

Николай Прохоренок

Санкт-Петербург

«БХВ-Петербург»

2010

УДК 681.3.068+800.92Python

ББК 32.973.26-018.1

 П84

 Прохоренок Н. А.

 П84 Python. Самое необходимое. — СПб.: БХВ-Петербург, 2011. — 416 с.: ил.

 + Видеокурс (на DVD)

ISBN 978-5-9775-0614-4

Описан базовый синтаксис языка Python: типы данных, операторы, условия, цик-

лы, регулярные выражения, встроенные функции, объектно-ориентированное про-

граммирование, часто используемые модули стандартной библиотеки. Даны основы

SQLite, описан интерфейс доступа к базам данных SQLite и MySQL. Рассмотрены

работа с изображениями с помощью библиотеки PIL и получение данных из Интер-

нета. Книга содержит более двухсот практических примеров, помогающих начать

программировать на языке Python самостоятельно. Весь материал тщательно подоб-

ран, хорошо структурирован и компактно изложен, что позволяет использовать кни-

гу как удобный справочник.

Прилагаемый DVD содержит листинги описанных в книге примеров и видеоролики.

Для программистов

УДК 681.3.068+800.92Python

ББК 32.973.26-018.1

Группа подготовки издания:

Главный редактор Екатерина Кондукова

Зам. главного редактора Евгений Рыбаков

Зав. редакцией Григорий Добин

Редактор Анна Кузьмина

Компьютерная верстка Натальи Смирновой

Корректор Наталия Першакова

Дизайн серии Инны Тачиной

Оформление обложки Елены Беляевой

Зав. производством Николай Тверских

Лицензия ИД № 02429 от 24.07.00. Подписано в печать 30.07.10.

Формат 70 100
1
/16.

 Печать офсетная. Усл. печ. л. 33,54.

Тираж 1500 экз. Заказ №

"БХВ-Петербург", 190005, Санкт-Петербург, Измайловский пр., 29.

Санитарно-эпидемиологическое заключение на продукцию № 77.99.60.953.Д.005770.05.09

от 26.05.2009 г. выдано Федеральной службой по надзору

в сфере защиты прав потребителей и благополучия человека.

Отпечатано с готовых диапозитивов

в ГУП "Типография "Наука"

199034, Санкт-Петербург, 9 линия, 12

ISBN 978-5-9775-0614-4 © Прохоренок Н. А., 2010

© Оформление, издательство "БХВ-Петербург", 2010

Оглавление

ВВЕДЕНИЕ .. 1

ГЛАВА 1. ПЕРВЫЕ ШАГИ .. 3

1.1. Установка Python .. 3

1.2. Первая программа на Python ... 9

1.3. Структура программы .. 11

1.4. Комментарии ... 15

1.5. Скрытые возможности IDLE ... 16

1.6. Вывод результатов работы программы .. 17

1.7. Ввод данных .. 19

1.8. Доступ к документации .. 21

ГЛАВА 2. ПЕРЕМЕННЫЕ ... 24

2.1. Именование переменных ... 24

2.2. Типы данных ... 26

2.3. Инициализация переменных ... 29

2.4. Проверка типа данных ... 31

2.5. Преобразование типов данных .. 31

2.6. Удаление переменной .. 33

ГЛАВА 3. ОПЕРАТОРЫ PYTHON .. 34

3.1. Математические операторы ... 34

3.2. Двоичные операторы .. 36

3.3. Операторы для работы с последовательностями .. 37

3.4. Операторы присваивания... 37

3.5. Приоритет выполнения операторов .. 38

ГЛАВА 4 . УСЛОВНЫЕ ОПЕРАТОРЫ И ЦИКЛЫ .. 40

4.1. Операторы сравнения ... 41

4.2. Оператор ветвления if...else ... 43

4.3. Цикл for.. 46

Оглавление IV

4.4. Функции range(), xrange() и enumerate() .. 48

4.5. Цикл while.. 50

4.6. Оператор continue. Переход на следующую итерацию цикла................................ 52

4.7. Оператор break. Прерывание цикла .. 52

ГЛАВА 5. ЧИСЛА .. 54

5.1. Встроенные функции для работы с числами ... 55

5.2. Модуль math. Математические функции ... 57

5.3. Модуль random. Генерация случайных чисел ... 59

ГЛАВА 6. СТРОКИ .. 62

6.1. Создание строки ... 63

6.2. Специальные символы ... 66

6.3. Операции над строками ... 67

6.4. Форматирование строк ... 70

6.5. Метод format() ... 77

6.6. Функции и методы для работы со строками .. 80

6.7. Настройка локали и изменение регистра символов .. 84

6.8. Функции для работы с символами .. 86

6.9. Поиск и замена в строке... 86

6.10. Проверка типа содержимого строки ... 90

6.11. Преобразование объекта в строку ... 93

6.12. Шифрование строк ... 94

6.13. Преобразование кодировок ... 94

ГЛАВА 7. РЕГУЛЯРНЫЕ ВЫРАЖЕНИЯ ... 96

7.1. Синтаксис регулярных выражений ... 96

7.2. Поиск первого совпадения с шаблоном ... 105

7.3. Поиск всех совпадений с шаблоном ... 110

7.4. Замена в строке ... 111

7.5. Прочие функции и методы .. 113

ГЛАВА 8. СПИСКИ, КОРТЕЖИ И МНОЖЕСТВА ... 115

8.1. Создание списка ... 116

8.2. Операции над списками ... 119

8.3. Многомерные списки ... 121

8.4. Перебор элементов списка... 122

8.5. Генераторы списков и выражения-генераторы ... 123

8.6. Перебор элементов списка без циклов ... 125

8.7. Добавление и удаление элементов списка ... 128

8.8. Поиск элемента в списке ... 130

Оглавление V

8.9. Переворачивание и перемешивание списка... 131

8.10. Выбор элементов случайным образом ... 132

8.11. Сортировка списка ... 133

8.12. Заполнение списка числами .. 135

8.13. Преобразование списка в строку... 136

8.14. Кортежи ... 137

8.15. Множества ... 139

ГЛАВА 9. СЛОВАРИ .. 144

9.1. Создание словаря .. 144

9.2. Операции над словарями ... 147

9.3. Перебор элементов словаря ... 148

9.4. Методы для работы со словарями ... 149

ГЛАВА 10. РАБОТА С ДАТОЙ И ВРЕМЕНЕМ ... 152

10.1. Получение текущей даты и времени... 152

10.2. Форматирование даты и времени ... 154

10.3. "Засыпание" скрипта .. 156

10.4. Модуль datetime. Манипуляции датой и временем ... 157

10.4.1. Класс timedelta ... 157

10.4.2. Класс date ... 159

10.4.3. Класс time ... 162

10.4.4. Класс datetime ... 164

10.5. Модуль calendar. Вывод календаря .. 168

10.5.1. Методы классов TextCalendar и LocaleTextCalendar 169

10.5.2. Методы классов HTMLCalendar и LocaleHTMLCalendar 171

10.5.3. Другие полезные функции .. 172

10.6. Измерение времени выполнения фрагментов кода ... 174

ГЛАВА 11. ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ ... 177

11.1. Создание функции и ее вызов ... 177

11.2. Расположение определений функций ... 180

11.3. Необязательные параметры и сопоставление по ключам 181

11.4. Переменное число параметров в функции ... 184

11.5. Анонимные функции .. 185

11.6. Функции-генераторы .. 186

11.7. Декораторы функций.. 187

11.8. Рекурсия. Вычисление факториала ... 189

11.9. Глобальные и локальные переменные .. 190

Оглавление VI

ГЛАВА 12. МОДУЛИ И ПАКЕТЫ .. 194

12.1. Инструкция import .. 194

12.2. Инструкция from ... 198

12.3. Пути поиска модулей ... 200

12.4. Повторная загрузка модулей ... 202

12.5. Пакеты ... 202

ГЛАВА 13. ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ 207

13.1. Определение класса и создание экземпляра класса .. 207

13.2. Методы __init__() и __del__() .. 210

13.3. Наследование .. 211

13.4. Множественное наследование .. 212

13.5. Классы нового стиля .. 214

13.6. Специальные методы ... 215

13.7. Перегрузка операторов... 218

13.8. Статические методы и методы класса .. 221

13.9. Абстрактные методы .. 222

13.10. Ограничение доступа к идентификаторам внутри класса 223

13.11. Свойства класса .. 225

ГЛАВА 14. ОБРАБОТКА ИСКЛЮЧЕНИЙ ... 227

14.1. Инструкция try...except...else...finally ... 228

14.2. Инструкция with...as ... 233

14.3. Классы встроенных исключений .. 235

14.4. Пользовательские исключения ... 237

ГЛАВА 15. РАБОТА С ФАЙЛАМИ И КАТАЛОГАМИ ... 241

15.1. Открытие файла .. 241

15.2. Методы для работы с файлами .. 246

15.3. Доступ к файлам с помощью модуля os ... 252

15.4. Модуль StringIO .. 254

15.5. Права доступа к файлам и каталогам ... 257

15.6. Функции для манипулирования файлами .. 259

15.7. Преобразование пути к файлу или каталогу .. 263

15.8. Перенаправление ввода/вывода .. 265

15.9. Сохранение объектов в файл ... 268

15.10. Функции для работы с каталогами ... 271

ГЛАВА 16. ОСНОВЫ SQLITE .. 275

16.1. Создание базы данных ... 276

16.2. Создание таблицы... 277

Оглавление VII

16.3. Вставка записей .. 284

16.4. Обновление и удаление записей ... 286

16.5. Изменение свойств таблицы .. 287

16.6. Выбор записей .. 288

16.7. Выбор записей из нескольких таблиц .. 291

16.8. Условия в инструкции WHERE ... 293

16.9. Индексы ... 296

16.10. Вложенные запросы ... 299

16.11. Транзакции .. 300

16.12. Удаление таблицы и базы данных .. 302

ГЛАВА 17. ДОСТУП К БАЗЕ ДАННЫХ SQLITE ИЗ PYTHON 303

17.1. Создание и открытие базы данных ... 304

17.2. Выполнение запроса ... 305

17.3. Обработка результата запроса ... 309

17.4. Управление транзакциями ... 314

17.5. Создание пользовательской сортировки .. 315

17.6. Поиск без учета регистра символов .. 316

17.7. Создание агрегатных функций .. 318

17.8. Преобразование типов данных .. 319

17.9. Сохранение в таблице даты и времени ... 323

17.10. Обработка исключений .. 324

ГЛАВА 18. ДОСТУП К БАЗЕ ДАННЫХ MYSQL ... 328

18.1. Модуль MySQLdb .. 329

18.1.1. Подключение к базе данных ... 329

18.1.2. Выполнение запроса .. 332

18.1.3. Обработка результата запроса .. 336

18.2. Модуль PyODBC ... 339

18.2.1. Подключение к базе данных ... 340

18.2.2. Выполнение запроса .. 341

18.2.3. Обработка результата запроса .. 343

ГЛАВА 19. БИБЛИОТЕКА PIL. РАБОТА С ИЗОБРАЖЕНИЯМИ 347

19.1. Загрузка готового изображения .. 347

19.2. Создание нового изображения .. 350

19.3. Получение информации об изображении .. 350

19.4. Манипулирование изображением ... 351

19.5. Рисование линий и фигур .. 355

19.6. Модуль aggdraw .. 357

19.7. Вывод текста на изображение ... 362

19.8. Создание скриншотов .. 363

Оглавление VIII

ГЛАВА 20. ВЗАИМОДЕЙСТВИЕ С ИНТЕРНЕТОМ .. 365

20.1. Разбор URL-адреса ... 365

20.2. Кодирование и декодирование строки запроса ... 368

20.3. Преобразование относительной ссылки в абсолютную 372

20.4. Разбор HTML-эквивалентов .. 373

20.5. Обмен данными по протоколу HTTP ... 374

20.6. Обмен данными с помощью модуля urllib2 ... 379

20.7. Определение кодировки ... 382

ЗАКЛЮЧЕНИЕ... 385

ПРИЛОЖЕНИЕ 1. ОТЛИЧИЯ PYTHON 3 ОТ PYTHON 2 .. 389

ПРИЛОЖЕНИЕ 2. ОПИСАНИЕ DVD ... 395

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ... 399

Введение

Добро пожаловать в мир Python!

Python — это интерпретируемый объектно-ориентированный язык программи-

рования высокого уровня, предназначенный для самого широкого круга задач.

С его помощью можно обрабатывать различные данные, создавать изображения,

работать с базами данных, разрабатывать Web-сайты и приложения с графическим

интерфейсом. Python является кроссплатформенным языком, позволяющим созда-

вать программы, которые будут работать во всех операционных системах. В этой

книге мы рассмотрим базовые возможности Python 2.6 применительно к операци-

онной системе Windows.

Согласно официальной версии название языка произошло вовсе не от змеи.

Создатель языка Гвидо ван Россум (Guido van Rossum) назвал свое творение в

честь британского комедийного телешоу BBC "Monty Python’s Flying Circus". По-

этому более правильно будет "Пайтон". Тем не менее, многие считают, что для

русского человека более привычно называть язык "Питон". Так или иначе, в этой

книге мы будем придерживаться традиционного написания слова Python на анг-

лийском языке.

Программа на языке Python представляет собой обычный текстовый файл с

расширением py (консольная программа) или pyw (программа с графическим ин-

терфейсом). Все инструкции из этого файла выполняются интерпретатором по-

строчно. Для ускорения работы при первом импорте модуля создается промежу-

точный байт-код и сохраняется в одноименном файле с расширением pyc. При

последующих запусках, если модуль не был изменен, исполняется именно байт-

код. Для выполнения низкоуровневых операций и задач, требующих высокой ско-

рости работы, можно написать модуль на языке C, скомпилировать его, а затем

подключить к основной программе.

Python является объектно-ориентированным языком. Это означает, что практи-

чески все данные являются объектами, даже сами типы данных. В переменной все-

гда сохраняется только ссылка на объект, а не сам объект. Например, можно соз-

дать функцию, сохранить ссылку на нее в переменной, а затем вызвать функцию

через эту переменную. Данное обстоятельство делает язык Python идеальным инст-

рументом для создания программ, использующих функции обратного вызова, на-

пример при разработке графического интерфейса. Тот факт, что язык является объ-

ектно-ориентированным, отнюдь не означает, что ООП-стиль программирования

является обязательным. На языке Python можно писать программы как в ООП-

стиле, так и в процедурном стиле. Какой стиль использовать — зависит от кон-

кретной ситуации и предпочтений программиста.

Введение

2

Python — самый стильный язык программирования в мире, не допускающий

двоякого написания кода. Например, в языке Perl существует зависимость от контек-

ста и множественность синтаксиса. Часто два программиста, пишущих на Perl, про-

сто не понимают код друг друга. В Python код можно написать только одним спосо-

бом. В нем отсутствуют лишние конструкции. Все программисты должны

придерживаться стандарта, описанного в документе http://python.org/dev/peps/pep-

0008/. Более читаемого кода нет ни в одном другом языке программирования.

Синтаксис языка Python вызывает много нареканий у программистов, знакомых

с другими языками. На первый взгляд может показаться, что отсутствие ограничи-

тельных символов (фигурных скобок или конструкции begin...end) для выделения

блоков и обязательная вставка пробелов впереди инструкций может приводить к

ошибкам. Однако это только первое и неправильное впечатление. Хороший стиль

программирования в любом языке обязывает выделять инструкции внутри блока

одинаковым количеством пробелов. В этой ситуации ограничительные символы

просто являются лишними. Бытует мнение, что программа будет по-разному смот-

реться в разных редакторах. Это неверно. Согласно стандарту для выделения бло-

ков необходимо использовать четыре пробела. Четыре пробела в любом редакторе

будут смотреться одинаково. Если в другом языке вас не приучили к хорошему

стилю программирования, то язык Python быстро это исправит. Если количество

пробелов внутри блока будет разным, то интерпретатор выведет сообщение о фа-

тальной ошибке, и программа будет остановлена. Таким образом, язык Python при-

учает программистов писать красивый и понятный код.

Так как программа на языке Python представляет собой обычный текстовый

файл, его можно редактировать с помощью любого текстового редактора, напри-

мер, с помощью Notepad++. Однако лучше воспользоваться специализированными

редакторами, которые не только подсвечивают код, но и выводят различные под-

сказки и позволяют отладить программу. Таких редакторов очень много, например

PyScripter, PythonWin, UliPad, Eclipse + PyDev, Netbeans и др. Полный список ре-

дакторов расположен на странице http://wiki.python.org/moin/PythonEditors. На

всем протяжении этой книги мы будем пользоваться редактором IDLE, который

входит в состав стандартной библиотеки Python в Windows. Этот редактор идеаль-

но подходит для изучения языка Python.

Ну что, приступим к изучению Python? Язык достоин того, чтобы его знал каж-

дый программист! Но не забывайте, что книги по программированию нужно не

только читать, но и выполнять все примеры, а также экспериментировать, изменяя

что-нибудь в примерах. Все листинги из книги, а также видеоролики вы найдете на

прилагаемом к книге DVD.

Ваши замечания и пожелания можно оставить в гостевой книге или на форуме

моего сайта http://wwwadmin.ru/. Все замеченные опечатки прошу присылать по

адресу mail@bhv.ru.

Желаю приятного прочтения и надеюсь, что эта книга станет верным спутни-

ком в вашей повседневной жизни.

ГЛАВА 1

Первые шаги

1.1. Установка Python

Прежде чем начать изучение основ языка, необходимо установить на компью-

тер интерпретатор Python.

1. Для загрузки дистрибутива переходим на страницу http://python.org/

download/ и скачиваем файл python-2.6.5.msi. Затем запускаем программу уста-

новки с помощью двойного щелчка на значке файла.

2. В открывшемся окне (рис. 1.1) устанавливаем переключатель Install for all us-

ers (Установить для всех пользователей) и нажимаем кнопку Next.

3. На следующем шаге (рис. 1.2) предлагается выбрать каталог для установки.

Оставляем каталог по умолчанию (C:\Python26\) и нажимаем кнопку Next.

4. В следующем диалоговом окне (рис. 1.3) можно выбрать компоненты, которые

следует установить. По умолчанию устанавливаются все компоненты и пропи-

сывается ассоциация с файловыми расширениями py, pyw и др. В этом случае

запускать программы можно с помощью двойного щелчка на значке файла. Ос-

тавляем выбранными все компоненты и нажимаем кнопку Next.

5. После завершения установки будет выведено окно, изображенное на рис. 1.4.

Нажимаем кнопку Finish для выхода из программы установки.

В результате установки исходные файлы интерпретатора будут скопированы в

папку C:\Python26. В этой папке расположены два исполняемых файла: python.exe

и pythonw.exe. Файл python.exe предназначен для выполнения консольных прило-

жений. Именно эта программа запускается при двойном щелчке на значке файла с

расширением py. Файл pythonw.exe используется для запуска оконных приложе-

ний. В этом случае окно консоли выводиться не будет. Эта программа запускается

при двойном щелчке на значке файла с расширением pyw. В этой книге мы будем

запускать программы только с помощью файла python.exe.

Если сделать двойной щелчок на файле python.exe, то запустится интерактивная

оболочка в окне консоли (рис. 1.5). Символы >>> в этом окне означают приглашение

для ввода выражений на языке Python. Если после этих символов ввести, например,

2 + 2 и нажать клавишу <Enter>, то на следующей строке сразу будет выведен ре-

зультат выполнения, а затем опять приглашение для ввода нового выражения.

Глава 11

4

Рис. 1.1. Установка Python. Шаг 1

Рис. 1.2. Установка Python. Шаг 2

Первые шаги

5

Рис. 1.3. Установка Python. Шаг 3

Рис. 1.4. Установка Python. Шаг 4

Глава 11

6

Таким образом, это окно можно использовать в качестве калькулятора, а также

для изучения языка. Открыть такое же окно можно с помощью пункта Python

(command line) в меню Пуск | Программы | Python 2.6.

Вместо интерактивной оболочки для изучения языка, а также создания и редак-

тирования файлов с программой, лучше воспользоваться редактором IDLE, кото-

рый входит в состав установленных компонентов. Для запуска редактора в меню

Пуск | Программы | Python 2.6 выбираем пункт IDLE (Python GUI). В результате

откроется окно Python Shell (рис. 1.6), которое выполняет все функции интерак-

тивной оболочки, но дополнительно производит подсветку синтаксиса, выводит

подсказки и др. Именно этим редактором мы будем пользоваться на протяжении

всей книги. Более подробно редактор IDLE мы рассмотрим немного позже.

Рис. 1.5. Интерактивная оболочка

Рис. 1.6. Окно Python Shell редактора IDLE

Версии языка Python выпускаются с завидной регулярностью, но, к сожалению,

сторонние разработчики не успевают за такой скоростью и не так часто обновляют

свои модули. Поэтому приходится при наличии версии Python 3 использовать на

практике версию Python 2.6. В некоторых случаях сторонние модули даже не под-

держивают версию 2.6. Как же быть, если установлена версия 2.6, а необходимо

запустить модуль для версии 2.5 или хочется попробовать возможности версии 3.1?

В этом случае удалять версию 2.6 с компьютера не нужно. Все программы уста-

новки позволяют выбрать устанавливаемые компоненты. Так, например, существу-

Первые шаги

7

ет возможность задать ассоциацию с файловым расширением. И вот этот компо-

нент необходимо просто отключить при установке.

В качестве примера мы установим на компьютер еще две версии: 2.5.5 и 3.1.2, но

вместо программ установки с сайта http://python.org/ выберем альтернативный дист-

рибутив от компании ActiveState. Переходим на страницу http://www.activestate.com/

activepython/downloads/ и скачиваем файлы ActivePython-2.5.5.7-win32-x86.msi и

ActivePython-3.1.2.3-win32-x86.msi. Последовательность запуска этих программ

имеет значение, т. к. при установке в контекстное меню добавляется пункт Edit

with Pythonwin. С помощью этого пункта запускается редактор PythonWin, кото-

рый можно использовать вместо IDLE. Так вот из контекстного меню будет откры-

ваться версия PythonWin, которая была установлена последней. Поэтому сначала

лучше установить версию 2.5, а затем версию 3.1. Установку программ производим

в каталоги по умолчанию (C:\Python25\ и C:\Python31\). Обратите особое внимание:

при установке в окне Custom Setup (рис. 1.7) необходимо отключить компонент

Register as Default Python (рис. 1.8). Не забудьте это сделать при установке каж-

дой версии, иначе текущей версией будет не Python 2.6.

Рис. 1.7. Окно Custom Setup

В состав ActivePython кроме редактора PythonWin входит также редактор IDLE.

Однако ни в одном меню нет пункта, с помощью которого можно запустить редак-

тор IDLE. Чтобы это исправить, создадим два файла: IDLE25.bat и IDLE31.bat. Со-

держимое файла IDLE25.bat:

@echo off

start C:\Python25\pythonw.exe C:\Python25\Lib\idlelib\idle.pyw

Глава 11

8

Содержимое файла IDLE31.bat:

@echo off

start C:\Python31\pythonw.exe C:\Python31\Lib\idlelib\idle.pyw

Рис. 1.8. Компонент Register as Default Python отключен

С помощью двойного щелчка на этих файлах можно запускать IDLE для версий

Python 2.5 и Python 3.1. Чтобы запустить редактор в версии Python 2.6, в меню

Пуск | Программы | Python 2.6 выбираем пункт IDLE (Python GUI).

Теперь рассмотрим запуск программы с помощью разных версий Python. По

умолчанию при двойном щелчке на значке файла запускается Python 2.6. Чтобы за-

пустить с помощью другой версии, щелкаем правой кнопкой мыши на значке файла с

программой и в контекстном меню выбираем пункт Открыть с помощью. При пер-

вом запуске в списке будет только программа python.exe. Чтобы добавить другую

версию, щелкаем на пункте Выбрать программу, в открывшемся окне нажимаем

кнопку Обзор и выбираем программу python25.exe из папки C:\Python25. Затем до-

бавляем программу python31.exe из папки C:\Python31. В результате список в контек-

стном меню будет выглядеть так, как показано на рис. 1.9. Выбирая нужную версию

из списка, можно производить запуск программы с помощью разных версий Python.

Для проверки установки создайте файл test.py с помощью любого текстового

редактора, например Блокнота. Содержимое файла приведено в листинге 1.1.

Листинг 1.1. Проверка установки

import sys

print (tuple(sys.version_info))

Первые шаги

9

try:

 raw_input() # Python 2

except NameError:

 input() # Python 3

Рис. 1.9. Варианты запуска программы разными версиями Python

Затем запустите программу с помощью двойного щелчка на значке файла. Если

результат выполнения — (2, 6, 5, 'final', 0), то установка прошла нормально,

а если (2, 5, 5, 'final', 0) или (3, 1, 2, 'final', 0), то вы не отключили

компонент Register as Default Python. Для изучения материала этой книги по

умолчанию должна быть версия Python 2.6.5.

1.2. Первая программа на Python

При изучении языков программирования принято начинать с программы, выво-

дящей надпись "Привет, мир!" Не будем нарушать традицию и продемонстрируем,

как это будет выглядеть на Python (листинг 1.2).

Глава 11

10

Листинг 1.2. Первая программа на Python

Выводим надпись с помощью оператора print

print "Привет, мир!"

Для запуска программы в меню Пуск выбираем пункт Программы | Python 2.6 |

IDLE (Python GUI). В результате откроется окно Python Shell, в котором символы

>>> означают приглашение ввести команду. После ввода команды нажимаем кла-

вишу <Enter>. На следующей строке сразу отобразится результат, а далее пригла-

шение для ввода новой команды. Последовательность выполнения нашей програм-

мы показана в листинге 1.3.

Листинг 1.3. Последовательность выполнения программы в окне Python Shell

>>> # Выводим надпись с помощью оператора print

>>> print "Привет, мир!"

Привет, мир!

>>>

ПРИМЕЧАНИЕ

Символы >>> вводить не нужно, они вставляются автоматически.

Для создания файла с программой в меню File выбираем пункт New Window.

В открывшемся окне набираем код из листинга 1.2, а затем сохраняем его под име-

нем test.py, выбрав пункт меню File | Save As. При этом редактор выведет запрос, в

какой кодировке сохранить файл, и предложит вставить строку:

-*- coding: cp1251 -*-

Соглашаемся и нажимаем кнопку Edit my file. В результате строка будет

вставлена в самое начало программы, а файл будет сохранен в кодировке Windows-

1251.

Запустить программу на выполнение можно, выбрав пункт меню Run | Run

Module или нажав клавишу <F5>. Результат выполнения программы будет отобра-

жен в окне Python Shell. По умолчанию в этом окне используется кодировка Win-

dows-1251, поэтому русские буквы отображаются корректно.

Запустить программу можно также с помощью двойного щелчка мыши на

значке файла. В этом случае результат выполнения будет отображен в консоли

Windows. В консоли используется кодировка cp866, по этой причине файл необхо-

димо сохранить именно в этой кодировке, иначе русские буквы будут искажены.

Кроме того, следует учитывать, что после вывода результата окно консоли сразу

закрывается. Чтобы предотвратить закрытие окна, необходимо добавить вызов

функции raw_input(), которая будет ожидать нажатия клавиши <Enter> и не по-

зволит окну сразу закрыться. С учетом всего вышесказанного наша программа бу-

дет выглядеть так, как показано в листинге 1.4.

Первые шаги

11

Листинг 1.4. Программа для запуска с помощью двойного щелчка мыши

-*- coding: cp866 -*-

print "Привет, мир!" # Выводим строку

raw_input() # Ожидаем нажатия клавиши <Enter>

ПРИМЕЧАНИЕ

Если до функции raw_input() возникнет ошибка, то сообщение о ней будет выведено

в консоль, но сама консоль после этого сразу будет закрыта, и вы не сможете прочитать
сообщение об ошибке.

Если необходимо, чтобы русские буквы правильно отображались в консоли и в

окне Python Shell, то вместо обычных строк следует использовать Unicode-строки.

В этом случае при выводе Unicode-строка будет автоматически преобразована в

обычную строку в кодировке терминала. Для создания Unicode-строки можно вос-

пользоваться модификатором u, который указывается перед открывающей кавыч-

кой, или функцией unicode(). Пример использования Unicode-строк приведен в

листинге 1.5.

Листинг 1.5. Пример использования Unicode-строк

-*- coding: cp1251 -*-

print u"Привет, мир!" # Модификатор u

print unicode("Привет, мир!", "cp1251") # Функция unicode()

raw_input()

Чтобы отредактировать уже созданный файл, щелкаем правой кнопкой мыши

на значке файла и из контекстного меню выбираем пункт Edit with IDLE. Так как

программа на языке Python представляет собой обычный текстовый файл, сохра-

ненный с расширением py, его можно редактировать с помощью других программ,

например, Notepad++. Можно также воспользоваться специализированными редак-

торами, скажем, PyScripter.

При открытии файла с помощью пункта Edit with IDLE по умолчанию откры-

ваются сразу два окна — окно с текстом программы и окно Python Shell. На мой

взгляд, это не очень удобно. Чтобы открывалось только одно окно с текстом про-

граммы в меню Options, выбираем пункт Configure IDLE. В открывшемся окне на

вкладке General устанавливаем флажок Open Edit Window.

1.3. Структура программы

Как вы уже знаете, программа на языке Python представляет собой обычный

текстовый файл с выражениями. Каждое выражение располагается на отдельной

строке. Если выражение не является вложенным, то оно должно начинаться с нача-

ла строки, иначе будет выведено сообщение об ошибке (листинг 1.6).

Глава 11

12

Листинг 1.6. Исключение IndentationError

>>> import sys

 File "<pyshell#0>", line 1

 import sys

 ^

IndentationError: unexpected indent

>>>

В этом случае перед оператором import расположен один лишний пробел, ко-

торый привел к выводу сообщения об ошибке.

Если программа предназначена для исполнения в операционной системе UNIX,

то в первой строке необходимо дополнительно указать путь к интерпретатору

Python:

#!/usr/bin/python

На некоторых серверах путь к интерпретатору выглядит по-другому:

#!/usr/local/bin/python

Иногда можно не указывать точный путь к интерпретатору, а передать название

языка программе env:

#!/usr/bin/env python

В этом случае программа env произведет поиск интерпретатора Python в соот-

ветствии с настройками путей поиска.

