

Прикладное
машинное

обучение
без учителя
с использованием Python

Анкур Пател

Москва · Санкт-Петербург
2020

ББК 32.973.26-018.2.75
П20

УДК 681.3.07
Компьютерное издательство "Диалектика"

Перевод с анrлийскоrо канд. хим. наукlА.r. l}'зикевича 1

Под редакцией В.Р. IUнзбурzа

По общим вопросам обращайтесь в издательство "Диалектика" по адресу:

info.dialektika@gmail.com, http://www.williamspublishing.com

Пател, Анкур

П20 Прикладное машинное обучение без учителя с использованием Python. : Пер. с
англ. - СПб. : ООО "Диалектика~ 2020. - 432 с. - Парал. тит. англ.

ISBN 978-5-907144-99-6 (рус.)

ББК 32.973.26-018.2.75
Все названия проrраммных продуктов являются зареrистрированными торrовыми марками соответ­

ствующих фирм.

Никакая часть настоящеrо издания ни в каких целях не может быть воспроизведена в какой бы то

ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая

фотокопирование и запись на маrнитный носитель, если на это нет письмеиноrо разрешения издательства

O'Reilly Media, lnc.
Authorized Rus1lan translation о{ the English edition of Hands-On Unsupervised Learning Using Python

(ISBN 978-1-492-03564-0) С 2019 Human AI Collaboratlon, lnc.
Тhis translation ls puЬllshed and sold Ьу permisslon of O'Reilly Media, Inc" which owns or controls а11 rights

to sell the same.
А11 rights reserved. No part of this book may Ье reproduced or transmitted in any form or Ьу any means,

electronic or mechanical, including photocopylng. recording. or Ьу any information storage or retrieval system,
without the prior written permission of the copyright owner and the Publisher.

Научно-популярное издание

Ан:кур Пател

Прикладное машинное обучение без учителя

с использованием Python

ООО "Диалектика·: 195027, Санкт-Петербург, Маrнитоrорская ул" д. 30, лит. А, пом. 848

ISBN 978-5-907144-99-б (рус.)
ISBN 978-1-492-03564-0 (англ.)

<С 2020 ООО "Диалектика"
<С 2019 Human AI Collaboration, Inc.

Оглавление

Введение

Часть 1. Основы обучения без учителя

Глава 1. Обучение без учителя как один из видов машинного обучения

Глава 2. Готовый проект машинного обучения

Часть 11. Обучение без учителя с использованием библиотеки Scikit-learп

Глава 3. Снижение размерности

Глава 4. Обнаружение аномалий

Глава 5. Кластеризация

Глава 6. Сегментирование групп

Часть 111. Обучение без учителя с использованием библиотек Tensorflow и Keras

Глава 7. Автокодировщики

Глава 8. Реализация автокодировщиков

Глава 9. Обучение с частичным привлечением учителя

Часть IV. Глубокое обучение без учителя с использованием библиотек
Tensorflow и Keras

17

29

63

117

149

183

209

233

245

289

Глава 1 О. Рекомендательные системы на основе ограниченных машин Больцмана 305

Глава 11. Обнаружение признаков с помощью глубоких сетей доверия 329

Глава 12. Генеративно-состязательные сети 363

Глава 13. Кластеризация временных рядов 383

Глава 14. Заключение 411

Предметный указатель 421

https://t.me/it_boooks/2

Содержание

Об авторе 15
Об изображении на обложке 15

Введение 17

Краткая история машинного обучения 17
ИИ снова на пике популярности, но почему именно сейчас? 18
Появление прикладного ИИ 19
Основные этапы развития прикладного ИИ за последние 20 лет 20
От слабого ИИ к сильному 22
Цели и ПОДХОДЫ 23
Исходные предположения 24
Структура книги 24
Соглашения, принятые в книге 25
Файлы примеров и цветные иллюстрации 26
Ждем ваших отзывов! 26

Часть 1. Основы обучения без учителя

Глава 1. Обучение беэ учителя как один иэ видов машинного обучения

Базовая терминология машинного обучения

Обучение, основанное на наборе правил, и машинное обучение

Обучение с учителем и обучение без учителя

Сильные и слабые стороны обучения с учителем

Сильные и слабые стороны обучения без учителя

Использование обучения без учителя для улучшения систем

машинного обучения

Нехватка размеченных данных

Переобучение

Проклятие размерности

Конструирование признаков

Выбросы

Дрейф данных

Краткий обзор алгоритмов машинного обучения с учителем

Линейные методы

Методы на основе соседства точек

29

29
30
31
32
33

35
35
36
36
37
37
38
38
40
41

Методы на основе деревьев решений 43
Метод опорных векторов 45
Нейронные сети 45

Краткий обзор алгоритмов машинного обучения без учителя 46
Снижение размерности 46
Кластеризация 49
Извлечение признаков 51
Глубокое обучение без учителя 53
Обработка последовательных данных с помощью обучения

без учителя 56
Обучение с подкреплением с использованием обучения без учителя 57
Обучение с частичным привлечением учителя 58
Успешные примеры обучения без учителя 59

Обнаружение аномалий 59
Сегментирование групп 60

Резюме 61

Гnава 2. Готовый проект машинного обучения 63

Настройка среды 63
Git: система управления версиями 63
Клонируйте репоэиторий данной книги 63
Библиотеки для научных вычислений: дистрибутив Anaconda
для Python 64
Нейронные сети: TensorFlow и Keras 64
Градиентный бустинг, версия 1: XGBoost 65
Градиентный бустинг, версия 2: LightGBM 65
Алгоритмы кластеризации 66
Интерактивная вычислительная среда: Jupyter Notebook 66

Обзор данных 66
Подготовка данных 67

Получение данных 67
Исследование данных 69
Генерирование матрицы признаков и массива меток 73
Конструирование и отбор признаков 74
Визуализация данных 75

Подготовка модели 76
Разбиение данных на тренировочный и тестовый наборы 76
Выбор функции потерь 77
Создание наборов для k-кратной кросс-проверки 78

Содержание 7

Модели машинного обучения (часть I)
Модель No 1: логистическая регрессия

Оценочные метрики

Матрица неточностей

Кривая "точность - полнота"

Рабочая характеристика приемника

Модели машинного обучения (часть П)

Модель №2: случайные леса

Модель №3: машина градиентного бустинга XGBoost
Модель №4: машина градиентного бустинга LightGBM

Оценка четырех моделей с помощью тестового набора
Логистическая регрессия

Случайные леса

Градиентный бустинг XGBoost
Градиентный бустинг LightGBM

Ансамбли

Стекинг

Выбор окончательной модели

Производственный конвейер

Резюме

Часть 11. Обучение без учителя с использованием библиотеки Scikit-leam

Глава 3. Снижение размерности

Причины снижения размерности

База данных рукописных цифр MNIST
Алгоритмы снижения размерности

Линейное проецирование и многократное обучение
Анализ главных компонент

Концепция РСА

Реализация РСА

Инкрементный РСА

Разреженный РСА

ЯдерныйРСА

Сингулярное разложение

Случайное проецирование

Гауссовская случайная проекция

Разреженная случайная проекция

8 Содержание

78
79
83
83
84
87
90
90
93
97

101
103
104
105
106
107
107
111
112
113

117

117
118
122
122
123
123
124
130
130
132
134
136
136
137

Метод Isomap 139
Многомерное масштабирование 140
Локально-линейное вложение 141
Стохастическое вложение соседей с t-распределением 143
Другие методы снижения размерности 144

Словарное обучение 144
Анализ независимых компонент 146

Резюме 148

Глава 4. Обнаружение аномалий 149

Обнаружение попыток мошенничества с банковскими картами 149
Подготовка данных 150
Определение функции для оценки аномалий 150
Определение метрик оценки 152
Определение функции для построения графика 153

Обнаружение аномалий с помощью стандартного метода РСА 154
Количество РСА-компонент совпадает с числом исходных

размерностей 155
Поиск оптимального количества главных компонент 157

Обнаружение аномалий с помощью разреженного метода РСА 160
Обнаружение аномалий с помощью ядерного

метода РСА 163
Обнаружение аномалий с помощью гауссовской случайной проекции 165
Обнаружение аномалий с помощью разреженной случайной проекции 167
Нелинейные методы обнаружения аномалий 170
Обнаружение аномалий с помощью словарного обучения 171
Обнаружение аномалий с помощью метода ICA 173
Обнаружение попыток мошенничества на тестовом наборе 175

Обнаружение аномалий в тестовом наборе с помощью

стандартного метода РСА 176
Обнаружение аномалий в тестовом наборе с помощью метода ICA 176
Обнаружение аномалий в тестовом наборе с помощью словарного

обучения 179
Резюме 180

Глава S. КnастеризациJ1 183

База данных рукописных цифр MNIST 184
Подготовка данных 184

Алгоритмы кластеризации 185

Содержание 9

Метод k-средних 186
Инерция метода k-средних 187
Оценка результатов кластеризации 188
Точность метода k-средних 190
Метод k-средних и количество главных компонент 192
Применение метода k-средних к оригинальному набору данных 194

Иерархическая кластеризация 196
Агломеративная иерархическая кластеризация 197
Дендрограмма 198
Оценка результатов кластеризации 201

DBSCAN 203
Алгоритм DBSCAN 204
Применение алгоритма DBSCAN к нашему набору данных 204
Алгоритм HDBSCAN 206

Резюме 208

Гnава 6. Сегментирование групп 209

Данные кредитной компании LendingClub 209
Подготовка данных 210
Преобразование строкового формата в числовой 212
Замена отсутствующих значений 212
Конструирование признаков 215
Выбор окончательного набора признаков и масштабирование 215
Назначение меток для оценки 215

Пригодность кластеров 218
Применение метода k-средних 220
Применение иерархической кластеризации 223
Применение кластеризации по методу HDBSCAN 227
Резюме 229

Часть 111. Обучение без учителя с использованием библиотек TensorFlow и Keras

Гnава 7. Автокодировщики

Нейронные сети

TensorFlow
Keras

Автокодировщик: кодировщик и декодировщик

Неполные автокодировщики

Сверхполные автокодировщики

1 О 1 Содержание

233

234
236
237
237
238
239

Плотные и разреженные автокодировщики 240
Шумоподавляющий автокодировщик 241
Вариационный автокодировщик 241
Резюме 242

Глава 8. Реализация автокодировщиков 245

Подготовка данных 245
Компоненты автокодировщика 248
Функции активации 249
Наш первый автокодировщик 250

Функция потерь 251
Оптимизатор 251
Тренировка модели 252
Оценка модели на тестовом наборе 254

Двухслойный неполный автокодировщик с линейной функцией

активации 257
Увеличение количества узлов 261
Добавление дополнительных скрытых слоев 263

Нелинейный автокодировщик 264
Сверхполный автокодировщик с линейной функцией активации 267
Сверхполный автокодировщик с линейной функцией активации

и дропаутом 270
Разреженный сверхполный автокодировщик с линейной функцией

активации 273
Разреженный сверхполный автокодировщик с линейной функцией

активации и дропаутом 276
Работа с зашумленными наборами данных 278
Шумоподавляющий автокодировщик 279

Двухслойный шумоподавляющий неполный автокодировщик

с линейной функцией активации 279
Двухслойный шумоподавляющий сверхполный автокодировщик

с линейной функцией активации, разреженностью и дропаутом 282
Двухслойный шумоподавляющий сверхполный автокодировщик

с функцией активации ReLU 285
Резюме 288

Глава 9. Обучение с частичным привлечением учителя 289

Подготовка данных 289
Модель на основе обучения с учителем 293

Содержание 11

Модель на основе обучения без учителя 294
Модель на основе обучения с частичным привлечением учителя 298
Важность обучения без учителя и обучения с учителем 301
Резюме 302

Часть IV. Глубокое обучение без учителя с использованием библиотек
Tensorflow и Keras

Гnава 10. Рекомендатеnьные системы на основе оrраниченных маwин Боnьцмана 305

Машины Больцмана 305
Ограниченные машины Больцмана 306

Рекомендательные системы 307
Коллаборативная фильтрация 307
Соревнование Netflix Prize 308

Набор данных MovieLens 309
Подготовка данных 309
Определение функции потерь: среднеквадратическая ошибка 313
Опорные эксперименты 314

Матричная факторизация 316
Один фактор 316
Три фактора 318
Пять факторов 319

Коллаборативная фильтрация с использованием RВМ 319
Архитектура нейронной сети на основе RВМ 320
Соэдание класса RBM 322
Тренировка рекомендательной системы с использованием

RВМ-модели 325
Резюме 327

Гnава 11. Обнаружение признаков с помощью rnубоких сетей доверия 329

Что собой представляют глубокие сети доверия 329
Классификация изображений MNIST 330
Ограниченные машины Больцмана 332

Соэдание класса RBM 333
Генерирование изображений с использованием RВМ-модели 336
Просмотр содержимого промежуточных детекторов признаков 337

Обучение трех RВМ, образующих глубокую сеть доверия 338
Проверка детекторов признаков 340

12 Содержание

Просмотр сгенерированных изображений 342
Полноценная DBN 342

Как происходит обучение DBN 349
Обучение DBN 350

Как обучение без учителя может содействовать обучению с учителем 351
Генерирование изображений для создания улучшенного

классификатора 352
Создание классификатора изображений с использованием

алгоритма LightGBM 355
Только обучение с учителем 355
Совместное обучение с учителем и без учителя 360

Резюме 361

Глава 12. Генеративно-состязательные сети 363

Базовая концепция 363
Возможности генеративно-состязательных сетей 364

Глубокие сверточные генеративно-состязательные сети (DCGAN) 364
Сверточные нейронные сети 365
Возвращаемся к DCGAN 370

Генератор DCGAN 371
Дискриминатор DCGAN 373
Дискриминативная и состязательная модели 374
DCGAN для набора данных MNIST 375

Применение генеративно-состязательной сети к набору данных MNIST 377
Генерирование синтетических изображений 379

Резюме 380

Глава 13. Кластеризация временных рядов 383

Данные ЭКГ 384
Особенности кластеризации временных рядов 384

Алгоритм k-Shape 385
Кластеризация временных рядов по методу k-Shape применительно
к набору ECGFiveDays 385

Подготовка данных 386
Тренировка и оценка модели 391

Кластеризация временных рядов по методу k-Shape применительно
к набору ECGSOOO 393

Подготовка данных 393
Тренировка и оценка модели 397

Содержание 1 З

Кластеризация временных рядов по методу k-средних

применительно к набору ECG5000 400
Кластеризация временных рядов по методу HDBSCAN
применительно к набору ECG5000 401
Сравнение трех алгоритмов кластеризации временных рядов 402

Полный прогон с использованием алгоритма k-Shape 403
Полный прогон с использованием алгоритма k-средних 405
Полный прогон с использованием алгоритма HDBSCAN 406
Сравнение трех подходов к кластеризации временнь~х рядов 408

Резюме 410

Глава 14. Заключение 411

Обучение с учителем 411
Обучение без учителя 412

Scikit-learn 413
TensorFlow и Keras 414

Обучение с подкреплением 414
Наиболее перспективные направления обучения без учителя

на сегодняшний день 415
Будущее технологии обучения без учителя 417
Резюме 419

Предметный указатель 421

14 Содержание

Об авторе

Ан:кур Пате11 - вице-президент компании 7Park Data, входящей в порт­
фель активов инвестиционной компании Vista Equity Partners. Вместе со сво­
ей командой разрабатывает программные продукты по обработке данных для

хедж-фондов, а также систему MLaaS (машинное обучение как услуга), пред­
назначенную для корпоративных клиентов. В системе MLaaS реализованы та­
кие услуги, как обработка естественного языка, обнаружение аномалий, клас­

теризация и прогнозирование временных рядов. До того как начать работать

в компании 7Park Data, Анкур занимался исследованиями для израильской
компании ThetaRay, одного из пионеров в области прикладного машинного
обучения без учителя.

Анкур начинал свою карьеру в качестве аналитика в J.P. Morgan, после
чего работал ведущим трейдером по кредитным операциям с развивающи­

мися странами в инвестиционной компании Bridgewater Associates, являю­
щейся крупнейшим хедж-фондом в мире. Впоследствии учредил хедж-фонд

R-Squared Macro, разрабатывавший для клиентов стратегии глобальных ма­
кроинвестиций на основе методов машинного обучения. Выпускник Шко­

лы общественных и международных отношений имени Вудро Вильсона при

Принстонском университете, где был удостоен премии имени Джона Ларкина

за лучшую магистерскую диссертацию в области политической экономии.

Об изображении на обложке

Животное на обложке книги - короткошерстный, или обыкновенный, вом­

бат (лат. Voтbatus ursinus). Несмотря на то что его видовое название включа­
ет слово "ursinus" (медведь), вомбат - сумчатое животное, близкий родствен­

ник коал и кенгуру. Дикие вомбаты водятся лишь в Австралии и Тасмании. Их

естественной средой обитания служат прибрежные леса, редколесья и кустар­

никовые степи, где они роют норы своими острыми когтями.

Тело вомбата покрыто короткой густой шерстью, его конечности короткие

и сильные, нос голый, а уши небольшие. Как и у любого сумчатого, у вомба­

та имеется сумка (внешний мешочек), в которой живет детеныш, но она по­

вернута назад. Таким образом, мордочка малыша обращена в сторону задних

конечностей матери. Благодаря этому, когда вомбат роет землю, грязь не по­

падает в сумку. Детеныши рождаются лысыми. Беременность длится месяц,

но в течение примерно еще одного года мать продолжает кормить и согревать

малыша.

Длина тела взрослого вомбата в среднем достигает одного метра, а вес -
примерно 20 кг. В дикой природе вомбаты живут около 15 лет и производят
потомство раз в два года. В ночное время они грызут всевозможные травы и

коренья своими непрерывно растущими передними резцами. В целом вомба­

ты - ночные животные, тем не менее они не прочь понежиться на солнышке,

когда наступают холода.

Недавно было обнаружено, что самка вомбата, готовая к спариванию, по­

кусывает самца сзади. Такие укусы ничем не вредят самцу, поскольку его шку­

ра в этом месте достаточно грубая. Более того, когда вомбат отражает напа­

дение хищника, он поворачивается к нему задом и залазит в нору, оставляя

незащищенной самую прочную часть своего тела. Внешне неуклюжий, перед

лицом угрозы вомбат способен развивать скорость до 40 км/час.
Многие из животных, изображаемых на обложках книг издательства

O'Reilly, находятся под угрозой вымирания, и все они представляют ценность
для нашего мира. Чтобы узнать о том, каким может быть ваш личный вклад в

их спасение, посетите сайт anirnals. oreilly. corn.
Изображение на обложке книги - копия черно-белой гравюры XIX столе­

тия из многотомного издания Royal Natural History Лидеккера.

Введение

Краткая история машинного обучения

Машинное обучение - класс методов искусственного интеллекта (ИИ),

позволяющих компьютерам обучаться на основе данных (обычно в ходе реше­

ния узкоспециализированных задач) без явного программирования. Термин

машинное обучение был введен Артуром Сэмюэлем, легендой в области ИИ,

еще в 1959 году, однако до конца ХХ века лишь немногим проектам удалось
достигнуть коммерческого успеха в области машинного обучения, которая

оставалась не более чем нишей для академических исследований.

Поначалу (в 1960-е годы) многие члены сообщества ИИ были полны оп­

тимизма. Например, Герберт Саймон и Марвин Минский полагали, что дос­

тижение искусственным интеллектом уровня человеческого разума - дело

ближайших десятилетий1 :

Через двадцать лет машины будут способны выполнять любую работу,

которая под силу человеку.

Герберт Саймон, 1965 г.

Через 3-8 лет у нас появятся машины, обладающие общим интеллектом на
уровне типичного человека.

Марвин Минский, 1970 г.

Ослепленные оптимизмом, исследователи сфокусировались на развитии

проектов так называемого сильного ИИ. Их целью было создание интеллек­

туальных агентов, способных решать задачи, формировать знания, обучаться

и планировать свои действия, понимать естественный язык, воспринимать

окружающую среду и контролировать моторику. Всеобщий энтузиазм спо­

собствовал привлечению серьезного финансирования со стороны таких ор­

ганизаций, как Министерство обороны США, однако задачи, стоявшие перед

исследователями, оказались настолько амбициозными, что попытки решить

их в ту пору были заведомо обречены на провал.

1 Эти идеи вдохновили Стэнли Кубрика на создание в 1968 году образа разумного компьютера
НАL 9000 в фильме "Космическая одиссея 2001 года':

https://t.me/it_boooks/2

Академические исследования редко доводились до уровня промышленных

разработок, что проявило себя в серии так называемых "зим искусственного

интеллекта". Эти "зимние" периоды (аллюзия на выражение "ядерная зима':

бытовавшее в эпоху холодной войны) характеризовались угасанием интереса

к ИИ и соответствующим сокращением финансирования. Временами вокруг

ИИ поднималась рекламная шумиха, однако никакого реального эффекта

это не приносило. К началу 1990-х годов интерес к ИИ и его финансирование

были почти сведены на нет.

ИИ снова на пике популярности, но почему именно

сейчас?

Тем не менее за последние два десятилетия отрасль возродилась - сначала

в академических кругах, а затем в виде массового феномена, в который вов­

лечены лучшие умы из университетской и корпоративной среды. Решающую

роль в возрождении ИИ сыграли три фактора: прорыв в разработке алгорит­

мов машинного обучения, доступность больших объемов данных и появление

сверхбыстрых компьютеров.

Во-первых, вместо того, чтобы фокусироваться на чересчур амбициоз­

ных проектах сильного ИИ, исследователи сосредоточились на более узких

задачах, известных как слабь1й, или ограниченный, ИИ. Результатом акцен­

тирования внимания на улучшении решений для узких задач стал прорыв в

разработке алгоритмов, проложивший путь к успешным коммерческим при­

ложениям. Многие из этих алгоритмов - часто из числа тех, которые перво­

начально разрабатывались в университетах или частных исследовательских

лабораториях, - быстро превратились в проекты с открытым исходным ко­

дом, что ускорило внедрение этих технологий в промышленной среде.

Во-вторых, большинство организаций занялось накоплением данных, а

стоимость их хранения резко упала благодаря прогрессу в создании эффек­

тивных компьютерных хранилищ, в то время как Интернет обеспечил доступ­

ность больших объемов данных в невиданных ранее масштабах.

В-третьих, благодаря облачным технологиям стали доступны сверхмощ­

ные вычислительные ресурсы, что позволяет исследователям легко и недо­

рого масштабировать IТ-инфраструктуру, не делая огромных инвестиций в

оборудование.

18 Введение

Появление прикладного ИИ

Под влиянием трех вышеперечисленных факторов исследования в области

ИИ переместились из академической сферы в промышленную, что способ­

ствовало повышению интереса к ИИ и привлечению более существенного

финансирования, которое из года в год увеличивается. Теперь искусственный

интеллект - не только предмет теоретических исследований, но и полноцен­

ная прикладная область. На рис. 1 показан график из Google Trends, свиде­
тельствующий о росте интереса к машинному обучению за последние годы.

Дингмика nоnулАрности :!: () <

-· ' lbl<)1

Рис. 1. Рост интереса к машинному обучению

В настоящее время ИИ рассматривается как революционная технология,

сродни появлению компьютеров и смартфонов, которая на протяжении по­

следующего десятилетия окажет значительное влияние на все отрасли про­

мышленности2.

Успешные коммерческие применения машинного обучения включают оп­

тическое распознавание текста, фильтрацию спама электронной почты, ком­

пьютерное зрение, распознавание речи, машинный перевод, генерирование

синтетических данных, обнаружение аномалий, предотвращение киберпре­

ступлений, выявление мошеннических операций с банковскими картами,

прогнозирование временных рядов, классификацию документов, рекоменда­

тельные и поисковые системы, робототехнику, онлайн-рекламу, сентимент­

анализ, анализ финансовых рынков и многое другое.

2 Согласно прогнозам международной консалтинговой компании McКinsey больше половины

видов профессиональной деятельности, осуществляемых в настоящее время людьми, могут

быть автоматизированы к 2055 г.

Введение 19

Основные этапы развития прикладного ИИ

за последние 20 лет
Нижеперечисленные вехи развития ИИ способствовали тому, что эта об­

ласть исследований, первоначально представлявшая лишь академический ин­

терес, превратилась в передовой край современной науки.

• 1997 год: шахматный суперкомпьютер Deep Blue под управлением ИИ,
находившийся в разработке с середины 1980-х годов, выиграл матч у

чемпиона мира по шахматам Гарри Каспарова - событие, широко осве­

щавшееся в прессе.

• 2004 год: управление перспективных исследовательских проектов

Министерства обороны США (DARPA) организовало проведение в пус­
тыне ежегодных соревнований автомобилей-роботов. В 2005 году глав­
ный приз завоевал Стэнфордский университет. В 2007 году университет
Карнеги - Меллона добился аналогичного результата в городских ус­

ловиях. В 2009 году компания Google создала беспилотный автомобиль.
К 2015 году многие технологические гиганты, включая Tesla и Uber, за­
пустили щедро финансируемые программы по созданию беспилотных

машин.

• 2006 год: Джеффри Хинтон из университета Торонто предложил быст­
рый алгоритм обучения многослойных нейронных сетей, что положило

начало революции глубокого обучения.

• 2006 год: компания Netflix организовала соревнования Netflix Prize с
призом в один миллион долларов, предложив командам разработчиков

использовать машинное обучение для повышения точности своей реко­

мендательной системы по крайней мере на 10%. Одна из команд завое­
вала этот приз в 2009 году.

• 2007 год: ИИ достиг уровня человеческих возможностей при игре в
шашки; соответствующее решение было предложено командой разра­

ботчиков из университета Альберты.

• 201 О год: в рамках проекта ImageNet были организованы ежегодные со­
ревнования ILSVRC (ImageNet Large Scale Visual Recognition Challenge), в
которых команды-участники должны использовать алгоритмы машин­

ного обучения для корректного распознавания и классификации объек­

тов, хранящихся в виде крупного и хорошо детализированного набора.

20 Введение

Эти соревнования привлекли значительное внимание со стороны как

академических, так и технологических гигантов. Благодаря прогрессу

в разработке глубоких сверточных нейронных сетей ошибку классифи­

кации, которая в 2011 году составила 25%, удалось снизить всего лишь
до нескольких процентов в 2015 году, что сделало возможным создание
коммерческих приложений для компьютерного зрения и распознавания

объектов.

• 2010 год: компания Microsoft выпустила бесконтактный сенсорный
игровой контроллер Кinect для консоли ХЬох 360, способный отслежи­
вать движения человеческого тела и транслировать их для управления

игрой.

• 2010 год: компания Apple купила Siri, один из первых голосовых помощ­
ников, и в октябре 2011 года включила его в состав программного обе­
спечения для iPhone 4S. В конечном счете голосовой помощник Siri стал
составной частью всех продуктов Apple. Благодаря использованию свер­
точных нейронных сетей и рекуррентных сетей с долгой краткосрочной

памятью,Siri способен распознавать речь и обрабатывать естествен­

ный язык. Вскоре в эту гонку включились компании Amazon, Microsoft
и Google, выпустив аналогичные программные продукты Alexa (2014),
Cortana (2014) и Google Assistant (2016) соответственно.

• 2011 год: IBM Watson, интеллектуальный агент вопросно-ответной си­
стемы, разработанный командой под руководством Дейвида Ферруччи,

побил результаты предыдущих победителей американской телевикто­

рины Jeopardy! Брэда Раттера и Кена Дженнингса. В настоящее время
IВМ Watson используется в ряде отраслей, включая здравоохранение и
розничную торговлю.

• 2012 год: группа, работавшая над проектом Google Brain под руковод­
ством Эндрю Ына и Джеффа Дина, обучила нейронную сеть распозна­

ванию котов на неразмеченных изображениях, взятых из видеороликов

YouTube.

• 2013 год: компания Google выиграла соревнования Robotics Challenge,
проводимые DARPA, в которых полуавтономные роботы решают слож­
ные задачи в условиях изменчивого окружения: управление автомоби­

лем, перешагивание через препятствия, освобождение входа от загро­

мождающих его предметов, открытие дверей и подъем по лестнице.

Введение 21

• 2014 год: компания Facebook опубликовала результаты разработки ней­
росистемы DeepFace, способной распознавать лица людей на цифровых
изображениях с точностью 97%, что более чем на 27% превосходило ре­
зультаты предыдущих систем и приближалось к уровню человеческих

возможностей.

• 2015 год: компания DeepMind разработала программу AlphaGo для игры
в го, которая выиграла матч у профессионала мирового класса Фань

Хуэя. В 2016 году AlphaGo победила Ли Седоля, а в 2017 году- Кэ Дзе.

В 2017 году новая версия программы под названием AlphaGo Zero
одержала победу над предыдущей версией AlphaGo со счетом 100:0.
Программа AlphaGo Zero использует методы обучения без учителя и ов­
ладевает мастерством игры в го, играя сама с собой.

• 2016 год: компания Google выпустила кардинально переработанную
версию своей системы машинного перевода Google Translate, заменив
существующую программу, основанную на переводе фраз, нейросисте­

мой глубокого обучения, что позволило снизить число ошибок перевода

до 87%, приблизив ее к уровню человеческих возможностей.

• 2017 год: программа Libratus, разработанная в университете Карнеги -
Меллона, стала победителем в турнире по безлимитному техасскому

холдему.

• 2017 год: бот, обученный некоммерческой исследовательской компани­
ей OpenAI, обыграл профессионального игрока на турнире по Dota 2.

От слабого ИИ к сильному

Конечно, перечисленные успехи в применении ИИ для решения узких за­

дач - это всего лишь отправная точка. В среде сообщества ИИ крепнет вера

в то, что объединение нескольких слабых систем ИИ откроет путь к разработ­

ке сильного ИИ (artificial general intelligence - AGI). Такой АGl-агент сможет
функционировать на уровне человеческих возможностей для решения широ­

кого круга задач.

Некоторые исследователи прогнозируют, что вслед за тем, как ИИ сравня­

ется по своим возможностям с человеком, столь сильный ИИ превзойдет че­

ловеческий интеллект и достигнет уровня так называемого суперинтеллекта.

Согласно различным оценкам для этого потребуется как минимум 15, а то и 100
лет, но большинство исследователей сходятся в том, что ИИ сможет достаточно

22 Введение

продвинуться в этом направлении на протяжении нескольких поколений. Что

это: результат вновь раздутой рекламной шумихи (с чем мы уже сталкивались

на предыдущих циклах развития ИИ), или же теперь все будет по-другому?

Время покажет.

Цели и подходы

На сегодняшний день в большинстве успешных коммерческих приложе­

ний - а это такие области, как компьютерное зрение, распознавание речи, ма­

шинный перевод и обработка естественного языка, - применяется обучение

с учителем, позволяющее использовать преимущества размеченных наборов

данных. Однако подавляющая часть накопленных в мире данных не размечена.

Эта книга посвящена обсуждению методов обучения без учителя (unsuper­
vised learning) - направления машинного обучения, применяемого для выяв­

ления скрытых закономерностей в неразмеченных данных. По мнению мно­

гих экспертов, например Яна Лекуна, директора подразделения AI Research
в компании Facebook и профессора Нью-Йоркского университета, обучение
без учителя - передовой рубеж технологий искусственного интеллекта и,

возможно, ключ к созданию AGI. В силу этой и ряда других причин обучение
без учителя в настоящее время является одной из самых востребованных тем

в области ИИ.

Цель книги - сформировать у читателей общее представление об основ­

ных концепциях и инструментах обучения без учителя, что должно способ­

ствовать развитию интуиции, которая необходима для практического приме­

нения данной технологии. Будет также показано, как эффективная разметка

немаркированных данных позволяет превращать задачи обучения без учите­

ля в задачи с частичным привлечением учителя.

В книге мы будем следовать прикладному подходу. Предварительно мы оз­

накомимся с необходимыми теоретическими основами, но затем уделим ос­

новное внимание решению практических задач. Используемые наборы дан­

ных и код доступны в виде блокнотов Jupyter на сайте GitHub (http: / /bi t.
ly /2Gd4v7e).

Вооружившись пониманием основных концепций и опытом их практи­

ческого использования, вы сможете применять метод обучения без учителя к

крупным наборам неразмеченных данных для выявления скрытых закономер­

ностей, более глубокого анализа деловых данных, обнаружения аномалий, кла­

стеризации на основе сходства, автоматического конструирования признаков,

генерирования синтетических наборов данных и решения многих других задач.

Введение 23

Исходные предположения

В книге предполагается, что вы уже обладаете опытом программирования
на языке Python, а также знакомы с библиотеками NumPy и Pandas.

Дополнительную информацию о Python можно найти на официальном сай­
те (www. python. org). Для получения информации о среде Jupyter Notebook
посетите официальный сайт проекта (http: / /j upyter. org/index. html).
Чтобы освежить свои знания по высшей математике, прочитайте часть 1 книги
Глубокое обучение (www. deeplearningbook. org). Книга Основы статис­
тического обучения: интеллектуальный анализ данных, логический вывод и
прогнозирование, 2-е издание (https: //stanford. io/2Tju4al) позволит
вам освежить знания по машинному обучению.

Структура книги

Книга разбита на четыре части, охватывающие следующие темы.

Часть !. Основы обучения без учителя

Различия между обучением с учителем и без учителя, обзор популярных
алгоритмов и готовый проект машинного обучения.

Часть II. Обучение без учителя с использованием библиотеки Scikit-learп

Снижение размерности, обнаружение аномалий, а также кластеризация
и сегментация групп.

Для получения более полной информации, касающейся материала,
изложенного в частях 1 и 11, обратитесь к документации по биб­
лиотеке Scikit-learn (https: / / scikit-learn. org/ staЬle/
modules/classes .html).

Часть III. Обучение без учителя с использованием библиотек TeпsorFlow
и Keras

Обучение представлениям, автоматическое извлечение признаков, авто­
кодировщики и обучение с частичным привлечением учителя.

Часть ГV. Глубокое обучение без учителя с использованием библиотек
TeпsorFlow и Keras

Ограниченные машины Больцмана, глубокие сети доверия и генератив­
но-состязательные сети.

24 Введение

Соглашения, принятые в книге

В книге используются следующие типографские соглашения.

Курсив

Курсивом выделены новые термины, URL-aдpeca, адреса электронной

почты, имена и расширения имен файлов.

Моноширинный шрифт

Используется в листингах программ, а также в основном тексте для вы­

деления таких программных элементов, как переменные, имена функ­

ций, типы данных и ключевые слова.

Попужирнъzй коиоширинНЪIЙ шрифт

Используется для выделения команд, которые должен вводить пользо­

ватель.

Курсивный моноширинный шрифт

Используется для выделения текста, который должен быть заменен

пользовательскими значениями или значениями, определяемыми кон­

текстом.

Этой пиктограммой помечены советы и рекомендации.

~ Эrой nиктоrраммой помечены замечания общеrо характера.

' 1 Этой пиктограммой помечены предупреждения и предостере-
жения.

'

Введение 25

Файлы примеров и цветные иллюстрации

Все примеры программ, используемые в книrе, доступны для заrрузки на

сайте GitHub:

http://bit.ly/2Gd4v7e

Также архив локализованных файлов доступен на сайте издательства:

http://www.williamspuЫishing.com/Books/978-5-907144-99-6.html 111 Все иллюстрации к книrе в цветном варианте доступны по адресу:
http://go.dialektika.com/unsupervised

[!] .

Ждем ваших отзывов!

Вы, читатель этой книrи, и есть rлавный ее критик. Мы ценим ваше мнение

и хотим знать, что было сделано нами правильно, что можно было сделать

лучше и что еще вы хотели бы увидеть изданным нами. Нам интересны любые

ваши замечания в наш адрес.

Мы ждем ваших комментариев и надеемся на них. Вы можете прислать нам

электронное письмо либо просто посетить наш сайт и оставить свои замеча­

ния там. Одним словом, любым удобным для вас способом дайте нам знать,

нравится ли вам эта книrа, а также выскажите свое мнение о том, как сделать

наши книrи более интересными для вас.

Отправляя письмо или сообщение, не забудьте указать название книrи и ее

авторов, а также свой обратный адрес. Мы внимательно ознакомимся с вашим

мнением и обязательно учтем ero при отборе и подrотовке к изданию новых
книr.

Наши электронные адреса:

E-mail: info. dialektika@gmail. сот

\V'V'VVV: http://www.williamspuЫishing.com

26 Введение

ЧАСТЬ 1

Основы обучения без учителя

Мы начнем первую часть книги с обсуждения текущего положения дел в

области машинного обучения и способов внедрения методов обучения без

учителя. Мы реализуем готовый проект с нуля, что позволит понять, как на­

строить программную среду, загрузить и подготовить данные, выбрать алго­

ритмы машинного обучения и функцию потерь, а также оценить полученные

результаты.

ГЛАВА 1

Обучение без учителя как один из видов

машинного обучения

Большую часть знаний люди и животные приобретают в ходе самообучения.

Обучение без учителя можно представить как торт, глазурь на котором -
обучение с учителем, а вишенка на торте - обучение с подкреплением.

Мы знаем, как подготовить глазурь и вишенку, но не знаем, как испечь торт.

Прежде чем задумываться о том, как приблизиться к созданию истинного ИИ,

нам нужно справиться с задачей обучения без учителя.

ЯнЛекун

Данная глава посвящена изучению различий между обучением с учителем

и без учителя, а также сильных и слабых сторон каждого из этих подходов.

Кроме того, мы обсудим многие популярные алгоритмы обучения с учителем

и без учителя и кратко рассмотрим такие методы, как обучение с частичным

привлечением учителя и обучение с подкреплением.

Базовая терминология машинного обучения

Прежде чем углубиться в изучение различных типов машинного обуче­

ния, рассмотрим простой пример, который поможет лучше понять вводимые

понятия: фильтрация спама. Предположим, требуется создать простую про­

грамму, которая получает сообщения электронной почты и классифицирует

их либо как "спам'~ либо как "не спам': Это типичная задача классификации.

Освежим в памяти ключевые термины машинного обучения. В этой задаче

входными переменными служат тексты сообщений электронной почты. Вход­

ные переменные также называют независимыми переменньtми, признаками

или предикторами. В нашем случае выходная переменная - т.е. то, что мы

пытаемся предсказать, - имеет значения "спам" или "не спам". Такую пере­

менную также называют целевой, зависимой или ответной (а еще классом, по­

скольку это задача классификации).

https://t.me/it_boooks/2

Набор примеров, на которых обучается ИИ, называют обучающим (трени­

ровочньtм) набором, а каждый отдельный пример называют обучающим (тре­

нировочным) примером или образцом (выборкой). В процессе обучения ИИ

пытается минимизировать свою функцию потерь (cost function), или частоту
ошибок (error rate), или же (в более позитивной формулировке) максимизи­
ровать свою функцию значения (value function), в данном случае - процент

корректной классификации электронных сообщений. Частоту ошибок вычис­

ляют путем сравнения предсказанной метки с истинной.

Однако нас больше всего интересует то, насколько хорошо ИИ способен

обобщать опыт, приобретенный в процессе обучения, на данные, которые

ему прежде не встречались. Истинным тестом будет следующий: способен

ли ИИ корректно классифицировать сообщения, которые не вошли в состав

примеров, образующих тренировочный набор? Именно ошибка обобщения

(generalization error), или ошибка за пределами выборки (out-of-sample error),
является основной величиной, которую мы используем для оценки эффектив­

ности систем машинного обучения.

Набор не предоставленных ранее примеров известен как тестовый (от­

ложенный) набор, поскольку эти данные не привлекаются для обучения ИИ.

Если мы решим использовать несколько тестовых наборов (возможно, с це­

лью калибровки ошибки обобщения в процессе обучения, что рекомендуется

делать), то у нас могут быть промежуточные наборы, которые применяются

для оценки прогресса еще до того, как будет задействован финальный тесто­

вый набор. Такие промежуточные наборы называются валидационными.

Подведем итоги. Итак, ИИ обучается на тренировочном наборе данных

(опыт) для снижения частоты ошибок (производительность) при маркирова­

нии спама (задача), а окончательным критерием успеха служит то, насколько

хорошо опыт, приобретенный ИИ, обобщается на новые, еще не встречавши­

еся данные (ошибка обобщения).

Обучение, основанное на наборе правил,

и машинное обучение

Используя подход на основе правил, мы могли бы спроектировать фильтр

с помощью явно сформулированных правил, помечающих как спам такие,

например, сообщения электронной почты, в которых встречаются фразы на­

подобие "купите прямо сейчас" и т.п. Однако обеспечить долговременную

поддержку подобной системы будет трудно, поскольку спамеры, изменив со

30 Г11ава 1

временем свою тактику, смогут обойти установленные нами правила фильтра­

ции спама. Применяя систему на основе правил, мы будем вынуждены часто

изменять их вручную, приспосабливаясь к новым обстоятельствам. К тому же

настройка такой системы займет очень много времени. Подумайте только,

сколько правил придется создать, чтобы все работало эффективно.

Вместо описанного подхода мы можем использовать машинное обучение,

тренируя систему на наборе сообщений электронной почты и автоматически

конструируя правила для пометки спама. Такая система обеспечит автомати­

ческую подстройку с течением времени, а ее обучение и сопровождение обой­

дутся гораздо дешевле.

Если с отсевом спама, представляющим собой сравнительно простую за­

дачу, мы еще могли бы справиться, задавая правила вручную, то во многих

других случаях реализация такого подхода вообще невозможна. В качестве

примера рассмотрим беспилотные автомобили. Представьте, какое количе­

ство правил нужно продумать, чтобы охватить все возможные ситуации, с

которыми может столкнуться такой автомобиль. Решить подобную задачу

практически нереально, если только не наделить автомобиль способностью

обучаться и адаптироваться к окружению, основываясь на собственном

опыте.

Системы машинного обучения также можно использовать в качестве ин­

струмента для исследования данных с целью более глубокого понимания сути

задачи, которую мы пытаемся решить. Так, в примере с электронной почтой

можно изучить, какие слова или фразы чаще всего оказываются характерны­

ми признаками нежелательных сообщений, и использовать эту информацию

для распознавания новых шаблонов спама.

Обучение с учителем и обучение без учителя

Существуют две основные методологии машинного обучения: обучение с

учителем (supervised learning), или контролируемое обучение, и обучение без
учителя (unsupervised learning), или неконтролируемое обучение (самообуче­
ние). Есть еще множество методик, которые являются своеобразными мости­

ками между ними.

При обучении с учителем интеллектуальный агент имеет доступ к мет­

кам, или маркерам, которые могут быть использованы для улучшения про­

изводительности в ряде задач. В задаче фильтрации спама у нас имеется на­

бор сообщений электронной почты с полными текстами каждого из них. Нам

также известно (посредством меток), какие сообщения являются спамом, а

Обучение без учителя как один из видов машинноrо обучения З 1

какие - нет. Метки ценны тем, что они помогают ИИ отделять спам от осталь­

ных сообщений при обучении с учителем.

В случае обучения без учителя метки отсутствуют. Поэтому задача ИИ не

является четко определенной, что осложняет точное измерение эффективно­

сти обучения. Вновь обратимся к задаче фильтрации спама, но на этот раз без

использования меток. Теперь интеллектуальный агент будет пытаться понять

базовую структуру электронных сообщений, разбивая данные на группы, в

каждой из которых сообщения сходны между собой, но отличаются от сооб­

щений из других групп.

Задача обучения без учителя формулируется менее четко по сравнению

с обучением с учителем, и интеллектуальному агенту труднее ее решать, и в

то же время хорошо продуманный план действий позволяет получать более

мощные решения. Это обусловлено следующим обстоятельством. ИИ может

найти несколько групп, которые он пометит как "спам': но при этом могут

быть обнаружены также группы, которые впоследствии будут помечены как

"важное" или категоризированы как "семья': "работа': "новости': "покупки" и

т.п. Другими словами, поскольку задача не задана строго, интеллектуальный

агент может обнаружить новые интересные закономерности помимо тех, ко­

торые мы первоначально пытались найти.

Более того, система обучения без учителя лучше справляется с обнаруже­

нием новых закономерностей в предоставляемых ей неизвестных данных, чем

система, основанная на обучении с учителем, что делает ее в перспективе куда

более эффективной. В этом и заключается преимущество обучения без учи­

теля.

Сильные и слабые стороны обучения с учителем

Обучение с учителем отлично справляется с оптимизацией в случае доста­

точно четко определенных задач с множеством меток. Предположим, имеет­

ся очень большой набор изображений, каждое из которых снабжено меткой.

Если этот набор достаточно велик, а тренировка осуществляется с использо­

ванием алгоритмов машинного обучения (например, с помощью сверточных

нейронных сетей) на достаточно мощных компьютерах, то мы сможем полу­

чить весьма неплохую систему классификации изображений на основе обуче­

ния с учителем.

Поскольку в обучении с учителем ИИ тренируется на данных, он будет спо­

собен измерить свою эффективность (посредством функции потерь), срав­

нивая предсказанную метку изображения с истинной, которая хранится в

файле. ИИ будет пытаться минимизировать функцию потерь таким образом,

32 Глава 1

чтобы ошибка классификации изображений, которые еще не предоставля­

лись системе (например, изображений из тестового набора), была как можно

меньшей.

Вот почему метки играют столь важную роль - они обеспечивают воз­

можность измерения ошибки интеллектуальным агентом. ИИ использует эту

информацию для повышения производительности с течением времени. В от­

сутствие меток ИИ не будет знать, насколько успешно (или неуспешно) он

справляется с классификацией изображений.

Однако стоимость ручной разметки изображений довольно высокая. Даже

предварительно подготовленные наборы данных содержат всего несколько

тысяч меток. Это становится источником проблем, поскольку системы об­

учения хорошо справляются с классификацией изображений, для которых

имеются метки, и плохо - с классификацией тех изображений, для которых

метки отсутствуют.

Какими бы мощными ни были системы обучения с учителем, они ограни­

чены в своих возможностях обобщения полученных знаний на изображения

помимо тех, которые были включены в размеченный тренировочный набор.

Поскольку большая часть доступных в мире данных не размечена, в случае

обучения с учителем возможности ИИ по эффективному использованию

приобретенного опыта применительно к новым данным довольно ограни­

чены.

Иначе говоря, обучение с учителем отлично подходит для решения задач

слабого ИИ, но хуже справляется с решением более амбициозных, но менее

четко заданных задач ИИ сильного типа.

Сильные и слабые стороны обучения без учителя

Обучение с учителем превосходит обучение без учителя при решении чет­

ко сформулированных задач, для которых имеются четко определенные ша­

блоны, не сильно изменяющиеся с течением времени, и при условии, что у нас

есть доступ к достаточно большим наборам размеченных данных.

Но в тех случаях, когда шаблоны неизвестны, постоянно меняются или же

мы не имеем доступа к достаточно большим наборам размеченных данных, на

помощь приходит обучение без учителя.

Вместо того чтобы руководствоваться метками, система обучения без

учителя изучает базовую структуру данных, используемых в процессе тре­

нировки модели. Это достигается за счет попыток представить тренировоч­

ные данные с помощью набора параметров, размер которого значительно

меньше количества примеров, доступных в наборе данных. Благодаря этому

Обучение без учителя как один из видов машинноrо обучения 33

обучение без учителя позволяет идентифицировать различные шаблоны в

наборе данных.

В примере с набором изображений (на этот раз не снабженных метками)

ИИ может идентифицировать и группировать изображения, исходя из того,

насколько они схожи между собой и отличаются от остальных изображений.

Например, будут объединены в отдельные группы все изображения, похожие

на стул, все изображения, похожие на собаку, и т.п.

Разумеется, ИИ не пометит эти группы как "стулья" или "собаки~ но те­

перь, когда сходные изображения сгруппированы, человеку будет намного

проще расставить метки. Вместо того чтобы помечать миллионы изображе­

ний вручную, специалисты могут вручную присваивать метки различным

группам, после чего эти метки будут автоматически применены ко всем эле­

ментам группы.

Если по завершении начальной тренировки интеллектуальный агент об­

наружит изображения, которые не принадлежат ни к одной из помеченных

групп, то он создаст отдельные группы для таких неклассифицированных

изображений, переложив на человека задачу последующей разметки новых

групп.

Обучение без учителя превращает задачи, которые ранее не удавалось

решать, в такие, которые допускают возможность их решения, и позволяет

намного быстрее находить скрытые закономерности (шаблоны поведения) в

исторических данных, как доступных в процессе тренировки, так и будущих,

с которыми система до сих пор не сталкивалась. Более того, тем самым ИИ

прокладывает путь к обработке огромных хранилищ неразмеченных данных,

существующих в мире.

Несмотря на то что обучение без учителя менее пригодно для решения

специфических задач со строгой формулировкой по сравнению с обучением

с учителем, оно лучше справляется с "размытыми" задачами, стоящими перед

сильным ИИ, и обобщением приобретенных знаний.

Также немаловажен тот факт, что обучение без учителя способно оказать

помощь при решении многих обычных задач, с которыми часто приходится

сталкиваться аналитикам при создании приложений машинного обучения.

34 Гnава 1

Использование обучения без учителя для улучшения

систем машинного обучения

Недавние успехи в области машинного обучения обусловлены расширени­

ем возможностей доступа к большим объемам данных, резким повышением

вычислительных мощностей, появлением облачных ресурсов, а также проры­

вом в разработке соответствующих алгоритмов. Но эти успехи главным об­

разом достигнуты при решении задач узкого ИИ, таких как классификация

изображений, компьютерное зрение, распознавание речи, обработка естес­

твенного языка и машинный перевод.

Решение более амбициозных задач ИИ требует привлечения обучения

без учителя. Рассмотрим наиболее распространенные проблемы, с которыми

приходится сталкиваться исследователям при построении приложений, и по­

пытаемся понять, какую помощь в этом может оказать обучение без учителя.

Нехватка размеченных данных

Построение ИИ можно сравнить с созданием космического корабля.

Располагая мощным двигателем, но мизерным запасом топлива, вы не

сможете вывести ракету на орбиту. В то же время ракета с тоннами

топлива, но маломощным двигателем не сможет оторваться от земли.

Чтобы запустить ракету в космос, необходим мощный двигатель

и достаточно большой запас топлива.

ЭндрюЬlн

Если провести аналогию между машинным обучением и космическим ко­

раблем, то данные можно уподобить топливу - без них наш аппарат не смог

бы взлететь. Но не все данные равноценны. Чтобы использовать алгоритмы

обучения с учителем, нам требуется множество размеченных данных, генери­

рование которых - трудоемкий и затратный процесс.

В случае обучения без учителя мы можем автоматически помечать неразме­

ченные образцы. Вот как это делается. Мы кластеризуем все образцы, а затем

применяем метки из размеченных примеров к неразмеченным, принадлежа­

щим к одному кластеру. Неразмеченные образцы получат метки тех образцов,

с которыми они имеют наибольшее сходство. (Кластеризация подробно ис­

следуется в главе 5.)

Обучение без учителя как один из видов маwинноrо обучения 35

Переобучение

Если тренировочные данные используются для того, чтобы обучить алго­

ритм машинного обучения чрезмерно сложной функции, то он может плохо

работать на примерах, которые ему еще не предоставлялись, скажем, на при­

мерах из наборов, зарезервированных в качестве валидационных или тесто­

вых. В этом случае в результате извлечения чересчур большого объема ин­

формации из шума, содержащегося в данных, велика вероятность проявления

эффектов переобучения (overfitting), приводящих к значительному ухудшению
обобщающей способности модели. Иными словами, алгоритм запоминает

обучающие данные, а не учится тому, как обобщать приобретенные знания на

другие случаи1 •

Для преодоления этой проблемы можно использовать обучение без учите­

ля в качестве реrуляризатора. Регуляризация - это процесс снижения слож­

ности алгоритма машинного обучения, способствующий извлечению сигнала

из зашумленных данных. Одной из форм регуляризации служит предвари­

тельное обучение без учителя. Вместо того чтобы передавать оригинальные

входные данные алгоритму обучения с учителем, мы можем генерировать их

новое представление, которое и будет передаваться алгоритму.

Это новое представление захватывает наиболее существенную составля­

ющую исходных данных - их истинную базовую структуру, одновременно

избавляя нас от не содержащего значимой информации шума. Алгоритму

обучения с учителем, которому передается новое представление, будет легче

справляться с оставшимися шумами и извлекать полезный сигнал, что приве­

дет к улучшению его обобщающей способности. (Более подробному обсужде­

нию этой темы посвящена глава 7.)

Проклятие размерности

Несмотря на невиданный рост доступных вычислительных мощностей об­

работка больших данных все еще доставляет трудности алгоритмам машин­

ного обучения. Вообще говоря, добавление большего количества примеров не

1 Другая проблема, с которой можно столкнуться в приложениях машинного обучения, - не­

дообучение, но она решается легче. Причиной недообучения становится излишняя простота

модели - алгоритму не удается построить достаточно сложную аппроксимирующую функ­

цию, позволяющую принимать решения, которые хорошо подходили бы для текущей зада­

чи. Избавиться от этой проблемы можно либо за счет расширения алгоритма (путем ввода

дополнительных параметров, увеличения количества итераций обучения и т.п.), либо за счет

применения более сложного алгоритма обучения.

36 Гпава 1

является проблемой, поскольку, используя такие современные модели распре­

деленных вычислений, как Spark, мы можем распараллеливать выполнение
операций. В то же время, чем больше имеется признаков, тем более трудоем­

ким становится обучение.

В случае пространств очень большой размерности алгоритмы обучения с

учителем должны обучаться тому, как разделять точки и строить функцию­

аппроксиматор, обеспечивающую принятие правильных решений. Если при­

знаков очень много, то эта процедура оказывается дорогостоящей как в от­

ношении времени, так и в отношении требуемых вычислительных ресурсов.

В некоторых случаях данный фактор вообще делает невозможным получение

достаточно эффективных и быстрых решений.

Эта проблема известна как проклятие размерности, и для ее решения хо­

рошо подходит обучение без учителя. Используя инструменты снижения раз­

мерности, мы можем найти наиболее значимые признаки в исходном наборе

и снизить, пусть даже за счет потери незначительной части важной информа­

ции, число измерений до приемлемого уровня, а затем применить алгоритмы

обучения с учителем для более эффективного поиска подходящей аппрокси­

мирующей функции. (Снижение размерности обсуждается в главе 3.)

Конструирование признаков

Конструирование признаков (feature engineering) - одна из самых важных

задач, которые должны решать исследователи. Не располагая достоверными

признаками, алгоритм машинного обучения окажется неспособным доста­

точно надежно разделять точки в пространстве для того, чтобы принимать

корректные решения относительно незнакомых ему примеров. Однако, как

правило, конструирование признаков - весьма трудоемкая задача, требую­

щая креативноrо вмешательства человека для создания признаков нужного

типа в ручном режиме. Вместо этого мы можем использовать представление,

полученное с помощью алгоритмов обучения без учителя, для автоматическо­

го обучения признакам подходящего типа, помогающим решить конкретную

задачу. (Автоматическое извлечение признаков обсуждается в главе 7.)

Выбросы

Важную роль играет также качество данных. Если алгоритмы машинно­

го обучения тренируются на данных, содержащих редкие выбросы, которые

несколько искажают истинную картину, то ошибка обобщения будет мень­

ше, чем если бы мы игнорировали их или обрабатывали отдельно. В случае

Обучение без учители как один из видов машинноrо обучении 3 7

обучения без учителя мы можем обнаруживать выбросы, используя меха­

низмы снижения размерности, и создать два приложения: одно, специально

предназначенное для обработки выбросов, и другое, предназначенное для об­

работки нормальных данных. (Построением системы обнаружения аномалий

мы займемся в главе 4.)

Дрейф данных

Модели машинного обучения также должны считаться с дрейфом данных

(data drift). Если данные, которые используются моделью в целях прогнози­
рования, статистически отличаются от данных, на которых она обучалась,

то может потребоваться повторно обучить ее на тех данных, которые лучше

соответствуют текущей задаче. Если модель не подвергается повторной тре­

нировке или ей не удается распознать дрейф, то ее предсказательная способ­

ность на текущих данных от этого пострадает.

Создавая распределения вероятностей с помощью обучения без учителя,

мы можем оценить, насколько текущие данные отличаются от данных трени­

ровочного набора. И если эти различия существенны, то мы можем автома­

тически запускать повторную тренировку модели. (Построению такого типа

систем посвящена глава 12.)

Краткий обзор алгоритмов машинного обучения

с учителем

Прежде чем углубиться в изучение систем обучения без учителя, целесо­

образно кратко ознакомиться с алгоритмами обучения с учителем и тем, как

они работают. Это поможет нам очертить границы, в которые вписывается

обучение без учителя.

Существуют два основных типа задач, относящихся к сфере обучения с

учителем: классификация и регрессия. В случае классификации ИИ должен

корректно относить элементы к одному из двух или нескольких классов. Если

есть всего два класса, то мы имеем дело с так называемой бинарной классифи­

кацией. Если же классов три или более, то задачу такого рода называют много­

классовой (мультиклассовой) классификацией.

Задачи классификации также называются дискретными предсказаниями,

поскольку каждый класс образует отдельную группу. Другое их название -
качественный, или категориальный, анализ.

38 Г11ава 1

В случае регрессии ИИ должен предсказывать значения непрерывной пе­

ременной, а не дискретной. Другое название регрессионных задач - коли­

чественный анализ.

Алгоритмы машинного обучения с учителем расширяют этот спектр задач,

но все они нацелены на минимизацию некоторой функции потерь (либо мак­

симизации функции значения), которая ассоциирована с метками, имеющи­

мися в наборе данных.

Как уже упоминалось ранее, больше всего нас должно заботить то, насколь­

ко хорошо система машинного обучения обобщается на ранее не предостав­

ленные образцы. Для минимизации ошибки обобщения очень важно сделать

правильный выбор алгоритма обучения с учителем.

Для обеспечения как можно меньшей ошибки обобщения необходимо, что­

бы сложность алгоритмической модели соответствовала сложности истинной

функции, заложенной в данных. Мы не знаем, что в действительности пред­

ставляет собой эта функция. Если бы это было известно, то нам не потребова­

лось бы задействовать машинное обучение для создания модели - мы могли

бы просто использовать эту функцию для получения корректного ответа. Но

поскольку истинная функция неизвестна, мы выбираем алгоритм машинного

обучения для тестирования гипотез и находим модель, которая наилучшим

образом аппроксимирует истинную функцию (т.е. приводит к наименьшей

возможной ошибке обобщения).

Если сложность того, что моделирует алгоритм, меньше сложности ис­

тинной функции, то мы столкнемся с проблемой недообучения (underfitting).
В таком случае ошибку обобщения можно уменьшить посредством выбора

алгоритма, способного моделировать более сложную функцию. Но если алго­

ритм порождает чересчур сложную модель, то мы столкнемся с переобучением

(overfitting) и получим плохие результаты для ранее не встречавшихся дан­
ных, увеличив ошибку обобщения.

Другими словами, отдавать предпочтение более сложным алгоритмам по

сравнению с более простыми не всегда будет правильным выбором - иногда

простое лучше сложного. Каждому алгоритму свойствен свой набор сильных

и слабых сторон, а также допущений, и знание того, какие из них следует при­

менять для решения конкретной задачи с имеющимися данными, является

очень важным условием овладения искусством машинного обучения на про­

фессиональном уровне.

Обучение без учителя как один из видов машинноrо обучения 39

Далее мы рассмотрим наиболее популярные алгоритмы машинного обуче­

ния с учителем (включая их практические применения), а затем - алгоритмы

обучения без учителя2•

Линейные методы

Самые простые алгоритмы обучения с учителем моделируют линейное со­

отношение между входными признаками и выходной переменной, значение

которой мы хотим предсказать.

Линейная регрессия

Простейшим из всех алгоритмов является линейная регрессия, в которой

используется модель, предполагающая линейное соотношение между входны­

ми переменными (Х) и единственным выходным значением (у). Если соотно­

шение между входами и выходом действительно линейное, а между входными

переменными отсутствует значительная корреляция (ситуация, известная как

коллинеарность), то линейная регрессия станет неплохим выбором. Если же

истинное соотношение носит более сложный или нелинейный характер, то

использование линейной регрессии приведет к недообучению3 •

Учитывая простоту самого алгоритма, интерпретация моделируемого им

соотношения также не представляет никакого труда. Интерпретируемость

результатов - очень важный фактор машинного обучения, поскольку реше­

ние должно быть понято и воплощено в жизнь как техническими, так и нетех­

ническими отраслевыми специалистами. В отсутствие возможности интер­

претации решения оно превращается в загадочный черный ящик.

Сильные стороны

Линейная регрессия отличается простотой, интерпретируемостью и не­

склонностью к переобучению, поскольку она не в состоянии моделиро­

вать чрезмерно сложные отношения. Она великолепно подходит для тех

случаев, когда соотношение между входными и выходными переменны­

ми в основном является линейным.

2 Этот список не является исчерпывающим, но включает большинство алгоритмов, которые

обычно используются в машинном обучении.

3 К числу других потенциальных проблем, делающих линейную регрессию неудачным вариан­

том выбора, относятся выбросы, а также наличие корреляции между составляющими ошиб­

ки и непостоянство их дисперсии.

40 Гnава 1

Слабые стороны

Линейная регрессия будет недообучаться на данных, если соотношение

между входными и выходными переменными нелинейное.

Применение

Поскольку вес человека в целом линейно зависит от его роста, линейная

регрессия будет хорошо предсказывать вес человека, используя его рост

в качестве входных данных, и наоборот.

Логистическая регрессия

Простейшим алгоритмом классификации является логистическая ре­

грессия, которая также относится к линейным методам, но ее предсказания

преобразуются с помощью логистической функции. Выходом такого пре­

образования являются вероятности классов - иначе говоря, вероятности

принадлежности образца к тому или иному классу, причем сумма всех ве­

роятностей по всем образцам должна равняться единице. Затем каждому

примеру приписывается класс, вероятность принадлежности к которому

максимальная.

Сильные стороны

Как и линейная регрессия, логистическая регрессия отличается просто­

той и интерпретируемостью. Если классы, которые мы пытаемся пред­

сказать, не перекрываются и линейно разделимы, то логистическая ре­

грессия - отличный выбор.

Слабые стороньt

Логистическая регрессия не работает в случае линейно неразделимых

классов.

Применение

Если классы - например, рост ребенка и рост взрослого человека -
в целом не перекрываются, то логистическая регрессия даст хорошие

результаты.

Методы на основе соседства точек

Другую группу очень простых алгоритмов образуют методы, основанные

на понятии соседства точек (neighborhood). Методы этой группы - ленивые

ученики, поскольку в данном случае обучение разметке новых точек основы­

вается на их близости к уже размеченным точкам. В отличие от линейной или

Обучение без учителя как один из видов маwинноrо обучения 41

логистической регрессии модели, основанные на соседстве точек, не обуча­

ются предсказанию меток для новых точек. Вместо этого они предсказывают

метки для новых точек, исключительно исходя из того, насколько новые точки

удалены от существующих размеченных точек. Ленивое обучение (lazy learning)
также относится к методам обучения на примерах (instance-based learning), или
непапараметрическим методам.

Метод k-ближайших соседей

Наиболее популярный метод этой категории - k-ближайших соседей

(k-nearest neighbors - KNN). Для пометки каждой новой точки алгоритм
осуществляет поиск k ближайших соседних помеченных точек (где k - це­

лое число) и наделяет уже размеченных соседей правом голоса при приня­

тии решения относительно того, какую метку следует присвоить новой точке.

В качестве меры удаленности новой точки от ближайших соседей в KNN по
умолчанию используется евклидово расстояние.

От выбора значения k зависит очень многое. Если оно установлено слиш­
ком низким, то метод приобретает повышенную гибкость, очерчивая грани­

цы, учитывающие множество нюансов, и переобучаясь на данных. Если же

для k выбрано слишком большое значение, то метод теряет гибкость, очерчи­
вая слишком грубые границы и потенциально недообучаясь на данных.

Сильные стороны

KNN, в отличие от линейных методов, обладает значительной гибко­
стью и приспособлен для обучения более сложным нелинейным соотно­

шениям. При этом он сохраняет простоту и интерпретируемость.

Слабые стороны

KNN плохо работает в тех случаях, когда количество наблюдений и при­
знаков достигает критической величины. В условиях заполненного боль­

шим количеством точек многомерного пространства метод становится

неэффективным с вычислительной точки зрения, поскольку для пред­

сказания признаков приходится рассчитывать расстояния от новой точ­

ки до уже размеченных многочисленных соседних точек. Он не позво­

ляет использовать эффективную модель с уменьшенным количеством

параметров для генерирования необходимых предсказаний. Кроме того,

метод весьма чувствителен к выбору параметра k. При слишком низких
значениях k метод может переобучаться, а при слишком высоких - не­

дообучаться.

42 Гnава 1

Применение

KNN широко применяется в рекомендательных системах, например тех,
которые используются для прогнозирования пользовательских пред­

почтений: фильмов (Netflix), музыки (Spotify), друзей (Facebook), фо­
тографий (Instagram), поисковых запросов (Google) и потребительских
товаров (Amazon). В частности, метод может оказаться полезным при
предсказании предпочтений отдельного пользователя на основании

известных предпочтений пользователей с аналогичными вкусами (так

называемая коллаборативная фильтрация) или на основании собствен­

ных предпочтений пользователя в прошлом (так называемая фильтра­

ция по содержимому).

Методы на основе деревьев решений

Вместо того чтобы использовать линейный метод, мы можем построить

дерево решений, в котором все примеры сегментируются, или стратифици­

руются, по отдельным областям на основании имеющихся меток. По завер­

шении сегментирования каждая область соответствует определенному классу

меток (для задач классификации) или диапазону предсказанных значений (для

задач регрессии). Этот процесс аналогичен тому, как если бы мы поручили ИИ

автоматически создать правила, ориентированные на получение наилучших

решений или предсказаний.

Одиночное дерево решений

Простейший вариант - метод одиночного дерева решений, в котором ИИ

выполняет один проход по тренировочным данным, создает правила для

сегментирования данных на основании имеющихся меток и использует ре­

зультирующее дерево решений для создания предсказаний в отношении не

представленных ранее данных, включенных в валидационный или тестовый

набор. Однако одиночное дерево решений обычно плохо обобщает то, чему

обучилось в процессе тренировки, на незнакомые примеры ввиду переобуче­

ния на одной-единственной тренировочной итерации.

Бэггинг

В качестве улучшения одиночного дерева решений можно воспользоваться

бутстрэп-агрегированием, или бэггингом, когда мы формируем из трениро­

вочных данных несколько случайных выборок примеров, а затем создаем дерево

решений для каждой выборки и предсказываем выход для каждого примера

Обучение без учителя как один из видов маwинноrо обучения 43

путем усреднения предсказаний отдельных деревьев. За счет использования

рандомизации выборок и усреднения результатов нескольких деревьев (под­

ход, известный как метод ансамблей) бэггинг помогает частично справиться с

переобучением, свойственным одиночному дереву решений.

Случайные леса

Мы можем дополнительно ослабить эффекты переобучения, семплируя не

только примеры, но и сами предикторы. В методе случайньtх лесов мы отбира­

ем несколько случайных выборок примеров из тренировочных данных, как

это делается в бэггинге, но в каждом дереве решений мы создаем расщепле­

ние, основанное не на всех предикторах, а на случайной выборке предикторов.

Количество предикторов, устанавливаемых для каждого дерева, обычно вы­

бирается равным квадратному корню из общего их количества.

Семплируя предикторы описанным способом, алгоритм случайных лесов

создает деревья, еще в меньшей степени скоррелированные между собой (по

сравнению с деревьями бэггинга), тем самым ослабляя эффекты переобуче­

ния и уменьшая ошибку обобщения.

Бустинг

В другом подходе, который называется бустинг, также создается несколь­

ко деревьев, но при этом деревья формируются последовательно, что позво­

ляет использовать знания, которым ИИ обучился на предыдущем дереве, для

улучшения результатов, получаемых с помощью следующего дерева. Глубина

каждого дерева поддерживается на довольно мелком уровне, с небольшим

количеством расщеплений, и обучение происходит последовательно, дерево

за деревом. Из всех методов, основанных на деревьях решений, наилучшую

производительность продемонстрировали машины градиентного бустинга,

которые часто одерживают победы на соревнованиях по машинному обуче­
нию4.

Сильные стороны

Методы на основе деревьев решений относятся к числу наиболее про­

изводительных алгоритмов обучения с учителем, предназначенных для

решения задач прогнозирования. Эти методы способны выявлять слож­

ные соотношения в данных путем обучения многим простым правилам,

4 Подробнее о градиентном бустинrе можно прочитать в блоrе Бена Гормана (http: / /Ьi t.
ly/2SlC8Qy).

44 Гnава 1

по одному правилу за раз. Кроме того, они способны обрабатывать от­

сутствующие данные и категориальные признаки.

Слабые стороны

Методы на основе деревьев решений с трудом поддаются интерпрета­

ции, особенно в тех случаях, когда для получения надежных предска­

заний требуется использовать большое количество признаков. Кроме

того, по мере увеличения количества признаков производительность

также становится проблемой.

Применение

Градиентный бустинг и случайные леса отлично подходят для решения

задач прогнозирования.

Метод опорных векторов

Вместо того чтобы строить деревья для разделения данных, мы можем ис­

пользовать алгоритмы, предназначенные для создания гиперплоскостей, раз­

деляющих данные на основании имеющихся признаков. Соответствующий

подход получил название метод опорных векторов (support vector machine -
SVM). SVM не гарантирует идеального разделения (не все точки в опреде­
ленной области гиперпространства обязаны иметь одну и ту же метку), но

расстояние между пограничными точками, с которыми ассоциирована не­

которая метка, и пограничными точками, с которыми ассоциирована другая

метка, должны быть как можно большими. Кроме того, границы не обязаны

быть линейными - мы можем обеспечить более гибкое разделение данных,

используя нелинейные ядра.

Нейронные сети

Обучение представлениям данных можно проводить с использованием

нейронных сетей, которые состоят из входного слоя, нескольких скрытых

слоев и выходного слоя5• Входной слой использует признаки, тогда как вы­

ходной слой пытается добиться соответствия переменной отклика (ответ­

ной переменной). Скрытые слои представляют собой вложенную иерархию

5 Для получения более подробной информации о нейронных сетях обратитесь к книrе

Глубокое обучение Яна l}'дфеллоу, Иошуа Бенджио и Аарона Курвилля (ht tp: / /www.
deeplearningbook. org /).

Обучение без учителя как один из видов маwинноrо обучения 45

абстрактных понятий - каждый слой (или понятие) пытается понять, как

предыдущий слой СООТНОСИТСЯ с выходным слоем.

Опираясь на эту иерархию, нейронная сеть может обучаться сложным по­

нятиям путем их формирования на основе более простых понятий. Нейрон­
ные сети - один из наиболее мощных подходов к аппроксимации функций,

однако с ним сопряжены такие проблемы, как переобучение и трудность ин­

терпретации - недостатки, которые мы будем подробно обсуждать далее.

Краткий обзор алгоритмов машинного обучения

без учителя

А теперь переключимся на рассмотрение задач, в которых мы имеем дело

с неразмеченными данными. Применяемые в таких случаях алгоритмы обу­

чения без учителя не создают предсказания, а пытаются обучиться базовой

структуре данных.

Снижение размерности

Алгоритмы снижения размерности транслируют оригинальное многомер­

ное пространство входных данных в пространство более низкой размерно­

сти, фильтруя наименее релевантные признаки и сохраняя как можно боль­

шее количество признаков, представляющих интерес. Снижение размерности

позволяет эффективнее выявлять шаблоны и решать крупномасштабные, вы­

числительно трудоемкие задачи (чаще всего связанные с обработкой изобра­
жений, видео, речи и текста).

Линейная проекция

Существуют две основные разновидности алгоритмов снижения размер­

ности: линейная проекция и нелинейное снижение размерности.

Анализ главных компонент

Один из подходов к изучению базовой структуры данных заключается в
идентификации наиболее важных признаков, объясняющих изменчивость

примеров. Не все признаки равноценны. Одни из них испытывают лишь незна­

чительные изменения и поэтому менее полезны в плане объяснения данных.

В то же время другие признаки могут варьироваться в определенных пределах,

и именно они заслуживают более пристального внимания, поскольку с их по­

мощью легче построить модель, предназначенную для разделения данных.

46 Глава 1

В методе РСА (principal component analysis - анализ главных компонент)

алгоритм находит такое представление данных низкой размерности, которое

обеспечивает сохранение максимально возможной доли их вариативности.

Размерность этого представления значительно меньше размерности полного

набора данных (т.е. полного числа признаков). Переход к пространству по­

ниженной размерности сопровождается потерей определенной части диспер­

сии, но упрощает идентификацию базовой структуры данных, что обеспечи­

вает более эффективное решение таких задач, как кластеризация.

Существует несколько вариантов метода РСА, которые мы более подроб­

но обсудим в последующих главах. В их число входят мини-пакетные версии,

такие как инкрементньtй РСА, нелинейные версии, такие как ядерный РСА, и

разреженные версии, такие как разреженный РСА.

Сингулярное разложение

Суть другого подхода к изучению базовой структуры данных заключается

в снижении ранга исходной матрицы признаков до меньшего значения с со­

хранением возможности восстановления исходной матрицы путем образова­

ния линейной комбинации некоторых из векторов полученной матрицы более

низкого ранга. Это и есть метод SVD (singularvalue decomposition - сингуляр­

ное разложение). Генерируя матрицу меньшего ранга, метод SVD оставляет те
из векторов исходной матрицы, которые содержат наибольшую часть инфор­

мации (обеспечивают наибольшее сингулярное значение). Эта матрица пони­

женного ранга захватывает наиболее важные элементы исходного простран­

ства признаков.

Случайная проекция

Аналогичный алгоритм снижения размерности включает проецирование

точек из многомерного пространства в пространство более низкой размер­

ности таким образом, чтобы сохранить масштаб расстояний между точками.

Для этого используют либо случайную гауссовскую либо случайную разрежен­

ную матрицу.

Обучение на многообразиях

Как РСА, так и случайная проекция подразумевают линейное проециро­

вание данных из многомерного пространства в пространство низкой раз­

мерности. Результаты можно улучшить за счет применения нелинейного

преобразования вместо линейного - такой подход известен как обучение на

многообразиях (manifold learning), или нелинейное снижение размерности.

Обучение без учителя как один из видов маwинноrо обучения 47

lsomap
Этот алгоритм обучается внутренней геометрии данных путем оценки гео­

дезических (искривленных) расстояний между каждой точкой и ее ближайши­

ми соседями, а не евклидовых. Isomap использует эту информацию для после­

дующего вложения многомерного пространства в пространство пониженной

размерности.

Стохастическое вложение соседей с t-распределением

Другой подход к снижению размерности, называемый t-SNE (t-distributed

stochastic neighbor embedding), основан на вложении многомерных данных

в пространство, имеющее всего лишь два-три измерения, что позволяет ви­

зуализировать преобразованные данные. В этом двух- или трехмерном про­

странстве схожие примеры располагаются на небольших, а несхожие - на

больших расстояниях друг от друга.

Словарное обучение

Подход, известный как словарное обучение, подразумевает обучение раз­

реженному представлению базовых данных. Этими репрезентативными эле­

ментами служат простые бинарные векторы (состоящие из нулей и единиц),

и каждый пример в наборе данных может быть реконструирован в виде взве­

шенной суммы репрезентативных элементов. Матрица (словарь), генерируе­

мая в процессе обучения без учителя, заполнена главным образом нулями и

содержит лишь небольшое количество ненулевых весов.

Благодаря созданию подобного словаря алгоритм способен эффективно

идентифицировать наиболее существенные репрезентативные элементы ис­

ходного пространства признаков - те, которые содержат наибольшее количе­

ство ненулевых весов. Менее важные элементы содержат меньшее количество

ненулевых весов. Как и РСА, словарное обучение отлично подходит для разде­

ления данных и идентификации интересующих нас шаблонов.

Анализ независимых компонент

Одной из общих проблем, порождаемых неразмеченными данными, ста­

новится наличие множества независимых сигналов, которые вложены в име­

ющиеся в нашем распоряжении признаки. Используя анализ независимых

компонент (independent component analysis - ICA), мы можем разделить эту

смесь сигналов на независимые компоненты. После такого разделения можно

реконструировать любой из оригинальных признаков, образуя линейные ком­

бинации сгенерированных индивидуальных компонент. Метод ICA широко

48 Гnава 1

применяется для обработки сигналов (например, для идентификации отдель­

ных голосов в аудиозаписи из шумного кафетерия).

Латентное размещение Дирихле

Обучение без учителя также может быть использовано для объяснения

набора данных путем изучения факторов, которые обусловливают сходство

отдельных частей набора между собой. Это требует обучения ненаблюдаемым

элементам набора данных - подход, получивший название латентное раз­

мещение Дирихле (latent Diricblet allocation - LDA). Предположим, имеется
текстовый документ, содержащий множество слов. Эти слова не являются

случайными, они подчиняются определенной структуре.

Такую структуру можно смоделировать как ненаблюдаемые элементы - так

называемые темьt. После проведения соответствующей тренировки метод LDA
может объяснить данный документ с помощью ограниченного набора тем, для

каждой из которых имеется небольшой набор часто используемых слов. Это

и есть скрытая структура, которую LDA способен захватывать, что позволяет
лучше объяснять ранее неструктурированный текстовый корпус.

Снижение размерности сводит оригинальный набор признаков к

меньшему набору, включающему лишь наиболее важные признаки.

Далее мы можем запускать другие алгоритмы обучения без учите­

ля на этом меньшем наборе признаков с целью поиска шаблонов,

представляющих интерес (см. следующий раздел, посвященный

кластеризации), или, при наличии меток, для ускорения цикла об­

учения алгоритмов обучения с учителем путем передачи им мень­

шей матрицы признаков вместо использования оригинальной ма­

трицы.

Кластеризация

После редуцирования набора оригинальных признаков до набора меньшего

размера мы можем приступить к поиску интересующих нас закономерностей

путем группирования схожих примеров. Этот процесс, называемый класте­

ризацией, можно реализовать с помощью целого ряда алгоритмов обучения

без учителя и использовать в таких задачах, как сегментирование рынка.

Метод k-средних

Чтобы успешно справиться с кластеризацией, мы должны идентифициро­

вать отдельные группы, примеры в пределах которых схожи между собой, но

Обучение без учители как один из видов маwинноrо обучении 49

отличаются от примеров, относящихся к другим группам. Одним из таких ал­

горитмов является кластеризация методом k-средних (k-means clustering). В

данном алгоритме мы задаем желаемое количество кластеров, k, и алгоритм
относит каждый пример ровно к одному из этих k кластеров. Алгоритм оп­
тимизирует группирование, минимизируя внутрикластерную вариацию (на­

зываемую инерцией) так, чтобы сумма внутрикластерных вариаций по всем k
кластерам была как можно меньшей.

С целью ускорения процесса кластеризации метод k-средних случайным

образом относит каждое наблюдение к одному из k кластеров, а затем пе­
реназначает наблюдения для минимизации евклидовых расстояний между

каждым наблюдением и центральной точкой кластера, или центроидом. Как

следствие, различные запуски алгоритма k-средних - каждый со своей на­

чальной точкой - будут приводить к несколько различающимся отнесениям

наблюдений к тем или иным кластерам. Из этой серии различных запусков мы

выбираем тот, который характеризуется наилучшим разделением, дающим

наименьшую общую сумму внутрикластерных вариаций по всем k кластерам6•

Иерархическая кластеризация

Альтернативой обычной кластеризации служит так называемая иерархи­

ческая кластеризация, не требующая предварительного задания количества

кластеров. В одном из вариантов иерархической кластеризации, известном

как агломеративная кластеризация, применяется кластеризация на основе

деревьев и создается так называемая дендрограмма. Последняя графически

отображается в виде перевернутого дерева, в котором листья находятся вни­

зу, а ствол дерева - вверху.

Самые нижние листья - это индивидуальные примеры, содержащиеся в

наборе данных. Затем, по мере перемещения вверх по перевернутому дереву,

иерархическая кластеризация объединяет листья на основании их взаимно­

го сходства. В первую очередь объединяются наиболее схожие примеры (или

группы примеров), в последнюю очередь - наименее схожие. В конечном сче­

те описанный итеративный процесс приводит к тому, что все примеры оказы­

ваются связанными, образуя единый ствол дерева.

Такое графическое представление весьма информативно. Как только алго­

ритм иерархической кластеризации завершит свою работу, мы сможем про­

анализировать дендрограмму и определить, в каком месте мы хотим обре­

зать дерево. Чем ниже линия обреза, тем больше останется индивидуальных

6 Существуют более быстрые варианты кластеризации методом k-средних, которые мы обсу­

дим в последующих главах.

50 Глава 1

ветвей (т.е. кластеров). Если мы хотим уменьшить количество кластеров, то

линия обреза должна располагаться высоко на дендроrрамме, ближе к стволу,

находящемуся на самом верху перевернутого дерева. Размещение линии об­

реза аналогично выбору количества k кластеров в алгоритме кластеризации
методом k-средних7•

DBSCAN
DBSCAN (density-based spatial clustering of applications with noise - осно­

ванная на плотности пространственная кластеризация для приложений с шу­

мами) - еще более мощный алгоритм кластеризации. DBSCAN группирует
вместе тесно расположенные примеры. Теснота расположения определяется

как минимальное количество примеров, взаимные расстояния между кото­

рыми не превышают заданной величины. При этом мы задаем как требуемое

минимальное количество таких примеров, так и определенное расстояние,

ограничивающее пределы близости.

Если пример находится в пределах указанного расстояния от нескольких

кластеров, то он будет группироваться с тем из них, для которого теснота рас­

положения оказывается большей. Примеры, расположенные в областях малой

плотности, помечаются как выбросы.

В отличие от метода k-средних мы не должны предварительно задавать

количество кластеров. Кластеры могут иметь произвольную форму. Метод

DBSCAN гораздо меньше подвержен искажениям, которые обычно создаются
выбросами.

Извлечение признаков

Обучение без учителя позволяет обучаться новым представлениям ориги­

нальных признаков данных - это называется извлечением признаков (feature
extraction). Данный подход может применяться для эффективного снижения
размерности данных путем создания редуцированного подмножества ориги­

нальных признаков. А кроме того, это позволяет генерировать новые призна­

ки с целью повышения производительности в задачах обучения с учителем.

7 В случае иерархической кластеризации по умолчанию используются евклидовы расстояния,

но можно задействовать и другие аналоrичные метрики, например расстояние, исчисляемое

на основе корремции, которое мы рассмотрим в последующих rлавах.

Обучение без учителя как один из видов маwинноrо обучения 51

Автокодировщики

Для генерирования новых представлений признаков можно использовать

нерекуррентную нейронную сеть прямого распространения, в которой коли­

чество узлов во входном и выходном слоях совпадает. Эта нейронная сеть,

так называемый автокодировщик (autoencoder), способна эффективно рекон­
струировать исходные признаки, обучаясь новому представлению с помощью

промежуточных скрытых слоев8•

Каждый скрытый слой автокодировщика обучается представлению ори­

гинальных признаков, причем каждый последующий слой достраивает пред­

ставление, которому обучились предыдущие слои. Благодаря этому автоко­

дировщик обучается все более сложным представлениям на основе более

простых.

