части пра­

вильного использования доступных данных. 

Как поправить дело? 
Для улучшения результатов у нас есть следующие пути . 

Добавить еще данные. Быть может, данных просто недоста­

точно для обучения алгоритма и нужно добавить еще? 

Поэкспериментировать со сложностью модели. Быть может, 

модель недостаточно сложна? Или наоборот слишком слож­

на? В таком случае следует уменьшить k, чтобы модель прини­
мать в расч ет меньше соседей и , следовательно, давала лучшие 

предсказания на нерав номерно распределенных данных. Или 

увеличить k для достижения противоположного результата. 
Изменить пространство признаков. Быть может, мы выбрали 
не те признаки? Можно было бы, к примеру, изменить шка-
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лу уже отобранных признаков или придумать какие-то новые. 

А, возможно, следует исключить часть текущих признаков , по­

тому LJТO они , по существу, ха рактеризуют одно и то же. 

Изменить модель. Быть может, модель kNN не годится для 
нашего случая, и с ее помощью никогда н е удастся достичь хо­

рошего качества предсказаний , вне зависимости от сложности 

и изощренности пространства признаков? 

На практи ке, доi'rдя до этой развилки, исследователь зачастую пы­

тается улучшить качество наугад, без какой -то системы выбирая тот 

или иной вариант в надежде случайно наткнуться на идеал 1,ную кон­

фигурацию. Мы тоже могли бы поступить таким образом, но это, без 
сомнения , :шняло бы больше времени, ч ем взвешенные действия на 

осгюве знаний . Поэтому пойдем по второму пути, для ч е го придется 

сн ачала познакомиться с дилеммой смещения-дисп ерси и. 

Дилемма смещения-дисперсии 

В главе 1 мы пытались подобрать полиномы различной сложности , 

определяемой степенью ct, для аппроксимации данных. Мы поняли, LJТO 

линейная функция не годится, потому что сама пр11рода данных нели ­

ней на. И как бы мы ни изощрялись, двумерная модель неизменно бу­
дет видеть прямую линию. Мы говорим , что у модели сли шком высо­

кое смещение в пр11менении к имеющимся данным. Она недообучена. 
Мы продолжили экспериментировать с размерностью и обнаружи ­

ли, что 100-мерны~"~ полином слишком близко подгоняется к данным, 

на которых был обу чен (тогда мы еще н е знали о разделении данных 

на обучающие и тестовые). Мы поняли, что модел r, так сильно пе ­

реобуч е н а, что , выб нрая разные подмножества им еющихся данных, 

мы будем получать совершенно разные полиномы. Мы говорим, что 
у модели слишком высокая дисперсия в применении к им еющимся 

данным. Она переобучена . 

Это две крайности, между которыми распол а гается большинство 
задач машинного обучения . В идеале хотелось бы иметь одновремен­
но низкое смещение и низкую дисперсию. Но м11р далек от совер­

шенства, поэтому приходится 11скать компромисс. Улучшая одно, мы 

обычно ухудшаем другое. 

Устранение высокого смещения 

Предположим, что модел r, страдает от высоко 1-о смещения . В та ­

ком случае добав.11е 11и е новы х обучающ11х данных 1re поможет. И уж 



Как поправить дело? 

точно не поможет исключение признаков, потому что модель и так 

чрезмерно проста. 

Остается только три возможности: увеличить число признаков, ус­

ложнить модел ь или изменить ее. 

Устранение высокой дисперсии 
Напротив, если для модели характерна высокая дисперсия, значит, 

она слишком сложна для имеющихся данных. В таком случае нужно 

либо добыть дополнительные данные, либо уменьшить сложность. 

Иными словами, увеличить k, приняв во внимание больше соседей, 
или исключить часть признаков . 

Низкое или высокое смещение? 
Чтобы понять, в чем на самом деле заключается проблема, доста­

точно построить графики зависимости погрешностей на обучающих 
и тестовых данных от размера набора. 
Для высокого смещения характерно небольшое убывание погреш­

ности на тестовых данных в начале с дальнейшим выходом на очень 

высокое плато, приближающееся к погрешности на обучающих дан ­

н ых по мере роста размера набора. Для высокой дисперсии характе­

рен большой разрыв между двумя кривыми. 
Построив графики погрешностей для классификатора SNN, мы 

увидим значительный разрыв между погрешностями на обучающих 

и тестовых данных, указывающий на наличие высокой дисперсии: 
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Взглянув на график, мы сразу понимаем, что добавление обучаю­

щих данных не поможет, поскольку пунктирная линия, соответству­

ющая погрешности на тестовых данных, похоже, устойчиво проходит 

выше 0,4. Единственный шанс - уменьшить сложность - либо увели ­

чив k, либо сократив пространство признаков. 
Но здесь сокращение пространства признаков не помогает. В этом 

легко убедиться, построив графики для пространства признаков, со­
стоящего только из признаков L i nkCoun t и NurnTextTo k e n s : 
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Похожие графики получаются и при исключении других призна­

ков. Какое бы подмножество признаков ни взять, характер графика 

не меняется . 

Но хотя бы уменьшение сложности модели за счет увеличения k 
дает какой-то положительный эффект: 

k !11ea11(scores) stddev(scores) 
~, .с..1:, ._ !:\' 

40 0.62800 0 .03750 

10 0 .62000 0 .04111 

5 0.61400 0 .02154 

Однако он недостаточен и за него приходится расплачиваться уве­

личением времени классификации. Воз ьмем, к примеру, значение 

k=40 , при котором погрешность на тестовых данных очень низкая. 



Логнстнческая регрессня 1 1 •ШJ 
Для классификации нового сообщения нам пришлось бы найти 40 
ближайших сообщений: 
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Очевидно , в нашем случае классификация по ближайшим соседям 

оказывается проблематичной . И у нее есть еще один недостаток. Со 
временем количество сообщений в системе будет только возрастать. 
А поскольку метод ближайших соседей основан на образцах, то все 
сообщения придется хранить в системе. Чем их больше, тем медлен­

нее будет работать система. В этом отличие от систем на основе мо­
делей, в которых мы пытаемся построить модель, исходя из данных. 

Итак, у нас набралось достаточно причин отказаться от метода 
ближайших соседей и поискать какой-нибудь другой классификатор. 

Конеч но , не исключено , что существует какой-то t1удо-признак, о ко­

тором мы не догадались. Но з нать этого нам не дано, поэтому пере­

йдем к другому алгоритму, который заведомо хорошо справляется с 

классификацией текстов. 

Логистическая регрессия 
Несмотря на название, логистическая регрессия - это метод класси­

фикации. Очень эффективный метод, когда требуется классифици­

ровать тексты; а достигается это посредством выполнения регрессии 

для логистической функции - отсюда и название. 
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Немного математики на простом 

примере 

Чтобы понять, каI< работает логисти ческая регрессия, рассмотрим 

следующий пример, в котором на график наиесены значения гипоте­

тического признака Х и соответствующие классы, О и 1. Как видим, 
данные зашумлены, так что классы перекрываются в диапазоне значе­

ний признака от 1 до 6. Поэтому лучше моделировать не сами дискрет­

ные классы, а вероятность того, что значение признака принадлежит 

классу 1, - Р(Х). Имея такую модель , мы сможем сказать, что образец 

принадлежит классу 1, если Р(Х) > 0.5, и классу О в противном случае . 
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С точки зрения математики, всегда трудно моделировать вел ичину, 
имеющую конечную область значе ний , например, ди скретные метки 

О и 1. Но можно ввести в рассмотрение вероятности, которые всегда 
находятся между О и 1. Для этого нам потребуется отношение шансо в 
и его логарифм. 

Допустим, вероятность того, что признак принадлежит классу 1, 
равна 0.9 - Р(у= 1) = 0.9. Тогда отношение шансов определяется как 
Р(у=1)/Р(у=О) = 0.9/ 0.1=9. Можно сказать , что шансы признака по­

пасть в класс 1 равны 9:1. Если Р(у=О.5), то шансы попасть в класс 1 
равны 1:1. Отношение шансов снизу ограничено О, а сверху бесконеч­

ностью (левый из двух графиков ниже). Если взять его логарифм , то 

можно будет отобразип, множество вероятностей в диапазоне от О 

до 1 на всю вещественную ось от минус до плюс бесконечности (пра­
вый из двух графиков). Важно, что это отображение монотонно - чем 

больше вероятность, тем больше логарифм отношения шансов, - од­

нако 1\•1ы уже не ограничены только значениями О или 1. 
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Это означает, что теперь мы можем подогнать линейные комби­
нации наших признаков (да, сейчас признак только один, к тому 

же константный, но это скоро изменится) под значения log(odds) . 
То есть мы заменяем линей ную функцию У; = с0 + с 1х; функцией 

/og(_l!_j_)= с0 + с1 х (подставляя log(odds) вместо у). Решая это 
1- Р; 1 

уравнение относительно р, получаем Р; = -( с +с , . ) . ' 1 + е о ,. ' 

Нам нужно только подобрать коэффициенты, так чтобы эта фор­
мула давала наименьшие погрешности для всех пар (х;, р) из нашего 

набора. Но как раз это умеет делать библиотека scikit- leaгn . После 
того как коэффициенты найдены, мы можем по этой формуле вычис­

лить вероятность принадлежности любого нового образца классу 1. 

>>> fr om sklearn . linear_model import LogisticRegress ion 
>>> c lf = LogisticRegression() 
»> print (c l f) 
Log1 s t1cRegression(C=l. O, c la ss weight=None , dual=False , 
fit_intercept =True , intercept_ scaling=l , penalty=l2 , tol=0 . 000 1 ) 
»> c lf . fit ( Х , у) 

>>> print (np.exp(clf . inte rce p t _) , np . e xp (c lf.coef_ .ravel ())) 
[ 0 . 09 437188] [ 1. 800941 12 ] 
>>> def lr_mode l( c lf , Х ): 

retur n 1 / (1 + np.exp (-( c lf . i ntercept + clf . coef_*X))) 
»> p r i n t ("Р ( х= - 1) =%. 2f\tP ( х=7 ) =% . 2 f " % (lr_mode l (clf , - 1) , 
lr_model (clf , 7 ))) 
Р(х= - 1 ) =0 .05 Р(х= 7) =0 . 85 

Вероятно, вы обратили внимание, что scikit- l ea гn возвращает пер­
вый коэффициент - свободный член - в сп ециальном поле intercept_. 
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Изобразив найденную модель на графике, мы увидим, что она от­

лично согласуется с данными. 
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20 

Признаемся, что пример из предыдущего раздела специально вы­

бран для демонстрации красоты логистической регрессии. Но как она 

поведет себя на реальных зашумленных данных? 

В сравнении с классификатором по ближайшим соседям ( k= 40) не­

много лучше, но кардинально ситуация не изменилась. 

',; !\ < !• '{ , 

1 ,,r-л;r~д:.' . ' mean(scares)' .,, 
11 i ' ·,; 1 

LogReg С=О .1 0.64650 

LogReg С=1 .ОО 0.64650 0.03155 

LogReg С=10 . ОО 0.64550 0.03102 

LogReg С=О.01 0.63850 0.01950 

40NN 0.62800 0.03750 

Здесь показана верность для различных значений параметра ре­

гуляризации с . Он позволяет управлять сложностью модели, как па­

раметр k для метода ближайших соседей . Чем меньше с, тем выше 

штраф за сложность модели. 

Беглый взгляд на диаграмму смещения-дисперсии для варианта с 

с=о. i показывает, LJТO у нашей модели высокое смещение - кривые 



Не верностью единой - точность и полнота 

погрешностей на обучающих и тестовых данных близки, но остаются 

на недопустимо высоком уровне. Это означает, что алгоритм логисти­

ческой регрессии при текущем пространстве признаков недообус1ен, 

поэтому модель не полностью отражает особенности данных . 
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И что теперь? Мы сменили модель, сделали для ее настройки все, 

что могли при нынешнем уровне знаний, но удовлетворительного 

классификатора так и не получили. 

Все сильнее подозрение, что данные слишком зашумлены для этой 

задачи или что наш набор признаков не позволяет различать классы 
с достаточной уверенностью. 

Не верностью единой - точность 

и полнота 

Отступим назад и подумаем, чего мы хотим достичь . На самом деле, 

нам не нужен классификатор, который точно определяет хорошие и 

плохие ответы в терминах верности. Если бы мы смогли настроить 
классификатор, так чтобы он особенно хорошо предсказывал какой­
то один класс, то сумели бы соответственно организовать обратную 
связь с пользователем. Если бы, например, классификатор всегда 
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правильно определял, что ответ плохоlr, то мы ничего не сообщали бы 

пользователю, пока классификатор не скажет: «Это плохой ответ >.'> . 

Наоборот, если бы классификатор гениально предсказывал хорошие 
ответы, то мы могли бы показывать полезные подсказки в начале и 

убирать их, когда классификатор признает ответ хорошим. 
Чтобы узнать, в какой ситуации мы находимся, понадобится уме­

ние измерять точность и полноту. А понять, что это такое, нам по­

может следующая таблица, в которой приведены четыре результата 
классификации. 

Классифицирован как 

Отрицательный 

По,nожительный 

Истинно 

положительный (ТР) 

Ложноположительный 

(FP) 

Отрицатеl)ь~ый 

Ложноотрицательный 

(FN) 

Истинно 

отрицательный (TN) 

Например, если классификатор определяет, что образец положи­

тельный, и он действительно положительный , то имеет место истин­

но положительный результат. С другой стороны , если классификатор 

определяет, LJТO образец отрицательный, хотя на самом деле он поло­

жительный, то имеет место ложноотрицательный результат. 

Нам нужно, чтобы была высока частота правильного предсказания 
хотя бы одного класса, необязательно обоих. То есть требуется, чтобы 
количество истинно положительных результатов было максимально. 
Это свойство характеризуется точ носп,ю: 

ТР 
Точиость = ---­

TP + FP 

Если бы, 1-~апротив, мы хотели пра вильно определять как можно 

больше плохих или хороших ответов , то нас интересовала бы полно­

та: 

ТР 
Полиота = ---­

TP + FN 

На рисунке ниже точность - это отношение площади пересеl1ения 

к площади правого эллипса, а полнота - это отношение площади пе ­

ресечения к площади левого эллипса. 
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Ответы, 
классифицированные 

как хорошие и на самом 

деле являющиеся 

таковыми 

(ТР) 

&111• • 11111 

Все хорошие 
ответы 

(ТР + FN) 

Все ответы, 
классифицированные 

как хорошие 

(ТР + FP) 

Ну и как же нам максимиз ировать точность? До сих пор в качестве 

порога, отличающего хороший ответ от плохого , мы брали 0.5. А те­
перь мы можем вычислить ТР, FP и FN, меняя порог в диапазоне от О 
до 1. Зная эти вел ичины, мы затем сможем построить график заuнси­

мости ТОЧНОСТИ ОТ ПОЛНОТЫ. 

Все вычисления за нас проделает функцня precision_recall 

curve () и з модуля metiics: 

>>> from skl earn.metr i cs import p r ecision_reca l l_curve 
>>> precision , recall , thresholds precision reca l l curve (y_test , 

clf.predict (X_test) ) 

Приемлемое качество предсказания одного класса не означает, 

что и другой класс предсказывается столь же хорошо. Это видно из 

следующих двух графиков , где изображены кривые зависимости точ­
ности от полноты для классификации плохих (левый график) и хоро­

ших (правый график) ответов . 
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В эти графики мы включили также гораздо лучшую характеристику 

качества классификатора - площадь под кривой (AUC). Ее мож­
но интерпретировать как среднюю точность классификатора. Для 

сравнения разных классификаторов она очень удобна . 

Как видно, мы можем забыть о предсказании плохих ответов (ле­

вый график). Точность высока только при очень низкой полноте , а 

затем остается на неприемлемо низком уровне 60 процентов. 
Что же касается хороших ответоо, то мы можем получить точность 

выше 80% при полноте почти 40%. Найдем, какое для этого нужно 
пороговое значение . Во время обучения нескольких классификато­
ров на разных группах (вспомните о функции KFold () ) нам нужно 

отобрать классификатор не слишком хороший и не слишком плохой , 
дающий реалистичный взгляд на вещи. Назовем его средним клоном: 

>>> medium = np . argsort (scores) [ int (l e n (scores ) / 2 ) ] 
>>> thre sho l ds = np . hstack(([OJ , thresholds [medium] )) 
>>> idx80 = precisions>=0.8 
»> print (" P= %. 2f R=%. 2 f th r esh= %. 2f " % (p recision [ idx80][0] , 

recall [idx80] [ 0] , threshold[idx80] [0])) 
Р=О . 80 R=0 . 37 thresh=0 . 59 

Задав порог о . 59 , мы сможем достичь точности определения хо­

роших отоетов 80% при низкой полноте 37%. Это означает, что мы 
будем распознавать только один из трех хороших отоетов. Но уж эта 

треть будет действительно хорошей. Что до остальных, то мы можем 
оежливо предложить общие советы о том, как улучшип, качество от­

вета. 



Упрощение классификатора 1 • DD 
Чтобы применить этот порог к процессу предсказания, нужно 

воспользоваться функцией predict_proba () ,которая возвращает ве­

рояпюсти классов, а не фу нкц11 е(r predict (), возвращающей сами 

классы . 

»> thresh80 = threshold [ idx80] [О] 
>>> probs_for_good = clf . p redict_proba (answer features) [:,1] 
>>> answer_class = probs_ for_good>thresh80 

Убедиться в том, что мы попадаем в желаемый диапазон точности 

И ПОЛНОТЫ, ПОЗ ВОЛИТ функция classification_report : 

>>> from sklearn.metrics i mport classification report 
>>> print (classification _ report (y_ test , clf .predict_proba [: , 1] >О . 63 , 

target_ names= [ ' not accepted ', ' accepted ' ] )) 

precision recall fl - score support 
not accepted 0 . 59 0 . 8 5 0 . 70 101 
accepted 0 . 73 0 . 40 0 . 52 99 
avg / total 0 . 66 0 . 63 0 . 61 200 

---------· -!"--. - "_.,. ··-... --. ____ .... " 
Отметим, что использование порога не гарантирует, что мы никогда 

не опустимся ниже той точности и полноты , для которых был оп ре ­

делен порог. 

Упрощение классификатора 
Всегда имеет смысл посмотреть на фактический вклад отдельных 

признаков. В случае логистической регрессии мы можем получить 

представление о влиянии признаков прямо по найденным в процес­

се обучения коэффициентам ( clf . coef_ ). Чем выше коэффициент 

при признаке, тем большую роль этот признак играет в определении 

качества сообщения. А отрицательные коэффициенты означают, что 
высокое значение соответствующего признака свидетельствует о том, 

что ответ плохой. 

Как видно на рисунке ниже, наибольшее влияние на решение клас­

сификатора оказывают признаки LinkCount, AvgWordLen , NumAllCaps и 

NumExclams, тогда как Numimages ( пр 11 з1-~ак, катары (1 мы ввели в послед­

нюю секунду просто для демонстрации) и Avg SentLen играют куда 

меньшую роль . В целом важность признаков силасуется с интуици­

ей, но тот факт, что Numimages практически игнорируется, вызывает 
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удивление. Обычно ответы, содержащие картинки, котируются вы­

соко . Но на практике ответов, содержащих картинки, очень мало. То 

есть в принципе признак очень полезный, но настолько редкий, что 

реальной ценностью не обладает. Его можно спокойно опустить - на 

качестве классификации это не отразится . 

Важность признаков для LogReg С= 0.10 
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К поставке готов! 
Допустим, мы хотим интегрировать этот классификатор с сайтом . 

Чего нам точно не надо, так это повторного обучения всякий раз , как 
запускается служба классификации. А traдo сериализовать классифи­

катор после обучения и затем десериализовать в процессе разверты­

вания на сайте: 

>>> i mpo r t pickle 
>>> pickle . dump (clf , open (" logreg . dat ", " w" )) 

>>> c l f = pickle . load(ope n( " l og r eg . dat ", " r ")) 



Резюме 

Ну вот, теперь классификатор готов к работе, как будто его только 
обучили. Принимайте поздравления! 

Резюме 
Мы сделали это! Для очень зашумленного набора данных мы по­

строили классификатор , который решает поставленную задачу хотя 

бы частично . Правда, нам пришлос ь пойти на поводу у прагматики и 

немного изменить первоначальную цель, иначе она осталась бы недо­

стижимой. Но попутно мы узнали о сильных и слабых сторонах алго­
ритма ближайших соседей и логиспrческой регрессии . Мы научились 

выделять такие признаки , как LinkCount, NumTextToken s , NumCode L i n e s , 

AvgSentL e n, AvgWo rdLe n, NumAl lCaps , NumEx clams И Numi mages , И анализи­

ровать их влияние на качество классификации. 

Но еще ценнее тот факт, что мы поняли, как целенаправленно от­

лаживать плохо работающие классификаторы. В будущем этом по­
зволит доводить системы до работоспособного состояния гораздо 

быстрее. 
Познакомившись с методом ближайших соседей и логистической 

регрессией, в следующей главе мы рассмотрим еще один простой, 

но эффективный алгоритм классификации: наивный байесовский . 

И по ходу дела изучим дополнительные средства из библиотеки 
scikit -l ea г п. 



• 
fЯАВА6. 

Кnассификация 11 - анаnиз 
..., 

эмоционаnьнои окраски 

Для компаний жизненно важно внимательно следить за тем, как об­
щество реагирует на такие значимые события, как вывод на рынок но­

вого продукта или выпуск пресс- релиза. В наши дни, когда так легко в 

реальном времени читать сообщения пользователей в Твиттере, стало 
возможно классифицировать твиты по эмоциональной окраске. Эта 

технология, которую иногда называют также «добычей мнений~>, на­

ходится на переднем крае исследований, и несколько компаний уже 

продают подобные услуги. Ну а раз существует спрос, то у нас есть все 

основания потренировать подросшие в предыдущей главе мускулы, 

разработав собственный классификатор эмоций . 

План действий 
Анализировать эмоционал ьную окраску твитов особенно сложно из ­
за ограничения на размер твита - всего 140 1 символов . Отсюда и спе­

циальный синтаксис, и неста ндартные аббревиатуры и н еправильно 

построенные предложения. Типиlrный подход - грамматический 

анализ предложений, агрегирование эмоциональной информации по 

абзацам и, наконец, вычисление общей эмоцио нал ьной окраски до­

кумента - здесь не годится. 

Понятно, что мы не ставим целью созда ни е в1,1сококачественного 

классификатора эмоций . Наша задача скромнее: 

воспользоваться этим примером для з накомства еще с одним 

алгоритмом классификации, наивным байесовским ; 
объяснить, как работает частеречная разметка и чем она нам 

поможет; 

продемонстри ровап, новые лр11 емы работы с библиотекой 

sc iki t -lea гп , которые 11ногда оказываются полезными. 
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Чтение данных из Твиттера 
Естественно , нам понадобятся твиты и ассоциированные с ними мет­

ки , описывающие эмоциональную окраску: положительную , отрица­

тельную или нейтральную . В этой главе мы будем работать с корпу­

сом и з более 5000 твитов, который вручную разметил Ниек Сандерс 

(Niek Sandeгs); большое ему спасибо за шобезное разрешение вос­
пол ьзоваться плодами этого гигантского труда . 

Чтобы не нарушать условия обслуживания, мы не станем в кни­

ге приводить ни сами твиты, ни какие-либо данные, полученные из 
Твиттера, а будем пользоваться размеч енными Сандерсом данными, 

в которых указаны идентификатор твита и проставленная вручную 

эмоционал ьная окраска, а также показанным ниже скриптом i nstall. 

ру , который загружает соответствующие твиты. Поскольку скрипт 

стремится не перегружать серверы Твиттера, для ска lшвания более 

5000 твитов потребуется некоторое нремя . Так что запускайте его 
прямо сейчас. 

Данные сопровождаются одной из четырех меток эмоциональной 

окраски: 

>>> Х , У= l oad_sa nders_data ( ) 
>>> classes = np . unique (Y) 
>>> for с in classes : print( " # %s : %i " % ( с , sum(Y==c ))) 
#irrelevant : 490 
#negative : 487 
#neutral : 1 952 
#posi ti ve : 4 33 

В функции l oad_sanders_data() мы объединяем нерелевантные и 
нейтральные метки в одну - нейтральную - и отбрасываем твить1 на 

любых языках, кроме английского, так что в итоге получается 3362 
твита . Если у вас получил ись другие счетчики , то , быть может, за про­
шедшее время некоторые твиты были удалены или сделаны закрыты­

ми. В таком случае числа и графики в последующих разделах будут 

выглядеть немного иначе . 

Введение в наивный 

байесовский классификатор 
Наивная байесовская классификация - пожалуй, один из самых эле­

гантных практически используемых алгоритмов машинного обуче­
ния. Вопреки своему названию, он отнюдь не так наивен , если судить 
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110 качеству результата. Он устойчив к нерелевантным nризнакам, 

которые попросту игнорирует. Он быстро обучается и быстро возвра­

щает nредсказание. Он потребляет не очеН1, много памяти. Так поче­

му же его называют наивным? 

Слово «наивный ~> относится к предположен ню, необходимому для 

оптимальной работы байесовского класс11фикатора. Состоит оно в 
том, что признаки не оказывают влия1 111 я друг на друга. В реальных 

приложениях так бывает редко. И, тем н е менее, на практике верность 

этого алгоритJ\lадостаточно высока, даже если предположение о неза­

висимости признаков не оправдывается. 

О теореме Байеса 

По сути своей, наивная байесовская классификация - не LJТO иное, 

как отслеживание того, какой признак о каком классе свидетел1,ствует. 

Сnособ проектирования nризнаковопределяет модель, используемую 

для обучения. В модели Бернулли доnускаются только булевы 

признаки; встречается слово в твите один раз или несколько, не 

имеет значения. Наnротив, в мультиномиальной модели признаками 

являются счетчики слов. Для простоты мы воспользуемся моделью 

Бернулли, чтобы объяснить, как наивный байесовский классификатор 
применяется для анализа эмоциональной окраски. А затем - для 

обучения и настройки реальных классификаторов - перейдем на 

мультиномиаш,ную модель. 

Введем следующие переменные: 

Переменная . 

с 

F, 

Назначение 

Класс твита (положительный или отрицательный) 

В твите хотя бы один раз встречается слово 

«awesome" (восхитительный) 

В твите хотя бы один раз встречается слово 

«Crazy" (чумовой или дурацкий ) 

В ходе обучения мы nостроили наивную байесовскую модель, ко­

торая возвращает вероятность класса С, если известны признаки F, и 
F, . Эта вероятность записывается в виде Р( CIF,, F). 

Поскольку мы не можем оценить P(CIF,, F) непосредственно, то 
применяем формулу, изобретенную Байесом: 

Р(А) · P(B IA) = Р(В) · Р(А 1 В) 
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Если считать, что А - событие, состоящее во вхождении обоих слов 

«awesoшe» и «uazy», а В - принадлежность твита классу С, то полу­

ч1пся формула, которая впоследствии поможет нам вычислить веро­

ятность принадлежности образца указанному классу: 

P(FI , F). Р( CIFI, F) = Р( С). P(FI, F2 I С) 

Это позволяет выразить Р( CI F
1
, F) через другие вероятности: 

Р( С) · P(F1, F, I С) 

P(F
1
,F) 

Можно записать это и в таком виде: 

posteгio1· · filгelilioocl 
ргiог = --- ----- ­

evidence 

ргiог и evidence найти ле гко: 

• Р( С) - априорная вероятность класса без каких-либо знаний о 
данных . Оценить ее можно, напрямую подсчитав долю обуча­

ющих примеров, принадлежащих данному классу. 

• P(F
1
, F

2
) - свидетельство , или вероятность одновременного на ­

личия признаков F
1 
и F,. 

Нетривиальная часть - вычисление правдоподобия (likeJil10od) 
P(F

1
, F,I С). Эта величина говорит о том, насколько вероятно увидеть 

признаки F
1 
и F

2
, если мы знаем, что образец принадлежит классу С. 

Для ее оценки нужно немного подумать. 

Что значит быть наивным 

Из теории вероятности известна следующая формула: 

Но сама по себе она мало что дает, потому что мы заменяем одну 

трудную задачу (оценка P(F
1

, F, I С)) другой, не менее трудной (оценка 
P(F2 J С, F)). 
Однако есл и наив но предположить, что F

1 
и F, независимы, то 

P(F2 J С, F) сводится к Р( l~I С), и мы можем записать : 

P(F1, F2 I С)= P(F1 1 С)· P(F2 I С) 
Собирая все вместе, полуLrаем вполне удобоваримую формулу: 
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Любопытная вещь: хотя теоретически неправильно выдвигать про­

извольные предположения под настроение, в данном случае такой 

подход Iia удивление хорошо работает в реальных задачах . 

Использование наивного байесовского 

алгоритма для классификации 

Получив новы~"~ твит, мы должны только вычислип, вероятности: 

_ " " I _ Р( С = "pos") · P(F1 1 С = "pos") · P(F~ 1 С = "pos") 
Р(С- pos F

1
,F)--- -------------

P(F1,F) 

_ " ." I _ Р( С = "neg·") · P(F11 С = "neg;") · P(F2 I С= "neg") 
Р(С- neg F

1
,F) - - - ----- ----------

P(F1, F,) 

А затем выбрать класс Сь,", с наибольшей верояпюстыо. 
Поскольку для обоих классов знаменатель P(F,, F7) один н тот же, 

мы можем его попросту игнорировать - предсказанный класс от этого 

не изменится. 

Отметим, однако, что реальные вероятности больше н е вычисля­
ются. Вместо этого мы оцениваем, какой класс более прапдоподобен, 

по имеющимся свидетельствам. Это еще одна причина устойчивосп1 

наивного байесопского классификатора: его интересуют не столько 

истинные вероятности, сколько информация о том, како~"1 класс прав­

доподобнее . Короче говоря, можно написать: 

С = а гgтах Р( С = с) · Р( F 1 С = с) · P(F 1 С = с) 
/Ji'Sl СЕ С 1 ~ 

Здесь говорится, что мы вычисляем часть после aigmax для всех 
классов (в нашем случае pos и neg") и возвращаем тот класс, для кото­
рого получилось нанбольшее значен и е. 
Но в следующем примере давайте вернемся к истинным nероятно­

стям и проделаем кое-какие вычисления, чтобы понаблюдать за рабо­
той наивного байесовскоrо алгоритма. Для простоты будем предпола­

гать, что Т,виттер разрешает употреблять только два слова: «a\vesome» 
и «с гаzу » н что мы уже класс11 фициропали вручную 11 есколькотв11тов: 
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' tвит Класс 

awesome Положительный твит 

awesome Положительный твит 

awesome crazy Положительный твит 

crazy 

crazy 

crazy 

Положительный твит 

Отрицательный твит 

Отрицательный твит 

В этом примере Т13ИТ «с гаzу» получил как положительную, так и 

отрицательную оценку с целью промоделировать неоднозначность 

реальной речи (например, «балдеть от футбола» и «дурацкий иди­
он ). Всего у нас есть шесть т1Зитов - Liетыре положительных и два 

отрицательных, поэтому получаются такие апр1юрные вероятности: 

Р( С= "pos") = i_ = 0.67 
6 

Р( С= "neg") = 3_ = 0.33 
6 

Это означает, что, ничего не зная о самом твнте, разумно будет 

предположить, что он положительный. 

Пока что отсутствует вычисление P(F
1

1 С) и P(F,i С) - вероятностей 
признаков F

1 
и F2 при условии класса С. 

Они вычисляются как количество твитов, в которых встречался 

конкретный признак , поделенное на количество твитов, помеченных 

классом С. Вероятность встретить в твите слово «a\vesoшe», если из­

вестно, что класс положительный, вычисляется по формуле: 

F 11 с " ") число полоJ1ситель11ых твитов, содержащих «mшesome » 3 
Р( = = pos = - -

1 число всех поло.жuтелы1ых твитов 4 

Поскольку из четырех положительных твитов три содержали сло­

во «a\vesoшe» . 

Очевидно, что вероятность не встретить слово «a\vesoшe» в поло­

жительном твите равна: 

P(FI = 01 с= "pos") = 1 - P(FI = 11 С= "pos" ) = 0.25 

Точно так же производятся остальные вычисления (опущен слу­

чай, когда в твите н е встречается слово) : 
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2 
P(F, = 1IC = "pos") = -= 0.5 

- 4 

P(F
1 

= 11 С= "neg·" ) = ~ = О 

2 
P(F2 = 11 С= "neg") = 2 = 1 

Для полноты картины вычислим также свидетельство, чтобы уз­

нать истинные вероятности. Для двух конкретных значений F
1 
и F2 

свидетельство вычисляется так: 

P(F1,F2) = P(F1, F
2
IC = "pos") · Р(С = "pos") + P(F

1
, F

2
IC= "пеg'') · Р(С = "1щ{) 

Это дает следующие значения: 

3 2 4 2 1 
P(F = 1 F = 1) = - · - · - + О · 1 · - · = -

1 
'

2 446 6 4 

3 2 4 2 1 
P(F = 1 F = О)=-·-· - + О ·О·- · = -

1 
'

2 446 6 4 

124 222 5 
P(F = О F = 1) = - · - · - + - · - · - · = -

1 
' 

2 4 4 6 2 2 6 15 

Теперь у нас естr> все данные , необходимые для классификации но­

вых твитов. Осталось лишь разобрать тв 1 п и породить н а его основе 
признаки: 

' 
' Твит · · ' ., F, .F2 Верщ1тности классов ' 

ч":( \' . ,, 
~ ... , 

1 Классифика-

«awesome» 1 О 3 2 4 

P(C = "pos" I F; = 1,F2 =0)=~= 1 

4 

о 2 2 

P(C = "neg" IF; =l ,F2 =0)=~=0 

4 

ция 

Положитель ­

ны й 
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Твит 

«С ГаZУ» 

«awesome 
crazy» 

F, F2 Вероятности классов 

о 1 2 4 

P (C= "pos" JF; =O,F2 =1)= 4·~· 6 =~ 
12 

2 2 2 

Р( С=" neg" J F; =О, F2 = l) = 2° 1· 6 = ~ 
12 

3 2 4 

P(C="pos" I F; = l,F2 =l) =Ч-0-=1 

4 

о 2 2 

P(C="neg" JF1 =l,F2 =1 ) =~=0 

4 

КлассиФика-
ция 

Отрицатель­

ный 

Положитель­

ный 

Пока всё хорошо. При классификации три виальных твитов метки, 

похоже, назначаются правильно. Но остается вопрос, как быть со сло­
вами, которые не встречались в обучающем корпусе. Ведь по формуле 

выше всем новым словам будет присвоена нулевая вероятность . 

Учет ранее не встречавшихся слов 

и другие тонкости 

Вычисляя вероятности в предыдущем разделе, мы себя обманыва­
ли. Вычислял ись не истинные вероятности , а лишь грубые прибли­
жения к ним. Мы предполагали, что обучающий корпус расскажет 

нам правду об истинных вероятностях. Но это не так. Очевидно, что 

корпус из шести твитов не может дать всю информацию о каждом 

когда-либо написанном твите. Например, без сомнения существуют 
твиты, содержащие слово «text». Просто мы их ни разу не видели. 
Следовательн о, наше приближение очень грубое , и это нужно учиты­
вать. На практике для этого часто применяется сглаживание с при­

бавлением единицы (add-oпe s111ootl1 i пg) . 
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Сглаживание с прибавлением единицы иногда называют аддитив­

ным сглаживанием или сглаживанием Лапласа . Отметим, что 

сглаживание Лапласа не имеет н ичего общего с лапласовским сгла­

живанием, которое относится к с глаживанию полигональных сеток. 

Если п рибавляется не 1, а настраиваемый параметр alpha<O, то 
говорят о сглажи ван ии Лидстона . 

Это очень простой прием , заключающийся в прибавлен ии еди­

ницы ко всем вхождениям признака. В его основе лежит пред­

положение , что даже если мы не видели данного слова во всем 

корпусе, все равно есть шанс, что это только потому, что в нашей 

выборке твитов такого слова не оказалос 1, . Поэтому, применяя 

сглаживание с прибавлением единицы , мы делаем вид, '!ТО видели 

каждое слово на один раз больше, чем в действительности. То есть 

3 
вм есто вычисления P(F., = 11 С =" pos") = - = 0.75 мы ВЫ'Jисляем 

4 

P(F., =l lC ="pos") = З +l =0.67 . 
4+ 2 

Почему в знаменателе прибавлено 2? Потому что всего у нас есть 
два признака : вхождения слов «a\.vesome» и «сгаzу». Поскольку мы 

прибавляем 1 для каждого признака , надо позаботиться о том , что ­

бы в результате получились все-таки вероятности . И действител ьно , 
сумма оказывается равной 1: 

3+1 1+1 
P(F., =ll С ="pos") +P(F1 =0 1 С =" pos") =--+-- = 1 · 

4 +2 4+2 

Борьба с потерей точности 

при вычислениях 

Есть еще один подводный камень . На практике мы имеем дело с 

вероятностями, гораздо меньшими тех, что встретились в этом игру­

шечном примере. Как правило, и число приз наков н амного больше 
двух, и их вероятности приходится перемножать. В результате очень 

быстро возникает ситуация, когда точности NнmPy перестает хватать: 

>>> import numpy as np 
>>> np. set_printoptions(precision=20 ) #просим numpy выводить больше 

# цифр (no умолча нию 8) 
>>> np.array ( [2 . 48E- 324 ] ) 
array( [ 4 . 9406564584 124 6544 177 е - 324 ]) 

>>> np . array ( [2 . 47E - 324]) 
arr a y ( [ О . ]) 
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Насколько вероятно, что нам придется столкнуться с числом вроде 

2 . 4 7Е - 324 ? Чтобы ответить на этот вопрос, давайте представим, что 
условные вероятности равны 0.0001, и нужно вычислить произведе­

ние 65 таких вероятностей (то есть у нас есть 65 маловероятных при­

з наков ). Вот вам и потеря точности : 

»> х = 0.00001 
>>> х** 64 # все еще нормаль н о 

le - 320 
>>> х**65 ой ' 

о . о 

Числа с плавающей точкой в P yt l10n обычно реализуются на ос­
нове типа douЫe в С. Узнать, так ли это на вашей платформе , просто: 

>>> import sys 
>>> sys . Пoat_info 

sys.Пoat_info ( max= l. 797693 134 862315 7 e + 308 , max_e xp=l0 24, 
max_lO_exp=308 , min =2 . 2250738585072014e - 308 , min_exp=- 10 21 , 
min_lO_exp=- 307 , dig=15 , mant_dig=SЗ , epsilon=2 . 220 446049250313e- 16, 
radix=2 , r ou nds=l) 

Чтобы решить эту проблему, можно п ерейти на математиl1еские 

библиотеки типа mpma th ( ht tp : / / code . google . com/p/mpmath/ ) , обеспе­
чивающие произвольную точность. Однако они недостаточно быст­

рые, чтобы служить в кач естве замены NшnPy. 
По счастью, существует более разумный способ, основанный на из­

веспюй из школьной программы формуле: 

log(x ·у) = log(x) + log(y) 

В применении к нашему случаю получаем: 

log Р(С) · P(F
1

1 С) · P(F
2

I С)= log Р(С) + log P(F11 С)+ log P(F
2

1 С) 

Поскольку вероятность лежит в интервале от О до 1, то ее логарифм 
находито1 в интервале от -оо до О . Но пусть вас это н е беспокоит. По­

прежнему, чем больше число , тем точнее определен класс, только 
сами числа теп ерь отрицател ьны. 