Помимо указания пути к интерпретатору Python для CGI-программ необходи-

мо, чтобы был установлен бит на выполнение в правах доступа к файлу. Кроме то-

го, следует помнить, что перевод строки в операционной системе Windows состоит

из последовательности двух символов — \r (перевод каретки) и \n (перевод стро-

ки). В операционной системе UNIX перевод строки осуществляется только одним

символом \n. Если загрузить файл программы по протоколу FTP в бинарном режи-

ме, то символ \r вызовет фатальную ошибку. По этой причине файлы по протоколу

FTP следует загружать только в текстовом режиме (режим ASCII). В этом режиме

символ \r будет удален автоматически. После загрузки файла следует установить

права на выполнение. Для исполнения скриптов на Python устанавливаем права в

755 (-rwxr-xr-x). Изменить права доступа позволяет практически любой FTP-

клиент.

Во второй строке (для ОС Windows в первой строке) следует указать кодиров-

ку. Для кодировки Windows-1251 строка будет выглядеть так:

-*- coding: cp1251 -*-

Редактор IDLE учитывает указанную кодировку и автоматически производит

перекодирование при сохранении файла. Получить полный список поддерживае-

мых кодировок и их псевдонимы позволяет код, приведенный в листинге 1.7.

Первые шаги

13

Листинг 1.7. Вывод списка поддерживаемых кодировок

-*- coding: cp1251 -*-

import encodings.aliases

arr = encodings.aliases.aliases

keys = arr.keys()

keys.sort()

for key in keys:

 print "%s => %s" % (key, arr[key])

Во многих языках программирования (например, в PHP, Perl и др.) каждое вы-

ражение должно завершаться точкой с запятой. В языке Python в конце выражения

также можно поставить точку с запятой, но это не обязательно. В отличие от языка

JavaScript, где рекомендуется завершать выражения точкой с запятой, в языке

Python точку с запятой ставить не рекомендуется. Концом выражения является ко-

нец строки. Тем не менее, если необходимо разместить несколько выражений на

одной строке, то точку с запятой следует указать (листинг 1.8).

Листинг 1.8. Несколько выражений на одной строке

-*- coding: cp1251 -*-

x = 5; y = 10; z = x + y # Три выражения на одной строке

print z

Еще одной отличительной особенностью языка Python является отсутствие ог-

раничительных символов для выделения выражений внутри блока. Например, в

языке PHP выражения внутри цикла while выделяются фигурными скобками:

$i = 1;

while ($i<11) {

 echo $i . "\n";

 $i++;

}

echo "Конец программы";

В языке Python тот же код будет выглядеть по-другому (листинг 1.9).

Листинг 1.9. Выделение выражений внутри блока

-*- coding: cp1251 -*-

i = 1

while i<11:

 print i

 i += 1

print "Конец программы"

Глава 11

14

Обратите внимание, что перед всеми выражениями внутри блока расположе-

но одинаковое количество пробелов. Таким образом в языке Python выделяются

блоки. Выражения, перед которыми расположено одинаковое количество пробе-

лов, являются телом блока. В нашем примере два выражения выполняются де-

сять раз. Концом блока является выражение, перед которым расположено мень-

шее количество пробелов. В нашем случае это оператор print, который выводит

строку "Конец программы". Если количество пробелов внутри блока будет раз-

ным, то интерпретатор выведет сообщение о фатальной ошибке и программа бу-

дет остановлена. Таким образом, язык Python приучает программистов писать

красивый и понятный код.

ПРИМЕЧАНИЕ

В языке Python принято использовать четыре пробела для выделения выражений внутри

блока.

Если блок состоит из одного выражения, то допустимо разместить его на одной

строке с основной инструкцией. Например, код

for i in range(1, 11):

 print i

print "Конец программы"

можно записать так:

for i in range(1, 11): print i

print "Конец программы"

Если выражение является слишком длинным, то его можно перенести на сле-

дующую строку следующими способами:

 в конце строки разместить символ \. После этого символа должен следовать

символ перевода строки. Другие символы (в том числе и комментарии) недо-

пустимы. Пример:

x = 15 + 20 \

 + 30

print x

 поместить выражение внутри круглых скобок. Это лучший способ, т. к. любое

выражение можно разместить внутри круглых скобок. Пример:

x = (15 + 20 # Это комментарий

 + 30)

print x

 определение списка и словаря можно разместить на нескольких строках, т. к.

используются квадратные и фигурные скобки соответственно. Пример опреде-

ления списка:

arr = [15, 20, # Это комментарий

 30]

print arr

Первые шаги

15

Пример определения словаря:

arr = {"x": 15, "y": 20, # Это комментарий

 "z": 30}

print arr

1.4. Комментарии

Комментарии предназначены для вставки пояснений в текст скрипта, и интер-

претатор полностью их игнорирует. Внутри комментария может располагаться лю-

бой текст, включая выражения, которые выполнять не следует. Помните, коммен-

тарии нужны программисту, а не интерпретатору Python. Вставка комментариев в

код позволит через некоторое время быстро вспомнить предназначение фрагмента

кода.

В языке Python присутствует только однострочный комментарий. Он начина-

ется с символа #:

Это комментарий

Однострочный комментарий может начинаться не только с начала строки, но и

располагаться после выражения. Например, после инструкции вывести надпись

"Привет, мир!":

print "Привет, мир!" # Выводим надпись с помощью оператора print

Если символ комментария разместить перед выражением, то оно не будет вы-

полнено:

print "Привет, мир!" Это выражение выполнено не будет

Если символ # расположен внутри кавычек или апострофов, то он не является

символом комментария:

print "# Это НЕ комментарий"

Так как в языке Python нет многострочного комментария, то часто комменти-

руемый фрагмент размещают внутри утроенных кавычек (или утроенных апост-

рофов):

"""

Это выражение не будет выполнено

print "Привет, мир!"

"""

Следует заметить, что этот фрагмент кода не игнорируется интерпретатором,

т. к. он не является комментарием. В результате выполнения фрагмента будет соз-

дан объект строкового типа. Тем не менее, выражения внутри утроенных кавычек

выполнены не будут, т. к. все выражения будут считаться простым текстом. Такие

строки являются строками документирования, а не комментариями.

Глава 11

16

1.5. Скрытые возможности IDLE

На всем протяжении этой книги в качестве редактора мы будем использовать

IDLE. По этой причине рассмотрим некоторые возможности этой среды разра-

ботки.

Как вы уже знаете, в окне Python Shell символы >>> означают приглашение

ввести команду. После ввода команды нажимаем клавишу <Enter>. На следующей

строке сразу отобразится результат, а далее — приглашение для ввода новой

команды. При вводе многострочной команды после нажатия клавиши <Enter> ре-

дактор автоматически вставит отступ и будет ожидать дальнейшего ввода. Чтобы

сообщить редактору о конце ввода команды необходимо дважды нажать клавишу

<Enter>. Пример:

>>> for n in range(1, 3):

 print n

1

2

>>>

В предыдущем разделе мы выводили строку "Привет, мир!" с помощью опера-

тора print. В окне Python Shell это делать не обязательно. Например, мы можем

просто ввести строку и нажать клавишу <Enter> для получения результата:

>>> "Hello, world!"

'Hello, world!'

>>>

Однако русские буквы таким образом отображаться не будут. Пример:

>>> "Привет, мир!"

'\xcf\xf0\xe8\xe2\xe5\xf2, \xec\xe8\xf0!'

>>>

Обратите также внимание, что строки выводятся в апострофах. Этого не про-

изойдет, если выводить строку с помощью оператора print:

>>> print "Привет, мир!"

Привет, мир!

>>>

Учитывая возможность получить результат сразу после ввода команды, окно

Python Shell можно использовать для изучения команд, а также в качестве много-

функционального калькулятора. Пример:

>>> 12 * 32 + 54

438

>>>

Результат вычисления последнего выражения сохраняется в переменной _ (од-

но подчеркивание). Это позволяет производить дальнейшие расчеты без ввода пре-

дыдущего результата. Вместо него достаточно ввести символ подчеркивания.

Первые шаги

17

Пример:

>>> 125 * 3 # Умножение

375

>>> _ + 50 # Сложение. Эквивалентно 375 + 50

425

>>> _ / 5 # Деление. Эквивалентно 425 / 5

85

>>>

При вводе команды можно воспользоваться комбинацией клавиш

<Ctrl>+<Пробел>. В результате будет отображен список, из которого можно вы-

брать нужный идентификатор. Если при открытом списке вводить буквы, то пока-

зываться будут идентификаторы, начинающиеся с этих букв. Выбирать идентифи-

катор необходимо с помощью клавиш < > и < >. После выбора не следует

нажимать клавишу <Enter>, иначе это приведет к выполнению выражения. Просто

вводите выражение дальше, а список закроется. Такой же список будет автомати-

чески появляться (с некоторой задержкой) при обращении к свойствам объекта или

атрибутам модулей после ввода точки. Для автоматического завершения иденти-

фикатора после ввода первых букв можно воспользоваться комбинацией клавиш

<Alt>+</>. При каждом последующем нажатии этой комбинации будет вставляться

следующий идентификатор. Эти две комбинации клавиш очень удобны, если вы

забыли, как пишется слово, или хотите, чтобы редактор закончил его за вас.

При необходимости повторно выполнить ранее введенное выражение его при-

ходится набирать заново. Можно, конечно, скопировать выражение, а затем вста-

вить, но как вы можете сами убедиться, в контекстном меню нет пунктов Copy

(Копировать) и Paste (Вставить). Они расположены в меню Edit. Постоянно выби-

рать пункты из этого меню очень неудобно. Одним из решений проблемы является

использование комбинации клавиш быстрого доступа — <Ctrl>+<C> (копировать)

и <Ctrl>+<V> (вставить). Комбинации стандартны для Windows, и вы наверняка их

уже использовали ранее. Но опять-таки, прежде чем скопировать выражение, его

предварительно необходимо выделить. Редактор IDLE избавляет нас от лишних

действий и предоставляет комбинацию клавиш <Alt>+<N> для вставки первого

введенного выражения, а также комбинацию <Alt>+<P> для вставки последнего

выражения. Каждое последующее нажатие этих клавиш будет вставлять следую-

щее (или предыдущее) выражение. Для еще более быстрого повторного ввода вы-

ражения следует предварительно ввести его первые буквы. В этом случае переби-

раться будут только выражения, начинающиеся в этих букв.

1.6. Вывод результатов работы программы

Вывести результаты работы программы можно с помощью оператора print.

Мы уже использовали его ранее для вывода строки "Привет, мир!":

print "Привет, мир!"

Глава 11

18

Оператор print преобразует любой объект в строку и посылает ее в стандарт-

ный вывод stdout. После строки оператор автоматически добавляет символ пере-

вода строки:

print "Строка 1"

print "Строка 2"

Результат:

Строка 1

Строка 2

Если необходимо вывести результат на той же строке, то в операторе print

данные указываются через запятую:

print "Строка 1", "Строка 2"

Результат:

Строка 1 Строка 2

Как видно из примера, между выводимыми строками автоматически вставляет-

ся пробел. Чтобы этого избежать следует использовать конкатенацию строк или

лучше всего форматирование:

print "Строка 1" + "Строка 2" # Конкатенация строк

Выведет: Строка 1Строка 2

print '%s%s' % ("Строка 1", "Строка 2") # Форматирование

Выведет: Строка 1Строка 2

Чтобы избежать добавления символа перевода строки следует последним сим-

волом указать запятую. Пример:

print "Строка 1", "Строка 2",

print "Строка 3"

Выведет: Строка 1 Строка 2 Строка 3

Если, наоборот, необходимо вставить символ перевода строки, то оператор

print указывается без параметров. Пример:

for n in range(1, 5):

 print n,

print

print "Это текст на новой строке"

Результат выполнения:

1 2 3 4

Это текст на новой строке

В этом примере мы использовали цикл for, который позволяет последователь-

но перебирать элементы. На каждой итерации цикла переменной n присваивается

новое число, которое мы выводим с помощью оператора print, расположенного на

следующей строке. Обратите внимание, что перед оператором мы добавили четыре

пробела. Таким образом в языке Python выделяются блоки. Выражения, перед ко-

торыми расположено одинаковое количество пробелов, являются телом цикла. Все

эти выражения выполняются определенное количество раз. Концом блока является

выражение, перед которым расположено меньшее количество пробелов. В нашем

Первые шаги

19

случае это оператор print без параметров, который вставляет символ переноса

строки.

Если необходимо вывести большой блок текста, то его следует разместить ме-

жду утроенными кавычками или утроенными апострофами. В этом случае текст

сохраняет свое форматирование. Пример:
print """Строка 1

Строка 2

Строка 3"""

В результате выполнения этого примера мы получим три строки:
Строка 1

Строка 2

Строка 3

В окне Python Shell редактора IDLE необязательно использовать оператор

print. Однако следует учитывать, что результат вывода будет отличаться:
>>> print "Строка"

Строка

>>> "Строка"

'\xd1\xf2\xf0\xee\xea\xe0'

Как видно из примера, все русские буквы были заменены соответствующими

кодами, а сама строка расположена внутри апострофов. Это происходит потому,

что результат автоматически обрабатывается с помощью функции repr(). Функция

repr() возвращает строковое представление объекта. Выведем строку, используя

оператор print и функцию repr():
>>> print repr("Строка")

'\xd1\xf2\xf0\xee\xea\xe0'

Для вывода результатов работы программы вместо оператора print можно ис-

пользовать метод write() объекта sys.stdout:
import sys # Подключаем модуль sys

sys.stdout.write("Строка") # Выводим строку

В первой строке, с помощью инструкции import, мы подключаем модуль sys, в

котором объявлен объект. Далее с помощью метода write() выводим строку. Сле-

дует заметить, что метод не вставляет символ перевода строки. Поэтому при необ-

ходимости следует добавить его самим с помощью символа \n:
import sys

sys.stdout.write("Строка 1\n")

sys.stdout.write("Строка 2")

1.7. Ввод данных

Для ввода данных предназначены две функции:

 raw_input([<Сообщение>]) — получает данные со стандартного ввода stdin.

Глава 11

20

Для примера переделаем нашу первую программу так, чтобы она здоровалась

не со всем миром, а только с нами:

-*- coding: cp866 -*-

n = raw_input("Введите ваше имя: ")

print "Привет,", n

raw_input("Нажмите <Enter> для закрытия окна")

Вводим код и сохраняем файл, например, под названием test.py, а затем запускаем

программу на выполнение с помощью двойного щелчка на значке файла. Откроет-

ся черное окно, в котором будет надпись "Введите ваше имя: ". Вводим свое имя,

например "Николай", и нажимаем клавишу <Enter>. В результате будет выведено

приветствие "Привет, Николай". Чтобы окно сразу не закрылось, повторно вызыва-

ем функцию raw_input(). В этом случае окно не закроется, пока не будет нажата

клавиша <Enter>;

 input([<Сообщение>]) — получает данные со стандартного ввода stdin и об-

рабатывает их с помощью функции eval(). Вызов функции input() эквивален-

тен следующему коду:

eval(raw_input([<Сообщение>]))

ВНИМАНИЕ!

Функция eval() выполнит любую введенную инструкцию. Никогда не используйте функ-

цию input(), если не доверяете пользователю.

Передать данные можно в командной строке после названия файла. Такие дан-

ные доступны через список argv модуля sys. Первый элемент списка argv будет

содержать название файла, а последующие элементы — переданные данные. В ка-

честве примера создадим файл test.py в папке C:\book. Содержимое файла приведе-

но в листинге 1.10.

Листинг 1.10. Получение данных из командной строки

-*- coding: cp866 -*-

import sys

arr = sys.argv[:]

for n in arr:

 print n

Теперь запустим программу на выполнение с помощью командной строки и

передадим данные. Запускаем командную строку. Для этого в меню Пуск выбира-

ем пункт Выполнить. В открывшемся окне набираем команду cmd и нажимаем

кнопку OK. Откроется черное окно, в котором будет приглашение для ввода

команд. Переходим в папку C:\book. Для этого набираем команду:

cd C:\book

В командной строке должно быть приглашение:

C:\book>

Первые шаги

21

Для запуска нашей программы вводим команду:

C:\Python26\python.exe test.py -uNik -p123

В этой команде мы передаем название файла (test.py) и некоторые данные

(-uNik -p123). Результат выполнения программы будет выглядеть так:

test.py

-uNik

-p123

1.8. Доступ к документации

Вместе с установкой интерпретатора Python на компьютер автоматически уста-

навливается документация в формате CHM. Чтобы отобразить документацию, в

меню Пуск выбираем пункт Программы | Python 2.6 | Python Manuals.

Если в меню Пуск выбрать пункт Программы | Python 2.6 | Module Docs, то

откроется окно pydoc (рис. 1.10). С помощью этого инструмента можно получить

дополнительную информацию, которая расположена внутри модулей. Чтобы полу-

чить список всех модулей, установленных на компьютере, оставляем текстовое по-

ле пустым и нажимаем кнопку open browser. В результате в окне Web-браузера,

используемого в системе по умолчанию, отобразится список всех модулей. Каждое

название модуля является ссылкой, при переходе по которой доступна документа-

ция по конкретному модулю. Если в окне pydoc в текстовом поле ввести какое-

либо название и нажать клавишу <Enter>, то будет отображен список совпадений.

Выделяем пункт в списке и нажимаем кнопку go to selected. Результат будет ото-

бражен в окне Web-браузера.

Рис. 1.10. Окно pydoc

В окне Python Shell редактора IDLE также можно отобразить документацию.

Для этого предназначена функция help(). В качестве примера отобразим докумен-

тацию по встроенной функции raw_input():

>>> help(raw_input)

Результат выполнения:

Help on built-in function raw_input in module __builtin__:

raw_input(...)

 raw_input([prompt]) -> string

Глава 11

22

 Read a string from standard input. The trailing newline is stripped.

 If the user hits EOF (Unix: Ctl-D, Windows: Ctl-Z+Return), raise EOFError.

 On Unix, GNU readline is used if enabled. The prompt string, if given,

 is printed without a trailing newline before reading.

С помощью функции help() можно получить документацию не только по кон-

кретной функции, но и по всему модулю сразу. Для этого предварительно необхо-

димо подключить модуль. Например, подключим модуль __builtin__, содержа-

щий определения всех встроенных функций и классов, а затем выведем докумен-

тацию по модулю:

>>> import __builtin__

>>> help(__builtin__)

При рассмотрении комментариев мы говорили, что часто для комментирования

большого фрагмента кода используются утроенные кавычки или утроенные апост-

рофы. Такие строки не являются комментариями в полном смысле этого слова.

Вместо комментирования фрагмента создается объект строкового типа, который

сохраняется в атрибуте __doc__. Функция help() при составлении документации

получает информацию из этого атрибута. Таким образом, такие строки называются

строками документирования.

В качестве примера создадим два файла в одной папке. Содержимое файла

test.py:

-*- coding: cp1251 -*-

""" Это описание нашего модуля """

def myFunc():

 """ Это описание функции"""

 pass

Теперь подключим этот модуль и выведем содержимое строк документиро-

вания:

-*- coding: cp1251 -*-

import test # Подключаем файл test.py

print help(test)

Результат выполнения:

Help on module test:

NAME

 test - Это описание нашего модуля

FILE

 c:\documents and settings\unicross\рабочий стол\test.py

FUNCTIONS

 myFunc()

 Это описание функции

Первые шаги

23

Теперь получим содержимое строк документирования с помощью атрибута

__doc__:

-*- coding: cp1251 -*-

import test # Подключаем файл test.py

print test.__doc__

print test.myFunc.__doc__

Результат выполнения:

Это описание нашего модуля

Это описание функции

Атрибут __doc__ можно использовать вместо функции help(). В качестве при-

мера получим документацию по функции raw_input():

>>> print raw_input.__doc__

Результат выполнения:

raw_input([prompt]) -> string

Read a string from standard input. The trailing newline is stripped.

If the user hits EOF (Unix: Ctl-D, Windows: Ctl-Z+Return), raise EOFError.

On Unix, GNU readline is used if enabled. The prompt string, if given,

is printed without a trailing newline before reading.

Получить список всех идентификаторов внутри модуля позволяет функция

dir():

-*- coding: cp1251 -*-

import test # Подключаем файл test.py

print dir(test)

Результат выполнения:

['__builtins__', '__doc__', '__file__', '__name__', '__package__',

'myFunc']

Теперь получим список всех встроенных идентификаторов:

>>> import __builtin__

>>> dir(__builtin__)

ГЛАВА 2

Переменные

Все данные в языке Python представлены объектами. Каждый объект имеет тип

данных и значение. Для доступа к объекту предназначены переменные. При инициа-

лизации в переменной сохраняется ссылка (адрес объекта в памяти компьютера) на

объект. Благодаря этой ссылке можно в дальнейшем изменять объект из программы.

2.1. Именование переменных

Каждая переменная должна иметь уникальное имя, состоящее из латинских букв,

цифр и знаков подчеркивания, причем имя переменной не может начинаться с циф-

ры. Кроме того, следует избегать указания символа подчеркивания в начале имени,

т. к. идентификаторы с таким символом имеют специальное значение. Например,

имена, начинающиеся с символа подчеркивания, не импортируются из модуля с по-

мощью инструкции from module import *, а имена, имеющие по два символа под-

черкивания в начале и конце, для интерпретатора имеют особый смысл.

В качестве имени переменной нельзя использовать ключевые слова. Получить

список всех ключевых слов позволяет код, приведенный в листинге 2.1.

Листинг 2.1. Список всех ключевых слов

>>> import keyword

>>> keyword.kwlist

['and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del',

'elif', 'else', 'except', 'exec', 'finally', 'for', 'from', 'global',

'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print',

'raise', 'return', 'try', 'while', 'with', 'yield']

Помимо ключевых слов следует избегать совпадений со встроенными идентифика-

торами. В отличие от ключевых слов, встроенные идентификаторы можно переопреде-

лять, но дальнейший результат может стать для вас неожиданным (листинг 2.2).

Переменные

25

Листинг 2.2. Ошибочное переопределение встроенных идентификаторов

>>> help(input)

Help on built-in function input in module __builtin__:

input(...)

 input([prompt]) -> value

 Equivalent to eval(raw_input(prompt)).

>>> help = 10

>>> help

10

>>> help(input)

Traceback (most recent call last):

 File "<pyshell#3>", line 1, in <module>

 help(input)

TypeError: 'int' object is not callable

В этом примере мы с помощью встроенной функции help() получаем справку

по функции input(). Далее переменной help присваиваем число 10. После переоп-

ределения идентификатора мы больше не можем пользоваться функцией help(),

т. к. это приведет к выводу сообщения об ошибке. По этой причине лучше избегать

имен, совпадающих со встроенными идентификаторами. Получить полный список

встроенных идентификаторов позволяет код, приведенный в листинге 2.3.

Листинг 2.3. Получение списка встроенных идентификаторов

>>> import __builtin__

>>> dir(__builtin__)

Правильные имена переменных: x, y1, strName.

Неправильные имена переменных: 1y, ИмяПеременной.

Последнее имя неправильное, т. к. в нем используются русские буквы. Хотя на

самом деле такой вариант также будет работать, но лучше русские буквы все же не

применять:

>>> ИмяПеременной = 10 # Лучше так не делать!!!

>>> ИмяПеременной

10

При указании имени переменной важно учитывать регистр букв: x и X — раз-

ные переменные:

>>> x = 10; X = 20

>>> x, X

(10, 20)

Глава 2

26

2.2. Типы данных

В языке Python объекты могут иметь следующие типы данных:

 int — целые числа в диапазоне от –2 147 483 648 до 2 147 483 647:
>>> print type(2147483647)

<type 'int'>

Если число выходит за рамки диапазона, то тип int автоматически преобразу-

ется в тип long:

>>> x = 2147483647; print type(x)

<type 'int'>

>>> x += 1; print type(x)

<type 'long'>

 long — длинные целые числа. Размер числа ограничен лишь объемом опера-

тивной памяти:
>>> print type(2147483648)

<type 'long'>

В окне Python Shell редактора IDLE число, имеющее тип long, выводится с бу-

квой L в конце:

>>> 2147483648

2147483648L

 float — вещественные числа:
>>> print type(5.1)

<type 'float'>

 complex — комплексные числа:
>>> print type(2+2j)

<type 'complex'>

 str — обычная строка. Может содержать как однобайтовые символы, так и

многобайтовые:
>>> print type("Строка")

<type 'str'>

 unicode — Unicode-строка:
>>> print type(u"Строка")

<type 'unicode'>

 bool — логический тип данных. Может содержать значения True или False,

которые соответствуют числовым значениям 1 и 0 соответственно:
>>> print type(True), type(False)

<type 'bool'> <type 'bool'>

 list — списки. Тип данных list аналогичен массивам в других языках про-

граммирования:
>>> print type([1, 2, 3])

<type 'list'>

 tuple — кортежи:
>>> print type((4, 5, 6))

<type 'tuple'>

Переменные

27

 dict — словари. Тип данных dict аналогичен ассоциативным массивам в дру-

гих языках программирования:

>>> print type({"x": 5, "y": 20})

<type 'dict'>

 set — множества:

>>> print type(set(["a", "b", "c"]))

<type 'set'>

 frozenset — неизменяемые множества:

>>> print type(frozenset(["a", "b", "c"]))

<type 'frozenset'>

 NoneType — объект со значением None:

>>> print type(None)

<type 'NoneType'>

В логическом контексте значение None интерпретируется как False:

>>> print bool(None)

False

 function — функции:

>>> def myFunc(): pass

>>> print type(myFunc)

<type 'function'>

 classobj — классические классы:

>>> class C1: pass

>>> print type(C1)

<type 'classobj'>

 instance — экземпляры классических классов:

>>> class C1: pass

>>> c1 = C1() # Создание экземпляра класса

>>> print type(c1)

<type 'instance'>

 module — модули:

>>> import sys

>>> print type(sys)

<type 'module'>

 file — файлы:

>>> f = open("file1.txt", "w")

>>> print type(f)

<type 'file'>

 type — типы данных. Не удивляйтесь! Все данные в языке Python являются

объектами, даже сами типы данных!

>>> print type(type(""))

<type 'type'>

Глава 2

28

Основные типы данных делятся на изменяемые и неизменяемые. К изменяемым

типам относятся списки и словари. Пример изменения элемента списка:

>>> arr = [1, 2, 3]

>>> arr[0] = 0 # Изменяем первый элемент списка

>>> arr

[0, 2, 3]

К неизменяемым типам относятся числа, строки и кортежи. Например, чтобы

получить строку из двух других строк, необходимо использовать операцию конка-

тенации, а ссылку на новый объект присвоить переменной:

>>> str1 = "авто"

>>> str2 = "транспорт"

>>> str3 = str1 + str2 # Конкатенация

>>> print str3

автотранспорт

Кроме того, типы данных делятся на последовательности и отображения.

К последовательностям относятся строки, списки и кортежи, а к отображениям —

словари. Последовательности поддерживают механизм итераторов, позволяющий

произвести обход всех элементов с помощью метода next(). Например, вывести

элементы списка можно так:

>>> arr = [1, 2]

>>> i = iter(arr)

>>> i.next()

1

>>> i.next()

2

На практике подобным способом не пользуются. Вместо него применяется

цикл for, который использует механизм итераторов незаметно для нас. Например,

вывести элементы списка можно так:

>>> for i in [1, 2]:

 print i

Перебрать слово по буквам можно точно также. Для примера вставим тире по-

сле каждой буквы:

>>> for i in "Строка":

 print i + " -",

Результат:

С - т - р - о - к - а -

Кроме того, последовательности поддерживают обращение к элементу по ин-

дексу, получение среза, конкатенацию (оператор +), повторение (оператор *), про-

верку на вхождение (оператор in). Все эти операции мы будем подробно рассмат-

ривать по мере изучения языка.

Переменные

29

2.3. Инициализация переменных

В языке Python используется динамическая типизация. Это означает, что при
инициализации переменной интерпретатор автоматически относит переменную к
одному из типов данных. Значение переменной присваивается с помощью операто-
ра = таким образом:
>>> x = 7 # Тип int

>>> y = 7.8 # Тип float

>>> s1 = "Строка" # Переменной s1 присвоено значение Строка

>>> s2 = 'Строка' # Переменной s2 также присвоено значение Строка

>>> b = True # Переменной b присвоено логическое значение True

В одной строке можно присвоить значение сразу нескольким переменным:
>>> x = y = 10

При инициализации в переменной сохраняется ссылка на объект, а не сам объ-
ект. Это обязательно следует учитывать при групповом присваивании. Групповое
присваивание можно использовать для чисел и строк, но для других объектов этого
делать нельзя. Пример:
>>> x = y = [1, 2] # Якобы создали два объекта

>>> x, y

([1, 2], [1, 2])

В этом примере мы создали список из двух элементов и присвоили значение
переменным x и y. Теперь попробуем изменить значение в переменной y:
>>> y[1] = 100 # Изменяем второй элемент

>>> x, y

([1, 100], [1, 100])

Как видно из примера, изменение значения в переменной y привело также к из-
менению значения в переменной x. Таким образом, обе переменные ссылаются на
один и тот же объект, а не на два разных объекта. Чтобы получить два объекта, не-
обходимо производить раздельное присваивание:
>>> x = [1, 2]

>>> y = [1, 2]

>>> y[1] = 100 # Изменяем второй элемент

>>> x, y

([1, 2], [1, 100])

Проверить, ссылаются ли две переменные на один и тот же объект, позволяет
оператор is. Если переменные ссылаются на один и тот же объект, то оператор is
возвращает значение True:
>>> x = y = [1, 2] # Один объект

>>> x is y

True

>>> x = [1, 2] # Разные объекты

>>> y = [1, 2] # Разные объекты

>>> x is y

False

Глава 2

30

Следует заметить, что в целях эффективности кода интерпретатор производит
кэширование малых целых чисел и небольших строк. Это означает, что если ста
переменным присвоено число 2, то в этих переменных будет сохранена ссылка на
один и тот же объект. Пример:
>>> x = 2; y = 2; z = 2

>>> x is y, y is z

(True, True)

Посмотреть количество ссылок на объект позволяет метод getrefcount() из
модуля sys:
>>> import sys # Подключаем модуль sys

>>> sys.getrefcount(2)

375

Когда число ссылок на объект становится равно нулю, объект автоматически
удаляется из оперативной памяти. Исключением являются объекты, которые под-
лежат кэшированию.

