
А. Ю. ДОЛГАНОВ
М. В. РОНКИН
А. В. СОЗЫКИН

БАЗОВЫЕ АЛГОРИТМЫ
МАШИННОГО ОБУЧЕНИЯ
НА ЯЗЫКЕ PYTHON
Учебно-методическое пособие

ДОЛГАНОВ АНТОН ЮРЬЕВИЧ
Кандидат технических наук. Область научных интересов: машинное обучение,
обработка биомедицинских сигналов, обработка естественного языка.

РОНКИН МИХАИЛ ВЛАДИМИРОВИЧ
Кандидат технических наук. Область научных интересов: машинное обучение,
анализ временных рядов, компьютерное зрение.

СОЗЫКИН АНДРЕЙ ВЛАДИМИРОВИЧ
Кандидат технических наук. Область научных интересов: машинное обучение,
разработка систем искусственного интеллекта.

9 785799 636326

ISBN 579963632-5

Министерство науки и высшего образования
Российской Федерации

Уральский федеральный университет
имени первого Президента России Б. Н. Ельцина

А. Ю. Долганов, М. В. Ронкин, А. В. Созыкин

БАЗОВЫЕ АЛГОРИТМЫ
МАШИННОГО ОБУЧЕНИЯ

НА ЯЗЫКЕ PYTHON

Учебно-методическое пособие

Рекомендовано методическим советом
Уральского федерального университета

для студентов вуза, обучающихся по направлениям подготовки
09.03.01, 09.04.01 — Информатика и вычислительная техника,

09.03.03, 09.04.03 — Прикладная информатика,
09.03.04, 09.04.04 — Программная инженерия,

09.04.02 — Информационные системы и технологии

Екатеринбург
Издательство Уральского университета

2023

УДК 004.85(075.8)
ББК 32.813я73
 Д64

Рецензенты:
канд. физ.-мат. наук, заведующий отделом вычислительных систем
Института математики и механики им. Н. Н. Красовского УрО РАН

А. М. Григорьев;
канд. физ.-мат. наук, руководитель исследовательского центра

ООО «Сайберлимфа» Ю. Ю. Чернышов

Научный редактор — д‑р физ.-мат. наук, проф. Д. Б. Берг

	 Долганов, Антон Юрьевич.
Д64     Базовые алгоритмы машинного обучения на языке Python : учебно-ме-

тодическое пособие / А. Ю. Долганов, М. В. Ронкин, А. В. Созыкин ; М‑во
науки и высшего образования РФ. — Екатеринбург : Изд-во Урал. ун-та,
2023. — 124 с.

ISBN 978-5-7996-3632-6

Учебно-методическое пособие посвящено изучению основ анализа данных
и реализации базовых алгоритмов машинного обучения на языке Python. Целью
данного пособия является формирование у студентов теоретических знаний и прак-
тических навыков в области базовых алгоритмов машинного обучения, овладение
инструментарием, моделями и методами машинного обучения.

Для успешного освоения курса необходимо базовое знание языка программи-
рования Python и высшей математики.

УДК 004.85(075.8)
ББК 32.813я73

ISBN 978-5-7996-3632-6	 © Уральский федеральный
	 университет, 2023

3

Оглавление

Предисловие... 5

Глава 1. Машинное обучение: общие сведения и понятия.................... 7
Типы данных... 8
Обучение модели... 13
Разложение ошибки на смещение и дисперсию.............................. 17
Задачи машинного обучения.. 19
Базовые понятия линейной алгебры.. 21
Ключевые понятия математического анализа................................. 24
Контрольные вопросы.. 28

Глава 2. Исследовательский анализ данных....................................... 29
Библиотека Pandas для анализа данных... 29
Предварительная обработка данных.. 35
Инженерия признаков.. 43
Практические задания .. 45
Контрольные вопросы.. 45

Глава 3. Линейная регрессия.. 47
Генерируемые данные... 48
Модель линейной регрессии... 51
Полиномиальная регрессия.. 64
Регуляризация линейной регрессии... 66
Практические задания... 69
Контрольные вопросы.. 70

Глава 4. Логистическая регрессия.. 71
Генерируемые данные .. 72
Модель логистической регрессии... 73
Метрики классификации ... 77
Практические задания... 79
Контрольные вопросы.. 79

https://t.me/it_boooks/2

4

Оглавление

Глава 5. Уменьшение размерности.. 81
Генерируемые данные .. 81
Метод главных компонент.. 83
Набор данных MNIST... 85
Практические задания... 89
Контрольные вопросы.. 90

Глава 6. Кластеризация.. 91
Метрики расстояния... 92
Алгоритм k-cредних.. 95
Практические задания..101
Контрольные вопросы...102

Заключение..103

Список библиографических ссылок...106

Приложения...108
1. Класс линейной регрессии...108
2. Класс регуляризации Тихонова...111
3. Класс регуляризации Лассо..112
4. Класс эластичной регуляризации..113
5. Класс классификации логистической регрессии........................114
6. Класс уменьшения размерности методом главных компонент....118
7. Класс кластеризации методом k-средних....................................120

5

Предисловие

Ц елью данного учебно-методического пособия является
формирование у студентов теоретических знаний, умений
и практических навыков по базовым алгоритмам машинно-

го обучения, овладение студентами инструментарием, моделями и ме-
тодами машинного обучения.

Книга имеет следующую структуру.
Глава 1 посвящена знакомству с ключевыми понятиями машинно-

го обучения, типами данных, а также с базовыми понятиями линейной
алгебры и математического анализа, которые необходимы для даль-
нейшего освоения учебно-методического пособия.

В главе 2 обсуждаются вопросы, связанные с визуализацией дан-
ных, их предварительной обработкой и генерацией признаков. В част-
ности, рассмотрены библиотеки Pandas и Seaborn.

В главе 3 представлена одна из простейших моделей машинного
обучения — линейная регрессия. Рассмотрен подход к нахождению ве-
сов линейной регрессии «градиентный спуск». Схожие идеи исполь-
зуются для обучения и более сложных нейронных сетей. В качестве
практики пошагово реализуется алгоритм линейной регрессии «сво-
ими руками».

В главе 4 рассмотрены особенности задачи классификации и клю-
чевые метрики для оценки качества модели классификации. Обсужда-
ется модель логистической регрессии, которая наследует идеи линей-
ной регрессии. В качестве практики пошагово реализуется алгоритм
логистической регрессии «своими руками».

В главе 5 обсуждается классический метод уменьшения размерно-
сти — метод главных компонент. В качестве практики реализуется ме-
тод главных компонент «своими руками».

Глава 6 посвящена особенностям задачи кластеризации и различ-
ным подходам к оценке расстояния между объектами. Рассмотрен ба-

6

Предисловие

зовый алгоритм кластеризации — метод k‑средних. В качестве практи-
ки пошагово реализуется алгоритм кластеризации k‑средних «своими
руками».

В заключении приводятся рекомендации по дальнейшему изуче-
нию методов машинного обучения.

В каждой главе приведены контрольные вопросы для самостоя-
тельной оценки усвоения материала. Практические задания к главам
включают не только работу с генерируемыми данными, но и с реаль-
ным набором данных продаж автомобилей на вторичном рынке для
закрепления изученных алгоритмов. Вторичный рынок автомобилей,
по нашему мнению, является достаточно хорошо интерпретируемым
и понятным каждому читателю набором данных. При этом, как бу-
дет далее показано, используемый набор данных представляется до-
статочно наглядным в отношении решаемых задач. Кроме того, будет
полезным отметить, что методически важными критериями этого на-
бора данных являются возможность решения задач как категориаль-
ного принятия решений (классификации), так и непрерывного (ре-
грессии), а также достаточный объем для демонстрации различных
аспектов изучаемых алгоритмов, что оставляет читателю простран-
ство для практических экспериментов и более полного освоения из-
учаемого материала.

Набор данных продаж автомобилей, а также полные версии листин-
гов программ, используемых в учебно-методическом пособии, доступ-
ны в онлайн-хостинге репозиториев GitHub по ссылке https://github.
com/dayekb/Basic_ML_Alg

7

Глава 1.
Машинное обучение:
общие сведения и понятия

В этой главе мы рассмотрим основные понятия, связанные
с машинным обучением: обсудим типы данных, которые
обычно обрабатываются, типовые задачи машинного обу-

чения, а также необходимые для освоения данного пособия понятия
линейной алгебры и математического анализа.

Ключевые понятия стоит рассмотреть на конкретном примере
данных. В табл. 1.1 представлены данные об успеваемости некоторой
группы студентов.

Таблица 1.1
Пример данных успеваемости студентов

id сту-
дента Пол Воз-

раст Институт Обще-
житие

Ра-
бота

Оцен-
ка

Python

ЕГЭ
Инф.

Бал-
лы по
МО

Экза-
мен по

МО
0 Ж 24 ФТИ нет нет 75 83 54 Отл.
1 М 23 Другой нет нет 79 40 98 Уд.
2 М 24 Другой нет да 43 59 43 Уд.
3 Ж 24 ИРИТ-РТФ нет да 98 83 46 Отл.
4 М 24 ИРИТ-РТФ да да 50 65 49 Неуд.
5 М 24 ФТИ да да 45 96 90 Неуд.
6 Ж 23 ИРИТ-РТФ нет нет 71 98 50 Хор.
7 Ж 23 ИРИТ-РТФ нет нет 98 43 55 Уд.
8 Ж 24 ИРИТ-РТФ да да 49 61 83 Неуд.
9 Ж 24 ИЕНиМ да да 63 46 71 Хор.

Первые ключевые понятия и обозначения, которые стоит ввести:
•	 x — объект, требующий некоторого предсказания (в табл. 1.1 это

строка для отдельного студента, характеризуемого собствен-
ным id);

https://t.me/it_boooks/2

8

Глава 1. Машинное обучение: общие сведения и понятия

•	  — полный набор объектов (в табл. 1.1 это совокупность сту-
дентов, все строки);

•	 y — цель (target), которая является ожидаемым предсказанием
(в табл. 1.1 это две целевые переменные для каждого студен-
та: баллы по курсу «Машинное обучение» и оценка за экзамен
по машинному обучению);

•	  — полный набор целей (в табл. 1.1 это целевые переменные
для совокупности студентов, оба столбца);

•	 признаки (features) — характеристики объектов (в табл. 1.1 это
пол, возраст, институт, общежитие, работа, баллы ЕГЭ по ин-
форматике и оценка за курс по Python).

В связи с этим на высоком уровне типичная задача машинного об-
учения формулируется следующим образом: искать возможности по-
лучать целевые переменные при использовании некого признаково-
го пространства данных.

Типы данных

К слову, о признаках и данных. Существуют различные подходы
к классификации признаков, назовем их микроуровень и макроуровень.

На микроуровне признаки можно разделить на числовые и катего-
риальные.

Числовые признаки — это некоторые количественные оценки объ-
ектов. Числовые признаки делят на дискретные, которые невозможно
измерить, но можно посчитать: например, ученики в классе, пальцы,
результат в футболе. Выделяют также непрерывные данные, которые
не могут быть подсчитаны, но их можно измерить — это, например,
температура, напряжение, высота.

Для числовых данных используются следующие обозначения:
•	  — натуральные числа;
•	  — целые числа;
•	  — рациональные числа;
•	  — действительные числа;
•	  — комплексные числа.
Категориальные признаки — это характеристики объектов. Обыч-

но категориальные признаки делят на номинальные (nominal), кото-

9

Типы данных

рые отвечают на вопрос о том, какое значение принимает данная ха-
рактеристика, например цвет, пол, язык, институт и т. д., и порядковые
(ordinal) — дискретные и упорядоченные величины, например уро-
вень английского, итоговая оценка за курс машинного обучения. Но-
минальные признаки, в которых всего два возможных значения, назы-
вают бинарными (это ответы на такие вопросы, которые предполагают
только «да» или «нет»).

На практике категориальные данные могут быть представлены
в виде числовых значений, как это изображено на рис. 1.1.

Вы женаты?

• Да
• Нет

• 1
• 0

На каком языке вы говорите?
• Русский
• Английский
• Китайский
• Арабский

• 0
• 1
• 2
• 3

Довольны ли вы курсом «Машинное обучение»?
• Полностью удовлетворен
• Умеренно удовлетворен
• Нейтрально
• Умеренно не удовлетворен
• Полностью не удовлетворен

• 2
• 1
• 0
• −1
• −2

Рис. 1.1. Пример представления категориальных данных
в виде числовых значений

Но нужно помнить, что подобные числа не имеют математическо-
го значения, как в случае числовых признаков, т. е. их нельзя склады-
вать (например, нельзя сложить английский и китайский и получить
арабский) или сравнивать между собой (нельзя сказать, что англий-
ский в три раза меньше, чем арабский). Это накладывает определен-
ные ограничения на использование категориальных признаков в мо-
делях машинного обучения.

На макроуровне признаки можно разделить на табличные и нетаблич-
ные. Первые — это данные, представленные в виде таблицы (см. табл. 1.1),
отображающей совокупность различных числовых и категориальных
признаков. В строках представлены различные объекты, в столбцах —

10

Глава 1. Машинное обучение: общие сведения и понятия

различные признаки. Именно этот тип данных в основном использу-
ется, когда речь идет о классических алгоритмах машинного обучения.

К нетабличным данным относятся изображения, временные ряды
и естественный язык. Каждый из этих типов данных имеет свои осо-
бенности, которые требуют специального подхода. При этом для по-
лучения каких-то простых моделей эти данные можно свести к та-
бличным.

Например, можно рассматривать изображение как совокупность
интенсивности отдельных пикселей (рис. 1.2). Принято, что большие
значения интенсивности соответствуют белому цвету, а небольшие —
черному. При этом в зависимости от разрядности изображения можно
иметь разные значения оттенков серого между белым и черным. Так,
на рис. 1.2 представлено 8‑битное изображение (где интенсивность
цвета кодируется значением от 0 до 255). Любое изображение можно
«спрямить» (flatten), т. е. перейти от двумерного представления к од-
номерному. Таким образом каждое изображение можно представить
в виде большой строки признаков. Например, изображение 10 × 10
пикселей представляется в виде строки из 100 признаков.

241 251 248 244 252 247 254 254 241 240

244 249 252 246 9 2 240 249 251 252

241 244 254 251 250 8 244 250 254 241

246 251 250 243 249 14 245 246 254 252

244 251 246 244 240 1 244 242 241 249

247 241 244 253 244 15 250 248 249 245

245 252 250 245 248 8 249 250 243 247

254 241 240 249 254 13 247 240 248 242

245 247 241 248 248 1 247 249 252 245

243 244 251 242 248 247 248 251 249 246

241 251 248 244 252 247 254 254 241 240 244 249 252 246 9 2 240 249 251 252

Рис. 1.2. Представление одноканального изображения в виде строки признаков

Однако нужно помнить, что реальные изображения состоят
из нескольких цветовых каналов, а не одного, как на рис. 1.2. Наиболее
распространена трехканальная цветовая модель RGB: red — красный,
green — зеленый, blue — синий. На рисунке 1.3 представлен пример

11

Типы данных

разложения, пожалуй, самого известного изображения в компьютер-
ном зрении — «Лена» — на три канала. Таким образом, изображение
Лены можно представить в виде строки из 512 × 512 × 3 =
= 786 432 �признаков.

185 147 71 245 66 245 202 243 237 114

148 60 196 202 254 64 57 100 186 215

251 87 101 67 235 247 107 233 103 156

232 111 62 92 242 131 242 187 239 77

97 175 253 235 229 227 193 83 158 166

77 232 178 188 182 200 140 164 63 184

98 177 176 251 134 159 189 85 133 69

154 136 84 245 90 184 97 147 112 55

185 56 121 221 252 225 67 218 121 156

62 108 235 171 169 213 190 105 203 125

109 93 240 251 75 67 175 180 99 200

67 191 243 207 220 121 187 103 83 209

87 183 167 201 202 148 59 65 151 60

250 125 195 181 79 202 185 142 102 168

243 198 170 86 155 242 139 74 81 77

127 243 144 111 173 176 157 88 176 99

128 113 56 131 235 251 197 123 181 101

233 139 183 103 195 157 130 243 220 156

62 250 217 106 110 78 220 109 185 114

72 81 248 95 151 220 243 162 175 119

136 205 133 113 150 110 94 73 169 207

221 157 195 150 149 151 78 173 164 144

128 251 158 187 93 240 117 111 234 113

239 106 83 168 155 194 201 116 84 161

218 143 160 66 176 83 148 156 66 188

59 96 155 169 245 104 76 156 208 65

163 186 223 123 156 62 87 94 185 252

137 161 157 56 126 133 179 176 230 149

234 251 127 142 242 206 208 188 125 155

182 65 209 122 101 95 132 228 227 110

Рис. 1.3. Разложение цветного изображения «Лена» на каналы [1]

Понятно, что такое представление изображения в виде табличных
данных не кажется чем-то эффективным. При этом мы должны быть
уверены, что в каждом пикселе находится «однотипная» часть изобра-
жения: например, если это изображения котов и собак, то для такого
подхода они должны быть сняты под одним углом. Поэтому представ-
ление изображений в виде таблиц в основном используется только для
однотипных данных (например, изображения цифр). А для обработ-
ки более сложных изображений в настоящее время самым распростра-
ненным подходом являются модели, использующие сверточные ней-
ронные сети (Convolutional Neural Networks) [2–4].

В какой-то степени аналогичным способом можно поступать с вре-
менными рядами. Временной ряд представляет собой совокупность
значений какого-либо измерения в отдельные моменты времени. С од-
ной стороны, можно свести временной ряд к табличным данным. Од-
нако такой подход наивен, если планируется анализировать сигна-
лы разных объектов: мы должны быть уверены в том, что все сигналы
«согласованы» по оси времени, но такое редко встречается для реаль-

12

Глава 1. Машинное обучение: общие сведения и понятия

ных сигналов. Например, сигнал электрокардиографии имеет доста-
точно сложную структуру (рис. 1.4). При этом информативным явля-
ется расстояние между последовательными R‑зубцами.

В этом ключе продуктивным подходом к обработке временных
сигналов является расчет признакового пространства. Обработка био
медицинских сигналов и извлечение признакового пространства под-
робно освещены в учебных пособиях [5] и [6].

R-R
интервал

S-T
интервал

Q-T
интервал

P-Q
интервал

P-

волна T-

волна

QRS-
комплекс

S-T
сегмент

P-Q
сегмент

Рис. 1.4. Визуализация сигнала электрокардиограммы

С другой стороны, возможно использовать модели, которые учи-
тывают временную составляющую временных рядов. К таковым отно-
сятся модели, использующие рекуррентные нейронные сети (Recurrent
Neural Network) [7].

Данные естественного языка можно рассматривать в упрощенном
виде как совокупность отдельных слов — категориальных признаков.
Такие подходы вполне применимы в обобщенных задачах, связанных
с оценкой тональности текстов. Другим подходом к решению задач
обработки естественного языка является получение векторных пред-
ставлений слов (Word Embedding) [8; 9]. Однако для более сложных
задач, таких как перевод с одного языка на другой, генерация текста,
используют так называемые модели-трансформеры (Transformers) [10],
которые используют механизм внимание (Attention) [11].

13

Обучение модели

Обучение модели

В предыдущем разделе мы часто употребляли понятие модель.
В общем случае модель использует некие операции над признаками
для предсказания целевой переменной, т. е. происходит отображение
из пространства признаков в пространство целевых предсказаний:
	 a :X� Y→ ,
где a∈ — семейство моделей.

Обычно предсказания модели обозначают символом y. В общем
случае справедливо следующее выражение:
	 y a w hi

 � � �xi , , ,

где xi — вектор признаков для i‑го объекта; w — параметры модели (оп-
тимизируются алгоритмом модели); h — гиперпараметры модели (оп-
тимизируются теми, кто запускает алгоритмы машинного обучения).

Более подробно параметры и гиперпараметры моделей мы рассмо-
трим в последующих главах.

После того, как мы выбрали модель, ее необходимо обучить. Сле-
дующие концепции, которые стоит обсудить, это тренировочная и те-
стовая выборки. Тренировочная выборка — это такой набор данных,
для которого нам известны пары «признаки — целевая переменная»
для каждого субъекта из выборки. Тестовая выборка — это такой на-
бор данных, для которого известны только признаки.

Допустим, у нас есть данные по студентам набора 2021 г.
(табл. 1.2), мы знаем все собираемые параметры и целевые пере-
менные. А в 2022 г. поступили новые студенты (табл. 1.3), и мы хо-
тим, используя опыт предыдущего года, попытаться предсказать,
у каких студентов могут быть проблемы с курсом «Машинное обу-
чение» и, наоборот, кто из студентов успешно справится, а значит,
им можно давать задачи посложнее.

Таблица 1.2
Тренировочная выборка

id сту-
дента Пол Воз-

раст Институт Обще-
житие

Ра-
бота

Оцен-
ка

Python

ЕГЭ
Инф.

Бал-
лы по
МО

Экза-
мен по

МО
0 Ж 24 ФТИ нет нет 75 83 54 Отл.
1 М 23 Другой нет нет 79 40 98 Уд.

14

Глава 1. Машинное обучение: общие сведения и понятия

id сту-
дента Пол Воз-

раст Институт Обще-
житие

Ра-
бота

Оцен-
ка

Python

ЕГЭ
Инф.

Бал-
лы по
МО

Экза-
мен по

МО
2 М 24 Другой нет да 43 59 43 Уд.
3 Ж 24 ИРИТ-РТФ нет да 98 83 46 Отл.
4 М 24 ИРИТ-РТФ да да 50 65 49 Неуд.
5 М 24 ФТИ да да 45 96 90 Неуд.
6 Ж 23 ИРИТ-РТФ нет нет 71 98 50 Хор.
7 Ж 23 ИРИТ-РТФ нет нет 98 43 55 Уд.
8 Ж 24 ИРИТ-РТФ да да 49 61 83 Неуд.
9 Ж 24 ИЕНиМ да да 63 46 71 Хор.

Таблица 1.3
Тестовая выборка

id сту-
дента Пол Воз-

раст Институт Обще-
житие

Ра-
бота

Оцен-
ка

Python

ЕГЭ
Инф.

Бал-
лы по
МО

Экза-
мен по

МО
10 М 23 ИЕНиМ да да 51 84 ? ?
11 Ж 24 ИЕНиМ да нет 90 44 ? ?
12 Ж 24 ФТИ да нет 60 71 ? ?
13 Ж 24 ИЕНиМ да нет 55 76 ? ?
14 Ж 23 ФТИ нет да 40 54 ? ?
15 М 24 Другой нет да 94 64 ? ?
16 М 23 Другой да да 65 46 ? ?
17 М 24 Другой нет нет 50 49 ? ?
18 Ж 23 ИРИТ-РТФ да да 62 93 ? ?
19 М 23 ИЕНиМ да да 56 40 ? ?