На выходе автокодировщика мы получаем окончательное новое представ­

ление, которому он обучился. Затем это представление может быть использо­

вано в качестве входа для модели обучения с учителем с целью уменьшения

ошибки обобщения.

Извлечение признаков путем контролируемого обучения сетей

прямого распространения

Если в нашем распоряжении имеются метки, то возможной альтернати­

вой подхода, основанного на извлечении признаков, является использование

нерекуррентной сети прямого распространения, в которой выходной слой

пытается предсказать правильную метку. Как и в случае автокодировщиков,

каждый скрытый слой обучается представлению оригинальных признаков.

Но когда генерируются новые представления, сеть работает непосред­

ственно под управлением признаков. Для извлечения окончательного вновь

изученного представления оригинальных признаков мы извлекаем предпо­

следний скрытый слой, непосредственно предшествующий выходному. Далее

этот предпоследний слой можно использовать в качестве входа в любой моде­

ли обучения с учителем.

8 Существует несколько разновидностей автокодировщиков, каждый из которых обучается

отдельному типу представлений. В их число входят обесшумливающие автокодировщики,

разреженные автокодировщики и вариационные автокодировщики. Все они будут подробно
рассмотрены в последующих rлавах.

52 Гпава1

Глубокое обучение без учителя

Обучение без учителя находит целый ряд важных применений в техноло­

гии глубокого обучения; с некоторыми из них мы познакомимся в последу­

ющих главах. Соответствующая область исследований называется глубоким

обучением без учителя (unsupervised deep learning).
Еще совсем недавно обучение глубоких сетей было практически неосуще­

ствимым из-за трудоемкости вычислений. В таких нейронных сетях скрытые

слои обучаются внутренним представлениям для решения текущей задачи.

Представления постепенно улучшаются за счет обновления весов различных

узлов с использованием градиента функции ошибки на каждой итерации тре­

нировки.

Подобное обновление весов требует интенсивных вычислений, в процессе

которых могут возникать две основные трудности. Во-первых, градиент функ­

ции ошибки может уменьшиться до очень небольших значений, а поскольку

обратное распространение ошибки основано на перемножении этих значе­

ний, веса сети будут обновляться очень медленно или вообще не обновляться,

препятствуя ее обучению9• Это явление известно как проблема затухающих

градиентов.

Суть другой проблемы, противоположной той, которая была только что

описана, заключается в том, что градиент функции ошибки также может при­

нимать очень большие значения. В таком случае веса сети могут обновляться с

использованием огромных приращений, что делает процесс обновления край­

не нестабильным. Это явление известно как проблема взрывньtх градиентов.

Предварительное обучение без учителя

Для преодоления описанных выше проблем, возникающих в процессе обу­

чения очень глубоких, многослойных нейронных сетей, исследователи, зани­

мающиеся машинным обучением, тренируют нейронные сети на протяжении

нескольких последовательных этапов, каждый из которых включает мелкую

нейронную сеть. Выход одной мелкой сети используется в качестве входа сле­

дующей нейронной сети. В типичных случаях первая мелкая сеть в этом кон­

вейере включает неконтролируемую, т.е. обучаемую без учителя, сеть, тогда

как более поздние сети обучаются с учителем.

9 Обратное распространение ошибки (backpropagation) - это алгоритм градиентного спуска,
применяемый в нейронных сетях для обновления весов. При этом сначала вычисляются веса

последнего слоя, которые затем используются для обновления весов предыдущих слоев. Про­

цесс продолжается до тех пор, пока не будут обновлены веса первого слоя.

Обучение без учителя как один из видов маwинноrо обучения 53

Неконтролируемая часть сети известна как жадное послойное предвари­

тельное обучение без учителя (greedy layer-wise unsupervised pretraining).
В 2006 году Джеффри Хинтон продемонстрировал успешное применение
предварительного обучения без учителя для инициализации обучения кон­

вейера глубокой нейронной сети, тем самым дав старт нынешней революции

в области глубокого обучения. Предварительное обучение без учителя по­

зволяет ИИ захватывать улучшенное представление оригинальных входных

данных, преимуществами которого обучаемая с учителем часть сети может

воспользоваться для решения текущей задачи.

Этот подход называют "жадным': поскольку каждая часть нейронной сети

обучается независимо от других ее частей, а не совместно с ними. Для боль­

шинства современных нейронных сетей предварительное обучение обычно

не требуется. Вместо этого все слои обучаются совместно посредством обрат­

ного распространения ошибки. Благодаря прогрессу в области компьютерных

технологий справляться с проблемами затухающих и взрывных градиентов

стало намного проще.

Предварительное обучение без учителя упростило решение не только задач

обучения с учителем, но и задач переносимого обучения (transfer learning), в
котором алгоритмы машинного обучения используются для сохранения зна­

ний, полученных в процессе решения одной задачи, чтобы ускорить решение

другой родственной задачи, причем на основе значительно меньшего объема

данных.

Ограниченные машины Больцмана

Одним из прикладных примеров предварительного обучения без учи­

теля может служить ограниченная машина Больцмана (restricted Boltzmann
machine - RВМ), представляющая собой мелкую двухслойную нейронную

сеть. Ее первым слоем является входной слой, а вторым - скрытый. Каждый

узел связан с каждым узлом другого слоя, но узлы в пределах одного и того же

слоя не связаны между собой - это и есть то ограничение, которое фигуриру­

ет в названии данного метода.

RВМ способна решать такие задачи обучения без учителя, как снижение

размерности и извлечение признаков, а кроме того, подходит для использова­

ния в качестве составной части систем обучения с учителем, обеспечивающей

предварительное обучение без учителя. RВМ аналогичны автокодировщикам,

но отличаются от них в ряде важных аспектов. Например, если в автокодиров­

щиках предусмотрен выходной слой, то в RВМ он отсутствует. К обсуждению

этого и других отличий мы вернемся в последующих главах.

54 Гnава 1

Глубокие сети доверия

RВМ могут связываться между собой, образуя многозвенную нейронную

сеть - так называемую глубокую сеть доверия (deep belief network - DBN).
Скрытый слой каждой RВМ используется в качестве входа для следующей

RВМ. Другими словами, каждая RВМ генерирует представление данных, от

которого затем отталкивается очередная RВМ. Связывая между собой по­

следовательные этапы обучения представлениям такого типа, глубокая сеть

доверия способна обучаться более сложным представлениям, которые часто

используются в качестве детекторов признаков10•

Генеративно-состяэатепьные сети

Одним из главных достижений в области глубокого обучения без учите­

ля стали генеративно-состязательные сети (generative adversarial network -
GAN), разработанные Яном Гудфеллоу с коллегами из Монреальского универ­
ситета в 2014 rоду. Генеративно-состязательные сети имеют многочисленные
применения; например, их можно использовать для создания высокореали­

стичных синтетических данных, таких как изображения или речь, либо для

обнаружения аномалий.

GAN состоит из двух нейронных сетей. Одна из них, называемая генера­
тором, генерирует данные на основе модельного распределения, которое она

создает, используя выборки из реально полученных данных. Другая сеть, на­

зываемая дискриминатором, пытается отличить данные, созданные генерато­

ром, от данных, подчиняющихся истинному распределению.

Если воспользоваться простой аналогией и отвести генератору роль фаль­

шивомонетчика, то дискриминатор можно уподобить криминалисту, пытаю­

щемуся отличить подделку. Эти две сети вовлечены в шру с нулевой суммой

(zero-sum game). Генератор пытается ввести дискриминатор в заблуждение,
чтобы тот думал, будто синтетические данные поступают из источника с ис­

тинным распределением данных, тогда как дискриминатор пытается выявить,

что данные в действительности синтетические.

Генеративно-состязательные сети - это алгоритмы обучения без учителя,

поскольку генератор способен изучить базовую структуру истинного распре­

деления данных, даже если они не снабжены метками. Генеративно-состяза-

10 Детекторы признаков обучаются подходящим представлениям исходных данных, способ­
ствующим выделению различающихся элементов. Например, в случае изображений детекто­

ры признаков облегчают выделение таких элементов, как нос, глаза, рот и т.п.

Обучение без учитепя как один из видов маwинноrо обучения 55

тельные сети достигают этого в процессе тренировки, эффективно выявляя

структуру с использованием умеренного количества параметров.

Этот процесс аналогичен процессу обучения представлениям посредством

глубокого обучения. Каждый скрытый слой нейронной сети генератора захва­

тывает представление базовых данных. Первоначальные представления очень

простые, но каждый последующий слой усложняет представление, получен­

ное в предыдущем слое.

Совместно используя все эти слои, генератор обучается базовой структуре

данных и, опираясь на приобретенный опыт, пытается создать синтетические

данные, которые были бы почти идентичны настоящим. Если генератору уда­

ется уловить суть истинного распределения данных, то синтетические данные

будут казаться реальными.

Обработка последовательных данных с помощью обучения

без учителя

Обучение без учителя позволяет также обрабатывать последовательные

данные, например временнь~е ряды. Один из таких подходов предполагает об­

учение скрытым состояниям марковской модели. В простой марковской моде­

ли состояния полностью наблюдаемы и изменяются стохастически (другими

словами - случайным образом). Будущие состояния зависят от текущего со­

стояния и не зависят от предыдущих.

В скрытой марковской модели состояния являются лишь частично наблю­

даемыми, но, подобно простым марковским моделям, выходы этих частич­

но наблюдаемых состояний являются полностью наблюдаемыми. Поскольку

имеющихся наблюдений недостаточно для полного определения состояния,

приходится привлекать обучение без учителя, обеспечивающее более полное

обнаружение всех скрытых состояний.

Алгоритмы скрытой марковской модели включают обучение вероятному

следующему состоянию при условии, что известна последовательность ранее

встречавшихся частично наблюдаемых состояний и полностью наблюдаемых

выходов. Эти алгоритмы широко применяются для решения задач, связанных

с обработкой речи, текста и временных рядов.

56 Гnава 1

Обучение с подкреплением с использованием

обучения без учителя

Обучение с подкреплением (reinforcement learning) - третья из основных

методологий машинного обучения, в соответствии с которой агент опреде­

ляет свое оптимальное поведение (действия) в условиях окружения на основе

обратной связи (получаемого вознаграждения). Эта обратная связь называет­

ся сигналом подкрепления. Целью агента является максимизация накапливае­

мого вознаграждения.

Несмотря на то что обучение с подкреплением было на слуху еще с 1950-х

годов, в заголовках новостей оно стало фигурировать лишь в последние годы.

В 2013 году компания DeepMind (в настоящее время куплена компанией
Google) применила обучение с подкреплением для достижения результатов,
превосходящих возможности человека, во многих играх на платформе Atari.
Разработанной компанией DeepMind системе удалось добиться этого, исполь­
зуя в качестве входа лишь данные сенсорных датчиков без предварительного

знания правил игры.

В 2016 году компания DeepMind вновь стала объектом внимания сооб­
щества машинного обучения, на этот раз благодаря программе AlphaGo, по­
бедившей Ли Седоля, одного из лучших игроков в го. Эти успехи укрепили

позиции обучения с подкреплением как одного из главных направлений в раз­

работке Ии.

Сегодня исследователи, работающие в области машинного обучения, при­

меняют обучение с подкреплением для решения многих задач, включая следу­

ющие.

• Биржевая торговля, в ходе которой агент покупает и продает акции

(действия), получая взамен прибыль или убытки (вознаграждение).

• Видео- и настольные игры, в которых агент принимает решения относи­

тельно ходов в игре (действия), в конечном счете приводящие к выигры­

шу или проигрышу (вознаграждение).

• Беспилотные автомобили, в которых агент управляет транспортным сред­

ством (действия) и либо нормально следует по своему маршруту, либо со­

вершает дорожно-транспортное происшествие (вознаграждение).

• Управление роботом, когда агент передвигается среди объектов окру­

жения (действия) и либо достигает конечного пункта, либо ему это не

удается (вознаграждение).

Обучение без учителя как один из видов маwинноrо обучения 57

В простейших случаях мы имеем дело с конечной задачей, т.е. с задачей,

в которой имеется конечное число состояний окружения, конечное число

действий, доступных при том или ином состоянии окружения, и конечное

число вознаграждений. Действия, совершаемые агентом при заданном теку­

щем состоянии окружения, определяют следующее действие, а целью агента

является максимизации долгосрочного вознаграждения. Это семейство за­

дач известно как марковские процессы принятия решений с конечным числом

состояний.

Однако на практике не все так просто. Вознаграждение неизвестно и по

своему характеру является динамической, а не статической величиной. На­

шим помощником в установлении этой неизвестной функции вознагражде­

ния и ее наилучшей аппроксимации может выступать обучение без учителя.
Используя приближенную функцию вознаграждения, мы можем применить

решения на основе обучения с подкреплением для увеличения накапливаемой
величины вознаграждения.

Обучение с частичным привлечением учителя

Несмотря на то что обучение с учителем и обучение без учителя - две раз­
личные методологии машинного обучения, оба алгоритма могут совместно

применяться в качестве звеньев конвейера машинного обучения11 • В типич­

ных случаях смесь алгоритмов обучения с учителем и без учителя использу­

ется в тех случаях, когда мы хотим в полной мере извлечь выгоду из немногих

имеющихся меток или найти новые, еще неизвестные закономерности, исходя

из неразмеченных данных, в дополнение к тем, которые были получены на

основе размеченных данных. Задачи этого типа решаются путем использова­

ния гибридного варианта обучения с учителем и без учителя, получившего на­

звание обучение с частичным привлечением учителя (semisupervised learning).
В последующих главах мы вернемся к более подробному обсуждению этой

темы.

11 Термин конвейер (pipeline) обозначает систему приложений машинного обучения, применя­
емых последовательно для достижения общей цели.

58 Глава 1

Успешные примеры обучения без учителя

За последние десять лет большинство наиболее успешных коммерческих

применений машинного обучения было связано с использованием обучения

с учителем, однако в настоящее время ситуация начала меняться. Все большее

распространение получает обучение без учителя. В одних случаях обучение

без учителя служит всего лишь средством, позволяющим улучшить приложе­

ния на основе обучения с учителем. В других случаях обучение без учителя

уже само по себе выступает в качестве основы для построения коммерческих

приложений. Ниже кратко описаны две наибольшие области применения об­

учения без учителя по состоянию на сегодняшний день.

Обнаружение аномалий

Снижение размерности позволяет редуцировать исходное многомерное

пространство признаков в преобразованное пространство более низкой раз­

мерности, в котором мы находим области с высокой плотностью точек. Эти

области образуют нормальное пространство. Точки, расположенные на гораз­

до больших расстояниях, называются вьtбросами, или аномалиями, и заслужи­

вают более пристального рассмотрения.

Как правило, системы обнаружения аномалий служат для выявления по­

пыток мошенничества, связанных с использованием банковских карт, средств

коммуникации и страховых полисов. Кроме того, обнаружение аномалий

применяется для идентификации редких опасных событий, таких как взлом

устройств, подключенных к Интернету, сбои в работе критического оборудо­

вания, например самолетов и поездов, и появление брешей в системах кибер­

безопасности из-за действий вредоносных программ.

Обнаружение аномалий можно использовать для распознавания спама,

что уже обсуждалось нами ранее. К числу других применений относится об­

наружение фактов финансирования терроризма, отмывания денег, торговли

людьми, наркотиками и оружием, идентификация рискованных финансовых

операций и диагностирование онкологических заболеваний.

Чтобы облегчить выявление аномалий, можно задействовать алгоритм

кластеризации для группирования сходных аномалий с последующим на­

значением меток этим кластерам вручную на основании типов представля­

емого ими поведения. В состав такой системы можно включить интеллек­

туальный агент на основе обучения без учителя, способный обнаруживать

аномалии, кластеризовать их в соответствующие группы и, используя метки,

Обучение без учителя как один из видов маwинноrо обучения 59

присвоенные человеком, рекомендовать соответствующий порядок действий

для бизнес-анализа.

В случае систем обнаружения аномалий мы можем воспользоваться опи­

санным подходом на основе меток кластеров и, отталкиваясь от задачи, пред­

назначенной для обучения без учителя, создать в конечном счете задачу для

обучения с частичным привлечением учителя. Уже потом мы можем запус­

тить алгоритмы обучения с учителем наряду с алгоритмами обучения без

учителя. Чтобы приложения машинного обучения были успешными, системы

обучения без учителя и с учителем должны применяться совместно, взаимно

ДОПОЛНЯЯ друг друга.

Система обучения с учителем находит известные закономерности с высо­

кой степенью точности, тогда как система обучения без учителя обнаружива­

ет новые закономерности, которые могут представлять для нас интерес. Выя­

вив эти закономерности с помощью обучения без учителя, можно разметить

данные вручную, переведя их из категории неразмеченных в категорию раз­

меченных.

Сегментирование групп

С помощью кластеризации мы можем сегментировать группы на основа­

нии сходства их поведения в таких областях, как маркетинг, диагностика забо­

леваний, онлайн-покупки, прослушивание музыки, просмотр видеороликов,

службы онлайн-знакомств, социальные сети и классификация документов.

В каждом из этих случаев приходится иметь дело с огромными объемами дан­

ных, и эти данные размечены лишь частично.

Для уточнения уже известных закономерностей можно применять обуче­

ние с учителем. Однако зачастую мы хотим обнаруживать новые закономер­

ности и группы, представляющие для нас интерес, и использование для этой

цели обучения без учителя является вполне естественным вариантом выбора.

Опять-таки, все дело в синергии. Залогом построения более надежных ре­

шений машинного обучения является совместное использование обучения с

учителем и без учителя.

60 Глава 1

Резюме

В этой главе были рассмотрены следующие темы:

• различия между системами на основе правил и системами на основе ма­

шинного обучения;

• различия между обучением с учителем и без учителя;

• как обучение без учителя помогает справиться с проблемами, с кото­

рыми часто приходится сталкиваться в процессе тренировки моделей

машинного обучения;

• распространенные алгоритмы обучения с учителем и без учителя, а так­

же алгоритмы обучения с подкреплением и обучения с частичным при­

влечением учителя;

• две основные области применения обучения без учителя - обнаруже­

ние аномалий и сегментирование групп.

В главе 2 мы поговорим о том, как создавать приложения машинного обу­
чения. Затем мы подробно рассмотрим методы снижения размерности и кла­

стеризации, попутно создав систему обнаружения аномалий и систему сег­

ментирования групп.

Обучение без учителя как один из видов маwинноrо обучения 61

ГЛАВА2

Готовый проект машинного обучения

Прежде чем приступить к исследованию алгоритмов обучения без учителя,

необходимо узнать, как управлять проектами машинного обучения, начиная

от получения данных и заканчивая реализацией готового решения. В этой

главе мы поработаем с моделями обучения с учителем, которые должны быть

знакомы большинству читателей, а к моделям обучения без учителя перейдем

в следующей главе.

Настройка среды

Для начала необходимо настроить среду обработки данных. Мы будем ис­

пользовать ее как для обучения с учителем, так и для обучения без учителя.

Приведенные ниже инструкции ориентированы на Windows, од­
нако соответствующие установочные пакеты доступны также для

MacиLinux.

Git: система управления версиями
Если вы еще этого не сделали, вам потребуется установить Git (https: / /

g i t-s cm. com/). Git - это система управления версиями, и все примеры, при­

веденные в книге, доступны в виде блокнотов Jupyter в репозитории GitHub
(http: / /Ьi t. ly/2Gd4v7e). Ознакомьтесь с руководством по работе с Git
(http: / /rogerdudler. github. io/git-guide/index. ru. html), чтобы
узнать, как клонировать репозитории, добавлять, фиксировать и распростра­

нять изменения, а также контролировать ветки.

Кnонируйте репозиторий данной книги

Откройте интерфейс командной строки и перейдите в каталог, в котором

хотите хранить свои проекты обучения без учителя. Чтобы клонировать репо­

зиторий GitHub, связанный с данной книгой, выполните следующие команды.

$ git clone
https://github.com/aapatel09/handson-unsupervised-learning.git

$ gi t lfs pull

То же самое можно сделать иначе: посетите сайт GitHub (h t t р : / / Ь i t .

ly/2Gd4v7e) и загрузите репозиторий вручную. Можете задать режим
наблюдения за данным репозиторием, чтобы не пропустить изменения, кото­

рые могут вноситься в связи с обновлением кода.

Загрузив репозиторий посредством клонирования или вручную, перейди­

те в каталог handson-unsupervised-learning из командной строки:

$ cd handson-unsupervised-learning

Все последующие установки будут делаться в командной строке.

Библиотеки для научных вычислений: дистрибутив Anaconda
для Python

Чтобы установить Python и библиотеки для научных вычислений, кото­
рые потребуются для наших проектов машинного обучения, загрузите дис­

трибутив Python под названием Anaconda (https: / /www. anaconda. сот/
download/) 1•

Создайте изолированную среду Python, в которую можно будет импорти­
ровать различные библиотеки для каждого проекта по отдельности:

$ conda create -n unsupervisedLearning python=З.6 anaconda

Эта команда создает в Python 3.6 изолированную среду unsupervised­
Learning, которая содержит все научные библиотеки, поставляемые вместе
с дистрибутивом Anaconda.

Далее необходимо активировать среду:

$ activate unsupervisedLearning

Нейронные сети: TensorFlow и Keras
Следующий шаг -установка пакетов TensorFlow и Keras для работы с ней­

ронными сетями. TensorFlow - открытый проект компании Google, не являю­
щийся частью дистрибутива Anaconda.

$ pip install tensorflow

1 Авторские примеры созданы в версии 3.6, локализованные иллюстрации - в версии 3.7. -
Примеч. ред.

64 Гnава2

Keras - библиотека с открытым исходным кодом, которая предлагает вы­

сокоуровневый API, использующий низкоуровневые функции TensorFlow.
Другими словами, мы будем использовать Keras поверх TensorFlow, чтобы по­
лучить доступ к интуитивно более понятному набору АРl-вызовов для разра­

ботки моделей глубокого обучения.

$ pip install keras

Градиентный бустинr, версия 1: XGBoos t

Далее необходимо установить библиотеку градиентного бустинга XGBoost.
Чтобы упростить этот шаг (по крайней мере, для пользователей Windows), пе­
рейдите в папку xgboost репозитория handson-unsupervised-learning, в которой
вы найдете указанный пакет.

Для установки пакета используйте команду pip install.

$ cd xgboost
$ pip install xgboost-0.6+20171121-cp36-cp36m-win_amd64.whl

Можете поступить по-другому, загрузив более актуальную 32- или 64-бит­
ную версию XGBoost (http://Ьit.ly/2GljBxs), в зависимости от разряд­
ности используемой вами операционной системы.

Имя загруженного вами WНL-файла XGBoost может отличаться
от приведенного выше, поскольку новые версии публикуются ре­

гулярно.

Когда файл XGBoost будет успешно установлен, вернитесь в папку handson­
unsupervised-learning.

Градиентный бустинr, версия 2: Ligh tGВМ

Установите другую библиотеку градиентного бустинга - LightGBM, разра­
ботанную компанией Microsoft:

$ pip install lightgbm

Готовыii проект машинного обучения 1 65

Алгоритмы кластеризации

Сейчас мы установим несколько алгоритмов кластеризации, которые будут

использоваться в последующих главах. Один из пакетов, f а s t с 1 u s te r, пред­
ставляет собой библиотеку С++ с интерфейсом Python/SciP{

Пакет fastcluster можно установить с помощью следующей команды:

$ pip install fastcluster

Другой пакет кластеризации, hdЬscan, можно установить с помощью про­

граммы conda:

$ conda install -с conda-forge hdbscan

Наконец, установите пакет tslearn, предназначенный для работы с вре­
меннь~ми рядами:

$ pip install tslearn

Интерактивная вычислительная среда: Jupyter Notebook
Блокнот Jupyter является частью дистрибутива Anaconda, поэтому сейчас

мы активизируем его, чтобы запустить среду, которую только что настроили.

Прежде чем ввести следующую команду, убедитесь в том, что находитесь в

папке репозитория handson-unsupervised-learning:

$ jupyter notebook

В открывшемся окне браузера отобразится страница с адресом h t t р : / /
localhost: 8 8 8 8 / (если этого не произошло, скопируйте указанный в ко­

мандной строке адрес страницы в окно браузера). Для доступа к странице

должны быть разрешены файлы "cookie'~

Теперь мы готовы к созданию нашего первого проекта машинного обуче­

ния.

Обзор данных

В этой главе мы будем использовать реальный набор данных об анонимных

операциях с банковскими картами, совершенных европейскими клиентами

2 Для получения более подробной информации о библиотеке fastcluster обратитесь к докумен­
тации (https: / /pypi. org /proj ect/fastcluster /).

бб Гпава2

начиная с сентября 2013 года3• Все операции помечены как поддельные или
подлинные, и мы построим приложение на основе машинного обучения,

позволяющее выявлять мошенничество и предсказывать корректные метки

для примеров, которые ранее не предоставлялись.

Указанный набор данных отличается крайней несбалансированностью. Из

284 807 банковских операций лишь 492 (0,172%) являются мошенническими.
Столь низкий процент подделок вполне типичен для операций с банковскими

картами.

Общее количество признаков равно 28, причем все они числовые, тогда
как категориальные переменные отсутствуют4• Эти признаки не являются

оригинальными и представляют собой результат анализа главных компонент

(РСА), который мы будем исследовать в главе 3. В данном случае количество
оригинальных признаков было уменьшено до 28 главных компонент путем
снижения размерности.

В дополнение к 28 главным компонентам имеются три другие переменные:
время выполнения транзакции, сумма транзакции и истинный класс транзак­

ции (1 - поддельная, О - подлинная).

Подготовка данных

Прежде чем использовать машинное обучение для организации процесса

тренировки на данных и разработки приложения, обнаруживающего факты

мошенничества, необходимо подготовить данные, которые будут обрабаты­

ваться алгоритмами.

Получение данных

Первым шагом в любом проекте машинного обучения является получение

данных.

Загрузка данных

Загрузите набор данных и поместите результирующий СSV-файл в папку

/datasets!credit_card_data/ каталога handson-unsupervised-learning. Если ранее вы

3 Этот набор данных, доступный в сети Kaggle (www. kaggle. com), был собран в ходе исследо­
вания, проведенного компанией Worldline и сообществом Machine Learning Group из Брюс­
сельского свободного университета.

4 Категориальные переменные имеют одно из возможных качественных значений, количество

которых ограничено. Их часто приходится кодироваться в алгоритмах машинного обучения.

Готовый проект маwинноrо обученин 67

загрузили репозиторий GitHub, то этот файл уже находится в указанной папке.
(Убедитесь, что файл полностью загружен, так как он имеет огромный размер.)

Импорт необходимых библиотек

Импортируйте библиотеки Python, которые потребуются для построения
приложения, обнаруживающего факты мошенничества.

' ' 'Основные библиотеки' ' '
import numpy as np
import pandas as pd
import os

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Подготовка данных'''

from sklearn import preprocessing as рр
from scipy.stats import pearsonr
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall_curve, \

average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score
from sklearn.metrics import confusion_matrix, classification report

' ' 'Алгоритмы' ' '
from sklearn.linear_model import LogisticRegression
from sklearn.ensemЬle import RandomForestClassifier
import xgboost as xgb
import lightgbm as lgb

Чтение данных

current_path = os.getcwd()
file os.path.sep.join([' ', 'datasets', 'credit_card_data', \

'credit_card.csv'])
data pd.read_csv(current_path + file)

68 Гnава2

Предварительный просмотр данных

Следующая команда выводит первые пять строк набора:

data. head ()

Как видите, требуемый набор данных успешно загружен (табл. 2.1; здесь и
далее показаны только начальные столбцы).

Таблица 2.1. Предварительный просмотр данных

Tlme V1 V2 УЗ V4 V5

о о.о -1.359807 -0.072781 2.536347 1.378155 -0.338321

1 о.о 1.191857 0.266151 0.166480 0.448154 0.060018

2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198

3 1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309

4 2.0 1.158233 0.877737 1.548718 0.403034 -0.407193

5 rows х 31 columns

Исследование данных

Нашим следующим шагом будет более глубокое исследование данных. Для

этого мы сгенерируем итоговую сводку, выявим отсутствующие данные или

категориальные признаки и подсчитаем количество различных значений по

признакам.

Генерирование итоговой сводки

Следующая команда выводит сводку по столбцам (табл. 2.2):

data. describe ()

Таблица 2.2. Простан итогован сводка

Tlme V1 V2 УЗ V4

count 284807.000000 2.848070е+О5 2.848070е+О5 2.848070е+О5 2.848070е+О5

mean 94813.859575 3.919560е-15 5.688174е-16 -8.769071е-15 2.782312е-15

std 47 488.145955 1.958696е+ОО 1.651309е+ОО 1.516255е+ОО 1.415869е+ОО

min 0.000000 -5.640751 е+О1 -7 .271573е+О1 -4.832559е+О1 -5.683171е+ОО

25% 54201.500000 -9.203734е-01 -S.985499e-01 -8.903648е-01 -8.486401 е-01

50% 84692.000000 1.810880е-02 6.548556е-02 1.798463е-01 -1.984653е-02

Готовый проект машинного обучения 1 69

75%

max

Time

139320.500000

172792.000000

V1

1.315642е+ОО

2.454930е+ОО

V2

8.037239е-01

2.20577Зе+О1

Окончание табл. 2.2

УЗ

1.027196е+ОО

9.382558е+ОО

У4

7.43341Зе-01

1.687534е+О1

8rowsхЗ1 columns

data.colurnns

Index(['Tirne', 'Vl,' 'V2', 'VЗ', 'V4', 'VS', 'Vб', 'V7', 'V8', \
'V9', 'VlO', 'Vll', 'V12', 'VlЗ', 'V14', 'V15', 'Vlб', 'V17', \
'Vl8', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', \
'V27', 'V28', 'Amount', 'Class'], dtype='object')

data ['Class'] . surn ()

Общее количество положительных меток, или мошеннических операций,

составило 492. Как и следовало ожидать, всего имеется 284 807 примеров и 31
столбец: 28 числовых признаков (Vl-V28), а также столбцы Tirne, Amount и
Class.

Значения временных меток (Т irne) находятся в диапазоне 0-172792, суммы
операций (Amount) - в диапазоне 0-25691,16; всего имеется 492 мошенни­
ческие операции. На них мы будем ссылаться как на позитивные случаи, или

позитивные метки (они помечены единицами); нормальные операции соот­

ветствуют отрицательным случаям, или отрицательным меткам (они помече­

ны нулями).

Все 28 числовых признаков пока еще не стандартизированы, но вскоре мы

стандартизируем данные. В процессе стандартизации данные масштабиру­

ются таким образом, чтобы среднее значение было равно нулю, а стандартное

отклонение - единице.

Некоторые приложения машинного обучения весьма чувствитель­

ны к масштабированию данных, поэтому приведение данных к од­

ной и той же относительной шкале - стандартизация - считается

хорошей практикой.

Еще одним общепринятым методом масштабирования данных яв­

ляется их нормализация, при которой данные приводятся к диапа­

зону значений от нуля до единицы. В отличие от стандартизиро­

ванных данных все нормализованные данные располагаются вдоль

шкалы в области положительных значений.

70 Гnава2

Выявление нечисnовых и отсутствующих значений

Некоторые алгоритмы машинного обучения не могут обрабатывать нечис­

ловые и отсутствующие значения. Поэтому оптимальное решение заключа­

ется в использовании особого способа идентификации нечисловых значений

(также известных как NaN от англ. "not а number").
В случае отсутствующих значений мы можем моделировать их, например

путем замены отсутствующей точки данных средним значением, медианой

или модой соответствующего признака, либо подставлять значения, опреде­

ляемые пользователем. В случае категориальных значений можно кодировать

данные с помощью разреженной матрицы, представляющей все категориаль­

ные значения. Далее эта матрица комбинируется с числовыми признаками.

Полученный комбинированный набор признаков используется для трениров­

ки алгоритма машинного обучения.

Выполнив следующую команду, мы видим, что в наборе отсутствуют

наблюдения со значением NaN, поэтому нет никакой необходимости модели­
ровать или кодировать какие-либо значения.

nanCounter = np.isnan(data) .sum()

Time о

Vl о

V2 о

vз о

V4 о

vs о

Vб о

V7 о

V8 о

V9 о

VlO о

Vll о

V12 о

VlЗ о

V14 о

VlS о

Vlб о

V17 о

V18 о

V19 о

V20 о

Готовый проект маwинноrо обучения 71

V21 о

V22 о

V23 о

V24 о

V25 о

V26 о

V27 о

V28 о

Arnount о

Class о

dtype: int64

Выявление различающихся значений признаков

Чтобы получше разобраться с особенностями набора транзакционных

данных, подсчитаем количество различных значений признаков.

Выполнив следующую команду, мы видим, что набор данных содержит

124 592 различные временные метки. Но мы уже знаем, что всего имеется

284 807 наблюдений. Это означает, что некоторым временным меткам соот­

ветствует несколько транзакций.

И, как и следовало ожидать, существуют всего лишь два класса: 1 для мо­

шеннических транзакций и О - для подлинных.

distinctCounter = data.apply(lamЬda х: len(x.unique()))

Time 124592
Vl 275663
V2 275663
V3 275663
V4 275663
V5 275663
V6 275663
V7 275663
VB 275663
V9 275663
VlO 275663
Vll 275663
V12 275663
V13 275663
V14 275663
V15 275663
V16 275663

72 Гnава2

V17 275663
V18 275663
V19 275663
V20 275663
V21 275663
V22 275663
V23 275663
V24 275663
V25 275663
V26 275663
V27 275663
V28 275663
Amount 32767
Class 2
dtype: int64

Генерирование матрицы признаков и массива меток

Давайте создадим и стандартизируем матрицу признаков Х и выделим мас­

сив меток У (1 для мошеннических транзакций, О - для подлинных). Впослед­

ствии мы будем передавать эту информацию алгоритмам машинного обуче­

ния в процессе тренировки.

Создание матрицы признаков Х и матрицы меток У

dataX data.copy() .drop(['Class'], axis=l)
dataY data ['Class'] . сору ()

Стандартизация матрицы признаков Х

Изменим масштаб матрицы признаков таким образом, чтобы каждый при­

знак, за исключением времени, имел среднее значение, равное О, и стандарт­

ное отклонение, равное 1.

featuresToScale = dataX.drop(['Time'], axis=l) .columns
sX = pp.StandardScaler(copy=True)
dataX.loc[:, featuresToScale] = \

sX.fit_transform(dataX[featuresToScale])

Как показано в табл. 2.3, теперь стандартизированные признаки соответ­
ствуют указанным условиям.

Готовый проект машинного обучени11 73

Таблица 2.3. Итоговые масштабированные признаки

Time V1 V2 УЗ V4

count 284807 .000000 2.848070е+О5 2.848070е+О5 2.848070е+О5 2.848070е+05

mean 94813.859575 -8.157366е-16 З.154853е-17 -4.409878е-15 -6.734811е-16

std 47488.145955 1.000002е+ОО 1.000002е+ОО 1.000002е+ОО 1.000002е+ОО

mln 0.000000 -2.879855е+О1 -4.403529е+О1 -3.187173е+О1 -4.013919е+ОО

25% 4201.500000 -4.698918е-01 -3.624707е-01 -5.872142е-01 -5.993788е-01

50% 84692.000000 9.245351е-ОЗ 3.965683е-02 1.186124е-02 -1.401724е-01

75% 139320.500000 6.716939е-01 4.867202е-01 6.774569е-01 5.250082е-01

max 172792.000000 1.253351 е+ОО 1.335775е+О1 6.187993е+ОО 1.191874е+О1

8 rows х 30 columns

Конструирование и отбор признаков

В большинстве проектов машинного обучения мы должны рассматривать

вопросы конструирования и выбора признаков как часть решения. Констру­
ирование признаков (feature engineering) подразумевает создание новых при­
знаков - например, путем вычисления отношений, значений счетчиков или

сумм на основе исходных признаков, - чтобы оказать помощь алгоритму ма­

шинного обучения в извлечении более сильного сигнала из набора данных.

Отбор признаков (feature selection) подразумевает выбор поднабора при­
знаков для тренировки, что в конечном счете означает исключение некоторых

менее релевантных признаков из рассмотрения. Целью этого шага являет­

ся снижение вероятности переобучения алгоритма машинного обучения на

шуме в наборе данных.

Для нашего набора данных отсутствуют исходные признаки. Мы распола­

гаем лишь главными компонентами, полученными с использованием метода

РСА (один из вариантов снижения размерности), о чем пойдет речь в главе 3.
Поскольку мы не знаем, что именно представляет собой любой из признаков,

мы не можем применить какую-либо разумную методику конструирования

признаков.

В нашем случае отбор признаков также не требуется, поскольку количество
наблюдений (284 807) намного превосходит количество признаков (30), что
резко снижает вероятность переобучения. Как следует из рис. 2.1, признаки
лишь в незначительной степени коррелируют между собой. Другими словами,

у нас нет избыточных признаков. Если бы они были, мы могли бы устранить

74 Гnава2

или уменьшить избыточность данных путем снижения размерности. Разуме­

ется, в этом нет ничего удивительного, поскольку к рассматриваемому набору

данных о банковских картах уже был применен метод РСА, который выпол­

нил всю работу за нас.

Проверка корреляции признаков

correlationMatrix = pd.DataFrarne(data=[], index=dataX.colurnns, \
colurnns=dat aX.colurnns)

for i in dataX.colurnns:
for j in dataX.colurnns:

correlationMatrix.loc[i, j] = \
np.round(pearsonr(dataX.loc[:,

dataX. loc [: ,
i) 1 \

j]) [О], 2)

J-YI ltf •S ..-4 \'1 n 'о1 l't. tl't ")4 <;.1 ""1) VIJ 'l"И ~11 "W YI" -.:J rl" ~А. \'::t "о \;Jj V~ ,4' Q \'11 У»~·

1-- OU. С..:'; ~(Ht .а. а811t.illl 111.Ь 1" f.и 0&1 .\)1 UI ..U7 Ull "" •• ~ J..м ".&&:. .aJ8 -..а4111 .&С1 641 4At
... 1 0..1.\ " • • • • • • • о • с • • • • •

.
... , .. ' .
" ...
уа. • ' ~ ;. "
11'11 -&а • • с "
... .u LU f: • • 1 8
\/U -U) 'f i • t \;. 'f
V'4, -O;t • 6 • . ~~·

.

.
.

.... _, t01 • . . .

• • о • • • • • • • • •
11 • • 11 • • • • •
• • о • lt • • • •

о • • • • • •
о • о • • • /Ji • •

.
• • • о f • •
11 о • • • • •

. " ' . . .
• • • • с • •

• • о • •

• • • о

" ••• о
• • • о "

•
•

." ..
0.01 .

VH 4-" tr 11

. " " 0.-01

~"1 . ." v--.a ~ • ~ . • • • • 11 . .
"."ом
... ljl о.ее

... ", U4

"''" vн ~-
'1.К о"
.,,» a.,tt
Y.lli -о.а.

"J?-6-01.

' • • о t
• 'f t с-. .

' •
• • •

. • • • • • 41 .
• • • u • • . ' . . . • • • • 11 • . • • • ;) о . •

о • • • о •
'

a:J:.. ". •1-< " "" ... " 4.1

. . • • • • .. . ' . . .

··-.. • « - ••••
• • • • • • iJ . · ~· '

." ' UJ

" о ~-.

' ." • • "е ·- . ~ . (!-
t • 1 О t t t 11- C.Ot

1.u. .u. .ui Ut ... • ". ·u1._

Рис. 2.1. Корреляционная матрица

Визуализация данных

Последний шаг - визуализация данных, позволяющая оценить степень

несбалансированности набора примеров (рис. 2.2). Ввиду малочисленности
примеров мошеннических операций в наборе, с которым мы работаем, реше­

ние этой задачи представляет значительные трудности; к счастью, в нашем

распоряжении имеются метки для всего набора данных.

count classes pd.value counts(data['Class'], \
sort=True) .sort index()

ах sns.barplot(x=count_classes.index, \
y=tuple(count classes/len(data)))

Готовый проект машинного обучения 75

ах.sеt_titlе('Частотность меток классов')

ах. set _ xlabel ('Класс')
ах.sеt_уlаЬеl('Частотность')

Частотность меток классов

о

Kncicc

Рис. 2.2. Частотность меток классов

Подготовка модели

Теперь, когда данные стандартизированы, можем приступать к подготов­

ке модели. Для этого мы должны разбить данные на тренировочный и тесто­

вый наборы, выбрать функцию потерь и подготовить наборы для k-кратной

кросс-проверки.

Разбиение данных на тренировочный и тестовый наборы

В главе 1 говорилось о том, что алгоритмы машинного обучения предва­
рительно обучаются (тренируются) на некотором наборе данных, с тем чтобы

обеспечить хорошую результативность (т.е. точность предсказаний) в отноше­

нии данных, которые ранее им не предоставлялись. Критерием результатив­

ности служит так называемая ошибка обобщения (generalization error) - самая

важная из метрик, применяемых для оценки пригодности модели машинного

обучения.

Прежде всего мы должны настроить наш проект машинного обучения для

использования набора данных, на котором будет обучаться алгоритм. Нам так­

же потребуется тестовый набор (не предоставлявшийся ранее), который будет

задействоваться алгоритмом машинного обучения в целях прогнозирования.

76 Гnава2

Результативность, достигаемая на этом тестовом наборе, и будет конечной

оценкой успешности модели.

Итак, разобьем набор данных об операциях с банковскими картами на два

набора: тренировочный и тестовый.

X_train, X_test, y_train, y_test = train_test_split(dataX, dataY, \
test_size=0.33, random_state=2018, stratify=dataY)

Теперь мы имеем тренировочный набор, содержащий 190 820 образцов

(67% исходного количества), и тестовый набор, содержащий 93 987 образцов
(оставшиеся 33%). Чтобы обеспечить одинаковую (-0,17%) долю мошенни­

ческих операций в тренировочном и тестовом наборах, мы устанавливаем

параметр stratify. Мы также фиксируем значение 2018 для переменной
r andorn _ s t а te, чтобы обеспечить воспроизводимость результатов5•

Для окончательной оценки ошибки обобщения, также называемой ошиб­

кой за пределами выборки (out-of-sample error), мы будем использовать тесто­
вый набор.

Выбор функции потерь

Для обучения модели на тренировочном наборе нам понадобится функция

потерь (cost function), которую мы будем передавать алгоритму машинного
обучения. Алгоритм будет пытаться минимизировать функцию стоимости,

обучаясь на тренировочных примерах.

Поскольку в данном случае мы применяем обучение с учителем для реше­

ния задачи классификации (с двумя классами), мы используем логарифмичес­

кую функцию потерь бинарной классификации для вычисления кросс-энтро­

пии между метками истинных транзакций и модельными предсказаниями:

1 N М

log loss = - -I LYi,j log(pi,j),
N i=I j=I

где N - количество наблюдений, М - количество меток классов (в данном

случае равное 2); У,, 1 - 1, если наблюдение i относится к классу j, и О -
в противном случае; Р,, 1 - предсказанная вероятность того, что наблюдение i
относится к классу j.

5 Чтобы узнать, каким образом параметр stratify сохраняет постоянную долю положитель­
ных меток, обратитесь к документации (http: / /Ьi t. ly /2NiKWfi). Если хотите воспро­
извести аналогичное разбиение наборов в своих экспериментах, установите для параметра

random _ state значение 2018. Если не задавать его или выбрать другое значение, то резуль­
таты будут другими.

Готовый проект маwинноrо обучени11 77

Модель машинного обучения будет генерировать вероятность подделки

для каждой операции с банковскими картами. Чем ближе вероятности под­

делки к истинным меткам (1 для поддельных транзакций и О для истинных),
тем ниже значение функции потерь. Именно это значение и будет минимизи­

ровать алгоритм машинного обучения.

Создание наборов для k-кратной кросс-проверки

Чтобы помочь алгоритму машинного обучения в оценке того, насколько

успешно он справится с примерами, которые ранее ему не предоставлялись

(тестовый набор), принято дополнительно разбивать тренировочный набор

на собственно тренировочный и валидационный наборы.

Например, если мы разделим тренировочный набор на пять равных частей,

то можно будет выполнить тренировку модели на четырех пятых исходного

тренировочного набора, а оставшуюся пятую часть (валидационный набор),

использовать для оценки результативности предсказаний обученной модели.

Подобную тренировку и оценку модели можно выполнить пять раз, каж­

дый раз меняя отложенную пятую часть исходного набора в качестве валида­

ционного набора. Такой подход получил название k-кратная кросс-проверка

{k-fold cross-validation - CV). В нашем случае k равно 5, так что для ошибки

обобщения мы будем иметь не одну, а пять оценок.

Мы будем сохранять оценки тренировки и кросс-проверки для каждого из

пяти прогонов, всякий раз сохраняя предсказания для кросс-проверочного

набора. По завершении всех пяти прогонов мы будем располагать кросс-про­

верочными предсказаниями для всего набора данных. Это даст нам наилуч­

шую общую оценку результативности для тестового набора.

Настройка k-кратной валидации, где k равно 5, осуществляется следующим
образом:

k fold StratifiedKFold(n_splits=S, shuffle=True, random_state=2018)

Модели машинного обучения (часть 1)
Теперь мы полностью подготовлены к построению моделей машинного об­

учения. Для каждого рассматриваемого алгоритма машинного обучения мы

будем устанавливать гиперпараметры, тренировать модель и оценивать ре­

зультаты.

78 Глава2

Модель NR1: погистическая регрессия
Начнем с самого простого алгоритма классификации - логистической ре­

грессии.

Настройка гиперпараметров

penalty = '12'
с= 1.0
class_weight = 'balanced'
random state = 2018
solver
n_jobs

'liЬlinear'

1

logReg LogisticRegression(penalty=penalty, С=С, \
class_weight=class_weight, random_state=random_state, \
solver=solver, n_jobs=n_jobs)

Установим для параметра penalty значение 12, а не 11. Дело в том, что
L2-регуляризация менее чувствительна к выбросам по сравнению с Ll-регу­

ляризацией и назначает ненулевые значения весов почти всем признакам, что

будет приводить к получению стабильных решений. Ll-регуляризация назна­

чает высокие значения весов наиболее важным признакам и почти нулевые

веса остальным признакам, по сути, выполняя отбор признаков в процессе

тренировки алгоритма. Однако ввиду существенной вариации весов от при­

знака к признаку Ll-решения, в отличие от L2-решений, не всегда ведут себя

стабильно по отношению к изменениям в точках данных6•

Параметр С определяет интенсивность регуляризации. Как вы помните из

главы 1, регуляризация помогает бороться с переобучением путем наложения
штрафов за сложность. Иными словами, чем интенсивнее регуляризация, тем

больший штраф за сложность налагается алгоритмом машинного обучения.

Регуляризация подталкивает алгоритм к тому, чтобы при прочих равных ус­

ловиях предпочтение отдавалось более простым моделям по сравнению с бо­

лее сложными.

В качестве значения константы регуляризации С необходимо задавать по­

ложительное вещественное число. Чем меньше это значение, тем интенсивнее

регуляризация. Мы оставим заданное по умолчанию значение 1 . О.

6 Более подробную информацию о различиях между Ll- и 12-реrуляризацией можно найти по
aдpecyhttp://Ыt.ly/2Bcx413.

Готовый проект маwинноrо обучения 79

Наш набор данных о транзакциях с банковскими картами отличается

крайней несбалансированностью: из общего количества примеров, равного

284 807, лишь 492 соответствуют поддельным транзакциям. Мы хотим, чтобы
в процессе тренировки алгоритм машинного обучения уделял больше внима­

ния обучению на транзакциях с положительными метками - другими слова­

ми, обучению на поддельных транзакциях, поскольку их количество в наборе

данных очень невелико.

В этой модели логистической регрессии мы установим для переменной

class _ weight значение 'balanced'. Тем самым мы сообщаем алгоритму
логистической регрессии о том, что в данной задаче имеются проблемы, свя­

занные с несбалансированностью классов. Алгоритму потребуется приписы­

вать большие веса положительным меткам в процессе тренировки. В данном

случае веса будут обратно пропорциональны частотам встречаемости клас­

сов. Алгоритм будет приписывать большие веса редко встречающимся по­

ложительным меткам (которые соответствуют поддельным транзакциям) и

меньшие - более частым отрицательным меткам (соответствующим подлин­

ным транзакциям).

Для переменной random_state мы фиксируем значение 2018, чтобы
упростить другим пользователям - в том числе всем читателям - воспроиз­

ведение результатов. Для переменной sol ver установлено стандартное зна­
чение 'liЫinear'.

Тренировка модели

Установив все гиперпараметры, мы можем приступить к тренировке модели

логистической регрессии, используя по очереди каждый из пяти вариантов раз­

биения исходного набора в соответствии с методикой k-кратной кросс-провер­

ки, т.е. тренируя модель каждый раз на четырех пятых тренировочного набора

и оценивая ее результативность с помощью отложенной пятой части набора.

В процессе этой пятикратной тренировки и оценки модели мы будем вы­

числять функцию потерь - в нашем случае логарифмическую функцию -
как во время обучения (на срезе размером четыре пятых исходного трениро­

вочного набора), так и во время валидации (на срезе размером в одну пятую

исходного тренировочного набора). Кроме того, мы будем сохранять пред­

сказания также для каждого из пяти кросс-проверочных наборов, и к концу

пятого прогона мы будем иметь пять предсказаний для всего тренировочного

набора.

trainingScores = []

cvScores = []

80 Гnава2

predictionsBasedOnKFolds = pd.DataFrame(data=[], \
index=y_train.index, \
columns=[O, 1])

model = logReg

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
y_train.ravel()):

X_train_fold, X_cv_fold = X_train.iloc[train_index, :], \
X_train.iloc[cv_index, :]

y_train_fold, y_cv_fold = y_train.iloc[train_index], \
y_train.iloc[cv_index]

model.fit(X_train_fold, y_train_fold)
loglossTraining • log_loss(y_train_fold, \

model.predict_proba(X_train_fold) [:, 1])
trainingScores.append(loglossTraining)

predictionsBasedOnKFolds.loc[X_cv_fold.index, :] \
model.predict_proba(X_cv_fold)

loglossCV = log_loss(y_cv_fold, \
predictionsBasedOnKFolds.loc[X_cv_fold.index, 1])

cvScores.append(loglossCV)

рrint('Логарифмические потери обучения: ', loglossTraining)
рrint('Логарифмические потери валидации: ', loglossCV)

loglossLogisticRegression = log_loss(y_train, \
predictionsBasedOnKFolds.loc[:, 1])

рrint('Логарифмические потери логистической регрессии: ', \
loglossLogisticRegression)

Оценка результатов

Ниже приведены тренировочные и кросс-проверочные значения функции

потерь для каждого из пяти прогонов. Как правило (но не всегда) трениро­

вочные значения ниже кросс-проверочных. Поскольку алгоритм машинно­

го обучения обучался непосредственно на тренировочных данных, его эф­

фективность (характеризуемая логарифмическими потерями) должна быть
выше на тренировочном наборе, а не на кросс-проверочном. Вспомните, что

кросс-проверочный набор включает транзакции, которые были явным обра­

зом удержаны из тренировочных примеров.

Готовый проект маwинноrо обучения 81

Логарифмические потери обучения: 0.10080139188958696
Логарифмические потери :валидации: 0.10490645274118293
Логарифмические потери обучения: 0.12098957040484648
Логарифмические потери :валидации: 0.11634801169793386
Логарифмические потери обучения: 0.1074616029843435
Логарифмические потери :валидации: 0.10845630232487576
Логарифмические потери обучения: 0.10228137039781758
Логарифмические потери :валидации: 0.10321736161148198
Логарифмические потери обучения: 0.11476012373315266
Логарифмические потери валидации: 0.1160124452312548

Работая с набором данных о транзакциях с банковскими картами,

важно не забывать, что мы строим приложение, предназначенное

для выявления мошеннических операций. Всякий раз, когда речь

идет об эффективности или результативности модели машинного

обучения, имеется в виду, насколько она справляется с обнаруже­

нием подделок.

Модель машинного обучения выводит вероятности предсказаний

для каждой транзакции, причем единица соответствует поддель­

ной транзакции, а нуль - подлинной транзакции. Чем ближе зна­

чение вероятности к единице, тем больше шансов, что транзакция

является мошеннической, и чем ближе это значение к нулю, тем

вероятнее, что транзакция является законной. Сравнивая предска­

занные моделью значения вероятности с метками, мы можем су­

дить о пригодности модели.

На каждом из пяти прогонов тренировочные и кросс-проверочные лога­

рифмические потери имеют близкие значения. Для данной модели логистиче­

ской регрессии мы не наблюдаем сколь-нибудь значительных проявлений пе­

реобучения, так как в противном случае мы имели бы низкие тренировочные

логарифмические потери и высокие кросс-проверочные потери.

Поскольку мы сохраняем предсказания для каждого из пяти кросс-прове­

рочных наборов, мы можем скомбинировать их для получения оценки, от­

носящейся к единому набору. Этот единый набор представляет собой то же

самое, что и исходный тренировочный набор, что позволяет нам рассчитать

общие логарифмические потери для всего исходного тренировочного набора.

Наилучшая оценка логарифмических потерь для данной модели логистичес­

кой регрессии, полученная на тестовом наборе, имеет следующее значение:

Логарифмические потери логистической регрессии: 0.10978811472134588

82 Гяава2

Оценочные метрики

Несмотря на то что логарифмические потери могут служить неплохой

оценкой эффективности модели машинного обучения, было бы желательно

иметь более интуитивный способ оценки, облегчающий понимание результа­

тов. Например, нам хотелось бы знать, какую долю поддельных транзакций из

числа тех, которые имеются в тренировочном наборе, удалось выявить. Этот

показатель называется полнота (recall). Нас также интересует, какова дей­
ствительная доля истинных транзакций среди тех, которые были помечены

моделью логистической регрессии как истинные. Этот показатель характери­

зует точность (precision) модели.
Рассмотрим более детально, как эти и аналогичные оценочные метрики

способствуют более интуитивному осмыслению результатов.

Роль этих оценочных метрик очень велика, поскольку они дают

исследователям возможность на интуитивном уровне объяснять

результаты менеджерам, менее знакомым с такими понятиями, как

логарифмические потери, кросс-энтропия и другие функции стои-

мости. Умение доносить неспециалистам суть полученных резуль­

татов в наиболее простой форме служит одним из наиболее важ­

ных навыков, которыми должен обладать специалист по работе с

данными.

Матрица неточностей

В типичных задачах классификации (в отсутствие дисбаланса классов) для

оценки результатов можно использовать матрицу неточностей (confusion
matrix), которая представляет собой таблицу, содержащую суммарные дан­
ные о количестве истинноположительных, истинноотрицательных, ложнопо­

ложительных и ложноотрицательных результатов (рис. 2.3)7.

7 Истинноположител11н111е результаты примеров - те, в которых как предсказание, так и фак­

тическая метка имеют истинные значения. Истинноотрицательнь1е результаты - те, в ко­

торых как предсказание, так и фактическая метка имеют ложные значения. Ложноположи­

тельными считаются результаты, в соответствии с которыми предсказание имеет истинное

значение, а фактическая метка - ложное (такую ситуацию называют ложной тревогой или

ошибкой 1 рода). Ложноотрицательными считаются результаты, в соответствии с которыми
предсказание имеет ложное значение, а фактическая метка - истинное (такую ситуацию на­

зывают пропуском события или ошибкой lI рода).

Готовый проект машинного обучения 83

Фак_тическая метка

Истина Ложь

Q) !i1 Истинно- Ложно-
! ~ положительный положительный

1 :s:
..о

~ ~
Ложно- Истинно-

t:: с:: отрицательный отрицательный

Рис. 2.3. Матрица неточностей

Учитывая высокую степень несбалансированности нашеrо набора данных

относительно операций с банковскими картами, информация, предоставля­

емая матрицей неточностей, будет не слишком содержательной. Например,

если бы мы предсказали, что ни одна из транзакций не является поддельной,

то результаты были бы такими: 284 315 истинноотрицательных, 492 ложно­

отрицательных, О истинноположительных и О ложноположительных. Таким

образом, при идентификации действительно поддельных транзакций мы по­

лучили бы точность 0%. В задачах с несбалансированными классами матрица

неточностей плохо справляется с выявлением таких неоптимальных исходов .

В случае задач, включающих более сбалансированные классы (т.е. коrда

количество истинноположительных результатов в rрубом приближении со­

впадает с количеством истинноотрицательных), матрица неточностей может

успешно использоваться в качестве непосредственной оценочной метрики.

В то же время для нашеrо несбалансированного набора данных мы должны

подыскать более подходящую метрику.

Кривая "точность - полнота"

В контексте нашеrо случая, коrда набор данных об операциях с банковски­

ми картами не сбалансирован, для оценки результатов лучше всеrо использо­

вать такие относительные показатели качества классификатора, как точность

и полнота. Точность - это отношение количества истинноположительных

предсказаний к общему фактическому количеству положительных результа­

тов для набора данных. Друтими словами, этот показатель позволяет судить

о том, как мноrо поддельных транзакций действительно удалось определить

модели.

Точность = Истинноположительные /
(Истинноположительные + Ложноположительные)

84 Глава2

Высокое значение точности означает, что из всех положительных предска­

заний многие являются истинноположительными (т.е. доля ложноположи­

тельных предсказаний незначительна).

Полнота (чувствительность) - это отношение количества истиннопо­

ложительных предсказаний к общему фактическому количеству правильно

предсказанных результатов для набора данных8•

Полнота = Истинноположительные /
(Истинноположительные + Ложноотрицательные)

Высокое значение полноты означает, что модели удалось обнаружить боль­

шую часть истинноположительных результатов (т.е. доля ложноотрицатель­

ных результатов невелика).

Решение с высокой полнотой, но низкой точностью возвращает большое

количество результатов, захватывая значительную долю положительных ре­

зультатов, но при этом также содержит много ложноположительных. Решение

с высокой точностью, но низкой полнотой ведет себя прямо противоположно:

оно возвращает небольшое количество результатов, захватывая лишь некото­

рую часть положительных результатов, содержащихся в наборе, но большин­

ство его предсказаний корректны.

Итак, если наше решение характеризуется высокой точностью, но низкой

полнотой, то число обнаруженных поддельных транзакций будет очень не­

большим, зато большинство из них будут действительно поддельными.

В то же время решение с низкой точностью, но с высокой полнотой поме­

тит многие транзакции как поддельные, фиксируя значительное количество

подделок, хотя на самом деле такие транзакции в большинстве своем не будут

поддельными.

Очевидно, что оба решения порождают существенные проблемы. В пер­

вом случае компания - эмитент банковских карт понесет ощутимые финан­

совые потери в связи с осуществлением мошеннических операций, но зато

не восстановит против себя клиентов, необоснованно отвергая некоторые

транзакции. Во втором случае компания перехватит значительную долю по­

пыток мошенничества, но при этом, несомненно, вызовет гнев клиентов из-за

необоснованных отказов в осуществлении многих нормальных транзакций,

не являющихся мошенническими.

8 Родственным по отношению к полноте понятием является специфичность, или доля истин­

ноотрицательных предсказаний. Этот показатель определяется как отношение количества

истинноотрицательных предсказаний к общему количеству отрицательных предсказаний

для набора данных. См. тахже https: //ru. wikipedia. оrg/wiki/Двоичная_класси­
фикация.

Готовый проект маwинноrо обучении 85

Оптимальное решение должно характеризоваться высокой точностью и

полнотой, отвергая лишь действительно мошеннические операции (высокая

точность) и перехватывая большую часть таких операций, представленных в

наборе данных (высокая полнота).

Во многих случаях приходится соблюдать определенный компромисс меж­

ду точностью и полнотой, что обычно достигается установкой порога реша­

ющего правила, используемого алгоритмом для разделения положительных

и отрицательных случаев. В нашем примере положительные случаи соответ­

ствуют поддельным операциям, отрицательные - подлинным. Если установ­

лен слишком высокий порог, то лишь очень небольшое количество случаев

будут предсказаны как положительные, в результате чего мы получим высо­

кую точность, но низкую полноту. По мере снижения порога все больше слу­

чаев будут предсказываться как положительные, что обычно будет приводить

к уменьшению точности и увеличению полноты.

Применительно к нашему набору данных о транзакциях с банковскими

картами можно считать, что пороговое значение характеризует чувствитель­

ность модели машинного обучения в отношении отклонения транзакций.

В случае слишком высокого/ строгого порога количество отклоненных моде­

лью транзакций будет небольшим, но, вероятнее всего, они действительно

окажутся поддельными.

По мере снижения порога (т.е. ослабления строгости) модель будет откло­

нять большее количество транзакций, относя их к случаям мошенничества,

но при этом в их число попадут также нормальные транзакции.

График зависимости между точностью и полнотой классификации называ­

ется кривая "точность - полнота". Для вычисления этой кривой мы должны

рассчитать среднюю точность, являющуюся взвешенным средним значений

точности при каждом значении порога. Чем выше средняя точность, тем луч­

ше решение.

86

Выбор порогового значения играет очень важную роль и обыч­

но подразумевает участие человека, принимающего решения.

Исследователи могут предоставлять кривые "точность - полнота"

менеджерам, чтобы те решали, каким должен быть порог.

При работе с нашим набором данных, содержащим сведения об

операциях с банковскими картами, ключевым становится вопрос

о том, как достичь разумного компромисса между комфортом кли­

ентов (путем сведения к минимуму случаев ложного признания

нормальных операций мошенническими) и пресечением попыток

мошенничества (за счет отклонения поддельных транзакций). Мы

Гnава 2

не можем дать ответ на этот вопрос без привлечения менеджеров

соответствующего уровня, но можем найти модель, характеризую­

щуюся наилучшей кривой "точность - полнота': После этого мы

можем предъявить эту модель менеджерам, чтобы те дали свои ре­

комендации относительно того, какой порог следует установить.

Рабочая характеристика приемника

Еще одной неплохой метрикой, позволяющей оценить качество бинарной

классификации, служит показатель аиRОС (area under ROC - площадь под

RОС-кривой}. Здесь ROC (receiver operating characteristic) - рабочая характе­

ристика приемника. Кривая рабочей характеристики приемника (также на­

зываемая кривой ошибок) отображает в графическом виде соотношение меж­

ду частотой (долей) истинноположительных (ось У) и ложноположительных

(ось Х) результатов. Эти две переменные используются в качестве следующих

двух характеристик алгоритма классификации: чувствительность, или TPR
(true positive rate - частота истинноположительных результатов), и специфич­

ность, или FPR (false positive rate - частота ложноположительных результа­

тов). Чем ближе кривая ошибок к левому верхнему углу графика, тем лучше

решение. Координата (О • О, 1 . О) - это точка абсолютного оптимума, которой

соответствуют 0% ложноположительных результатов и 100% истинноположи­
тельных результатов.

Для количественной интерпретации ROC можно использовать площадь
области под кривой ошибок, или показатель auROC. Чем выше этот показа­
тель, тем лучше решение.

Вычисление модели nогистической регрессии

Теперь, когда вам уже понятен смысл некоторых из оценочных метрик, мы

можем использовать их для интерпретации результатов логистической ре­

грессии.

Прежде всего построим кривую "точность - полнота" и вычислим сред­

нюю точность.

preds = pd.concat([y_train, predictionsBasedOnKFolds.loc[:, 1]], \
axis=l)

preds.columns = ['trueLabel', 'prediction']
predictionsBasedOnKFoldsLogisticRegression preds.copy()

precision, recall, thresholds = \
precision_recall_curve(preds['trueLabel'], preds['prediction'])

Готовый проект машинного обучения 87

average_precision = \
average_precision_score(preds['trueLabel'], preds['prediction'])

plt.step(recall, precision, color='k', alpha=0.7, where='post')
plt.fill_between(recall, precision, step='post', alpha=0.3, \

color=' k')

plt. xlabel ('Полнота')
рlt.уlаЬеl('Точность')

р lt . у 1 im ([О • О , 1 • О 5])
pl t. xlim ([О • О, 1 . О])

plt.title('Kpивaя "точность - полнота": средняя точность \
{0:0.2f)' .format(average_precision))

Кривая "точность - полнота" показана на рис. 2.4. Учитывая все вышеска­
занное, мы видим, что можно достичь приблизительно 80% полноты класси­
фикации (т.е. зафиксировать 80% поддельных транзакций) при приблизитель­
но 70% точности (означающей, что из всех транзакций, помеченных моделью
как поддельные, 70% действительно являются поддельными, тогда как остав­
шиеся 30% были ошибочно помечены как таковые).

Кривая "точность - полнота·: средняя точность= 0.74

10

оз

02

00.r....-.-..~~--~~--~_;:=a...1
00 02 04 06 08 10

Полнота

Рис. 2.4. Кривая "точность - полнота" логистической регрессии

Эту кривую можно свести к единственному числу, рассчитав среднюю точ­

ность, значение которой для данной модели лоrистической регрессии состав­

ляет О . 7 4. И все же, ввиду отсутствия сравнения с другими моделями, мы
пока что ничего не можем сказать о том, насколько хороша такая точность.

88 Глава2

А теперь давайте измерим показатель auROC.

fpr, tpr, thresholds = roc_curve(preds['trueLabel'], \
preds ['prediction'])

areaUnderROC auc (fpr, tpr)

plt. figure ()
plt.plot(fpr, tpr, color='r', lw=2, lаЬеl='RОС-кривая')

plt.plot([O, 1), [О, 1], color='k', lw=2, linestyle='--')
plt.xlim([О.О, 1.0))
plt.ylim([O.O, 1.05])
plt.xlabel('Дoля ложноположительных исходов')

plt.ylabel('Дoля истинноположительных исходов')

plt.title(' Рабочая характеристика приемника: \n \
площадь под кривой= {0:0.2f}' .format(areaUnderROC))

plt.legend(loc="lower right")
plt. show ()

В соответствии с рис. 2.5 значение показателя auROC для данной кривой со­
ставляет О . 9 7. Эта метрика - еще один способ оценить приемлемость модели

лоrистической регрессии, позволяющий определить, какую долю поддельных

операций можно выявить при сохранении доли ложноположительных резуль­

татов на минимально возможном уровне. Как и в случае средней точности,

мы не знаем, является ли значение показателя auROC для данной кривой, рав­
ное О . 9 7, хорошим или плохим, но сможем выяснить это, как только сравним
данный результат с аналогичными результатами других моделей.

Рабочая характеристика приемника:
площадь под кривой= 0.97

Рис. 2.5. Кривая аиRОС логистической регрессии

Готовый проект маwинноrо обучения 89

Модели машинного обучения (часть 11)
Чтобы сравнить пригодность модели логистической регрессии, построим

несколько других моделей, использующих иные алгоритмы обучения с учи­

телем.

Модель N02: случайные леса
Начнем с модели случайных лесов.

Как и в случае логистической регрессии, установим гиперпараметры, обу­

чим модель и оценим результаты, используя кривую "точность - полнота" и

показатель auROC.

Настройка гиперпараметров

n estimators = 10
max features = 'auto'
max_depth = None
min_samples split = 2
min_samples_leaf = 1
min_weight_fraction_leaf О.О

max leaf nodes = None - -
bootstrap = True
ооЬ score = False
n_jobs = -1
random state 2018
class_weight 'balanced'

RFC = RandomForestClassifier(n_estimators=n_estimators,
max_features=max_features, max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_leaf _nodes=max_leaf _nodes, bootstrap=bootstrap,
oob_score=oob_score, n_jobs=n_jobs, random_state=random_state,
class_weight=class_weight)

Начнем с установки значений гиперпараметров. Количество оценщиков

(estimators) задается равным 10. Иначе говоря, мы построим 10 деревьев и
усредним полученные для них результаты. Для каждого дерева будет учиты­

ваться квадратный корень из общего количества признаков (в данном случае

квадратный корень из 30, равный 5 при округлении вниз).

90 Гnава2

В результате задания для гиперпараметра max _ depth значения None дере­
вья будут стремиться к максимально возможному росту, разветвляясь в как

можно большей степени при заданном подмножестве признаков. По аналогии

с тем, как мы поступали в отношении логистической регрессии, установим

для параметра random_state значение 2018, чтобы обеспечить воспроизво­
димость результатов, и, учитывая несбалансированность нашего набора дан­

ных, значение 'balanced' для параметра class _ weight.

Тренировка модели

Мы будем запускать k-мерную кросс-проверку пять раз и сохранять пред­

сказания, каждый раз обучая модель на четырех пятых тренировочного набо­

ра данных и используя для предсказаний оставшуюся пятую часть.

trainingScores = []
cvScores = []
predictionsBasedOnKFolds

model = RFC

pd.DataFrame(data=[J, \
index=y_train.index, \
columns=[O, 1))

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
y_train.ravel()):

X_train_fold, X_cv_fold = X_train.iloc[train_index, :], \
X_train.iloc[cv_index, :]

y_train_fold, y_cv_fold = y_train.iloc[train_index], \
y_train.iloc[cv_index]

model.fit(X_train_fold, y_train_fold)
loglossTraining = log_loss(y_train_fold, \

model.predict_proba(X_train_fold) [:, 1])
trainingScores.append(loglossTraining)

predictionsBasedOnKFolds.loc[X_cv_fold.index, :] \
model.predict_proba(X_cv_fold)

loglossCV = log_loss(y_cv_fold, \
predictionsBasedOnKFolds.loc[X_cv_fold.index, 1])

cvScores.append(loglossCV)

рrint('Логарифмические потери обучения: ', loglossTraining)
рrint('Логарифмические потери валидации: ', loglossCV)

Готовый проект маwинноrо обучения 91

loglossRandomForestsClassifier = log_loss(y_train, \
predictionsBasedOnKFolds.loc[:, 1))

рrint('Логарифмические потери случайных лесов: ', \
loglossRandomForestsClassifier)

Оценка результатов

Логарифмические потери в процессе тренировки и кросс-проверки приве-

деныниже.

Логарифмические потери обучения: 0.0003951763883952557
Логарифмические потери валидации: 0.014479198936303003
Логарифмические потери обучения: 0.0004501221178398935
Логарифмические потери валидации: 0.005712702421375242
Логарифмические потери обучения: 0.00043128813023860164
Логарифмические потери валидации: 0.00908372752510077
Логарифмические потери обучения: 0.0004341676022058672
Логарифмические потери валидации: 0.013491161736979267
Логарифмические потери обучения: 0.0004275530435950083
Логарифмические потери валидации: 0.009963232439211515

Обратите внимание на то, что логарифмические потери обучения значи­

тельно меньше логарифмических потерь кросс-проверки, что указывает на

определенную степень переобучения классификатора на основе случайных

лесов в процессе тренировки.

Логарифмические потери по всему тренировочному набору (полученные с
использованием кросс-проверочных предсказаний) приведены ниже:

Логарифмические потери случайных лесов: 0.010546004611793962

Несмотря на наличие эффектов переобучения, валидационные логариф­

мические потери случайных лесов составляют примерно одну десятую потерь

логистической регрессии - значительное улучшение по сравнению с преды­

дущим решением. Модель случайных лесов проявляет себя с лучшей стороны
в отношении корректного выявления попыток мошенничества при выполне­

нии операций с банковскими картами.

Кривая "точность - полнота" для случайных лесов представлена на рис. 2.6.
Как видите, модель в состоянии обнаруживать примерно 80% всех попыток
мошенничества с приблизительно 80%-ной точностью. Это более впечатля­

ющий результат по сравнению с аналогичными показателями для логистиче­

ской регрессии, значения которых составляют 80% и 70% соответственно.

92 Гnава2

Кривая "точность • полнота": средняя точность = О 79
1 а r-:-,._._.,_.. _________ _

08

~О&
:т

:J. 04

0.2

02 04 06 08 10
nолкота

Рис. 2.6. Кривая "точность - полнота" модели случайных лесов

Средняя точность для модели случайных лесов, равная О . 7 9, представляет
собой явное улучшение по сравнению со средней точностью модели логисти­

ческой регрессии, равной О. 7 4. В то же время кривая auROC (рис. 2.7) ведет

себя несколько хуже, на что указывает сравнение показателей О . 9 3 и О . 9 7
для моделей случайных лесов и логистической регрессии соответственно.

Рабочая характеристика приемника:
площадь под кривой= 0.93

Рис. 2.7. Кривая аиRОС модели случайных лесов

Модель №З: машина градиентного бустинга XGBoost
Следующее, чем мы займемся, - это тренировка модели с помощью гра­

диентного бустинга и оценка полученных результатов. Существуют два попу­

лярных варианта градиентного бустинга: XGBoost и более быстрая версия под

Готовый проект машинного обучения 93

названием LightGBM, разработанная компанией Microsoft. Оба этих варианта
будут испытаны нами для построения модели. Начнем с рассмотрения гради­

ентного бустинга XGBoost9•

Настройка гиперпараметров

Настроим гиперпараметры для задачи бинарной классификации, исполь­
зуя логарифмические потери в качестве функции потерь. Установим для пара­
метра rnax depth значение 6. Для каждого дерева мы используем все наблю­
дения и признаки; эти настройки задаются по умолчанию. Чтобы обеспечить
воспроизводимость результатов, установим для параметра randorn state
значение 2О18.

params_xGB = {

'nthread': 16, # количество основных потоков
'gamma': О, # диапазон от О до бесконечности,

по умолчанию О; при увеличении

снижается сложность (растет

смещение, уменьшается дисперсия)

'max_depth': 6, # диапазон от 1 до бесконечности,
по умолчанию 6

'min_child_weight': 1, # диапазон от О до бесконечности,

по умолчанию 1
'max_delta_step': О, #диапазон от О до бесконечности,

по умолчанию О

'subsample': 1.0, #диапазон от О до 1, по умолчанию 1;
степень субдискретизации
тренировочных примеров

'colsample_bytree': 1.0, #диапазон от О до 1, по умолчанию 1;
степень субдискретизации признаков

'objective': 'Ьinary:logistic',

'num_class': 1,
'eval metric': 'logloss',
'seed': 2018

9 Более подробную информацию о градиентном бустинrе XGBoost можно найти на сайте
GitHub (https: / /github. com/dmlc/xgboost).

94 Гnава2

Тренировка модели

Как и прежде, используем k-кратную кросс-проверку, выполняя трениров­

ку на различных частях исходного набора данных размером четыре пятых ка­

ждая и используя для предсказаний оставшуюся пятую часть.

На каждом из прогонов тренировка модели градиентного бустинга цикли­

чески выполняется две тысячи раз с оценкой того, уменьшаются ли при этом

кросс-проверочные логарифмические потери. Если дальнейшего улучшения

данного показателя (по сравнению с предыдущими двумястами итерациями)

не наблюдается, то процесс обучения прекращается во избежание переобуче­

ния. Результаты тренировочного процесса слишком длинные, чтобы приво­

дить их здесь, но вы сможете ознакомиться с ними на сайте GitHub (h t t р : / /
Ьit. ly/2Gd4v7e).

trainingScores = []
cvScores = []
predictionsBasedOnKFolds = pd.DataFrame(data=[], \

index=y_train.index, columns=['prediction'])

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
y_train.ravel()):

X_train_fold, X_cv_fold = X_train.iloc[train_index, :], \
X_train.iloc[cv_index, :]

y_train_fold, y_cv_fold = y_train.iloc[train_index], \
y_train.iloc[cv_index]

dtrain = xgb.DMatrix(data=X_train_fold, label=y_train_fold)
dCV = xgb.DMatrix(data=X_cv_fold)

bst xgb.cv(params xGB, dtrain, num boost_round=2000, \
nfold=S, early_stopping_rounds=200, verbose_eval=SO)

best_rounds = np.argmin(bst['test-logloss-mean'])
bst = xgb.train(params_xGB, dtrain, best_rounds)

loglossTraining = log_loss(y_train_fold, bst.predict(dtrain))
trainingScores.append(loglossTraining)

predictionsBasedOnKFolds.loc[X_cv_fold.index, 'prediction']= \
bst.predict(dCV)

loglossCV 8 log_loss(y_cv_fold, \
predictionsBasedOnKFolds.loc[X_cv_fold.index, 'prediction'])

Готовый проект маwинноrо обучения 95

cvScores.append(loglossCV)

рrint('Логарифмические потери обучения: ', loglossTraining)
рrint('Логарифмические потери валидации: ', loglossCV)

loglossXGBoostGradientBoosting = \

log_loss(y_train, predictionsBasedOnKFolds.loc[:, 'prediction'])
рrint('Логарифмические потери градиентного бустинга XGBoost: ',\

loglossXGBoostGradientBoosting)

Оценка результатов

Приведенные ниже результаты свидетельствуют о том, что логарифмичес­

кие потери, вычисленные по всему тренировочному набору (с использовани­

ем кросс-проверочных предсказаний), составляют одну пятую от потерь мо­

дели случайных лесов и одну пятидесятую от потерь модели логистической

регрессии. Это существенное улучшение по сравнению с двумя предыдущими

моделями.

Логарифмические потери градиентного бустинга XGBoost:
0.0029566906288156715

Как видно из рис. 2.8, средняя точность равна О. 83. Это близко к точности
модели случайных лесов (О • 7 9) и представляет собой значительное улучше­
ние по сравнению с логистической регрессией (О. 7 4).

10

08

~ 06

6
t'" 04

02

Кривая •точность - nолнота· : средняя точность = о 83

оо+-----~-....~~--.--~~....,_~~.-..,.--~.-.~

00 02 04 Об 08 10
Полнота

Рис. 2.8. Кривая "точность - полнота" градиентного бустинга XGBoost

Значение показателя auROC для RОС-кривой (рис. 2.9), равное О • 9 7, то же,

что и для логистической регрессии (О • 9 7), но демонстрирует улучшение по

96 Глава2

сравнению со значением аналогичного показателя (О. 93) для модели случай­
ных лесов. Пока что, судя по логарифмическим потерям, поведению кривой

"точность - полнота" и показателю auROC, модель на основе градиентного
бустинга оказалась наилучшей из трех рассмотренных до сих пор моделей.

110
~ ,,,.­
~ 08

1 "
!@ 0.4

02

1

Рабочая характеристика приемника:
площад~. под кривой = 0.97

- ROC-ttpмeeA

00 ---~--~----------
00 02 0.4 0.6 0.8 10

Рис. 2.9. Кривая auROC zрадиентноzо бустинzа XGBoost

Модель №4: машина градиентного бустинга LightGBM
А теперь проведем тренировку модели, используя другую версию градиент­

ного бустинга: LightGBM10•

Настройка гиперпараметров

Настроим гиперпараметры для задачи бинарной классификации, исполь­

зуя логарифмические потери в качестве функции потерь. Установим для па­

раметров rnax_depth и learning_rate значения 4 и О. 01 соответственно.
Для каждого дерева мы используем все наблюдения и признаки; эти настрой­

ки задаются по умолчанию. Кроме того, мы зададим количество листьев в од­

ном дереве равным 31 и установим для параметра bagging_ seed значение
2О18, чтобы обеспечить воспроизводимость результатов.

params_lightGB = {

'task' : 'train' ,
'application': 'binary',
'num_class': 1,

10 Более подробную информацию о градиентном бустинге LightGBM компании Microsoft мож­
но найти на сайте GitHub (https: / / github. com/Microsoft/LightGBM).

Готовый проект маwинноrо обучении 97

'boosting': 'gbdt',
'objective': 'binary',
'rnetric': 'binary_logloss',
'rnetric_freq': 50,
'is_training_rnetric': False,
'rnax_depth': 4,
'nurn_leaves': 31,
'learning_rate': 0.01,
'feature fraction': 1.0,
'bagging_fraction': 1.0,
'bagging_freq': О,

'bagging_seed': 2018,
'verbose': О,

'nurn threads': 16

Тренировка модели

Как и прежде, используем k-кратную кросс-проверку в пяти прогонах про­

граммы, сохраняя предсказания для валидационных наборов.

trainingScores = []
cvScores = (]
predictionsBasedOnKFolds = pd.DataFrarne(data=(], \

index=y_train.index, colurnns=['prediction'])

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
y_train.ravel()):

X_train_fold, X_cv_fold = X_train.iloc[train_index, :], \
X_train.iloc[cv_index, :]

y_train_fold, y_cv_fold = y_train.iloc(train_index], \
y_train.iloc[cv_index]

lgb_train = lgb.Dataset(X_train_fold, y_train_fold)
lgb_eval = lgb.Dataset(X_cv_fold, y_cv_fold, reference=lgb_train)
gbrn = lgb.train(pararns_lightGB, lgb_train, \

nurn_boost_round=2000, valid_sets=lgb_eval, \
early_stopping_rounds=200)

loglossTraining = log loss(y train fold, \
gbrn.predict(X_train_fold, nurn_iteration=gbrn.best_iteration))

trainingScores.append(loglossTraining)

98 Г11ава2

predictionsBasedOnKFolds.loc[X_cv_fold.index, 'prediction'J = \
gbm.predict(X_cv_fold, num_iteration=gbm.best_iteration)

loglossCV = log_loss(y_cv_fold, \
predictionsBasedOnKFolds.loc[X_cv_fold.index, 'prediction'])

cvScores.append(loglossCV)

рrint('Логарифмические потери обучения: ', loglossTraining)
рrint('Логарифмические потери валидации: ', loglossCV)

loglossLightGBMGradientBoosting = \
log_loss(y_train, predictionsBasedOnKFolds.loc[:, 'prediction'])

рrint('Логарифмические потери градиентного бустинга LightGBM: ', \
loglossLightGBMGradientBoosting)

На каждом из прогонов тренировка модели градиентного бустинга цикли­

чески выполняется две тысячи раз с оценкой того, уменьшаются ли при этом

кросс-проверочные логарифмические потери. Если дальнейшего улучшения

данного показателя (по сравнению с предыдущими двумястами итерациями)

не наблюдается, то процесс обучения прекращается во избежание переобуче­

ния. Результаты тренировочного процесса слишком длинные, чтобы приво­

дить их здесь, но вы сможете ознакомиться с ними на сайте GitHub (h t t р : / /
Ыt. ly/2Gd4v7e).

Оценка результатов

Приведенные ниже результаты свидетельствуют о том, что логарифми­

ческие потери, вычисленные по всему тренировочному набору (с исполь­

зованием кросс-проверочных предсказаний), близки к тем, которые были

получены с помощью модели XGBoost, и составляют одну пятую от потерь
модели случайных лесов и одну пятидесятую от потерь модели логистической

регрессии. В то же время версия LightGBM работает намного быстрее версии
XGBoost:

Логарифмические потери градиентного бустинга LightGBM:
0.0029732268054261826

В соответствии с рис. 2.10 средняя точность составляет О. 83, что совпада­
ет с точностью XGBoost (О . 8 3), превышает точность модели случайных лесов
(О . 7 9) и представляет собой значительное улучшение по сравнению с логи­
стической регрессией (О. 7 4).

Готовый проект машинного обучения 99

КриваR •точность· полнота• : средняя точность= 0.83

io,.,.._.-;i~,......~~-.:-............ ..,....._. ~

ов .

02

ОО>!-о'--.....,.......,_... ~~~---.-~......,.._.,,__;;:::ач
00 02 04 Об 08 10

П011tf0Til

Рис. 2.10. Кривая "точность - полнота" градиентного бустинга LightGBM

В соответствии с рис. 2.11 показатель auROC для RОС-кривой равен О • 9 8,
что представляет собой улучшение по сравнению с моделями XGBoost (О • 9 7),
лоrистической регрессии (О. 97) и случайных лесов (О. 93).