Помимо группового присваивания язык Python поддерживает позиционное
присваивание. В этом случае переменные указываются через запятую слева от опе-
ратора =, а значения — через запятую справа. Пример позиционного присваивания:
>>> x, y, z = 1, 2, 3

>>> x, y, z

(1, 2, 3)

С помощью позиционного присваивания можно поменять значения перемен-
ных местами. Пример:
>>> x, y = 1, 2; x, y

(1, 2)

>>> x, y = y, x; x, y

(2, 1)

По обе стороны оператора = могут быть указаны последовательности. Напом-
ню, что к последовательностям относятся строки, списки и кортежи. Пример:
>>> x, y, z = "123" # Строка

>>> x, y, z

('1', '2', '3')

>>> x, y, z = [1, 2, 3] # Список

>>> x, y, z

(1, 2, 3)

>>> x, y, z = (1, 2, 3) # Кортеж

>>> x, y, z

(1, 2, 3)

Количество элементов справа и слева от оператора = должно совпадать, иначе
будет выведено сообщение об ошибке:
>>> x, y, z = (1, 2, 3, 4)

Traceback (most recent call last):

 File "<pyshell#60>", line 1, in <module>

 x, y, z = (1, 2, 3, 4)

ValueError: too many values to unpack

Переменные

31

2.4. Проверка типа данных

Python в любой момент времени изменяет тип переменной в соответствии с
данными, хранящимися в ней. Пример:
>>> a = "Строка" # Тип str

>>> a = 7 # Теперь переменная имеет тип int

Функция type(<Имя переменной>) возвращает тип данных переменной:
>>> print type(a)

<type 'int'>

Проверить тип данных переменной можно следующими способами:
 сравнить значение, возвращаемое функцией type(), с названием типа данных:

>>> x = 10

>>> if type(x) == int:

 print "Это тип int"

 проверить тип с помощью функции isinstance():
>>> s = "Строка"

>>> if isinstance(s, str):

 print "Это тип str"

2.5. Преобразование типов данных

Как вы уже знаете, в языке Python используется динамическая типизация. По-
сле присваивания значения в переменной сохраняется ссылка на объект определен-
ного типа, а не сам объект. Если затем переменной присвоить значение другого ти-
па, то переменная будет ссылаться на другой объект, и тип данных соответственно
изменится. Таким образом, тип данных в языке Python — это характеристика объ-
екта, а не переменной. Переменная всегда содержит только ссылку на объект.

После присваивания переменной значения над объектом можно производить
операции, предназначенные для этого типа данных. Например, строку нельзя сло-
жить с числом, т. к. это приведет к выводу сообщения об ошибке:
>>> 2 + "25"

Traceback (most recent call last):

 File "<pyshell#10>", line 1, in <module>

 2 + "25"

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Для преобразования типов данных предназначены следующие функции:
 int([<Объект>[, <Система счисления>]]) — преобразует объект в число. Во

втором параметре можно указать систему счисления (значение по умолча-
нию — 10). Примеры:
>>> int(7.5), int("71")

(7, 71)

>>> int("71", 10), int("71", 8), int("A", 16)

(71, 57, 10)

Глава 2

32

Если преобразование невозможно, то возвращается сообщение об ошибке:

>>> int("71s")

Traceback (most recent call last):

 File "<pyshell#27>", line 1, in <module>

 int("71s")

ValueError: invalid literal for int() with base 10: '71s'

 float([<Число или строка>]) — преобразует целое число или строку в веще-
ственное число. Примеры:
>>> float(7), float("7.1")

(7.0, 7.0999999999999996)

 str([<Объект>]) — преобразует объект в строку. Примеры:
>>> str(125), str([1, 2, 3])

('125', '[1, 2, 3]')

>>> str((1, 2, 3)), str({"x": 5, "y": 10})

('(1, 2, 3)', "{'y': 10, 'x': 5}")

 unicode(<Строка>[, <Кодировка>[, <Обработка ошибок>]]) — преобразует
обычную строку в Unicode-строку. В третьем параметре могут быть указаны
значения "strict" (значение по умолчанию), "replace" или "ignore". Примеры:
>>> unicode("Строка в кодировке windows-1251", "cp1251")

u'\u0421\u0442\u0440\u043e\u043a\u0430 \u0432

\u043a\u043e\u0434\u0438\u0440\u043e\u0432\u043a\u0435

windows-1251'

>>> unicode("Строка", "utf-8", "strict")

Traceback (most recent call last):

 File "<pyshell#39>", line 1, in <module>

 unicode("Строка", "utf-8", "strict")

UnicodeDecodeError: 'utf8' codec can't decode bytes in position

0-1: invalid data

>>> unicode("Строка", "utf-8", "replace")

u'\ufffd\ufffd'

>>> unicode("Строка", "utf-8", "ignore")

u''

 bool(<Объект>) — преобразует объект в логический тип данных. Примеры:
>>> bool(0), bool(1), bool(""), bool("Строка")

(False, True, False, True)

 list(<Последовательность>) — преобразует элементы последовательности в
список. Примеры:
>>> list("12345") # Преобразование строки

['1', '2', '3', '4', '5']

>>> list((1, 2, 3, 4, 5)) # Преобразование кортежа

[1, 2, 3, 4, 5]

 tuple(<Последовательность>) — преобразует элементы последовательности в
кортеж:
>>> tuple("123456") # Преобразование строки

('1', '2', '3', '4', '5', '6')

>>> tuple([1, 2, 3, 4, 5]) # Преобразование списка

(1, 2, 3, 4, 5)

Переменные

33

В качестве примера рассмотрим возможность сложения двух чисел, введенных

пользователем. Как вы уже знаете, вводить данные позволяет функция

raw_input(). Воспользуемся этой функцией для получения чисел от пользователя

(листинг 2.4).

Листинг 2.4. Получение данных от пользователя

-*- coding: cp1251 -*-

x = raw_input("x = ") # Вводим 5

y = raw_input("y = ") # Вводим 12

print x + y

Результатом выполнения этого скрипта будет не число, а строка "512". Таким

образом, следует запомнить, что функция raw_input() возвращает результат в виде

строки. Чтобы просуммировать два числа, необходимо преобразовать строку в чис-

ло (листинг 2.5).

Листинг 2.5. Преобразование строки в число

-*- coding: cp1251 -*-

x = int(raw_input("x = ")) # Вводим 5

y = int(raw_input("y = ")) # Вводим 12

print x + y

В этом случае мы получим число 17, как и должно быть. Однако если пользова-

тель вместо числа введет строку, то программа завершится с фатальной ошибкой.

Как обработать ошибку, мы будем рассматривать по мере изучения языка.

2.6. Удаление переменной

Удалить переменную можно с помощью инструкции del:

del <Переменная1>[, ..., <ПеременнаяN>]

Пример удаления одной переменной:

>>> x = 10; x

10

>>> del x; x

Traceback (most recent call last):

 File "<pyshell#3>", line 1, in <module>

 x

NameError: name 'x' is not defined

Пример удаления нескольких переменных:

>>> x, y = 10, 20

>>> del x, y

ГЛАВА 3

Операторы Python

Операторы позволяют произвести определенные действия с данными. Напри-
мер, операторы присваивания служат для сохранения данных в переменной, мате-
матические операторы позволяют произвести арифметические вычисления, а опе-
ратор конкатенации строк используется для соединения двух строк в одну.
Рассмотрим операторы, доступные в Python, более подробно.

3.1. Математические операторы

Производить операции над числами позволяют следующие операторы:

 + — сложение:
>>> 10 + 5 # Целые числа

15

>>> 12.4 + 5.2 # Вещественные числа

17.600000000000001

>>> 10 + 12.4 # Целые и вещественные числа

22.399999999999999

 - — вычитание:
>>> 10 - 5 # Целые числа

5

>>> 12.4 - 5.2 # Вещественные числа

7.2000000000000002

>>> 12 - 5.2 # Целые и вещественные числа

6.7999999999999998

 * — умножение:
>>> 10 * 5 # Целые числа

50

>>> 12.4 * 5.2 # Вещественные числа

64.480000000000004

>>> 10 * 5.2 # Целые и вещественные числа

52.0

Операторы Python

35

 / — деление. Если производится деление целых чисел, то остаток отбрасывает-

ся и возвращается целое число. Деление вещественных чисел производится

классическим способом. Примеры:

>>> 10 / 5 # Деление целых чисел без остатка

2

>>> 10 / 3 # Деление целых чисел с остатком

3

>>> 10.0 / 5.0 # Деление вещественных чисел

2.0

>>> 10.0 / 3.0 # Деление вещественных чисел

3.3333333333333335

>>> 10 / 5.0 # Деление целого числа на вещественное

2.0

>>> 10.0 / 5 # Деление вещественного числа на целое

2.0

 // — деление с округлением вниз. Вне зависимости от типа чисел остаток от-

брасывается. Примеры:

>>> 10 // 5 # Деление целых чисел без остатка

2

>>> 10 // 3 # Деление целых чисел с остатком

3

>>> 10.0 // 5.0 # Деление вещественных чисел

2.0

>>> 10.0 // 3.0 # Деление вещественных чисел

3.0

>>> 10 // 5.0 # Деление целого числа на вещественное

2.0

>>> 10 // 3.0 # Деление целого числа на вещественное

3.0

>>> 10.0 // 5 # Деление вещественного числа на целое

2.0

>>> 10.0 // 3 # Деление вещественного числа на целое

3.0

 % — остаток от деления:

>>> 10 % 5 # Деление целых чисел без остатка

0

>>> 10 % 3 # Деление целых чисел с остатком

1

>>> 10.0 % 5.0 # Операция над вещественными числами

0.0

>>> 10.0 % 3.0 # Операция над вещественными числами

1.0

>>> 10 % 5.0 # Операция над целыми и вещественными числами

0.0

>>> 10 % 3.0 # Операция над целыми и вещественными числами

Глава 3

36

1.0

>>> 10.0 % 5 # Операция над целыми и вещественными числами

0.0

>>> 10.0 % 3 # Операция над целыми и вещественными числами

1.0

 ** — возведение в степень:

>>> 10 ** 2, 10.0 ** 2

(100, 100.0)

 унарный – (минус) и унарный + (плюс):

>>> +10, +10.0, -10, -10.0, -(-10), -(-10.0)

(10, 10.0, -10, -10.0, 10, 10.0)

Как видно из примеров, операции над числами разных типов возвращают чис-

ло, имеющее более сложный тип из типов, участвующих в операции. Целые числа

имеют самый простой тип, далее идут длинные целые числа, вещественные числа и

самый сложный тип — комплексные числа. Таким образом, если в операции участ-

вуют целое и вещественное числа, то целое число будет автоматически преобразо-

вано в вещественное число, а затем произведена операция над вещественными чис-

лами. Результатом этой операции будет вещественное число.

При выполнении операций над вещественными числами следует учитывать ог-

раничения точности вычислений. Например, результат следующей операции может

показаться странным:

>>> 0.3 - 0.1 - 0.1 - 0.1

-2.7755575615628914e-17

Ожидаемым был бы результат 0.0, но, как видно из примера, мы получили со-

всем другой результат. Если необходимо производить операции с фиксированной

точностью, то следует использовать модуль decimal:

>>> from decimal import Decimal

>>> Decimal("0.3") - Decimal("0.1") - Decimal("0.1") - Decimal("0.1")

Decimal('0.0')

3.2. Двоичные операторы

 ~ — двоичная инверсия;

 & — двоичное И;

 | — двоичное ИЛИ;

 ^ — двоичное исключающее ИЛИ;

 << — сдвиг влево;

 >> — сдвиг вправо.

Операторы Python

37

3.3. Операторы для работы

с последовательностями

Для работы с последовательностями предназначены следующие операторы:

 + — конкатенация:
>>> print "Строка1" + "Строка2", # Конкатенация строк

Строка1Строка2

>>> [1, 2, 3] + [4, 5, 6] # Списки

[1, 2, 3, 4, 5, 6]

>>> (1, 2, 3) + (4, 5, 6) # Кортежи

(1, 2, 3, 4, 5, 6)

 * — повторение:
>>> "s" * 20 # Строки

'ssssssssssssssssssss'

>>> [1, 2] * 3 # Списки

[1, 2, 1, 2, 1, 2]

>>> (1, 2) * 3 # Кортежи

(1, 2, 1, 2, 1, 2)

 in — проверка на вхождение. Если элемент входит в последовательность, то

возвращается логическое значение True:
>>> "Строка" in "Строка для поиска" # Строки

True

>>> "Строка2" in "Строка для поиска" # Строки

False

>>> 2 in [1, 2, 3], 4 in [1, 2, 3] # Списки

(True, False)

>>> 2 in (1, 2, 3), 6 in (1, 2, 3) # Кортежи

(True, False)

3.4. Операторы присваивания

 = — присваивает переменной значение:
>>> x = 5; x

5

 += — увеличивает значение переменной на указанную величину:
>>> x = 5; x += 10 # Эквивалентно x = x + 10

>>> x

15

Для последовательностей оператор += производит конкатенацию:

>>> s = "Стр"; s += "ока"

>>> print s

Строка

Глава 3

38

 -= — уменьшает значение переменной на указанную величину:
>>> x = 10; x -= 5 # Эквивалентно x = x - 5

>>> x

5

 *= — умножает значение переменной на указанную величину:
>>> x = 10; x *= 5 # Эквивалентно x = x * 5

>>> x

50

Для последовательностей оператор *= производит повторение:

>>> s = "*"; s *= 20

>>> s

'********************'

 /= — делит значение переменной на указанную величину:
>>> x = 10; x /= 3 # Эквивалентно x = x / 3

>>> x

3

>>> y = 10.0; y /= 3.0 # Эквивалентно y = y / 3.0

>>> y

3.3333333333333335

 //= — деление с округлением вниз и присваиванием:
>>> x = 10; x //= 3 # Эквивалентно x = x // 3

>>> x

3

>>> y = 10.0; y //= 3.0 # Эквивалентно y = y // 3.0

>>> y

3.0

 %= — деление по модулю и присваивание:
>>> x = 10; x %= 2 # Эквивалентно x = x % 2

>>> x

0

>>> y = 10; y %= 3 # Эквивалентно y = y % 3

>>> y

1

 **= — возведение в степень и присваивание:
>>> x = 10; x **= 2 # Эквивалентно x = x ** 2

>>> x

100

3.5. Приоритет выполнения операторов

В какой последовательности будет вычисляться приведенное ниже выражение?

x = 5 + 10 * 3 / 2

Это зависит от приоритета выполнения операторов.

В данном случае последовательность вычисления выражения будет такой:

Операторы Python

39

1. Число 10 будет умножено на 3, т. к. приоритет оператора умножения выше

приоритета оператора сложения.

2. Полученное значение будет поделено на 2, т. к. приоритет оператора деления

равен приоритету оператора умножения (а операторы с равными приоритетами

выполняются слева направо), но выше чем у оператора сложения.

3. К полученному значению будет прибавлено число 5, т. к. оператор присваива-

ния = имеет наименьший приоритет.

4. Значение будет присвоено переменной x.

>>> x = 5 + 10 * 3 / 2

>>> x

20

С помощью скобок можно изменить последовательность вычисления выра-

жения:

x = (5 + 10) * 3 / 2

Теперь порядок вычислений будет другим:

1. К числу 5 будет прибавлено 10.

2. Полученное значение будет умножено на 3.

3. Полученное значение будет поделено на 2.

4. Значение будет присвоено переменной x.

>>> x = (5 + 10) * 3 / 2

>>> x

22

Перечислим операторы в порядке убывания приоритета:

1. -x, +x, ~x, ** — унарный минус, унарный плюс, двоичная инверсия, возведение

в степень. Если унарные операторы расположены слева от оператора **, то воз-

ведение в степень имеет больший приоритет, а если справа — то меньший. На-

пример, выражение

-10 ** -2

эквивалентно следующей расстановке скобок:

-(10 ** (-2))

2. *, %, /, // — умножение (повторение), остаток от деления, деление, деление с

округлением вниз.

3. +, - — сложение (конкатенация), вычитание.

4. <<, >> — двоичные сдвиги.

5. & — двоичное И.

6. ^ — двоичное исключающее ИЛИ.

7. | — двоичное ИЛИ.

8. =, +=, -=, *=, /=, //=, %=, **= — присваивание.

ГЛАВА 4

Условные операторы и циклы

Условные операторы позволяют в зависимости от значения логического выра-

жения выполнить отдельный участок программы или, наоборот, не выполнять его.

Логические выражения возвращают только два значения: True (истина) или False

(ложь), которые соответствуют числовым значениям 1 и 0 соответственно:

>>> True + 2 # Эквивалентно 1 + 2

3

>>> False + 2 # Эквивалентно 0 + 2

2

Логическое значение можно сохранить в переменной:

>>> x = True; y = False

>>> x, y

(True, False)

Любой объект в логическом контексте может интерпретироваться как истина

(True) или как ложь (False). Для определения логического значения можно ис-

пользовать функцию bool().

Значение True возвращают следующие объекты:

 любое число, не равное нулю:

>>> bool(1), bool(20), bool(-20)

(True, True, True)

>>> bool(1.0), bool(0.1), bool(-20.0)

(True, True, True)

 не пустой объект:

>>> bool("0"), bool([0, None]), bool((None,)), bool({"x": 5})

(True, True, True, True)

Следующие объекты интерпретируются как False:

 число, равное нулю:

>>> bool(0), bool(0.0)

(False, False)

Условные операторы и циклы

41

 пустой объект:

>>> bool(""), bool([]), bool(())

(False, False, False)

 значение None:

>>> bool(None)

False

4.1. Операторы сравнения

Операторы сравнения используются в логических выражениях. Перечислим их:

 == — равно:

>>> 1 == 1, 1 == 5

(True, False)

 != и <> — не равно:

>>> 1 != 5, 1 <> 5, 1 != 1

(True, True, False)

ПРИМЕЧАНИЕ

Оператор <> признан устаревшим и не рекомендуется к использованию.

 < — меньше:

>>> 1 < 5, 1 < 0

(True, False)

 > — больше:

>>> 1 > 0, 1 > 5

(True, False)

 <= — меньше или равно:

>>> 1 <= 5, 1 <= 0, 1 <= 1

(True, False, True)

 >= — больше или равно:

>>> 1 >= 0, 1 >= 5, 1 >= 1

(True, False, True)

 in — проверка на вхождение в последовательность:

>>> "Строка" in "Строка для поиска" # Строки

True

>>> 2 in [1, 2, 3], 4 in [1, 2, 3] # Списки

(True, False)

>>> 2 in (1, 2, 3), 4 in (1, 2, 3) # Кортежи

(True, False)

Глава 4

42

 is — проверяет, ссылаются ли две переменные на один и тот же объект. Если

переменные ссылаются на один и тот же объект, то оператор is возвращает

значение True:

>>> x = y = [1, 2]

>>> x is y

True

>>> x = [1, 2]; y = [1, 2]

>>> x is y

False

Следует заметить, что в целях эффективности интерпретатор производит кэши-

рование малых целых чисел и небольших строк. Это означает, что если ста пе-

ременным присвоено число 2, то в этих переменных будет сохранена ссылка на

один и тот же объект. Пример:

>>> x = 2; y = 2; z = 2

>>> x is y, y is z

(True, True)

Значение логического выражения можно инвертировать с помощью оператора

not:

>>> x = 1; y = 1

>>> x == y

True

>>> not (x == y), not x == y

(False, False)

Если переменные x и y равны, то возвращается значение True, но т. к. перед

выражением стоит оператор not, выражение вернет False. Круглые скобки можно

не указывать, т. к. оператор not имеет более низкий приоритет выполнения, чем

операторы сравнения.

При необходимости инвертировать значение оператора in оператор not указы-

вается непосредственно перед этим оператором:

>>> 2 in [1, 2, 3], 2 not in [1, 2, 3]

(True, False)

Чтобы инвертировать значение оператора is, оператор not указывается непо-

средственно после этого оператора:

>>> x = y = [1, 2]

>>> x is y, x is not y

(True, False)

В логическом выражении можно указывать сразу несколько условий:

>>> x = 10

>>> 1 < x < 20, 11 < x < 20

(True, False)

Условные операторы и циклы

43

Несколько логических выражений можно объединить в одно большое с помо-

щью следующих операторов:

 and — x and y — логическое И. Если x интерпретируется как False, то воз-

вращается x, в противном случае возвращается y:

>>> 1 < 5 and 2 < 5 # True and True == True

True

>>> 1 < 5 and 2 > 5 # True and False == False

False

>>> 1 > 5 and 2 < 5 # False and True == False

False

>>> 10 and 20, 0 and 20, 10 and 0

(20, 0, 0)

 or — x or y — логическое ИЛИ. Если x интерпретируется как False, то воз-

вращается y, в противном случае возвращается x:

>>> 1 < 5 or 2 < 5 # True or True == True

True

>>> 1 < 5 or 2 > 5 # True or False == True

True

>>> 1 > 5 or 2 < 5 # False or True == True

True

>>> 1 > 5 or 2 > 5 # False or False == False

False

>>> 10 or 20, 0 or 20, 10 or 0

(10, 20, 10)

>>> 0 or "" or None or [] or "s"

's'

Это выражение вернет True только в случае, если оба выражения вернут True:

x1 == x2 and x2 != x3

А это выражение вернет True, если хотя бы одно из выражений вернет True:

x1 == x2 or x3 == x4

Перечислим операторы сравнения в порядке убывания приоритета:

1. <, >, <=, >=, ==, !=, <>, is, is not, in, not in.

2. not — логическое отрицание.

3. and — логическое И.

4. or — логическое ИЛИ.

4.2. Оператор ветвления if...else

Оператор ветвления if...else позволяет в зависимости от значения логическо-

го выражения выполнить отдельный участок программы или, наоборот, не выпол-

нять его.

Глава 4

44

Оператор имеет следующий формат:

if <Логическое выражение>:

 <Блок, выполняемый если условие истинно>

[elif <Логическое выражение>:

 <Блок, выполняемый если условие истинно>

]

[else:

 <Блок, выполняемый если все условия ложны>

]

Как вы уже знаете, блоки внутри составной инструкции выделяются одинако-

вым количеством пробелов (обычно четыре пробела). Концом блока является вы-

ражение, перед которым расположено меньшее количество пробелов. В некоторых

языках программирования логическое выражение заключается в круглые скобки.

В языке Python это делать необязательно, но можно, т. к. любое выражение может

быть расположено внутри круглых скобок. Круглые скобки следует использовать

только при необходимости разместить условие на нескольких строках.

Для примера напишем программу, которая проверяет, является ли введенное

пользователем число четным или нет (листинг 4.1). После проверки выводится со-

ответствующее сообщение.

Листинг 4.1. Проверка числа на четность

-*- coding: cp1251 -*-

x = int(raw_input("Введите число: "))

if x % 2 == 0:

 print x, "- Четное число"

else:

 print x, "- Нечетное число"

Если блок состоит из одной инструкции, то эту инструкцию можно разместить

на одной строке с заголовком:

-*- coding: cp1251 -*-

x = int(raw_input("Введите число: "))

if x % 2 == 0: print x, "- Четное число"

else: print x, "- Нечетное число"

В этом случае концом блока является конец строки. Это означает, что можно

разместить сразу несколько инструкций на одной строке, разделяя их точкой с за-

пятой:

-*- coding: cp1251 -*-

x = int(raw_input("Введите число: "))

if x % 2 == 0: print x,; print "- Четное число"

else: print x,; print "- Нечетное число"

Условные операторы и циклы

45

Знайте, что так можно сделать, но никогда на практике не пользуйтесь этим

способом, т. к. подобная конструкция нарушает стройность кода и ухудшает его

сопровождение в дальнейшем. Всегда размещайте инструкцию на отдельной стро-

ке, даже если блок содержит только одну инструкцию. Согласитесь, что этот код

читается намного проще, чем предыдущий:

-*- coding: cp1251 -*-

x = int(raw_input("Введите число: "))

if x % 2 == 0:

 print x,

 print "- Четное число"

else:

 print x,

 print "- Нечетное число"

Оператор if...else позволяет проверить сразу несколько условий. Рассмотрим

это на примере (листинг 4.2).

Листинг 4.2. Проверка нескольких условий

-*- coding: cp1251 -*-

print """Какой операционной системой вы пользуетесь?

1 - Windows 98

2 - Windows XP

3 - Windows Vista

4 - Другая"""

os = raw_input("Введите число, соответствующее ответу: ")

if os == "1":

 print "Вы выбрали - Windows 98"

elif os == "2":

 print "Вы выбрали - Windows XP"

elif os == "3":

 print "Вы выбрали - Windows Vista"

elif os == "4":

 print "Вы выбрали — Другая"

elif not os:

 print "Вы не ввели число"

else:

 print "Мы не смогли определить вашу операционную систему"

С помощью инструкции elif мы можем определить выбранное значение и вы-

вести соответствующее сообщение. Обратите внимание на то, что логическое вы-

ражение не содержит операторов сравнения:

elif not os:

Такая запись эквивалентна следующей:

elif os == "":

Глава 4

46

Проверка на равенство выражения значению True выполняется по умолчанию.
Так как пустая строка интерпретируется как False, мы инвертируем возвращаемое
значение с помощью оператора not.

Один условный оператор можно вложить в другой. В этом случае отступ вло-
женной инструкции должен быть в два раза больше (листинг 4.3).

Листинг 4.3. Вложенные инструкции

-*- coding: cp1251 -*-

print """Какой операционной системой вы пользуетесь?

1 - Windows 98

2 - Windows XP

3 - Windows Vista

4 - Другая"""

os = raw_input("Введите число, соответствующее ответу: ")

if os != "":

 if os == "1":

 print "Вы выбрали - Windows 98"

 elif os == "2":

 print "Вы выбрали - Windows XP"

 elif os == "3":

 print "Вы выбрали - Windows Vista"

 elif os == "4":

 print "Вы выбрали — Другая"

 else:

 print "Мы не смогли определить вашу операционную систему"

else:

 print "Вы не ввели число"

Начиная с версии Python 2.5, оператор if...else имеет еще один формат:
<Переменная> = <Если истина> if <Условие> else <Если ложь>

Пример:
>>> print "Yes" if 10 % 2 == 0 else "No"

Yes

>>> s = "Yes" if 10 % 2 == 0 else "No"

>>> s

'Yes'

4.3. Цикл for

Предположим, нужно вывести все числа от 1 до 100 по одному на строке.

Обычным способом пришлось бы писать 100 строк кода:
print 1

print 2

...

print 100

Условные операторы и циклы

47

При помощи циклов то же действие можно выполнить одной строкой кода:

for x in xrange(1, 101): print x

Иными словами, циклы позволяют выполнить одни и те же выражения много-

кратно.

В языке Python используются два цикла: for и while. Цикл for применяется

для перебора элементов последовательности. Имеет следующий формат:

for <Текущий элемент> in <Последовательность>:

 <Выражения внутри цикла>

[else:

 <Блок, выполняемый если не использовался оператор break>

]

Здесь присутствуют следующие конструкции:

 <Последовательность> — объект, поддерживающий механизм итерации. На-

пример, строка, список, кортеж и др.;

 <Текущий элемент> — на каждой итерации через этот параметр доступен

текущий элемент последовательности;

 <Выражения внутри цикла> — блок, который будет многократно выполняться;

 если внутри цикла не использовался оператор break, то после завершения

выполнения цикла будет выполнен блок в инструкции else. Данный блок не

является обязательным.

Пример перебора букв в слове приведен в листинге 4.4.

Листинг 4.4. Перебор букв в слове

for s in "str":

 print s,

else:

 print "\nЦикл выполнен"

Результат выполнения:

s t r

Цикл выполнен

Теперь выведем каждый элемент списка и кортежа на отдельной строке (лис-

тинг 4.5).

Листинг 4.5. Перебор списка и кортежа

for x in [1, 2, 3]:

 print x

for y in (1, 2, 3):

 print y

Цикл for позволяет также перебрать элементы словарей, хотя словари и не яв-

ляются последовательностями. В качестве примера выведем элементы словаря

Глава 4

48

двумя способами. Первый способ использует метод keys(), возвращающий список

всех ключей словаря. Второй способ доступен в последних версиях Python. В этом

случае мы просто указываем словарь в качестве параметра. На каждой итерации

цикла будет возвращаться ключ, с помощью которого внутри цикла можно полу-

чить значение, соответствующее этому ключу (листинг 4.6).

Листинг 4.6. Перебор элементов словаря

arr = {"x": 1, "y": 2, "z": 3}

for key in arr.keys(): # Использование метода keys()

 print key, arr[key]

for key in arr: # Словари также поддерживают итерации

 print key, arr[key]

С помощью цикла for можно перебирать сложные структуры данных. В каче-

стве примера выведем элементы списка кортежей (листинг 4.7).

Листинг 4.7. Перебор элементов списка кортежей

arr = [(1, 2), (3, 4)] # Список кортежей

for a, b in arr:

 print a, b

Результат выполнения:

1 2

3 4

4.4. Функции range(), xrange() и enumerate()

До сих пор мы только выводили элементы последовательностей. Теперь попро-

буем умножить каждый элемент списка на 2:

arr = [1, 2, 3]

for i in arr:

 i = i * 2

print arr # Результат выполнения: [1, 2, 3]

Как видно из примера, список не изменился. Переменная i на каждой итерации

цикла содержит лишь копию значения текущего элемента списка. Изменить таким

способом элементы списка нельзя. Чтобы получить доступ к каждому элементу,

можно, например, воспользоваться функцией range() для генерации списка с ин-

дексами. Функция range() имеет следующий формат:

range([<Начало>,]<Конец>[, <Шаг>])

Первый параметр задает начальное значение. Если параметр <Начало> не ука-

зан, то по умолчанию используется значение 0. Во втором параметре указывается

Условные операторы и циклы

49

конечное значение. Следует заметить, что это значение не входит в возвращаемый

список значений. Если параметр <Шаг> не указан, то используется значение 1.