Но один подвох все же остается : в LJислителе дроби нет ника­

кого логарифма, есть только произведен и е вероятностей. Но, к 

счастью, фактически е значения вероятностей н ам не интерес­

ны , а нужно лишь зн qть, у како t'О класса наибольшая апостери­

орная вероятность. И тут нам повезло, потому что если вер ­

но , что P(C= "pos"IF" F) > P(C="neg "IF
1

, F.) , то верно и то, что 
log Р(С= 'pos"IF1, F) > log Р( С= "neg"IF

1
, F2) 
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Зависимость между вероятностью и ее логарифмом 
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Из графика на рисунке выше видно, что кривая монотонно возрас­

тает, поэтому можно воспользоваться приведенной ранее формулой 

Сь = агgтах Р(С = с)· P(F1 IC =с) · P(F?IC = с) 
est с ЕС -

И вот, наконец , мы получаем формулу для двух признаков, кото­

рая дает наилучший класс даже для образцов, которые мы раньше не 

видели: 

1 

Сь . = агgтах ( logP(C =с)+ logP(F1 IC =с)+ \ogP(Fi lC =с) 
est с Е С 

Разумеется, двух признаков маловато, поэтому обобщим ее на про­

извольное число признаков: 

Cьes t = aгgmax (log Р(С =с)+ L \og P(Fk 1 С = с) ) 
ce N k 

Теперь мы готовы применить построить наивный байесовский 
классификатор, пользуясь библиотекой sc iki t-l ea гп . 

Как уже отмечалось, мы рассматривали лишь модель Бернулли 

для наивного байесовского классификатора. Но вместо булевых при­

знаков мы можем использовать счетчики вхожде 1-1ия слов, то есть с 
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мультиномиальную модель . Он а дает больше информации и часто 

показывае·!' лучш ие результаты, поэтому к реальным данным приме­

ним именно ее . Отмети м, однако, что приведенные выше формулы 

немного меняются . Впрочем, нич его страшного , общий принцип ра­
боты наивного байесовского классисjшкатора остается тем же самым. 

Создание и настройка 

классификатора 
Все наивные байесовские классификаторы - а нх несколько - нахо­

дятся В пакете sk l ea rn. nai ve_ bayes . 

Gaussia n Nв: предполагается, что признаки имеют нормальное 

(гауссово) распределени е. Возможное применение - опреде­

ление пола по росту и ширине плеч человека. Но у нас имеются 

тексты ·1· витов , и з которых мы извлекаем счетчики слов. Оче­

видно, что это н е гауссово распределение . 

мul tinomia l NB: предполагается, что признаками являются 

счетчики вхождений , то есть как раз наш случай. На практике 

этот классификатор хорошо работает и с векторам и TF-IDF. 
вe rnoulliNB: классификатор похож на Mul ti nomia lNB, но боль­
ше подходит для случая , когда признаками являются логиче­

ские флаги «входит- не входит», а не счетчики слов . 

Поскольку нас интересуют, прежде всего, вхождения слов, то луч­

ше ВЗЯТЬ Multinomia lNB. 

Сначала решим простую задачу 

Как мы уже видели, эмоциональная окраска твитов может быть не 
только положительной или отрицательной. На самом деле, большин­

ство твитов вообще никак не окрашены, они нейтральны или нере­

левантны и просто содержат информацию (например , « Вышла новая 

книга : Построение систем машинного обучения ... l1ttp://link» ). Полу­
чается , стало быть, четыре класса . Чтобы не усложнять задачу, сосре­

доточимся пока только на положительных и отрицательных твитах . 

>>> # сначала создаем список , в котором элемент равен t rue , если твит 
>>> # имеет положител ьную или о трицатель ную эмоцио н ал ьную окраску 

>>> pos_пeg_idx = np . logical_or (Y == "positive", Y=="negative " ) 

>>> # теперь с помощью этого индекса фильтруем данные и метки 

>>> Х X[pos neg idx] 
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>>> у Y( pos neg idx ] 

>>> # и н ако нец , преобразуем сами метки в булевы величины 

>>> у Y== "pos itive " 

Теnерь в массиве х находятся исходные тексты твитов, а в У - их 

бинарные метки: О для отрицательных тв1пов и 1 для положител ь ­

ных . 

Выше мы сказали , что будем использовать в ка<rестве признаков 

счетчики вхождений. Да, но только не н а прямую, а воспользуемся 

уже знакомым классом Tfictfvectorizer для преобразования исходно -
1'0 текста твита в значения TF-IDF, которые наряду с метками приме­

ним для обучения классификатора. Для удобства будем использовать 

класс Pipe line, который позволяет связать ~екторизатор и классифи ­

катор, п редоставляя тот же интерфейс : 

from sk l earn .feature extraction . text import TfidfVectorizer 
from sk l earn . naive_bayes import MultinomialNB 
fr om sklearn . pipel ine import Pipeline 

def create ng r am_mode l(): 
tfidf_ngrams = TfidfVectorizer (ngram_ra nge= (1, 3 ) , 

analyzer= "word " , binary=False) 
clf = MultinomialNB() 
r eturn Pipeline ( ( ( ' vect ', tfidf_ngrams ) , ( ' clf ' , clf)] ) 

Объект Pipeline, возвращенный функцией create_ngram_model (), 

можно использова1ъ для обучения и предсказания, как обычный 
классификатор. 

Поскол ьку данных у нас не так уж много, придется прибегнуть к 

перекрестной проверке . Но на этот раз мы воспользуемся н е классом 

KFold, который последовательно выделяет из данных одну группу для 

тестирования , а классом ShuffleSpli t . Он случайно перетасовывает 

данные, но не препятствует появлению одного и того же образца в 

нескольких груп пах. Для каждой группы мы будем в ы числять и запо­

минать площадь лад кривой точность - полнота и верность. 

Для повышения гибкости эксперимента мы оберн ем всю процеду­

ру функцией tгaiп_model () , которая принимает в качестве параметра 

функцию создан 11 я классификатора. 

from sklearn . meLrics import p r ecision reca ll_curve , auc 
from sklearn . c ross_va lidation import ShuffleSplit 

def train_model(clf_ factory , Х , У) : 

# задаем random_state , чтобы получить детерминированное поведение 

cv = ShuffleSplit (n=len( X), n_ite r =lO , test size=0 . 3 , 
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random_state=O ) 

scores = [] 
pr_scores = [] 

for trai n , test in cv : 
X_train , y_train = X[train], Y[ train] 
X_test , y_test = X[test] , Y[test] 

clf = clf factory() 
clf . fit ( Х trai n , y_t r ai n) 

train_score = clf . score (X train , y_train) 
t est score = clf . score(X_test , y_test) 

scores.appe nd(test sco r e ) 
proba = clf . predict proba(X test) 

precision , recall , pr thresho lds = 
precision_recall_curve(y_test , proba[ :, l] ) 

pr_score s . appe nd( auc (reca ll , precision)) 

s ummary = (np.mean (sco r es ), np. std (scores) , 
np.mean(pr_scores) , np . std(pr scores )) 

print (" %. 3f\t %. 3f\t %. 3f\t% . 3f " % summary ) 

Собрав псе вместе, мы можем обучить свою первую модель: 

>>> Х , У= l oad s ande r s data() 
>>> pos_neg i dx = np . logical_or (Y== "positive ", Y== " nega tive " ) 
>>> Х X[pos_neg_idx] 
>>> У = Y[pos_neg_idx] 
>>> У = Y== "positive " 
>>> train_model (create_ngram_model , Х , У) 

0 . 788 0 . 024 0 . 882 0 . 036 

Первая попытка построить 1ын вны1] байесовскн 1°1 классификатор с 

векторными триграммными приз наками TF-IDF дала верность 78.8% 
и среднюю площадь под кривой Т/П 88.2%. На графике Т/П медиа­
ны (то разбиен ие данных на обучающие и тестовые, при котором на­

блюдается поведени е, максимально близкое к среднему ) видно, что 

поведение классификатора внушает куда больше оптимизма, чем в 
предыдущей главе. 

Для первой попытки результаты вполне обнадеживающие. Тем бо­
лее что верность 100 % в задаче классификации эмоциональной окра­
ски вообще недостижима. Относительно окраски некоторых твитов 
даже люди не могут прийти к единому мнению. 
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Использование всех классов 

1.0 

Мы снова упростили задачу, оставив только положительные и от­

рицательные твиты. То есть мы предположили, что существует некий 

идеальный классификатор, который предварительно решает, есть ли 

у твита эмоциональная окраска , и , если да, то передает его нашему 

наивному байесовскому классификатору. 
А что получится, если мы попытаемся также определять, содержит 

ли твит вообще какие-то эмоции? Чтобы ответить на этот вопрос, на­

пишем сначала вспомогательную функцию, которая возвращает мо­

дифицированный массив классов, содержащий список эмоций, кото­

рые мы хотели бы интерпретировать как положительные: 

de f twe a k_ labe l s (Y , pos_ sent_l ist ): 
pos = Y==pos_sent_l ist [ OJ 
fo r se nt _ label in pos_se nt_list [ l : ] : 

pos 1= Y==sent_l abe l 

У= np . zeros(Y . shape[O] ) 
Y[pos] = 1 
У = Y. a stype (int ) 

r eturn У 

Обратите вн иман11е, что теперь у нас два понятия « положительнос­
ти >.} . Эмоциональная окраска твита может быть положитеm,ной, но 
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ее надо отличать от класса обучающих данных. Если , например, мы 
хотим узнать, насколько хорошо способны отличать эмоционально 

окрашенные твиты от нейтральных, то можем написать: 

>>>У= twea k_labe l s (Y, [ "positive ", " negative " ] ) 

Теперь в массиве У знаlrение 1 (положительный класс) простав­

лено для всех твитов, tiмеющих положительную или отрицательную 
окраску, и О для нейтральных и нерелевантных твитов . 

>>> t r ai n_ model (c r eate_ngram_model , Х , У, plot=True ) 
0.750 0 . 012 0.659 0 . 023 

Взгляните на следующий график. 
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Как и следовало ожидать, площадь под кривой Т /П заметно упала 

и теперь составляет только 66%. Верность по-прежнему высокая, но 
лишь потому, что наш набор данных далек от сбалансированности . 
Из 3362 твитов только 920, то есть всего около 27 процентов, имеют 
положительную или отрицательную эмоциональную окраску. Это оз­

начает, что даже классификатор, который для любого твита говорит, 

что тот не имеет эмоциональной окраски, будет иметь верность 73%. 
Следовательно, ситуация, в которой обучающи~~1 и тестовый наборы 

не сбалансированы, - еще один пример, когда анализ точности и пол ­

ноты обязателен . 
Так как же наивный байесовский классификатор отличает положи­

тельные (отрицательные) твиты от прочих? Плохо отличает. 
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== Pos v s . r est == 
0 . 873 0 . 009 0. 305 0 . 026 

== Neg vs. rest == 
0.861 0.00 6 0.4 97 0 . 026 

На мой взгляд, это никуда не годится . Кривые Т/П на графиках 

ниже тоже не показывают сколько-нибудь приемлемого компромисса 

между точностью и полнотой - в отличие от классификатора из пре­

дыдущей главы. 
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Настройка параметров классификатора 

Koнe LJI-JO , мы недостаточно подробно исследовали возможности те­

кущего решения , и этим нужно заняться. Есть две части, где можно 

« покрутить pyLJKИ »: TfidfVectorizer и MultinomialNB. Поскольку ни­

каких интуитивных предположений , в какую сторону смотреть, нет, 

попробуем разложить значения параметров по полочкам. 

CнaLJaJia рассмотрим параметры TfidfVectorizer : 

различные настройки ~~-грамм: 

о униграммы (1 ,1); 
о униграммы и биграммы (1 ,2); 
о униграммы, биграммы и триграммы (1 ,3). 
варьирование min _ df : 1 или 2; 
изучение влияния IDF в паре TF-IDF с помощью параметров 
use_idf И smooth_idf: False ИЛИ True; 

• удалять или нет стоп-слова - параметр stop words равен 

e nglish ИЛИ None ; 

использовать ли логарифмы счетчиков слоо ( suЫinear_tf ); 

• использовать счетчики слова или просто отслеживать , 

встречается слово или нет - параметр bi nary равен тrue 

ИЛИ False. 
1 

Теперь обратимся к параметрам классификатора мul tinomia l NB : 

параметр alpha, определяющий какой использовать метод 

сглаживания: 

о с прибавлением 1, или сглаживание Лапласа: 1; 
о сглаживание Лидстона: 0.01, 0.05, 0.1 или 0.5; 
о без сглаживания: О . 

Можно подойти просто: обучить классификаторы для всех разум­

ных значений одного параметра, зафиксировав остальные, и посмо­

треть на результаты. Поскольку мы не знаем, влияют ли параметры 

друг на друга, то придется обучать классификаторы для всех воз­
можных комбинаций значений параметров . ОL1евидно, это слишком 

трудоемко. 

Поскольку такого рода исследование п араметров встречается в ма­

шинном обучении довольно часто , в sciki t- learп имеется специальный 
класс для этой цели: Gridsearchcv. Он принимает объект-оценщик 
(реализующий такой же 11 нтерфейс, как у классификатора), которым 

в нашем случае будет объект Pipeline и словарь параметров с потен ­
циальными значениями. 
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GridSearchcv ож11дает, что ключи словаря представлены в опреде­

ле1шом форi\1ате, чтобы можно было задать параметры подходя щего 

оценщика. ФорУiат таков: 

<estimator> <subestimator> <param_name> 

Например, если мы хотим задать значения для и сследования па­

раметра ngram_r ange объекта TfidfVectorize r (который в описании 
Pipe l i ne наз ывается vect ), то должны нап11 сап,; 

param_ g r id={ " vect ng r a m_range "=[ (1 , 1 ) , (1 , 2 ) , (1, 3 ) ]} 

Тогда Gr idSearchcv будет пробовать униграммы, биграммы и три ­
граммы в качестве значений параметра ngram_ ra nge объекта vect . 

Затем эта функция обучает оценщик на всех возможных комбина ­

циях значений параметров . Причем обучение производится на слу­

чайных выборках нз обучающих данных, для чего мы используем 

объект ShuffleSp l it, который порождает 1 ператор случайных разби­

ений на обучающиl1 и тестовый наборы . И напоследок функция воз­

вращает лучший оценщик в переменной -члене best_estimator_. 

Поскольку ~1ы хотим срав нивап, возвращенны й лучший класси­

фикатор с текущим лучшим, необходимо каким-то образом оценить 

его качество. Для этого можно передать объект ShuffleSplit в параме­

тре cv (отсюда и буквы cv в имен11 GridSearchcv). 

Последн ее, что осталось, - решить, как Gridsearchcv должен вы­

бирать лучший оценщик . Для этого мож но п ередать функцию рей­

тингования sco r e в параметре score_func. Ее можно на писат ь само­

стоятельно или взять готовую из пакета sklearn . metrics . Только н е 

надо брать функцию metric . accu r acy из -за дисбаланса классов (эмо­
ционально окрашенных твитов гораздо меньше, чем нейтральн ых). 

Нам же нужна хорошая точность и полнота на обоих классах - эмо­
ционал1, 1ю окрашенных и лишенных окраски. Примером метрики, со­

четающей тоl11юсть и полноту, может служить F-мера, реализованная 

В функции met r ics . fl _ sco r e : 

F= 
2 · точность · пошюта 

точность + noJ11юma 

Собрав все вместе , получаем такоl1 код: 

from sklearn . grid_s ea r c h import GridSearchCV 
from sk l earn . metrics import f l_score 

def grid_search_model(c l f_factory , Х , У) : 



Создание и настройка классификатора 

cv = ShufПeSpli t ( 

n=l e n(X) , n iter=l O, test size=O . З , r a ndom_state=O ) 

param_grid = dict (vect_ngram_ range=[ (1 , 1) , (1 , 2) , (1 , З ) ] , 

vect min df= [l , 2] , 
vect stop_words= [None , "english " ] , 
vect smooth_ idf= [False , True] , 
vect_use idf= [ Fa lse , True] , 
vect suЫ i near tf=[False , True] , 
vect_binary=[False , True] , 
clf alpha=[ O, 0 . 01 , 0 . 05 , 0 . 1 , 0 . 5 , 1] , 

grid_ search = GridSearchCV(clf factor y() , 
param_grid=param g r id , 
cv=cv , 
score_func=f l score , 
ve rbose= l O) 

g r id_search .fit(X , У) 

r eturn grid search . best estima to r 

После запуска этой функции нужно запасти сь терп ением: 

c lf = grid_search_model(create_ngram_model , Х , У) 

print (clf ) 

Перебор всех 3 · 2 · 2 · 2 · 2 · 2 · 2 · 6 = 1152 комбинаций, да еще с деся ­

ти проходным обуч ением каждого классификатора требует времени . 

. . . с пус тя несколько часов . . . 
Pipeline(c l f=MultinomialNB( 
al pha=0 . 0 1, c l ass_weight=None , fi t p ri or=True ) , 
clf alpha =0 . 01 , 
clf c la ss_weight=None , 
clf _fit_pr ior=True , 
vect=TfidfVecto r izer ( 
analyzer=word, b i na ry=Fal se , 
cha r set=utf - 8 , charset_ error=str ict , 
dtype=<type ' long ' >, input=content , 
lowe rcase=True , max_df=l. O, 
max features=No n e , max_n=None , 
mi n_df= l , min_n =None , ngram_ra nge= (l , 2 ) , 
norm=l2 , preprocessor=None , smooth idf=False , 
stop_word s=None , strip_accents=None , 
suЫinear tf=True , token pattern=(?u)\b\w\w+\b , 
token_processor=None , tokenizer=None , 
use idf=False , vocabulary=None) , 
vect_anal yzer=word , vect binary=False , 
vect charset=utf - 8 , 
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vect charset_error=strict , 
vect dtype=<type ' long ' > , 
vect input=content , vect lowercase=True , 
vect~rnax_df=l.0 , vect~rnax_features=None , 

vect~rnax n=None , vect~rnin_df=l , 

vect~rnin_n=None , vect ngrarn_range = (l , 2) , 
vect norrn=l2 , vect~preprocessor=None , 

vect srnooth_ idf=False , vect stop_words=None , 
vect 
vect 
vect 
vect 
0.795 

strip_accents=None , vect suЫinear_tf=True , 

token_pattern=(?u)\b\w\w+\b , 
toke n proces sor=None , vect tokenizer=None , 
use idf=False , vect~vocabu lary=None ) 

0.007 0 . 702 0 . 028 

Наилучший оценщик действительно увеличивает площад1, под 

кривой Т /П почти на 3.3%, доведя ее до уровня 70.2. Значения пара­
метров, при которых это достигается, показаны выше . 

Улучшаются и кошмарные результаты разл ичения положительных 

(отрицательных) и прочих тв итов , если присвоить параметрам векто­

ризатора и классификатора найденные зн ач ения : 

== Pos vs . rest == 
0 . 889 0 . 010 0 . 509 0 . 041 
== Neg vs . rest == 
0 . 886 0.007 0.615 0 . 035 

Взгляните на графики ниже. 

Кривая Т /П (AUC = 0.52) / pos и прочие 
1.0 
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Де~iствительно, кривые Т/П выглядят гораздо лучше (отмети~~. 

что графики построены для медианного классификатора, прошедше­

го многопроходное обучение, поэтому зна<1ения AUC немного отли­
чаются). И все же мы бы не стали использовать такие классификато­
ры на практике. Пора подойти к задаче с другого конца .. . 

Очистка твитов 
Новые ограничения рождают новые формы . И Твиттер - не исклю­

чение. Поскольку нужно уложиться в 140 символов, пользователи 
придумали новые сокращения, позволяющие выразить мысль мень­

шим числом символов. До сих пор мы и1·норировали всяческие смай­

лики и аббревиатуры. Посмотрим, что удастся сделать, приняв их во 
внимание . Для этого понадобится написать собственную функции 
p r eproces so r () И подсунуть ее объекту TfidfVec to rize r. 

Прежде всего, определим словарь, в котором каждому смайлику 

сопоставляется текстовая замена. Можно было бы брать разные заме­
няющие слова, но мы ограничимся очевидными словами, несущими 

положительную и отрицательную окраску : 

e mo_re p l = ( 

# п оложитель ные смайлики 

" & 1 t ; 3 " : " g ood " 
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: d " : 11 good " , # : D в нижнем регистре 

" : dd " : " good ", # : DD в нижнем регистре 

" 8 ) " : " good " , 
,. : _) 11 : " good ", 

":) ": " good ", 
"; ) ": " good ", 
" ( - : " : " good ", 
" (: ": " good ", 

# отрицатель ные смайлики : 

" : / " : ,. bad ., , 

": &gt ;": " sad " 
": ') ": " sad ", 
" :- ( ": 

11 bad ", 
": ( ": " bad '', 
": S": " bad ", 
" : - S ": " bad 11 

# нужно , чтобы : dd заме н ялось раньше : d ( к примеру) 

emo_repl_order = [k fo r ( k len , k ) in reversed (sorted ( [( len (k) , k ) 
for k in 

emo_repl.ke ys( ) ] ))] 

Затем определя ем регулярные выражен11я для выде;1 ения аббре­

виатур и соответствующие им расширения (\ь обозначает границу 
слова): 

re repl = { 
r '1 \br\b ": "are '', 
r "\bu\b ": "you ", 
r "\bhaha\b ": "ha 11

, 

r " \bhahaha\b": " ha ", 
r '' \bdon 1-t\b 11

: "do not " , 
r " \bdoesn ' t \Ь ": "does not ", 
r " \bdidn ' t\b " : " did not ", 
r "\bha s n ' t\b 11

: "has not ", 
r "\bhaven ' t\b " : 11 have not ", 
r " \bhadn ' t\b " : " had not " , 
r "\bwon ' t\b " : '1 will not ", 
r " \bwou ldn ' t\b ": " would not ", 
r "\bcan ' t\b " : " сап not ", 
r " \bcannot\b ": " can not ", 

def create_ ngram_model(params=None) 
def preprocessor (tweet): 

tweet = tweet .lower() 
for k in emo_repl_order : 

tweet = tweet . replace(k , e mo_repl [k]) 
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f o r r , repl i n re_repl . items (): 
tweet = re.sub (r , r ep l , tweet ) 

return tweet 

tfidf ngra ms TfidfVectori ze r( preproces sor=preprocessor, 
ana lyze r = " wo rd " ) 

# ". 

Конечно, аббревиатур гораздо больше, чем здесь перечислено . Но 

даже с таким ограниченным набором качество различения эмоцио­

нально окрашенных и нейтральных твитов повысилось на полпро­

цента, до 70.7%: 

== Pos vs . neg 
0.808 0 . 02 4 0 . 885 0 . 029 
== Pos/neg vs . irre l evant/neutral 
0. 793 0 . 010 0 . 685 0 . 024 
== Pos vs . rest 
0 . 890 0 . 01 1 0 . 517 
== Neg vs . r es t 
0 . 886 0.006 0 . 624 

0 . 041 

0 . 033 

Учет типов слов 
До сих пор мы надеялись , что буДет достаточно подхода на основе 
набора слов, в котором предполагается, что все слова независимы . 

Однако интуиция подсказывает, что нейтральные твиты, скорее все­

го, содержат больше существительных, тогда как для красочного вы ­

ражения эмоций потребуются прилагательные и глаголы. А что, если 

использовать и такую лингвистическую информацию? Если бы мы 
могли определить, сколько в тексте твита существительных, глаго­

лов, прилагательных и т. д" то, возможно, классиф11катор смог бы 
этим воспользоваться. 

Определение типов слов 

В этом и состоит задача частеречной разметки (POS) . Разметчик 
анализирует предложение целиком, пытаясь построить дерево зави ­

симостей, в котором каждый узел соответствует слову, а связи типа 

родитель-потомок определяют, от какого слова оно зависит. Имея та­

кое дерево, мы сможем nр111-1имать обоснованные решения, например 

о том, какой LJастыо речи является слово «booki> - именем су ществи­

тельным ( «T l1is is а good book i> - « Это хорошая книга~> ) или глаголом 
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( «Could yo t1 please book the t1ight?» - «Не моГJiи бы вы забронировать 
билет на самолет?» ). 
Вы , наверное, уже догадалис ь, что NLTK причастен и к этой за ­

дач е. Действительно, в его дистрибутив входят разнообразные ана­

л изаторы и разметчики. Частереч ный разметчик nlt k . pos_tag () на 

самом деле является полноценным классификатором, обученным на 

вручную аннотированных предложениях из проекта Penn Tгeebank 
( http : //www. cis .upenn . e du/ -t reeban k). Он принимает на входе спи ­

сок лексем и возвращает список кортежей, в котором каждый элемент 

содержит часть исходного предложен ня 11 метку части речи. 

>>> impor t nlt k 

>>> nltk . pos_ta g (n lt k . wo r d_to ke ni ze (« Th is is а good boo k . »)) 
[ ( ' This ' , ' ОТ ' ) , (' is ', ' VBZ ' ), (' а ', ' ОТ ' ) , (' good ', ' JJ ' ), (' book ' , 
' NN ' ) , ( '. ', '. ' )] 

>>> nl tk .pos tag(nltk .word_to ke nize ("Could you p l ease book t he flight? " )) 
[ ( ' Could ' , ' МО ' ) , ( ' you ' , ' PRP ' ) , ( ' please ' , ' VB ' ) , ( ' book ' , ' NN ') , 
( ' the ', ' ОТ ' ) , ( ' flig h t ', ' NN ' ) , ( ' ? ', ' . ' ) ] 

Сокращенные назва ния меток взяты из проекта Репп ТгееЬапk (см. 

http : // ww w. a nc . o r g/OANC/ penn . html ) : 

Метка части Описание 

р~чи 

се соединительный союз or 

со количественное числительное 2,second 

от определительное слово the 

ЕХ there в предложении существования there аге 

FW иностранное слово kindergarten 

IN предло г, подчинительный союз оп, of, like 

JJ имя прилагательное cool 

JJR имя прилагательное в сравнительной cooler 
степени 

JJS имя прилагательное в превосходной coolest 
степени 

LS маркер списка 1) 

МО модальный глагол could, will 

NN имя существительное в единственном book 
числе или неисчисляемое 
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Метка части ~· , Описание 
речи 

NNS 

NNP 

NNPS 

РОТ 

POS 

PRP 

PRP$ 

RB 

RBR 

RBS 

АР 

то 

UH 

VB 

VBD 

VBG 

VBN 

VBP 

VBZ 

WDT 

WP 

WP$ 

WRB 

имя существительное во 

множественном числе 

имя собственное в единственном 

числе 

имя собственное во множественном 

числе 

Sean 

Vikiпgs 

предетерминатив both the boys 

притяжательный падеж fri eпd's 

личное местоимение 1, he, it 

притяжательное местоимение my, his 

наречие however, usually, 
naturally, here, good 

наречие в сравнительной степени better 

наречие в превосходной степени best 

частица give ир 

to to go, to him 

междометие uhhul1huhh 

глагол в основной форме take 

глагол в форме прошедшего времени took 

глагол в форме герундия или taking 
причастия настоящего времени 

глагол в форме причастия 

прошедшего времени 

глагол в форме единственного числа 

настоящего времени, не в третьем 

лице 

taken 

take 

глагол в форме единственного числа takes 
настоящего времени , в третьем лице 

определительное слово на wh which 

местоимение на wh who, what 

притяжательное местоимение на wh whose 

наречие на wh where, when 

Теперь несложно отобрать нужные метки из результата, возвращен­
ного функцией pos _ tag () . Чтобы узнать число существительных, нуж-
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но просто подсчитать слова, метки которых начинаются с NN, для гла­

голов соответствен 11 0 vв, для прилагательных - JJ, а для наречий - RB. 

Удачный обмен с помощью SentiWordNet 
Как отмечалось в предыдущем разделе , ли н гвисти ческая инфор­

мация, скорее всего , нам поможет, но для ее сбора есть инструмент 

получше : SentiWoгdNet ( http : //sentiworctnet . isti . cnr . it ). Попро­
сту говоря , это файл размером 13 МБ, который приписывает боль­

шинству английских слов положительную или отрицательную кон­

нотацию. Более точно, каждому набору синонимов сопоставляется 

положител 1, н ая ил и отрицательная эмоцио1-1альная окраска . Вот н е­

сколько примеров. 

Часть 
1 Ид 

речи 
PosScore , NegScore Synsetтerms Описание 

а 

а 

п 

v 

! 

00311354 0.25 

00311663 о 

03563710 о 

00362128 о 

0.125 

0.5 

о 

о 

studious#1 

careless#1 

implaпt# 1 

kiпk#2 

curve#5 
curl# 1 

Требующий ста­

рания и усилий; 

«усердно пытался 

починить телевизор» 

Отличающийся не ­

достатком внима­

ния, обдумывания , 

тщательности; 

противоположность 

careful 

Протез , постоянно 

размещаемый в 

тканях тела 

Образующий за­

виток, колечко или 

петлю; «сигарный 

дым кольцами под­

нимался к потолку» 

Благодаря информации в столбце « Часть речи» мы можем отли­

чить существител ы-юе «book» (кни га) от глагола «book » (бро ниро­
вать). Столбцы Possco r e и NegScore в совокупности позволяют опре­

делить степень нейтральности слова, равную 1-PosScoгe-NegScoгe. 

В столбце Synsetтerms перечислены все слова, составляющие данные 

набор синонимов. Столбцы Ид и Описание нам не интересны. 

К словам из набора синонимов добавлено число, поскольку неко­
торые из ни х встречаются в разных наборах синонимов. Например , у 

слова « faп tas ize» два значения, а , з начит, 11 две оценки: 
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Часть 
Ид 

речи 
PosScore NegScore SynsetTerms 

v 01636859 0.375 о 

v 01637368 о 0.125 

faпtasize#2 

faпtasize#2 

faпtasy#1 

fa пtasize# 1 
faпtasize# 1 

Мысленно пред­

ставлять ; «ОН на­

рисовал мысленный 

портрет идеальной 

жены >> 

Фантазировать; «ОН 

фантазирует, гово ­

ря о планах создать 

свою компанию» 

Чтобы решить, какой набор сино1-1 им о в относится к делу, мы долж­

ны понимать смысл твитов, но эта тема выходит за рамки данной 

главы. Область исследований , в центре внимаю1я которой находится 
эта задаLJа, называется «разрешение лексической многозначности» . 

Мы пойдем по легкому пути и просто усредним оценки по всем на­

борам синонимов, в которых встречается терм. Для слова «t"antasize» 
Posscore будет равно 0.1875, а NegScore - 0.0625. 
Приведенная ниже функция load_sent_word_net () делает все вы­

шеописанное и возвращает словарь , ключам и которого являются 

строки вида тип слова/слово, например n/iшplaпt , а значениями - по­

ложительная и отрицательная оценки. 

import csv , collec tioпs 

def l oad_sent_word_net() : 
# упростим себе жизнь , воспользовавшись словарем , который 

1 автоматически создает пустой список при попытке обратит ься 
к еще не существующему ключу 

seпt_scores = col lectioпs . defaultdict (l ist) 

with open (os .path.join(DATA_DIR, SentiWordNet_З . 0 . 0_20130122 . txt "), 

" r ") as csvfile : 
reader = csv . r eader (csvfile, delimi ter= ' \ t ', quotecha r = '"') 
for line in reader : 

if l ine [O] . startswith( " #" ) : 
continue 

if l e n(l i ne) ==l : 
continue 

POS , ID , PosScore , NegScore , SyпsetTerms , Gloss line 
if len (POS)==O or len (ID) ==O : 

continue 
for term in SynsetTerms . spli t ( " " ) : 

# отбросить чи сло в конце терма 
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term term. split ( " # " }[ О] 

term term . r eplace ("-", " " ) . r ep l ace (" 11
, 

11 11
) 

key = " %s / %s " %(POS , term . split (" #"} [0] ) 
sent_ scores [ key] . append ( (float (PosScore} , float (NegScor e) )) 

for key , value i n sent scores . items (): 
sen t scores[key] = np . mean(value , axis =O) 

return sent scores 

Наш первый оценщик 

Теперь у нас есть все необходимое для создания своего первого век­

торизатора . Самый удобный способ унаследовать классу вaseEstima ­

tor, для чего требуется реализовать следующие три метода: 

get_feature_names (): возвращает список имен признаков, ко-

торые мы будет возвращать из transform (); 

fit (document , y=None ): поскольку мы не собираемся обучать 

классификатор, можем здесь ничего н е делап,, а просто вер ­

нуть self ; 

transform (documen ts ): возвращает массив numpy . array (),имею­

щий форму (len (document s) , l e n (get_feature_na mes )). Это оз­

начает, что для каждого документа из списка documen ts возвра­

щаются значения всех прнзнаков , имена которых получены от 

функции get_feature_names (). 

Реализация показа на ниже. 

sent wo rd_net = l oad_ sent word net () 

c lass LinguisticVectorize r(BaseEst imator ): 
def get f eature_names (sel f) : 

return np . arra y([ ' se n t_neut ', ' sent_pos ', ' se n t_neg ', 
' nouns ' , ' adj ecti ves ', ' verbs ', ' adverbs ' , 
' allcaps ' , ' e xclama tion ', ' question ', ' hash tag ' , 
' mentioning ']) 

# мы не за нимаемся обучением , н о должн ы вернуть ссылку , чтобы 

# можно было вызвать метод так : fi t (d ) . transform (d ) 
de f fit(self , doc uments , y=None) : 

return self 

def _get_sentiments (self , d) : 
sent = tuple(d . split( )) 
tagged = nltk . pos tag(sent) 

pos_vals = [] 



Учет типов слов 

neg_va l s [ ] 

noun s = О . 

adjectives О . 

verbs = О . 

adverbs = О . 

for w, t i n tagged : 
р , n = 0 , 0 
sent_pos t ype = No ne 
if t . startswith ( " NN" ) 

sent_pos_type = " n " 
nou ns += 1 

e lif t . startswith (" JJ"): 
sen t_pos type = " а " 

adjectives += 1 
e l if t . startswith (" VB " ) 

se n t _pos type = " v " 
ve rbs += 1 

e lif t . sta rt swith( " RB " ): 
sent pos t ype = " r " 
adverbs += 1 

if se nt_pos type is not None : 
s e n t word = " %s/ %s " % (s en t _ pos type , w) 

if sent word i n sent word net : - - -
p , n = sent_word_net[sent_word] 

pos_ vals . append(p ) 
neg_vals . append (n) 

1 = len (se nt) 
avg_pos_val = np . mean(pos_val s ) 
avg neg va l = np . mean(neg_vals ) 
return [ 1- avg pos val - avg neg va l, avg_pos val , a vg neg va l , 

nou ns/ l , adjectives/l , verbs/l , adverbs/ l] 

def transfo rm (self , doc uments ): 
obj_val , pos_val , neg_val , nouns , ad ject ives , \ 
ve r bs , adverbs = np . a rray ([ sel f . _get sentiments (d ) \ 
for d i n documents ]) . Т 

allca p s = [ J 

ex c l a mation = [] 
questio n = [] 

ha shtag = [] 
men tio n i ng = [] 

fo r d in documen s : 
a ll ca p s . append (n p . sum ([ t . isuppe r() \ 
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f or t in d . spl it () if len (t ) >2] ) ) 

exclamat i on . a ppend(d . count ("!" ) ) 
questi on . append (d . count (" ? " )) 
has h tag . append ( d . count( " ~ " ) ) 

me nt ioni ng . appe nd(d.count (" @" ) ) 
resu l t = np .array ( [obj _val , pos_va l , neg_va l , nou ns , adjectives , 

verbs , adverbs , a l lcaps , excl amation , question , 
hashtag, mentioning] ) . Т 

r eturn result 

Соберем все вместе 
Однако одно лишь использование л и1-1гвисп1ч еских признаков 

без самих слов мало что дает. Поэтому нуж но объедини1ъ параметр 

TfidfVectorizer с л ингвистическими признаками. Для этого служит 

класс Featu reU ni on из библиотеки sciki t -leaгп . Инициализ ируется 

он так же , как Pipeline, 1-ю вместо последовател ьного вызова оцен­

щиков , кажды (1 из которых подает свой выход 11 а вход следующего, 

Featu r e Union вызывает их паралл ел ьно и потом объединяет резул ь­

тирующие векторы. 

def create union model (params=No ne ): 
def preprocessor(tweet ): 

tweet = twee t . l ower () 
for k i n e mo_repl_order : 

tweet = tweet . rep l ace (k , emo rep l [k]) 
for r , repl in r e repl . items() : 

tweet = r e .sub (r , repl , tweet) 

return tweet . replace ("-", " " ) . replace (' 1 
" " " ) 

tfidf ngra ms = TfidfVectorizer (preprocesso r =p r epr ocessor , 
ana l yzer=" word " ) 

l i ng stats = LinguisticVectorizer () 

all features FeatureUni o n ( [ ( ' ling ', ling_s tat s ), 
( ' tfidf ', t fidf ngrams ) ] ) 

c lf = Mul ti nomia lNB () 
pipeline = Pipe line ( [ ( ' all ', a ll features) , ( ' c lf ', c lf ) ] ) 

if params : 
pipeline . set_pa r ams (**params) 

r e turn pipeline 



Резюме 

После обуче 1-1ия и тестирования комбинированных выделителей 

признаков мы улучшаем площадь под кривой Т/П для различения 

положительно и отрицательно окрашенных твитов еще на 0.4%. 

== Pos vs . neg 
0 . 81 0 0 . 023 0 . 890 0 . 025 

== Pos/ neg vs . ir r elevant/neutral 
0 . 79 1 0 . 007 0 . 69 1 0 . 022 

-- Pos vs . rest 
0 . 890 о . 011 0 . 529 0 . 035 

-- Neg vs . rest 
0 . 88 3 0 . 00 7 0 . 617 0 . 033 

time spent : 214 .1 2578797340393 

С такими результатами мы вряд л11 захотим использовать клас­

сификаторы для различен11я положительных (11ли отрицательных) 

н прочих твитов, но сначала воспользуемся классификатором, кото­

рый определяет, несет ли твит хоть какую-то эмоциональную окраску 

(pos/пeg veгst1s iпeleva11t/11eнtral), и, если несет, то применим клас­

сификатор, различающий положительные и отрицательные эмоции. 

Резюме 
Поздравляем тех, кто дошел с нами до самого конца! Мы изучили, 

как работает наивный байесовский классификатор, и объяснили, по­
чему он вовсе не является таким уж наивным. Особенно хорошо этот 
классификатор справляется с задачей обобщения , когда обучающий 

набор содержит недостаточно данных, чтобы покрыть все закоулки 
пространства вероятностей. Мы видели , как применить его к класси­

фикации твитов и поняли, что очистка текста тв1пов очень помогает. 