100 1

Рабочая характеристика приеNника :
площадь под кривой= 0.98

Рис. 2.11. Кривая аиRОС градиентного бустинга LightGBM

Гnава 2

Оценка четырех моделей с помощью тестовоrо

набора

К этому моменту мы научились:

• настраивать среду для проектов машинного обучения;

• получать, загружать, исследовать, очищать и визуализировать данные;

• разбивать набор данных на тренировочный и тестовый наборы и фор­

мировать наборы для k-кратных валидационных тестов;

• выбирать подходящую функцию потерь;

• задавать rиперпараметры, обучать модель и выполнять кросс-прове­

рочные тесты;

• оценивать результаты.

Мы не исследовали вопрос о том, как регулировать rиперпараметры для

улучшения результатов каждого из решений и уменьшения эффектов недо/

переобучения, однако вам будет совсем несложно самостоятельно выполнить

соответствующие эксперименты, воспользовавшись кодом, доступным на

сайте GitHub (http://Ьit.ly/2Gd4v7e).
Но даже без тонкой настройки rиперпараметров полученные результаты

красноречиво свидетельствуют о том, что наилучшим решением оказывает­

ся градиентный бустинг LightGBM, от которого ненамного отстает XGBoost.
Худшими оказались решения на основе случайных лесов и логистической ре­

грессии.

Для окончательной оценки каждой из четырех моделей воспользуемся тес­

товым набором.

Мы будем предсказывать вероятности подделок на тестовом наборе тран­

закций, используя каждую из обученных моделей. Затем мы вычислим лога­

рифмические потери для каждой модели, сравнивая предсказанные вероятно­

сти подделок с истинными метками.

predictionsTestSetLogisticRegression = \
pd.DataFrame(data=[J, index=y_test.index, columns=['prediction'])

predictionsTestSetLogisticRegression.loc[:, 'prediction'] = \
logReg.predict_proba(X_test) [:, 1]

logLossTestSetLogisticRegression = \
log_loss(y_test, predictionsTestSetLogisticRegression)

Готовый проект маwмнноrо обученм11 1 101

predictionsTestSetRandomForests = \
pd.DataFrame(data=[], index=y_test.index, columns=['prediction'])

predictionsTestSetRandomForests.loc[:, 'prediction'] = \
RFC.predict_proba(X_test) [:, 1]

logLossTestSetRandomForests = \
log_loss(y_test, predictionsTestSetRandomForests)

predictionsTestSetXGBoostGradientBoosting = \
pd.DataFrame(data=[], index=y_test.index, columns=['prediction'])

dtest = xgb.DMatrix(data=X_test)
predictionsTestSetXGBoostGradientBoosting.loc[:, 'prediction'] = \

bst.predict(dtest)
logLossTestSetXGBoostGradientBoosting = \

log_loss(y_test, predictionsTestSetXGBoostGradientBoosting)

predictionsTestSetLightGBMGradientBoosting = \
pd.DataFrame(data=(J, index=y_test.index, columns=['prediction'])

predictionsTestSetLightGBMGradientBoosting.loc[:, 'prediction'] = \
gbm.predict(X_test, num_iteration=gbm.best_iteration)

logLossTestSetLightGBMGradientBoosting = \
log_loss(y_test, predictionsTestSetLightGBMGradientBoosting)

Приведенная ниже сводка логарифмических потерь не содержит сюрпри­

зов: наименьшие логарифмические потери продемонстрировал градиентный

бустинг LightGBM, оставивший позади всех остальных.

Логарифмические потери логистической регрессии на тестовом наборе:

0.123732961313
Логарифмические потери случайных лесов на тестовом наборе:

0.00918192757674
Логарифмические потери градиентного бустинга XGBoost на тестовом

наборе: 0.00249116807943
Логарифмические потери градиентного бустинга LightGBM на тестовом
наборе: 0.002376320092424

На рис. 2.12-2.19 представлены кривые "точность - полнота': средние зна­

чения точности и RОС-кривые для всех четырех моделей, построенные на ос­

новании полученных выше результатов.

102 1 Гnава2

Лоrистическая регрессия

Кривая "точность - полнота•: средняя точность= 0.73

10

02

оо~ --~.-..~ ~__.~~~--~=---.,..--~..;::о,--1
00 02 04 06 08 10

Полнота

Рис. 2.12. Кривая "точность - полнота" логистической

регрессии на тестовом наборе

§ 10
i.1 ,.--

~ 08

~
~ 06
~

IF. 0.4

• 02

Рабочая характеристика приемника :
nлоwа,оь nод кривой= 0.98

02 04 06 08
Доля ЛОЖIЮl1011ОЖl!Тl!/1ЬНЬIХ ИCXOAOll

10

Рис. 2.13. Кривая аиRОС логистической регрессии
на тестовом наборе

Готовый проект машинного обучения 1 103

Случайные леса

104 1 Гnава2

Кривая "точность - полнота•: средняя точность = О 82
io,_ ____ __,

..._ __ ..,....~~--~~......_,
08

02

оо~_.....,.._...._._.,.... ____ ,...__~.._, ~--1
00 02 04 06 08 10

nолнота

Рис. 2.14. Кривая "точность - полнота" модели

случайных лесов на тестовом наборе

Рабочая характеристика приемника :
площадь под кривой = 0.93

110 L----------------:,:,:,-::"1,
;t 08 ,,

i ,,,''
е ,,
~ 06 ; " ,,
~ ,,
~ ,,'
~ 04 ,,'
i ,,
~ ,,
"' 0.2 ,,
~ ,,
~ ,,' - RОС-крмао~

00 ~---..----...----.-----..------1
00 0.2 04 Об 08 10

ДСJ1j11 /\0Жноnо11Ожительных мсходое

Рис. 2.15. Кривая аиRОС модели случайных лесов
на тестовом наборе

Градиентный бустинг XGBoost

Кривая "точность · полнота•: средняя точность = 0.87

10~-...--~~~ ~~~--~--

08

02

СО~""""'~-..~~~....,._~...,..._........_,-...... ~~
00 02 04 06 08 10

Полнота

Рис. 2.16. Кривая "тоttность - полнота" градиентного

бустинга XGBoost на тестовом наборе

Рабочая характеристика приемника:
площадь под кривой= 0.97

Дом ло.ж1Ю110J1Ожительмых исхо.аое

Рис. 2.17. Кривая аиRОС градиентного бустинга XGBoost
на тестовом наборе

Готовый проект машинного обучения 1 105

Градиентный бустинг LightGBM

Крива11 •точнопь - полнота· · средняя точность = о 86
10.t-~~--~..,....---~~--....... ~

08

02

oo~~,._...,...~~-...,..-.~---.-~--'=--t
00 04 08 10

nолнота

Рис. 2.18. Кривая "точность - полнота" градиентного

бустинга LightGBM на тестовом наборе

Рабочая хара1перистика приемника :
nлowilд" под кривой= 0.98

02 04 06 08
Дот• ЛОЖНОПОАОЖМТl!/IЬ11111Х MCXOДOll

10

Рис. 2.19. Кривая аиRОС градиентного бустинга LightGBM
на тестовом наборе

Результаты градиентного бустинга LightGBM впечатляют: нам удалось вы­
явить свыше 80% поддельных транзакций с почти 90%-ной точностью (други­
ми словами, наряду с фиксацией 80% общего количества поддельных транзак­
ций модель LightGBM ошиблась лишь в 10% случаев).

Учитывая малочисленность примеров поддельных транзакций в нашем на­

боре данных, такой результат является замечательным достижением.

106 1 Глава2

Ансамбли

Вместо того чтобы задействовать лишь один из алгоритмов машинного об­

учения, мы можем оценить, приведет ли использование ансамбля моделей к

повышению эффективности обнаружения подделок11 •

В общем случае образование ансамбля одинаково сильных решений из раз­

личных семейств алгоритмов машинного обучения (например, одного из се­

мейства случайных лесов и одного из семейства нейронных сетей) должно

приводить к улучшению результата по сравнению с отдельными решениями.

Это объясняется тем, что каждое из автономных решений имеет свои сильные

и слабые стороны. Объединяя автономные решения в ансамбль, мы добиваем­

ся того, что сильные стороны одних моделей компенсируют слабые стороны

других.

Однако не следует забывать об одном важном моменте. В случае реше­

ний примерно равной силы производительность ансамбля будет превы­

шать производительность любого из них. Но если одно из решений намного

эффективнее других, то производительность ансамбля будет определять­

ся производительностью наиболее эффективного автономного решения;

остальные решения не будут вносить в производительность ансамбля ни­

какого вклада.

Кроме того, между автономными решениями должна (в разумной степе­

ни) отсутствовать корреляция. При наличии значительной корреляции меж­

ду ними сильные стороны одного решения будут зеркальным отражением

сильных сторон других, и то же самое можно сказать об их слабых сторонах.

Диверсификация сильных и слабых сторон автономных решений в рамках ан­

самбля принесет лишь минимальную выгоду.

Стекинг

В нашей задаче две модели (градиентный бустинг LightGBM и XGBoost)
значительно превосходят две другие (модели случайных лесов и логистиче­

ской регрессии). Но две наиболее сильные модели относятся к одному семей­

ству, а это означает, что их сильные и слабые стороны демонстрируют силь­

ную корреляцию.

11 Более подробную информацию об ансамблевом обучении можно найти в статьях Kaggle
EnsemЬ/ing Guide (https: / /mlwave. com/kaggle-ensemЫing-guide/} и Introduction to
EnsemЬ/ing/Stacking /п Python (http: / /Ьi t. ly /2RYV4iF).

Готовый проект маwинноrо обучения 1 107

Чтобы выяснить, возможно ли добиться улучшения по сравнению с изу­

ченными ранее автономными моделями, мы можем использовать стекинr

(разновидность ансамбля). При этом мы берем предсказания, полученные по­

средством k-кратной кросс-проверки каждой из четырех автономных моделей

(предсказания первого слоя), и присоединяем их к исходному тренировочно­

му набору данных. После этоrо мы проводим тренировку на наборе данных,

содержащем исходные признаки плюс предсказания первоrо слоя, используя

k-кратную кросс-проверку.

Это приведет к новому набору предсказаний, полученных с помощью

k-кратной кросс-проверки (предсказания второго слоя), который мы будем

оценивать для выяснения тоrо, достиrается ли улучшение по сравнению с лю­

бой из автономных моделей.

Комбинирование предсказаний первого слоя с оригинальным

тренировочным набором

Прежде всеrо объединим предсказания каждой из четырех моделей ма­

шинноrо обучения, которые мы построили с использованием исходноrо тре­

нировочноrо набора данных.

predictionsBasedOnKFoldsFourModels = pd.DataFrame(data=[], \
index=y_train.index)

predictionsBasedOnKFoldsFourModels = \
predictionsBasedOnKFoldsFourModels.join(

predictionsBasedOnKFoldsLogisticRegression['prediction'] \
.astype(float), how='left') .join(\
predictionsBasedOnKFoldsRandomForests['prediction'] \
.astype(float), how='left', rsuffix="2") .join(\
predictionsBasedOnKFoldsXGBoostGradientBoosting[\
'prediction'] .astype(float), how='left', rsuffix="З") .join(\
predictionsBasedOnKFoldsLightGBMGradientBoosting[\
'prediction'] .astype(float), how='left', rsuffix="4")

predictionsBasedOnKFoldsFourModels.columns = ['predsLR', \
'predsRF', 'predsXGB', 'predsLightGBM']

Х trainWithPredictions = \
X_train.merge(predictionsBasedOnKFoldsFourModels, \

left_index=True, right_index=True)

1 08 1 Г11ава 2

Настройка гиперпараметров

Далее мы задействуем градиентный бустинг LightGBM - наилучший из

используемых в предыдущих упражнениях алгоритмов - для обучения на на­

боре, содержащем оригинальные признаки плюс предсказания первого слоя.

Гиперпараметры остаются прежними.

params lightGB = (
'task' : 'train',
'application': 'binary',
'num_class': 1,
'boosting': 'gbdt',
'obj ecti ve' : 'Ьinary',

'metric': 'Ьinary_logloss',

'metric_freq': 50,
'is_training_metric': False,
'max _ depth' : 4,
'num_leaves': 31,
'learning_rate': 0.01,
'feature fraction': 1.0,
'bagging_fraction': 1.0,
'bagging_freq': О,

'bagging_seed': 2018,
'verbose' : О,

'num threads': 16

Тренировка модели

Как и раньше, мы будем использовать k-кратную кросс-проверку и генери­

ровать вероятности поддельных транзакций для пяти различных кросс-про­

верочных наборов.

trainingScores = []
cvScores = []

predictionsBasedOnKFoldsEnsemЫe = pd.DataFrame(data=[], \
index=y_train.index, columns=['prediction'])

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
y_train.ravel()):

X_train_fold, X_cv_fold = \
X_trainWithPredictions.iloc[train_index, :], \
X_trainWithPredictions.iloc[cv_index, :]

Готовый проект машинного обучения 1 109

y_train_fold, y_cv_fold = y_train.iloc[train_index], \
y_train.iloc[cv_index]

lgb_train = lgb.Dataset(X_train_fold, y_train_fold)
lgb_eval = lgb.Dataset(X_cv_fold, y_cv_fold, reference=lgb_train)
gbm = lgb.train(params_lightGB, lgb_train, \

num_boost_round=2000, valid_sets=lgb_eval, \
early_stopping_rounds=200)

loglossTraining = log_loss(y_train_fold, \
gbm.predict(X_train_fold, num_iteration=gbm.best_iteration))

trainingScores.append(loglossTraining)

predictionsBasedOnKFoldsEnsemЫe.loc[X_cv_fold.index, \
'prediction'] = gbm.predict(X_cv_fold, \
num_iteration=gbm.best_iteration)

loglossCV = log_loss(y_cv_fold, \
predictionsBasedOnKFoldsEnsemЫe.loc[X_cv_fold.index, \
'prediction'])

cvScores.append(loglossCV)

рrint('Логарифмические потери обучения: ', loglossTraining)
рrint('Логарифмические потери валидации: ', loglossCV)

loglossEnsemЬle = log_loss(y_train, \
predictionsBasedOnKFoldsEnsemЬle.loc[:, 'prediction'J)

рrint('Логарифмические потери ансамбля: ', loglossEnsemЬle)

Оценка результатов

Приведенные ниже результаты не демонстрируют никакого улучшения по

сравнению с предыдущими. Логарифмические потери ансамбля весьма близ­

ки к логарифмическим потерям градиентного бустинга. Улучшение результа­

тов не наблюдается, поскольку наилучшие автономные решения принадлежат

к одному и тому же семейству (градиентный бустинг). Их сильные и слабые
стороны характеризуются высокой степенью корреляции, поэтому диверси­

фикация по моделям не приносит никакого выигрыша:

Логарифмические потери ансамбля: 0.002885415974220497

Приведенные на рис. 2.20 и 2.21 кривая "точность - полнота': средняя точ­

ность и кривая auROC также подтверждают отсутствие улучшения.

110 1 Гnава 2

Крив я "точность - полнота": средняя точность = 0.82

10

02 04 06 08 LO
nомота

Рис. 2.20. Кривая "точность - полнота" для ансамбля

Рабочая характеристика приемника :
площадь nод кривоМ = 0.98

02 04 Об 0.8
Дом ЛОJ«ltОПОllОЖИТеnькых ИCXO.QOll

Рис. 2.21. Кривая аиRОС для ансамбля

Выбор окончательной модели

10

Поскольку привлечение ансамбля не приводит к улучшению результатов,
мы отдаем предпочтение простоте автономной модели градиентного бустинга

LightGBM и будем использовать ее в производственных целях.
Прежде чем приступить к организации конвейера для работы с новыми тран­

закциями, визуально проанализируем, насколько хорошо модель LightGBM от­

личает поддельные транзакции от нормальных для тестового набора.

На рис. 2.22 значения предсказанных вероятностей отложены вдоль оси Х.

Приведенный график дает основания утверждать, что модель довольно

Готовый проект машинноrо обучения 1 111

хорошо справляется с приписыванием высоких значений вероятности под­

делки тем транзакциям, которые действительно являются поддельными. И на­

оборот, транзакциям, не являющимся поддельными, в большинстве случаев

приписываются низкие значения вероятности. Иногда модель ошибается и

приписывает низкие значения вероятности поддельным транзакциям и высо­

кие значения транзакциям, не являющимся поддельными. Но в целом резуль­

таты весьма впечатляющие.

Распределение предсказанных вероятностей и истинных меток

ИстиннаR метка ., • о • • :(l ~ • • • 1

~ • • ••• . ~ ... • , . " 8. • • . •
" •: ~ " • • •
:6 П~дtка,анная еероятнскть • • • • • :r
х

~ • • •
"' •
" .. " ...
щ • • ~ • 1 • • . ·*' r:: • • • • • •• .,

00 02 04 06 08 10
1181ue

Рис. 2.22. График распределения предсказанньtх вероятностей
и истинных меток

Производственный конвейер

Выбрав модель, которая будет применяться на практике, наметим простой

производственный конвейер, включающий три стадии обработки новых дан­

ных: загрузку, масштабирование признаков и генерирование предсказаний с

помощью модели LightGBM, которую мы уже обучили и выбрали для исполь­
зования в производственной среде.

'''Конвейер для новых данных'''

Во-первых, импортируем новые данные во фрейм 'newData'.
Во-вторых, масштабируем данные.
newData.loc[:, featuresToScale] = \
sX.transform(newData[featuresToScale])
В-третьих, создаем предсказания, используя LightGBM.
gbm.predict(newData, num_iteration=gbm.best_iteration)

Сгенерировав предсказания, аналитик сможет сфокусировать свое вни­

мание на транзакциях, для которых получена наиболее высокая вероятность

112 1 Глава2

того, что они являются поддельными, и приступить к работе с соответству­

ющим списком. Или же, если целью служит автоматизация этого процесса,

аналитик сможет использовать систему, автоматически отклоняющую тран­

закции, для которых предсказанная вероятность мошенничества превышает

заданное пороговое значение.

Например, если, опираясь на рис. 2.18, мы будем автоматически отклонять
транзакции с предсказанной вероятностью О. 9, то среди них почти наверня­
ка будут только поддельные транзакции, а риск случайного отклонения нор­

мальной транзакции будет сведен к минимуму.

Резюме

Примите поздравления! Используя обучение с учителем, вы создали систе­

му, позволяющую выявлять попытки выполнения мошеннических операций

с банковскими картами.

Для этого вам пришлось настроить среду машинного обучения, получить

и подготовить данные, обучить и оценить ряд моделей, сделать окончатель­

ный выбор производственной модели и организовать конвейер для обработ­

ки новых транзакций. Таким образом, вы успешно разработали приложение

машинного обучения.

Далее мы используем аналогичный подход для разработки приложений на

основе обучения без учителя.

Приведенное выше решение со временем потребует повторного

обучения в связи с появлением новых способов выполнения мо­

шеннических операций с банковскими картами. Кроме того, нам

следовало бы подыскать другие алгоритмы машинного обучения,

принадлежащие к другим семействам и сравнимые по производи­

тельности с градиентным бустингом, и включить их в ансамбль для

повышения общей эффективности системы в отношении обнару­

жения попыток мошенничества.

Наконец, в реальных приложениях машинного обучения большую

роль играет легкость интерпретации результатов. Поскольку в

рассмотренном нами наборе данных признаки являются выходом

РСА (один из методов снижения размерности, который исследует­

ся в главе 3), мы не можем дать словесное объяснение тому, почему
некоторые транзакции помечены как потенциально мошенничес­

кие. Для улучшения интерпретируемости результатов нам нужен

доступ к исходным признакам, подающимся на вход РСА, которые

отсутствуют в нашем простом наборе данных.

Готовый проект маwинноrо обучения 1 113

ЧАСТЬ 11

Обучение без учителя

с использованием библиотеки

Scikit-learn

В следующих главах мы познакомимся с двумя основными концепциями

обучения без учителя - снижение размерности и кластеризация - и задей­

ствуем их для обнаружения аномалий и сегментирования групп.

Как обнаружение аномалий, так и сегментирование групп находят широ­

кое применение во многих областях.

Обнаружение аномалий применяется для эффективного выявления редких

событий, таких как мошеннические транзакции, попытки взлома компьютер­

ных систем, терроризм, торговля людьми, оружием и наркотиками, отмыва­

ние денег, необычная торговая активность, вспышки болезней или отказы в

обслуживании критического оборудования.

Сегментирование групп позволяет изучать поведение пользователей в та­

ких областях, как маркетинг, онлайн-покупки, прослушивание музыки, про­

смотр видео, сайты знакомств и социальные сети.

ГЛАВА3

Снижение размерности

В этой главе мы сосредоточимся на рассмотрении одного из главных пре­

пятствий на пути к успешному созданию приложений машинного обучения,

имя которому - проклятие размерности. В методе обучения без учителя реа­

лизуется замечательная контрмера: снижение размерности. Мы ознакомимся

с данной концепцией и реализуем соответствующие решения, чтобы у читате­

лей выработалось понимание того, как это работает.

В главе 4 мы создадим собственное приложение, реализовав обучение без
учителя на основе снижения размерности. Это будет система обнаружения

мошеннических операций с банковскими картами (в главе 2 мы применили
обучение с учителем). Выявление случаев мошенничества подобного типа яв­

ляется частным случаем обнаружения аномалий - быстро развивающейся об­

ласти прикладного машинного обучения без учителя.

Но прежде чем приступить к построению системы обнаружения аномалий,

подробно рассмотрим саму концепцию снижения размерности.

Причины снижения размерности

Как отмечалось в главе 1, снижение размерности помогает бороться с наи­

более распространенной проблемой машинного обучения - так называемым

проклятием размерности, когда алгоритмы не могут эффективно и рацио­

нально обучаться на данных исключительно ввиду большой размерности про­

странства признаков.

Алгоритмы снижения размерности проецируют многомерные данные на

пространство низкой размерности, удерживая как можно больше существен­

но важной информации и удаляя избыточную. Как только данные переведе­

ны в пространство низкой размерности, алгоритмы машинного обучения по­

лучают возможность более эффективно и рационально выявлять шаблоны,

представляющие интерес, за счет значительного снижения уровня шумов.

Иногда снижение размерности служит самоцелью - например, для по­

строения системы обнаружения аномалий, что будет продемонстрировано в

следующей главе.

Однако в иных ситуациях снижение размерности выступает, скорее, не ко­

нечной целью, а средством для достижения другой цели. Например, ero часто
применяют в конвейере машинноrо обучения для решения крупномасштаб­

ных, вычислительно трудоемких задач, связанных с обработкой изображе­

ний, видео и текста.

База данных рукописных цифр MNIST
Прежде чем начать знакомство с алrоритмами снижения размерности,

необходимо исследовать набор данных, с которым нам предстоит работать.

Это база рукописных цифр MNIST (Mixed National Institute of Standards and
Technology) - один из наиболее известных наборов данных в области ма­

шинноrо обучения, применяемый в компьютерном зрении. База находится в

свободном доступе на сайте Яна Лекуна (http: / /yann. lecun. com/exd.Ь/
mnist/). Для простоты мы будем использовать сериализованную версию,
предоставленную на сайте Deeplearning.net (http://deeplearning.net/
tutorial/gettingstarted. html).

База MNIST разбита на три набора: тренировочный (50 ООО примеров), ва­
лидационный (10 ООО примеров) и тестовый (10 ООО примеров). Для всех при­
меров имеются метки.

База содержит изображения рукописных цифр размером 28 х 28 пикселей.
Каждая точка данных (т.е. каждое изображение) может передаваться в виде

массива чисел, в котором каждое число описывает интенсивность каждоrо

пикселя. Другими словами, изображению размером 28 х 28 пикселей соответ­
ствует массив чисел размерностью 28 х 28.

Для упрощения задачи мы можем развернуть каждый массив в 784-мерный

(28 х 28) вектор. Каждая компонента вектора - вещественное число в диапа­

зоне 0-1, представляющее интенсивность отдельноrо пикселя. Нулю соответ­
ствует черный цвет пикселя, единице - белый. Метками служат числа от О до

9, указывающие, какую именно цифру представляет изображение.

Импорт библиотек

Для начала заrрузим необходимые библиотеки.

Импорт библиотек

'''Основные библиотеки'''

import numpy as np
import pandas as pd

118 1 Гпава3

import os, time
import pickle, gzip

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр

Загрузка наборов данных MNIST
А теперь загрузим наборы данных MNIST.

Загрузка наборов данных
current_path = os.getcwd()
file = os.path.sep.join([' ', 'datasets', 'mnist_data', \

'mnist.pkl.gz'])
f = gzip.open(current_path+file, 'rb')
train_set, validation_set, test_set = \

pickle.load(f, encoding='latinl')
f. close ()

Х train, y_train = train_set[O], train_set[l]
X_validation, y_validation = validation_set[O], validation_set[l]
X_test, y_test = test_set[O], test_set[l]

Верификация формы наборов данных

Верифицируем форму наборов данных. Это даст уверенность в том, что

они были загружены правильно.

Верификация формы наборов данных
print("Фopмa X_train: ", X_train.shape)
print("Фopмa y_train: ", y_train.shape)
print("Фopмa X_validation: ", X_validation.shape)
print ("Форма y_validation: ", y_validation. shape)
print("Фopмa X_test: ", X_test.shape)
print("Фopмa y_test: ", y_test.shape)

Снижение размерности 1 119

Результаты подтверждают, что формы наборов данных соответствуют

ожидаемым.

Форма Х train: (50000, 784)
Форма y_train: (50000,)
Форма Х validation: (10000, 784)
Форма y_validation: (10000,)
Форма Х test: (10000, 784)
Форма y_test: (10000,)

Создание структур Da taFrame библиотеки Pandas на основе
наборов данных

Преобразуем массивы nurnpy в структуры данных DataFrarne библиотеки
Pandas, которые более удобны для исследования и работы.

Создадим структуры DataFrarne библиотеки Pandas
на основе наборов данных
train_index = range(O, len(X_train))
validation_index = range(len(X_train), \

len(X_train)+len(X_validation))
test index range(len(X_train)+len(X_validation), \

len(X_train)+len(X_validation)+len(X_test))

Х train = pd.DataFrarne(data=X_train, index=train_index)
y_train = pd.Series(data=y_train, index=train_index)

Х validation pd.DataFrarne(data=X_validation, \
index=validation_index)

y_validation pd.Series(data=y_validation, index=validation_index)

Х test pd.DataFrarne(data=X_test, index=test_index)
y_test pd.Series(data=y_test, index=test_index)

Исследование данных

Сгенерируем статистическую сводку по набору.

Описание тренировочной матрицы
X_train.describe()

В табл. 3.1 представлена сводка по загруженным данным (показаны только
первые столбцы). Многие значения оказались нулевыми, а значит, большин­

ство пикселей в изображениях черные. В этом есть смысл, поскольку все циф­

ры белого цвета и отображаются на черном фоне.

120 1 Гnава3

Таблица 3.1. Исследование даннь1х

о 1 2 3 4 5 6

count 50000.0 50000.0 50000.0 50000.0 50000.0 50000.0 50000.0

mean о.о о.о о.о о.о о.о о.о о.о

std о.о о.о о.о о.о о.о о.о о.о

min о.о о.о о.о о.о о.о о.о о.о

25% о.о о.о о.о о.о о.о о.о о.о

50% о.о о.о о.о о.о о.о о.о о.о

75% о.о о.о о.о о.о о.о о.о о.о

max о.о о.о о.о о.о о.о о.о о.о

8 rows х 784 columns

Данные меток - это одномерный вектор, представляющий фактическое

содержимое изображения. Ниже приведены метки для первых нескольких

изображений.

Отобразить метки
y_ train. head ()

о 5
1 о

2 4
3 1
4 9
dtype: int64

Вывод изображений

Определим функцию для просмотра изображения вместе с его меткой.

def view_digit(example):
label = y_train.loc[OJ
image = X_train.loc[example, :] .values.reshape([28, 28])
plt.title('Пpимep: %d Метка: %d' % (example, label))
plt.imshow(image, cmap=plt.get_cmap('gray'))
plt. show ()

Первое изображение, полученное после преобразования 784-мерного век­

тора в матрицу размером 28 х 28 пикселей, представляет цифру 5 (рис. 3.1).

Снижение размерности 1 121

Пример : о Метка · 5
о

5

1D

15

о 5 10 15 20 25

Рис. 3.1. Вид первой цифры

Алгоритмы снижения размерности

Теперь, когда набор данных MNIST загружен и исследован, пора перейти к
рассмотрению алгоритмов снижения размерности. Сначала мы познакомим­

ся с концепцией каждого алгоритма, а затем применим его к набору данных

MNIST, чтобы понять, как работает алгоритм.

Линейное проецирование и многократное обучение

Существуют две основные группы методов снижения размерности. К од­

ной из них относятся методы линейного проецирования (linear projection), соз­
дающие линейную проекцию данных из высокоразмерного пространства в

низкоразмерное. Сюда входят такие методы, как анализ главнь1х компонент

(principal component analysis - РСА), сингулярное разложение (singular value
decomposition - SVD) и случайное проецирование (random projection).

Ко второй группе относятся методы так называемого многократного обу­

чения (manifold learning), или нелинейного снижения размерности (nonlinear
dimensionality reduction). Сюда, в частности, входит метод Isoтap, который из­
меряет расстояния между точками вдоль кривой, определяя геодезическое, а не

евклидово, расстояние. Среди других методов можно назвать многомерное мас­

штабирование (multidimensional scaling - MDS), локально-линейное вложение
(locally linear embedding - LLE), стохастическое вложение соседей с t-распреде­
лением (t-distributed stochastic neighbor embedding- t-SNE), словарное обучение
(dictionary learning), вложение случайных деревьев (random trees embedding) и
анализ независимых компонент (independent component analysis).

122 1 Гnава 3

Анализ главных компонент

Мы рассмотрим несколько вариантов РСА: стандартньtй, инкрементный,

разреженный и ядерный.

Концепция РСА

Начнем с рассмотрения стандартного варианта РСА - одного из наиболее

распространенных линейных методов снижения размерности. В РСА алго­

ритм находит низкоразмерное представление данных, одновременно сохра­

няя как можно большую долю дисперсии (представляющей наиболее сущес­

твенную информацию).

РСА достигает этого, беря в расчет корреляцию между признаками. Если

внутри некоторого подмножества признаков существует высокая корреля­

ция, то алгоритм будет пытаться объединить коррелирующие признаки и

представить эти данные, используя меньшее количество признаков, между

которыми отсутствует линейная корреляция. Алгоритм продолжает процесс

сведения корреляции, находя направления максимальной дисперсии среди

исходных высокораэмерных данных и проецируя их на пространство мень­

шей размерности. Эти вновь извлеченные компоненты называются главными

компонентами (principal components).
С помощью главных компонент возможна реконструкция исходных при­

знаков - пусть неточная, но достаточно близкая к ним. Алгоритм РСА пред­

принимает активные попытки минимизировать ошибку реконструкции в

ходе поиска оптимальных компонент.

В нашем примере с базой данных MNIST пространство исходных призна­
ков имеет 784 измерения, называемых d-измерениями. Алгоритм РСА прое­
цирует данные на меньшее пространство, имеющее k измерений (где k < d), в
то же время сохраняя как можно больше существенно важной информации.

Эти k измерений и есть главные компоненты.
Количество оставляемых нами главных компонент значительно меньше

числа измерений в исходном наборе данных. Переходя к этому пространству

низкой размерности, мы теряем некоторую долю дисперсии (т.е. часть инфор­

мации), но зато идентификация базовой структуры данных упрощается, что

позволяет более эффективно и рационально решать такие задачи, как обнару­

жение аномалий и кластеризация.

Более того, уменьшая размерность данных, РСА уменьшает и объем дан­

ных, что приводит к повышению производительности алгоритмов машинного

Снижение размерности 1 123

обучения, запускаемых далее в конвейерной цепочке (например, при решении

таких задач, как классификация изображений).

Прежде чем запускать алгоритм РСА, очень важно предварительно

масштабировать признаки. РСА весьма чувствителен к соотноше­

нию диапазонов значений исходных признаков. Как правило, не­

обходимо масштабировать данные, приводя их к одному и тому же
диапазону относительных значений. Однако в нашем наборе дан­

ных рукописных цифр MNIST признаки уже масштабированы и
приведены к диапазону значений от нуля до единицы, так что этот

этап можно опустить.

Реализация РСА

Теперь, когда вы лучше поняли принципы работы алгоритма РСА, можно

применить этот метод к набору данных MNIST и посмотреть, насколько хоро­
шо он справляется с захватом наиболее существенной информации о цифрах

в процессе проецирования данных из исходного 784-мерного пространства в

пространство меньшей размерности.

Настройкагиперпараметров

Настроим параметры для алгоритма РСА.

from sklearn.decomposition import РСА

n_cornponents = 784
whiten = False
randorn state = 2018

рса = PCA(n_components=n_components, whiten=whiten, \
randorn_state=randorn_state)

Применение РСА

Мы установим количество главных компонент, равное исходному числу

измерений (т.е. 784). РСА захватит существенную информацию из исходного
пространства данных и начнет генерировать главные компоненты. Как толь­

ко они будут получены, мы определим, какое их количество необходимо для

того, чтобы эффективно захватывать большую часть дисперсии/информации

из оригинального набора признаков.

124 1 Гnава3

Подстроим и преобразуем наши тренировочные данные, сгенерировав

главные компоненты.

Х train РСА
Х train РСА

Оценка РСА

pca.fit_transform(X train)
pd.DataFrame(data=X_train_PCA, index=train_index)

Поскольку мы пока еще не уменьшили размерность данных, а лишь пре­

образовали их, доля дисперсии исходных данных, захваченная 784 главными
компонентами, должна составить 100%.

Доля дисперсии, захваченной 784 главными компонентами

рrint("Дисперсия, объясненная всеми 784 главными компонентами: ", \
sum(pca.explained_variance_ratio_))

Дисперсия, объясненная всеми 784 главными компонентами:
0.9999999999999997

Следует, однако, отметить, что значимость 784 главных компонент варьи­
руется в заметных пределах. Показатели значимости первых Х главных ком­

понент приведены ниже.

Доля дисперсии, захваченной Х главными компонентами

importanceOfPrincipalComponents = \
pd.DataFrame(data=pca.explained_variance_ratio_)

importanceOfPrincipalComponents = importanceOfPrincipalComponents.T

рrint('Дисперсия, захваченная первыми 10 главными компонентами: ', \
importanceOfPrincipalComponents.loc[:, \
0:9] .sum(axis=l) .values)

рrint('Дисперсия, захваченная первыми 20 главными компонентами: \
importanceOfPrincipalComponents.loc[:, \
0:19] .sum(axis=l) .values)

рrint('Дисперсия, захваченная первыми 50 главными компонентами: \
importanceOfPrincipalComponents.loc[:, \
0:49] .sum(axis=l) .values)

рrint('Дисперсия, захваченная первыми 100 главными компонентами: \
importanceOfPrincipalComponents.loc[:, \
0:99] .sum(axis=l) .values)

рrint('Дисперсия, захваченная первыми 200 главными компонентами:', \
importanceOfPrincipalComponents.loc[:, \
0:199) .sum(axis=l) .values)

Снижение размерности 1 125

рrint('Дисперсия, захваченная первыми 300 главными компонентами:', \
importanceOfPrincipalComponents.loc[:, \
0:299] .sum(axis=l) .values)

Дисперсия, захваченная первыми 10 главными компонентами:
[0.48876238]

Дисперсия, захваченная первыми 20 главными компонентами:
[0.64398025]

Дисперсия, захваченная первыми 50 главными компонентами:
[О. 8248609]

Дисперсия, захваченная первыми 100 главными компонентами:
(0.91465857]

Дисперсия, захваченная первыми 200 главными компонентами:
[О. 96650076]

Дисперсия, захваченная первыми 300 главными компонентами:
[О. 9862489]

Первые 10 компонент суммарно захватывают приблизительно 50% дис­
персии, первые 100 компонент - 90%, а первые 300 компонент - 99%. Доля
информации, захваченной оставшимися главными компонентами, пренебре­

жимо мала.

Мы можем отобразить значимость каждой главной компоненты в виде ди­

аграммы, ранжируя компоненты от первой до последней. Чтобы упростить

просмотр такой диаграммы, на рис. 3.2 представлены первые 10 компонент.
Теперь эффективность РСА должна стать для вас более очевидной. С помо­

щью всего лишь первых 200 главных компонент (что гораздо меньше исход­
ного числа измерений, равного 784), нам удалось захватить более 96% диспер­
сии/информации.

РСА позволяет ощутимо снизить размерность исходных данных, одновре­

менно сохраняя большую часть существенной информации. На уменьшенном

с помощью РСА подмножестве признаков другим алгоритмам машинного об­

учения, запускаемым далее в конвейерной цепочке, будет легче разделять точ­

ки данных в пространстве (для решения таких задач, как обнаружение анома­

лий и кластеризация), и для этого им потребуется меньше вычислительных

ресурсов.

126 1 Г11ава 3

010

оое

о.ое

004

002

ООО

Рис. 3.2. Значимость РСА-компонент

Визуализация распределения точек данных в пространстве

Чтобы продемонстрировать, насколько эффективен метод РСА в отно­

шении компактного захвата дисперсии, содержащейся в исходных данных,

отобразим с помощью точечной диаграммы наблюдения в двух измерениях.

В частности, мы представим на диаграмме первую и вторую главные компо­

ненты и пометим наблюдения меткой истинности. Для этого создадим функ­

цию scatterPlot, поскольку впоследствии нам потребуется создавать ана­
логичные визуализации для других алгоритмов снижения размерности.

def scatterPlot(xDF, yDF, algoName):
tempDF = pd.DataFrame(data=xDF.loc[:, 0:1], index=xDF.index)
tempDF = pd. concat ((tempDF, yDF), axis=l, join=" inner")
tempDF.columns =["Первый вектор", "Второй вектор", "Метка"]

sns. lmplot (х="Первый вектор", у="Второй вектор", huе="Метка", \
data=tempDF, fit_reg=False)

ах = plt. gca ()
ax.set_title("Paэдeлeниe наблюдений: " + algoName)

scatterPlot(X_train_PCA, y_train, "РСА")

Снижение размерности 1 127

Как можно увидеть на рис. 3.3, одним только первым двум главным ком­
понентам РСА удалось хорошо справиться с разделением точек данных в

пространстве таким образом, чтобы аналогичные точки компактно распола­

гались рядом друг с другом, в то же время оставаясь удаленными от других то­

чек, с которыми они имеют меньше сходства. Другими словами, изображения

одной и той же цифры находятся на более близких расстояниях между собой

по сравнению с расстояниями до изображений других цифр.

РСА достигает этого без использования каких-либо меток, что подтвержда­

ет огромные возможности обучения без учителя в отношении захвата базовой

структуры данных и выявления скрытых закономерностей в условиях, когда

метки отсутствуют.

Ра3дел H)I& наб111оде Ий РСА

6

4

2

-2

-2 о 2 6
Пер11ь11l вектор

8

Метк

• о

• 2
• 3
• 4
• :>
• 6
о 7
• 8
• 9

Рис. 3.3. Разделение наблюдений с использованием РСА

Аналогичная двумерная точечная диаграмма, но построенная с использо­

ванием двух наиболее важных признаков, выбранных из исходного полного

набора (784 признака) исходя из результатов тренировки по методике обуче­
ния с учителем, демонстрирует плохое разделение точек (рис. 3.4).

Сравнение рис. 3.3 и 3.4 лишний раз свидетельствует о больших возмож­
ностях РСА в отношении изучения базовой структуры набора данных без

привлечения каких-либо меток. Даже в случае использования только двух

измерений мы получаем разумное разделение изображений в соответствии с

представляемыми ими цифрами.

128 1 ГnаваЗ

Рэ3Д пение набrnодений орнrмналЬliыil н бор nрИЗ11 ов

10

0.8

QO

00 02 04 06
Пераый вектор

08 10

Метк

• о

1
2

• 3
• 4
• 5
• 6
• т

• 8
• 9

Рис. 3.4. Разделение наблюдений без использования РСА

РСА не только облегчает выявление скрытых закономерностей в

данных в процессе их разделения, но и помогает уменьшить раз­

меры набора признаков, тем самым способствуя снижению затрат­

ности машинного обучения как по времени, так и по необходимым

вычислительным ресурсам.

В примере с набором данных MNIST сокращение времени обуче­
ния будет умеренным ввиду малого размера самого набора: всего
лишь 784 признака и 50 ООО наблюдений. Но в случае наборов дан­
НЬIХ, насчитывающих миллионы признаков и миллиарды наблю­

дений, снижение размерности приведет к резкому сокращению

времени обучения алгоритмов, используемых далее в конвейерной
цепочке машинного обучения.

И последнее замечание. Обычно РСА отбрасывает часть информа­

ции, доступной в оригинальном наборе признаков, но делает это

разумно, захватывая наиболее важные элементы и избавляясь от

тех, которые представляют наименьшую ценность. Модель, обу­

ченная на наборе признаков, который был уменьшен с помощью

РСА, может работать не настолько хорошо в смысле точности, как

модель, обученная на полном наборе, но зато тренировка и пред­

сказания будут выполняться значительно быстрее. Это один из

наиболее важных компромиссов, на который приходится идти,

принимая решение о том, стоит ли выполнять снижение размерно­

сти в создаваемом приложении машинного обучения.

Снижение размерноаи 1 129

Инкрементный РСА

В случае очень больших наборов данных, которые не умещаются в памяти,

можно выполнять анализ инкрементно, работая с небольшими порциями -
пакетами. Размер пакета можно устанавливать вручную или автоматически.

Такой пакетный вариант РСА называется инкрементным. Как правило, ре­

зультирующие главные компоненты стандартного и инкрементного вариан­

тов РСА довольно близки между собой (рис. 3.5). Вот код, реализующий ин­
крементный РСА.

Инкрементный РСА
from sklearn.decomposition import IncrementalPCA

n_components = 784
batch size = None

incrementalPCA = IncrementalPCA(n_components=n_components, \
batch_size=batch_size)

Х train incrementalPCA incrementalPCA.fit_transform(X_train)
Х train incrementalPCA pd.DataFrame(data=X_train_incrementalPCA, \

index=train_index)

Х validation incrementalPCA = incrementalPCA.transform(X_validation)
Х validation incrementalPCA = \

pd.DataFrame(data=X_validation_incrementalPCA, \
index=validation_index)

scatterPlot(X_train_incrementalPCA, y_train, "инкрементный РСА")

Разреженный РСА

Обычный алгоритм РСА осуществляет поиск линейных комбинаций сре­

ди всех входных переменных, уменьшая пространство исходных признаков в

максимально возможной степени. Но в некоторых задачах машинного обуче­

ния может оказаться выгодной небольшая разреженность признаков. Разно­

видность РСА, сохраняющая определенный уровень разреженности (контро­

лируемый гиперпараметром alpha), называется разреженный РСА. Алгоритм
разреженного РСА осуществляет поиск линейных комбинаций лишь в неко­

торых входных переменных, сужая пространство исходных признаков, но не

так компактно, как стандартный РСА.

130 1 Гnава3

Ра;щеление т бnюдений КНJфементный РСА

Метк

2 • о

i • 1

• 2

i о • з

• 4

• s
-2 • 6

• 7

• 8

• 9

-2 о 2 4 6 8
Первый аекrор

Рис. 3.5. Разделение наблюдений с использованием инкрементного РСА

Поскольку этот алгоритм обучается немного медленнее, чем обычный

РСА, мы будем использовать для тренировки лишь первые 1 О ООО примеров
из полного тренировочного набора (включающего в общей сложности 50 ООО
примеров). Мы будем придерживаться этой практики обучения на поднабо­

рах наблюдений в тех случаях, когда обучение алгоритма на полном наборе

замедляется.

Сокращение процесса тренировки вполне подходит для нашей цели, ведь

мы лишь хотим понять, как работают алгоритмы снижения размерности. Для

получения оптимальных результатов лучше проводить обучение модели на

полном тренировочном наборе.

Разреженный РСА
from sklearn.decomposition import SparsePCA

n_components = 100
alpha = 0.0001
random state 2018
n_jobs = -1

sparsePCA = SparsePCA(n_components=n_components, alpha=alpha, \
random_state=random_state, n_jobs=n_jobs)

sparsePCA.fit(X_train.loc[:lOOOO, :])

Снижение размерности 1 1 31

X_train_sparsePCA sparsePCA.transform(X_train)
X_train_sparsePCA pd.DataFrame(data=X_train_sparsePCA, \

index=train_index)

X_validation_sparsePCA = sparsePCA.transform(X_validation)
X_validation_sparsePCA = \

pd.DataFrame(data=X_validation_sparsePCA, index=validation_index)

scatterPlot(X_train_sparsePCA, y_train, "разреженный РСА")

На рис. 3.6 приведена двумерная точечная диаграмма, построенная на ос­
нове первых двух главных компонент с использованием разреженного РСА.

Р31Щеленне набnюде1н11й рззре енный РСА

4

Меn<а

2 • о

• 1
• 2
• 3
• 4
• 5
• 6

-2 • т

• 6
• 9

-8 о 2
n раый QеКТор

Рис. 3.б. Разделение наблюдений с использованием разреженного РСА

Заметьте, что эта диаграмма отличается от той, которая была получена с

использованием стандартного РСА, чего и следовало ожидать. Стандартная и

разреженная разновидности РСА по-разному генерируют главные компонен­

ты, что и приводит к различиям в разделении точек данных.

Ядерный РСА

Стандартный, инкрементный и разреженный варианты РСА генериру­

ют линейную проекцию исходных данных на пространство более низкой

размерности, но существует и нелинейная разновидность - ядерный РСА,

132 1 Гnава3

применяющий функцию сходства к парам исходных точек данных для нели­

нейного снижения размерности.

Обучаясь этой функции сходства (подход, получивший название ядерный

метод), ядерный РСА выявляет скрытое пространство признаков, в котором

располагается большинство точек данных, и создает это скрытое простран­

ство с намного меньшим количеством измерений по сравнению с оригиналь­

ным набором признаков. Такой метод особенно эффективен, когда исходный

набор признаков не является линейно разделимым.

Используя алгоритм ядерного РСА, мы должны задать требуемое количес­

тво компонент, тип ядра и ядерный коэффициент (garnma). Наиболее попу­
лярным ядром является радиально-базисная функция (radial basis function -
RВF), известная как RВF-ядро. Соответствующий код приведен ниже.

Ядерный РСА
from sklearn.decomposition import KernelPCA

n_components = 100
kernel = 'rЬf'

gamma = None
random state 2018
n_jobs = 1

kernelPCA = KernelPCA(n_components=n_components, kernel=kernel, \
gamma=gamma, n_jobs=n_jobs, random_state=random_state)

kernelPCA.fit(X_train.loc[:lOOOO, :])
X_train_kernelPCA = kernelPCA.transform(X_train)
X_train_kernelPCA = pd.DataFrame(data=X_train_kernelPCA, \

index=train_index)

Х validation kernelPCA = kernelPCA.transform(X_validation)
X_validation_kernelPCA = pd.DataFrame(data=X_validation_kernelPCA, \

index=validation_index)

scatterPlot(X_train_kernelPCA, y_train, "ядерный РСА")

В случае нашего набора данных MNIST двумерная точечная диаграмма для
ядерного РСА почти идентична диаграмме, полученной в стандартном вари­

анте РСА (рис. 3.7). Обучение RВF-ядра не приводит к улучшению результатов
при снижении размерности.

Снижение размерности 1 133

Ра~епен11е набnюденнй ядерt1ы:й РСА

02

f\,\етка

01 • о

• 1
2

• 3
• 4
• $

• 6
• 7
• 8
• 9

-О 2 ..() 1 QO 01 02 03 04
Пераы~ Р тор

Рис. 3.7. Разделение наблюдений с использованием ядерного РСА

Сингулярное разложение

Другой подход к обучению базовой структуре данных заключается в по­
нижении ранга исходной матрицы признаков способом, допускающим воз­
можность ее восстановления путем использования линейной комбинации не­

которых из векторов, принадлежащих матрице меньшего ранга. Этот подход
известен как сингулярное разложение (singular value decomposition - SVD).

Для генерирования матрицы меньшего ранга в методе SVD удерживаются
векторы исходной матрицы, содержащие большую часть информации (т.е. те,
которые имеют наибольшие сингулярные значения). Матрица пониженного
ранга захватывает наиболее важные элементы в оригинальном пространстве
признаков.

Все это очень напоминает метод РСА, в котором снижение размерности

данных достигается за счет разложения ковариационной матрицы по соб­
ственным значениям. Фактически вычисления по методу РСА включают ис­

пользование сингулярного разложения, но эта тема выходит за рамки книги.

Вот как работает метод SVD.

Сингулярное разложение
from sklearn.decomposition import TruncatedSVD

134 1 Глава 3

n_components = 200
algorithm = 'randomized'
n iter = 5
random state = 2018

svd = TruncatedSVD(n_components=n_components, algorithm=algorithm, \
n_iter=n_iter, random_state=random_state)

Х train svd
Х train svd

svd.fit_transform(X_train)
pd.DataFrame(data=X_train_svd, index=train_index)

Х validation svd = svd.transform(X_validation)
Х validation svd pd.DataFrame(data=X_validation_svd, \

index=validation_index)

scatterPlot(X_train_svd, y_train, "сингулярное разложение")

На рис. 3.8 показано разделение точек, достигнутое с использованием двух
наиболее важных векторов SVD.

Рщеление бnюденин синrуnярное р33110Жение

в

- Мет

• • • о

~
• 1

• • 2
2 • 3

l • 4

о • ~

• 6

• 7

-2 • 8

• 9

-4

4 6 8 10 12 14
Первый 11eim>p

Рис. 3.8. Разделение наблюдений с использованием
сингулярного разложения

Снижение размерности 1 135

Случайное проецирование

Еще одной разновидностью линейного снижения размерности является

метод случайных проекций, в основу которого положена лемма о малом ис­

кажении, известная как лемма Джонсона - Линденштрауса. Согласно этой
лемме точки многомерного пространства можно отобразить в пространство
гораздо меньшей размерности таким образом, что расстояния между точками
почти не изменятся. Другими словами, даже если мы перейдем от простран­

ства высокой размерности к пространству низкой размерности, это не приве­

дет к изменению структуры оригинального набора признаков.

Гауссовская случайная проекция

Существуют две разновидности случайного проецирования: стандартная

(гауссовская) и разреженная.

В случае гауссовской случайной проекции мы можем либо указать требу­
емое количество компонент в уменьшенном пространстве признаков, либо
задать гиперпараметр eps, который контролирует качество отображения в
соответствии с леммой Джонсона - Линденштрауса. Чем меньше его значе­

ние, тем больше генерируется измерений. В нашем примере мы используем
именно гиперпараметр.

Гауссовская случайная проекция
from sklearn.random_projection import GaussianRandomProjection

n_components
eps = 0.5
random state

'auto'

2018

GRP GaussianRandomProjection(n_components=n_components, eps=eps, \
random_state=random_state)

Х train GRP GRP.fit_transform(X_train)
Х train GRP pd.DataFrame(data=X_train_GRP, index=train_index)

Х validation GRP GRP.transform(X_validation)
Х validation GRP pd.DataFrame(data=X validation_GRP, \

index=validation_index)

scatterPlot(X_train_GRP, y_train, "гауссовская случайная проекция")

136 1 Гnава3

На рис. 3.9 показана двумерная точечная диаграмма, полученная с исполь­
зованием гауссовской случайной проекции.

Pa)lltrneниe набnюде ий гаус.с0&ская случайная nрое-я

Hi

Метко

• о

f
\)!) • 1

• 2
~ • 3

" • 4

~ 00 • 5
т • 6

• 7

~' • 8
• 9

-1 о

00 0.5 1 о 15
Пера1>1й еектор

Рис. 3.9. Разделение наблюдений с использованием
гауссовской случайной проекции

Несмотря на то что данный метод является одной из разновидностей ли­

нейного проецирования наподобие РСА, случайная проекция относится к со­

вершенно другому семейству методов снижения размерности. Поэтому соот­

ветствующая точечная диаграмма заметно отличается от точечных диаграмм

стандартного, инкрементного, разреженного и ядерного РСА.

Разреженная случайная проекция

Точно так же, как существует разреженная версия РСА, существует и раз­

реженная версия случайного проецирования, известная как разреженное слу­

чайное проецирование (sparse random projection). Этот алгоритм сохраняет
определенный уровень разреженности в преобразованном множестве при­

знаков и в целом работает более эффективно, преобразуя оригинальные дан­

ные в редуцированное пространство гораздо быстрее, чем стандартная гаус­

совская проекция.

Разреженная случайная проекция
from sklearn . random_projection import SparseRandomProjection

Снижение размерности 1 137

n_components = 'auto'
density = 'auto'
eps = 0.5
dense output
random state

False
2018

SRP SparseRandomProjection(n_components=n components, \
density=density, eps=eps, dense_output=dense_output, \
random_state=random_state)

Х train SRP
Х train SRP

SRP.fit transform(X_train)
pd.DataFrame(data=X_train_SRP, index=train_index)

Х validation SRP
Х validation SRP

SRP.transform(X_validation)
pd.DataFrame(data=X_validation_SRP, \

index=validation_index)

scatterPlot(X train SRP, y_train, "разреженная случайная проекция")

На рис. 3.10 показана двумерная точечная диаграмма, полученная с исполь­
зованием разреженной случайной проекции.

138 1 Гnава 3

Рзздел нt1е r13бпк>денин разраженнзя с11)1Чаиная npoeia.u<я
, 00

075

0.50
Метка

• о

• 1

• 2
• 3
• 4
• 5
• 6

-о 50 • 1
• 8

-о 75 • 9

-1 00

•
-1.5 -1 о -о 5 О.О 05 10

Первый вектор

Рис. 3.1 О. Разделение наблюдений с использованием
разреженной случайной проекции

Метод lsomap
Вместо линейного проецирования данных из многомерного пространства

в пространство низкой размерности можно использовать методы нелинейно­

го снижения размерности. Эти методы называют многократным обучением

(manifold learning).
Простейшая разновидность многократного обучения - изометрическое

отображение (isometric mapping- сокр. lsотар). Подобно ядерному РСА ме­

тод Isomap обучается новому, низкоразмерному отображению оригинального
набора признаков путем вычисления для всех точек попарных криволиней­

ных расстояний, т.е. геодезических кривых, а не евклидовых линий. Другими

словами, он обучается внутренней геометрии исходных данных на основании

того, где именно расположена точка относительно своих соседей в пределах

многообразия.

Isomap

from sklearn.manifold import Isomap

n_neighbors = 5
n_components = 10
n_jobs 4

isomap Isomap(n_neighbors=n_neighbors, n_components=n_components, \
n_jobs=n_jobs)

isomap.fit(X_train.loc[O:SOOO, :])
X_train_isomap isomap.transform(X_train)
X_train_isomap = pd.DataFrame(data=X_train_isomap, index=train_index)

Х validation_isomap isomap.transform(X_validation)
X_validation_isomap = pd.DataFrame(data=X_validation_isomap, \

index=validation_index)

scatterPlot(X_train_isomap, y_train, "Isomap")

На рис. 3.11 показана двумерная точечная диаграмма, полученная с исполь­
зованием метода Isomap.

Снижение размерности 1 139

~r:пенщ~ н::1бn дений lsomap

-10

-20

-30 -20 -10 о 1О 20 :ю 40
Переый ае~тор

Метка

• о

• t

• 2
• 3
• 4 . ~
• 6
• 7
• &
• 9

Рис. 3.11. Разделение наблюдений с использованием метода Isoтap

Многомерное масштабирование

Многомерное масштабирование (multidimensional scaling - MDS) - это

разновидность нелинейного снижения размерности, которая обучается сход­

ству точек оригинального набора данных и моделирует это сходство в про­

странстве меньшей размерности.

Многомерное масштабирование
from sklearn.manifold import MDS

n_components = 2
n init = 12
max iter = 1200
metric True
n_jobs = 4
random state = 2018

mds = MDS(n_components=n_components, n_init=n_init, \
max_iter=max_iter, metric=metric, n_jobs=n_jobs, \
random_state=random_state)

Х train mds mds.fit_transform(X_train.loc[O:lOOO, :])

140 1 Глава3

Х train mds pd.DataFrame(data=X_train_mds, \
index=train_index[O:lOOl])

scatterPlot(X_train_mds, y_train, "многомерное масштабирование")

На рис. 3 .12 показана двумерная точечная диаграмма, полученная с исполь­
зованием метода MDS.

10

б Метк

• о

I • 1

• 2

о 1$1 • 3

l • 4

• 5

• 6

-б • т

• 8

• 9

-10

-10 -5 о 5 10
Перgый а ор

Рис. 3.12. Разделение наблюдений с использованием метода MDS

Локально-линейное вложение

Другой популярный метод нелинейного снижения размерности - локаль­

но-линейное вложение (locally linear embedding - LLE). Идея метода заклю­
чается в сохранении расстояний между точками в пределах локального со­

седства при проецировании данных из исходного пространства признаков в

пространство меньшей размерности. Метод LLE выявляет нелинейную струк­
туру в исходном многомерном пространстве путем сегментирования данных

на меньшие компоненты (локальные области соседних точек) и моделирует

каждую компоненту как линейное вложение.

Для этого алгоритма мы задаем требуемое число компонент и количество

точек, учитываемых в заданной области соседства.

Локально-линейное вложение (LLE)
from sklearn.manifold import LocallyLinearEmЬedding

Снижение размерности 1 141

n_neighbors = 10
n_components = 2
method = 'modified'
n_jobs = 4
random state = 2018

lle = LocallyLinearEmЬedding(n_neighbors=n_neighbors, \
n_components=n_components, method=method, \
random_state=random_state, n_jobs=n_jobs)

lle.fit(X_train.loc[O:SOOO, :])
Х train lle - -

lle.transform(X_train)
X_train_lle = pd.DataFrame(data=X_train_lle, i ndex=train index)

X_validation_lle = lle.transform(X_validation)
X_validation_lle = pd.DataFrame(data=X_validation_lle, \

index=validation_index)

scatterPlot(X_train_lle, y_train, "локально-линейное вложение")

На рис. 3 .13 показана двумерная точечная диаграмма, полученная с исполь­
зованием метода LLE.

Ра,ще11енме набmодениИ. лсжально-nинеИное аложение

004

003

002 Метка

• о

~ 001
• 1
• 2

~ • 3

·i ООО
ф

• 4
• 5
• 6

-001 • 1
• 8
• 9

-о 02

-о 03

-О 04 -О ОЗ --0 02 -О 01 ООО 001 002
Гrереый tОЕtктор

Рис. 3.13. Разделение наблюдений с использованием метода LLE

142 1 Глава 3

Стохастическое вложение соседей

с t-распределением

Стохастическое вложение соседей с t-распредепением (t-distributed stochastic
neighbor embedding - t-SNE) - это метод нелинейного снижения размерно­

сти, применяемый для визуализации многомерных данных. В методе t-SNE
каждая многомерная точка моделируется в 2- или 3-мерном пространстве та­
ким образом, что сходные точки располагаются в нем по соседству друг с дру­

гом, а несходные точки - на удалении. Это достигается за счет учета двух рас­

пределений вероятности - по парам точек в многомерном пространстве и по

парам точек в пространстве низкой размерности, - причем таким образом,

чтобы сходные точки имели высокую вероятность, а несходные - низкую.

В частности, метод t-SNE минимизирует расстояние Кульбака - Лейблера

между двумя распределениями.

На практике, прежде чем применять метод t-SNE, лучше предварительно
использовать какой-то другой метод снижения размерности (например, РСА,

как сделано в данном случае). Это позволяет снизить уровень шумов в при­

знаках, которые передаются методу t-SNE, что ускоряет работу алгоритма.

t-SNE
from sklearn.manifold import TSNE

n_components = 2
learning_rate = 300
perplexity = 30
early_exaggeration = 12
init = 'random'
random state = 2018

tSNE = TSNE(n_components=n_components, learning_rate=learning_rate, \
perplexity=perplexity, early_exaggeration=early_exaggeration, \
init=init, random_state=random_state)

Х train tSNE ~ tSNE.fit_transform(X_train_PCA.loc[:SOOO, :9))
Х train tSNE = pd.DataFrame(data=X_train_tSNE, \

index=train_index[:SOOl])

scatterPlot(X_train_tSNE, y_train, "t-SNE")

Снижение размерности 1 143

В методе t-SNE используется невыпуклая функция потерь, а это оз­
начает, что разные способы инициализации алгоритма будут при­

водить к разным результатам. Стабильного решения не существует.

Двумерная точечная диаграмма, полученная с использованием метода

t-SNE, приведена на рис. 3.14.

Ра3Деnение н::~6/1юдений t-SNE

во

40

-20

-40

о

-15 -60 -2~ 50

МеТ1<8

• о

• 1
• 2
• 3
• 4
• 5

6
• 7

8
9

Рис. 3.14. Разделение наблюдений с использованием метода t-SNE

Другие методы снижения размерности

Мы рассмотрели как линейные, так и нелинейные варианты снижения раз­

мерности. Обсудим теперь методы, которые не зависят от геометрии или про­
странственной метрики.

Словарное обучение

Один из таких методов - словарное обучение (dictionary learning), осно­
ванное на обучении разреженному представлению исходных данных. Резуль­

тирующая матрица называется словарем, а результирующие векторы в сло­

варе - атомы. Последние представляют собой простые бинарные векторы,

компонентами которых служат нули и единицы. Каждый экземпляр исходных

данных может быть реконструирован в виде взвешенной суммы атомов.

144 1 Глава 3

Если предположить, что исходный набор данных содержит d признаков,
а словарь - п атомов, то возможны два варианта: словарь является либо не­

полным (п < d), либо переполненным (п > d). Неполный словарь обеспечивает
снижение размерности, представляя исходные данные меньшим количеством

векторов, на чем мы и сфокусируем свое внимание1 •

Существует мини-пакетная версия словарного обучения, которую мы при­

меним к нашему набору данных рукописных цифр. Как и в случае других ме­

тодов снижения размерности, мы зададим количество компонент. Кроме того,

необходимо задать размер пакета и количество итераций обучения.

Поскольку мы хотим визуализировать изображения с помощью двумерной

точечной диаграммы, нам для обучения необходим очень плотный словарь,

но на практике следовало бы использовать более разреженную версию.

Мини-пакетное словарное обучение
from sklearn.decomposition import MiniBatchDictionaryLearning

n_components = 50
alpha = 1
batch size = 200
n iter = 25
random state = 2018

miniBatchDictLearning = \
MiniBatchDictionaryLearning(n_components=n_components, \

alpha=alpha, batch_size=batch_size, n_iter=n_iter, \
random_state=random_state)

miniBatchDictLearning.fit(X_train.loc[:, :10000])
X_train_miniBatchDictLearning = \

miniBatchDictLearning.fit_transform(X_train)
X_train_miniBatchDictLearning = \

pd.DataFrame(data=X_train_miniBatchDictLearning, \
index=train_index)

Х validation_miniBatchDictLearning = \
miniBatchDictLearning.transform(X_validation)

X_validation_miniBatchDictLearning = \
pd.DataFrame(data=X_validation_miniBatchDictLearning, \

index=validation_index)

1 Переполненный словарь служит другим целям и находит применение в таких областях, как

сжатие изображений.

Снижение размерности 1 145

scatterPlot(X_train_miniBatchDictLearning, y_train, \
"мини-пакетное словарное обучение")

На рис. 3.15 показана двумерная точечная диаграмма, полученная с исполь­
зованием словарного обучения.

Метка

• о

1

• 2
• 3
• 4
• $

" 6
• 7
• 8
• 9

-10

-1~

-10 о 10
nерuый 11ектор

Рис. 3.15. Разделение наблюдений с использованием словарного обучения

Анализ независимых компонент

Одна из проблем, с которой часто приходится сталкиваться при работе с

неразмеченными данными, заключается в том, что в имеющиеся признаки

внедрены многочисленные независимые сигналы. Используя анализ незави­

симых компонент (independent component analysis - ICA), можно выделять
эти примеси в отдельные компоненты. По завершении такого разделения

мы сможем реконструировать любой из оригинальных признаков, суммируя

определенные комбинации индивидуальных компонент, которые генериру­

ются. Метод ICA широко применяется при обработке сигналов (например,
для идентификации голосов отдельных людей в аудиоклипе, записанном в

шумном кафетерии).

Вот как работает метод ICA.

Анализ независимых компонент
from sklearn.decomposition import FastICA

146 1 Гnава3

n_components = 25
algorithm = 'parallel'
whiten = True
max iter = 100
random state = 2018

fastICA = FastICA(n_components=n_components, algorithm=algorithm, \
whiten=whiten, max_iter=max_iter, random_state=random_state)

Х train fastICA fastICA.fit_transform(X_train)
Х train fastICA = pd.DataFrame(data=X_train_fastICA, \

index=train_index)

Х validation fastICA
Х validation fastICA

fastICA.transform(X_validation)
pd.DataFrame(data=X_validation_fastICA, \

index=validation_index)

scatterPlot(X_train_fastICA, y_train, "анализ независимых компонент")

На рис. 3.16 показана двумерная точечная диаграмма, полученная с исполь­
зованием метода ICA.

Ра3>1еnение н·· бnюден11й налм~ не:sа11исммых 1<омпонент

00-:l

Метка

001 • о

е- • 1

t • 2

1>1 • 3

i • 4
ООО • 5

• 6

• 7
8

-о 01 о 9

-002 -о 01 ООО 001 002
П р11ыи ue rop

Рис. 3.16. Разделение наблюдений с использованием анализа
независимых компонент

Снижение размерности 1 147

Резюме

В этой главе мы ввели и исследовали ряд алгоритмов снижения размерно­

сти, начав с линейных методов, таких как РСА и метод случайных проекций.

Далее мы обсудили нелинейные методы, такие как Isomap, многомерное мас­
штабирование, LLE и t-SNE. Также были рассмотрены методы, не основанные
на пространственных метриках, в частности, словарное обучение и ICA.

Снижение размерности позволяет переносить наиболее существенную

информацию в пространство с меньшим количеством измерений путем обу­

чения базовой структуре данных, причем без использования каких-либо ме­

ток. Применяя эти алгоритмы к набору рукописных цифр MNIST, мы смогли
добиться разумного разделения изображений на основании представляемых
ими цифр, используя всего лишь два измерения.

Это позволило вам убедиться в том, насколько огромны возможности под­

ходов, основанных на снижении размерности данных.

В главе 4 мы построим приложение на основе обучения без учителя, ис­
пользуя алгоритмы снижения размерности. В частности, мы вернемся к за­

даче обнаружения поддельных операций с банковскими картами (см. гл. 2) и
попытаемся отделить поддельные транзакции от нормальных, не используя

метки.

148 1 Глава 3

ГЛАВА4

Обнаружение аномалий

В главе 3 мы рассмотрели основные алгоритмы снижения размерности и
исследовали их способность захватывать наиболее существенную часть ин­

формации из базы данных рукописных цифр MNIST, значительно снижая
размерность по сравнению с первоначальными 784 измерениями. Даже если
оставить всего два измерения, алгоритмы обеспечивают разумное разделение

цифр без использования меток. Это служит свидетельством эффективности

алгоритмов обучения без учителя - они могут обучаться базовой структуре

данных и помогают выявлять скрытые закономерности в отсутствие меток.

В этой главе мы будем создавать приложение машинного обучения, ис­

пользуя методы снижения размерности, рассмотренные в предыдущей главе.

Мы вернемся к задаче из главы 2 и реализуем систему, позволяющую обнару­
живать попытки мошенничества с банковскими картами, только на этот раз

без использования меток.

В реальности фальсификация часто остается незамеченной, и лишь обна­

руженные факты мошенничества позволяют добавить метки в набор данных.

Более того, схемы мошенничества со временем меняются, поэтому системы

на основе обучения с учителем, подобные той, которую мы создали в главе 2,
теряют эффективность. Они позволяют выявлять уже встречавшиеся типы

подделок, но не способны адаптироваться к новым схемам.

В силу указанных причин (отсутствие достаточных меток и необходимость

как можно быстрее адаптироваться к новым видам мошеннических операций)

все большую популярность приобретают системы выявления мошенничества,

основанные на обучении без учителя.

Обнаружение попыток мошенничества

с банковскими картами

Вернемся к задаче выявления незаконных операций с банковскими карта­

ми, которая рассматривалась в главе 2.

Подготовка данных

Подобно тому, как это делалось в главе 2, загрузим набор данных с инфор­
мацией об операциях с банковскими картами, сгенерируем матрицу призна­

ков и массив меток и разобьем метки на тренировочный и тестовый наборы.

Метки будут использоваться не для обнаружения аномалий, а для того, чтобы

облегчить оценку возможностей создаваемой системы.

Как вы помните, всего имеется 284 807 транзакций с банковскими картами,
из которых 492 поддельные, и им присвоены положительные (подтверждаю­
щие их мошеннический статус) метки, равные единице. Остальные (нормаль­

ные) транзакции снабжены отрицательными (указывающими на отсутствие

мошенничества) метками, равными О.

Мы располагаем 30 признаками, пригодными для обнаружения аномалий:
время транзакции, сумма транзакции, а также 28 главных компонент. Разо­
бьем набор данных на тренировочный (содержащий 190 820 транзакций и 330
примеров подделки) и тестовый (содержащий оставшиеся 93 987 транзакций
и 162 примера подделки).

Загрузка наборов данных
current_path = os.getcwd()
file os.path.sep.join([' ', 'datasets', 'credit_card_data', \

'credit_card.csv'])
data pd.read_csv(current_path + file)

dataX data.copy() .drop(['Class'], axis=l)
dataY data ['Class'] . сору ()

featuresToScale = dataX.columns
sX = pp.StandardScaler(copy=True)
dataX.loc[:,featuresToScale] = \

sX.fit_transform(dataX[featuresToScale])

X_train, X_test, y_train, y_test = train_test split(dataX, dataY, \
test_size=0.33, random_state=2018, stratify=dataY)

Определение функции для оценки аномалий

Далее нам нужно написать функцию, определяющую, насколько необычна

каждая транзакция. Если исходить из того, что попытки мошенничества встре­

чаются редко и в чем-то отличаются от большинства транзакций, являющихся

150 1 Гnава4

законными, то можно предположить, что чем выше степень анормальности

транзакции, тем выше вероятность того, что она является мошеннической.

Как обсуждалось в предыдущей главе, алгоритмы снижения размерности

уменьшают размерность данных, одновременно пытаясь минимизировать

ошибку их реконструкции. Другими словами, эти алгоритмы пытаются за­

хватить наиболее существенные признаки так, чтобы с их помощью можно

было обеспечить как можно более полное восстановление исходного набора

признаков по редуцированному набору. Однако при переходе к пространству

более низкой размерности алгоритмы не в состоянии захватить всю инфор­

мацию об исходном наборе. Следовательно, обратная реконструкция всегда

будет выполняться с определенной погрешностью.

В контексте нашего набора данных наибольшая ошибка реконструкции

будет генерироваться на тех транзакциях, которые сложнее всего смоделиро­

вать, т.е. на транзакциях, которые встречаются реже всего и являются наибо­

лее аномальными. Поскольку мошеннические транзакции возникают нечасто

и предположительно отличаются от нормальных транзакций, именно они

будут давать наибольшую ошибку реконструкции. Поэтому мы определим

оценку аномалии как ошибку реконструкции. Для каждой транзакции ошиб­

ка реконструкции представляет собой сумму квадратов разниц между исход­

ной матрицей признаков и реконструированной матрицей, полученной с ис­

пользованием алгоритма снижения размерности. Мы будем масштабировать

эту сумму квадратов в интервале от минимальной до максимальной суммы

квадратов, вычисленной для всего набора данных, чтобы все значения ошиб­

ки реконструкции лежали в диапазоне от нуля до единицы.

Значения ошибки реконструкции для транзакций с наибольшей суммой

квадратов разниц будут близки к единице, тогда как в случае транзакций с

наименьшей суммой квадратов разниц эти значения будут близки к нулю.

Все это уже должно быть вам знакомым. Как и в случае созданного в главе 2
решения на основе обучения с учителем, алгоритм снижения размерности в

конечном счете будет назначать каждой транзакции оценку аномалии в диа­

пазоне от нуля до единицы. Нуль соответствует обычным транзакциям, а еди­

ница - аномальным (которые, вероятнее всего, являются мошенническими).

Вот как выглядит функция оценки.

def anomalyScores(originalDF, reducedDF):
loss np.sum((np.array(originalDF)-np.array(reducedDF))**2, \

axis=l)
loss = pd.Series(data=loss, index=originalDF.index)
loss = (loss-np.min(loss))/(np.max(loss)-np.min(loss))
return loss

Обнаружение аномалий 1 1 51

Определение метрик оценки

Несмотря на то что при обнаружении попыток мошенничества метки не
задействуются, мы будем применять их для оценки разрабатываемых реше­

ний. Метки помогут нам понять, насколько хорошо приложения справляются

с выявлением известных схем мошенничества.

Как и в главе 2, мы будем использовать кривую "точность- полнота': сред­

нюю точность и показатель auROC в качестве метрик оценки.
Вот функция, которая будет выводить результаты в графическом виде.

def plotResults(trueLabels, anomalyScores, returnPreds = False):
preds = pd.concat([trueLabels, anomalyScores], axis=l)
preds.columns = ['trueLabel', 'anomalyScore']
precision, recall, thresholds = \

precision_recall_curve(preds['trueLabel'J, \
preds['anomalyScore'])

average_precision = \
average_precision_score(preds['trueLabel'], \

preds['anomalyScore'])
plt.step(recall, precision, color='k', alpha=0.7, where='post')
plt.fill_between(recall, precision, step='post', alpha=0.3, \

color=' k')

pl t. xlabel ('Полнота')
рlt.уlаЬеl('Точность')

р lt . у lim ([О • О , 1 . О 5])
plt. xlim ([О • О, 1 . О])

plt.title('Kpивaя "точность - полнота": средняя точность \
{0:0.2f}' .format(average_precision))

fpr, tpr, thresholds = roc_curve(preds['trueLabel'], \
preds['anomalyScore'])

areaUnderROC = auc(fpr, tpr)

plt. figure ()
plt.plot(fpr, tpr, color='r', lw=2, lаЬеl='RОС-кривая')

plt.plot([O, 1), (0, 1), color='k', lw=2, linestyle='--')
plt.xlim([O.O, 1.0))
plt.ylim([О.О, 1.05))
plt.xlabel('Дoля ложноположительных исходов')

plt.ylabel('Дoля истинноположительных исходов')

152 1 Гnава4

plt.title(' Рабочая характеристика приемника: \n \
площадь под кривой= {0:0.2f)' .format(areaUnderROC))

plt.legend(loc="lower right")
plt. show ()

if returnPreds==True:
return preds

Метки подделок и оценочные метрики помогут нам понять, на­

сколько хорошо система на основе обучения без учителя справля­

ется с распознаванием известных схем мошенничества, т.е. типов

мошенничества, которые были установлены ранее и для которых

имеются метки.

Однако мы не сможем оценить эффективность системы в отноше­

нии распознавания неизвестных схем мошенничества. Другими

словами, в наборе данных могут присутствовать образцы, некор­

ректно помеченные как поддельные в силу того, что финансовая

компания ранее не сталкивалась с ними.

Сразу же стоит отметить, что оценивать системы на основе обуче­

ния без учителя намного труднее, чем системы на основе обучения

с учителем. О качестве систем на основе обучения без учителя ча­

сто судят по их способности выявлять известные схемы мошенни­

чества. Но эта оценка неполная. Было бы лучше, если бы метрика

позволяла оценить способность системы идентифицировать неиз­

вестные схемы мошенничества, как в ранее известных, так и в бу­

дущих данных.

Поскольку мы не можем вновь обратиться к финансовой компа­

нии с просьбой оценить ранее неизвестные образцы мошенни­

чества, идентифицированные нами, мы вынуждены оценивать

решения на основе обучения без учителя исходя исключительно

из того, насколько хорошо они обнаруживают известные образцы

подделок. Оценивая результаты, очень важно не забывать об этом

ограничении.

Определение функции для построения графика

Чтобы отобразить разделение точек, достигнутое с помощью алгоритма

снижения размерности для двух первых измерений, мы воспользуемся функ­

цией построения точечных диаграмм из главы 3.

Обнаружение аномаnий 1 153

def scatterPlot(xDF, yDF, algoName):
tempDF = pd.DataFrame(data=xDF.loc[:, 0:1], index=xDF.index)
tempDF = pd.concat ((tempDF, yDF), axis=l, join="inner")
tempDF. columns = ["Первый вектор", "Второй вектор", "Метка"]

sns. lmplot (х="Первый вектор", у="Второй вектор", huе="Метка", \
data=tempDF, fit_reg=False)

ах = plt. gca ()
ax.set_title("Paздeлeниe наблюдений: " + algoName)

Обнаружение аномалий с помощью стандартного

метода РСА

В главе 3 было продемонстрировано, как метод РСА захватывает большую
часть информации, содержащейся в наборе данных MNIST, используя всего
лишь несколько компонент, количество которых гораздо меньше количества

первоначальных измерений. В действительности всего лишь двух измерений

хватило для того, чтобы визуально разделить изображения на отчетливо раз­

личные группы, исходя из представляемых ими цифр.

Теперь, отталкиваясь от этой концепции, мы используем метод РСА для

изучения базовой структуры набора данных, описывающего транзакции с

банковскими картами. После этого мы используем обученную модель для ре­

конструкции транзакций и рассчитаем, насколько реконструированные тран­

закции отличаются от первоначальных. Те транзакции, с восстановлением

которых метод РСА справился хуже всего, являются наиболее аномальными

(и, вероятнее всего, им соответствуют мошеннические операции).

Вспомните, что имеющиеся в нашем распоряжении признаки,

соответствующие транзакциям из набора данных, уже являются

выходом метода РСА и были предоставлены нам финансовой ком­

панией. Однако не будет ничего необычного и в том, что мы выпол­

ним анализ для обнаружения аномалий, используя набор данных с

уже уменьшенной размерностью. Мы просто будем обрабатывать

исходные главные компоненты так, как если бы они были предос­

тавлены нам в качестве исходных признаков.

Впредь мы будем трактовать исходные главные компоненты имен­

но как исходные признаки. Любое упоминание главных компонент

будет относиться к главным компонентам, полученным в резуль­

тате анализа РСА, а не к оригинальным признакам, которые были

нам предоставлены.

154 1 Гnава4

Прежде всего, попытаемся понять, почему РСА - и снижение размерно­

сти в целом - помогает нам обнаруживать аномалии. Процесс снижения раз­

мерности, в соответствии с тем, как мы его определили, основан на оценке

ошибки реконструкции данных. Мы хотим, чтобы ошибка реконструкции для

транзакций редкого типа - тех, которые, вероятнее всего, являются поддель­

ными, - была как можно большей, а для остальных транзакций - как можно

меньшей.

В случае РСА ошибка реконструкции будет в значительной степени зави­

сеть от количества главных компонент, которые мы удерживаем и используем

для реконструкции оригинальных транзакций. Чем больше главных компо­

нент мы оставим, тем успешнее метод РСА обучится базовой структуре ис­

ходных данных.

Однако при этом необходимо обеспечить достижение определенного ба­

ланса. Если мы оставим слишком много главных компонент, то алгоритму

РСА удастся настолько хорошо реконструировать исходные транзакции, что

ошибка реконструкции будет минимальной для всех транзакций. Если же ко­

личество удержанных главных компонент будет слишком маленьким, то ме­

тод РСА не сможет достаточно хорошо реконструировать любую из исходных

транзакций, даже если она нормальная, а не поддельная.

Ниже мы постараемся определить, каким должно быть оптимальное ко­

личество главных компонент, чтобы обеспечить построение эффективной

системы обнаружения мошеннических транзакций.

Количество РСА-компонент совпадает с числом исходных

размерностей

Для начала зададимся следующим вопросом: если мы используем РСА для

генерирования главных компонент в количестве, совпадающем с исходным

числом признаков, то сможет ли система обнаруживать аномалии?

Если хорошенько над этим подумать, то ответ должен быть очевидным.

Вспомните приведенный в предыдущей главе пример использования метода

РСА для работы с базой данных MNIST.
Когда количество главных компонент совпадает с исходным числом при­

знаков, РСА захватывает почти 100% дисперсии/информации в процес­
се генерирования главных компонент. Поэтому, когда РСА реконструиру­

ет транзакции из главных компонент, ошибка реконструкции будет малой

для всех транзакций, как поддельных, так и всех остальных. Мы не сможем

проводить различие между транзакциями редко встречающегося типа и

Обнаружение аномалий 1 155

обычными транзакциями. Иными словами, обнаружение аномалий будет

неэффективным.

Чтобы пояснить вышесказанное, применим РСА для генерирования глав­

ных компонент в том же количестве, что и оригинальные признаки (30 для
нашего набора транзакций с банковскими картами). Это осуществляется с по­

мощью функции f i t t r an s f о rrn из библиотеки Scikit-learn.
Для восстановления оригинальных транзакций из генерируемых главных

компонент мы используем функцию inverse transforrn из библиотеки
Scikit-learn.

30 главных компонент
from sklearn.decomposition import РСА

n_components = 30
whiten = False
random state = 2018

рса = PCA(n_components=n_components, whiten=whiten, \
random_state=random_state)

Х train РСА
Х train РСА

pca.fit_transform(X_train)
pd.DataFrame(data=X_train_PCA, index=X_train.index)

Х train РСА inverse
Х train РСА inverse

pca.inverse_transform(X_train_PCA)
pd.DataFrame(data=X_train_PCA_inverse, \

index=X_train.index)

scatterPlot(X_train_PCA, y_train, "РСА")

На рис. 4.1 приведена диаграмма разделения транзакций с использованием
первых двух главных компонент метода РСА.

Рассчитаем кривую "точность - полнота" и аuRОС-кривую.

anomalyScoresPCA = anomalyScores(X_train, X_train_PCA_inverse)
preds = plotResults(y_train, anomalyScoresPCA, True)

Средняя точность, равная О • О 7, указывает на то, что данное решение не

является удачным (рис. 4.2). Оно захватывает лишь небольшую часть поддель­
ных транзакций.

156 1 Гnава4

Разделение наблюдений : РСА

•

2 • •
g.
" ж • Метка

'1 • о

1
" а:>

-2

о 20 40 60 80 100 120 140
Первы" 11ектор

Рис. 4.1. Разделение наблюдений с использованием обычного
метода РСА и 30 главных компонент

Поиск оптимальноrо количества главных компонент

А теперь давайте проведем ряд экспериментов, уменьшая количество гене­

рируемых главных компонент РСА и вычисляя результаты, касающиеся обна­

ружения фактов мошенничества. Нам нужно, чтобы решение, обеспечиваю­

щее обнаружение подделок с помощью метода РСА, приводило к достаточно

большой ошибке в тех редких случаях, когда удается разумно отделить мошен­

нические транзакции от законных. Однако ошибка не может быть настолько

малой или настолько большой для всех транзакций, чтобы редкие и обычные

транзакции были практически неразличимыми.

Выполнив ряд экспериментов с использованием кода, доступного на сайте

GitHub (http://Ьit.ly/2Gd4v7e), мы найдем, что оптимальное количе­
ство главных компонент для данного набора равно 27.

На рис. 4.3 приведена диаграмма разделения транзакций с использованием
первых двух главных компонент РСА.