В качестве примера умножим каждый элемент списка на 2 (листинг 4.8).

Листинг 4.8. Пример использования функции range()

arr = [1, 2, 3]

for i in range(len(arr)):

 arr[i] *= 2

print arr # Результат выполнения: [2, 4, 6]

В этом примере мы получаем количество элементов списка с помощью функ-

ции len() и передаем результат в функцию range(). В итоге функция range() воз-

вращает список значений от 0 до len(arr) - 1:

>>> range(len([1, 2, 3]))

[0, 1, 2]

На каждой итерации цикла через переменную i доступен текущий элемент из

списка индексов. Чтобы получить доступ к элементу списка, указываем индекс

внутри квадратных скобок. Умножаем каждый элемент списка на 2, а затем выво-

дим результат с помощью оператора print.

Функция range() возвращает список, который занимает в памяти компьютера

определенное место. Вместо этой функции лучше использовать функцию xrange(),

которая возвращает не список значений, а итератор. С помощью этого итератора

внутри цикла for можно получить значение текущего элемента списка. В итоге мы

экономим память, т. к. сам список в память не помещается. Функция xrange() име-

ет следующий формат:

xrange([<Начало>,]<Конец>[, <Шаг>])

Предназначение параметров такое же, как и в функции range(). Переделаем наш

пример и используем функцию xrange() вместо функции range() (листинг 4.9).

Листинг 4.9. Пример использования функции xrange()

arr = [1, 2, 3]

for i in xrange(len(arr)):

 arr[i] *= 2

print arr

Как видно из примера, мы изменили только название функции, а остальной код

остался прежним. Функцию xrange() удобно использовать и в других случаях. На-

пример, выведем числа от 1 до 100:

for i in xrange(1, 101): print i

Можно не только увеличивать значение, но и уменьшать его. Выведем все чис-

ла от 100 до 1:

for i in xrange(100, 0, -1): print i

Глава 4

50

Можно также изменять значение не только на единицу. Выведем все четные

числа от 1 до 100:

for i in range(2, 101, 2): print i

Функция enumerate(<Объект>) на каждой итерации цикла for возвращает кор-

теж из индекса и значения текущего элемента. В качестве примера умножим на 2

каждый элемент списка, который содержит четное число (листинг 4.10).

Листинг 4.10. Пример использования функции enumerate()

arr = [1, 2, 3, 4, 5, 6]

for i, elem in enumerate(arr):

 if elem % 2 == 0:

 arr[i] *= 2

print arr # Результат выполнения: [1, 4, 3, 8, 5, 12]

Функция enumerate(), также как и функция xrange(), не создает список, а воз-

вращает итератор. С помощью метода next() можно обойти всю последователь-

ность. Когда перебор будет закончен, возвращается исключение StopIteration:

>>> i = enumerate([1, 2])

>>> i

<enumerate object at 0x018CD8A0>

>>> i.next()

(0, 1)

>>> i.next()

(1, 2)

>>> i.next()

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 i.next()

StopIteration

Весь этот процесс цикл for выполняет незаметно для нас.

4.5. Цикл while

Выполнение выражений в цикле while продолжается до тех пор, пока логиче-

ское выражение истинно. Цикл while имеет следующий формат:
<Начальное значение>

while <Условие>:

 <Выражения>

 <Приращение>

[else:

 <Блок, выполняемый если не использовался оператор break>

]

Условные операторы и циклы

51

Последовательность работы цикла while:

1. Переменной-счетчику присваивается начальное значение.

2. Проверяется условие; если оно истинно, выполняются выражения внутри цик-

ла, иначе выполнение цикла завершается.

3. Переменная-счетчик изменяется на величину, указанную в параметре <Прира-

щение>.

4. Переход к пункту 2.

5. Если внутри цикла не использовался оператор break, то после завершения вы-

полнения цикла будет выполнен блок в инструкции else. Данный блок не явля-

ется обязательным.

Выведем все числа от 1 до 100, используя цикл while (листинг 4.11).

Листинг 4.11. Вывод чисел от 1 до 100

i = 1 # <Начальное значение>

while i < 101: # <Условие>

 print i # <Выражения>

 i += 1 # <Приращение>

ВНИМАНИЕ!

Если <Приращение> не указано, то цикл будет бесконечным. Чтобы прервать бесконеч-

ный цикл, следует нажать комбинацию клавиш <Ctrl>+<C>. В результате генерируется
исключение KeyboardInterrupt, и выполнение программы будет остановлено. Следу-

ет учитывать, что прервать таким образом можно только цикл, который выводит данные.

Выведем все числа от 100 до 1 (листинг 4.12).

Листинг 4.12. Вывод чисел от 100 до 1

i = 100

while i:

 print i

 i -= 1

Обратите внимание на условие, оно не содержит операторов сравнения. На ка-

ждой итерации цикла мы вычитаем единицу из значения переменной-счетчика. Как

только значение будет равно 0, цикл остановится. Как вы уже знаете, число 0 в ло-

гическом контексте эквивалентно значению False, а проверка на равенство выра-

жения значению True выполняется по умолчанию.

С помощью цикла while можно перебирать и элементы различных структур.

Но в этом случае следует помнить, что цикл while работает медленнее цикла for.

В качестве примера умножим каждый элемент списка на 2 (листинг 4.13).

Листинг 4.13. Перебор элементов списка

arr = [1, 2, 3]

i, count = 0, len(arr)

Глава 4

52

while i < count:

 arr[i] *= 2

 i += 1

print arr # Результат выполнения: [2, 4, 6]

4.6. Оператор continue.

Переход на следующую итерацию цикла

Оператор continue позволяет перейти к следующей итерации цикла до завер-

шения выполнения всех выражений внутри цикла. В качестве примера выведем все

числа от 1 до 100, кроме чисел от 5 до 10 включительно (листинг 4.14).

Листинг 4.14. Оператор continue

for i in xrange(1, 101):

 if 4 < i < 11:

 continue # Переходим на следующую итерацию цикла

 print i

4.7. Оператор break.

Прерывание цикла

Оператор break позволяет прервать выполнение цикла досрочно. Для примера

выведем все числа от 1 до 100 еще одним способом (листинг 4.15).

Листинг 4.15. Оператор break

i = 1

while True:

 if i > 100: break # Прерываем цикл

 print i

 i += 1

Здесь мы в условии указали значение True. В этом случае выражения внутри

цикла будут выполняться бесконечно. Однако использование оператора break пре-

рывает его выполнение, как только 100 строк уже напечатано.

ВНИМАНИЕ!

Оператор break прерывает выполнение цикла, а не программы, т. е. далее будет вы-

полнено выражение, следующее сразу за циклом.

Условные операторы и циклы

53

Цикл while совместно с оператором break удобно использовать для получения

неопределенного заранее количества данных от пользователя. В качестве примера

просуммируем неопределенное количество чисел (листинг 4.16).

Листинг 4.16. Суммирование неопределенного количества чисел

-*- coding: cp1251 -*-

print "Введите слово 'stop' для получения результата"

summa = 0

while True:

 x = raw_input("Введите число: ")

 if x == "stop":

 break # Выход из цикла

 x = int(x) # Преобразуем строку в число

 summa += x

print "Сумма чисел равна:", summa

Процесс ввода трех чисел и получения суммы выглядит так:

Введите слово 'stop' для получения результата

Введите число: 10

Введите число: 20

Введите число: 30

Введите число: stop

Сумма чисел равна: 60

Значения, введенные пользователем, выделены полужирным шрифтом.

ГЛАВА 5

Числа

Язык Python поддерживает следующие числовые типы:

 int — целые числа в диапазоне от –2 147 483 648 до 2 147 483 647. Если число

выходит за рамки диапазона, то тип int автоматически преобразуется в тип

long;

 long — длинные целые числа. Размер числа ограничен лишь объемом опера-

тивной памяти. В окне Python Shell редактора IDLE число, имеющее тип long,

выводится с буквой L в конце;

 float — вещественные числа;

 complex — комплексные числа.

Операции над числами разных типов возвращают число, имеющее более слож-

ный тип из типов, участвующих в операции. Целые числа имеют самый простой

тип, далее идут длинные целые числа, вещественные числа и самый сложный

тип — комплексные числа. Таким образом, если в операции участвуют целое и ве-

щественное числа, то целое число будет автоматически преобразовано в вещест-

венное число, а затем произведена операция над вещественными числами. Резуль-

татом этой операции будет вещественное число.

Создать объект целочисленного типа можно обычным способом:

>>> x = 0; y = 10; z = -80

>>> x, y, z

(0, 10, -80)

Кроме того, можно указать число в восьмеричной или шестнадцатеричной

форме. Такие числа будут автоматически преобразованы в десятичные целые чис-

ла. Восьмеричные числа начинаются с нуля и содержат цифры от 0 до 7:

>>> 07, 012, 0777

(7, 10, 511)

Начиная с Python 2.6, при вводе восьмеричных чисел после нуля можно указать

латинскую букву o (регистр не имеет значения):

>>> 0o7, 0o12, 0o777, 0O7, 0O12, 0O777

(7, 10, 511, 7, 10, 511)

Числа

55

Шестнадцатеричные числа начинаются с комбинации символов 0x (или 0X) и мо-

гут содержать цифры от 0 до 9 и буквы от A до F (регистр букв не имеет значения):

>>> 0X9,0xA, 0x10, 0xFFF, 0xfff

(9, 10, 16, 4095, 4095)

Длинные целые числа создавать специально не нужно. Если целое число выхо-

дит за рамки допустимого диапазона, то тип int автоматически преобразуется в

тип long. Чтобы явно создать число типа long, после числа следует указать букву L

(регистр не имеет значения):

>>> 10L, 20l

(10L, 20L)

Вещественное число может содержать точку и (или) быть представлено в экс-

поненциальной форме с буквой E (регистр не имеет значения):

>>> 10., .14, 3.14

(10.0, 0.14000000000000001, 3.1400000000000001)

>>> 11E20, 2.5e-12

(1.1e+21, 2.4999999999999998e-12)

При выполнении операций над вещественными числами следует учитывать ог-

раничения точности вычислений. Например, результат следующей операции может

показаться странным:

>>> 0.3 - 0.1 - 0.1 - 0.1

-2.7755575615628914e-17

Ожидаемым был бы результат 0.0, но, как видно из примера, мы получили со-

всем другой результат. Если необходимо производить операции с фиксированной

точностью, то следует использовать модуль decimal.

Комплексные числа записываются в формате:

<Вещественная часть>+<Мнимая часть>J

Примеры комплексных чисел:

>>> 2+5J, 8j

((2+5j), 8j)

5.1. Встроенные функции

для работы с числами

Для работы с числами предназначены следующие встроенные функции:

 int([<Объект>[, <Система счисления>]]) — преобразует объект в целое чис-

ло. Во втором параметре можно указать систему счисления (значение по умол-

чанию 10). Пример:

>>> int(7.5), int("71", 10), int("071", 8), int("0xA", 16)

(7, 71, 57, 10)

>>> int()

0

Глава 5

56

 long([<Объект>[, <Система счисления>]]) — преобразует объект в длинное

целое число. Во втором параметре можно указать систему счисления (значение

по умолчанию 10). Пример:

>>> long(7.5), long("71", 10), long("071", 8), long("0xA", 16)

(7L, 71L, 57L, 10L)

>>> long()

0L

 float([<Число или строка>]) — преобразует целое число или строку в веще-

ственное число:

>>> float(7), float("7.1"), float("12.")

(7.0, 7.0999999999999996, 12.0)

>>> float()

0.0

 oct(<Число>) — преобразует десятичное число в восьмеричное. Возвращает

строковое представление числа. Пример:

>>> oct(7), oct(8), oct(64)

('07', '010', '0100')

 hex(<Число>) — преобразует десятичное число в шестнадцатеричное. Возвра-

щает строковое представление числа. Пример:

>>> hex(10), hex(16), hex(255)

('0xa', '0x10', '0xff')

 round(<Число>[, <Количество знаков после точки>]) — возвращает вещест-

венное число, округленное до ближайшего меньшего целого для чисел с дроб-

ной частью меньше 0.5, или значение, округленное до ближайшего большего

целого для чисел с дробной частью больше или равной 0.5. Пример:

>>> round(1), round(1.49), round(1.50)

(1.0, 1.0, 2.0)

Во втором параметре можно указать количество знаков в дробной части. Если па-

раметр не указан, то используется значение 0:

>>> round(1.524, 2), round(1.525, 2), round(1.5555, 3)

(1.52, 1.53, 1.556)

 abs(<Число>) — возвращает абсолютное значение:

>>> abs(-10), abs(10), abs(-12.5)

(10, 10, 12.5)

 pow(<Число>, <Степень>[, <Остаток от деления>]) — возводит <Число> в

<Степень>:

>>> pow(10, 2), 10 ** 2, pow(3, 3), 3 ** 3

(100, 100, 27, 27)

Если указан третий параметр, то возвращается остаток от деления:

>>> pow(10, 2, 2), (10 ** 2) % 2, pow(3, 3, 2), (3 ** 3) % 2

(0, 0, 1, 1)

Числа

57

 max(<Список чисел через запятую>) — максимальное значение из списка:

>>> max(1, 2, 3), max(3, 2, 3, 1), max(1, 1.0), max(1.0, 1)

(3, 3, 1, 1.0)

 min(<Список чисел через запятую>) — минимальное значение из списка:

>>> min(1, 2, 3), min(3, 2, 3, 1), min(1, 1.0), min(1.0, 1)

(1, 1, 1, 1.0)

 cmp(<Объект1>, <Объект2>) — сравнивает два объекта и возвращает следую-

щие значения:

 1 — если <Объект1> больше <Объект2>;

 -1 — если <Объект1> меньше <Объект2>;

 0 — если значения равны.

Пример сравнения чисел:

>>> cmp(10, 5), cmp(5, 10), cmp(5, 5), cmp(5, 5.0)

(1, -1, 0, 0)

 sum(<Последовательность>[, <Начальное значение>]) — возвращает сумму

значений элементов последовательности (например, списка, кортежа) плюс

<Начальное значение>. Если второй параметр не указан, то значение параметра

равно 0. Если последовательность пустая, то возвращается значение второго

параметра. Примеры:

>>> sum((10, 20, 30, 40)), sum([10, 20, 30, 40])

(100, 100)

>>> sum([10, 20, 30, 40], 2), sum([], 2)

(102, 2)

 divmod(x, y) — возвращает кортеж из двух значений (x // y, x % y):

>>> divmod(13, 2) # 13 == 6 * 2 + 1

(6, 1)

>>> 13 // 2, 13 % 2

(6, 1)

>>> divmod(13.5, 2.0) # 13.5 == 6.0 * 2.0 + 1.5

(6.0, 1.5)

>>> 13.5 // 2.0, 13.5 % 2.0

(6.0, 1.5)

5.2. Модуль math.

Математические функции

Модуль math предоставляет дополнительные функции для работы с числами, а

также стандартные константы. Прежде чем использовать модуль, необходимо под-

ключить его с помощью инструкции:

import math

Глава 5

58

ПРИМЕЧАНИЕ

Для работы с комплексными числами необходимо использовать модуль cmath.

Модуль math предоставляет следующие стандартные константы:

 pi — возвращает число :

>>> import math

>>> math.pi

3.1415926535897931

 e — возвращает значение константы e:

>>> math.e

2.7182818284590451

Перечислим основные функции для работы с числами:

 sin(), cos(), tan() — стандартные тригонометрические функции (синус, ко-

синус, тангенс). Значение указывается в радианах;

 asin(), acos(), atan() — обратные тригонометрические функции (арксинус,

арккосинус, арктангенс). Значение возвращается в радианах;

 degrees() — преобразует радианы в градусы:

>>> math.degrees(math.pi)

180.0

 radians() — преобразует градусы в радианы:

>>> math.radians(180.0)

3.1415926535897931

 exp() — экспонента;

 log() — логарифм;

 sqrt() — квадратный корень:

>>> math.sqrt(100), math.sqrt(25)

(10.0, 5.0)

 ceil() — значение, округленное до ближайшего большего целого:

>>> math.ceil(5.49), math.ceil(5.50), math.ceil(5.51)

(6.0, 6.0, 6.0)

 floor() — значение, округленное до ближайшего меньшего целого:

>>> math.floor(5.49), math.floor(5.50), math.floor(5.51)

(5.0, 5.0, 5.0)

 pow(<Число>, <Степень>) — возводит <Число> в <Степень>:

>>> math.pow(10, 2), 10 ** 2, math.pow(3, 3), 3 ** 3

(100.0, 100, 27.0, 27)

 fabs() — абсолютное значение:

>>> math.fabs(10), math.fabs(-10), math.fabs(-12.5)

(10.0, 10.0, 12.5)

 fmod() — остаток от деления:

>>> math.fmod(10, 5), 10 % 5, math.fmod(10, 3), 10 % 3

(0.0, 0, 1.0, 1)

Числа

59

 factorial() — факториал числа. Функция доступна, начиная с версии 2.6.

Пример:

>>> math.factorial(5), math.factorial(6)

(120, 720)

ПРИМЕЧАНИЕ

В этом разделе мы рассмотрели только основные функции. Чтобы получить полный

список функций, обращайтесь к документации по модулю math.

5.3. Модуль random.

Генерация случайных чисел

Модуль random позволяет генерировать случайные числа. Прежде чем исполь-

зовать модуль, необходимо подключить его с помощью инструкции:

import random

Перечислим основные функции:

 random() — возвращает псевдослучайное число от 0.0 до 1.0:

>>> import random

>>> random.random()

0.42888905467511462

>>> random.random()

0.57809130113447038

>>> random.random()

0.20609823213950174

 seed(<Параметр>) — настраивает генератор случайных чисел на новую после-

довательность. По умолчанию используется системное время. Если значение

параметра будет одинаковым, то генерируется одинаковое число:

>>> random.seed(10)

>>> random.random()

0.5714025946899135

>>> random.seed(10)

>>> random.random()

0.5714025946899135

 uniform(<Начало>, <Конец>) — возвращает псевдослучайное вещественное

число в диапазоне от <Начало> до <Конец>:

>>> random.uniform(0, 10)

1.6022955651881965

>>> random.uniform(0, 10)

5.206693596399246

Глава 5

60

 randint(<Начало>, <Конец>) — возвращает псевдослучайное целое число в

диапазоне от <Начало> до <Конец>:

>>> random.randint(0, 10)

10

>>> random.randint(0, 10)

6

 randrange([<Начало>,]<Конец>[, <Шаг>]) — возвращает случайный элемент

из числовой последовательности. Параметры аналогичны параметрам функции

range():

range([<Начало>,]<Конец>[, <Шаг>])

Именно из списка, возвращаемого функцией range(), и выбирается случайный

элемент:

>>> random.randrange(10)

9

>>> random.randrange(0, 10)

1

>>> random.randrange(0, 10, 2)

8

 choice(<Последовательность>) — возвращает случайный элемент из любой

последовательности (строки, списка, кортежа):

>>> random.choice("string") # Строка

't'

>>> random.choice(["s", "t", "r"]) # Список

's'

>>> random.choice(("s", "t", "r")) # Кортеж

'r'

 shuffle(<Список>[, <Число от 0.0 до 1.0>]) — перемешивает элементы

списка случайным образом. Функция перемешивает сам список и ничего не

возвращает. Если второй параметр не указан, то используется значение, воз-

вращаемое функцией random(). Пример:

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.shuffle(arr)

>>> arr

[10, 7, 8, 6, 1, 4, 3, 5, 2, 9]

 sample(<Последовательность>, <Количество элементов>) — возвращает спи-

сок из указанного количества элементов. В этот список попадут элементы из

последовательности, выбранные случайным образом. В качестве последова-

тельности можно указать любые объекты, поддерживающие итерации.

Примеры:

>>> random.sample("string", 2)

['i', 'r']

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.sample(arr, 2)

Числа

61

[7, 10]

>>> arr # Сам список не изменяется

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.sample((1, 2, 3, 4, 5, 6, 7), 3)

[6, 3, 5]

>>> random.sample(xrange(300), 5)

[126, 194, 272, 46, 71]

Для примера создадим генератор паролей произвольной длины (листинг 5.1).

Для этого добавляем в список arr все разрешенные символы, а далее в цикле полу-

чаем случайный элемент с помощью функции choice(). По умолчанию будет вы-

даваться пароль из 8 символов.

Листинг 5.1. Генератор паролей

-*- coding: cp1251 -*-

import random # Подключаем модуль random

def passw_generator(count_char=8):

 arr = ['a','b','c','d','e','f','g','h','i','j','k','l','m',

 'n','o','p','q','r','s','t','u','v','w','x','y','z',

 'A','B','C','D','E','F','G','H','I','J','K','L',

 'M','N','O','P','Q','R','S','T','U','V', 'W',

 'X','Y','Z','1','2','3','4','5','6','7','8','9','0']

 passw = []

 for i in xrange(count_char):

 passw.append(random.choice(arr))

 return "".join(passw)

Вызываем функцию

print passw_generator(10) # Выведет что-то вроде rPiK6lvemm

print passw_generator() # Выведет что-то вроде f04CURGA

ГЛАВА 6

Строки

Строки являются упорядоченными последовательностями символов. Длина

строки ограничена лишь объемом оперативной памяти компьютера. Как и все по-

следовательности, строки поддерживают обращение к элементу по индексу, полу-

чение среза, конкатенацию (оператор +), повторение (оператор *), проверку на

вхождение (оператор in).

Кроме того, строки относятся к неизменяемым типам данных. Поэтому практиче-

ски все строковые методы в качестве значения возвращают новую строку. При ис-

пользовании небольших строк это не приводит к каким-либо проблемам, но при ра-

боте с большими строками можно столкнуться с проблемой нехватки памяти. Иными

словами, можно получить символ по индексу, но изменить его нельзя (листинг 6.1).

Листинг 6.1. Попытка изменить символ по индексу

>>> s = "Python"

>>> s[0] # Можно получить символ по индексу

'P'

>>> s[0] = "J" # Изменить строку нельзя

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 s[0] = "J" # Изменить строку нельзя

TypeError: 'str' object does not support item assignment

В некоторых языках программирования концом строки является нулевой сим-

вол. В языке Python нулевой символ может быть расположен внутри строки:

>>> "string\x00string" # Нулевой символ — это НЕ конец строки

'string\x00string'

Язык Python поддерживает следующие строковые типы:

 str — обычная строка. Может содержать как однобайтовые символы, так и

многобайтовые. Обратите внимание на то, что функции и методы обычных

строк некорректно работают с многобайтовыми кодировками, например, функ-

Строки

63

ция len() вернет количество байтов, а не символов. При работе с многобайто-

выми кодировками следует использовать Unicode-строки. В этом случае функ-

ция len() вернет количество символов, а не байтов;

 unicode — Unicode-строка. Необходимо заметить, что Unicode-строки не име-

ют никакого отношения к кодировке UTF-8. Рассматривайте такие строки, как

строки в некой абстрактной кодировке, позволяющие хранить символы Unicode

и производить манипуляции с ними. При выводе Unicode-строку необходимо

преобразовать в обычную строку в какой-либо кодировке.

6.1. Создание строки

Создать обычную строку можно следующими способами:

 с помощью функции str([<Объект>]). Функция позволяет преобразовать лю-

бой объект в строку. Если параметр не указан, то возвращается пустая строка.

Пример:
>>> str(), str([1, 2]), str((3, 4)), str({"x": 1})

('', '[1, 2]', '(3, 4)', "{'x': 1}")

 указав строку между апострофами или двойными кавычками:
>>> 'string', "string", '"x": 5', "'x': 5"

('string', 'string', '"x": 5', "'x': 5")

>>> print 'Строка1\nСтрока2'

Строка1

Строка2

>>> print "Строка1\nСтрока2"

Строка1

Строка2

В некоторых языках программирования (например, в PHP) строка в апострофах

отличается от строки в кавычках тем, что внутри апострофов специальные сим-

волы выводятся как есть, а внутри кавычек спецсимволы интерпретируются.

В языке Python никакого отличия между строкой в апострофах и строкой в ка-

вычках нет. Это одно и то же. Если строка содержит кавычки, то ее лучше за-

ключить в апострофы и наоборот. Все специальные символы в таких строках

интерпретируются. Например, последовательность символов \n преобразуется

в символ новой строки. Чтобы специальный символ выводился как есть, его не-

обходимо экранировать с помощью слеша:

>>> print "Строка1\\nСтрока2"

Строка1\nСтрока2

>>> print 'Строка1\\nСтрока2'

Строка1\nСтрока2

Кавычку внутри строки в кавычках и апостроф внутри строки в апострофах

также необходимо экранировать с помощью защитного слеша:

>>> "\"x\": 5", '\'x\': 5'

('"x": 5', "'x': 5")

Глава 6

64

Следует также заметить, что заключить объект в одинарные кавычки (или апо-
строфы) на нескольких строках нельзя. Переход на новую строку вызовет син-
таксическую ошибку:

>>> "string

SyntaxError: EOL while scanning single-quoted string

Чтобы расположить объект на нескольких строках, следует перед символом пе-
ревода строки указать символ \, поместить две строки внутри скобок или ис-
пользовать конкатенацию внутри скобок:

>>> "string1\

string2" # После символа \ не должно быть никаких символов

'string1string2'

>>> ("string1"

"string2") # Неявная конкатенация строк

'string1string2'

>>> ("string1" +

"string2") # Явная конкатенация строк

'string1string2'

Кроме того, если в конце строки расположен символ \, то его необходимо эк-
ранировать, иначе будет выведено сообщение об ошибке:

>>> print "string\"

SyntaxError: EOL while scanning single-quoted string

>>> print "string\\"

string\

 указав строку между утроенными апострофами или утроенными кавычками.
Такие объекты можно разместить на нескольких строках, а также одновремен-
но использовать кавычки и апострофы без необходимости их экранировать.
В остальном такие объекты эквивалентны строкам в апострофах и кавычках.
Все специальные символы в таких строках интерпретируются. Примеры:
>>> print '''Строка1

Строка2'''

Строка1

Строка2

>>> print """Строка1

Строка2"""

Строка1

Строка2

Если строка не присваивается переменной, то она считается строкой докумен-
тирования. Такая строка сохраняется в свойстве __doc__ того объекта, в котором
расположена. В качестве примера создадим функцию со строкой документирова-
ния, а затем выведем содержимое строки:
>>> def test():

 """Это описание функции"""

 pass

>>> print test.__doc__

Это описание функции

Строки

65

Так как выражения внутри таких строк не выполняются, то утроенные кавычки

(или утроенные апострофы) очень часто используются для комментирования

больших фрагментов кода на этапе отладки программы.

Если перед строкой разместить модификатор r, то специальные символы внут-

ри строки выводятся как есть. Например, символ \n не будет преобразован в сим-

вол перевода строки. Иными словами, он будет считаться последовательностью

двух символов: \ и n:

>>> print "Строка1\nСтрока2"

Строка1

Строка2

>>> print r"Строка1\nСтрока2"

Строка1\nСтрока2

>>> print r"""Строка1\nСтрока2"""

Строка1\nСтрока2

Такие неформатированные строки удобно использовать в шаблонах регуляр-

ных выражений, а также при указании пути к файлу или каталогу:

>>> print r"C:\Python26\lib\site-packages"

C:\Python26\lib\site-packages

Если модификатор не указать, то все слеши в пути необходимо экранировать:

>>> print "C:\\Python26\\lib\\site-packages"

C:\Python26\lib\site-packages

Если в конце неформатированной строки расположен слеш, то его необходимо

экранировать. Однако следует учитывать, что этот слеш будет добавлен в исход-

ную строку. Пример:

>>> print r"C:\Python26\lib\site-packages\"

SyntaxError: EOL while scanning string literal

>>> print r"C:\Python26\lib\site-packages\\"

C:\Python26\lib\site-packages\\

Создать Unicode-строку можно с помощью функции unicode(). Формат функ-

ции:

unicode([<Строка>[, <Кодировка>[, <Обработка ошибок>]]])

Если параметры не указаны, то возвращается пустая Unicode-строка. В третьем

параметре могут быть указаны значения "strict" (значение по умолчанию), "re-

place" или "ignore". Примеры:

>>> unicode()

u''

>>> unicode("Строка в кодировке windows-1251", "cp1251")

u'\u0421\u0442\u0440\u043e\u043a\u0430 \u0432

\u043a\u043e\u0434\u0438\u0440\u043e\u0432\u043a\u0435 windows-1251'

>>> unicode("Строка", "utf-8", "strict")

Traceback (most recent call last):

 File "<pyshell#39>", line 1, in <module>

 unicode("Строка", "utf-8", "strict")

Глава 6

66

UnicodeDecodeError: 'utf8' codec can't decode bytes in position 0-1:

invalid data

>>> unicode("Строка", "utf-8", "replace")

u'\ufffd\ufffd'

>>> unicode("Строка", "utf-8", "ignore")

u''

Если перед кавычками (или апострофами) разместить модификатор u, то также

будет создана Unicode-строка. Чтобы создать неформатированную строку, необхо-

димо после модификатора u указать модификатор r:

-*- coding: utf-8 -*-

print u"Строка1\nСтрока2" # Unicode-строка

print ur"Строка1\nСтрока2" # Неформатированная Unicode-строка

Результат выполнения:

Строка1

Строка2

Строка1\nСтрока2

Необходимо заметить, что в окне Python Shell редактора IDLE модификатор u

обрабатывается некорректно. Поэтому в этом окне лучше использовать функцию

unicode(). Пример:

>>> str1 = u"Строка"

>>> str1 # Строка преобразована некорректно!

u'\xd1\xf2\xf0\xee\xea\xe0'

>>> str2 = unicode("Строка", "cp1251")

>>> str2 # Строка преобразована правильно

u'\u0421\u0442\u0440\u043e\u043a\u0430'

>>> str1.encode("cp1251") # Ошибка при преобразовании

... Фрагмент опущен ...