Для того чтобы оценить, насколько плоха или хороша конкретная
модель, нам необходимо воспользоваться функцией потерь L y yi i,� � для
оценки качества модели. В зависимости от типа целевой переменной
(числовая или категориальная) функции потери могут отличаться,
но в них есть общая суть. Если для конкретного объекта y yi i~ , т. е.
предсказание модели и реальное значение целевой переменной совпа-
дают, то функция потерь L y yi i,� � принимает небольшие значения;
если же предсказание модели и реальное значение разнятся, то функ-
ция потерь принимает большие значения.

Окончание табл. 1.2

15

Обучение модели

Используя данные тренировочной выборки, мы можем оценить
функционал потерь — среднее значение функции потерь для всех объ-
ектов из тренировочной выборки:

	 Q a
n

L y a x w h
i

n

i i, , , , .� � � � �� ���1
1

Следовательно, можно сформулировать цель обучения следую-
щим образом:
	 Q a

a
, min.X

A
� ��

�

Другими словами, в ходе обучения мы должны подобрать такие
параметры и гиперпараметры модели, которые наилучшим образом
предсказывают целевые значения в тренировочной выборке.

В общем случае наблюдается закономерность: простые модели (ко-
торые содержат ограниченное число признаков, простые зависимости
между переменными) обладают большими значениями функциона-
ла потерь, в то же время сложные модели (в которых много призна-
ков и существуют сложные зависимости между переменными) могут
иметь сколь угодно низкие значения функционала потерь. В общем
случае зависимость функционала потерь от сложности модели пред-
ставлена на рис. 1.5.

П
от

ер
и

Сложность модели

Потери
на тренировочных данных

Потери
на тестовых данных

Рис. 1.5. Зависимость потерь от сложности моделей

При усложнении модели потери на тестовых данных, как прави-
ло, тоже вначале убывают. Но в определенный момент может воз-
никнуть ситуация, когда потери на тестовой выборке начинают сно-
ва расти, а потери на тренировочной выборке продолжают падать.
Это явление называется переобучением. Мы не находим общие зако-

16

Глава 1. Машинное обучение: общие сведения и понятия

номерности, а запоминаем тренировочную выборку. Здесь стоит от-
метить, что практической пользы от модели, которая просто хорошо
запоминает тренировочную выборку, немного. Поэтому обычно по-
тери на тренировочных данных рассматривают совместно с потерями
на тестовых данных.

Чтобы избежать переобучения, мы должны использовать тестовую
выборку для своевременной остановки алгоритма обучения и выбо-
ра оптимальных параметров и гиперпараметров модели. Но есть про-
блема: по умолчанию у нас нет значений целевых переменных для те-
стовой выборки.

Однако мы можем смоделировать тестовую выборку, используя
подход, который называется валидация. Мы можем взять «кусочек»
тренировочной выборки, отложить его, обучить модель на остальной
тренировочной выборке и проверить на отложенном «кусочке». Такой
тип валидации называется использованием отложенной выборки (Hold-
Out Split), рис. 1.6.

Тренировочная

Тренировочная Валидация

Рис. 1.6. Схема отложенной выборки

Для повышения уверенности в модели можно повторить процесс
разбиения выборки на тренировочную и валидационную многократ-
но, по-разному разбивая данные.

Или же можно воспользоваться n‑Fold кросс-валидацией (n‑Fold
Cross-Validation Split). Тренировочная выборка разбивается на n оди-
наковых по объему частей, которые содержат разные объекты. Про-
изводится n итераций. На каждой итерации происходит следующее:

•	 модель обучается на (n — 1) частях обучающей выборки;
•	 модель тестируется на части обучающей выборки, которая

не участвовала в обучении.
Итоговая оценка функционала потерь усредняется по всем n ите-

рациям. Как правило, n = 10 (в случае малого размера выборки — 5).
На рисунке 1.7 показан пример с n = 4.

17

Разложение ошибки на смещение и дисперсию

Тренировочная

Fold 4 Fold 3 Fold 2 Fold 1

Fold 4 Fold 3 Fold 2 Fold 1

Fold 4 Fold 3 Fold 2 Fold 1

Fold 4 Fold 3 Fold 2 Fold 1

Рис. 1.7. Схема 4‑Fold кросс-валидации

Такой подход позволяет сымитировать ситуацию, когда модель те-
стируется на новых, не виденных ранее данных. Поэтому потери на ва-
лидационных данных можно использовать для определения оптималь-
ных параметров и гиперпараметров модели (рис. 1.8).

П
от

ер
и

Сложность модели

Потери
на тренировочных

данных

Потери
на тестовых данных

Потери
на валидационных

данных

Рис. 1.8. Зависимость потерь от сложности модели
с учетом валидационных данных

Разложение ошибки на смещение и дисперсию

В общем случае функционал потерь можно разложить на следую-
щие составляющие:

18

Глава 1. Машинное обучение: общие сведения и понятия

	 Loss Bias Variancea a a, ~ ,  � � � �� � � � �� � � �2

где σ 2 — случайный шум, с которым, к сожалению, ничего нельзя
не сделать. В связи с этим нужно иметь в виду, что модели не могут
быть совершенными. Однако мы можем уменьшать другие слагаемые
в данном разложении.

Ошибка смещения (Bias Error) — это ошибка из-за неверных пред-
положений в алгоритме обучения. Высокая ошибка смещения воз-
никает, если модель слишком проста и не способна отразить законо-
мерности в данных. Ошибку смещения мы можем оценить, используя
тренировочные данные.

Дисперсия (Variance) — это ошибка из-за чувствительности к неболь-
шим колебаниям обучающей выборки. Высокая дисперсия возникает,
если модель плохо работает на новых данных. Дисперсию модели мы
можем оценить с использованием валидационных и тестовых данных.

В зависимости от величины смещения и дисперсии существуют
различные ситуации, которые можно описать с помощью мишеней,
как указано на рис. 1.9. Здесь близость к центру показывает наимень-
шие значения функции потерь для конкретного объекта.

Низкое
смещение

Высокое
смещение

Низкая дисперсия Высокая дисперсия

Рис. 1.9. Разложение ошибок модели

Идеальная ситуация — это низкое смещение и низкая дисперсия.
Модель хорошо работает в среднем, и при этом для разных данных эта
тенденция сохраняется. В случае высокого смещения и низкой диспер-
сии модель выдает стабильные предсказания как на тренировочной,
так и на валидационной выборке, но, к сожалению, эти предсказания
далеки от реальных значений. С другой стороны, ситуация низкого

19

Задачи машинного обучения

смещения и высокой дисперсии показывает, что модель в среднем ра-
ботает неплохо, однако существует достаточно большое количество от-
дельных объектов, на которых предсказания не совпадают с реальны-
ми значениями. Наконец, худшая из возможных ситуаций — высокое
смещение и высокая дисперсия — говорит о том, что модель совсем
не подходит для имеющихся данных.

Идеальные ситуации встречаются редко, и поэтому необходимо
находить компромисс между высоким смещением и высокой диспер-
сией. А это уже зависит от конкретной постановки задачи.

Задачи машинного обучения

Поговорим о типовых задачах машинного обучения. Стандартно
задачи машинного обучения разделяют на следующие:

•	 обучение с учителем (Supervised Learning);
•	 обучение без учителя (Unsupervised Learning);
•	 обучение с подкреплением (Reinforcement Learning).
Для обучения с учителем характерно использование обучающего

набора данных (тренировочной выборки). Для каждого экземпляра
из набора данных есть пары «входные данные/признаки — ожидаемый
ответ». В этом случае задачей является поиск модели или алгоритма,
который предсказывает ожидаемые целевые ответы.

Далее возникают различные ситуации в зависимости от того, на что
мы рассчитываем в плане ожидаемых ответов. Если множество воз-
можных ответов конечно, то речь идет о задаче классификации:

•	 � �� �1, , K �, K ∈ � в случае многих классов;
•	 � � �� �1 1, � � �или �� �0 1, в случае двух классов.
Схематично это представляется следующим образом: есть неко-

торое пространство признаков, при этом существует заранее извест-
ная разметка (раскраска) отдельных объектов. Задача классификации
сводится к построению такой разделяющей кривой, которая способ-
на предсказывать метку или класс объекта (рис. 1.10).

В данных из табл. 1.1 оценка за экзамен по машинному обучению
является целевой переменной для задачи классификации, т. к. коли-
чество возможных ответов конечно.

20

Глава 1. Машинное обучение: общие сведения и понятия

Рис. 1.10. Схематичное представление задачи классификации

С другой стороны, множество возможных ответов может быть поч-
ти бесконечным, т. е. Y R∈� . В таком случае решается задача регрессии
(рис. 1.11). Простой пример: допустим, существует статистика по сто-
имости квартир и их площадям, но не для всех значений площадей.
Используя имеющиеся данные, мы хотим предсказать стоимость квар-
тиры для тех значений площадей, которых нет в тренировочной вы-
борке. Задача регрессии сводится к построению кривой, проходящей
через все тренировочные данные.

Рис. 1.11. Схематичное представление задачи регресии

В данных из табл. 1.1 балл за текущую успеваемость по машинно-
му обучению может быть целевой переменной для задачи регрессии,
т. к. количество возможных ответов бесконечно.

Постановка задачи при обучении без учителя затруднена, так как из-
начально имеются только данные. При этом необходимо найти в этих
данных закономерности.

Если требуется разметить принадлежность отдельных объектов
к различным кластерам, используя, например, близость или сходство
отдельных точек, то это задача кластеризации (рис. 1.12).

21

Базовые понятия линейной алгебры

Рис. 1.12. Схематичное представление задачи кластеризации

Стоит отметить, что, в отличие от задачи классификации, в этом
случае изначально не известны реальные классы объектов, и алгоритм
должен принимать решение исключительно исходя из внутренних за-
кономерностей в данных.

Другой типовой задачей обучения без учителя является задача сни-
жения размерности. Пусть имеются табличные данные большой раз-
мерности и требуется построить такую новую таблицу данных, которая
упрощала бы работу с ними. Тогда решением задачи будет сокраще-
ние размерности табличных данных, например, со 100 до 2 или 3, что-
бы имеющиеся данные можно было визуализировать.

Обучение с подкреплением предполагает, что существует некая сре-
да и некая система, которая взаимодействует со средой. Задача состо-
ит в том, чтобы сделать это взаимодействие эффективным.

Базовые понятия линейной алгебры

Перед тем как обучать модель и решать задачи, необходимо вспом-
нить основные понятия из линейной алгебры для манипуляций с дан-
ными — в первую очередь объекты и операции.

Самым простым объектом является число, или скаляр. Обознача-
ется �� x∈. Проще говоря, это одна ячейка в табличных данных.

22

Глава 1. Машинное обучение: общие сведения и понятия

Совокупность нескольких скаляров называется вектор. Обозна-
чается x∈n, где n — размерность вектора. В табличных данных выде-
ляют векторы-строки и векторы-столбцы.

Поскольку можно объединить несколько скаляров в вектор,
то можно объединить и несколько векторов одинаковой размерно-
сти в новый объект, который называется матрица. Обозначается как
X � �� �� �

xij m n
 или X ,� �



m n где m — количество строк, n — количество
столбцов. По сути, матрицы и есть таблицы данных.

Наконец, можно объединить и матрицы одинаковой размерности
в новые объекты — они называются тензоры. Трехмерный тензор обозна-
чается как X = xijk. Мы уже рассматривали в одном из предыдущих разде-
лов данные в виде тензоров — это трехканальное цветное изображение.

В линейной алгебре, по сути, используются те же операции, что
и в простой школьной алгебре (сложение, вычитание, умножение, де-
ление), но с некоторыми особенностями. Ключевая особенность со-
стоит в том, что нужно внимательно следить за размерностью объек-
тов, над которыми совершаются операции.

Сложение матриц:
	 A B, ,� � � �m n   C� �m n;

	 C A B� � .

Результатом сложения двух матриц, у которых одинаковая размер-
ность, является матрица той же размерности, при этом каждый эле-
мент является суммой соответствующих элементов исходных матриц.

Матрично-скалярное сложение:

	 A� �� m n x, ,� �   B� �m n;

	 B A� � x. �

При сложении скаляров и матриц скаляр добавляется к каждому
элементу исходной матрицы.

Сложение матрицы и вектора (broadcasting):

	 A� �R m n,  x �∈n,  B� �m n;

	 B A x� � .

При сложении матрицы и вектора количество столбцов в матри-
це должно совпадать с размерностью вектора. В данном случае век-
тор распространяется (от англ. to broadcast) по всем строкам матрицы.

23

Базовые понятия линейной алгебры

Стоит отметить, что в строгом математическом смысле такой опе-
рации нет, однако она реализована в библиотеке NumPy языка Python.

Умножение матрицы на матрицу:

	 A � �� �� �
aij m n

,  B � �� �� �
bij n p

,  C AB� � �� �� �
cij m p

.

Умножение матрицы на матрицу — самое требовательное к размер-
ностям исходных матриц действие. Можно умножать матрицу на ма-
трицу только в том случае, если количество столбцов первой матрицы
совпадает с количеством строк второй. При этом размерность итого-
вой матрицы будет следующей: количество строк будет равно коли-
честву строк первой матрицы, а количество столбцов — количеству
столбцов второй матрицы.

При этом каждый элемент итоговой матрицы определяется исхо-
дя из следующих соображений: c a bij k

n

ik kj�
��� 1

. Кроме того, в общем слу-
чае AB BA≠ .

Стоит также упомянуть операцию поэлементного умножения (про-
изведение Адамара): вычисления производятся по аналогии с поэле-
ментным сложением. Разумеется, размерности исходных матриц долж-
ны совпадать:

	 A � �� �� �
aij m n

,  B � �� �� �
bij m n

;  A B � �� �� �
a bij ij m n

.

Транспонирование матрицы:

	 A �� �m n;  AT n m� � .

Иногда возникает необходимость «повернуть» матрицу, т. е. поме-
нять местами столбцы и строки — такая операция называется транс-
понированием.

Если выполнить операцию транспонирования два раза, мы вер-
немся к исходной матрице:
	 A ATT = .

А вот деления матриц не существует. Есть своеобразный аналог де-
ления из школьной алгебры: домножение на обратную матрицу. Об-
ратная матрица соответствует следующему условию:

	 A A A A I� � � �� �1 1 ,
где I� — единичная матрица.

24

Глава 1. Машинное обучение: общие сведения и понятия

Ключевые понятия математического анализа

Итак, мы вспомнили, что такое объекты и какие базовые опера-
ции можно с ними производить. Однако для решения практических
задач требуется более сложное взаимодействие между объектами. Для
этого понадобятся понятия из математического анализа, которые опи-
сывают функции.

Функция в математике — это соответствие между элементами двух
множеств, правило, по которому каждому элементу первого множе-
ства соответствует один и только один элемент второго множества.
Схожая аналогия существует также и в программировании.

Самый простой пример функции — это функция, которая «ничего
не делает». Такая функция берет на вход переменную x и возвращает ее.

Функции можно представить по-разному, можно в виде матема-
тического выражения: f x x� � � , а можно в виде графика (рис. 1.13, а).
Как видно, данная функция выглядит как прямая линия.

У функции могут быть дополнительные параметры, напри-
мер входные данные можно умножить на скаляр и добавить скаляр:
f x x� � � � �0 5 1. . График такой функции представлен на рис. 1.13, б, он
все еще выглядит как прямая линия. Подобные функции, выходной
аргумент которых пропорционален входному аргументу, называют-
ся линейными.

Функции бывают также и нелинейными. Например, на начальном
этапе использования нейронных сетей была достаточно распростра-
нена сигмоидная функция, которую также называют логистической,
она выражается уравнением f x

e x� � �
� �

1

1
 (рис. 1.13, в). Другим при-

мером нелинейной функции из мира нейронных сетей является изо-
браженная на рис. 1.13, г, функция ReLU (Rectified Linear Unit — ли-
нейный выпрямитель): f x x� � � � �max ,0 .

Для анализа поведения некоторой функции часто используют дру-
гую функцию, которая называется производной. Производная функции
в точке — это скорость изменения функции в данной точке. Произво-
дную можно определить как предел отношения приращения функции
к приращению аргумента:

	 �� � � � � � � �
�

�
�� � � � �

�
� �

f x
f x f x

x x

f x x f x

xx x x x0
0

0
0

0 0

0

lim lim lim
� �

�
� ��

� �
0

�
�
f x

x
.

25

Ключевые понятия математического анализа

а б

в

г

Рис. 1.13. Примеры линейных (а, б) и нелинейных (в, г) функций

На рисунке 1.14 представлены примеры производных для линей-
ной функции (а), логистической функции (б) и ReLU (в).

Так, видно, что скорость изменения линейной функции посто-
янна, логистической функции — зависит от области значений, а для
функции ReLU меняется скачкообразно.

Ниже представлены те функции и их производные, которые до-
статочно знать для успешного усвоения материала данного учебно-
методического пособия:

Функция Производная
c — константа 0

x 1
x m m xm� �1

ln x� � 1

x

26

Глава 1. Машинное обучение: общие сведения и понятия

Функция Производная
e x e x

f x g x� � � � � � �� � � � � � � � � � �f x g x f x g x

с f x� � � с f x� � ��

y f t� � �
t g x� � �

�
�

�
�
�

�
�

y

x

y

t

t

x

а

б в

Рис. 1.14. Примеры функций и их производных

Отдельно стоит упомянуть последнюю строку в таблице — так на-
зываемое цепное правило: если y — это функция от переменной t, а t,
в свою очередь, зависит от переменной x, тогда производная y по пе-
ременной t будет равна производной y по переменной t, помноженной
на производную t по переменной x.

Функции могут зависеть от разных переменных. Например, для
функции f x w b wx b, ,� � � � можно посчитать производные по трем пе-
ременным — x, w, b. Если мы считаем производную ∂

∂
f

x
, то остальные

переменные считаются константами.
Производные по отдельным переменным называются частными

производными. Вектор, составленный из частных производных, назы-

27

Ключевые понятия математического анализа

вается градиент. Для упомянутой выше функции f градиент будет вы-
глядеть следующим образом:

	 � � � � �
�

�
�

�
�

�
��

�
��
� � �f x w b

f

x

f

w

f

b
w x, , , , , ,1 .

Отдельно стоит рассмотреть производную квадратичной функции
f x x� � � 2 . Напомним, что мы определили: в общем случае цель обуче-
ния модели — это минимизация функционала потерь, Q a

a
, min.X

A
� ��

�

В качестве примера функционала потерь достаточно часто использу-
ется именно квадратичная функция. Допустим, у этого функционала
всего один параметр — w (рис. 1.15).

Рис. 1.15. Квадратичная функция и ее производная

Для того чтобы найти минимум этой функции, нужно приравнять
производную этой функции к нулю. Значение параметра w0, при ко-

тором производная
dQ w w

dw

�� �0 равна нулю, будет соответствовать па-

раметру, минимизирующему исходный функционал. Запомним это.
С другой стороны, допустим, мы подобрали значения параметра

случайным образом и хотим оценить, насколько хорош этот параметр
и можно ли его как-то изменить, используя производную. Пусть
dQ w

dw

� �� �
� �

2
4. Что это значит? В этой точке функция убывает (про-

изводная отрицательная), т. е. если продолжать увеличивать параметр,

28

Глава 1. Машинное обучение: общие сведения и понятия

то мы, скорее всего, придем к минимуму функции. Аналогично рас-

смотрим
dQ w

dw

�� �
�

4
8. Производная положительная, а значит, функ-

ция возрастает. Причем возрастает быстрее, чем в точке w � �2. Это оз-
начает, что если мы уменьшим параметр, то приблизимся к минимуму
функции. При этом нужно сделать больший шаг, поскольку абсолют-
ная величина производной больше. Эта идея изменения параметров
в направлении, обратном знаку производной, на величину, пропор-
циональную значению производной, легла в основу алгоритма гради-
ентного спуска, который мы более подробно рассмотрим в 3‑й главе.

Контрольные вопросы

1.	 Какие числовые признаки называются дискретными, а какие —
непрерывными? Приведите собственные примеры.

2.	 Опишите разницу между обучением с учителем и обучением
без учителя.

3.	 Опишите разницу между задачами классификации и регрессии.
4.	 Если вас попросят создать программу, которая будет опреде-

лять кошку или собаку по изображению, к какому типу задач
машинного обучения относится эта просьба?

5.	 Почему в качестве альтернативы простому использованию всех
тренировочных данных рекомендуется выполнять проверку мо-
дели на валидационных данных?

6.	 Даны три матрицы A, B, C. Матрица A имеет размеры 5 × 4, B —
размеры 4 × 6, C имеет размеры 3 × 5. Укажите все возможные
матрицы, которые можно перемножить между собой.

7.	 Найдите градиент функции f x y z yx y e z, , ln .� � � � � � � �2

8.	 Найдите частные производные сложной функции E y y� �()

2,
y wx b � � по переменным w и b.

9.	 Найдите частные производные сложной функции
E y y y y� � �� � �� �ln ln , 1 1 y

e z
 �

� �

1

1
 по переменной z.

29

Глава 2.
Исследовательский анализ данных

В этой главе рассмотрим действия, с которых нужно начи-
нать анализ данных, перед тем как применять к ним про-
стые и сложные алгоритмы машинного обучения.

В качестве набора данных будет использоваться набор Cars, он
представляет собой статистику параметров автомобилей на вторичном
рынке. Набор включает ряд категориальных и численных значений,
составляющих одну запись (строку). Каждый столбец в записи — это
отдельный признак. Среди указанных признаков приведены целевой
для задачи предсказания (регрессии) — цена автомобиля, а также це-
левой для задачи классификации — тип трансмиссии. Последняя за-
дача может быть рассмотрена как пример задачи на заполнение про-
пусков (если продавец не указал соответствующий параметр).

Для начального анализа данных рекомендуется использовать би-
блиотеку Pandas [12].

Библиотека Pandas для анализа данных

Для начала работы с любой библиотекой необходимо импорти-
ровать ее:

import pandas as pd

Теперь нужно загрузить данные в структуру Pandas датафрейм
(Dataframe). Она представляет собой двумерную структуру данных с
именными столбцами потенциально разных типов - ее можно воспри-
нимать как файл Excel, но на языке Python.

https://t.me/it_boooks/2

30

Глава 2. Исследовательский анализ данных

Считывание файлов в датафрейм

Для загрузки данных можно использовать функцию pd.read_
csv(path,delimiter). Для успешного использования необходимо ука-
зать путь (path) к файлу. В общем случае путь - это строка, содержа-
щая полный путь к файлу и название файла.

Можно также указать разделитель (delimiter), в нашем случае
это «,». Но для разных файлов могут использоваться и другие типы
разделителей, такие как «;», « » (пробел), «\t» (табуляция). Вы може-
те проверить используемый в файле разделитель, предварительно от-
крыв его в текстовом редакторе, например Notepad++.