На рис. 4.4 приведены кривая "точность - полнота': средняя точность и

аuRОС-кривая.

Обнаружение аномалий 1 157

Кривая •точность - nолнота" : средняя точность = о 07

10

08

04 Об 08
Полкота

Рабочая характеристика приемника :
площадь под кривой= О.9З

Дола 11ОJ11tюnоnож.11тельных исходов

10

Рис. 4.2. Результатьt, полученные с использованием 30 главных компонент

Как видите, мы смогли выявить 80% подделок с 75%-ной точностью. Это

впечатляющий результат, если учесть, что мы не использовали никаких меток.

Чтобы еще лучше это прочувствовать, вспомните, что тренировочный набор

содержит 190 820 транзакций, из которых всего лишь 330 мошеннические.
Используя метод РСА, мы вычислили ошибку реконструкции для каждой

из этих 190 820 транзакций. Если мы отсортируем эти транзакции по убыва­

нию наибольшей ошибки реконструкции (также известной как оценка ано­

мальности) и извлечем из списка первые 350 транзакций, то увидим, что 264
из них являются мошенническими.

Это соответствует точности 75%. Кроме того, 264 транзакции, извлеченные
из отобранных нами 350, представляют 80% от общего количества подделок в

158 1 Гnава4

Разделение наблюдений : РСА

•

2 • •
~
~ • Ме111а

·~ • о

&;

-2

о 20 40 60 во 100 uo 140
nepaыit вектор

Рис. 4.3. Разделение наблюдений с использованием обычного
метода РСА и 27 главных компонент

тренировочном наборе (264 из 330). И не забывайте, что мы не использовали

никаких меток. Это истинный пример обучения без учителя.

Ниже приведен код, обеспечивающий вывод соответствующей информации.

preds.sort_values(by="anomalyScore", ascending=False, inplace=True)
cutoff = 350
predsTop = preds[:cutoff]
рrint("Точность:", \

np.round(predsTop.anomalyScore[predsTop.trueLabel \
1) .count()/cutoff, 2))

рrint("Полнота:", \
np.round(predsTop.anomalyScore[predsTop.trueLabel == \
1) .count()/y_train.sum(), 2))

print ("Выявлено подделок из 330 случаев:", predsTop . trueLabel. sum ())

Результаты подытожены ниже:

Точность: 0.75
Полнота: 0.8
Выявлено подделок из 330 случаев: 264

Несмотря на то что данное решение уже само по себе неплохое, мы попы­

таемся разработать систему обнаружения мошеннических транзакций, осно­

ванную на использовании других методов снижения размерности.

Обнаружение аномалий 1 159

Крива11 "точность - полнота" : средняя точность= О 69

1 0 ----

08

~ Об

~
ь
t" 04

02

GO"""""......,..._.......,..._. ~.....,..._~.....,..._~~....,.;:i....~---1
00 02 04 Об 08

Полнота

Рабочая характеристика приемника :
площадь под кривой= 0.90

10

,-

- RОС-кривая

02 04 06 08 10
Доля nожноnоложительных исходов

Рис. 4.4. Результаты, полученные с использованием стандартного
метода РСА и 27 главных компонент

Обнаружение аномалий с помощью разреженного

метода РСА

Для начала попробуем применить разреженный метод РСА, который на­

поминает стандартный метод РСА, но обеспечивает получение разреженного

представления главных компонент.

Нам нужно указать требуемое количество главных компонент, а также за­

дать гиперпараметр alpha, управляющий степенью разреженности. В про­

цессе поиска оптимального решения мы будем экспериментировать с различ­

ными значениями этих параметров.

160 1 Гnава4

Следует отметить, что для стандартного метода РСА в библиотеке Scikit­
learn предусмотрены функции fit_transform, генерирующая главные
компоненты, и inve r se _ t r ans f о rm, реконструирующая оригинальные из­
мерения по главным компонентам. Используя эти две функции, мы смогли

рассчитать ошибку реконструкции между оригинальным набором признаков

и реконструированным набором, полученным с помощью РСА.

К сожалению, библиотека Scikit-learn не содержит функцию inverse _
transform для разреженного метода РСА. Поэтому мы сами должны напи­
сать код для реконструирования оригинальных измерений после применения

разреженного метода РСА.

Начнем с генерирования разреженной матрицы РСА с 27 главными компо­

нентами и гиперпараметром alpha, равным О. 0001.

Разреженный РСА
from sklearn.decomposition import SparsePCA

n_components = 27
alpha = 0.0001
random state 2018
n_jobs = -1

sparsePCA = SparsePCA(n_components=n_components, \
alpha=alpha, random_state=random_state, n_jobs=n_jobs)

sparsePCA.fit(X_train.loc[:, :])
X_train_sparsePCA sparsePCA.transforrn(X_train)
X_train_sparsePCA pd.DataFrarne(data=X_train_sparsePCA, \

index=X_train.index)

scatterPlot(X_train_sparsePCA, y_train, "разреженный РСА")

Точечная диаграмма для разреженного метода РСА приведена на рис. 4.5.
Далее мы сгенерируем оригинальные измерения путем простого умноже­

ния матрицы разреженного РСА (насчитывающей 190 820 образцов и 27 изме­

рений) на компоненты разреженного РСА (матрица 27 х 30), используя библи­

отеку Scikit-learn. В результате мы получим матрицу оригинального размера
(190 820 х 30). Кроме того, мы должны прибавить средние значения каждого

оригинального признака к новой матрице.

Получив эту обратную матрицу, мы можем вычислить ошибки рекон­

струкции (оценки аномальности), как это делалось в случае стандартного

метода РСА.

Обнаружение аномалий 1 161

X_train_sparsePCA_inverse = \
np.array(X_train_sparsePCA) .dot(sparsePCA . components_) + \
np.array(X_train.mean(axis=O))

Х train_sparsePCA_inverse = \
pd.DataFrame(data=X_train_sparsePCA_inverse, index=X_train . index)

anomalyScoresSparsePCA = anomalyScores(X_train, \
X_train_sparsePCA_inverse)

preds = plotResults(y_train, anomalyScoresSparsePCA, True)

Сгенерируем кривую "точность- полнота" и RОС-кривую.

4

i

Разделение наблюдений : разреженный РСА

•

•
•

• •

. о •
f

•
1%1

-2

о 20 -4() 60 зо 100 120 140
Переый еектор

Men<11
• о

1

Рис. 4.5. Разделение наблюдений с использованием разреженного
метода РСА и 27 главных компонент

Как следует из рис. 4.6, данные результаты аналогичны тем, которые были
получены с использованием стандартного метода РСА. В этом нет ничего нео­

жиданного, поскольку стандартный и разреженный методы РСА очень схожи

между собой: последний - просто разреженное представление первого.

Используя код, приведенный на сайте GitHub (h t t р : / / Ьi t . 1у/2 Gd 4 v 7 е),
вы сможете провести собственные эксперименты, изменяя количество гене­

рируемых главных компонент и гиперпараметр alpha, однако наши экспери­
менты указывают на то, что данное решение на основе разреженного метода

РСА является наилучшим.

162 1 Гnава4

Крив я "точность - nолнота• : средняя точность = 0.69
10 ,i-.,.,,...._,

06

02

оо.....,. ~_,.~~..-.......-~~--........ ~~--:-.~--1
00 02 04 05 08

nолнотсt

Рабочая характеристика приемника:
nлощадь под кривой= 0.90

Доля оожноnоl\Ожительных ио.оnое

10

Рис. 4.6. Результаты, полу~енные с использованием разреженного
метода РСА и 27 главных компонент

Обнаружение аномалий с помощью ядерного

метода РСА

Следующим шагом будет применение ядерного метода РСА, который

представляет собой нелинейную разновидность РСА, используемую в тех

случаях, когда поддельные и подлинные транзакции не являются линейно

разделимыми.

Нам нужно указать требуемое количество генерируемых компонент, ядро

(мы используем RВF-ядро, как это делали в предыдущей главе) и гиперпараметр

Обнаружение аномалий 1 163

g arnma (для которого по умолчанию устанавливается значение 1 / n _ f еа t ure s,
т.е. 1/30 в нашем случае). Кроме того, мы должны установить для переменной
fit_inverse_transforrn значение true, чтобы применить встроенную
функцию inve r s е _ t r ans f orrn, предоставляемую библиотекой Scikit-learn.

Наконец, учитывая высокую стоимость обучения с использованием ядер­

ного метода РСА, мы будем тренировать модель на первых двух тысячах при­

меров из транзакционного набора данных. Этот вариант не идеальный, но он

обеспечит быстрое проведение экспериментов.

В ходе тренировки мы преобразуем весь тренировочный набор данных и

сгенерируем главные компоненты. Затем мы используем функцию inverse_
transforrn для воссоздания набора оригинальной размерности из главных
компонент, полученных с помощью ядерного метода РСА.

* Ядерный РСА
from sklearn.decomposition import KernelPCA

n_components = 27
kernel = 'rЬf'
gamma = None
fit inverse transform = True - -
random state = 2018
n_jobs = 1

kernelPCA = KernelPCA(n_components=n_components, kernel=kernel, \
gamma=gamma, fit_inverse_transform=fit_inverse_transform, \
n_jobs=n_jobs, random_state=random_state)

kernelPCA.fit(X_train.iloc[:2000])
X_train_kernelPCA = kernelPCA.transform(X_train)
X_train_kernelPCA = pd.DataFrame(data=X_train_kernelPCA, \

index=X_train.index)

Х train kernelPCA inverse = - - -
kernelPCA.inverse_transform(X_train_kernelPCA)

Х train kernelPCA inverse = - - -
pd.DataFrame(data=X_train_kernelPCA_inverse, index=X_train.index)

scatterPlot(X_train_kernelPCA, y_train, "ядерный РСА")

Точечная диаграмма для ядерного метода РСА приведена на рис. 4.7.

164 1 Гпава 4

041'

02

-о 2

- 04

Разделение наблюдений: ядерный РСА

-о 2 00 02 04
Гlервым аектор

~Т11а

• о

Рис. 4.7. Разделение наблюдений с использованием ядерного
метода РСА и 27 главных компонент

Вычислим оценки аномальности и выведем результаты.

Как следует из рис. 4.8, данные результаты намного хуже тех, которые были
получены с помощью стандартного и разреженного методов РСА. С ядерным

методом РСА стоит поэкспериментировать, но мы не будем применять его для

обнаружения фактов мошенничества, поскольку предыдущие решения про­

демонстрировали лучшие результаты.

Мы не будем создавать решение на основе сингулярного разложе­

ния, поскольку результат очень схож с решением на основе стан­

дартного метода РСА. Этого и следовало ожидать, ведь методы

РСА и SVD тесно связаны между собой.

Обнаружение аномалий с помощью гауссовской

случайной проекции

Теперь попытаемся разработать решение с использованием гауссовской

случайной проекции. Вспомните, что в данном случае можно задать либо тре­

буемое количество компонент, либо значение гиперпараметра eps, контроли­
рующего качество вложения, полученного на основании леммы Джонсона -

Линденштрауса.

Обнаружение аномалий 1 165

Крива!! •точность - полнота• : средняя точность = О 07

10

08

~ Об
:r:
:r

.:; 04

о.с 06 08
Помота

Рабочая характеристика приемника:
площадь под кривой = 0.93

Дoll!I /10Ж>t0ПOAOJ8tИTellbHЫX исхо.аое

10

Рис. 4.8. Результаты, полученные с использованием ядерного
метода РСА и 27 главных компонент

Мы остановимся на варианте, предполагающем явное задание количества

компонент. Гауссовские случайные проекции обучаются очень быстро, поэто­

му мы сможем проводить обучение, используя полный тренировочный набор.

Как и в случае разреженного метода РСА, нам потребуется собственная

функция inverse_transform, поскольку такая функция не предоставляет­
ся библиотекой Scikit-learn.

Гауссовская случайная проекция
from sklearn.random_projection import GaussianRandomProjection

n_components = 27
eps = None

166 1 Глава 4

random state = 2018

GRP = GaussianRandomProjection(n_components=n_components, eps=eps, \
random_state=random_state)

Х train GRP GRP.fit_transform(X_train)
Х train GRP pd.DataFrame(data=X_train_GRP, index=X_train.index)

scatterPlot(X_train_GRP, y_train, "гауссовская случайная проекция")

Точечная диаграмма для гауссовской случайной проекции приведена на

рис. 4.9, а соответствующие результаты - на рис. 4.10.

Раз:;пiение наблюдений : гауссовская случайная :роекw~я

• •

:i · .
~ -~ 11

·~ -10

~ 1
(1:1 -15 ~

-201

,,, . .
• •

•

::j~~.~~. ~~.~-·~. ~-.~~. ~-.~~.
-50 -40 -30 -20 -10 о 10 20

nepиыit вектор

Men<a
• о

Рис. 4.9. Разделение наблюдений с использованием гауссовской
слу~айной проекции и 27 компонент

Такие результаты нас не устраивают, поэтому мы не будем применять гаус­

совские случайные проекции для обнаружения фальсификаций.

Обнаружение аномалий с помощью разреженной

случайной проекции

Попробуем спроектировать решение с использованием разреженной слу­

чайной проекции.

Обнаружение аномалий 1 167

КриваА "точность - полнота· : средняя точность= 0.14

10

08

02

oo.i-~~-........-................... ~-. ~~~...-_,.;;:o,,,,----1
00 02 04 06 08

nолnота

Рабочая характеристика приемника:
площадь под крквой = 0.96

Дол!! ложноnопожктельных мсходое

10

Рис. 4.10. Результаты, полученные с использованием гауссовской
случайной проекции и 27 компонент

В данном случае вместо значения гиперпараметра ер s мы укажем требуемое
количество компонент. Кроме того, подобно решению с гауссовской случай­
ной проекцией, мы используем собственную функцию inverse _ transform
для создания оригинальных измерений из компонент, полученных методом

разреженной случайной проекции.

Разреженная случайная проекция
from sklearn.random_projection import SparseRandomProjection

n_components = 27
density = 'auto'
eps = .01

168 1 Глава 4

dense_output True
random state 2018

SRP SparseRandomProjection(n components=n_components, \
density=density, eps=eps, dense_output=dense_output, \
random_state=random_state)

Х train SRP
Х train SRP

SRP.fit_transform(X_train)
pd.DataFrame(data=X_train_SRP, index=X_train.index)

scatterPlot(X_train_SRP, y_train, "разреженная случайная проекция")

Точечная диаграмма для разреженной случайной проекции приведена на

рис. 4.11, а соответствующие результаты - на рис. 4.12.

Разделение наблюдений : разреженная случайная проекция

20 •
10 • •

о ,
~ -10 • Метка

~· • • о

• &; -20

-30

-40 •
-зо -20 -10 о 10 20 30

Первый вектор

Рис. 4.11. Разделение наблюдений с использованием разреженной
случайной проекции и 27 компонент

Как видим, этот вариант также не привел к удовлетворительным резуль­

татам, поэтому мы продолжим наше исследование, используя другие методы

снижения размерности.

Обнаружениеаномапий 1 169

Кривая "точность - полнота" : средняя точность = 0.15

lO

08

~Об
ь
... 04

02

08
nол ота

Рабочая характеристика приемника:
площадь под кривоИ = 0.94

02 04 06 08
ДОЛА ЛОЖНОПОl!О*.ИТIМЫtЫХ ИСХО.1108

10

10

Рис. 4.12. Результаты, полученные с использованием разреженной
случайной проекции и 27 компонент

Нелинейные методы обнаружения аномалий

До сих пор мы разрабатывали решения, в которых использовались ли­

нейные методы снижения размерности, такие как стандартный РСА, раз­

реженный РСА, гауссовская случайная проекция и разреженная случайная

проекция. Мы также разработали решение на основе нелинейной версии

РСА - ядерного метода РСА.

К настоящему моменту наилучшим из исследованных нами решений явля­

ется стандартный метод РСА.

170 1 Гnава4

Мы могли бы обратиться к нелинейным алгоритмам снижения размерно­

сти, но версии этих алгоритмов с открытым исходным кодом работают очень

медленно и не годятся для быстрого обнаружения попыток мошенничества.

Поэтому мы пропустим этот класс методов и сразу же перейдем к рассмотре­

нию методов снижения размерности, не основанных на пространственных

метриках: словарное обучение и анализ независимых компонент.

Обнаружение аномалий с помощью словарного

обучения

На этот раз мы разработаем решение, предполагающее словарное обуче­

ние. Вспомните, что соответствующий алгоритм обучается разреженному

представлению исходных данных. Использование векторов в обучаемом сло­

варе позволяет реконструировать каждый экземпляр в виде взвешенной сум­

мы этих обученных векторов.

Для обнаружения аномалий мы хотим использовать неполный словарь,

чтобы количество векторов было меньше количества оригинальных измере­

ний. Это ограничение упрощает реконструкцию обычных транзакций, кото­

рые встречаются наиболее часто, и намного затрудняет конструирование ред­

ко встречающихся поддельных транзакций.

В нашем случае мы будем генерировать 28 векторов (или компонент).
В процессе обучения словарю будет передано 1 О пакетов, каждый из которых

содержит 200 образцов.
Нам также понадобится собственная функция inverse_transform.

Мини-пакетное словарное обучение
from sklearn.decomposition import MiniBatchDictionaryLearning

n_components = 28
alpha = 1
batch size = 200
n iter = 10
random state = 2018

miniBatchDictLearning = \
MiniBatchDictionaryLearning(n_components=n_components, \

alpha=alpha, batch_size=batch_size, n_iter=n_iter, \
random_state=random_state)

Обнаружение аномаnий 1 171

miniBatchDictLearning.fit(X_train)
X_train_miniBatchDictLearning = \

miniBatchDictLearning.fit_transform(X_train)
X_train_miniBatchDictLearning = \

pd.DataFrame(data=X_train_miniBatchDictLearning, \
index=X_train.index)

scatterPlot(X_train_miniBatchDictLearning, y_t rain, \
"мини-пакетное словарное обучение")

Точечная диаграмма для словарного обучения приведена на рис. 4.13, а со­
ответствующие результаты - на рис. 4.14.

Разделение наблюдений: t.tини-nакетное словарное обучение

•
20

1
15 ·' ~ • ~ 10 • Метк11

·= • о § 1
&;

s

о •

о 20 40 00 00 100 120 140
Первый~ тор

Рис. 4.13. Разделение наблюдений с использованием
словарного обучения и 28 компонент

Эти результаты гораздо лучше, чем те, которые были получены с использо­

ванием ядерного РСА, а также гауссовской и разреженной случайной проек­

ции, но несравнимы с результатами стандартного метода РСА.

Используя код, доступный на сайте GitHub, вы сможете провести собствен­

ные эксперименты, чтобы выяснить, удастся ли улучшить данное решение, но

пока что лидерство остается за РСА.

172 1 Гnава4

Кр~1вая •точность - полнота" : средняя точность = 0.42

10

По1111ота

Рабочая характеристика приеNника:
площадь под кривой= 0.93

10

~ 10 ..,.,.
~ ,,
~ ,,
"' 0!1 ," t ,"
с; ,,"

~Об ,,

~ ,"""
~ ,,
~ 04 ,,

~ ,,"''
~ 0.2 ,"
t ,,'
~t ,"' - RОС-крмеаА

00 t.---·---..----...-------.----т-----i
00 02 04 Об 08 1.0

Дот• 11Ожttо11011Ожмтеn1st1ых мсходое

Рис. 4.14. Результаты, полученные с использованием
словарного обучения и 28 компонент

Обнаружение аномалий с помощью метода ICA
Теперь мы создадим решение на основе метода ICA.
Нам нужно указать количество компонент, которое мы установим равным

27. Библиотека Scikit-learn предоставляет функцию inverse _ transforrn,
поэтому в создании собственной функции нет никакой необходимости.

Анализ независимых компонент
from sklearn.decomposition import FastICA

n components = 27

Обнаружение аномалий 1 173

algorithm = 'parallel'
whiten = True
max iter = 200
random state = 2018

fastICA = FastICA(n_components=n_components, algorithm=algorithm, \
whiten=whiten, max_iter=max_iter, random_state=random_state)

Х train fastICA
Х train fastICA

fastICA.fit_transform(X_train)
pd.DataFrame(data=X_train_fastICA, \

index=X_train.index)

Х train fastICA inverse =
fastICA.inverse_transform(X_train_fastICA)

Х train f astICA inverse =
- -

pd.DataFrame(data=X_train_fastICA_inverse, index=X_train.index)

scatterPlot(X_train_fastICA, y_train, "анализ независимых компонент")

Точечная диаграмма для метода ICA приведена на рис. 4.15, а соответству­
ющие результаты - на рис. 4.16.

174 1 Гnава4

Разделение наблюдений · ан лиэ независимых компонент

001

ООО

8'
i -о 01

" •S

8.
~ -002

-о 03

-004

-0.004 -о 002 0000 0002
Переыii вектор

0004

№тха

• о

1

Рис. 4.15. Разделение наблюдений с использованием
метода ICA и 27 компонент

Кривая "точность - полнота" : средняя точность= 0.69
10 ,.,_....,__,

08

04

02

ОО+"'-..-.--...~~~.....--~--,,._ -....,._;-.~--1
00 02 04 06 08

Полнота

Рабочая характеристика приемника:
площадь под кривом= 0.90

~ 10

~
~ 0.8 _..------

!
~ 06
!'

1~ 04

02
f:
~ - RОС-крмеаА

1 0

00---~-~~~~~~~~~~~~~~--1

GO 02 0.4 06 08 10
Доля пожноnоnожительных иоодое

Рис. 4.16. Результаты, полученные с использованием
метода ICA и 27 компонент

Эти результаты совпадают с теми, которые были получены с использова­

нием стандартного метода РСА. Таким образом, данное решение сравнимо с

наилучшим решением из тех, которые мы исследовали до сих пор.

Обнаружение попыток мошенничества на тестовом

наборе

Оценим наши решения по обнаружению мошеннических транзакций, при­

менив их к тестовому набору, содержащему примеры, которые до сих пор не

Обнаружение аномалий 1 175

встречались. Мы сделаем это в отношении трех лучших решений из числа тех,

которые мы разработали: стандартный РСА, ICA и словарное обучение. Мы
не будем использовать разреженный метод РСА, поскольку его результаты

очень близки к результатам на основе стандартного РСА.

Обнаружение аномалий в тестовом наборе с помощью

стандартного метода РСА

Начнем с обычного метода РСА. Мы воспользуемся вложением РСА, кото­

рому алгоритм РСА обучился на тренировочном наборе, и применим его для

преобразования тестового набора. Затем мы вызовем функцию inverse_
transforrn из библиотеки Scikit-learn для воссоздания оригинальных изме­
рений из матрицы главных компонент тестового набора.

Сравнив между собой матрицы оригинального и воссозданного наборов, мы

сможем рассчитать оценки аномальности (как неоднократно делали ранее).

Применение метода РСА к тестовому набору
X_test_PCA = pca.transform(X_test)
X_test_PCA = pd.DataFrame(data=X_test_PCA, index=X_test.index)

X_test_PCA_inverse = pca.inverse_transform(X_test_PCA)
X_test_PCA_inverse = pd.DataFrame(data=X_test_PCA_inverse, \

index=X_test.index)

scatterPlot(X_test_PCA, y_test, "РСА")

Точечная диаграмма для метода РСА, примененного к тестовому набору,

приведена на рис. 4.17, а соответствующие результаты - на рис. 4.18.
Полученные результаты впечатляют. Мы смогли захватить 80% известных

поддельных транзакций в тестовом наборе с 80%-ной точностью - и все это

без использования меток!

Обнаружение аномалий в тестовом наборе с помощью

метода ICA
Перейдем к методу ICA и применим его для обнаружения мошеннических

транзакций в тестовом наборе.

176 1 Гnава4

Разделение наблюдении · Ред
4

• 3

2 • • • •

. ' •
!r • • Men<A о •
'f -1

• о

• OQ

-2 •
-3

-4

о 20 40 60 00 100
nервы~ вектор

Рис. 4.17. Разделение наблюдений с использованием метода РСА
и 27 компонент для тестового набора

Применение анализа независимых компонент к тестовому набору
Х test fastICA fastICA.transform(X_test)
Х test fastICA pd.DataFrame(data=X_test_fastICA, \

index=X_test.index)

Х test fastICA inverse
Х test fastICA inverse

fastICA.inverse_transform(X_test_fastICA)
pd.DataFrame(data=X_test_fastICA_inverse, \

index=X_test.index)

scatterPlot(X_test_fastICA, y_test, "анализ независимых компонент")

Обнаружение аномаnий 1 177

Кривая •точность - полнота· : средняя точность = О 70

to-~---.

08

02

00 1---.-. -"' --....................... ~------1
00 02 04 Об 08

Помота

Рабочая характеристика приемника :
nnowaдь под кривом= 0.92

02 04 Об 08
ДOllA llOЖ/tOflO/IOЖMT~llЬНЫX МСХО.1108

10

10

Рис. 4.18. Результаты, полученные с использованием метода РСА
и 27 компонент на тестовом наборе

Точечная диаграмма для метода ICA, примененного к тестовому набору,
приведена на рис. 4.19, а соответствующие результаты - на рис. 4.20.

Эти результаты идентичны тем, которые были получены с использованием

стандартного метода РСА, а значит, тоже впечатляющие.

178 1 Гnава4

Разделение наблюдений : анапиз независимых компонент

001

ООО

J -o 01

'l -001
1Х1

-О 03

-о 004 -о 002 0000
Первыli аектор

0002 0004

~Тl\il

• о

l

Рис. 4.19. Разделение наблюдений с использованием метода ICA
и 27 компонент для тестового набора

Обнаружение аномалий в тестовом наборе с помощью

словарного обучения

Наконец, обратимся к словарному обучению, которое, хотя и не смогло

продемонстрировать столь же хороших результатов, что и методы PCA/ICA,
все же заслуживает финального рассмотрения.

X_test_miniBatchDictLearning = \
miniBatchDictLearning.transform(X_test)

X_test_miniBatchDictLearning = \
pd.DataFrarne(data~X_test_miniBatchDictLearning, \

index=X_test.index)

scatterPlot(X_test_rniniBatchDictLearning, y_test, \
"мини-пакетное словарное обучение")

Точечная диаграмма для словарного обучения, примененного к тестовому

набору, приведена на рис. 4.21, а соответствующие результаты - на рис. 4.22.

Обнаружение аномалий 1 179

Кривая •точность - полнота" средняя точность= О . 70

10----
08

~ 06

~
~ 04

02

оо~~~ ~~~ ~~~......-~--~.,.;:.------1
00 02 04 06 08

noлttoтa

Рiбочая характеристика приемника :
площадь под кривом= 0.92

02 04 06 08
До1111 ло111ttоnоло) ... пе11ьных мсходое

10

10

Рис. 4.20. Результаты, полуttенные с использованием метода !СА
и 27 компонент на тестовом наборе

Несмотря на то что эти результаты не являются катастрофически плохими

(мы смогли захватить 80% подделок с 20%-ной точностью), им все же далеко
до результатов, полученных с использованием методов РСА и ICA.

Резюме

В этой главе мы применили основные алгоритмы снижения размерности

для разработки системы по обнаружению мошеннических операций с банков­

скими картами в наборе данных, который был описан в главе 2.

180 1 Гnава4

Ра3деление наблюдений: мини-пакетное словарное обучение

20 •
• • •

15

" •
1 •

f 10
•

• ец11

'8. • о

J; 1

s

о ---·· "
•

· 10 о 10 20 30 40 50 бО 70
nepвыli 86тор

Рис. 4.21. Разделение наблюдений с использованием словарного обучения
и 28 компонент для тестового набора

В главе 2 мы создавали систему на основе меток, здесь же они нам не пона­
добились. Другими словами, мы реализовали систему обучения без учителя.

Несмотря на то что не все алгоритмы снижения размерности должным об­

разом проявили себя при работе с транзакционным набором данных, два из

них (стандартный метод РСА и метод ICA) замечательно справились со своей
задачей. Каждому из методов - РСА и ICA - удалось захватить свыше 80%
известных мошеннических транзакций. Для сравнения отметим, что наилуч­

шая из исследованных в главе 2 систем обучения с учителем захватила свы­
ше 90% мошеннических транзакций с 80%-ной точностью. Система на основе
обучения без учителя продемонстрировала лишь незначительное ухудшение

производительности при захвате известных примеров мошенничества.

Вспомните, что тренировка систем обнаружения фальсификаций на ос­

нове обучения без учителя не требует использования меток. Такие системы

хорошо адаптируются к изменению мошеннических схем и способны захва­

тывать новые типы поддельных образцов. С учетом этих дополнительных пре­

имуществ системы на основе обучения без учителя обычно работают лучше

систем на основе обучения с учителем в отношении захвата как известных,

так и неизвестных (которые могут появиться в будущем) схем мошенничес­

тва, хотя оптимальным вариантом является совместное использование обоих

типов систем.

Обнаружение аномаnий 1 181

Кривая •точность - полнота· : средняя точность = о 51

10---...

оз

02

oo..,._ "'-..,,_ ,...... ~,,........;::::111ooo.....i

00 02 04 06 08
nолнота

Рабочая характеристика приемника:
площадь под кривой= 0.96

Доля ложtt0nомжктеnьных исх.одое

10

Рис. 4.22. Результаты, полученные с использованием словарного
обучения и 28 компонент на тестовом наборе

Теперь, когда мы познакомились с алгоритмами снижения размерности и

обнаружения аномалий, можно перейти к исследованию кластеризации

еще одного фундаментального понятия в области обучения без учителя.

182 1 Гnава4

ГЛАВАS

Кластеризация

В главе 3 мы познакомились с наиболее важными алгоритмами снижения

размерности, основанными на обучении без учителя, и увидели их возмож­

ности в отношении захвата важной информации. В главе 4 мы использова­
ли алгоритмы снижения размерности для построения системы обнаружения

аномалий. В частности, мы применили эти алгоритмы для выявления мошен­

нических операций с банковскими картами без использования меток. Алго­

ритмы обучались внутренней структуре транзакций, после чего мы отделили

обычные транзакции от редко встречающихся (потенциально мошенничес­

ких) транзакций на основании ошибки реконструкции данных.

В этой главе мы продолжим знакомство с методами обучения без учителя

и рассмотрим концепцию кластеризации, предполагающей группирование

объектов на основе их взаимного сходства. Суть подхода заключается в срав­

нении данных одноrо наблюдения с данными других наблюдений и определе­

нии степени их сходства без использования меток.

Кластеризация находит множество применений. Например, в случае мо­

шенничества с банковскими картами кластеризация позволяет сгруппировать

поддельные транзакции, отделив их от нормальных транзакций. Или же, если

мы располагаем метками для небольшого количества наблюдений в наборе

данных, кластеризацию можно использовать для предварительного группи­

рования наблюдений (без использования меток). Затем мы можем перенести

метки имеющихся помеченных наблюдений на остальные наблюдения, входя­

щие в ту же группу. Этот подход представляет собой одну из форм переноси­

мого обучения (transfer learning), быстро развивающейся области машинного
обучения.

В таких сферах деятельности, как электронная коммерция и розничная

торговля, маркетинг, социальные сети, рекомендательные системы фильмов,

службы знакомств и т.п., кластеризация позволяет группировать людей на ос­

новании их персональных предпочтений. Установление таких групп помога­

ет предпринимателям лучше понимать своих клиентов и создает основу для

формирования целевых бизнес-стратегий, ориентированных на специфику

каждой конкретной группы.

Аналогично тому, как мы поступали при рассмотрении алгоритмов сниже­

ния размерности, сначала мы введем основные понятия и лишь после этого

приступим в следующей главе к созданию приложения на основе обучения

без учителя.

База данных рукописных цифр MNIST
Чтобы не усложнять примеры, мы продолжим работать с набором изобра­

жений MNIST, о котором шла речь в главе 3.

Подготовка данных

Сначала необходимо загрузить требуемые библиотеки.

Импорт библиотек
' ' 'Основные библиотеки' ' '
import numpy as np
import pandas as pd
import os, time
import pickle, gzip

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_curve, \

average_precision_score
from sklearn.metrics import roc_curve, auc, roc_auc_score

Далее следует загрузить набор данных и создать объекты DataFrames

библиотеки Pandas.

Загрузка наборов данных
current_path = os.getcwd()

184 1 Гnава5

file os.path.sep.join([' ', 'datasets', 'mnist_data', \
'mnist.pkl.gz'])

f = gzip.open(current_path+file, 'rb')
train_set, validation_set, test_set = \

pickle.load(f, encoding='latinl')
f. close ()

X_train, y_train = train_set[O], train_set[l]
X_validation, y_validation = validation_set[O], validation_set[l]
X_test, y_test = test_set[O], test_set[l]

Создание объектов DataFrame библиотеки Pandas из наборов данных
train_index = range(O, len(X_train))
validation_index = range(len(X_train), \

len(X_train)+len(X_validation))
test index range(len(X_train)+len(X_validation), \

len(X_train)+len(X_validation)+len(X_test))

Х train pd.DataFrame(data=X_train, index=train_index)
y_train pd.Series(data=y_train, index=train_index)

Х validation pd.DataFrame(data=X_validation, \
index=validation_index)

y_validation pd.Series(data=y_validation, index=validation_index)

Х test
y_test

pd.DataFrame(data=X_test, index=test_index)
pd.Series(data=y_test, index=test_index)

Алгоритмы кластеризации

Прежде чем выполнять кластеризацию, необходимо снизить размерность

данных, используя метод РСА. Как было показано в главе 3, алгоритмы сниже­
ния размерности захватывают наиболее существенную информацию, содер­

жащуюся в наборе данных, одновременно уменьшая его размер.

По мере того как мы переходим от большего числа измерений к меньше­

му, содержание шума в наборе данных минимизируется, поскольку алгоритм

снижения размерности (РСА в данном случае) должен захватывать наиболее

важные элементы оригинальных данных, игнорируя редко встречающиеся

элементы (такие, как содержащийся в данных шум).

Кластеризация 1 185

Вспомните: алгоритмы снижения размерности обладают чрезвычайно

мощными возможностями в плане обучения базовой структуре данных. В

главе 3 было показано, насколько эффективно можно разделять изображения

MNIST на основании представляемых ими цифр, используя всего лишь два

измерения, полученные в результате снижения размерности.

Вновь применим метод РСА к набору данных MNIST.

Анализ главных компонент
from sklearn.decomposition import РСА

n_components = 784
whiten = False
random state = 2018

рса = PCA(n_components=n_components, whiten=whiten, \
random_state=random_state)

X_train_PCA = pca.fit_transform(X_train)
X_train_PCA = pd.DataFrame(data=X_train_PCA, index=train_index)

И хотя мы не снизили размерность набора явным образом, мы обозначили

количество главных компонент, которые будут использоваться на этапе клас­

теризации, что равносильно снижению размерности.

Теперь приступим к кластеризации. Три основных алгоритма кластериза­

ции - метод k-средних, иерархическая кластеризация и DBSCAN. Рассмотрим

каждый из них по отдельности.

Метод k-средних

Цель кластеризации - выявить в наборе данных такие группы, для кото­

рых наблюдения в пределах одной группы сходны между собой, но отличаются

от наблюдений в других группах. В случае кластеризации методом k-средних

мы указываем требуемое количество кластеров, k, и алгоритм будет приписы­
вать каждое наблюдение только к одному из этих k кластеров. Алгоритм оп­
тимизирует группы путем минимизации внутрикластерной вариации (также

известной как инерция), чтобы сумма внутрикластерных вариаций по всем k
кластерам была наименьшей.

Разные запуски алгоритма k-средних будут приводить к немного разным

распределениям наблюдений по кластерам. Это обусловлено тем, что алгоритм

k-средних случайным образом приписывает каждое наблюдение к одному из

186 1 ГnаваS

k кластеров для ускоренной инициализации процесса кластеризации. После
этапа случайной инициализации алгоритм заново относит наблюдения к раз­

личным кластерам, пытаясь минимизировать евклидово расстояние между

каждым наблюдением и центральной точкой его кластера, или центроидом.

Такая инициализация служит источником случайности, что и приводит к не­

значительным изменениям в распределении наблюдений по кластерам от од­

ного запуска алгоритма к другому.

Обычно алгоритм k-средних запускается несколько раз и выбирает запуск

с наилучшим разделением, которое определяется наименьшей общей суммой

внутрикластерных вариаций по всем k кластерам.

Инерция метода k-средних

Познакомимся поближе с самим алгоритмом. Мы должны указать требуе­

мое количество кластеров (n clusters), число инициализаций, которые мы
хотели бы выполнить (n _ ini t), максимальное количество итераций, выпол­
няемых алгоритмом для отнесения наблюдений к кластерам в процессе ми­

нимизации инерции (max _ i ter), и допустимое отклонение (tol) в качестве
критерия сходимости.

Мы оставим заданные по умолчанию значения для количества инициали­

заций (10), максимального числа итераций (300) и допустимого отклонения
(О. 0001). Кроме того, пока что нам будет достаточно использовать первые
100 главных компонент РСА (cutoff). Чтобы проверить, насколько сильна
зависимость инерции от количества кластеров, запустим алгоритм k-средних

для кластеров с размерами от 2 до 20 и запишем значения инерции для каж­
дого из них.

Вот соответствующий код.

Метод k-средних - изменение инерции

с изменением количества кластеров
from sklearn.cluster import КМеаns

n clusters = 10
n init = 10
max iter = 300
tol = 0.0001
random state = 2018

kМeans inertia pd.DataFrame(data=[], index=range(2, 21), \
columns= ['Инерция'])

Кластеризация 1 187

for n_clusters in range(2, 21):
kmeans = КМeans(n clusters=n_clusters, n_init=n_init, \

max_iter=max_iter, tol=tol, \
random_state=random_state)

cutoff = 99
kmeans.fit(X_train_PCA.loc[:, O:cutoff])
kMeans_inertia.loc[n_clusters] = kmeans.inertia_

Как следует из рис. 5.1, с увеличением количества кластеров инерция

уменьшается, что вполне логично. Чем больше кластеров, тем выше степень

однородности наблюдений в пределах каждого кластера. Однако с меньшим

количеством кластеров легче работать, поэтому нахождение подходящего ко­

личества кластеров является одним из важных факторов, которые необходи­

мо учитывать, работая по методу k-средних.

1еб

22 - ИН~ЦllИ

2.1

2.0

19

18

11

16

15
25 so 1.5 10.0 12 5 15.0 17 5 20.0

Рис. 5.1. Инерция метода k-средних для кластеров
с размерами от 2 до 20

Оценка результатов кластеризации

Чтобы продемонстрировать, как работает метод k-средних и как увеличе­

ние количества кластеров приводит к повышению их однородности, опре­

делим функцию, анализирующую результаты каждого выполненного нами

эксперимента. Распределения по кластерам, генерируемые алгоритмом кла­

стеризации, будут сохраняться в объекте DataFrame библиотеки Pandas с
именем clusterDF.

Подсчитаем число наблюдений в каждом кластере и сохраним эти значения

в объекте DataFrame библиотеки Pandas с именем countByCluster.

188 1 Гnава5

def analyzeCluster(clusterDF, labelsDF):
countByCluster = \

pd.DataFrame(data=clusterDF['cluster'] .value_counts())
countByCluster.reset_index(inplace=True, drop=False)
countByCluster.columns = ['cluster', 'clusterCount']

Далее присоединим объект clusterDF к массиву истинных меток, при­
своив ему имя labelsDF.

preds = pd.concat([labelsDF,clusterDFJ, axis=l)
preds. columns = ['trueLabel', 'cluster']

Подсчитаем также количество наблюдений для каждой истинной метки в

тренировочном наборе (оно не будет меняться, но знать его полезно).

countByLabel =
pd.DataFrame(data=preds.groupby('trueLabel') .count())

Дополнительно подсчитаем количество наблюдений для каждой отдельной

метки внутри каждого кластера. Если в заданном кластере имеется три тыся­

чи наблюдений, то из них две тысячи могут представлять цифру 2, пятьсот -
цифру 1, триста - цифру О, а оставшиеся двести - цифру 9.

Выполнив эти расчеты, мы сохраним значения счетчиков наиболее часто

встречающихся цифр для каждого кластера. В приведенном примере мы со­

хранили бы значение счетчика, соответствующего двум тысячам наблюде­

ний.

countMostFreq = \
pd.DataFrame(data=preds.groupby('cluster') .agg(lamЬda \

x:x.value_counts() .iloc[OJ))
countMostFreq.reset_index(inplace=True, drop=False)
countMostFreq.columns = ['cluster', 'countMostFrequent']

Наконец, мы будем судить об успешности каждого запуска кластеризации

на основании того, насколько тесно сгруппированы наблюдения в пределах

каждого кластера. В приведенном выше примере в кластере, содержащем в

общей сложности три тысячи наблюдений, имеются две тысячи наблюдений с

одной и той же меткой. Такой кластер не представляет собой ничего особен­

ного, поскольку в идеальном случае мы хотели бы группировать в одном и том

же кластере все сходные наблюдения и исключать наблюдения, отличающиеся

от них.

Определим общую точность кластеризации как сумму значений счетчиков

наиболее часто встречающихся наблюдений по всем кластерам, деленную на

общее количество наблюдений в тренировочном наборе (т.е. 50 ООО).

Кластеризация 1 189

accuracyDF = countMostFreq.merge(countByCluster, \
left_on="cluster", right_on="cluster")

overallAccuracy = accuracyDF.countMostFrequent.sum() / \
accuracyDF.clusterCount.sum()

Мы также можем оценить точность для одиночного кластера.

accuracyByLabel = accuracyDF.countMostFrequent / \
accuracyDF.clusterCount

Полный код этого примера доступен в виде единой функции на сайте

GitHub (http://Ьit.ly/2Gd4v7e).

Точность метода k-средних

Выполним эксперименты, как мы это делали раньше, только теперь будем

вычислять не инерцию, а суммарную однородность кластеров, основываясь

на мере точности, которую мы определили для нашего набора MNIST, содер­
жащего изображения рукописных цифр.

Метод k-средних - изменение точности

с изменением количества кластеров

n clusters = 5
n init = 10
max iter = 300
tol = 0.0001
random state = 2018

kMeans_inertia = pd.DataFrame(data=[], index=range(2, 21), \
columns= ['Инерция'])

overallAccuracy_kМeansDF = pd.DataFrame(data=[], \
index=range(2, 21), columns=['Oбщaя точность'])

for n_clusters in range(2, 21):
kmeans = КМeans(n_clusters=n_clusters, n_init=n_init, \

max_iter=max_iter, tol=tol, \
random_state=random_state)

cutoff = 99
kmeans.fit(X_train_PCA.loc[:, O:cutoff])
kМeans_inertia.loc[n_clusters] = kmeans.inertia_
Х train kmeansClustered kmeans.predict(X_train_PCA.loc[:, \

О: cutoff])

190 1 Гnава5

Х train kmeansClustered = \ - -
pd.DataFrame(data=X_train_kmeansClustered, \
index=X_train.index, columns=['cluster'])

countByCluster_kМeans, countByLabel_kМeans, \
countMostFreq_kМeans, accuracyDF_kМeans, \
overallAccuracy_kМeans, accuracyByLabel_kMeans = \

analyzeCluster(X_train_kmeansClustered, y_train)

overallAccuracy_kМeansDF.loc[n_clusters] = overallAccuracy_kМeans

График общей точности для кластеров различного размера приведен на

рис. 5.2.

0 7 - Общ&А ТО'fНОСТЬ

0.б

2S 50 7 S 10.О U 5 15.0 17.5 20.0

Рис. 5.2. Точность метода k-средних для кластеров
с размерами от 2 до 20

Как следует из рис. 5.2. по мере увеличения количества кластеров точность
увеличивается. Другими словами. с увеличением числа кластеров они стано­

вятся более однородными в силу того, что их размеры при этом уменьшаются

и они становятся более компактными.

Точность может довольно заметно меняться при переходе от кластера к

кластеру. поскольку одни кластеры проявляют более высокую степень одно­

родности. другие - меньшую. Например. в некоторых кластерах свыше 90%
изображений соответствуют одной и той же цифре, тогда как в других - ме­

нее 50%.

о 0.636506
1 0.928505
2 0.848714
з 0.521805

Кпастеризация 1 191

4 0.714337
5 0.950980
6 0.893103
7 0.919040
8 0.404707
9 0.500522
10 0.381526
11 0.587680
12 0.463382
13 0.958046
14 0.870888
15 0.942325
16 о. 791192
17 0.843972
18 0.455679
19 0.926480
dtype: float64

Метод k-средних и количество главных компонент

Проведем еще один эксперимент, на этот раз чтобы оценить, как изме­

нение количества главных компонент, используемых в алгоритме кластери­

зации, влияет на однородность кластеров (определенную в качестве меры

точности).

В предыдущих экспериментах мы использовали 100 главных компонент,
полученных в качестве выхода стандартного метода РСА. Вспомните, что

количество измерений в первоначальном наборе данных MNIST равно 784.
Если алгоритм РСА хорошо справляется с максимально компактным захва­

том базовой структуры данных, то алгоритму кластеризации будет неслож­

но сгруппировать схожие изображения, независимо от того, используем мы

лишь незначительную долю главных компонент или намного большее их ко­

личество. Другими словами, кластеризация должна выполняться одинаково

хорошо при использовании как нескольких десятков, так и нескольких сотен

главных компонент.

Давайте проверим эту гипотезу. Мы будем последовательно передавать ал­

горитму 10, 50, 100, 200, 300, 400, 500, 600, 700 и 784 компоненты и замерять
точность кластеризации в каждом эксперименте. Затем мы отложим эти ре­

зультаты на графике, чтобы увидеть, как изменение количества главных ком­

понент влияет на точность кластеризации.

192 1 Гnава5

Метод k-средних - зависимость точности

от количества главных компонент

n clusters = 20
n init = 10
max iter = 300
tol = 0.0001
random state = 2018

kМeans_inertia = pd.DataFrame(data=[], index=[9, 49, 99, 199, 299, \
399, 499, 599, 699, 784), columns=['Инерция'])

overallAccuracy_kмeansDF = pd.DataFrame(data=[J,index=[9, 49, 99, \
199, 299, 399, 499, 599, 699, 784]' columns= ['Общая ТОЧНОСТЬ'])

for cutoffNumЬer in [9, 49, 99, 199, 299, 399, 499, 599, 699, 784]:
kmeans = КМeans(n_clusters=n_clusters, n_init=n_init, \

max_iter=max_iter, tol=tol, \
random_state=random_state)

cutoff = cutoffNumЬer
kmeans.fit(X_train_PCA.loc[:, O:cutoff])
kМeans inertia.loc[cutoff] = kmeans.inertia_
Х train kmeansClustered

О: cutoff])
kmeans.predict(X_train_PCA.loc[:, \

Х train kmeansClustered \
pd.DataFrame(data=X_train kmeansClustered, \
index=X_train.index, columns=['cluster'J)

countByCluster_kMeans, countByLabel_kМeans, \
countMostFreq_kМeans, accuracyDF_kMeans, \
overallAccuracy_kМeans, accuracyByLabel_kMeans \
analyzeCluster(X_train_kmeansClustered, y_train)

overallAccuracy_kМeansDF.loc[cutoff] = overallAccuracy_kMeans

График зависимости точности кластеризации от количества главных ком­

понент приведен на рис. 5.3.

Кластеризация 1 193

о 725
- 06ща11 ТО'll!ОСТЬ

о 720

олs

о 110

IJ70S

0700

Рис. 5.3. Зависимость точности кластеризации по методу
k-средних от количества главных компонент

Этот график подтверждает нашу гипотезу. При изменении количества
главных компонент от 1 О до 784 точность кластеризации ведет себя стабиль­
но и согласованно, оставаясь на уровне около 70%. Это одна из причин того,
почему кластеризацию следует применять к редуцированным наборам дан­

ных: обычно алгоритмы кластеризации работают на таких наборах лучше как

в смысле точности кластеризации, так и в смысле быстродействия.

В случае набора данных MNIST с его исходными 784 измерениями алго­
ритм кластеризации способен справиться со своей задачей, но представьте си­

туацию, когда количество измерений исчисляется тысячами или миллионами.

В подобных сценариях снижение размерности набора данных становится еще

более обоснованным.

Применение метода k-средних к оригинальному набору

данных

Чтобы сделать приведенную выше аргументацию еще более убедительной,

выполним кластеризацию на оригинальном наборе данных и выясним, как

изменение количества измерений, передаваемого алгоритму кластеризации,

влияет на точность кластеризации.

В случае рассмотренного в предыдущем разделе набора данных, редуциро­
ванного с помощью метода РСА, изменение количества главных компонент,

передаваемых алгоритму кластеризации, не оказывало влияния на точность,

которая стабильно держалась примерно на уровне 70%. Проверим, будет ли
ситуация аналогичной в случае оригинального набора данных.

194 1 ГnаваS

Метод k-средних - зависимость точности от количества

компонент для оригинального набора данных МNIST
(а не редуцированного с помощью метода РСА)

n clusters = 20
n init = 10
max iter = 300
tol = 0.0001
random state = 2018

kМeans_inertia = pd.DataFrame(data=[], index=[9, 49, 99, 199, 299, \
399, 499, 599, 699, 784), columns=['Инерция'])

overallAccuracy_kMeansDF = pd.DataFrame(data=[], index=[9, 49, 99, \
199, 299, 399, 499, 599, 699, 784], columns=['Oбщaя точность'])

for cutoffNumЬer in [9, 49, 99, 199, 299, 399, 499, 599, 699, 784):
kmeans = КМeans(n_clusters=n_clusters, n_init=n_init, \

max_iter=max_iter, tol=tol, \
random_state=random_state)

cutoff = cutoffNumЬer
kmeans.fit(X_train.loc[:, O:cutoff])
kМeans inertia.loc[cutoff] = kmeans.inertia_
Х train kmeansClustered = \

- -
kmeans.predict(X_train.loc[:, O:cutoff])

Х train kmeansClustered =
pd.DataFrame(data=X_train_kmeansClustered, \
index=X_train.index, columns=['cluster'])

countByCluster_kMeans, countByLabel_kМeans, \
countMostFreq_kMeans, accuracyDF_kMeans, \
overallAccuracy_kMeans, accuracyByLabel_kMeans \
analyzeCluster(X_train_kmeansClustered, y_train)

overallAccuracy_kМeansDF.loc[cutoff] = overallAccuracy_kMeans

График зависимости точности кластеризации от количества измерений

приведен на рис. 5.4.

Кластеризация 1 195

01
- Обща.11 точ~ость

Об

os

04

03

02

Ol
_ _/'

о 100 200 300 400 500 roo 700 800

Рис. 5.4. Зависимость точности кластеризации по методу
k-средних от количества исходных измерений

Как следует из графика, точность кластеризации очень низкая при не­

большом количестве измерений, но улучшается примерно до уровня 70%, как
только количество измерений достигает 600.

В случае метода РСА точность кластеризации составляла примерно 70%
даже при 10 измерениях, что свидетельствует об огромных перспективах сни­
жения размерности в отношении захвата наиболее существенной информа­

ции из оригинального набора данных.

Иерархическая кластеризация

Перейдем к рассмотрению второго подхода к кластеризации, получившего

название иерархическая кластеризация. В этом подходе не требуется предва­

рительно задавать определенное количество кластеров. Вместо этого мы мо­

жем выбрать, сколько кластеров мы хотели бы иметь по завершении класте­

ризации.

Используя наблюдения, содержащиеся в наборе данных, алгоритм иерар­

хической кластеризации построит дендрограмму, которая будет отображаться

в виде перевернутого дерева с листьями внизу и стволом вверху.

Самые нижние листья - это индивидуальные примеры в наборе данных.

По мере перемещения вверх по перевернутому дереву алгоритм иерархичес­

кой кластеризации объединяет листья на основании их взаимного сходства.

В первую очередь объединяются примеры (или группы примеров) с наиболь­

шим взаимным сходством, затем - менее схожие экземпляры. В результате

такого итеративного процесса все примеры в конечном счете объединяются,

формируя единый ствол дерева.

196 1 ГnаваS

Эта вертикальная картинка очень полезна. Как только алгоритм иерархи­

ческой кластеризации закончит свою работу, мы сможем просмотреть ден­

дрограмму и определить, где хотим усечь дерево, - чем ниже мы его обрежем,

тем больше ветвей (а значит, и больше кластеров) в нем останется. Если мы

хотим иметь меньше кластеров, дерево следует обрезать в более высоких по­

зициях на дендрограмме, ближе к стволу, располагающемуся в самом верху

перевернутого дерева.

Выбор позиции вертикальной обрезки аналогичен выбору количества клас­

теров, k, в алгоритме кластеризации методом k-средних.

Агломеративная иерархическая кластеризация

Версия иерархической кластеризации, которую мы собираемся исследо­

вать, называется агломеративная кластеризация (agglomerative clustering).
Несмотря на то что библиотека Scikit-learn содержит соответствующий мо­
дуль, он работает крайне медленно. Вместо него мы используем другой пакет

иерархической кластеризации:fаstсlиstеr. Это библиотека на языке С++ с ин­

терфейсом Python/SciPy1•

Основная функция библиотеки, которая нам понадобится, - fast­
cluster. linkage_ vector. Ей необходимо передать несколько аргументов,
включая тренировочную матрицу Х, метод и метрику. Аргумент method мо­
жет иметь значения single, centroid, median или ward. Он задает схему
кластеризации, которую следует использовать для определения расстояний

между новым узлом в дендрограмме и остальными узлами. Аргумент metric
в большинстве случаев должен быть равен euclidean. Более того, это един­
ственный вариант для методов centroid, median и ward. Для получения
более подробной информации об этих аргументах обратитесь к документации

библиотеки fastclиster.

Приступим к настройке алгоритма иерархической кластеризации для на­

ших данных. Как и прежде, мы будем тренировать алгоритм на первых ста

главных компонентах из набора изображений MNIST, редуцированного с по­
мощью метода РСА. Установим для аргумента method значение ward (оно
проявило себя наилучшим образом в проведенных ранее экспериментах), а

для аргумента metric - значение euclidean.

1 Более подробную информацию об этом методе можно найти по адресу https: / /
ru.wikipedia.org/wiki/Иepapxичecкaя_клacтepизaция.

Кластеризация 1 197

Значение ward задает использование метода Уорда2• Это неплохой вариант

по умолчанию для иерархической кластеризации, но на практике лучше по­

экспериментировать на собственных наборах данных.

import fastcluster
from scipy.cluster.hierarchy import dendrogram, cophenet
from scipy.spatial.distance import pdist

cutoff = 100
Z = fastcluster.linkage_vector(X_train_PCA.loc[:, O:cutoff], \

method='ward', metric='euclidean')
Z dataFrame pd.DataFrame(data=Z, columns=['clusterOne', \

'clusterTwo', 'distance', \
'newClusterSize'])

Алгоритм иерархической кластеризации возвращает матрицу Z. Он обра­

батывает каждое из 50 ООО наблюдений, входящих в наш набор рукописных
цифр MNIST, как кластер, включающий только одну точку данных, и на каж­
дой итерации объединяет два кластера, характеризующихся наименьшим рас­

стоянием между ними.

Первоначально алгоритм объединяет лишь одноточечные кластеры, но

впоследствии он начнет объединять многоточечные кластеры либо с одното­

чечными, либо с другими многоточечными. В ходе итеративного процесса все

кластеры в конечном итоге объединятся, сформировав ствол перевернутого

дерева (дендрограммы).

Дендрограмма

В табл. 5.1 представлена матрица Z, сгенерированная алгоритмом кластери­

зации. Она демонстрирует, на что способен данный алгоритм.

В первых двух столбцах таблицы, clusterOne и clusterTwo, указано,
какие два кластера (ими могут быть как одноточечные кластеры, т.е. ориги­

нальные наблюдения, так и многоточечные) объединяются с учетом взаимно­

го расстояния между ними. В третьем столбце отображается само расстояние,

distance, которое было определено по методу Уорда с использованием ев­
клидовой метрики (euclidean), переданной алгоритму кластеризации.

Как нетрудно заметить, расстояние монотонно увеличивается. Други­

ми словами, сначала объединяются кластеры, расстояния между которыми

2 Более подробную информацию об этом методе можно найти по адресу https: / /
ru.wikipedia.org/wiki/Иepapxичecкaя_клacтepизaция.

198 1 ГnаваS

являются наименьшими, после чего алгоритм итеративно присоединяет к ним

кластеры со следующими кратчайшими расстояниями между ними, и так до

тех пор, пока все точки не будут объединены в единый кластер, расположен-

ный в самом верху дендрограммы.

Таблица 5.1. Начальные строки матрицы иерархической кластеризации

clusterOne dusterТWo distance newClusterSlze

о 42194.0 43025.0 0.562682 2.0

1 28350.0 37674.0 0.590866 2.0

2 26696.0 44705.0 0.621506 2.0

3 12634.0 32823.0 0.627762 2.0

4 24707.0 43151.0 0.637668 2.0

5 20465.0 24483.0 0.662557 2.0

6 466.0 42098.0 0.664189 2.0

7 46542.0 49961.0 0.665520 2.0

8 2301.0 5732.0 0.671215 2.0

9 37564.0 47668.0 0.675121 2.0

10 3375.0 26243.0 0.685797 2.0

11 15722.0 30368.0 0.686356 2.0

12 21247.0 21575.0 0.694412 2.0

13 14900.0 42486.0 0.696769 2.0

14 30100.0 41908.0 0.699261 2.0

15 12040.0 13254.0 0.701134 2.0

16 10508.0 25434.0 0.708872 2.0

17 30695.0 30757.0 0.710023 2.0

18 31019.0 31033.0 0.712052 2.0

19 36264.0 37285.0 0.713130 2.0

Сначала алгоритм объединяет одноточечные кластеры, формируя но­

вые кластеры удвоенного размера, как это указано в четвертом столбце,

newClusterSize. Однако по мере дальнейшего продвижения по дереву ал­
горитм начинает объединять большие многоточечные кластеры с друrими

большими многоточечными кластерами, как показано в табл. 5.2. На самой
последней итерации (4 9 9 9 8), два больших кластера объединяются, сливаясь
в один кластер - расположенный в самом верху дерева ствол, который содер­

жит все 50 ООО оригинальных наблюдений.

Кnастеризация 1 199

Таблица 5.2. Последние строки матрицы иерархической кластеризации

clusterOne dusterTwo dlstance newClusterSlze

49980 99965.0 99972.0 161.106998 5197.0

49981 99932.0 99980.0 172.070003 6505.0

49982 99945.0 99960.0 182.840860 3245.0

49983 99964.0 99976.0 184.475761 3683.0

49984 99974.0 99979.0 185,027847 7744.0

49985 99940.0 99975.0 185.345207 5596.0

49986 99957.0 99967.0 211.854714 5957.0

49987 99938.0 99983.0 215.494857 4846.0

49988 99978.0 99984.0 216.760365 11072.0

49989 99970.0 99973.0 217.355871 4899.0

49990 99969.0 99986.0 225.468298 8270.0

49991 99981.0 99982.0 238.845135 9750.0

49992 99968.О 99977.О 266.146782 5567.0

49993 99985.0 99989.0 270.929453 10495.0

49994 99990.0 99991.0 346.840948 18020.0

49995 99988.0 99993.0 394.365194 21567.0

49996 99987.0 99995.0 425.142387 26413.0

49997 99992.0 99994.0 440.148301 23587.0

49998 99996.0 99997.О 494.383855 50000.0

Возможно, вас несколько смущают значения, указанные в столбцах

clusterOne и clusterTwo этой таблицы. Например, в последней строке -
49998 - кластер 99996 соединяется с кластером 99997. Но, как мы знаем, на­
бор данных MNIST содержит всего 50 ООО наблюдений.

Номера кластеров в столбцах clusterOne и clusterTwo относятся к
оригинальным наблюдениям только для номеров от О до 49999. Номера свыше
49999 относятся к ранее кластеризованным точкам. Например, номер 50000
относится к вновь сформированному кластеру в строке О, номер 50001 -
к вновь сформированному кластеру в строке 1 и т.д.

В строке 49998 в столбце clusterOne номер 99996 относится к кластеру,
сформированному в строке 49996, а номер 99997 в столбце clusterTwo -
к кластеру, сформированному в строке 49997. Пользуясь этой формулой, вы
сможете просмотреть всю таблицу, чтобы увидеть, как объединяются кластеры.

200 1 Гnава.5

Оценка результатов кластеризации

Теперь, когда мы располагаем дендрограммой, нам предстоит определить,

в каком месте ее следует обрезать, чтобы получить требуемое количество кла­

стеров. Мы можем упростить сравнение результатов иерархической класте­

ризации и метода k-средних, сформировав ровно 20 кластеров. Далее мы ис­
пользуем метрику точности кластеризации (определенную в разделе "Метод

k-средних"), с помощью которой можно будет судить о степени однородности

кластеров.

Для создания требуемого количества кластеров необходимо импортиро­

вать модуль fcluster из библиотеки SciPy. Мы должны задать для дендрограм­
мы пороговое расстояние, чтобы определить, какое количество кластеров мы

собираемся оставить. Чем больше пороговое расстояние, тем меньше класте­

ров мы получим. Точки данных в пределах указанного расстояния будут при­

надлежать к одному и тому же кластеру. Задание большого порогового рас­

стояния равносильно обрезке перевернутого дерева в расположенной высоко

по вертикали точке. По мере продвижения вверх по дереву группирование

охватывает все больше точек, что будет приводить к уменьшению количества

остающихся кластеров.

Чтобы получить ровно 20 кластеров, мы должны поэкспериментировать с
различными значениями порогового расстояния, в соответствии с которыми

библиотека fcluster будет выполнять обрезку дерева. Каждое из 50 ООО наблю­
дений, включенных в набор данных MNIST, получит метку кластера, и мы со­
храним их в объекте Da taFr arne библиотеки Pandas.

from scipy.cluster.hierarchy import fcluster

distance threshold = 160
clusters = fcluster(Z, distance_threshold, criterion='distance')
X_train_hierClustered = pd.DataFrame(data=clusters, \

index=X_train_PCA.index, columns=['cluster'J)

Проверим, получаем ли мы ровно 20 различных кластеров при заданном
выборе порогового расстояния.

рrint("Количество различных кластеров: ", \
len(X_train_hierClustered['cluster'] .unique()))

Как и следовало ожидать, мы действительно получили соответствующее

подтверждение.

Количество различных кластеров: 20

Кластеризация 1 201

А теперь вычислим результаты.

countByCluster_hierClust, countByLabel_hierClust, \
countMostFreq_hierClust, accuracyDF_hierClust, \
overallAccuracy_hierClust, accuracyByLabel_hierClust \

analyzeCluster(X_train_hierClustered, y_train)

print("Oбщaя точность иерархической кластеризации: ", \
overallAccuracy_hierClust)

Мы видим, что общая точность составляет примерно 77%, что превышает

значение 70%, достигнутое с помощью метода k-средних:

Общая точность иерархической кластеризации: 0.76882

Заодно оценим точность для каждого кластера. Как следует из приведен­

ных ниже результатов, точность существенно варьируется. Для одних класте­

ров она очень высокая, ближе к 100%, в то время как для других она снижается
до скромных 50%.

о 0.987962
1 0.983727
2 0.988998
3 0.597356
4 0.678642
5 0.442478
6 0.950033
7 0.829060
8 0.976062
9 0.986141
10 0.990183
11 0.992183
12 0.971033
13 0.554273
14 0.553617
15 0.720183
16 0.538891
17 0.484590
18 0.957732
19 0.977310
dtype: float64

В целом иерархическая кластеризация хорошо справилась с набором ру­

кописных цифр MNIST. Не забывайте о том, что мы не использовали никаких
меток!

202 1 ГnаваS

На практике это должно работать следующим образом: сначала мы при­

меняем алгоритм снижения размерности (например, РСА), затем выполняем

кластеризацию (например, иерархическую) и, наконец, вручную размечаем

несколько точек для каждого кластера. Например, если бы в случае набора

MNIST отсутствовали метки, то мы просмотрели бы несколько изображений
и пометили их в соответствии с представляемыми ими цифрами. При усло­

вии, что кластеры достаточно однородны, несколько вручную сгенерирован­

ных меток могли бы автоматически назначаться всем остальным изображени­

ям в данном кластере.

Вот так, совсем неожиданно, не прилагая особых усилий, нам удалось по­

метить все 50 ООО изображений в нашем наборе с почти 77%-ной точностью.
Этот впечатляющий результат демонстрирует эффективность обучения без

учителя.

DBSCAN
Перейдем к рассмотрению третьего (и последнего) из основных алгорит­

мов кластеризации: DBSCAN (density-based spatial clustering of applications
with noise - основанная на плотности пространственная кластеризация для

приложений с шумами).

Алгоритм DBSCAN группирует близко расположенные точки, где близость
определяется как минимальное количество точек, которые должны существо­

вать в пределах определенного расстояния. Если точка находится в пределах

указанного расстояния от нескольких кластеров, то она будет группироваться

с ближайшим к ней кластером. Любой экземпляр, не находящийся в пределах

данного расстояния от другого кластера, помечается как выброс.

В случае использования метода k-средних и иерархической кластеризации

выбросы плохо обрабатывались, и все точки приходилось кластеризовать.

В случае алгоритма DBSCAN мы можем явно помечать точки как выбросы,
избегая их кластеризации, что очень удобно. По сравнению с другими алго­

ритмами кластеризации алгоритм DBSCAN намного меньше подвержен иска­
жениям, которые обычно вызываются наличием выбросов. Кроме того, как и

в случае иерархической кластеризации, но в отличие от метода k-средних, нам

не нужно предварительно задавать количество используемых кластеров.

Кпастеризаци11 1 203

Алгоритм DBSCAN
Сначала мы используем модуль DBSCAN, входящий в состав библиотеки

Scikit-learn. Мы должны задать максимальное расстояние (гиперпараметр eps)
между двумя точками, при котором они еще могут считаться соседними, и ми­

нимальное количество образцов (гиперпараметр min _ samples), позволяющее
назвать группу кластером. По умолчанию значение гиперпараметра eps рав­
но О. 5, а гиперпараметра min _ samples - 5. Если для гиперпараметра eps
установлено слишком малое значение, то никакие точки не будут считаться

расположенными достаточно близко к другим точкам, чтобы их можно было

считать соседями. Следовательно, все точки останутся некластеризированны­

ми. В случае же слишком больших значений rиперпараметра eps многие точки
могут быть включены в кластеры, и лишь немногие точки останутся некласте­

ризованными и в конечном счете будут помечены как выбросы.

Мы должны выполнить поиск оптимального значения eps для нашего на­
бора изображений MNIST. Гиперпараметр min _ s amp le s задает минимальное
количество точек, которые должны находиться в пределах расстояния eps,
чтобы они могли считаться кластером. Как только набирается min samples
тесно расположенных точек, все остальные точки, находящиеся в пределах

расстояния eps от любой из этих центровых точек, считаются частью клас­
тера, даже если вокруг них нет min_ samples точек в пределах указанного
расстояния eps. Точки последнего типа называются граничными точками
кластера.

В общем случае количество кластеров уменьшается по мере увеличения ги­

перпараметра min _ samples. Как и в случае гиперпараметра eps, мы должны
выполнить поиск оптимального значения min_samples для нашего набора
рукописных цифр MNIST. В кластерах имеются центровые и граничные точ­
ки, но во всех остальных отношениях они принадлежат к одной и той же груп­

пе. Все точки, которые остались не сгруппированными, будь то центровые или

граничные точки кластера, помечаются как выбросы.

Применение алгоритма DBSCAN к нашему набору данных
Перейдем к рассмотрению нашей задачи. Как и прежде, применим алго­

ритм DBSCAN к первым ста главным компонентам набора данных MNIST, ре­
дуцированного по методу РСА.

from sklearn.cluster import DBSCAN

eps 3

204 ГnаваS

min samples = 5
leaf size = 30
n_jobs = 4

dЬ = DBSCAN(eps=eps, min_samples=min_samples, leaf size=leaf size, \
n_jobs=n_jobs)

cutoff = 99
Х train РСА dЬscanClustered = \

- -
dЬ.fit_predict(X_train_PCA.loc[:, O:cutoff])

Х train РСА dbscanClustered = \
- - -

pd.DataFrame(data=X_train_PCA_dЬscanClustered, \
index=X_train.index, columns=['cluster'J)

countByCluster_dЬscan, countByLabel_dbscan, \
countMostFreq_dbscan, accuracyDF_dЬscan, \
overallAccuracy_dЬscan, accuracyByLabel_dbscan = \
analyzeCluster(X_train_PCA_dЬscanClustered, y_train)

overallAccuracy_dbscan

Мы оставим для гиперпараметра min _ samples заданное по умолчанию
значение 5, но используем для гиперпараметра eps значение 3, чтобы избе­
жать кластеризации слишком малого количества точек.

Для общей точности мы получаем следующее значение:

Общая точность алгоритма DBSCAN: 0.242

Это очень низкое значение по сравнению с теми, которые были получены с

помощью метода k-средних и иерархической кластеризации. Мы могли бы по­

экспериментировать с подбором гиперпараметров eps и min _ samples, что­
бы попытаться улучшить этот результат, но, по-видимому, алгоритм DBSCAN
плохо приспособлен для кластеризации наблюдений, входящих в данный кон­

кретный набор.

Чтобы выяснить, почему так происходит, рассмотрим данные кластеров

(табл. 5.3).
Большинство точек остаются некластеризованными. Из 50 ООО наблюде­

ний тренировочного набора 39 575 отнесены к кластеру -1, а это означает,

что они не принадлежат ни к одному из кластеров. Они помечены как выбро­

сы - другими словами, как шум. 8885 точек принадлежат к кластеру О. Кроме
того, имеется длинный "хвост': образованный кластерами небольшого разме­

ра.По-видимому, алгоритму DBSCAN нелегко находить отчетливо плотные

Кластеризация 1 205

группы точек, поэтому он плохо справляется с кластеризацией изображений

MNIST на основании цифр, которые они представляют.

Таблица 5.3. Результатьt кластеризации
с использованием алгоритма DBSCAN

duster dusterCount

о -1 39575

1 о 8885

2 8 720

3 5 92

4 18 51

5 38 38

6 41 22

7 39 22

8 4 16

9 20 16

Алгоритм HDBSCAN
Испытаем другую версию алгоритма DBSCAN - HDBSCAN, или иерархи­

ческий DBSCAN, - и проверим, позволит ли это улучшить результаты. От­

правной точкой для данного алгоритма служит уже знакомый нам алгоритм

DBSCAN, который преобразуется в алгоритм иерархической кластеризации.
Другими словами, алгоритм осуществляет группирование в соответствии с

плотностью точек, а затем итеративно связывает кластеры на основании рас­

стояний между ними, как это делает алгоритм иерархической кластеризации,

с которым мы познакомились в одном из предыдущих разделов.

Два основных гиперпараметра этого алгоритма - min_cluster_size и
min _ samples, причем последний, если задать для него значение None, авто­
матически получает значение min_cluster_size. Используем изначально
установленные значения параметров и откалибруем их, если HDBSCAN сра­
ботает в отношении набора рукописных цифр MNIST лучше, чем DBSCAN.

import hdЬscan

min cluster size 30
min_samples = None
alpha = 1.0

206 1 Гnава5

cluster selection method = 'eom'
- -

hdЬ = hdbscan.HDBSCAN(min_cluster_size=min cluster_size, \
min_samples=min_samples, alpha=alpha, \
cluster_selection_method=cluster_selection_method)

cutoff = 10
X_train_PCA_hdbscanClustered = \

hdЬ.fit_predict(X_train_PCA.loc[:, O:cutoff])

X_train_PCA_hdbscanClustered = \
pd.DataFrame(data=X_train_PCA_hdЬscanClustered, \

index=X_train.index, columns=['cluster'])

countByCluster_hdbscan, countByLabel_hdЬscan, \
countMostFreq_hdЬscan, accuracyDF_hdЬscan, \
overallAccuracy_hdЬscan, accuracyByLabel_hdЬscan = \
analyzeCluster(X_train_PCA_hdЬscanClustered, y_train)

Для общей точности мы получаем следующее значение:

Общая точность алгоритма HDBSCAN: 0.24696

В нашем случае 25% - это лишь незначительное улучшение точности по

сравнению с алгоритмом DBSCAN и слишком далеко от более чем 70%-ной
точности, достигнутой с помощью метода k-средних и иерархической класте­

ризации. Значения точности для различных кластеров приведены в табл. 5.4.

Таблица 5.4. Результаты кластеризации
с использованием алгоритма HDBSCAN

duster clusterCount

о -1 42570

1 4 5140
2 7 942
3 о 605
4 6 295

5 3 252
6 1 119
7 5 45
8 2 32

Кластеризация 1 207

Здесь наблюдается та же картина, что и в случае алгоритма DBSCAN. Боль­
шинство точек остаются некластеризованными, а кроме того, имеется длин­

ный "хвост': образованный кластерами небольшого размера. Таким образом,

говорить о существенном улучшении результатов не приходится.

Резюме

В этой главе мы рассмотрели три основных типа алгоритмов кластериза­

ции - метод k-средних, иерархическая кластеризация и DBSCAN - и приме­

нили их к набору рукописных цифр MNIST пониженной размерности. Первые
два алгоритма продемонстрировали очень высокую эффективность на набо­

ре данных, сгруппировав изображения достаточно хорошо для того, чтобы

получить более чем 70%-ную согласованность меток в кластерах. Алгоритм

DBSCAN проявил себя значительно хуже для этого набора, но все равно пред­
ставляет собой работоспособный алгоритм кластеризации.

Теперь, когда мы познакомились с алгоритмами кластеризации, применим

их в главе 6 для построения приложения на основе обучения без учителя.

208 1 Гnаваs

ГЛАВАб

Сегментирование групп

В главе 5 мы рассмотрели кластеризацию - подход, базирующийся на обу­

чении без учителя, который позволяет определять базовую структуру данных

и группировать точки на основании их сходства. Формируемые группы (назы­

ваемые кластерами) однородны и четко различимы. Иначе говоря, элементы,

принадлежащие к одной группе, в чем-то очень схожи между собой и резко

отличаются от элементов других групп.

С практической точки зрения возможность сегментирования элементов по

группам на основании их сходства, причем без привлечения каких-либо ме­

ток, открывает перед нами широкие перспективы. Такую методику можно, к

примеру, использовать в электронной коммерции для выявления различных

групп потребителей с последующим формированием маркетинговых страте­

гий (например, бюджетные покупатели, метросексуалы, технари, аудиофилы

и т.п.). Сегментирование групп способно повысить эффективность целевой

рекламы и улучшить качество рекомендаций в рекомендательных системах

фильмов, музыки, новостей, социальных сетей, сайтов знакомств и пр.

В этой главе мы построим приложение на основе обучения без учителя,

используя алгоритмы кластеризации, рассмотренные в предыдущей главе, и,

в частности, выполним сегментирование групп.

Данные кредитной компании LendingClub
В этой главе мы используем данные о займах, предоставляемых американ­

ской кредитной компанией LendingClub. Заемщики могут брать кредиты в
виде беззалоговых персональных займов на сумму от 1 ООО до 40 ООО долларов
и на срок от трех до пяти лет.

Инвесторы могут просматривать кредитные заявки и принимать решения

на основании анализа кредитной истории заемщика, а также суммы, катего­

рии и цели получения ссуды. Доходом инвесторов становятся проценты по

займу, тогда как сама компания LendingClub зарабатывает на комиссиях за
оформление займа и предоставление услуг.

База данных, с которой мы будем работать, охватывает транзакции за 2007-
2011 rr. и доступна на сайте LendingClub (https: / /www. lendingclub.
сот/ info/ statistics. action) для зарегистрированных пользователей.
Там же доступен и словарь данных.

Подготовка данных

Аналогично тому, как мы поступали в предыдущих главах, подготовим сре­

ду для работы с набором данных LendingClub.

Загрузка библиотек

Прежде всего, загрузим необходимые библиотеки.

Импорт библиотек
' ' 'Основные библиотеки 1 1 1

import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр
from sklearn import impute as imp
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_curve, \

average_precision_score
from sklearn.metrics import roc_curve, auc, roc auc score

' ' 'Алгоритмы' ' '
from sklearn.decomposition import РСА
from sklearn.cluster import КМеаns
import fastcluster
from scipy.cluster.hierarchy import dendrogram, cophenet, fcluster
from scipy.spatial.distance import pdist

210 1 Гпава 6

Исследование данных

Следующий шаг - загрузка данных о займах и определение столбцов, с ко­

торыми мы будем работать.

Оригинальный файл данных содержит 144 столбца, но большинство из них
пустые или не представляют никакого интереса. Поэтому мы выделим подм­

ножество столбцов, которые по большей части заполнены данными и заслу­

живают того, чтобы использовать их в нашем приложении. Сюда входят атри­

буты займа, такие как запрошенный объем, предоставленный объем, срок

займа, процентная ставка, категория займа и т.п., а также атрибуты заемщика,

например его трудовой стаж, статус домовладельца, годовой доход, адрес и

цель получения займа.

Загрузка данных
current_path = os.getcwd()
file os.path.sep.join([' ', 'datasets', 'lending_club_data', \

'LoanStatsЗa.csv'])

data = pd.read_csv(current_path + file)

Выбор оставляемых столбцов
columnsToKeep = \

['loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'term', \
'int _ rate', 'installment', 'grade', 'sub _grade', 'emp _ length', \
'home_ownership', 'annual_inc', 'verification_status', \
'pymnt_plan', 'purpose', 'addr_state', 'dti', 'delinq_2yrs', \
'earliest_cr_line', 'mths_since_last_delinq', \
'mths_since_last_record', 'open_acc', 'pub_rec', 'revol_bal', \
'revol_util', 'total_acc', 'initial_list_status', 'out_prncp', \
'out_prncp_inv', 'total_pymnt', 'total_pyrnnt_inv', \
'total rec_prncp', 'total rec_int', 'total_rec_late_fee', \
'recoveries', 'collection_recovery_fee', 'last_pymnt_d', \
'last_pymnt_amnt']

data = data.loc[:, columnsToKeep]

data.shape

data. head ()

Данные охватывают 42 542 займа и 37 признаков. Фрагмент данных приве­
ден в табл. 6.1.

Сегментирование групп 1 211

Таблица 6.1. Начальньtй фрагмент базы данных о займах

loan_amnt funded_amnt funded_amnt_lnv term lnt_rate lnstsallment grade

о 5000.0 5000.0 4975.0 36 months 10.65% 162.87 в

1 2500.0 2500.0 2500.О 60 months 15.27% 59.83 с

2 2400.0 2400.0 2400.0 35 months 15.96% 84.33 с

3 10000.0 10000.0 10000.0 36 months 13.49% 339.31 с

4 3000.О 3000.0 3000.0 60 months 12.69% 67.79 в

Преобразование строкового формата в числовой

Некоторые признаки, такие как срок займа, процентная ставка и трудовой

стаж заемщика, требуют преобразования из текстового формата в числовой.

Преобразование признаков из строкового формата в числовой

for i in ["term", "int_rate", "emp_length", "revol_util"]:
data.loc[:,i] = \

data.loc[:, i] .apply(lamЬda х: re.sub("[л0-9]", "", str(x)))
data.loc[:,i] = pd.to_numeric(data.loc[:,i])

В нашем приложении мы будем учитывать только числовые признаки, иг­

норируя все категориальные, поскольку нечисловые признаки не могут обра­

батываться нашими алгоритмами кластеризации в их нынешнем виде.

Замена отсутствующих значений

Необходимо найти все числовые признаки и подсчитать количество значе­

ний NaN для каждого признака. Вместо пустых значений мы подставим либо
среднее значение признака, либо (в некоторых случаях) нулевое значение, в

зависимости от того, что оправданнее с точки зрения бизнеса.

Определение того, какие признаки являются числовыми

numericalFeats = [х for х in data.columns \
if data[x] .dtype != 'object']

Отображение количества значений NaN для каждого признака
nanCounter = np.isnan(data.loc[:, numericalFeats]) .sum()nanCounter

Ниже приведена сводка по признакам.

loan amnt
funded amnt
funded amnt inv

212 1 Глава6

7
7
7

term 7
int rate 7
installment 7
emp_length 1119
annual inc 11
dti 7
delinq_2yrs 36
mths_since_last_delinq 26933
mths since last record 38891
open_acc 36
pub_rec 36
revol bal 7
revol util 97
total асс 36
out_prncp 7
out_prncp_inv 7
total_pymnt 7
total_pymnt_inv 7
total rec_prncp 7
total rec int 7
total rec late fee 7
recoveries 7
collection_recovery_fee 7
last_pymnt_amnt 7
dtype: int64

По большинству признаков количество значений NaN невелико, но есть и
исключения, например количество месяцев, прошедших с даты начала про­

срочки или последнего изменения статуса.

Мы заменим все отсутствующие значения, чтобы не иметь с ними дела в

процессе кластеризации.

Замена значений NaN средним значением признака
fillWithMean = ['loan amnt', 'funded amnt', 'funded_amnt inv', \

'terrn', 'int_rate', 'installrnent', 'emp_length', \
'annual_inc', 'dti', 'open_acc', 'revol_bal', 'revol_util', \
'total_acc', 'out_prncp', 'out_prncp_inv', 'total_pymnt', \
'total_pymnt_inv', \'total_rec_prncp', 'total_rec_int', \
'last_pymnt_amnt'J

Замена значений NaN нулями
fillWithZero = ['delinq_2yrs', 'mths since last_delinq', \

'rnths_since_last_record', 'pub_rec', 'total_rec_late fee', \

Сегментирование групп 1 213

'recoveries', 'collection_recovery_fee']

Выполнение подстановки
im = imp.Simpleimputer(strategy='mean')

data.loc[:, fillWithMean] = im.fit_transform(data[fillWithMean])
data.loc[:, fillWithZero] = data.loc[:, \

fillWithZero] .fillna(value=O, axis=l)

Пересчитаем количество значений NaN и убедимся в том, что мы пол­
ностью избавились от них.

nanCounter = np.isnan(data.loc[:,numericalFeats]) .sum()
nanCounter

loan amnt О

funded amnt О

funded amnt inv О

term О

int rate О

installment О

emp_length О

annual inc О

dti о

delinq_2yrs О

mths_since_last_delinq О

mths since last record О

open_acc О

pub_rec О

revol bal О

revol util О

total асс О

out_prncp О

out_prncp_inv О

total_pymnt О

total_pymnt_inv О

total_rec_prncp О

total rec int О

total rec late fee О

recoveries О

collection_recovery_fee О

last_pymnt_amnt О

dtype: int64

214 1 Гдава 6

Конструирование признаков

Сконструируем ряд признаков в дополнение к уже существующим. Эти но­

вые признаки в основном представляют собой соотношения между размером

займа, доступным балансом, размерами платежей и годовым доходом заем­

щика.

Конструирование признаков
data['installmentOverLoanAmnt'] = data.installment/data.loan_amnt
data['loanAmntOverincome'] = data.loan_amnt/data.annual_inc
data['revol_balOverincome'] = data.revol_bal/data.annual_inc
data['totalPymntOverincome'] = data.total_pymnt/data.annual_inc
data['totalPymntinvOverlncome'] = data.total_pymnt_inv/data.annual_inc
data['totalRecPrncpOverlncome'] = data.total_rec_prncp/data.annual_inc
data['totalReclncOverlncome'] = data.total_rec_int/data.annual_inc

newFeats = ['installmentOverLoanAmnt', 'loanAmntOverlncome', \
'revol_balOverlncome', 'totalPymntOverlncome', \
'totalPyrnntlnvOverlncome', 'totalRecPrncpOverlncome', \
'totalReclncOverlncome']

Выбор окончательного набора признаков

и масштабирование

Далее мы генерируем кадр данных для обучения и масштабируем признаки

для алгоритма кластеризации.