UnicodeEncodeError: 'charmap' codec can't encode characters in

position 0-5: character maps to <undefined>

>>> str2.encode("cp1251") # Преобразование без ошибок

'\xd1\xf2\xf0\xee\xea\xe0'

6.2. Специальные символы

Специальные символы — это комбинации знаков, обозначающих служебные

или непечатаемые символы, которые невозможно вставить обычным способом. Пе-

речислим специальные символы, допустимые внутри строки, перед которой нет

модификатора r:

 \n — перевод строки;

 \r — возврат каретки;

 \t — знак табуляции;

 \v — вертикальная табуляция;

Строки

67

 \a — звонок;

 \b — забой;

 \f — перевод формата;

 \0 — нулевой символ (не является концом строки);

 \" — кавычка;

 \' — апостроф;

 \0xx — восьмеричное значение символа. Например, \074 соответствует символу <;

 \xhh — шестнадцатеричное значение символа. Например, \x6a соответствует

символу j;

 \\ — обратный слеш.

В Unicode-строках можно указать следующие специальные символы:

 \uxxxx — 16-битный символ Unicode. Например, \u043a соответствует русской

букве к;

 \Uxxxxxxxx — 32-битный символ Unicode.

Если после слеша не стоит символ, который вместе со слешем интерпретирует-

ся как спецсимвол, то слеш сохраняется в составе строки:

>>> print "Этот символ \не специальный"

Этот символ \не специальный

Тем не менее, лучше экранировать слеш явным образом:

>>> print "Этот символ \\не специальный"

Этот символ \не специальный

6.3. Операции над строками

Как вы уже знаете, строки относятся к последовательностями. Как и все после-

довательности, строки поддерживают обращение к элементу по индексу, получе-

ние среза, конкатенацию, повторение и проверку на вхождение. Рассмотрим эти

операции подробно.

К любому символу строки можно обратиться как к элементу списка. Достаточ-

но указать его индекс в квадратных скобках. Нумерация начинается с нуля:

>>> s = "Python"

>>> s[0], s[1], s[2], s[3], s[4], s[5]

('P', 'y', 't', 'h', 'o', 'n')

Если символ, соответствующий указанному индексу, отсутствует в строке, то

возбуждается исключение IndexError:

>>> s = "Python"

>>> s[10]

Traceback (most recent call last):

 File "<pyshell#37>", line 1, in <module>

 s[10]

IndexError: string index out of range

Глава 6

68

В качестве индекса можно указать отрицательное значение. В этом случае

смещение будет отсчитываться от конца строки, а точнее, значение вычитается из

длины строки, чтобы получить положительный индекс:

>>> s = "Python"

>>> s[-1], s[len(s)-1]

('n', 'n')

Так как строки относятся к неизменяемым типам данных, то изменить символ

по индексу нельзя:

>>> s = "Python"

>>> s[0] = "J" # Изменить строку нельзя

Traceback (most recent call last):

 File "<pyshell#7>", line 1, in <module>

 s[0] = "J" # Изменить строку нельзя

TypeError: 'str' object does not support item assignment

Чтобы выполнить изменение, можно воспользоваться операцией извлечения

среза, которая возвращает указанный фрагмент строки. Формат операции:

[<Начало>:<Конец>:<Шаг>]

Все параметры являются необязательными. Если параметр <Начало> не указан,

то используется значение 0. Если параметр <Конец> не указан, то возвращается

фрагмент до конца строки. Следует также заметить, что символ с индексом, ука-

занным в этом параметре, не входит в возвращаемый фрагмент. Если параметр

<Шаг> не указан, то используется значение 1. В качестве значения параметров мож-

но указать отрицательные значения.

Теперь рассмотрим несколько примеров. Сначала получим копию строки:

>>> s = "Python"

>>> s[:] # Возвращается фрагмент от позиции 0 до конца строки

'Python'

Теперь выведем символы в обратном порядке:

>>> s[::-1] # Указываем отрицательное значение в параметре <Шаг>

'nohtyP'

Заменим первый символ в строке:

>>> "J" + s[1:] # Извлекаем фрагмент от символа 1 до конца строки

'Jython'

Удалим последний символ:

>>> s[:-1] # Возвращается фрагмент от 0 до len(s)-1

'Pytho'

Получим первый символ в строке:

>>> s[0:1] # Символ с индексом 1 не входит в диапазон

'P'

А теперь получим последний символ:

>>> s[-1:] # Получаем фрагмент от len(s)-1 до конца строки

'n'

Строки

69

И, наконец, выведем символы с индексами 2, 3 и 4:

>>> s[2:5] # Возвращаются символы с индексами 2, 3 и 4

'tho'

Узнать количество символов в строке позволяет функция len():

>>> len("Python"), len("\r\n\t"), len(r"\r\n\t")

(6, 3, 6)

Необходимо заметить, что для многобайтовых кодировок функция len() воз-

вращает количество байтов, а не количество символов. Чтобы получить длину

строки в символах, следует использовать Unicode-строки. Пример:

>>> len("Строка") # Правильно

6

>>> len(unicode("Строка", "cp1251").encode("utf-8")) # Неправильно

12

>>> len(unicode("Строка", "cp1251")) # Правильно

6

Теперь, когда мы знаем количество символов, можно перебрать все символы с

помощью цикла for:

>>> s = "Python"

>>> for i in xrange(len(s)): print s[i],

Результат выполнения:

P y t h o n

Так как строки поддерживают итерации, мы можем просто указать строку в ка-

честве параметра цикла:

>>> s = "Python"

>>> for i in s: print i,

Результат выполнения будет таким же:

P y t h o n

Соединить две строки в одну строку позволяет оператор +:

>>> print "Строка1" + "Строка2"

Строка1Строка2

Кроме того, можно выполнить неявную конкатенацию строк. В этом случае две

строки указываются рядом без оператора между ними:

>>> print "Строка1" "Строка2"

Строка1Строка2

Обратите внимание на то, что если между строками указать запятую, то мы по-

лучим кортеж, а не строку:

>>> s = "Строка1", "Строка2"

>>> type(s) # Получаем кортеж, а не строку

<type 'tuple'>

Глава 6

70

Если соединяются, например, переменная и строка, то следует обязательно ука-

зывать символ конкатенации строк, иначе будет выведено сообщение об ошибке:

>>> s = "Строка1"

>>> print s + "Строка2" # Нормально

Строка1Строка2

>>> print s "Строка2" # Ошибка

SyntaxError: invalid syntax

При необходимости соединить строку с другим типом данных (например, с чис-

лом) следует произвести явное преобразование типов с помощью функции str():

>>> "string" + str(10)

'string10'

Кроме рассмотренных операций, строки поддерживают операцию повторения и

проверку на вхождение. Повторить строку указанное количество раз можно с по-

мощью оператора *, а выполнить проверку на вхождение фрагмента в строку по-

зволяет оператор in:

>>> "-" * 20

'--------------------'

>>> "yt" in "Python" # Найдено

True

>>> "yt" in "Perl" # Не найдено

False

6.4. Форматирование строк

Вместо соединения строк с помощью оператора + лучше использовать форма-

тирование. Данная операция позволяет соединять строку с любым другим типом

данных и выполняется быстрее конкатенации. Форматирование имеет следующий

синтаксис:

<Строка специального формата> % <Значения>

Внутри параметра <Строка специального формата> могут быть указаны спе-

цификаторы, имеющие следующий синтаксис:

%[(<Ключ>)][<Флаг>][<Ширина>][.<Точность>]<Тип преобразования>

Количество спецификаторов внутри строки должно быть равно количеству

элементов в параметре <Значения>. Если используется только один спецификатор,

то параметр <Значения> может содержать одно значение, в противном случае необ-

ходимо перечислить значения через запятую внутри круглых скобок, создавая тем

самым кортеж. Пример:

>>> "%s" % 10 # Один элемент

'10'

>>> "%s - %s - %s" % (10, 20, 30) # Несколько элементов

'10 - 20 - 30'

Строки

71

Параметры внутри спецификатора имеют следующий смысл:

 <Ключ> — ключ словаря. Если задан ключ, то в параметре <Значения> необхо-
димо указать словарь, а не кортеж. Пример:
>>> "%(name)s - %(year)s" % {"year": 1978, "name": "Nik"}

'Nik - 1978'

 <Флаг> — флаг преобразования. Может содержать следующие значения:
 # — для восьмеричных значений добавляет в начало символ 0, для шестна-

дцатеричных значений добавляет комбинацию символов 0x (если использу-
ется тип x) или 0X (если используется тип X), для вещественных чисел ука-
зывает всегда выводить дробную точку, даже если задано значение 0 в
параметре <Точность>:
>>> print "%#o %#o %#o" % (077, 10, 10.5)

077 012 012

>>> print "%#x %#x %#x" % (0xff, 10, 10.5)

0xff 0xa 0xa

>>> print "%#X %#X %#X" % (0xff, 10, 10.5)

0XFF 0XA 0XA

>>> print "%#.0F %.0F" % (300, 300)

300. 300

 0 — задает наличие ведущих нулей для числового значения:
>>> "'%d' - '%05d'" % (3, 3) # 5 — ширина поля

"'3' - '00003'"

 - — задает выравнивание по левой границе области. По умолчанию ис-
пользуется выравнивание по правой границе. Если флаг - указан одно-
временно с флагом 0, то действие флага 0 будет отменено. Пример:
>>> "'%5d' - '%-5d'" % (3, 3) # 5 — ширина поля

"' 3' - '3 '"

>>> "'%05d' - '%-05d'" % (3, 3)

"'00003' - '3 '"

 пробел — вставляет пробел перед положительным числом. Перед отрица-
тельным числом будет стоять минус. Пример:
>>> "'% d' - '% d'" % (-3, 3)

"'-3' - ' 3'"

 + — задает обязательный вывод знака, как для отрицательных, так и для
положительных чисел. Если флаг + указан одновременно с флагом пробел,
то действие флага пробел будет отменено. Пример:
>>> "'%+d' - '%+d'" % (-3, 3)

"'-3' - '+3'"

 <Ширина> — минимальная ширина поля. Если строка не помещается в указан-
ную ширину, то значение игнорируется и строка выводится полностью:
>>> "'%10d' - '%-10d'" % (3, 3)

"' 3' - '3 '"

>>> "'%3s''%10s'" % ("string", "string")

"'string'' string'"

Глава 6

72

Вместо значения можно указать символ "*". В этом случае значение следует

задать внутри кортежа:

>>> "'%*s''%10s'" % (10, "string", "str")

"' string'' str'"

 <Точность> — количество знаков после точки для вещественных чисел. Перед

этим параметром обязательно должна стоять точка. Пример:
>>> import math

>>> "%s %f %.2f" % (math.pi, math.pi, math.pi)

'3.14159265359 3.141593 3.14'

Вместо значения можно указать символ "*". В этом случае значение следует
задать внутри кортежа:

>>> "'%*.*f'" % (8, 5, math.pi)

"' 3.14159'"

 <Тип преобразования> — задает тип преобразования. Параметр является обяза-
тельным.
В параметре <Тип преобразования> могут быть указаны следующие символы:

 s — преобразует любой объект в строку с помощью функции str():
>>> print "%s" % ("Обычная строка")

Обычная строка

>>> print "%s %s %s" % (10, 10.52, [1, 2, 3])

10 10.52 [1, 2, 3]

 r — преобразует любой объект в строку с помощью функции repr():
>>> print "%r" % ("Обычная строка")

'\xce\xe1\xfb\xf7\xed\xe0\xff \xf1\xf2\xf0\xee\xea\xe0'

 c — выводит одиночный символ или преобразует числовое значение в символ.
В качестве примера выведем числовое значение и соответствующий этому зна-
чению символ:
>>> for i in xrange(33, 127): print "%s => %c" % (i, i)

 d и i — возвращают целую часть числа:
>>> print "%d %d %d" % (10, 25.6, -80)

10 25 -80

>>> print "%i %i %i" % (10, 25.6, -80)

10 25 -80

 o — восьмеричное значение:
>>> print "%o %o %o" % (077, 10, 10.5)

77 12 12

>>> print "%#o %#o %#o" % (077, 10, 10.5)

077 012 012

 x — шестнадцатеричное значение в нижнем регистре:
>>> print "%x %x %x" % (0xff, 10, 10.5)

ff a a

>>> print "%#x %#x %#x" % (0xff, 10, 10.5)

0xff 0xa 0xa

Строки

73

 X — шестнадцатеричное значение в верхнем регистре:

>>> print "%X %X %X" % (0xff, 10, 10.5)

FF A A

>>> print "%#X %#X %#X" % (0xff, 10, 10.5)

0XFF 0XA 0XA

 f и F — вещественное число в десятичном представлении:

>>> print "%f %f %f" % (300, 18.65781452, -12.5)

300.000000 18.657815 -12.500000

>>> print "%F %F %F" % (300, 18.65781452, -12.5)

300.000000 18.657815 -12.500000

>>> print "%#.0F %.0F" % (300, 300)

300. 300

 e — вещественное число в экспоненциальной форме (буква "e" в нижнем реги-

стре):

>>> print "%e %e" % (3000, 18657.81452)

3.000000e+03 1.865781e+04

 E — вещественное число в экспоненциальной форме (буква "e" в верхнем реги-

стре):

>>> print "%E %E" % (3000, 18657.81452)

3.000000E+03 1.865781E+04

 g — эквивалентно e, если экспонента меньше –4. В противном случае исполь-

зуется десятичное представление вещественного числа:

>>> print "%g %g %g" % (0.086578, 0.000086578, 1.865E-005)

0.086578 8.6578e-05 1.865e-05

 G — эквивалентно E, если экспонента меньше –4. В противном случае исполь-

зуется десятичное представление вещественного числа:

>>> print "%G %G %G" % (0.086578, 0.000086578, 1.865E-005)

0.086578 8.6578E-05 1.865E-05

Если внутри строки необходимо использовать символ процента, то этот символ

следует удвоить, иначе будет выведено сообщение об ошибке:

>>> print "% %s" % ("- это символ процента") # Ошибка

Traceback (most recent call last):

 File "<pyshell#38>", line 1, in <module>

 print "% %s" % ("- это символ процента") # Ошибка

TypeError: not all arguments converted during string formatting

>>> print "%% %s" % ("- это символ процента") # Нормально

% - это символ процента

Форматирование строк очень удобно использовать при передаче данных в шаб-

лон HTML-страницы. Для этого заполняем словарь данными и указываем его спра-

ва от символа %, а сам шаблон — слева. Продемонстрируем это на примере (лис-

тинг 6.2).

Глава 6

74

Листинг 6.2. Пример использования форматирования строк

-*- coding: cp1251 -*-

html = """<html>

<head><title>%(title)s</title>

</head>

<body>

<h1>%(h1)s</h1>

<div>%(content)s</div>

</body>

</html>"""

arr = {"title": "Это название документа",

 "h1": "Это заголовок первого уровня",

 "content": "Это основное содержание страницы"}

print html % arr # Подставляем значения и выводим шаблон

Результат выполнения:

<html>

<head><title>Это название документа</title>

</head>

<body>

<h1>Это заголовок первого уровня</h1>

<div>Это основное содержание страницы</div>

</body>

</html>

При использовании операции форматирования следует учитывать, что если в

операции участвуют обычная строка и Unicode-строка, то результатом будет Un-

icode-строка:

>>> type("%s %s" % (unicode("str", "cp1251"), "str"))

<type 'unicode'>

При использовании смешанных строк производится попытка преобразовать

обычную строку в Unicode-строку. Так как по умолчанию в системе используется

кодировка ASCII, попытка преобразовать обычную строку (содержащую русские

буквы) в Unicode-строку приведет к исключению UnicodeDecodeError:

>>> "%s %s" % (unicode("str", "cp1251"), "Строка")

Traceback (most recent call last):

 File "<pyshell#22>", line 1, in <module>

 "%s %s" % (unicode("str", "cp1251"), "Строка")

UnicodeDecodeError: 'ascii' codec can't decode byte 0xd1 in position 0:

ordinal not in range(128)

Преобразованию подвергаются обычные строки, переданные в качестве пара-

метров, а также сама строка со специальными символами. Если в строке со специ-

Строки

75

альными символами содержатся русские буквы, то это также приведет к исключе-

нию UnicodeDecodeError:

>>> "%s %s строка" % (unicode("str", "cp1251"), "str")

Traceback (most recent call last):

 File "<pyshell#24>", line 1, in <module>

 "%s %s строка" % (unicode("str", "cp1251"), "str")

UnicodeDecodeError: 'ascii' codec can't decode byte 0xf1 in position 6:

ordinal not in range(128)

Чтобы исключение не возбуждалось, необходимо явно преобразовывать строки

к одному типу данных. Например, преобразовать Unicode-строку в обычную строку

можно так:

>>> s = unicode("Cтрока1", "cp1251")

>>> print "%s %s" % (s.encode("cp1251"), "Строка2")

Cтрока1 Строка2

Более подробно преобразование кодировок мы рассмотрим далее в этой главе.

Для форматирования строк можно также использовать следующие методы:

 expandtabs([<Ширина поля>]) — заменяет символ табуляции пробелами таким

образом, чтобы общая ширина фрагмента вместе с текстом (расположенным

перед символом табуляции) была равна указанной величине. Если параметр не

указан, то ширина поля предполагается равной 8 символам. Пример:

>>> s = "1\t12\t123\t"

>>> "'%s'" % s.expandtabs(4)

"'1 12 123 '"

В этом примере ширина задана равной четырем символам. Поэтому во фраг-

менте "1\t" табуляция будет заменена тремя пробелами, во фрагменте

"12\t" — двумя пробелами, а во фрагменте "123\t" — одним пробелом. Во

всех трех фрагментах ширина будет равна четырем символам.

Если перед символом табуляции нет текста или количество символов перед та-

буляцией равно ширине, то табуляция заменяется указанным количеством про-

белов:

>>> s = "\t"

>>> "'%s' - '%s'" % (s.expandtabs(), s.expandtabs(4))

"' ' - ' '"

>>> s = "1234\t"

>>> "'%s'" % s.expandtabs(4)

"'1234 '"

Если количество символов перед табуляцией больше ширины, то табуляция за-

меняется пробелами таким образом, чтобы ширина фрагмента вместе с текстом

делилась без остатка на указанную ширину:

>>> s = "12345\t123456\t1234567\t1234567890\t"

>>> "'%s'" % s.expandtabs(4)

"'12345 123456 1234567 1234567890 '"

Глава 6

76

Таким образом, если количество символов перед табуляцией больше 4, но менее

8, то фрагмент дополняется пробелами до 8 символов. Если количество символов

больше 8, но менее 12, то фрагмент дополняется пробелами до 12 символов и т. д.

Все это справедливо при указании в качестве параметра числа 4;

 center(<Ширина>[, <Символ>]) — производит выравнивание строки по центру

внутри поля указанной ширины. Если второй параметр не указан, то справа и

слева от исходной строки будут добавлены пробелы. Пример:

>>> s = "str"

>>> s.center(15), s.center(11, "-")

(' str ', '----str----')

Теперь произведем выравнивание трех фрагментов шириной 15 символов. Пер-

вый фрагмент будет выровнен по правому краю, второй — по левому, а тре-

тий — по центру:

>>> s = "str"

>>> "'%15s' '%-15s' '%s'" % (s, s, s.center(15))

"' str' 'str ' ' str '"

Если количество символов в строке превышает ширину поля, то значение ши-

рины игнорируется и строка возвращается полностью:

>>> s = "string"

>>> s.center(6), s.center(5)

('string', 'string')

 ljust(<Ширина>[, <Символ>]) — производит выравнивание строки по левому

краю внутри поля указанной ширины. Если второй параметр не указан, то

справа от исходной строки будут добавлены пробелы. Если количество симво-

лов в строке превышает ширину поля, то значение ширины игнорируется и

строка возвращается полностью. Пример:

>>> s = "string"

>>> s.ljust(15), s.ljust(15, "-")

('string ', 'string---------')

>>> s.ljust(6), s.ljust(5)

('string', 'string')

 rjust(<Ширина>[, <Символ>]) — производит выравнивание строки по правому

краю внутри поля указанной ширины. Если второй параметр не указан, то слева

от исходной строки будут добавлены пробелы. Если количество символов в

строке превышает ширину поля, то значение ширины игнорируется и строка

возвращается полностью. Пример:

>>> s = "string"

>>> s.rjust(15), s.rjust(15, "-")

(' string', '---------string')

>>> s.rjust(6), s.rjust(5)

('string', 'string')

>>> print unicode("строка", "cp1251").rjust(20, "-")

--------------строка

Строки

77

 zfill(<Ширина>) — производит выравнивание фрагмента по правому краю

внутри поля указанной ширины. Слева от фрагмента будут добавлены нули.

Если количество символов в строке превышает ширину поля, то значение ши-

рины игнорируется и строка возвращается полностью. Пример:

>>> "5".zfill(20), "123546".zfill(5)

('00000000000000000005', '123546')

6.5. Метод format()

Начиная с Python 2.6, помимо операции форматирования, строки поддержива-

ют метод format(). Метод имеет следующий синтаксис:

<Строка специального формата>.format(*args, **kwargs)

В параметре <Строка специального формата> внутри символов { и } указыва-

ются спецификаторы, имеющие следующий синтаксис:

{<Поле>[!<Функция>][:<Формат>]}

Все символы, расположенные вне фигурных скобок, выводятся без преобразо-

ваний. Если внутри строки необходимо использовать символы { и }, то эти симво-

лы следует удвоить, иначе возбуждается исключение ValueError. Пример:

>>> print "Символы {{ и }} - {0}".format("специальные")

Символы { и } - специальные

В параметре <Поле> можно указать индекс позиции (нумерация начинается с

нуля) или ключ. Допустимо комбинировать позиционные и именованные парамет-

ры. В этом случае в методе format() именованные параметры указываются в са-

мом конце. Пример:

>>> "{0} - {1} - {2}".format(10, 12.3, "string") # Индексы

'10 - 12.3 - string'

>>> arr = [10, 12.3, "string"]

>>> "{0} - {1} - {2}".format(*arr) # Индексы

'10 - 12.3 - string'

>>> "{color} - {model}".format(color="red", model="BMW") # Ключи

'red - BMW'

>>> d = {"color": "red", "model": "BMW"}

>>> "{color} - {model}".format(**d) # Ключи

'red - BMW'

>>> "{color} - {0}".format(2010, color="red") # Комбинация

'red - 2010'

В качестве параметра в методе format() можно указать объект. Для доступа к

элементам по индексу внутри строки формата применяются квадратные скобки, а

для доступа к атрибутам объекта используется точечная нотация:

>>> arr = [10, [12.3, "string"]]

>>> "{0[0]} - {0[1][0]} - {0[1][1]}".format(arr) # Индексы

'10 - 12.3 - string'

Глава 6

78

>>> "{arr[0]} - {arr[1][1]}".format(arr=arr) # Индексы

'10 - string'

>>> class Car: color, model = "red", "BMW"

>>> car = Car()

>>> "{0.color} - {0.model}".format(car) # Атрибуты

'red - BMW'

Параметр <Функция> задает функцию, с помощью которой обрабатываются

данные перед вставкой в строку. Если указано значение "s", то данные обрабаты-

ваются функцией str(), а если значение "r", то функцией repr(). Если параметр

не указан, то для преобразования данных в строку используется функция str().

Пример:

>>> print "{0!s}".format("строка") # str()

строка

>>> print "{0!r}".format("строка") # repr()

'\xf1\xf2\xf0\xee\xea\xe0'

В параметре <Формат> указывается значение, имеющее следующий синтаксис:

[<Выравнивание>][<Знак>][#][0][<Ширина>][.<Точность>][<Преобразование>]

Параметр <Ширина> задает минимальную ширину поля. Если строка не помеща-

ется в указанную ширину, то значение игнорируется и строка выводится полно-

стью:

>>> "'{0:10}' '{1:3}'".format(3, "string")

"' 3' 'string'"

Ширину поля можно передать в качестве параметра в методе format(). В этом

случае вместо числа указывается индекс параметра внутри фигурных скобок:

>>> "'{0:{1}}'".format(3, 10) # 10 - это ширина поля

"' 3'"

По умолчанию значение внутри поля выравнивается по правому краю. Управ-

лять выравниванием позволяет параметр <Выравнивание>. Можно указать следую-

щие значения:

 < — по левому краю;

 > — по правому краю;

 ^ — по центру поля. Пример:

>>> "'{0:<10}' '{1:>10}' '{2:^10}'".format(3, 3, 3)

"'3 ' ' 3' ' 3 '"

 = — знак числа выравнивается по левому краю, а число по правому краю:

>>> "'{0:=10}' '{1:=10}'".format(-3, 3)

"'- 3' ' 3'"

Как видно из предыдущего примера, пространство между знаком и числом по

умолчанию заполняется пробелами, а знак положительного числа не указывается.

Строки

79

Чтобы вместо пробелов пространство заполнялось нулями, необходимо указать

ноль перед шириной поля:

>>> "'{0:=010}' '{1:=010}'".format(-3, 3)

"'-000000003' '0000000003'"

Управлять выводом знака числа позволяет параметр <Знак>. Допустимые зна-

чения:

 + — задает обязательный вывод знака как для отрицательных, так и для поло-

жительных чисел;

 - — вывод знака только для отрицательных чисел (значение по умолчанию);

 пробел — вставляет пробел перед положительным числом. Перед отрицатель-

ным числом будет стоять минус. Пример:

>>> "'{0:+}' '{1:+}' '{0:-}' '{1:-}'".format(3, -3)

"'+3' '-3' '3' '-3'"

>>> "'{0: }' '{1: }'".format(3, -3) # Пробел

"' 3' '-3'"

Для целых чисел в параметре <Преобразование> могут быть указаны следую-

щие опции:

 b — двоичное значение:

>>> "'{0:b}' '{0:#b}'".format(3)

"'11' '0b11'"

 c — преобразует целое число в соответствующий символ:

>>> "'{0:c}'".format(100)

"'d'"

 d — десятичное значение;

 n — аналогично опции d, но учитывает настройки локали;

 o — восьмеричное значение:

>>> "'{0:d}' '{0:o}' '{0:#o}'".format(511)

"'511' '777' '0o777'"

 x — шестнадцатеричное значение в нижнем регистре:

>>> "'{0:x}' '{0:#x}'".format(255)

"'ff' '0xff'"

 X — шестнадцатеричное значение в верхнем регистре:

>>> "'{0:X}' '{0:#X}'".format(255)

"'FF' '0XFF'"

Для вещественных чисел в параметре <Преобразование> могут быть указаны

следующие опции:

 f и F — вещественное число в десятичном представлении:

>>> "'{0:f}' '{1:f}' '{2:f}'".format(30, 18.6578145, -2.5)

"'30.000000' '18.657815' '-2.500000'"

Задать количество знаков после запятой позволяет параметр <Точность>:

>>> "'{0:.7f}' '{1:.2f}'".format(18.6578145, -2.5)

"'18.6578145' '-2.50'"

Глава 6

80

 e — вещественное число в экспоненциальной форме (буква "e" в нижнем реги-
стре):
>>> "'{0:e}' '{1:e}'".format(3000, 18657.81452)

"'3.000000e+03' '1.865781e+04'"

 E — вещественное число в экспоненциальной форме (буква "e" в верхнем реги-
стре):
>>> "'{0:E}' '{1:E}'".format(3000, 18657.81452)

"'3.000000E+03' '1.865781E+04'"

 g — эквивалентно e, если экспонента меньше –4. В противном случае исполь-
зуется десятичное представление вещественного числа:
>>> "'{0:g}' '{1:g}'".format(0.086578, 0.000086578)

"'0.086578' '8.6578e-05'"

 n — аналогично опции g, но учитывает настройки локали;
 G — эквивалентно E, если экспонента меньше –4. В противном случае исполь-

зуется десятичное представление вещественного числа:
>>> "'{0:G}' '{1:G}'".format(0.086578, 0.000086578)

"'0.086578' '8.6578E-05'"

 % — умножает число на 100 и добавляет символ процента в конец. Значение
отображается в соответствии с опцией f. Пример:
>>> "'{0:%}' '{1:.4%}'".format(0.086578, 0.000086578)

"'8.657800%' '0.0087%'"

6.6. Функции и методы
для работы со строками

Рассмотрим основные функции для работы со строками:
 str([<Объект>]) — преобразует любой объект в строку. Если параметр не ука-

зан, то возвращается пустая строка. Используется оператором print для вывода
объектов. Пример:
>>> str(), str([1, 2]), str((3, 4)), str({"x": 1})

('', '[1, 2]', '(3, 4)', "{'x': 1}")

 repr(<Объект>) — возвращает строковое представление объекта. Используется

при выводе объектов в окне Python Shell редактора IDLE. Пример:
>>> repr("Строка"), repr([1, 2, 3]), repr({"x": 5})

("'\\xd1\\xf2\\xf0\\xee\\xea\\xe0'", '[1, 2, 3]', "{'x': 5}")

>>> repr(unicode("Строка", "cp1251"))

"u'\\u0421\\u0442\\u0440\\u043e\\u043a\\u0430'"

 len(<Строка>) — для строк в однобайтовых кодировках и Unicode-строк воз-
вращает количество символов, а для строк в многобайтовых кодировках — ко-
личество байтов:
>>> len("Python"), len("\r\n\t"), len(r"\r\n\t")

(6, 3, 6)

Строки

81

>>> s = "Строка"

>>> len(s) # Строка в кодировке windows-1251

6

>>> # Преобразуем кодировку из windows-1251 в utf-8

>>> s = s.decode("cp1251").encode("utf-8")

>>> len(s) # Строка в кодировке utf-8

12

>>> len(unicode("Строка", "cp1251"))

6

 cmp(<Объект1>, <Объект2>) — сравнивает два объекта и возвращает следую-

щие значения:

 1 — если <Объект1> больше <Объект2>;

 -1 — если <Объект1> меньше <Объект2>;

 0 — если значения равны.

Пример сравнения строк:

>>> s1, s2 = "строка", "строки"

>>> cmp(s1, s2), cmp(s2, s1), cmp(s1, "строка")

(-1, 1, 0)

Перечислим основные методы:

 strip([<Символы>]) — удаляет пробельные символы в начале и конце строки.