Следующая строка загрузит файл с названием cars.csv, который
лежит в папке /content/, разделитель – запятая:

df = pd.read_csv(‘/content/cars.csv’, delimiter = ‘,’)

Для того чтобы визуализировать содержание загруженного датаф-
рейма в блокнотах Google Colab, достаточно просто запустить отдель-
ную ячейку, в которой прописана переменная, содержащая датафрейм.
В других случаях можно воспользоваться функцией display. На ри-
сунке 2.1 представлена визуализация датафрейма набора Cars.

Рис. 2.1. Визуализация датафрейма набора Cars

31

Библиотека Pandas для анализа данных

Общая информация о датафрейме

Чтобы получить общую информацию о содержимом датафрейма,
можно применить к нему метод .info(). Должна появиться следую-
щая информация (рис. 2.2): количество столбцов, их имена, тип дан-
ных в каждом столбце, количество пропущенных значений для каж-
дого столбца.

Рис. 2.2. Информация о датафрейме набора Cars

Поиск и удаление дубликатов

Повторяющиеся строки в наборе данных могут возникать по мно-
гим причинам: программная ошибка, человеческая ошибка и т. д. При
этом никакой пользы для алгоритмов машинного обучения от вклю-
чения повторных строк не будет.

Вы можете проверить количество повторяющихся строк, приме-
нив метод .duplicated() к датафрейму. В результате получится стол-
бец, который содержит информацию о том, является ли данная стро-
ка повторной или нет. Можно применить метод .sum(), чтобы узнать
количество повторных строк:

df.duplicated().sum()

Для датафрейма набора Cars имеется 3743 дубликата, почти 1/10
от всех данных. Чтобы удалить дубликаты, используем следующую строку:

DF = df.drop_duplicates().reset_index(drop=True)

32

Глава 2. Исследовательский анализ данных

Она означает, что для оригинального датафрейма df мы просим
Python использовать метод удаления дубликатов .drop_duplicates()
и сбросить индексы датафрейма .reset_index(drop=True) — в каче-
стве альтернативы можно сохранить исходные индексы датафрейма.
Результаты вышеупомянутого преобразования сохраняются в новый
датафрейм DF.

Хорошей практикой является размещение результата значитель-
ного преобразования в отдельном датафрейме, чтобы всегда можно
было вернуться к исходному. Вы можете проверить, что все сделано
правильно, оценив количество строк дубликатов в новом датафрейме.

Сохранение датафрейма в файл

Для сохранения датафрейма в файл можно воспользоваться мето-
дом .to_csv(path, index), которому необходимо указать полный путь
и название файла, в который вы хотите сохранить данные (path). Кро-
ме того, можно указать, необходимо ли сохранять индексы строк (бу-
лева переменная index). Так, следующая строка сохранит датафрейм
без дубликатов в папку /content/ с названием ‘cars_ no_dup.csv’:

DF.to_csv(‘/content/cars_no_dup.csv’,index=False)

Представление части датафрейма

Здесь стоит упомянуть два метода: .head(n) и .tail(n). Эти два
метода можно применить к датафрейму для визуализации первых n
или последних n строк. Это очень полезно, когда датафрейм довольно
большой и не может быть легко визуализирован полностью. Попро-
буйте сами: покажите первые 6, а затем последние 9 строк датафрейма.

Индексация

Одним из способов получения определенных элементов датаф-
рейма является использование атрибута .loc. Приведем несколько
примеров:

•	 взятие одной ячейки: DF.loc[1437,’Transmission’] — этот
код вернет элемент из строки с индексом 1437 в столбце
‘Transmission’;

33

Библиотека Pandas для анализа данных

•	 взятие одной колонки в формате серий (Series):
DF.loc[:,’Transmission’] — этот код вернет все элементы в
столбце ‘Transmission’ в виде вектора;

•	 взятие одной колонки в формате датафрейма:
DF.loc[:,[‘Transmission’]] — этот код вернет все элементы
в столбце ‘Transmission’ в виде матрицы;

•	 взятие нескольких колонок: DF.loc[:,[‘Transmission’,’Ye
ar’]] — этот код вернет все элементы в столбцах ‘Transmission’
и ‘Year’;

•	 взятие нескольких колонок подряд (среза столбцов):
DF.loc[:,’Make’:’Style’] — этот код вернет все элементы
в столбцах, начиная с ‘Make’ по ‘Style’ (включительно).

Для случаев построчной индексации:
•	 взятие одной конкретной строки в формате серий:

DF.loc[69,:] — этот код вернет все элементы из строки с ин-
дексом 69;

•	 взятие одной конкретной строки в формате датафрейма:
DF.loc[69:69,:];

•	 получение среза строк DF.loc[322:1437,:] — этот код вернет
все элементы в строках, начиная с индекса 322 и заканчивая
индексом 1437 (включительно).

Конечно же, можно комбинировать срезы по строкам и срезы
по столбцам: DF.loc[227:229,’Make’:’Fuel_type’] — этот код вер-
нет все элементы в строках, начиная с индекса 227 и заканчивая ин-
дексом 229 (включительно), и в столбцах с ‘Make’ по ‘Fuel_type’.

Альтернативой использования атрибута .loc является использо-
вание атрибута .iloc. Основное различие между ними заключается
в следующем: .loc работает с названиями столбцов, а .iloc исполь-
зует вместо этого целочисленную нумерацию.

Доступно также логическое индексирование (Boolean Indexing),
когда необходимо взять такую часть датафрейма, которая соответству-
ет некому условию. Например, строка DF[DF[‘Transmission’]==’Manu
al’] вернет все элементы исходного датафрейма, для которых выпол-
няется условие, что признак в столбце ‘Transmission’ равен ‘Manual’.

Некоторые функции не могут работать с датафреймами напрямую,
поскольку рассчитаны на то, что данные подаются в формате массивов,
например numpy array. Чтобы перейти от датафреймов к массивам, до-
статочно применить метод .values к необходимой части датафрейма.

34

Глава 2. Исследовательский анализ данных

Сортировка DataFrame

Для сортировки данных в датафрейме можно воспользоваться ме-
тодом .sort_values — нужно указать столбец, по которому необходимо
отсортировать. Например, строка DF.sort_values(by = ‘Price(euro)’)
отсортирует строки датафрейма по значениям столбца ‘Price(euro)’.

По умолчанию метод .sort_values сортирует значения по возрас-
танию. Кроме того, можно указать «направление» сортировки, исполь-
зуя переменную ascending. Например, приведенный ниже код сорти-
рует по убыванию столбца ‘Year’:

DF.sort_values(by = ‘Year’, ascending= False)

Визуализация данных

Для визуализации данных можно использовать «стандартную» для
Python библиотеку визуализации Matplotlib [13; 14]. Однако при ис-
пользовании датафреймов Pandas целесообразно пользоваться библи-
отекой Seaborn [15; 16]:

import seaborn as sns

Seaborn – это библиотека для создания разнообразной графики на
Python, которая тесно интегрирована со структурами данных Pandas.

Один из лучших графиков для ознакомления с данными – это пар-
ный график (pairplot). Он отображает все возможные попарные ком-
бинации числовых признаков набора данных в виде скаттерограмм, а
по диагонали строятся гистограммы распределений. Но если призна-
ков много, то и времени на это уйдет немало - лучше разделить да-
тафрейм на несколько частей. Категориальные признаки можно ви-
зуализировать, используя, например, цвет данных. При этом Seaborn
позволяет реализовать визуализацию достаточно просто, буквально
в одну строку:

sns.pairplot(data = DF, hue =’Transmission’)

Для того чтобы построить график, достаточно указать датафрейм,
из которого будут взяты численные признаки в переменную data, до-
полнительно можно указать в качестве переменной hue (цвет) один
из столбцов с категориальными данными. На рисунке 2.3 представлен
pairplot для набора данных Cars.

35

Предварительная обработка данных

Возможности библиотеки Seaborn для визуализации данных огра-
ничены только воображением пользователя. Ознакомиться с другими
визуализациями Seaborn можно по следующей ссылке: [17].

Рис. 2.3. Визуализация pairplot для набора данных Cars

Предварительная обработка данных

После ознакомления с данными необходимо выполнить их пред-
варительную обработку. Она зависит от типа данных. Для того чтобы
определить типы данных, можно воспользоваться следующим кодом:

cat_columns = []
num_columns = []

36

Глава 2. Исследовательский анализ данных

for column_name in df.columns:
 if (df[column_name].dtypes == object):
 cat_columns +=[column_name]
 else:

 num_columns +=[column_name]

В переменную cat_columns попадут названия всех колонок с ка-
тегориальными признаками, а в num_columns — с числовыми призна-
ками. Обсудим методы предварительной обработки, характерные для
разных типов данных.

Предварительная обработка числовых данных

Начать анализ числовых данных стоит с оценки статистических по-
казателей. В библиотеке Pandas это можно сделать в одну строку с ис-
пользованием метода .describe():

DF[num_columns].describe()

На рисунке 2.4 представлен результат применения метода
.describe() к набору данных Cars.

Рис. 2.4. Результат применения метода .describe()
к числовым признакам набора данных Cars

В результате демонстрируются следующие оценки: количество дан-
ных в столбце (count), среднее значение (mean), стандартное отклоне-
ние (std), минимальное значение (min), 25, 50 и 75 перцентили (25%,
50%, 75%), максимальное значение (max).

37

Предварительная обработка данных

Сопоставление среднего, минимального и максимального значе-
ний, а также перцентилей позволяет оценить, существуют ли в дан-
ных аномалии – редко встречающиеся значения. Для этого пригодит-
ся и визуализация гистограмм распределения. Иногда, как, например,
для колонки ‘Price(euro)’, числовые признаки могут изменяться
в большом диапазоне: от 1 до 107, хотя среднее значение, 25 и 75 пер-
центили сконцентрированы в диапазоне 10 103 4… . Тогда для визуали-
зации гистограммы распределения рекомендуется использовать лога-
рифмический масштаб. Это говорит о наличии в наборе данных редких
аномально высоких и аномально низких значений. Если какие-либо
признаки встречаются крайне редко, то на таких значениях сложно
обучить модель с высокой степенью обобщения. Поэтому, как прави-
ло, от редких высоких и низких значений признаков избавляются.

При этом аномалии могут быть вызваны ошибками при заполнении
данных. Так, ошибочными выглядят значения столбца ‘Price(euro)’
меньше 100 или старые автомобили с общим пробегом меньше, чем
1000 км.

В датафреймах Pandas можно удалить аномальные значения, ис-
пользуя метод .drop и логическую индексацию. Ниже представлены
рекомендуемые условия по удалению аномальных значений:

Старые автомобили с низким пробегом
question_dist_year = DF[(DF.Year <2021) & (DF.Distance < 1100)]
DF = DF.drop(question_dist_year.index)
Аномально большой пробег
question_dist = DF[(DF.Distance > 0.5e6)]
DF = DF.drop(question_dist.index)
Слишком малые значения объема двигателя
question_engine = DF [DF[“Engine_capacity(cm3)”] < 200]
DF = DF.drop(question_engine.index)
Слишком большие значения объема двигателя
question_engine = DF[DF[“Engine_capacity(cm3)”] > 5000]
DF = DF.drop(question_engine.index)
Аномально низкие цены
question_price = DF[(DF[“Price(euro)”] < 101]
DF = DF.drop(question_price.index)
Слишком дорогие автомобили, которых мало
question_price = DF[DF[“Price(euro)”] > 1e5]
DF = DF.drop(question_price.index)
Слишком старые автомобили, которых мало
question_year = DF[DF.Year < 1971]
DF= DF.drop(question_year.index)

38

Глава 2. Исследовательский анализ данных

Если рассматривать данные в целом, видно, что разные столбцы
имеют разный разброс данных: год и объем двигателя измеряются в ты-
сячах, стоимость измеряется в десятках тысяч, а пробег - в сотнях ты-
сяч единиц. Проще сопоставлять данные, если они измеряются в од-
ном диапазоне. Для приведения численных данных к единой шкале
существуют различные подходы: стандартизация, нормализация, сте-
пенное преобразование.

Стандартизация
Стандартизация, или z-нормировка, сводится к вычитанию из ма-

трицы признаков X p� � �n× вектора μj средних значений для каждого
признака и делению полученной разности на вектор σj стандартных
отклонений для каждого признака:

	 � �
�� �

X
xij j

j

�

�
.

Таким образом, у новой матрицы признаков X ′ будет нулевое
среднее и единичная дисперсия. При этом стандартизация – это
линейная операция, т. е. распределение признаков не изменится,
изменится только масштаб, в рамках которого это изменение про-
исходит.

Чтобы реализовать стандартизацию на датафреймах Pandas, доста-
точно применить методы .mean() и .std() для оценки среднего зна-
чения M и стандартного отклонения STD для каждого столбца:

M = DF[num_columns].mean()

STD = DF[num_columns].std()

Затем происходит поэлементное вычитание из исходного дата
фрейма и деление:

DF_scaled = (DF[num_columns]-M)/STD

На рисунке 2.5 представлено распределение признака Distance
до и после операции стандартизации. Как видно, распределение дан-
ных остается неизменным — меняются границы диапазона измерений.

Отдельно стоит отметить, что при выполнении стандартизации
(как и других методов предварительной обработки) необходимо со-
хранять параметры преобразования, поскольку именно эти преобра-

39

Предварительная обработка данных

зования необходимо совершать на новых данных, т. е. для тестового
набора данных нужно вычитать среднее не тестового набора, а трени-
ровочного.

Рис. 2.5. Результат применения стандартизации
к столбцу Distance набора данных Cars

Нормализация
Нормализация - это тоже линейное преобразование численных при-

знаков X p� �n× . Но в отличие от стандартизации нормализация пере-
водит распределение в интервал от 0 до 1:

	 � �
�� �
�

X
x x

x x

ij j

j j

min

max min
()

.

 Как и стандартизация, нормализация тоже просто реализует-
ся с использованием датафреймов Pandas. Используются методы
.min() и .max() для поиска минимальных и максимальных значе-
ний по столбцам:

Xmin = DF[num_columns].min()

Xmax = DF[num_columns].max()

Затем аналогично из исходного датафрейма происходит поэле-
ментное вычитание и деление:

DF_norm = (DF[num_columns]- Xmin)/(Xmax - Xmin)

На рисунке 2.6 представлено распределение признака Distance до
и после операции нормализации. Как видно, распределение данных
по-прежнему остается неизменным, меняются только границы диа-
пазона измерений.

40

Глава 2. Исследовательский анализ данных

Рис. 2.6. Результат применения нормализации
к столбцу Distance набора данных Cars

Степенное преобразование
Стоит отметить, что корректное применение преобразований стан-

дартизации и нормализации требует нормального распределения чис-
ловых данных. Однако такое происходит не всегда. В иных случаях
рекомендуется предварительно использовать нелинейные преобразо-
вания (Power Transform), и уже потом результат нелинейного преобра-
зования стандартизировать или нормализовать. К нелинейным преоб-
разованиям относят логарифмирование и степенные преобразования
(как правило, это корни, т. е. степени меньше единицы).

Так, на рис. 2.7 представлено распределение признака Price(euro)
до и после операции степенного преобразования. В этом примере мы
сначала логарифмировали столбец, а потом применили стандартизацию.

Рис. 2.7. Результат применения степенного преобразования
к столбцу Price(euro) набора данных Cars

Стоит подчеркнуть, что заранее нельзя узнать, какой из типов пред-
варительной обработки данных лучше скажется на предсказаниях мо-

41

Предварительная обработка данных

дели. Поэтому тип предварительной обработки можно рассматривать
как дополнительный гиперпараметр модели.

Предварительная обработка категориальных данных

Анализ категориальных данных начинается с оценки частоты
встречаемости отдельных категорий в рамках столбцов. На первом
этапе необходимо воспользоваться методом .nunique() и оценить ко-
личество уникальных значений для каждой категории:

DF[cat_columns].nunique()

Для набора данных Cars столбцы Make и Model имеют 78 и 777 уни-
кальных значений соответственно.

Далее необходимо оценить частоту встречаемости уникальных зна-
чений с использованием метода .value_counts():

сounts = DF.Make.value_counts()

Можно заметить, что для столбца Make порядка 15 уникальных зна-
чений встречаются 10 и меньше раз. Для выборки из ~30000 объектов это
слишком мало. Но в отличие от численных признаков, для которых мы
удаляли редко встречающиеся значения, для категориальных призна-
ков можно сделать замену на единый класс – «редкий» (rare). Для это-
го воспользуемся логическим индексированием и методом .replace():

rare = counts[(counts.values < 25)]

DF[‘Make’] = DF[‘Make’].replace(rare.index.values, ‘Rare’)

Приведение категориальных признаков к числовым
Далее стоит рассмотреть формат хранения категориальных дан-

ных. В наборе данных Cars категориальные данные представляют со-
бой тип данных object и по сути являются строками. Для уменьшения
объема хранимой информации эти данные достаточно часто перево-
дят в числовой формат.

Если уникальных значений не много, то такой перевод удобно реали-
зовать с помощью метода .map() и словаря. Так, в строке ниже мы пре-
образуем столбец Transmission, в котором всего 2 уникальных значения:

42

Глава 2. Исследовательский анализ данных

DF[‘Transmission’] = DF[‘Transmission’].map({‘Automatic’: 1,
‘Manual’: 0})

Однако если уникальных значений много, то такое преобразова-
ние может быть затруднено. Поэтому рекомендуется воспользовать-
ся изменением типа данных от object к category, а затем применить
кодирование отдельных столбцов в числовые значения с помощью
.cat.codes. Полный пример перехода к числовым значениям пред-
ставлен ниже:

DF_ce = df.copy()
DF_ce[cat_columns] = DF_ce[cat_columns].astype(‘category’)

for _, column_name in enumerate(cat_columns):
 DF_ce[column_name] = DF_ce[column_name].cat.codes

Такое кодирование называют порядковым кодированием (Ordinal
Encoding). Стоит отметить, что порядковое кодирование позволило
сократить объем данных примерно на треть: с 2,2 до 1,4 MB.

One-Hot-кодирование
Существуют некоторые алгоритмы, способные работать с катего-

риальными данными в формате порядкового кодирования. Это есте-
ственное кодирование порядковых переменных. Для категориальных
переменных оно налагает порядковое отношение там, где такого от-
ношения может не быть. В общем случае использование этого коди-
рования и разрешение модели принимать естественное упорядочение
между категориями может привести к снижению производительности
или неожиданным результатам (дробные категории).

Использование One-Hot-кодирования (Encoding) достаточно рас-
пространено. Суть его состоит в том, что вместо одного вектора xn×1
категориального признака создается матрица �n m� , где m – количество
уникальных категорий в векторе x. При этом матрица Ξ состоит толь-
ко из 0 и 1. Пример перевода категориального признака с использова-
нием One-Hot Encoding представлен на рис. 2.8.

Категориальный признак «цвет» состоит из 4 уникальных категорий.
В результате One-Hot-кодирования создается 4 новых столбца, по одному
на каждое уникальное значение цвета (красный, зеленый, синий, белый).
Столбцы заполнятся в основном 0, а для тех индексов, которые соответ-

43

Инженерия признаков

ствуют численному значению признака, ставится 1. По сути, One-Hot-
кодирование преобразует вектора категориальных признаков в матрицы
бинарных признаков. Это позволяет придавать некоторый смысл число-
вым значениям категориальных признаков. В библиотеке Pandas такое
кодирование реализуется с помощью метода .get_dummies(). При этом
можно преобразовывать полный датафрейм — One-Hot-кодирование
применится только к столбцам с категориальными данными:

DF_ohe = pd.get_dummies(DF.copy())

Рис. 2.8. Пример реализации One-Hot-кодирования

для признака «цвет»

Стоит отметить, что использование One-Hot-кодирования значи-
тельно увеличивает размер матрицы данных. Поэтому для признаков
с большим количеством уникальных значений рекомендуется пред-
варительно уменьшить количество категорий, объединив редкие ка-
тегории в одну, как было показано ранее.

Инженерия признаков

Достаточно часто необходимо выполнить дополнительные преоб-
разования с исходными признаками, чтобы «помочь» модели выявить
нужные закономерности. Как правило, базовая инженерия признаков
сводится к умной комбинации исходных признаков. Рассмотрим не-
сколько примеров для набора данных Cars.

Есть столбец данных Year (год выпуска автомобилей). Но с точки
зрения предсказания стоимости автомобиля сам год как таковой име-

44

Глава 2. Исследовательский анализ данных

ет не очень большое значение. Больший смысл несет «возраст» авто-
мобиля, т. е. количество лет, которое прошло от года выпуска до на-
стоящего времени:

DF[‘Age’] = 2022 - DF.Year

Другим важным признаком является средний пробег в год, т. е. на-
сколько интенсивно автомобиль использовался в среднем за год. Это
чуть более полезная информация, чем просто общий пробег:

DF[‘km_year’] = DF.Distance/DF.Age

Инженерия новых признаков – достаточно творческий процесс,
и он иногда требует чуть более глубокого погружения в предметную
область. При этом можно проверять различные гипотезы - например,
создать категориальный признак, связанный с объемом двигателя: если
объем двигателя больше, допустим, 3 литров, то его стоит пометить
отдельной категорией. Это связано с тем, что автомобили с бо́льшим
объемом двигателя меньше востребованы из-за большего расхода и по-
вышенного налогообложения, что тоже сказывается на цене.

При добавлении признаков в набор данных на основе имеющих-
ся важно отслеживать, не добавляем ли мы в модель то, что в ней уже
есть. Рекомендуется отслеживать коэффициент корреляции между
признаками, и если он близок к единице, то какой-то из признаков
рекомендуется удалить.

В библиотеке Pandas вычисление матрицы корреляции делается с
помощью метода .corr(). Для лучшего восприятия информации до-
бавим «раскраску» полученных результатов:

cm = sns.color_palette(“vlag”, as_cmap=True)
DF.corr().style.background_gradient(cmap=cm, vmin = -1, vmax=1)

В результате должен получиться раскрашенный датафрейм, похо-
жий на рис. 2.9.

Видно, что признаки Age и Year имеют 100%-ю обратную корреля-
цию. Что неудивительно, ведь один признак — это разность констан-
ты и второго признака. С другой стороны, корреляция между новым
признаком km_year не превышает 0.5 — это говорит о том, что дан-
ный признак может нести дополнительную информацию.

45

Практические задания

Рис. 2.9. Матрица корреляция для набора данных Cars

Практические задания

1.	 Скачайте набор данных Cars (https://github.com/dayekb/Basic_
ML_Alg) и используйте функции и методы библиотеки Pandas
для загрузки и начальной работы с данными.

2.	 Выполните визуализацию данных с использованием библи-
отеки Pandas. Попробуйте построить разные виды графиков
для числовых признаков — скаттерограммы, гистограммы и
т. д. Для скаттерограмм попробуйте использовать категори-
альные данные для таких параметров графиков, как оттенок
(hue), размер маркера (size), тип маркера (style). Таким об-
разом, вы можете объединить информацию о нескольких при-
знаках в один двумерный график.