Наконец, мы уяснили, что небольшой «обман ;,, (но после того , как ос­
новная часть работы уже проделана) не повредит. Тем более, когда 

он улучшает качество работы классификатора, как то произошло в 

результате использования se n tiWordNet . 

В следующей главе мы познакомимся с регрессией. 
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fЯАВА 7. 
Реrрессия 

Вы, наверное, изучали регрессию в вузовском курсе высшей мате­

матики. А конкретно - регрессию обычным методом наименьших 

квадратов (OLS). Этому очень быстрому методу уже 200 лет, но 
он по -прежнему применяется для решения многих практических 

задач. Мы начнем с его описания и покажем, как он реализован в 

sci k i t -leaш. 

Но есть задачи, для которых этого метода недостаточно. Особенно 

это относится к случаю, когда приз наков много, а если их больше, 

чем образцов , то метод и вовсе непригоден. В таких ситуациях нужны 
более сложные методы - появивши еся совсем недавно, в последние 

десять лет. Это методы Lasso, гребневой регрессии и эластичных 
сетей. Все они есть в scikit- l eaгn , 11 мы подробно рассмотрим их. 

Прогнозирование стоимости 

домов с помощью регрессии 

Начнем с простой задачи - прогнозирования стоимости домов в Бо­

стоне. Для нее мы сможем воспользоваться общедоступным набором 
данных. Нам известно нес колы<о демографических и географических 

характеристик , например: урове нь преступности в округе или среднее 

число учащихся на одного преподавателя. Цель - предсказать меди­

анную сто11мость дома в определенном районе. Как обычно, имеются 
обучающие данные, в которых ответ уже известен. 

Это один из наборов, входящих в дистрибутив scikit-l ea п1 , поэтому 
загрузить его в памятr, совсем просто: 

>>> fro m sk l earn. datasets impo r t load_boston 
>>> bosto n = l oad_boston() 

Объект ьoston имеет несколько атрибутов; в частности, boston. 

cta t a содержит исходные данные, а boston. ta r get - цены домов. 
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Начнем с простой одномерной регрессии , то есть п опытаемся пред­

сказать цену всего по одному атрибуту, среднему чисJ1у комнат в жи ­

лом помещении в данном районе. Этот атрибут хранится в пятом эле­

менте записи (подробную информацию о данных можно почерпнуть 

ИЗ атрибутов boston . DESCR И boston . feature_n ames ): 

>>> from matplotlib import pyplot as plt 
>>> plt . scatter (boston . data [: , 5] , boston . target , color= ' r ' ) 

Атрибут boston. target содержит среднюю цену дома (наша целе­

вая переменная). Можно применить стандартную регрессию методом 

наименьших квадратов, с которой вы , скорее всего, знакомы . Первая 

попьпка выглядит так: 

>>> from sk l earn . li near model import LinearReg r ession 
>>> lr = LinearRegression( ) 

Мы импортируем класс Li nearReg r ession из модуля sklearn . 

linear_model и конструируем объект этого класса. Он ведет себя так 

же, как рассмотренные выше объекты классификаторов из библиоте­

ки sc i k i t- leaгn. 

>>> х = boston.data[:,5] 
>>> у boston.target 
>>> х np . tra n spose (np . atleast 2d (x)) 
>>> l r . fit (х , у ) 

>>> y_predicted = lr . predict(x ) 

Единственная неочевидная строка в этом коде - обращение к мето ­

ду np . atleast_2d, который преобразует одномерный массив х в дву­

мерный. Это преобразование необходимо, потому что метод fit ожи ­

дает, что в первом аргументе будет переда н двумерный массив. Затем, 

чтобы расположить измерения в нужном поряд1<е, мы транспонируем 

этот массив. 

Отметим, что методы fit и predict вызываются от имени объекта 

Li nearRegression - так же, как в случае объектов классификаторов, -
хотя сейчас мы производим регрессию. Это единообразие АР! - одно 

ИЗ ДОСТОИНСТВ sc i kit- l eaг11. 
На графике ниже показаны все образцы (в виде точек) и наша ап­

проксимация (сплошная прямая линия). Выглядит не 11лохо, если не 

считать нескольких выбросов. 

Но в идеале хотелос ь бы количественно измерить каlrество аппрок­

симации, иначе будет трудно сравнивать различные методы. Для это­

го можно и змерить близость прогноза к истин ным значениям, вое-
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пользовавшис r, функцией mean _ squared _ eЛor из модуля sklearn . 

metrics : 

>>> from sklearn .metrics i mport mean_squared_error 
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Эта функция прютимает два аргумента : и стинные и предсказанные 

значения : 

>>> mse = mean squa r ed_error( y , lr . predict (x)) 
>>> prin t ( " Kвaдpaт среднеквадратичной nогрешности (на обучаюших 

дан ных) : {: . 3} ". fo rma t (mse )) 
Квадрат среднеквадратичной nогрешности (на обучающих данных) : 58 . 4 

Это значение трудно интерпретировать, лучше извлечь из него 

квадратный корень, получив среднеквадратичную погрешность 

(RMSE): 

>>> rms e = np.sqrt (mse) 
>>> print( " RMSE ( на обучающих данных ) : {:. 3 }''. format (rmse)) 
RMSE ( на обучающих данных ): 6 . 6 

Преимущество RMSE состоит в том, что можно быстро получить 
грубую оценку погрешности, умножив эту величину на два. В нашем 

случае можно ожидать, что оце ночная стоимость будет отличаться от 
реальной не более, ч ем на 13 тысяч долларов. 
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Среднеквадратичная погрешность и прогноз 

Среднеквадрати1чная погрешность приблизительно соответствует 
оценке стандартного отклонения. Поскольку в большинстве случа­

ев данные отличаются от среднего не более , чем на два стандарт­

ных отклонения, мы можем умножить RMSE на два для получения 
грубой оценки доверительного интервала. Эта оценка теоретически 

правильна, только если ошибки имеют нормальное распределение, 

но зачастую она годится и в других случаях. 

Любое конкретное число, например 6.6, нашей интуиции ничего 

н е говорит. Этот прогноз хорош или нет? Для ответа на этот вопрос 

можно провести сравнение с эталоном - постоянной моделью. Если 

мы ничего не знаем о характере входных данных, то и спрогнозиро ­

вать нельзя ничего лучше среднего з 1-1 а l1 ения у . Затем можно срав­

нить среднеквадратичную погрешность нашей и нулевой модели. Эту 

идею формализует коэффициент детерминации : 

1 - L)Y; - .У;)
2 

""' 1- MSE 
L/j(y; - .)/) 2 VAR(y ) 

Здесь У; - значение i-ого элемента, а У; - оценка этого элемента, 

nолученная с помощью регрессионной модели. Наконец, у - среднее 

значение у, представляющее нулевую .модель, которая всегда возвра­
щает одно и то же з начение . Прибл изительно то же самое мы полу­

чим , вычислив разность между единицей и отношенllем квадрата 

среднеквадратичной ошибки к дисперсии результата. Следовательно, 
для идеальной модели получится оценка 1, а для нулевой - оценка О. 

Отметим , что оценка может получиться и отрицательной; это означа­

ет, что модель настолько плоха, что лучше уж брать в качестве про­

гноза среднее значение. 

Коэффициент детерминации вычисляет функция r2_sco re и з мо­

дуля sk l ea rn. metr ics : 

>>> fr om skl ea rn.metri cs import r2_ sco r e 
>>> r2 = r 2_score (y, lr.predict (x) ) 
>>> print (" R2 (на обучающих данных ): { : . 2 ) " . fo r mat (r2 )) 
R2 (на обучающих данных ): 0 . 3 1 

Эту метрику еще называют оценкой Ю. Если используется линей­

ная регрессия , а погрешность вычисляется на обучающих данных, то 
она соответствует квадрату коэффициента корреляции R. Однако эта 
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метрика более общая и, как уже было сказа но , может принимать от­

рицательные знаLrения. 

По-другому коэффициент детерминации можно вычислить, вы ­

звав метод score объекта LinearRegression: 

>>> r 2 = l r.s core (x , y) 

Многомерная регрессия 

До сих пор мы использовал и для прогнозирования только одну 

переменную - среднее число комнат в доме. Те п ерь воспользуемся 

для обучения модели всеми имеющимися данными, применив м ного­

мерную регрессию. Попробуем предсказать один резул ьтат (среднюю 

цену дома), принимая во внимание несколько характеристик. 

Код выглядит почти так же, как ра~1ьш е. Он даже проще, потому 

что атрибут bosto n. data можно передать методу fit непосредствен ­

но: 

>>> х = boston . data 
>>> у = boston . target 
>>> lr.fi t (х , у) 

При использовании всех входных данных среднеквадратичная по­

грешность составляет всего 4.7, что соответствует коэффициенту де­

терминации 0.74. Это лучше, чем раньше, а, з начит, допол нительные 

переменные помогл и. Правда, теперь резул ьтат не удастся показат ь 

наглядно, потому что это 1 4 -мерная г11п ер плоскость регрессии, а не 

прямая линия на плоскости. 

Но можно постро ить график зависимости предсказанного значе­

ния от фактического. Ниже приведен код: 

>>> р = lr.predict (х) 
>>> plt.scatter ( р , у ) 

>>> pl t.xlabel ( ' Предсказа нная це н а ' ) 

>>> plt.ylabe l ( ' Фактическая це н а ' ) 

»> plt .plot ( [ y .min (), y .ma x () ] , [ [y .mi n () ] , [y.ma x ()]]) 

В последней строке проводится диагональная прямая, соответ­

ствующая идеал ьному согласию. Это помогает н а глядно представить 

картину. Результаты показаны на графике ниже, где сплошной лини­

ей по казана диагональ (на которой лежали бы осе точки, есл и бы су­

ществовало 1 ~деалыюе согласие между истинными и предсказанными 

знач ениям и) . 
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Перекрестная проверка для регрессии 

Знакомясь с классификацией, мы подчеркивали важность пере­

крестной проверки для проверки качества прогнозов. Для регрессии 

это делается не всегда. На самом деле, до сих пор мы обсуждали толь­
ко погрешность на обучающих данных. Это неправильный подход, 
если мы хотим сделать достойные доверия выводы о способности 
к обобщению. Поскольку обычный метод наименьших квадратов -
очень простая модель, ошибка обычно не слишком серьезна. Иными 
словами, степень переобучения низкая. Но все равно нужно проте­

стировать ее хотя бы эмпирически, что легко позволяет сделать scikit­
leaгп. 

Воспользуемся классом Kfold для реализации пятипроходной 

проверки способности линейной регрессии к обобщению: 

>>> from sklearn. cross validation import Kfold 
>>> kf = KFold (len (x) , n_folds=S) 
>>> р = np . zeros_like(y) 
>>> for t r ai n , t est in kf : 

lr . fit(x [t rain] , y[train]) 
p[test] = lr. predict(x [test]) 
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>>> r mse_ cv = np . s qr t (mean_ squared_error (p , у ) ) 

>>> p r i n t ( ' RMSE н а 5 - проходной ПП : { :. 2) ' . fo rmat ( r mse cv )) 
' RMSE на 5 - проходной ПП : 5 . 6 

С применением перекрестно(~ проверки получается более кон­
сервативная оценка (то есть с большей погрешностью) : 5 . 6. Ка к и в 
случае классификации , оценка, полученная с помощью перекреспюй 

проверки , точнее показывает, чего можно ожидать от обобщения мо­
дели на ранее не предъявлявшиеся данные . 

Обычный метод наименьших квадратов быстро обучается и воз ­
вращает простую модель , которая быстро дает прогноз . Поэтому 

именно его рекомендуется использовать в качестве первой попытки 

решить любую задачу регрессии . Но далее м1, 1 поз накомимся с более 

сложными методами и объясним , почему они иногда являются пред­

почтительными . 

Регрессия со штрафом, 

или регуляризованная регрессия 

В этом разделе оп исывается важны й класс регрессио~1ных моделей -
регрессия со штрафом, которую также наз ы ва ют реrуляризованной 

регрессией. 

При обычной регресси и возвра щается н аилучшая аппроксимац11я 

обучающих данных. Это может привести к п ереобучению. Штрафо­

вание означает, что мы включаем штраф за чрезмерное доверие к па­

раметрически м данным. Иначе говоря, мы соглашаемся на нескою,ко 

худшую аппроксимацию ради более простой модел и . 

Можно вз глянуть на это иначе - счrпап" что по умолчанию нет 

никакой свя з и между входными переменными и выходным прогно­

зом. Получая данные , мы изменяем это мне ни е, а добавление штрафа 

оз начает, что требуется больше данны х, чтобы убедить нас в нал ичии 

сильной связи . 

Регрессия со штрафом как компромисс 

Регрессия со штрафом - еще один пример компромисса между 

смещением и дисперсией. Налагая штраф , мы получаем худшую 

аппроксимацию данных , потому что увеличиваем смещение. С дру­

гой стороны , дисперсия уменьшается , а вместе с ней и шансы по­

лучить переобученную модель . Поэтому получившийся результат, 

скорее всего, будет лучше обобщаться на новые (тестовые) данные . 
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Штрафы L 1 и L2 
Теперь перейдем к деталям. Те , кому математические соображения 

неинтересны; могут перейти сразу к следующему разделу, где описы­

вается использование регуляризованиой регрессии в scikit -leaгn. 
В общем случае мы имеем матрицу Х обучающих данных (каждая 

строка в ней - результат наблюдений, а каждый столбец - один при­

знак) и вектор у выходных значений. Задача состоит в том, чтобы най­

ти вектор весов Ь* . В случае регрессии методом обычных наименьших 
квадратов он выражается следующей формулой: 

ь · = argminb 1 y- xh 1
2 

То есть требуется найти вектор Ь, который обращает в минимум 
квадрат расст.ояния до вектора у. В этих формулах свободный член 
игнорируется, потому что мы предполагаем, что обучающие данные 
были предварительно обработаны, так что среднее значение у равно 

нул ю. 

Добавление штрафа , или регуляризация означает, что мы хотим не 

только найти наилучшую аппроксимацию, но и принимаем во внима­

ние строение вектора. Существуют два основных штрафа, применяе­

мых в случае регрессии: L1 и L2. Штраф L1 означает, что к регрессии 
прибавляется сумма абсолютных значений коэффициентов, а штраф 

L2 - что прибавляется сумма их квадратов. 

Если налагается штраф L1 , то вместо предыдущего выражения мы 
оптимизируем такое : 

Здесь мы одновремен 11 0 п ытаемся уменьшить как саму погреш­

ность, так и значения коэффициентов (по абсолютной величине). 
В случае штрафа L2 оптимизируется следующее выражение: 

1 

Б * = aгg111in ь 1ji -Xb 12 +а L,; ь/ 

Различие, на первый взп1 яд, несущественное: штраф составляет не 

сумму абсолютных величин коэффициентов, а сумму их квадратов. 

Однако результаты могут отличаться очень сильно . 
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Гребневая регрессия, Lasso и эластичные сети 

У моделей регуляризации довольно любопытные названия . L 1-регуляри­
зованную регрессию часто назы вают Lasso 1 , а L2-регуляризован ­
ную - гребневой регрессией. При использовании того и другого 

получается модель эластичной сети . 

Как Lasso, так и гребневая регрессия дают меньшие (по абсолют­
ной величине, без учета з нака) значения коэффициентов, чем регрес­

сия без штрафа. Однако у метода Lasso ес1ъ дополн ительное свойст­
во - многие коэфф1щиенты оказываются в точ ности равны нулю ! Это 

означает, что в окончательной модели н екоторые признаки вообще 

не испол ьзуются , то есть модель получается разреженной . Часто 

это свойство весьма желательно , п оскольку модель осуществляет не 

только регрессию, по и селекцию признаков. 

Обратите внимание, что штраф соп ровождается весовым множи ­
телем а, который контролирует величину штрафа . Если значение а. 

близко к нулю, то получается модель, мало отличающаяся от н ере­

гуляризованной регрессии (при а. = О это не 'ПО иное, как обычный 
метод наименьших квадратов), а при большом а. резул 1;тирующая мо­

дель очень сильно отличается от нерегуля ри зов;:1нной. 

Гребневая модель появилась раньш е, потому что Lasso О'Jень трудно 
рассчитать с помощью карандаша и бумаги. Но на современных ком ­

пьютерах Lasso обсчитывается так же просто, как гребневая регрессия , 

а при желании их ~южно даже объединить в алгоритме эластич ной 
сети, в котором применяются два штрафа: сумма абсолютных величин 

и сумма квадратов, то есть требуется решить такое уравн ени е: 

ъ· = argmin b 1 у - ХЬ 1 2 + а , L) Ь; 1+ а2 L,.iь/ 
Это выражение - комбина ция двух предыдущих, с двумя параме­

трами а. 1 и а.2 . Ниже мы обсудим, как следует выбирать з начения эти х 

параметров . 

Lasso и эластичная сеть в библиотеке 
scikit-learn 
Модифицируем предыдущий пр 11 м ер для использования эласти ч­

ной сет и. При работе с библиотекой sc iki t- l eaгп достаточно просто за ­

\1енить класс регресси и на ElasticNet: 

Слово Lasso н с 1 шеет нн какого отношс 1111 я к арка ну 11 1юто~1у 11 е тра 11сл 11тер11руетсл, 

это аббрсвнатура lcast abso l щe s l1 г iпkagc a п tl sclccLio11 орсга tо 1 '. - Прил~. переа. 
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>>> from sklearn. linear_mode l import El a sticNet , Lasso 
>>> en = El asticNet (alpha=0 . 5 ) 

Единственное изменение заключается в названии переменной: en 

вместо l r. Результаты вполне согласуются с ожиданиями. Погреш­

ность на обучающих данных возросла до 5.0 (а была 4.6), но погреш­
нос1ъ после перекрестной проверки снизилась до 5.4 (а была 5.6) . Мы 
согласились на большую погрешность на обучающих данных в обмен 

на лучшую обобщаемость. Почти не меняя код, можно было попробо­

вать также штраф L1 , взяв класс Lasso, и штраф L2, взяв класс Ridge . 

Визуализация пути в Lasso 
Библиотека scikit-l eaгп позволяет наглядно представить, что про ­

исходит при изменении параметра регуляризации (альфа) . Снова об­
ратимся к данным о домах в Бостоне , но теперь для регрессии воз ь­

мем класс Lasso : 

>>> l as = Lasso (no r malize=l ) 
>>> alphas = np .logspace (- 5 , 2 , 1000 ) 
>>> a l phas , coe f s , = l as . path (x , у , a lphas =alphas ) 

Для каждого значения из массива a l phas метод path объекта Lasso 

возвращает коэффициенты, составляющие решение задачи при дан­

ном параметре. Поскольку зависимость результата от альфы гладкая, 

вычисления весьма эффективны. 

Чтобы визуализировать этот путь, обычно строят график зависи­

мости коэффициентов от альфы: 

>>> fig ,ax = p l t.subplots () 
>>> ax . plot (alphas , coefs . T) 
>>> # Задаем логарифмическую шкалу 
>>> ax . set_xscale ('log ') 
>>> # Уменьшаем a l pha nри движении слева направо 

>>> a x. set_ x lim(a l phas .max( ) , a l phas.min() ) 

Получается график, который показан ниже (мы опустили триви­

альный код рисования ~1 азваний осей и меток на них): 

Здесь по оси х отложены уменьшающиеся слева направо значения 

коэффициента регуляризации а. Каждая кривая описывает измене ­

ние одного коэффициента. Из графика видно, что когда регуляриза­

ция очень сильная (левая часть рисунка, большие значения а), наи­

лучшее решение - положить все коэффициенты равными нулю. По 

мере ослабления регуляризации то один , то другой коэффициент сна­
чала начинает резко изменяться, а потом стабилизируется. В какой -
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то момент все они выходят на плато , потому что мы, вероятно, уже 

близки к нерегуляризованному решению. 
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Сценарии Р-больше-N 
Название этого раздела - специальный жаргонизм, с которым мы 

сейчас познакомимся. Начиная с 1990-х годов, сначала в медико-био­

логиt1еских исследованиях, а затем и в веб стали появляться задачи, в 

которых Р больше N, то есть количество признаков Р больше количе­
ства примеров N (этими буквами принято обозначать соответствую­
щие понятия в статистике). Такие задачи получили назва ние задач 

типа Р-болъше-N. 
Например, если на входе имеется набор письменных документов, 

то проще всего считать признаком каждое слово и з словаря и выпол­

нить для них регрессию (ниже мы зай мемся такой задачей ). Для ан­

глийского языка слов получится больше 20 ООО (если предварительно 
выполнить стемминг и учитывать только употребительные слова ; в 
противном случае слов будет в 10 раз больше). Если документов­
примеров всего несколько сотен или тысяч, то возникает ситуация, 

когда признаков бол1,ше, чем примеров. 
Раз так, то можно точно подогнать модель по обучающие данные. 

Это математический факт, который от данных не зависит. По суще­

ству, мы решаем систему линейных уравнений, в которой уравнений 
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больше, чем переменных , 11 можно подобрать коэффициенты регрес­

сии , так что погрешность на обучающих данных будет нулевой (таких 
иде<:u1ьных решений даже не одно, а бесконечно много). 

Однако - и это серьезная проблема - нулевая погрешность на об­

учающих данных не означает, что решение хорошо обобщается. Более 

того, е го способность к обобщению может быть ОLrень низкой. И хотя 

регуляризация может несколько замедлить скорость обучения, она 

становится абсолютно необходимой для получения осмысленного 

результата. 

Пример, основанный на текстовых 

документах 

Обратимся к примеру, который изучался группой профессора Ноя 

Смита в университете Карнеги-Меллон. Исследованию были под­

вергнуты так называемые формы 10-К, которые компании ежегодно 

отправляют в Комиссию по ценным бумагам и биржам США (SEC). 
Это обязательное требование для всех компаннй, за регистри рован­

ных на бирже. Цель исследования формулировалась так: на основе 

имеющейся открытой информации спрогнозировать будущую вола­
тильность акций компании. В качестве обучающих данных использу­

ются исторические данные, для которых ответ уже известен. 

Всего имеется 16 087 примеров. Признаки , уже предварительно об­

работанные, - это различные слова, всего их 150 360. Таким образом, 
признаков гораздо больше, чем примеров, почти в десять раз. Во вве­

дении мы говорили, что в таких случаях обычный метод наименьших 

квадратов не годится, а тел ерь покажем, во что выливается попытка 

слело лрименить его. 

Набор данных в формате SVMLight можно скачать из разных 
источников, в том числе с сопроводительного сайта этой книги. 

Библиотека scikit-leaгп понимает этот формат. Как следует из на­

звания, SVMLight - реализация метода опорных векторов, также 
поддерживаемого scikit-learn; но сейчас нас интересует только фор­
мат файла: 

>>> f r o m s kl ea rn . datasets import load_ svmlight_file 
>>> d a ta , ta r get = l oad_svmlight_ file ( ' Е2 0 06 . tra in ' ) 

Здесь data - разреженная матрица (большая Ltасть ее элементов 

равна нулю, а в памяти хранятся только ненулевые элементы), а 

ta r get - простой одномерный вектор. Начнем с изучения некоторых 

атрибутов target : 
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>>> print( ' Mин значение target : {} ' . format(target . min ())) 
Мин значение target : - 7 . 89957807347 
>>> print (' Ma кc значение target : {} '. format (target . max ())) 
Макс значение target : - 0 . 51940952694 : 
>>> prin t ( ' Cpeднee значение target: {) '. format (target . mean ())) 
Среднее значение ta r get : - 3 . 51405313669 
>>> рrint( ' Стандартное отклонение target : {} ' . f ormat(target . std() )) 
Ста ндартное отклонение target: 0 . 6322 78 353911 

Как видим, данные лежат в диапазоне от - 7.9 до - 0.5. Имея неко­

торое представленне о данных, посмотрим , что произойдет при по­

пытке испол ьзовать обычный м етод наименьших квадратов для про­
гнозирования. При этом используются те же классы и методы , что и 

раньше. 

>>> from sklearn . linear model import LinearRegression 
>>> lr = LinearRegression () 
>>> l r.fit(data , targe t) 
>>> pred = lr. predict(data) 
>>> rmse train = np . sqrt(mean squared_error (target , pred)) 
>>> print( ' RMSE на обучающих данных : {: . 2 ) ' .format (r mse_train)) 
RMSE на обучающих данных : 0 . 0025 
>>> print( ' R2 на oбyчaIOLl)'IX данных: {: . 2) '. f ormat {r2_score (target , pred))) 
R2 н а обучающих да нных : 1. 0 

Среднеквадрат11чная погрешность не точно рав н а нулю из -за ош11 -

бок округления , но очень бли зка к нему. Коэффициент детерминации 

равен 1.0. То есть мы получаем линейную модел ь, которая дает точ ­

ный прогноз на обучающих данных. 
Но при использовании перекрестной проверки (код очень похож 

на тот, что был написан ранее для примера с домами в Бостоне) полу­

чается нечто совершенно иное : RMSE рав но 0.75, что соответствует 
отрицательному коэффициенту детерминации - 0.42. То есть даже 
есл и мы всегда будем «предсказывать» среднее з начени е - 3.5, то все 
равно это будет лучше прогноза ре t-рессио1-1 1-юй модел и! 

Погрешность на обучающих данных и способность к обобще­

нию 

Если количество п ризнаков больше количества п римеров, то метод 

наименьших квадратов всегда дает нулевую погрешность на обуча­

ющих данных , есл и п ренебречь ошибками округления. Но это редко 

означает, что модель способна к обобщению . На самом деле, можно 

получить нулевую погрешность на обучающих данных и абсолютно 

бесполезную модель. 
~---- _____ , 
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Естественное решение - воспользоваться регуляризацией для 

противодействия пере9бучению. Мы можем воспользоваться тем же 

самым циклом перекрестной проверки , взяв объект класса Ela s t i c Net 

и установив коэффициент регуляризации 0.1: 

>>> from s kl ea rn . l i ne ar_mode l impo r t Elas ticNet 
>>> met = El a s t icNet (alpha=O . l ) 

>>> kf = KFo l d ( l e n(target ) , n_fo l ds=5 ) 
>>> pred = np . ze r os_l i ke (ta r get ) 
>>> fo r train , test i n kf : 

met . fi t (da ta[ trai n] , t a r get [ trai n] ) 
p r e d [test ] = met . predict (da t a[ test ] ) 

>>> Вычи сли т ь RMS E 
>>> rmse = np . s qr t (mea n_s qua red_ e r r or (t a r ge t , p red) ) 
>>> print (' [EN О . l] RМSE на cбyчaIOLW< дi'lННЬ1Х (5 проходов ) : {: .2 ) ' . format (rmse)) 
[EN 0 .1 ] RMSE н а обуч ающих да нных (5 nроходов ): 0 . 4 

>> > # Вычислить коэффициент де терминации 

>>> r2 = r 2_ s c o r e (t arge t , pred ) 
>» pr int (' [EN О . l ] R2 на oбyчaIOJ.W{ данных {5 проходов ): ( : . 2) ' . foпnat (r2}) 
[ EN О . 1 ] R2 на обучающих данных ( 5 nроходов ) : О. 61 

Теперь RMSE равно о . 4, а R2 о . 61 - гораздо лучше, чем выбор сред­
него значения в качестве прогноза. Но в этом решении есть одна про ­

блема - выбор значения альфа. Если взять значение по умолчанию 

(1 . о ), то результат будет другим (хуже). 
В данном случае мы немного смухлевали , потому что автор попро­

бовал несколько значений, чтобы выбрать лу'1шее . Это неэффективно 
и может стать причиной ни на чем не основанной уверенности (по­

скольку мы анализируем тестовые данные, чтобы понять , какие зна­
чения параметров хороши , а какие никуда не годны). В следующем 

разделе объясняется , как сделать это правильно и как этот подход 
поддержан в scikit-leaгп . 

Объективный подход к заданию 

гиперпараметров 

В предыдущем примере параметр регуляр1 1 зации был взят рав­

ным 0.1. А можно было бы взять 0.7 или 23.9. Конечно, результаты 
будут меняться . Взяв чересчур большое значени е, мы получим не­
дообученную модель. В самом крайнем случае после обучения полу­
чится модел ь, в которой все коэффициенты нулевые . Напротив , если 
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выбрать слишком малое значение, то модель будет очень близка к 

полученной методом наименьших квадратов, то есть переобучена и 

неспособна к обобщению (что мы и видели выше). 
Как же выбрать хорошее значение? Это общая проблема машин­

ного обучени я: задание параметров ал гор1пмов обучения . Решение -
применить перекрестную проверку. Выбираем несколько возможных 

значений и с помощью перекрестной проверки оставляем лучшее. Ко­

нечно, требуются дополнительные вычисления (в пять раз больше, 
если применяется пятипроходная проверка ) , но метод всегда работа­
ет и дает объективные резул ьтаты . 

Однако нужна предусмотрительность . Чтобы получить оценку 

обобщаемости, нам понадобится два уровня перекрестной проверки : 
на первом уровне оценивается обобщаемость, на втором выбираются 
хорошие параметры. Допусти м, данные разбиты на пять групп . Сна­

чала резервируем первую группу и обучаем на четырех оставшихся. 
Затем еще раз разбиваем оставшиеся данные на пять групп , чтобы 

выбрать параметры. Подобрав параметры , проводим тестирование на 
первой группе. И повторяем эту процедуру еще четыре раза. 

Набор 
данных 

1 

2 

3 

4 

5 

Группа 1 

Т;.,товыi 
' /: 

Обучаю-
щие 

Обучаю-
щие 

Обучаю-
щие 

Обучаю-
щие 

Разбиваем на п ять подгрупп 

______________ __.,..____ ---------------
~ .......... 
Тестовые Обучаю-

щие 

Обучаю-
щие 

Тестовые 

Обучаю- Обучаю-
щие Щие 

Обучаю- Обучаю' 
щие щие 

Обуч3ю- , Обучаю-
щие щие 

Обучаю-
щие 

Обучаю-
щие 

Тестовые 

Обучаю-
щие 

Обучаю· 
щие 

Обучаю-
щие 

Обучаю· 
щие 

Обучаю-
щие 

Тестовые 

Обучаю-
щие 

Обучаю­
щие 

Обучаю­
щие 

Обучаю­
щие· 

Обучаю­
щие 

Тес'товые 

На рисун ке выше показано , как одна обучающая группа разбивает­
ся на подгруппы. То же самое нужно повторить для остальных групп. 

В данном случае получится пять внешних групп и пять внутренних , 

но нет никаких причин , почему внутренних и внешних групп должно 

быть поровну; можно разбивать как угодно, ли шь бы группы не п ере ­
секались. 

Коиечно, объем вычислений резко возрастает, но это плата за кор­

ректное решение. Проблема в том, что если использовать часть да н-

1-1ых для принятия любых решений о модели (в том числе о значениях 

параметров) , то даиные становятся «запачкаю-1ыми » и уже не могут 

использоваться для проверки способ ности модели к обобщению. Это 
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тонкий момент, который сразу не ОLJевиден. И до сих пор многие ис ­

следовател и, практикующи е машинное обучение, совершают эту 

ошибку, а, значит, переоценивают качество свот1х систем - все из-за 

неправильного применения перекрестной провер к и . 

По счастью, библиотека scik i t- l eaгn позволяет сделать всё правиль­

но ; в ней есть классы La ssocv, Ridgecv и ElasticNetCV, в которых ин­

капсули рован внутренн 11 й цикл п ерекрестной проверки для оптими­

зации нужного параметра. Код по 1пи не отличается от предыдущего , 

только для альфа н е нужно задавать никакого з н а L1ения: 

>>> from s klearn .linear_model i mpo r t ElasticNetCV 
>>> met = ElasticNetCV () 
>>> kf = KFold(l en (ta rget ), n_folds =S ) 
>>> р = np . zeros_l ike ( t arget) 
>>> for t rain , test in kf : 

met . fit(data[tra in] , target[train] ) 
p[test] = me t . predict (data [test] ) 

>>> r2_cv = r2_score ( t arget , р ) 

>>> print («R2 ElasticNetCV: {: . 2)» .format(r 2_cv)) 
R2 ElasticNetCV: 0 . 65 

Считаться будет долго , так что вы вполне успеете выпить чашеч­

ку кофе (конечно, все зав нсит от быстродействия вашего компьюте­
ра). Улучшить производительность можно, задействовав несколько 

процессоров. Эта возможность встроена в scik i t-leaгn; чтобы вос­
пользоваться ей, достаточно задать параметр n_jobs конструктора 

ElasticNetcv. Например , чтобы задействовать 4 процессора, напишите: 

>>> met = ElasticNetCV(n_jobs=4) 

Если положил, n _j obs равным - 1, то будут задействованы все име­
ющиеся процессоры: 

>>> met = ElasticNetCV(n jobs=- 1) 

Возможно, вы недоумеваете, почему мы задаем только одно з н аче ­

ние альфа, если в алгоритме ElasticNet два штрафа , L1 и L2. На самом 

деле, оба з начения становятся известны в результате·задания альфа и 

переменной ll_ratio. Значения а 1 и а2 вычисляются следующим об­

разом (здесь буквой р обозначено ll_ratio ): 

а, =ро. 

о.2 = ( 1 - р ) а 

Интуитивно понятно, что альфа задает общую величи ну регуляри­

зации, а ll_rat io - соотношение между различными типами регуля ­

ризации , L1 и L2. 
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Можно потребовать, чтобы объект ElasticNetcv проверял различ ­

ные значения 11_ratio, как показано в коде ниже: 

>» 11 ratio=(.01 , . 05 , . 25 , . 5 , .7 5 , . 95 , . 99] 
>>> met = Elast i cNetCV( l l ratio=l l ratio , n jobs =- 1) 

Такой набор значений 11 _ ratio рекомендован в документации. При 

этом тестируются как модели, близкие к гребневой регрессии (когда 
ll_ratio равно 0.01 или 0.05) , так и модели , близкие к Lasso (когда 
ll_ratio равно 0.95 или 0.99). Следовател ьно, будет рассмотрен весь 

диапазон вариантов. 

Благодаря своей гибкости и умению задействовать несколько про­

цессоров ElasticNetcv - отличное решение по умолчанию для задач 

регрессии в случае, когда нет причин предпоtrесть какую-то одну мо­

делr,. Собрав все вместе, мы можем наглядно представить соотноше­
ние прогноза и реальных данных для этого большого набора: 

>>> 11 ratio = [ . 01, . 05 , . 25 , . 5 , . 75 , . 95 , . 99] 
>>> met = ElasticNetCV (ll_ratio=ll_ratio , n JObs =-1) 
>>> р = np.zeros like(target) 
>>> for train , t e st in kf : 

met.fit( da ta[train] , target[tra i n]) 
p[test] = met.predict(data [ te s t] ) 

>>> plt.scatter (р , у) 

>>> # Добавить диагональ для срав н ения) 

>>> # (описывает точное согласие ) 

>» plt.plot ( [p .min () , p .max ()] , [p.min () , p.max ()]) 

Получается тако1! график: 

о 

- 6 
- 9 - 8 -7 -6 - 5 - 4 - 3 -2 - 1 о 

Истинное значение 



Резюме 

Как видим, лрогноз не очень хорош в нижнем левом углу. Быть может, 

это связано с тем, что в этой области лримеров гораздо меньше (а, значит, 
этот недостаток негативно отразится лишь на небольшой доле данных) . 

И последнее замечание: использование внутреннего цикла перекрест­

ной проверки для задания параметров поддерживается в scikit- leaгп и с 

применением лоиска на сетке . Мы уже видели это в предыдущей главе . 

Резюме 
Мы начали эту главу с самого старого из всех рассмотренных в этой 

книге алгоритмов - регрессии обычным методом наименьших квад­
ратов. Ему уже две сотни лет, но по-прежнему он зачастую является 

наилучшим для решения задачи регрессии . Но видели мы и более со­
временные подходы, которые позволяют избежать переобучения и 

дают более точные результаты, особенно если количество признаков 

очень велико. В качестве примеров мы привели методы гребневой ре­
грессии, Lasso и эластичных сетей. 
Мы еще раз продемонстрировали , как опасно полагаться на по­

грешность на обучающих данных для оценки способности модели к 

обобщению: может оказаться, что погрешность нулевая, а модель, тем 

не менее , абсолютно бесполезна. Размышления над этими проблема­

ми привел и нас к двухуровневой перекрестной проверке - важной 

методике, которую еще не все работающие в области машинного об­
учения исследователи осознал и и приняли на вооружение. 

В этой главе мы смогли воспользоваться sc ikit -leaгn для реали ­

зации всего задуманного , в том числе и правильной перекрестной 

проверки . Мы рекомендуем по умолчанию использовать для регрес­

сии эластичные сети с циклом внутренней перекрестной проверки 

(в sciki t- leaгп это класс El asticNetcv ). 

Что-то другое имеет смысл и спользовать , в частности , тогда, когда 

вам интересно разрежеrшое решение. В таком случаем чистый алго ­

ритм Lasso подходит лучше, потому что в результате его применения 

многие коэффициенты оказываются равны нулю. Он также позволя­

ет определ ить по данным небольшое число переменных, оказываю­

щих наибольшее влияние на результат. Это зна1ше интересно и са~ю 
по себе, помимо получения хорошей регрессионной модели. 

В следующей главе мы займемся рекомендова нием, еще одной за­

дач ей машинного обучения. Сначала мы воспол ьзуемся регрессией 
для прогнози рования рейтингов потребительского продукта. А затем 
рассмотрим альтернативные модел и выработки рекомендаций . 
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Рекомендации 

Рекомендование стало одним из столпов услуг и торговли в Интерне­

те . Такая автоматиз11рованная система может предложить пользова­

телю персонализированный список рекомендаций (например, пере­

чень товаров , возможных признаков или новых социальных связей). 

В этой главе мы рассмотрим при~щипы работы автоматизированных 
систем генерации рекоменда ций. Та часть этой дисциплины, которая 

изучает рекомендование на основе данных, введенных пользовате­

лями, называется коллаборативной фильтрацией, потому что поль­

зователи при посредстве системы совместно (коллаборативно) ищут 

интересующие друг друга объекты. 

В первой части главы мы увидим, как воспользоваться оценками , 

которые были поставлены пользователями ранее, для предсказания 

новых оценок. Начнем с нескольких полезных идей, а затем объеди ­

ним их вместе. При этом мы будем использовать ре 1-рессию, чтобы 

найти иаилучший способ объединения. И заодно изучим еще одну об­
щую концепцию машинного обучения: обучение ансамбля моделей . 

Во второй части главы мы познакомимся с другим подходом к об­

учению системы рекомендова ния: анализом корзины. В этом случае 

у нас н е будет числовых оценок, а все, чем мы распола1·аем, - инфор­

мация о содержимом корзин покупателе й , то ес1ъ предметов , которые 

покупали вместе. А цель, как и раньше, - вывести отсюда рекоменда ­

ции. Вы, наверное , встречали в разных Июернетах-магазинах фразу 

типа «купившие Х покупали также У». Мы разработаем аналогичную 

функциональность. 