Выбор признаков для обучения
numericalPlusNewFeats = numericalFeats+newFeats
X_train = data.loc[:, numericalPlusNewFeats]

Масштабирование данных
sX = pp.StandardScaler()
X_train.loc[:, :] = sX.fit_transform(X_train)

Назначение меток для оценки

Кластеризация основана на обучении без учителя, поэтому метки не за­

действуются. В то же время, для того чтобы можно было оценить эффектив­

ность нашего алгоритма кластеризации в плане формирования отчетливо

Сеrментирование rpynn 1 21 5

различающихся однородных групп заемщиков, мы будем использовать кате­

горию займа в качестве заменителя метки.

Категории займов имеют буквенную градацию. Займы категории "Х' счи­

таются наиболее выгодными, займы категории "G" - наименее выгодными.

labels = data.grade
labels. unique ()

array(['B', 'С', 'А', 'Е', 'F', 'D', 'G', nan], dtype=object)

Среди градаций имеются значения NaN. Мы заполним эти поля значением
11 z11 и используем функцию LabelEncoder из библиотеки Scikit-learn, чтобы
преобразовать буквенные градации в числовые. Для согласованности мы за­

грузим метки в массив y _ train.

Заполнение отсутствующих меток
labels = labels.fillna(value="Z")

Преобразование меток в числовые значения
lЫ = pp.LabelEncoder()
lЫ.fit(list(labels.values))

labels = pd.Series(data=lЫ.transform(labels.values), name="grade")

Сохранение числовых меток в массиве y_train
y_train = labels

labelsOriginalVSNew = pd.concat([labels, data.grade], axis=l)
labelsOriginalVSNew

Как следует из табл. 6.2, все градации 'Л' были преобразованы в О, градации
"В" - в 1 и т.д.

Проверим, имеют ли займы категории 'Л' наименьшую процентную ставку,

поскольку с ними связаны наименьшие риски, тогда как за остальные займы

берется более высокий процент.

Сопоставление градаций займов с процентными ставками

interestAndGrade pd.DataFrame(data=[data.int_rate, labels])
interestAndGrade = interestAndGrade.T

interestAndGrade.groupby("grade") .mean()

216 1 Гnава 6

Таблица 6.2. Соответствие между числовыми
и буквенными обозначениями градаций займов

grade gr1de

о в

1 2 с

2 2 с

3 2 с

4 1 в

s о А

6 2 с

7 4 Е

8 5 F

9 в

10 2 с

11 1 в

12 2 с

13 в

14 в

15 3 D

16 2 с

Данные, приведенные в табл. 6.3, подтверждают наше предположение. Чем
выше градация займа, тем выше процентная ставка 1•

Таблица 6.3. Сравнение градаций и процентных ставок

grade lnt_r1t1

о.о 734.270844

1.0 1101.420857

2.0 1349.988902

3.0 1557.714927

4.0 1737.676783

s.o 1926.530361

6.0 2045.125000

7.0 1216.501563 ----

1 Категорию "7" можно игнорировать, так как ей соответствует категория займа "Z': Она была
искусственно назначена займам, для которых отсутствует категория.

Сегментирование групп 1 217

Пригодность кластеров

Итак, данные подготовлены к работе. Мы имеем массив Х _ train, содер­
жащий все 34 числовых признака, и массив у_ t r а i n, содержащий числовые
категории займов, которые мы используем лишь для валидации результатов,

а не для обучения с помощью алгоритма, как это положено делать в случае за­

дач, решаемых по технологии обучения без учителя. Прежде чем приступить к

созданию нашего первого кластерного приложения, напишем функцию, с по­

мощью которой будем анализировать пригодность кластеров, генерируемых

алгоритмами кластеризации. Для оценки пригодности каждого кластера мы

используем понятие однородности.

Если алгоритм кластеризации хорошо справляется с разделением заемщи­

ков в наборе данных LendingClub, то каждый кластер должен включать заем­
щиков, весьма сходных между собой и непохожих на заемщиков из других

групп. Предположительно, схожие заемщики одной группы должны иметь

аналогичные кредитные профили - другими словами, их кредитоспособ­

ность должна быть близкой.

Если это действительно так (а на практике многие из подобных предпо­

ложений справедливы лишь частично), то, как правило, заемщикам, относя­

щимся к одному кластеру, будет присвоена одна и та же числовая категория

займа, которую мы будем использовать для валидации с помощью числовых
категорий займов, хранящихся в массиве у_ train. Чем выше в каждом клас­
тере процентная доля заемщиков с наиболее часто встречающимися числовы­

ми категориями, тем лучше работает приложение кластеризации.

В качестве примера рассмотрим кластер с сотней заемщиков. Если 30 из
них имеют числовую категорию О, 25 - категорию 1, а 20 - категорию 2, в то
время как категории других заемщиков изменяются в пределах от 3 до 7, то мы
сказали бы, что кластер характеризуется 30%-ной точностью, при условии, что
наиболее часто встречающаяся в данном кластере категория относится лишь

к 30% заемщиков, входящих в этот кластер.
Если бы мы не располагали массивом у train, содержащим числовые

категории займов для валидации пригодности кластеров, то можно было бы

предложить альтернативный подход: выбрать нескольких заемщиков в каж­

дом кластере, определить для них категории вручную и выяснить, удалось

ли нам присвоить в грубом приближении одну и ту же числовую категорию

этим заемщикам. Если нам это действительно удалось, то кластер следует

считать вполне пригодным - он достаточно однороден для того, чтобы мы

могли присвоить одну и ту же категорию всем заемщикам в данной выборке.

218 1 Гnава 6

В противном случае кластер не является достаточно пригодным - заемщики

слишком неоднородны, и мы должны попытаться улучшить решение, исполь­

зуя больше данных, другой алгоритм кластеризации и т.п.

С учетом того, что мы уже располагаем числовыми категориями заемщи­

ков, нам не требуется создавать выборки и вручную присваивать категории,

но важно не забывать о такой возможности на случай отсутствия меток.

Код функции, анализирующей кластеры, приведен ниже.

def analyzeCluster(clusterDF, labelsDF):
countByCluster = \

pd.DataFrame(data=clusterDF['cluster'] .value counts())
countByCluster.reset_index(inplace=True, drop=False)
countByCluster.columns = ['cluster', 'clusterCount']

preds = pd.concat([labelsDF, clusterDF], axis=l)
preds.columns = ['trueLabel', 'cluster']

countByLabel = \
pd.DataFrame(data=preds.groupby('trueLabel') .count())

countMostFreq = \
pd.DataFrame(data=preds.groupby('cluster') .agg(lamЬda \

x:x.value_counts() .iloc[O]))
countMostFreq.reset_index(inplace=True, drop=False)
countMostFreq.columns = ['cluster', 'countMostFrequent']

accuracyDF = countMostFreq.merge(countByCluster, \
left_on="cluster", right_on="cluster")

overallAccuracy = accuracyDF.countMostFrequent.sum() / \
accuracyDF.clusterCount.sum()

accuracyByLabel = accuracyDF.countMostFrequent / \
accuracyDF.clusterCount

return countByCluster, countByLabel, countMostFreq, accuracyDF, \
overallAccuracy, accuracyByLabel

Сегментирование rpynn 1 219

Применение метода k-средних

В нашем первом приложении кластеризации, применяемом к набору дан­

ных LendingClub, мы используем метод k-средних, введенный в главе 5. Вспом­
ните, что в методе k-средних требуется указать нужное количества кластеров,

k, и алгоритм будет относить каждого заемщика исключительно к одному из
этих k кластеров.

Алгоритм будет достигать этого, минимизируя внутрикластерную вариа­

цию, называемую инерцией, так чтобы сумма внутрикластерных вариаций по

всем k кластерам была наименьшей.
Вместо того чтобы указать только одно значение k, мы выполним экспери­

мент, в котором для k устанавливаются значения в диапазоне 10-30, и отло­
жим в виде графика значения точности в соответствии с тем, как мы ее опре­

делили в предыдущем разделе.

Базируясь на значении k, обеспечивающем наилучшую точность, мы мо­
жем построить конвейер для кластеризации с использованием этого наилуч­

шего значения k.

from sklearn.cluster import КМеаns

n clusters = 10
n init = 10
max iter = 300
tol = 0.0001
random state = 2018

kmeans = КМeans(n clusters=n_clusters, n_init=n_init, \
max_iter=max_iter, tol=tol, \
random_state=random_state)

kMeans inertia pd.DataFrame(data=[], index=range(lO, 31), \
col umns= ['Инерция'))

overallAccuracy_kМeansDF pd.DataFrame(data=[J, \

for n_clusters in range(l0,31):

index=range(lO, 31), \
columns=['Oбщaя точность'])

kmeans = КМeans(n clusters=n_clusters, n_init=n_init, \
max_iter=max_iter, tol=tol, \
random_state=random_state, n_jobs=n_jobs)

220 1 Гnава6

kmeans.fit(X_train)
kMeans_inertia.loc[n_clusters] = kmeans.inertia
Х train kmeansClustered = kmeans.predict(X_train)
X_train_kmeansClustered = \

pd.DataFrame(data=X_train_kmeansClustered, \
index=X_train.index, columns=['cluster'])

countByCluster_kМeans, countByLabel_kMeans, \
countMostFreq_kMeans, accuracyDF_kМeans, \
overallAccuracy_kМeans, accuracyByLabel_kMeans \
analyzeCluster(X_train_kmeansClustered, y_train)

overallAccuracy_kМeansDF.loc[n_clusters] overallAccuracy_kМeans

overallAccuracy_kMeansDF.plot()

Результаты представлены в графическом виде на рис. 6.1.

039
- ОбЩ<\11 ТО'"10СТЬ

038

037

036

035

о 34

033 /

10.0 U.5 lS О 17.5 20.О 22.5 25.О 27.5 ~.О

Рис. 6.1. Общая точность для различных значений k
при использовании метода k-средних

Как видим, наилучшая точность достигается при использовании примерно

30 кластеров, выходя на уровень 39%. Другими словами, для любого заданно­
го кластера наиболее часто встречающаяся метка применяется приблизитель­

но к 39% заемщиков. Оставшиеся 61 % заемщиков имеют метки, которые не
относятся к числу встречающихся наиболее часто.

Ниже показана точность для каждого кластера при k = 30.

о 0.326633
1 о. 258993
2 0.292240

Сегментирование групп 1 221

3 0.234242
4 0.388794
5 0.325654
6 0.303797
7 0.762116
8 0.222222
9 0.391381
10 0.292910
11 0.317533
12 0.206897
13 0.312709
14 0.345233
15 0.682208
16 0.327250
17 0.366605
18 0.234783
19 0.288757
20 0.500000
21 0.375466
22 0.332203
23 0.252252
24 0.338509
25 0.232000
26 0.464418
27 0.261583
28 0.376327
29 0.269129
dtype: float64

От кластера к кластеру точность испытывает довольно заметные колеба­

ния. Одни кластеры намного однороднее других. Например, точность для клас­

тера 7 составляет 76%, а для кластера 12 - всего лишь 21 %. Это стартовая точ­
ка для создания приложения кластеризации, автоматически распределяющего

новых заемщиков в уже существующую группу на основании их сходства с

другими заемщиками. Базируясь на данном варианте кластеризации, можно

автоматически присваивать пробные числовые категории займов новым за­

емщикам, и эти категории будут корректными приблизительно в 39% случаев.
Описанное решение не является наилучшим, и мы должны проанализи­

ровать, можно ли улучшить результаты за счет получения дополнительных

данных, конструирования большего количества признаков, настройки раз­

личных гиперпараметров алгоритма k-средних или использования другого

222 / Глава6

алгоритма кластеризации. Вполне возможно, что мы не располагаем доста­

точным количеством данных, обеспечивающим более эффективное разделе­

ние заемщиков на отчетливо различимые однородные группы по сравнению с

имеющимся. Если это действительно так, то нам потребуется большее данных,

а также сконструированных и отобранных признаков. Или же может случить­

ся так, что для имеющегося ограниченного набора данных алгоритм k-сред­

них не является оптимальным решением для такого разделения.

Попробуем применить иерархическую кластеризацию и проверим, помо­

жет ли это улучшить результаты.

Применение иерархической кластеризации

Вспомните, что в случае использования иерархической кластеризации мы

не должны предварительно привязываться к определенному количеству клас­

теров. Вместо этого мы указываем, какое количество кластеров желательно

иметь по завершении процесса кластеризации. Алгоритм иерархической

кластеризации построит дендрограмму, которую можно представить в виде

перевернутого дерева. Листья в самом низу - это индивидуальные заемщики

LendingClub, подавшие заявки на получение кредитов.
Иерархическая кластеризация объединяет заемщиков по мере продвиже­

ния вверх по перевернутому дереву, руководствуясь степенью их взаимного

сходства. В первую очередь объединяются заемщики с наибольшим сход­

ством, тогда как менее схожие заемщики объединяются значительно позже.

В конечном счете все заемщики объединяются в виде ствола в самом верху

перевернутого дерева.

С маркетинговой точки зрения такой процесс кластеризации открывает

широкие возможности. Если нам удастся найти схожих заемщиков и сгруппи­

ровать их, то мы сможем более эффективно присвоить им рейтинги кредито­

способности. Мы также сможем сформировать разные стратегии для разных

групп заемщиков и тем самым повысить качество предоставления услуг.

Когда кластеризация завершается, мы должны определить, где следует обре­

зать дерево. Чем ниже линия обреза, тем больше групп заемщиков останется.

Для начала обучим алгоритм кластеризации, как мы это делали в главе 5.

import fastcluster
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import cophenet
from scipy.spatial.distance import pdist

Сегментирование групп 1 223

Z fastcluster.linkage_vector(X_train, method='ward', \
metric='euclidean')

Z dataFrame = pd.DataFrame(data=Z, columns=['clusterOne', \
'clusterTwo', 'distance', \
'newClusterSize'])

В табл. 6.4 показано, как выглядит кадр данных. Первые 20 строк представ­
ляют заемщиков, которым соответствуют листья дерева в самом низу.

Таблица 6.4. Самые нижние листья дерева иерархической кластеризации

о

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

dusterOne

39786.0

39788.0

42538.0

42540.0

42541.0

42543.0

33251.0

42512.0

42219.0

6112.0

33248.0

33253.0

33258.0

20430.0

5455.0

28615.0

9056.0

11162.0

33270.0

17422.О

dusterTwo

39787.0

42542.0

42539.0

42544.0

42545.0

42546.0

33261.0

42535.0

42316.0

21928.0

33275.0

33265.0

42552.0

23299.0

32845.0

30306.0

9769.0

13857.0

42548.0

17986.0

distance

О.ООООООе+ОО

О.ООООООе+ОО

о.оооооое+оо

О.ООООООе+ОО

3.399350е-17

5.139334е-17

1.56131Зе-01

3.342654е-01

3.368231 е-01

3.384368е-01

3.583819е-01

3.595331е-01

3.719377е-01

3.757307е-01

3.828709е-01

3.900294е-01

З.967378е-01

3.991124е-01

З.995620е-01

4.061704е-01

newClusterSize

2.0

3.0

2.0

3.0

4.0

7.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

2.0

2.0

2.0

2.0

2.0

3.0

2.0

Вспомните, что последние строки представляют верхушку перевернутого

дерева, и в конечном счете должны быть объединены все 42 541 заемщиков
(табл. 6.5).

224 1 Главаб

Таблица б.5. Самые верхние листья дерева иерархической кластеризации

clust1rOne dusterТwo dlstance newClusterSize

42521 85038.0 85043.О 132.715723 3969.0

42522 85051.0 85052.0 141.386569 2899.0

42523 85026.0 85027.0 146.976703 2351.0

42524 85048.0 85049.0 152.660192 5691.0

42525 85036.0 85059.0 153.512281 5956.0

42526 85033.0 85044.0 160.825959 2203.0

42527 85055.О 85061.0 163.701428 668.0

42528 85062.О 85066.0 168.199295 6897.0

42529 85054.О 85060.0 168.924039 9414.0

42530 85028.0 85064.0 185.215769 3118.0

42531 85067.О 85071.0 187.832588 15370.0

42532 85056.0 85073.0 203.212147 17995.0

42533 85057.0 85063.0 205.285993 9221.0

42534 85068.О 85072.0 207.902660 5321.0

42535 85069.0 85075.0 236.754581 9889.0

42536 85070.0 85077.0 298.587755 16786.0

42537 85058.О 85078.0 309.946867 16875.0

42538 85074.0 85079.0 375.698458 34870.0

42539 85065.О 85080.0 400.711547 37221.0

42540 85076.0 85081.0 644.047472 42542.0

Обрежем дендрограмму так, чтобы осталось разумное количество класте­

ров, поддающееся обработке. Оно задается на основании значения перемен­

ной distance _ threshold. Методом проб и ошибок установлено, что значе­
ние distance_threshold, равное 100, приводит к созданию 32 кластеров;
его мы и используем в данном примере.

from scipy.cluster.hierarchy import fcluster

distance threshold = 100
clusters = fcluster(Z, distance_threshold, criterion='distance')
X_train_hierClustered = pd.DataFrame(data=clusters, \

index=X_train_PCA.index, columns=['cluster'])

рrint("Количество различных кластеров:", \
len(X_train_hierClustered['cluster'J .unique()))

Сеrментирование rpynn 1 225

Количество различных кластеров при выбранном нами значении

distance _ threshold равно 32.

countByCluster_hierClust, countByLabel_hierClust, \
countMostFreq_hierClust, accuracyDF_hierClust, \
overallAccuracy_hierClust, accuracyByLabel_hierClust \
analyzeCluster(X_train_hierClustered, y_train)

print("Oбщaя точность иерархической кластериэации:", \
overallAccuracy_hierClust)

Ниже показана общая точность иерархической кластеризации:

Общая точность иерархической кластериэации: 0.3651685393258427

Она составляет приблизительно 37%, что немного хуже, чем в методе
k-средних. Но следует оговориться, что иерархическая кластеризация работа­
ет по собственному алгоритму, поэтому может точнее группировать некото­

рых заемщиков, тогда как в каких-то группах лучше проявляет себя алгоритм

k-средних.

Другими словами, эти два алгоритма кластеризации могут дополнять друг

друга, и данную возможность имеет смысл исследовать, объединив алгорит­

мы в один ансамбль и сравнив результаты работы ансамбля с результатами

автономных решений (возможности ансамблевого подхода исследовались в

главе 2). Как и в случае метода k-средних, точность заметно варьируется при
переходе от одного кластера к другому. Некоторые кластеры гораздо более од­

нородны по сравнению с остальными.

Точность кластеров при иерархической кластериэации

о 0.304124
1 0.219001
2 0.228311
3 0.379722
4 0.240064
5 0.272011
6 0.314560
7 0.263930
8 0.246138
9 0.318942
10 0.302752
11 0.269772
12 0.335717
13 0.330403

226 1 Гnава6

14 0.346320
15 0.440141
16 0.744155
17 0.502227
18 0.294118
19 о. 236111
20 0.254727
21 0.241042
22 0.317979
23 0.308771
24 0.284314
25 0.243243
26 0.500000
27 0.289157
28 0.365283
29 0.479693
30 0.393559
31 0.340875

Применение кластеризации по методу HDBSCAN
Перейдем к рассмотрению алгоритма HDBSCAN и применим его для груп­

пирования схожих заемщиков из набора данных LendingClub.
Вспомните, что алгоритм HDBSCAN будет выполнять группирование за­

емщиков исходя из того, насколько плотно упакованы их атрибуты в про­

странстве высокой размерности. В отличие от метода k-средних или иерар­

хической кластеризации будут сгруппированы не все заемщики. Некоторая

часть заемщиков, значительно отличающаяся от других групп, может остаться

несгруппированной. Они представляют собой выбросы и должны быть иссле­

дованы на предмет того, существуют ли какие-то серьезные бизнес-факторы,

которые обусловливают такие отличия. Некоторым группам заемщиков мож­

но автоматически назначать числовые категории займов, но для других, не­

схожих, заемщиков может потребоваться более придирчивый подход к оцен­

ке их кредитоспособности.

Проверим, насколько хорошо сработает алгоритм HDBSCAN.

import hdbscan

min cluster size 20
min_samples = 20

Сегментирование групп 1 227

alpha = 1.0
cluster selection method = 'leaf'

hdb = hdbscan.HDBSCAN(min_cluster_size=min cluster size, \
min_samples=min_samples, alpha=alpha, \
cluster_selection_method=cluster_selection_method)

X_train_hdЬscanClustered = hdЬ.fit_predict(X_train)
Х train hdbscanClustered = \

- -
pd.DataFrame(data=X_train_hdЬscanClustered, index=X_train.index, \

columns=['cluster'])

countByCluster_hdЬscan, countByLabel_hdЬscan, \
countMostFreq_hdЬscan, accuracyDF_hdЬscan, \
overallAccuracy_hdЬscan, accuracyByLabel_hdЬscan \
analyzeCluster(X_train_hdbscanClustered, y_train)

Ниже показана общая точность алгоритма HDBSCAN:

Общая точность алгоритма HDBSCAN: 0.3246203751586667

Как видите, общая точность составляет приблизительно 32%, что хуже, чем
давали методы k-средних и иерархической кластеризации.

Результаты кластеризации представлены в табл. 6.6.

Таблица б.б. Результаты кластеризации

с использованием алгоритма HDBSCAN

duster dusterCount

о -1 32708

1 7 4070

2 2 3668

3 1 1096

4 4 773

5 о 120

6 6 49

7 3 38

8 5 20

К кластеру -1 отнесены 32 708 заемщиков. Это означает, что они остаются
несгруппированными.

228 1 Гnаваб

Ниже представлены значения точности для каждого кластера по отдель­

ности. Точность колеблется в пределах от 28 до 59%.

о 0.284487
1 0.341667
2 0.414234
3 0.332061
4 0.552632
5 0.438551
6 0.400000
7 0.408163
8 0.590663

Резюме

В этой главе мы разработали несколько приложений кластеризации на ос­

нове обучения без учителя, используя данные компании LendingClub о заем­

щиках, подававших заявки на получение беззалоговых персональных ссуд на

протяжении 2007-2011 гг. Эти приложения базировались на методе k-средних,

иерархической кластеризации и иерархическом алгоритме DBSCAN. Лучшим

оказался метод k-средних, обеспечивший общую точность на уровне прибли­

зительно 39%.
Несмотря на то что приложения работали удовлетворительно, их можно

существенно улучшить. Используйте их в качестве отправной точки и попы­

тайтесь усовершенствовать их, экспериментируя с применяемыми алгоритма­

ми.

На этом мы завершаем часть, посвященную обучению без учителя с приме­

нением библиотеки Scikit-learn. В следующих главах мы исследуем технологии

обучения без учителя на основе нейронных сетей с использованием библио­

тек TensorFlow и Keras. В главе 7 мы рассмотрим технологию обучения призна­

кам и познакомимся с автокодировщиками.

Сегментирование групп 1 229

ЧАСТЬ 111

Обучение без учителя

с использованием библиотек

TensorFlow и Keras

Итак, мы завершили часть, посвященную обучению без учителя с исполь­

зованием библиотеки Scikit-learn, и готовы перейти к рассмотрению подходов
на основе нейронных сетей. В следующих главах мы познакомимся с нейрон­

ными сетями и популярными фреймворками TensorFlow и Keras.
В главе 7 мы применим автокодировщик - мелкую нейронную сеть - для

автоматического конструирования и отбора признаков. В главе 8 мы узнаем,
как с помощью автокодировщиков решать практические задачи. В главе 9 мы
обсудим, как превратить задачу обучения без учителя в задачу с частичным

привлечением учителя, воспользовавшись несколькими имеющимися метка­

ми для улучшения точности и полноты модели, основанной исключительно на

обучении без учителя.

Закончив с обзором мелких нейронных сетей, в последней части книги мы

перейдем к рассмотрению глубоких нейронных сетей.

ГЛАВА 7

Автокодировщики

В первых шести главах демонстрировалось, как применять обучение без

учителя для снижения размерности, а также кластеризации данных. С помо­

щью рассмотренных алгоритмов мы создали ряд приложений, предназначен­

ных для обнаружения аномалий и сегментирования групп на основе сходства.

Однако обучение без учителя способно на гораздо большее. Одно из на­

правлений, в которых обучению без учителя нет равных, - выделение призна­

ков (feature extraction), метод, применяемый для генерирования нового пред­
ставления признаков из их оригинального набора. Это новое представление

называется обученньtм; оно используется для улучшения производительности

в задачах обучения с учителем. Другими словами, извлечение признаков -
это предварительное обучение без учителя, завершающееся стадией обучения

с учителем.

Одну из технологий извлечения признаков реализуют автокодировщики.

В них используется нерекуррентная нейронная сеть прямого распростране­

ния для обучения признакам (feature learning). Концепция обучения призна­
кам составляет суть всего направления машинного обучения, основанного на

нейронных сетях.

В автокодировщиках каждый слой нейронной сети обучается представ­

лению оригинальных признаков, и каждый последующий слой достраивает

представление, которому обучился предыдущий слой. Слой за слоем автоко­

дировщик обучается все более сложным представлениям, последовательно

выстраивая структуру, известную как иерархия понятий, которая становится

все более и более абстрактной.

Выходным слоем будет конечное обученное представление оригинальных

признаков. Это обученное представление можно затем подать на вход любой

модели обучения с учителем с целью уменьшения ошибки обобщения.

Но не будем забегать далеко вперед, а начнем с ознакомления с нейрон­

ными сетями и предназначенными для работы с ними фреймворками Python:
TensorFlow и Keras.

Нейронные сети

По своей сути нейронные сети реализуют обучение признакам, при кото­

ром каждый слой нейронной сети обучается представлению, созданному пре­

дыдущим слоем. Формируя слой за слоем все более детализированные пред­

ставления, отражающие дополнительные нюансы, нейронные сети способны

справляться с такими нетривиальными задачами, как компьютерное зрение,

распознавание речи и машинный перевод.

Нейронные сети бывают мелкими и глубокими. Мелкие сети состоят из не­

большого количества слоев, а глубокие сети - из множества слоев. Глубокое

обучение унаследовало свое название от глубоких (многослойных) нейрон­

ных сетей. Мелкие сети не слишком эффективны, поскольку степень обучения

признакам ограничена малым количеством слоев. С другой стороны, глубокие

сети обладают огромными возможностями и в настоящее время олицетворя­

ют собой передовой край машинного обучения.

Для большей ясности следует подчеркнуть, что как мелкое, так и глубокое

обучение - лишь часть экосистемы машинного обучения в целом. Машин­

ное обучение с использованием нейронных сетей отличается от классического

машинного обучения в основном тем, что в первом случае конструирование

признаков в значительной мере осуществляется автоматически, а во вто­

ром - вручную.

Нейронные сети содержат входной слой, один или несколько скрытьtх сло­

ев и выходной слой. Количество скрытых слоев определяет глубину нейронной

сети. Скрытые слои можно рассматривать как слои промежуточных вычис­

лений; их совокупное действие позволяет нейронной сети аппроксимировать

сложные функции.

Каждый слой состоит из определенного количества образующих его узлов,

называемых нейронами. Узлы каждого слоя соединяются с узлами следующего

слоя. В процессе обучения нейронная сеть определяет, какой вес следует на­

значить каждому из узлов.

Помимо добавления в нейронную сеть дополнительных слоев, мы можем

добавлять в нее дополнительные узлы для расширения возможностей сети с

точки зрения моделирования сложных отношений. Выходы этих узлов переда­

ются функции активации, которая определяет, какое значение текущего слоя

будет передано следующему слою нейронной сети. К числу распространенных

функций активации относятся линейная функция, сигмоида, гиперболический

тангенс и линейный выпрямитель (ReLU). В качестве конечной функции акти­

вации обычно используют функцию Softтax, выводящую вероятность того,

234 1 Глава 7

что входное наблюдение относится к определенному классу. Такая ситуация

довольно типична для задач классификации.

Кроме того, нейронные сети могут иметь узлы смещения (Ьias nodes).
В отличие от обычных узлов они всегда имеют постоянные значения и не

связываются с предыдущим слоем. Их назначение заключается в том, чтобы

смещать выход функции активации в сторону больших или меньших зна­

чений. Посредством скрытых слоев - включая нейроны, узлы смещения и

функции активации - нейронная сеть пытается обучиться правильно ап­

проксимировать функцию, которая применяется для трансляции входного

слоя в выходной.

В задачах обучения с учителем это делается достаточно просто. Входной

слой представляет признаки, поступающие в нейронную сеть, а выходной -
метки, назначенные каждому наблюдению. В процессе обучения нейронная

сеть определяет, какие значения весов узлов обеспечивают минимизацию рас­

хождения между предсказанной меткой каждого наблюдения и истинной мет­

кой. В случае обучения без учителя нейронная сеть обучается представлениям

входного слоя через различные скрытые слои, не руководствуясь никакими

метками.

Нейронные сети обладают огромными возможностями и способны моде­

лировать сложные нелинейные отношения на уровне, которого классическим

алгоритмам машинного обучения трудно достичь. В целом это замечатель­

ное свойство нейронных сетей, однако существуют и потенциальные риски.

Поскольку нейронные сети могут моделировать столь сложные нелинейные

отношения, они в гораздо большей степени подвержены переобучению, что

необходимо учитывать при создании приложений машинного обучения на

основе нейронных сетей1 •

Существует множество типов нейронных сетей, таких как рекуррентные

нейронные сети, данные которых могут перетекать в любом направлении (ис­

пользуются для распознавания речи и машинного перевода), и сверточные

нейронные сети (применяются в машинном зрении). Но мы сосредоточимся

на рассмотрении более простых нейронных сетей прямого распространения,

в которых данные перемещаются лишь в одном направлении: прямом.

Кроме того, чтобы создаваемые нами нейронные сети обладали хорошей

производительностью, мы должны уделить внимание оптимизации гипер­

параметров, включая выбор функции потерь, алгоритма минимизации по­

терь, типа инициализации начальных значений весов, количества итераций

тренировки нейронной сети (т.е. количества эпох), количества наблюдений,

1 Процесс контроля переобучения называется регуляризацией.

Автокодировщики 1 235

передаваемых перед каждым обновлением весов (т.е. размер пакета), и вели­

чины шага изменения весов (т.е. скорости обучения) в процессе тренировки

сети.

Tensorflow
Прежде чем приступить к знакомству с автокодировщиками, рассмотрим

возможности TensorFlow - основной библиотеки, которую мы будем ис­

пользовать для построения нейронных сетей. TensorFlow - это библиотека

с открытым исходным кодом, предназначенная для выполнения высокопро­

изводительных вычислений. Первоначально она была разработана коман­

дой проекта GoogleBrain для применения внутри компании Google. В ноябре
2015 года она была выпущена в виде ПО с открытым исходным кодом2•

Библиотека TensorFlow доступна для большинства операционных систем
(включая Linux, macOS, Windows, Android и IOS) и может выполняться на
множестве CPU и GPU, предлагая высокую степень масштабируемости про­
грамм и возможность их развертывания на рабочих станциях и мобильных

устройствах, а также в веб-среде или в облаке.

Вся прелесть библиотеки TensorFlow заключается в том, что пользователь
может определить нейронную сеть - или, в более общей формулировке, вы­

числительный граф - на языке Python, но при этом выполнять вычисления,
используя код на языке С++, который работает намного быстрее кода Python.

Кроме того, TensorFlow позволяет распараллеливать вычисления, разби­
вая последовательность операций на блоки и выполняя их параллельно на

нескольких CPU и GPU. Вопросы производительности играют важную роль
при проектировании крупномасштабных приложений машинного обучения,

таких как поисковые системы Google.
Несмотря на то что существуют другие нейросетевые библиотеки с откры­

тым исходным кодом, TensorFlow пользуется наибольшей популярностью, во
многом благодаря авторитету Google.

Пример использования Tensorflow
Для начала создадим граф TensorFlow и выполним вычисления. Мы импор­

тируем библиотеку TensorFlow, определим несколько переменных (программ­
ный интерфейс TensorFlow напоминает интерфейс библиотеки Scikit-learn, с

z Дополнительная информация о библиотеке TensorFlow доступна на сайте www. tensorflow.
org.

236 1 Г11ава 7

которой мы работали в предыдущих главах), а затем вычислим значения этих

переменных.

import tensorf low as tf

Ь = tf.constant(50)
х = ь * 10
у = х + ь

with tf.Session() as sess:
result = y.eval()
print(result)

Важно понимать, что в данном случае имеют место две фазы. Сначала мы

конструируем вычислительный граф, определяя переменные Ь, х и у. Затем

мы запускаем расчет графа посредством вызова tf. Session ().До этого мо­

мента ни CPU, ни GPU не выполняют никаких вычислений. Мы лишь сохра­
няем инструкции для будущих вычислений. Результатом работы программы

будет вывод числа 5 5 О.
В следующих главах мы будем создавать нейронные сети с помощью

TensorFlow.

Keras
Keras - высокоуровневая библиотека с открытым исходным кодом, рабо­

тающая поверх TensorFlow. Она предоставляет удобный интерфейс для до­
ступа к TensorFlow, с которым проще выполнять эксперименты, чем пытаться

напрямую вводить команды TensorFlow. Библиотека Keras тоже была разра­
ботана одним из сотрудников компании Google, инженером Франсуа Шолле.

Когда мы начнем строить нейросетевые модели с помощью TensorFlow, мы
познакомимся с библиотекой Keras и исследуем ее преимущества.

Автокодировщик: кодировщик и декодировщик

Теперь, когда вы уже имеете определенное представление о нейронных се­

тях и популярных библиотеках для работы с ними - TensorFlow и Keras, -
необходимо познакомиться с автокодировщиком, который реализует одну из

простейших нейронных сетей для обучения без учителя.

Автокодировщик состоит из двух компонентов: кодировщика и декодиров­

щика. Кодировщик преобразует входной набор признаков в другое представ-

Автокодировщики 1 237

ление (посредством обучения признакам), а декодировщик преобразует это
новое представление в оригинальный формат.

Базовая концепция автокодировщика аналогична концепции снижения

размерности, которую мы изучили в главе 3. Как и в случае снижения размер­
ности данных, автокодировщик не запоминает оригинальные наблюдения и

признаки, что было бы эквивалентно тождественному отображению. От та­

кого автокодировщика не было бы никакой пользы. Вместо этого он должен

аппроксимировать оригинальные наблюдения с как можно более высокой,

но не абсолютной, точностью, используя обученное представление. Иными
словами, автокодировщик учится аппроксимировать тождественное отобра­

жение.

Поскольку автокодировщик ограничен в своих действиях, он вынужден

обучаться наиболее существенным свойствам оригинальных данных, захва­

тывая их базовую структуру. Это аналогично тому, что происходит при сни­

жении размерности данных. Наличие ограничения служит важной харак­

теристикой автокодировщиков - оно заставляет их тщательно взвешивать

решения о том, какую информацию следует захватывать ввиду ее важности, а

какую - отбрасывать, поскольку она менее важна или не является полезной.

Концепция автокодировщиков была предложена несколько десятилетий
назад, и с тех пор они широко применяются для снижения размерности дан­

ных и автоматического конструирования признаков. В наши дни на их осно­

ве создают генеративные модели, в частности, генеративно-состязательные

сети.

Неполные автокодировщики

В автокодировщике нас в первую очередь интересует кодировщик, по­

скольку именно он обучается новому представлению оригинальных данных.

Этим новым представлением служит новый набор признаков, полученных из
оригинального набора признаков и наблюдений.

Обозначим через h = ft.x) функцию-кодировщик, которая получает ориги­
нальные наблюдения х и применяет обученное представление, захваченное

функцией/, для формирования вывода h. Функция-декодировщик r = g(h) ре­
конструирует оригинальные наблюдения.

Как видите, декодировщик получает выход h кодировщика и реконстру­
ирует наблюдения r, используя функцию g. Если все сделано корректно, то
функция g(f(x)) не будет совпадать с х во всех точках, но будет близка к ним.

238 1 Глава 7

Как ограничить возможности функции-кодировщика в отношении ап­

проксимации х таким образом, чтобы вынудить ее обучаться лишь наиболее

существенным свойствам х, избегая их точного копирования?

Мы можем ограничить выход h функции-кодировщика так, чтобы он имел
меньшую размерность, чем х. Такой кодировщик называется неполным, по­

скольку его размерность меньше оригинальной размерности входа. Опять­

таки, это напоминает то, что происходит в процессе снижения размерности

данных, когда оригинальные входные измерения редуцируются до набора го­

раздо меньшей размерности.

Ограниченный подобным способом автокодировщик пытается миними­

зировать функцию потерь, определенную нами так, чтобы сделать ошибку

реконструкции (измеренную после приближенного реконструирования на­

блюдений на основе выхода кодировщика) как можно меньшей. Важно пони­

мать, что скрытые слои находятся там, где количество измерений ограничено.

Другими словами, выход кодировщика имеет меньшую размерность, чем ори­

гинальный вход. Однако выходом декодировщика становится реконструкция

оригинальных данных, имеющая ту же размерность, что и оригинальный вход.

Если декодировщик линейный, а функцией потерь является среднеквадра­

тическая ошибка, то неполный автокодировщик обучится тому же представ­

лению, что и в случае РСА (алгоритм снижения размерности, рассмотренный

в главе 3). В то же время, если функции кодировщика и декодировщика нели­
нейны, то автокодировщик может обучиться намного более сложным пред­

ставлениям. Это именно то, что интересует нас больше всего. Впрочем, если

предоставить автокодировщику чересчур большую свободу действий при мо­

делировании сложных нелинейных представлений, то он просто запомнит/

сохранит оригинальные наблюдения вместо того, чтобы извлечь из них наи­

более существенную информацию. Поэтому мы должны налагать на автоко­

дировщик разумные ограничения во избежание подобного развития событий.

Сверхполные автокодировщики

Если автокодировщик обучается представлению, размерность которо­

го превышает размерность входа, то он рассматривается как сверхполный.

Такие автокодировщики просто копируют оригинальные представления и

не имеют цели эффективно и компактно захватывать информацию об ори­

гинальном распределении, как это делают неполные автокодировщики. Но

если применить ту или иную форму регуляризации, при которой нейронная

сеть штрафуется за обучение ненужным сложным функциям, то сверхполные

Автокодировщики 1 239

автокодировщики могут послужить для снижения размерности данных и ав­

томатического конструирования признаков.

В сравнении с неполными автокодировщиками регуляризованные сверхпол­

ные автокодировщики сложнее проектировать, но их возможности гораздо

шире, поскольку они могут обучаться более сложным представлениям, кото­

рые лучше аппроксимируют оригинальные наблюдения.

По сути, хорошие автокодировщики способны обучаться новым представ­

лениям, которые достаточно точно аппроксимируют оригинальные наблю­

дения, но не являются их точной копией. Это достигается за счет обучения

новому распределению вероятности.

Плотные и разреженные автокодировщики

В главе 3 мы исследовали как плотные (обычные), так и разреженные вер­
сии алгоритмов снижения размерности. Аналогичным образом работают и
автокодировщики. До сих пор мы обсуждали лишь обычный автокодиров­

щик, формирующий на выходе плотную матрицу, в которой захваченная наи­

более существенная информация об оригинальных данных распределяется
по ключевым признакам. Альтернативный вариант - выводить разреженную

матрицу, в которой захваченная наиболее существенная информация более

равномерно распределяется по обучаемым признакам.

Для этого мы должны включить в автокодировщик не только ошибку ре­

конструкции, но и штрафование разреженности, чтобы автокодировщик

учитывал разреженность окончательной матрицы. Разреженные автокоди­

ровщики обычно являются переполненными: количество элементов в скры­

тых слоях превышает количество входных признаков, с той оговоркой, что

лишь небольшой доле скрытых элементов разрешено находиться в активном
состоянии в одно и то же время. Соответствующий этому определению разре­

женный автокодировщик будет выводить окончательную матрицу со многими

нулями и лучшим распределением захваченной информации по признакам,

которым обучилась модель.

В некоторых приложениях машинного обучения разреженные автокоди­

ровщики демонстрируют лучшую производительность и обучаются несколь­
ко иным представлениям, чем обычные (плотные) автокодировщики. В следу­

ющих главах мы рассмотрим практические примеры, чтобы увидеть разницу

между этими двумя типами автокодировщиков.

240 1 Гnава 7

Шумоподавляющий автокодировщик

Как вы уже знаете, автокодировщики способны обучаться новым (и улуч­

шенным) представлениям на оригинальных входных данных, захватывая наи­

более существенные признаки и отбрасывая содержащийся в данных шум.

В некоторых случаях необходимо, чтобы проектируемый автокодировщик

более агрессивно подавлял шум, особенно если мы подозреваем, что данные

были повреждены. Представьте, что вам нужно записать разговор двух людей

в шумном кафетерии в полдень. Мы хотели бы изолировать разговор (сиг­

нал) от фоновых звуков (шума). Другая похожая задача - обработка набора

зернистых или размытых изображений. В этом случае мы хотели бы отделить

основное изображение (сигнал) от искажений (шума).

Для решения подобных задач создается шумоподавляющий (обесшумли­

вающий) автокодировщик (denoising autoencoder), который получает повре­
жденные данные на вход и обучается воссоздавать на выходе оригинальные

данные с как можно более низким процентом повреждений. Добиться этого

не так-то просто, но совершенно очевидно, что автокодировщики такого типа

будут чрезвычайно полезными при решении прикладных задач.

Вариационный автокодировщик

До сих пор мы обсуждали применение автокодировщиков для обучения

новым представлениям оригинальных входных данных (получаемых коди­

ровщиком) с целью минимизации ошибки реконструкции выходных данных

(генерируемых декодировщиком).

В таких конфигурациях кодировщик имеет фиксированный размер п, где

п обычно меньше количества оригинальных измерений. Другими словами,

мы обучаем неполный автокодировщик. Иногда п превышает количество

оригинальных измерений (сверхполный автокодировщик), однако ограни­

чивается штрафами регуляризации, разреженности и т.п. Так или иначе, во

всех этих случаях кодировщик выводит одиночный вектор фиксированного

размера п.

Альтернативное решение - вариационный автокодировщик (variational
autoencoder), в котором кодировщик формирует два вектора вместо одного:
вектор средних значений (мю) и вектор стандартных отклонений (сигма). Эти

два вектора образуют такие случайные переменные, что i-e элементы векторов
мю и сигма соответствуют среднему значению и стандартному отклонению i-й

Автокодировщики 1 241

случайной переменной. Создавая такой стохастический выход посредством

своего кодировщика, вариационный автокодировщик может формировать

выборки в пределах всего непрерывного пространства, исходя из того, чему

он обучился на входных данных.

Действие вариационного автокодировщика не ограничено лишь образца­

ми, на которых он обучался. Он способен обобщаться и создавать на выходе

новые образцы, даже если ничего подобного им он раньше не получал. Это
невероятно мощная возможность, поскольку теперь вариационные автоко­

дировщики могут генерировать новые синтетические данные, близкие к рас­

пределению, которому автокодировщик обучился на оригинальных входных

данных. Разработки подобного рода привели к совершенно новому и набира­

ющему все более широкий размах направлению в области обучения без учи­
теля, известному как генеративное (порождающее) моделирование, которое

охватывает генеративно-состязательные сети. Применение таких моделей

делает возможным построение синтетических изображений, речи, музыки и

т.п., что открывает широкие перспективы для генерирования данных с помо­

щью Ии.

Резюме

В этой главе мы познакомились с нейронными сетями и популярными би­

блиотеками для работы с ними: TensorFlow и Keras. Мы также исследовали
автокодировщики и выяснили их способность к обучению новым представле­

ниям на оригинальных входных данных. Существует множество разновидно­

стей автокодировщиков, включая разреженные, шумоподавляющие и вариа­

ционные.

В главе 8 мы разработаем ряд приложений на основе изученных здесь кон­
цепций.

Прежде чем продолжать, следует еще раз обсудить вопрос о том, почему

автоматическое выделение признаков играет столь важную роль. Не имея та­

кой возможности, исследователи и разработчики вынуждены были бы вруч­

ную конструировать признаки, требуемые для решения прикладных задач.

Это трудоемкое занятие, которое существенно замедлило бы прогресс в об­

ласти ИИ.

По правде говоря, до тех пор пока Джеффри Хинтон и другие исследова­

тели не разработали методы автоматического обучения новым признакам с

помощью нейронных сетей, тем самым положив начало революции глубокого
обучения в 2006 году, такие задачи, как компьютерное зрение, распознавание

242 1 Глава 7

речи, машинный перевод и многое другое, в значительной степени оставались

нерешаемыми.

С появлением автокодировщиков и других разновидностей нейронных се­

тей, обеспечивших возможность автоматического извлечения признаков из

входных данных, многие из задач перешли в категорию решаемых, что при­

вело к важным прорывам, произошедшим в области машинного обучения за

последнее десятилетие.

Вы сами убедитесь в возможностях автоматического извлечения призна­

ков на примере приложений, рассмотренных в главе 8.

Автокодировщики 1 243

ГЛАВА В

Реализация автокодировщиков

В этой главе мы будем создавать приложения, используя различные вари­

анты автокодировщиков, включая неполный, сверхполный, разреженный и

шумоподавляющий.

Мы вновь обратимся к задаче выявления попыток мошенничества с бан­

ковскими картами, начатой в главе 2. Всего имеются данные о 284 807 тран­
закциях, из которых лишь 492 мошеннические. Используя модель обучения с
учителем, мы достигли средней точности 0,83, что несомненно является впе­
чатляющим результатом. Мы смогли выявить 80% подделок с точностью, пре­
вышающей 80%. Применив модель обучения без учителя, мы достигли сред­
ней точности на уровне 0,69, что тоже неплохо, если учесть, что мы обошлись
без каких-либо меток. Нам удалось обнаружить свыше 75% подделок с точ­
ностью свыше 75%.

Посмотрим, каких результатов удастся добиться с помощью автокоди­

ровщика, который тоже представляет собой алгоритм обучения без учителя,

только на основе нейронной сети.

Подготовка данных

Прежде всего, загрузим необходимые библиотеки.

'''Основные библиотеки'''

import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр
from sklearn.model_selection import train_test split
from sklearn.model selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall curve, \

average_precision_score
from sklearn.metrics import roc_curve, auc, roc auc score

' ' 'Алгоритмы' ' '
import lightgbm as lgb

'''TensorFlow и Keras'''
import tensorf low as tf
import keras
from keras import backend as К
from keras.models import Sequential, Model
from keras.layers import Activation, Dense,
from keras.layers import BatchNormalization,
from keras import regularizers

Dropout
Input,

from keras.losses import mse, binary_crossentropy

LamЬda

Теперь загрузим набор данных и подготовим его к работе. Мы создадим

матрицу dataX со всеми РСА-компонентами, но отбросим признаки Class и

Tirne. Метки класса будут храниться в матрице dataY. Мы также масштаби­
руем признаки, сохраненные в матрице da taX, так, чтобы их среднее значение

было равно нулю, а стандартное отклонение - единице.

current_path = os.getcwd()
file os.path.sep.join(['', 'datasets', 'credit_card_data', \

'credit_card.csv'])
data = pd.read_csv(current_path + file)
dataX = data.copy() .drop(['Class', 'Time'], axis=l)
dataY = data['Class'] .сору()
featuresToScale = dataX.columns
sX = pp.StandardScaler(copy=True, with_mean=True, with_std=True)
dataX.loc[:, featuresToScale] = \

sX.fit_transform(dataX[featuresToScale])

Как и в главе 3, создадим тренировочный набор, содержащий две трети
данных и меток, и тестовый набор, содержащий оставшуюся треть.

246 1 Гnава 8

Сохраним тренировочный и тестовый наборы в переменных Х _ train _ АЕ
и Х _ t е s t _ АЕ соответственно. Вскоре мы используем их в автокодировщике.

X_train, X_test, y_train, y_test = \
train_test_split(dataX, dataY, test_size=0.33, \

random_state=2018, stratify=dataY)

X_train_AE = Х train.copy()
X_test_AE = X_test.copy()

Кроме того, мы повторно используем введенную ранее функцию

anomalyScores для вычисления ошибки реконструкции, характеризующей
расхождение между оригинальной и реконструированной матрицами призна­

ков. Функция получает сумму квадратичных ошибок и нормализует их путем

приведения к диапазону значений от нуля до единицы.

Эта функция играет решающую роль. Наиболее аномальные транзакции -
те, ошибка реконструкции которых близка к единице (т.е. максимальна). Они,

вероятнее всего, являются мошенническими. Транзакции с ошибками, близ­

кими к нулю, имеют наименьшую ошибку реконструкции и, скорее всего, яв­

ляются нормальными.

def anomalyScores(originalDF, reducedDF):
loss np.sum((np.array(originalDF) - np.array(reducedDF))**2, \

axis=l)
loss pd.Series(data=loss, index=originalDF.index)
loss (loss - np.min(loss)) / (np.max(loss) - np.min(loss))
return loss

Мы также повторно используем функцию plotResul ts, которая строит
график "точность - полнота': вычисляет среднюю точность и отображает

RОС-кривую.

def plotResults(trueLabels, anomalyScores, returnPreds = False):
preds = pd.concat([trueLabels, anomalyScores], axis=l)
preds.columns = ['trueLabel', 'anomalyScore'J
precision, recall, thresholds = \

precision_recall_curve(preds['trueLabel'], \
preds['anomalyScore'])

average_precision = average_precision_score(preds['trueLabel'], \
preds['anomalyScore'])

plt.step(recall, precision, color='k', alpha=0.7, where='post')
plt.fill_between(recall, precision, step='post', alpha=0.3, \

Реализация автокодировщиков 1 247

color=' k')

рlt.хlаЬеl('Полнота)

рlt.уlаЬеl('Точность')

plt.ylim([О.О, 1.05])
plt. xlim ([О. О, 1. О])

plt.title('Kpивaя "точность - полнота": средняя точность \
{0:0.2f}' .format(average_precision))

fpr, tpr, thresholds = roc_curve(preds['trueLabel'], \
preds['anomalyScore'])

areaUnderROC = auc(fpr, tpr)

plt. figure ()
plt.plot(fpr, tpr, color='r', lw=2, lаЬеl='RОС-кривая')

plt.plot([O, 1], [О, 1], color='k', lw=2, linestyle='--')
plt. xlim ([О. О, 1. О])
plt. ylim ([О. О, 1. 05])
plt.xlabel('Дoля ложноположительных исходов')

plt.ylabel('Дoля истинноположительных исходов')

plt.title(' Рабочая характеристика приемника: \n \
площадь под кривой= {0:0.2f}' .format(areaUnderROC))

plt.legend(loc="lower right")
plt. show ()

if returnPreds==True:
return preds

Компоненты автокодировщика

Сначала мы создадим очень простой автокодировщик с входным слоем,

единственным скрытым слоем и выходным слоем. Мы будем передавать ав­

токодировщику оригинальную матрицу признаков х - она представляется

входным слоем. Затем ко входному слою применяется функция активации f,
генерирующая скрытый слой. Это наш кодировщик. Скрытый слой h, являю­
щийся эквивалентом j(x), представляет собой обученное представление.

Для реконструкции оригинальных наблюдений к скрытому слою (т.е. к
обученному представлению) применяется функция активации g. Это наш де­
кодировщик. Выходной слой r, являющийся эквивалентом g(h), представляет

248 1 Гnава 8

собой реконструированные наблюдения. Мы будем вычислять ошибку рекон­

струкции, сравнивая реконструированные наблюдения r с оригинальными
наблюдениями х.

Функции активации

Прежде чем принимать решение относительно количества узлов, исполь­

зуемых в автокодировщике с одним скрытым слоем, обсудим функции акти­

вации.

Нейронная сеть обучается весам, которые назначаются узлам в каждом

из слоев, но будут ли активироваться узлы (для использования в следующем

слое), определяется функцией активации. Другими словами, функция акти­

вации применяется к взвешенному входу (плюс смещение, если оно введено)

каждого слоя. Мы назовем этот взвешенный вход У.

Функция активации получает значение У и либо активируется (если У пре­

вышает определенный порог), либо не активируется. В первом случае инфор­

мация передается от данного узла в следующий слой, во втором - не переда­

ется. Однако нас не устраивают простые бинарные функции активации. Мы

хотим работать с диапазоном активационных значений. В этом плане у нас

есть выбор между линейной и нелинейной функциями активации. Линейная

функция не имеет ограничений и способна генерировать значения от минус

бесконечности до плюс бесконечности. К числу распространенных нелиней­

ных функций относятся сигмоида, гиперболический тангенс (tanh), линейный
выпрямитель (ReLU) и Softmax.

Сигмоида

Сигмоида ограничена и генерирует значения в диапазоне от нуля до еди­

ницы.

Гиперболический тангенс

Функция tanh также ограничена и может генерировать значения в ди­
апазоне от минус единицы до плюс единицы. Она имеет более крутой

градиент, чем сигмоида.

ReLU

Эта функция обладает одним интересным свойством. Если У имеет по­

ложительное значение, то ReLU возвращает У, в противном случае воз­
вращается нуль. Поэтому линейный выпрямитель не ограничен для по­

ложительных значений У.

Реапизация автокодировщиков 1 249

Softmax

Softmax используют в качестве конечной функции активации нейрон­
ной сети для задач классификации, поскольку она нормализует вероят­

ности классифицируемых категорий, сумма которых в итоге дает веро­

ятность, равную единице.

Из всех этих функций линейная функция самая простая и требует наимень­
шего объема вычислений. Вторая по вычислительной стоимости - функция

ReLU, за которой следуют все остальные.

Наш первый автокодировщик

Начнем с двухслойного автокодировщика с линейной функцией активации

как в кодировщике, так и в декодировщике. Обратите внимание на то, что при

подсчете числа слоев нейронной сети учитывается только вклад скрытых сло­

ев и выходного слоя. Поскольку у нас имеется всего один скрытый слой, мы

говорим, что сеть двухслойная.

Для создания нейронной сети с помощью библиотек TensorFlow и Keras
мы прежде всего должны вызвать АРI-функцию модели Seqиential. Эта модель

представляет собой линейный стек слоев. Прежде чем компилировать ее и об­
учать на данных, необходимо указать ей, какие типы слоев нам нужны1 •

Модель №1:
двухслойный полный автокодировщик с линейной функцией активации

Вызов АРI-функции нейронной сети
model = Sequential()

После вызова модели Sequential мы должны задать форму входа в виде чис­
ла измерений, которое должно совпадать с количеством измерений ориги­

нальной матрицы признаков dataX, равным 29.
Следует также задать функцию активации (кодировщик), которая будет

применяться ко входному слою, и количество узлов в скрытом слое. Мы будем

использовать линейную функцию активации (linear).
Наш первый автокодировщик будет полным. В нем количество узлов скры­

того слоя равно количеству узлов входного слоя, т.е. 29. Все это делается с по­
мощью одной строки кода:

model.add(Dense(units=29, activation='linear', input_dim=29))

1 Дополнительную информацию о модели Sequential можно найти в официальной документа­
ции (http: / /Ьi t. ly/2FZbUrq).

250 1 Глава 8

Аналогичным образом задается функция активации (декодировщик), при­

меняемая к скрытому слою, и количество узлов в выходном слое. Поскольку

мы хотим, чтобы окончательная реконструированная матрица имела то же

количество измерений, что и оригинальная, оно должно быть равно 29. Для
декодировщика мы также будем использовать линейную функцию активации:

rnodel.add(Dense(units=29, activation='linear'))

Далее необходимо скомпилировать слои нейронной сети. В качестве ар­

гументов компилятора указывается функция потерь (loss function), управля­
ющая обучением весов, оптимизатор, задающий процесс, в соответствии с

которым обучаются веса, и список выводимых метрик, что поможет нам оце­

нить пригодность нейронной сети.

Функция потерь

Начнем с функции потерь. Вспомните, что мы оцениваем модель на основа­

нии ошибки реконструкции, отражающей расхождение между матрицей при­

знаков, реконструированной с помощью автокодировщика, и оригинальной

матрицей признаков, которую мы передаем автокодировщику.

Поэтому в качестве функции потерь мы выбираем среднеквадратическую

ошибкf. (В нашем примере мы используем ее эквивалент - сумму квадратов

ошибок.)

Оптимизатор

Тренировка нейронных сетей осуществляется в несколько этапов, называе­

мых эпохами. На каждой эпохе нейронная сеть подстраивает обученные веса с

целью снижения уровня потерь, достигнутого на предыдущем этапе. Процесс

обучения весов задается оптимизатором. Нам нужен процесс, который помо­

жет нейронной сети эффективно обучаться оптимальным весам для различ­

ных узлов по всем слоям и минимизировать выбранную функцию потерь.

Чтобы обучиться оптимальным весам, нейронная сеть должна определен­

ным образом корректировать свои "догадки'~ Один из подходов заключает­

ся в итеративном смещении весов в направлении, ведущем к инкрементному

уменьшению функции потерь. Более оптимальный подход - смещение весов

в этом же направлении, но с определенной степенью случайности, иными сло­

вами, стохастическое смещение.

2 Дополнительную информацию о функциях потерь можно найти в официальной документа­

ции Keras (https: / /keras. io/ losses/).

Реализации автокодировщиков 1 251

Этот процесс известен как стохастический градиентньtй спуск (stochastic
gradient descent - SGD). Именно он чаще всего применяется при обучении
нейронных сетей3• В SGD у всех весов одна скорость обучения, задаваемая ги­
перпараметром альфа, и эта скорость не изменяется в процессе тренировки.

И все же в большинстве случаев следует корректировать скорость обучения

по ходу тренировки. Например, на ранних эпохах имеет смысл более заметно

изменять веса - другими словами, использовать большие значения скорости

обучения альфа.

В более поздние эпохи, когда веса уже достигли значений, близких к оп­

тимальным, разумнее использовать меньшую скорость обучения и перейти к

тонкой настройке весов, вместо того чтобы совершать крупные шаги в том или

ином направлении. Эти соображения привели к созданию еще более эффек­

тивного оптимизатора, чем SGD, - алгоритма оптимизации Аdат (adaptive
moment estimation - адаптивная оценка моментов). В отличие от SGD, опти­
мизатор Adam динамически подстраивает скорость обучения в процессе тре­
нировки, и именно его мы будем использовать4•

В оптимизаторе Adam мы можем изменять значение гиперпараметра аль­
фа, управляющего скоростью обновления весов. Большие значения альфа

приводят к ускоренному начальному обучению.

Тренировка модели

Наконец, необходимо задать оценочную метрику. Чтобы не усложнять ана­

лиз, мы выберем метрику accuracy5•

model.compile(optimizer='adam', loss='mean_squared_error', \
metrics= ['accuracy'])

Далее следует указать количество эпох и размер пакета, после чего начать

процесс обучения, вызвав метод f i t. Количество эпох определяет, сколько
раз будет выполнена тренировка по всему набору данных, переданному ней­

ронной сети. Установим это количество равным 1 О.
Размер пакета определяет количество выборок, на которых обучается ней­

ронная сеть, прежде чем выполнить очередное обновление градиента. Если

3 Дополнительную информацию о стохастическом градиентном спуске можно найти в Википе­

дии (http: / /Ьi t. ly/2G3Ak30).
4 Для получения более подробной информации об оптимизаторах обратитесь к официальной

документации Keras (https: //keras. io/optimizers/).
5 Дополнительную информацию об оценочных метриках можно найти в официальной доку­

ментации Keras (https: / /keras. io/metricsl).

252 1 Гпава8

размер пакета равен общему количеству наблюдений, то нейронная сеть будет

обновлять градиент только один раз за эпоху. В противном случае градиент

будет обновляться несколько раз на протяжении каждой эпохи. Мы устано­

вим для этого параметра типичное значение 3 2.
Методу f i t передается начальная входная матрица х и целевая матрица

у. В нашем случае как х, так и у будут оригинальной матрицей признаков

Х _ train _ АЕ, поскольку мы хотим вычислить ошибку реконструкции, срав­
нив выход автокодировщика (реконструированную матрицу признаков) с ис­

ходной матрицей.

Вспомните, что рассматриваемое решение основано исключительно на об­

учении без учителя, поэтому мы вообще не будем использовать матрицу у. По

ходу дела мы также будем проверять нашу модель, вычисляя ошибку рекон­

струкции на всей тренировочной матрице.

num_epochs 10
batch size = 32

history = model.fit(x=X_train_AE, y=X_train_AE, epochs=num_epochs, \
batch_size=batch_size, shuffle=True, \
validation_data=(X_train_AE, X_train_AE), verbose=l)

Поскольку мы работаем с полным автокодировщиком, в котором скрытый

слой имеет то же количество измерений, что и входной слой, потери будут

очень низкими как для тренировочного, так и для валидационного наборов.

Epoch 1/10
190820/190820 [==============================] - 29s 154us/step -
loss: 0.1056 - асс: 0.8728 - val loss: 0.0013 - val асс: 0.9903

Epoch 2/10
190820/190820 [==============================] - 27s 140us/step -
loss: 0.0012 - асс: 0.9914 - val loss: 1.0425е-06 - val асс: 0.9995

Epoch 3/10
190820/190820 [==============================] - 23s 122us/step -
loss: 6.6244 е-04 - асс: 0.9949 - val loss: 5.2491е-04 - val асс:
0.9913

Epoch 4/10
190820/190820 [==а===========================] - 23s 119us/step -
loss: 0.0016 - асс: 0.9929 - val loss: 2.2246е-06 - val асс: 0.9995

Epoch 5/10
190820/190820 [==============================] - 23s 119us/step -
loss: 5.7424 е-04 - асс: 0.9943 - val loss: 9.0811е-05 - val асс:
0.9970

Реализация автокодировщиков 1 253

Epoch 6/10
190820/190820 [==============================] - 22s 118us/step -
loss: 5.4950 е-04 - асс: 0.9941 - val loss: 6.0598е-05 - val асс:
0.9959

Epoch 7/10
190820/190820 [==============================] - 22s 117us/step -
loss: 5.2291 е-04 - асс: 0.9946 - val loss: 0.0023 - val асс: 0.9675

- -
Epoch 8/10
190820/190820 [==============================] - 22s 117us/step -
loss: 6.5130 е-04 - асс: 0.9932 - val loss: 4.5059е-04 - val асс:
0.9945

Epoch 9/10
190820/190820 [==============================] - 23s 122us/step -
loss: 4.9077 е-04 - асс: 0.9952 - val loss: 7.2591е-04 - val асс:
0.9908

Epoch 10/10
190820/190820 [==============================] - 23s 118us/step -
loss: 6.1469 е-04 - асс: 0.9945 - val loss: 4.4131е-06 - val асс:
0.9991

Это не оптимальное решение - автокодировщик слишком точно рекон­

струировал исходную матрицу признаков, просто запомнив входы.

Не забывайте о том, что автокодировщик должен обучаться новому пред­

ставлению, которое захватывает лишь наиболее существенную информацию

из оригинальной входной матрицы, отбрасывая менее релевантную информа­

цию. Простое запоминание входов, называемое тождественным отображе­

нием, не приводит к обучению улучшенному представлению.

Оценка модели на тестовом наборе

Используем тестовый набор для оценки того, насколько успешно данный

автокодировщик способен идентифицировать мошеннические транзакции с

банковскими картами в наборе данных. Мы сделаем это с помощью метода

predict.

predictions = model.predict(X test, verbose=l)
anomalyScoresAE = anomalyScores(X_test, predictions)
preds = plotResults(y_test, anomalyScoresAE, True)

Как показано на рис. 8.1, средняя точность равна О. 64, что пока не может
нас удовлетворить. Наилучшее значение средней точности, полученное с по­

мощью обучения без учителя в главе 4, составило О. 6 9, тогда как для системы

254 1 Глава8

на основе обучения с учителем оно было равно О • 8 2. Однако стоит учесть,
что каждый тренировочный процесс будет приводить к разным результатам,

поэтому в вашем случае результаты могут оказаться иными.

Криеая "точность - nолнота• . средняя точность = 0.64

10~~-""'

08

'° Dб
i
~ 04

02

00~""""' -...---...... ------...---~-~-""""_.,
00 02 04 Об 08

Точность

Рабочая характеристика приемника:
площадь nод кривой= 0.97

02 0.4 Об 08
Допя nожноnо11Ожит~пьных исходое

10

10

Рис. 8.1. Оценочные метрики полного автокодировщика

Чтобы получить более целостное представление о том, как полный двух­

слойный автокодировщик проявляет себя на тестовом наборе, запустим

тренировочный процесс 1 О раз и сохраним среднее значение точности для
каждого прогона. Мы поймем, насколько хорошо полный автокодировщик

справляется с выявлением мошеннических транзакций, усреднив показатели

средней точности на этих десяти прогонах.

Ниже приведен код программы, выполняющей 10 прогонов.

10 прогонов - мы будем определять усредненное

значение средней точности

Реализация автокодировщиков 1 255

test scores = []
for i in range(O, 10):

Вызов АРI-функции нейронной сети
model = Sequential()

Применение линейной функции активации к входному слою;
генерирование скрытого слоя с 29 узлами, как и во входном слое

model.add(Dense(units=29, activation='linear', input_dim=29))

Применение линейной функции активации к скрытому слою;
генерирование выходного слоя с 29 узлами
model.add(Dense(units=29, activation='linear'))

Компиляция модели
model.compile(optimizer='adam', \

loss='mean_squared_error', \
metrics= ['accuracy'])

Тренировка модели
num_epochs 10
batch size = 32

history = model.fit(x=X_train_AE, y=X_train_AE, \
epochs=num_epochs, batch_size=batch_size, shuffle=True, \
validation_data=(X_train_AE, X_train_AE), verbose=l)

Оценка на тестовом наборе
predictions = model.predict(X_test, verbose=l)
anomalyScoresAE = anomalyScores(X_test, predictions)
preds, avgPrecision = plotResults(y_test, anomalyScoresAE, True)
test scores.append(avgPrecision)

рrint("Средняя точность, усредненная по 10 прогонам:", \
np.mean(test_scores))

test scores

Ниже подытожены результаты 10 прогонов. Усредненное значение средней
точности равно О • 3 О, но сама средняя точность варьируется в пределах: от

О • О 2 до О • 7 2. Коэффициент вариации (определенный как стандартное от­

клонение, деленное на среднее за 1 О прогонов) равен О • 8 8.

Средняя точность, усредненная по 10 прогонам: 0.30108318944579776
Коэффициент вариации по 10 прогонам: 0.8755095071789248

256 1 Гnава8

(0.25468022666666157,
0.092705950994909,
0.716481644928299,
0.01946589342639965,
0.25623865457838263,
0.33597083510378234,
0.018757053070824415,
0.6188569405068724,
0.6720552647581304,
0.025619070873716072]

Попытаемся улучшить эти результаты, создавая различные варианты этого

автокодировщика.

Двухслойный неполный автокодировщик с линейной

функцией активации

Попробуем использовать вместо полного автокодировщика неполный.

Единственное, что изменится по сравнению с предыдущим примером, -
это количество узлов в скрытом слое. Вместо того чтобы задавать его равным

количеству оригинальных измерений (29), мы установим количество узлов
равным 20. Другими словами, это ограниченный автокодировщик. Функ­
ция-кодировщик вынуждена извлекать информацию из входного слоя, огра­

ничиваясь меньшим количеством узлов, а функция-декодировщик должна

реконструировать оригинальную матрицу на основе этого нового представ­

ления.

В данном случае нам следует ожидать роста потерь по сравнению с полным

автокодировщиком. Чтобы протестировать, насколько хорошо неполный ав­

токодировщик справляется с выявлением мошеннических транзакций, мы

выполним 1 О независимых прогонов.

#Модель №2:

двухслойный неполный автокодировщик с линейной функцией активации
и 20 слоями в скрытом слое

10 прогонов - мы будем определять усредненное

значение средней точности
test _ scores = []

for i in range(O, 10):

Реализация автокодировщиков 1 257

Вызов АРI-функции нейронной сети
model = Sequential()

Применение линейной функции активации к входному слою;
генерирование скрытого слоя с 20 узлами
model.add(Dense(units=20, activation='linear', input_dim=29))

Применение линейной функции активации к скрытому слою;
генерирование выходного слоя с 29 узлами
model.add(Dense(units=29, activation='linear'))

Компиляция модели
model.compile(optimizer='adam', \

loss='mean_squared_error', \
metrics= ['accuracy'])

Тренировка модели
num_epochs 10
batch size = 32

history = model.fit(x=X_train_AE, y=X_train_AE, \
epochs=num_epochs, batch_size=batch_size, shuffle=True, \
validation data=(X_train_AE, X_train_AE), verbose=l)

Оценка на тестовом наборе
predictions = model.predict(X_test, verbose=l)
anomalyScoresAE = anomalyScores(X_test, predictions)
preds, avgPrecision = plotResults(y_test, anomalyScoresAE, True)
test_scores.append(avgPrecision)

рrint("Средняя точность, усредненная по 10 прогонам:", \
np.mean(test_scores))

test scores

Как следует из приведенных ниже результатов, потери неполного авто­

кодировщика оказались намного выше, чем в предыдущем случае. Это и не­

удивительно, ведь автокодировщик обучается новому ограниченному пред­
ставлению, которое компактнее, чем оригинальная входная матрица. В такой

ситуации он просто не способен запоминать входы.

Epoch 1/10
190820/190820 [==============================] - 28s 145us/step -
loss: 0.3588 - асс: 0.5672 - val loss: 0.2789 - val асс: 0.6078

258 1 Гnава 8

Epoch 2/10
190820/190820 [==============================] - 29s 153us/step -
loss: 0.2817 - асс: 0.6032 - val loss: 0.2757 - val асс: 0.6115

Epoch 3/10
190820/190820 [==============================] - 28s 147us/step -
loss: 0.2793 - асс: 0.6147 - val loss: 0.2755 - val асс: 0.6176

Epoch 4/10
190820/190820 [==3 ===========================] - 30s 155us/step -
loss: 0.2784 - асс: 0.6164 - val loss: 0.2750 - val асс: 0.6167

Epoch 5/10
190820/190820 [==============================] - 29s 152us/step -
loss: 0.2786 - асс: 0.6188 - val loss: 0.2746 - val асс: 0.6126

Epoch 6/10
190820/190820 [==============================] - 29s 15lus/step -
loss: 0.2776 - асс: 0.6140 - val loss: 0.2752 - val асс: 0.6043

Epoch 7/10
190820/190820 [==============================] - 30s 156us/step -
loss: 0.2775 - асс: 0.5947 - val loss: 0.2745 - val асс: 0.5946

Epoch 8/10
190820/190820 [==============================] - 29s 149us/step -
loss: 0.2770 - асс: 0.5903 - val loss: 0.2740 - val асс: 0.5882

Epoch 9/10
190820/190820 [==============================] - 29s 153us/step -
loss: 0.2768 - асс: 0.5921 - val loss: 0.2770 - val асс: 0.5801

Epoch 10/10
190820/190820 [==============================] - 29s 150us/step -
loss: 0.2767 - асс: 0.5803 - val loss: 0.2744 - val асс: 0.5743

93987/93987[==============================] - 3s 36us/step

Именно так и должен работать автокодировщик - он должен обучаться

новому представлению. На рис. 8.2 показано, насколько эффективно это но­
вое представление в отношении выявления фальсификаций.

Средняя точность равна О. 2 9, что оказалось меньше, чем в случае полного

авто кодировщика.

Приведенная ниже сводка отражает распределение средней точности по 10
прогонам. Усредненное значение средней точности равно О. 31, но дисперсия
отличается высокой плотностью (на что указывает коэффициент вариации,

равный О. 03). Эта система значительно стабильнее, чем та, которая была по­

строена на основе полного автокодировщика.

Реализация автокодировщиков 1 259

Крива11 "точность - полнота• . средняя точность = О 29

10

08

~Об
~
а
i:: 04

02

02 04 Об 08
Точность

Рабоча11 характеристика приемника :
площадь под кркеой = 0.95

Доля nож/i0!1011ожительных мсходое

10

Рис. 8.2. Оценочные метрики неполного автокодировщика с 20 узлами

Средняя точность, усредненная по 10 прогонам: 0.30913783987972737
Коэффициент вариации по 10 прогонам: 0.032251659812254876

(0.2886910204920736,
0.3056142045082387,
0.31658073591381186,
0.30590858583039254,
0.31824197682595556,
0.3136952374067599,
0.30888135217515555,
0.31234000424933206,
0.29695149753706923,
0 . 3244746838584846]

260 1 Гnава 8

Тем не менее мы остаемся на уровне довольно умеренной средней точнос­

ти. В чем причина того, что неполный автокодировщик не смог отработать

лучше? Возможно, ему просто оказалось недостаточно заданного количества

узлов. А может быть, нам следовало тренировать сеть, используя большее ко­

личество скрытых слоев? Давайте поочередно испытаем оба варианта.

Увеличение количества узлов

Приведенные ниже результаты отражают тренировочные потери в случае ис­

пользования двухслойного неполного автокодировщика с 27 узлами вместо 20.

Epoch 1/10
190820/190820 [==============================] - 29s 150us/step -
loss: 0.1169 - асс: 0.8224 - val loss: 0.0368 - val асс: 0.8798

Epoch 2/10
190820/190820 [==============================] - 29s 154us/step -
loss: 0.0388 - асс: 0.8610 - val loss: 0.0360 - val асс: 0.8530

Epoch 3/10
190820/190820 [==============================] - 30s 156us/step -
loss: 0.0382 - асс: 0.8680 - val loss: 0.0359 - val асс: 0.8745

Epoch 4/10
190820/190820 [==============================] - 30s 156us/step -
loss: 0.0371 - асс: 0.8811 - val loss: 0.0353 - val асс: 0.9021

Epoch 5/10
190820/190820 [==============================] - 30s 155us/step -
loss: 0.0373 - асс: 0.9114 - val loss: 0.0352 - val асс: 0.9226

Epoch 6/10
190820/190820 [==============================] - 30s 155us/step -
loss: 0.0377 - асс: 0.9361 - val loss: 0.0370 - val асс: 0.9416

Epoch 7/10
190820/190820 [==============================] - 30s 156us/step -
loss: 0.0361 - асс: 0.9448 - val loss: 0.0358 - val асс: 0.9378

Epoch 8/10
190820/190820 [==============================] - 30s 156us/step -
loss: 0.0354 - асс: 0.9521 - val loss: 0.0350 - val асс: 0.9503

Epoch 9/10
190820/190820 [==••==========================] - 29s 153us/step -
loss: 0.0352 - асс: 0.9613 - val loss: 0.0349 - val асс: 0.9263

Epoch 10/10
190820/190820 [==============================] - 29s 153us/step -
loss: 0.0353 - асс: 0.9566 - val loss: 0.0343 - val асс: 0.9477

-
93987/93987[==============================] - 4s 39us/step

Реализация автокодировщиков 1 261

Кривая "точность - полнота': значение средней точности и кривая auROC
приведены на рис. 8.3.

Кривая "точность - полнота•: средняя точность= 0.70

io.i-----

08

02

oo.i.-~~--~--........-~..-.~--~~ ~-..---1
00 02 04 06 08

Точность

Рабочая характеристика приемника:
площадь под кривой= 0.95

10

" 10 а ,,
~ i ,г ,,.,,,''
~ 06 '(' -~ ,,

1 " ------------
~ 04 ,,

! _,,,'''
~ 02 -
~ ,,'
<:> ,' - RОС-кри1ая
~ 00 ~~'--'--~---~---~--~--~

О.О 0.2 04 Об 08 10
Дола ПОЖIЮПОJIОЖМТе11ьнь~х МСХОДОI

Рис. 8.3. Оценочные метрики неполного автокодировщика с 27 узлами

Средняя точность значительно улучшилась, достигнув уровня О . 7 О. Это
лучше, чем средняя точность полного автокодировщика, и превосходит ре­

зультат наилучшего решения на основе обучения без учителя из главы 4.
Приведенная ниже сводка отражает распределение средней точности по

10 прогонам. Усредненное значение средней точности равно О. 53, что значи­
тельно лучше достигнутой ранее средней точности, равной примерно О . 3 О.
Дисперсия средней точности более-менее разумна, так как коэффициент ва­

риации равен О . 5 О.

Средняя точность, усредненная по 10 прогонам : 0.5273341559141 779
Коэффициент вариации по 10 прогонам: 0.5006880691999009

262 1 Гnава 8

(0.689799495450694,
0.7092146840717755,
0.7336692377321005,
0.6154173765950426,
0.7068800243349335,
0.35250757724667586,
0.6904117414832501,
0.02335388808244066,
0.690798140588336,
0.061289393556529626]

Налицо явное улучшение по сравнению с предыдущей системой обнаруже­

ния аномалий.

Добавление дополнительных скрытых слоев

Проверим, сможем ли мы улучшить результаты, добавив в автокодиров­

щик дополнительный скрытый слой. При этом мы по-прежнему используем

линейные функции активации.

Выполнение экспериментов - ключевая часть процесса нахож­

дения оптимальной архитектуры нейронной сети для решаемой

задачи. Некоторые изменения будут приводить к улучшению ре­

зультатов, некоторые - к ухудшению. Важно знать эффективные

способы изменения нейронной сети и настройки ее rиперпара­

метров.

Вместо одиночного скрытого слоя с 27 узлами мы используем один скры­
тый слой с 28 узлами и еще один - с 27 узлами. Это лишь незначительное
изменение программы по сравнению с предыдущим вариантом. Теперь у нас

имеется трехслойная сеть, поскольку она содержит два скрытых слоя и один

выходной. Напомним, что при подсчете количества слоев в нейронной сети

входной слой не учитывается.

Учет дополнительного скрытого слоя требует добавления всего одной

строки кода.

Модель №3:
трехслойный неполный автокодировщик с линейной функцией активации,
содержащий 28 и 27 узлов в двух скрытых слоях

model = Sequential()

Реализация автокодировщиков 1 263

model.add(Dense(units=28, activation='linear', input_dim=29))
model.add(Dense(units=27, activation='linear'))
model.add(Dense(units=29, activation='linear'))

Приведенная ниже сводка отражает распределение средней точности по

10 прогонам. Усредненное значение средней точности равно О. 3 6, что хуже
полученного ранее значения О. 53. Дисперсия средней точности также ухуд­
шилась, поскольку коэффициент вариации равен О. 94 (чем выше, тем хуже).

Средняя точность, усредненная по 10 прогонам: 0.36075271075596366
Коэффициент вариации по 10 прогонам: 0.9361649046827353

[0.02259626054852924,
0.6984699403560997,
0.011035001202665167,
0.06621450000830197,
0.008916986608776182,
0.705399684020873,
0.6995233144849828,
0.008263068338243631,
0.6904537524978872,
0.6966545994932775]

Нелинейный автокодировщик

Теперь мы создадим неполный автокодировщик, применив нелинейную

функцию активации. Мы используем функцию ReLU, но вы вправе поэкспе­
риментировать с гиперболическим тангенсом, сигмоидой или любой другой

нелинейной функцией активации.

Наша сеть будет включать три скрытых слоя, содержащих 27, 22 и 27 узлов.
С концептуальной точки зрения первые две функции активации (применяе­

мые ко входному и первому скрытому слою) служат кодировщиками, создавая

второй скрытый слой с 22 узлами. Следующие две функции активации осу­
ществляют декодирование, восстанавливая представление, насчитывающее

22 узла, до оригинального количества измерений, равного 29.

#Модель №4:

четырехслойный неполный автокодировщик с функцией активации ReLU;
29 -> 27 -> 22 -> 27 -> 29

model = Sequential()

264 1 Гnава8

model.add(Dense(units=27, activation='relu', input_dim=29))
model.add(Dense(units=22, activation='relu'))
model.add(Dense(units=27, activation='relu'))
model.add(Dense(units=29, activation='relu'))

Приведенные ниже результаты отражают потери для этого автокодиров­

щика. На рис. 8.4 приведены кривая "точность - полнота': значение средней

точности и кривая auROC.

Epoch 1/10
190820/190820 [==============================] - 32s 169us/step -
loss: 0.7010- асс: 0.5626 - val loss: 0.6339 - val асс: 0.6983 - -

Epoch 2/10
190820/190820 [==============================] - 33s 174us/step -
loss: 0.6302 - асс: 0.7132 - val loss: 0.6219 - val асс: 0.7465

Epoch 3/10
190820/190820 [==============================] - 34s 177us/step -
loss: 0.6224 - асс: 0.7367 - val loss: 0.6198 - val асс: 0.7528

Epoch 4/10
190820/190820 [==•===========================] - 34s 179us/step -
loss: 0.6227 - асс: 0.7380 - val loss: 0.6205 - val асс: 0.7471

Epoch 5/10
190820/190820 [==••==========================] - 33s 174us/step -
loss: 0.6206 - асс: 0.7452 - val loss: 0.6202 - val асс: 0.7353

Epoch 6/10
190820/190820 [==============================] - 33s 175us/step -
loss: 0.6206 - асс: 0.7458 - val loss: 0.6192 - val асс: 0.7485

Epoch 7/10
190820/190820 [==============================] - 33s 174us/step -
loss: 0.6199 - асс: 0.7481 - val loss: 0.6239 - val асс: 0.7308

Epoch 8/10
190820/190820 [==============================] - 33s 175us/step -
loss: 0.6203 - асс: 0.7497 - val loss: 0.6183 - val асс: 0.7626

Epoch 9/10
190820/190820 [==============================] - 34s 177us/step -
loss: 0.6197 - асс: 0.7491 - val loss: 0.6188 - val асс: 0.7531

Epoch 10/10
190820/190820 [==============================] - 34s 177us/step -
loss: 0.6201 - асс: 0.7486 - val loss: 0.6188 - val асс: 0.7540 -

93987/93987 [==============================] - 5s 48 us/step

Реаnизация автокодировщиков 1 265

Кривая •точность - полнота" · средняя точность = О 23

10

ов

02

02 04 06 08
ТОЧhОСТЬ

Рабочая характеристика приемника :
площадь под кривой = 0.95

ДOllA /IOJllHOПOJIO»<MT~llbl<ЫX мсходое

10

Рис. 8.4. Оценочные метрики неполного автокодировщика с тремя
скрытыми слоями и функцией активации ReLU

Эти результаты значительно хуже предыдущих.

Приведенная ниже сводка отражает распределение средней точности по

1 О прогонам. Усредненное значение средней точности равно О . 2 2, что хуже
полученного ранее значения О . 5 3. Дисперсия средней точности отличается
высокой плотностью, так как коэффициент вариации равен О . О 6.

Средняя точность, усредненная по 10 прогонам: 0.2232934196381843
Коэффициент вариации по 10 прогонам: 0.060779960264380296

[0.22598829389665595,
0.22616147166925166,
0.22119489753135715,

266 1 Гnава8

0.2478548473814437,
0.2251289336369011,
0.2119454446242229,
0.2126914064768752,
0.24581338950742185,
0.20665608837737512,
0.20949942328033827]

Эти результаты значительно хуже тех, которые были достигнуты с помо­

щью простого автокодировщика с использованием линейной функции акти­

вации. Не исключено, что для нашего набора данных неполный линейный ав­

токодировщик - наилучшее решение.