3.	 Попытайтесь добавить в модель дополнительные признаки на
основе имеющихся. Проверьте корреляцию новых признаков
с добавленными.

4.	 Выполните предварительную обработку данных. Сохраните
результаты разных методов предварительной обработки в раз-
ные файлы, чтобы потом была возможность протестировать
различные гипотезы.

Контрольные вопросы

1.	 Допустим, у вас есть файл с данными, который называется ‘iris.
csv’. Этот файл находится в папке ‘/data/’. Вы открываете его
в текстовом редакторе и видите следующие первые строки:

46

Глава 2. Исследовательский анализ данных 

 sepal length in cm; sepal width in cm; petal length in
cm; petal width in cm; class

 5.1; 3.5; 1.4; 0.2; 0

 Как должна выглядеть команда для считывания данных в да-
тафрейм Pandas?

2. Для набора данных Cars после удаления дубликатов выберите
из полного датафрейма строки с индекса 69 по 322. Отсорти-
руйте полученный датафрейм по колонке ‘Distance’ по убы-
ванию. Какое значение колонки ‘Style’ у полученного датаф-
рейма во второй строке сверху?

3. Для набора данных Cars оцените количество строк, которые
были удалены после анализа гистограмм распределения и уда-
ления аномальных значений.

4. Для набора данных Cars назовите самую распространенную
марку автомобилей (столбец Make).

5. Визуализируйте скаттерограмму для двух столбцов — Distance
и Year — набора данных Cars с использованием столбца
Transmission в качестве цвета маркера (hue). К какому типу
Transmission относится точка, которая наиболее близка к ко-
ординатам (Year = 1980, Distance = 500 000)?

6. Представим, что вы визуализировали некий набор данных
(рис. 2.10).

Рис. 2.10. Данные, линейно разделяемые с использованием грамотного
конструирования признаков

 Какие новые признаки, основанные на имеющихся, необхо-
димо сконструировать, чтобы иметь возможность отделить все
красные точки от всех синих точек с помощью прямой линии?

47

Глава 3.
Линейная регрессия

В этой главе мы рассмотрим, пожалуй, самый простой алгоритм
в машинном обучении – линейную регрессию, которая, не-
смотря на свою простоту, может применяться как стартовая

точка при анализе почти любых наборов данных.
Интересный исторический факт. Два выдающихся математи-

ка заявили об авторстве алгоритма, и 200 лет спустя вопрос остается
нерешенным. В 1805 г. французский математик А. М. Лежандр опу-
бликовал метод подгонки линии к набору точек. Он пытался предска-
зать местонахождение кометы (для справки: в то время астронавигация
была наиболее ценной в мировой торговле наукой, так же как искус-
ственный интеллект – «новое электричество» в наше время).

 Четыре года спустя немецкий ученый К. Ф. Гаусс настаивал
на том, что он использовал тот же метод с 1795 г., но считал его слиш-
ком тривиальным, чтобы о нем писать. Утверждение Гаусса побудило
Лежандра анонимно опубликовать приложение, в котором отмеча-
лось, что «один очень знаменитый геометр без колебаний присвоил
этот метод».

Дальнейшее развитие раскрыло широкий потенциал алгоритма.
В 1922 г. английские статистики Р. Фишер и К. Пирсон показали, как
линейная регрессия вписывается в общую статистическую структуру
корреляции и распределения, что сделало ее полезной во всех науках.
И почти столетие спустя появление компьютеров предоставило дан-
ные и вычислительную мощность, позволяющую извлечь из них го-
раздо больше пользы.

Стоит также отметить, что наиболее распространенным типом ней-
ронов в нейронной сети является модель линейной регрессии, за кото-
рой следует нелинейная функция активации, что делает линейную ре-
грессию фундаментальным строительным блоком глубокого обучения.

48

Глава 3. Линейная регрессия

Генерируемые данные

Перед тем как использовать алгоритм на реальных данных, в учеб-
ных целях бывает полезно тестировать его на данных, которые можно
менять самостоятельно: чтобы рассмотреть различные ситуации и уви-
деть, как это влияет на результат.

Реализуем с помощью функции true_fun создание одномерных
данных, которые могут быть некоторыми функциями от входных дан-
ных X:

def true_fun(x, a=np.pi, b = 0, f=np.sin):
 x = np.atleast_1d(x)[:]
 a = np.atleast_1d(a)
 if f is None: f = lambda x:x
 x = np.sum([ai*np.power(x, i+1) for i,ai in enumerate(a)],

axis=0)
 return f(x+ b)

В этой функции x — входные данные, a — коэффициент, на ко-
торый данные умножаются, b — константная добавка, f — функция,
которая применяется к входным данным. Стоит отметить, что для по-
линомиальных зависимостей достаточно использовать в качестве a
список коэффициентов. Созданные данные могут быть как линей-
ными, f = None, так и гармоническими (np.sin, np.cos) или экспо-
ненциальными np.exp.

В учебных целях (допускающих не 100%-ю точность) мы также
добавим шумы к данным с помощью функции noises. Аргументами
этой функции являются shape (размер массива) и noise_power (вели-
чина шума):

def noises(shape , noise_power):

 return np.random.randn(*shape) *noise_power

Соберем это все в рамках единой функции dataset. Новыми ар-
гументами в этой функции становятся N – количество точек, которые
мы хотим сгенерировать, x_max — максимальное значение входных
данных и булева переменная random_x. Если random_x = True, тогда
будут случайным образом сгенерированы N точек, иначе данные бу-
дут распределены равномерно в диапазоне от 0 до x_max.

49

Генерируемые данные

def dataset(a, b, f = None, N = 250, x_max =1, noise_power
= 0, random_x = True, seed = 42):

 np.random.seed(seed)

 if random_x:
 x = np.sort(np.random.rand(N))*x_max
 else:
 x = np.linspace(0,x_max,N)

 y_true = np.array([])

 for f_ in np.append([], f):
 y_true=np.append(y_true, true_fun(x, a, b, f_))

 y_true = y_true.reshape(-1,N).T
 y = y_true + noises(y_true.shape , noise_power)

 return y, y_true, np.atleast_2d(x).T

Выходными параметрами этой функции являются y_true (истин-
ный вариант зависимости), y (зашумленный вариант), x (входные дан-
ные).

Приведем примеры команд для генераций данных и их визуали-
зации:

• линейная зависимость y x x� � � �� �2 2 0 1, , ,� � (рис. 3.1):

y, y_true, x = dataset(a = 2, b = 2, f = None, N = 100, x_

max =1, noise_power = 0.1, seed = 42)

Рис. 3.1. Сгенерированные данные с линейной зависимостью

50

Глава 3. Линейная регрессия 

• полиномиальная зависимость y = –x + 2x2 – 2x3 – 1, x ∈ [0, ..., 1.25]
 (рис. 3.2):

y, y_true, x = dataset(a = [-1,2,-2], b = -1, f = None, N = 250, x_
max =1.25, noise_power = 0.05, seed = 42)

Рис. 3.2. Сгенерированные данные с полиноминальной зависимостью

• гармоническая зависимость y x x� �� � � ��
��

�
��

cos , , ,3 0
4

� �
�� �

(рис. 3.3):

y, y_true, x = dataset(a = 3*np.pi,b = 0, f = np.cos, N = 25,

x_max =np.pi/4, noise_power = 0.1, seed = 42)

Рис. 3.3. Сгенерированные данные с гармонической зависимостью

51

Модель линейной регрессии

Модель линейной регрессии

Для начала построим самую простую зависимость – линейную, она
представлена на рис. 3.1. Проведем линейную регрессию, т. е. оценим
коэффициенты аппроксимации зашумленных данных функцией вида

	 y x  � �a b,

где y i
 — это оценки целевых значений yi; a и b — коэффициенты мо-

дели.
В самом простом случае (для этого набора данных) мы могли бы

найти коэффициенты a и b аналитически. Если бы не было шумов
(была бы чистая линия), коэффициенты можно было бы найти клас-
сическим решением линейной системы из двух независимых уравне-
ний. При наличии шумов двух уравнений может быть недостаточно,
оценки коэффициентов по каждым двум уравнениям могут различать-
ся. Поэтому желательно иметь переопределенную систему (в которой
число уравнений больше числа переменных). Такую систему можно
решать по-разному.

Известно (теорема Гаусса — Маркова), что если шум в системе
имеет нормальное распределение, то оптимальным будет решение ме-
тодом наименьших квадратов. Для поиска такого решения предполо-
жим, что мы производим такие оценки коэффициентов a и b , которые
дают результат y c ошибкой ε. Ошибку определим как �i � �y yi i

 . Те-
перь наша задача - минимизация ошибки ε для каждого значения x.

В случае метода наименьших квадратов задача сводится к миними-
зации одного значения среднего квадрата ошибки. Для линейной ре-
грессии такую задачу можно решить аналитически, однако, как мож-
но будет увидеть ниже, такое решение не всегда рационально.

Для зависимостей более сложных, чем линейная, можно предпо-
ложить, что указанной выше модели недостаточно. Допустим, нам
неизвестно, как лучше всего аппроксимировать зависимость, какую
функцию использовать.

В более общем случае можно ввести модель целевой переменной как

	 y x wi
j

p

ij j i� �
�
�

0

� ,

52

Глава 3. Линейная регрессия

или
	 y x w x w x w x wi i i i ip p i� � � � � � � � � �0 0 1 1 2 2 ... ,�

или
	 y Xi i

T
i� �w � ,

где yi — целевой показатель предсказания для i записи в наборе дан-
ных; X xi ij j

p= ={ } 1 — набор входных параметров для i результата;
w w j j

p= ={ } 1 — набор весовых параметров, которые необходимо подо-
брать в модели; εi — некоторый набор случайных (не объясняемых мо-
делью, остаточных) значений, будем считать их случайным шумом.

Стоит отметить, что в формуле суммирование происходит по ин-
дексу j от 0. Это связано с тем, что, как правило, в модель добавляют
«нулевой» столбец, значения в котором для всех i равны 1 — это позво-
ляет оценить независимый коэффициент w0, который иногда называ-
ют смещением (bias). Однако добавлять его в модель необязательно.

Данная модель соответствует как линейной регрессии одной или
нескольких переменных, так и полиномиальной или любой другой, где
признаки xij можно считать независимыми составляющими. В качестве
примера регрессионная модель одной переменной будет иметь вид

	 y x wi
j

ij j
 �

�
�

0

1

, или y w x wi i
 � � � �1 0 1 1, или y X wi i

T
 = ,

где y i
 — результат предсказания для i записи в наборе данных.
 Введем функцию расчета (предсказания) значений predict. В этой

функции мы задали возможность добавлять или не добавлять в мо-
дель независимый коэффициент с помощью булевой переменной add_
bias. Для учета смещения будем добавлять единичный столбец к вход-
ным данным:

def predict(X, weights, add_bias = True):
 if add_bias:
 X_full = np.column_stack((np.ones(X.shape[0]),X))
 else:
 X_full = X

 return np.dot(X_full, weights)

Теперь рассмотрим решение для обозначенной модели одной пе-
ременной. Введем функцию потерь регрессии loss_func как квадрат
разности между целевыми значениями и их предсказаниями:

53

Модель линейной регрессии

	 L y y L y y x w y X w yi i i i i
j

ij j i i
T

i
 , () ,� � � � � � �

�

�
�

�

�
� � �� �

�
�2

0

2
2

2

где Li — функция потерь для результата (предсказания) с номером i.
В виде функций Python это реализуется достаточно просто:
def loss_func(yhat, y):

 return np.square(yhat - y)

Отметим, что для данного случая одной переменной (в вышепри-
веденных обозначениях) решение могло бы быть найдено как

	 L y y y a x b
i

N

i i
i

N

i i� � � � � �� � �
�

�

�

�

� �
0

1
2

0

1
2 0() ()� � � ,

тогда минимум L будет соответствовать нулям ее производных по a и b:

	

�

�
� � � �� � �

�

�
� � � �

�

�

�

�

�

�

L

a
y a x b x

L

b
y a x

i

n

i i i

i

n

i i



 





2 0

2

0

1

0

1

() ,

(bb� � �

�

�
�
�

�
�
�) .0

Отсюда решение системы уравнений имеет вид

	
a

n xy x y

n x x

b
y a x

n

�
� �� �
� � �

�
� � �

�

�
��

�
�
�

2 2()
,

.

В более общем случае можно было бы записать уравнение как

	 L y X
i

n

i i
T� � �

�

�

�
0

1
2 0()w � или () ;y X T� �w 2 0

тогда
	 �

�
� �� � �

L
y X XT

w
w2 0

или
	 w � �� �() .X X X y X yT T1

Однако если массивы X и y достаточно большие, то такое решение
оказывается весьма сложным вычислительно. Для больших массивов
данных чаще используют численные методы оптимизации. Среди та-
ких методов наиболее зарекомендовал себя метод градиентного спуска.

54

Глава 3. Линейная регрессия

Метод градиентного спуска позволяет итерационно решить задачу
оптимизации. В контексте данного пособия мы будем называть такой
процесс оптимизации обучением. Каждую итерацию принято называть
эпохой. Ниже будет показан принцип обучения методом градиентно-
го спуска и его реализация.

Важно отметить, что особенностью итеративных методов обучения
является потенциальная ситуация переобучения/недообучения в ходе
оптимизации. Проще всего это представить как ситуацию, в которой
мы ошибемся в выбранных значениях коэффициентов. Такое явление
может происходить если, например, модель будет воспринимать все
шумы, помехи и искажения входных данных как важные для точного
ответа. Другими словами, для данных, участвующих в обучении (обу-
чающая выборка), наша ошибка будет стремиться к нулю. Однако для
данных, отличных от обучающей выборки, точность будет невысокой.
Чтобы не допустить этого, на каждом шаге обучения мы будем прове-
рять полученные коэффициенты модели. Для такой проверки будем
использовать так называемую валидационную выборку. Как правило,
валидационная и тренировочная выборки выделяются из одних и тех
же данных. В некоторых случаях кроме этих двух выборок может быть
также и третья, независимая от них. Такая выборка будет необходима
для проверки итоговой точности модели. Итоговую проверочную вы-
борку можно назвать тестовой выборкой. По существу тестовая вы-
борка характеризует так называемую обобщающую способность, то
есть разность между точностью на тренировочных данных и тех дан-
ных, в которых модель должна работать. Разность значений точности
должна быть как можно меньше.

Для того чтобы выделить из входных данных тренировочную и те-
стовую выборки, запишем следующую функцию: train_test_split.
Функция будет иметь входные аргументы:

•	 x, y — входные данные и целевые значения;
•	 train_size — размер тренировочной части;
•	 test_size — размер тестовой части;
•	 random_state — состояние генератора случайных чисел;
•	 shuffle — необходимость перемешивания данных.

def train_test_split(x,y, train_size=None, test_
size=None, random_state=42, shuffle=True,):

 if random_state: np.random.seed(random_state)

55

Модель линейной регрессии

 size = y.shape[0]
 idxs = np.arange(size)
 if shuffle: np.random.shuffle(idxs)

 if test_size and train_size is None:
 if (test_size<= 1): train_size = 1 - test_size
 else: train_size = size - test_size
 test_size = None

 if train_size is None or train_size > size: train_

size = size

 if (train_size<= 1): train_size *= size

 if test_size is not None:
 if test_size<= 1: test_size *= size
 if test_size>size: test_size = size-train_size
 else: test_size = 0

 x_train, y_train = x[idxs[:int(train_size)]],
y[idxs[:int(train_size)]]

 x_val, y_val = x[idxs[int(train_size):size - int(test_
size)]], y[idxs[int(train_size):size - int(test_size)]]

 if test_size > 0:
 x_test, y_test = x[idxs[size - int(test_size):]],

y[idxs[size - int(test_size):]]
 return x_train, y_train.squeeze(), x_val, y_val.

squeeze(), x_test, y_test.squeeze()
 return x_train, y_train.squeeze(), x_val, y_val.squeeze()

Если есть необходимость разбить данные и на тренировочную,
и на валидационную, и на тестовую выборки, тогда нужно указать раз-
мер тестовой и тренировочной выборок. В валидационную выборку
попадут оставшиеся данные:

x_train, y_train, x_val, y_val, x_test, y_test = train_test_
split(x, y, train_size = 0.5, test_size=0.3,)

В этом случае размер тренировочной выборки составит 50 точек,
валидационной — 20, тестовой — 30.

Чтобы разбить исходные данные только на тренировочную и те-
стовую выборки, достаточно указать размер только тестовой выборки:

x_train, y_train, x_test, y_test = train_test_
split(x, y, test_size=0.3,)

56

Глава 3. Линейная регрессия

Тогда исходная выборка из 100 точек разобьется на тренировочную
выборку, в которой 70 точек, и тестовую, в которой 30 точек.

Далее функции будут тестироваться для фиксированного random_
state = 42 и разбиения исходных данных только на тренировочную
и тестовую выборки (test_size=0.3).

Перед началом процедуры обучения модели запишем функцию
инициализации весовых параметров (коэффициентов модели) init_
weights. Данная функция будет создавать случайный массив весовых
параметров с нормальным распределением, имеющим среднее, рав-
ное 0, и разброс значений 1 / .w shape_

Кроме того, мы будем иметь возможность создавать набор весов
с учетом смещения: если add_bias = True, то размер выходного мас-
сива на 1 больше, чем размер признаков входных данных (в нашем
случае входные данные имеют один признак, а параметров будет два:
коэффициент смещения и вес при признаке). Значения смещения про
инициализируем нулями:

def init_weights(w_shape, add_bias = True, random_
state = 42):

 w_shape = np.atleast_1d(w_shape)
 if random_state:
 np.random.seed(random_state)
 weights = np.random.randn(*list(w_shape))/np.sqrt(np.

sum(w_shape))
 if add_bias:
 weights = np.column_stack((np.zeros(weights.

shape[-1]), weights))
 return weights.squeeze()

Протестируем функции: инициализируем веса и протестируем мо-
дель для первой строчки данных:

weights = init_weights(x.shape[1])
yhat = predict(x_train[0],weights)
loss = loss_func(yhat, y[0])

Если все запущено правильно и везде использован random_
state = 42 , то должен получиться вектор весов w0 0 0= . ,
w1 0 49671415= . , предсказание модели y 0 0 4015424= . , реальное зна-
чение целевой переменной y0 2 01974894= . � �и значение функции
потерь loss y 0 2 6185924� � � . . Поскольку веса сгенерированы случай-

57

Модель линейной регрессии

ным образом, неудивительно, что предсказания модели настолько
разнятся с реальными значениями.

Попробуем оптимизировать веса, используем для этого метод гра-
диентного спуска. По сути, этот метод сводится к последовательно-
му (итерационному) пересчету значений весовых параметров обратно
значениям градиента ошибки (то есть в направлении, обратном на-
правлению роста ошибки):

	 �
�

� �� �L

w
y y xi

j

i i ij2  ,

где ∂
∂

L

w
i

j

 - частная производная функции Li по параметру w j .

Тогда по набору всех переменных мы получим производную вида

	 � � �� � �� � �� �� � � �� ��W i i i i i i i i i i i i i
TL y y x y y x y y x y y X2 20 1 2

   , , ,

где ∇W iL — градиент, то есть набор частных производных функции Li
по набору {w j}.

Реализуем соответствующую функцию на Python с учетом возмож-
ности добавления смещения:

def grad_loss(y_hat, y, X, add_bias = True):
 if add_bias:
 X_full = np.column_stack((np.ones(X.shape[0]),X))
 else:
 X_full = X
 return 2*np.dot(X_full.T, (y_hat - y)) / y.size

Оценим градиент весов для первой точки:
grad = grad_loss(yhat, y[0], x[0])

Должны получиться следующие значения: [−3.23641307;
−0.01787185].

Обозначим номер итерации как t, тогда выражение для обновле-
ния весовых параметров можно записать как

	 w w ww
t t

i i
t

i i i
TL y y y y X� � � � � � � �� ��� �1 1 2� � , ,

где η - коэффициент, с которым изменяются значения весовых пара-
метров, так называемая скорость обучения (Learning Rate).

58

Глава 3. Линейная регрессия

Реализуем это в виде функции update_weights:

def update_weights(grad, weights, learning_rate):
 return weights - learning_rate*grad

Теперь проведем обновление весовых параметров:

weights = update_weights(grad, weights, 0.1)

После первой итерации обновления весов должны получить-
ся следующие значения: w0 0 32364131= . , w1 0 49850134= . , предска-
зание модели для нулевой точки y 0 0 72662847= . , а функция потерь
loss y 0 1 67216056� � � . . Функция потерь уменьшилась по сравнению с
нулевым шагом итерации, но надо повторить операцию оценки гра-
диента весов и последующего обновления несколько раз, чтобы зна-
чение функции потерь приблизилось к нулю.

Создадим процедуру итерационного обучения. Процедура будет
повторять процесс пересчета весов методом градиентного спуска за-
данное число раз (epochs). Функция будет требовать на вход:

•	 X — набор входных значений в формате: число записей × при-
знаки в записи;

•	 y — набор целевых переменных;
•	 weights — начальные значения весовых параметров;
•	 learning_rate — скорость обучения;
•	 epochs — число эпох обучения.
Функция дает на выходе:
•	 weights — набор обученных весовых параметров;
•	 cost — значение функционала потерь на каждой эпохе обуче-

ния.
Отметим также, что на практике можно обновлять весовые пара-

метры не для каждого отдельного значения i, а для целого набора та-
ких значений, тогда более верное выражение будет выглядеть как

	 w wt t

i

n

W i in
L y y� � � � ��

�

�

�1

0

11
�  , ,

где n — объем выборки.

def fit(X, y, learning_rate, weights = None, epochs=30):

 if weights is None: weights = init_weights(X.shape[1])

59

Модель линейной регрессии

 cost = np.zeros(epochs)

 for i in range(epochs):
 yhat = predict(X,weights)
 grad = grad_loss(yhat, y, X)
 weights = update_weights(grad, weights, learning_rate)
 cost[i] = loss_func(yhat, y).mean()

 return weights, cost

Протестируем обучение на 10 эпохах при скорости обучения 0.1:

weights, cost = fi t(x_train, y_train, learning_rate=0.1,
epochs=25)

Можно визуализировать полученные значения функционала по-
терь для каждой эпохи обучения (рис. 3.4).

Рис. 3.4. Зависимость функционала потерь от эпохи для модели,
обученной с помощью функции fi t

Как видно, за 10 эпох обучения функционал потерь значительно
уменьшился. При этом получены следующие веса: w0 2 04548417= . ,
w1 1 55145866= . , что достаточно близко к реальным значениям.