Пробельными символами считаются: пробел, символ перевода строки (\n),

символ возврата каретки (\r), символы горизонтальной (\t) и вертикальной

(\v) табуляции:

>>> s1, s2 = " str\n\r\v\t", "strstrstrokstrstrstr"

>>> "'%s' - '%s'" % (s1.strip(), s2.strip("tsr"))

"'str' - 'ok'"

>>> print unicode("\tСтрока\r\n ", "cp1251").strip()

Строка

 lstrip([<Символы>]) — удаляет пробельные символы в начале строки:

>>> s1, s2 = " str ", "strstrstrokstrstrstr"

>>> "'%s' - '%s'" % (s1.lstrip(), s2.lstrip("tsr"))

"'str ' - 'okstrstrstr'"

>>> "'%s'" % unicode("\tСтрока\r\n ", "cp1251").lstrip()

u"'\u0421\u0442\u0440\u043e\u043a\u0430\r\n '"

 rstrip([<Символы>]) — удаляет пробельные символы в конце строки:

>>> s1, s2 = " str ", "strstrstrokstrstrstr"

>>> "'%s' - '%s'" % (s1.rstrip(), s2.rstrip("tsr"))

"' str' - 'strstrstrok'"

>>> "'%s'" % unicode("\tСтрока\r\n ", "cp1251").rstrip()

u"'\t\u0421\u0442\u0440\u043e\u043a\u0430'"

 split([<Разделитель>[, <Лимит>]]) — разделяет строку на подстроки по ука-

занному разделителю и добавляет их в список. Если первый параметр не указан

Глава 6

82

или имеет значение None, то в качестве разделителя используется символ про-

бела. Если во втором параметре задано число, то в списке будет указанное ко-

личество подстрок. Если подстрок больше указанного количества, то список

будет содержать еще один элемент, в котором будет остаток строки. Примеры:

>>> s = "word1 word2 word3"

>>> s.split(), s.split(None, 1)

(['word1', 'word2', 'word3'], ['word1', 'word2 word3'])

>>> s = "word1\nword2\nword3"

>>> s.split("\n")

['word1', 'word2', 'word3']

Если в строке содержатся несколько пробелов подряд и разделитель не указан,

то пустые элементы не будут добавлены в список:

>>> s = "word1 word2 word3 "

>>> s.split()

['word1', 'word2', 'word3']

При использовании другого разделителя могут быть пустые элементы:

>>> s = ",,word1,,word2,,word3,,"

>>> s.split(",")

['', '', 'word1', '', 'word2', '', 'word3', '', '']

>>> "1,,2,,3".split(",")

['1', '', '2', '', '3']

Если разделитель не найден в строке, то список будет состоять из одного эле-

мента, представляющего исходную строку:

>>> "word1 word2 word3".split("\n")

['word1 word2 word3']

 rsplit([<Разделитель>[, <Лимит>]]) — метод аналогичен методу split(), но

поиск символа-разделителя производится не слева направо, а, наоборот, справа

налево. Примеры:

>>> s = "word1 word2 word3"

>>> s.rsplit(), s.rsplit(None, 1)

(['word1', 'word2', 'word3'], ['word1 word2', 'word3'])

>>> "word1\nword2\nword3".rsplit("\n")

['word1', 'word2', 'word3']

 splitlines([True]) — разделяет строку на подстроки по символу переноса

строки ("\n") и добавляет их в список. Символы новой строки включаются в

результат, только если необязательный параметр имеет значение True. Если

разделитель не найден в строке, то список будет содержать только один эле-

мент. Примеры:

>>> "word1\nword2\nword3".splitlines()

['word1', 'word2', 'word3']

>>> "word1\nword2\nword3".splitlines(True)

['word1\n', 'word2\n', 'word3']

Строки

83

>>> "word1\nword2\nword3".splitlines(False)

['word1', 'word2', 'word3']

>>> "word1 word2 word3".splitlines()

['word1 word2 word3']

 partition(<Разделитель>) — находит первое вхождение символа-разделителя

в строку и возвращает кортеж из трех элементов. Первый элемент будет содер-

жать фрагмент, расположенный перед разделителем, второй элемент — сим-

вол-разделитель, а третий элемент — фрагмент, расположенный после симво-

ла-разделителя. Поиск производится слева направо. Если символ-разделитель

не найден, то первый элемент кортежа будет содержать всю строку, а осталь-

ные элементы будут пустыми. Пример:

>>> "word1 word2 word3".partition(" ")

('word1', ' ', 'word2 word3')

>>> "word1 word2 word3".partition("\n")

('word1 word2 word3', '', '')

 rpartition(<Разделитель>) — метод аналогичен методу partition(), но по-

иск символа-разделителя производится не слева направо, а, наоборот, справа

налево. Если символ-разделитель не найден, то первые два элемента кортежа

будут пустыми, а третий элемент будет содержать всю строку. Пример:

>>> "word1 word2 word3".rpartition(" ")

('word1 word2', ' ', 'word3')

>>> "word1 word2 word3".rpartition("\n")

('', '', 'word1 word2 word3')

 join() — преобразует последовательность в строку. Элементы добавляются

через указанный разделитель. Формат метода:

<Строка> = <Разделитель>.join(<Последовательность>)

В качестве примера преобразуем список и кортеж в строку:

>>> " => ".join(["word1", "word2", "word3"])

'word1 => word2 => word3'

>>> " ".join(("word1", "word2", "word3"))

'word1 word2 word3'

Обратите внимание на то, что элементы последовательностей должны быть

строками, иначе возбуждается исключение TypeError:

>>> " ".join(("word1", "word2", 5))

Traceback (most recent call last):

 File "<pyshell#106>", line 1, in <module>

 " ".join(("word1", "word2", 5))

TypeError: sequence item 2: expected string, int found

Как вы уже знаете, строки относятся к неизменяемым типам данных. Если по-

пытаться изменить символ по индексу, то возникнет ошибка. Чтобы изменить

символ по индексу, можно преобразовать строку в список с помощью функции

Глава 6

84

list(), произвести изменения, а затем с помощью метода join() преобразо-

вать список обратно в строку. Пример:

>>> s = "Python"

>>> arr = list(s); arr # Преобразуем строку в список

['P', 'y', 't', 'h', 'o', 'n']

>>> arr[0] = "J"; arr # Изменяем элемент по индексу

['J', 'y', 't', 'h', 'o', 'n']

>>> s = "".join(arr); s # Преобразуем список в строку

'Jython'

6.7. Настройка локали
и изменение регистра символов

При изменении регистра русских букв может возникнуть проблема. Чтобы ее

избежать, необходимо правильно настроить локаль. Локалью называют совокуп-

ность локальных настроек системы.

Для установки локали используется функция setlocale() из модуля locale.

Прежде чем использовать функцию, необходимо подключить модуль с помощью

выражения:
import locale

Функция setlocale() имеет следующий формат:
setlocale(<Категория>[, <Локаль>]);

Параметр <Категория> может принимать следующие значения:

 locale.LC_ALL — устанавливает локаль для всех режимов;

 locale.LC_COLLATE — для сравнения строк;

 locale.LC_CTYPE — для перевода символов в нижний или верхний регистр;

 locale.LC_MONETARY — для отображения денежных единиц;

 locale.LC_NUMERIC — для форматирования дробных чисел;

 locale.LC_TIME — для форматирования вывода даты и времени.

Получить текущее значение локали позволяет функция getlocale([<Катего-

рия>]). В качестве примера настроим локаль под Windows вначале на кодировку

Windows-1251, потом на кодировку UTF-8, а затем на кодировку по умолчанию.

Далее выведем текущее значение локали для всех категорий и только для lo-

cale.LC_COLLATE (листинг 6.3).

Листинг 6.3. Настройка локали

>>> import locale

>>> # Для кодировки windows-1251

>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> # Устанавливаем локаль по умолчанию

>>> locale.setlocale(locale.LC_ALL, "")

Строки

85

'Russian_Russia.1251'

>>> # Получаем текущее значение локали для всех категорий

>>> locale.getlocale()

('Russian_Russia', '1251')

>>> # Получаем текущее значение категории locale.LC_COLLATE

>>> locale.getlocale(locale.LC_COLLATE)

('Russian_Russia', '1251')

Для изменения регистра символов предназначены следующие методы:

 upper() — заменяет все символы строки соответствующими прописными бук-

вами:

>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> s = "строка"

>>> print s.upper()

СТРОКА

>>> print unicode("строка", "cp1251").upper()

СТРОКА

 lower() — заменяет все символы строки соответствующими строчными буквами:

>>> s = "СТРОКА"

>>> print s.lower()

строка

>>> print unicode("СТРОКА", "cp1251").lower()

строка

 swapcase() — заменяет все строчные символы соответствующими прописными

буквами, а все прописные символы — строчными:

>>> s = "СТРОКА строка"

>>> print s.swapcase()

строка СТРОКА

>>> print unicode("СТРОКА строка", "cp1251").swapcase()

строка СТРОКА

 capitalize() — делает первую букву прописной:

>>> s = "строка"

>>> print s.capitalize()

Строка

>>> print unicode("строка", "cp1251").capitalize()

Строка

 title() — делает первую букву каждого слова прописной:

>>> s = "первая буква каждого слова станет прописной"

>>> print s.title()

Первая Буква Каждого Слова Станет Прописной

>>> print unicode("строка строка", "cp1251").title()

Строка Строка

Глава 6

86

6.8. Функции для работы с символами

Для работы с отдельными символами предназначены следующие функции:

 chr(<ASCII код символа>) — возвращает символ по указанному ASCII-коду:

>>> print chr(207)

П

 ord(<Символ>) — возвращает ASCII- или Unicode-код указанного символа:

>>> print ord("П")

207

>>> ord(unicode("П", "cp1251"))

1055

 unichr(<Unicode код символа>) — возвращает символ по указанному Unicode-

коду:

>>> print unichr(1055)

П

>>> unichr(1055)

u'\u041f'

6.9. Поиск и замена в строке

Для поиска и замены в строке используются следующие методы:

 find() — ищет подстроку в строке. Возвращает номер позиции, с которой на-

чинается вхождение подстроки в строку. Если подстрока в строку не входит, то

возвращается значение -1. Метод зависит от регистра символов. Имеет сле-

дующий формат:

<Строка>.find(<Подстрока>[, <Начало>[, <Конец>]])

Если начальная позиция не указана, то поиск будет производиться с начала

строки. Если параметры <Начало> и <Конец> указаны, то производится опера-

ция извлечения среза

<Строка>[<Начало>:<Конец>]

и поиск подстроки будет производиться в этом фрагменте. Примеры:

>>> s = "пример пример Пример"

>>> s.find("при"), s.find("При"), s.find("тест")

(0, 14, -1)

>>> s.find("при", 9), s.find("при", 0, 6), s.find("при", 7, 12)

(-1, 0, 7)

>>> u = unicode("это пример", "cp1251")

>>> u.find(unicode("при", "cp1251"))

4

 index() — метод аналогичен методу find(), но если подстрока в строку не

входит, то возбуждается исключение ValueError.

Строки

87

Метод имеет следующий формат:
<Строка>.index(<Подстрока>[, <Начало>[, <Конец>]])

Примеры:

>>> s = "пример пример Пример"

>>> s.index("при"), s.index("при", 7, 12), s.index("При", 1)

(0, 7, 14)

>>> s.index("тест")

Traceback (most recent call last):

 File "<pyshell#72>", line 1, in <module>

 s.index("тест")

ValueError: substring not found

>>> u = unicode("это пример", "cp1251")

>>> u.index(unicode("при", "cp1251"))

4

 rfind() — ищет подстроку в строке. Возвращает позицию последнего вхожде-

ния подстроки в строку. Если подстрока в строку не входит, то возвращается

значение -1. Метод зависит от регистра символов. Имеет следующий формат:

<Строка>.rfind(<Подстрока>[, <Начало>[, <Конец>]])

Если начальная позиция не указана, то поиск будет производиться с начала

строки. Если параметры <Начало> и <Конец> указаны, то выполняется операция

извлечения среза и поиск подстроки будет производиться в этом фрагменте.

Примеры:

>>> s = "пример пример Пример Пример"

>>> s.rfind("при"), s.rfind("При"), s.rfind("тест")

(7, 21, -1)

>>> s.find("при", 0, 6), s.find("При", 10, 20)

(0, 14)

 rindex() — метод аналогичен методу rfind(), но если подстрока в строку не

входит, то возбуждается исключение ValueError. Метод имеет следующий

формат:

<Строка>.rindex(<Подстрока>[, <Начало>[, <Конец>]])

Примеры:

>>> s = "пример пример Пример Пример"

>>> s.rindex("при"), s.rindex("При"), s.rindex("при", 0, 6)

(7, 21, 0)

>>> s.rindex("тест")

Traceback (most recent call last):

 File "<pyshell#80>", line 1, in <module>

 s.rindex("тест")

ValueError: substring not found

 count() — возвращает число вхождений подстроки в строку. Если подстрока в

строку не входит, то возвращается значение 0. Метод зависит от регистра сим-

волов.

Глава 6

88

Имеет следующий формат:

<Строка>.count(<Подстрока>[, <Начало>[, <Конец>]])

Примеры:

>>> s = "пример пример Пример Пример"

>>> s.count("при"), s.count("при", 6), s.count("При")

(2, 1, 2)

>>> s.count("тест")

0

 startswith() — проверяет, начинается ли строка с указанной подстроки. Если

начинается, то возвращается значение True , в противном случае — False. Ме-

тод зависит от регистра символов. Имеет следующий формат:

<Строка>.startswith(<Подстрока>[, <Начало>[, <Конец>]])

Если начальная позиция не указана, сравнение будет производиться с началом

строки. Если параметры <Начало> и <Конец> указаны, то выполняется операция

извлечения среза и сравнение будет производиться с началом фрагмента. При-

меры:

>>> s = "пример пример Пример Пример"

>>> s.startswith("при"), s.startswith("При")

(True, False)

>>> s.startswith("при", 6), s.startswith("При", 14)

(False, True)

>>> u = unicode("пример", "cp1251")

>>> u.startswith(unicode("при", "cp1251"))

True

Начиная с версии 2.5, параметр <Подстрока> может быть кортежем:

>>> s = "пример пример Пример Пример"

>>> s.startswith(("при", "При"))

True

 endswith() — проверяет, заканчивается ли строка указанной подстрокой. Если

заканчивается, то возвращается значение True, в противном случае — False.

Метод зависит от регистра символов. Имеет следующий формат:

<Строка>.endswith(<Подстрока>[, <Начало>[, <Конец>]])

Если начальная позиция не указана, то сравнение будет производиться с кон-

цом строки. Если параметры <Начало> и <Конец> указаны, то выполняется опе-

рация извлечения среза и сравнение будет производиться с концом фрагмента.

Примеры:

>>> s = "подстрока ПОДСТРОКА"

>>> s.endswith("ока"), s.endswith("ОКА")

(False, True)

>>> s.endswith("ока", 0, 9)

True

Строки

89

Начиная с версии 2.5, параметр <Подстрока> может быть кортежем:

>>> s = "подстрока ПОДСТРОКА"

>>> s.endswith(("ока", "ОКА"))

True

 replace() — производит замену всех вхождений подстроки в строку на другую

подстроку и возвращает результат в виде новой строки. Метод зависит от реги-

стра символов. Имеет следующий формат:

<Строка>.replace(<Подстрока для замены>, <Новая подстрока>[,

 <Максимальное количество замен>])

Пример:

>>> s = "Привет, Петя"

>>> print s.replace("Петя", "Вася")

Привет, Вася

>>> print s.replace("петя", "вася") # Зависит от регистра

Привет, Петя

>>> s = "strstrstrstrstr"

>>> s.replace("str", ""), s.replace("str", "", 3)

('', 'strstr')

 str.translate(<Таблица символов>[, <Удаляемые символы>]) — удаляет

символы, указанные во втором параметре, а остальные символы заменяются в

соответствии с параметром <Таблица символов>. В параметре <Таблица симво-

лов> следует указать строку из 256 символов. Создать эту строку позволяет

функция maketrans() из модуля string:

>>> import string # Подключаем модуль

>>> string.maketrans("", "") # Выводим таблицу символов

Функция maketrans() имеет следующий формат:

maketrans(<Строка1>, <Строка2>)

В качестве параметров указываются строки одинаковой длины. Функция

maketrans() производит замену символов в строке <Строка1> на символы, рас-

положенные в той же позиции в строке <Строка2>. В качестве значения воз-

вращает измененную таблицу символов.

В первом примере заменим все цифры в строке на 0. Во втором примере удалим

все цифры, а для букв "abcdf" изменим регистр:

>>> import string

>>> t = string.maketrans("123456789", "0" * 9)

>>> "987654321".translate(t)

'000000000'

>>> t = string.maketrans("abcdf", "ABCDF")

>>> "12457478abcdfgh".translate(t, "1234567890")

'ABCDFgh'

Для Unicode-строк синтаксис метода translate() имеет другой формат:

unicode.translate(<Таблица символов>)

Глава 6

90

Параметр <Таблица символов> должен быть отображением, ключами которого

являются Unicode-коды заменяемых символов, а значениями — Unicode-коды

вставляемых символов. Если в качестве значения указать None, то символ будет

удален. Для примера удалим букву "П", а также изменим регистр всех букв "р":

>>> u = unicode("Пример", "cp1251")

>>> char1 = unicode("П", "cp1251")

>>> char2 = unicode("р", "cp1251")

>>> char3 = unicode("Р", "cp1251")

>>> d = {ord(char1): None, ord(char2): ord(char3)}

>>> d

{1088: 1056, 1055: None}

>>> print u.translate(d)

РимеР

6.10. Проверка типа содержимого строки

Для проверки типа содержимого предназначены следующие методы:

 isdigit() — возвращает True, если строка содержит только цифры, в против-

ном случае — False:

>>> "0123".isdigit(), "123abc".isdigit(), "abc123".isdigit()

(True, False, False)

>>> unicode("123456", "cp1251").isdigit()

True

 isalpha() — возвращает True, если строка содержит только буквы, в против-

ном случае — False. Если строка пустая, то возвращается значение False.

Примеры:

>>> "string".isalpha(), "строка".isalpha(), "".isalpha()

(True, True, False)

>>> "123abc".isalpha(), "str str".isalpha(), "st,st".isalpha()

(False, False, False)

>>> unicode("строка", "cp1251").isalpha()

True

 isspace() — возвращает True, если строка содержит только пробельные сим-

волы, в противном случае — False:

>>> "".isspace(), " \n\r\t".isspace(), "str str".isspace()

(False, True, False)

>>> unicode(" \n\t\r\v", "cp1251").isspace()

True

 isalnum() — возвращает True, если строка содержит только буквы и (или)

цифры, в противном случае — False. Если строка пустая, то возвращается зна-

чение False.

Строки

91

Примеры:

>>> "0123".isalnum(), "123abc".isalnum(), "abc123".isalnum()

(True, True, True)

>>> "строка".isalnum()

True

>>> "".isalnum(), "123 abc".isalnum(), "abc, 123.".isalnum()

(False, False, False)

>>> unicode("123абв", "cp1251").isalnum()

True

 islower() — возвращает True, если строка содержит буквы и они все в нижнем

регистре, в противном случае — False. Помимо букв, строка может иметь дру-

гие символы, например, цифры. Примеры:

>>> "srting".islower(), "строка".islower(), "".islower()

(True, True, False)

>>> "srting1".islower(), "str, 123".islower(), "123".islower()

(True, True, False)

>>> "STRING".islower(), "String".islower()

(False, False)

>>> unicode("абвгде", "cp1251").islower()

True

 isupper() — возвращает True, если строка содержит буквы и они все в верх-

нем регистре, в противном случае — False. Помимо букв, строка может иметь

другие символы, например цифры. Примеры:

>>> "STRING".isupper(), "СТРОКА".isupper(), "".isupper()

(True, True, False)

>>> "STRING1".isupper(), "СТРОКА, 123".isupper(), "123".isupper()

(True, True, False)

>>> "string".isupper(), "STRing".isupper()

(False, False)

>>> unicode("АБВГДЕ", "cp1251").isupper()

True

 istitle() — возвращает True, если строка содержит буквы и первые буквы

всех слов являются заглавными, в противном случае — False. Помимо букв,

строка может иметь другие символы, например цифры. Примеры:

>>> "Str Str".istitle(), "Стр Стр".istitle()

(True, True)

>>> "Str Str 123".istitle(), "Стр Стр 123".istitle()

(True, True)

>>> "Str str".istitle(), "Стр стр".istitle()

(False, False)

>>> "".istitle(), "123".istitle()

(False, False)

>>> unicode("Стр Стр Стр", "cp1251").istitle()

True

Глава 6

92

Для Unicode-строк определены два дополнительных метода:

 unicode.isdecimal() — возвращает True, если строка содержит только деся-

тичные символы, в противном случае — False. Обратите внимание на то, что к

десятичным символам относятся не только десятичные цифры в кодировке

ASCII, но и надстрочные и подстрочные десятичные цифры в других языках.

Пример:

>>> unicode("123", "cp1251").isdecimal()

True

>>> unicode("123стр", "cp1251").isdecimal()

False

 unicode.isnumeric() — возвращает True, если строка содержит только число-

вые символы, в противном случае — False. Обратите внимание на то, что к чи-

словым символам относятся не только десятичные цифры в кодировке ASCII,

но символы римских чисел, дробные числа и др. Пример:
>>> u"\u2155".isnumeric(), u"\u2155".isdigit()

(True, False)

>>> print u"\u2155" # Выведет символ "1/5"

Переделаем нашу программу (листинг 4.16) суммирования произвольного коли-

чества целых чисел, введенных пользователем, таким образом, чтобы при вводе

строки вместо числа программа не завершалась с фатальной ошибкой (листинг 6.4).

Кроме того, предусмотрим возможность ввода отрицательных целых чисел.

Листинг 6.4. Суммирование неопределенного количества чисел

-*- coding: cp1251 -*-

print "Введите слово 'stop' для получения результата"

summa = 0

while True:

 x = raw_input("Введите число: ")

 if x == "stop":

 break # Выход из цикла

 if x == "":

 print "Вы не ввели значение!"

 continue

 if x[0] == "-": # Если первым символом является минус

 if not x[1:].isdigit(): # Если фрагмент не состоит из цифр

 print "Необходимо ввести число, а не строку!"

 continue

 else: # Если минуса нет, то проверяем всю строку

 if not x.isdigit(): # Если строка не состоит из цифр

 print "Необходимо ввести число, а не строку!"

 continue

 x = int(x) # Преобразуем строку в число

 summa += x

print "Сумма чисел равна:", summa

Строки

93

Процесс ввода значений и получения результата выглядит так:

Введите слово 'stop' для получения результата

Введите число: 10

Введите число:

Вы не ввели значение!

Введите число: str

Необходимо ввести число, а не строку!

Введите число: -5

Введите число: -str

Необходимо ввести число, а не строку!

Введите число: stop

Сумма чисел равна: 5

Значения, введенные пользователем, выделены полужирным шрифтом.

6.11. Преобразование объекта

в строку

Преобразовать объект в строку, а затем восстановить объект из строки позволя-

ет модуль pickle. Прежде чем использовать функции из этого модуля, необходимо

подключить модуль с помощью выражения:

import pickle

Для преобразования предназначены две функции:

 dumps(<Объект>[, <Протокол>]) — производит сериализацию объекта и воз-

вращает строку специального формата. Формат этой строки зависит от указан-

ного протокола (число от 0 до 2). Пример преобразования списка и кортежа в

строку:

>>> import pickle

>>> obj1 = [1, 2, 3, 4, 5] # Список

>>> obj2 = (6, 7, 8, 9, 10) # Кортеж

>>> pickle.dumps(obj1)

'(lp0\nI1\naI2\naI3\naI4\naI5\na.'

>>> pickle.dumps(obj2)

'(I6\nI7\nI8\nI9\nI10\ntp0\n.'

 loads(<Строка>) — преобразует строку специального формата обратно в объект.

Пример восстановления списка и кортежа из строки специального формата:

>>> pickle.loads('(lp0\nI1\naI2\naI3\naI4\naI5\na.')

[1, 2, 3, 4, 5]

>>> pickle.loads('(I6\nI7\nI8\nI9\nI10\ntp0\n.')

(6, 7, 8, 9, 10)

Глава 6

94

6.12. Шифрование строк

Для шифрования строк предназначен модуль hashlib. Прежде чем использовать

функции из этого модуля, необходимо подключить модуль с помощью выражения:

import hashlib

Модуль предоставляет следующие функции: md5(), sha1(), sha224(),

sha256(), sha384() и sha512(). В качестве необязательного параметра функциям

можно передать шифруемую строку. Пример:

>>> h = hashlib.sha1("password")

Передать строку можно также с помощью метода update(). В этом случае

строка присоединяется к предыдущему значению:

>>> h = hashlib.sha1()

>>> h.update("password")

Получить зашифрованную строку позволяют два метода — digest() и

hexdigest():

>>> h = hashlib.sha1("password")

>>> h.digest()

'[\xaaa\xe4\xc9\xb9??\x06\x82%\x0bl\xf83\x1b~\xe6\x8f\xd8'

>>> h.hexdigest()

'5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8'

Наиболее часто применяемой функцией является функция md5(), которая шиф-

рует строку с помощью алгоритма MD5. Она используется для шифрования паро-

лей, т. к. не существует алгоритма для дешифровки. Для сравнения введенного

пользователем пароля с сохраненным в базе необходимо зашифровать введенный

пароль, а затем произвести сравнение (листинг 6.5).

Листинг 6.5. Проверка правильности ввода пароля

>>> import hashlib

>>> h = hashlib.md5("password")

>>> p = h.hexdigest()

>>> p # Пароль, сохраненный в базе

'5f4dcc3b5aa765d61d8327deb882cf99'

>>> h2 = hashlib.md5("password") # Пароль, введенный пользователем

>>> if p == h2.hexdigest(): print "Пароль правильный"

Пароль правильный

6.13. Преобразование кодировок

Для преобразования кодировок предназначены следующие функции и методы:

 unicode([<Строка>[, <Кодировка>[, <Обработка ошибок>]]]) — преобразует

строку в указанной кодировке в Unicode-строку. В третьем параметре могут

Строки

95

быть указаны значения "strict" (значение по умолчанию), "replace" или "ig-

nore". Пример:

>>> s = "Кодировка windows-1251"

>>> unicode(s, "cp1251")

u'\u041a\u043e\u0434\u0438\u0440\u043e\u0432\u043a\u0430

windows-1251'

 str.decode([<Кодировка строки>[, <Обработка ошибок>]]) — преобразует

строку в указанной кодировке в Unicode-строку. Во втором параметре могут

быть указаны значения "strict" (значение по умолчанию), "replace" или

"ignore". Пример:

>>> s = "Кодировка windows-1251"

>>> s.decode("cp1251")

u'\u041a\u043e\u0434\u0438\u0440\u043e\u0432\u043a\u0430

windows-1251'

>>> s.decode("utf-8", "strict")

... Фрагмент опущен ...

UnicodeDecodeError: 'utf8' codec can't decode bytes in

position 0-1: invalid data

>>> s.decode("utf-8", "replace")

u'\ufffd\ufffd\ufffd\ufffdindows-1251'

>>> s.decode("utf-8", "ignore")

u'indows-1251'

 unicode.encode([<Нужная кодировка>[, <Обработка ошибок>]]) — преобра-

зует Unicode-строку в обычную строку в указанной кодировке. Во втором па-

раметре могут быть указаны значения "strict" (значение по умолчанию), "re-

place", "ignore", "xmlcharrefreplace" и "backslashreplace". Пример:

>>> u = unicode("Кодировка", "cp1251")

>>> print u.encode("cp1251")

Кодировка

Преобразуем строку из кодировки Windows-1251 в кодировку KOI8-R, а затем

обратно (листинг 6.6).

Листинг 6.6. Преобразование кодировок

>>> w = "Строка" # Строка в кодировке windows-1251

>>> k = w.decode("cp1251").encode("koi8-r")

>>> print k # Строка в кодировке KOI8-R

уФТПЛБ

>>> w = k.decode("koi8-r").encode("cp1251")

>>> print w

Строка

ГЛАВА 7

Регулярные выражения

Регулярные выражения позволяют осуществить сложный поиск или замену в

строке. В языке Python использовать регулярные выражения позволяет модуль re.

Прежде чем использовать функции из этого модуля, необходимо подключить мо-

дуль с помощью выражения:

import re

7.1. Синтаксис регулярных выражений

Создать откомпилированный шаблон регулярного выражения позволяет функ-

ция compile(). Функция имеет следующий формат:

<Шаблон> = re.compile(<Регулярное выражение>[, <Модификатор>])

В параметре <Модификатор> могут быть указаны следующие флаги (или их

комбинация через символ |):

 I или IGNORECASE — поиск без учета регистра. Для русского языка необходимо

дополнительно указать флаг L и настроить локаль;

 L или LOCALE — учитывает настройки текущей локали. Например, сделать ре-

гистронезависимый поиск для русских букв можно следующим образом:

>>> import re, locale

>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> p = re.compile(r"^[а-яѐ]+$", re.I | re.L)

>>> print "Найдено" if p.search("АБВГДЕЁ") else "Нет"

Найдено

 M или MULTILINE — поиск в строке, состоящей из нескольких подстрок, разде-

ленных символом новой строки ("\n"). Символ ^ соответствует привязке к на-

чалу каждой подстроки, а символ $ соответствует позиции перед символом пе-

ревода строки;

Регулярные выражения

97

 S или DOTALL — метасимвол "точка" будет соответствовать любому символу,

включая символ перевода строки (\n). По умолчанию метасимвол "точка" не

соответствует символу перевода строки. Пример:

>>> p = re.compile(r"^.$")

>>> print "Найдено" if p.search("\n") else "Нет"

Нет

>>> p = re.compile(r"^.$", re.S)

>>> print "Найдено" if p.search("\n") else "Нет"

Найдено

 X или VERBOSE — если флаг указан, то пробелы и символы перевода строки бу-

дут игнорированы. Кроме того, внутри регулярного выражения можно исполь-

зовать комментарии. Пример:

>>> p = re.compile(r"""^ # Привязка к началу строки

 [0-9]+ # Строка должна содержать одну цифру (или более)

 $ # Привязка к концу строки

 """, re.X)

>>> print "Найдено" if p.search("1234567890") else "Нет"

Найдено

>>> print "Найдено" if p.search("abcd123") else "Нет"

Нет

 U или UNICODE — классы \w, \W, \b, \B, \d, \D, \s и \S будут соответствовать

Unicode-символам. Пример:

>>> s = unicode("абв", "cp1251")

>>> p = re.compile(r"^\w+$") # Флаг не указан

>>> print "Найдено" if p.search(s) else "Нет"

Нет

>>> p = re.compile(r"^\w+$", re.U) # Флаг указан

>>> print "Найдено" if p.search(s) else "Нет"

Найдено

Как видно из примеров, перед всеми строками, содержащими регулярные вы-

ражения, указан модификатор r. Иными словами, мы используем неформатирован-

ные строки. Если модификатор не указать, то все слеши необходимо будет экрани-

ровать. Например, строку

p = re.compile(r"^\w+$")

нужно было бы записать так

p = re.compile("^\\w+$")

Внутри регулярного выражения символы ., ^, $, *, +, ?, {, [,], \, |, (и) имеют

специальное значение. Если эти символы должны трактоваться как есть, то их сле-

дует экранировать с помощью слеша. Некоторые специальные символы теряют

свое специальное значение, если их разместить внутри квадратных скобок. В этом

случае экранировать их не нужно. Например, метасимвол "точка" соответствует

любому символу, кроме символа перевода строки. Если необходимо найти именно

точку, то перед точкой надо указать символ \ или разместить точку внутри квад-

Глава 7

98

ратных скобок ([.]). Продемонстрируем это на примере проверки правильности

введенной даты (листинг 7.1).