В случае других наборов данных ситуация может оказаться иной. Как всег­

да, поиск оптимального решения требует проведения экспериментов. По­

пробуйте поменять число узлов или количество скрытых слоев, используйте

ансамбль функций активации и посмотрите, как это влияет на результаты:

ухудшаются они или улучшаются.

Такого рода эксперименты называются оптимизацией гиперпараметров.

В процессе поиска оптимального решения вы настраиваете гиперпараметры

нейронной сети: количество узлов, количество слоев и ансамбль функций ак­

тивации.

Сверхполный автокодировщик с линейной функцией

активации

Вспомним о том, какая проблема присуща сверхполным автокодировщи­

кам. В скрытом слое такого автокодировщика содержится больше узлов, чем

во входном или выходном слое. Ввиду столь большой емкости нейронной

сети автокодировщик просто запоминает наблюдения, на которых обучается.

Другими словами, автокодировщик обучается тождественному отображе­

нию, а это именно то, чего мы стремимся избежать. Автокодировщик будет

переобучаться на тренировочных данных и плохо справляться с отделением

мошеннических транзакций от нормальных.

Нам нужен автокодировщик, способный обучаться наиболее существен­

ным аспектам операций с банковскими картами, чтобы он мог распознавать

нормальные транзакции и не запоминать информацию, связанную с более

редкими поддельными транзакциями.

Реализация автокодировщиков 1 267

Отличать мошеннические транзакции от нормальных может лишь авто­

кодировщик, который способен терять часть информации, содержащейся в

тренировочном наборе.

Модель №5:
двухслойный сверхполный автокодировщик
с линейной функцией активации;
29 -> 40 -> 29

model = Sequential()
model.add(Dense(units=40, activation='linear', input_dim=29))
model.add(Dense(units=29, activation='linear'))

Приведенные ниже результаты отражают потери для этого автокодиров­

щика. На рис. 8.5 приведены кривая "точность - полнота': значение средней

точности и кривая auROC.

Epoch 1/10
190820/190820 [==============================] - 31s 16lus/step -
loss: 0.0498 - асс: 0.9438 - val loss: 9.2301е-06 - val асс: 0.9982

Epoch 2/10
190820/190820 [==============================] - 33s 171us/step -
loss: 0.0014 - асс: 0.9925 - val loss: 0.0019 - val асс: 0.9909

Epoch 3/10
190820/190820 [==============================] - 33s 172us/step -
loss: 7.6469 е-04 - асс: 0.9947 - val loss: 4.5314е-05 - val асс:
0.9970

Epoch 4/10
190820/190820 [==============================] - 35s 182us/step -
loss: 0.0010 - асс: 0.9930 - val loss: 0.0039 - val асс: 0.9859

Epoch 5/10
190820/190820 [==============================] - 32s 166us/step -
loss: 0.0012 - асс: 0.9924 - val loss: 8.5141е-04 - val асс: 0.9886

Epoch 6/10
190820/190820 [==============================] - 31s 163us/step -
loss: 5.0655 е-04 - асс: 0.9955 - val loss: 8.2359е-04 - val асс:
0.9910

Epoch 7/10
190820/190820 [==============================] - 30s 156us/step -
loss: 7.6046 е-04 - асс: 0.9930 - val loss: 0.0045 - val асс: 0.9933 - -

Epoch 8/10
190820/190820 [==============================] - 30s 157us/step -
loss: 9.1609 е-04 - асс: 0.9930 - val loss: 7.3662е-04 - val асс:

268 1 Гnава8

о. 9872
Epoch 9/10
190820/190820 [==============================] - 30s 158us/step -
loss: 7.6287 е-04 - асс: 0.9929 - val loss: 2.5671е-04 - val асс:
0.9940

Epoch 10/10
190820/190820 [==============================] - 30s 157us/step -
loss: 7.0697 е-04 - асс: 0.9928 - val loss: 4.5272е-06 - val асс:
0.9994

93987/93987[==============================] - 4s 48us/step

Кривая "точность - попнота" средняя точность = О 02
1 о -- --·---··--·-·----···-------1

08

Тсчно<ть

Рабочая характеристика приемника:
площадь под кривой = О 92

1-·-·-----·-------···--------·-----------·
в 10 ,
4 ,
~ ,
~ ,
~ ,
~ о 8 "'
f ","
:1, ,;'
~. 06 ;'
~ ,'
ti ,,'
~: 04 ,11'
f ,'
~ ,'
~ о 2 ,,'
g. ,'
t.~(,.,,,'

о- о "-,-~~---.---~-----т----·-.-
- RОС-кри~~

0 G 02 04 Об 08 1 о
Дал• .по"ноnоложительных исходов

Рис. 8.5. Оцено"tные метрики сверхполного автокодировщика
с одним скрытьtм слоем и линейной функцией активации

Реализация автокодировщиков 1 269

Как и ожидалось, потери оказались очень низкими, и переобученный

сверхполный автокодировщик плохо справился с обнаружением мошенниче­

ских транзакций.

Приведенная ниже сводка отражает распределение средней точности по

1 О прогонам. Усредненное значение средней точности равно О • 31, что хуже
полученного ранее значения О • 5 3. Дисперсия средней точности не слишком
уплотнена, и коэффициент вариации равен О • 8 9.

Средняя точность, усредненная по 10 прогонам: 0.3061984081568074
Коэффициент вариации по 10 прогонам: 0.8896921668864564

(0.03394897465567298,
0.14322827274920255,
0.03610123178524601,
0.019735235731640446,
0.012571999125881402,
0.6788921569665146,
0.5411349583727725,
0.388474572258503,
0.7089617645810736,
0.4989349153415674]

Сверхполный автокодировщик с линейной функцией

активации и дропаутом

Один из способов улучшения решения на основе сверхполного автокоди­

ровщика заключается в применении регуляризации для уменьшения эффек­

тов переобучения. Эффективная методика регуляризации - дропаут, или

исключение. С помощью дропаута мы заставляем автокодировщик исключить

заданный процент элементов из слоев нейронной сети.

При наличии такого ограничения сверхполный автокодировщик не смо­

жет запоминать данные транзакций, хранящиеся в нашем наборе. Вместо это­

го ему придется создавать обобщения. Он будет вынужден обучаться больше­

му количеству существенных признаков и отбрасывать менее существенную

информацию.

Мы будем исключать посредством дропаута 10% узлов скрытого слоя.
Другими словами, будут исключаться 10% нейронов. Чем выше процент, тем
сильнее регуляризация. Это делается с помощью одной-единственной стро­

ки кода.

270 1 Глава8

Проверим, улучшает ли это результаты.

Модель №6:
двухслойный сверхполный автокодировщик
с линейной функцией активации и дропаутом;
29 -> 40 -> 29
дропаут 10%

model = Sequential()
model.add(Dense(units=40, activation='linear', input_dim=29))
model.add(Dropout(0.10))
model.add(Dense(units=29, activation='linear'))

Приведенные ниже результаты отражают потери для этого автокодиров­

щика. На рис. 8.6 приведены кривая "точность - полнота': значение средней

точности и кривая auROC.

Epoch 1/10
190820/190820 [==============================] - 27s 14lus/step -
loss: 0.1358 - асс: 0.7430 - val loss: 0.0082 - val асс: 0.9742

Epoch 2/10
190820/190820 [==============================] - 28s 146us/step -
loss: 0.0782 - асс: 0.7849 - val loss: 0.0094 - val асс: 0.9689

Epoch 3/10
190820/190820 [==============================] - 28s 149us/step -
loss: 0.0753 - асс: 0.7858 - val loss: 0.0102 - val асс: 0.9672

Epoch 4/10
190820/190820 [==============================] - 28s 148us/step -
loss: 0.0772 - асс: 0.7864 - val loss: 0.0093 - val асс: 0.9677

Epoch 5/10
190820/190820 [==============================] - 28s 147us/step -
loss: 0.0813 - асс: 0.7843 - val loss: 0.0108 - val асс: 0.9631

Epoch 6/10
190820/190820 [==============================] - 28s 149us/step -
loss: 0.0756 - асс: 0.7844 - val loss: 0.0095 - val асс: 0.9654

Epoch 7/10
190820/190820 [==============================] - 29s 150us/step -
loss: 0.0743 - асс: 0.7850 - val loss: 0.0077 - val асс: 0.9768

Epoch 8/10
190820/190820 [==============================] - 29s 150us/step -
loss: 0.0767 - асс: 0.7840 - val loss: 0.0070 - val асс: 0.9759

Epoch 9/10
190820/190820 [==============================] - 29s 150us/step -

Реализация автокодировщиков 1 271

loss: 0.0762 - асс: 0.7851 - val loss: 0.0072 - val асс: 0.9733
Epoch 10/10
190820/190820 [==============================] - 29s 151us/ step -
loss: 0.0756 - асс: 0.7849 - val loss: 0.0067 - val асс: 0.9749

93987/93987 [==============================] - 3s 32us/st ep

Кривая "точность - полнота": средняя точность = 0.25

10

08

02

02 04 06 08
Точность

РабочаА хара11теристи11а приемника:
nпощадь под кривой= 0.96

0.2 04 06 08
Дол• ложноположитеnьных ж:ходое

10

10

Рис. 8.6. Оценочные метрики сверхполного автокодировщика с одним
скрытым слоем, дропаутом и линейной функцией активации

Как и ожидалось, потери оказались очень низкими, и переобученный

сверхполный автокодировщик плохо справился с обнаружением мошенниче­

ских транзакций с банковскими картами.

Приведенная ниже сводка отражает распределение средней точности по 10
прогонам. Усредненное значение средней точности равно О . 21, что хуже по­
лученного ранее значения О . 5 3. Коэффициент вариации равен О . 4 О.

272 1 Гnава8

Средняя точность, усредненная по 10 прогонам: 0.21150415381770646
Коэффициент вариации по 10 прогонам: 0.40295807771579256

[0.22549974304927337,
0.22451178120391296,
0.17243952488912334,
0.2533716906936315,
0.13251890273915556,
0.1775116247503748,
0.4343283958332979,
0.10469065867732033,
0.19480068075466764,
0.19537213558630712)

Разреженный сверхполный автокодировщик

с линейной функцией активации

Еще одна эффективная методика регуляризации - разреженность. Мы

можем заставить автокодировщик учитывать разреженность матрицы, чтобы

большая часть нейронов оставалась неактивной большую часть времени. Это

снижает вероятность тождественного отображения даже в случае сверхпол­

ного автокодировщика, поскольку большинство узлов отключено, а значит,

автокодировщику сложнее переобучиться.

Мы используем в сверхполном автокодировщике всего лишь один скры­

тый слой, включив в него, как и ранее, 40 узлов, но вместо дропаута применим

штрафы за разреженность.

Проверим, позволит ли это улучшить достигнутое ранее усредненное зна­

чение средней точности, равное О. 21.

#Модель №7:

двухслойный разреженный сверхполный автокодировщик
с линейной функцией активации;
29 -> 40 -> 29

model = Sequential()
model.add(Dense(units=40, activation='linear', \

activity_regularizer=regularizers.ll(lOe-5), input_dim=29))
model.add(Dense(units=29, activation='linear'))

Реализация автокодировщиков 1 273

Приведенные ниже результаты отражают потери для этого автокодиров­

щика. На рис. 8. 7 приведены кривая "точность - полнота': значение средней

точности и кривая auROC.

Кривая "точность - полнота" : средняя точность = О .Зl

10

08

~ 06

с:

~ 04

02

02 04 06 08
Точность

Рабоча11 характеристика приемника :
площадь под кривой = 0.95

До1111 лож..оnоложите11ьных исходое

10

Рис. 8.7. Оценочные метрики разреженного сверхполного автокодировщика

с одним скрь1ть1м слоем и линейной функцией активации

Epoch 1/10
190820/190820 [==============================] - 27s 142us/step -
loss : 0.0985 - асс : 0. 9380 - val loss: 0 . 0369 - val асс: 0. 9871

Epoch 2/10
190820/190820 [==============================] - 26s 136us/step -
loss : 0. 0284 - асс : 0. 9829 - val loss : 0.0261 - val асс: 0. 9698

Epoch 3/10
190820/190820 [==============================] - 26s 136us/step -

274 1 Гnава8

loss: 0.0229 - асс: 0.9816 - val loss: 0.0169 - val асс: 0.9952
Epoch 4/10
190820/190820 [==============================] - 26s 137us/step -
loss: 0.0201 - асс: 0.9821 - val loss: 0.0147 - val асс: 0.9943

Epoch 5/10
190820/190820 [==============================] - 26s 137us/step -
loss: 0.0183 - асс: 0.9810 - val loss: 0.0142 - val асс: 0.9842

Epoch 6/10
190820/190820 [==============================] - 26s 137us/step -
loss: 0.0206 - асс: 0.9774 - val loss: 0.0158 - val асс: 0.9906

Epoch 7/10
190820/190820 [==============================] - 26s 136us/step -
loss: 0.0169 - асс: 0.9816 - val loss: 0.0124 - val асс: 0.9866

Epoch 8/10
190820/190820 [==============================] - 26s 137us/step -
loss: 0.0165 - асс: 0.9795 - val loss: 0.0208 - val асс: 0.9537

Epoch 9/10
190820/190820 [==============================] - 26s 136us/step -
loss: 0.0164 - асс: 0.9801 - val loss: 0.0105 - val асс: 0.9965

Epoch 10/10
190820/190820 [==============================] - 27s 140us/step -
loss: 0.0167 - асс: 0.9779 - val loss: 0.0102 - val асс: 0.9955 -

93987/93987 [==============================] - 3s 32us/step

Приведенная ниже сводка отражает распределение средней точности по 10
прогонам. Усредненное значение средней точности равно О . 21, что хуже по­

лученного ранее значения О . 5 3. Коэффициент вариации равен О . 9 9.

Средняя точность, усредненная по 10 прогонам: 0.21373659011504448
Коэффициент вариации по 10 прогонам: 0.9913040763536749

[0.1370972172100049,
0.28328895710699215,
0.6362677613798704,
0.3467265637372019,
0.5197889253491589,
0.01871495737323161,
0.0812609121251577,
0.034749761900336684,
0.04846036143317335,
0.031010483535317393]

Реализация автокодировщиков 1 275

Разреженный сверхполный автокодировщик

с линейной функцией активации и дропаутом

Разумеется, ничто не мешает нам комбинировать методики регуляризации

для улучшения решения. В данном случае мы используем разреженный сверх­

полный автокодировщик с линейной функцией активации, 40 узлами в един­
ственном скрытом слое и дропаутом 5%.

Модель №8:
двухслойный разреженный сверхполный автокодировщик
с линейной функцией активации и дропаутом;
29 -> 40 -> 29
дропаут 5%

model = Sequential()
model.add(Dense(units=40, activation='linear', \

activity_regularizer=regularizers.ll(lOe-5), input_dim=29))
model.add(Dropout(0.05))

model.add(Dense(units=29, activation='linear'))

Приведенные ниже результаты отражают потери для этого автокодиров­

щика. На рис. 8.8 приведены кривая "точность - полнота': значение средней

точности и кривая auROC.

Epoch 1/10
190820/190820 [==============================] - 3ls 162us/step -
loss: 0.1477 - асс: 0.8150 - val loss: 0.0506 - val асс: 0.9727

Epoch 2/10
190820/190820 [==============================] - 29s 154us/step -
loss: 0.0756 - асс: 0.8625 - val loss: 0.0344 - val асс: 0.9788

Epoch 3/10
190820/190820 [==============================] - 29s 152us/step -
loss: 0.0687 - асс: 0.8612 - val loss: 0.0291 - val асс: 0.9790

Epoch 4/10
190820/190820 [==============================] - 29s 154us/step -
loss: 0.0644 - асс: 0.8606 - val loss: 0.0274 - val асс: 0.9734

Epoch 5/10
190820/190820 [==============================] - 31s 163us/step -
loss: 0.0630 - асс: 0.8597 - val loss: 0.0242 - val асс: 0.9746

Epoch 6/10
190820/190820 [==============================] - 31s 162us/step -
loss: 0.0609 - асс: 0.8600 - val loss: 0.0220 - val асс: 0.9800

Epoch 7/10

276 1 Г11ава 8

190820/190820 [==============================] - 30s 156us/step -
loss: 0.0624 - асс: 0.8581 - val loss : 0.0289 - val асс: 0.9633

Epoch 8/10
190820/190820 [==============================] - 29s 154us/step -
loss: 0.0589 - асс: 0.8588 - val loss: 0.0574 - val асс: 0.9366
Epoch 9/10
190820/190820 [==============================] - 29s 154us/step -
loss: 0.0596 - асс: 0.8571 - val loss: 0.0206 - val асс: 0.9752

Epoch 10/10
190820/190820 [==============================] - 31s 165us/step -
loss: 0.0593 - асс: 0.8590 - val loss: 0.0204 - val асс: 0.9808

93987/93987 [==============================] - 4s 38us/step

Кр"вая "точность - полнота" . средняя точность = о . за

10 .

оа

02

оо~--~.-.,.~~~..,....-..:.~---.,~~...._....,..........;;"""'--4

00 02 04 Об 08
Точнопь

Рабочая характеристика приемника:

площадь под кривом= 0.95

0.2 04 Об 08
Доля ложноnо11ожите11ьных исходое

10

10

Рис. 8.8. Оценочные метрики разреженного сверхполного автокодировщика
с одним скрытым слоем, дропаутом и линейной функцией активации

Реализация автокодировщиков 1 277

Приведенная ниже сводка отражает распределение средней точности по 10
прогонам. Усредненное значение средней точности равно О. 24, что хуже по­
лученного ранее значения О . 5 3. Коэффициент вариации равен О . 6 2.

Средняя точность, усредненная по 10 прогонам: 0.2426994231628755
Коэффициент вариации по 10 прогонам: 0.6153219870606188

[0.6078198313533932,
0.20862366991302814,
0.25854513247057875,
0.08496595007072019,
0.26313491674585093,
0.17001322998258625,
0.15338215561753896,
0.1439107390306835,
0.4073422280287587,
0.1292563784156162]

Работа с зашумленными наборами данных

При работе с реальными данными распространенной проблемой становит­

ся зашумленность данных, обусловленная тем, что они были так или иначе

искажены в процессе извлечения, миграции, преобразования и т.п. Нам нуж­

ны автокодировщики, достаточно устойчивые к воздействию шумов, чтобы

ничто не могло сбить их с толку и они могли обучаться действительно важной

базовой структуре данных.

Сымитируем шум, добавив в наш набор данных гауссовскую случайную

матрицу шума, и обучим автокодировщик на этом зашумленном тренировоч­

ном наборе. После этого мы проанализируем, насколько хорошо автокодиров­

щику удается предсказывать поддельные транзакции в зашумленном тесто­

вом наборе.

noise factor = 0.50
Х train АЕ noisy = X_train_AE.copy() + noise factor * \

np.random.normal(loc=O.O, scale=l.O, size=X_train_AE.shape)
X_test_AE_noisy = X_test_AE.copy() + noise_factor * \

np.random.normal(loc=O.O, scale=l.O, size=X_test_AE.shape)

278 1 Гпава8

Шумоподавляющий автокодировщик

Размер штрафа за переобучение на зашумленном наборе транзакционных

данных значительно больше, чем в случае оригинальных, неискаженных дан­

ных. Набор данных содержит достаточное количество шума, поэтому автоко­

дировщик, чересчур хорошо приспособившийся к зашумленным данным, не

сможет отличать мошеннические транзакции от нормальных.

Нам нужен автокодировщик, обученный таким образом, чтобы он был

способен достаточно хорошо реконструировать большую часть наблюдений

и при этом случайно не реконструировать также шум. Другими словами, мы

хотим, чтобы автокодировщик обучился базовой структуре данных, но забыл

о содержащемся в них шуме.

Мы опробуем некоторые из вариантов, которые ранее продемонстриро­

вали неплохую производительность. Сначала мы протестируем неполный

автокодировщик с одним скрытым слоем с 27 узлами и линейной функцией
активации. Затем мы проверим, как работает разреженный сверхполный ав­

токодировщик с одним скрытым слоем с 40 узлами и дропаутом. В завершение
мы используем автокодировщик с нелинейной функцией активации.

Двухслойный шумоподавляющий неполный

автокодировщик с линейной функцией активации

На исходном наборе данных автокодировщик с одним скрытым слоем с 27
узлами и линейной функцией активации дал среднюю точность, равную О . 7.
Проверим, насколько хорошо он работает с зашумленным набором. Автоко­

дировщик, который пытается избавиться от шума, называется шумоподавля­

ющим, или обесшумливающим (denoising autoencoder).
Приведенный ниже код аналогичен тому, с которым мы работали ранее, но

теперь мы применим его к зашумленным тренировочному и тестовому набо­

рам данных, Х train АЕ noisy и Х test АЕ noisy соответственно. - - - - - -

Модель №9:
двухслойный шумоподавляющий неполный автокодировщик
с линейной функцией активации
29 -> 27 -> 29

for i in range(O, 10):
Вызов АРI-функции нейронной сети
model = Sequential()

Реализация автокодировщиков 1 279

Генерирование скрытого слоя с 27 узлами
и линейной функцией активации
model.add(Dense(units=27, activation='linear', input_dim=29))

Генерирование выходного слоя с 29 узлами
model.add(Dense(units=29, activation='linear'))

Компиляция модели
model.compile(optimizer='adam', \

loss='mean_squared_error', \
metrics= ['accuracy'])

Тренировка модели
num_epochs 10
batch size = 32

history = model.fit(x=X_train_AE_noisy, у=Х train_AE_noisy, \
epochs=num_epochs, batch_size=batch_size, shuffle=True, \
validation_data=(X_train_AE, X_train_AE), verbose=l)

Оценка на тестовом наборе
predictions = model.predict(X_test_AE_noisy, verbose=l)
anomalyScoresAE = anomalyScores(X_test, predictions)
preds, avgPrecision = plotResults(y_test, anomalyScoresAE, True)
test_scores.append(avgPrecision)
model.reset_states()

рrint("Средняя точность, усредненная по 10 прогонам:", \
np.mean(test_scores))

test scores

Приведенные ниже результаты отражают потери для этого автокодиров­

щика. На рис. 8.9 приведены кривая "точность - полнота': значение средней

точности и кривая auROC.

Epoch 1/10
190820/190820 [==============================] - 25s 133us/step -
loss: 0.1733 - асс: 0.7756 - val loss: 0.0356 - val асс: 0.9123

Epoch 2/10
190820/190820 [==============================] - 24s 126us/step -
loss: 0.0546 - асс: 0.8793 - val loss: 0.0354 - val асс: 0.8973

Epoch 3/10

280 1 Гnава 8

190820/190820 [==============================] - 24s 126us/step -
loss: 0.0531 - асс: 0.8764 - val loss: 0.0350 - val асс: 0.9399

Epoch 4/10
190820/190820 [==============================] - 24s 126us/step -
loss: 0.0525 - асс: 0.8879 - val loss: 0.0342 - val асс: 0.9573

Epoch 5/10
190820/190820 [==============================] - 24s 126us/step -
loss: 0.0530 - асс: 0.8910 - val loss: 0.0347 - val асс: 0.9503

Epoch 6/10
190820/190820 [==============================] - 24s 126us/step -
loss: 0.0524 - асс: 0.8889 - val loss: 0.0350 - val асс: 0.9138

Epoch 7/10
190820/190820 [==============================] - 24s 126us/step -
loss: 0.0531 - асс: 0.8845 - val loss: 0.0343 - val асс: 0.9280

Epoch 8/10
190820/190820 [==============================] - 24s 126us/step -
loss: 0.0530 - асс: 0.8798 - val loss: 0.0339 - val асс: 0.9507

Epoch 9/10
190820/190820 [==============================] - 24s 126us/step -
loss: 0.0526 - асс: 0.8877 - val loss: 0.0337 - val асс: 0.9611

Epoch 10/10
190820/190820 [==============================] - 24s 127us/step -
loss: 0.0528 - асс: 0.8885 - val loss: 0.0352 - val асс: 0.9474

93987/93987 [==============================] - 3s 34us/step

Теперь усредненное значение средней точности равно О • 2 8. Как видите,
линейному автокодировщику непросто подавить шум в наборе данных.

Средняя точность, усредненная по 10 прогонам: 0.2825997155005206
Коэффициент вариации по 10 прогонам: 1.1765416185187383

[0.6929639885685303,
0.008450118408150287,
0.6970753417267612,
0.011820311633718597,
0.008924124892696377,
0.010639537507746342,
0.6884911855668772,
0.006549332886020607,
0.6805304226634528,
0.02055279115125298)

Этому автокодировщику трудно справиться с отделением истинной базо­

вой структуры данных от добавленного нами rауссовскоrо шума.

Реализация автокодировщиков 1 281

Кривая "точность - полнота" : средняя точность = 0.69
10---.....--

08

~Об
L
с;

8 ()4

02

oo-r--.._...___.. ~~-.-.~--~.-.~~~
00 02 04 06 08

очностъ

Рабочая характеристика приемника :
площадь под кривой= 0.89

02 04 06 08

10

10

Рис. 8.9. Оценочные метрики шумоподавляющего
сверхполного автокодировщика с одним скрытым

слоем и линейной функцией активации

Двухслойный шумоподавляющий сверхполный

автокодировщик с линейной функцией активации,

разреженностью и дропаутом

Используем теперь сверхполный автокодировщик с одним скрытым слоем

с 40 узлами, реrуляризатором на основе разреженности и дропаутом 5%.
На оригинальном наборе данных этот автокодировщик дал среднюю точ­

ность о. 38.

282 1 Гnава8

#Модель №10:

двухслойный шумоподавляющий сверхполный автокодировщик
с линейной функцией активации, регуляризатором на основе
разреженности и дролаутом;
29 -> 40 -> 29
дропаут 5%

model = Sequential()
model.add(Dense(units=40, activation='linear',

activity_regularizer=regularizers.ll(lOe-5), input_dim=29))
model.add(Dropout(0.05))
model.add(Dense(units=29, activation='linear'))

Приведенные ниже результаты отражают потери для этого автокодиров­

щика. На рис. 8.1 О приведены кривая "точность - полнота': значение средней

точности и кривая auROC.

Epoch 1/10
190820/190820 [==============================] - 28s 145us/step -
loss: 0.1726 - асс: 0.8035 - val loss: 0.0432 - val асс: 0.9781

Epoch 2/10
190820/190820 [==============================] - 26s 138us/step -
loss: 0.0868 - асс: 0.8490 - val loss: 0.0307 - val асс: 0.9775

Epoch 3/10
190820/190820 [==============================] - 26s 138us/step -
loss: 0.0809 - асс: 0.8455 - val loss: 0.0445 - val асс: 0.9535

Epoch 4/10
190820/190820 [==============================] - 26s 138us/step -
loss: 0.0777 - асс: 0.8438 - val loss: 0.0257 - val асс: 0.9709

Epoch 5/10
190820/190820 [==============================] - 27s 139us/step -
loss: 0.0748 - асс: 0.8434 - val loss: 0.0219 - val асс: 0.9787

Epoch 6/10
190820/190820 [==============================] - 26s 138us/step -
loss: 0.0746 - асс: 0.8425 - val loss: 0.0210 - val асс: 0.9794

Epoch 7/10
190820/190820 [==============================] - 26s 138us/step -
loss: 0.0713 - асс: 0.8437 - val loss: 0.0294 - val асс: 0.9503

Epoch 8/10
190820/190820 [==============================] - 26s 138us/step -
loss: 0.0708 - асс: 0.8426 - val loss: 0.0276 - val асс: 0.9606

Epoch 9/10
190820/190820 [==============================] - 26s 139us/step -

Реализация автокодировщиков 1 283

loss: 0.0704 - асс: 0.8428 - val loss: 0.0180 - val асс: 0.9811
Epoch 10/10
190820/190820 (==============================] - 27s 139us/step -
loss: 0.0702 - асс: 0.8424 - val loss: 0.0185 - val асс: 0.9710

93987/93987 [==============================] - 4s 38us/step

Кривая •точность - полнота• . средняя точность = 0.09

10

08

:'! 06
о

е
~ 04

02

8 10
g

~ 08
" :1

~
:! 06
")(
@ i 04

~
~ 0.2
~
i!

02 04 Об 08
Точность

Рабочая характеристика приемника :
площадь под криеоИ = О.7З

10

00-----.-----r-----,,..-----т-----1
00 02 04 06 08 10

Дornt noжнononoii<l'!Tl!llbHЫX 14СХОДОI

Рис. 8.1 О. Оценочнь1е метрики шумоподавляющего сверхполного
автокодировщика с дропаутом и линейной функцией активации

Приведенная ниже сводка отражает распределение средней точности по 10
прогонам. Усредненное значение средней точности равно О. 1 О, что хуже по­
лученного ранее значения О . 5 З. Коэффициент вариации равен О . 8 З.

Средняя точность, усредненная по 10 прогонам: 0.10112931070692295
Коэффициент вариации по 10 прогонам: 0.8343774832756188

284 1 Гnава8

[0.08283546387140524,
0.043070120657586454,
0.018901753737287603,
0.02381040174486509,
0.16038446580196433,
0.03461061251209459,
0.17847771715513427,
0.2483282420447288,
0.012981344347664117,
0.20789298519649893]

Двухслойный wумоподавляющий сверхполный

автокодировщик с функцией активации ReLU
Проверим, как сработает этот же автокодировщик, но с использованием

функции ReLU вместо линейной функции активации. Вспомните, что на ори­
гинальном наборе данных автокодировщик с нелинейной функцией актива­

ции продемонстрировал худшую производительность, чем автокодировщик с

линейной функцией.

Модель №11:
двухслойный шумоподавляющий сверхполный автокодировщик
с функцией активации ReLU, регуляризатором на основе

разреженности и дропаутом;
29 -> 40 -> 29
дропаут 5%

model = Sequential()
model.add(Dense(units=40, activation='relu', \

activity_regularizer=regularizers.ll(lOe-5), input_dim=29))
model.add(Dropout(0.05))

model.add(Dense(units=29, activation='relu'))

Приведенные ниже результаты отражают потери для этого автокодиров­

щика. На рис. 8.11 приведены кривая "точность - полнота': значение средней

точности и кривая auROC.

Epoch 1/10
190820/190820 [==============================] - 29s 153us/step -
loss: 0.3049 - асс: 0.6454 - val loss: 0.0841 - val асс: 0.8873

Epoch 2/10
190820/190820 [==============================] - 27s 143us/step -

Реализация автокодировщиков 1 285

loss: 0.1806 - асс: 0.7193 - val loss: 0.0606 - val асс: 0.9012
Epoch 3/10
190820/190820 [==============================] - 27s 143us/step -
loss: 0.1626 - асс: 0.7255 - val loss: 0.0500 - val асс: 0.9045

Epoch 4/10
190820/190820 [==============================] - 27s 143us/step -
loss: 0.1567 - асс: 0.7294 - val loss: 0.0445 - val асс: 0.9116

Epoch 5/10
190820/190820 [==============================] - 27s 143us/step -
loss: 0.1484 - асс: 0.7309 - val loss: 0.0433 - val асс: 0.9136

Epoch 6/10
190820/190820 [==============================] - 27s 144us/step -
loss: 0.1467 - асс: 0.7311 - val loss: 0.0375 - val асс: 0.9101

Epoch 7/10
190820/190820 [==============================] - 27s 143us/step -
loss: 0.1427 - асс: 0.7335 - val loss: 0.0384 val асс: 0.9013

Epoch 8/10
190820/190820 [==============================] - 27s 143us/step -
loss: 0.1397 - асс: 0.7307 - val loss: 0.0337 - val асс: 0.9145

Epoch 9/10
190820/190820 [==============================] - 27s 143us/step -
loss: 0.1361 - асс: 0.7322 - val loss: 0.0343 - val асс: 0.9066

Epoch 10/10
190820/190820 [==============================] - 27s 144us/step -
loss: 0.1349 - асс: 0.7331 - val loss: 0.0325 - val асс: 0.9107 -

93987/93987 [==============================] - 4s 41us/step

Приведенная ниже сводка отражает распределение средней точности по 10
прогонам. Усредненное значение средней точности равно О. 2 О, что хуже по­
лученного ранее значения О. 53. Коэффициент вариации равен О. 55.

Средняя точность, усредненная по 10 прогонам: 0.1969608394689088
Коэффициент вариации по 10 прогонам: 0.5566706365802669

[0.22960316854089222,
0.37609633487223315,
0.11429775486529765,
0.10208135698072755,
0.4002384343852861,
0.13317480663248088,
0.15764518571284625,
0.2406315655171392,
0.05080529996343734,
0.1650344872187474]

286 1 Глава8

Вы сможете самостоятельно поэкспериментировать, изменяя количество

узлов и слоев, а также степень разреженности, процент дропаута и функции

активации, чтобы проверить, удастся ли улучшить эти результаты.

Кривая "точность - полнота• : средняя точность = 0.13

10

08

~ 0.6

~
~ 04

0.2

02 04 Об 08
ТОЧhОСТЬ

Рабочая характеристика nриемника:
nлощадь под кривой= 0.86

02 0.4 Об 08
До1111 11ОЖноnо11Ожите11ьных исходое

10

10

Рис. 8.11. Оценочные метрики шумоподавляющего сверхполного
автокодировщика с дропаутом и функцией активации ReLU

Реализация автокодировщиков 1 287

Резюме

В этой главе мы вернулись к задаче обнаружения мошеннических опера­

ций с банковскими картами и разработали соответствующее решение на ос­

нове обучения без учителя с помощью нейронной сети.

Для нахождения оптимальной архитектуры нейронной сети мы прове­

ли ряд экспериментов с привлечением автокодировщиков различного типа.

В ходе этих экспериментов мы проверили работу полного, неполного и сверх­

полного автокодировщиков, включающих один или несколько скрытых слоев.

При этом мы использовали как линейную, так и нелинейную функции акти­

вации с применением двух основных методик регуляризации: разреженности

и дропаута.

Мы выяснили, что при работе с оригинальным набором транзакционных

данных наилучшую производительность демонстрирует довольно простая

двухслойная нейронная сеть на основе неполного автокодировщика с линей­

ной функцией активации, но для того чтобы справиться с шумом в зашумлен­

ном наборе данных, нам пришлось использовать разреженный двухслойный

сверхполный автокодировщик с дропаутом.

Многие наши эксперименты были проведены методом проб и ошибок: в

каждом эксперименте мы подстраивали гиперпараметры и сравнивали ре­

зультаты с предыдущими итерациями. Вполне возможно, что для обнаруже­

ния мошеннических операций с банковскими картами существует еще более
эффективное решение на основе автокодировщика, и я призываю вас выпол­

нить собственные эксперименты, чтобы это проверить.

До сих пор мы рассматривали обучение с учителем и обучение без учителя
как два независимых направления машинного обучения, но в главе 9 мы ис­
следуем совместное использование двух моделей для разработки приложения

на основе обучения с частичным привлечением учителя, которое позволяет

добиться лучших результатов, чем любой из подходов по отдельности.

288 1 Гпава 8

ГЛАВА 9

Обучение с частичным привлечением

учителя

До сих пор мы рассматривали обучение с учителем и обучение без учите­

ля как два разных направления машинного обучения. Обучение с учителем

уместно использовать в случае помеченных наборов данных, а обучение без

учителя - когда набор данных не размечен.

Однако на практике это различие не настолько явное. Обычно наборы дан­

ных частично размечены, и мы хотим эффективно пометить неразмеченные

наблюдения, используя информацию, содержащуюся в размеченной части на­

бора. В случае обучения с учителем нам пришлось бы проигнорировать боль­

шую часть набора данных, поскольку она неразмечена. В случае обучения без

учителя мы работали бы с этими данными, но не знали бы, как воспользовать­

ся преимуществами доступных меток.

Обучение с частичным привлечением учителя (полуавтоматическое обуче­

ние) берет лучшее из двух миров, что позволяет применять имеющиеся метки

для раскрытия внутренней структуры набора и разметки остальной его части.

В этой главе мы продолжим использовать набор данных об операциях с

банковскими картами и продемонстрируем на нем, как работает обучение

с частичным привлечением учителя.

Подготовка данных

Для начала загрузим необходимые библиотеки и подготовим данные.

'''Основные библиотеки'''

import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns

color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр
from sklearn.model_selection import train_test split
from sklearn.model selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall_curve, \

average_precision_score
from sklearn.metrics import roc_curve, auc, roc auc score

' ' 'Алгоритмы' ' '
import lightgbm as lgb

'' 'TensorFlow и Keras'''
import tensorflow as tf
import keras
from keras import backend as К
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout
from keras.layers import BatchNormalization, Input, LamЬda

from keras import regularizers
from keras.losses import mse, binary_crossentropy

Как и раньше, сгенерируем тренировочный и тестовый наборы, только на

этот раз исключим из тренировочного набора 90% меток поддельных транзак­
ций, чтобы сымитировать работу с частично размеченным набором.

Подобный шаг может показаться чересчур радикальным, однако на прак­

тике поддельные транзакции встречаются примерно так же редко (примерно

одна попытка фальсификации на 10 ООО случаев). Исключив 90% меток из тре­
нировочного набора, мы сымитируем реальную ситуацию.

Загрузка данных
current_path = os.getcwd()
file os.path.sep.join([' ', 'datasets', 'credit card_data', \

'credit_card.csv'])
data = pd.read_csv(current_path + file)

dataX data.copy() .drop(['Class', 'Time'J,axis=l)
dataY data ['Class'] . сору ()

290 1 Гnава9

Масштабирование данных
featuresToScale = dataX.columns
sX = pp.StandardScaler(copy=True, with_mean=True, with_std=True)
dataX.loc[:, featuresToScale] = \

sX.fit_transform(dataX[featuresToScale])

Разбиение на тренировочный и тестовый наборы
X_train, X_test, y_train, y_test = train_test_split(dataX, dataY, \

test size=0.33, random_state=2018, stratify=dataY)

Исключение 90% меток из тренировочного набора
toDrop = y_train[y_train==l] .sample(frac=0.90, random_state=2018)
X_train.drop(labels=toDrop.index, inplace=True)
y_train.drop(labels=toDrop.index, inplace=True)

Мы также повторно используем функции anornalyScores и plot­
Resul ts.

def anomalyScores(originalDF, reducedDF):
loss np.sum((np.array(originalDF) - np.array(reducedDF))**2, \

axis=l)
loss pd.Series(data=loss, index=originalDF.index)
loss (loss - np.min(loss)) / (np.max(loss) - np.min(loss))
return loss

def plotResults(trueLabels, anomalyScores, returnPreds = False):
preds = pd.concat([trueLabels, anomalyScores], axis=l)
preds.columns = ['trueLabel', 'anomalyScore'J
precision, recall, thresholds = \

precision_recall_curve(preds['trueLabel'], \
preds['anomalyScore'])

average_precision = average_precision_score(preds['trueLabel'], \
preds ['anomalyScore'])

plt.step(recall, precision, color='k', alpha=0.7, where='post')
plt.fill_between(recall, precision, step='post', alpha=0.3, \

color=' k')

рlt.хlаЬеl('Полнота)

рlt.уlаЬеl('Точность')

р lt . у lim ([О . О , 1 . О 5])
plt. xlim ([О. О, 1. О])

Обучение с частичным привлечением учитепя 1 291

plt.title('Kpивaя "точность - полнота": средняя точность \
{0:0.2f}' .format(average_precision))

fpr, tpr, thresholds = roc_curve(preds['trueLabel'], \
preds['anomalyScore'])

areaUnderROC = auc(fpr, tpr)

plt. figure ()
plt.plot(fpr, tpr, color='r', lw=2, lаЬеl='RОС-кривая')

plt.plot([O, 1], [О, 1], color='k', lw=2, linestyle='--')
plt.xlim([О.О, 1.0])
plt.ylim([O.O, 1.05])
plt.xlabel('Дoля ложноположительных исходов')

plt.ylabel('Дoля истинноположительных исходов')

plt.title(' Рабочая характеристика приемника: \n \
площадь под кривой= {0:0.2f}' .format(areaUnderROC))

plt.legend(loc="lower right")
plt. show ()
if returnPreds==True:

return preds, average_precision

Нам понадобится новая функция, precisionAnalysis, которая поможет
оценить точность наших моделей при определенном уровне полноты класси­

фикации. В частности, мы определим, какая точность соответствует 75%-ному

захвату поддельных транзакций в тестовом наборе. Чем выше точность, тем

лучше модель.

Это разумная точка отсчета. Мы хотим обнаруживать 75% подделок с как
можно более высокой точностью. Если нам не удастся достичь нужной точ­

ности, то мы будем непреднамеренно отвергать вполне законные транзакции,

что вызовет неизбежные жалобы со стороны пользователей.

def precisionAnalysis(df, column, threshold):
df.sort_values(by=column, ascending=False, inplace=True)
threshold_value = threshold * df.trueLabel.sum()
i = о

j = о

while i < threshold valuetl:
if df.iloc[j] ["trueLabel"J==l:

i += 1
j += 1

return df, i/j

292 1 Гnава 9

Модель на основе обучения с учителем

Чтобы оценить качество итогового решения, мы сначала должны понять,

насколько эффективна каждая из моделей на основе обучения с учителем и

без учителя по отдельности.

Начнем с модели на основе обучения с учителем и воспользуемся решени­

ем, которое продемонстрировало наилучшие результаты в главе 2: градиент­
ный бустинг LightGBM (LightGBM). Мы применим пятикратную кросс-про­
верку:

k_fold = StratifiedKFold(n_splits=5, shuffle=True, random_state=2018)

Далее настроим параметры градиентного бустинга.

params_lightGB = {
'task' : 'train' ,
'application': 'binary',
'num_class': 1,
'boosting': 'gbdt',
'objective': 'binary',
'metric': 'binary_logloss',
'metric_freq': 50,
'is_training_metric': False,
'max_depth': 4,
'num_leaves': 31,
'learning_rate': 0.01,
'feature_fraction': 1.0,
'bagging_fraction': 1.0,
'bagging_freq': О,

'bagging_seed': 2018,
'verbose' : О,

'num threads' :16

Теперь обучим алгоритм.

trainingScores = []
cvScores = []
predictionsBasedOnKFolds pd.DataFrame(data=[], \

index= y_train.index, \
columns= ['prediction'])

for train_index, cv index in k fold.split(np.zeros(len(X_train)), \
y_train.ravel()):

Обучение с частичным привпечением учитепя 1 293

X_train_fold, X_cv_fold = X_train.iloc[train_index, :], \
x_train.iloc[cv_index, :]

y_train_fold, y_cv_fold = y_train.iloc[train_index], \
y_train.iloc[cv_index]

lgb_train = lgb.Dataset(X_train_fold, y_train_fold)
lgb_eval = lgb.Dataset(X_cv_fold, y_cv_fold, reference=lgb_train)
gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=2000, \

valid_sets=lgb_eval, early_stopping_rounds=200)

loglossTraining = log_loss(y_train_fold, \
gbm.predict(X_train_fold, num_iteration=gbm.best_iteration))

trainingScores.append(loglossTraining)

predictionsBasedOnKFolds.loc[X_cv_fold.index, 'prediction'] = \
gbm.predict(X_cv_fold, num_iteration=gbm.best_iteration)

loglossCV = log_loss(y_cv_fold, \
predictionsBasedOnKFolds.loc[X_cv_fold.index, 'prediction'])

cvScores.append(loglossCV)

рrint('Логарифмические потери обучения:', loglossTraining)
рrint('Логарифмические потери валидации:', loglossCV)

loglossLightGBMGradientBoosting = log_loss(y_train, \
predictionsBasedOnKFolds.loc[:, 'prediction'])

рrint('Логарифмические потери градиентного бустинга LightGBM: ', \
loglossLightGBMGradientBoosting)

Мы используем эту модель для предсказания подделок в тестовом наборе

транзакций с банковскими картами. Результаты представлены на рис. 9.1.
В соответствии с кривой "точность - полнота" средняя точность соста­

вила О . 31. Выявлению 75% подделок соответствует точность, равная всего
лишьО,01%.

Модель на основе обучения без учителя

Сейчас мы построим решение на основе обучения без учителя. В частности,

мы создадим разреженный двухслойный сверхполный автокодировщик с ли­

нейной функцией активации, 40 узлами в скрытом слое и дропаутом 2%.
В то же время мы скорректируем тренировочный набор, применив из­

быточное семплирование для увеличения количества имеющихся примеров

294 1 Гnава9

Кривая "точность • полнота·: средняя точность = 0.31

10

оа

08
Полнота

Рабочая характеристика приемника:
площадь под кривой= 0.79

- ROC-~pИlilЯ

02 04 06 08
Доля лож11оnооожктепыоых исходов

10

10

Рис. 9.1. Результаты, полученные с помощью модели
на основе обучения с учителем

фальсификации транзакций. Избыточное семплирование (oversampling) - это

методика, используемая для корректировки распределения классов в наборе

данных. Мы хотим добавить больше примеров подделок в тренировочный на­

бор, чтобы автокодировщику, который мы обучаем, было легче отделять нор­

мальные транзакции от поддельных.

Вспомните, что после исключения 90% поддельных примеров из трени­
ровочного набора у нас осталось всего-навсего 33 примера мошеннических
транзакций. Мы возьмем эти 33 примера, создадим 100 дубликатов и присо­
единим к тренировочному набору. Кроме того, мы сохраним копии наборов,

не подвергнутых избыточному семплированию, для использования на осталь­

ных этапах конвейера.

Обучение с частичным привлечением учители 1 295

Тестовый набор мы не трогаем: избыточное семплирование применяется
только к тренировочному набору, но не к тестовому.

oversample_multiplier = 100

X_train_original = X_train.copy()
y_train_original = y_train.copy()
X_test_original X_test.copy()
y_test_original = y_test.copy()

X_train_oversampled X_train.copy()
y_train_oversampled y_train.copy()
Х train oversampled X_train_oversampled.append(\

[X_train_oversampled[y_train==l]] * oversample_multiplier, \
ignore_index=False)

y_train_oversampled = y_train_oversampled.append(\
[y_train_oversampled[y_train==l]] * oversample_multiplier, \
ignore_index=False)

X_train = X_train_oversampled.copy()
y_train = y_train_oversampled.copy()

Теперь обучим наш автокодировщик.

model = Sequential()
model.add(Dense(units=40, activation='linear', \

activity_regularizer=regularizers.ll(lOe-5), \
input_dim=29, name='hidden_layer'))

model.add(Dropout(0.02))
model.add(Dense(units=29, activation='linear'))

model.compile(optimizer='adam', \
loss='mean_squared_error', \
metrics=['accuracy'])

num_epochs 5
batch size 32

history = model.fit(x=X_train, y=X_train, \
epochs=num_epochs, \
batch_size=batch_size, \
shuffle=True, \
validation_split=0.20, \
verbose=l)

296 1 Гnава9

predictions = model.predict(X_test, verbose=l)
anomalyScoresAE = anomalyScores(X_test, predictions)
preds, average_precision = plotResults(y_test, anomalyScoresAE, True)

Результаты представлены на рис. 9.2.

Кривая ~точность - полнота• : средняя точность = О 69

10 --....

08

04

02

00+"".-.~-..,....-~~--,..~~~-.-~~~...-~""""--t

00 02 Об 08
Полнота

Рiiбочая характеристика приемника:
площадь под кривой= 0.96

Дол11 ЛОЖНО110/ЮЖИТельных ИСХОДОВ

10

Рис. 9.2. Результаты, полученные с помощью модели
на основе обучения без учителя

В соответствии с кривой "точность - полнота" средняя точность соста­

вила О. 6 9. Выявлению 75% подделок соответствует точность 75%. Средняя
точность решения на основе обучения без учителя повысилась более чем в

два раза по сравнению с решением на основе обучения с учителем, но самое

существенное изменение - точность 75%, достигаемая при 75%-ной полноте

Обучение с частичным привлечением учителя 1 297

классификации, что представляет собой огромное улучшение по сравнению

с 0,01 %.
И все же решение на основе обучения без учителя не самое эффективное.

Модель на основе обучения с частичным

привлечением учителя

Мы воспользуемся представлением, которому обучился автокодировщик
(его скрытый слой), в качестве отправной точки и объединим его с ориги­

нальным тренировочным набором, после чего передадим полученное комби­

нированное представление алгоритму градиентного бустинга. Такой подход,

основанный на обучении с частичным привлечением учителя, позволяет вос­

пользоваться всеми преимуществами обучения с учителем и без учителя.

Для получения скрытого слоя мы обращаемся к классу Мо de 1 из библиоте­
ки Keras и используем функцию get _ layer.

layer_name = 1 hidden_layer 1

intermediate_layer_model = Model(inputs=model.input, \
outputs=model.get_layer(layer_name) .output)

intermediate_output_train = \
intermediate_layer_model.predict(X_train_original)

intermediate_output_test = \
intermediate_layer_model.predict(X_test_original)

Сохраним эти представления автокодировщика в объектах DataFrarne и
объединим их с исходным тренировочным набором.

intermediate_output_trainDF = \
pd.DataFrame(data=intermediate_output_train, \

index=X_train_original.index)
intermediate_output_testDF = \

pd.DataFrame(data=intermediate_output_test, \
index=X_test_original.index)

Х train = X_train_original.merge(intermediate_output_trainDF, \
left_index=True, right_index=True)

X_test = X_test_original.merge(intermediate_output_testDF, \
left_index=True, right_index=True)

y_train y_train_original.copy()

298 1 Гnава9

После этого мы обучим модель градиентного бустинга на новом трениро­

вочном наборе, включающем 69 признаков (29 из оригинального набора плюс
40 из представления автокодировщика).

trainingScores = (]
cvScores = []

predictionsBasedOnKFolds = \
pd.DataFrame(data=[], index=y_train.index, \

columns=['prediction'])

for train_index, cv_index in k_fold.split(np.zeros(len(X_train)), \
y_train.ravel()):

X_train_fold, X_cv_fold = X_train.iloc[train_index, :], \
X_train.iloc[cv_index, :]

y_train_fold, y_cv_fold = y_train.iloc[train_index], \
y_train.iloc[cv_index]

lgb_train = lgb.Dataset(X_train_fold, y_train fold)
lgb_eval = lgb.Dataset(X_cv_fold, y_cv_fold, reference=lgb_train)
gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=SOOO, \

valid_sets=lgb_eval, early_stopping_rounds=200)

loglossTraining log_loss(y_train_fold, \
gbm.predict(X_train_fold, \
num_iteration=gbm.best_iteration))

trainingScores.append(loglossTraining)

predictionsBasedOnKFolds.loc[X_cv_fold.index, 'prediction'J = \
gbm.predict(X_cv_fold, num_iteration=gbm.best_iteration)

loglossCV = log_loss(y_cv_fold, \
predictionsBasedOnKFolds.loc[X_cv_fold.index, 'prediction'])

cvScores.append(loglossCV)

рrint('Логарифмические потери обучения:', loglossTraining)
рrint('Логарифмические потери валидации: ', loglossCV)

loglossLightGBMGradientBoosting = log_loss(y_train, \
predictionsBasedOnKFolds.loc[:, 'prediction'])

рrint('Логарифмические потери градиентного бустинга LightGBM: ', \
loglossLightGBMGradientBoosting)

Обучение с частичным привлечением учителя 1 299

Результаты представлены на рис. 9.3.

Кривая •точность· полнота": средняя точность =О 71

10

08

02

оо+-~~__,,.-.-.....___,.~~--......-~~~-+-~~-"'4

00 02 04 Об 08
Поnжпа

Рабочая характеристика приемника :
площадь под кривой= О.Вб

02 04 06 08
Дол~ nожноnоnожит~nьньох исходое

10

10

Рис. 9.3. Результаты, полученные с помощью модели
на основе обучения с частичным привлечением учителя

В соответствии с кривой "точность - полнота" средняя точность соста­

вила О • 71. Это лучше, чем в моделях на основе обучения с учителем и без
учителя.

Обнаружению 75% подделок соответствует точность 85%, что представ­
ляет собой значительное улучшение. При таком уровне точности платежная

система может с достаточной долей уверенности отвергать транзакции, по­

меченные моделью как потенциально мошеннические. Ошибки могут совер­

шаться примерно в одном из десяти случаев, и при этом нам удастся выявить

примерно 75% подделок.

300 1 Гnава 9

Важность обучения без учителя и обучения

с учителем

В данном приложении, основанном на обучении с частичным привлечени­

ем учителя, как обучение с учителем, так и обучение без учителя играют очень

важную роль. Чтобы понять это, можно проанализировать, какие признаки

определяются моделью градиентного бустинга как наиболее значимые.

Извлечем значения, характеризующие важность признаков, из обученной

модели.

featureslrnportance = \
pd.DataFrame(data=list(gbrn.feature_irnportance()), \

index=X_train.colurnns, colurnns=['featlrnportance'])
featureslrnportance = featureslrnportance / featureslmportance.surn()
featuresimportance.sort_values(by='featimportance', ascending=False, \

inplace=True)
featureslmportance

Часть наиболее важных признаков, отсортированных по убыванию, при­

ведена в табл. 9.1.

Таблица 9.1. Важность признаков в модели на основе
обучения с частичным привлечением учителя

featlmport1nce

V14 0.15

V1 0.10

Amount 0.10

27 0.10

V7 0.10

Как видите, некоторые из ключевых признаков в таблице - это признаки

скрытого слоя, которым обучился автокодировщик (не помечены префиксом

"V"), тогда как остальные признаки - это главные компоненты, полученные

на основе оригинального набора данных (помечены префиксом "V"), и вели­
чина транзакции (Amount).

Обучение с частичным привлечением учителя 1 301

Резюме

Модель с частичным привлечением учителя по своей производитель­

ности превосходит взятые по отдельности модели обучения с учителем и без

учителя.

Это было лишь поверхностное знакомство с технологией полуавтоматиче­

ского обучения, но оно должно побудить вас поменять стратегию и перестать

раздумывать, какой из вариантов обучения - без учителя или с учителем -
лучше. Теперь у вас есть возможность сочетать обе технологии в поисках оп­

тимального решения.

302 1 Гnава 9

ЧACTblV

Глубокое обучение без учителя

с использованием библиотек

TensorFlow и Keras

До сих пор мы работали лишь с мелкими нейронными сетями, насчиты­

вавшими всего несколько скрытых слоев. Такие сети находят применение при

создании систем машинного обучения, но основные достижения в этой облас­

ти, достигнутые за прошедшее десятилетие, связаны с глубокими нейронными

сетями, включающими множество скрытых слоев. Соответствующий раздел

машинного обучения называется глубокое обучение (deep learning). Примени­
тельно к большим размеченным наборам данных глубокое обучение обеспе­

чило коммерческий успех проектов в таких областях, как компьютерное зре­

ние, распознавание объектов, распознавание речи и машинный перевод.

В этой части мы будем работать с большими неразмеченными наборами,

задействуя глубокое обучение без учителя (deep unsupervised learning) - от­

носительно новое многообещающее направление, которое пока еще не может

похвастаться серьезными достижениями, в отличие от аналогичного подхода

на основе обучения с учителем. В следующих главах мы займемся созданием

систем глубокого обучения без учителя, начав с простейших строительных

блоков.

В главе 10 обсуждаются ограниченные машины Больцмана, которые мы
применим для построения рекомендательной системы фильмов. В главе 11
мы создадим так называемые сети глубокого доверия на основе каскадов,

формируемых из нескольких ограниченных машин Больцмана. В главе 12
мы научимся генерировать синтетические данные с помощью генеративно­

состязательных сетей - это одно из самых передовых направлений глубоко­

го обучения без учителя на сегодняшний день. Наконец, в главе 13 мы вновь
вернемся к кластеризации, но на этот раз будем работать с данными времен­

ных рядов.

ГЛАВА 10

Рекомендательные системы на основе

ограниченных машин Больцмана

В предыдущих главах мы применяли обучение без учителя для выявления

базовой (скрытой) структуры в неразмеченных данных. В частности, мы сни­

жали размерность многомерных наборов данных и создавали системы обна­

ружения аномалий. Мы также выполняли кластеризацию, группируя объекты

на основе их сходства.

Теперь мы перейдем к рассмотрению порождающих (генеративньtх) моде­

лей, которые обучаются вероятностному распределению классов в исходном

наборе данных и приобретают способность делать выводы относительно дан­

ных, которые еще не встречались. В последующих главах мы применим такие

модели для генерирования синтетических данных, которые порой совершен­

но неотличимы от подлинных данных.

До сих пор мы имели дело преимущественно с дискриминативными моде­

лями, которые обучаются разделять наблюдения на основе знаний, извлекае­

мых из данных. Такие модели не могут обучаться вероятностным распределе­

ниям классов в исходных данных. В эту категорию входят такие модели, как

логистическая регрессия и деревья принятия решений, рассмотренные в гла­

ве 2, а также различные методы кластеризации, в том числе метод k-средних и
иерархическая кластеризация, которые обсуждались в главе 5.
Мы начнем с рассмотрения простейшей порождающей модели обучения

без учителя, известной как ограниченная машина Больцмана.

Машины Больцмана

Машины Больцмана были предложены в 1985 году Джеффри Хинтоном
(на тот момент - профессор университета Карнеги - Меллона, а в настоя­

щее время - профессор университета Торонто и один из ведущих инженеров

компании Google) и Терри Сейновски (на тот момент - профессор универси­

тета Джона Хопкинса).

Машины Больцмана (неограниченного типа) состоят из нейронной сети с

входным слоем и одним или несколькими скрытыми слоями. Нейроны или

элементы нейронной сети принимают стохастические решения относительно

того, включаться или не включаться, на основании данных, получаемых в про­

цессе тренировки, и поведения функции потерь, которую машина Больцмана

пытается минимизировать. В ходе тренировки машина Больцмана выявляет

признаки, представляющие наибольший интерес, что помогает моделировать

сложные отношения и закономерности, свойственные данным.

В неограниченных машинах Больцмана используются нейронные сети,

в которых нейроны связаны не только с другими слоями, но и с нейронами,

принадлежащими к тому же слою. Этот фактор в сочетании с наличием боль­

шого количества скрытых слоев делает тренировку машины Больцмана очень

неэффективной. Как следствие, на протяжении 1980-1990-х годов неограни­

ченные машины Больцмана не могли похвастаться сколь-нибудь значитель­

ными успехами.

Ограниченные машины Больцмана

В 2000-е годы Джеффри Хинтон с коллегами совершили серьезный прорыв,

начав использовать модифицированную версию исходной машины Больцма­

на. Ограниченная машина Больцмана (restricted Boltzmann machine - RВМ)

содержит один входной слой (также называемый видимым слоем) и един­

ственный скрытый слой, а соединения между нейронами ограничены таким

образом, что нейроны связываются лишь с нейронами других слоев, но не

собственного слоя. Иными словами, отсутствуют связи типа "видимый- ви­

димый" и "скрытый- скрытый"1 •

Джеффри Хинтон также продемонстрировал возможность каскадирова­

ния простых машин таким образом, чтобы выход скрытого слоя одной RВМ

служил входным слоем для другой RВМ. Такого типа каскадирование можно

повторять многократно для обучения скрытым представлениям, захватыва­

ющим все более тонкие детали структуры исходных данных. Подобную сеть,

состоящую из многих RВМ, можно рассматривать как одну глубокую много­

слойную модель, что и ознаменовало старт глубокого обучения в 2006 году.
Следует отметить, что для обучения базовой структуре данных в RВМ при­

меняется стохастический подход, тогда как, например, в автокодировщиках

используется детерминированный подход.

1 Для обучения машин такого класса чаще всего применяют градиентный алгоритм конт­

растивной дивергенции.

306 1 Глава 10

Рекомендательные системы

В данной главе мы будем использовать RВМ для построения рекоменда­

тельной системы. На сегодняшний день это одно из наиболее успешных при­

менений машинного обучения. Рекомендательные системы широко применя­

ются для предсказания предпочтений пользователей в отношении фильмов,

музыки, книг, новостей, поисковых запросов, покупок, цифровой рекламы и

онлайн-знакомств.

Существуют две основные категории рекомендательных систем: на осно­

ве коллаборативной фильтрации и на основе фильтрации по содержимому.

Коллаборативная фильтрация подразумевает создание рекомендательной

системы, обучение которой базируется на уже накопленных сведениях о дан­

ном пользователе и других пользователях с похожими предпочтениями. Та­

кая система способна предсказывать объекты, которые могут заинтересовать

пользователя, даже если он никогда ранее не проявлял явного интереса к ним.

Именно коллаборативная фильтрация положена в основу рекомендательной

системы фильмов, используемой компанией Netflix.
Фильтрация на основе содержимого подразумевает обучение различным

свойствам объекта, что позволяет рекомендовать другие объекты с похожими

свойствами. Именно так генерируются рекомендации на сайте Pandora.com,
облегчающие пользователям поиск музыки, которая им нравится.

Коллаборативная фильтрация

Фильтрация по содержимому не получила широкого распространения,

поскольку обучение различным свойствам объектов - довольно трудоемкая

задача. Достичь понимания на таком уровне - серьезный вызов, на который

системы искусственного интеллекта пока не могут достойно ответить. Гораздо

легче собрать и проанализировать большой объем информации, касающейся

поведения и предпочтений пользователей, и на основании этого строить про­

гнозы. Поэтому область применения коллаборативной фильтрации намного

шире, и наше внимание будет сосредоточено на ней.

Коллаборативная фильтрация не требует наличия знаний о самих объек­

тах. Вместо этого предполагается, что поведение пользователей с похожими

предпочтениями в прошлом будет столь же сходным и в будущем, а пред­

почтения пользователей останутся примерно теми же. Моделируя степень

сходства пользователей, коллаборативная фильтрация позволяет получать

довольно точные предсказания. Более того, коллаборативная фильтрация не

Рекомендательные системы на основе ограниченных машин Больцмана 1 307

полагается на явные данные (т.е. рейтинги, предоставляемые пользователями).

Вместо этого она работает с неявными данными, например данными о том, как

долго пользователь просматривает конкретный объект или как часто щелкает

на нем. Например, если раньше сайт Netflix предлагал пользователям ставить
оценки фильмам, то теперь он самостоятельно делает заключения о том, нра­

вится фильм пользователям или нет, анализируя неявные данные об их пове­

дении.

В то же время применение коллаборативной фильтрации сопряжено с

определенными трудностями. Во-первых, для создания надежных рекоменда­

ций требуется доступ к большим объемам данных о поведении пользователей.

Во-вторых, эта задача требует выполнения весьма трудоемких вычислений.
В-третьих, соответствующие наборы данных, как правило, очень разрежены,

поскольку предпочтения, проявляемые пользователями, охватывают лишь

малую часть всех возможных объектов. Но если предположить, что имеется

достаточно большой объем исходных данных, то существуют методики, поз­

воляющие справиться с проблемой разреженности, рассмотрению которых и

посвящена данная глава.

Соревнование Netflix Prize
В 2006 году компания Netflix спонсировала трехлетний конкурс на улучше­

ние своей рекомендательной системы фильмов. Главный приз в один миллион

долларов был обещан команде, которая сможет улучшить точность существу­

ющей системы по крайней мере на 10%. Участникам был предоставлен набор
данных, содержащий свыше 100 млн рейтингов фильмов. В сентябре 2009 года
приз был вручен команде BellKor's Pragmatic Chaos, которая использовала ан­
самблевую модель, объединяющую многие алгоритмические подходы.

Это получившее широкую огласку соревнование с богатым набором исход­

ных данных и внушительным денежным призом вдохновило сообщество ма­

шинного обучения, что привело к существенному прогрессу в исследовании

рекомендательных систем за последние годы.

Мы используем аналогичный набор данных о рейтингах фильмов для по­
строения собственной рекомендательной системы с помощью ограниченных

машин Больцмана.

308 1 Глава 10

Набор данных Movielens
Вместо того чтобы работать с набором данных Netflix с его 100 млн рейтин­

гов фильмов, мы задействуем меньший набор MovieLens 20М Dataset, предо­
ставленный исследовательской лабораторией факультета информатики и вы­

числительной техники университета Миннесоты. Этот набор сформирован на

базе отзывов 138 493 пользователей за период с 9 января 1995 года по 31 марта
2015 года и содержит 20 ООО 263 рейтингов, которые охватывают 27 278 филь­
мов. Среди всех пользователей, которые присвоили рейтинги по крайней мере

20 фильмам, мы отберем случайное подмножество.
Работать с этим набором гораздо проще, чем с набором Netflix, содержа­

щим 100 млн рейтингов. Тем не менее размер файла превышает 100 Мбайт,
поэтому он недоступен на GitHub. Вы сможете загрузить этот файл непосред­
ственно с сайта MovieLens (http: / /Ьi t. ly/2GOZHCn).

Подготовка данных

Как всегда, сначала загрузим необходимые библиотеки.

' ' 'Основные библиотеки' ' '
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip, datetime

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss
from sklearn.metrics import precision_recall_curve, \

average_precision_score

Рекомендатеnьные системы на основе оrраниченных маwин Боnьцмана 1 309

from sklearn.metrics import roc_curve, auc, roc_auc_score, \
mean_squared_error

' ' 'Алгоритмы' ' '
import lightgbm as lgb

'' 'TensorFlow (1.х) и Keras' ''
import tensorflow.compat.vl as tf
tf.disaЬle_v2_behavior()

import keras
from keras import backend as К
from keras.models import Sequential,
from keras.layers import Activation,

Model
Dense,

from keras.layers import BatchNormalization,
from keras import regularizers

Dropout
Input,

from keras.losses import mse, Ыnary_crossentropy

LamЬda

Далее загрузим набор рейтингов и преобразуем поля в подходящие типы

данных. В нашем распоряжении имеется всего несколько полей: идентифика­

тор пользователя (userID), идентификатор фильма (rnovieID), рейтинг, при­
своенный пользователем данному фильму (rating), и метка времени.

Загрузка данных
current_path = os.getcwd()
file = os.path.sep.join([", 'datasets', 'movielens_data', \

'ratings. csv'])
ratingDF = pd.read_csv(current_path + file)

Преобразование полей в подходящие типы данных
ratingDF.userid = ratingDF.userid.astype(str) .astype(int)
ratingDF.movieid = ratingDF.movieid.astype(str) .astype(int)
ratingDF.rating = ratingDF.rating.astype(str) .astype(float)
ratingDF.timestamp = ratingDF.timestamp.apply(lamЬda х: \

datetime.utcfromtimestamp(x) .strftime('%Y-%m-%d %H:%M:%S'))

Фрагмент данных приведен в табл. 10.1.
Подтвердим количество имеющихся уникальных пользователей, уникаль­

ных фильмов и общее количество оценок, а заодно подсчитаем среднее коли­

чество оценок, приходящееся на одного пользователя.

n_users = ratingDF.userid.unique() .shape[O]
n_movies = ratingDF.movield.unique() .shape[OJ
n_ratings = len(ratingDF)
avg_ratings_per_user n_ratings/n_users

310 1 Гnава 10

рrint('Количество уникальных пользователей:', n_users)
рrint('Количество уникальных фильмов:', n_movies)
print('Oбщee количество рейтингов:', n_ratings)
print('Cpeднee количество рейтингов на одного пользователя:',

avg_ratings_per_user)

Таблица 10.1. Данньtе рейтингов MovieLens

userld movleld ratlng tlmestamp

о 2 3.5 2005-04-02 23:53:47

1 29 3.5 2005-04-02 23:31:16

2 32 3.5 2005-04-02 23:33:39

3 47 3.5 2005-04-02 23:32:07

4 50 3.5 2005-04-02 23:29:40

5 112 3.5 2004-09-10 03:09:00

6 151 4.0 2004-09-1 о 03:08:54

7 223 4.0 2005-04-02 23:46:13

8 253 4.0 2005-04-02 23:35:40

9 260 4.0 2005-04-02 23:33:46

10 293 4.0 2005-04-02 23:31 :43

11 296 4.0 2005-04-02 23:32:47

12 318 4.0 2005-04-02 23:33:18

13 337 3.5 2004-09-1о03:08:29

Полученные результаты соответствуют нашим ожиданиям.

Количество уникальных пользователей: 138493
Количество уникальных фильмов: 26744
Общее количество рейтингов: 20000263
Среднее количество рейтингов на одного пользователя:

144.4135299257002

\

Снизим сложность этого набора и уменьшим его размер, сосредоточив

внимание на первой тысяче самых рейтинговых фильмов. В результате коли­

чество оценок сократится с -20 до -12,8 млн.

movieindex = ratingDF. groupby ("movieid") . count () . sort_ values (Ьу= \
"rating", ascending=False) [О: 1000]. index

ratingDFX2 = ratingDF[ratingDF.movieid.isin(movieindex)]
ratingDFX2.count()

Рекомендательные системы на основе ограниченных машин Больцмана 1 З 11

Кроме того, сформируем случайную выборку из 1 ООО пользователей и от­
берем из набора данные, относящиеся только к этим пользователям, что по­

зволит дополнительно снизить количество оценок с -12,8 млн до всего лишь
90 213. Такого количества нам хватит для того, чтобы продемонстрировать,
как работает коллаборативная фильтрация.

userindex = ratingDFX2. groupby ("userid") . count () . sort _ values (Ьу= \
"rating", ascending=False). sarnple (n=lOOO, \
randorn_state=2018) .index

ratingDFXЗ = ratingDFX2[ratingDFX2.userid.isin(userindex)]
ratingDFXЗ.count()

После сокращения набора выполним переиндексацию идентификаторов
movieID и userID, чтобы привести их к диапазону значений 1-1000.

rnovies = ratingDFXЗ.rnovieid.unique()
rnoviesDF = pd.DataFrarne(data=rnovies, colurnns=['originalMovieid'])
rnoviesDF['newMovieid'] = rnoviesDF.index+l

users = ratingDFXЗ.userid.unique()
usersDF = pd.DataFrarne(data=users, colurnns=['originalUserid'])
usersDF['newUserid'] = usersDF.index+l

ratingDFXЗ = ratingDFXЗ.rnerge(rnoviesDF, left_on='rnovieid', \
right_on='originalMovieid')

ratingDFXЗ.drop(labels='originalMovieid', axis=l, inplace=True)
ratingDFXЗ = ratingDFXЗ.rnerge(usersDF, left_on='userid', \

right_on='originalUserid')
ratingDFXЗ.drop(labels='originalUserid', axis=l, inplace=True)

Заново подсчитаем количество имеющихся уникальных пользователей, уни­

кальных фильмов и общее количество оценок, а также среднее количество оце­

нок, приходящееся на одного пользователя, для уменьшенного набора данных.

n_users = ratingDFXЗ.userid.unique() .shape[O]
n_rnovies = ratingDFXЗ.rnovieid.unique() .shape[O]
n_ratings = len(ratingDFXЗ)
avg_ratings_per_user = n_ratings/n_users

рrint('Количество уникальных пользователей:', n_users)
рrint('Количество уникальных фильмов:', n_rnovies)
print('Oбщee количество рейтингов:', n_ratings)
print('Cpeднee количество рейтингов на одного пользователя:', \

avg_ratings_per_user)

312 1 Гnава 10

Полученные результаты подтверждают наши ожидания.

Количество уникальных пользователей: 1000
Количество уникальных фильмов: 1000
Общее количество рейтингов: 90213
Среднее количество рейтингов на одного пользователя: 90.213

Наконец, сгенерируем из редуцированного набора данных тестовый и ва­

лидационный наборы, каждый из которых будет содержать 5% данных реду­
цированного набора.

X_train, X_test = train_test_split(ratingDFX3, \
test_size=0.10, shuffle=True, random_state=2018)

X_validation, X_test = train_test_split(X_test, \
test_size=0.50, shuffle=True, random_state=2018)

Проверим размеры тренировочного, тестового и валидационного наборов.

Размер тренировочного набора: 81191
Размер валидационного набора: 4511
Размер тестового набора: 4511

Определение функции потерь: среднеквадратическая

ошибка

Теперь можно приступать к работе с имеющимися данными.

Прежде всего создадим матрицу размером т х п, где т - количество поль­

зователей, а п - количество фильмов. Эта матрица будет разреженной, по­

скольку пользователи оценивают лишь небольшую часть фильмов. Например,

матрица, соответствующая одной тысяче пользователей и одной тысяче филь­

мов, содержит лишь 81191 рейтинг. Если бы каждый из тысячи пользователей
оценил каждый из тысячи фильмов, то матрица содержала бы один миллион

оценок, но пользователи оценивают в среднем лишь небольшое подмноже­

ство фильмов, поэтому мы будем располагать намного меньшим числом рей­

тингов. Остальные элементы матрицы (примерно 92%) будут иметь нулевые
значения.

Генерирование тренировочной матрицы рейтингов
ratings_train = np.zeros((n_users, n_movies))
for row in X_train.itertuples():

ratings_train[row[б]-1, row[5]-1] = row[3]

Вычисление степени разреженности тренировочной матрицы

Рекомендатеnьные системы на основе оrраниченных машин Боnьцмана 1 З 1 З

sparsity = float(len(ratings_train.nonzero() [0]))
sparsity /= (ratings_train.shape[OJ * ratings_train.shape[l])
sparsity *= 100
рrint('Разреженность: {:4.2f)%' .format(sparsity))

Сгенерируем аналогичные матрицы для валидационного и тестового набо­

ров, которые, конечно же, будут еще более разреженными.

Генерирование валидационной матрицы рейтингов
ratings_validation = np.zeros((n_users, n_movies))
for row in X_validation.itertuples():

ratings_validation[row[б]-1, row[S]-1] = row[З]

Генерирование тестовой матрицы рейтингов
ratings_test = np.zeros((n_users, n_movies))
for row in X_test.itertuples():

ratings_test[row[б]-1, row[S]-1] = row[З]

Прежде чем приступить к созданию рекомендательной системы, мы долж­

ны определить функцию потерь, которую будем использовать для оценки ка­

чества модели. В качестве таковой выберем среднеквадратическую ошибку

(mean squared error - MSE) между предсказанными и фактическими значе­
ниями. Это одна из простейших функций потерь в машинном обучении. Для

вычисления MSE нам потребуются два вектора размером [п, 1], где п - коли­

чество предсказываемых рейтингов, равное 4511 для валидационного набора.
Один вектор будет содержать фактические оценки, а второй - предсказания.

Уплощим разреженную матрицу рейтингов для валидационного набора.
В результате получим вектор фактических оценок.

actual validation = \
ratings_validation[ratings_validation.nonzero()] .flatten()

Опорные эксперименты

Проведем опорный эксперимент, предсказав средний рейтинг 3 . 5 для ва­
лидационного набора, и вычислим MSE.

pred_validation = np.zeros((len(X_validation), 1))
pred_validation[pred_validation==O] = 3.5

naive_prediction mean_squared_error(pred_validation, \
actual_validation)

314 1 Глава 10

Показатель MSE для этого наивного предсказания составил 1. 05. Данное
значение послужит точкой отсчета.

Среднеквадратическая ошибка с использованием наивного предсказания:

1.055420084238528

Проверим, сможем ли мы улучшить результаты, если предскажем пользо­

вательскую оценку заданного фильма на основании средней оценки, присво­

енной данным пользователем другим фильмам.

ratings_validation_prediction
i = о

np.zeros ((n_users, n_movies))

for row in ratings_train:
ratings_validation_prediction[i]

[ratings_validation_prediction[i]==O]
i += 1

np.mean(row[row>O])

pred_validation = ratings_validation_prediction \
[ratings_validation.nonzero()] .flatten()

user_average = mean_squared_error(pred_validation, actual_validation)
рrint('Среднеквадратическая ошибка с использованием усредненной\

пользовательской оценки:', user_average)

Показатель MSE улучшился до О . 9 О 9.

Среднеквадратическая ошибка с использованием усредненной

пользовательской оценки: 0.9090717929472647

Теперь давайте предскажем пользовательскую оценку заданного фильма

на основании среднего значения рейтингов, присвоенных данному фильму

остальными пользователями.

ratings_validation_prediction
i = о

np.zeros((n_users, n_movies)) .Т

for row in ratings_train.T:
ratings_validation_prediction[i] \

[ratings_validation_prediction[i]==O]
i += 1

np.mean(row[row>O])

ratings_validation_prediction = ratings_validation_prediction.T
pred_validation = ratings_validation_prediction \

[ratings_validation.nonzero()] .flatten()
movie_average = mean_squared_error(pred_validation, actual
validation)
рrint('Среднеквадратическая ошибка с использованием усредненной\

оценки фильма другими пользователями:', movie_average)

Рекомендательные системы на основе ограниченных машин Больцмана 1 315

При таком подходе показатель MSE составил О. 914, что близко к результа­
ту предыдущего эксперимента.

Среднеквадратическая ошибка с использованием усредненной оценки

фильма другими пользователями: 0.9136057106858655

Матричная факторизация

Прежде чем приступить к построению рекомендательной системы на осно­

ве RВМ, создадим подобную систему, используя матричную факторизацию -
один из наиболее успешных и популярных алгоритмов коллаборативной

фильтрации на сегодняшний день. При таком подходе матрица "пользова­
тель - объект" разлагается на два множителя. Для представления пользовате­

лей и объектов применяются латентные пространства меньшей размерности.

Пусть матрица R представляет т пользователей и п объектов. В результате
факторизации получим две матрицы меньшей размерности, Н и W, где Н -
матрица размером "т пользователей" х "k факторов': а W - матрица разме­

ром "k факторов" х "п объектов':
Рейтинги вычисляются посредством операции матричного умножения:

R=HW.
Число факторов k определяет емкость модели, которая возрастает с увели­

чением k. Повышая емкость, мы можем улучшить персонализацию рейтинго­
вых предсказаний для пользователей, но при слишком высоких значениях k
модель будет переобучаться.

Все это должно быть вам знакомо. Модель матричной факторизации обуча­

ется представлениям пользователей и объектов в пространстве более низкой

размерности и строит прогнозы, базируясь на этих новых представлениях.

Один фактор

Начнем с простейшей формы матричной факторизации, когда имеется

всего один фактор. Для факторизации матриц мы воспользуемся средствами

библиотеки Keras.
Прежде всего мы должны определить граф, входом которого служат два век­

тора - одномерный вектор пользователей и одномерный вектор фильмов, -
используемые для создания соответствующих вложений. Затем эти вложения

уплощаются. Далее мы генерируем выходное произведение векторов, вычис­

ляя скалярное произведение вектора пользователей и вектора фильмов. Для

316 1 Глава 10

минимизации функции потерь, определяемой как mean _ squared _ error
(среднеквадратическая ошибка), применим оптимизатор Аdат.

n latent factors = 1

user_input = Input(shape=[l], name='user')
user_emЬedding = EmЬedding(input_dim=n_users + 1, \

output dim=n latent_factors, name='user_emЬedding') (user_input)
user_vec = Flatten(name='flatten_users') (user_emЬedding)
movie_input = Input(shape=[l], name='movie')
movie_emЬedding = EmЬedding(input_dim=n_movies + 1, \

output_dim•n_latent_factors, name='movie_emЬedding') (movie_input)
movie vec = Flatten(name='flatten_movies') (movie_embedding)

product = dot([movie_vec, user_vec], axes=l)
model = Model(inputs=[user_input, movie_input], outputs=product)
model.compile('adam', 'mean_squared_error')

Обучим модель, подав на вход векторы пользователей и фильмов из трени­

ровочного набора данных. В процессе обучения модели мы будем оценивать

ее на валидационном наборе. Показатель MSE будет вычисляться относитель­
но имеющихся рейтингов.

Мы обучим модель на протяжении ста эпох и сохраним историю результа­

тов тренировки и валидации, после чего построим график.

history = model.fit(x=[X_train.newUserid, X_train.newMovieid], \
y=X_train.rating, epochs=lOO, \
validation_data=([X_validation.newUserid, \
X_validation.newMovieid], X_validation.rating), \
verbose=l)

pd.Series(history.history['val loss'] [10:)) .plot(logy=False)
plt.xlabel("Эпoxa")

рlt.уlаЬеl("Ошибка валидации")

print ('Минимальная MSE: ', min (history. history ['val _ loss']))

Результаты представлены на рис. 10.1.
В случае матричной факторизации с одним фактором минимальное значе­

ние MSE составило О. 796. Этот результат лучше по сравнению с подходами,
основанными на усреднении оценок по пользователям и фильмам.

Проверим, удастся ли нам улучшить результат, если мы увеличим коли­

чество факторов (т.е. емкость модели).

Рекомендатеnьные системы на основе оrраниченных маwин Боnьцмана 1 317

минимальная MSE: 0.7962130332067097

08125

08100

s i 08075

i 08050

"' J 0.8025

08000

о 7975

о 20 40
Эпоха

80

Рис. 10.1. График MSE валидационного набора с использованием
матричной факторизации и одного фактора

Три фактора

На рис. 10.2 представлены результаты, соответствующие использованию
трех факторов.

минимальная MSE: 0.7754676667318934

0.810

0805

10.800

! 0.795

: i 0790

~ 0.785

о 780

о 20 40
ЭnOXil

60 во

Рис. 10.2. График MSE валидационного набора с использованием
матричной факторизации и трех факторов

Минимальное значение MSE составило О. 77 5, что лучше, чем в случае од­
ного фактора.

318 1 Глава 10

Пять факторов

Наконец, построим модель матричной факторизации, используя пять фак­

торов (рис. 10.3).

минимальная MSE: 0.7725457164195286

s

0810

0805

! 0800

~ о 795

" i 0790

d 078S

07&0

0115

о 20 40
Эnоха

80

Рис. 10.3. !рафик MSE валидационного набора с использованием
матричной факторизации и пяти факторов

Минимальное значение MSE не улучшилось, а после прохождения пример­
но 20 эпох появились явные признаки переобучения: ошибка валидации дос­
тигает минимума, а затем начинает расти. Дальнейшее увеличение емкости

модели не даст никакого существенного улучшения.

Коллаборативная фильтрация с использованием RBM
Вернемся к модели на основе RВМ. Вспомните, что в ограниченной машине

Больцмана имеется два слоя: входной/видимый и скрытый. Нейроны каждого

из этих слоев связаны с нейронами других слоев, но не с нейронами собствен­

ного слоя. Иными словами, внутрислойные связи отсутствуют - это и есть

ограничительньlй элемент RВМ.

Другое важное свойство RВМ заключается в том, что связь между слоями

осуществляется в обоих направлениях, а не только в одном. Например, в авто­

кодировщиках нейроны сообщаются со следующим слоем, передавая инфор­

мацию только в направлении прямого распространения. В RВМ нейроны ви­

димого слоя сообщаются со скрытым слоем, после чего скрытый слой передает

информацию в обратном направлении видимому слою, и этот процесс повто­

ряется многократно. RВМ осуществляет обмен данными между видимым и

Рекомендатеnьные системы на основе оrраниченных машин Боnьцмана 1 319

скрытым слоями в прямом и обратном направлении, стремясь сформировать

такую порождающую модель, в которой выходные реконструкции скрытого

слоя совпадают с оригинальными входами.

Таким образом, ограниченная машина Больцмана пытается создать порож­

дающую модель, которая позволяет предсказывать, понравится ли пользова­

телю фильм, который он еще не видел, на основании сходства этого фильма

с другими фильмами, уже оцененными пользователем, а также на основании

того, насколько предпочтения пользователя близки к предпочтениям других

пользователей, уже оценивших данный фильм.