Визуализируем предсказания модели (рис. 3.5). Можно сказать,
что предсказания модели качественно похожи на истинные значения,
но давайте оценим модель количественно. Для этого воспользуемся
метрикой коэффициент детерминации r 2 (Coeffi cient of Determination).
Метрика соответствует относительной среднеквадратичной ошибке,
она может быть рассчитана как

60

Глава 3. Линейная регрессия 

 r
y y

y y

i

n

i i

i

n

i

2 0

1 2

0

1 2
1� �

�

�
�

�

�

�

�
�

()

()



,

где y
n

y
i

n

i�
�

�

�1

0

1

 - среднее значение.

def r2_score(yhat, y):
 return 1-(np.square(y-yhat)).sum(axis=0)/(np.square(y-

np.mean(y, axis=0))).sum(axis=0)

Рис. 3.5. Модель, полученная с помощью функции fi t

Отметим важное обстоятельство: для расчета градиента мы исполь-
зовали функцию потерь, однако для оценки качества модели мы поль-
зуемся другой функцией-метрикой. Дело в том, что значения функции
потерь, сколь небольшими бы они ни были, очень сложно интерпрети-
ровать. Более того, можно ожидать, что для другого метода оптимизации
значения могли быть и другими. Таким образом, значения функции по-
терь не подходят для оценки качества модели. Качество работы модели,
как правило, определяется по некоторым метрикам. Такие метрики долж-
ны быть интерпретируемыми и едиными для всех сравниваемых оценщи-
ков. В нашем случае метрика соответствует отношению среднего квадрата
ошибки к дисперсии целевых значений. Тогда результат работы метри-
ки мы можем интерпретировать как среднюю ошибку предсказания для
нашей модели. Чем ниже эта ошибка (для разных моделей), тем лучше.

Помимо коэффициента детерминации для оценки моделей регрес-
сии могут использоваться следующие метрики:

61

Модель линейной регрессии

•	 Mean Square Error - среднеквадратичная ошибка:

	 MSE � �
��1

1

2

n
y y

i

n

i i() ;

•	 Root Mean Square Error - средняя квадратическая ошибка:

	 RMSE MSE= ;

•	 Mean Average Error - средняя абсолютная ошибка:

	 MAE � �
��1

1n
y y

i

n

i i| |; �

•	 Mean Absolute Percentage Error - средняя абсолютная процент-
ная ошибка:

	 MAPE �
�

��1
1n

y y

yi

n i i

i

| |;


•	 Mean Squared Logarithmic Error - среднеквадратическая лога-
рифмическая ошибка:

	 MSLE ln ln� � � �� ���1
1 1

1

2

n
y y

i

n

i i{ () } ;

•	 максимальная ошибка:

	 MaxError max� �(| |).y yi i


Применим функцию r2_score. Для тренировочных данных
должно получиться значение 0.8570755941810686, а для тестовых —
0.818294732486739.

Очевидным способом увеличения качества модели является уве-
личение количества эпох. На практике, как правило, на каждой эпо-
хе рассматривается не вся выборка, а только некоторая ее часть — так
называемый батч (мини-пакет). Это позволяет быстрее рассчитывать
градиент весов и чаще обновлять веса. Запишем функцию для генера-
ции батчей заданного размера batch_size:

def load_batch(X,y, batch_size = 100):
 idxs = np.arange(y.size)
 np.random.shuffle(idxs)

 for i_batch in range(0,y.size,batch_size):
 idx_batch = idxs[i_batch:i_batch+batch_size]

62

Глава 3. Линейная регрессия

 x_batch = np.take(X, idx_batch,axis=0)
 y_batch = np.take(y, idx_batch)
 yield x_batch, y_batch

Обновим функцию fit с учетом разбиения данных на батчи:

def fit_SGD(X, y, lerning_
rate, weights = None, epochs=30, batch_size = 100, random_
state = 42):

 if random_state: np.random.seed(random_state)

 if weights is None: weights = init_weights(X.shape[1])
 if batch_size is None or batch_size>y.size : batch_

size = y.size
 n_batches = y.size//batch_size

 cost = np.zeros(epochs)

 for i in range(epochs):
 loss = 0
 for cnt,(x_batch, y_batch) in enumerate(load_

batch(X,y, batch_size)):

 yhat = predict(x_batch, weights)
 grad = grad_loss(yhat, y_batch, x_batch)
 weights = update_weights(grad, weights, lerning_

rate)
 loss += loss_func(yhat, y_batch).mean()

 if cnt>= n_batches:
 break
 cost[i] = loss/n_batches

 return weights, cost

Таким образом, на каждой эпохе обучения веса обновляются столь-
ко раз, на сколько батчей можно разделить исходную выборку. В пре-
дельном случае реализуется стохастический градиентный спуск, при ко-
тором обновление происходит при случайном выборе одного элемента.

Визуализируем зависимость функционала потерь от эпох при обу-
чении модели линейной регрессии с использованием функции fit_SGD
(рис. 3.6), а также визуализируем предсказания модели fit_SGD на тре-
нировочных и тестовых данных (рис. 3.7).

63

Модель линейной регрессии

Рис. 3.6 . Зависимость функционала потерь от эпохи для модели,
обученной с помощью функции fi t_SGD

При этом получены следующие веса: w0 2 08073489= . , w1 1 85005883= . ,
что еще ближе к реальным значениям.

Для тренировочных данных должно получиться значение
0.9685919335230442, а для тестовых - 0.9715819769095048.

Мы получили достаточно интересный результат. Количество эпох
было одинаковое, в обоих случаях мы использовали одинаковое чис-
ло данных. Однако если мы предварительно разбив аем выборку и об-
новляем веса на к аждой части отдельно, то результат обучения модели
лучше. Такую идею можно применить и в реальной жизни: не обяза-
тельно решать большую задачу целиком, можно разбить ее на несколь-
ко небольших подзадач.

Рис. 3.7. Модель, полученная с помощью функции fi t_SGD

В приложении 1 представлена реализация описанного нами алго-
ритма не с помощью функций, как в этой главе, а с помощью единого

64

Глава 3. Линейная регрессия 

класса LinearRegression. В основном методы, реализованные в этом
классе, совпадают с описанными ранее функциями. Ознакомьтесь
с приложением самостоятельно. Подход ООП (объектно-ориентиро-
ванного программирования) позволит легче модифицировать алго-
ритм в последующих главах.

Полиномиальная регрессия

Теперь попробуем применить разработанный нами алгоритм для
полиномиальной зависимости (рис. 3.2). Сколько бы мы ни добавля-
ли эпох в обучение, наиболее вероятно, что предсказания модели бу-
дет выглядеть следующим образом (рис. 3.8).

Видно, что линейная модель слишком проста для такого распределе-
ния истинных значений целевой переменной (высокое смещение). Давай-
те попробуем усложнить модель. Поскольку сгенерировать дополнитель-
ные новые признаки неоткуда, будем использовать имеющиеся данные.
Как известно, члены полиномов различных целых степеней можно счи-
тать независимыми признаками. Поэтому полиномиальная регрессия мо-
жет быть представлена как многопеременная линейная регрессия.

Рис. 3.8. Полученная линейная модель для полиномиальной зависимости

Для реализации запишем функцию to_polynom, создающую поли-
ном из входных данных X. На выходе функция даст массив, имеющий
число столбцов, равное степени искомого полинома:

65

Полиномиальная регрессия

def to_polynom(X, order = 2):
 order_range = range(order, order+1,1)
 out = np.copy(X)
 for i in order_range:
 out = np.hstack([out, np.power(X,i)])
 return out

Теперь, если предварительно сгенерировать полиномиальные при-
знаки и затем применить к ним алгоритм линейной регрессии, мож-
но получить гораздо лучший результат (рис. 3.9).

x_ = to_polynom(x, order = 5)
x_train, y_train, x_test, y_test = train_test_

split(x_, y, test_size=0.3,)
regr = LinearRegression(learning_rate=0.1,epochs=100,batch_

size=10, n_batches=None)
regr.fi t(x_train, y_train)

Использование полиномов от исходных признаков — достаточно
простой, но работающий метод инженерии признаков, который можно
использовать на начальном этапе работы с данными. Можно считать,
что степень полиномов — тоже гиперпараметр модели линейной ре-
грессии. Однако, как и любой другой инструмент, его нужно исполь-
зовать с осторожностью. В частности, необходимо проверять, какой
степени полинома будет достаточно для конкретных данных.

Рис. 3.9. Линейная модель, полученная для полиномиальной зависимости
с использованием полиномиальных признаков

66

Глава 3. Линейная регрессия

Регуляризация линейной регрессии

Регуляризация Тихонова

Как было сказано ранее, бывает так, что обычный градиентный
спуск приводит к переобучению модели. Напомним: переобучение —
это ситуация, при которой точность на обучающих данных значитель-
но выше, чем на тестовых. В таких случаях также можно сказать, что
данные плохо обусловлены, то есть любые небольшие изменения по
отношению к тренировочной выборке приведут к большим изменени-
ям в ответе модели. В целом это будет означать, что модель дает очень
большой разброс результатов.

Такой разброс может быть снижен при помощи различных техник
регуляризации. Смысл использования таких техник сводится к тому,
что при обучении модели к выражению обновления весовых параме-
тров добавляется дополнительное условие. Например, можно доба-
вить условие: ограничение суммы квадратов весовых параметров. Та-
кое предположение называется регуляризацией Тихонова или гребневой
регуляризацией (а также L2-регуляризацией).

Технически подобная регуляризация соответствует предположе-
нию, что распределение результатов работы модели имеет вид нор-
мального распределения. Такое предположение часто допустимо
и оправданно. Функция потерь для регуляризации Тихонова может
быть записана в следующей форме:

	
L y y

L y y wi i
i i

j

p

j

�

� �
�,

, ,
� ��

�

�
�
�

��
� � � � �

�
�

min

const
min

w 2
2 1

2

2

�

где  w 2
2

1

2�
�
�
j

p

jw — норма Фробениуса для вектора или матрицы; λ — ре-

гуляризационный множитель; p — размер вектора весовых параметров.
Отметим также, что смещение не регуляризуется. Как правило,

регуляризационный множитель задается в диапазоне от 0 до 0.1, ча-
сто проверяются значения в логарифмическом масштабе (0.1; 0.01;
0.001 и т. д).

Оптимизацию с использованием регуляризации можно интуитив-
но представить в виде следующего графика (рис. 3.10).

67

Регуляризация линейной регрессии

Рис. 3.10. Схематичное изображение L2-регуляризации

Звезда на графике обозначает минимум функции потерь для линей-
ной регрессии. Желтыми и зелеными эллипсами схематично отобра-
жаются комбинации весов, при которых функция потерь принимает
одно и то же значение. Окружности в центре координат символизиру-
ют ограничение, задаваемое регуляризации. Таким образом, при ре-
гуляризации находится своеобразный компромисс: необходимо, что-
бы веса были на окружности наименьшего радиуса и функция потерь
при этом принимала как можно меньшее значение. «Удельный вес»
вклада регуляризации и функции потерь задается регуляризацион-
ным множителем.

Закон изменения весовых параметров для данной модели можно
записать как
	 w w ww

t t

i

n

i i
t

n
L y y� � � � � ��

�

�
��1

0

1
11

� � , .

Запишем новую версию регрессии RidgeRegression на основе уже
созданного класса LinearRegression. Для этого запишем новый класс,
наследующий от уже созданного, и перепишем в нем методы .loss
и .update. Реализация L2-регуляризации представлена в прил. 2.

Регуляризация L1

В ряде случаев, когда разброс данных оказывается очень боль-
шим, регуляризации L2 может оказаться бесполезной или даже вред-
ной. Дело в том, что в функции потерь учитываются веса в квадрате
и большие колебания весовых параметров в квадрате приведут к боль-
шим колебаниям в значениях функции потерь. Часто эта ситуация яв-
ляется недопустимой.

68

Глава 3. Линейная регрессия

В таких случаях следует выбирать более устойчивые (робастные) ме-
тоды. Робастные методы могут быть менее точными, однако более ста-
бильными. Одним из наиболее распространенных робастных методов
является L1-регуляризация, или регуляризация Лассо. В этом случае выра-
жение для функции потерь может быть записано следующим образом:

	
L y y

L y y wi i
i i

j

p

j

�

� �
�,

, ,
� ��

�

�
�
�

��
� � � � �

�
�

min

const
min

w 1
1 1

�

где  w 1
1

1

�
�
�
j

p

jw — норма L1 для вектора или матрицы; λ — регуляриза-
ционный множитель; p — размер вектора весовых параметров.

Изменение нормы L2 на L1 приводит к достаточно интересному
эффекту (рис. 3.11).

Теперь вместо ограничивающей окружности – ограничиваю-
щий ромб. Что интересно, такой «угловатый» ограничитель приводит
к тому, что для некоторых весов компромисс регуляризации попадет
на ось координат. Это, в свою очередь, приводит к тому, что часть ве-
сов обнулится, вследствие чего от части признаков модель избавится
самостоятельно, что бывает полезно в случае анализа данных с боль-
шим числом признаков.

Рис. 3.11. Схематичное изображение L1-регуляризации

Закон изменения весовых параметров для данной модели можно
записать как

	 w w ww
t t

i

n

i in
L y y sign� � � � � � � ��

�

�

�1

0

11
� � , .

Запишем новую версию регрессии LassoRegression на основе уже
созданного класса LinearRegression. Для этого запишем новый класс,

69

Практические задания

наследующий от уже созданного, и перепишем в нем методы .loss
и .update. Реализация L1-регуляризации представлена в прил. 3.

Эластичная регуляризация

Отметим, что во многих случаях неизвестно, какая модель регуля-
ризации окажется лучше, поэтому целесообразно использовать обе.
Такая модель называется эластичной регуляризацией. Запишем новую
версию регрессии ElasticRegression на основе уже созданного клас-
са LinearRegression. Для этого запишем новый класс, наследующий
от уже созданного, и перепишем в нем методы .loss и .update. Эла-
стичная регуляризация представлена в прил. 4.

Как правило, имеет смысл протестировать различные варианты ре-
гуляризации, а также различные значения регуляризационных мно-
жителей. Все это тоже можно отнести к гиперпараметрам модели ли-
нейной регрессии.

Практические задания

1.	 Используя функцию dataset, сгенерируйте линейные зависи-
мости с другими параметрами a, b, N, noise_power (см. с. 49)
и проверьте модель линейной регрессии на этих данных.

2.	 Используя функцию dataset, сгенерируйте гармонические за-
висимости с другими параметрами (см. с. 50) и проверьте раз-
личные степени полиномов исходных данных и разные типы
регуляризации. Посмотрите, что произойдет, если увеличить
регуляризационный множитель.

3.	 Используйте любую из подготовленных вами моделей линей-
ной регрессии для предсказания цены автомобилей в наборе
данных Cars. Для оценки качества модели используйте отло-
женную выборку и несколько метрик регрессии. Сравните ре-
зультаты модели при использовании только числовых призна-
ков и при добавлении категориальных признаков с помощью
One-Hot-кодирования.

4*.	 Сравните работу реализованных алгоритмов с функциями би-
блиотеки scikit-learn:

70

Глава 3. Линейная регрессия

•	 простая линейная регрессия через метод наименьших ква-
дратов sklearn.linear_model.LinearRegression;

•	 простая линейная регрессия через градиентный спуск
sklearn.linear_model.SGDRegressor;

•	 регрессия с регуляризацией Тихонова sklearn.linear_

model.Ridge;
•	 регрессия с L1-регуляризацией sklearn.linear_model.Lasso;
•	 эластичная регуляризация sklearn.linear_model.

ElasticNet.

Контрольные вопросы

1.	 Перечислите возможные гиперпараметры модели линейной
регрессии.

2.	 Может ли коэффициент детерминации быть отрицательным
числом?

3.	 Оцените MSE для следующих данных: реальные значения y {1,
2, 3, 4}, предсказания модели y {2, 1, 4, 6}.

4.	 Предположим, что у вас есть вектор весов w {10, 5, 6}. Вы по-
считали градиент функции потерь, который равен {20, −10, 40}.
Посчитайте обновленный вектор весов при условии, что ско-
рость обучения составляет 0.1.

5.	 Перечислите данные, которые вам необходимы для расчета
градиента функции потерь.

6.	 Вы выполнили обучение линейной модели дважды: с регуляри-
зацией и без. У вас есть два вектора весов модели w1 {14.37, 22.80,
32.20} и w2 {0.69, 2.02, 4.20}, но вы не помните, какой вектор весов
какой модели соответствует. Как вы считаете, который из при-
веденных весов соответствует случаю регуляризации?

7.	 Вы получили веса модели w {3, −2, 2}. В модели не использу-
ется смещение. Оцените предсказание модели для следующих
значений параметров x {1, 3, 1}.

8.	 Оцените коэффициент детерминации для следующих данных:
реальные значения y {1, 2, 3, 4}, предсказания модели y {2, 1,
4, 6}.

71

Глава 4.
Логистическая регрессия

О дин из самых простых методов классификации – это логи-
стическая регрессия. По существу, модель логистической
регрессии представляет собой аналог линейной регрессии.

Интересный исторический факт. Был период, когда логисти-
ческая регрессия использовалась для классификации задачи выжива-
ния: если вы выпьете пузырек с ядом, вас, скорее всего, назовут жи-
вым или умершим? Времена изменились. Сегодня вызов экстренных
служб дает лучший ответ на этот вопрос, а логистическая регрессия
лежит в основе глубокого обучения.

Логистическая функция была изобретена в 1830-е гг. бельгийским
статистиком П. Ф. Ферхюльстом для описания динамики населения:
со временем первоначальный взрыв экспоненциального роста сгла-
живается по мере того, как происходит потребление доступных ре-
сурсов, что приводит к характерной логистической кривой. Прошло
более века, прежде чем американский статистик Э. Б. Уилсон и его
ученица Дж. Вустер разработали логистическую регрессию, чтобы вы-
яснить, какое количество данного опасного вещества может привести
к летальному исходу.

Логистическая функция описывает широкий спектр явлений с до-
статочной точностью, поэтому логистическая регрессия обеспечива-
ет полезные базовые прогнозы во многих ситуациях. В медицине она
оценивает смертность и риск заболевания, в политической науке -
предсказывает победителей и проигравших на выборах, в экономике
она прогнозирует перспективы бизнеса. Что еще более важно, функ-
ция управляет частью нейронов, в которых нелинейность является
сигмовидной, в самых разных нейронных сетях.

72

Глава 4. Логистическая регрессия 

Генерируемые данные

Как и в случае с линейной регрессией, сначала сгенерируем данные.
В этом учебно-методическом пособии мы рассмотрим только простой
вариант классификации – бинарную классификацию. В этот раз мы вос-
пользуемся готовыми функциями, которые реализованы в библиотеке
scikit-learn, а именно make_classifi cation для линейно разделимых дан-
ных, make_moons для данных, распределенных в виде знака инь-ян, и make_
circles для данных, распределенных в виде концентрических кругов.

Рис. 4.1. Типы генерируемых данных

Запишем отдельную единую функцию, которая будет генериро-
вать данные. Входными параметрами этой функции будет N – коли-
чество точек, method – тип данных, который мы хотим сгенериро-
вать, noises – уровень шума в данных. Выходными параметрами будут
признаки – матрица X с размерами N × 2 и вектор y меток классов для
каждой точки.

from sklearn.datasets import make_moons, make_
circles, make_classifi cation

def make_bin_clf(N, method = ‘line’, noises = 0.15, random_
state = 42):

 if random_state: rng = np.random.
RandomState(seed = random_state)

 if method == ‘line’ or method is None:
 X, y = make_classifi cation(n_samples=N, n_

features=2, n_redundant=0, n_informative=2, n_clusters_per_
class=1, class_sep=2)

 X += np.random.randn(*X.shape) *noises

73

Модель логистической регрессии

 elif method == ‘moons’:
 X, y = make_moons(n_samples=N, noise=noises)

 elif method == ‘circles’:
 X, y = make_circles(n_

samples=N, noise=noises, factor=0.5)

 return X,y

Для простоты начнем работу с набором данных, который линей-
но разделим.

Модель логистической регрессии

В случае линейной регрессии требовалось провести линию через
данные таким образом, чтобы в среднем отклонение точек было ми-
нимальным. С точки зрения бинарной классификации необходимо
предсказывать всего два числа, допустим, 0 и 1. Теоретически можно
использовать модель линейной регрессии, но есть фундаментальная
загвоздка: в общем случае линейная регрессия выдает ответ в диапазо-
не �� �� �, � . Да, наверняка с помощью градиентного спуска можно подо-
брать такие веса, которые будут давать необходимый ответ. Но можно
и «помочь» модели — обернуть ее в некоторую функцию, которая пре-
образует данные в нужный диапазон. Примером такой функции явля-
ется сигмоида, или логистическая функция, которая упоминалась в гла-
ве 1. Эта функция описывается следующим уравнением:
	 � z

z
� � �

� �� �
1

1 exp
.

На рисунке 4.2 представлен график функции сигмоиды на интер-
вале от -5 до 5.

В Python реализовать сигмоиду тоже достаточно просто:

def sigmoid(z):
 return 1 / (1 + np.exp(-z))

В итоге мы получили следующую модель, которая представляет со-
бой логистическую функцию, применяемую к модели линейной ре-

74

Глава 4. Логистическая регрессия 

грессии. Отсюда название модели — логистическая регрессия, несмо-
тря на то что решается задача классификации. Функционально модель
можно описать следующим образом:

 y w X w X b zi
j

p

j ij
j

p

j ij i
 �

�

�
�

�

�
� � �

�

�
�

�

�
� � � �

� �
� �� � �

0 1

,

где σ — функция сигмоиды; yi
 — результат принятия решений,

z w Xi
j

p

j ij�
�
�

0

.

Рис. 4.2. График сигмоиды

Из некоторых статистических выводов известно, что для такой мо-
дели необходимо выбрать функцию потерь следующего вида:

 L y y
n

y y y y
i

n

i i i i, ln .  � � � � � �� � �� ��
�

�
�

�

�

�1
1 1

0

1

ln

Эта функция потерь называется бинарной кросс-энтропией.
Прежде чем записать выражение для градиента функции потерь,

запишем выражение для производной функции активации:

 �� � � � � �
�

� � � �� � � ��
�

� �z
z

z
z zi

i

i
i i1 .

Градиент функции потерь для одного элемента выборки может
быть выражен следующим образом:

� � �
� �

�
�

� � �
�

�
�
�

�

�
�
� � �� �

� � �

�w w w
w

w

L
y

X

y

X
X X

y X

i
i

i
T

i

i
T i

T
i

i i

� �
�

�

1

1

TT
i i i iX y y X� �� �� � � �� �� .

75

Модель логистической регрессии

Тогда правило обновления весовых параметров может быть запи-
сано как
	 w w

n
y y Xt t

i

n

i i i� � �� ���

�

�

�1

0

11
�  .

Отметим, что данное выражение эквивалентно записанному для
линейной регрессии с точностью до коэффициента 2, поэтому мы уч-
тем данный параметр путем замены � �� / 2.