Прогноз и рекомендование 

оценок 

Если в последние 10 лет вы хоть раз покупали что-нибуд ь в Интерне­

те , то наверняка видели подобные рекоменда ции . В одних магазин;1х, 
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например в Ашаzов, пишут «покупатели , куп1rвшне Х, купили также 

У». Таки е рекомендации мы рассмотрим н11же в разделе «Анализ кор­

зины » . Другие рекомендации основаны н а прогноз ировании оценк 11 

объекта , например кинофильма. 

Задача обучения системы рекомендования по оценкам объектоп 

получила известность бла 1-одаря призу в миллион долларов, учреж­

денному компанией Netflix. Компания Netflix (хорошо известная в 
США и Великобритании и осуществляющая экспансию на междуна­
родный рынок) занимается прокатом кинофильмов. Раньше заказчик 

получал по почте DVD-д 11 cк, но в последнее время Netflix концентри­
руется на потоковом показе фильмов через Интернет и по телевизору. 

С самого на,~ала служба отличалась тем, что позволяла пользовате­

лям оценивать просмотренные фильмы. Затем Netflix использовала 
эти оценки, чтобы рекомендовать клиентам другие фильмы . В этой 

задаче машинного обучения в нашем распоряжении имеется не толь­

ко информация о том, какие фильмы смотрели пользователи, но и о 

том, как они их оценили. 

В 2006 году Netflix собрала в своей базе данных большое число оце­
нок фильмов, поставленных пользователями, и, сделав их общедо­

ступными , объявила кон курс. Была поставлена зада'Jа улучшить при­
меняемый компанией алгоритм прогнози рования оценок. Участник, 

которому удалось бы повысить его качество не менее чем на 10 про­
центов, получал приз в один миллион долларов . В 2009 году между­
народный коллектив под названием Bel!Koг's Pгagmatic Cliaos сумел 
превзойти алгоритм Nettlix и получил приз. Они всего на 20 минут 
опередили другую команду, Tl1e Е11sе 111Ы е, которая также преодолела 
10-процентный рубеж, - потрясающий финал соревнования , дливше­

гося нескол ько лет. 

------·------·-·~-м•-----~~·~~ • 
Машинное обучение в реальном мире 

О призе Netflix немало писали, и, читая эти материалы, можно 

многому научиться. Победителями оказались методики, в которых 

применялись как сложные алгоритмы машинного обучения, так и 

разнообразные действия по предварительной обработке данных. 

Например, одни пользователи ставят всем очень высокие оценки, 

тогда как другие постоянно их занижают. Если не принять такие 

вещи во внимание на этапе предварительной обработки, то постра ­

дает качество модели. Для достижения хорошего результата необ­

ходимо было учитывать и другие факторы : как давно снят фильм и 

сколько всего оценок ему поставлено. Хорошие алгоритмы - вещь 

важная , но нельзя пренебрегать « грязной работой": нужно обяза­

тельно настраивать алгоритмы под свойства имеющихся данных. 
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Предобработка и нормировка данных часто занимают львиную 

долю времени в процессе машинного обучения. Однако именно эти 

операции оказывают наибольший эффект на качество конечной си ­

стемы. 

. ~ -·------
Говоря о призе Netflix P1·ize, нужно, прежде всего, отметить слож­

ность задачи. Грубо говоря, внутренняя система Netflix была всего на 
10% лучше отсутствия всяких рекомендаций (ко 1-да каждому фильм 

присваивается оценка, равная среднему значению по всем пользова­

телям). Цель состояла в том, чтобы улучшить эту рекомендацию еще 

на 10%. Победившая система оказалась примерно на 20% лучше от­
сутствия рекомендаций . А сколько времени и сил было положено на 

достижение этой цели! И хотя 20 процентов вроде бы не так м1юго, 
получившаяся система практически полезна. 

К сожалению, по причинам юридического характера этот набор 
данных уже недоступен. Несмотря на а 1-юнимносп, данных, возникли 

опасения , что на их основе можно определить личности клиентов и 

узнать конфиденциальные сведения об аренде фил1,мов. Однако мы 

можем воспользоваться академическим набором данных с аналогич­

ными характеристиками. Этот набор подготовлен исследовательской 

группой GгoнpLens из Миннесотского университета. 

Как ответить на поставленный Netfl ix вопрос о прогнозировании 
оценок? Мы рассмотрим два подхода: на основе ближайших соседей и 
регрессионный. Мы также покажем, как объединит~, оба подхода для 
получения единого прогноза. 

Разделение данных на обучающие 

и тестовые 

Принципиально разбиение набора данных на обучающие и тесто­

вые для получения объективной оце1-ши качества си стемы пронзво­

юпся так же, как в предыдущих главах: резервируем какую-то часть 

данных (скажем, 10 процентов ) для тестирования, а осталы1ые ис­

пользуем для обучения. Но поскол1>1<у в этом контексте структура 

данных отличается, код тоже будет другим . Первым делом за грузим 

данные с диска, воспользовавшись следующей функцией: 

de f l oad (): 
import numpy as np 
fr om scipy import sparse 

data = np . loadtxt ( ' data/ml - lOOk/u . data ') 
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ij = data[ :, : 2] 
ij - = 1 1 индексация исходных данных начинается с 1 
va l ues = data[ :, 2] 
reviews =. sparse . csc_matrix( (values , ij . T)) . astype(float ) 
r eturn reviews .toarray () 

Отметим, что нулевые элементы этой матрицы соответствуют от­

сутствующим оценкам . 

>>> revie ws = l o a d () 
>>> U, M = np . where ( reviews ) 

Далее с помощью стандартного модуля ra ndom выберем индексы, 

резервируемые для тестирования: 

>>> import random 
>>> test_idxs = np . array (random. sampl e (range (len (U) ) , l en (U) //10 ) ) 

Теперь построим матрицу train, которая отличается от r eviews тем, 

что элементы , соответствующие тестовым данным , равны нулю: 

>>> train = rev iews . copy () 
>>> tra i n[U [ test_idxs] , M[test idxs]] =О 

И матрицу test , содержащую только тестовые данные: 

>>> test = n p . zeros_like ( reviews ) 
>>> test [U[t·est_ idxs] , M[test_idxs ] ] = r eviews [U [tes t _ idx s ] , 
M[ t est_idxs]] 

Начиная с этого момента, мы будем работать только с обучающими 
данными и попытаемся предсказать значения , отсутствующие в набо­
ре данных. То есть напишем код, который сопоставляет каждой паре 

( пользователь , фильм) рекоменда цию . 

Нормировка обучающих данных 
Как мы уже говорили, лучше нормировать данные, чтобы устра ­

нить очевидные особенности, характерные для фильмов или пользо­
вателей . Мы применим только очень простой вид нормировки, кото­

рым пользовались и раньше: преобразование к z -оценкам . 

К сожалению, мы не можем просто воспользоваться нормировоl1-

ными объектами scikit- leaгn, так как должны учитывать возможность 
отсутствия некоторых значений ( из-за того, что не каждый пользо­

ватель оценивает все фильмы). Поэтому требуется нормировать с 

учетом среднего и стандартного отклонения тех значений, которые 

присутствуют. 
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Напишем собственный класс, который будет игнорировать отсут­
ствующие з начения, следуя определенному в sc iki t- l ea гп API предва ­

р1пельной обработки: 

c la ss No rmalizePos i tive (ob j ect ): 

Нужно выбрать ось нормировк 11 . По умолча 1111 ю нормировка произ ­

водится по первой оси, но иногда полез н ее норм 11 ровать по второй. Это 

соглашение, принятое во многих функциях, относящихся к Nu111Py: 

de f i nit (s elf , axis=O ) : 
se l f. a xi s = ax is 

Самый важный метод - fit . Мы будем вычислят ь среднее и стан ­

дартное откло 1-1ение по значениям, отличным от нуля. Напомним, что 

нулями представлены <1отсутствующие значения »: 

de f fi t (self , f eatu re s , y=None ): 

Если параметр axis раве н 1, то мы будем работать с транспониро­
ванным массивом: 

if self. axis == 1 : 
f eatu r es = featu re s .T 

# п одсчитать , сколько признако в больше О н а оси О 

Ьina ry ( features > 0 ) 
cou п tO = Ьiпary . sum( axi s =O ) 

1 во избежание деления на О установить нулевые счетчики в единицу 

couпtO[cou п tO ==О ] 1. 

# вычислит ь средн ее нетрудн о 

se lf . meaп = featu re s . sum( ax is = O ) / couпtO 

1 рассматри в а ем толь ко раз ности , дл я которых bi пary рав н о True 
di f f = (feat u res - s el f . me an) * Ьi nary 

diff **= 2 

# ре гуляризировать оценку ста ндарт ного откло не ния , приба вив 0 .1 
s e l f .std = np. s qrt (0 . 1 + di ff . s um(ax is=O) /co un tO ) 
r e turn se lf 

Мы прибавили 0.1 к вычисленной оцен ке стандартного отклоне ­

ния , чтобы предотвратить недооценку его з н ач ения в случае, когда 
есть всего нескол 1,ко образ цов и все они равны. Точное значение не 

нграет существенной роли для кон ечного резуJ11:>rата , но необходимо 

избежать делен11я на нуль. 
Метод transfo rm должен позабот1пъся о корректност11 структуры 

Ьinar y: 
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1 

def transform (self , features) : 
if se l f . axis == 1 : 

features = features . T 
binary = (features > О) 

features = features - self . mean 
features /= self . std 
features *= binary 
if self . axis == 1 : 

features = features . T 
return features 

11 •ШI 

Обратите внимание, что в случае , коrда axi s равно 1, мы транс­
понируем входную матр11цу, а затем транспонируем ее еще раз, что­

бы возвращаемое значение имело ту же форму, что входное. Метод 

inverse_transform выпол няет обратное транспонирование: 

def inverse_transform (se l f , f eatu res , copy=True ): 
if сору: 

features = f eatures . copy ( ) 
if self . axis == 1: 

features = f eatures . T 
features * = self . std 
features += self . mean 
if self . axis == 1: 

features = features . T 
return features 

Наконец, метод fit_transform объединяет операции fi t и transform: 

def fit transform(self, features) : 
r etu rn self .fit(features ) . transform(features) 

Определенные нами методы ( fit, transform, transform_inverse 

и fit_ transform) - те же самые , что в классах из модуля sklearn . 

preprocessing. В следующих разделах мы сначала нормируем вход­

ные данные, затем сгенерируем нормированные предсказания и, на ­

конец, применим обратное преобразовани е, чтобы получить оконча­

тел ьные предсказания. 

Рекомендование на основе ближайших 

соседей 
Понятие соседства можно трактовать двумя способами: соседние 

пользователи и соседние фильмы. Для пользователей понятие сосед­

ства реализуется О'rень просто: чтобы узнать, как некий пользователь 
оценит фильм , нужно найти самых похожих на не го пользователей и 

посмотреть , какие оценки поставнл и они. Мы сейчас займемся этой 
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идеей, а в конце этого раздела обсудим, как модифицировать код, что­

бы ВЫЧИСЛЯТЬ соседние фильмы. 
Интересная мысль - посмотреть, какие фильмы оценивал каждый 

пользователь, причем сама оценка нас мало и нтересует. Даже имея 

лишь двоичную матрицу, в которой элемент равен 1, если пользова­

тель оценивал фильм, и О , если не оценивал, мы можем сделать по­

лезные предсказания. И если подумать, то это вполне логично: мы 

же решаем, какой фильм посмотреть, не совсем случайно, а стараем­

ся выбирать те, что могут нам понравиться. И решение о том, какие 
фильмы оценивать, не произвольно - обычно мы оцениваем те филь­

мы, которые вызвал н у нас сил ьные эмоции (конечно, бывают исклю­

чения, но в среднем это , пожалуй, так). 

Мы можем визуализировать матрицу, изобразив каждую оценку 

в виде квадратика . Черным цветом обоз начим отсутствие оценки, а 

градациями серого - значение оценки. 

Код такой визуализации данных очень прост (можете модифици­

ровать его, чтобы показать большую часть матрицы, чем поместилось 

на печатной странице). 

>> > f rom matplotlib import pyp l ot as p l t 
>> > # С троим объект , определенный выше 

>> > norm = Nor mali ze Pos i tive (a xis=l) 
>>> binary = (train > 0 ) 
>> > t r ai n = norm .fit _ transform (train ) 
>>> # из-за ограниченности места рисуем только область размером 200х200 
>>> plt . imshow(Ьinary [: 200 , : 200] , in t e r po l at i on= ' nea r est ') 

В результате получается такая картина: 

о 50 100 150 

Ид пользователя 
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Как видим, матрица разреженная - большинство квадратиков чер­

ные. Видно также, что некоторые пользователи оценивают гораздо 

больше фильмов, чем остальные, и что некоторые фильмы получают 

больше оценок. 
Теперь мы воспользуемся этой двоиLшой матрицей, чтобы спрог­

нозировать оценки фильма. Алгоритм выглядит следующим образом. 

1. Для каждого пользователя ранжировать всех остальных по 
близости к нему. На этом шаге мы воспользуемся двоичной 
матрицей и в качестве меры близости возьмем корреляцию 
(интерпретируя матрицу как состоящую из нулей и единиц, 

мы сможем выполнить это вычисление). 

2. Чтобы предсказать оценку для пары (пользователь, фильм), 
мы возьмем всех пользователей , оценивших данный фильм, и 

разделим их на две равные группы: самые похожие и самые 

непохожие. Предсказанием будет средняя оценка по первой 
группе. 

Для построения матрицы расстояний между пользователями вос­

пользуемся функцией scipy . spatial . distance . pdist . Она возвраща ­

ет корреляционное расстояние, инвертируя величину корреляции 

таким образом, что чем менее похожи числа, тем больше расстоя-
1-ше между ними. Математически корреляционное расстояние рав ­

но 1 - r, где r - велиLшна корреляции. Код приведен ниже. 

>>> from scipy.spatial i mport distance 
>>> # вычислить попарные расстояния 

>>> dists = distance . pdis t ( Ьiпаrу , ' correla tion ' ) 
>>> #Преобразоват ь в квадратную матрицу , в которой dists [ i ,j] -
>>> #расстояние между Ьinary [ i] и Ьinary[j] 

>>> dists = distance .squareform(dists) 

Теперь с помощью этой матрицы можно выбрать ближайших со­

седей каждого пользователя : 

>>> neighbors = dists.argsort (axis=l ) 

Затем перебираем всех пользователей, чтобы предсказать оценки 

каждого фильма: 

>>> # Запол няем матрицу результатов 

>>> fill ed = train . copy() 
>>> for u i n range (fill ed . s hape [О]) : 

# n_u - соседи пользователя 

n u = neighbo r s [u , 1:] 
# t u - обучающие данные 

for m in range(filled.shape[l]) : 
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# получит ь релевант ные оценки п о порядку ' 

revs = [t raiп[пeigh , m] 
for neigh in n u 

if b inary [neigh , m]} 
if len (revs) : 

# n - количество оце нок для да нного фил ьма 

n = l e n( revs ) 
# рассматриваем половину оце нок плюс 1 
п //= 2 
п += 1 
r evs = r evs [ : n} 
filled [u , m] = np. mean(revs 

Нетривиальная часть этого кода - индексирование подходящими 

значениями, чтобы выбрать только тех соседей, которые оценили 

данный фильм. Затем мы выбираем полови н у, ближай шую к пользо­
вателю (строка rev [ : n J ) и по ней производим усредн ение. Поскольку 

для одних фильмов оценок много, а для других мало, не всегда воз ­

можно отобрать одинаковое число пользователей для всех случаев. 

Выбор полови1-1 ы имеющихся данных - более общий подход. 
Для получения конечного результата нужно денормировать пред­

сказания : 

>>> predicted = no r m. inverse transform(filled ) 

Можно использовать те же метрики, что в предыдущих главах: 

>>> f r om sk l earn import metrics 
>>> r2 = metrics . r2 s core(test[test >О] , predicted[test > 0}) 
>>> print ( ' Oцeнкa R2 ( двоичные соседи) : {: . 1 %) '. format (r2 )) 
Оце н ка R2 ( двоич ные соседи ): 29.5 % 

Выше мы выч1 1 сляли результат на основе идеи о соседних пользо­

вателях , но можно рассматривать и соседние фильмы, для этого до­

статочно просто транспонировать входную матрицу. На самом деле, 

программа вычисляет соседей для объектов, расположенных в стро­

ках входной матрицы, чем бы они ни был и . 

Перезапустим эту программу, добавив в н ачало следующую строку: 

>>> rev i ews = reviews .T 
>>> # тот же код , что и ра н ьше . . . 
>>> r2 = metrics . r 2 sco r e (test[test >О] , predicted[test > 0} ) 
>>> print ( ' Оце н ка R2 ( двоичные соседи-фильмы ) : { : .1 %) ' . format (r2 )) 
Оце н ка R2 ( двоич ные соседи-фил ьмы ) : 29 . 8% 

Как видим , результаты мало отличаются . В репоз иторllи кода из 

книги вычисле1ше соседе\°1 обернуто простой фун кцией, чтобы его 

было проще использовать повторно. 
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Регрессионный подход к рекомендованию 

Можно сформулировать задачу рекомендования и как задачу ре­

гресси и и применить методы из предыдущей главы. 

Заодно обсудим, почему эту задачу не следует рассматривать как 

задачу классифика ции . Конечно, можно было бы попытаться обучить 
модель с пятью классами, по одному для каждой возможной оценки. 

Но возникают две проблемы . 
Возможные ошибки далеко не равноценны. Например, если по 
ошИбке оценить 5 -звездочный фильм на 4 звезды, то это не так 
страшно, как присвоить ему одну звезду. 

Промежуточные з нач ения также осмыслены. Даже если на 

входе допустимы только целые числа, то предсказание 4.3 име­
ет смысл. Мы понимаем, что оно отлично от 3.5, хотя округле­
ние в обоих случаях дает 4. 

В совокупн ости эти два соображения показывают, что классифи­
кация - н е лучший подход к решению этой задачи. А вот регрессия 

подходит. 

Как и раньше, у нас есп, выбор: построить модель , ориентирован ­

ную на фильмы или на пользователей . Сначала построим модель, 

ориентированную на пользователей. Это означает, что для каждого 

пользователя в качестве целевой переменной мы возьмем оцененные 

им фильмы. Входами будут оценки , поставленные другими пользо­

вателями. Наша гипотеза состоит в том , что таким образом мы по­
лучим высокие значения для пользователей, похожих на выбран ного 

(и отрицательное значение для тех пользователей , которым нравятся 

именно те фильмы, которые выбранному не нравятся ). 
Матрица train и test создаются, как и раньше (включая норми ­

ровку) . Поэтому сразу перейдем к этапу обучения. Сначала создадим 

объект для выполнения регрессии : 
1 

>>> reg = ElasticNetCV(alphas=[ 
0 . 0125 , 0 . 025 , 0.05 , . 125 , . 25 , . 5 , 1 ., 2 ., 4.] ) 

Мы хотим построить матрицу, содержащую оценки для каждой 

пары (пользователь, фильм) . Инициализируем ее копией обучающих 

данных: 

>>> fill ed = trai n.copy () 

Теперь переби раем всех пользователей и для каждого обучаем 
регрессионную модель на тех данных, которые получены от других 

пользователей: 
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>>> for u in range ( train. shape [О] ) : 
curtrain = np . delete(train , u , axis=O ) 

# В b inary хра нится и нформация о присутствии оценки 
bu = bina ry [u] 
# Обучим текущего пользователя на дан ных обо всех осталь ных 

r eg . fit(curt rain[ :, bu] . Т , train [u , bu] ) 
# Добавим отсутствующие оце н ки 

fil l ed[u , -bu] = reg . predict (c urtrain [: , - bu] . Т ) 

Оценивание качества методики производится, как и раньше : 

>>> p r edicted = no rm. in verse tra nsform (fi l led ) 
>>> r2 = metrics . r2 score (test[test > 0] , predicted [test >О] ) 

> > > print ( ' Оценка R2 ( регрессия по пользователям ) : { : . 1 % ) ' . forma t ( r2 ) ) 
Оценка R2 ( регрессия по пользователям ) : 32 . 3% 

Этот код также можно модифицировать, чтобы регрессия произво­

дилась по фильмам, для этого достаточ но транспонировать матрицу. 

Комбинирование нескольких методов 
Теперь объединим оба описанных выше метода в один. Интуитив­

но идея представляется заманlш вой, но как это сделать практически? 

Первое, что приходит на ум, - усреднить оба прогноза. Возможно , и 

получится приличный результат, но нет никаких оснований полагать, 

LJТO все прогнозы должны считаться равноце нными. Один может быть 

лучше, другой - хуже. 

Можно попробовать взвешенное среднее , когда каждый прогноз 

ум ножается на ка кой-то вес , а потом результаты сумми руются . Но как 

найти наилучши е веса? Ну, разумеется, путем обуч ения на данных! 

Обучение ансамбля 

Речь здесь идет об общей технике машинного обучения, примени­

мой не только к регрессии : обучении ансамбля моделей. Мы обу­

чаем ансамбль (то есть набор) п рогностических моделей - преди­

кторов, а затем комбинируем их для получения одного результата . 

Интересно , что каждый прогноз можно рассматривать как новый 

п ризнак, а задача заключается в том , чтобы как-то скомбинировать 

признаки на основе обучающих данных , но именно этим мы всю до­

рогу и занимаемся. И хотя сейчас мы в~1полняем регрессию, те же 
рассуждения применимы и к классификации: обучаем несколько 

классификаторов, а затем главны й классификатор, который полу­

чает частичные результаты и возвращает окончательный прогноз. 

Существуют разные формы обучения ансамбля, определяемые 

способом комбинирования п редикторов. 
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Для комбинирования методов мы воспользуемся техникой по­

слойного обучения (stacked l earпing). Идея заключается в том, чтобы 
обучить набор лредикторов, а затем использовать их результаты как 

признаки для еще одного предиктора. Можно даже завести несколько 

слоев и обучать каждый следующий слой на результатах предыдуще­

го. Взгляните на ри сунок ниже: 

П рогноз 1 

Прогноз 3 

1:11 
" n 

" 
Окончательный 
прогноз 

Чтобы обучить эту комбинированную модель, мы разделим обуча­

ющий набор на два. Можно было бы вместо этого и спользовать пере ­

крестную проверку (первоначально модель послойного обучения так 

и работала). Но в данном случае данных достаточно для получения 
хороших оценок, даже при услови и, что часть данных зарезервирова­

н а для тестирования . 

Но, как и при подборе гиперпараметров, нам понадобится два уров­
ня разделения на обучающие и тестовые данные: верхний и нижний, 
на котором мы разбиваем обучающие данные на две части, чтобы об­
учить вложенный предиктор: 

>>> traiп,test = load_mll OOk . get traiп test(raпdom_state=l 2) 

>>> # Now split the traiпiпg agaiп iпto t wo subgroups 
>>> tr_traiп , tr test = load_ mllOOk . get tra iп test(trai п, 

raпdom_state=34 ) 

>>> 1 Вызываем все ра н ее определенные методы: 

>>> 1 они реализованы в виде функций 
>>> tr_predictedO regress1on.pred1ct(tr trai п) 

>>> tr_predictedl regression.predict(tr_traiп . T) .Т 

>>> tr_predicted2 cor rneighbou r s . predict(tr_train) 
>>> tr_predictedЗ corrпeighbours.predict (tr_tra iп. T) .Т 

>>> tr_predicted4 norm. predict (tr train ) 
>>> tr_predictedS norm . predict(tr trai n.T) .Т 

>>> 1 Теперь собираем их прогнозы в один массив 

>>> stack_tr = пp.array([ 
tr_predictedO[t r_test > 0] , 
tr_predictedl[tr test > OJ , 
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t r _predicted2 [ tr_test > 0] , 
t r _pred icte d3 [ tr_test >О] , 

t r _ predicted4 [ tr_ test > 0] , 
tr_ predictedS[tr_test > О] , 

] ) . т 
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>>> # Обучаем простую модель линейной регрессии 

>>> l r = linear_mode l. Linea rRegression () 
>>> l r. fit (stack_tr , t r_test [ tr_test > 0] ) 

Теперь применим модет, к тестовым данным и оцен им кач ество: 

>>> stack_te = np . a rray ( [ 
t r _predicted O. r ave l() , 
tr_ predictedl . r ave l(), 
tr_p redicted2 . r ave l ( ) , 
tr_predic ted3 . r ave l() , 
tr_ predicted4 . r ave l (), 
tr_predi cted5 . r ave l() , 
] ) . т 

>>> predicted = lr . p r edict (stack_ te ) .reshape ( trai n . shape ) 

Качество оцениваем, как и раньше : 

>>> r 2 = met r ics . r2 _ s co r e (test [ test >О] , predicted [ test > 0] ) 
>>> p r i n t ( ' R2 послойной модели : { : . 2 %) ' . format {r2 ) ) 
R2 п ослойной модели : 3 3 . 15 % 

1 

Результат послойного обучения лучше, чем у любого отдельного 
метода . Это типичное явление: комбинирование методов дает н еболь ­
шое повышение качества , но каких-то потрясающих прорывов ждать 

н е стоит. 

Имея гибкий способ объедннения нескол ьких методов, мы можем 

апробировать любую пришедшую в голову идею, доба вив новый пре ­

диктор и поручив системе испол ьзовать его для прогнозирования. 

Можно , например , заменить критери й близости в алгоритме ближай­
ших соседей . 

Однако 1iужно следить за тем , чтобы не получить п ереобученную 

модель. Если случайным образом пробовал, слишком много разны х 

подходов , то некоторые будут хорошо работать на 11м еющем ся на­

боре данных , но не будут обобщаться. Хотя мы и разделяем данные 

на части , строгой перекрестной проверке принятые решения не под­

вергаются. Есл и вы хотите получить хорошую модель и распола гае ­

те достаточным количеством примеров , то отложите часть данных в 

сторонку, чтобы протестировать на них окончате;1 ьн ую модел r, перед 

внедрени ем ее в экс плуата цию. Тестирова ние на зарезервированных 

данных даст объекпшную оценку ожидаемо го ка ч естоа работы моде­

л и на реальных данных. 
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Анализ корзины 
Выше мы обсуждали методы, которые хорошо работают, если имеют­

ся числовые оценки объекта пользователями. Но такая информация 
не всегда доступна, поскольку ее сбор требует от пользователей ак­
тивных действий. 

Анализ корзины - альтернативный способ обучения системы ре­

комендования. В этом режиме нам известно лишь, какие товары по­

купали вместе, но мы ничего не знаем о том, понравились они поку­

пателю или нет. Даже если покупатель иногда сожалеет о покупке, в 

среднем, зная, что люди покупают, мы уже имеем достаточно инфор­

мации для выработки хороших рекомендаций. Часто собрать такие 
данные легче, чем оценки, поскольку многие пользователи оценок не 

ставят, тогда как создание корзины - непременный побочный эффект 
акта покупки. На рисунке ниже показана неб -страница сайта Ашаzоп. 

сот для романа Толстого ~ война и мир~. из которой видно, как такие 

данные обыLIНО используются: 

Customers Who Bought This Item Also Bought 

Anna Kare11ina 
Leo Tolstoy 

**}"rki-( (289 ) 

Paperback 

$10.35 

!!в~;;;? 

11 
The Brothers Karamazov 
Fyodor D)stoevsky 

fd~tcfd:( (248 ) 

Papcrback 

$11 .25 

~ 
. 

. 
The ldiot (\lintage Classics} 
Fyodor Do!itoevsky 

f"t."/drf,d.( ( 5 7 ) 

Paper·back 

$10.ВВ 

Естественно, этот способ обучения применим не к одним лишь 

корзинам покупок, а в любой ситуации, когда имеется группа объек­

тов и требуется рекомендовать еще один. Например, Gшail рекомен­

дует дополнительных адресатов пользователю, который пишет пись­

мо, и это можно было бы реализовать похожим образом (мы не знаем, 
как это делает Gшail ; возможно, комбинируются несколько методов, 
как в предыдущем разделе ). Или можно было бы написать приложе­

ние, которое рекомендует, какие страницы посетить , исходя из вашей 

истории просмотра. А если pelrь идет о покупках, то, возможно, имеет 

смысл объединить все приобретенные покупателем товары в одной 

корзине вне зависимости от того , покупались ли они за один или не-
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скол ько раз. Все зависит от ситуации, главное - помните, что это гиб­

кая методика, которую можно с пользой применить в разных задачах. 

---- "-~-----·-----"--··-··-· ~------------
Пиво и подгузники 

Говоря об анализе корзины, часто всп с\минают историю о пиве и 
подгузниках. Известно , что когда супермаркеты только начинали 

анализировать собранные ими данные, оказалось, что подгузники 

часто покупают вместе с пивом. Предположительно так поступали 

папаши , которые заходили за подгузниками , а заодно прихватыва­

ли бутылочку-другую пива . Много спорили, правда это или просто 

городской фольклор . В данном случае похоже на правду. В начале 

1990-х годов Оско Драг обнаружил, что ранним вечером пиво и под­

гузники действительно покупают вместе , ч ем сильно удивил ме­

неджеров , до тех пор не видевших между этими товарами никакого 

сходства. А неправда, что это открытие побудило владельцев мага ­

зинов приблизить пиво к секции подгузников. И , кроме того , мы так 

и не знаем , только ли отцы покупают пиво и подгузники вместе, или 

это характерно и для матерей (а равно дедушек и бабушек) . 

Получение полезных прогнозов 

Речь идет не о том, что «купившие Х 'rасто покупают также У», хотя 

именно эту фразу часто можно встретил, на сайтах Интернет-мага­

зи нов (см. пример сайта А111аzоп.со111 выше); реальная с1 1 стема так 

работать не может. Почему? Потому '!ТО такую систему вводили бы 

в заблужден ие любые часто покупаемые товары, и она просто реко­

мендовала бы популярные товары без какой б ы то ни было персон а­

лизации. 

Например, многие покупают в супермаркете хлеб всякий раз, ког­
да оказываются поблизости (для определенности предположим, что 
хлеб входит в 50% покупок). Поэтому есл и взяп, любой дру гой товар, 

скажем средство для мытья посуды, и посмотреть, что часто покупа­

ют вместе с ним, то окажется , что это хлеб. Действительно, в средн ем 

в половину случаев человек, купивший средство для мытья посуды, 

покупает и хлеб. Но хлеб так же часто покупают с любым другим то­

варом, просто потому что его вообще покупают часто. 
В действительности же нас интересует такое утверждени е: « По­

купатели, купившие Х, статистически с больше 1u1 вероятностью ку­

пят У, чем сред ни й покупатель, н е купивший Х». Если вы покупаете 

средство для мытья посуды, то вы, вероятн о, купите и хлеб , но не с 
большей вероятностью, чем любой другой покупател 1,. Точно так же , 
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ю- 1 ижный магазин , который просто рекомендует бестселлеры вне за ­

висимости от того , что вы покупали раньше, вряд ли можно назвать 

хорошим персональным рекомендателем . 

Анализ корзин покупок в супермаркете 

В качестве примера рассмотрим набор данных, состоящий из ано­

нимных покупок в одном бельгийском супермаркете. Этот набор под­
готовил Том Брийс (Тот Bгijs) из Хассельтского университета. Для со­

хранения конфиденциальности все персональные данные исключены , 

то есть имеется только купленное количество каждого товара, а корзи ­

на представляет собой набор чисел. Этот файл данных можно скачать 

из разных источников, в том числе с сопроnодител ьного сайта книги. 

Для начала загрузим набор данных и немного познакомимся с его 

статистическими характеристиками (это всегда полезно). 

>>> from collection s import defaultdict 
>>> from itertools impo r t chain 

>>> # Скача нный файл сжат 
>>> i mport gzip 
>>> # Каждой nокупке отведе н а в файле одна строка 

>>> # вида ' 12 34 342 5 ... ' 
>>> dataset = [ [int (tok ) for tok in l iпe . strip ( ) . sp l it () ] 

f or line in gzip . open( ' retail . d a t . gz ') ] 
>>> # Удоб нее работат ь с множествами 

>>> dataset = [set (d ) for d in dataset] 
>>> # Подсчитаем , сколько раз покупали каждый товар 

>>> cou n ts = defau l tdict ( int ) 
>>> for e l em i n chain( *dataset ): 

coun ts [elem] += 1 

Результаты сведены в следующую таблицу: 

Сколько раз куплено Количество товаров 

1 раз 2224 

2-3 2438 

4-7 2508 

8- 15 2251 

16- 31 2182 

32-63 1940 

64- 127 1523 

128-511 1225 

512 и более 179 
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Многие товары покупали всего несколько раз. Например, 33% то­
варов покупали не более четырех раз . Однако они составляют всего 

1 процент покупок. Явление, заключающееся в том, что многие това­

ры покупают малое число раз, называют длитtыл1 хвостолt, о~ю стало 
встречаться чаще, после того как Интернет удешевил складирование 

и продажу нишевых товаров . Чтобы дать рекомендации по таким то­
варам, нам нужно гораздо больше данных. 

Существует несколько открытых реализаций алгоритмов анализа 

корзины, но ни од11н не интегрирован в библиотеку scikit- l eaгn и дру­
гие используемые нами пакет ы. Поэтому мы сами реализуем класси­

ческий алгоритм Аргi огi, нем ного устаревший (он был опубликован в 

1994 году в работе Ракеша Агравала (Rakes l1 Agгa\va l ) и Рамакришна­

на Сриканта (Ramalпislшaп Sгikaпt)), но все еще работающий (разу­
меется, алгорнтмы никогда не перестают работать , просто со време­

нем им на смену приходят более yдalIJ-Iыe). 

Формалыю говоря, алгоритм Аргiогi принимает набор множеств 

(корзин покупок) и возвращает множества, которые часто встречают­

ся в качестве подмножеств (то есть предметы , которые входят вместе 

во многие корзины). 

Алгоритм работает снизу вверх: начав с наименьших кандидатов 

(состоящих из одного элемента), он добавляет по одному элементу за 
раз. Формально алгоритм принимает набор корзин и минималы1ый 

допустимый размер (параметр, которы1v1 мы назовем л1т1шюлыюй 

опорой - тiпsнррогt). На первом шаге рассматриваются все корзи­

ны , содержащие всего один элемент с минимально{~ опорой. Затем 

oi-rи комбинируются всеми возможными способами для построения 
двухэлементных корзин. Из этих корзин м 1,1 оставляем только те, что 

имеют минимальную опору. Далее рассматриваются всевозможные 

трехэлементные корзины и оставляются только имеющие минималь­

ную опору. И так далее. Идея Аргiогi заключается в том, что при по­

строении большей корзины нуж1-ю расслютриватъ только те, что 

построеиы иэ лшныuих .множеств. 

На рисуике ~шже схематически изображена работа алгоритма. 
Тепер 1, напишем код, реализующий этот алгоритм. Определим ми­

нимальную опору: 

>>> mi nsupport = 80 

Опорой набора предметов называется количество раз, когда этот 

набор участвовал в одной покупке. Цель ал горитма Аргiогi - найти 

наборы с высокой oпopoi-'i. При этом соблюдается такое логическое 
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На каждом уровне группы, не имеющие опоры minsupport, отбрасываются 

1 Новые кандидаты 
генерируются на 

основе п редыду­

ще го уровня 

свойство: любой набор предметов с опорой больше минимальной мо­
жет быть составлен только из предметов, опора которых не меньше 

минимальной: 

>>> valid = set(k for k , v in counts . iterns() 
if (v >= rninsupport)) 

Первоначально все наборы предметов одноэлементные . А одноэле­

ментные наборы с опорой не ниже минимальной - это частые пред­
метные наборы: 

>>> iternsets = [ frozenset ( [v]) f o r v in valid] 

Описанный выше цикл можно закодировать следующим образом: 

>>> freqsets = [ ] 
>>> for i in range (l б ) : 

nextsets = [ ] 

tested = set () 
for it i n iternsets : 

for v in valid : 
if v not in it: 

# Создаем нового кандидата , добавляя в него v 
с= (it 1 frozenset([v])) 
# смотрим , проверялся ли он раньше 

if с in tested: 
continue 

tested.add ( с) 

# Вычисляем о пору , обходя набор данных в цикле 
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# Этот шаг работает медленно . 

# В файле ' apriori.py ' приведена более ёыстрая реализация . 

suppor t _c = sum(l for d in dataset if d . issuper set (c )) 
if support_c > mi nsupport : 

nextsets .append (c ) 
freqsets . extend(ne xtsets) 
itemsets = nextse ts 
if not len (itemsets) : 

break 
>>> print( " Гoтoвo 1 ") 

Готово! 

Этот код работает, но медленно. Его можно улуL1шит 1" избежав пе­

ребора в цикле всех наборов данных для вычисления опоры support_ с . 

В частности, можно запоминать корзины с час-1ъ 1 ми предметными на ­

борами . Это ускорит цикл, но код станет менее понятным . Поэтому 

здес1, мы его н е приводим, но на сайте ю1иги имеются обе реализации. 

Мы также обернули код функцией , чтобы его можно было применить 

к другим наборам данных . 

Алгоритм Аргiогi возвращает частые предм етные наборы , то есть 
корзины, встречающиеся чаще заданного порогового значения (п ере­

менная minsupport в коде). 

Поиск ассоциативных правил 

Сами по себе частые предN1етные наборы не особенно полезны. 

Следующий шаг - построить ассоциативные правила. Имея в виду 

эту цель, всю задачу анализа корзины часто наз ывают выявлеииелt ас ­

социативиых правил . 

Ассоциативным правилом называется утверждение вида «есл 11 Х, 

то У», наприме р: «есл и покупатель купил "Войну и мир", то он купит 

и "Аю1у Каренину"». Отметим, что правило не является детермини­

рованным (не все покупатели, купившие Х, покупают и У), но каждый 

раз говорить «если покупатель купил Х, то с вероятностью, превы ­

шающей базовую, он купит и У» долго, поэтому мы говорим просто 

«если Х, то У», подразумевая вероятностную интерпретацию. 

Кстати, посылка и заключение могут содержать и несколько объ­

е ктов: покупатели , купившие Х, У и Z, покупают также А, В и С. Мно­
жественная посылка иногда позволяет давать более точ11ы е прогноз ы, 

ч ем единичная . 

Получить правило из частого набора можно, п е репробовпв все воз­
можные комбина ц1111 Х и У, для которых из Х следует У. Нетрудно с ге ­

нерировать много таких правил. Но нас интересуют толы<о полезные, 
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а, значит, нужно научиться измерить ценность правила. Часто в каче ­

стве меры используют подъем. Так называется отношение вероятно­

сти при условии примен е н ия данного правила к базовой вероятности: 

li ft(X --t У)= Р(У 1 Х) 
Р(У) 

В этой формуле Р( У) - доля покупок, включающих предмет У, а 

Р( УIЛ.) - доля покупо к, включающих У при условии, что они включа­
ют также и Х. Применение подъема п омогает избежать проблемы ре­
комендования бестселлеров . Для бестселлера и Р(У), и P(YIX) будут 
велики , следовательно, п одъем бл изок к единице, и правило следует 

считать нерелевантным. На практике желательно, что подъем был не 
меньше 10, а лучше бл иже к 100. 