Видимый слой будет иметь х нейронов, где х - количество фильмов в набо­

ре данных. Каждый нейрон будет содержать нормализованную оценку, значе­

ния которой находятся в диапазоне от О до 1, где О означает, что пользователь
не видел данный фильм. Чем ближе нормализованное значение оценки к 1,
тем вероятнее, что пользователю понравится фильм, представляемый данным

нейроном.

Нейроны видимого слоя будут передавать информацию в скрытый слой,

который будет пытаться обучиться базовым латентным признакам, характе­

ризующим предпочтения пользователей.

Ограниченную машину Больцмана еще называют симметричным двудоль­

ным двунаправленным графом, поскольку такой граф содержит два слоя узлов,

где каждый видимый узел связан с каждым скрытым узлом и обмен данными

происходит в двух направлениях.

Архитектура нейронной сети на основе RBM
В нашей рекомендательной системе фильмов имеется матрица размером

т х пс т пользователями и п фильмами. Для обучения RВМ мы передаем ней­

ронной сети пакет с данными о k пользователях и предоставленных ими рей­
тингах п фильмов и тренируем ее в течение определенного количества эпох.

Каждый вход х, передаваемый нейронной сети, представляет рейтинговые

предпочтения одного пользователя для всех п фильмов, где п равно 1000 в на­
шем примере. Поэтому видимый слой содержит п узлов, по одному на каждый

фильм.

Мы можем задать количество узлов в скрытом слое, которое обычно будет

меньше, чем в видимом слое, чтобы заставить скрытый слой обучаться наибо­

лее существенным аспектам входных данных настолько эффективно, насколь­

ко это возможно.

Каждый входной вектор v0 умножается на соответствующий ему вес W. Этим
весам обучаются соединения, связывающие видимый слой со скрытым слоем.

320 1 Гnава 10

Затем полученное произведение суммируется с вектором смещения скрытого

слоя, hь. Добавление смещения гарантирует запуск по крайней мере части ней­

ронов. Результат выражения W* v0 + hь передается функции активации.
Далее мы формируем выборку выходов, генерируемую путем семплирова­

ния по Гиббсу. Другими словами, результатом активации скрытого слоя ста­

новятся окончательные выходы, генерируемые стохастически. Случайность

способствует построению более производительной и надежной порождаю­

щей модели.

После этого выход гиббсовского семплирования, h0, пропускается через

нейронную сеть в противоположном направлении в рамках процесса, полу­

чившего название обратное распространение ошибки. Активации, получен­

ные путем распространения результатов гиббсовского семплирования в пря­

мом направлении, передаются скрытому слою и умножаются на ту же матрицу

весов W, что и раньше. Затем мы прибавляем к произведению новый вектор
смещения видимого слоя, vь.

Результат выражения W * h0 + vь пропускается через функцию активации,
после чего выполняется семплирование по Гиббсу. Выходом становится век­

тор v1, который затем передается видимому слою в качестве нового входа

и вновь пропускается через нейронную сеть в прямом направлении.

RВМ выполняет серию проходов в прямом и обратном направлении, обу­

чаясь оптимальным весам, которые могут привести к построению надежной

порождающей модели. Ограниченные машины Больцмана - первый тип

порождающих моделей, который мы исследуем. Выполняя семплирование

по Гиббсу и многократную тренировку весов с помощью процессов прямо­

го и обратного распространения, RВМ пытается обучиться распределению

вероятностей оценок во входных данных. В частности, RВМ минимизирует

расстояние Кульбака - Лейблера, которое служит мерой расхождения между

различными распределениями вероятностей. В нашем случае RВМ миними­

зирует расхождение между распределением вероятностей реконструирован­

ных и входных данных.

Итеративно перенастраивая веса в нейронной сети, RВМ обучается апрок­

симировать оригинальные данные настолько точно, насколько это возможно.

Ограниченные машины Больцмана, обученные этому новому распределе­

нию вероятностей, способны генерировать прогнозы в отношении ранее не

встречавшихся данных. Проектируемая нами сеть будет пытаться предска­

зывать рейтинги фильмов, которые пользователь еще не видел, на основании

сходства данного пользователя с остальными пользователями и оценок филь­

мов, полученных от других пользователей.

Рекомендатеnьные системы на основе оrраниченных машин Боnьцмана 1 321

Создание класса RВМ

Конструктору класса RBM передается несколько параметров, а именно:
размер входа RВМ (input_size), размер выхода (output_size), скорость
обучения (learning_ rate), количество эпох обучения (epochs) и размер
пакетов, используемых в процессе обучения (Ьа tch _ s i ze).
Мы также создадим нулевые матрицы для весов и векторов смещений

скрытого и видимого слоев.

Определение класса RBM
class RBM(object):

def init (self, input size, output_size, learning_rate, \
epochs, batchsize) :

Определение гиперпараметров
self._input_size = input_size
self._output_size = output_size
self.learning_rate = learning_rate
self.epochs = epochs
self.batchsize = batchsize

Инициализация весов и смещений нулевыми матрицами
self.w = np.zeros([input_size, output_size], "float")
self.hb = np.zeros([output_size], "float")
self.vb = np.zeros([input_size], "float")

Далее определим функции для передачи данных в прямом и обратном на­

правлениях и семплирования данных в процессе прохождения этих этапов.

Вот как выглядит функция для передачи данных в прямом направлении

(h обозначает скрытый слой, а v - видимый).

def prob_h_given_v(self, visiЫe, w, hb):
return tf.nn.sigmoid(tf.matmul(visiЫe, w) + hb)

Аналогичная функция для передачи данных в обратном направлении вы­

глядит так.

def prob_v_given_h(self, hidden, w, vb):
return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

Функция семплирования имеет следующий вид.

def sample_prob(self, probs):

322 1

return tf.nn.relu(tf.sign(probs - \
tf.random_uniform(tf.shape(probs))))

Гnава 10

Теперь нам нужна функция, реализующая процесс обучения. Поскольку

мы используем библиотеку Tensor Flow, мы прежде всего должны создать заме­
стители для графа TensorFlow, которые впоследствии будут применяться при
передаче данных сеансу TensorFlow2•

Нам потребуются заместители для матрицы весов, а также векторов смеще­

ний скрытого и видимого слоев. Кроме того, мы должны инициализировать все

эти заместители нулевыми значениями, а также создать один набор для хране­

ния текущих значений и еще один - для хранения предыдущих значений.

def train(self, Х):

_w = tf .placeholder ("float", [self ._input_size, \
self._output_size])

hb tf.placeholder("float", [self._output_size])
vb tf .placeholder ("float", [self ._input_size])

prv_w = np.zeros([self._input_size, self._output_size], \
"float")

prv_hb
prv_vb

np.zeros([self. output_size], "float")
np.zeros([self. input_size], "float")

cur_w = np.zeros([self._input_size, self._output_size], \
"float")

cur_hb = np. zeros ([self ._output_size], "float")
cur_vb = np.zeros([self._input_size], "float")

Еще нам нужен заместитель для видимого слоя. Скрытый слой формирует­

ся путем умножения матрицы видимого слоя на матрицу весов и прибавления

к полученному результату вектора смещений скрытого слоя.

vO = tf.placeholder("float", [None, self._input_size])
hO = self.sarnple_prob(self.prob_h_given_v(vO, _w, _hb))

В процессе обратного распространения ошибки мы берем выход скрытого

слоя, умножаем его на транспонированную матрицу весов, которая использо­

валась в процессе прямого распространения, и прибавляем к полученному ре­

зультату вектор смещений видимого слоя. Подчеркнем, что в процессах пря­

мого и обратного распространения используется одна и та же матрица весов.

Затем мы вновь повторяем процесс прямого распространения.

vl self.sarnple_prob(self.prob_v_given_h(hO, _w, _vb))
h1 = self.prob_h_given_v(vl, _w, _hb)

2 Этот пример ориентирован на TensorFlow 1.х. - Примеч. ред.

Рекомендательные системы на основе оrраниченных машин Больцмана 1 323

Веса обновляются с применением контрастивной дивергенции3 • Кроме

того, мы определяем MSE в качестве меры ошибки.

positive_grad tf.matmul(tf.transpose(vO), hO)
negative_grad tf.matmul(tf.transpose(vl), hl)

update_w w + self.learning_rate * \
(positive_grad - negative_grad) / \
tf.to_float(tf.shape(vO) [О])

update_vb _vb + self.learning_rate * \
tf.reduce_mean(vO - vl, 0)

update_hb _hb + self.learning_rate * \
tf.reduce_mean(hO - hl, 0)

err = tf.reduce_mean(tf.square(vO - vl))

Выполнив указанные действия, мы подготовились к тому, чтобы инициа­

лизировать сеанс TensorFlow с помощью только что созданных переменных.
Как только будет выполнен вызов sess. run, мы сможем начать процесс

обучения нейронной сети, передавая ей пакеты данных. На этапе обучения

мы делаем проходы в прямом и обратном направлениях, а ограниченная ма­

шина Больцмана обновляет веса на основании сравнения сгенерированных

данных с исходными входными данными. Мы будем выводить ошибку рекон­

струкции для каждой эпохи.

error_list = []
with tf.Session() as sess:

sess.run(tf.global_variaЬles_initializer())

for epoch in range(self.epochs):
for start, end in zip(range(O, len(X), \

self.batchsize), \
range(self.batchsize, len(X), \
self.batchsize)):

batch = X[start:end]
cur_w = sess.run(update_w, feed_dict=(vO: batch, \

_w: prv_w, _hb: prv_hb, _vb: prv_vb})
cur_hb = sess.run(update_hb, feed_dict={vO: \

batch, w: prv_w, hb: prv_hb, vb: prv_vb})

3 Для получения более подробной информации по этой теме обратитесь к статье Оп Contrastive
Divergence Learning (http: / /Ьi t. ly/2RukFuX).

324 1 Гnава 10

cur_vb = sess.run(update_vb, feed_dict={vO: \
batch, _w: prv_w, hb: prv_hb, _vb: prv_vb})

prv_w = cur_w
prv_hb = cur_hb
prv_vb = cur_vb

error = sess.run(err, feed_dict={vO: Х, w: cur_w, \
_vb: cur_vb, hb: cur_hb})

print('Эпoxa: %d' % epoch, \
'ошибка реконструкции: %f' % error)

error_list.append(error)
self.w = prv_w
self.hb = prv_hb
self.vb = prv_vb
return error list

Тренировка рекомендательной системы с использованием

RВМ-модели

Для обучения RВМ мы создадим массив NumPy inputX на основе мат­
рицы оценок ratings_train и преобразуем ero значения в вещественные
числа типа float32. Мы определим оrраниченную машину Больцмана с раз­
мерностями входа и выхода, равными 1000, зададим скорость обучения О. 3
и проведем тренировку на протяжении 500 эпох с применением пакетов раз­
мером 200. Это всеrо лишь предварительный вариант выбора параметров.
Желательно, чтобы вы провели собственные эксперименты для поиска более

оптимальных значений параметров.

Начало тренировочного цикла

Приведение массива inputX к типу float32
inputX ratings_train
inputX = inputX.astype(np.float32)

Определение параметров RBM
rbm = RBM (1 О О О, 10 О О, О • 3, 5 О О, 2 О О)

Начнем тренировку.

rbm.train(inputX)
outputX, reconstructedX, hiddenX = rbm.rbm_output(inputX)

График ошибок реконструкции приведен на рис. 10.4.

Рекомендательные системы на основе оrраниченных машин Больцмана 1 325

109~

1 1090
:1'

" ~ 1085

~
к 1080

" j 1075

1070

1065

о 100 200 :юо 400 500
Эnоха

Рис. 10.4. График ошибок реконструкции RВМ

С увеличением длительности тренировки эта ошибка реконструкции обыч­

но уменьшается.

А теперь используем обученную модель для предсказания рейтингов филь­

мов на основе валидационного набора (который включает тех же пользовате­

лей, что и тренировочный набор).

Предсказание рейтингов для валидационного набора
inputValidation ratings_validation
inputValidation = inputValidation.astype(np.float32)

finalOutput_validation, reconstructedOutput_validation, \
rbm.rbm_output(inputValidation)

Преобразуем предсказания в массив и вычислим MSE относительно истин­
ных оценок валидационного набора.

predictionsArray = reconstructedOutput_validation
pred_validation = \

predictionsArray[ratings_validation.nonzero()] .flatten()
actual validation = \

ratings_validation[ratings_validation.nonzero()] .flatten()

rbm_prediction = mean_squared_error(pred_validation, \
actual_validation)

рrint('Среднеквадратическая ошибка с использованием\

предсказания RBM': rbm_prediction)

Выведем показатель MSE для валидационного набора.

Среднеквадратическая ошибка с использованием предсказания RBM:
9.331135003325205

326 1 Глава 10

Полученное значение MSE может служить в качестве отправной точки, и
вполне вероятно, что его можно улучшить, проведя дополнительные экспери­

менты.

Резюме

В этой главе мы исследовали, как работают ограниченные машины Боль­

цмана, и применили их для создания рекомендательной системы фильмов.

Построенная нами система обучалась распределению вероятностей рейтин­

гов на основании имеющихся оценок, присвоенных данным пользователем и

другими пользователями со схожими предпочтениями. Обученная нейронная

сеть приобрела способность предсказывать рейтинги фильмов, которые еще

не были просмотрены пользователями.

В главе 11 мы будем создавать глубокие сети доверия путем формирования
каскада ограниченных машин Больцмана и применять их для решения еще

более сложных задач на основе обучения без учителя.

Рекомендательные системы на основе ограниченных машин Больцмана 1 327

ГЛАВА 11

Обнаружение признаков с помощью

глубоких сетей доверия

В главе 10 мы исследовали ограниченные машины Больцмана (RВМ) и ис­
пользовали их для построения рекомендательной системы фильмов. В этой

главе мы объединим несколько RВМ в каскад для создания глубокой сети до­

верия (deep belief network - DBN). Впервые такой тип сетей был предложен
Джеффри Хинтоном из университета Торонто в 2006 году.

В RВМ имеется всего два слоя: видимый и скрытый. Другими словами,

это мелкая нейронная сеть. Глубокие сети доверия образуются из множества

RВМ: скрытый слой одной RВМ служит видимым слоем следующей. В резуль­

тате DBN превращается в глубокую нейронную сеть. Это первый тип глубо­
ких сетей обучения без учителя, с которым мы познакомимся.

Мелкие нейронные сети наподобие RВМ не способны обучаться внутрен­

ней структуре таких сложных данных, как изображения, звук и текст, в от­

личие от DBN. Глубокие сети доверия применяются для распознавания и
кластеризации изображений, захвата видео, звука и текста, хотя за последнее

десятилетие были разработаны другие методы глубокого обучения, превосхо­

дящие DBN по своей производительности.

Что собой представляют глубокие сети доверия

Подобно RВМ, глубокие сети доверия могут обучаться базовой структу­

ре входных данных и реконструировать их на вероятностной основе. Други­

ми словами, DBN, как и RВМ, - порождающие модели. Слои в DBN связаны
только между собой и не содержат внутренних связей между узлами одного

слоя.

В DBN слои обучаются поочередно, начиная с самого первого скрытого
слоя, который вместе с входным слоем образует первую RВМ. Как только пер­

вая RВМ обучена, ее скрытый слой превращается в видимый слой следующей

RВМ и используется для обучения второго скрытого слоя DBN.

Описанный процесс продолжается до тех пор, пока не будут обучены все

слои DBN. Каждый слой DBN, за исключением первого и последнего, высту­
пает в качестве как скрытого, так и видимого слоя RВМ.

DBN - это иерархия представлений, которая, подобно всем нейронным

сетям, применяется для обучения признакам. Следует отметить, что в глубо­

ких сетях доверия нет никаких меток. Вместо этого они обучаются базовой

структуре входных данных слой за слоем.

Метки могут использоваться для тонкой настройки нескольких последних

слоев DBN, но только после того, как будет завершено начальное обучение без
учителя. Например, если мы хотим применить DBN в качестве классифика­
тора, то сначала должны выполнить обучение без учителя (предварительное

обучение) и только затем перейти к тонкой настройке DBN.

Классификация изображений MNIST
Приступим к построению классификатора изображений на основе глубо­

кой сети доверия. Для этого мы вновь обратимся к набору данных MNIST.
Сначала загрузим необходимые библиотеки.

'''Основные библиотеки'''

import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip, datetime

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl
from mpl_toolkits.axes_gridl import Grid

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр
from sklearn.model_selection import train_test split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss, accuracy_score
from sklearn.metrics import precision_recall_curve, \

average_precision_score

330 Глава 11

from sklearn.metrics import roc_curve, auc, roc_auc_score, \
mean_squared_error

' ' 'Алгоритмы' ' '
import lightgbm as lgb

'''TensorFlow (1.х) и Keras'''
import tensorflow.compat.vl as tf
tf.disaЫe_v2_behavior()

import keras
from keras import backend as К
from keras.models import Sequential,
from keras.layers import Activation,

Model
Dense,

from keras.layers import BatchNormalization,
from keras. layers import EmЬedding, Flatten,
from keras import regularizers

Dropout
Input,
dot

from keras.losses import mse, Ыnary_crossentropy

LamЬda

Теперь загрузим данные и сохраним их в объектах DataFrame библиотеки

Pandas. Мы также преобразуем метки в векторы с помощью прямого кодиро­
вания. Это аналогично тому, что мы делали, когда впервые начали работать с

набором данных MNIST в предыдущих главах.

Загрузка наборов данных
current_path = os.getcwd()
file = os.path.sep.join(['', 'datasets', 'mnist_data', \

'mnist .pkl .gz'))
f = gzip.open(current_path+file, 'rb')
train_set, validation_set, test set = pickle.load(f, \

encoding='latinl')
f. close ()

Х train, y_train = train_set[OJ, train_set[l]
X_validation, y_validation = validation_set[OJ, validation_set[l]
X_test, y_test = test_set[O], test_set[l]

Создание объектов DataFrame библиотеки Pandas из наборов данных
train_index = range(O, len(X_train))
validation_index = range(len(X_train), len(X_train) + \

len(X_validation))
test index range(len(X_train) + len(X_validation), \

len(X_train) + len(X_validation) + len(X_test))

Обнаружение признаков с помощью rnубоких сетей доверия 1 331

Х train pd.DataFrame(data=X_train, index=train_index)
y_train pd.Series(data=y_train, index=train_index)

Х validation

y_validation

pd.DataFrame(data=X_validation, \
index=validation_index)

pd.Series(data=y_validation, index=validation_index)

Х test
y_test

pd.DataFrame(data=X_test, index=test_index)
pd.Series(data=y_test, index=test index)

def view_digit(X, у, example):
label = y.loc[example]
image = X.loc[example, :] .values.reshape([28, 28])
plt.title('Пpимep: %d Метка: %d' % (example, label))
plt.imshow(image, cmap=plt.get_cmap('gray'))
plt. show ()

def one_hot(series):
label_binarizer = pp.LabelBinarizer()
label_binarizer.fit(range(max(series) + 1))
return label_binarizer.transform(series)

Создание векторов прямого кодирования для меток
y_train_oneHot = one_hot(y_train)
y_validation_oneHot = one_hot(y_validation)
y_test_oneHot = one_hot(y_test)

Ограниченные машины Больцмана

Далее мы создадим класс RBM, который позволит организовать быстрое по­

следовательное обучение нескольких RВМ (являющихся строительными бло­

ками DBN).
Вспомните, что в ограниченной машине Больцмана есть входной (види­

мый) слой и единственный скрытый слой, а соединения между нейронами

ограничены так, что нейроны одного слоя могут связываться только с ней­

ронами других слоев, но не между собой. Кроме того, вспомните, что обмен

данными между слоями происходит в обоих направлениях, а не только в на­

правлении прямого распространения, как в случае автокодировщиков.

В RВМ нейроны видимого слоя взаимодействуют со скрытым слоем,

скрытый слой генерирует данные из вероятностного представления модели,

332 1 Гnава 11

которому обучена RВМ, после чего скрытый слой передает сгенерированную

информацию обратно видимому слою. Видимый слой получает сгенерирован­

ные данные от скрытого слоя, семплирует их и сравнивает с исходными дан­

ными, после чего, основываясь на ошибке реконструкции между выборкой из

сгенерированных данных и оригинальными данными, передает новую инфор­

мацию скрытому слою, и весь процесс повторяется снова.

Описанный двунаправленный обмен данными позволяет создать на основе

RВМ порождающую модель, в которой реконструированные представления

на выходе скрытого слоя воспроизводят оригинальные входные данные.

Создание класса RВМ

Пройдемся по различным компонентам класса RBM подобно тому, как мы

это делали в главе 10.
Прежде всего мы инициализируем ряд параметров данного класса, а имен­

но: входной размер RВМ (_ input _ size), выходной размер(_ output _ size),
скорость обучения (learning_rate), количество эпох обучения (epochs) и
размер пакетов, используемых в процессе обучения (batchsize). Мы также
создадим нулевые матрицы для весов и векторов смещений скрытого и види­

мого слоев.

Определение класса RBM
class RBM(object):

def init (self, input_size, output_size, learning_rate, \
epochs, batchsize) :

Определение гиперпараметров
self._input_size = input_size
self._output_size = output_size
self.learning_rate = learning_rate
self.epochs = epochs
self.batchsize = batchsize

Инициализация весов и смещений нулевыми матрицами
self.w = np.zeros([input_size, output_size], "float")
self.hb = np.zeros([output_size], "float")
self.vb = np.zeros([input_size], "float")

Далее определим функции для передачи данных в прямом и обратном на­

правлениях и семплирования данных в процессе прохождения этих этапов.

Обнаружение признаков с помощью mубоких сетей доверия 1 333

Вот как выглядит функция для передачи данных в прямом направлении

(h обозначает скрытый слой, а v- видимый).

def prob_h_given_v(self, visiЫe, w, hb):
return tf.nn.sigmoid(tf.matmul(visiЫe, w) + hb)

Аналогичная функция для передачи данных в обратном направлении вы­

глядит так.

def prob_v_given_h(self, hidden, w, vb):
return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

Функция семплирования имеет следующий вид.

def sample_prob(self, probs):
return tf.nn.relu(tf.sign(probs - \

tf.random_uniform(tf.shape(probs))))

Нам также нужна функция, реализующая процесс обучения. Поскольку мы

используем библиотеку TensorFlow, мы прежде всего должны создать замести­
тели для графа TensorFlow, посредством которых будем передавать данные се­
ансу TensorFlow1•

Нам потребуются заместители для матрицы весов, а также векторов сме­
щений скрытого и видимого слоев. Все три заместителя должны быть инициа­

лизированы нулями. Кроме того, нам нужно создать один набор для хранения
текущих значений и еще один - для хранения предыдущих значений.

def train(self, Х):

_w = tf.placeholder("float", [self._input_size, \
self._output_size])

hb tf .placeholder ("float", [self. output_size])
vb tf .placeholder ("float", [self ._input_size])

prv_w = np.zeros([self._input_size, self._output_size], \
"float")

prv_hb
prv_vb

np.zeros([self. output_size], "float")
np.zeros([self. input_size], "float")

cur_w = np.zeros([self._input_size, self._output_size], \
"float")

cur hb np.zeros([self._output_size], "float")
cur vb np.zeros([self._input size], "float")

1 Этот пример ориентирован на TensorFlow 1.х. - Примеч. ред.

334 1 Гnава 11

Еще нам нужен заместитель для видимого слоя. Скрытый слой формирует­

ся путем умножения матрицы видимого слоя на матрицу весов и прибавления

к полученному результату вектора смещений скрытого слоя.

vO = tf .placeholder ("float", [None, self ._input size])
hO = self.sample_prob(self.prob_h_given_v(vO, _w, _hb))

В процессе обратного распространения ошибки мы берем выход скры­

того слоя, умножаем его на транспонированную матрицу весов, которая

использовалась в процессе прямого распространения, и прибавляем к по­

лученному результату вектор смещений видимого слоя. Подчеркнем, что в

процессах прямого и обратного распространения используется одна и та же

матрица весов.

Затем мы вновь повторяем процесс прямого распространения.

vl = self.sample_prob(self.prob_v_given_h(hO, _w, _vb))
h1 = self.prob_h_given_v(vl, _w, _hb)

Веса обновляются с применением контрастивной дивергенции, которая

обсуждалась в главе 10. Кроме того, мы определяем MSE в качестве функции
потерь.

positive_grad
negative_grad

tf.matmul(tf.transpose(vO), hO)
tf.matmul(tf.transpose(vl), hl)

update_w = w + self.learning_rate * \
(positive_grad - negative_grad) /
tf.to_float(tf.shape(vO) [0])

update_vb _vb + self.learning_rate * \
tf.reduce_mean(vO - vl, 0)

update_hb _hb + self.learning_rate * \
tf.reduce_mean(hO - hl, 0)

err = tf.reduce_mean(tf.square(vO - vl))

Выполнив указанные действия, мы подготовились к тому, чтобы инициа­

лизировать сеанс TensorFlow с помощью только что созданных переменных.
Как только будет выполнен вызов s е s s . run, мы сможем начать процесс

обучения нейронной сети, передавая ей пакеты данных. На этапе обучения

мы делаем проходы в прямом и обратном направлениях, а ограниченная ма­

шина Больцмана обновляет веса на основании сравнения сгенерированных

данных с исходными входными данными. Мы будем выводить ошибку рекон­

струкции для каждой эпохи.

Обнаружение признаков с помощью rпубоких сетей доверия 1 335

error_list = [)
with tf.Session() as sess:

sess.run(tf.global_variaЬles initializer())

for epoch in range(self.epochs):
for start, end in zip(range(O, len(X), \

self.batchsize), \
range(self.batchsize, len(X), \

self.batchsize)):
batch = X[start:end]
cur w = sess.run(update_w, \

feed_dict={vO: batch, w: prv_w, \
hb: prv_hb, _vb: prv_vb})

cur_hb = sess.run(update_hb, \
feed_dict={vO: batch, _w: prv_w, \

_hb: prv_hb, _vb: prv_vb})
cur_vb = sess.run(update_vb, \

feed_dict={vO: batch, _w: prv_w, \
hb: prv_hb, _vb: prv_vb})

prv_w = cur_w
prv_hb = cur_hb
prv_vb = cur_vb

error = sess.run(err, feed_dict={vO: Х, w: cur_w, \
_vb: cur_vb, _hb: cur_hb})

print('Эпoxa: %d' % epoch, \
'ошибка реконструкции: %f' % error)

error_list.append(error)
self.w = prv_w
self.hb = prv_hb
self.vb = prv_vb
return error list

Генерирование изображений с использованием RВМ-модели

Определим функцию, генерирующую новые изображения на основе по­

рождающей модели, которой обучилась RBM.

def rbm_output(self, Х):

input_X = tf.constant(X)
_w = tf.constant(self.w)

hb tf.constant(self.hb)
vb tf.constant(self.vb)

out tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)

336 1 Глава 11

hiddenGen = self.sarnple_prob(self.prob_h_given_v(input_X, \
_w, _hb))

visiЬleGen = self.sarnple_prob(self.prob_v_given_h(hiddenGen, \
_w, vb))

with tf.Session() as sess:
sess.run(tf.global_variaЫes_initializer())

return sess.run(out), sess.run(visiЫeGen), \
sess.run(hiddenGen)

Этой функции передается оригинальная матрица изображений, Х. Мы соз­

даем заместители TensorFlow для нее и матрицы весов, а также для векторов
смещений скрытого и видимого слоев. Затем мы используем входную матрицу

для получения выходных данных на этапе прямого распространения (out),
для создания выборки скрытого слоя (hiddenGen) и выборки реконструиро­
ванных изображений, сгенерированных моделью (visiЫeGen).

Просмотр содержимого промежуточных детекторов

признаков

Наконец, определим функцию для вывода содержимого детекторов при­

знаков скрытого слоя.

def show_features(self, shape, suptitle, count=-1):
rnaxw = np.arnax(self.w.T)
rninw = np.arnin(self.w.T)
count self._output size if count == -1 or count > \

self._output_size else count
ncols count if count < 14 else 14
nrows count // ncols
nrows nrows if nrows > 2 else 3
fig = plt.figure(figsize=(ncols, nrows), dpi=lOO)
grid = Grid(fig, rect=lll, nrows_ncols=(nrows, ncols), \

axes _pad=O. О 1)

for i, ах in enurnerate(grid):
х = self.w.T[i] if i < self ._input_size else \

np.zeros(shape)
х (x.reshape(l, -1) - rninw) / rnaxw
ax.irnshow(x.reshape(*shape), crnap=rnpl.crn.Greys)
ax.set_axis_off ()

fig.text(0.5, 1, suptitle, font size=20, \

Обнаружение признаков с помощью гnубоких сетей доверия 1 33 7

horizontalalignment='center')
fig.tight_layout()
plt. show ()
return

Эта и остальные функции будут использованы для работы с набором дан­

ныхМNISТ.

Обучение трех RBM, образующих глубокую сеть
доверия

Далее мы будем последовательно обучать три RВМ на наборе данных

MNIST таким образом, чтобы скрытый слой одной RВМ становился видимым
слоем следующей RВМ. Эти три RВМ образуют глубокую сеть доверия, кото­

рую мы строим для классификации изображений.

Прежде всего сохраним тренировочные данные в массиве NumPy. Затем
мы создадим список rbrn_list, предназначенный для хранения обучаемых
RВМ, и определим гиперпараметры для всех трех RВМ, а именно: входной

размер (_input_size), выходной размер (_output_size), скорость обуче­
ния (learning_rate), количество эпох обучения (epochs) и размер паке­
тов, используемых в процессе обучения (batchsize).

Все эти операции выполняются с помощью созданного нами класса RBM.

Первая RВМ будет получать оригинальный 784-мерный входной набор и

создавать выходную матрицу размерностью 700. Следующая RBM будет ис­
пользовать 700-мерную выходную матрицу первой RВМ и создавать на выхо­

де 600-мерную матрицу. Наконец, последняя из RВМ будет получать 600-мер­

ную матрицу и создавать на выходе 500-мерную матрицу.

Все три RВМ будут тренироваться со скоростью обучения 1 . О в течение
100 эпох при размере пакета, равном 200.

Задание входных тренировочных данных
inputX = np.array(X_train)

Создание списка для хранения ограниченных машин Больцмана
rbm list = []

Определение параметров обучаемых RBM
rbm_list.append(RBM(784, 700, 1.0, 100, 200))
rbm_list.append(RBM(700, 600, 1.0, 100, 200))
rbm_list.append(RBM(бOO, 500, 1.0, 100, 200))

338 1 Гпава 11

Теперь можем приступить к обучению RВМ. Мы будем хранить обученные

RВМ в списке outputList.
Обратите внимание на то, что для получения выходной матрицы скрытого

слоя, которая будет использоваться в качестве входного/видимого слоя следу­

ющей RВМ, мы используем созданную ранее функцию rbm _ output.

outputList = []

error_list = []

Для каждой RBM из нашего списка
for i in range(O, len(rbm_list)):

print ('RBM' 1 i+l)
Обучение новой RBM
rbm = rbm_list[i]
err = rbm.train(inputX)
error_list.append(err)
Возврат ВЫХОДНОГО слоя
outputX, reconstructedX, hiddenX
outputList.append(outputX)
inputX = hiddenX

rbm.rbm_output(inputX)

Чем дольше тренируются RВМ, тем меньше ошибки реконструкции

(рис. 11.1-11.3). Отметим, что ошибка реконструкции отражает степень сход­

ства между реконструированными данными конкретной RВМ и данными, по­

ступающими на вход этой же RВМ.

RВМ 1

г

о о 7') 1 \
i о 070 1 \
i 006S 1
~ 0060 i
~ ooss 1
"' 1 i 00!>01

8 О 04S j

0041) .1

о 20 60 во 100

Рис. 11.1. Ошибки реконструкции первой RВМ

Обнаружение признаков с помощью глубоких сетей доверия 1 339

RВМ 2

0050

~ 0045
::1

~ 0040
....

~ 0035
:!(

" ~ 0030

8 0025

0.020
.__.,..~~--.-~~-.------.,..~~-...~~-...~

о 4() 60 80 100
Эnоха

Рис. 11.2. Ошибки реконструкции второй RВМ

RВМ 3

о 0375 .

оозsо

\ i 00325

~ 00300 1

i 00275 \ " к 00250
" i 0.0225

о 00200

00175

о 20 40 60 во 100
Эnох11

Рис. 11.3. Ошибки реконструкции третьей RВМ

Проверка детекторов признаков

Посмотрим, как выглядят обученные признаки каждой RBM, используя
созданную ранее функцию show_features.

rbm_shapes = [(28, 28), (25, 24), (25, 20)]
for i in range(O, len(rbm_list)):

rbm = rbm_list[i]
print(rbm.show_features(rbm_shapes[i], \

"Признаки из МNIST, которым обучилась RBM", 56))

340 1 Гnава 11

Соответствующие результаты для каждой RВМ представлены на рис. 11.4.

RВН О

None

""" 1

"

1

None

""" 2

None

Признаки из MNIST, которым обучилась RBM

Признаки из MNIST, которым обучилась RBM

Признаки из MNIST, которым обучилась RBM

Рис. 11.4. Признаки, которым обучилась каждая RВМ

Как видите, каждая RВМ обучается все более абстрактным признакам дан­

ных MNIST. Если в признаках первой RBM еще можно заметить какое-то сла­

бое сходство с цифрами, то признаки второго и третьего слоев отличаются все

большей абстракцией и меньшей различимостью. Такая ситуация довольно

типична в сфере обработки изображений: чем глубже расположен слой ней­
ронной сети, тем более абстрактные признаки оригинальных изображений он

распознает.

Обнаружение признаков с помощью гnубоких сетей доверия 1 341

Просмотр сгенерированных изображений

Прежде чем приступить к построению глубокой сети доверия, посмотрим,

как выглядят изображения, сгенерированные одной из только что обученных

RВМ.

Чтобы не усложнять пример, мы передадим оригинальную тренировочную

матрицу MNIST первой RВМ, которая выполнит проходы в прямом и обрат­
ном направлениях, а затем создаст нужные нам сгенерированные изображе­

ния. Мы сравним первые десять изображений из набора данных MNIST с но­
выми изображениями.

inputX np.array(X_train)
rbmOne = rbm_list[O]

print ('RBM 1')
outputX_rbmOne, reconstructedX_rbmOne, hiddenX_rbmOne = \

rbmOne.rbm_output(inputX)
reconstructedX_rbmOne = pd.DataFrame(data=reconstructedX_rbmOne, \

index=X_train.index)
for j in range(O, 10):

example = j
view_digit(reconstructedX, y_train, example)
view_digit(X_train, y_train, example)

Для сравнения на рис. 11.5 показано первое изображение, созданное RBM,
и первое изображение из оригинального набора.

Как видите, сгенерированное изображение отдаленно напоминает ориги­

нал: в обоих случаях можно различить цифру 5.
Сравним между собой еще несколько изображений (рис. 11.6-11.9).
Приведенные изображения соответствуют цифрам О, 4, 1 и 9, причем сгене­

рированные изображения вполне узнаваемы.

Полноценная DBN
Создадим теперь класс DBN, который будет получать три обученные RВМ и

добавлять четвертую RВМ, выполняющую проходы в прямом и обратном на­

правлениях с целью уточнения общей порождающей модели на основе DBN.
Прежде всего определим гиперпараметры класса. В их число входят раз­

мер оригинального входного набора (_ original _ input _ size), размер
входа третьей из обученных RВМ (_input_size), конечный размер выхо­
да DBN, который мы хотим получить (_output_size), скорость обучения

342 1 Глава 11

Изображение, сгенерироаанное RBH Изображение, сгенерированное RBH

10

lS

10

Пример О М"тк~ : 5

•ff •IJiJ •

-::.а.. 'J.,.
1(1 !~ /1) 15

Оригинальное иэобр~ж~ние

1О

]5

!О

)5

11) 1~)0 25

Пример : 1 Метка О

10 15 20 25

Оригинальное изображение

Пример 1 Метка О

15

JO 15 20 15

Рис. 11.5. Первое изображение,
сгенерированное первой RВМ

Рис. 11.6. Второе изображение,
сгенерированное первой RВМ

(learning_rate), количество эпох обучения (epochs), размер пакетов, ис­
пользуемых в процессе обучения (batch_size), и три RВМ, которые мы об­
учили. Как и прежде, нам потребуются нулевые матрицы для инициализации

весов, а также векторов смещений скрытого и видимого слоев.

class DBN(object):
def init (self, original_input size, input_size,

output_size, learning_rate, epochs, batchsize,
rbmOne, rbmTwo, rbmThree) :

Определение гиперпараметров
self._original_input_size = original_input_size
self._input_size = input_size
self._output_size = output_size
self.learning_rate = learning_rate
self.epochs = epochs
self.batchsize = batchsize

Обнаружение признаков с помощью глубоких сетей доверия 1 343

Изооражение, сгенерированное RBM Изосражение, сгенерированное RBM

Пример 2 Метка 4 Пример . З Метка 1

"
t~ :.,·

• "'

10 10

15 JS

10 15

Оригинальное изоб~ажение Оригинальное изосраж<!:ние

Пример 2 Ме1~а 4

10

15

}0

10 JS 20 15 10 15)О l5

Рис. 11.7. Третье изображение,
сгенерированное первой RВМ

Рис. 11.8. Четвертое изображение,
сгенерированное первой RВМ

self.rbmOne = rbmOne
self.rbmTwo = rbmTwo
self.rbmThree = rbmThree

self.w = np.zeros([input_size, output_size], "float")
self.hb np.zeros([output_size], "float")
self. vb np.zeros([input_size], "float")

Далее определим функции, предназначенные для выполнения проходов в

прямом и обратном направлениях, а также формирования соответствующих

выборок.

def prob_h_given v(self, visiЫe, w, hb):
return tf.nn.sigmoid(tf.matmul(visiЫe, w) + hb)

def prob_v_given_h(self, hidden, w, vb):
return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

344 1 Гnава 11

Изображение, сгенерированное RBM

Пр11мер 4 Метка : 9
о

10

lS

20

10 lS 20 1S

Оригинальное изображение

Пример : 4 Метка : 9

10

15

Ю JS 20 ;!5

Рис. 11.9. Пятое изображение,
сгенерированное первой RВМ

def sample_prob(self, probs):
return tf.nn.relu(tf.sign(probs - \

tf.random_uniform(tf.shape(probs))))

Чтобы начать процесс обучения, нам потребуются заместители для весов, а

также векторов смещений скрытого и видимого слоев. Кроме того, нам нужно

создать один набор для хранения текущих значений и еще один - для хране­

ния предыдущих значений.

def train(self, Х):

_w = tf .placeholder ("float", [self. input_size, \
self._output_size])

hb = tf.placeholder("float", [self._output_size])
vb tf .placeholder ("float", [self. input_size])

prv_w np.zeros([self._input_size, self._output_size], \
"float")

Обнаружение признаков с помощью глубоких сетей доверия 1 345

prv_hb
prv_vb

np.zeros([self._output size], "float")
np.zeros([self._input_size], "float")

cur_w = np.zeros([self._input_size, self._output_size], \
"float")

cur_hb = np.zeros ([self._output_size], "float")
cur_vb = np.zeros([self._input_size], "float")

Далее определим заместитель для видимого слоя. Мы берем начальные

входные данные - видимый слой - и пропускаем их через три RВМ, кото­

рые перед этим были обучены. Полученная в результате выходная матрица

forward передается четвертой RВМ, которую мы обучаем в рамках клас­
са DBN.

vO = tf.placeholder("float", [None, \
self._original_input_size])

forwardOne = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.rnatrnul(vO, \
self.rbrnOne.w) + self.rbrnOne.hb) - tf.randorn_uniforrn(\
tf.shape(tf.nn.sigrnoid(tf.rnatrnul(vO, self.rbrnOne.w) + \
self.rbrnOne.hb)))))

forwardTwo = tf.nn.relu(tf.sign(tf.nn.sigrnoid(tf.rnatrnul(\
forwardOne, self.rbrnTwo.w) + self.rbrnTwo.hb) - \
tf.randorn_uniforrn(tf.shape(tf.nn.sigmoid(tf.rnatrnul(\
forwardOne, self.rbrnTwo.w) + self.rbrnTwo.hb)))))

forward = tf.nn.relu(tf.sign(tf.nn.sigrnoid(tf.rnatrnul(\
forwardTwo, self.rbmThree.w) + self.rbrnThree.hb) - \
tf.randorn_uniforrn(tf.shape(tf.nn.sigmoid(tf.rnatrnul(\
forwardTwo, self.rbrnThree.w) + self.rbrnThree.hb)))))

hO self.sarnple_prob(self.prob_h_given_v(forward, _w, _hb))
vl = self.sarnple_prob(self.prob_v_given_h(hO, _w, _vb))
hl = self.prob_h_given_v(vl, _w, _hb)

Вновь, как и раньше, применим контрастивную дивергенцию.

346 1

positive_grad
negative_grad

tf.rnatrnul(tf.transpose(forward), hO)
tf.rnatrnul(tf.transpose(vl), hl)

update_w = _w + self.learning_rate * (positive_grad - \
negative_grad) / tf.to float(tf.shape(forward) [0])

update_vb _vb + self.learning_rate * \
tf.reduce_rnean(forward - vl, 0)

update_hb _hb + self.learning_rate * \
tf.reduce_rnean(hO - hl, 0)

Глава 11

Совершив полный проход в прямом направлении через нашу DBN (кото­
рая включает три ранее обученные RВМ, плюс самую последнюю, четвертую

RВМ), мы должны передать выход скрытого слоя четвертой RВМ в обратном

направлении по всей сети. Для этого нам потребуется выполнить процесс об­

ратного распространения ошибки, причем как через четвертую RВМ, так и

через первые три. В качестве функции потерь опять используется MSE. Это
делается следующим образом.

backwardOne = tf.nn.relu(tf.sign(tf.nn.sigrnoid(tf.matmul(vl, \
self.rbmThree.w.T) + self.rbmThree.vb) - \
tf.random_uniform(tf.shape(tf.nn.sigmoid(tf.matmul(vl, \
self.rbmThree.w.T) + self.rbmThree.vb)))))

backwardTwo = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.matmul(\
backwardOne, self.rbmTwo.w.T) + self.rbmTwo.vb) - \
tf.random_uniform(tf.shape(tf.nn.sigmoid(tf.matmul(\
backwardOne, self.rbmTwo.w.T) + self.rbmTwo.vb)))))

backward = tf.nn.relu(tf.sign(tf.nn.sigmoid(tf.matmul(\
backwardTwo, self.rbmOne.w.T) + self.rbmOne.vb) - \
tf.random_uniform(tf.shape(tf.nn.sigmoid(tf.matmul(\
backwardTwo, self.rbmOne.w.T) + self.rbmOne.vb)))))

err = tf.reduce_mean(tf.square(vO - backward))

Ниже приведен код класса DBN, который отвечает за фактическое обучение

модели. Он напоминает аналогичный код класса RBM.

error_list = []
with tf.Session() as sess:

sess.run(tf.global_variaЬles initializer())

for epoch in range(self.epochs):
for start, end in zip(range(O, len(X), \

self.batchsize), \
range(self.batchsize, len(X), \

self.batchsize)):
batch = X[start:end]
cur_w = sess.run(update_w, feed_dict={vO: \

batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb))
cur_hb = sess.run(update_hb, feed_dict={vO: \

batch, _w: prv w, _hb: prv_hb, _vb: prv_vb))
cur_vb = sess.run(update_vb, feed_dict={vO: \

batch, w: prv_w, hb: prv_hb, vb: prv_vb))
prv_w cur w

Обнаружение признаков с помощью глубоких сетей доверия 1 347

prv_hb = cur_hb
prv_vb = cur_vb

error = sess.run(err, feed_dict={vO: Х, w: cur_w, \
vb: cur_vb, _hb: cur_hb})

print ('Эпоха: %d' % epoch, \
'ошибка реконструкции: %f' % error)

error_list.append(error)
self.w = prv_w
self.hb = prv_hb
self.vb = prv_vb
return error list

Определим функции, предназначенные для создания сгенерированных

изображений на выходе DBN и отображения признаков. Эти операции ана­
логичны тем, которые выполнялись применительно к RВМ, только мы про­

пускаем данные через все четыре ограниченные машины Больцмана, исполь­

зуемые в классе DBN, а не через одну.

def dЬn_output(self, Х):

input_X = tf.constant(X)

348 1

forwardOne tf.nn.sigmoid(tf.matmul(input_X, \
self.rbmOne.w) + self.rbmOne.hb)

forwardTwo tf.nn.sigmoid(tf.matmul(forwardOne, \
self.rbmTwo.w) + self.rbmTwo.hb)

forward = tf.nn.sigmoid(tf.matmul(forwardTwo, \
self.rbmThree.w) + self.rbmThree.hb)

w = tf.constant(self.w)
hb tf.constant(self .hb)
vb tf.constant(self .vb)

out tf.nn.sigmoid(tf.matmul(forward, _w) + _hb)
hiddenGen = self.sample_prob(self.prob_h_given_v(forward, \

_w, _hb))
visiЫeGen = self.sample_prob(self.prob_v_given_h(hiddenGen, \

_w, _vb))

backwardTwo = tf.nn.sigmoid(tf.matmul(visiЬleGen, \
self.rbmThree.w.T) + self .rbmThree.vb)

backwardOne = tf.nn.sigmoid(tf.matmul(backwardTwo, \
self.rbmTwo.w.T) + self.rbmTwo.vb)

backward = tf.nn.sigmoid(tf.matmul(backwardOne, \
self.rbmOne.w.T) + self .rbmOne.vb)

Гnава 11

with tf.Session() as sess:
sess.run(tf.global_variaЬles_initializer())

return sess.run(out), sess.run(backward)

def show_features(self, shape, suptitle, count=-1):
maxw = np.amax(self.w.T)
minw = np.amin(self.w.T)
count = self._output_size if count == -1 or count > \

self._output_size else count
ncols count if count < 14 else 14
nrows = count//ncols
nrows = nrows if nrows > 2 else 3
fig = plt.figure(figsize=(ncols, nrows), dpi=lOO)
grid = Grid(fig, rect=lll, nrows_ncols=(nrows, ncols), \

axes_pad=0.01)

for i, ах in enumerate(grid):
х = self.w.T[i] if i < \

self._input_size else np.zeros(shape)
х = (x.reshape(l, -1) - minw) / maxw
ax.imshow(x.reshape(*shape), cmap=mpl.cm.Greys)
ax.set_axis_off ()

fig.text(0.5, 1, suptitle, fontsize=20, \
horizontalalignment='center')

fig.tight_layout()
plt. show ()
return

Как происходит обучение DBN
Каждая из трех RВМ, которые мы обучили, имеет собственную матрицу

весов, а также векторы смещения скрытого и видимого слоя. В процессе обу­

чения четвертой RBM мы не выполняем подстройку первых трех RВМ. Вместо
этого мы используем их как фиксированные компоненты DBN, предназначен­
ные лишь для проходов в прямом и обратном направлениях (и формирования

выборок из генерируемых ими данных).

В процессе тренировки четвертой RВМ мы будем подстраивать лишь ее веса

и смещения. Другими словами, четвертая RВМ получает выходные данные от

первых трех RВМ и выполняет проходы в прямом и обратном направлениях

Обнаружение признаков с помощью глубоких сетей доверия 1 349

для обучения порождающей модели, минимизирующей ошибку реконструк­

ции между сгенерированными и оригинальными изображениями.

В качестве альтернативы можно было бы обучать и подстраивать веса

всех четырех RBM в процессе прямого и обратного распространения ошибки
через всю сеть. Но такой способ обучения DBN оказывается слишком тру­
доемким с вычислительной точки зрения. Возможно, для современных ком­

пьютеров это не столь критично, однако по меркам 2006 года, когда глубокие
сети доверия только появились, подобные вычисления обходились чересчур

дорого.

Если бы мы все же захотели выполнить более тщательное предварительное

обучение, то могли бы разрешить подстройку весов отдельных RВМ (по одной

RВМ за раз) в процессе передачи пакетов в прямом и обратном направлениях

по сети. Мы не будем заходить так далеко, но я рекомендую вам провести са­

мостоятельные эксперименты.

Обучение DBN
Теперь можем приступить к обучению DBN. Мы установим для ориги­

нальных изображений и выхода третьей RBM размерности 784 и 500 соот­
ветственно, а в качестве требуемой размерности DBN - 500. Мы используем
скорость обучения 1 . О, будем тренировать сеть в течение 50 эпох и исполь­
зовать пакеты размером 200. Наконец, мы будем вызывать первые три обу­
ченные RВМ.

Создание экземпляра класса DBN
dbn = DBN (784, 500, 500, 1. О, 50, 200, rbm_list [0], rbm_list [1], \

rbm_list [2])

Обучим модель.

inputX = np.array(X_train)
error _ list = []

error_list = dЬn.train(inputX)

график ошибок реконструкции в процессе обучения DBN приведен на
рис. 11.10.

На рис. 11.11 показаны обученные признаки, взятые из последнего слоя
DBN, т.е. скрытого слоя четвертой RВМ.

Все это напоминает результаты, полученные для отдельных RВМ.

350 1 Гnава 11

DBN

. ,~, 1

~ 0060 i
!f 1
~ 0.015 i

t 1

j 0070 i
OO&S 1

о 10 20 зо 40 50
Эпоха

Рис.11.10. Ошибки реконструкции DBN

Рис. 11.11. Обученньtе признаки четвертой RВМ, входящей в состав DBN

Как обучение без учителя может содействовать

обучению с учителем

До сих пор все, что мы делали в процессе тренировки RВМ и DBN, включа­
ло обучение без учителя. Никакие метки изображений вообще не использова­

лись. Вместо этого мы строили порождающие модели, обучая их релевантным

латентным признакам, извлекаемым из оригинальных изображений MNIST в
составе тренировочного набора, который включает 50 ООО примеров. Эти мо­
дели генерируют изображения, которые достаточно близки к оригинальным

(минимизируют ошибку реконструкции).

Чтобы понять, в чем польза от порождающей модели, вернемся на шаг на­

зад. Вспомните, что большая часть существующих в мире данных не марки-

Обнаружение признаков с помощью глубоких сетей доверия 1 351

рована никакими метками. Следовательно, несмотря на всю эффективность

обучения с учителем, мы нуждаемся в обучении без учителя для работы с не­

размеченными данными. Одного обучения с учителем оказывается недоста­

точно.

Представьте, что было бы, если бы вместо 50 ООО маркированных изобра­
жений MNIST из тренировочного набора мы располагали лишь некоторой их
частью, включающей, скажем, 5000 изображений. Классификатор изображе­
ний на основе обучения с учителем, имеющий доступ лишь к 5000 помечен­
ных изображений, был бы далеко не так эффективен по сравнению с класси­

фикатором, которому доступно 50 ООО изображений. Чем больше помеченных
данных есть в нашем распоряжении, тем лучше будет работать система ма­

шинного обучения.

Каким же образом обучение без учителя может принести пользу в подоб­

ной ситуации? Одним из способов может стать генерирование новых разме­

ченных примеров, дополняющих исходный размеченный набор изображений.

В результате обучение с учителем можно будет проводить на гораздо более

широком наборе данных, что приведет к улучшению общего решения.

Генерирование изображений для создания улучшенного

классификатора

Чтобы продемонстрировать преимущества обучения без учителя, умень­

шим наш тренировочный набор MNIST до всего лишь 5000 размеченных при­
меров и сохраним эти примеры во фрейме inputXReduced.

Затем, отталкиваясь от этих 5000 размеченных изображений, мы сгене­
рируем новые изображения с помощью нашей порождающей модели на ос­

нове DBN. Причем мы повторим процедуру 20 раз. Другими словами, мы
сгенерируем 5000 новых изображений 20 раз для создания набора данных,
содержащего 100 ООО изображений, каждое из которых будет помеченным.
С технической точки зрения мы сохраняем не сами реконструированные

изображения, а лишь выходы последнего скрытого слоя. Впрочем, рекон­

струированные изображения мы тоже сохраним, чтобы позже их можно

было оценить.

Сохраним 100 ООО результатов в массиве NumPy generated!mages.

Генерирование и сохранение изображений
inputXReduced = X_train.loc[:4999]
for i in range(O, 20):

print("Пpoгoн", i)

352 1 Гпава 11

finalOutput_DBN, reconstructedOutput_DBN \
dЬn.dЬn_output(inputXReduced)

if i==O:
generated!mages

else:
generated!mages

finalOutput_DBN

np.append(generated!mages, \
finalOutput_DBN, axis=O)

Затем запустим цикл из 20 итераций, обрабатывающий первые 5000 меток
из тренировочного набора (у_ train) для получения массива меток labels.

Получение вектора меток для сгенерированных изображений
for i in range(O, 20):

if i==O:
labels y_train.loc[:4999]

else:
labels = np.append(labels, y_train.loc[:4999])

Наконец, сгенерируем результаты по валидационному набору, чтобы впо­

следствии можно было оценить классификатор изображений, который мы

вскоре создадим.

Генерирование изображений на основе валидационного набора
inputValidation = np.array(X_validation)
finalOutput_DBN_validation, reconstructedOutput_DBN_validation \

dbn.dЬn_output(inputValidation)

Прежде чем использовать только что сгенерированные данные, посмотрим,

как выглядят некоторые из реконструированных изображений.

Просмотр сгенерированных изображений
for i in range(O, 10):

example = i
reconstructedX = pd.DataFrame(data=reconstructedOutput_DBN, \

index=X_train[O:SOOO] .index)
view_digit(reconstructedX, y_train, example)
view_digit(X_train, y_train, example)

Как можно увидеть на рис. 11.12, сгенерированное изображение очень на­

поминает оригинал - в обоих случаях можно узнать цифру 5. В отличие от
изображений, генерируемых ограниченной машиной Больцмана, которые мы

просматривали ранее, в данном случае сходство с оригинальными изображе­

ниями MNIST более сильное. Переданы даже полутона.
Для сравнения просмотрим еще несколько изображений (рис. 11.13-11.16).

Обнаружение признаков с помощью rnубоких сетей доверия 1 353

Пример О Мет•а . 5

10 lS 20 2S

Пример О Метк а : 5

10 1s ~о .IS

Рис. 11.12. Первое изображение,
сгенерированное DBN

Пример 1 Метка О

10

15

20

25

10 15 20 15

Пример . 1 Метка · О

10 15 20 :is

Рис. 11.13. Второе изображение,
сгенерированное DBN

Стоит отметить, что DBN (как и RBM) относится к категории порождаю­
щих моделей, а потому изображения формируются стохастически. Поскольку

процесс не детерминирован, изображения одного и того же примера могут

меняться от прогона к прогону.

Чтобы сымитировать это, возьмем первое изображение MNIST и использу­
ем DBN для генерирования новых изображений 10 раз.

Генерировать первый пример 10 раз
inputXReduced = X_train.loc[:O]
for i in range(O, 10):

example = О

print("Пpoгoн", i)
finalOutput_DBN_fives, reconstructedOutput DBN fives \

dЬn.dЬn_output(inputXReduced)

reconstructedX fives = \
pd.DataFrame(data=reconstructedOutput_DBN_fives, index=[O])

рrint("Сгенерировано")

view_digit(reconstructedX_fives, y_train . loc[:O], example)

354 1 Гnава 11

Пр11м.:р 2 М•н~" · 4
о

10

15

Рис. 11.14. Третье изображение,
сгенерированное DBN

Пример З Мет~а . 1

ю

15

20

lO 1~ 20 2S

Пример 3 Мена 1

10

lS

20

101'>20];.

Рис. 11.15. Четвертое изобра­
жение, сгенерированное DBN

Как можно увидеть на рис. 11.17-11.21, все сгенерированные изображения
напоминают цифру 5 и в то же время незначительно отличаются друг от друга,
несмотря на то что все они были получены на основе одного и того же исход­

ного изображения MNIST.

Создание классификатора изображений

с использованием алгоритма LightGBM
Построим классификатор, используя введенный ранее алгоритм градиент­

ного бустинга LightGBM.

Только обучение с учителем

Наш первый классификатор изображений будет опираться лишь на первые

5000 помеченных изображений MNIST. Это подмножество оригинального тре­
нировочного набора MNIST, содержащего 50 ООО помеченных изображений.

Обнаружение признаков с помощью rnубоких сетей доверия 1 355

Пример 4 Метка 9

10 IS 2'' lS

Пр'1мер ./ Метка 9

10

15

10 15 }() 2<,

Рис. 11.16. Пятое изображение,
сгенерированное DBN

Мы поступаем так, чтобы сымитировать ситуацию, близкую к реальной, ведь

на практике обычно доступно лишь сравнительно небольшое количество раз­

меченных примеров. Поскольку градиентный бустинг и алгоритм LightGBM
нами уже обсуждались, мы опустим подробности.

Зададим параметры алгоритма.

predictionColumns = ['О', '1', '2', '3', '4', '5', '6', '7', '8', '9']

params lightGB = {

356 1

'task' : 'train',
'application': 'Ьinary',

'num_class': 10,
'boosting': 'gbdt',
'objective': 'multiclass',
'metric': 'multi_logloss',
'metric_freq': 50,
'is training_metric': False,
'max_depth': 4,

Глава 11

Прогон О

Сгенериро ван.::.1

. . ; . . ,

' ~"-- -,

J" "' -• "

iO I'\ 20 2'>

Прогон

Сгенерировано

Прt1мер О Ме t ка 5

10

]5

Рис. 11.17. Первое и второе
сгенерированньtе изображения

цифрыS

'num leaves': 31,
'learning_rate': 0.1,
'feature fraction': 1.0,
'bagging_fraction': 1.0,
'bagging_freq': О,

'bagging_seed': 2018,
'verbose' : О,

'num threads': 16

Прогон 2
сгенерировано

Пример : О Метка . 5

]0

15

10 15 20 zs

Прогон 3
Сгенерировано

Пример О Метка 5

10 15 20 25

Рис. 11.18. Третье и четвертое
сгенерированные изображения

цифры5

Далее используем сокращенный тренировочный набор, содержащий 5000
помеченных изображений MNIST, и валидационный набор, содержащий
10 ООО таких изображений.

Обнаружение признаков с помощью глубоких сетей доверия 1 357

ПроГО!i 4
сгенерироБано

10 15 20 25

Прогон 5
Сгенерировано

Рис. 11.19. Пятое и шестое
сгенерированные изображения

цифры5

trainingScore = (]
validationScore = []

Прог:он 6
сгенерировано

Пример О Метка S

10 15 }{J)~

Прог:>н 7
с:генерированс

Пример О М1>тка 5
о

10

15

10 lS !О iS

Рис. 11.20. Седьмое и восьмое
сгенерированные изображения

цифры5

predictionsLightGBM = pd.DataFrame(data=[], \
index=y_validation.index, columns=predictionColumns)

lgb_train = lgb.Dataset(X train.loc[:4999], у train.loc[:4999])
lgb_eval = lgb.Dataset(X_validation, y_validation, \

reference=lgb_train)
gbm = lgb.train(params_lightGB, lgb_train, num_boost round=2000, \

valid_sets=lgb_eval, early_stopping_rounds=200)

loglossTraining = log_loss(y_train.loc[:4999], \
gbm.predict(X_train.loc[:4999], num_iteration=gbm.best

iteration))

358 1 Гnава 11

Прогон 8
сгенерировано

Пример О Метка S

1U 15 .1О .IS

Прогон 9
Сгенерировано

J(I J5]Q 25

Рис. 11.21. Девятое и десятое
сгенерированньtе изображения

цифры 5

trainingScore.append(loglossTraining)

predictionsLightGBM.loc[X_validation.index, predictionColurnns] = \
gbrn.predict(X_validation, nurn_iteration=gbrn.best_iteration)

loglossValidation = log_loss(y_validation,
predictionsLightGBM.loc[X_validation.index, predictionColurnns])

validationScore.append(loglossValidation)

рrint('Логарифмические потери обучения:', loglossTraining)
рrint('Логарифмические потери валидации:', loglossValidation)

loglossLightGBM = log_loss(y_validation, predictionsLightGBM)
рrint('Логарифмические потери градиентного бустинга LightGBM: ',

loglossLightGBM)

Обнаружение признаков с помощью rnубоких сетей доверия 1 359

Ниже показаны логарифмические потери в процессе тренировки и валида­

ции для решения, в котором используется лишь обучение с учителем.

Логарифмические потери обучения: 0.0018646953029132292
Логарифмические потери валидации: 0.19124276982588717

Следующий фрагмент кода выводит общую точность данного классифика­

тора.

predictionsLightGBM_firm = np.argmax(np.array(predictionsLightGBM), \
axis=l)

accuracyValidation_lightGBM = accuracy_score(np.array(y_validation), \
predictionsLightGBM_firm)

рrint("Точность обучения с учителем:", accuracyValidation_lightGBM)

Точность обучения с учителем: 0.9439

Совместное обучение с учителем и без учителя

На этот раз вместо обучения на наборе, состоящем из 5000 помеченных
изображений MNIST, мы используем 100 ООО изображений, сгенерированных
глубокой сетью доверия.

t Подготовка объектов DataFrame для градиентного бустинга LightGBM
generatedimagesDF = pd.DataFrame(data=generatedimages, \

index=range(O, 100000))
labelsDF = pd.DataFrame(data=labels, index=range(O, 100000))

X_train_lgb = pd.DataFrame(data=generatedimagesDF, \
index=generatedimagesDF.index)

X_validation_lgb pd.DataFrame(data=finalOutput_DBN_validation, \
index=X_validation.index)

f Тренировка LightGBM
trainingScore = []
validationScore = []
predictionsDBN = pd.DataFrame(data=[], index=y_validation.index, \

columns=predictionColumns)

lgb_train = lgb.Dataset(X_train_lgb, labels)
lgb_eval = lgb.Dataset(X_validation_lgb, y_validation, \

reference=lgb_train)
gbm = lgb.train(params_lightGB, lgb_train, num_boost_round=2000, \

valid_sets=lgb_eval, early_stopping_rounds=200)

360 1 Гпава 11

loglossTraining = log_loss(labelsDF, gbm.predict(X_train_lgb, \
num_iteration=gbm.best_iteration))

trainingScore.append(loglossTraining)

predictionsDBN.loc[X_validation.index, predictionColumns] = \
gbm.predict(X_validation_lgb, num_iteration=gbm.best_iteration)

loglossValidation = log_loss(y_validation, \
predictionsDBN.loc[X_validation.index, predictionColumns])

validationScore.append(loglossValidation)

рrint('Логарифмические потери обучения:', loglossTraining)
рrint('Логарифмические потери валидации:', loglossValidation)

loglossDBN = log_loss(y_validation, predictionsDBN)
рrint('Логарифмические потери градиентного бустинга LightGBM: ', \

loglossDBN)

Ниже показаны логарифмические потери в процессе тренировки и вали­

дации для решения, улучшенного за счет подключения обучения без учителя.

Логарифмические потери обучения: 0.004145635328203315
Логарифмические потери валидации: 0.16377638170016542

А вот какой получилась общая точность данного классификатора:

Точность решения на основе DBN: 0.9525

Как видите, точность повысилась почти на один процент, что является до­

вольно существенным улучшением.

Резюме

В главе 1 О мы познакомились с простейшим типом порождающих моделей:

ограниченными машинами Больцмана (RВМ). В этой главе мы реализовали

более сложные порождающие модели, известные как глубокие сети доверия

(DBN), которые состоят из нескольких RВМ, образующих каскад.
Мы продемонстрировали, как работают глубокие сети доверия: используя

исключительно обучение без учителя, DBN обучается внутренней структуре

данных и использует полученные знания, чтобы генерировать новые синте­

тические данные. В зависимости от того, насколько хорошо синтетические

данные согласуются с оригинальными, DBN постепенно улучшает свои по­

рождающие способности, добиваясь как можно большего правдоподобия

Обнаружение признаков с помощью rnубоких сетей доверия 1 361

генерируемых данных. Также было показано, каким образом синтетические

данные, сгенерированные глубокой сетью доверия, могут дополнять сущес­

твующие наборы помеченных данных, улучшая характеристики моделей обу­

чения с учителем за счет увеличения общего размера тренировочного набора.

Разработанное нами приложение с частичным привлечением учителя, в ко­

тором мы использовали DBN (обучение без учителя) и градиентный бустинг
(обучение с учителем), продемонстрировало лучшую производительность по

сравнению с решением, основанным исключительно на обучении с учителем,

в задаче классификации изображений MNIST.
В главе 12 вы узнаете об одной из новых технологий в области обучения без

учителя: генеративно-состязательных сетях.

362 1 Гпава 11

ГЛАВА 12

Генеративно-состязательные сети

Мы уже изучили два типа порождающих моделей: RВМ (ограниченная ма­

шина Больцмана) и DBN (глубокая сеть доверия). В данной главе мы иссле­
дуем генеративно-состязательные сети - одно из наиболее перспективных

направлений в области обучения без учителя.

Базовая концепция

Концепция генеративно-состязательной сети (generative adversarial net­
work - GAN) была предложена Яном Гудфеллоу с коллегами по Монреаль­
скому университету в 2014 году. В случае GAN мы имеем две нейронные сети.
Одна из них, генератор, выдает данные на основании модели, которая была

создана с использованием выборок реальных данных, поступающих на вход.

Другая сеть, дискриминатор, пытается отличить поддельные данные, создан­

ные с помощью генератора, от оригинальных данных.

Генератор можно уподобить фальшивомонетчику, а дискриминатор - кри­

миналисту, пытающемуся выявить подделку. Между этими двумя сетями воз­

никает так называемая антагонистическая игра, или игра с нулевой суммой

(zero-sum game). Генератор пытается обмануть дискриминатор, заставляя его
считать, будто синтетические данные взяты из исходного набора, а дискрими­

натор пытается распознать эти данные как поддельные.

Генеративно-состязательные сети относятся к категории алгоритмов обуче­

ния без учителя, поскольку генератор способен обучаться базовой структуре

истинного распределения даже в отсутствие меток, используя ряд параметров,

количество которых значительно меньше количества тренировочных данных.

Это ключевой аспект обучения без учителя, о чем мы не раз говорили в преды­

дущих главах. Наличие такого ограничения вынуждает генератор захватывать

лишь наиболее существенные аспекты истинного распределения данных. Это

напоминает обучение признакам при глубоком обучении. Каждый скрытый

слой нейронной сети генератора захватывает представление входных данных,

начиная с простейшего, и каждый последующий слой обнаруживает все более

сложные признаки, достраивая их на основе более простых предыдущих слоев.

Благодаря наличию множества слоев генератор обучается базовой струк­

туре данных и пытается создавать синтетические данные, почти идентичные

истинным. Если генератору удастся уловить суть, то синтетические данные

будут казаться настоящими.

Возможности генеративно-состязательных сетей

В главе 11 мы исследовали возможность использования синтетических
данных, сгенерированных моделью обучения без учителя (например, глубо­

кой сетью доверия), для улучшения характеристик модели обучения с учите­

лем. Подобно DBN, генеративно-состязательные сети хорошо справляются с
генерированием синтетических данных.

Если требуется сгенерировать большое количество обучающих примеров

для пополнения существующих тренировочных данных (например, чтобы

повысить точность распознавания изображений), то можно использовать ге­

нератор для создания синтетических данных, добавить эти новые данные в

существующий набор, а затем запустить модель обучения с учителем уже на

расширенном наборе.

Генеративно-состязательные сети также отлично справляются с обнару­

жением аномалий. Если мы заинтересованы именно в этом (например, для

выявления попыток мошенничества, взлома или других подозрительных дей­

ствий). то можем использовать дискриминатор для оценки каждого образца

поступающих данных. Примеры, которые дискриминатор распознает как "ве­

роятно синтетические': самые аномальные и вероятнее всего представляют

собой образцы мошеннического поведения.

Глубокие сверточные генеративно-состязательные

сети {DCGAN)
В этой главе мы вновь обратимся к набору MNIST, с которым работали в

предыдущих главах, и применим GAN для генерирования синтетических дан­
ных, чтобы дополнить существующий набор MNIST. Затем мы применим мо­
дель, основанную на обучении с учителем, для классификации изображений.

Это еще один вариант обучения с частичным привлечением учителя.

Полагаю, вы уже хорошо представляете, насколько эффективно об­

учение с частичным привлечением учителя. Поскольку большин­

ство доступных нам данных не размечено, обучение с учителем

364 1 Гnава 12

оказывает серьезную помощь в разметке данных, благодаря чему

применяется во всех успешных коммерческих приложениях, осно­

ванных на обучении с учителем.

В то же время обучение без учителя ценно и само по себе, так как

позволяет обучаться на неразмеченных данных. Это одна из тех об­

ластей машинного обучения, которые имеют наибольший потен­

циал для перехода от слабого к сильному ИИ.

Реализуемая нами разновидность GAN называется глубокая сверточная
генеративно-состязательная сеть (deep convolutional generative adversarial
network - DCGAN). Такого рода сети были впервые описаны Алеком Рэд­
фордом, Люком Метцом и Сумитом Чинталой в конце 2015 года1 •

DCGAN - это разновидность сверточных нейронных сетей (convolutional
neural network - CNN), которые широко применяются - причем весьма

успешно - в системах компьютерного зрения и классификации изображений.

Прежде чем переходить к DCGAN, необходимо сначала исследовать сверточ­
ные сети и понять, как их использовать для классификации изображений в

рамках модели обучения с учителем.

Сверточные нейронные сети

Обработка изображений и видео - намного более трудоемкая задача по

сравнению с числовыми и текстовыми данными. Например, изображение

стандарта 4К Ultra HD имеет размерность 4096 х 2160 х 3 (26 542 080 пиксе­
лей). Для тренировки нейронной сети на изображениях с таким разрешением

потребовалось бы использовать десятки миллионов нейронов, что сильно за­

медлило бы скорость обучения.

Вместо того чтобы обучать нейронную сеть непосредственно на исходных

изображениях, мы воспользуемся тем фактом, что тесно расположенные пик­

сели демонстрируют сильную корреляцию, чего нельзя сказать о далеко отсто­

ящих пикселях.

Свертка (термин, от которого сверточные сети и получили свое назва­

ние) - это процесс фильтрации изображения с целью уменьшения его разме­

ра без потери связей между близлежащими пикселями2•

1 Оригинальная статья с описанием DCGAN доступна по адресу https: //arxiv. org/
abs/1511. 06434.

2 Дополнительная информация о сверточных слоях содержится в статье Ап Introduction to
Different Types of Convo/ut/ons in Deep Learning (http://bit.ly/2GeMQfu).

Генеративно-состязательные сети 1 365

Получив оригинальное изображение, мы применяем к нему несколько

фильтров определенного размера (размер ядра), перемещая их с небольшим

шагом фильтра (stride) для получения нового, редуцированного пиксельно­
го представления. После выполнения свертки мы дополнительно уменьшаем

размер представления, поочередно выбирая пиксели максимальной интен­

сивности в небольших областях редуцированного пиксельного слоя. Этот

процесс получил название пулинг по максимальному значению, или пулинг с

функцией максимума (max pooling).
Свертка и пулинг выполняются несколько раз для уменьшения сложности

изображений. После этого мы уплощаем изображения и применяем обычный

полносвязный слой для классификации изображений.

Итак, давайте создадим CNN и применим ее для классификации изображе­
ний, входящих в набор MNIST. Прежде всего загрузим необходимые библио­
теки.

'''Основные библиотеки'''

import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip, datetime

'''Визуализация данных'''

import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl
from mpl_toolkits.axes_gridl import Grid

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр
from sklearn.model_selection import train_test split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss, accuracy_score
from sklearn.metrics import precision_recall curve, \

average_precision_score
from sklearn.metrics import roc_curve, auc, roc auc score, \

mean_squared_error
from keras.utils import to_categorical

366 1 Глава 12

' ' 'Алгоритмы' ' '
import lightgbm as lgb

'' 'TensorFlow и Keras'''
import tensorf low as tf
import keras
from keras import backend as К
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout, Flatten, \

Conv2D, MaxPool2D
from keras.layers import LeakyReLU, Reshape, UpSampling2D, \

Conv2DTranspose
from keras.layers import BatchNormalization, Input, LamЬda

from keras.layers import EmЬedding, Flatten, dot
from keras import regularizers
from keras.losses import mse, Ыnary_crossentropy

from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.optimizers import Adam, RМSprop

Далее загрузим наборы MNIST и сохраним данные изображений в виде
4D-тензоров, поскольку библиотека Keras требует использования именно это­
го формата. Мы также создадим из входных признаков векторы прямого ко­

дирования с помощью функции to _ categorical библиотеки Keras.
Кроме того, мы создадим на основе данных объекты DataFrame библио­

теки Pandas, которые нам понадобятся далее. Для просмотра изображений мы
повторно воспользуемся готовой функцией view _ digi t.

Загрузка наборов данных
current_path = os.getcwd()
file = os.path.sep.join([' ', 'datasets', 'mnist_data', \

'mnist.pkl.gz'])
f = gzip.open(current_path+file, 'rb')
train_set, validation_set, test_set = \

pickle.load(f, encoding='latinl')
f. close ()

X_train, y_train = train_set[O], train_set[l]
X_validation, y_validation = validation_set[O], validation_set[l]
X_test, y_test = test_set[O], test_set[l]

Х train keras = X_train.reshape(SOOOO, 28, 28, 1)

Генеративно-состязательные сети 1 367

X_validation_keras = X_validation.reshape(lOOOO, 28, 28, 1)
X_test_keras = X_test.reshape(lOOOO, 28, 28, 1)

y_train_keras = to_categorical(y_train)
y_validation_keras = to_categorical(y_validation)
y_test_keras = to_categorical(y_test)

Создание объектов DataFrame из наборов данных
train_index = range(O, len(X_train))
validation_index = range(len(X_train), \

len(X_train) + len(X_validation))
test index range(len(X_train) + len(X_validation), len(X_train) + \

len(X_validation) + len(X_test))

Х train pd.DataFrame(data=X_train, index=train_index)
y_train pd.Series(data=y_train, index=train_index)

Х validation = pd.DataFrame(data=X_validation, \
index=validation_index)

y_validation = pd.Series(data=y_validation, index=validation_index)

Х test
y_test

pd.DataFrame(data=X_test, index=test_index)
pd.Series(data=y_test, index=test_index)

def view_digit(X, у, example):
label = y.loc[example]
image = X.loc[example, :] .values.reshape([28, 28])
plt.title('Пpимep: %d Метка: %d' % (example, label))
plt.imshow(image, cmap=plt.get_cmap('gray'))
plt. show ()

Теперь перейдем к созданию самой CNN.
Чтобы начать построение модели, мы вызовем функцию Sequential из

библиотеки Keras. Затем мы добавим два сверточных слоя с функцией акти­
вацией ReLU, каждый из которых содержит 32 фильтра с размером ядра 5 х 5
и шагом 1, заданным по умолчанию. После этого выполним пулинг по макси­
мальному значению с размером окна 2 х 2 и шагом 1. Кроме того, применим
регуляризацию в форме дропаута, чтобы снизить вероятность переобучения

нейронной сети. В частности, мы исключим 25% входных элементов.
На следующем этапе мы добавим еще два сверточных слоя, на этот раз с 64

фильтрами и размером ядра 3 х 3, после чего выполним пулинг по максималь-

368 1 Гпава 12

ному значению с размером окна 2 х 2 и шагом 2. Этап завершается добавлени­
ем слоя пулинга, в котором исключаются 25% входных элементов.

Наконец, уплощим изображения, добавим обычную нейронную сеть с 256
скрытыми элементами, применим 50%-ный дропаут и выполним классифика­

цию изображений по 1 О классам, используя функцию активации Softmax.

model = Sequential()

model.add(Conv2D(filters = 32, kernel size = (5, 5), \
padding = 'Same', activation ='relu', \
input_shape = (28, 28, 1)))

model.add(Conv2D(filters = 32, kernel_size = (5, 5), \
padding = 'Same', activation ='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(filters
padding

model.add(Conv2D(filters

64, kernel_size = (3, 3), \
'Same', activation ='relu'))
64, kernel size = (3, 3), \

padding 'Same', activation ='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(lO, activation = "softmax"))

Для тренировки этой сверточной сети мы будем использовать оптимизатор

Adam и минимизировать кросс-энтропию. Кроме того, мы сохраним точность
классификации изображений в качестве оценочной метрики.

Теперь обучим модель на протяжении 100 эпох и оценим результаты, полу­

чаемые на валидационном наборе.

Обучение CNN
model.compile(optimizer='adam', \

loss='categorical crossentropy', \
metrics=['accuracy'])

model.fit(X_train_keras, y_train_keras, \
validation_data=(X_validation_keras, y_validation_keras), \
epochs=l О О)

Генеративно-состязательные сети 1 369

!рафик изменения точности на протяжении 100 эпох приведен на рис. 12.1.

Окончательная точность CNN: 0.9952999949455261

099

098

~ i 097

....
096

095

о 60 во 100

Рис. 12.1. Результаты обучения сверточной сети

Как видите, окончательная точность для обученной сверточной сети соста­

вила 99,53%, что превышает точность любого из рассмотренных ранее реше­
ний, предназначенных для классификации изображений MNIST.

Возвращаемся к DCGAN
Итак, вернемся к DCGAN и построим порождающую модель для создания

синтетических изображений, напоминающих оригинальные изображения

MNIST.
Чтобы начать получать реалистичные синтетические изображения, мы

должны обучить генератор, создающий новые изображения на основе ориги­

нальных: изображений из набора MNIST, и дискриминатор, который пытается
отличить синтетические изображения от оригинальных.

Задачу можно рассмотреть под другим углом. Оригинальный набор данных

MNIST представляет исходное распределение данных. Генератор обучается на
этом распределении и начинает создавать новые изображения на основе при­

обретенных знаний, тогда как дискриминатор пытается определить, можно ли

отличить сгенерированные изображения от оригинального распределения.

Что касается генератора, то мы возьмем за образец архитектуру, описан­

ную в вышеупомянутой статье Рэдфорда, Метца и Чинталы (рис. 12.2).
Генератор получает начальный зашумленный вектор (z) размером 100 х 1,

после чего переформатирует его в тензор размером 1024 х 4 х 4. Эта операция

370 1 Гnава 12

проецирования и изменения формы вектора противоположна свертке и назы­

вается обратная свертка (деконволюция).

Проецирование и

изменение формы

1024

128
256 ,....--L-,

Свертка 2
Свертка З

Рис. 12.2. Генератор DCGAN

3 ,.,

Свертка4

G(z)

Выполнив начальную деконволюцию, генератор применяет четыре допол­

нительных сверточных слоя, транслируя полученный тензор в конечный тен­

зор размерностью 64 х 3 х 3.
Вот как выглядят различные стадии этого процесса:

100 х 1-? 1024 х 4 х 4-? 512 х 8 х 8-? 256 х 16 х 16-? 128 х 32 х 32-? 64 х 64 х 3

Мы применим похожую архитектуру, спроектировав генеративно-состяза-

тельную сеть для классификации изображений MNIST.

Генератор DCGAN
Отправной точкой для нашей модели DCGAN послужит работа Роуэла

Атьенса3 • Мы создадим класс DCGAN, который будем использовать при по­

строении генератора, дискриминатора, а также дискриминативой и состяза­

тельной моделей.

Начнем с генератора. Прежде всего зададим гиперпараметры, в том чис­

ле процент дропаута (по умолчанию 30%), глубину тензора (по умолчанию
256) и количество других измерений (по умолчанию 7 х 7). Мы также приме­
ним пакетную нормализацию со значением импульса, по умолчанию равным

О. 8. Размерность входа равна 100, а размерность окончательного выхода -
28 х 28 х 1.

Вспомните, что дропаут и пакетная нормализация - это реrуляризаторы,

позволяющие избежать переобучения нейронной сети.

3 Оригинальный проект представлен на сайте GitHub (http: / /Ьi t. ly/2DLp4Gl).

Генеративно-состязательные сети 1 371

Для создания генератора мы вызовем функцию Sequential () библио­

теки Keras, после чего добавим слой плотной полносвязной нейронной сети,
вызвав функцию Dense ().Этот слой будет иметь входную размерность 100 и
выходную размерность 7 х 7 х 256. Мы применим пакетную нормализацию, а
также функцию активации ReLU и дропаут.

def generator(self, depth=256, dim=7, dropout=0.3, momentum=0.8, \
window=S, input_dim=lOO, output_depth=l):

if self.G:
return self.G

self.G = Sequential()
self.G.add(Dense(dim*dim*depth, input_dim=input_dim))
self.G.add(BatchNormalization(momentum=momentum))
self.G.add(Activation('relu'))
self.G.add(Reshape((dim, dim, depth)))
self.G.add(Dropout(dropout))

Затем мы дважды выполним повышающую дискретизацию (upsarnpling) и
трижды - обратную свертку. При этом будем каждый раз вдвое уменьшать

глубину выходного пространства (256 7 128 7 64 7 32), одновременно увели­
чивая число других измерений. Мы будем поддерживать окно свертки раз­

мером 5 х 5 и шаг фильтра, по умолчанию равный 1. В процессе выполнения
каждой свертки мы будем применять пакетную нормализацию и функцию ак­

тивации ReLU.
Этот процесс можно описать следующим образом:

100 7 7 х 7 х 256 7 14 х 14 х 128 7 28 х 28 х 64 7 28 х 28 х 32 7 28 х 28 х 1

self.G.add(UpSampling2D())
self.G.add(Conv2DTranspose(int(depth/2), window, padding='same'))
self.G.add(BatchNormalization(momentum=momentum))
self.G.add(Activation('relu'))

self.G.add(UpSampling2D())
self.G.add(Conv2DTranspose(int(depth/4), window, padding='same'))
self.G.add(BatchNormalization(momentum=momentum))
self.G.add(Activation('relu'))

self.G.add(Conv2DTranspose(int(depth/8), window, padding='same'))
self.G.add(BatchNormalization(momentum=momentum))
self.G.add(Activation('relu'))

372 1 Гпава 12

Наконец, на выходе генератора мы получим изображение с теми же разме-

рами 28 х 28, что и оригинальное изображение MNIST.

self.G.add(Conv2DTranspose(output_depth, window, padding='same'))
self.G.add(Activation('sigmoid'))
self.G.summary()
return self.G

Дискриминатор DCGAN
Приступая к созданию дискриминатора, установим значения по умолча­

нию: дропаут - 30%, глубина - 64, гиперпараметр alpha для функции акти­

вации LeakyReLU - О. 34•

Прежде всего загрузим изображение размерностью 28 х 28 х 1 и выполним

свертку, используя 64 канала, фильтр 5 х 5 и шаг 2, а также функцию актива­

ции LeakyReLU и дропаут. Процесс повторяется трижды, и каждый раз глу­

бина выходного пространства удваивается с одновременным уменьшением

количества других измерений. На каждом шаге используется функция акти­

вации LeakyReLU и дропаут.
Наконец, уплощим изображения и применим сиrмоиду для вывода вероят­

ности. Эта вероятность отражает степень уверенности дискриминатора в том,

что входное изображение является поддельным (значению О . О соответствует

подделка, а значению 1. О - истинное изображение).

Этот процесс можно описать следующим образом:

28 х 28 х 17 14 х 14 х 64 7 7 х 7 х 128 7 4 х 4 х 256 7 4 х 4 х 512 7 1

def discriminator(self, depth=64, dropout=0.3, alpha=0.3):
if self. D:

return self.D
self.D = Sequential()
input_shape = (self.img_rows, self.img_cols, self.channel)
self.D.add(Conv2D(depth*l, 5, strides=2, \

input_shape=input_shape, padding='same'))
self.D.add(LeakyReLU(alpha=alpha))
self.D.add(Dropout(dropout))

4 LeakyReLU - это усовершенствованная функция активации, которая аналогична обычной

активации ReLU, но допускает наличие небольшого градиента в тех случаях, когда элемент не

активен (https: //keras. io/layers/advanced-activations/}. Данная функция все
чаще применяется для решения задач машинного обучения, связанных с обработкой изоб­

ражений.