Как правило, после расчета функции сигмоиды необходимо окру-
глить значения до 0 или до 1, то есть до значения метки одного из клас-
сов. Такое округление можно сделать по заданному порогу. Напри-
мер, можно сказать, что если значение сигмоиды больше 0.5, то пусть
класс будет 1, а если меньше, то наоборот. Однако на практике ино-
гда ставят высокий порог, 0.7-0.8.

Запишем функцию определения класса:

def to_class(logit, threshold = 0.7):
 return (logit>=threshold)*1

В описанном смысле можно говорить о том, что результат приме-
нения функции сигмоиды – это вероятность того, что аргумент функ-
ции � zi� � принадлежит одному из классов. Такой аргумент принято
называть логит. Отметим, что для расчета функции потерь не следует
пользоваться округлением до классов.

Теперь запишем функцию потерь. В значениях логарифма мы вве-
ли небольшую константу eps с целью исключить ошибку вида «лога-
рифм нуля»:

def bce_loss(yhat, y):
 eps = 1e-6
 return -(y*np.log(yhat + eps)+(1-y)*np.log(1-yhat+eps))

.mean()

Запишем все в один класс LogisticRegression. Однако не будем
писать класс с нуля, а создадим его на основе имеющегося класса
ElasticRegression. Это позволит использовать готовые наработки,
что адекватно, поскольку градиентный спуск применяется одинако-
во в случае и линейной, и логистической регрессии с точки зрения
самого алгоритма. Меняются модель и функция потерь. Новый класс
LogisticRegression представлен в прил. 5.

76

Глава 4. Логистическая регрессия 

Дополнительно в классе LogisticRegression реализован метод
.plot_desicion_function, который позволяет визуализировать в дву-
мерном пространстве вероятность принадлежности отдельной точки
к конкретному классу – функцию принятия решений. На рисунке 4.3
представлена визуализация функции принятия решений для линей-
но разделимых данных.

Рис. 4.3. Визуализация функции принятия решений для линейно разделимых данных

Как и ожидалось, логистическая регрессия разделяет классы с по-
мощью линий, которые проводятся таким образом, чтобы минимизи-
ровать функцию потерь. Однако это не всегда возможно сделать. Так,
для того чтобы классифицировать набор данных в виде концентриче-
ских кругов, необходимо предварительно сгене рировать полиномиаль-
ные признаки, чтобы усложнить модель. Пример успешной классифи-
кации концентрических кругов с помощью логистической регрессии и
полиномиальных признаков до второй степени представлен на рис. 4.4.

Рис. 4.4. Визуализация функции принятия решений для концентрических кругов

Дополнительно в классе LogisticRegression реализован метод
.classifi cation_report, в котором представлен расчет различных ме-
трик классификации. Давайте остановимся на них отдельно.

77

Метрики классификации

Метрики классификации

Рассмотрим пример ошибок классификации (рис. 4.5). У нас есть
два класса, красный и зеленый, при этом красный класс - основной.
Идеальная модель – зеленая, она отделяет все красные точки от зе-
леных. Но, допустим, в ходе обучения получилась красная модель.
И есть два типа ошибок, которые красная модель совершила. К ошиб-
кам первого рода относят неправильно отнесенные к основному клас-
су объекты - те зеленые, которые модель ошибочно считает красными.
К ошибкам второго рода относят пропуски - те красные точки, кото-
рые не вошли в предсказании модели.

Основной класс

Ошибки 2 рода

Ошибки 1 рода

Рис. 4.5. Ошибки классификации

Соотношения между правильными предсказаниями, ошибками
первого и второго рода и лежат в основе оценки моделей классифи-
кации. Для удобства заполняется матрица ошибок (Confusion Matrix),
пример которой представлен на рис. 4.6.

Рис. 4.6. Матрица ошибок

78

Глава 4. Логистическая регрессия

В соответствующие ячейки матрицы вставляются количество пра-
вильно предсказанных объектов основного класса (True Positive — TP),
количество правильно предсказанных объектов неосновного класса
(True Negative — TN), количество ошибок 1 рода (False Positive — FP),
количество ошибок 2 рода (False Negative).

Затем по матрице ошибок оцениваются различные метрики клас-
сификации:

•	 Accuracy — доля правильных ответов алгоритма:

	 ACC
TP TN

TP TN FP FN
�

�
� � �

;

•	 Precision — точность:

	 precision
TP

TP FP
�

�
;

•	 Recall — полнота:

	 recall
TP

TP FN
�

�
;

•	 Specificity — специфичность:

	 specificity
TN

TN FP
�

�
;

•	 F1-мера:

	 F1

2
�

� �
�

precision recall

precision recall
.

Наиболее очевидная метрика — доля правильных ответов — хоро-
шо работает в случае сбалансированных классов, т. е. когда число объ-
ектов разных классов совпадает. Однако в случае несбалансированных
классов эта метрика может вводить в заблуждение: допустим, есть два
класса, в первом классе 900 объектов, во втором — 100. Если модель
будет предсказывать все объекты как первый класс, то доля правиль-
ных ответов будет 0.9 или 90 %, что вроде неплохо, но второй класс
модель совсем не предсказывает.

Для уточнения предсказательной способности модели вводят до-
полнительные метрики, которые оценивают долю ошибок первого
и второго рода отдельно (точность, полнота, специфичность). Ино-
гда для удобства используют F1-меру, среднее гармоническое между
точностью и полнотой.

79

Практические задания

В классе LogisticRegression для оценки модели классификации
реализован метод .score, который вычисляет метрику Accuracy.

Практические задания

1.	 Сгенерируйте линейно разделимые данные с другими пара-
метрами и проверьте модель логистической регрессии на этих
данных. Проанализируйте метрики классификации.

2.	 Сгенерируйте данные, распределенные как знак инь-ян или
концентрические круги. Проверьте различные степени поли-
номов исходных данных и различные типы регуляризации для
достижения наилучшего качества классификации. Проанали-
зируйте метрики классификации.

3.	 Используйте модель логистической регрессии для предска-
зания типа трансмиссии автомобилей в наборе данных Cars.
Для оценки качества модели используйте отложенную выбор-
ку и несколько метрик классификации. Сравните результаты
модели при использовании только числовых признаков и при
добавлении категориальных признаков с помощью One-Hot-
кодирования.

4*.	 Сравните работу реализованных алгоритмов с функцией библи-
отеки scikit-learn — логистической регрессией sklearn.linear_
model.LogisticRegression.

Контрольные вопросы

1.	 Допустим, тест на некое заболевание R дал положительный от-
вет, хотя на самом деле у испытуемого нет этого заболевания.
Какую ошибку допустил тест?

2.	 Пусть в матрице ошибок TP = 5, TN = 90, FP = 10, FN = 5. Оце-
ните метрики классификации для такой матрицы ошибок.

3.	 Допустим, есть два классификатора: первый классификатор
имеет долю правильных ответов 95 %, чувствительность 99 %,
специфичность 50 %; второй классификатор имеет долю пра-

80

Глава 4. Логистическая регрессия

вильных ответов 87 %, чувствительность 84 %, специфичность
94 %. Что вы можете сказать о данных, используемых для клас-
сификации? Какой из этих классификаторов надежнее (при ус-
ловии, что важно определение обоих классов)?

4.	 Перечислите возможные гиперпараметры модели логистиче-
ской регрессии.

5.	 Для набора данных Cars проанализируйте веса моделей при ис-
пользовании только числовых признаков. Назовите параметр,
который в наибольшей степени связан с целевой переменной.

6.	 Оцените значение функции сигмоиды σ(z) для z = 0.25.
7.	 Оцените значение производной функции сигмоиды σ'(z) для

z = –3.
8.	 Назовите, к какому классу следует отнести результат логисти-

ческой модели для z = 0.1, если порог равен 0.6.
9.	 Оцените значение функции потерь (бинарной кросс-энтропии)

для предсказания модели y = 0.1 и целевой переменной y = 1.

81

Глава 5.
Уменьшение размерности

В этой главе мы рассмотрим базовый подход к уменьшению раз-
мерности, который относится к методу разложения матриц –
метод главных компонент (Principal Components Analysis). Это

метод снижения размерности данных путем преобразования их в такую
форму, чтобы оставить только максимально полезную информацию.
Под термином полезная информация в данном методе понимается на-
бор независимых друг от друга признаков с максимальной дисперси-
ей (с максимальным разбросом значений). При этом мы изначально
полагаем, что интенсивность (в некотором смысле) полезной инфор-
мации преобладает над интенсивностью каких-то случайных искаже-
ний или других «неидеальностей» нашего набора данных.

Для выделения полезной информации в методе главных компо-
нент проводится преобразование данных от набора исходных столбцов
(исходных признаков), которые могут содержать шумы и быть линей-
но зависимыми, к набору новых столбцов, которые обладают важным
свойством линейной независимости (не коррелируют). Новые столбцы
можно изобразить как некоторую систему координат, в которых можно
отложить точки — данные. При этом часто оказывается так, что неко-
торые из координат не нужны: в них почти наверняка нет информации.

Генерируемые данные

Рассмотрим пример на данных, структуру которых мы можем кон-
тролировать. Это можно представить так: возьмем двумерную фигу-
ру — эллипс с разными радиусами (рис. 5.1, а). При его рассмотрении
может оказаться, что вторая ось системы координат не нужна. Таким
образом, этот случай можно рассмотреть как одномерный (рис. 5.1, б).

82

Глава 5. Уменьшение размерности 

 а б

Рис. 5.1. Уменьшение размерности двумерных данных

Сгенерировать данные, распределенные подобным образом, мож-
но с использованием функции create_elipsoid_data, где C1 и C2 —
координаты центра, S1 и S2 — радиусы эллипса, theta — угол на-
клона, N — количество точек, random_state — фиксированный сид
случайных чисел (для повторяемости генерируемых данных):

def create_elipsoid_
data(C1 = 0,C2 = 0 ,S1 = 5,S2 =1, theta =45, N = 250, random_
state = 42):

 if random_state: np.random.seed(random_state)

 theta = np.pi*theta/180
 Centers = np.array([C1,C2])
 Sigmas = np.array([S1,S2])

 R = np.array([[np.cos(theta), - np.sin(theta)],
 [np.sin(theta), np.cos(theta)]])

 return (R @ np.diag(Sigmas) @ np.random.randn(2, N)+np.
diag(Centers)@ np.ones((2, N))).T

В нашем примере одна ось, в которой расположена основная часть
фигуры, будет главной компонентой. Совокупность главных компо-
нент образует так называемое собственное подпространство. Вторая
ось останется шумовым подпространством. Как видно из примера на
рис. 5.1, б, размерность фигуры в каждой из обозначенных осей будет
соответствовать важности этой оси.

Другими словами, можно сказать, что разброс значений в каж-
дой оси будет соответствовать ее важности. Такой разброс значений
по каждой оси будет называться собственными значениями. Сортируя

83

Метод главных компонент

собственные значения по убыванию, мы можем определить те из них,
которые следует оставить, и те, которые следует убрать.

В случае данных большей размерности происходят схожие преоб-
разования: находятся оси многомерных эллипсов, в которых данные
изменяются в большей степени. При этом уменьшение размерности
можно реализовать за счет выбора не всех главных компонент, а толь-
ко тех, которые имеют наибольшее собственное значение.

Метод главных компонент

Формализуем алгоритм вычисления главных компонент. Для этого
нужно ввести дополнительные понятия и определения. Матрица кова-
риации – это матрица, составленная из попарных ковариаций столб-
цов этой матрицы. Ковариация – это мера совместной изменчивости
двух случайных величин.

Пусть есть матрица данных X, где p — количество признаков, n —
количество точек. В общем случае для определения матрицы ковари-
ации необходимо воспользоваться следующей формулой:

	 � � � � � � � �� � � � �� ��
��

�
��

cov E E EX X X X X,
T

X ,

где E - оператор математического ожидания.
Однако эту формулу можно упростить, предварительно выполнив

централизацию матрицы X, т. е. вычесть среднее для каждого признака.
Тогда вычисление матрицы ковариации просто сведется к матричному
умножению транспонированной центрированной матрицы на саму себя.
При этом при анализе реальных разнородных данных признаки не про-
сто центрируют, а стандартизируют, добиваясь одинаковой дисперсии
признаков. Это оправданно, когда сопоставляются признаки, измеряе-
мые в разных единицах (например, возраст в годах и зарплата в рублях).

В результате получится матрица �� � p p, т. е. квадратная матрица.
Отметим, что собственные вектора и собственные значения для произ-
вольной квадратной матрицы A удовлетворяют следующему уравнению:
	 Av vi i i

 

� � ,

где


vi - это собственный вектор; λi - соответствующее собственное зна-
чение. По сути, выражение выше представляет собой решение систе-

84

Глава 5. Уменьшение размерности

мы линейных уравнений с параметром λi. Значения данного параме-
тра можно найти из следующего выражения:

	 det A I�� � �� 0,

где det — операция поиска определителя матрицы, а λI — диагональ-
ная матрица с собственными значениями по главной диагонали и ну-
лями в остальных позициях. При раскрытии операции детерминанта
по определению данное уравнение может быть сведено к поиску кор-
ней полинома.

Цель метода главных компонент — найти и отбросить шумовое
подпространство. Классический метод главных компонент состоит
из следующих операций:

1)	 вычисление ковариационной матрицы для набора данных, то
есть матрицы дисперсий;

2)	 вычисление (поиск) собственных векторов и их собственных
значений по ковариационной матрице;

3)	 сортировка собственных значений по убыванию;
4)	 выделение собственного подпространства;
5)	 преобразование данных – построение проекции исходного мас-

сива на полученные собственные вектора.
Все эти операции реализованы в классе PCA, который представлен

в прил. 6. Размерность собственного пространства задается входным
параметром n_components. При этом операции с 1 по 4 реализованы
методом .fit. Последняя операция реализована методом .transform.
Кроме того, реализована операция .inverse_transform, необходимая
для восстановления исходного набора данных. Собственные значения
для матрицы данных хранятся в атрибуте values, а собственные век-
тора – в атрибуте components. Дополнительно в классе PCA реализо-
ван метод .plot_eigvalues для визуализации собственных значений.

По сути, пространство главных компонент является линейной ком-
бинацией всех исходных признаков, при этом веса в этой линейной
комбинации определяются элементами собственных векторов. Соот-
ветствующие собственные значения показывают значимость главной
компоненты. Анализируя распределение собственных значений, мож-
но делать выводы о том, сколько главных компонент вносят основной
вклад в дисперсию исходных данных.

Важно отметить, что на практике такое восстановление может быть
неточным, так как, сокращая разность данных, можно удалить оттуда

85

Набор данных MNIST

и часть полезной информации. Для этого в классе PCA реализован ме-
тод .score, который использует метрику коэффициент детерминации,
который мы рассмотрели в главе 3.

Наконец, обсудим применение метода главных компонент для ка-
тегориальных признаков. Существует разные взгляды на то, возмож-
но ли это и насколько это корректно. Некоторые работы показывают,
что достаточно применить One-Hot-кодирование к категориальным
признакам, а затем применить метод главных компонент «как есть».
С другой стороны, авторы метода факторного анализа смешанных дан-
ных (Factorial Analysis of Mixed Data, FAMD) считают, что их подход
обобщает метод главных компонент для случая категориальных при-
знаков. Сначала необходимо применить One-Hot-кодирование, за-
тем нормировать каждый столбец закодированных категориальных
признаков, чтобы соотнести между собой категориальные и число-
вые признаки. Для этого нужно поделить каждый столбец на корень
из вероятности признака после One-Hot-кодирования (количество
единиц в столбце, деленное на количество строк). Деление на ква-
дратный корень из вероятностей можно интерпретировать так: мы
придаем больший вес редким признакам, потому что информация
«этот признак редко встречается» более значима, чем «этот признак
распространен». А затем метод главных компонент применяется как
обычно.

Набор данных MNIST

Возможно, поиск осей в двумерном эллипсе не выглядит как что-
то впечатляющее. Посмотрим возможности метода главных компо-
нент на более сложной задаче, наборе данных MNIST — это набор
рукописных чисел от 0 до 9. Общее число изображений в наборе дан-
ных — 70000. Примеры изображений, которые содержатся в этом на-
боре данных, представлены на рис. 5.2.

Изображения в наборе MNIST – одноканальные, размером 28 × 28
пикселей. Воспользуемся простым подходом и будем рассматривать
эти изображения как вектор признаков из 784 параметров. Использу-
ем функцию fetch_openml для загрузки данных с сайта OpenML, имя
набора данных ‘mnist_784’. Помимо набора данных MNIST, сайт

86

Глава 5. Уменьшение размерности

OpenML содержит большое число других наборов данных, которые
можно использовать для практики алгоритмов машинного обучения.

Рис. 5.2. Примеры изображений в наборе данных MNIST

В коде ниже укажем: необходимо, чтобы функция вернула толь-
ко массив данных и вектор меток (return_X_y=True), а не полные
данные в формате словаря. При этом добавим, что данные должны
быть в формате массивов numpy array, а не датафреймов Pandas (as_
frame = False).

from sklearn.datasets import fetch_openml
X, y = fetch_openml(‘mnist_784’, version=1, return_X_

y=True, as_frame = False)

Данные в наборе MNIST хранятся в формате 8 бит (т. е. интенсив-
ность пикселя закодирована числом от 0 до 255). Нормализуем данные,
для этого достаточно поделить все значения на 255. При этом данные бу-
дут изменяться в диапазоне от 0 до 1, где 0 – это черные пиксели, а 1 —
белые. Промежуточные значения – 254 оттенка от черного к белому.

Воспользуемся подготовленным нами классом PCA и применим ме-
тод главных компонент к набору данных MNIST, указав n_components
равным 100. На рисунке 5.3 представлена визуализация собственных
значений для проведенного преобразования. Видно, что после 100-го
собственного значения график асимптотически стремится к 0.

На рисунке 5.4 представлена визуализация скаттерограмм для пер-
вых четырех главных компонент. Каждая цифра представлена точкой
соответствующего цвета. Несмотря на ограниченную размерность, ряд
цифр сгруппированы «по группам». Так, цифры 0 и 1 стоят обособлен-
но от остальных в координатах первой главной компоненты, вторая
главная компонента позволяет отделить цифру 2 от остальных, а чет-

87

Набор данных MNIST

вертая главная компонента позволяет отсечь часть представлений циф-
ры 6. При этом перемешанными оказались цифры 3 и 5, а также циф-
ры 4, 7 и 9, что вполне объяснимо из-за схожести в их написании. Тем
не менее это достаточно хороший результат для такой простой модели.

Рис. 5.3. Визуализация собственных значений для набора данных MNIST

Рис. 5.4. Визуализация пространства четырех главных компонент
для набора данных MNIST

88

Глава 5. Уменьшение размерности 

Попробуем интерпретировать полученные результаты. Для этого
визуализируем собственные вектора. Сгруппируем их таким образом,
чтобы можно было составить изображение, аналогичное исходным.
На рисунке 5.5 красным цветом обозначены положительные значе-
ния, а синим – отрицательные. С учетом того, что главные компонен-
ты – это линейная комбинация исходных признаков, «работу» первой
главной компоненты можно интерпретировать следующим образом:
берется центральная область изображения с положительными весами
и окружающая ее область с отрицательными.

Рис. 5.5. Визуализация четырех собственных векторов для набора данных MNIST

Таким образом, если изображение похоже на цифру 1, то для этой
главной компоненты получится положительное число (светлые пиксе-
ли исходного изображения будут помножены на положительные веса).
Если изображение похоже на цифру 0, то для этой главной компонен-
ты получится отрицательное число (светлые пиксели исходного изо-
бражения будут помножены на отрицательные веса). Для других цифр
результат зависит от того, сколько светлых пикселей попадут в зоны
положительных и отрицательных весов.

Аналогичным образом можно попытаться интерпретировать дру-
гие главные компоненты. Однако, к сожалению, такой красивой и од-
нозначной трактовки, как с перв ой главной компонентой и цифрами
0 и 1, не получится.

Наконец, посмотрим, как будут выглядеть изображения, если их
реконструировать из 100 главных компонент. На рисунке 5.6 представ-
лены реконструированные изображения и соответствующие им ори-
гиналы. Видно, что в целом восстановленные изображения соответ-
ствуют оригиналам, хотя имеются шумы и артефакты.

89

Практические задания

Рис. 5.6. Реконструкция изображения с использованием главных компонент

Можно количественно оценить коэффициент сжатия на уровне
размерностей. Исходная матрица n p× восстанавливается из простран-
ства главных компонент размером n p� � и совокупности собственных
векторов общим размером p p� �. Тогда количественно коэффициент
сжатия K можно оценить по следующей формуле:

	 К
p p n

p n
�

� �� �
�

�
.

Для наших преобразований получим следующие значения:

	 К �
� �� �

�
� ��

100 784 70000

784 70000
0 13 13. %.

Однако стоит отметить ограниченность метода главных компо-
нент в общем случае. Так, найденные собственные вектора будут от-
носительно хорошо работать на новых данных, которые «похожи» на
те, что были в обучающем наборе. Но если цифры будут наклонены
под другим углом, то результаты восстановления могут быть неожи-
данными. Кроме того, если изображения более сложные, например
различные изображения котов, то собственные вектора могут носить
случайных характер.

Практические задания

1.	 Сгенерируйте данные в виде эллипса с разными значениями
радиусов и углов наклона. Примените метод главных компо-
нент. Визуализируйте пространство главных компонент, оце-
ните собственные значения и собственные вектора.

90

Глава 5. Уменьшение размерности

2.	 Загрузите данные MNIST. Поэкспериментируйте с количе-
ством компонент при применении метода главных компонент.
Оцените качество восстановления при разных значениях раз-
мерности собственного пространства. Визуализируйте разные
пространства главных компонент.

3.	 Примените метод главных компонент для набора данных Cars:
•	 выполните визуализацию пространства главных компонент

и оцените их связь с исходными признаками;
•	 примените пространство главных компонент в качестве

входных данных для алгоритмов;
•	 сравните результаты модели при использовании только чис-

ловых признаков и при добавлении категориальных при-
знаков с использованием One-Hot-кодирования.

4*.	 Сравните работу реализованных алгоритмов с функцией би-
блиотеки scikit-learn - методом главных компонент sklearn.
decomposition.PCA.

Контрольные вопросы

1.	 Как связаны главные компоненты с исходными данными?
2.	 Сделайте грубую оценку сжатия данных, если исходная матри-

ца имела размерность (4250, 7), а при восстановлении исполь-
зуются три главные компоненты.

3.	 Сгенерируйте данные в виде эллипса с центром в точке (1.5,
-2.5), радиусами (3, 2.5), углом 65 и количеством точек 1100.
Оцените собственные вектора, собственные значения, мак-
симальные и минимальные значения в пространстве главных
компонент.

4.	 Для набора данных Cars проанализируйте веса главных ком-
понент при использовании числовых признаков. Какой из па-
раметров вносит наименьший вклад в первую главную компо-
ненту?