Взгляните на следующий код: 

>>> mi nl ift = 5 . 0 
>>> n r _ tra nsact i ons = Лoat (l en ( dataset )) 

>>> for itemset i n freqsets : 
for item i n itemset : 

conseq ue n t froze nset ( [ i t e m] ) 
a n tecede n t = itemset - consequent 
base = О . О 

# acou nt : счетчик nосылок 

acount = О . О 

n ccoun t : счетчик следствий 

ccount = О . О 

fo r d i n d a taset : 
if i t e m i n d: ba s e += 1 
if d . i s supers et( items et): ccount += 
if d . is:supe r set (a nteced e n t ) : acoun t += 1 

b as e / = nr_t ra nsacti o n s 
p_ y_give n_x = c c ount/acount 
l ift = p_y_given_ x / base 
if l ift > mi nlif t : 

p rint ( ' Y п ра вила {0) - > {1) nодъем ра вен {2) ' 
. f o rmat (a n te c edent , conseque n t ,lif t )) 

В следующей таблице приuедены некоторые результаты . Счетчи ­

ки - это количество покупок, которые включают только предметы, 

перечисленные в следствии , то ес1ъ в правой част 1 1 импликации 

(базовая частота покупки данного предмета) , все предметы, пере­
численные в посылке (левой части импликации), и все предметы, 

встречающиеся в посылке и следствии. 
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Счетчик Счетчик 
Счетчик 

Посылка Следстви~ 
следствий 

посылок и Подъем 
посылок 

следствий 

1378, 1379, 1380 1269 279 (0 .3%) 80 57 225 

48, 41, 976 117 1026(1 .1%) 122 51 35 

48,41, 1,601 1 16010 1316 (1.5%) 165 159 64 

Например, мы видим, что в 80 случаях предметы 1378, 1379 и 1380 
были куплены вместе. Из них, в 57 покупках присутствовал еще пред­

мет 1269, поэтому условная вероятность равна 57/ 80 :::: 71 %. Учиты­
вая , что только 0.3% всех покупок содержали предмет 1269, получа ­

ется подъем 255. 
Сколько-нибудь обоснованные выводы можно сделать, только 

если эти счетчики достаточно велики, поэтому мы сначала должны 

отобрать частые предметные наборы . Если бы мы начали генериро ­

вать правила по нечастому набору, то счетчики оказались бы малы, 
поэтому относительные значен 11я были бы бессмысленны или недос­

товерны. 

Отметим, что по этому набору можно на 1°пи много других ассоци ­

ативных правил; алгоритм находит 1030 правил (при ми 1-1 имальной 

опоре 80 и подъеме, не меньшем 5). Это небольшой набор данных по 
сравнен ию с теми , что ныне встречаются в веб. Когда набор содержит 

миллионы покупок , количество правил впол н е может исчисляться 

тысячами, а то и миллионами. 

Однако для каждого пол 1,зователя или товара релевантны будут 

лишь иесколько правил , поэтому пользователь получит на так уж 

много рекомендаций. 

Более сложный анализ корзины 

Сегодня существуют и другие алгоритмы а нализа корзи ны, работа ­
ющие быстрее Api·iшi. Показанный выше код прост, и нам его вполн е 

хватало, потому что в н ашем распоряжении был и сведения только о 
100 тысячах покупок. Если бы поку пок были миллионы, то стоило 
бы взять алгоритм побыстрее. Отметим , в прочем, что искать ассоци­

ативные правила можно и автоном но , тогда эффективность не столь 

критична. 
1 

Существуют также методы работы с хро нологической информа ­

цией, вырабатывающие прав 11ла, в которых учитывается порядок со-



Резюме 

вершения покупок. Допустим, к примеру, что человек, закупивший 

продукты для большого приема , затем возвращается, чтобы купить 

мешки для мусора. Тогда имеет смысл предложить ему мешки для 

мусора прй первом же посещении. Однако предлагать припасы для 

вечеринки вся кому, кто покупает мешки для мусора, вряд ли разумно. 

Резюме 
Мы начали эту главу с использования регрессии для прогнозирова­

ния оценок. Мы видели, LПО это можно сделать двумя способами, а 
затем объединили их, применив машинное обучение для нахождения 

весов . Эта техника обучения ансамбля, и в особенности послойное об­
учение, применяется в разных ситуациях и не только для регрессии. 

Она позволяет комбинировать различные идеи, даже если внутрен ­

ние механизмы их реализации совершенно различны; комбинируют­

ся конечные результаты. 

Во второй части главы мы переключили передачу и рассмотрели 

другой способ выработки рекомендаций: анализ корзины покупок и 

поиск ассоциативных правил. В этом случае мы пытаемся выявить 

(вероятностные) ассоциативные правила вида «купивших Х, веро­

ятно, заинтересует также У~. Такая методика обладает тем преиму­

ществом, что нужны только данные о самих покупках , а не простав­

ленные пользователями оценки . В настоящее время в scikit- leaгп еще 
нет реализаций соответствующих алгоритмов, поэтому мы написали 

свою собственную. 

Искать ассоциативные правила следует осторожно, чтобы дело не 
свелось к рекомендованllю бестселлеров каждому пользователю (где 

же тут персонализация?) . Мы избежали этой опасности, научившись 

измерять относительную ценность правила с помощью так называе­

мого подъема. 

На данный момент мы рассмотрели основную отрасль машинного 

обучения: классификацию. В следующ 1 1х двух главах мы познакомим­

ся с двумя частными случаями данных: музыкой и изображениями. 
Наша первая цель - построить классификатор музыки по жанрам. 
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К11ассификация 

no муэыкаnьным жанрам 

До сих пор мы существовали в весьма комфортных условиях : любой 

обучающий набор легко было описать вектором з начен ий признаков. 
Например, в наборе данных Iгi s цветы представлялись векторами, со­

держащими длину и ширину некоторых частей цветка. В примерах, 

относящихся к текстам, нам удавалось преобразовать текст в набор 
представлений слов и вручную подобрать признаки, улавливающие 

определенные характеристики текста. 

В этой главе все будет по-другому. Мы постарае:v1 ся классиф1щи­

ровать музыкальные произведения по жанрам. А как описать трех­

минутную песню? Брап, отдельные биты МРЗ- представле1-111я? На­

верное, нет, потому что попытка обращаться с музыкой , как с текстом 

и создавать что-то вроде « набора звуковых фрагментов 1> оказалась бы 
слишком сложным делом. Но тем не менее , мы должны как-то преоб­
разовать музыкальное произведе11ие в последователr,ность значений , 

адекватно описывающую его. 

План действий 
В этой главе мы покажем, как построить приличный классификатор 

для предметной области, ~1 е столь комфортной, как раньше. Для на­

чала нам придется иметь дело со з вуковыми признаками, которые го­

раздо сложнее текстовых. А затем нужно будет научип,ся работать с 
нескольким 1 1 классами, тогда как до сих пор мы встречались лишь с 

бинарной классиф11кацией. Ну и попутно мы познаком имся с новы­

ми способами измерения кач ества классификации. 
Допустим , мы об1-1аружил 11 11 а диске кучу МРЗ-файлов со случай ­

ными именами, которые предположител 1, но содержат музыку. Наша 

задача - разложи1ъ 11х по разным папкам в соответствии с жанром: 

джаз, класси ч еская музыка, кантри, поп, рок , металл 11 т. д . 



План действий 

Получение музыкальных данных 

Мы будем работать с набором данных GTZAN, который часто ис­
пользуют для оцен ки алгоритмов классификации по музыкальным 

жанрам. В нем выделены 10 жанров, из которых мы для простоты 
возьмем только шест ь : классика , джаз , кантрн , поп , рок и металл . 

В набор данных включены первые 30 секунд звучания 100 произве­

дений каждого жанра. Скачать набор можно по адресу http : ; / opihi . 

cs . uvic . ca/sound/gen r es . tar . gz . 

Музыкальные произведения записан ы с частотой дискретизаци и 

22 050 Гц (22 050 отсчетов в секунду) в монофоническом звучан ии и 
представлены в формате WAV. 

----------~--~---,--..._",",_ ... ________ _ 
Преобразование в формат WAV 
Конечно , если бы нам предстояло протестировать свой класси ­

фикатор на собственной коллекции МРЗ-файлов , то потерпели бы 
фиаско . Дело в том , что МРЗ - формат сжат11я с потерей инфор­

мации, в котором обрезаются частоты , не воспринимаемые челове­
ческим ухом. Это хорошо с точки зрения хранения , потому что мы 

сможем сохранить на устройстве примерно в 10 раз больше музыки. 
Но вот для нашего предприятия это печально . Классификацию про ­

ще производить на WАV-файлах, потому что их можtю считывать 

непосредственно с помощыо пакета scipy . io . wavfile . Поэтому нам 

придется конвертировать МРЗ-файл ы, чтобы подать на вход наше­

му классификатору. 

Если у вас нет под рукой подходящего конвертера , п опробуйте 

взять S oX с сайта ht t p : / / sox . sou r ce f orge . net . Он рекламиру­

ется как швейцарский армейский нож в части обработки звука, и мы 

согласны с этим смелым заявлением. 

Одно из достоинств формата WAV - возможность непосредствен­

ного чтения файла с помощью комплекта инструментов SciPy: 

>>> sample_r ate , Х = scipy . io . wavfile . rea d (wave_file name ) 

Теперь х содержит отсчеты, а sample_ rate - частота, с которой они 

берутся . Воспользуемся этой информацией, чтобы заглянуть внутрь 

музыкального файла и получить представление о характере данных. 
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Взгляд на музыку 
Очень удобный способ составить первое впечатление о том, как «вы ­
глядят~> музыкальные произведения разных жанров, - нарисовать 

спектрограмму произведения. Спектрограмма - это наглядное пред­

ставление встречающихся частот. По оси у откладывается интенсив­

ность частот, а по оси х- временные интервалы. Чем темнее цвет, тем 

интенсивнее частота в данном интервале звучания . 

В библиотеке matplotlib есть функция speci:gra m (), которая произ­
водит вычисления и строит спектрограмму: 

>>> import scipy 
>>> from matplotlib . pyplot import specgram 
>>> sample_ra te, Х = scipy. io . wavfile. r ead (wave_filename ) 
>>> print sample_rate , X. shape 
22050 , (66 17 94 ,) 
>>> specgram(X , Fs=sample rate , xex tent= (0 , 30 )) 

Прочитанный WАV-файл был дискретизирован с частотой 

22 050 Гц и содержал 661 794 отсчета . 

Построив спектрограммы первых 30 секунд звучания для разных 
WАV-файлов, мы увидим, что у произведений одного жанра есть об­

щие черты. 
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Взгляд на музыку 

Достаточно бросить беглый взгляд на рисунок , ка к мы сразу за­

метим разницу между спектром, скажем , металла и классики. Если в 

<1 металл ических» песнях наблюдается высокая интенсивность частот 
в большей части спектра на протяжении всего времени (еще бы, ведь 

они энергичные !), то для классических произ ведений характерно 

большее разнообраз и е. 

Вероятно , не составило бы большого труда обучить классифика­
тор , который довольно точно разл ичал бы металл и классику. Но дру­

гие пары жанров , например кантри и рок , далеко н е так очевидны. 

Это проблема , потому что нам нужно различать на два, а все шесть 
классов. И притом с достаточной надежностью. 

Разложение на синусоидальные волны 

Наш план состоит в том, чтобы извлечь инте11сивности отдельны х 

частот из массива отсчетов (ранее сохраненного в переменной х ) и 

подать их на вход классификатора . Для этой цели служит быстрое 
преобразование Фурье (БПФ) . Теория, лежащая в основе БПФ, вы ­

ходит за рамки этой книги, мы просто на примере покажем, что по­

лучается в результате. А затем будем использовать БПФ как черный 

ящик, вырабатывающий признаки . 
Сгенерируем, к примеру, два WАV-файла, s ine_a . wav и sine_b . wav, 

содержащие си нусоидальные звуковые волны частото й 400 и 3000 Гц. 
Сделать это позволяет вышеупомянутый <1швей царский армейский 

нож» SoX: 

$ sox -- null - r 22050 sine_a .wav synt h 0 . 2 sine 400 
$ sox -- nu l l -r 22 050 si ne _b . wav syn t h 0 . 2 sine 3000 

На рисунках ниже показаны первые 0.008 секунд з вучания. А под 
ними - БПФ синусоидальных волн. Как и следовало ожидать, на ча ­

стотах 400 и 3000 Гц наблюдаются пики. 
Теперь смешаем оба файла, назначив звуку частотой 400 Гц поло­

винную громкость, а звуку 3000 Гц - единичную: 

$ sox --comЬine mix --volume 1 sine_b . wav - - volume 0 . 5 sine_a.wav 
sine mix . wav 

На графике комбинированного звучания мы увидим два пика, при­

чем тот, что соответствует частоте 3000 Гц, в два раза выше соответ­

ствующего частоте 400 Гц. 



ЕШ• li Глава 9 . Классификация по музыкальным жанрам 

2
_
0 

le9 400Hz sine wave 
1.5 
1 0 
0.5 
О.О 

-0.5 
-1.0 
-1 .5 
-2 .О 

О.ООО 0.002 0.004 0006 0.008 
t1me [s] 

3
_
5 

lel2 FFТ of 400/1z sine wave 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
о. о 

1) 1000 2000 3000 4000 
freq L1 ency [H z] 

2
_
0 

l e9 З,ОООНz sine wa ve 
1.5 
1.0 
0.5 
о.о 

- 0 .5 
-1 .0 
- 1.5 
-2.0 

О.ООО 0.002 0.004 0.006 0008 
t1me [s ] 

3
_
5 

l e l2 FFТ of 3,000hz sine wave 

30 
2.5 
2.0 
l .5 
1.0 
0.5 
0 0 

о 1000 2000 3000 4000 
freq uency [Hz] 

3 
lеЭ Mixed sine wave 

о 

- 1 
-2 
- 3 
О.ООО 0.002 0.004 0006 0.008 

t11ne [s ] 

3.5 l el2 FFT of mixed sine wa ve 

30 
2 .5 
2 о 
1.5 
1.0 
0.5 
о.о 

о 1000 20СС 3000 4000 
f 1 ·eqL1 e1кy [Hz] 



Применение БПФ для построения первого ... 

Конечно, для реальной музыки БПФ выглядит не так красиво, как 

для искусственного примера. 
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И тем не менее, с помощью БПФ мы можем создать своего рода циф­

ровой отпечаток музыкального произведения. Если сделать это для 

нескольких произведений и вручную сопоставить им метки - жанры, 

то получатся обучающие данные, которые можно подать классифи­
катору. 

Повышение гибкости эксперимента 
Прежде чем с головой погрузиться в обучение классификатора, по­

думаем о том , как повысить гибкость эксперимента. Хотя первое сло­

во в аббревиатуре БПФ - «быстрое ,,-,, на самом деле это происходит 
куда медленнее, чем выделение признаков из текста. А поскольку мы 

пока экспериментируем, то можем задуматься об ускорении процесса 

выработки признаков. 

Разумеется, БПФ для каждого файла создается одинаково при 

каждом запуске классификатора. Поэтому можно было бы кэши-
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ровать результат БПФ и читать из кэша только е го, а н е весь WАV­

файл. Мы так и поступаем в функции create_fft (),которая вызывает 

sc ipy . fft ( ) для создания БПФ. Для простоты (и скорости!) огра­

ничимся первыми 1000 компонентов БПФ. При том , что нам сейчас 

известно, мr,1 н е можем решить, будут ли име нно эти компоненты са ­

мыми важн ыми для классификации по жанрам; мы лишь видим, что 

в показан rюм выше примере БПФ у них сам ые интенсивные часто­

ты. Если впоследствии мы захотим увеличип, ил и уме ньшrпь число 

компонент, то должны будем пересоздать БПФ для каждого файла. 

import os 
import scipy 

def create_fft(fn) : 
samp l e _ ra t e , Х = sc ipy .io . wavfil e . read (f n ) 
fft_feat u res = a bs (scipy . fft (Х) [ : 1000]) 
base_fn , e xt = os. path . splitext (fn) 
data fn = base f n + " .ff t " - -
sc ipy . save (data_fn , fft_featu res) 

Мы сохраня ем данные с помощью функции Nl1111Py save о, которая 

rзсегда создает файл с расширением . npy. Это нужно сделать только 

один раз для каждого WАV-файла, необходимого для обучения или 

проп-юзирования . 

Для чтения БПФ служит функция r eact_ fft () : 

import glob 

def r ead_ff t (genre l ist , base_dir=GENRE_DIR ): 
х [] 
у [ ] 

for label , genre in enumerate (genre_list ): 
genre_dir = os . path . join (base_dir , genre , " *.fft.npy" ) 
file_l is t = glob . g lob (genre_di r ) 

for fn in file list : 
fft_fea tu res = scipy . l oad (fn) 

X. append(fft_featu res[ :lOOO] ) 
у . append ( labe l) 

return np .array (X) , np . array (y) 

Предполагается, что в нашем перепутанном каталоге есть про 11з ­

ведения таких жанров: 

genre_list = { 11 class i cal ", "jazz ", "country 11
, " рор ", "rock ", "meta l "] 
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Обучение классификатора 

Воспользуемся классификатором на основе логистической регрес­

сии, который сослужил нам хорошую службу в главе 6. Правда, воз ­

никает дополнительная трудность - теперь мы имеем дело с задачей 

многоклассовой классификаци 11 , тогда как раньше нужно было раз ­
личать всего два класса. 

Отметим, что при переходе от бинарной к многоклассовой класси­

фикации оценки верности претерпевают удивительную метаморфозу. 

При бинарной классификации мы СLrитали, что верность 50% - худ­

ший случай, потому что такого результата можно достичь и случай­

ным угадыванием. Но в случае многоклассовой классификации 50% 
может быть очень хорошей верностью. Если имеется 6 жанров, то 
случайное угадывание дало бы только 16.7% (в предположении, что 
размеры классов одинаковы). 

Применение матрицы неточностей 

для измерения верности 

в многоклассовых задачах 

В многоклассовых задачах нас интересует н е только то , насколько 

правильно мы определяем жанр произведения. Важно также знать, 

какие жанры мы путаем. Это можно сделать с помощью матрицы не­

точностей , как показано ниже: 

>>> from sk l ear n.metfics import confusion_matrix 
>>> c m = confusion_ma trix (y_test , y_pre d) 
>>> prin t( c m) 
[ [ 26 1 2 о о 2] 

[ 4 7 5 о 5 3] 
[ 2 14 2 8 3] 
[ 5 4 7 3 7 5] 
[ о о 10 2 10 12] 
[ о 4 о 13 12]] 

Печатается распределение меток, предсказанных классификато ­

ром на тестовом наборе для каждого жанра. На диагонали находятся 

правильные резул ьтаты . Поскольку всего жанров шесть, то матрица 

имеет размер 6 х 6. Первая строка означает, что из 31 классического 
произведения (сумма всех чисел в первой строке) 26 были класси ­
фицированы как классика, 1 - как джаз, 2 - как кантри и 2 - как 

металл. Правильный резул ьтат классификации лежит на диагона­

ли. Следовательно, 26 произведений классифll цированы правильно, 
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а 5 - неправильно. Не так уж плохо. Вторая строка отрезвляет: и з 
24 джазовых композиций лиш ь 7 классифицированы правильно -
всего 29%. 

Разумеется , м ы разбиваем вес 1, набор данных на обучающие и те ­

стовые, как было описано в предыдущих главах , н должны составлять 

матрицы неточностей для каждого прохода перекрестной проверк и. 

Затем нужно будет произвести усред 1-1ение и норм иров ку, чтобы ве­

личины находились в диапазоне от О (полное фиаско) до 1 ( все образ ­

цы классифицированы правильно) . 

Наглядное предст<1 вление часто воспринимается гораздо легче , 

чем массивы NшnPy. На помощь приход ит функция matshow () и з 

библиоте ки matplotli b: 

from matplotlib import pylab 

def plot_confusion_mat r ix (cm , ge nre list , name , title ) : 
pylab . clf () 
pylab . matshow(cm , fignum=False , cmap= ' Blues ' , 

vmi n= O, vmax=l . 0 ) 

ах= p ylab . axes ( ) 
ax . set_ xticks(range(len (genre l ist ) )) 
ax.set_x ticklabels(genre_l ist ) 
a x.x a xis. set_ticks_pos it ion ( "bot tom" ) 
ax.set yticks(range(len(genre list ))) 
ax . set yticklabels(genre_list) 

pylab . title(title) 
pylab.col o rbar() 
pylab .grid (False) 
pylab.xlabel( ' Predicted class ' ) 
pylab .ylabe l( ' True c la ss ' ) 
pylab . grid(False) 

p ylab.show () 

П ри создании матрицы неточ ностей не забудьте выбрать цветовую 

схему ( параметр cmap функции matshow () ), указав подходRщий 

п орRдок цветов , чтобы с первого взглRда было nонюно , что означа­

ет более светлы й или более темный цвет. ДлR такого рода диаграм ­

мы противопоказано раскраш и вание в цвета радуги, как в подраз ­

умеваемой по умолчанию схеме jet или даже Paired. 

Готовая диа грамма выглядит так: 



Применение БПФ для построения первого ... 

Матрица неточностей для классификатора на основе БПФ 

1.11 
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1•.1 1 

Предсказанный класс 

От идеального классификатора мы ожидаеl\1 появления темных 

квадратиков на диагонали, идущей из левого верхнего в правый ниж­

ний угол, и светлых - во всех остальных местах. Из диаграммы выше 

сразу видно, что классификатор на основе БПФ далек от совершен­

ства. Он правильно определяет лишь классические музыкальные 

произведения (темный квадратик) . А, скажем, року он, как правило, 

предпочитает металл. 

Очевидно, что использование БПФ - шаг в правильном направ­

лении (на классике-то все выглядит неплохо), но этого недостаточно 

для полу'rения достойного классификатора. Конечно, можно поэк­

спериментировать с количеством компонент БПФ (сейчас оно равно 

1000). Но перед тем как приниматься за настройку параметров, надо 
проделать изыскания . Пока что мы знаем, что БПФ дает приемлемые 

признаки для классификации по жанрам, но нуждается в уточнении. 

Вскоре мы увидим, как можно повысить качество классификации за 

счет применения варианта с предварительной обработкой. 
Но прежде рассмотрим еще один метод измерения качества 

классификации. 
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Альтернативный способ измерения 

качества классификатора с помощью 

рабочей характеристики приемника 
Мы уже знаем, что измерення верности недостаточно для оценки 

классификатора. Чтобы лучше понять, как работает классификатор, 

мы использовали кривые точности-полноты (Т/П). 

Существуют также похожие на Т/П кривые рабочей характери ­
стики приемника (РХП), которые измеряют сходные аспекты работы 

классификатора, но в другом виде представляют его качество . Клю­

чевое различие заключается в том, что кривые Т/П больше подходят 
для задач, в которых положительный класс гораздо интереснее отри­

цательного, а также тех, где положительных прнмеров намного мень­

ше, чем отрицательных. Типичные области применения - информа­
ционный поиск и обнаружени е мошенничества. С другой стороны, 

кривые РХП дают более полную картину поведения классификатора 

в целом. 

Чтобы лучше разобраться в различиях, рассмотрим качество ранее 

обученного классификатора в части правилыюсти определения песен 

в стиле кантри (см. рисунок ниже). 

.а .... 
u 
о 
:i: 

" о 
fo-

Кривая Т / 0 ,(АUС=О. З\)) / кан1ри и прочие 

Полнота 

Кр11 ~~ав .РХ.П, .(ЛUС=.О,~). /. .к.а1iтр1_1.11 Рр.очие 

, , 

, , 
, , 

, 
, , , 

,' 

Частота ложноположител ьных 
результатов 

, , 

На левом рнсунке показана кривая Т/П. Для идеального клас­

сификатора это были бы два отрезка: из левого верхнего в правый 

верхний, а затем в правый нижни1v1 угол, так LJТO площадь под кривой 

(AUC) оказалась бы равна 1.0. 
На правом рисунке показана соответствующая кривая РХП. Она 

отражает зависимость частоты истинно положительных от частоты 
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ложноположительных результатоп. Для идеального классификатора 

мы получили бы два отрезка: из лепого нижнего в левый верхний, а 
затем в правый верхний угол. Классификатор, определяющий класс 

наугад, был бы представлен прямой, идущей из левого нижнего в 

правый верхний угол (изображена на рисунке штриховой линией), 

для которой AUC равна 0.5. Поэтому напрямую сравнивать AUC 
кривых Т /П и РХП нельзя. 

Но п любом случае гарантируется, что при сравнении двух клас­

сификаторов на одном наборе данных большая площадь под кривой 
Т/П означает, что и площадь под кривой РХП будет больше, и на­
оборот. Поэтому генерировать обе кривые необязательно. Подроб ­

нее об этом можно прочитать в весьма содержательной статье Davis, 
Goad1·icl1 «Tl1e Relationsllip Betweeп Pгecisioп- Recall апd ROC Cuгves» 
(ICML, 2006). 

В таблице ниже сведены различия между криными Т/П и РХП. 

Т/П 

РХП 

Осьх 

Полнота=~ 
ТР + FN 

FP 
FPR =---

FP+TN 

ТР 
Точность=--­

ТР + FP 

TPR =~ 
TP + TN 

Из определений осей х и у для обеих кривых видно, что частота 

истинно лоложительных результатов (TPR) по оси у кривой РХП в 
точности совпадает с полнотой по оси х кривой Т /П. 

Частота ложноположительных результатов (FPR) измеряет долю 
исти1н1ых отрицатеш)ных примеров, ошибочно признанных положи ­

тельных, и в идеальном случае равна О (нет ни одного ложноположи­

тельного результата), а в самом худшем - единице. Сравните с точно­

стыо, которая измеряет прямо противоположную величину, а именно 

долю истинных положительных примеров, ошибочно признанных 

отрицательными. 

Пойдем дальше и применим кривые РХП для измерения качества 

классификаторов, это позволит лучше прочувствовать особенности 

инструмента. Единственная трудность состоит в том , что обе кри ­

вые - РХП и Т/П - относятся к задаче бинарной классификации, 
тогда как перед нами стоит многоклассовая задача. Поэтому давайте 

создадим ло одной кривой на каждый жанр, которая будет показы -
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пать, насколько хорошо классиф 1 1катор отличает произ ведения этого 

жанра от всех прочих. 

from sk l earn . metrics impo r t roc_curve 

y_pr ed = clf . predict (X_test) 

for label in l abe ls: 
y_label_test = scipy . asar ray (y_test==l abel , dtype=int ) 
proba = c l f . predict_proba (X_test ) 
proba_ l abe l = proba[ :, label] 

# вычислит ь ч астоты ложно и истинно nоlrюжитель ных результатов , 

# а та кже п ороги РХП 

fpr , tpr , roc_thres = roc_cu rve(y_labe l _test , proba_label ) 

# построить график зависимости tpr от fpr .. . 

На выходе получаются графики РХП , показанные на следующей 

страни це . Как мы уже выяснили, п ервая версия н ашего классифика­

тора хорошо работает тол ько для классических произведений . Крн­
вые РХП показывают, что на самом деле качестпо оставляет желать 

лучшего на большинстве остальных жанров. Лишь джаз и кантри 
вселяют какую-то надежду, классификация прочих вообще никуда не 

годится . 

Повышение качества 

классификации с помощью 

мел-частотных кепстральных 

коэффициентов 
Мы уже поняли, что БПФ - ша г в правилr, ном на правлении, но его 

одного недостаточно для построе ния классификатора, который рнс ­

сортировал бы наш каталог с музыкальиыми произведениями разных 

жанров. Нужно что-то более точное. 

Сейчас будет правильно признать, что нужны допол нительные 

исследова ния. Возможно, кто-то уже сталкивался с подобной про­

блемой в прошлом и нашел реш ени е, которое нам поможет. И деil ­

ствительно , даже существует ежеrодння конференция , посвященная 

классификации по музыкальным жанрам, которую проводит Между­

народное общество по музыкальному информационному поиску 
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Частота ложноnоложительных результатов 

(Inteгnational Society fш Mнsic Iпfoгшation Retгieval , ISMIR). По­
хоже, автоматическая классификация по музыкальным жанрам 

(Aнtomatic Mнsic Genгe Classification, AMGC) - уже сложившаяся 
подобласть музыкального информационного поиска. Изучая список 
литературы no AMGC, мы найдем немало работ, которые могут нам 
помочь. 



Глава 9. Классификация по музыкальным жанрам 

В частности, во многих работах на эту тему усn ешно nрименя­

ется метод мел -частотных кеnстральных коэфф1щие1-пов. Мел­

частотный кепстр (Mel Fгequ eпcy Cepstгu111, MFC) - это сnособ 
кодирования энергетического спектра з вука, то есть расnределен ия 

энергии, содержащейся в каждо1! частоте. Он выt~исляется как nре ­

образование Фурье логарифма спектра с11rнала. Если это кажется 

слишком сложным , имейте в виду, что н<1звание ~ кеnстр~ - просто 

анаграмма слова ~сп ектр ~. Метод MFC успешно используется при 
распознавании реч 1 1 и говоряще го. Посмотрим, поможет ли он в на ­

шем случае . 

Нам повезло в том смысле, что кто-то уже за нимался именно этой 

задаt1ей и опубликовал реализац11ю в виде библиотеки Ta lkbox SciКit. 
Мы можем скачать ее со страницы ht tps : ! /pypi . python . org/pypi/ 

sciki ts . talkbox . Затем вызовем функцию mfcc () , которая вычислит 

коэффициента MFC: 

>>> from scikits . t alkbox . features import mfcc 
>>> samp l e_rate , Х = scipy . io . wavfi l e . read ( f n) 
>>> ceps , mspec , spec = mfcc(X) 
>>> print(ceps . shape) 
(4135 , 13) 

Подать на вход классификатору мы хотели бы массив ceps , содер­

жащий 13 коэффициентов (это подразумеваемое по умолчанию зна­
чение параметра nceps функции mfcc () ) для каждого из 4135 кадров 
музыкального пронз ведения в файле с именем fn . Но такой объем 
данных наш классификатор ~1 е переварит. Вместо этого можно усред­

нить коэффициенты по всем кадрам. В предположении , что начало и 

конец каждого произведения в м еньшей сте п ени определяют жанр, 

чем середина , мы также проигнорируем первые и nоследние 10 про­
центов звучания. 

х = n p . mean (ceps [int (num_ceps*O . 1) : int (num_ceps*O . 9 )], axis =O ) 

Правда, набор данных, на котором мы ставим эксn ерименты, со­

держит только первые 30 секунд звучания каждого произведения, по­
этому можно было бы и не отсекать последние 10 nроцентов . Но мы 

все-таки это сделаем, чтобы наш код корректно работал с реальными 
данными. 

Так же, как и в случае БПФ, мы будем кэшировать однажды сгене­

рированные признаки MFC, а не создават ь их при каждом обучении 

классификатора. 

Получившиi"'~ся код приведен ниже: 
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def write_ceps(ceps , fn ): 
base_fn , e xt = os . path.splitext (fn) 
data_fn = base_fn + «.ce ps» 
np . s ave(data_fn , c eps ) 
print(«Written to %s» % da t a f n) 

def create_ce ps (fn): 
sampl e_rate , Х = scipy . io . wavfile.re ad (fn) 
ceps , mspec , spec = mfcc(X) 
write_ceps(ceps , fn) 

1 

def read_ceps (genre_l ist , base_di r =GENRE_ DIR) : 
Х , у = [], [] 

for labe l, genre i n enumerate (g enre_li st ): 
f o r fn in g l ob.glob(os . path . join( 

base_dir, genre , «*.ceps.npy»)): 
ceps = np .load(fn) 
num_ceps = len(ceps ) 
X.append(np . mean( 

ceps[int( num_ceps*O .l) :int(num_ceps*0 . 9)] , axis=O)) 
y.append( l abel ) 

return np.array(X) , np.array(y) 

Получаем следующие многообещающие результаты для классифи­

катора, в котором используется всего 13 признаков на каждое музы­
кальное произведение (см. графики на следующей странице). 

Качество классификации улучшилось для всех жанров. Более того, 

для классики и металла площадь под кривой лишь чуть-чуть недо­

тягивает до 1.0. Да и матрица неточностей на диаграмме ниже вы­
глядит гораздо лучше . Отl1етливо выделяется диагональ, а это сви­

детельствует о том, что классификатор правильно определяет жанры 

в большинстве случаев. Такой классификатор вполне пригодеа для 

решения поставленной задачи (см. графики на следующей странице). 

Если бы мы захотели и дальше улучшать классификатор, то матри­

ца неточностей сразу показала бы, на LJТO обратить внимание: небелые 

места вне диагонали . Наприм ер, имеется темное место там , где мы с 

довольно большой вероятностью определили роковые композиции 

как джазовые. Чтобы устранить проблему, нужно было бы глубже 

проанализировать произведение и выдел ить в качестве признаков 

такие вещи, как барабанная дробь и прочие жанровые характеристи­

ки. А кроме того - просматривая статьи ISMIR - мы прочитали про 

признаки на основе темпоральной огибающей акустического банка 

фильтров (Aнditory Filteгbank Тешрогаl Envelope, AFTE), которые, 
похоже, превосходят признаки MFC в некоторых ситуациях. Может 
быть, стоит присмотреться к ним? 
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Важно, 'ПО, имея в арсенале кривые РХП и матрицы неточностей, 

мы можем экспериментировать с экстракторами признаков, приду­

манными другими экспертами, даже не понимая, как они работают. 

Наши инструменты ИЗl\;fерения скажут, в правильном ли направлении 

мы движемся, или надо сменить курс. Разумеется, у человека, посто­

янно стремящегося к новым знаниям, останется смутное ощущение, 

что где -то в глубинах черного ящика скрыт интереснейший алгоритм 
выделения признаков, который только и ждет, чтобы в нем разобра­

лись. 

Резюме 
В этой главе мы покинули комфортную зону и построили юrасси­

фикатор музыки по жанрам. Плохо разбираясь в теории музыки, мы 
сначала потерпели неудачу, попытавшись обучить классификатор 

распознавать жанры, исходя из результатов БПФ. Но затем мы вос­

пользовались признаками MFC и смогли построить классификатор 
вполне приличного качества. 

В обоих случаях мы применяли признаки , которых не понимали, 
но знали, как их выделить и передать классификатору. Одни привели 
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к неудаче, другие - к успеху. Разни ца в том, что во втором случае мы 

брали признакн, предложенные специалистами в предм етной облас­

ти . 

И это совершенно нормально . Если нас интересует в основном ре­

зультат, то иногда приходится срезать углы - нужно только, чтобы 

короткая дорожка была проложена специалистами . А поскольку мы 

научились правильно измерять качество решения этой многоклассо­

вой задачи классификации, то можем срезать углы достаточно уве­

ренно. 

В следующей главе мы посмотр11м , как изученные н ами методы 

применяются к новому виду данных. Мы науч имся пользоваться 

пакетом машинного зрения mahotas для предварителыюй обработки 
изображений традиционными способами. 



• 
rllABA 10. 

Машинное зрение 

Анализ изображений и машинное зрение всегда играли важную роль 
в промышленных и научных пр 11 ложениях. После того как мобиль­

ные телефоны стали оснащаться мощными камерами и подключени­

ем к Интернету, потребители начали генерировать и зображения во 
все возрастающих количествах . Поэтому открываются возможности 

использовать машннное зрение , чтобы пользователю было удобнее 
работать. 

В этой главе мы поговорим о том , как применять изученные в 

процессе чтения этой книги методы к данным такого специ;~льного 

вида . В частности, мы научимся применять пакет машинного зрения 

111a l10tas для выделения признаков из изображений. Эти признаки 

можно подать на вход рассмотренных выше алгоритмов классифи­

кации . Разработанную методику мы применим к обработке обще­

доступных наборов фотш·рафий. Далее мы увидим, к;~к те же самые 
признаки можно применить к другой задаче - поиску похожих изо­

бражений . 

Наконец , в конце главы обсудим использование локальных призна­

ков . Это сравнительно новые алгоритмы; первый из них, достигший 

промышленного качества, SIFT (scale-inYariant fеаtнге tгaпsfoпn -
масштабно-инвариантное преобразование приз наков), был предло­

жен в 1999 году. Сейчас они показывают хорош 11 е резул ьтаты в раз ­

ных задачах. 

Введение в обработку 
изображений 
С точки зрения компьютера, изображение - это большой прямоу­

гольный массив значений пикселей. Наша цель - обработать изобра­

жение и принять решение , представляющее интерес для разрабаты ­
ваемого приложения. 
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Первый war - загрузить изображение с д 1 1 ска, rде оно обычно хра­

юпся в одном и з графических форматов, н а nример PNG или JPEG. 
Отметим, что в формате PNG изображение сжимается без потери ин­
формации, а в формате JPEG - с потерей , н о он оптимиз ирован для 

визуального восприятия фотографий. Затем мы можем выполнить 

предварительную обработку изображения (t-t anpимep, норм ировать с 

учетом разных условий освещен ия ) . 

В ся эта глава nостроена вокруг задачи кл ассификации. Мы хо­

тим обучить классификатор на основе метода опорных векторов 

(или какого-нибудь дру гого алгоритма) на и зображе ниях. Но пе­

ред тем как nриступать к маш111-11юму обуч ению , н ужно придумать 

промежуточ н ое nредставлени е и выдел 1пь из и зображе 1н1 й число ­

в ы е признаки. 

Загрузка и показ изображения 
Для манипул11рования изображениями мы будем использовать 

пакет юahotas . Скачать его можно со cтpat-t и цы h t t p s : ! /p yp i.pyt ho n. 

o rg / pypi/ , а прочитать руководство - t-ta странице - ht tp: / / mahotas. 

readthedocs.o r g . Malюtas - пакет с открытым исходным кодом (рас ­

пространяемый по лицензии MIT, то есть ero можно использовать 
в любом проекте), разработанный одним из авторов этой книги . По 

счастью, 01-1 основа н на NнюРу. З нания о NLJmPy, полученные к этому 

моменту, можно применить к обрабоше изображе ний . Существуют и 

другие пакеты на эту тему, например sciki t -i111age (skimage), модуль 
ndi111age (п-мерные изображения) в SciPy и интерфейс и з Pytlюn к 
библиотеке OpenCV. Все они работают с массивами Nш11Ру, nоэтому 

можно без опасю1 комбинировать функци11 ~ реали зова1-11-1ы е в разных 
пакетах, для построения конве 1v1 е ра. 