Листинг 7.1. Проверка правильности ввода даты

-*- coding: cp1251 -*-

import re # Подключаем модуль

d = "29,12.2009" # Вместо точки указана запятая

p = re.compile(r"^[0-3][0-9].[01][0-9].[12][09][0-9][0-9]$")

Символ "\" не указан перед точкой

if p.search(d):

 print "Дата введена правильно"

else:

 print "Дата введена неправильно"

Так как точка означает любой символ,

выведет: Дата введена правильно

p = re.compile(r"^[0-3][0-9]\.[01][0-9]\.[12][09][0-9][0-9]$")

Символ "\" указан перед точкой

if p.search(d):

 print "Дата введена правильно"

else:

 print "Дата введена неправильно"

Так как перед точкой указан символ "\",

выведет: Дата введена неправильно

p = re.compile(r"^[0-3][0-9][.][01][0-9][.][12][09][0-9][0-9]$")

Точка внутри квадратных скобок

if p.search(d):

 print "Дата введена правильно"

else:

 print "Дата введена неправильно"

Выведет: Дата введена неправильно

В этом примере мы осуществляли привязку к началу и концу строки с помо-

щью следующих метасимволов:

 ^ — привязка к началу строки (назначение зависит от модификатора);

 $ — привязка к концу строки (назначение зависит от модификатора);

 \A — привязка к началу строки (не зависит от модификатора);

 \Z — привязка к концу строки (не зависит от модификатора).

Если в параметре <Модификатор> указан флаг M (или MULTILINE), то поиск про-

изводится в строке, состоящей из нескольких подстрок, разделенных символом но-

вой строки ("\n"). В этом случае символ ^ соответствует привязке к началу каждой

подстроки, а символ $ соответствует позиции перед символом перевода строки

(листинг 7.2).

Регулярные выражения

99

Листинг 7.2. Пример использования многострочного режима

>>> p = re.compile(r"^.+$") # Точка не соответствует \n

>>> p.findall("str1\nstr2\nstr3") # Ничего не найдено

[]

>>> p = re.compile(r"^.+$", re.S) # Теперь точка соответствует \n

>>> p.findall("str1\nstr2\nstr3") # Строка полностью соответствует

['str1\nstr2\nstr3']

>>> p = re.compile(r"^.+$", re.M) # Многострочный режим

>>> p.findall("str1\nstr2\nstr3") # Получили каждую подстроку

['str1', 'str2', 'str3']

Привязку к началу и концу строки следует использовать, если строка должна

полностью соответствовать регулярному выражению. Например, привязку нужно

использовать для проверки, содержит ли строка число (листинг 7.3).

Листинг 7.3. Проверка наличия целого числа в строке

-*- coding: cp1251 -*-

import re # Подключаем модуль

p = re.compile(r"^[0-9]+$")

if p.search("245"):

 print "Число" # Выведет: Число

else:

 print "Не число"

if p.search("Строка245"):

 print "Число"

else:

 print "Не число" # Выведет: Не число

Если убрать привязку к началу и концу строки, то любая строка, содержащая

хотя бы одну цифру, будет распознана как "Число" (листинг 7.4).

Листинг 7.4. Отсутствие привязки к началу или концу строки

-*- coding: cp1251 -*-

import re # Подключаем модуль

p = re.compile(r"[0-9]+")

if p.search("Строка245"):

 print "Число" # Выведет: Число

else:

 print "Не число"

Кроме того, можно указать привязку только к началу или только к концу стро-

ки (листинг 7.5).

Глава 7

100

Листинг 7.5. Привязка к началу и концу строки

-*- coding: cp1251 -*-

import re # Подключаем модуль

p = re.compile(r"[0-9]+$")

if p.search("Строка245"):

 print "Есть число в конце строки"

else:

 print "Нет числа в конце строки"

Выведет: Есть число в конце строки

p = re.compile(r"^[0-9]+")

if p.search("Строка245"):

 print "Есть число в начале строки"

else:

 print "Нет числа в начале строки"

Выведет: Нет числа в начале строки

В квадратных скобках [] можно указать символы, которые могут встречаться

на этом месте в строке. Можно перечислять символы подряд или указать диапазон

через тире:

 [09] — соответствует числу 0 или 9;

 [0-9] — соответствует любому числу от 0 до 9;

 [абв] — соответствует буквам "а", "б" и "в";

 [а-г] — соответствует буквам "а", "б", "в" и "г";

 [а-яѐ] — соответствует любой букве от "а" до "я";

 [АБВ] — соответствует буквам "А", "Б" и "В";

 [А-ЯЁ] — соответствует любой букве от "А" до "Я";

 [а-яА-ЯѐЁ] — соответствует любой русской букве в любом регистре;

 [0-9а-яА-ЯѐЁa-zA-Z] — любая цифра и любая буква независимо от регистра и

языка.

ВНИМАНИЕ!

Буква "ё" не входит в диапазон [а-я].

Значение можно инвертировать, если после первой скобки указать символ ^.

Таким образом можно указать символы, которых не должно быть на этом месте в

строке:

 [^09] — не цифра 0 или 9;

 [^0-9] — не цифра от 0 до 9;

 [^а-яА-ЯѐЁa-zA-Z] — не буква.

Как вы уже знаете, точка теряет свое специальное значение, если ее заключить

в квадратные скобки. Кроме того, внутри квадратных скобок могут встретиться

символы, которые имеют специальное значение (например, ^ и -). Символ ^ теряет

свое специальное значение, если он не расположен сразу после открывающей

квадратной скобки. Чтобы отменить специальное значение символа -, его необхо-

Регулярные выражения

101

димо указать после перечисления всех символов перед закрывающей квадратной

скобкой. Все специальные символы можно сделать обычными, если перед ними

указать символ \.

Вместо перечисления символов можно использовать стандартные классы:

 \d — соответствует любой цифре. Эквивалентно [0-9];

 \w — соответствует любой букве, цифре или символу подчеркивания. Зависит

от модификаторов L (LOCALE) и U (UNICODE). По умолчанию эквивалентно [a-

zA-Z0-9_]. Настроим класс на работу с русскими буквами:

>>> import locale

>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> p = re.compile(r"^\w+$", re.L)

>>> print "Найдено" if p.search("абвгдеѐ") else "Нет"

Найдено

 \s — любой пробельный символ. Эквивалентно [\t\n\r\f\v];

 \D — не цифра. Эквивалентно [^0-9];

 \W — не буква, не цифра и не символ подчеркивания. Зависит от модификато-

ров L (или LOCALE) и U (или UNICODE). По умолчанию эквивалентно [^a-zA-Z0-

9_];

 \S — не пробельный символ. Эквивалентно [^ \t\n\r\f\v].

Количество вхождений символа в строку задается с помощью квантификаторов:

 {n} — n вхождений символа в строку. Например, шаблон r"^[0-9]{2}$" соот-

ветствует двум вхождениям любой цифры;

 {n,} — n или более вхождений символа в строку. Например, шаблон r"^[0-

9]{2,}$" соответствует двум и более вхождениям любой цифры;

 {n,m} — не менее n и не более m вхождений символа в строку. Числа указыва-

ются через запятую без пробела. Например, шаблон r"^[0-9]{2,4}$" соответ-

ствует от двух до четырех вхождениям любой цифры;

 * — ноль или большее число вхождений символа в строку. Эквивалентно ком-

бинации {0,};

 + — одно или большее число вхождений символа в строку. Эквивалентно ком-

бинации {1,};

 ? — ни одного или одно вхождение символа в строку. Эквивалентно комбина-

ции {0,1}.

Все квантификаторы являются "жадными". При поиске соответствия ищется

самая длинная подстрока, соответствующая шаблону, и не учитываются более ко-

роткие соответствия. Рассмотрим это на примере. Получим содержимое всех тегов

 вместе с тегами:

>>> s = "Text1Text2Text3"

>>> p = re.compile(r".*", re.S)

>>> p.findall(s)

['Text1Text2Text3']

Вместо желаемого результата мы получили полностью строку. Чтобы ограничить

"жадность", необходимо после квантификатора указать символ ? (листинг 7.6).

Глава 7

102

Листинг 7.6. Ограничение "жадности" квантификаторов

>>> s = "Text1Text2Text3"

>>> p = re.compile(r".*?", re.S)

>>> p.findall(s)

['Text1', 'Text3']

Этот код вывел то, что мы искали. Если необходимо получить содержимое без

тегов, то нужный фрагмент внутри шаблона следует разместить внутри круглых

скобок (листинг 7.7).

Листинг 7.7. Получение значения определенного фрагмента

>>> s = "Text1Text2Text3"

>>> p = re.compile(r"(.*?)", re.S)

>>> p.findall(s)

['Text1', 'Text3']

Круглые скобки часто используются для группировки фрагментов внутри шаб-

лона. В этом случае не требуется, чтобы фрагмент запоминался и был доступен в

результатах поиска. Чтобы избежать захвата фрагмента после открывающей круг-

лой скобки следует разместить символы ?: (листинг 7.8).

Листинг 7.8. Ограничение захвата фрагмента

>>> s = "test text"

>>> p = re.compile(r"([a-z]+((st)|(xt)))", re.S)

>>> p.findall(s)

[('test', 'st', 'st', ''), ('text', 'xt', '', 'xt')]

>>> p = re.compile(r"([a-z]+(?:(?:st)|(?:xt)))", re.S)

>>> p.findall(s)

['test', 'text']

В первом примере мы получили список с двумя элементами. Каждый элемент

списка является кортежем, содержащим четыре элемента. Все эти элементы соот-

ветствуют фрагментам, заключенным в шаблоне в круглые скобки. Первый эле-

мент кортежа содержит фрагмент, расположенный в первых круглых скобках, вто-

рой — во вторых круглых скобках и т. д. Три последних элемента кортежа

являются лишними. Чтобы они не выводились в результатах, мы добавили симво-

лы ?: после каждой открывающей круглой скобкой. В результате список состоит

только из фрагментов, полностью соответствующих регулярному выражению.

Обратите внимание на регулярное выражение в предыдущем примере:

r"([a-z]+((st)|(xt)))"

Регулярные выражения

103

Здесь мы использовали метасимвол |, который позволяет сделать выбор между

альтернативными значениями. Выражение n|m соответствует одному из символов:

n или m. Пример:

красн((ая)|(ое)) — красная или красное, но не красный.

К найденному фрагменту в круглых скобках внутри шаблона можно обратиться

с помощью механизма обратных ссылок. Для этого порядковый номер круглых

скобок в шаблоне указывается после слеша, например \1. Нумерация скобок внут-

ри шаблона начинается с 1. Для примера получим текст между одинаковыми пар-

ными тегами (листинг 7.9).

Листинг 7.9. Обратные ссылки

>>> s = "Text1Text2<I>Text3</I>"

>>> p = re.compile(r"<([a-z]+)>(.*?)</\1>", re.S | re.I)

>>> p.findall(s)

[('b', 'Text1'), ('I', 'Text3')]

Фрагментам внутри круглых скобок можно дать имена. Для этого после откры-

вающей круглой скобки следует указать комбинацию символов ?P<name>. В каче-

стве примера разберем e-mail на составные части (листинг 7.10).

Листинг 7.10. Именованные фрагменты

>>> email = "unicross@mail.ru"

>>> p = re.compile(r"""(?P<name>[a-z0-9_.-]+) # Название ящика

 @ # Символ "@"

 (?P<host>(?:[a-z0-9-]+\.)+[a-z]{2,6}) # Домен

 """, re.I | re.VERBOSE)

>>> r = p.search(email)

>>> r.group("name") # Название ящика

'unicross'

>>> r.group("host") # Домен

'mail.ru'

Чтобы внутри шаблона обратиться к именованным фрагментам, используется

следующий синтаксис: (?P=name). Для примера получим текст между одинаковы-

ми парными тегами (листинг 7.11).

Листинг 7.11. Обращение к именованным фрагментам внутри шаблона

>>> s = "Text1Text2<I>Text3</I>"

>>> p = re.compile(r"<(?P<tag>[a-z]+)>(.*?)</(?P=tag)>", re.S | re.I)

>>> p.findall(s)

[('b', 'Text1'), ('I', 'Text3')]

Глава 7

104

Кроме того, внутри круглых скобок могут быть расположены следующие кон-

струкции:

 (?iLmsux) — позволяет установить опции регулярного выражения. Буквы "i",

"L", "m", "s", "u" и "x" имеют такое же назначение, что и одноименные моди-

фикаторы в функции compile();

 (?#...) — комментарий. Текст внутри круглых скобок игнорируется;

 (?=...) — положительный просмотр вперед. Выведем все слова, после кото-
рых расположена запятая:
>>> s = "text1, text2, text3 text4"

>>> p = re.compile(r"\w+(?=[,])", re.S | re.I)

>>> p.findall(s)

['text1', 'text2']

 (?!...) — отрицательный просмотр вперед. Выведем все слова, после которых
нет запятой:
>>> s = "text1, text2, text3 text4"

>>> p = re.compile(r"[a-z]+[0-9](?![,])", re.S | re.I)

>>> p.findall(s)

['text3', 'text4']

 (?<=...) — положительный просмотр назад. Выведем все слова, перед кото-
рыми расположена запятая с пробелом:
>>> s = "text1, text2, text3 text4"

>>> p = re.compile(r"(?<=[,][])[a-z]+[0-9]", re.S | re.I)

>>> p.findall(s)

['text2', 'text3']

 (?<!...) — отрицательный просмотр назад. Выведем все слова, перед которы-
ми расположен пробел, но перед пробелом нет запятой:
>>> s = "text1, text2, text3 text4"

>>> p = re.compile(r"(?<![,]) [a-z]+[0-9]", re.S | re.I)

>>> p.findall(s)

[' text4']

 (?(id или name)шаблон1|шаблон2) — если группа с номером или названием
найдена, то должно выполняться условие из параметра шаблон1, в противном
случае должно выполняться условие из параметра шаблон2. Выведем все слова,
которые расположены внутри апострофов. Если перед словом нет апострофа,
то в конце слова должна быть запятая:
>>> s = "text1 'text2' 'text3 text4, text5"

>>> p = re.compile(r"(')?([a-z]+[0-9])(?(1)'|,)", re.S | re.I)

>>> p.findall(s)

[("'", 'text2'), ('', 'text4')]

Рассмотрим небольшой пример. Предположим, необходимо получить все сло-
ва, расположенные после тире, причем перед тире и после слов должны следовать
пробельные символы:

>>> import re

>>> s = "-word1 -word2 -word3 -word4 -word5"

Регулярные выражения

105

>>> re.findall(r"\s\-([a-z0-9]+)\s", s, re.S | re.I)

['word2', 'word4']

Как видно из примера, мы получили только два слова вместо пяти. Первое и

последнее слово не попали в результат, т. к. расположены в начале и конце строки.

Чтобы эти слова попали в результат, необходимо добавить альтернативный выбор

(^|\s) для начала строки и (\s|$) для конца строки. Чтобы найденные выражения

внутри круглых скобок не попали в результат, следует добавить символы ?: после

открывающей скобки:

>>> re.findall(r"(?:^|\s)\-([a-z0-9]+)(?:\s|$)", s, re.S | re.I)

['word1', 'word3', 'word5']

Первое и последнее слово успешно попали в результат. Почему же слова

"word2" и "word4" не попали в список совпадений? Ведь перед тире есть пробел и

после слова есть пробел. Чтобы понять причину, рассмотрим поиск по шагам. Пер-

вое слово успешно попадает в результат, т. к. перед тире расположено начало стро-

ки и после слова есть пробел. После поиска указатель перемещается, и строка для

дальнейшего поиска примет следующий вид:

"-word1 <Указатель>-word2 -word3 -word4 -word5"

Обратите внимание на то, что перед фрагментом "-word2" больше нет пробела

и тире не расположено в начале строки. Поэтому следующим совпадением будет

слово "word3", и указатель снова будет перемещен:

"-word1 -word2 -word3 <Указатель>-word4 -word5"

Опять перед фрагментом "-word4" нет пробела и тире не расположено в начале

строки. Поэтому следующим совпадением будет слово "word5" и поиск будет за-

вершен. Таким образом, слова "word2" и "word4" не попадают в результат, т. к.

пробел до фрагмента уже был использован в предыдущем поиске. Чтобы этого из-

бежать следует воспользоваться положительным просмотром вперед (?=...):

>>> re.findall(r"(?:^|\s)\-([a-z0-9]+)(?=\s|$)", s, re.S | re.I)

['word1', 'word2', 'word3', 'word4', 'word5']

В этом примере мы заменили фрагмент (?:\s|$) на (?=\s|$). Поэтому все

слова успешно попали в список совпадений.

7.2. Поиск первого совпадения с шаблоном

Для поиска первого совпадения с шаблоном предназначены следующие функ-

ции и методы:

 match() — проверяет соответствие с началом строки. Формат метода:

match(<Строка>[, <Начальная позиция>[, <Конечная позиция>]])

Если соответствие найдено, то возвращается объект MatchObject, в противном слу-

чае возвращается значение None. Пример:

>>> import re

>>> p = re.compile(r"[0-9]+")

Глава 7

106

>>> print "Найдено" if p.match("str123") else "Нет"

Нет

>>> print "Найдено" if p.match("str123", 3) else "Нет"

Найдено

>>> print "Найдено" if p.match("123str") else "Нет"

Найдено

Вместо метода match() можно воспользоваться функцией match(). Формат
функции:

re.match(<Шаблон>, <Строка>[, <Модификатор>])

В качестве параметра <Шаблон> можно указать строку с регулярным выражени-
ем или скомпилированное регулярное выражение. В параметре <Модификатор>
можно указать флаги, используемые в функции compile(). Если соответствие
найдено, то возвращается объект MatchObject, в противном случае возвращает-
ся значение None. Пример:

>>> p = r"[0-9]+"

>>> print "Найдено" if re.match(p, "str123") else "Нет"

Нет

>>> print "Найдено" if re.match(p, "123str") else "Нет"

Найдено

>>> p = re.compile(r"[0-9]+")

>>> print "Найдено" if re.match(p, "123str") else "Нет"

Найдено

 search() — проверяет соответствие с любой частью строки. Формат метода:
search(<Строка>[, <Начальная позиция>[, <Конечная позиция>]])

Если соответствие найдено, то возвращается объект MatchObject, в противном
случае возвращается значение None. Пример:

>>> p = re.compile(r"[0-9]+")

>>> print "Найдено" if p.search("str123") else "Нет"

Найдено

>>> print "Найдено" if p.search("123str") else "Нет"

Найдено

>>> print "Найдено" if p.search("123str", 3) else "Нет"

Нет

Вместо метода search() можно воспользоваться функцией search(). Формат
функции:

re.search(<Шаблон>, <Строка>[, <Модификатор>])

В качестве параметра <Шаблон> можно указать строку с регулярным выражени-

ем или скомпилированное регулярное выражение. В параметре <Модификатор>

можно указать флаги, используемые в функции compile(). Если соответствие

найдено, то возвращается объект MatchObject, в противном случае возвращает-

ся значение None. Пример:

>>> p = r"[0-9]+"

>>> print "Найдено" if re.search(p, "str123") else "Нет"

Найдено

Регулярные выражения

107

>>> p = re.compile(r"[0-9]+")

>>> print "Найдено" if re.search(p, "str123") else "Нет"

Найдено

В качестве примера переделаем нашу программу (листинг 4.16) суммирования

произвольного количества целых чисел, введенных пользователем, таким образом,

чтобы при вводе строки вместо числа программа не завершалась с фатальной

ошибкой (листинг 7.12). Кроме того, предусмотрим возможность ввода отрица-

тельных целых чисел.

Листинг 7.12. Суммирование неопределенного количества чисел

-*- coding: cp1251 -*-

import re # Подключаем модуль

print "Введите слово 'stop' для получения результата"

summa = 0

p = re.compile(r"^[-]?[0-9]+$")

while True:

 x = raw_input("Введите число: ")

 if x == "stop":

 break # Выход из цикла

 if not p.search(x):

 print "Необходимо ввести число, а не строку!"

 continue # Переходим на следующую итерацию цикла

 x = int(x) # Преобразуем строку в число

 summa += x

print "Сумма чисел равна:", summa

Объект MatchObject, возвращаемый методами (функциями) match() и

search(), имеет следующие свойства и методы:

 re — ссылка на скомпилированный шаблон, указанный в методах (функциях)

match() и search(). Через эту ссылку доступны следующие свойства:

 groups — количество групп в шаблоне;

 groupindex — словарь с названиями групп и их номерами;

 string — значение параметра <Строка> в методах (функциях) match() и

search();

 pos — значение параметра <Начальная позиция> в методах match() и search();

 endpos — значение параметра <Конечная позиция> в методах match() и search();

 lastindex — возвращает номер последней группы или значение None;

 lastgroup — возвращает название последней группы или значение None.

Пример:

>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z]+)")

>>> m = p.search("123456string 67890text")

>>> m.re.groups, m.re.groupindex

(2, {'num': 1, 'str': 2})

>>> p.groups, p.groupindex

Глава 7

108

(2, {'num': 1, 'str': 2})

>>> m.string

'123456string 67890text'

>>> m.lastindex, m.lastgroup

(2, 'str')

>>> m.pos, m.endpos

(0, 22)

 group([<id1 или name1>[, ..., <idN или nameN>]]) — возвращает фрагмен-
ты, соответствующие шаблону. Если параметр не задан или указано значение 0,
то возвращается фрагмент, полностью соответствующий шаблону. Если указан
номер или название группы, то возвращается фрагмент, совпадающий с этой
группой. Через запятую можно указать несколько номеров или названий групп.
В этом случае возвращается кортеж, содержащий фрагменты, соответствующие
группам. Если нет группы с указанным номером или названием, то возбуждает-
ся исключение IndexError. Примеры:
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z]+)")

>>> m = p.search("123456string 67890text")

>>> m.group(), m.group(0) # Полное соответствие шаблону

('123456string', '123456string')

>>> m.group(1), m.group(2) # Обращение по индексу

('123456', 'string')

>>> m.group("num"), m.group("str") # Обращение по названию

('123456', 'string')

>>> m.group(1, 2), m.group("num", "str") # Несколько параметров

(('123456', 'string'), ('123456', 'string'))

 groupdict([<Значение по умолчанию>]) — возвращает словарь, содержащий
значения именованных групп. С помощью необязательного параметра можно
указать значение, которое будет выводиться вместо значения None, для групп,
не имеющих совпадений:
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z])?")

>>> m = p.search("123456")

>>> m.groupdict()

{'num': '123456', 'str': None}

>>> m.groupdict("")

{'num': '123456', 'str': ''}

 groups([<Значение по умолчанию>]) — возвращает кортеж, содержащий зна-
чения всех групп. С помощью необязательного параметра можно указать зна-
чение, которое будет выводиться вместо значения None, для групп, не имеющих
совпадений:
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z])?")

>>> m = p.search("123456")

>>> m.groups()

('123456', None)

>>> m.groups("")

('123456', '')

Регулярные выражения

109

 start([<Номер группы или название>]) — возвращает индекс начала фраг-

мента. Если параметр не указан, то фрагментом является полное соответствие с

шаблоном, в противном случае — соответствие с указанной группой. Если со-

ответствия нет, то возвращается значение -1;

 end([<Номер группы или название>]) — возвращает индекс конца фрагмента.

Если параметр не указан, то фрагментом является полное соответствие с шаб-

лоном, в противном случае — соответствие с указанной группой. Если соответ-

ствия нет, то возвращается значение -1;

 span([<Номер группы или название>]) — возвращает кортеж, содержащий

начальный и конечный индексы фрагмента. Если параметр не указан, то фраг-

ментом является полное соответствие с шаблоном, в противном случае — соот-

ветствие с указанной группой. Если соответствия нет, то возвращается значение

(–1, -1). Примеры:
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z]+)")

>>> s = "str123456str"

>>> m = p.search(s)

>>> m.start(), m.end(), m.span()

(3, 12, (3, 12))

>>> m.start(1), m.end(1), m.start("num"), m.end("num")

(3, 9, 3, 9)

>>> m.start(2), m.end(2), m.start("str"), m.end("str")

(9, 12, 9, 12)

>>> m.span(1), m.span("num"), m.span(2), m.span("str")

((3, 9), (3, 9), (9, 12), (9, 12))

>>> s[m.start(1):m.end(1)], s[m.start(2):m.end(2)]

('123456', 'str')

 expand(<Новая строка>) — производит замену в строке. Внутри указанной

строки можно использовать обратные ссылки: \номер, \g<номер> и

\g<название>. В качестве примера поменяем два тега местами:
>>> p = re.compile(r"<(?P<tag1>[a-z]+)><(?P<tag2>[a-z]+)>")

>>> m = p.search("
<hr>")

>>> m.expand(r"<\2><\1>") # \номер

'<hr>
'

>>> m.expand(r"<\g<2>><\g<1>>") # \g<номер>

'<hr>
'

>>> m.expand(r"<\g<tag2>><\g<tag1>>") # \g<название>

'<hr>
'

В качестве примера использования метода search() проверим e-mail, введен-

ный пользователем, на соответствие шаблону (листинг 7.13).

Листинг 7.13. Проверка e-mail на соответствие шаблону

-*- coding: cp1251 -*-

import re

email = raw_input("Введите e-mail: ")

Глава 7

110

pe = r"^([a-z0-9_.-]+)@(([a-z0-9-]+\.)+[a-z]{2,6})$"

p = re.compile(pe, re.I)

m = p.search(email)

if not m:

 print "E-mail не соответствует шаблону"

else:

 print "E-mail", m.group(0), "соответствует шаблону"

 print "ящик:", m.group(1), "домен:", m.group(2)

Результат выполнения:

Введите e-mail: unicross@mail.ru

E-mail unicross@mail.ru соответствует шаблону

ящик: unicross домен: mail.ru

7.3. Поиск всех совпадений
с шаблоном

Для поиска всех совпадений с шаблоном предназначены следующие функции и

методы:

 findall() — ищет все совпадения с шаблоном. Формат метода:
findall(<Строка>[, <Начальная позиция>[, <Конечная позиция>]])

Если соответствия найдены, то возвращается список с фрагментами, в против-

ном случае возвращается пустой список. Если внутри шаблона есть более од-

ной группы, то каждый элемент списка будет кортежем, а не строкой.

Примеры:

>>> import re

>>> p = re.compile(r"[0-9]+")

>>> p.findall("2007, 2008, 2009, 2010, 2011")

['2007', '2008', '2009', '2010', '2011']

>>> p = re.compile(r"[a-z]+")

>>> p.findall("2007, 2008, 2009, 2010, 2011")

[]

>>> p = re.compile(r"((\d{3})-(\d{2})-(\d{2}))")

>>> p.findall("322-77-20, 528-22-98")

[('322-77-20', '322', '77', '20'),

 ('528-22-98', '528', '22', '98')]

Вместо метода findall() можно воспользоваться функцией findall(). Формат

функции:

re.findall(<Шаблон>, <Строка>[, <Модификатор>])

В качестве параметра <Шаблон> можно указать строку с регулярным выражени-

ем или скомпилированное регулярное выражение. В параметре <Модификатор>

можно указать флаги, используемые в функции compile().

Регулярные выражения

111

Пример:

>>> p = r"[0-9]+"

>>> re.findall(p, "1 2 3 4 5 6")

['1', '2', '3', '4', '5', '6']

>>> p = re.compile(r"[0-9]+")

>>> re.findall(p, "1 2 3 4 5 6")

['1', '2', '3', '4', '5', '6']

 finditer() — аналогичен методу findall(), но возвращает итератор, а не спи-

сок. На каждой итерации цикла возвращается объект MatchObject. Формат ме-

тода:

finditer(<Строка>[, <Начальная позиция>[, <Конечная позиция>]])

Пример:

>>> p = re.compile(r"[0-9]+")

>>> for m in p.finditer("2007, 2008, 2009, 2010, 2011"):

 print m.group(0), "start:", m.start(), "end:", m.end()

2007 start: 0 end: 4

2008 start: 6 end: 10

2009 start: 12 end: 16

2010 start: 18 end: 22

2011 start: 24 end: 28

Вместо метода finditer() можно воспользоваться функцией finditer().

Формат функции:

re.finditer(<Шаблон>, <Строка>[, <Модификатор>])

В качестве параметра <Шаблон> можно указать строку с регулярным выражени-

ем или скомпилированное регулярное выражение. В параметре <Модификатор>

можно указать флаги, используемые в функции compile(). Получим содержи-

мое между тегами:

>>> p = re.compile(r"(.+?)", re.I | re.S)

>>> s = "Text1Text2Text3"

>>> for m in re.finditer(p, s):

 print m.group(1)

Text1

Text3

7.4. Замена в строке

Для замены в строке с помощью регулярных выражений предназначены сле-

дующие функции и методы:

 sub() — ищет все совпадения с шаблоном и заменяет их указанным значением.

Если совпадения не найдены, возвращается исходная строка.