91

Глава 6.
Кластеризация

З адачу кластеризации можно ассоциативно описать с помо-
щью житейской ситуации: если вы стоите рядом с другими
людьми на вечеринке, вероятно, у вас есть что-то общее. Эта

идея используется в алгоритме кластеризации k-средних для разделе-
ния точек данных на группы.

Интересный исторический факт. Американский физик
С. Ллойд, выпускник знаменитой инновационной фабрики Bell Labs
и Манхэттенского проекта, в котором была изобретена атомная бомба,
впервые предложил кластеризацию k-средних в 1957 г. для распределе-
ния информации в цифровых сигналах, но не публиковал алгоритм до
1982 г. Тем временем американский статистик Э. Форги описал ана-
логичный метод в 1965 г., что привело к его альтернативному назва-
нию – алгоритм Ллойда – Форги.

В ряде случаев при анализе данных оказывается, что о них ниче-
го не известно, однако требуется понять, насколько они однородны
или, например, можно ли их разделить на группы (кластеры). Други-
ми словами, нужно найти закономерности в данных как таковых без
привязки к тому, какие результаты для них мы хотим получить. Зада-
ча разделения на кластеры не требует наличия учителя.

Метод кластеризации k-средних, как и многие другие методы кла-
стеризации, опирается на «близость» точек данных друг к другу. Для
этого необходимо научиться измерять расстояние между точками
в произвольном пространстве.

92

Глава 6. Кластеризация 

Метрики расстояния

Для простоты описания используем двумерный случай, однако
все описанные метрики будут работать и в случаях пространств боль-
шей размерности.

Евклидово расстояние

Первая метрика расстояния знакома нам по школьной програм-
ме, хотя не все смотрят на теорему Пифагора как на способ определе-
ния расстояния между точками.

Допустим, в двумерном пространстве a b, �2 есть две точки, коор-
динаты которых нам известны. Достроим прямоугольный треуголь-
ник (рис. 6.1), тогда искомое расстояние будет гипотенузой в этом пря-
моугольном треугольнике.

Рис. 6.1. К определению евклидова расстояния

Согласно теореме Пифагора, квадрат гипотенузы равен сумме ква-
дратов катетов. Катеты находятся как модуль разности со ответствую-
щих координат. Тогда искомое расстояние будет определено как ко-
рень квадратный из суммы квадратов разности координат. В общем
случае a b m, � и расстояние определится по формуле

 L d a b a b
i

m

i i
2

2 1

2
1

2� � � � �� ���, .

Эта метрика расстояния носит название евклидово расстояние.

93

Метрики расстояния

Манхэттенское расстояние

Теперь представим ситуацию, что мы едем на машине по городу
из пункта А в пункт В (рис. 6.2). В городской среде мы не можем дви-
гаться напрямую по гипотенузе, как птицы, а вынуждены использовать
дороги с их поворотами, перекрестками и т. д. Тогда расстояние меж-
ду точками А и В будет определяться просто как сумма длин кате тов.

Рис. 6.2. К определению манхэттенского расстояния [18]

В общем случае � �a b m,  и расстояние определится по формуле

 L d a b a b
i

m

i i
1

1 1
� � � � �

��, .

Эта метрика носит название манхэттенское расстояние. Из-за ана-
логии с движением по городу часто упоминаются названия City Block
и Taxicab.

Расстояние Чебышева

Ассоциативным примером для следующей метрики расстояния
служат шахматная доска и фигура короля. Из правил шахмат мы пом-
ним, что король может двигаться на одну клетку в любом направле-
нии: по горизонтали, вертикали и диагонали. Исходя из этого, можно
оценить каждую клетку на доске с точки зрения того, сколько ходов
понадобится королю, чтобы до нее дойти (рис. 6.3).

В общем случае a b m, � и расстояние определится по формуле

 L d a b a bi i
�

�� � � � �� �, max .

А

В

94

Глава 6. Кластеризация 

Рис. 6.3. К определению расстояния Чебышева

Эта метрика расстояния носит название расстояние Чебышева.
Из-за аналогии с шахматной доской часто упоминаются название
Che ssBoard.

Расстояние Минковского

Нетрудно заметить общую составляющую в метриках расстояния.
Используется модуль разности координат, полученные модули разно-
сти определенным образом суммируются: либо возводятся в квадрат
(вторая степень), либо берутся просто модули (первая степень). Есте-
ственным образом метрика расстояния обобщается на произвольную
степень p ≥1. В общем случае a b m, � и расстояние определится по фор-
муле

 L d a b a bp
p i

m

i i

p p� � � � �� ���, .
1

1

Эта метрика расстояния носит название расстояние Минковского.
На рисунке 6.4 представлены эквидистантные фигуры для различ-

ных метрик расстояний. Все точки, лежащие на прямых одного цвета,
находятся на расстоянии 1 от центра координат с точки зрения соот-
ветствующей метрики расстояния.

Запишем функцию для определения расстояния:

def distance(X1, X2, metric = ‘euclidean’, p = 2):
 if metric == ‘euclidean’:
 dist = np.sqrt(np.sum(np.square(X1 - X2).T,axis=0))
 if metric == ‘cityblock’:
 dist = np.sum(np.abs(X1 - X2).T,axis=0)
 if metric == ‘Chebyshev’:

95

Алгоритм k-cредних

 dist = np.max(np.abs(X1 - X2).T,axis=0)
 if metric == ‘Minkowski’:
 dist = np.power(np.sum(np.power(np.

abs(X1 - X2),p).T,axis=0),1/p)
 return dist

Функция работает как с векторами, так и с матрицами равной раз-
мерности.

Рис. 6.4. Эквидистантные фигуры для разных метрик расстояния

Как правило, метрикой расстояния по умолчанию является евклидова
метрика. Однако в разных задачах, особенно если анализируются категори-
альные переменные, могут хорошо проявлять себя и другие метрики. Вы-
бор метрики расстояния тоже можно отнести к гиперпараметрам модели.

Кроме того, необходимо помнить о стандартизации или нормали-
зации данных при использовании метрик расстояния. Иначе резуль-
таты вычисления метрик могут быть некорректны, если используют-
ся данные, измеряющиеся в разных диапазонах.

Алгоритм k-cредних

Одним из самых простых методов кластеризации является метод
k-средних. Суть данного метода сводится к тому, чтобы найти заданное

96

Глава 6. Кластеризация

число кластеров (k) и их центры (так называемые центроиды) - такие, что-
бы расстояние от центроидов до всех точек кластера было минимальным.

Алгоритм k-средних может быть описан следующим образом:
•	 выбирается k случайных точек – центроидов;
•	 рассчитывается вектор расстояния между каждой точкой на-

бора данных и каждым центроидом;
•	 в каждый кластер записываются те точки, для которых оказа-

лось, что до соответствующего центроида расстояние меньше,
чем до других;

•	 новые значение центроидов рассчитываются как среднее зна-
чение по всем точкам кластера.

Рассмотрим этот метод на генерируемых данных из главы 4. Нач-
нем с простой модели линейно разделимых данных.

Прежде чем проводить кластеризацию, необходимо проинициали-
зировать кластеры. Для этого выберем случайные индексы среди до-
ступных в наборе данных:

def init_centroids(X, n_clusters):
 centroid_idxs = np.random.randint(0, X.shape[0],

size = n_clusters)
 return X[centroid_idxs,:]

Посмотрим, как это работает для двух кластеров. Проведем пер-
вую кластеризацию. Для этого возьмем каждый центроид и посчитаем
расстояние от него до всех записей набора данных. Индексы значений
для каждого кластера выберем как индексы минимальных расстояний
до соответствующего центроида. Таким образом, нулевой кластер бу-
дет включать те точки набора данных, в которых расстояние до нуле-
вого центроида меньше, чем до первого центроида.

def predict(X, n_clusters, centroids, metric =
‘euclidean’, p = 2):

 distances = np.zeros((X.shape[0], n_clusters))
 for i,centr in enumerate(centroids):
 distances[:,i] = distance(centr,X, metric, p)
 cluster_label = np.argmin(distances,axis = 1)

 return cluster_label

Посмотрим, как распределились результаты кластеризации после
случайной инициализации центроидов (рис. 6.5). Получилось доста-

97

Алгоритм k-cредних

точно интересно: оба центроида оказались относительно близко друг
к другу. Тем не менее это нулевая итерация алгоритма.

Рис. 6.5. Результаты кластеризации после инициализации центроидов

Теперь выберем новые центроиды для каждого кластера как сред-
нее значение по кластеру. В визуализации будут видны старые цен-
троиды и новый центроид с бо́льшим радиусом (рис. 6.6). Видно, что
центр для красного кластера значительно сместился.

Рис. 6.6. Результаты кластеризации после изменения центроидов

Рассчитаем относительное расстояние между старыми и новыми
центроидами. Если расстояние между обновленными центроидами
будет сравнительно небольшим, то есть центроиды перестанут менять
позицию, то будем считать, что кластеризация закончена.

98

Глава 6. Кластеризация

def delta_centroids(centroids,old_centroids,
metric = ‘euclidean’, p = 2):

 return (distance(centroids,old_centroids, metric, p)/
distance(old_centroids, np.mean(old_centroids), metric, p)).mean()

Для автоматизации процесса реализуем процедуру итерационной
кластеризации. Укажем порог относительного изменения центроидов
– tol. В конце процедуры выведем результирующий номер итерации
и расстояние между последним изменением центроидов:

def fit(X, n_clusters, centroids, max_
iter=10, tol=0.01, metric = ‘euclidean’, p = 2):

 dcentr = np.inf

 for i in range(max_iter):

 old_centroids = np.copy(centroids)
 cluster_label=predict(X, n_clusters, centroids, metric, p)

 for k in range(n_clusters):
 c_idxs = np.flatnonzero(cluster_label==k)
 centroids[k] = X[c_idxs].mean(axis = 0)

 dcentr = delta_centroids(centroids,old_centroids, met-

ric, p)

 if dcentr<=tol:
 break

 print(‘Мы остановились на итерации:’, i,’, относитель-

ное изменение центроидов: ‘,dcentr)

 return cluster_label

Проверим и визуализируем результаты. Буквально через пару ите-
раций получим следующее распределение (рис. 6.7).

Теперь объединим все наши наработки в один класс KMeans (пред-
ставлен в прил. 7). Центроиды на последней итерации хранятся в атри-
буте .centroids. Для того чтобы получить предсказания номера класте-
ра, необходимо воспользоваться методом .fit_transform. Кроме того,
мы добавили в класс KMeans атрибут .inertia — сумму квадратов рас-
стояния точек кластеров до соответствующих центроидов.

99

Алгоритм k-cредних

Рис. 6.7. Результаты кластеризации после нескольких итераций

С помощью этого параметра можно попытаться ответить на вопрос,
какое число кластеров оптимально для конкретных данных. Для это-
го можно использовать так называемый метод локтя (Elbow Method):
проверяются различные количества кластеров и запоминаются конеч-
ные значения инерции для каждого числа кластеров, затем визуали-
зируется зависимость (число кластеров, инерция). Как правило, по-
лучаются зависимости, подобные рис. 6.8.

Рис. 6.8. Визуализация метода локтя

Затем ищется такое число кластеров, которое напоминает перегиб
согнутого локтя (в нашем случае это число k = 2). Большее количество
кластеров неуместно: мы начинаем искусственно дробить большие
кластеры на малые, нарушая целостную структуру данных (рис. 6.9).

Метод k-cредних можно применять не только к двумерным дан-
ным, но и к данным большей размерности. При этом рекомендуется

100

Глава 6. Кластеризация 

пользоваться методами уменьшения размерности для возможности
визуализации результата кластеризации.

Рис. 6.9. Кластеризация k-cредних со слишком большим числом кластеров

В общем случае кластеризация применяется в контексте того, что
истинные метки кластеров нам неизвестны. Именно поэтому эту задачу
машинного обучения относят к задачам обучения без учителя. Однако
иногда возникают тренировочные задачи, в которых метки известны
или помимо числовых данных есть набор категориальных признаков,
и требуется выяснить, связаны ли найденные кластеры с каким-то ка-
тегориальным признаком.

Для этого можно воспользоваться матрицей, схожей с матрицей
ошибок из главы 4 и соответствующими метриками. Только нужно
помнить особенность: номера кластеров генерируются случайно и мо-
гут совершенно противоречить известным меткам классов. Проверить
это можно с помощью перекрестного табулирования с использовани-
ем метода crosstab библиотеки Pandas: здесь y — истинные метки
классов, а c_labels — полученные предсказания кластеров:

pd.crosstab(y,c_labels, rownames=[‘Метки’], colnames = [‘Пред-
сказания’])

И уже на основе таблицы кросс-табулирования можно оценивать
метрики, схожие с метриками классификации, введя следующие обо-
значения:

• TP — элементы принадлежат одному кластеру и одному классу;

101

Практические задания

•	 FP — элементы принадлежат одному кластеру, но разным
классам;

•	 FN — элементы принадлежат разным кластерам, но одному
классу;

•	 TN — элементы принадлежат разным кластерам и разным
классам;

•	 индекс Rand (аналог доли правильных ответов):

	 Rand
TP TN

TP TN FP FN
�

�
� � �

;

•	 индекс Жаккара:

	 Jaccard
TP

TP FP FN
�

� �
;

•	 индекс Фоулкса – Мэллова:

	 FM
TP

TP FP

TP

TP FN
�

� �
.

Практические задания

1.	 Сгенерируйте линейно разделимые данные с другими пара-
метрами и проверьте, как работает алгоритм кластеризации
k-cредних на этих данных. Оцените оптимальное число кла-
стеров по методу локтя.

2.	 Сгенерируйте данные, распределенные как знак инь-ян или
концентрические круги, и проверьте, как работает алгоритм
кластеризации k-cредних на этих данных. Оцените оптималь-
ное число кластеров по методу локтя.

3.	 Загрузите данные MNIST. Уменьшите размерность данных с ис-
пользованием метода главных компонент. Примените кластери-
зацию k-cредних. Оцените оптимальное число кластеров по ме-
тоду локтя и связь кластеров с цифрами на изображениях.

4.	 Выполните кластеризацию для набора данных Cars:
•	 выполните кластеризацию для числовых признаков: ис-

пользуйте все числовые признаки, выполнив визуализа-
цию в разных двумерных проекциях;

102

Глава 6. Кластеризация

•	 оцените оптимальное число кластеров по методу локтя;
•	 оцените связь кластеров с категориальными признаками;
•	 сравните результаты модели при использовании данных

с применением метода главных компонент.
5*.	 Сравните работу реализованных алгоритмов с функциями би-

блиотеки scikit-learn — кластеризацией k-cредних sklearn.
cluster.KMeans.

Контрольные вопросы

1.	 Оцените евклидово расстояние между векторами x1 {2, 5, 3 ,7}
и x2 {2, 7, 1, 5}.

2.	 Оцените расстояние Чебышева между векторами x1 {0, 10, 4, 9}
и x2 {3, 7, 0, 2}.

3.	 Есть три центроида c1 {1, 0, 0}, c2 {0, 1, 1}, c3{1, 0, 1} и точка x
с координатами {2, 0, 2}. К какому кластеру следует отнести эту
точку при использовании евклидовой метрики расстояния?

4.	 Как называется метод определения оптимального числа k (кла-
стеров) с использованием анализа инерции?

103

Заключение

Мы прошли достаточно длинный путь в освоении базовых
алгоритмов машинного обучения на языке Python.

В 1-й главе мы обсудили ключевые понятия и тер-
мины машинного обучения. Рассмотрели основные типы данных,
которые обычно анализируются с помощью методов машинного об-
учения, и конкретные задачи, которые возможно решать с использо-
ванием методов машинного обучения. В основном данное учебно-ме-
тодическое пособие посвящено работе с табличными данными. Кроме
того, мы вспомнили некоторые понятия линейной алгебры и математи-
ческого анализа, необходимые для комфортной работы с алгоритмами
машинного обучения. Центральное понятие – производная, благода-
ря которой обучаются даже самые сложные глубокие нейронные сети.

Во 2-й главе мы рассмотрели возможности библиотеки Pandas для
анализа данных и освоили ключевые методы, которые пригодятся
в начале работы с данными. Упоминалась также библиотека Seaborn
для визуализации данных. (На самом деле возможности этой библио-
теки настолько широки, что заслуживают отдельного учебного посо-
бия.) Помимо этого мы обсудили ключевые идеи, которые необходи-
мо использовать для предварительной обработки данных и инженерии
признаков.

В 3-й главе мы пошагово реализовали первую модель машинного
обучения – линейную регрессию. Реализация была выполнена в двух
вариантах: в виде отдельных функций, а также в более высокоуровне-
вом виде, с использованием классов языка Python. Мы обсудили, как
с помощью модели, которая может строить только прямые линии, воз-
можно находить нелинейные зависимости и как вводить дополнитель-
ные ограничения на модель с использованием регуляризации, кото-
рая может не только повысить обобщающую способность модели, но
и приводить к отбору значимых признаков.

104

Заключение

В 4-й главе мы трансформировали модель линейной регрессии для
решения задачи классификации в логистическую регрессию, что по-
зволило унаследовать возможности и сильные стороны модели линей-
ной регрессии для решения новой задачи. Отдельного упоминания сто-
ят метрики классификации, которые основаны на матрице ошибок.

В 5-й главе мы обсудили классический метод уменьшения размер-
ности – метод главных компонент. Этот метод использует дисперсию
как критерий важности признаков и позволяет строить новое призна-
ковое пространство как линейную комбинацию исходных данных. Мы
применили этот метод к однотипным изображениям – рукописным
цифрам – и даже смогли визуализировать полученное уменьшенное
пространство признаков.

В 6-й главе мы рассмотрели, как различные метрики расстояния
можно использовать в задачах кластеризации. Кластеризация – это
своеобразный аналог задачи классификации с определенными осо-
бенностями. Пошагово мы реализовали базовый алгоритм кластери-
зации k-средних.

Что делать дальше, после того как все практические задания вы-
полнены, а на контрольные вопросы есть ответы?

Во-первых, рекомендуется более детально ознакомиться с откры-
той библиотекой машинного обучения scikit-learn. В этом пособии мы
уже упоминали ряд функций данной библиотеки для генерации дан-
ных, загрузки данных, а также аналоги базовых алгоритмов машин-
ного обучения, реализованных по ходу изложения материала. Но на
этом возможности библиотеки scikit-learn не заканчиваются, посколь-
ку включают большое число моделей машинного обучения, которые
используют другие базовые идеи [19].

Далее стоит ознакомиться с моделями, которые лучше всего ра-
ботают при анализе конкретных типов данных. Так, для анализа та-
бличных данных лучше всего подходят модели, основанные на дере-
вьях решений [20]. К таким моделям относят так называемые методы
бустинга, которые, подобно супергероям из комиксов, объединяю-
щимся для победы над более сильными злодеями, объединяют про-
стые модели таким образом, чтобы лучше решить поставленную за-
дачу. В настоящее время в открытом доступе представлены разные
модели [21], в том числе модель CatBoost от компании «Яндекс» [22].

Для обработки изображений в первую очередь стоит ознакомиться
с возможностями сверточных нейронных сетей [2–4]. Подобные моде-

105

Заключение

ли решают задачи не только анализа заданных изображений, но и син-
теза новых [23].

Для обработки естественного языка в настоящее время активно
применяются модели-трансформеры, основанные на механизме внима-
ния (Attention), предложенного командой из Google [10; 11]. По своей
сути это все те же матричные умножения, реализованные с несколь-
ко более сложной архитектурой, чем рассмотренные нами линейные
модели. Кстати, в основе нашумевшей нейронной сети ChatGPT тоже
лежит механизм внимания.

В целом для успешной работы в сфере науки о данных (Data
Science) нужно быть открытым к новой информации и постоянному
обучению. Рекомендуется хотя бы раз в неделю просматривать новые
статьи и блоги по тематике машинного обучения и искусственного
интеллекта. Это направление очень открыто для обмена идеями и их
распространения: постоянно публикуются интересные объяснения
алгоритмов, визуализации результатов и другие кейсы из практики.

106

Список библиографических ссылок

1.	 Lenna [Электронный ресурс] // Википедия : [сайт]. —
URL: https://en.wikipedia.org/w/index.php?title=Lenna&old
id=1118923916 (дата обращения: 31.10.2022).

2.	 Going deeper with convolutions / C. Szegedy [et al.] // Proceedings
of the IEEE conference on computer vision and pattern recognition.
2015. P. 1–9.

3.	 Rethinking the inception architecture for computer vision / C. Szegedy
[et al.] // Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016. P. 2818–2826.

4.	 Deep residual learning for image recognition / K. He [et al.] //
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016. P. 770–778.

5.	 Биомедицинские сигналы и изображения в цифровом здра-
воохранении: хранение, обработка и анализ : учеб. пособие /
В. С. Кубланов [и др.]. Екатеринбург : Изд-во Урал. ун-та, 2020.
240 с.

 6.	 Кубланов В. С., Борисов В. И., Долганов А. Ю. Анализ биоме-
дицинских сигналов в среде MATLAB : учеб. пособие. Екате-
ринбург : Изд-во Урал. ун-та, 2016. 120 с.

7.	 Hochreiter S., Schmidhuber J. Long short-term memory // Neural
Computation. 1997. Vol. 9. № 8. P. 1735–1780.

8.	 Pennington J., Socher R., Manning C. D. Glove: Global vectors
for word representation // Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 2014.
P. 1532–1543.

9.	 Efficient estimation of word representations in vector space [Элек-
тронный ресурс] / T. Mikolov [et al.] // arXiv : [сайт]. URL:
https://arxiv.org/abs/1301.3781 (дата обращения: 31.10.2022).

10.	 BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding [Электронный ресурс] / J. Devlin [et al.] // arXiv :

107

Список библиографических ссылок

[сайт]. URL: https://arxiv.org/abs/1810.04805 (дата обращения:
31.10.2022).

11.	 Attention is all you need / A. Vaswani [et al.] // Advances in neural
information processing systems. 2017. Vol. 30.

12.	 Рandas — Python Data Analysis Library [Электронный ресурс].
URL: https://pandas.pydata.org/ (дата обращения: 30.11.2021).

13.	 Matplotlib — Visualization with Python [Электронный ресурс].
URL: https://matplotlib.org/ (дата обращения: 08.08.2022).

14.	 Hunter J. D. Matplotlib: A 2D Graphics Environment // Computing
in Science & Engineering. 2007. Vol. 9. № 3. P. 90–95.

15.	 Waskom M. Seaborn: statistical data visualization // Journal of Open
Source Software. 2021. Vol. 6. № 60. P. 3021.

16.	 An introduction to seaborn - seaborn 0.11.2 documentation [Элек-
тронный ресурс]. URL: https://seaborn.pydata.org/introduction.
html (дата обращения: 08.08.2022).

17.	 Example gallery — seaborn 0.11.2 documentation [Электронный
ресурс]. URL: https://seaborn.pydata.org/examples/index.html
(дата обращения: 08.08.2022).