Для начала имnортируем 111al10tas, назначив ему сокращенное имя 

mh , которым и будем поJ11,зоваться в это1~1 главе: 

>> > impo r t mahota s as mh 

Теперь мож 1-10 загрузить фаl1 л нзображе11ия методом i mreact: 

>>> i mage = mh . imrea d ( ' sceneO O. jpg ' ) 

Файл sce neO O. jpg (имеется в составе набора да1-11-1ы х в ре nозитории 
на сопроводите;11,ном сайте кн иги) содержит цветное и зображе ние 

высотой h и шириной w; это изображе t-tи е будет хра ниться в массиве 
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формы ( h, w, з) . Первое измерение - высота, второе - ширина, а тре­

тье - цвет в виде трех компонент: красной, зеленой и синей. В других 

системах первое измерение соответствует ширине, но во всех пакетах 

на основе NuшPy принято именно такое соглашение . Тип данных в 

массиве обычно np. uint8 (8-разрядное целое без зна ка). Именно так 

представ1iены изображения, которые вы снимаете камерой или ото­
бражаете на экране монитора. 

Специальное оборудование, применяемое в научно-технических 

приложениях, умеет работать с и зображениями более высокой раз­

рядности (то есть с большей чувствительностью к малым изменени­
ям яркости), обычно 12- или 16-разрядными . Malюtas умеет работать 

и с такими типами , в том числе с числами с плавающей точкой. Во 

многих расчетах удобно перейти от целых чисел без знака к числам 
с плавающей точкой, чтобы упростить обработку округления и пере­
полнения . 

Mahotas может работать с различными системами ввода - выво­

да. К сожалению, ни одна из них не понимает все существующие 

форматы (их сотни, и у многих по несколько вариантов) . Однако 

загрузку изображений в форматах PNG и JPEG поддерживают все . 

Мы ограничимся только ими , а за сведениями о том, как работать 

с менее распространенными форматами , отсылаем читателя к до­

кументации по mahotas. 

Чтобы показать изображение на экране, воспользуемся библиоте­
кой шatplotlib, к которой уже неоднократно прибегали: 

>>> from matp l ot lib import pyplot a s plt 
>>> plt . imshow ( image ) 
>>> pl t . s how () 

Как показано на рисунке ниже, этот код предполагает, что первое 

измерение - высота, а второе - ширина. Цветные изображения он 

также обрабатывает правнльно. Пр11 использовании Pythoп для чис­
ловых расчетов нам помогает тщательно спроектированная экосисте­

ма: шahotas работает с массивами Nш11Ру, которые умеет отображать 
шatplotlib; впоследствии мы извлечем из изображений признаки, ко­

торые обработаем посредством scikit-leaгп. 
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Бинариэация 

Бинаризация - очень простая операция: все пиксел и, большие 

некоторого порогового значения, заменяются единицей, а меньшие 

этого значения - нулем (или, если использовать булевы вел ичины , 

преобразуются в тrue и Fal se ) . Важно решить , как именно выбрать 
хорошее пороговое значение. В mahotas реал изовано несколько спо­

собов выбора порога по изображению. Один из них называется Otsu, 
по имени своего изобретателя Оцу. Прежде всего, нужно перейти к 

полутоновому изображению с помощью функции rgb 2gray из под­

модуля ma hotas . co l o r s . 

Вместо использования r g b 2gra y можно было бы вычислить сред­

нее значение красного, зеленого и синего каналов, вызвав ima ge . 

me an ( 2 ) . Но результат получился бы другой, потому что rgb2gray на­

значает цветам разные веса для получения более приятного для глаза 

изображения. Чувствительность наших глаз к трем основным цветам 
неодинакова . 

>>> imag e = mh. colors .rg b 2grey ( image , dtype=np . ui n t8 ) 
>>> pl t . imshow (image ) # Вывести изображение на экра на 

По умолчанию matplotlib отображает такое одноканальное изобра ­

жение как псевдоцветное: для больших з начений берется красный 
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цвет, а для малых - синий. Но для естественных изображений пред­

почтительнее полутоновая гамма . Этот режим задается так: 

>» p lt . gray () 

Теперь получается полутоновое изображение . Отметим, что изме­

нились только интерпретация и способ показа пикселей, сами данные 
изображения остались в неприкосновенности . Продолжим обработку 
и вычислим пороговое значение: 

>>> t hresh = mh . th r esho l di ng . otsu (image ) 
>>> p r i n t ('Пopoг Оцу раве н {).' . format(th resh )) 
Порог Оцу ра ве н 1 38 . 
>>> p l t . imsh o w( i mage > th r e s h ) 

Для показанного выше изображения этот метод ВЫLJисляет порого­

вое значение 138, при этом разделяются земля и небо: 

Гауссово размывание 

На первый взгляд, непонятно, зачем размывать изображение, но ча­

сто это позволяет уменьшить шум 11 тем самым упростить последую ­

щую обработку. В mahotas для этого нужен всего один вызов: 

>>> i ml б = mh.gaussian_fil te r ( image , 1 6 ) 

Отметим, что мы не преобразовывали значения пикселей полу­
тонового изображения в целые числа без знака, а воспользовались 
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полученным результатом, где пиксели представлены числами с пла­

вающей точкой. Второй аргумент функции ga ussian_filte r - размер 

фильтра (его стандартное отклонение). Чем он больше, тем сильнее 
размывание (см . рисунок ниже): 

Если применить бинаризацию Оцу к размытому изображению, то 
границы будут более плавными: 

• 
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Помещение центра в фокус 

В следующем примере показано, как, объединив операторы NumPy 
с фильтрацией, можно добиться интересного результата. Начнем с 

фотографии Лены и выделим из него цветовые каналы: 

>>> im = mh . demos . l9ad( ' lena ') 

Эта фотография девушки часто используется для демонстрации 

обработки изображений: 

Для выделения красного, зеленого и синего каналов напишем та­

кой код: 

>>> r , g , b = im . transpose (2 ,0 , l) 

Теперь профильтруем все три канала порознь и построим из них 

новое изображение с помощью функции mh . as_rgb. Она принимает 

три двумерных массива, производит растяжение контрастности , пре­

образуя каждый в массив 8- разрядных целых, а затем накладывает их 

друг на друга и возвращает цветное RGВ-изображение: 

>>> rl2 mh.gaussian_filter (r , 12 . ) 
>>> gl2 = mh.gaussian_fil ter (g , 12 .) 
>>> Ы2 = mh.gaussian_filter (b , 12 .) 
>>> i ml2 = mh.as_rgb (rl2 , gl2 , Ь12) 

Теперь сошьем оба изображения от центра к краям . Сначала по­

строим массив весов w, который будет содержать в позиции каждого 
пикселя нормированное з начение - расстояние пикселя от центра: 



>>> h , w 
>>> У , х 

1 
r. shape # высота и ширина 
np.mgrid[ : h , : w] 
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Мы воспользовались объектом np . mgrid, который возвращает мас­
сив размера (h , w) , значения в котором соответствую координатам у 

их. Далее проделаем следующие операции: 

>>> у 

>>> у 

>>> х 

>>> х 

У - h /2. # це нтрировать на h / 2 
У / Y.ma x () # привести к диапазону -1 . . + 1 

Х - w/2 . 
Х / X.max () 

Теперь воспользуемся гауссовой функцией, чтобы увеличить зна­
чения пикселей в центральной области: 

>>>С= np.exp (- 2 .*(X** 2+ У**2 )) 

>>> # С н ова нормируем: приводим к диа па зону 0 .. 1 
>>> С С - C.min () 
>>> С = С / C . ptp () 
>>>С= С[: , :, None ] #Добавляем в массив С третье измерение 

Отметим, что всё это - операции с массивами NншРу, никакой 

специфики шahotas здесь нет. Наконец , объединим оба массива, так 

чтобы центральная часть изображения оказалась в фокусе, а края 

были более расплывчатыми: 

>>> ringed = mh . stretch(im*C + (1 - C)*im1 2 ) 
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Простая классификация изображений 
Начнем с небольшого набора данных, подготовленного специально 

для этой книги . В нем есть три класса: здания, природные ландшаф­

ты и фотографии текста. В каждой категории представлено 30 изо­
бражений, все они были сделаны камерой сотового телефона с мини­
мальной композицией. Фотографии похожи на те, что закачивают на 
совреме11ные сайты пользователи, не учившиеся фотографировать. 

Набор данных можно скачать с сайта книги или из репозитория кода 
на GitHub. Позже мы рассмотрим более трудный набор данных, в ко­
тором и изображений, и категорий больше . 
Для классификаций изображений у нас имеется большой прямо­

угольный массив чисел (значений пикселей) . В наши дни типичный 
размер массив - порядка нескольких миллионов пикселей. Можно, 

конечно, попробовать загрузить все эти числа в алгоритм обучения в 
качестве признаков, но это не очень хорошая мысль. Дело в том, что 

связь каждого отдельного пикселя (и даже небольшой группы пиксе­
лей) с изображением очень отдаленная. Кроме того, налиLJИе милли­
онов пикселей при очень небольшом количестве изображений при­
водит к чрезвычайно трудной задаче статистического обучения. Это 
крайнее проявление задач типа "р больше N1>, которые мы обсуждали 
в главе 7 <.1Регрессия 1> . Гораздо разумнее вычислить признаки по изо­

бражению и использовать их для классификации. 
И тем не менее, хочу отметить, что существуют методы, работаю­

щие непосредственно со значениями пикселей. В иих встроеиы под­

программы вычисления признаков. Они даже могут попытаться 

вывести хорошие признаки автоматически . В этой области сейчас 
ведутся активиые исследования. Как правило , такие методы хорошо 

работают с очень большими наборами данных (содержащими милли­
оны изображений). 
Выше мы уже видели пример изображения ландшафта. А вот ниже 

показаны примеры изображений текста и здания. 
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Вычисление признаков по изображению 
Mahotas позволяет легко вычислять признаки по изображению . 

Соответствующие функции находятся в подмодуле mahotas . f ea tures . 

Хорошо известен набор текстурных признаков Haгalick. Как и мно­
гие алгоритмы обработки изображений, он наз ван по имени своего 
и зобретателя . Признаки основаны на текстурах, то есть разл ичают 
структурированные и неструктурирова11ные изображения, а также 

различные повторяющиеся структуры. С помощью malюtas эти при­
знаки вычисляются очень просто: 

>>> haral ick_ featu r es = mh . featu r es .haralick( i mage ) 
>>> h aralick_features_mean = np . mea n(haralick_features , axis=O ) 
>>> haralick_ featu r es_ all = np . ra ve l(ha ra l ick_fea tures) 

Функция mh . features . haralick возвращает массив 4 х 13. Первое 
измерение - четыре возможных направления, по которым вычисля­

ются признаки (вертикаль, горизонталь н две диагонали). Если ника­

кое конкретное направление нас не ннтересует, то мож1ю усреднить 

признаки по всем направлениям (в коде выше эта переменная названа 

haralick_feat u res_me an ). Или же можно использовать все признаки 

по отделыюсти (перемеиная haralick_ features_ all ). Решение завн­

сит от свойств конкретного набора данных. Мы сочли, что в нашем 

случае признаки по вертикали 11 по горизонтали нужно хранить по­

рознь, поэтому используем haralick_features_all . 

В malюtas реализоваrю еще несколько наборов признаков. В trаст­
ности, локальные бинарные шаблоны вес1,ма устойчивы к изменению 

освещенности. Есть и другие типы призиаков, в том числе локальных, 

которые мы обсуд11м ниже в этой главе. 
Имея признаки , мы можем воспользоваться каким-нибудь стан­

дартным методом классификации, например логистической регрес­

сией: 

>>> from glob impor t glob 
>>> images = glob ( ' Simp l eimageDataset/* . jpg ' ) 
>>> features = [] 
»> l abels = [] 
>>> f o r im i n images: 

labe l s . append (im [: - len( ' OO . jpg ') ] ) 
im = mh . imread( im ) 
im = mh . colors.rgb2g r ay ( im , dtype=np. uint 8 ) 
features . append(mh . features . haralick (i m) . rave l()) 

>>> features = np . arra y (features ) 
>>> l abels = np . ar r ay(label s ) 
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У трех наших классов текстуры сильно различаются . Для зданий 

характерны резкие края и крупные области, в которых цвета очень 

близки (значения пикселей редко бывают одинаковыми, но вариации 
невелики) . Для текста характерно много резких переходов от темного 

к светлому и маленькие островки черного в море белого. Природные 

ландшафты характеризуются более плавными переходами фракталь­

ного типа. Поэтому можно ожидать , что классификатор, основанный 

на текстурах, будет работать хорошо . 
Мы построим классификатор на базе логистической регрессии с 

предварительной обработкой признаков: 

>>> from sklearn . pipeline import Pipeline 
>>> from sklearn.preprocessing import StandardScale r 
>>> from skl earn . linear_model import LogisticRegression 
>>> clf = Pipeline([ (' preproc ' , StandardScaler()) , 

( ' classifier' , Logis ticReg re ss ion( ))]) 

Поскольку наш набор данных мал, можно воспользоваться регрес­

сией с исключением по одному: 

>>> from sklearn i mport cross_validation 
>>> cv = cross_validation.LeaveOneOut(len(images)) 
>>> scores = cross_validation . cross_val_ score( 

clf , features , labels , cv=cv ) 
>>> print ( ' Верность : { : . 1 %) ' . f orma t (scores . mean ())) 
Верность: 81 .1 % 

Верность 81 % - неплохо для трех классов (случайное угадыва­

ние дало бы только 33%). Но можно улучшить этот результат, создав 

собственные признаки . 

Создание собственных признаков 
В признаках нет ничего сверхъестественного. Это просто числа , 

ВЫLJИсляемые по изображению. В литературе описано несколько 
наборов признаков. У них зачастую есть то преимущество, что они 
специально проектировались, чтобы не зависеть от малосуществен ­
ных факторов. Например, локальные бинарные шаблоны инвариант­

ны относительно умножения значений всех пикселей на одно число 

или прибавления к ним константы. Поэтому такой набор признаков 
устойчив к изменению освещенности. 

Но не исключено, что в конкретной ситуации лучше будет работать 

какой -то специальный набор признаков. 

Простой признак, не включенный в дистрибутив шalюtas, - гисто­
грамма цветов. К счастью, реализовать его совсем нетрудно. Идея 
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гистограммы цветов состоит в том, чтобы разбить пространство цве ­

тов на несколько интервалов, а затем подсчитать, сколько пикселей 

оказалось в каждом интервале. 

Изображения хранятся в формате RGB, то есть каждый пиксель 
представлен треl\'1Я значениями: R (красный), G (зеленый) и В (си ­

ний). Каждое значение - это 8-разрядное число, что в сумме дает 

17 миллионов цветов. Мы сократим количество цветов до 64, разнеся 
их по интервалам. Напишем функцию, инкапсулирующую этот алго­

ритм: 

def chist ( im ): 

Чтобы вычислить иатервал цвета, сначала разделим весь массив на 

64 с округлением значений : 

im = im // 64 

Теперь значения каждого пикселя лежат в диапазоне от О до 3, то 
есть всего получается 64 цвета. 

Выделим красныli, зеленый и с иний ка нал: 

r , g , b = i m. transpose((2 , 0 , l)) 
pixels = 1 * r + 4 * Ь + 16 * g 
hist = np . bincount(pixels.ravel ( ) , minlength=64 ) 
hist = hist.astype (float ) 

Приведем к логарифмическо 11 ш кале, как показаио в следующем 

фрагмеите. Строго говоря, это необязательно, но признаки получают­

ся более качественными . Мы пользуемся функцией np. l og lp, которая 

вычисляет log(h+1). При этом нулевые значения остаются иулевыми 
(логарифм нуля не определен, и NumPy иапечатает предупреждение 

при попытке вычислить е го). 

hist = np . loglp (hist ) 
retu rn hist 

Эту функцию несложио включить в иаписанный ранее код: 

>>> f eatures = [] 
>>> for im in images : 

image = mh . imread ( im ) 
features.append( chist ( im )) 

Применяя тот же код перекрестной проверки, что и раньше, мы по­

лучаем верность 90%. Но самые лучши е результаты получаются, есл 11 

объединить все пр11знаки: 

>>> features = [] 
>>> for im in images : 
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imco l o r = mh . i mread (i m) 
i m = mh . colo r s .rgb2g ray( imco l o r, dt ype=np . uint8 ) 
feat ures . app e nd (np. co ncatenate ([ 

] ) ) 

mh . features .ha ral ick (im ) . r avel() , 
chist ( i mco l o r), 

При использовании всех этих признаков верность составит 95.6%: 

>>> scores = c r oss_va l ida t i on.cross_ val_score ( 
c lf, f eatures , labe l s , cv=cv ) 

>>> p r in t ( ' Верност ь: {:. 1 %) '. format (sco r es . mea n ())) 
Верност ь : 95 . 6% 

Это еще одно подтверждение того, что хорощие алгоритмы - прос­

тая часть работы. Мы всегда можем воспользоваться реализация ­

ми самых передовых алгоритмов классификации, имеющимися в 

библиотеке scikit -l eaгn. А самая-то сол1, и трудность - проектирова ­

ние и подготовка признаков. Именно тут оказывается полезно знание 

о характере набора данных. 

Использование признаков для поиска 

похожих изображений 
Принципиальную идею о том, чтобы представить изображение 

сравнительно небольшим числом признаков, можно применить не 

только к классификации. Например, с ее помощью можно искать 

изображения, похожие на предъявленный в запросе образец (как с 

текстовыми документами) . 

Мы будем вычислять те же приз наки, что и раньше, но с одним 

важным отличием: приграничные участки изображения игнориру­
ются. Причина в том, что из-за любllтельской ком позиции на краях 
фотографии часто оказываются несущественные детали. Если вычис­

лять признаки по всему изображению, то эти детали вносят вклад. 

А игнорируя их, удается получить чуть более качественные призна­

ки. В случае обучения с учителем это не важно, потому что алгоритм 

обучения сможет определить, какие признаки более информативны, 
и назна•rить им соответственный вес. В режиме обучения без учителя 

нужно более внимательно следить за тем, чтобы признаки улавлива­
ли важные особенности данных. Эта идея реализована в следующем 
цикле: 

>>> feat ures = [] 
>>> for i m i n i mages : 

imco l o r = mh.imr ead ( im ) 
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# игнорировать все , что находится н е дальше чем в 200 
# пикселях от границы 

imcolor = imco l or[200 :-200 , 200 :-200 ] 
im = mh.colors . rgb2gray(imcolor , dtype=np . uint8) 
features . append(np . concatenate([ 

] ) ) 

mh. fea t ures. harali ck ( im) . rave l ( ) , 
chist(imcolor) , 

Теп ерь нормируем признак11 11 вычислим матрицу расстояний: 

>>> sc = StandardScaler( ) 
>>> fea t ures = sc. fit_ transform(features ) 
>>> fr om scipy . spa tial import distance 
>>> dists = dis tance . squareform (distance . pdist (features )) 

Выведем только подмножество данных (каждый десятый эле­

мент), расположив образец сверху, а возвращенный «ближайший со­

сед1> снизу: 

>>> fig , axes = plt . subplots( 2 , 9) 
>>> for ci , i in en umera te (range (0 , 90 , 10)): 

left = images [ i] 
dists_left = dist s[i] 
right = dists left .argsort () 
# right[OJ - то же , что l eft[i] , поэтому вьtSерем сле,цук:щ-!Й б.лижайuВ>1Й 

right = right[l] 
right = images [right ] 
left = mh. imread( l eft) 
right = mh . imread( right) 
axes[O , ci] . imshow(left) 
axes[l , ci] . i mshow(right) 

Результат показан на рисунке ниже: 

Видно, что система не совершенна, но все же способна находить 
изображения , которые, по крайней мере, зрительно похожи на предъ­

явленный образец. Во всех случаях, кроме одного , найдены изображе­
ния из того же класса , что образец. 
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Классификация на более трудном 

наборе данных 
Предыдущий набор оказалось легко классиф~щировать с помощью 

текстурных riризнаков. На самом деле, многие задачи, представляю­
щие интерес для бизнеса, сравнительно просты. Но иногда попадают­
ся проблемы потруднее, и тогда для получения приемлемого резуль ­

тата приходится применять более развитые современные методы. 
Поэкспериментируем с общедоступным набором данных, имею­

щим такую же структуру: несколько фотографий, отнесенных к не­

большому числу классов: животные, автомобили , транспортные сред­
ства и природные ландшафты. 

Эти классы труднее различить, чем те три, что мы рассматрива­

ли выше. Природные ландшафты, здания и тексты характеризуются 

совершенно разными текстурами. А теперь текстуры и цвет не мо­

гут служить столь же очевидными маркерами класса . Вот пример 

изображения животного: 

А вот - автомобиля: 
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Оба объекта сняты на фоне природы, а сами не имеют четко вы­
раженной повторяющейся структуры. Это задача потруднее, поэтому 

понадобятся более сложные методы. Во-первых, мы воспользуемся 

более мощным классификаторо~1. В библиотеке sc iki t-l ea п1 реализо­
вана регуляризованная форма лоrистической регрессии с настраива­

емым параметром с. По умолчанию с = 1 . о , но это з нач ение не всегда 

оптимально. Для нахождения хорошего значения параметра можно 

использовать сеточный поиск: 

>>> from sklearn . gr i d_search import GridSearchCV 
>>> C_range = 10 . 0 ** np . arange (- 4 , 3) 
> > > grid = GridSearchCV (LogisticRegression () , param _grid= { ' С ' С_ range) ) 
>>> clf = Pipeline ([ ( ' preproc ', StandardScaler ()) , 

( ' classifier ' , grid)] ) 

Данные в наборе данных расположены не в слуLtайном порядке: 

похожие 1J зображения находятся рядом. Поэтому при перекрест­

ной проверке будсы перетасовывать данные, чтобы данные в каждой 

группе были более репрезентативны: 

>>> cv = cross_va lidation . KFo ld(len(features) , 5 , 
shuffle=True , random_state=l 23 ) 

>>> scores = cross_validation . cross_val_score( 
clf , features , labels , cv=cv) 

>>> print( ' Bepн ocть : { : .1 %) ' . format (scores . mean())) 
Верность: 72 . 1% 

Для четырех классов совсем неплохо, но ниже мы покажем, как 

улучшить результат, взяв другой набор признаков . На самом деле, мы 
увидим, что для получения оптимального резул 1,тата необходимо со­
четать эти признаки с другими методами. 

Локальные представления 

признаков 

Сравнительно недавно в области машинного зрения были разрабо­

таны методы на основе локальных признаков . Локальные признаки 

вычисляются по небольшому участку изображения - в отличие от 

рассмотренных ранее признаков , вычисляемых по всему изображе­

нию. В шal10tas поддерживается вычисление признаков типа SURF 
(Speeded Up Robust Featuгes - ускоренно вычисляемые устойчивые 

признаки). Есть и несколько других, самый известный - п ервона­

чалыю предложенный SIFТ. Эти приз наки спроектированы с учетом 
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устойчивости относительно враще1-шя и освещенности (то есть они 

мало изменяются при изменении освещения). 

Нам нужно решить, где вычисля1ъ эти признаю:~. Обычно выбира-
ют одну ИЗ трех ВОЗМО~I-IОСТеЙ: 

в случайных областях; 

на сетке; 

выявить интересные участки изображения (эта техника из ­

вестна под названием «определение ключевых TOLJeK» ). 

Каждый из этих подходов при 011ределенных обстоятельствах дает 
хорошие результаты. В шal10tas поддерживаются все три. Определе ­

ние ключевых точек лучше всего работает, если есть основания по­

лагать , что ключевые точки дейспз 11тельно соответстнуют наиболее 
важным участкам изображения. 
Мы применим метод ключевых точек. Вычислить признаки в 

шalюtas легко: нужно импортироnать подходящий подмодуль и вы ­

звать функцию surf . surf : 

>>> from mahotas .features impo r t surf 
>>> image = mh .de mos .load ('lena ') 
>>> image = mh. colors .rgb2gray(im, dtype=np . ui n t8 ) 
>>> descriptors = s urf.sur f (image , desc riptor_only=True) 

Флаг d e scriptors_o nly=True означает, что нас интересуют только 

сами дескрипторы, а не положение пикселей , размер или ориентация. 

Можно было бы вместо этого воспользоваться методом частой вы­

борки , вызвав функцию su r f . dense : 

>>> f rom mahotas .features import surf 
>>> descriptors = surf .dense(image , spacing=lб) 

При этом возвращаются значения дескрипторов, вычисленные в 

точках, находящихся на расстоянии 16 пикселей друг от друга. По­
скольку положения точек фиксированы, метаинформация о клю­

чевых точках не очень интересна и по умолчанию не возвращается . 

В любом случае результат (дескрипторы) - это массив п х 64, где п -
количество точек в выборке. Оно зависит от размера изображения, 
его содержания и параметров функци11. В данном случае мы взяли 

значения по умолчанию, это дает несколько сотен дескрllпторов на 

одно изображение. 
Мы не можем непосредственно загрузить эти дескрипторы в аш'о­

ритм опорных векторов, логистической регрессии или еще какой-ни­

будь алгоритм классификации. Существует несколько способов ис­
пользовать дескрипторы изображения . Можно их просто усреднить, 
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но результаты получатся плохонькие, потому что при таком подходе 

отбрасывается важная информация о местоположении. В нашем 

примере мы просто получил 11 бы еще один глобальный набор 

признаков , основанных на измере ниях у границ. 

Решение - воспользоваться моделыо набора слов - появилось 
совсем недавно. Впервые в такой форме оно было опубликовано в 

2004 году. Его можно отнести к идеям типа «как же мы раньше-то 
проглядели»: реализовать оче11ь легко, а результаты получаются за­

мечательные . 

На п ервый взгляд, странно говорить о словах применительно к 

изображениям . Понять эту идею будет проще, если представлять себе 
не написанные слова, которые легко разделить, а произносимые. Про­

изнесенное слово каждый раз звучит немного инаLJе, а разные люди 

произносят одно и то же слово по-разному. Поэтому волновые формы 

слова не будут повторяться. Тем не менее, применив к волновым фор­
мам кластеризацию, мы надеемся восстановить большую часть струк­
туры, так что все варианты про11з1-юшения дан ного слова окажутся 

в одном кластере. Даже если этот процесс не совершенен (а он таки 

не совершенен), все равно можно говорить о группировке волновых 

форм в слова. 

Ту же самую операцию можно проделать и с данными изображения: 
кластеризовать похожие участки всех изображений и наз вать класте­

ры визуальными словами . 

Количество используемых слов не оказывает существенного влиR­

ниR на качество алгоритма. Естественно , если их количество совсем 

уж мало ( 10-20 при нескольких тысRчах изображений), то хорошей 
работы от системы ожидать не приходитсR. Но и при чрезмерно 

большом количестве слов (например, если их намного больше, чем 

изображений) система тоже будет работать не оптимально. Между 

этими крайностRми часто лежит протRженное плато, на котором ка ­

ч ество результата слабо зависит от количества слов. ЗначениR 256, 
512 или, - при очень большом числе изображений, - 1024 должны 
дать приемлемый результат. ______ ..... _ ... 

Начнем с вычисления признаков: 

>>> al l descriptors = [] 
>>> for im in images : 

im = mh . imread(im , as_grey=True) 
im = im . astype(np . uint8) 
alldescriptors . append (surf . dense (image , spacing=lб )) 
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>>> # получить все дескрипторы в одном массиве 
>>> concatenated = np . conc atenate (a l l de s c r iptor s ) 
>>> рri n t (' Количество дескрипторов : {} ' . fo r mat( l e n{ concatena t e d ) )) 
Количество дескрипторов : 2 48 903 1 

Мы полуLJИJJИ свыше 2 миллионов локальных дескрипторов. Те ­

перь с помощью кластеризации методом К средних найдем центрои ­

ды. Можно было бы использовать все дескрипторы, но для быстроты 

мы ограничимся тол ько малой частью: 

>>> # и с п оль зоват ь каждый 64 -ый вект ор 

>>> conc a te nated = con c atenate d[ : : 64 ) 
>>> fr o m s klea rn . c luster impo r t KMe ans 
>» k = 256 
>>> km = KMea n s (k) 
>>> km.fi t (co nca t e nated) 

Это займет некоторое время, но по завершении объект km будет со­

держать сведения о центроидах . Теперь вернемся к дескрипторам и 

построим векторы признаков: 

>>> s f eatures = [) 
>>> fo r d i n alldesc rip t or s : 

с= km.pre dic t /d) 
s feat ures . appe nd( 

np . array([np . s um( c == c i) f o r c i i n range ( k ))) 

>>> # строим один массив и преобразовываем в тип Поаt 

>>> s f eatu r es = n p . a r ray (sfea tu r es , dtype=Пoat ) 

По выходе из цикла элемент sfeatures [fi , f j J массива показыва­

ет, сколько раз элемент f j встречается в изображении fi . Этот массив 

можно было бы вычислить и быстрее, воспользовавшись функцией 
np . hi s t ogram, но подготовка аргументов для нее - н е вполне триви­

альное занятие. Мы преобразуем результат к типу с плавающей точ­
кой, поскольку не хотим возиться с целочисленной арифметикой и 

семантикой округления. 

Теперь каждое изображение представлено одним массивом при­

знаков, и размеры всех массивов одинаковы (равны колиl1еству кла­

стеров, в нашем случае 256). Таким образом, можно применить стан­

дартные методы классификации : 

>>> sco r es = c r oss va l i dation.cro s s _ val _ score ( 
c l f, s f e a t ures , labe l s , cv=cv ) 

>>> p ri nt ( ' Bepнocт ь: { : .1 %) ' . f orma t (scores . mean ())) 
Верность : 62 . 6% 

Хуже, чем раньше! Мы что же, ничего не выиграли? 
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На самом деле, выиграли, потому что можем объединить все при ­

знаки и получить верность 76.1 %: 

>>> coinЬi n ed = np . hstack ( [ fea tures , fea tures] ) 
>>> scores = cross_va lidat i on . c ross_val_score ( 

clf , coinЬined , labels , cv=cv) 
>>> pri n t (' Bepнocть : {: . 1%) ' . for inat( scores .ine an())) 
Верность : 7 6 . 1 % 

Это лучший из достигнутых результатов - лучше, чем при любом 

наборе признаков по отдельности. Объясняется это тем, что локаль­
ные признаки SURF существенно отличаются от глобальных призна­
ков изображения и потому привносят новую информацию в оконча­
тельный результат. 

Резюме 
Мы поз накомились с классичесю1м основанным на признаках под ­

ходом к обработке изображений в контексте маш11ш-rого обучения: 
перейдя от миллионов пикселей к нем11огим чис;ювым приз накам, 

мы смогли воспользоваться классификатором на базе ло гнстиче ­

ской регрессии. Все технологии, 11зученные в предыдущих главах , 

волшебным образом оказались применимы к задачам машинного 

зрения. Один из примеров - поиск похожих изображений в наборе 
данных. 

Мы также научились использовать для классификации локальные 

признаки в виде модели набора слов. Это очень современный под­

ход к машинному зрению, который, с одной стороны, дает отличные 

результаты, а, с другой, нечувствителен к несущественным деталям 

изображения, напр11мер освещению и даже неравномерному осве­

щению одного и того же изображения . Мы также воспользовались 

кластеризацией не ради нее самой, а как полезным промежуточным 

шагом классификации. 

Мы работали с шahotas, одной из основных библиотек машинного 
зрения на PytЬon. Но есть и другие, поддерживаемые ничуть н е хуже . 

Skimage (scik i t - iшage ) близка по духу, но строит другой набор приз на­
ков. OpenCV - отли ч11 ая библиотека, на писа нная на С++ и имеющая 

интерфейс к РуtЬоп. Все они могут работать с массивами NumPy, по­
этому можно свободно полъзоватr,ся функциями из разных б11блио­

тек для построения сложных конвейеров машинного зрения. 

В следующей главе мы займемся другим видом машинного обу­
чения: по н11жение ~'' размерност11 . В предыдущ11х главах мы виде111 1, 
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что с ВЫLJислительной точки зрения сгенерировать м1юго признаков 

совсем нетрудно. Но часто желательно уменьшить число призна­

ков ради поnышения быстродействия, наглядности нли улучшения 

качества результатов. Далее мы узнаем, как это делается. 



". 
fЯАВА 11. 

Понижение размерности 

Мусор на входе, мусор на выходе - на страницах этой книги мы не 

раз видели, как справедливость этого высказывания подтверждает­

ся, когда мы применяем методы машинного обучения к имеющимся 

данным. Оглядываясь назад, мы понимаем, что самые интересные во ­

просы возникают на этапе подготовки признаков, когда мы стареемся 

использовать знания о существе проблемы для тщательного отбора 

признаков, которые , ХОLJется надеяться, алгоритм сумеет переварить. 

В этой главе мы двинемся в обратном направлении: смысл задачи 
понижения размерности состоит в том, чтобы отбросить нерелевант­

ные или избыточные признаки . На первый взгляд, избавление от при ­
знаков противоречит интуиции, ведь чем больше информации, тем 
лучше, разве не так? Да и потом, даже если в нашем наборе данных и 

имеются избыточные признаки, разве алгоритм обуl1ения не сможет 
быстро выявить их 11 наз начить им нулевой вес? Приведенные ниже 

аргументы показывают, почему на практике до сих пор следует всеми 

силами стремиться к понижению размерности задачи. 

Лишние признаки могут ввести алгоритм обучения в заблуж­
дение . Это относится не ко всем алгоритмам (например, метод 

опорных векторов работает тем лучше, чем выше размерность) , 
но некоторые модели предпочитают поменьше измерений. 

Чем больше признаков, тем больше параметров нужно настра­
ивать и тем выше риск переобучения . 

Возможно, что у данных, собранных для решения задачи, раз­
мерность завышена искусственно , а истинная размерность не­

велика. 

Меньше размерность = более быстрое обучение = больше ва­
риантов параметров можно рассмотреть за фиксированное 

время= лучше конечный результат. 

Если мы хотим визуализировать данные, то ограничены двумя 

или тремя измерениями. 
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Итак, в этой главе мы покажем , как избавиться от мусора в данных, 

сохранив в то же время всё ценное. 

План действий 
Методы понижения размерности можно разбить на две большие 

группы: отбор признаков и выдел ение признаков. В предыдущих гла­
вах мы уже сталкивались с отбором признаков , когда придумывали, 

анализировали, а иногда и отбрасывали некоторые признаки . В этой 
главе мы продемонстрируем, как использование статистических ме­

тодов, а именно вычисление корреляции и взаимной информации, 

помогает решать эту задачу в многомерных пространствах призна­

ков. Выделение признаков - это попытка преобразовать исходное 

пространство признаков в пространство более низкой размерности. 

Это особенно полезно, когда мы не в состоянии избавиться от при­
знаков, применяя методы отбора, но и работать с таким большим чис­

лом признаков невозможно. Мы продемонстрируем анализ главных 

компонент (pгiпcipal сошроnепt aпaJysis, РСА), линейный дискрими­

нантный анализ (liпеаг discгiшiпant analysis, LDA) и многомерное 
шкалирование (шultidiшeпsional scaliпg, MDS). 

Отбор признаков 
Алгоритм машинного обучения работает оптимально, если поданные 
ему на вход признаки не зависят друг от друга, 1-ю силыю зависят от 

прогнозируемого значения. Это означает, что каждый новый признак 

добавляет существенную информацию. А удаление шобого признака 

приводит к снижению качества. 

Если признаков раз-два и обчелся, то можно нарисовать матрицу 

диаграмм разброса (по одной для каждой пары признаков). С ее по­

мощью легко выявить связи между признаками. Если для какой-то 

пары имеется очевидная зависимость, то можно либо отказаться от 

какого-то признака, либо подумать над выработкой нового, более ка­

чественного признака из этих двух. 

Но обычно признаков гораздо больше. Вспомните классификацию 
качества ответа на основе модели набора слов - тут нам пришлось 

бы нарисовать 1000 х 1000 диаграмм разброса. Ниже мы опишем два 
общих способа решения задачи: фильтры и обертки. 
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Выявление избыточных признаков 

с помощью фильтров 

Задача фильтра - расчистить «лес» признаков независимо от того, 

какие методы машинного обучения будут применены впоследствии . 

Для нахождения избыточных или нерелевантных признаков исполь­

зуются статистические методы. Есл и найдены избыточные признаки, 
то из каждой группы мы оставляем только один, а нерелевантные 

признаки просто удаляются. Общая схема работы фильтра изображе­
на ниже. 

Все признаки 
x 1,x2,".,xN 

· Отобрать '"· 
неизбьгiочt.tь1е 

признаки 

Корреляция 

Какие-то 
признаки 

х2,х7,".,хМ 

у 

Отобрать · 
релевантные 

признаки 

Оставшиеся 
признаки 

х2,х10,х14 

Корреляция выявляет линейные связи между парами признаков. 

На рисунках ниже мы видим разные степени корреляции, а так­

же потенциальную линейную зависимость, изображенную красной 

пунктирной линией (аппроксимированной линейным полиномом). 

Коэффициент корреляции Пирсона (г) Сог(Х1 , Х) над каждым гра­

фиком вычислен с помощью функции pearsoпr () из модуля scipy . 

stat. 

Получив два ряда данных одинакового размера, эта функция воз­

вращает кортеж, содержащий коэффициент корреляции и р-значение. 

Р-значение описывает вероятность того, что эти ряды данных были 

сгенерированы некореллированной системой . Иными словами, чем 

выше р-значение, тем меньше доверия коэффициенту корреляции. 

>>> from scipy . sta ts impor t pearso nr 
>>> pearsonr ( [ 1 , 2 , 3] , [ 1 , 2 , 3 . 1] ) 
»> (0 . 99962228516121843 , о . 0 174 98096813278487 ) 
>>> pearsonr([l , 2 , 3] , (1 , 20 , 6] ) 
>>> (0 . 25383654128340477 , 0 . 83661493668227405 ) 

В первом случае есть четкое указа ние на то, что оба ряда коррел и­

руют. Во втором з н а l1ение 1· также отнюдь н е нулевое , но поскольку 
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µ-значение равно 0.84, то мы делаем вывод, что коэффициент корре­
ляции не обладает статистической значимостью и обращать на него 
внимания не стоит. 

Взгляните на следующие графики. 
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В первых трех случаях коэффици енты корреляции высокие, поэто­

му, наверное, стоит отбросить xl или х2, потому что они несут очень 
похожую, а, может быть, и вовсе одну и ту же информацию. 

Но в последнем случае оба признаки нужно оставить. Решение, 

разумеется, определяется р-значением. 

В примере все было замечательно, но реальность редко бывает 
столь благосклонна к нам. Крупный недостаток отбора признаков 
на основе корреляции заключается в том, что таким образом можно 

выявить лишь линейные зависимости (такие, которые можно описать 
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1 
прямой линией). Попытавшись применить корреляцию к нелиней-

ным данным, мы увидим, в чем проблема. В следующем примере за­
висимость квадратичная. 
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Человек сразу видит, что между Х1 и Х2 существует зависимость на 
всех графиках, кроме последнего, однако коэффициент корреляции 

ее не отражает. Очевидно, что корреляция полезна для нахождения 

линейных зависимостей , но перестает работать для любых других. 