Генеративно-состязательные сети 1 373

self.D.add(Conv2D(depth*2, 5, strides=2, padding='same'))
self.D.add(LeakyReLU(alpha=alpha))
self.D.add(Dropout(dropout))

self.D.add(Conv2D(depth*4, 5, strides=2, padding='same'))
self.D.add(LeakyReLU(alpha=alpha))
self.D.add(Dropout(dropout))

self.D.add(Conv2D(depth*8, 5, strides=l, padding='same'))
self.D.add(LeakyReLU(alpha=alpha))
self.D.add(Dropout(dropout))

self.D.add(Flatten())
self.D.add(Dense(l))
self.D.add(Activation('sigmoid'))
self.D.summary()
return self. D

Дискриминативная и состязательная модели

Далее мы определим модель дискриминатора (аналог криминалиста, об­

наруживающего подделки) и состязательную модель (аналог фальшивомо­

нетчика, обучающегося на решениях криминалиста). Для обеих моделей мы

используем оптимизатор RМSprop, определим функцию потерь в форме би­

нарной кросс-энтропии и зададим точность в качестве оценочной метрики.

Для построения состязательной модели мы используем созданные ранее

сети генератора и дискриминатора. В случае дискриминативной модели ис­

пользуется только сеть дискриминатора.

def discriminator_model(self):
if self.DM:

return self.DM
optimizer = RМSprop(lr=0.0002, dесау=бе-8)

self.DM = Sequential()
self.DM.add(self.discriminator())
self.DM.compile(loss='Ьinary_crossentropy', \

optimizer=optimizer, metrics=['accuracy'])
return self. DM

def adversarial_model(self):
if self .АМ:

return self.AМ

374 1 Гnава 12

optimizer = RМSprop(lr=0.0001, dесау=Зе-8)

self.AМ = Sequential()
self.AМ.add(self.generator())

self.AМ.add(self.discriminator())

self.AМ.compile(loss='Ьinary_crossentropy', \
optimizer=optimizer, metrics=['accuracy'])

return self .АМ

DCGAN для набора данных MNIST
Теперь создадим генеративно-состязательную сеть для набора данных

MNIST. Прежде всего инициализируем класс MNI s т DCGAN для изображений

MNIST с размерностью 28 х 28 х 1 и подключим генератор, а также определен­

ные ранее дискриминативную и состязательную модели.

class MNIST_DCGAN(object):
def init (self, x_train):

self.img_rows = 28
self.img_cols = 28
self.channel = 1

self.x train = х train

self. DCGAN = DCGAN ()
self.discriminator = self.DCGAN.discriminator_model()
self.adversarial = self.DCGAN.adversarial_model()
self.generator = self .DCGAN.generator()

Функция train по умолчанию тренирует сеть в течение 2000 эпох, исполь­

зуя размер пакета 256. В этой функции мы передаем пакеты изображений сети

DCGAN, которую только что определили. Генератор будет выдавать изобра­

жения, а дискриминатор - распознавать изображения как подлинные или

поддельные. По мере того как генератор и дискриминатор соревнуются между

собой в рамках состязательной модели, синтетические изображения стано­

вятся все более похожими на оригинальные изображения из набора MNIST.

def train(self, train_steps=2000, batch_size=256, \
save_interval=O):

noise_input = None
if save interval > О:

noise_input np.random.uniform(-1.0, 1.0, \
size=[lб, 100])

Генеративно-состязательные сети 1 375

for 1 1n range(train_steps):
images_train = self.x_train(np.random.randint(O, \

self.x_train.shape[O], size=batch_size), :, :, :]
noise = np.random.uniform(-1.0, 1.0, \

size=[batch_size, 100])
images_fake = self.generator.predict(noise)
х = np.concatenate((images_train, images_fake))
у= np.ones((2*batch_size, 1])
y(batch_size:, :] =О

d loss = self.discriminator.train_on_batch(x, у)

у = np.ones ([batch_size, 1])
noise = np.random.uniform(-1.0, 1.0, \

size=[batch_size, 100])
a_loss = self.adversarial.train_on_batch(noise, у)

log_mesg = "%d: (Потери дискриминатора: %f, \
точность: %f]" % (i, d_loss [0], d_loss [1])

log_mesg = "%s [Потери состязательной модели: %f, \
точность: %f]" % (log_mesg, a_loss[O], a_loss(l])

print(log_mesg)
if save interval > О:

if (i + 1) % save interval == О:

self.plot_images(save2file=True, \
samples=noise_input.shape[O], \
noise=noise_input, step=(i+l))

Также определим функцию, которая в графическом виде выводит изобра­

жения, сгенерированные сетью.

def plot_images(self, save2file=False, fake=True, samples=lб, \
noise=None, step=O) :

376 1

filename = 'mnist.png'
if fake:

if noise is None:
noise np.random.uniform(-1.0, 1.0, \

size= [samples, 100])
else:

filename = "mnist_%d.png" % step
images = self.generator.predict(noise)

else:
i = np.random.randint(O, self.x_train.shape[O], samples)

Гпава 12

images = self.x_train[i, :, ., :]

plt.figure(figsize=(lO, 10))
for i in range(images.shape[O]):

plt.subplot(4, 4, i+l)
image = images[i, :, :, :]
image = np.reshape(image, [self.img_rows, self.img_cols])
plt.imshow(image, cmap='gray')
pl t. axis ('off')

plt.tight_layout()
if save2file:

plt.savefig(filename)
pl t. close ('all')

else:
plt. show ()

Применение генеративно-состязательной сети

к набору данных MNIST
Итак, класс MNI ST _ DCGAN готов. Вызовем его и начнем процесс обучения.

Мы будем тренировать модель на протяжении 1 О ООО эпох, используя размер
пакетов 256.

Инициализация и обучение сети MNIST_DCGAN
mnist_dcgan = MNIST_DCGAN(X_train_keras)
timer = ElapsedTimer()
mnist_dcgan.train(train_steps=lOOOO, batch_size=256, \

save_interval=500)

Приведенная ниже сводка отражает потери и точность для дискриминато­

ра и состязательной модели.

о:

1:

2:

3:

4:

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

дискриминатора: 0.692640, асс: 0.527344]
состязательной модели: 1.297974, точность: 0.000000]
дискриминатора: 0.651119, точность: 0.500000]
состязательной модели: 0.920461, точность: 0.000000]
дискриминатора: 0.735192, точность: 0.500000]
состязательной модели: 1.289153, точность: 0.000000]
дискриминатора: 0.556142, точность: 0.947266]
состязательной модели: 1.218020, точность: 0.000000]
дискриминатора: 0.492492, точность: 0.994141]
состязательной модели: 1.306247, точность: 0.000000]

Генеративно-состязатеnьные сети 1 377

5: [Потери дискриминатора: 0.491894, точность: 0.916016]
[Потери состязательной модели: 1.722399, точность: 0.000000]

6: [Потери дискриминатора: 0.607124, точность: 0.527344]
[Потери состязательной модели: 1.698651, точность: 0.000000]

7: [Потери дискриминатора: 0.578594, точность: 0.921875]
[Потери состязательной модели: 1.042844, точность: 0.000000]

8: [Потери дискриминатора: 0.509973, точность: 0.587891]
[Потери состязательной модели: 1.957741, точность: 0.000000]

9: [Потери дискриминатора: 0.538314, точность: 0.896484]
[Потери состязательной модели: 1.133667, точность: 0.000000]

10: [Потери дискриминатора: 0.510218, точность: 0.572266]
[Потери состязательной модели: 1.855000, точность: 0.000000]

11: [Потери дискриминатора: 0.501239, точность: 0.923828]
[Потери состязательной модели: 1.098140, точность: 0.000000]

12: [Потери дискриминатора: 0.509211, точность: 0.519531]
[Потери состязательной модели: 1.911793, точность: 0.000000]

13: [Потери дискриминатора: 0.482305, точность: 0.923828]
[Потери состязательной модели: 1.187290, точность: 0.000000]

14: [Потери дискриминатора: 0.395886, точность: 0.900391]
[Потери состязательной модели: 1.465053, точность: 0.000000]

15: [Потери дискриминатора: 0.346876, точность: 0.992188]
[Потери состязательной модели: 1.443823, точность: 0.000000]

Начальная точность дискриминатора колеблется в широких пределах, но

в целом остается существенно выше отметки О • 5 О. Другими словами, дис­
криминатор поначалу очень хорошо справляется с выявлением подделок, не­

удачно сконструированных генератором. Но затем, по мере того как генера­

тор совершенствует свое умение подделывать изображения, дискриминатор

начинает испытывать трудности, и его точность падает до уровня, близкого

к о. 50.

9985:

9986:

9987:

9988:

9989:

9990:

378 1

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

[Потери

Гnава 12

дискриминатора: 0.696480, точность: 0.521484]
состязательной модели: 0.955954, точность: 0.125000]
дискриминатора: 0.716583, точность: 0.472656]
состязательной модели: 0.761385, точность: 0.363281]
дискриминатора: 0.710941, точность: 0.533203]
состязательной модели: 0.981265, точность: 0.074219]
дискриминатора: 0.703731, точность: 0.515625]
состязательной модели: 0.679451, точность: 0.558594]
дискриминатора: 0.722460, точность: 0.492188]
состязательной модели: 0.899768, точность: 0.125000]
дискриминатора: 0.691914, точность: 0.539062]

[Потери состязательной модели: 0.726867, точность: 0.464844)
9991: [Потери дискриминатора: 0.716197, точность: 0.500000)

[Потери состязательной модели: 0.932500, точность: 0.144531)
9992: [Потери дискриминатора: 0.689704, точность: 0.548828)

[Потери состязательной модели: 0.734389, точность: 0.414062)
9993: [Потери дискриминатора: 0.714405, точность: 0.517578)

[Потери состязательной модели: 0.850408, точность: 0.218750)
9994: [Потери дискриминатора: 0.690414, точность: 0.550781)

[Потери состязательной модели: 0.766320, точность: 0.355469)
9995: [Потери дискриминатора: 0.709792, точность: 0.511719)

[Потери состязательной модели: 0.960070, точность: 0.105469)
9996: [Потери дискриминатора: О. 695851, точность: О. 500000)

[Потери состязательной модели: 0.774395, точность: 0.324219)
9997: [Потери дискриминатора: 0.712254, точность: 0.521484)

[Потери состязательной модели: 0.853828, точность: 0.183594)
9998: [Потери дискриминатора: 0.702689, точность: 0.529297)

[Потери состязательной модели: 0.802785, точность: 0.308594)
9999: [Потери дискриминатора: 0.698032, точность: 0.517578]

[Потери состязательной модели: 0.810278, точность: 0.304688)

Генерирование синтетических изображений

Теперь, когда генеративно-состязательная сеть прошла обучение, использу­

ем ее для генерирования нескольких синтетических изображений (рис. 12.3).
Нельзя сказать, что эти синтетические изображения неотличимы от истин­

ных изображений из набора MNIST, но тем не менее они достаточно похожи
на настоящие цифры. Чем дольше будет тренироваться генеративно-состяза­

тельная сеть, тем выше будет схожесть синтетических изображений с истин­

ными. Это позволит использовать DCGAN для расширения набора данных
MNIST.

Несмотря на то что наше решение оказалось довольно неплохим, сущес­

твует множество дополнительных способов улучшить его. В статье "Improved
Techniques for Training GANs" (https://arxiv.org/pdf/1606.03498.
pdf) детально рассмотрены продвинутые методы улучшения производи­
тельности генеративно-состязательных сетей. Соответствующие программ­

ные решения доступны на сайте GitHub (https://github.com/openai/
improved-gan).

Генерmвно-соmзатепьные сети 1 379

Резюме

11
11

Рис. 12.З. Синтетические изображения, сгенерированные

генеративно-состязательной сетью

В этой главе мы исследовали глубокие сверточные генеративно-состяза­

тельные сети - разновидность GAN, хорошо приспособленная для работы с
изображениями и системами компьютерного зрения.

GAN - это порождающая модель с двумя нейронными сетями, взаимо­

действующими в рамках игры с нулевой суммой. Одна из сетей - генератор

(аналог фальшивомонетчика) - генерирует синтетические данные на осно­

ве реальных, тогда как другая сеть - дискриминатор (аналог криминалис­

та) - пытается отличить подделки от подлинных данных5• Эта антагони­

стическая игра, в которой генератор учится на действиях дискриминатора,

позволяет получить модель, способную генерировать довольно реалистичные

5 Рекомендуем прочитать статью в блоге OpenAI, посвященную порождающим моделям
(https: / / openai. com/Ыog/generati ve-models/).

380 1 Гnава 12

синтетические данные и к тому же улучшаться со временем (т.е. по мере уве­

личения числа тренировочных эпох).

Генеративно-состязательные сети - относительно новая технология. Они

были впервые предложены Яном Гудфеллоу с коллегами в 2014 году6. В на­
стоящее время основные сферы применения GAN - обнаружение аномалий

и генерирование синтетических данных, но в ближайшем будущем у генера­

тивно-состязательных сетей может появиться множество других применений.

Исследователи только начинают открывать для себя их возможности, и если

вы решите применять их в своих проектах машинного обучения, будьте гото­

вы активно экспериментировать7•

В главе 13 мы исследуем кластеризацию временных рядов, которая тоже
представляет собой разновидность обучения без учителя.

6 Оригинальная статья доступна по адресу h t tps : / / arxi v. org / abs / 14 О 6 . 2661.
7 Советы и рекомендации по обучению генеративно-состязательных сетей доступны по адресу

https: / / github. сот/ soumith/ganhacks и http: / /Ьi t. ly /2G2FJHq.

Генеративно-состязательные сети 1 381

ГЛАВА 13

Кластеризация временных рядов

До сих пор мы работали главным образом с перекрестными данными, соб­

ранными путем наблюдения за многими объектами на протяжении одного и

того же периода времени. К этой категории относится набор данных о двух­

дневных транзакциях с банковскими картами и набор изображений рукопис­

ных цифр MNIST. Мы применяли к этим наборам обучение без учителя для

изучения базовой структуры данных и группирования сходных транзакций и

изображений без использования каких-либо меток.

Однако обучение без учителя также хорошо подходит и для работы с вре­

менными рядами (time series), когда данные накапливаются путем наблюдения

за одним и тем же объектом в различные периоды времени. Нам предстоит

разработать приложение, способное обучаться базовой структуре данных на

основании таких наблюдений. Если нам это удастся, мы сможем выявлять ша­

блоны временньtх закономерностей и группировать схожие ряды.

Описанный подход находит применение в таких областях, как финансы,

медицина, робототехника, астрономия, биология, метеорология и т.п., по­

скольку специалисты, работающие в этих сферах, тратят много времени на

анализ данных с целью классификации текущих событий на основании их

сходства с событиями, имевшими место в прошлом. Путем группирования те­

кущих событий со схожими событиями прошлого профессионалы могут при­

нимать обоснованные решения о том, какие действия следует предпринять.

В данной главе мы будем выполнять кластеризацию временных рядов на

основе сходства шаблонов поведения. Это подход, основанный исключитель­

но на обучении без учителя, который не требует аннотирования данных для

тренировки модели, хотя аннотированные данные нужны для валидации ре­

зультатов, как и в случае любых других экспериментов в области обучения без

учителя.

Существует третья категория данных, в которой перекрестные

данные сочетаются с временными рядами. Такие данные называ­

ются панельными или продольными.

Данные ЭКГ

Чтобы задача классификации временных рядов стала более понятной, рас­

смотрим конкретный пример. Представьте, что вы работаете в медицинском

учреждении и занимаетесь интерпретацией данных электрокардиограммы

(ЭКГ). Электрокардиографы регистрируют данные об электрической актив­

ности сердца через закрепленные на теле электроды. ЭКГ записывается в тече­

ние примерно 10 секунд, и полученные показания помогают диагностировать
проблемы с сердцем.

Большинство показаний ЭКГ соответствует нормальной сердечной дея­

тельности, но специалисты должны замечать любые отклонения, чтобы сво­

евременно выявлять нарушения в работе сердца. ЭКГ представляет собой

график с множеством зубцов, поэтому задача классификации показаний сво­

дится к задаче распознавания образов, хорошо решаемой средствами машин­

ного обучения.

На практике показания ЭКГ часто оказываются недостаточно четкими, что

затрудняет классификацию изображений и может приводить к ошибкам диа­

гностики. Например, колебания амплитуды (расстояния от центральной ли­

нии до вершины зубца), периода (расстояния между зубцами), фазового сдвига

(смещения по горизонтали) и сдвига по вертикали создают проблемы для лю­

бой компьютерной диагностической системы.

Особенности кластеризации временных рядов

Любой подход к кластеризации временных рядов потребует от нас обработ­

ки вышеупомянутых искажений. Как известно, кластеризация основывается

на метриках расстояния, определяющих пространственную близость между

различными точками данных, что обеспечивает возможность их группирова­

ния в отчетливо различимые однородные кластеры.

Кластеризация временных рядов работает аналогичным образом, но нам

необходимо иметь такую меру расстояния, которая была бы масштабируемой

и инвариантной к фазовым сдвигам, чтобы сходные данные временных рядов

группировались независимо от тривиальных различий в амплитуде, периоде

и сдвиге.

384 1 Глава 13

Алгоритм k-Shape
Один из новейших подходов к кластеризации временных рядов, отвеча­

ющих указанному выше критерию, основан на алгоритме k-Shape, который
впервые был представлен на конференции SIGMOD (Special Interest Group on
Management ofData) в 2015 году Джоном Папарризосом и Луисом Гравано1 •

Мера расстояния, используемая в алгоритме k-Shape, инвариантна к мас­
штабированию и сдвигу и позволяет сохранять формы временных последо­

вательностей, что облегчает их сравнение. В частности, в алгоритме k-Shape
для вычисления центроидов кластеров применяется нормализованная версия

взаимной корреляции, а распределение временнь~х рядов по кластерам обнов­

ляется на каждой итерации.

Кроме того, алгоритм k-Shape не зависит от предметной области, что тре­
бует минимальной настройки гиперпараметров. Его процедура итеративного

уточнения линейно масштабируется с изменением количества последователь­

ностей. Эти характеристики делают его одним из самых эффективных алго­

ритмов кластеризации временных рядов, доступных на сегодняшний день.

Читателям уже должно быть очевидно, что алгоритм k-Shape напоминает
алгоритм k-средних: в обоих случаях применяется итеративный подход к рас­

пределению данных по группам на основании расстояний между данными и

центроидом ближайшей группы. Ключевое отличие заключается в том, как

в алгоритме k-Shape вычисляются расстояния. Для этого задействуется мера
расстояния, основанная на взаимной корреляции.

Кластеризация временных рядов по методу k-Shape
применительно к набору ECGFiveDays

Приступим к созданию модели кластеризации временных рядов с исполь­

зованием алгоритма k-Shape.
В этой главе мы будем работать с коллекцией временных рядов UCR Time

Series 2015. В связи с тем что размер архива превышает 100 Мбайт, его нель­
зя распространять через GitHub. Посетите сайт UCR Time Series по адресу
http: / /Ьi t. ly/2CXPcfq и самостоятельно загрузите архив версии 2015.

Это самая большая свободно доступная коллекция размеченных времен­

ных рядов, насчитывающая 85 наборов из множества предметных областей,

1 Соответствующая статья доступна по адресу http://www. cs. columЬia. edu/-j ора/
kshape. html.

Кnастеризаци11 временных рядов 1 385

что позволяет тестировать, насколько хорошо наше решение подходит для

решения самых разных задач. Каждый временной ряд принадлежит к одно­

му классу, поэтому у нас заодно есть метки классов для проверки результатов

кластеризации.

Подготовка данных

Начнем с загрузки необходимых библиотек.

' ' 'Основные библиотеки' ' '
import numpy as np
import pandas as pd
import os, time, re
import pickle, gzip, datetime
from os import listdir, walk
from os.path import isfile, join

' ' ' Визуализация данных ' ' '
import matplotlib.pyplot as plt
import seaborn as sns
color = sns.color_palette()
import matplotlib as mpl
from mpl_toolkits.axes_gridl import Grid

%matplotlib inline

'''Подготовка данных и оценка модели'''

from sklearn import preprocessing as рр
from sklearn.model selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import log_loss, accuracy_score
from sklearn.metrics import precision_recall_curve, \

average_precision_score
from sklearn.metrics import roc_curve, auc, roc auc score, \

mean_squared_error
from keras.utils import to_categorical
from sklearn.metrics import adjusted_rand_score
import random

' ' 'Алгоритмы' ' '
from kshape.core import kshape, zscore
import tslearn
from tslearn.utils import to time series dataset

386 1 Глава 13

from tslearn.clustering import KShape, \
TimeSeriesScalerMeanVariance

from tslearn.clustering import TimeSeriesКМeans
import hdЬscan

'''TensorFlow и Keras'''
import tensorflow as tf
import keras
from keras import backend as К
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Dropout, Flatten, \

Conv2D, MaxPool2D
from keras.layers import LeakyReLU, Reshape, UpSampling2D, \

Conv2DTranspose
from keras.layers import BatchNormalization, Input, LamЬda

from keras.layers import EmЬedding, Flatten, dot
from keras import regularizers
from keras.losses import mse, binary_crossentropy
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.optimizers import Adam, RМSprop

Пакет tslearn содержит реализацию алгоритма k-Shape на Python. Он реа­
лизован на основе библиотеки Scikit-learn, но ориентирован на работу с вре­
менными рядами.

Далее загрузим тренировочные и тестовые данные из набора ECGFiveDays,
включенного в архив UCR Time Series. Первый столбец матрицы содержит
метки классов, тогда как остальные столбцы - это значения временного ряда.

Мы сохраним данные в переменных Х _ train, y _ train, Х _ test и y _ test.

Загрузка наборов данных
current_path = os.getcwd()
file = os.path.sep.join([' ', 'datasets', 'ucr_time series_data', ''])
data train np.loadtxt(current_path + file + \

Х train =
y_train =
data test

Х test
y_test

"ECGFiveDays/ECGFiveDays_TRAIN", \
delimiter=",")

to_time_series_dataset(data_train[:, 1:])
data_train[:, О] .astype(np.int)

np.loadtxt(current_path + file + \
"ECGFiveDays/ECGFiveDays_TEST", \
delimiter=",")

to_tirne_series_dataset(data_test[:, 1:])
data_test[:, О] .astype(np.int)

Кпастеризации временных ридов 1 387

Следующий фрагмент кода выводит количество временных рядов, коли­

чество уникальных классов и длину каждого временного ряда.

Суммарная статистика
рrint("Количество временных рядов:", len(data_train))
рrint("Количество уникальных классов:", \

len(np.unique(data_train[:,0])))
рrint("Длина временного ряда:", len(data_train[0,1:]))

Количество временных рядов: 23
Количество уникальных классов: 2
Длина временного ряда: 136

Всего имеется 23 временных ряда и 2 уникальных класса, причем длина
каждого ряда равна 136. Несколько примеров каждого класса представлено в
графическом виде на рис. 13.1-13.4. Именно так выглядят данные ЭКГ.

График О класс 1.0

о 20 40 60 во 100 120 140

График 1 класс 1.0

2

о

-2

о 20 100 120 140

Рис. 13.1. Набор ECGFiveDays, класс 1 - первые два примера

388 1 Глава 13

График 4 класс 1.0

2

о

--6

о 20 40 liO 80 100 120 140

График 7 класс 1.0

J
о

-2

-4

-6

о 20 40 ю 80 100 120 140

Рис.13.2. Набор ECGFiveDays, класс 1 - вторые два примера

Примеры класса 1
for i in range(O, 10):

if data_train[i, О] == 1.0:
рrint("График", i, "Класс", data_train[i, 0))
plt.plot(data_train[i])
plt. show ()

Следующий код выводит графики для класса 2.

Примеры класса 2
for i in range(O, 10):

if data_train[i, 0) == 2.0:
рrint("График", i, "Класс", data_train[i, 0))
plt.plot(data_train[i])
plt. show ()

Кластеризация временных рядов 1 389

График 2 класс 2.0

2

о

-l

-2

-3

-4

-5

-6

о 20 40 fj() 80 100 ио 140

График 3 класс 2.0

2

~ о

-1

-2

-3

-4

-5

-6

о 20 40 fj() 1Ю 100 ио 140

Рис. 13.3. Набор ECGFiveDays, класс 2 - первые два примера

Неподготовленному пользователю трудно понять, чем отличаются приме­

ры для классов 1 и 2, поэтому все наблюдения аннотированы специалистами
в данной предметной области. Приведенные графики зашумлены искажения­
ми. Имеются также различия в амплитуде, периоде, фазовом и вертикальном

сдвиге, которые затрудняют классификацию.

Подготовим данные для обработки с помощью алгоритма k-Shape. Мы нор­
мализуем данные таким образом, чтобы среднее значение было равно нулю, а

стандартное отклонение - единице.

Подготовка данных - масштабирование

X_train = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_train)

X_test = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_test)

390 1 Гnава 13

График 5 класс 2.0

4

2

о

-2 i

-4

-6

о 20 40 60 ЕЮ 100 120 140

График 6 класс 2.0

2f

о

-1

-2

-3

-4

-5

-6

о 20 40 60 ЕЮ 100 120 140

Рис. 13.4. Набор ECGFiveDays, класс 2 - вторые два примера

Тренировка и оценка модели

Далее мы запустим алгоритм k-Shape, задав количество кластеров равным
2, максимальное количество итераций - 100 и количество циклов трениров­
ки - 1002•

Тренировка с использованием алгоритма k-Shape
ks = KShape(n_clusters=2, max_iter=lOO, n_init=lOO, verbose=O)
ks.fit(X_train)

Для оценки качества кластеризации временных рядов мы используем скор­

ректированный индекс Rand (adjusted Rand score - ARS) - меру сходства двух

2 Более подробную информацию относительно настройки rиперпараметров можно найти в

официальной документации к классу KShape (http: / /Ьi t. ly/2Gfg0L9).

Кластеризация временных рядов 1 391

вариантов кластеризации данных, скорректированную с учетом вероятности

группирования элементов. С математической точки зрения это аналог точ­

ности классификации3 •

Индекс Rand представляет собой количественную оценку соответствий
между предсказанной и истинной кластеризацией. Если значение скоррек­

тированного индекса Rand близко к нулю, то разбиение данных на кластеры
является чисто случайным. Если же его значение близко к единице, то пред­

сказанная кластеризация в точности совпадает с истинной.

Для вычисления скорректированного индекса Rand мы используем функ­
цию adj usted _ rand _ score из библиотеки Scikit-learn.

Сгенерируем предсказания для кластеризации и вычислим скорректиро­

ванный индекс Rand.

Создание предсказаний для тренировочного набора
и вычисление скорректированного индекса Rand
preds = ks.predict(X_train)
ars = adjusted_rand_score(data_train[:, О], preds)
рrint("Скорректированный индекс Rand:", ars)

По результатам этого запуска скорректированный индекс Rand оказался ра­
вен О . 6 6 8. Выполнив тренировку несколько раз, вы увидите, что индекс Rand
колеблется в определенных пределах, но при этом значительно больше О . О.

Скорректированный индекс Rand: 0.668041237113402

Сгенерируем предсказания и вычислим скорректированный индекс Rand
для тестового набора.

Создание предсказаний для тестового набора
и вычисление скорректированного индекса Rand
preds_test = ks.predict(X_test)
ars = adjusted_rand_score(data_test[:, О], preds_test)
рrint("Скорректированный индекс Rand на тестовом наборе:", ars)

Скорректированный индекс Rand для тестового набора оказался значи­
тельно более низким, едва превышая нулевое значение. Предсказания класте­
ризации соответствуют почти случайным распределениям - попытка сгруп­

пировать временные ряды на основании критериев сходства не удалась.

Скорректированный индекс Rand на тестовом наборе:
0.0006332050676187496

3 Дополнительную информацию об индексе Rand можно найти в Википедии (https: / /
en. wikipedia. org/wiki/Rand_index).

392 1 Глава 13

Если бы у нас был намного больший тренировочный набор для обучения

модели кластеризации временных рядов по методу k-Shape, то можно было бы
ожидать лучших результатов на тестовом наборе.

Кластеризация временных рядов по методу k-Shape
применительно к набору ECGSOOO

Вместо набора ECGFiveDays, насчитывающего всего 23 наблюдения в тре­
нировочном наборе и 861 наблюдение - в тестовом, используем гораздо боль­

ший набор ECGSOOO, также включенный в архив UCR Time Series. Суммарно
он содержит пять тысяч записей ЭКГ (т.е. временных рядов) в тренировочном

и тестовом наборах.

Подготовка данных

После загрузки данных мы самостоятельно разобьем их на тренировочный и

тестовый наборы, включив в первый из них 80% оригинальных наблюдений, а во
второй - оставшиеся 20%. Благодаря использованию гораздо большего трени­
ровочного набора мы рассчитываем на то, что разрабатываемая модель класте­

ризации временных рядов продемонстрирует гораздо лучшую производитель­

ность как на тренировочном, так и, что наиболее важно, на тестовом наборе.

Загрузка наборов данных
current_path = os.getcwd()
file = os.path.sep.join(['', 'datasets', 'ucr_time series_data', ''])
data train np.loadtxt(current_path + file + \

"ECGS О О О /ECGS О О О_ TRAIN", \

delimiter=",")

data test np.loadtxt(current_path + file + \
"ECG5000/ECG5000_TEST", \
delimiter=",")

data_joined np.concatenate((data_train, data_test), axis=O)
data_train, data test train_test split(data joined, \

test_size=0.20, \
random_state=2019)

Х train to time series dataset(data_train[:, 1:])
y_train data_train[:, 0] .astype(np.int)

Кластеризация временных рядов 1 393

Х test to_time series dataset(data_test[:, 1:])
y_test data_test[:, 0].astype(np.int)

Исследуем имеющийся набор данных.

t Суммарная статистика

рrint("Количество временных рядов:", len(data_train))
рrint("Количество уникальных классов:", \

len(np.unique(data_train[:, 0])))
рrint("Длина временного ряда:", len(data_train[O, 1:]))

Ниже приведена базовая сводка по тренировочному набору. Он содержит

4000 записей, которые сгруппированы в пять различных классов, а длина каж­
дого временного ряда равна 140.

Количество временных рядов: 4000
Количество уникальных классов: 5
Длина временного ряда: 140

Проверим, какое количество записей относится к каждому классу.

t Вычисление количества записей на класс

рrint("Количество временных рядов в классе 1.0:", \
len(data_train[data_train[:, 0]==1.0]))

рrint("Количество временных рядов в классе 2.0:", \
len(data_train[data_train[:, 0]==2.0]))

рrint("Количество временных рядов в классе 3.0:", \
len(data_train[data_train[:, 0]==3.0]))

рrint("Количество временных рядов в классе 4.0:", \
len(data_train[data_train[:, 0]==4.0]))

рrint("Количество временных рядов в классе 5.0:", \
len(data_train[data_train[:, 0]==5.0]))

Количество временных рядов в классе 1. о: 2327
Количество временных рядов в классе 2. о: 1423
Количество временных рядов в классе 3. о: 75
Количество временных рядов в классе 4. о: 156
Количество временных рядов в классе 5. о: 19

Большая часть записей попадает в класс 1, за которым следует класс 2. Зна­
чительно меньшее количество записей относится к классам 3, 4 и 5.

Для получения более полного представления о свойствах различных клас­

сов рассчитаем средние значения временных рядов для каждого из них.

t Отображение характеристик каждого класса

for j in np.unique(data_train[:, О]):

394 Гnава 13

dataPlot = data_train[data_train[:, OJ==j]
cnt = len(dataPlot)
dataPlot = dataPlot[:, 1:] .mean(axis=O)
print ("Класс", j, " Счетчик", cnt)
plt.plot(dataPlot)
plt. show ()

Класс 1 (рис. 13.5) характеризуется резким спадом, за которым следуют рез­

кий подъем и стабилизация. Это наиболее типичный случай.

класс 1.0 Счетчик 2327

lг
о

-l . 1
1

-2

~ -3

-4

о 20 40 60 80 100 120 140

Рис. 13.5. Набор ECGSOOO, класс 1

Класс 2 (рис. 13.6) характеризуется резким спадом, за которым следует вос­

становление уровня, а затем еще более глубокий спад с частичным восстанов­

лением. Это второй по распространенности случай.

класс 2.0 счетчик 1423

os
00

1
-о 5

-1.О

-1 5

-2 о \

-в

-3 о

о 20 40 (Ю 80 100 120 140

Рис. 13.6. Набор ECGSOOO, класс 2

Кnастеризаци11 временных р11дов 1 395

Класс 3 (рис. 13.7) характеризуется резким спадом, за которым следует вос­
становление, а затем еще более глубокий спад без восстановления. В наборе

данных таких примеров немного.

класс 3.0 счетчик 75

os
00

-0.S

-10

-1 s
-2.0

-2 s

-30

о 80 100 120 140

Рис. 13.7. Набор ECGSOOO, класс 3

Класс 4 (рис. 13.8) характеризуется резким спадом, за которым следует вос­
становление, а затем незначительный спад и стабилизация. В наборе данных

таких примеров тоже не очень много.

класс 4.0 счетчик 156

o.s

00

-о 5

-1 о

-1 s

-20

-н

-30
о 20 40 80 100 120 140

Рис. 13.8. Набор ECGSOOO, класс 4

Класс 5 (рис. 13.9) характеризуется резким спадом, за которым следует не­
равномерное восстановление и подъем, а затем неустойчивый спад в более

мелкую впадину. В наборе данных таких примеров меньше всего.

396 1 Гnава 13

класс s.o счетЧИR 19

г-

os

О()

1 -о s

-1 о 1

\ -1 s

-2 о ~
о 20 40 60 IJO 100 ио 140

Рис. 13.9. Набор ECGSOOO, класс 5

Тренировка и оценка модели

Как и прежде, нормализуем данные таким образом, чтобы среднее значе­

ние было равно нулю, а стандартное отклонение - единице. Затем настро­

им алгоритм k-Shape, задав на этот раз количество кластеров равным 5. Все
остальные параметры сохраняют прежние значения.

Подготовка данных - масштабирование

X_train = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_train)

X_test = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_test)

Тренировка с использованием алгоритма k-Shape
ks = KShape(n_clusters=S, max_iter=lOO, n_init=lO, verbose=l, \

random_state=2019)
ks.fit(X_train)

Оценим результаты для тренировочного набора.

Создание предсказаний для тренировочного набора
и вычисление скорректированного индекса Rand
preds = ks.predict(X_train)
ars = adjusted_rand_score(data_train[:, О], preds)
рrint("Скорректированный индекс Rand на тренировочном наборе:", ars)

Скорректированный индекс Rand для тренировочного набора существен­
но вырос и стал равен О • 7 5.

Кластеризация временных рядов 1 397

Скорректированный индекс Rand на тренировочном наборе:
0.7499312374127193

Оценим теперь результаты для тестового набора.

Создание предсказаний для тестового набора
и вычисление скорректированного индекса Rand
preds_test = ks.predict(X_test)
ars = adjusted_rand_score(data_test[:, О], preds test)
рrint("Скорректированный индекс Rand на тестовом наборе:", ars)

Скорректированный индекс Rand для тестового набора также значительно
улучшился и достиг отметки О • 7 2.

Скорректированный индекс Rand на тестовом наборе:
0.7172302400677499

Увеличив размер тренировочного набора до 4000 временных рядов (вме­
сто 23), мы получили значительно более эффективную модель кластеризации
временных рядов.

Проведем дополнительное исследование предсказанных кластеров, чтобы

выяснить, насколько они однородны. Для каждого предсказанного кластера

мы оценим распределение истинных меток. Если кластеры четко сформиро­

ваны и однородны, то большинство записей в каждом кластере должно иметь

одну и ту же истинную метку.

Оценка качества кластеров
preds_test preds_test.reshape(lOOO, 1)
preds_test np.hstack((preds_test, \

preds test
preds test

counter = О

data_test[:, 0] .reshape(lOOO, 1)))
pd.DataFrame(data=preds_test)
preds_test.rename(columns=(O: 'prediction', \

1: 'actual' })

for i in np.sort(preds_test.prediction.unique()):
print ("Предсказанный кластер", i)
print(preds_test.actual[preds_test.prediction \

i] .value_counts())
print ()
cnt = preds_test.actual[preds_test.prediction \

i] .value_counts() .iloc[l:] .sum()
counter = counter + cnt

рrint("Счетчик непервичных точек:", counter)

398 1 Глава 13

Приведенная ниже сводка отражает степень однородности кластеров.

Предсказанный кластер О.О

2.0 29
4.0 2
1.0 2
3.0 2
5.0 1
Name: actual, dtype: int64

Предсказанный кластер 1.0
2.0 270
4.0 14
3.0 8
1. о 2
5.0 1
Name: actual, dtype: int64

Предсказанный кластер 2.0
1.0 553
4.0 16
2.0 9
3.0 7
Name: actual, dtype: int64

Предсказанный кластер 3.0
2. о 35
1. о 5
4.0 5
5.0 3
3.0 3
Name: actual, dtype: int64

Предсказанный кластер 4.0
1.0 30
4.0 1
3.0 1
2.0 1
Name: actual, dtype: int64

Счетчик непервичных точек: 83

Кластеризация временных рядов 1 399

Большинство записей в пределах каждого предсказанного кластера при­

надлежит только к одному классу, помеченному истинной меткой. Это сви­

детельствует о надежном определении кластеров и высокой степени их одно­

родности.

Кластеризация временных рядов по методу

k-средних применительно к набору ECGSOOO
Для полноты картины сравним результаты, полученные с помощью алго­

ритма k-Shape и по методу k-средних. Как и прежде, мы используем библио­
теку tslearn для тренировки и оценки модели на основе скорректированного
индекса Rand.

Количество кластеров зададим равным 5, максимальное количество итера­
ций для одного запуска - 100, количество независимых запусков - 100, значе­
ние переменной random_state - 2019, метрика расстояния- euclidean.

Тренировка по методу k-средних
km = TimeSeriesКМeans(n_clusters=5, max_iter=lOO, n_init=lOO, \

metric="euclidean", verbose=l, random_state=2019)
km.fit(X_train)

Создание предсказаний для тренировочного набора
и вычисление скорректированного индекса Rand
preds = km.predict(X_train)
ars = adjusted_rand_score(data_train[:, 0), preds)
рrint("Скорректированный индекс Rand на тренировочном наборе:", ars)

Создание предсказаний для тестового набора
и вычисление скорректированного индекса Rand
preds_test = km.predict(X_test)
ars = adjusted_rand_score(data_test[:, О], preds_test)
рrint("Скорректированный индекс Rand на тестовом наборе:", ars)

В случае использования евклидовой метрики алгоритм TimeSeriesКМean

работает быстрее алгоритма k-Shape, но результаты получаются хуже.

Скорректированный индекс Rand на тренировочном наборе:
0.5063464656715959

Скорректированный индекс Rand для тренировочного набора оказался ра­
вен О. 506.

400 1 Глава 13

Скорректированный индекс Rand на тестовом наборе:
0.4864981997585834

Скорректированный индекс Rand для тестового набора равен О • 4 8 6.

Кластеризация временных рядов по методу Н DBSCAN
применительно к набору ECGSOOO

Наконец, применим иерархический алгоритм DBSCAN (HDBSCAN), кото­

рый мы уже исследовали, и оценим его производительность.

Запустим алгоритм HDBSCAN с параметрами, заданными по умолчанию, и
вычислим скорректированный индекс Rand.

Тренировка модели и ее оценка на тренировочном наборе
min cluster size = 5 - -
min_samples = None
alpha = 1.0
cluster selection method 'eom'
prediction_data = True

hdЬ = hdbscan.HDBSCAN(min_cluster size=min cluster size, \
min_samples=min_samples, alpha=alpha, \
cluster_selection_method=cluster_selection_method, \
prediction_data=prediction_data)

preds = hdЬ.fit_predict(X_train.reshape(4000, 140))
ars = adjusted_rand_score(data_train[:, О], preds)
рrint("Скорректированный индекс Rand на тренировочном наборе:", ars)

Скорректированный индекс Rand для тренировочного набора оказался до­
вольно впечатляющим и составил О • 7 6 9.

Скорректированный индекс Rand на тренировочном наборе:
0.7689563655060421

Оценим производительность алгоритма на тестовом наборе.

Создание предсказаний на тестовом наборе и их оценка
preds_test = hdЬscan.prediction.approximate_predict(hdb, \

X_test.reshape(lOOO, 140))
ars = adjusted_rand_score(data_test[:, О], preds_test[OJ)
рrint("Скорректированный индекс Rand на тестовом наборе:", ars)

Кnастеризация временных рядов 1 401

Скорректированный индекс Rand оказался в равной степени впечатляю­

щим и составил О. 720.

Скорректированный индекс Rand на тестовом наборе:
0.7200816245545564

Сравнение трех алгоритмов кластеризации

временных рядов

Алгоритмы HDBSCAN и k-Shape продемонстрировали одинаково хорошую

производительность на наборе ECGSOOO, тогда как результаты, полученные

по методу k-средних, оказались хуже. В то же время нельзя делать какие-то

серьезные выводы, оценивая производительность этих трех алгоритмов толь­

ко на одном наборе данных.

Проведем расширенный эксперимент, который позволит выполнить ком­

плексное сравнение алгоритмов. Прежде всего загрузим все файлы из папки

ucr _time_series_data, чтобы протестировать все 85 доступных наборов данных.

Загрузка наборов данных
current_path = os.getcwd()
file = os.path.sep.join(['', 'datasets', 'ucr time series_data', ''])

mypath current_path + file
d = []

f = []

for (dirpath, dirnames, filenames) in walk(mypath):
for i in dirnames:

newpath = os.path.sep.join([mypath, i, ""])
onlyfiles = [f for f in listdir(newpath) if \

isfile(join(newpath, f))]
f.extend(onlyfiles)

d.extend(dirnames)
break

Далее мы применим каждый из трех алгоритмов кластеризации ко всем

имеющимся наборам данных. Мы сохраним скорректированный индекс Rand

для каждого из тренировочных и тестовых наборов и измерим время, которое

потребуется алгоритмам на полный проход по всем 85 наборам.

402 1 Глава 13

Полный прогон с использованием алгоритма k-Shape
Сначала выполним эксперимент с алгоритмом k-Shape.

Эксперимент с методом k-Shape - полный прогон

Создание объекта DataFrame
kShapeDF = pd.DataFrame(data=[], index=[v for v in d], \

columns=["ARS этапа тренировки", "ARS этапа тестирования"])

Тренировка и оценка модели k-Shape
class ElapsedTimer(object):

def init (self):
self.start_time = time.time()

def elapsed(self, sec):
if sec < 60:

return str(sec) + " с"

elif sec < (60 * 60):
return str (sec / 60) + " мин"

else:
return str(sec / (60 * 60)) + "ч"

def elapsed_time(self):
print ("Прошло: %s " % self. elapsed (time. time () - \

self.start_time))
return (time.time() - self.start_time)

timer ElapsedTimer()
cnt О

for i in d:
cnt += 1
print ("Набор данных", cnt)
newpath = os.path.sep.join([mypath, i, ""])
onlyfiles = [f for f in listdir(newpath) if \

isfile(join(newpath, f))]
j = onlyfiles [0]
k = onlyfiles[l]
data_train = np.loadtxt(newpath+j, delimiter=",")
data test = np.loadtxt(newpath+k, delimiter=",")

data_joined = np.concatenate((data_train, data_test), axis=O)
data_train, data_test = train_test_split(data_joined, \

test_size=0.20, random_state=2019)

Кластеризация временных рядов 1 403

X_train = to_time series_dataset(data_train[:, 1:])
y_train = data_train[:, О] .astype(np.int)
Х test to_time_series_dataset(data_test[:, 1:])
y_test = data_test[:, О] .astype(np.int)

X_train = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_train)

X_test = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_test)

classes = len(np.unique(data_train[:, 0]))
ks = KShape(n_clusters=classes, max_iter=lO, n_init=З, \

verbose=O)
ks.fit(X_train)

print (i)
preds = ks.predict(X_train)
ars = adjusted_rand_score(data_train[:, О], preds)
рrint("Скорректированный индекс Rand на тренировочном наборе:", \

ars)
kShapeDF.loc[i, "ARS этапа тренировки"] = ars

preds_test = ks.predict(X_test)
ars = adjusted_rand_score(data_test[:, 0], preds_test)
рrint("Скорректированный индекс Rand на тестовом наборе:", ars)
kShapeDF.loc[i, "ARS этапа тестирования"] = ars

kShapeTime = timer.elapsed_time()

На выполнение этого алгоритма ушло больше часа. Мы сохраним значения

скорректированного индекса Rand, чтобы иметь возможность сравнить про­
изводительность трех алгоритмов кластеризации.

404 1

Время выполнения алгоритма k-Shape зависит от установленных
значений гиперпараметров, а также характеристик оборудова­

ния, на котором проводится эксперимент. Любые изменения дан­

ного рода могут оказывать значительное влияние на конечные

результаты.

Глава 13

Полный проrон с использованием алrоритма k-средних

Используем теперь алгоритм k-средних.

Эксперимент с методом k-средних - полный прогон

Создание объекта DataFrame
kМeansDF = pd.DataFrame(data=[], index=[v for v in d], \

columns=["ARS этапа тренировки", "ARS этапа тестирования"])

Тренировка и оценка модели k-средних
timer = ElapsedTimer()
cnt = О

for i in d:
cnt += 1
print("Haбop данных", cnt)
newpath = os .path. sep. join ([mypath, i, ""])
onlyfiles = [f for f in listdir(newpath) if \

isfile(join(newpath, f))]
j = onlyfiles[O]
k = onlyfiles[l]
data_train = np.loadtxt(newpath+j, delimiter=",")
data_test = np.loadtxt(newpath+k, delimiter=",")

data_joined = np.concatenate((data_train, data_test),axis=O)
data_train, data_test = train_test_split(data_joined, \

test_size•0.20, random_state=2019)
X_train = to_time_series_dataset(data_train[:, 1:])
y_train = data_train[:, О] .astype(np.int)
Х test to_time_series_dataset(data_test[:, 1:])
y_test = data_test[:, 0] .astype(np.int)

X_train = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_train)

X_test = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_test)

classes = len(np.unique(data_train[:, О]))

km = TimeSeriesКМeans(n_clusters=S, max_iter=lO, n_init=lO, \
metric="euclidean", verbose=O, random_state=2019)

km.fit(X_train)

Кnаmрмзация временных рядов 1 405

print (i)
preds = km.predict(X_train)
ars = adjusted_rand_score(data_train[:, О], preds)
рrint("Скорректированный индекс Rand на тренировочном наборе:", \

ars)
kМeansDF.loc[i, "ARS этапа тренировки"] = ars

preds_test = km.predict(X_test)
ars = adjusted_rand_score(data_test[:, О], preds_test)
рrint("Скорректированный индекс Rand на тестовом наборе:", ars)
kMeansDF.loc[i, "ARS этапа тестирования"] = ars

kMeansTime = timer.elapsed_time()

Для обработки всех 85 наборов алгоритму k-средних потребовалось около
пяти минут.

Полный прогон с использованием алгоритма HDBSCAN
Наконец, используем алгоритм HBDSCAN.

Эксперимент с методом HDBSCAN - полный прогон

Создание объекта DataFrame
hdbscanDF = pd.DataFrame(data=[], index=[v for v in d], \

columns= ["ARS этапа тренировки", "ARS этапа тестирования"])

Тренировка и оценка модели HDBSCAN
timer = ElapsedTimer()
cnt = О

for i in d:
ccnt += 1
print("Haбop данных", cnt)
newpath = os.path.sep.join([mypath, i, ""])
onlyfiles = [f for f in listdir(newpath) if \

isfile(join(newpath, f))]
j = onlyfiles[O]
k = onlyfiles[l]
data_train = np.loadtxt(newpath+j, delimiter=",")
data test = np.loadtxt(newpath+k, delimiter=",")

data_joined = np.concatenate((data_train, data_test), axis=O)
data_train, data test train_test_split(data_joined, \

406 1 Гnава 13

test_size=0.20, random_state=2019)

Х train = data_train[:, 1:]
y_train = data_train[:, 0] .astype(np.int)
Х test data_test[:, 1:]
y_test = data_test[:, 0] .astype(np.int)

X_train = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_train)

X_test = TimeSeriesScalerMeanVariance(mu=O., \
std=l.) .fit_transform(X_test)

classes = len(np.unique(data_train[:, 0]))
min cluster size = 5

- -
min_samples = None
alpha = 1.0
cluster selection method
prediction_data = True

'eom'

hdЬ = hdЬscan.HDBSCAN(min_cluster size=min cluster size, \
min_samples=min_samples, alpha=alpha, \
cluster_selection_method=cluster_selection_method, \
prediction_data=prediction_data)

print(i)
preds = hdb.fit_predict(X_train.reshape(X_train.shape[O], \

X_train.shape[l]))
ars = adjusted_rand_score(data_train[:, О], preds)
рrint("Скорректированный индекс Rand на тренировочном наборе:", \

ars)
hdЬscanDF.loc[i, "ARS этапа тренировки"] = ars

preds_test = hdbscan.prediction.approximate_predict(hdЬ,
X_test.reshape(X_test.shape[O], X_test.shape[l]))

ars = adjusted_rand_score(data_test[:, О], preds_test[OJ)
рrint("Скорректированный индекс Rand на тестовом наборе:", ars)
hdbscanDF.loc[i, "ARS этапа тестирования"] = ars

hdbscanTime = timer.elapsed_time()

Для обработки всех 85 наборов алгоритму HBDSCAN тоже понадобилось

около 1 о минут.

Кластеризация временных рядов 1 407

Сравнение трех подходов к кластеризации временных рядов

Теперь сравним между собой все три алгоритма кластеризации, чтобы вы­

яснить, какой из них проявил себя лучше всего. Один из подходов заключа­

ется в вычислении средних значений скорректированного индекса Rand для
тренировочных и тестовых наборов в каждом из алгоритмов.

Соответствующие оценки приведены ниже.

Результаты метода k-Shape

ARS этапа тренировки
ARS этапа тестирования

Результаты метода k-средних

ARS этапа тренировки
ARS этапа тестирования

Результаты метода HDBSCAN

ARS этапа тренировки
ARS этапа тестирования

0.165139
о .151103

0.184789
0.178960

0.178754
0.158238

Результаты оказались примерно сопоставимыми. Наибольшие значения

индексов Rand получены по методу k-средних, за которым следуют алгоритмы
k-Shape и HDBSCAN.

Для валидации некоторых из этих оценок подсчитаем, сколько раз каждый

алгоритм занимал первое, второе и третье места по всем 85 наборам.

Подсчет числа занятых мест
timeSeriesClusteringDF = pd.DataFrame(data=[], \

index=kShapeDF.index, columns=["kShapeTest", \
"kМeansTest", "hdЬscanTest"])

timeSeriesClusteringDF.kShapeTest = \
kShapeDF["ARS этапа тестирования"]

timeSeriesClusteringDF.kМeansTest = \
kМeansDF["ARS этапа тестирования"]

timeSeriesClusteringDF.hdЬscanTest = \
hdbscanDF["ARS этапа тестирования"]

tscResults = timeSeriesClusteringDF.copy()

408 1 Г11ава 13

for i in range(O, len(tscResults)):
maxValue = tscResults.iloc[i] .max()
tscResults.iloc[i] [tscResults.iloc[i]==maxValue]=l
minValue • tscResults.iloc[i] .min()
tscResults.iloc[i] [tscResults.iloc[i]==minValue]=-1
medianValue = tscResults.iloc[i] .median()
tscResults.iloc[i] [tscResults.iloc[i]==medianValue]=O

t Вывод результатов

tscResultsDF = pd.DataFrame(data=np.zeros((З, 3)), \
index=["firstPlace", "secondPlace", "thirdPlace"], \
columns=["kShape", "kМeans", "hdЬscan"])

tscResultsDF. loc ["firstPlace", :] = \
tscResults[tscResults==l].count() .values

tscResultsDF.loc["secondPlace", :] = \
tscResults[tscResults==OJ .count() .values

tscResultsDF.loc["thirdPlace", :] = \
tscResults[tscResults==-1] .count() .values

tscResultsDF

Лидером по количеству первых мест оказался алгоритм k-Shape, за кото­
рым следует алгоритм HDBSCAN. Метод k-средних чаще остальных занимал
вторые места, демонстрируя не наилучшую, но и не наихудшую производи­

тельность для большинства наборов данных (табл. 13.1).

Таблица 13.1. Сводка результатов сравнения

kSh1pe kМeans hdbscan

flrstPlace 31.0 24.0 29.О

secondPlace 19.О 41.0 26.0

thirdPlace 35.0 20.0 30.0

Исходя из результатов сравнения трудно сказать, какой из алгоритмов од­

нозначно превосходит другие в отношении производительности. Несмотря на

то что алгоритм k-Shape чаще других занимал первые места, он работает зна­
чительно медленнее двух остальных алгоритмов.

В то же время алгоритм HDBSCAN и метод k-средних одинаково хорошо
проявили себя, заняв первое место для значительного количества наборов.

Кnастеризация временных рядов 1 409

Резюме

В этой главе мы исследовали временные ряды и убедились в том, что об­

учение без учителя позволяет эффективно группировать шаблонные после­

довательности на основании их сходства, причем без каких-либо меток. Мы

подробно рассмотрели работу с тремя алгоритмами кластеризации: k-Shape,
метод k-средних и HDBSCAN. На сегодняшний день лучшим из них считается
алгоритм k-Shape, но и остальные два алгоритма тоже дают неплохие резуль­
таты.

Самое главное то, что результаты, полученные для 85 наборов данных,
продемонстрировали важность проведения экспериментов. Как это часто

бывает в машинном обучении, ни одному из алгоритмов нельзя отдать яв­

ное предпочтение. Вы должны постоянно искать новые пути и эксперимен­

тировать, чтобы выяснить, какой из алгоритмов лучше всего подходит для

решения конкретной задачи. Умение выбрать самый эффективный алгоритм

является ключевым навыком специалиста в области интеллектуальной обра­

ботки данных.

Надеюсь, вы теперь лучше готовы к решению практических задач с исполь­

зованием различных подходов на основе обучения без учителя, о которых вы

узнали на протяжении книги.

410 1 Глава 13

ГЛАВА 14

Заключение

Искусственный интеллект переживает настоящий бум, который не наблю­

дался с момента появления Интернета в середине 1990-х годов. И у этого бума

есть свои причины.

В предыдущие десятилетия разработки в области искусственного интел­

лекта и машинного обучения носили преимущественно теоретический и ака­

демический характер, а примеров успешных коммерческих решений было не

так много. Но за последние годы ситуация поменялась к лучшему. Технологии

приобрели более прикладную направленность, ориентированную на промыш­

ленное применение, причем флагманами процесса стали такие компании, как

Google, Facebook, Amazon, Microsoft и Apple.
Смещение акцентов на разработку приложений машинного обучения для

узкоспециализированных задач (слабый ИИ) вместо более амбициозных про­

ектов (сильный ИИ) сделало эту область исследований более привлекатель­

ной для инвесторов, рассчитывающих с лихвой окупить вложенные средства

в течение ближайших 7-10 лет. В свою очередь, приток инвестиций позволил
достичь серьезных успехов не только в разработке слабого ИИ, но и в постро­

ении фундамента для будущих систем сильного ИИ.

Конечно же, все дело не только в инвестициях. Недавние успехи в равной

степени связаны с началом эпохи больших данных, достижениями в аппарат­

ных технологиях (в особенности имеется в виду появление мощных графи­

ческих процессоров Nvidia, применяемых при обучении глубоких нейронных
сетей), а также разработкой передовых алгоритмов.

Вся эта маркетинговая шумиха вполне может привести к разочарованиям

в будущем, но пока что достигнутый прогресс ошеломляет, привлекая внима­

ние широкой аудитории.

Обучение с учителем

На сегодняшний день большинство успехов в области машинного обуче­

ния связано с обучением с учителем. Успешные проекты можно разбить на

следующие категории по типу обрабатываемых данных.

• Изображения. В эту категорию входят технологии оптического распоз­

навания символов, классификации изображений и распознавания лиц.

Например, Facebook автоматически тегирует лица на новых фотографи­
ях, исходя из степени их сходства с ранее тегированными лицами в базе

данных существующих фотографий.

• Видео. К этой категории относятся беспилотные автомобили, появле­

ние которых на дорогах не за горами. Инвестиции в данную область де­

лают такие компании, как Google, Tesla и UЬer.

• Речь. Это системы распознавания речи, представленные такими голосо­

выми помощниками, как Siri, Alexa, Google Assistant и Cortana.

• Текст. Классическим примером может служить фильтрация спама в

электронной почте. Сюда же входят такие технологии, как машинный

перевод (например, система Google Translate), сентимент-анализ, син­
таксический анализ, распознавание языка и вопросно-ответные систе­

мы. Свидетельством успехов служит широкое распространение чат-бо­

тов в последние годы.

Кроме того, обучение с учителем хорошо справляется с предсказанием

временных рядов, что находит множество применений в таких областях, как

финансы, здравоохранение и рекламные технологии. Разумеется, подходы на

основе обучения с учителем не ограничены работой только с одним типом

данных. Например, в технологиях обработки видео распознавание изображе­

ний в сочетании с обработкой естественного языка применяется для машин­

ного обучения систем генерирования субтитров.

Обучение без учителя

Обучение без учителя пока что не может похвастаться такими же успехами,

как и обучение с учителем, но его потенциал все равно огромен. Большин­

ство доступных в Интернете данных не размечено. Чтобы иметь возможность

применять машинное обучение для решения более масштабных задач, чем те,

которые уже решены с помощью обучения с учителем, нам придется работать

как с размеченными, так и с неразмеченными данными.

Обучение без учителя очень хорошо справляется с обнаружением скрытых

закономерностей путем обучения базовой структуре неразмеченных данных.

Выявив эти закономерности, система обучения без учителя может сгруппиро­

вать найденные скрытые шаблоны на основании их схожести.

412 1 Глава 14

Как только такое группирование выполнено, оператор системы (т.е. че­
ловек) может выбрать несколько шаблонов из каждой группы и снабдить их

понятными метками. Если группы определены достаточно четко (т.е. их эле­
менты однородны и отчетливо отличаются от элементов других групп), то на­

значенные человеком метки можно применить к другим (оставшимся нераз­

меченными) элементам группы. Такой подход обеспечивает очень быстрое и

эффективное маркирование ранее неразмеченных данных.

Другими словами, обучение без учителя позволяет успешно применять

методы обучения с учителем. Подобная синергия обучения с учителем и без

учителя, называемая обучением с частичным привлечением учителя, может

породить новую волну успешных проектов машинного обучения.

Scikit-learn
Давайте кратко вспомним, о каких темах шла речь в предыдущих главах.

В главе 3 мы рассматривали, как применять методы снижения размерности
путем обучения базовой структуре данных с сохранением только наиболее су­

щественных признаков, которые транслировались в пространство меньшей

размерности.

Перенос данных в пространство более низкой размерности значительно

упрощает обнаружение скрытых закономерностей. В главе 4 мы продемон­
стрировали это, построив систему обнаружения аномалий, которая отделяла

нормальные операции с банковскими картами от мошеннических.

В пространстве более низкой размерности легче группировать схожие

точки данных, выполняя кластеризацию, которую мы исследовали в главе 5.
В качестве примеров успешного применения кластеризации можно привести

сегментирование групп, т.е. разделение объектов на основании степени их

взаимного сходства. Мы применили сегментирование в главе 6 к базе данных
заявок на получение займа. На этом мы завершили часть книги, посвященную

использованию библиотеки Scikit-learn в обучении без учителя.
В главе 13 мы расширили кластеризацию на временные ряды и исследовали

различные методы их кластеризации. Мы провели ряд экспериментов, выяс­

нив, насколько важно располагать широким арсеналом методов машинного

обучения, поскольку ни один из алгоритмов не может одинаково хорошо ра­

ботать для всех наборов данных.

Заключение 1 413

Tensorflow и Keras
В главах 7-12 мы переключились на библиотеки TensorFlow и Keras.
В первую очередь мы познакомились с нейронными сетями и концепцией

обучения признакам. В главе 7 мы узнали, что такое автокодировщики и как
они обучаются новым, более сжатым представлениям, создаваемым на основе

оригинальных данных. Это еще один способ обучения базовой структуре дан­

ных с целью выявления скрытых закономерностей.

В главе 8 мы применили автокодировщики к набору данных об операциях с
банковскими картами и построили приложение, способное обнаруживать мо­
шеннические транзакции. И, что еще более важно, в главе 9 мы улучшили это
решение, подключив обучение без учителя и тем самым продемонстрировав

возможную синергию двух подходов.

В главе 10 мы ввели порождающие модели, начав с рассмотрения ограни­
ченной машины Больцмана. Мы использовали данный тип нейронной сети

для разработки рекомендательной системы фильмов, которая отдаленно на­

поминает аналогичные системы компаний Netflix и Amazon.
В главе 11 мы перешли от мелких нейронных сетей к глубоким и реализова­

ли более продвинутую порождающую модель, объединив несколько ограни­

ченных машин Больцмана в один каскад, называемый глубокой сетью доверия,
что позволило нам сгенерировать синтетические изображения цифр, допол­

няющие существующий набор MNIST, и построить усовершенствованную
систему классификации изображений. Это еще раз подчеркнуло, насколько

перспективно использовать обучение без учителя для улучшения решений,

основанных на обучении с учителем.

В главе 12 мы перешли к обсуждению другого класса порождающих мо­
делей, который в настоящее время пользуется наибольшей популярностью:

генеративно-состязательнь1е сети. С помощью этих сетей мы сгенерировали

дополнительные синтетические изображения цифр, аналогичные тем, кото­

рые содержатся в наборе данных MNIST.

Обучение с подкреплением

В этой книге мы не рассматривали обучение с подкреплением, но в послед­

ние годы оно привлекает к себе все больше внимания, особенно ввиду недав­

них успехов в таких областях, как настольные и видеоигры.

Несколько лет назад произошло знаменательное событие: компания Google
DeepMind представила свою программу для игры в го, AlphaGo. Историчес-

414 1 Гnава 14

кая победа этой программы над чемпионом мира по го Ли Седолем в марте

2016 года - результат, ожидавшийся специалистами не ранее чем через 10
лет, - позволила продемонстрировать всему миру прогресс, которого удалось

добиться в области ИИ.

Чуть позже компания Google DeepMind применила комбинацию обучения
с подкреплением и обучения без учителя для разработки улучшенной версии

программы AlphaGo, получившей название AlphaGo Zero, в которой вообще
не использовались данные игр, сыгранных между людьми.

Подобные успехи, являющиеся следствием объединения различных подхо­

дов к машинному обучению, лишь подтверждают лейтмотив данной книги:

следующая волна успехов в машинном обучении будет связана с нахождени­

ем новых возможностей работы с неразмеченными данными для улучшения

существующих решений, которые в наши дни нуждаются в интенсивном ис­

пользовании размеченных данных.

Наиболее перспективные направления обучения

без учителя на сегодняшний день

В завершение стоит поговорить о том, каковы ближайшие перспективы

технологии обучения без учителя. На сегодняшний день она успешно приме­

няется в нескольких областях, наиболее важные из которых - обнаружение

аномалий, снижение размерности, кластеризация, эффективное маркирова­

ние неразмеченных наборов и аугментация данных.

Обучение без учителя лучше всего справляется с идентификацией ранее

не известных шаблонов, особенно когда новые шаблоны резко отличаются

от существующих. Это важно в тех областях, где метки прошлых шаблонов

малопригодны с точки зрения захвата признаков неизвестных будущих шаб­

лонов. Например, обнаружение аномалий применяется для выявления фаль­

сификаций любого рода (например, мошеннических операций с кредитными

картами, дебетовыми картами, банковскими переводами, онлайн-платежами,

страховыми выплатами и т.п.), а также для маркирования соответствующими

метками подозрительных транзакций, связанных с отмыванием денег, финан­

сированием терроризма и торговлей людьми.

Обнаружение аномалий также задействуется в системах кибербезопасно­

сти для противодействия кибератакам. Системы, основанные на фиксиро­

ванных правилах, сталкиваются с трудностями при появлении новых видов

кибератак, поэтому обучение без учителя начинает играть все более важную

Закпючение 1 415

роль в этой сфере. Кроме того, обнаружение аномалий отлично подходит при

решении проблем, связанных с качеством данных. Используя этот подход,

можно более эффектно отсекать некачественные данные.

Обучение без учителя также помогает справиться с одной из главных про­

блем машинного обучения: проклятием размерности. Обычно специалисты

в области интеллектуального анализа данных вынуждены ограничивать свой

выбор некоторым подмножеством признаков, которые будут использоваться

для построения моделей машинного обучения, поскольку размеры полного

набора признаков затрудняют выполнение необходимых вычислений, а по­

рой делают их практически неосуществимыми. Обучение без учителя позво­

ляет аналитикам не только работать с оригинальным набором признаков, но

и дополнять его сконструированными признаками, не опасаясь столкнуться с

трудоемкими вычислениями в процессе построения модели.

Располагая подготовленным набором, состоящим из оригинальных и

сконструированных признаков, аналитик может применить снижение раз­

мерности для того, чтобы исключить избыточные признаки, одновременно

сохранив наиболее существенные, некоррелированные признаки для по­

следующего анализа и построения модели. Такого рода сжатие данных мож­

но рассматривать как полезный этап предварительной обработки данных

в системах обучения с учителем (особенно при работе с изображениями и

видео).

Обучение без учителя облегчает аналитикам и менеджерам выявление

пользователей с нетипичным поведением, которое заметно отличается от по­

ведения большинства других клиентов. Это становится возможным благода­

ря кластеризации сходных точек, что позволяет выполнять сегментирование

групп. Идентифицировав отчетливые группы, специалист может проанализи­

ровать, в чем именно заключаются особенности каждой конкретной группы,

отличающие ее от остальных групп. В свою очередь, это дает менеджерам воз­

можность лучше разобраться в происходящих процессах и соответствующим

образом скорректировать корпоративную стратегию.

Кластеризация значительно повышает эффективность маркирования не­

размеченных данных. Ввиду того что сходные данные объединяются в груп­

пы, оператору (т.е. человеку) достаточно снабдить метками лишь небольшое

количество точек в каждом кластере. После маркирования нескольких точек

в каждом кластере другие точки, оставшиеся немаркированными, получают

метки уже размеченных точек.

Наконец, порождающие модели позволяют генерировать синтетические

данные для дополнения существующих наборов данных. Мы продемонстри-

416 1 Гnава 14

ровали это на примере набора MNIST. Способность таких моделей генериро­
вать новые синтетические данные различного типа, в том числе изображения

и текст, открывает необычайно широкие перспективы, которые лишь недавно

стали предметом серьезных исследований.

Будущее технологии обучения без учителя

Мы все еще на гребне волны интереса к искусственному интеллекту. Мы

стали свидетелями больших успехов, достигнутых в этом направлении, но

многое в мире ИИ пока что строится на энтузиазме и обещаниях. Потенциал

технологий искусственного интеллекта огромен, но его только предстоит рас­

крыть.

Успехи в основном касаются узкоспециализированных задач, решаемых с

помощью обучения без учителя. Но есть надежда, что по мере развития тех­

нологий мы перейдем от задач слабого ИИ, таких как классификация изобра­

жений, машинный перевод, распознавание речи и чат-боты, к более амбици­

озным проектам сильного ИИ: чат-боты, способные понимать человеческий

язык и вести свободный диалог с человеком; роботы, которые ориентируются

в пространстве и действуют, не полагаясь на размеченные данные; беспилот­

ные автомобили, способные самообучаться вождению на уровне, превосходя­

щем возможности человека; интеллектуальные агенты, умеющие заниматься

творчеством на человеческом уровне.

Многие эксперты считают, что ключом к разработке сильного ИИ является

обучение без учителя. При любом другом подходе искусственный интеллект

будет скован ограничениями, зависящими от количества имеющихся разме­

ченных данных.

В чем человек остается непревзойденным (причем с рождения), так это

в способности обучаться выполнению разнообразных задач, не требуя мно­

жества примеров. К примеру, ребенок в раннем возрасте способен отличить

кота от собаки, увидев их лишь считанное число раз. Современные системы

искусственного интеллекта требуют множества примеров/меток. В идеале си­

стема должна уметь различать изображения, относящиеся к разным классам

(например, коты и собаки), обходясь минимальным количеством меток, воз­

можно одной или вообще без них. Реализация обучения такого типа возмож­

на лишь за счет дальнейшего прогресса в области обучения без учителя.

Кроме того, современные системы искусственного интеллекта по боль­

шей части лишены творческих способностей. Они просто полагаются на оп­

тимизацию распознавания шаблонов на основании меток, предоставляемых

Заключение 1 417

им в процессе обучения. Чтобы создать систему, обладающую интуицией и

творческими навыками, исследователи должны наделить ее способностью

анализировать множество неразмеченных данных и выявлять шаблоны, ос­

тавшиеся незамеченными даже людьми.

К счастью, наблюдаются признаки того, что мы постепенно продвигаемся в

направлении сильного ИИ.

Имеется в виду программа AlphaGo, разработанная компанией Google
DeepMind. Первая версия программы одержала победу над профессиональ­
ным игроком в го (в октябре 2015 года), опираясь на данные предыдущих
игр, сыгранных между людьми, и такие методы машинного обучения, как

обучение с подкреплением, что позволило ей просчитывать игру на много

ходов вперед и выявлять ходы, которые сильнее всего повышают шансы на

победу.

Победа этой версии программы AlphaGo над одним из лучших профес­
сиональных игроков в го Ли Седолем в матче из пяти партий, который был

проведен в Сеуле в марте 2016 года, произвела огромное впечатление. Однако
последняя версия AlphaGo продемонстрировала еще лучшую производитель­
ность.

Оригинальная программа AlphaGo полагалась на имеющиеся данные и
опыт других игроков. Новейшая версия программы, AlphaGo Zero, обучалась
игре и выигрышным стратегиям с чистого листа, играя сама с собой1 • Другими

словами, программа не опиралась на накопленные людьми знания, но это не

помешало ей достичь сверхчеловеческого уровня, победив предыдущую вер­

сию AlphaGo со счетом 100:0.
Совершенно ничего не зная об игре го, программа AlphaGo Zero букваль­

но за несколько дней приобрела опыт, для накопления которого людям по­

надобились тысячелетия. Но программа пошла еще дальше, продемонстри­

ровав результативность, превосходящую возможности человека. Программе

удалось обнаружить новые знания и разработать новые, ранее не известные

стратегии выигрыша. Тем самым программа AlphaGo Zero проявила творче­
ские способности.

Если технологии искусственного интеллекта продолжат развиваться в дан­

ном направлении, демонстрируя способность к обучению на небольших объе­

мах имеющихся знаний или даже в условиях полного их отсутствия (т.е. с ис­

пользованием небольшого количества размеченных данных или вообще

1 Описание стратеrии обучения проrраммы AlphaGo Zero приведено в статье AlphaGo Zero:
Learning from Scratch, доступной по адресу https: / /deepmind. com/Ыog/alphago­
zero-learning-scratch/.

418 1 Гnава 14

без них), то мы получим искусственный интеллект, способный творить, рас­

суждать и принимать сложные решения, т.е. интеллект, наделенный качества­

ми, доселе присущими только людям2 •

Резюме

Мы ограничились лишь поверхностным рассмотрением технологии обуче­

ния без учителя и ее возможностей, но я надеюсь, что теперь вы будете лучше

понимать, какие широкие перспективы открывает обучение без учителя и как

применять его для построения систем машинного обучения.

Как минимум, вы получили базовое представление о том, что такое обуче­

ние без учителя и как создавать приложения, способные обнаруживать скры­

тые закономерности в данных, выявлять аномалии, выполнять кластеризацию

и сегментирование групп, автоматически выделять признаки и генерировать

синтетические данные на основе неразмеченных наборов данных.

У технологий искусственного интеллекта огромное будущее. Давайте при­

близим его вместе!

2 Компания OpenAI продемонстрировала заметные успехи в применении обучения без учи­
теля для понимания естественного языка, что является важным шагом на пути к созданию

сильного ИИ. О соответствующих достижениях можно прочитать в статьях Unsupervised
Sentiment Neuron (https: //openai. com/Ыog/unsupervised-sentiment-neuron/) и
lmproving Language Understanding with Unsupervised Learning (h t tps : / / openai . com/Ьlog /
language-unsupervised/).

Заключение 1 419

Предметный указатель

А 1

Adam, 252; 317 ICA, 48; 146
AlphaGo, 414 обнаружение аномалий, 173
Anaconda, 64 Isomap, 48; 122; 139
ARS, 391

J auROC, 87

с
Jupyter Notebook, 66

CNN,365 к

Keras, 65; 237; 414
D KNN,42

DBN, 55; 329; 342 k-Shape,385;393;403
обучение, 349

L DBSCAN, 51; 203
иерархический,206 LDA,49

DCGAN, 365; 370 LightGBM, 65; 97; 293; 355

генератор, 371 LLE, 122; 141

дискриминатор, 373
м

Е MDS, 122; 140

ECG5000, 393 MNIST, 118; 184; 375

ECGFiveDays, 385 MovieLens, 309
MSE, 314

F
Fastcluster, 197 N

FPR, 87 NaN, 71; 212
Netflix, 308

G
GAN, 55; 363

р

Git, 63 РСА, 46; 123; 185

н
инкрементный, 130
обнаружение аномалий, 154

HDBSCAN, 206; 227; 401; 406 разреженный, 130; 160
ядерный, 133; 163

R

Rand, 391
RВF, 133
RВМ,54;306;319;332

ReLU, 249; 285
~Sprop,374

RОС-кривая, 87

Scikit-learn, 413
Sequential, 250
SGD,252
Softmax,250
SVD, 47; 122; 134
SVM,45

tanh, 249

s

т

TensorFlow, 64; 236; 414
TPR, 87
tslearn, 387
t-SNE, 48; 122; 143

х

XGBoost, 65; 94

А

Автокодировщик, 52; 237; 245
вариационный, 241
двухслойный неполный, 257
компоненты, 248
нелинейный, 264
неполный, 238
разреженный, 240
сверхполный, 239; 267; 270
разреженный, 273

шумоподавляющий, 241; 279
Агент, 57

422 1 Предметный указатеnь

Агломеративная

кластеризация,50; 197
Анализ

главных компонент, 46; 122
независимых

компонент,48;122;146;173

Аномалия, 59
Ансамбль, 107
Антагонистическая игра, 363
Атом, 144

Б

Бинарная классификация, 38
Бустинг, 44
Бутстрэп-агрегирование, 43
Бэггинг, 43

в

Валидационный набор, 30; 78
Вариационный автокодировщик, 241
Вероятность класса, 41
Вес узла, 235
Взрывной градиент, 53
Видимый слой, 306
Вложение случайных деревьев, 122
Внутрикластерная вариация, 186
Временные ряды, 383
Входной слой, 234
Выброс, 37; 59
Выделение признаков, 233
Выходной слой, 234

r
Гауссовская случайная

проекция,136;165

Генеративно-состязательная

сеть,55;363

Генератор,55;363

Гиперболический тангенс, 249
Гиперпараметр,267

Тhавные компоненты, 123
Глубокая сеть доверия, 55; 329
Глубокое обучение, 303
без учителя, 53

Градиентный бустинг, 65
LightGBM, 97; 293; 355
XGBoost, 94

Градиентный спуск, 252

д

Декодировщик, 248; 251
Деконволюция, 371
Дендрограмма, 50; 196; 198
Деревья решений, 43
Детектор признаков, 55
Дискриминативная модель, 305
Дискриминатор, 55; 363
Дрейф данных, 38
Дропаут, 270

3
Зависимая переменная, 29
Затухающий градиент, 53

и

Игра с нулевой суммой, 55; 363
Иерархическая

кластеризация,50; 196;223
Избыточное семплирование, 295
Извлечение признаков, 51
Изометрическое отображение, 139
Инерция, 50; 187; 220

к

Качественный анализ, 38
Класс, 29
Классификация, 38
Кластеризация,49;66; 183;209

HDBSCAN, 227
агломеративная, 197

временных рядов, 383; 402
иерархическая,50; 196;223
метод

HDBSCAN, 401
k-Shape, 385; 393
k-средних, 400

Кодировщик, 248; 250
Количественный анализ, 39
Коллаборативная

фильтрация, 43; 307
с использованием RBM, 319

Коллинеарность,40

Конструирование

признаков,37;74;215

Коэффициент вариации, 256
Кривая ошибок, 87
Кросс-проверка, 78
Кросс-энтропия, 77

л

Латентное размещение Дирихле, 49
Лемма Джонсона -

Линденштрауса, 136
Ленивое обучение, 42
Линейная регрессия, 40
Линейное проецирование, 46; 122
Логистическая регрессия, 41; 79
Локально-линейное

вложение, 122; 141

м

Марковская модель, 56
Матрица неточностей, 83
Матричная факторизация, 316
Машина

Больцмана, 305
ограниченная, 306; 332

градиентного бустинга, 44
Метка,31

Предметный указатель 1 423

Метод

k-Shape,385;393;403
k-ближайших соседей, 42
k-средних,50; 186;220;400;405
точность,190

ансамблей,44

опорных векторов, 45
Уорда, 198

Метрика, 251
Многоклассовая классификация, 38
Многократное обучение, 122; 139
Многомерное

масштабирование, 122; 140

н

Недообучение, 39
Независимая переменная, 29
Нейронная сеть, 45; 234
глубокая, 303
емкость, 267
сверточная,365

Неконтролируемое обучение, 31
Нелинейное снижение

размерности,46;122

Непараметрический метод, 42
Неполный автокодировщик, 238
двухслойный, 257

Нормализация, 70

о

Обнаружение аномалий, 59; 117; 149
с помощью ICA, 173
с помощью РСА, 154

Обратная свертка, 371
Обратное распространение

ошибки, 321
Обучающий набор, 30
Обучение

без учителя, 46; 294; 412
глубокое,53;303

424 1 Предметный указатепь

предварительное, 54
многократное, 139
на многообразиях, 47
на примерах, 42
признакам,233

словарное,48; 122; 144; 171
с подкреплением, 57; 414
с учителем, 31; 38; 293; 411
с частичным привлечением

учителя,58;289;298;413

Ограниченная машина

Больцмана,54;306;332

Оптимизатор, 251
Оптимизация гиперпараметров, 267
Отбор признаков, 74
Оценщик, 90
Ошибка

за пределами выборки, 30; 77
обобщения, 30; 76
реконструкции,240

п

Панельные данные, 383
Перекрестные данные, 383
Переносимое обучение, 54; 183
Переобучение,36;39

Повышающая дискретизация, 372
Полнота, 83
Порождающая модель, 305
Предварительное обучение, 330
Предиктор, 29
Признак, 29
Продольные данные, 383
Проклятие размерности, 37; 117
Пулинг по максимальному

значению, 366

р

Радиально-базисная функция, 133
Размер ядра, 366

Разреженность, 273
Разреженный автокодировщик, 240
Расстояние Кульбака -

Лейблера,321

Регрессия, 38
линейная, 40
логистическая,41;79

Реrуляризация,36;235

Рекомендательная система, 307

Свертка, 365
обратная, 371

с

Сверточная нейронная сеть, 365
Сверхполный

автокодировщик, 239; 267; 270
Сегментированиегрупп,60;209

Семплирование по Гиббсу, 321
Сигмоида, 249
Сигнал подкрепления, 57
Сингулярное разложение, 47; 122; 134
Система управления версиями, 63
Скрытый слой, 234; 263
Словарное обучение, 48; 122; 144; 171
Словарь,144

Случайное

проецирование,47;122;136

разреженное, 137; 167
Случайный лес, 44; 90
Снижение размерности, 36; 46; 117
нелинейное, 47

Соседство точек данных, 41
Специфичность, 85
Среднеквадратическая ошибка, 314
Стандартизация, 70
Стекинг, 107
Суперинтеллект, 22

т

Тема, 49
Тестовый набор, 30
Тождественное

отображение, 238; 254; 267
Точность,83

у

Узел смещения, 235

ф

Фильтрация по содержимому, 43; 307
Функция

активации,234;249

значения, 30
потерь,30;77;239;251

ц

Центроид, 50; 187

ч

Частота ошибок, 30
Чувствительность,85

ш

Шаг фильтра, 366
Штрафование разреженности, 240
Шум о подавляющий

автокодировщик, 241; 279

э

Эпоха, 251; 320

я

Ядерный метод, 133

Предметный указатель 1 425

Прикладное машинное обучение без учителя
с использованием Python
По мнению многих отраслевых экспертов, обучение без
учителя - передовой рубеж технологий искусственного
интеллекта (ИИ) и , возможно, ключ к созданию сильного ИИ.
Поскольку подавляющая часть накопленных в мире данных не

размечена , к ним нельзя применять традиционное обучение
с учителем. В то же время обучение без учителя позволяет
успешно работать с неразмеченными наборами данных
и выявлять заложенные в них закономерности, обнаружить

которые человеку не под силу.

Автор книги показывает, как реализовать обучение без учителя
на основе двух платформ Pythoп: Scikit-learn и TeпsorFlow/Keras.
Используя готовый код и практические примеры, специалисты

по работе с данными смогут выявлять скрытые закономерности
в информационных массивах, более глубоко анализировать
деловые данные, обнаруживать аномалии, выполнять

автоматическое конструирование признаков и генерировать

синтетические наборы данных . Все, что потребуется от
читателя, - знание программирования и предварительный

опыт работы в области машинного обучения .

Основные темы книги:

• Сравнение сильных и слабых сторон различных подходов
к машинному обучению: с учителем, без учителя
и с подкреплением

• Запуск готового проекта машинного обучения

• Создание системы обнаружения аномалий для выявления
попыток мошенничества с банковскими картами

• Кластеризация пользователей путем разбиения их на
отчетливо различимые однородные группы

• Обучение с частичным привлечением учителя

• Построение рекомендательной системы фильмов

с использованием ограниченных машин Больцмана

• Генерирование синтетических изображений с помощью
генеративно-состязательных сетей

ISBN: 978-5-907144-99-6
1 9 1 4 5

• [!]~: ...
9 785907 144996

"Книга написана понятным

языком и содержит

практические примеры

на Pythoп, которые можно

быстро и эффективно

реализовать. Ее по

достоинству оценят

исследователи, инженеры

и студенты".

Сара Надь,

главный специалист по работе

с данными, Edison Software

Анкур Пател - вице-президент

компании 7Park Data, входящей
в портфель активов инвестицион­

ной компании Vista Equ ity Partпers.

Вместе со своей командой
разрабатывает программные
продукты по обработке данных
для хедж-фондов, а также систему
MLaaS (машинное обучение как
услуга), предназначенную для
корпоративных клиентов.

Категория: компьютерные технологии/
искусственный интеллект/Руthоn
Уровень: для пользователей средней
и высокой квалификации

h tt p://www.wi ll iamspuЬlishing .com

http:// www.orei lly.com