18.	 Taxicab geometry [Электронный ресурс] // Википедия : [сайт]. —
URL: https://en.wikipedia.org/w/index.php?title=Taxicab_
geometry&oldid=1116503626 (дата обращения: 31.10.2022).

19.	 Scikit-learn: Machine learning in Python / F. Pedregosa [et al.] //
Journal of machine learning research. 2011. Vol. 12. № 85. P. 2825–
2830.

20.	 Grinsztajn L., Oyallon E., Varoquaux G. Why do tree-based models
still outperform deep learning on tabular data? [Электронный ре-
сурс] // arXiv : [сайт]. URL: https://arxiv.org/abs/2207.08815 (дата
обращения: 30.11.2021).

21.	 XGBoost Documentation – xgboost 1.5.1 documentation [Элек-
тронный ресурс]. URL: https://xgboost.readthedocs.io/en/stable/
(дата обращения: 30.11.2021).

22.	 CatBoost - state-of-the-art open-source gradient boosting library
with categorical features support [Электронный ресурс]. URL:
https://catboost.ai (дата обращения: 30.11.2021).

23. 	Karras T., Laine S., Aila T. A Style-Based Generator Architecture for
Generative Adversarial Networks [Электронный ресурс] // arXiv :
[сайт]. URL: https://arxiv.org/abs/1812.04948 (дата обращения:
30.11.2021).

108

ПРИЛОЖЕНИЯ

1. Класс линейной регрессии

import numpy as np

import matplotlib.pyplot as plt

class LinearRegression():

 def __init__(self,

 learning_rate = 0.5,

 epochs = 100,

 weights = None,

 bias = None,

 batch_size = 1000,

 n_batches = None,

 random_state = 42):

 self.lr = learning_rate

 self.epochs = epochs

 self.weights = weights

 self.bias = bias

 self.seed = random_state

 self.batch_size = batch_size

 self.cost = np.zeros(epochs)

 self.n_batches = n_batches

 #---------------------------------

 def forward(self, X):

 # умножаем признаки на веса

 return np.dot(X, self.weights)

 #---------------------------------

 def loss(self,yhat, y):

 # расчет функции потерь

 return np.square(yhat - y).sum()/y.size

 #---------------------------------

109

1. Класс линейной регрессии

 def grad_step(self,yhat, y, X):

 # расчет градиента

 return 2*np.dot(X.T, (yhat - y)) / y.size

 #---------------------------------

 def update(self):

 # обновление весов

 return self.weights - self.lr*self.grad

 #---------------------------------

 def init(self, weights_size):

 # инициализируем веса

 np.random.seed(self.seed)

 return np.random.randn(weights_size)/np.sqrt(weights_size)

 #---------------------------------

 def predict(self, X):

 # делим предсказание модели

 yhat = self.forward(self.add_bias(X))

 return yhat.squeeze()

 #---------------------------------

 def score(self, X, y):

 # оценка по коэффициенту детерминации

 yhat = self.predict(X)

 return 1-np.sum(np.square(y-yhat))/np.sum(np.square(y-np.

mean(y)))

 #---------------------------------

 def fit(self, X, y):

 # обучение модели с учетом разбиения на батчи

 np.random.seed(self.seed)

 if self.weights is None: # если веса не заданы - задаем

 self.weights = self.init(X.shape[1])

 if self.bias is None: # если смещение не задано - задаем

 self.bias = self.init(1)

 if self.weights.size == X.shape[1]: # если веса заданы,

но не добавлено смещение - объединяем

 self.weights = np.append(self.bias,self.weights)

 self.grad = np.zeros(self.weights.shape)

 self.cost = np.zeros(self.epochs)

110

ПРИЛОЖЕНИЯ

 if self.batch_size is None: # проверка на согласование

размерности батча и размерности данных

 self.batch_size = y.size

 if self.n_batches is None:

 self.n_batches = y.size//self.batch_size

 for i in range(self.epochs): #циклы обучения, как раньше

 loss = 0

 for cnt,(x_batch, y_batch) in enumerate(self.load_

batch(X,y)):

 yhat = self.forward(x_batch)

 self.grad = self.grad_step(yhat, y_batch, x_batch)

 self.weights = self.update()

 loss += self.loss(yhat, y_batch)

 if cnt>= self.n_batches:

 break

 self.cost[i] = loss/self.n_batches

 self.bias = self.weights[0]

 #---------------------------------

 def load_batch(self,X,y):

 # загрузка батча

 idxs = np.arange(y.size)

 np.random.shuffle(idxs)

 for i_batch in range(0,y.size,self.batch_size):

 idx_batch = idxs[i_batch:i_batch+self.batch_size]

 x_batch = np.take(X, idx_batch,axis=0)

 x_batch = self.add_bias(x_batch) # тут мы всегда до-

бавляем смещение

 y_batch = np.take(y, idx_batch)

 yield x_batch, y_batch

 #---------------------------------

 def add_bias(self, X):

 # добавление смещения

 return np.column_stack((np.ones(X.shape[0]), X))

 #---------------------------------

111

2. Класс регуляризации Тихонова

 def plot_cost(self, figsize = (12,6), title = ‘’):

 # отрисовка сразу в методе

 plt.figure(figsize = figsize)

 plt.plot(self.cost)

 plt.grid()

 plt.xlabel(‘Эпоха’, fontsize = 24)

 plt.ylabel(‘Функция Потерь’, fontsize = 24)

 plt.title(title, fontsize = 24)

 plt.show()

 #---------------------------------

 def get_w_and_b(self):

 # «новый» метод - который возвращает веса модели и смещение

 return (self.weights[1:], self.bias)

2. Класс регуляризации Тихонова

class RidgeRegression(LinearRegression): #унаследуем от класса

LinearRegression

 def __init__(self,

 learning_rate = 0.5,

 l2_penalty = 0.001,

 epochs = 100,

 weights = None,

 bias = None,

 batch_size = 1000,

 n_batches = None,

 random_state = 42):

 super().__init__(learning_rate = learning_rate,

 epochs = epochs,

 weights = weights,

 bias = bias,

 batch_size = batch_size,

 n_batches = n_batches,

 random_state = random_state)

 self.l2_penalty = l2_penalty

 #---------------------------------

112

ПРИЛОЖЕНИЯ

 def loss(self,yhat, y):

 # изменяем функцию потерь

 l2_term = (self.l2_penalty/2)*np.sum(np.square(self.

weights[1:]))

 return np.square(yhat - y).mean() + l2_term

 #---------------------------------

 def update(self):

 # изменяем правило обновления весов

 l2_term = self.l2_penalty*np.mean(self.weights[1:])

 return self.weights - self.lr*(self.grad + l2_term)

3. Класс регуляризации Лассо

class LassoRegression(LinearRegression): # унаследуем от класса

LinearRegression

 def __init__(self,

 learning_rate = 0.5,

 l1_penalty = 0.001,

 epochs = 100,

 weights = None,

 bias = None,

 batch_size = 1000,

 n_batches = None,

 random_state = 42):

 super().__init__(learning_rate = learning_rate,

 epochs = epochs,

 weights = weights,

 bias = bias,

 batch_size = batch_size,

 n_batches = n_batches,

 random_state = random_state)

 self.l1_penalty = l1_penalty

 #---------------------------------

 def loss(self,yhat, y):

 # изменяем функцию потерь

113

4. Класс эластичной регуляризации

 l1_term = self.l1_penalty*np.sum(np.abs(self.weights[1:]))

 return np.square(yhat - y).mean() + l1_term

 #---------------------------------

 def update(self):

 # изменяем правило обновления весов

 return self.weights - self.lr*(self.grad + np.sign(self.

weights)*self.l1_penalty)

4. Класс эластичной регуляризации

class ElasticRegression(LinearRegression): # унаследуем от класса

LinearRegression

 def __init__(self,

 learning_rate = 0.5,

 l1_penalty = 0.0,

 l2_penalty = 0.0,

 epochs = 100,

 weights = None,

 bias = None,

 batch_size = 1000,

 n_batches = None,

 random_state = 42):

 super().__init__(learning_rate = learning_rate,

 epochs = epochs,

 weights = weights,

 bias = bias,

 batch_size = batch_size,

 n_batches = n_batches,

 random_state = random_state)

 self.l1_penalty = l1_penalty

 self.l2_penalty = l2_penalty

 #---------------------------------

 def loss(self,yhat, y):

 # изменяем функцию потерь

 l1_term = self.l1_penalty*np.sum(np.abs(self.weights[1:]))

114

ПРИЛОЖЕНИЯ

 l2_term = (self.l2_penalty/2)*np.sum(np.square(self.weights[1:]))

 return np.square(yhat - y).mean() + l1_term + l2_term

 #---------------------------------

 def update(self):

 # изменяем правило обновления весов

 l2_term = self.l2_penalty*np.sum(self.weights[1:])

 return self.weights - self.lr*(self.grad + np.sign(self.

weights)*self.l1_penalty + l2_term)

5. Класс классификации логистической регрессии

EPS = 1e-6

class LogisticRegression(ElasticRegression):

 # унаследуем от класса ElasticRegression

 def __init__(self,

 learning_rate = 0.5,

 l1_penalty = 0.0,

 l2_penalty = 0.0,

 epochs = 100,

 weights = None,

 bias = None,

 threshold = 0.5,

 batch_size = 1000,

 n_batches = None,

 random_state = 42):

 super().__init__(learning_rate = learning_rate,

 epochs = epochs,

 weights = weights,

 bias = bias,

 batch_size = batch_size,

 n_batches = n_batches,

 random_state = random_state,

 l1_penalty = l1_penalty,

 l2_penalty = l2_penalty)

 self.learning_rate = learning_rate/2

115

5. Класс классификации логистической регрессии

 self.threshold = threshold

 #---------------------------------

 def loss(self,yhat, y):

 # изменяем функцию потерь - на бинарную кросс-энтропию

 l1_term = self.l1_penalty*np.sum(self.weights[1:])

 l2_term = (self.l2_penalty/2)*np.sum(np.square(self.weights[1:]))

 # добавки от регуляризации остаются прежде

 return -(y*np.log(yhat + _EPS_)+(1 - y)*np.log(1 - yhat +

EPS)).mean()\

 + l1_term+ l2_term

 #---------------------------------

 def sigmoid(self, z):

 # определение функции сигмоиды

 return 1 / (1 + np.exp(-z))

 #---------------------------------

 def forward(self, X):

 # умножаем признаки на веса и применяем к результату сигмоиду

 return self.sigmoid(np.dot(X, self.weights))

 #---------------------------------

 def to_class(self,logit):

 # классифицируем, сравнивая с порогом

 return (logit>=self.threshold)*1

 #---------------------------------

 def predict(self, X):

 # предсказание модели

 # в этот раз в два этапа

 yhat = self.forward(self.add_bias(X)) # 1 считаем модель

 return self.to_class(yhat) # 2 классифицируем по порогу

 #---------------------------------

 def predict_prob(self, X):

 # предсказание модели, но в «вероятностном виде»

 yhat = self.forward(self.add_bias(X))

 return yhat # для этого просто возвращаем модель

 #---------------------------------

 def score(self, X, y):

 # оценка модели

 yhat = self.predict(X)

 return sum((yhat==y)*1)/y.size # по количеству совпав-

ших предсказаний - Accuracy

 #---------------------------------

116

ПРИЛОЖЕНИЯ

 def plot_desicion_function(self,X,y,figsize = (12,6),

 marker = ‘o’,colors =(“#FF0000”, ‘#0000FF’),

 alpha=0.7, s = 150, poly = False, order = 2):

 # отрисовка функции принятия решений

 plt.figure(figsize = figsize) # создаем новое полотно

 cm_bright = ListedColormap(colors) # создаем цветовую карту

 # отрисовываем исходные данные

 plt.scatter(X[:, 0], X[:, 1],marker = marker, c=y, cmap=cm_

bright,s = s, alpha =alpha);

 h = (X[:, 0].max() - X[:, 0].min())/50 # шаг сетки как 1/50

от разницы между минимумом и максимумом

 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 # фик-

сируем минимальные и максимальные значения по горизонтали

 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 # фик-

сируем минимальные и максимальные значения по вертикали

 # создаем пары «иксов» и «игреков» (горизонтальных и вер-

тикальных признаков)

 # равномерно распределенных от минимальных до максималь-

ных значений с шагом h

 # т.е. мы разбиваем область значений входных данных на рав-

номерную сетку

 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

 np.arange(y_min, y_max, h))

 if poly: # если мы используем полиномиальные признаки

 # то сетку нужно преобразовать в соответствующие полино-

мы, иначе модель нас не поймет

 # считаем предсказание модели в «вероятностном виде»

 # с помощью метода ravel «выпрямляем» сетку в столбцы

 Z = self.predict_prob(to_polynom(np.c_[xx.ravel(), yy.

ravel()],order))-0.5

 # вычитаем 0.5, чтобы центровать вероятности: если мо-

дель не уверена, то будет 0

 else:

 # считаем предсказание модели в «вероятностном виде»

 # с помощью метода ravel «выпрямляем» сетку в столбцы

 Z = self.predict_prob(np.c_[xx.ravel(), yy.ravel()])-0.5

 # вычитаем 0.5, чтобы центровать вероятности: если мо-

дель не уверена, то будет 0

 cm = plt.cm.RdBu #

117

5. Класс классификации логистической регрессии

 Z = Z.reshape(xx.shape) # обратно преобразуем строку в сетку

 plt.contourf(xx, yy, Z, cmap=cm, alpha=.5) # отрисовываем

контур вероятности

 plt.xticks([],[])

 plt.yticks([],[])

 plt.tight_layout()

 #---------------------------------

 def classification_report(self, X,y):

 # считаем различные метрики классификации

 tp = 0 # true_positives

 tn = 0 # true_negatives

 fp = 0 # false_positives

 fn = 0 # false_negatives

 yhat = self.predict(X)

 total = yhat.size

 n= sum(yhat==0)

 p = sum(yhat==1)

 # перебираем все точки и вручную заполняем матрицу ошибок

 for yhati,yi in zip(yhat,y):

 if yi == 1 and yhati == 1:

 tp += 1

 elif yi == 0 and yhati == 0:

 tn += 1

 elif yi == 1 and yhati == 0:

 fn += 1

 elif yi == 0 and yhati == 1:

 fp += 1

 # пишем все метрики

 print(‘True Positives:%.4f’%(tp/p), end = ‘\t’)

 print(‘True Negatives:%.4f’%(tn/n))

 print(‘False Positives:%.4f’%(fp/p), end = ‘\t’)

 print(‘False Negatives:%.4f’%(fn/n))

 print(‘Accuracy:%.4f’% ((tp + tn) / total))

 print(‘Recall:%.4f’% (tp / (tp + fn)), end = ‘\t’)

 print(‘Precision:%.4f’%(tp / (tp + fp)))

 print(‘f1 measure:%.4f’%(tp / (tp + 0.5*(fp+fn))))

118

ПРИЛОЖЕНИЯ

6. Класс уменьшения размерности
методом главных компонент

import numpy as np

import matplotlib.pyplot as plt

class PCA():

 def __init__(self, n_components):

 self.n_components = n_components

 self.components = None

 self.values = None

 self.mean = None

 #--------------------------------

 def fit(self, X):

 # обучение - в этом случае сводится к нахождению соб-

ственных значений и собственных векторов

 self.mean = np.mean(X, axis=0) # оценка среднего для каж-

дого признака

 # считаем матрицу ковариации, используя функцию библиоте-

ки Numpy

 cov_matrix = np.cov(X - self.mean, rowvar = False) # не за-

бываем вычитать среднее

 # считаем собственные значения и собственные вектора ма-

трицы ковариации

 eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix) # для

этого тоже есть функция Numpy

 idx = eigenvalues.argsort()[::-1] #сортируем по возраста-

нию собственных значений

 # берем первые n собственных векторов

 self.components = eigenvectors[:, idx][:, :self.n_compo-

nents]

 self.values = eigenvalues[idx] # отсортированные соб-

ственные значения

 return self

 #--------------------------------

 def transform(self, X):

 # преобразование признаков в пространство главных компо-

нент

 X = X - self.mean #вычитаем среднее

119

6. Класс уменьшения размерности методом главных компонент

 return np.dot(X, self.components) #находим проекции при-

знаков на собственные вектора (через скалярное произведение)

 #это и будут главные компоненты

 #--------------------------------

 def fit_transform(self, X):

 # 2 в 1: обучаем и преобразуем

 return self.fit(X).transform(X)

 #--------------------------------

 def inverse_transform(self, X_new):

 # обратное преобразование

 # главные компоненты скалярно домножаем на собствен-

ные вектора

 return np.dot(X_new, self.components.T) + self.mean # не за-

бываем обратно добавить среднее

 #--------------------------------

 def score(self, X):

 # оцека «качества» восстановления - через коэффициент де-

терминации

 SStot = np.sum(np.square(X - np.mean(X)))

 SSres = np.sum(np.square(X - self.inverse_transform(self.

fit_transform(X))))

 return 1 - SSres/SStot

 #--------------------------------

 def plot_eigvalues(self, figsize=(15,7)):

 # метод для отрисовки собственных значений (объяснен-

ной дисперсии)

 plt.figure(figsize=figsize)

 # отдельно мелкими точками визуализируем все собствен-

ные значения

 plt.plot(self.values,’.’,

 label=’Все собственные значения’,

 linewidth = 3)

 # крупными маркерами - выбранное нами количество глав-

ных компонент

 plt.plot(self.values[:self.n_components],’r-o’,

 label=’Собственное пространство’,

 markersize = 10, mfc=’none’,

 linewidth = 2, alpha = 0.8)

 plt.ylabel(‘Собственные\n значения’, fontsize=25)

 plt.grid();

120

ПРИЛОЖЕНИЯ

 plt.legend(fontsize=25);

 plt.xticks(FontSize = 25); plt.yticks(FontSize = 25);

 plt.tight_layout();

7. Класс кластеризации методом k-средних

import numpy as np

class KMeans():

 def __init__(self,n_clusters = 2, centroids = None,

 max_iter=10, tol=0.01,

 metric = ‘euclidean’, p = 2,

 random_state = None):

 self.n_clusters = n_clusters

 self.centroids = centroids

 self.max_iter = max_iter

 self.tol = tol

 self.iters = None

 self.inertia = None

 self.metric = metric

 self.p = p

 self.random_state = random_state

 #-------------------------------------

 def distance(self,X1, X2):

 # оценка расстояния

 if self.metric == ‘euclidean’:

 dist = np.sqrt(np.sum(np.square(X1 - X2).T,axis=0))

 if self.metric == ‘cityblock’:

 dist = np.sum(np.abs(X1 - X2).T,axis=0)

 if self.metric == ‘Chebyshev’:

 dist = np.max(np.abs(X1 - X2).T,axis=0)

 if self.metric == ‘Minkowski’:

 dist = np.power(np.sum(np.power(np.abs(X1 - X2),-

self.p).T,axis=0),1/self.p)

 return dist

 #-------------------------------------

 def init_centroids(self, X):

 # инициализация первых центров кластеров

121

7. Класс кластеризации методом k-средних

 if self.random_state: rng = np.random.seed(self.random_state)

 c_idxs = np.random.randint(0, X.shape[0], size = self.n_clusters)

 return X[c_idxs,:]

 #-------------------------------------

 def predict(self, X):

 # оценка принадлежности точек к кластеру по расстоянию

 distances = np.zeros((X.shape[0], self.n_clusters))

 for i,centr in enumerate(self.centroids):

 distances[:,i] = self.distance(centr,X)

 self.inertia = np.sum(np.power(np.min(distances,axis = 1),2))

 return np.argmin(distances,axis = 1)

 #-------------------------------------

 def transform(self,X):

 # получение предсказаний

 return self.predict(X)

 #-------------------------------------

 def delta_centroids(self,old_centroids):

 # оценка относительного изменения центров кластеров

 return (

 self.distance(self.centroids,old_centroids)/

 self.distance(old_centroids, np.mean(old_centroids))

).mean()

 #-------------------------------------

 def fit(self, X):

 # обучение - несколько итераций алгоритма k-средних

 if self.centroids is None: # если центры кластеров не за-

даны - задаем

 self.centroids = self.init_centroids(X)

 d_centrs = np.inf

 for i in range(self.max_iter):

 old_centroids = np.copy(self.centroids)

 cluster_label = self.predict(X)

 for k in range(self.n_clusters):

122

ПРИЛОЖЕНИЯ

 c_idxs = np.flatnonzero(cluster_label==k)

 self.centroids[k] = X[c_idxs].mean(axis = 0)

 d_centrs = self.delta_centroids(old_centroids)

 self.iters = i

 if d_centrs<=self.tol:

 break

 return self

 #-------------------------------------

 def fit_transform(self, X):

 # и обучаем, и сразу выдаем метки кластеров

 return self.fit(X).predict(X)

Учебное издание

Долганов Антон Юрьевич
Ронкин Михаил Владимирович
Созыкин Андрей Владимирович

БАЗОВЫЕ АЛГОРИТМЫ
МАШИННОГО ОБУЧЕНИЯ

НА ЯЗЫКЕ PYTHON

Редактор Т. Е. Мерц
Верстка О. П. Игнатьевой

Подписано в печать 04.04.2023. Формат 70×100 1/16.
Бумага офсетная. Цифровая печать. Усл. печ. л. 10,0.

Уч.-изд. л. 6,2. Тираж 30 экз. Заказ 25.

Издательство Уральского университета
Редакционно-издательский отдел ИПЦ УрФУ

620049, Екатеринбург, ул. С. Ковалевской, 5
Тел.: 8 (343) 375-48-25, 375-46-85, 374-19-41

E-mail: rio@urfu.ru

Отпечатано в Издательско-полиграфическом центре УрФУ
620083, Екатеринбург, ул. Тургенева, 4

Тел.: 8 (343) 358-93-06, 350-58-20, 350-90-13
Факс: 8 (343) 358-93-06

http://print.urfu.ru

А. Ю. ДОЛГАНОВ
М. В. РОНКИН
А. В. СОЗЫКИН

БАЗОВЫЕ АЛГОРИТМЫ
МАШИННОГО ОБУЧЕНИЯ
НА ЯЗЫКЕ PYTHON
Учебно-методическое пособие

ДОЛГАНОВ АНТОН ЮРЬЕВИЧ
Кандидат технических наук. Область научных интересов: машинное обучение,
обработка биомедицинских сигналов, обработка естественного языка.

РОНКИН МИХАИЛ ВЛАДИМИРОВИЧ
Кандидат технических наук. Область научных интересов: машинное обучение,
анализ временных рядов, компьютерное зрение.

СОЗЫКИН АНДРЕЙ ВЛАДИМИРОВИЧ
Кандидат технических наук. Область научных интересов: машинное обучение,
разработка систем искусственного интеллекта.

9 785799 636326

ISBN 579963632-5