Иногда удается получить линейную зависимость , применив простое 

преобразование. Например, на предыдущем графике мы получили бы 

высокий коэффициент корреляции, если бы построили зависимость 

Х2 от квадрата Х1 . Но на практике такая возможность предоставляет­

ся нечасто. 
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По счастью , в случае нелинейных зависимостей на помощь nри­

ходит взаимная информация . 

Взаимная инф?рмация 
Говоря об отборе признаков, мы не должны сосредота,rиваться 

на типе зависимости, как в предыдущем разделе (линейная зависи­

мость). Вместо этого нужно думать о том, сколько информации nри­

вносит признак (при условии, что уже есть дру гой признак) . 

Чтобы разобраться в этой идее, давайте предnоложим, что мы хо­

тим использовать признаки house_size (размер дома), number_ of_lev ­

els (количество этажей) и avg_rent_price (средняя стоимость арен­

ды), чтобы обучить классификатор, который определяет, есть в доме 
лифт или нет. Интуитивно очевидно, что если мы знаем house_size , 

то знать number_of_ levels необязательно, поскольку это в некотором 
роде избыточная информация. Но avg_rent_pri ce - другое дело, по­

тому что вывести стоимость аренды из одного лишь размера дома или 

количества этажей невозможно. Поэтому было бы разумно оставить 
среднюю стоимость аренды и один из двух других приз наков. 

Понятие взаимной информации формализует это рассуждение пу ­

тем вычисления количества информации, обще ~°~ для двух признаков. 
Но в отличие от корреляции, в основу кладется не последовател ь­

~юсть данных, а распределение. Чтобы понять, как это устроено, при­

дется познакомиться с понятием энтропии информации. 

Пусть имеется правильная монета. До того как мы ее подбросим, 
неопределенность исхода - выпадет орел или решка - максимальная, 

т. к. вероятность обоих исходов равна 50%. Эту неопределенность 
можно измерить с помощью энтропии информации, введенной Кло­

дом Шенноном : 

п 

Н(Х) = LP(X;) Iog 2 p(X;) 
i=I 

В случае правильной монеты есть два исхода: Х11 - выпадение орла 

и Х, - выпадение решки, причемр(Хu) = р(Х,) = 0.5. 
Отсюда 

Н(Х) =-p(X 0 )log2 p(X0 )- р(Х1 ) log2 p(X1) = 
= -0.5 log 2 (0.5)-0.5 log 2 (0.5) =1.0 
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Для удобства можно воспользоваться также функцией scipy . 
stats.entropy ([О . 5, О . 5] , base=2 ). Мы задали параметр base 
(основание логарифма} равным 2, чтобы получить тот же результа-
та, что и выше. По умолчанию в этой функции используется нату­

ральный логарифм, np . l og () . Вообще говоря, основание несуще­
ственно (если только во всех расчетах оно одно и то же}. 

Теперь представим, что нам заранее известно, что монета непра­

вильная : орел вы падает с вероятностью 60%: 

Н(Х) = -0.6 · log2 0.6 - 0.4 · log2 0.4 = 0.97 

Как видим, н еопределенносп, уменьшилась. Уменьшение продол­

жится по мере удаления от значения 0.5 и достигнет минимума, когда 
вероятность выпадение орла составит О или 100%. Это показано на 
рисунке ниже. 

1 0 
Энтропия Н(Х) 

0.8 
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:.-: 
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Р(Х = выпадает орел) 

Модифицируем формулу энтропии Н(Х), применив ее к двум при­

знакам вместо одного, так чтобы она измеряла, насколько уменьша­

ется неопределенность Х, когда мы узнаем о У. Таким образом, мы 
сможем узнать , как один признак снижает неопределенность другого . 

Например, в отсутствие какой-либо информации о погоде , мы 

не можем сказать , идет на улице дождь или нет - полная неопреде­

ленность . Но если мы знаем , что трава мокрая, то неопределенность 

уменьшается (правда , нужно еще провер ить, н е включен а ли поли ­

вальная система) . 

Формально взаимная информация определяется следующим об­
разом: 
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'f ~ Р(Х; ,У1 ) 

J(X;Y) = L,;L,;P(X; ,Y;) log2 -------"----

;=i J= I Р(Х;)Р(У1 ) 

Выглядит устрашающе, но на самом деле тут ничего нет, кроме 

сумм и произведений. Например, чтобы вычислить Р(), нужно рас­
пределить значения признаков по интервалам, а затем подсчитать, 

сколько значений оказалось в каждом интервале . На графиках ниже 

мы взяли 10 интервалов. 
Чтобы привести взаимную информацию к диапазону [0,1], нужно 

разделить ее на сумму энтропий отдельных признаков. В результате 

получаем нормированную взаимную информацию: 

Nl(X.Y) = J(X;Y) 
' Н(Х)+Н(У) 

Взаимная информация, в отличие от корреляции, находит не толь­

ко линейные зависимости, как видно из следующих графиков . 

Nl(X,, Х2 ) = 0 .290 
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Мы видим, что взаимная информация может показать силу линей ­

ной связи. А на следующем рисунке показано, LfТO она работает и для 

квадратичных зависимостей . 
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Таким образом, мы должны вычислить нормированную взаимную 

информацию для всех пар признаков. Если для какой-то пары значе­

ние оказалось слишком большим (еще надо определить, что это з на­

чит), то один их признаков следует отбросить . В случае регрессии мы 

могли бы отбросить признак, для которого слишком мала взаимная 
информация с желаемым результирующим значением. 

Этот подход годится, когда набор признаков не слишком велик. 

Но, начиная с какого-то момента, процедура становится слишком до­

рогой, поскольку объем вычислений возрастает квадратично (т. к. вы­

числяется взаимная информация для каждой пары признаков). 

Еще один существенный недостаток фильтрации заключается в от­

брасывании признаков, которые кажутся бесполезными по отдельно-



Отбор признаков ••ЕШI 
сти. Однако часто существует группа признаков , каждый из которых 

вроде бы абсолютно не зависит от целевой переменной, но вместе они 

~ играюн. Чтобы оставить такие признаки, нужны обертки. 

Применение оберток для задания 

модели вопросов о признаках 

Фильтры, конечно, могут оказать огромную помощь в избавлении 
от бесполезных признаков, но у них есть пределы. После фильтрации 
могут остаться признаки, которые не зависят друг от друга и, похоже, 

как-то связаны с целевой переменной, но с точки зрения модели 

абсолютно бесполезны. Рассмотрим следующие данные, которые 
описывают функцию XOR. По отдельности ни А, ни в не показывают 
ни какой зависимости от У, но, если взять их в совокупности, то такая 

зависимость, н есомненно, присутствует: 

А 

о 

о 

в 

о 

о 

у 

о 

о 

Так почему бы не попросить саму модель высказаться по поводу 

отдельных признаков? Именно в этом и состоит смысл оберток, по­

казанный на следующей блок- схеме. 

Текущие 
признаки; 

в начальный 
момент инициа­

лизированы 

всеnрюнаки 

x1, ... , xN 

у 

Обу.мть модель 
сnомощыоv 

н nровермть 

ваЖность ОТде/1 1 

ных признаков 

Отбросить 
несущественные 

признаки 

Нет 
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Здесь мы перенесли вычисление важности признаков в процесс 

обучения модели. К сожалению (хотя это и понятно), важность при­

знака теперь описывается не бинарным значением да-нет, а рангом. 

Поэтому нам все равно придется самостоятельно выбрать пороговое 

значение, то есть решить, какие признаки оставить, а какие отбро­
сить. 

В библиотеке scikit -l eaгn, а точнее в пакете sk l earn.featu r e _ 

selection, имеется целый ряд отличных классов-оберток. Рабочей ло­

шадкой является класс RFE , его имя расшифровывается как «гecuгs i ve 

featшe eli miпat i on,,-, (рекурсивное исключе ние признаков) . Он прини ­

мает объект-оценщик и количество признаков , которые нужно оста­
вить, а затем обучает оценщик на различных наборах признаков, пока 

не найдет достаточно малый поднабор. Сам объект RFE предоставляет 
интерфейс оценщика, то есть обертывает настоящий оценщик, пере­

данный в качестве параметра. 

В примере ниже мы создаем искусственную задачу классифика­

ции с 100 образцами, применяя вспомогательную функцию make_ 

classi fica tion ().Она позволяет сказать, что мы хотим создать 1 О при ­

з наков, из которых только три представляют реальную ценностr> для 

решения задачи классификации: 

>>> from sklearn . feature selection import RFE 
>>> from sklearn .linear_model i mport LogisticRegression 
>>> from sklearn .datasets import make_classification 
>>> Х , у = make_classification(n_samples= lOO , n_features=lO , 
n_i n formative=З , random_st ate=O ) 
>>> c lf = Log i sticRegression () 
>» clf.fit(X , у) 

>>> selector = RFE( clf , n_fea tures to_select=З ) 

>>> se l ecto r = selector . fit(X , у ) 

>>> prin t (se l ector . support_) 
( Fa lse True False Tru e Fa l se False Fa lse False True False] 
>>> print (selector.ranking_) 
(4 l 3 1 8 5 7 6 1 2] 

1 
На практике проблема, конечно, состоит в том, как узнать правиль-

ное знаlrение параметра n~features_to_select . По правде говоря, ни­

как. Но обычно мы можем взять выборку данных и, поэксперимен­
тировав с разным11 значениям11 параметров, прикинуть, как обстоят 

дела. 

Впрочем, при использовани 1 1 оберток особая точность и не нужна . 

Давайте попробуем разные значения n_features_to_se l ect 11 посмо­
трим, как изменяются support_ и ranking_. 
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n_features_to_select sJpport_ 

[False False False True False False [6351107924] 
False False False False] 

2 [False False False True False False [5 2 4 1 9 6 8 7 1 3) 
False False True False] 

3 [False True False True False False [4 1 3 1 8 5 7 6 1 2) 
False False True False] 

4 [False True False True False False [3 1 2 1 7 4 6 5 1 1] 
False False True True] 

5 [False True True True False False [2 1 1 1 6 3 5 4 1 1] 
False False True True] 

6 [ True True True True False False [1111524311] 
False False True True) 

7 [ True True True True False True False [1 1 11413211) 
False True True] 

8 [ True True True True False True False [1111312111) 
True True True] 

9 [ True True True True False True True [1 1 1 1 2 1 1 1 1 1] 
True True True] 

10 ( True True True True True True True [1111111111] 
True True True] 

Как видим, результат очень устоЙLlИВ . Признаки, использованные, 

когда мы запрашивали небольшой набор , выбираются и при увеличе­
нии размера набора. И , кроме того, мы можем положиться на то, что 
разделение набора данных на обуl1ающие и тестовые вовремя пред­

упредит нас, если мы двинемся в неверном направлении. 

Другие методы отбора признаков 
В литературе по машинному обучению описано еще несколько ме­

тодов отбора признаков . Некоторые даже не выглядят как таковые, 

потому что встроены в процесс обучения (не путайте с описанными 
выше обертками) . Наприм ер , в решающих деревьях механизм от­

бора признаков неотделим от самой идеи алгоритма. В других мето­

дах применяется тот или иной вид регуляризации, штрафующий за 

сложность модели, так LJТO процесс обучения направлен на получе­

ния хороших и в то же время «простых» моделей . Для этого важность 

признаков, не вносящих существенного вклада, понижается до нуля, 

после чего они отбрасываются (L1-регуля ризацня). 
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Так что будьте начеку! Зачастую эффективность алгоритма ма­
шинного обучения в немалой степени обусловлена встроенным в него 
методом отбора признаков. 

Выделение признаков 
Бывает так, что даже после исключения избыточных признаков и от­

брасывания нерелевантных КОJ11rчество оставшихся признаков слиш ­

ком велико. И тогда любой метод обучения работает плохо, а, учи ­
тывая размер пространства признаков, мы понимаем, что поделать 

ничего иельзя. Тогда мы приходим к выводу, что придется «резать по 

живому» - избавляться от некоторых приз наков, хотя здравый смысл 

говорит, что они полезны . Другая ситуа ция, в которой необходимо 
по1-rизить размерность, а отбор признаков не помоеает, - желание ви­
зуализировать данные. В этом случае мы не можем оставить больше 

трех признаков. 

На помощь при ходят методы выделен ия 1 при з наков. Они изменя­

ют структуру пространства признаков, приспосабл ивая его к модел и , 

или просто уменьшают размерность до двух 11ли трех, чтобы можно 
было наглядно представить зависимости . 

Как и раньше, методы выделения признаков бывают лине ~"1ны­

ми и нелинейными. Мы представим по одному м етоду из каждой 

категории: анал11 з главных компонент (лин е1lны й) и многомерное 

шкалирование (н елинейный) . Они хорошо 11 з вестны и ч асто 

применяются, но есть и много дру гих интересных и мощных методов 

выделения признаков. 

Об анализе главных компонент 

К анализу главных компон ент (ргiп с i ра \ со111роп е пt aпa l ys i s , РСА) 
обычно первым делом прибе гают, когда нужно со кратить количе­

ство п ризнаков, но неизвестно , какой метод выделения приз наков 

подойдет лучше. Ограничени ем РСА явля ется линейность, но впол ­

не возможно, его окажется достаточно для обу ч е ния хорошей мо­

дели. Добавьте сюда полезные математическ и е свойства, которыми 

обладает этот алгоритм, и скорость, с которой он находит преобра­
зованное пространство приз наков и затем осуществляет преобразо­
вание между 11 сходным и новым пространством, - 11 можете быть 
уверены, что он станет одн11м 11 з ваш11 х любим ых ин струментов ма­

шинного обуч ен11я. 
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Итак, имея исходное пространство признаков, алгоритм РСА нахо­

дит его линейную проекцию на пространство меньшей размерности 

со следующими свойствами : 

• достигается максимум остаточной дисперсии; 

достигается минимум ошибки реконструкции (при попытке 

возврата от преобразованных признаков к исходным). 

Поскольку РСА просто преобразует исходные данные, его мож1ю 
применять к задачам классификации и регрессии. В этом разделе мы 

обсудим этот метод на примере задачи классификации. 

Принцип работы РСА 
Алгоритм РСА основан на линейной алгебре , в которую мы вда-

ваться не станем. Однако принцип его работы описать несложно. 

1. Центрировать данные, вычтя из каждого элемент среднее. 

2. Вычислить ковариационную матрицу. 

3. Вычислить собственные векторы ковариационной матрицы. 

Если начать с N признаков, то алгоритм вернет преобразованное 
пространство, тоже N-мерное (пока LJТO мы ничего не выиграли). Важ­

но , однако, то, LJТO собственные значения показывают, какая часть 
дисперсии приходится на соответственный собственный вектор. 

Пусть в начале было N = 1000 признаков, и мы знаем, что модель 
хорошо работает, только если признаков не больше 20. Тогда мы про­
сто выбираем 20 собственных векторов с наибольшими собственны­
ми значениями. 

Применение РСА 

Рассмотрим следующий искусственный набор данных, показан­
ный ниже на левом рисунке: 

>>> xl = np.araпge (O , 10 , . 2) 
>>> х2 = xl+пp.raпdom . пorma l( loc=O , scale=l , s i ze=len (xl)) 
»> Х = пр . с_[ (xl , х2)] 

>>> good = (xl>S) 1 (х 2>5 ) # какие - то произвольные классы 

>>> bad = -good # чтобы пример хорошо выглядел 

В библиотеке scikit-l eaгn есть класс РСА, входящий в пакет decompo­

sitioп . В примере выше отчетливо нидно , что для описания данных 

вполне хватило бы одного измерения. Это можно указать, задав пара­
метр п_соmропепts: 

>>> from sklearп import liпear_model , decompositioп , datasets 
>>> рса = decomposi tion.PCA(n_components=l) 
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Кроме того, можно воспользоваться методами fit () и tra nsform () 

объекта рса (или их комбинацией fit_transform() ), чтобы проанали ­
зировать данные и спроецировать их на преобразованное простран ­
ство признаков: 

>>> Xtrans = pca . fi t transform (X) 

Как мы и просили , размерность Xtran s равна 1. Резулыат показан 

на правом рисунке выше . В данном случае резул ьтат даже является 

линейно разделимым, так что для различения классов сложный клас­

сификатор не понадобится . 

Чтобы понять , что такое ошибка реконструкции, взглянем на дис­
персию данных, сохраненную в результате преобразования: 

>>> print(pca . explained_va riance_rat io_ ) 
>» [ 0 . 96393127] 

Это оз начает, что после перехода от двух измерений к одному дис­

персия по-прежнему равна 96%. 
Разумеется, не всегда все так просто. Часто :желательное число и з ­

м ереrrий заранее неизвестrrо. В таком случае м1, 1 не задаем параметр 

n_components, предлагая объекту РСА вычислить полное преобразова­
ние . После аппроксимации данных поле expla ined_varia nce_ratio_ 

содержит массив отношений в порядке убыва ния. Первый член - это 

отношение базисного вектора, описывающего направление с наи­

большей дисперсией, второй - отношение в направлении второй по 
величине дисперсии и т. д. Построив график, мы сразу видим, сколько 

компонент потребуется : хорошей гипотезой будет LIИ СЛО компонент 

непосредственно до изгиба кривой . 



Выделение признаков 

График, на котором показана зависимость объясненной дисперсии 

от количества к0мпонент, называется «Графиком каменистой осы­

пи•, или графиком Кеттела. Интересный пример комбинирования 

графика каменистой осы пи с сеточным поиском с целью нахожде­

ния оптимальных параметров для задач и классификации приведен 

на странице http: //scikit -learn.sourceforge.net/staЬle/ 

auto _ exampl es / plot _ dig i t s _pipe.html. 

Ограничения РСА и чем может 

помочьLDА 

У РСА, как у всякого линейного алгоритма, имеются ограничения 

при работе с нелинейными зависимостями. Не вдаваясь в детали, 

скажем, что существуют обобщения РСА, например Kernel РСА, в 
которых благодаря нелинейному преобразованию все-таки удается 

применить метод РСА. 

Еще одно любопытное слабое место РСА, которое мы здесь рассмо­
трим, обнаруживается при попытке применить его к задачам класси ­

фикации особого вида. Заменив выражение good = (xl > 5) 1 (х2 > 5) 

выражением good = xl > х2 , мы сразу же увидим, в чем проблема . 
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Здесь классы распределены вдоль оси не с наибольшей, а со второй 
по величине дисперсией. Очевидно, с такой зада<1 е й РСА не справля ­

ется. Поскольку мы не сообщили РСА никакой информации о метках 

классов, ждать от него чего-то лучшего не приходится. 
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В таких случаях на помощь приходит линейный дискриминантный 

анализ (LDA). Идея этого метода заключается в том, Lпобы макси­

мизировать расстояния между точками , принадлежащими разным 

классам, но минимизировать расстояния между точками из одного 

класса. Не углубляясь в теоретическ11е основы, просто покажем, как 
этот метод используется: 

>>> f r o m sk l earn i mport lda 
>>> l da_i ns t = lda.LDA (n_components=l ) 
>>> Xt ra ns = lda_i nst . fit_transform (X, good ) 

Вот и все. Обратите внимание, что в отличие от примера РСА 

мы передали методу fi t _ t r ansform () метки классов. Таким образом, 

РСА - алгоритм выделения приз наков без учителя, а LDA - с учите­

лем . Результаты выглядит, как и следовало ожидать: 
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Но тогда зачем вообще применять РСА, ПОLJему бы п росто не поль­
зоваться LDA всегда? Да потому LIТO не все так просто. Когда число 
классов растет, а количество п р 11 меров каждого класса уменьшает­

ся, LDA перестает быть такой уж заманчивой альтернативой . Кроме 

того, РСА менее чувствителен к различиям в обучающих данных, чем 
LDA. Поэтому, когда нас спрашивают, какой метод мы рекомендуем, 
мы можем ответить лишь <~зависит от ситуации». 

Многомерное шкалирование 
В то время как РСА пытается вы полнить оптимизацию с сохранени ­

ем дисперсии, метод многомерного шкалирования (MDS) стремит-



Многомерное шкалирование 

ся по возможности сохранить относительные расстояния , уменьшив 

число измерений. Это полезно, когда требуется наглядно представить 

многомерный набор данных. 
Для алгоритма MDS сами точки не представляют интереса, для 

н его важны расхождения между парами точек , интерпретируемые 

как расстояния. Поэтому первым делом MDS по Nточкам в /l-мерном 
пространстве вычисляет матрицу расстояний, пользуясь функцией 

метрики d
0

, которая измеряется расстояние в исходном пространстве 

признаков (как правило, обычное евклидово расстояние): 

Затем MDS пытается расположить точки в пространстве меньшей 

размерности , так чтобы 1новые расстояния между ними как можно бо­
лее походили на исходные. Поскольку MDS чаще всего применяется 

для визуализации, новая размерность обычно равна 2 или 3. 
Рассмотрим следуюший простой набор данных из трех точек в пя­

тимерном пространстве. Две точки расположены близко друг к другу, 
а третья отдалена от них , и мы хотим проиллюстрировать это в дву­

мерном и трехмерном пространстве. 

>>> х = np . c_[ np . o nes(5) , 2 * np.ones(5) , 1 0 * np . ones (5 ) ] . Т 

>>> print(X) 
[ [ 1 . 1. 1 . 1. 1 . ] 

[ 2 . 2 . 2 . 2 . 2 . ] 
[ 10 . 10 . 10 . 10. 10 . ]] 

С помощью класса MDS из пакета manifold в библиотеке scikit -learп 
мы сначала говорим, что хотели бы преобразовать х в трехмерное ев­

клидово пространство: 

>>> f rom s klearn import manifold 
>>> mds = manifold.MDS(n_components=З ) 

>>> Xtrans = mds.fit_ transform(X) 

Для визуализации в двумерном пространстве нужно соответствен­

но задать параметр n_components. 

Результаты показаны на рисунках ниже. Треугольник и кружочек 

находятся рядом , а звездочка - далеко от них. 
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Демонстрационный набор данных 
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Рассмотрим чуть более сложный набор данных I гi s. Позже мы 
воспользуемся им для сравнения LDA с РСА. В наборе данных Iгis 
каждый цветок представлен четырьмя атрибутами. Пользуясь при­

веденным выше кодом, мы могли бы сnроецировать его на трехмер­

ное пространство с сохранением (по возможности) относительных 

расстояний между отдельными видами цветов. Выше мы не задавали 

метрику, поэтому no умолчанию подразумевалось евклидово рассто­

яние. Это означает, что цветы , которые в достаточной мере «разли­

чаются~> по четырем атрибутам, должны находиться далеко друг от 

друга и в трехмерном МDS-шкалированном пространстве, тогда как 

«близкие~> цветы должны располагаться рядом, как на рисунке ниже: 

Набор данных IRIS 
в трехмерном простран стве 

после применения MDS 
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Резюме 1 
Если же понижать размерность до трех или двух измерений с по­

мощью алгоритма РСА, то мы, как и следовало ожидать , увидим боль­

шой разброс цветов, принадлежащих одному классу. 

Набор данных IRIS в трехмерном 
пространстве после применения РСА 
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Разумеется, для применения MDS нужно понимать, в каких едини ­

цах измеряются отдельные признаки; не исключено, что признаки во­

обще нельзя сравнивать с помощью евклидовой метрики . Например, 
категориальные переменные, даже закодированные целыми числами 

(О = круг, 1 = з вездочка, 2 = треугольник и т. д.) , несравнимы (круг 

ближе к звездочке, чем треугольник?). 
Однако коль скоро мы помним об этой проблеме, MDS является 

полезным инструментом, который выявляет такие виды сходства 

внутри данных, которые было бы трудно распознать в исходном про­
странстве признаков. 

Копнув чуть глубже, мы поймем, что MDS - н е единственный ал­
горитм, а семейство алгоритмов, из которого мы использовали лишь 
один . То Же справедливо и для РСА. Кроме того, если вы пришли к 

выводу, что ни РСА, ни MDS не годится для решения вашей задачи, 
то в модуле manifold есть и много других алгоритмов обучения. 
Но прежде чем очертя голову кидаться в море алгоритмов, всегда 

лучше начать с простейшего и посмотреть, как далеко удастся про­

двинуться . А затем продолжить с этой точки, взяв следующий по 

сложности ал горитм. 

Резюме 
Мы узнали, что иногда можно отказаться от использования всех при­

знаков, воспользовавшись методам11 отбора пр11знаков . Мы также 
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видели, что в некоторых слу<rаях этого недостаточно и приходится 

прибегать к методам выделения признаков, которые вскрывают ис­

тинную структуру данных, имеющую более низкую размерность, в 

надежде, что с такими данными модели будет проще справиться. 

Конечно, мы смогли дать лишь беглый обзор огромного массива 
методов понижения размерности. И надеемся, <1то эта тема вас увлек­

ла, поскольку другие методы только и ждут, когда вы уделите им вни­

мание. Напоследок хотим отметить, ч.то отбор и выделение призна­

ков - это искусство, точно так же, как выбор правильного алгоритма 
обучения или модели . 

В следующей главе мы познакомимся с J ug, небольшим написан­
ным на Python каркасе, который позволяет задействоват~, для вы<1ис­
лений несколько процессорных ядер или машин. Также мы узнаем о 

системе AWS, облаке компании Amazon. 
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Трудно однозначно сказать, что такое большие данные. Мы примем 

рабочее определение: если данных так много , что с ними становится 

неудобно работать , то будем говорить о больших данных. Иногда это 
означает петабайты данных или триллионы транзакций, так что дан­

ные не помещаются на один жесткий диск. А иногда данных в сотни 

раз меньше, но работать с ними все равно трудно. 
Почему объем данных превратился в проблем у? По мере того как 

компьютеры становились быстрее, а размер памяти больше, рос и 
объем данных. На самом деле , рост данных даже опережал рост бы­
стродействия компьютеров, а лишь немногие алгоритмы линейно 

масштабируются с ростом входных данных. Kopotre говоря, данные 
растут быстрее, чем наша способность их обрабатывать. 
Для начала мы, опираясь на фундамент, заложенный в предыду­

щих главах, попробуем поработать со «средними ~.> данными (не очень 
большими, но уже и не маленькими). Для этого нам понадобится па­
кет jug, умеющий делать следующее: 

• строить из задач конвейер; 

• кэшировать (сохранять в памяти) промежуточные результаты ; 

• задействовать несколько процессорных ядер, в том числе ма­

шин в gгid-сети. 

Следующий шаг - переход к п о-настоящему большим данным; мы 
увидим, как можно использовать для вычислений облако. Конкрет­

но, мы познакомимся с инфраструктурой Amazo11 Web Seгvices и с 
Руthо11-пакетом StarClusteг для управления кластером . 

Что такое большие данные 
Выражение «большие даю-1ые~.> не означает какой-то конкретный объ­
ем данных. Это понятие не выражается ии в количестве примеров , н и 

в количестве гигабайтов , терабайтов или n етабайтов , занятых данны-
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ми. А означает оно, что объем данных растет быстрее, чем обрабаты­
вающие мощности. Отсюда вытекает ряд следствий. 

Некоторые методы и пр11емы, хорошо зарекомендовавшие 

себя в прошлом, теперь нуждаются в п ересмотре или заме­

не, потому что не масштабируются на современный объем 

данных. 

Алгоритмы не моrут предполагать, что все исходные данные 

умещаются в оперативно 1'"1 памяти. 

Управление данными само по себе становится нетривиалr,ной 
задачей. 

Применение кластеров или многоядерных процессоров стано­

вится необходимостью, а не роскошью. 

В этой главе мы займемся последней частью головоломки: как за ­

действовать нескол 1,ко процессорных ядер (на одной или на несколь­

ких машинах) во имя ускорения 11 организации вычислений . Это бу­

дет полезно и для других задач умеренного размера. 

Использование jug для построения 
конвейера задач 
Часто у нас имеется простой конвейер: предварительная обработка 

исходных данных, вычисление пр11знаков и подача признаков на вход 

алгоритма машинного обучения. 
Пакет jug разработал Луис Педро Коэльо, один из авторов этой 

книги. Это ПО с открытым исходным кодом (распространяется по 

либеральной лицензии MIT), которое может найти применение во 

многих областях, но разработано специально для анализа данных. 
Пакет решает сразу н есколько задач. 

Он умеет запоминать (шешоizе) результаты вычислений на диске 

(или в базе данных), то есть если вы попросите повторно произвести 

вычисления, которые уже выполнялись раньше, то результат будет 
прочитан с диска, а не вычислен за ново. 

Он может задействовать несколько процессорных ядер или даже 

компыотеров, объединенных в кластер . При проектировании jнg за­

кладывалась также возможность работы в пакетной среде , где исполь­

зуются системы очередей, напр11мер PBS (РогtаЫе ВаtсЬ System), 
I.SF (Load SJ1aгiпg Facility) и G1·id Engiпe . Этой возможностью мы 
воспользуемся во второй част11 этой главы , где построим оператив­

ные кластеры и поручим им выпол нение зада ний. 
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Введение в задачи jug 
Задачи - это простейший структурный элеме нт в jug. Задача со­

стоит из функции и значений ее аргументов. Рассмотрим простой 

пример: 

def douЫe (х) : 
r eturn 2*х 

В этой главе примеры кода следует размещать в файлах скриптов, 

поэтому маркера »> н е будет. Командам оболоLIКИ предшествует 

знак $ . 

Задачей мог бы бып, «вызов douЫe с аргументом З~>. Другая зада­

ча - «вызов douЬle с аргументом 642.34 i> . С помощью jug эти задачи 
создаются следующим образом: 

from jug import Task 
tl = Task(douЬle , 3) 
t2 = Task(douЫe, 642 . 34 ) 

Сохраните этот код в файле jugfile . py (обычный Руthоп-файл). 
После этого для запуска задач нужн о выполнить команду jug execute, 

которая вводится в оболочке опера ционной системы, а не Руtlюп, по­
этому ей предшествует знак $: 

$ jug execute 

Вы увидите сообщения о том, что происходит Uug скажет, что за­

пущены две задачи с именем douыe ). Если еще раз выполнить jug 

execute , тojug сообщит, что не сделал ниче го! Да ему и не нужно ниче­

го делать. В данном случае мы почп1 ничего не выиграли, но если бы 
вычисления занимали много времени , то такое поведение оказалось 

бы весьма кстати. 
Возможно, вы заметили, что на диске появился новый каталог 

jugfile . jugdata, в котором находятся файлы со странными именами. 

Это кэш запоминания. Если его удалить, что jug e xecute будет запу­
скать задачи заново. 

Часто полезно отличать чистые функции, которые только прини ­

мают входные данные и возвращают результат, от общих функций, 

которые могут выполнять произвольные действия (читать файлы, за­

писывать в файлы, обращаться к глобальным переменным, модифи ­

цировать свои аргументы и вообще делать всё, что позволяет язык). 
В некоторых языках программирования, например в Haskell, даже 
есть синтаксические средства, чтобы отличать чистые функции от 

нечистых . 
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В jllg задачи необязательно должны быть <~истыми в строгом смыс­
ле слова. Даже рекомендуется создавать з~дачи, которые читают 

данные или записывают результаты . Однако доступ к глобальным 
переменным и их модификация н е приветствуются: задачи могут ис­

полняться на разных процессорах в разном порядке . Исключение со­

ставляют глобальные константы , но даже он и способны сбить с толку 
систему запоминання (если значение константы меняется от запуска 

к запуску) . По тем же причинам не следует модифицировать входные 

данные. В jllg есть отладочный режим ( jug execute --deb ug) , в кото­

ром вычисления производятся медленнее, но зато выдаются полез­

ные сообщения о такого рода ош11бках . 

Показаниый выше код работает, но он несколько громоздкий. 

Приходится каждый раз повторять конструкцию тask ( f unction , 

argument ). С помощью магии Pythoп можно записатr, тот же код бо­

лее естествеино: 

from jug import TaskGenerator 
from time import sleep 

@TaskGenerator 
de f douЫe ( х) : 

sleep ( 4 ) 
retu r n 2*х 

@TaskGene r ato r 
def add(a , Ь) : 

return а + Ь 

@TaskGenerato r 
def print_fina l resu l t (oname , value ): 

with open (o name , ' w ' ) as output : 
output . write ( ' Final result : {}\n ' . format (value )) 

у douЬle ( 2 ) 

z = douЫe ( у ) 

у2 = douЬle(7 ) 

z2 = douЬle ( y2 ) 

pri nt_final_ result (' output . txt ', add ( z , z2 )) 

Если не считать использования тaskGenerator , то этот код ничем не 

отличается от ста ндартного Руtl1011-файла ! А благодаря декоратору 

тaskGenerator он создает ряд зада ч , которые тепер1, можно запустить 

таким образом , что будут задействованы все имеющиеся процессоры . 

За кулисами этот декоратор преобразует функции так , что в момент 
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обращения они не выполняются, '1 создают объе кт тask. Кроме того, 

мы пользуемся тем фщпом , что одни задач и можно передавать дру­

гим , создавая тем самым зави симости. 

Вероятно , вы обратили внимание на вызов sleep ( 4) . Он модели­

рует длительное вычисление. Иначе этот пример работал бы так бы­
стро , LПО никакого смысла в использовании нескольких процессоров 

н е было бы. 
Сначала выполним команду jug status , ее результат показан на 

снимке экрана ниже: 

Waiting 

l 
1 
2 

4 

Ready 

о 

о 

2 

2 

Fini shed 

о 

о 
о 

о 

Running Task name 

О jugfi\e.print_fin a\ _ resu \t 
О jugfi\e .add 
О jugfi\e.douЫe 

О Tota\ 

Затем запустим два процесса одновременно (знак & означает 

выполнение в фоновом режиме ) : 

$ jug execute & 
$ jug execute & 

Снова выпол ним jug status : 

Wait i ng 

1 
2 
1 

4 

Ready 

о 

о 

о 

2 

Finished 

о 

о 

о 

о 

R<111ning Tas k паmе 

О jugfi\e.prin t _fina\ _resu\t 
2 jugfi\e.douЫe 

О j ugfi\e. add 

О Tota\ 

Как видим, обе функции ctouыe работают параллель но. Спустя 
8 секунд весь процесс завершается и создается файл output . t xt. 

Кстати, есл и назвать файл н е j ugfile . ру , а как-то иначе, то его имя 

придется явно указать в командной строке. Например, если бы файл 

назывался analysis . ру , то надо было бы выполюпь такую команду: 

$ jug e xecute analysis . py 

Это единст венное неудобство, связанное с выбором имени , отлич­

ного от j ugfile. ру , так что можете называть свои файлы более осмыс­
ленными именами . 

Заглянем под капот 
Как работает jug? С принципиальной точки зрения, очень просто . 

Объект тask состоит из функции и ее аргументов . Аргументами мо-
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гут быть как значения, так и другие задачи . Если задача принимает 

другую задачу в качестве аргумента, то между ними образуется зави­

симость (и вторая задача не может !iачаться, пока не станут доступны 

результаты первой). 

Исходя из этого, jug рекурсивно вычисляет свертку для каждой за­

дачи. В значении свертки закодировано все вычисление, необходимое 

для получения результата. При выполнении команды jug execute для 

каждой зада<rи запускается цикл, в котором исполняется логика, по­

казанная на следующей блок-схеме. 

На сервере хранится информация 
о запущенных задачах и их результатах 

' 

Да~~ 
Нет! 

НеТ' 

Захватить блокировку 
и запустить задачу 

Передать результаты 1 
серверу для хранения 

( 
Ничего не делать 1 

-------
Подразумеваемый по умолчанию сервер записывает данные на 

диск (в каталог jugfi l e . j ugdata / ) . Существует также сервер, сохраня­

ющие результаты в базе данных Redis. При надлежащем управлении 
блокировками, о котором позаботится jнg, это позволяет выполнять 

задачи на нескольких процессорах; каждый процесс независимо про­

сматривает список задач, выбирает еще не запущенные, а затем пере­

дает их результаты общему серверу. Этот механизм может работать 
как на одной машине (с несколькими процессорами ), так и на не-
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скольких лри условии, что все 01-111 имеют доступ к общему серверу 
(например, через сетевой диск или базу данных Redis). Во второй ча­
сти этой главы мы обсудим кластеры комльютеров , а лока сосредото­

чимся на одном компьютере с несколькими ядрами. 

Понятен также механизм запоминання пром ежуточных результа ­

тов. Если сервер уже имеет результат выполнения задачи, то он не 

запускает ее повторно. С другой стороны, если задача хоть как-то из­

менилась (пусть даже отличается только значением одного параме­

тра), то изменится ее свертка, поэтому она будет перезапущена. Кро­

ме того, изменятся свертки всех зависящих от нее задач, поэтому они 

также будут перезапущены. 

Применение jug для анализа данных 
Jнg - каркас общего назначения, но он идеально подходит для ана­

лиза данных среднего объема. При разработке конвейера анализа же­
лателыю, чтобы проме~куточные данные автоматически сохранялись. 

Если этап предварительной обработки однажды уже был выполнен и с 
тех пор изменился только способ вычисления признаков, то не хотелось 
бы повторять все сначала. Если признаки уже вычислены, но требуется 
добавить новые, то зачем заново вычислять старые признаки? 

Кроме того, jug оптимизирован для работы с массивами NumPy. 
Если задачи принимает или возвращает массив NшnPy, то этой опти ­

мизацией можно воспользоваться. Jug - еще одна часть экосистемы 

совместно работающих компонентов. 

Вернемся к главе 10 «Машинное зрение» . Там мы обсуждали вы­
числение признаков для изображений. Напомн11м, что конвейер со­
стоял из следующих шагов: 

• загрузка файлов изображений; 

вычисление признаков; 

• комбинирование признаков; 
1юрмировка признаков ; 

• создание классификатора. 

Повторим это упражнение, но на этот раз воспользуемся jнg. Эта 

версия лучше тем, что позволяет добавлять новыi,i признак или клас­

сификатор , не вычисляя заново весь конвейер . 

Для начала импортируем несколько модулей: 

from jug import TaskGenera to r 
i mport mahotas as mh 
f r om g l o b impo r t g l ob 
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Теперь определим генераторы задач и функции вычисления при­

знаков: 

@ Ta skGeпerator 

de f compute texture(im) : 
from featu r es i mport texture 
imc = mh . imread ( im ) 
returп texture(mh.colors . rgb2gray (imc )) 

@ Ta s kGeпe rator 

def chist_file (f пame): 

fr om f eatures import chist 
im = mh . imread ( fпame ) 

returп chist (im) 

Импортируемый модуль fea tures разработан в главе 10. 

Наши функции принимают имя файла, а не массив изображений. 

Конечно , передавать изображения тоже можно, но это небольшая 

оптимизация . Имя файла - короткая строка, поэтому ее проще 

передать серверу, да и свертка вычисляется очень быстро. Кроме 

того , изображен ия загружаются только тогда, когда это необходимо 

процессу. 

Декоратор тas kGeпera to r можно применить к любой функции, 
даже к той, что напи сана не нами , на пр 11 мер пр . array, пр . hstac k или к 

следующей команде: 
import пumpy as пр 
to array = Tas kGeпera tor(пp. array) 

hstack = TaskGeпe rato r(пp.h stack ) 

haralicks = [] 

chists [ ] 
l abels = [] 

1 Измените эту переменную , так чтобы о н а ука зывала н а 

~ н абор данных н а диске 

basedir = ' .. /Simple imageDataset/ ' 
# Испол ьзуем glob дл я получения всех изображений 

i mages = glob ( ' {}/* . jpg ' . format(basedir )) 

for fпame iп sorted ( images ) : 
haralic ks.appeпd ( compute texture(fпame )) 

chists . а ррепd (chis t_file ( f пame )) 

1 Класс закодирова н в имени файла , н а п ример xxxxOO . jpg 
labels . appeпd ( fпame[ :- l eп ( ' OO . jpg ' ) ]) 

haral ic ks = to_ array (haralicks) 
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chists 
labels 

to_array (chists ) 
to_ array(labels ) 

•&а 

Мелкое неудобствоjug состоит в том, что мы всегда должны писать 

функции для вывода результатов в файл , как в примерах выше. Но 

это небольшая плата за те преимущества, которы е дает jug. 

@TaskGenerator 
def accuracy (features , labels) : 

from sk l earn . linear mode l import LogisticRegr ess ion 
from sklearn .pipe line import Pipeline 
from sk l earn.preprocessi ng import StandardSca l er 
from sklearn import cross validation 

clf = Pipe l ine ([ (' prep r oc ', StandardScaler () ), 
( ' c l assifier ', LogisticRegression ()) ]) 

cv = cross validation .LeaveOneOut ( len (features)) 
sco r es = cross_va l idation . cross va l score( 

c lf , f ea ture s , labels , cv=cv ) 
return scores .mean () 

Отметим, что s klearn импортируется тол ько внутри этой функции. 

Это небольшая оптимизация, позволяющая импортировать модул и 

только там и тогда, где и когда это действительно необходимо . 

sco r es_base = accuracy (haralicks , labels ) 
scores chist = accuracy (chists , labels) 

combined = hstack([chi sts , ha ralicks] ) 
scores_combined = a ccu racy(combined , labels) 

Осталось лишь написатн и вызвать функцию для вывода результа­

тов. Она ожидает полуL1ить список пар, содержащих название алго­

ритма и результаты: 

@TaskGene ra tor 
def print_resu l ts (scores ): 

with open (' results.image . txt ' , ' w ') as output : 
for k , v in scores : 

output . write( ' Accuracy [{}] : { :.1 %)\n '. format ( 
k , v .mea ri())) 

print results ( [ 
( ' base ' , scores _ base ) , 
( ' chists ', scores chist ), 

( ' combined ' , scores comЬined) , 
] ) 

Вот и всё. Теперь выполните в оболочке следующую команду, кото­
рая запустит конвейер jug: 

$ jug execute image -classificatio n.py 
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Повторное использование частичных 

результатов 

Допустим, мы хотим добавить новый признак (или даже целый на­

бор признаков). В главе 10 ~машинное зрение» мы видели, что это 
легко сделать , изменив код вычисления признаков. Но тогда нам при­

шлось бы заново вычислять все вообще признаки, а это расточител ь­

но, особенно если требуется быстро протестировать новые признаки 

и методы. 

Добавим набор признаков , а точнее еще один вид текстурных 
признаков - линейные бинарные шаблоны. Они уже реализованы в 

111 aЬotas, так что нам нужно только вызвать функцию, предваритель­

но обернув ее декоратором Ta skGenerator : 

@TaskGenerator 
def compute_l bp(fname ): 

f rom mahotas.features import lbp 
imc = mh . imread (fname) 
im = mh.colars,rgb2grey(imc) 
# Параметрам ·• radius ' и ' points ' присваиваются типичные значения . 

# Что онИ означают , смотрите в документации . 

returп lbp( im , radius =B, poiпts=б ) 

Заменим написанный ранее цикл дополнительным вызовом функ­

ции: 

lbps = [] 
for fname in sorted ( images) : 

# все остальное , как и раньше 

l bps .append (compute _ lbp ( fname) ) 
lbps = to_array(lbps) 

Вызовем функцию accuracy, передав ей новые приз наки: 

scores_lbps = accuracy (lbps , labels ) 
combi ned_al l = hstack ([ chists , haralicks , lbps] ) 
scores_ combined_al l = accuracy(combined_all , labels) 
print_r esults ( [ 

] ) 

( ' base ' , scores_base ), 
(' chists ', scores_chist ), 
( ' lbps ', scores_lbps ), 
( ' combined ' , scores_combined) , 
( ' combined_all ' , scores_combined_all) , 

Если теперь снова выполнить j ug e xecute , то новь'1 е признаки бу­
дут вычислены, а старые загружены из кэша. Вот в таких ситуациях 

эффективность jug проявляется особенно наглядно . Гарантируется, 
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что вы всегда получите нужные результаты, не вычисляя заново то, 

что уже хранится в кэше . Кстати, добавление новых признаков улуч­

шает качество работы рассмотренных выше методов . 

в этой главе невозможно рассказать обо всех возможностяхjug, но 
все же перечислим наиболее интересные из тех, что не вошли в ос­

новной текст. 

jug i nval ida te : объявляет, что все результаты указанной функ­

ции следует считать недействительными и вычислить заново. 

При этом также производятся все вычисления, прямо или кос­

венно зависящие от более не действительных результатов . 

jug status - - cache: если команда jug status занимает слиш­

ком много времени , можно задать флаг -- c ache, чтобы кэши­

ровать состояние и ускор 1пь работу. Отмстим, LПО при этом не 

обнаруживаются изменения в файле jllgfi \e, но всегда можно 
задать комбинацию флагов -- cache --clear, чтобы удалить 

кэш и начать все заново. 

jug cleanup: удаляет лишние файлы 

·это операция сборки мусора . 

из кэша запоминания. 

" ·" 
(~ 

·--~ 

------------·- ,,, _____ ..... ______ _ 
Существуют также более продвинутые функции, позволяющие ис ­

следовать значения, вычисленные в ходе в ыполн ения jugfil e. В до ­

кументаци и по адресу http : //jug .rtfd . org описаны и другие 
возможности, например барьеры . 

Работа с Amazon Web Services 
Если данных очень много и с ними необходимо произвести сложные 

выl1 исления, то может возникнуть непреодолимое желание обзаве­
стись дополнительными вычислительными мощностями . Компания 

Aшazon (ht tp: / / aws . amazon . сот) позволяет арендовать машинное 

время с почасовой оплатой. Таким образом, вы можете получ ить ги­

гантские выч ислител ьные мощности , не приобретая кучу машин (и 

не неся расходов 110 управлению инфраструктурой) . На этом рынке 

есть и другие конкуренты , но Aшazon - самый крупный игрок, поэто­

му коротко расскажем о нем. 

Amazon Web Services (AWS) - это большой набор служб . Мы 
остановимся только на службе Elastic Compute Cloud (ЕС2) , позво ­
ляющей быстро выделять и освобождать виртуальные машины и дис­

ковое пространство. 
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Существует три режима работы. Во-первых, режим с резервиро­

ванием, когда вы платите авансом, зато дешевле, почасовой тариф и 

переменный тариф, который зависит от складывающейся обстановки 
(когда спрос меньше, цена ниже, а когда больше - выше). 
На этом общем фундаменте надстроено несколько типов машин, 

предлагаемых по различной цене: от одноядерных до многоядерных с 

большим объемом оперативной памяти и даже с графиl1ескими про­

цессорами (GPU). Ниже мы увидим, что можно арендовать несколь­

ко более дешевых машин и самостоятельно построить из них кластер. 
Можно также выбрать тип сервера: LiлlJ X или Wiлdo\VS (Li11L1x обхо­
дится немного дешевле). В этой главе все примеры рассчитаны на 

Li1шx, но почти все, о чем пойдет реч 1" справедливо и для Wiпdo\vs. 
Для тестирова1нrя можно восполr,зоваться одной машиной из бес­

платного яруса (fгее t i e г). Это позволяет поэкспериментировать с 

системой, привыкнуть к пользовательскому интерфейсу и т. д. От­

метим , однако, что такая машина оснащена медленным процессором. 

Ресурсами можно управлять с помощью веб- интерфейса. Но мож­

но делать это и программно , писать скр~пты, которые вьщеляют 

виртуальные машины, размечают жесткие диски и вообще выпол­
няют все операции, которые доступны в интерфейсе. На самом деле, 

веб-интерфейс изменяется очень часто (и некоторые снимки экрана , 

приведенные в книге, к моменту ее выхода из п еч(!ти, возможно, уже 

устареют), тогда как программный 11нтерфейс более стабилен, а об­

щая архитектура не менялась с момента появления службы. 
Доступ к службам AWS производится традиционно: 110 имени и 

паролю пользователя. Правда, А1ш1zо11 называет имя пользователя 

ключо.м доступа, а пароль - секретным ключол·t. Наверное, это сде­
лано для того, чтобы отличить их от имени и пароля для доступа к 

веб-интерфейсу. Можно создать скол~,ко угодно пар (ключ доступа, 

секретный ключ) и назначить им разные права. Это полезно в боль­

шой команде , где старший пользователь, имеющий доступ ко всей 

веб-панели, может создавать ключи для разработчиков с меньшими 

привилегиями. 

Amazoп.com обслуживает несколько регионов, соответствующих 

географическим областям: западное побережье США, восточное 

побережье США, нескол ько регионов в Азии, один в Южной Аме-

рике и два в Европе. Если вы собираетесь перемещать данные, то 

лучше выбирать регион, ближайший к источнику и получателю . Кро­

ме того, имейте в виду, что могут действовать законы, требующие 

хранить информацию о пользователях в определенной юрисдик-
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ции. В таком случае проконсультируйтесь со знающим юристом о 

последствиях переноса данных о европейских пользователях в США 

и т. п. 

Aшazon Web Seгvices - очень обширная тема, ей посвящены целые 
книги. Цель этой главы - дать общее представление о возможностях 

AWS. Оставаясь верны практической направленности этой книги, 
мы рассмотрим ряд примеров, которые, конечно, не покрывают все 

многообразие функциональности. 

Создание виртуальной машины 

Прежде всего, нужно зайти на сайт http://aws . amazon.com/ и соз­

дать учетную запись. Действия такие же, как для любой другой он­
лайновой службы. Одна машина предоставляется бесплатно, но, что­
бы получить больше, понадобится кредитная карта. В примере ниже 
мы будем работать с несколькими машинами, так что если вы хотите 

проработать их вместе с нами, придется раскошелиться на несколько 

долларов . Если вы пока не готовы доставать из бумажника кредит­
ную карту, то просто прочитайте эту главу, чтобы познакомиться с 
AWS, не выполняя примеров . Тогда у вас будет больше информации, 

чтобы решить, стоит ли регистрироваться . 

После регистрации на AWS и входа в систему вы увидите консоль. 
На ней перечислены различные службы, предоставляемые AWS: 

""'~ 
c,..,,"_....м,.,.."Qllt_llW 

"..,'--""""_ .... _"." ..... 
,.. CW't-..... M1>Nr•w 

""'""-... :...~~ 
:z:::~,;:...., 
~ "~",!.-

·'-'-•'>«'1 
~."."...,-.~--
1.Q.,~ar!d-"'r"'--

ServlceHeal!h 

SetS~rtPa<Je 

Мы выберем службу ЕС2 (верхний пункт в левой колонке - так па­
нель выглядела на момент написания этой книги . Aшazon регулярно 



111 Глава 12. Когда данных больше 

вносит мелкие изменения, поэтому, когда вы зайдете, панель, возмож­

но, будет выглядеть по-другому) . Появится консоль управления ЕС2: 

."" 

В правом верхнем углу можно выбрать регион (см . врезку о регио­

нах Amazoн). Отметим, что показывается только информация о реги ­

оне, который выбран в данный ;1юмент. Поэтому, если вы по ошибке 
выберете не тот регион (или создадите машины в разных регионах), 
то можете не увидеть свои машины (это типичная ловушка, в кото­

рую попадают пользователи веб-консоли управления). 

В терминологии ЕС2 работающий сервер называется экземпля­

ром . Нажав кнопку Launch Instance (Запустить экземпляр), мы 
перейдем на следующий экран, где предлагается выбрать операцион­

ную систему: 

Step 1: Chooso an Atnnzon Mach1ne lmago (AMI} 
MМlll•1-.,.: aw '.~ ... _... __ _.,,.._,,.,~,..i,....,. ~ ....... ,".,. __ lri••A1r..-.:r., 
.t.'-'- _..._.' f).1fl<•OI 

111) RНIW~Liп..u.71,'IVill hOV.,.._IYfl'I ...,. I C t••o.-....._ ... __ 

$ ~S......1•0<ll.1S<НVVl:ISO't....,_f"'8 ........ ~ - _, -'----с-
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Выберем вариант Лщаzоn Linux (если вы знакомы с другими дис­

трибутивами, например Red Hat, SUSE или Ubuntн , то можете выбрать 
любой из них, но конфигурации будут немного различаться). Итак, 

программное обеспе,rение выбрано, теперь надо определиться с обо­
рудованием. На следующем экране предлагается указать тип машины: 

Step 2: Choose a11 lns1ance Туре 
~ш..-~ • ..,.....,.,....:А..,.....,.._...,.-.~- ~~--tцо\ 
tPI~ .-ум_.....,_....,..~,~ .".с"".,..""~\";11 h~'°" 1_.р,.... 
""'c..1~wu--.,..... 

.._,...,_1011 . 
",.., 
....... ... __ 
...... 

" '••SSCI• 

в....",...,. ,.,1 ... " ta»1SX1 

;,..,ISY' 

-u•t"""--
L-»ll'ooltllt 

Ltмo·-1,\_~ 

........ 
Vи 

hccslC•'~••st..-0.•~,.. 

Начнем с одного экземпляра типа t2.micro (раньше существовал 

тип t1.micro - еще менее мощный). Это минимальная конфигурация, и 

предоставляется оиа бесплатно. Нажимайте кнопку Next, соглашаясь 
со всеми умолчаниями, пока н е дойдете до экрана, где упоминается 

пара ключей: 

• с 
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Мы назовем эту пару ключей awskeys . Затем выберите из списка 

пункт Create а new key pair (Создать новую пару ключей). Назовите 
файл, содержащнй ключи, awskeys . pem. Скачайте этот файл и сохра­

ните его в безопасном месте. Это файл с ключами SSH (Secure Shell) , 
который позволит заходить на облачную машину. После того как вы 
согласитесь с остальными умолчаниями, экземпляр запустится. 

Теперь надо несколько минут подождать завершения инициализа­

ции экземпляра. В конечном итоге появится зеленый кружочек, и со­

стояние сменится на running (работает): 

j 1мtitl\Ct1 ..... _ 
R.w""dl••.,._....:.,. 

На рисунке выше виден открытый IР-адрес (PuЬlic IP), по которо­
му можно зайти на экземпляр, вы полнив следующую команду: 

$ ssh -i awskeys . pem ec2 - us er@ 54 . 93 . 165 . 5 

Таким образом, команде ssh с помощью флага - i передается файл 

ключей, который мы ранее скачали и который играет роль удосто­

верения. Мы входим от имени п ользователя ec2 - u ser на машину с 

IР-адресом 54.93.165.5. Разумеется, у вас адрес будет другой. Если 
выбрать другой дистрибутив операционной системы, то имя ПОJII>­
зователя может измениться. В таком случае попробуйте root , ubu n tu 

(для дистрибутива Ubuпtu) и 1и fedora (для дистрибутива Fedora). 
Наконец, в Uпiх-nодобных ОС (включая Мае OS) необходимо из­

менить права доступа к файлу следующей командой: 

$ chmod 600 aws keys . pem 
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Тем самым мы разрешаем чтени е и за1111 сь в файл только его вла­

дельцу. Если этого не сделать, SSH выдаст угрожающее предупреж­
дение. 

Теп ерь можете заходить на свою машину. Если все пройдет успеш­

но, вы увидите извещени е, показанное на рисунке ниже. 

S ssh -i aw s ke ys.pe ~ ec2-user • e c2 - 54 - 93 -: 6S-5.eu-cent ra l-1 .compute.amazonaws . com 
Las t log!n: Thu Nov 13 07:43 : ЗЗ 2014 fr oo emЫ n .e11Ы.de 

__ , __ ,_ ) 

- 1 ( / Am azo n Linux АМ! ___ (\ ___ , ___ , 
https : //aws.amazon.cam/anazon-linux - ami/ ]01 4.09-re le as e-iotes/ 
7 package(s) пe e ded for sec u1· ity, out o f 18 availaЫe 
Ruп '' s udo yum upd ate 11 to apply а\\ update s . 
[ec2 - us er @ ip-172 - Зl - 26-129 -JS 1 

Это обычная Liпuх-машина, где вы имеете права sucto, то есть може­

те запускать любую команду от имени суперпользователя, предварив 
ее командой sudo . Имеет смысл последовать рекомендации и выпол ­

нить команду update , чtобы ускорить работу компьютера. 

Установка Руthоп-пакетов 

на Amazon Linux 
Если вы лучше знакомы с дру п1м дистрибутивом, то можете ис ­

пользовать свои знания о нем для установки Python, NшnPy и других 
пакетов . Ниже показано, как это делается в стандартном дистрибути ­
ве Ашаzо п. Для начала установим несколько базоuых Руtl1011-пакетов: 

$ sudo yum - у install python - deve l \ 
python -pip numpy scipy python - matp lotlib 

Для компиляции 111al10tas понадобится компилятор С++: 

$ sudo yum - у insta ll gcc - c++ 

Наконец, установим git , чтобы получить последнюю версию кода 

из книг11 : 

$ sudo yum - у install git 

В этой системе пакет pip установлен под имен ем pip- python. Для 

удобства попросим pip обновить себя самого, а затем с его помощью 
установим необходимые пакеты: 

$ sudo pip - python install - u pip 
$ sudo pip install scikit - l earn jug mahota s 

Теперь вы можете с помощью pip установить любой другой пакет. 
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Запускjиg на облачной машине 
Чтобы скачать данные и код , сопровождающие эту книгу, нужно 

выполнить такие команды: 

$ git c l one \ 
https : //githuЬ . com/ luispedro/BuildingMachineLearningSystemsWithPython 

$ cd BuildingMachineLearningS ystemsWithPython 
$ cd ch12 

и потом: 

$ jug execute 

Все должно отработать на ура, но результатов придется ждать дол ­

го . Наша машина из бесплатного яруса (типа t2 . mi cro) не отличается 
высоким быстроде{rствием и имеет всего один процессор . Поэтому 
модернизируе.м ее! 
Перейдем на консоль ЕС2 и щелкнем правой кнопкой мыши пора­

ботающему экземпляру - появится контекстное меню. Сначала нуж­

но остановить экземпляр. Для виртуальной машины это эквивалент­

но выключению питания . Сво11 машины вы можете останавливать в 

любое время . За остановленную машину плата не н ачисляется. Но 
вы по-прежнему используете место на диске, за что платите отдель­

но. Можно уничтожить экземпляр, тогда освободится и занятое вами 

место иа диске, но будет потеряна вся хранящаяся на этой машине 

ииформация. 

После остановки машииы становится доступна команда Change 
instance type (Изменить тип экземпляра) . Теп ерь мы можем выбрать 
более мощный экземпляр, напр11мер c1.xlarge с восьмью ядрами. Ма­

шина все еще остановлена, поэтому ее надо за пустить (эквивалент за ­

грузк и для виртуальной машины). 

AWS предлагает несколько типов экземпляров , отличающихся це­

ной . Поскольку условия постоянно пересматриваются по мере по­

явления более мощных конфигураций и изменения цен (как прави­

ло , в сторону понижения) , мы не можем здесь приводить детали, но 

актуальную информацию всегда можно найти на сайте Amazoп . 

Нужио подождать, пока экзем пляр поднимется, а затем уз нать е го 

IР-адрес, как и раньше. При смене ти па экземпляр получает н оrз ы й 

IР-адрес. 
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Подсистема Elastic IP (слева на консоли ЕС2) позволяет назначить 
экземпляру постоянный IР-адрес. Это полезно, если вы часто соз­

даете и модифицируете экзем пляры. Услуга платная, хотя и недо­

рогая. 

----- -· -- - --··~ ~-·-------··-·--·--

Имея восемь ядер, мы можем одновременно запустить восемь про­

цессов j L1g, как в следующем коде: 

$ # в следующем цикле 8 итераций 
$ fo r cou nter i n $ (seq 8 ); do 
> j ug execu te & 

> do ne 

С помощью команды jug status проверьте, что действительно за­

пущено восемь задач. После того как все они завершатся (это про ­

изойдет очень скоро), можете остановить машину и понизить тип до 

t2.micro, чтобы не платить деньги . Экземпля ром типа шiсго можно 

пользоваться бесплатно (в определенных пределах), а экзем пляр 

c1 .xlarge стоит 0,064 доллара в час (по расцеJJкам на февраль 2015, 
актуальную информацию смотрите на сайте AWS). 

Автоматизированная генерация 

кластеров с помощью StarC/uster 
Мы уже знаем, как создавать машины с помощью неб-интерфейса, 

но это утомительно и чревато ошибками. По счастью, Amazon предо­

ставляет API. Это означает, что мы можем писать скрипты, которые 
будут автоматически выполнять все описанные выше операции. Бо­

лее того, другие люди уже разработали инструменты для автоматиза­
ции многих процессов, обычно выполняемых в AWS. 
В частности, группа разработчнков из MIT написала инструмент 

StaгCIL1ste г. Поскольку 1 это Руthоn-пакет, его можно установить, вос­

пользовавшись средствами Pytl10n: 

$ s udo p ip i nsta ll s tar c l uste r 

Эту команду можно запустить на ви ртуальной машине Amazon или 
на своей локальной машине. 

Нужно указать , как должен быть устроен кластер. Для этого отре­

дактируем конфигурационный файл. Чтобы узнать, как генерируется 

шаблонный конфигурационный файл, выполните такую команду: 

$ starc l uster help 
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Затем выберите режим генерации конфигурационного файла 

-1 . starcluster/config. Сгенерированны 1v1 файл нужно будет отредак­
тировать вручную. 

Ключи, ключи и еще раз ключи 

При работе с AWS испол ьзуются ключи трех разных видов. Во­

первых, есть стандартная пара имя пользователя/пароль для вхо­

да на сайт. Во-вторых , открытый и закрытый ключ для работы с си­

стемой SSH, они хранятся в файле и предназначены для захода на 
удаленную машину. В -третьих, ключ доступа и секретный ключ AWS, 
представляющие собой разновидность имени и пароля пользова­

теля для входа разных пользователей в одну и ту же учетную запись 

(каждому пользователю можно назначать отдельные права, но эти 

детаяи мы рассматривать не будем) . 

Чтобы узнать свой ключ доступа, зайдите на консоль AWS, щелкните 
по своему имени в правом верхнем углу и выберите команду Security 
Credentials. В нижней части экрана должен появиться ключ досту­
па вида MKllТ7HHF61USNЗOCM. Мы воспользуемся им в примере 

ниже . ______ ,,.. ...... ,_. __ -----··-----~ 
Теперь отредакти руем конфигурационный файл. Это обычны й 

ini-файл: текстовый файл с разделами , н ачинающимися названием 

в квадратных скобках, за которым следуют параметры в формате 

имя=значение . Первый раздел н азывается aws info, в н его нужно ско­

пировать ключи: 

[aws info] 
AWS ACCESS КЕУ ID = AAKIIT7HHF6 IUSN30CAA - - -
AWS_SECRET_ACCESS_KEY = <ваш се кретный ключ> 

Далее содержательная часть работы - определение кластера. 

StaгCluster позволяет опредеm пь скоm,ко угодно кластеров . Перво­

начально в конфигурационном файле определ е н единствен ны й кла ­

стер с именем sшa ll c lllsteг - в разделе cluster s mall c luste r . Измените 

его следующим образом: 

[cluster sma llclus ter] 
KEYNAME = mykey 
CLUSTER SIZE = 16 

Мы задали 16 узло в вместо двух по умолчанию. Можно также ука­

зать тип каждого и начальный образ узла кластера (напомним , что об ­
раз и спользуется для инициал нза ци1 1 виртуал1, 1-rого жесткого диска 

и определяет опера ционную с11 стему и уста новленное программное 
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обеспечение) .. В Stai·CILLsteг включено несколько готовых образов , но 
можно создать и свой собственный. 
Мы должны создать новый ключ SSH такой командой: 

$ starcluster create key myke y - о -/ . ssh/mykey.rsa 

Теперь, сконфигурирован кластер с 16 узлами и подготовив ключи, 
попробуем запустить его: 

$ starcluster start sma llcluster 

На выделение семнадцати машнн уйдет несколько минут. Почему 

семнадцати, если в кластере только 16 узлов? Потому что StaгClusteг 
всегда создает главный узел. Все узлы разделяют общую файловую 

систему, поэтому любые файлы, созданные на главном узле, видны 

всем рабочим узлам. Это означает также, что мы можем использовать 

jL1g в таких кластерах. 
Вы можете использовать кластеры по собственному усмотрению, 

но они уже оснащены механизмом очереди работ, идеальным для па­
кетной обработки. Процедура проста: 

1. Зайти на главный узел. 

2. Подготовить скрипты на главном узле (лучше бы сделать это 

заранее). 

3. Поместить работы в очередь. Работой может быть любая ко­
манда Uпix . Планировщик найдет свободные узлы и запустит 

ваши работы. 

4. Дождаться завершения работ. 

5. Прочитать результаты на главном узле. Для экономии денег 

можно также уничтожить рабочие узлы. В любом случае не 

оставляйте систему в работающем состоянии, если не пользу ­

етесь ей ! В противном случае вам придется за нее платить. 

Перед тем как зайти на кластер, скопнруем на него наши данные 

(напомним , что раньше мы клонировали репозиторий в каталог 

BuildingMachineLearningSystemsWithPython): 

$ d ir=BuildingMachine LearningSystemsWithPython 
$ sta r cluste r put sma llcluster $di r $dir 

Мы завели переменную $dir , чтобы команда поместилась на одной 

строке. Для захода на L'J~авный узел нужно выполнить такую команду: 

$ starcluste r sshmaster smallcluster 

Можно было бы вместо этого узнать IР-адрес сгенерированной 
машины и воспользоваться командой ssh, как раньш е, но для пока-
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занной выше команды IР-адрес неважен , поскольку StaгCluster сам 

позаботится о таких деталях. 

Как уже было сказано, StaгClusteг предоставляет для кластеров 
очередь пакетных работ; вы п11 шете скрипт, в ьтолняющий какие-то 

действия, ставите его в очередь , 11 в свое время он будет запущен на 
любом доступном узле. 

Сейчас нам снова необходимо установить дополнительные паке­

ты. К счастью, Sta t·C lнsteг полоВ11ну работы уже сделал. Если бы это 

был реальный проект, то мы написали бы скрипт, выполняющий всю 

инициализа цию. Sta гC l t1ste г умеет это делать. Но поскольку это всего 

лишь пособие, просто выполним еще раз команду установки: 

$ pip insta l l jug mahotas scikit - l ea rn 

Можно использовать тот же j L1gfile, что и раr-11,ше, только запускать 

его нужно не на самом главном узле, а в кластере . 

Сначала напишем простой обертывающий скрипт: 

# 1 /usr/bin/e nv bash 
jug execute jugfile . py 

Назовите его run-jugfile. sh и с помощью команды chmod +х run ­

jugfile . sh разрешите его выполнять. Те перь мы можем запланировать 

16 работ на кластере следующей командой: 1 

$ for с in $ (seq 16) ; do 
> qsub - cwd run - jugfile . sh 
> done 

Она создает 16 работ, каждая и з которых будет выполнять скрипт 
run-jugfile. sh , откуда просто вызывается jнg. Главный узел при этом 

свободен, на нем можно запускать любые команды. В частности, в л ю­

бой момент можно выполнить команду jug status и узнап" в каком 
состоянии находятся вычислен 11 я. На самом деле,jнg проектировался 

для работы именно в такой среде , так что чувствует себя в ней, как 

рыба в воде. 

В конце концов вычисление заоершится. После этого нужно снача ­

ла сохра~-11п1, результаты, а затем ун ичтожи1ъ узлы. Создадим каталог 

-/results и скопируем в него резулыаты : 

# mkdir -/ results 
# ер results .ima ge.txt -/results 

Теперь выйдем 1 1 з кластера и вернемся на свою рабочую машину: 

# exit 



Резюме 

Мы снова находимся на машине AWS (обратите внимание на знак $ 

в следующих фрагментах кода). Скопируем результаты на этот ком­

пыотер , воспользовавшись командой sta r c l uster get (это зеркальное 

отражение уже встречавшейся нам команды put ): 

$ starc l uster get s ma l lcluster resul t s resul ts 

И напоследок нужно уничтожить все узлы, чтобы не тратить зря 
деньги. 

$ starcluster stop sma llc luster 
$ starc l uster te rm inate smallc l uster 

--------·-.~ -~-· -
Отметим. что уничтожение кластера стирает файловую систему 

вместе со всеми результатам и. Мы предварительно вручную ско­

пировали результаты в безопасное место. Есть и другая возмож­

ность: поручить кластеру писать в файловую систему, которая не 

создается и не уничтожается StarCluster. а существует на обычном 
экземпляре. Эти инструменты в действительности обладают колос­

сальной гибкостью, но разбираться во всех тонкостях у нас не хва­

тит места. 

На сайте ht tp : / / star. mi t . edu/ c l uster / имеется отличная до­
кументация по StarCluster, в которой можно прочитать обо всех воз­
можностях продукта . Мы познакомились лишь с малой их толикой и 

притом использовали только параметры по умолчанию. 

----·-----··· -···, ---------"--"-----·-·-----

Резюме 
Мы видели, как работать с j1.1g, небольшим написанным на Python 
каркасом, который умеет выполнять вычисления на нескольких 

процессорных ядрах или машинах. Каркас универсальный, но про­

ектировался специально для удовлетворен 1 ~я потребностей автора 
(одновременно одного из соавторов этой книги) в анализе данных . 

Поэтому в некоторых отношениях он отлично стыкуется с общей ин­

фраструктурой машинного обучения на Pytl10n. 
Мы также познакомились с облаком Атаzоп - AWS. Облачные 

вычисления зачастую позволяют более эффективно использовать 
ресурсы, ·чем возможно в локальном вычислительном центре, в осо­

бенности если потребности постоянно изменяются . Пакет StaгClusteг 

даже позволяет создавать кластеры , которые автоматически расши­

ряются при запуске дополнительных работ и уменьшаются, когда ра­

боты завершаются. 
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Вот мы и добрались до конца книги. Мы прошли длинный путь. Вы 

узнали, как выполнять классификацию, когда имеются размеченные 

данные, и кластеризацию, когда таких данных нет. Вы научились по­

нижать размерность задачи и производить тематическое моделиро­

вание, чтобы извлечь знания 11з больших наборов данных. В конце 
1 

книги мы рассмотрели кое-как11е специализированные приложе1шя 

(в частности, класС1Jфикацию музыкальных произведений по жанрам 

и машинное зрение). Для реализации мы использовали язык Руtlюп, 

для которого создана и постоянно расширяется экосистема пакетов 

для численных расчетов , основанная на NшлРу. Всюду, где возможно, 

мы полагались на библиотеку scikit-learп, но при необходимости ые 
чурались и других пакетов. Поскольку во всех ыих используется од1ы 

и та же базовая структура дашrых (многомерный массив NнmPy), 
предоставляемые ими средства можно свободно комбинировать. Все 

упоминаемые в этой книге пакеты поставляются в 11сходных кодах и 

могут использоваться в любых проектах . 
Естественно, мы не смогли охватить все многообразие машинного 

обучения. В приложении приведены ссылки на другие ресурсы, где 

интересующийся читатель сможет расширить свои знания о машин­

ном обучеыии. 



rде по11учить 

доnо11ните11ьные ведения 

о маwинном обучении 

Дописав книгу до конца, мы еще немного задержимся, чтобы подска­

зать читателям, где найти до пол нительные материалы . 

Машинному обучению посвяще но немало замечательных ресур­

сов - гораздо больше, чем мы в состояния здесь упомянуть. Приве­

денный ниже п еречень - лишь малая и к тому же не вполне объек­

тивная выборка ресурсов, которые авторы считали наилучшими на 

момент напи сания книги. 

Онлайновые курсы 
Профессор Стэнфордского университета Эндрю Нг (Апdгеw Ng) ве­
дет большой открытый онлайновый курс по машинному обучению на 
сайте Сош·sега ( http : //www .coursera .org ) . Курс бесплатный, но требу­
ет много времени. 

Книги 
Эта книга ориентирована на практические асп екты машинного обу­
чения. Мы не рассказывали ни об идейной основе алгоритмов, ни о 

стоящей за ними теории. Если вас интересует эта сторона машинного 

обучения, рекомендуем книгу ChгistopЬeг Bisl10p « Patteш Recogпitio11 
апd Machiпe Lеагпiпg». Это классический учебник наl1ального уров­

ня. В нем освещены технические детали большинства использован­

ных в книге алгоритмов. 

Для тех, кому введения недостаточно и кто хочет изучить матема­

тическую теорию, советуем обратип,ся к замечательной книге Kevi11 
Р. Muгpl1y «Macl1ine Lеагпiпg : А Pгobabllistic Peгspective» ( www.cs.uьc. 
ca/-murphyk/MLbook ) . Она вышла совсем недавно (в 2012 году) и со-
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держит сведения о самых передовых и сследованиях в области ма­

шинного обучен11я. Этот фундаментальный труд на 1100 страницах 
может служить и справочником , поскол ы<у охватывает практически 

всю проблематику машинного обучения . 

Вопросно-ответные сайты 
MetaOptiinize ( http : //metaoptimize . com/qa ) - вопросно-ответный 

сайт по машинному обучению, на котором общаются вес1,ма квали ­
фицированные исследователи и практики . 

Cгoss Validated ( http :/ /stats . stac kexcha nge . com) - са йт, посвя ­
щеиный общим проблемам статистики, но часто в нем задают и во­

просы по машинному обучению. 
В начале книги мы уже говорили, что вопросы , касающиеся этой 

книги, можно задавать на сайте TvvoToReal ( http : //www . twotoreal . 

com). Мы постараемся откликнуться как можно быстрее и поможем 

всем , ч ем сможем . 

Блоги 
Ниже приведен далеко не полный списо к блогов, представляющих 

интерес для всех , кто занимается машинным обучением. 

• Теория машинного обучения: ht tp : ! /hunch. net 

Статьи появляются примерно раз в месяц и носят в основном 

теоретический характер. В качестве бонуса предлагаются го­

ловоломные задаLJКИ . 

Практические вопросы обработки текста и добычи данных: 
http : //textanddatamining . Ьlogspot.de 

Средняя п ериодичность появления статей - раз в меся ц. Опи­

сываются практические и всегда н еожиданные подходы. 

Благ Эдвш~а Чена (Ed\vin Chen): http : //Ыоg . echen . me 

Средняя п ериодичност ь появления статей - раз в месяц. Тема­

тика прикладно го характера. 

Заметки по машинному обучению: http : //www . 

machinedlearnings.com 

Средняя периодичность - одна статья в месяц. Тематика при­

кладного характера. 

Flo\~r iпgData : http : //flowi ngda ta . сот 
Средняя периодичность - одю1 статья в день . Рассматри ва ют­

ся преимущественно вопросы матемап 1 ч ес кой статистики . 
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Siшply Statistics: ht tp : / / simplysta tistics . o rg 

Нескол ько статей в меся ц, посвященных n основном статисти­
ке и большим данным. 

Статистическое моделирование, методы причинно-следствен­

ного вывода и социал 1,ные науки: http : ! /andr ewge l ma n. сот 

Одна статья в день , бывает смешно , когда автор , пользуясь ста­

тистическими методами, указывает на ошибки в популярных 

СМИ. 

Источники данных 
Желающие поэкспериментироват 1, с алгор11тмам11, могут найти много 

наборов данных в репо3итории машинного обучения в Калифорний ­
ском университете в Ирвайне (UCI). Адрес репозитория http : //ar ­

c hi ve .ics . uci . edu / ml . 

Участие в конкурсах 
Отличный способ больше узнать о машинном обучении - посорев­

новаться с кем-то! Сайт Kaggle ( http : //www . kagg l e . com) - место, где 
проводятся такие конкурсы, мы упоминали о нем во введении. Здесь 

вы найдете конкурсы с различной структурой и зачастую денежными 

призами . 

Конкурсы по машинному обучению с уlштелем почти всегда устро­

ены однотипно: участникам предоставляется доступ к размеченным 

обучающим данным и тестовым данным (без меток) . Цель - класси ­
фицировать тестовые данные. Побеждает тот, кто продемонстрировал 
наилучшую верность. Призы разные - от славы до наличных ден ег. 

Разумеется, что-то выиграть пр11ятно, но и простое уlrастие дает 

бесценный опыт. Так что не уходите и после завершения конкурса, 

потому что участники рассказывают о своих подходах на форуме. 

Как правило , победу приносит не 11зобретение нового алгоритма, а 

продуманная предваритель ная обработка, нормировка и сочетание 

разлиLIНЫХ методов. 

Что не вошло в книгу 
Мы не смогл и охватить все пакеты машинного обучения , доступные 
из Руtlюп . Будучи ограничены объемом книги , мы решили сосредо-
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точиться на библиотеке scikit-leaгn. Но есть и другие возможности, 

некоторые из них перечислены ниже . 

Комплект инструментов MDP(ht tp : / / mdp-toolki t .sourcefo rge. 
net ): модульный инструментарий для обработки данных. 

PyBгain (http : //pybrai n.org): написанная на Python библиоте­
ка для обучения с подкреплением, искусственного интеллекта 

и построения нейронных сетей. 

Machine Leamiпg Toolkit (Mi lk) (http : //luispedro .org/ 
software / mi l k): пакет разработан одним из авторов этой кни ­
ги, включает некоторые алгоритмы и методы, не вошедшие в 

scikit-leaгп. 

Patterп (http : //www.cl ips.ua .ac.be/pattern): пакет объединяет 
добычу данных в веб, обработку естественных языков и ма­

шинное обучение, включает обертывающие API для Google, 
Tvvitteг и википедии . 

Более общим является сайт ht t p : //mlos s .org, н а котором размещен 
репозиторий программ машинного обучения с открытым исходным 

кодом. Как всегда бывает с такимн репозиториями, качество варьи­

руется в широких пределах: от отменных, хорошо сопровождаемых 

проектов до когда-то начатых и заброшенных . Сюда стоит заглянуть , 

если перед вами стоит очень специфичная проблема, которую не ре­

шает ни один из универсальных пакетов . 

Резюме 
Вот теперь точно коне ц. Надеемся, что книга вам понравилась и что 

вы готовы к собственным приключениям в мире машинного обуче­

ния. 

Надеемся также, 'ПО вы в полной мере осознали важность скрупу­

лезного тестирования применяемых методоо. Особое онимание обра­
щайте на правильное использование метода перекрестной проверки и 

не рапортуйте о результатах тестирования 11а обучающих данных, по­
тому что полуlrенная таким образом оценка излишне оптимистична . 
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