Глава 7

112

Метод имеет следующий формат:

sub(<Новый фрагмент или ссылка на функцию>, <Строка для замены>

 [, <Максимальное количество замен>])

Внутри нового фрагмента можно использовать обратные ссылки \номер,

\g<номер> и \g<название>, соответствующие группам внутри шаблона. В каче-

стве примера поменяем два тега местами:

>>> import re

>>> p = re.compile(r"<(?P<tag1>[a-z]+)><(?P<tag2>[a-z]+)>")

>>> p.sub(r"<\2><\1>", "
<hr>") # \номер

'<hr>
'

>>> p.sub(r"<\g<2>><\g<1>>", "
<hr>") # \g<номер>

'<hr>
'

>>> p.sub(r"<\g<tag2>><\g<tag1>>", "
<hr>") # \g<название>

'<hr>
'

В качестве первого параметра можно указать ссылку на функцию. В эту функ-

цию будет передаваться объект MatchObject, соответствующий найденному

фрагменту. Результат, возвращаемый этой функцией, служит фрагментом для

замены. Для примера найдем все числа в строке и прибавим к ним число 10:

-*- coding: cp1251 -*-

import re

def repl(m):

 """ Функция для замены. m - объект MatchObject """

 x = int(m.group(0))

 x += 10

 return "%s" % x

p = re.compile(r"[0-9]+")

Заменяем все вхождения

print p.sub(repl, "2008, 2009, 2010, 2011")

Заменяем только первые два вхождения

print p.sub(repl, "2008, 2009, 2010, 2011", 2)

Результат выполнения:

2018, 2019, 2020, 2021

2018, 2019, 2010, 2011

ВНИМАНИЕ!

Название функции указывается без скобок.

Вместо метода sub() можно воспользоваться функцией sub(). Формат функ-

ции:

re.sub(<Шаблон>, <Новый фрагмент или ссылка на функцию>,

 <Строка для замены>[, <Максимальное количество замен>])

Регулярные выражения

113

В качестве параметра <Шаблон> можно указать строку с регулярным выражени-

ем или скомпилированное регулярное выражение. Поменяем два тега местами,

а также изменим регистр букв:

-*- coding: cp1251 -*-

import re

def repl(m):

 """ Функция для замены. m - объект MatchObject """

 tag1 = m.group("tag1").upper()

 tag2 = m.group("tag2").upper()

 return "<%s><%s>" % (tag2, tag1)

p = r"<(?P<tag1>[a-z]+)><(?P<tag2>[a-z]+)>"

print re.sub(p, repl, "
<hr>")

Результат выполнения:

<HR>

 subn() — аналогичен методу sub(), но возвращает не строку, а кортеж из двух

элементов — измененной строки и количества произведенных замен. Метод

имеет следующий формат:

subn(<Новый фрагмент или ссылка на функцию>, <Строка для замены>

 [, <Максимальное количество замен>])

Заменим все числа в строке на 0:

>>> p = re.compile(r"[0-9]+")

>>> p.subn("0", "2008, 2009, 2010, 2011")

('0, 0, 0, 0', 4)

Вместо метода subn() можно воспользоваться функцией subn(). Формат функ-

ции:

re.subn(<Шаблон>, <Новый фрагмент или ссылка на функцию>,

 <Строка для замены>[, <Максимальное количество замен>])

В качестве параметра <Шаблон> можно указать строку с регулярным выражени-

ем или скомпилированное регулярное выражение. Пример:

>>> p = r"200[79]"

>>> re.subn(p, "2001", "2007, 2008, 2009, 2010")

('2001, 2008, 2001, 2010', 2)

7.5. Прочие функции и методы

Метод split() разбивает строку по шаблону и возвращает список подстрок.

Если во втором параметре задано число, то в списке будет указанное количество

подстрок. Если подстрок больше указанного количества, то список будет содер-

жать еще один элемент, в котором будет остаток строки.

Глава 7

114

Метод имеет следующий формат:

split(<Исходная строка>[, <Лимит>])

Пример:

>>> import re

>>> p = re.compile(r"[\s,.]+")

>>> p.split("word1, word2\nword3\r\nword4.word5")

['word1', 'word2', 'word3', 'word4', 'word5']

>>> p.split("word1, word2\nword3\r\nword4.word5", 2)

['word1', 'word2', 'word3\r\nword4.word5']

Если разделитель не найден в строке, то список будет содержать только один

элемент, содержащий исходную строку:

>>> p = re.compile(r"[0-9]+")

>>> p.split("word, word\nword")

['word, word\nword']

Вместо метода split() можно воспользоваться функцией split(). Формат

функции:

re.split(<Шаблон>, <Исходная строка>[, <Лимит>])

В качестве параметра <Шаблон> можно указать строку с регулярным выражени-

ем или скомпилированное регулярное выражение. Пример:

>>> p = re.compile(r"[\s,.]+")

>>> re.split(p, "word1, word2\nword3")

['word1', 'word2', 'word3']

>>> re.split(r"[\s,.]+", "word1, word2\nword3")

['word1', 'word2', 'word3']

С помощью функции escape(<Строка>) можно экранировать все специальные

символы в строке, полученной от пользователя. Эту строку в дальнейшем можно

безопасно использовать внутри регулярного выражения. Пример:

>>> print re.escape(r"[]().*")

\[\]\(\)\.*

ГЛАВА 8

Списки, кортежи и множества

Списки и кортежи — это нумерованные наборы объектов. Каждый элемент

набора содержит лишь ссылку на объект. По этой причине списки и кортежи могут

содержать объекты произвольного типа данных и иметь неограниченную степень

вложенности. Позиция элемента в наборе задается индексом. Обратите внимание

на то, что нумерация элементов начинается с 0, а не с 1.

Списки и кортежи являются упорядоченными последовательностями элемен-

тов. Как и все последовательности, они поддерживают обращение к элементу по

индексу, получение среза, конкатенацию (оператор +), повторение (оператор *),

проверку на вхождение (оператор in).

Списки относятся к изменяемым типам данных. Это означает, что мы можем не

только получить элемент по индексу, но и изменить его:

>>> arr = [1, 2, 3] # Создаем список

>>> arr[0] # Получаем элемент по индексу

1

>>> arr[0] = 50 # Изменяем элемент по индексу

>>> arr

[50, 2, 3]

Кортежи относятся к неизменяемым типам данных. Иными словами, можно

получить элемент по индексу, но изменить его нельзя:

>>> t = (1, 2, 3) # Создаем кортеж

>>> t[0] # Получаем элемент по индексу

1

>>> t[0] = 50 # Изменить элемент по индексу нельзя!

Traceback (most recent call last):

 File "<pyshell#41>", line 1, in <module>

 t[0] = 50 # Изменить элемент по индексу нельзя!

TypeError: 'tuple' object does not support item assignment

Рассмотрим списки, кортежи и множества подробно.

Глава 8

116

8.1. Создание списка

Создать список можно следующими способами:

 с помощью функции list([<Последовательность>]). Функция позволяет пре-

образовать любую последовательность в список. Если параметр не указан, то

создается пустой список. Примеры:

>>> list() # Создаем пустой список

[]

>>> list("String") # Преобразуем строку в список

['S', 't', 'r', 'i', 'n', 'g']

>>> list((1, 2, 3, 4, 5)) # Преобразуем кортеж в список

[1, 2, 3, 4, 5]

 указав все элементы списка внутри квадратных скобок:

>>> arr = [1, "str", 3, "4"]

>>> arr

[1, 'str', 3, '4']

 заполнив список поэлементно с помощью метода append():

>>> arr = [] # Создаем пустой список

>>> arr.append(1) # Добавляем элемент1 (индекс 0)

>>> arr.append("str") # Добавляем элемент2 (индекс 1)

>>> arr

[1, 'str']

В некоторых языках программирования (например, в PHP) можно добавить

элемент, указав пустые квадратные скобки или индекс больше последнего ин-

декса. В языке Python все эти способы приведут к ошибке:

>>> arr = []

>>> arr[] = 10

SyntaxError: invalid syntax

>>> arr[0] = 10

Traceback (most recent call last):

 File "<pyshell#120>", line 1, in <module>

 arr[0] = 10

IndexError: list assignment index out of range

При создании списка в переменной сохраняется ссылка на объект, а не сам объ-

ект. Это обязательно следует учитывать при групповом присваивании. Групповое

присваивание можно использовать для чисел и строк, но для списков этого делать

нельзя. Рассмотрим пример:

>>> x = y = [1, 2] # Якобы создали два объекта

>>> x, y

([1, 2], [1, 2])

В этом примере мы создали список из двух элементов и присвоили значение

переменным x и y.

Списки, кортежи и множества

117

Теперь попробуем изменить значение в переменной y:

>>> y[1] = 100 # Изменяем второй элемент

>>> x, y # Изменилось значение сразу в двух переменных

([1, 100], [1, 100])

Как видно из примера, изменение значения в переменной y привело также к из-

менению значения в переменной x. Таким образом, обе переменные ссылаются на

один и тот же объект, а не на два разных объекта. Чтобы получить два объекта, не-

обходимо производить раздельное присваивание:

>>> x, y = [1, 2], [1, 2]

>>> y[1] = 100 # Изменяем второй элемент

>>> x, y

([1, 2], [1, 100])

Проверить, ссылаются ли две переменные на один и тот же объект, позволяет

оператор is. Если переменные ссылаются на один и тот же объект, то оператор is

возвращает значение True:

>>> x = y = [1, 2] # Неправильно

>>> x is y # Переменные содержат ссылку на один и тот же список

True

>>> x, y = [1, 2], [1, 2] # Правильно

>>> x is y # Это разные объекты

False

Как вы уже знаете, операция присваивания сохраняет лишь ссылку на объект, а

не сам объект. Что же делать, если необходимо создать копию списка? Первый

способ заключается в применении операции извлечения среза, а второй способ —

в использовании функции list() (листинг 8.1).

Листинг 8.1. Создание поверхностной копии списка

>>> x = [1, 2, 3, 4, 5] # Создали список

>>> # Создаем копию списка

>>> y = list(x) # или с помощью среза y = x[:]

>>> y

[1, 2, 3, 4, 5]

>>> x is y # Оператор показывает, что это разные объекты

False

>>> y[1] = 100 # Изменяем второй элемент

>>> x, y # Изменился только список в переменной y

([1, 2, 3, 4, 5], [1, 100, 3, 4, 5])

На первый взгляд может показаться, что мы получили копию. Оператор is по-

казывает, что это разные объекты, а изменение элемента затронуло лишь значение

переменной y. В данном случае вроде все нормально. Но проблема заключается в

том, что списки в языке Python могут иметь неограниченную степень вложенности.

Глава 8

118

Рассмотрим это на примере:

>>> x = [1, [2, 3, 4, 5]] # Создали вложенный список

>>> y = list(x) # Якобы сделали копию списка

>>> x is y # Разные объекты

False

>>> y[1][1] = 100 # Изменяем элемент

>>> x, y # Изменение затронуло переменную x!!!

([1, [2, 100, 4, 5]], [1, [2, 100, 4, 5]])

В этом примере мы создали список, в котором второй элемент является вло-

женным списком. Далее с помощью функции list() попытались создать копию

списка. Как и в предыдущем примере, оператор is показывает, что это разные объ-

екты, но посмотрите на результат. Изменение переменной y затронуло и значение

переменной x. Таким образом, функция list() и операция извлечения среза соз-

дают лишь поверхностную копию списка.

Чтобы получить полную копию списка, следует воспользоваться функцией

deepcopy() из модуля copy (листинг 8.2).

Листинг 8.2. Создание полной копии списка

>>> import copy # Подключаем модуль copy

>>> x = [1, [2, 3, 4, 5]]

>>> y = copy.deepcopy(x) # Делаем полную копию списка

>>> y[1][1] = 100 # Изменяем второй элемент

>>> x, y # Изменился только список в переменной y

([1, [2, 3, 4, 5]], [1, [2, 100, 4, 5]])

Функция deepcopy() создает копию каждого объекта, при этом сохраняя внут-

реннюю структуру списка. Иными словами, если в списке существуют два элемен-

та, ссылающиеся на один объект, то будет создана копия объекта и элементы будут

ссылаться на этот новый объект, а не на разные объекты. Пример:

>>> import copy # Подключаем модуль copy

>>> x = [1, 2]

>>> y = [x, x] # Два элемента ссылаются на один объект

>>> y

[[1, 2], [1, 2]]

>>> z = copy.deepcopy(y) # Сделали копию списка

>>> z[0] is x, z[1] is x, z[0] is z[1]

(False, False, True)

>>> z[0][0] = 300 # Изменили один элемент

>>> z # Значение изменилось сразу в двух элементах!

[[300, 2], [300, 2]]

>>> x # Начальный список не изменился

[1, 2]

Списки, кортежи и множества

119

8.2. Операции над списками

Обращение к элементам списка осуществляется с помощью квадратных скобок,

в которых указывается индекс элемента. Нумерация элементов списка начинается с

нуля. Выведем все элементы списка:

>>> arr = [1, "str", 3.2, "4"]

>>> arr[0], arr[1], arr[2], arr[3]

(1, 'str', 3.2000000000000002, '4')

С помощью позиционного присваивания можно присвоить значения элементов

списка каким-либо переменным. Количество элементов справа и слева от операто-

ра = должно совпадать, иначе будет выведено сообщение об ошибке:

>>> x, y, z = [1, 2, 3] # Позиционное присваивание

>>> x, y, z

(1, 2, 3)

>>> x, y = [1, 2, 3] # Количество элементов должно совпадать

Traceback (most recent call last):

 File "<pyshell#95>", line 1, in <module>

 x, y = [1, 2, 3] # Количество элементов должно совпадать

ValueError: too many values to unpack

Так как нумерация элементов списка начинается с 0, индекс последнего эле-

мента будет на единицу меньше количества элементов. Получить количество эле-

ментов списка позволяет функция len():

>>> arr = [1, 2, 3, 4, 5]

>>> len(arr) # Получаем количество элементов

5

>>> arr[len(arr)-1] # Получаем последний элемент

5

Если элемент, соответствующий указанному индексу, отсутствует в списке, то

возбуждается исключение IndexError:

>>> arr = [1, 2, 3, 4, 5]

>>> arr[5] # Обращение к несуществующему элементу

Traceback (most recent call last):

 File "<pyshell#100>", line 1, in <module>

 arr[5] # Обращение к несуществующему элементу

IndexError: list index out of range

В качестве индекса можно указать отрицательное значение. В этом случае

смещение будет отсчитываться от конца списка, а точнее сказать, значение вычита-

ется из общего количества элементов списка, чтобы получить положительный ин-

декс:

>>> arr = [1, 2, 3, 4, 5]

>>> arr[-1], arr[len(arr)-1] # Обращение к последнему элементу

(5, 5)

Глава 8

120

Так как списки относятся к изменяемым типам данных, то мы можем изменить

элемент по индексу:

>>> arr = [1, 2, 3, 4, 5]

>>> arr[0] = 600 # Изменение элемента по индексу

>>> arr

[600, 2, 3, 4, 5]

Кроме того, списки поддерживают операцию извлечения среза, которая воз-

вращает указанный фрагмент списка. Формат операции:

[<Начало>:<Конец>:<Шаг>]

Все параметры являются необязательными. Если параметр <Начало> не указан,

то используется значение 0. Если параметр <Конец> не указан, то возвращается

фрагмент до конца списка. Следует также заметить, что элемент с индексом, ука-

занным в этом параметре, не входит в возвращаемый фрагмент. Если параметр

<Шаг> не указан, то используется значение 1. В качестве значения параметров мож-

но указать отрицательные значения.

Теперь рассмотрим несколько примеров. Сначала получим поверхностную ко-

пию списка:

>>> arr = [1, 2, 3, 4, 5]

>>> m = arr[:]; m # Создаем поверхностную копию и выводим значения

[1, 2, 3, 4, 5]

>>> m is arr # Оператор is показывает, что это разные объекты

False

Теперь выведем символы в обратном порядке:

>>> arr = [1, 2, 3, 4, 5]

>>> arr[::-1] # Шаг -1

[5, 4, 3, 2, 1]

Выведем список без первого и последнего элементов:

>>> arr[1:] # Без первого элемента

[2, 3, 4, 5]

>>> arr[:-1] # Без последнего элемента

[1, 2, 3, 4]

Получим первые два элемента списка:

>>> arr[0:2] # Символ с индексом 2 не входит в диапазон

[1, 2]

А теперь получим последний элемент:

>>> arr[-1:] # Последний элемент списка

[5]

И, наконец, выведем фрагмент от второго элемента до четвертого включи-

тельно:

>>> arr[1:4] # Возвращаются элементы с индексами 1, 2 и 3

[2, 3, 4]

Списки, кортежи и множества

121

С помощью среза можно изменить фрагмент списка. Если срезу присвоить пус-
той список, то элементы, попавшие в срез, будут удалены:
>>> arr = [1, 2, 3, 4, 5]

>>> arr[1:3] = [6, 7] # Изменяем значения элементов с индексами 1 и 2

>>> arr

[1, 6, 7, 4, 5]

>>> arr[1:3] = [] # Удаляем элементы с индексами 1 и 2

>>> arr

[1, 4, 5]

Соединить два списка в один список позволяет оператор +. Результатом объе-
динения будет новый список:
>>> arr1 = [1, 2, 3, 4, 5]

>>> arr2 = [6, 7, 8, 9]

>>> arr3 = arr1 + arr2

>>> arr3

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Вместо оператора + можно использовать оператор +=. Следует учитывать, что в
этом случае элементы добавляются в текущий список:
>>> arr = [1, 2, 3, 4, 5]

>>> arr += [6, 7, 8, 9]

>>> arr

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Кроме рассмотренных операций, списки поддерживают операцию повторения и
проверку на вхождение. Повторить список указанное количество раз можно с по-
мощью оператора *, а выполнить проверку на вхождение элемента в список позво-
ляет оператор in:
>>> [1, 2, 3] * 3 # Операция повторения

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> 2 in [1, 2, 3, 4, 5], 6 in [1, 2, 3, 4, 5] # Проверка на вхождение

(True, False)

8.3. Многомерные списки

Любой элемент списка может содержать объект произвольного типа. Напри-
мер, элемент списка может быть числом, строкой, списком, кортежем, словарем
и т. д. Создать вложенный список можно, например, так:
arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Как вы уже знаете, выражение внутри скобок может располагаться на несколь-
ких строках. Следовательно, предыдущий пример можно записать иначе:
>>> arr = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

Глава 8

122

Чтобы получить значение элемента во вложенном списке, следует указать два

индекса:

>>> arr[1][1]

5

Элементы вложенного списка также могут иметь элементы произвольного ти-

па. Количество вложений не ограничено. Таким образом, мы можем создать объект

любой степени сложности. В этом случае для доступа к элементам указывается не-

сколько индексов подряд. Примеры:

>>> arr = [[1, ["a", "b"], 3], [4, 5, 6], [7, 8, 9]]

>>> arr[0][1][0]

'a'

>>> mass = [[1, { "a": 10, "b": ["s", 5] }]]

>>> mass[0][1]["b"][0]

's'

8.4. Перебор элементов списка

Перебрать все элементы списка можно с помощью цикла for:

>>> arr = [1, 2, 3, 4, 5]

>>> for i in arr: print i,

Результат выполнения:

1 2 3 4 5

Следует заметить, что переменную i внутри цикла можно изменить, но если

она ссылается на неизменяемый тип данных (например, число или строку), то это

не отразится на исходном списке:

>>> arr = [1, 2, 3, 4] # Элементы имеют неизменяемый тип (число)

>>> for i in arr: i += 10

>>> arr # Список не изменился

[1, 2, 3, 4]

>>> arr = [[1, 2], [3, 4]] # Элементы имеют изменяемый тип (список)

>>> for i in arr: i[0] += 10

>>> arr # Список изменился

[[11, 2], [13, 4]]

Чтобы получить доступ к каждому элементу, можно, например, воспользовать-

ся функцией xrange() для генерации индексов. В отличие от функции range(), ко-

торая возвращает список значений, функция xrange() возвращает итератор. С по-

мощью этого итератора внутри цикла for можно получить текущий индекс.

Функция xrange() имеет следующий формат:

xrange([<Начало>,]<Конец>[, <Шаг>])

Списки, кортежи и множества

123

Первый параметр задает начальное значение. Если параметр <Начало> не ука-

зан, то по умолчанию используется значение 0. Во втором параметре указывается

конечное значение. Следует заметить, что это значение не входит в возвращаемый

список значений. Если параметр <Шаг> не указан, то используется значение 1.

В качестве примера умножим каждый элемент списка на 2:

arr = [1, 2, 3, 4]

for i in xrange(len(arr)):

 arr[i] *= 2

print arr # Результат выполнения: [2, 4, 6, 8]

Можно также воспользоваться функцией enumerate(<Объект>), которая на ка-

ждой итерации цикла for возвращает кортеж из индекса и значения текущего эле-

мента списка. Умножим каждый элемент списка на 2:

arr = [1, 2, 3, 4]

for i, elem in enumerate(arr):

 arr[i] *= 2

print arr # Результат выполнения: [2, 4, 6, 8]

Кроме того, перебрать элементы можно с помощью цикла while. Но в этом

случае следует помнить, что цикл while работает медленнее цикла for. В качестве

примера умножим каждый элемент списка на 2, используя цикл while:

arr = [1, 2, 3, 4]

i, c = 0, len(arr)

while i < c:

 arr[i] *= 2

 i += 1

print arr # Результат выполнения: [2, 4, 6, 8]

8.5. Генераторы списков и выражения-

генераторы

В предыдущем разделе мы изменяли элементы списка следующим образом:

arr = [1, 2, 3, 4]

for i in xrange(len(arr)):

 arr[i] *= 2

print arr # Результат выполнения: [2, 4, 6, 8]

С помощью генераторов списков тот же самый код можно записать более

компактно. Помимо компактного отображения генераторы списков работают бы-

стрее цикла for. Однако вместо изменения исходного списка возвращается но-

вый список:

arr = [1, 2, 3, 4]

arr = [i * 2 for i in arr]

print arr # Результат выполнения: [2, 4, 6, 8]

Глава 8

124

Как видно из примера, мы поместили цикл for внутри квадратных скобок, а

также изменили порядок следования параметров: выражение, выполняемое внутри

цикла, находится перед циклом. Обратите внимание на то, что выражение внутри

цикла не содержит оператора присваивания. На каждой итерации цикла будет ге-

нерироваться новый элемент, которому неявным образом присваивается результат

выполнения выражения внутри цикла. В итоге будет создан новый список, содер-

жащий измененные значения элементов исходного списка.

Генераторы списков могут иметь сложную структуру. Например, состоять из

нескольких вложенных циклов for и (или) содержать оператор ветвления if после

цикла. В качестве примера получим четные элементы списка и умножим их на 10:

arr = [1, 2, 3, 4]

arr = [i * 10 for i in arr if i % 2 == 0]

print arr # Результат выполнения: [20, 40]

Последовательность выполнения этого кода эквивалентна последовательности

выполнения следующего кода:

arr = []

for i in [1, 2, 3, 4]:

 if i % 2 == 0: # Если число четное

 arr.append(i * 10) # Добавляем элемент

print arr # Результат выполнения: [20, 40]

Усложним наш пример. Получим четные элементы вложенного списка и умно-

жим их на 10:

arr = [[1, 2], [3, 4], [5, 6]]

arr = [j * 10 for i in arr for j in i if j % 2 == 0]

print arr # Результат выполнения: [20, 40, 60]

Последовательность выполнения этого кода эквивалентна последовательности

выполнения следующего кода:

arr = []

for i in [[1, 2], [3, 4], [5, 6]]:

 for j in i:

 if j % 2 == 0: # Если число четное

 arr.append(j * 10) # Добавляем элемент

print arr # Результат выполнения: [20, 40, 60]

Если выражение разместить не внутри квадратных скобок, а внутри круглых

скобок, то будет возвращаться не список, а итератор. Такие конструкции называ-

ются выражениями-генераторами. В качестве примера просуммируем четные чис-

ла в списке:

>>> arr = [1, 4, 12, 45, 10]

>>> sum((i for i in arr if i % 2 == 0))

26

Списки, кортежи и множества

125

8.6. Перебор элементов списка без циклов

Встроенная функция map() позволяет перебрать элементы списка без использо-

вания циклов. Функция имеет следующий формат:

map(<Функция>, <Последовательность1>[, ..., <ПоследовательностьN>])

В качестве параметра <Функция> указывается ссылка на функцию, которой бу-

дет передаваться текущий элемент последовательности. Выведем все элементы

списка с помощью функции map():

def f_print(elem):

 """ Вывод всех элементов списка """

 print elem,

arr = [1, 2, 3, 4, 5]

map(f_print, arr)

Результат выполнения: 1 2 3 4 5

В качестве значения функция map() возвращает новый список. Если в преды-

дущем примере перед функцией map() добавить оператор print, то мы получим

следующий список:

[None, None, None, None, None]

Чтобы добавить элемент в этот список, необходимо внутри функции обратного

вызова вернуть новое значение. В качестве примера прибавим к каждому элементу

списка число 10 (листинг 8.3).

Листинг 8.3. Функция map()

def f_increment(elem):

 """ Увеличение значения каждого элемента списка """

 return elem + 10 # Возвращаем новое значение

arr = [1, 2, 3, 4, 5]

new_arr = map(f_increment, arr)

print ", ".join((str(i) for i in new_arr))

Результат выполнения: 11, 12, 13, 14, 15

Функции map() можно передать несколько последовательностей. В этом случае

в функцию обратного вызова будут передаваться сразу несколько элементов, рас-

положенных в последовательностях на одинаковом смещении. Просуммируем эле-

менты трех списков (листинг 8.4).

Листинг 8.4. Суммирование элементов трех списков

def f_increment(e1, e2, e3):

 """ Суммирование элементов трех разных списков """

 return e1 + e2 + e3 # Возвращаем новое значение

Глава 8

126

arr1 = [1, 2, 3, 4, 5]

arr2 = [10, 20, 30, 40, 50]

arr3 = [100, 200, 300, 400, 500]

new_arr = map(f_increment, arr1, arr2, arr3)

print ", ".join((str(i) for i in new_arr))

Результат выполнения: 111, 222, 333, 444, 555

Если в первом параметре вместо названия функции указать значение None, то

функция map() вернет список, элементами которого будут кортежи. Каждый кор-

теж будет содержать элементы последовательностей, которые расположены на

одинаковом смещении. Пример:

>>> map(None, [1, 2, 3], [4, 5, 6], [7, 8, 9])

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

Если количество элементов в последовательностях будет разным, то вместо не-

достающих элементов будет вставлено значение None:

>>> map(None, [1, 2, 3], [4, 6], [7, 8, 9, 10])

[(1, 4, 7), (2, 6, 8), (3, None, 9), (None, None, 10)]

Встроенная функция zip() также возвращает список, элементами которого яв-

ляются кортежи. Каждый кортеж содержит элементы последовательностей, кото-

рые расположены на одинаковом смещении. Формат функции:

zip(<Последовательность1>[, ..., <ПоследовательностьN>])

Пример:

>>> zip([1, 2, 3], [4, 5, 6], [7, 8, 9])

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

Если количество элементов в последовательностях будет разным, то в список

попадут только элементы, которые существуют во всех последовательностях на

одинаковом смещении:

>>> zip([1, 2, 3], [4, 6], [7, 8, 9, 10])

[(1, 4, 7), (2, 6, 8)]

В качестве еще одного примера переделаем нашу программу (листинг 8.4)

суммирования элементов трех списков и используем функцию zip() вместо функ-

ции map() (листинг 8.5).

Листинг 8.5. Суммирование элементов трех списков с помощью функции zip()

arr1 = [1, 2, 3, 4, 5]

arr2 = [10, 20, 30, 40, 50]

arr3 = [100, 200, 300, 400, 500]

new_arr = []

for (x, y, z) in zip(arr1, arr2, arr3):

 new_arr.append(x + y + z)

print ", ".join((str(i) for i in new_arr))

Результат выполнения: 111, 222, 333, 444, 555

Списки, кортежи и множества

127

Функция filter() позволяет выполнить проверку элементов последовательно-

сти. Формат функции:

filter(<Функция>, <Последовательность>)

Если в первом параметре вместо названия функции указать значение None, то

каждый элемент последовательности будет проверен на соответствие значению

True. Если элемент в логическом контексте возвращает значение False, то он не

будет добавлен в возвращаемый результат. В качестве значения для строк возвра-

щается строка, для кортежей — кортеж, а всех остальных последовательностей —

список. Пример:

>>> filter(None, [1, 0, None, [], 2]) # Возвращается список

[1, 2]

>>> filter(None, (1, 0, None, [], 2)) # Возвращается кортеж

(1, 2)

>>> filter(None, "str0000") # Возвращается строка

'str0000'

В первом параметре можно указать ссылку на функцию. В эту функцию в каче-

стве параметра будет передаваться текущий элемент последовательности. Если

элемент следует добавить в возвращаемое функцией filter() значение, то внутри

функции обратного вызова следует вернуть значение True, в противном случае —

значение False. Удалим все отрицательные значения из списка и кортежа (лис-

тинг 8.6).

Листинг 8.6. Пример использования функции filter()

def f_filter(elem):

 if elem < 0: return False

 return True

arr = [-1, 2, -3, 4, 0, -20, 10] # Список

arr = filter(f_filter, arr)

print arr # Результат выполнения: [2, 4, 0, 10]

t = (-1, 2, -3, 4, 0, -20, 10) # Кортеж

t = filter(f_filter, t)

print t # Результат выполнения: (2, 4, 0, 10)

Функция reduce() применяет указанную функцию к парам элементов и накап-

ливает результат. Имеет следующий формат:

reduce(<Функция>, <Последовательность>[, <Начальное значение>])

В функцию обратного вызова в качестве параметра будут передаваться два

элемента. Первый элемент будет содержать результат предыдущих вычислений, а

второй — значение текущего элемента. Для примера получим сумму всех элемен-

тов списка (листинг 8.7).

Глава 8

128

Листинг 8.7. Пример использования функции reduce()

def f_sum(elem1, elem2):

 print "(%s, %s)" % (elem1, elem2),

 return elem1 + elem2

arr = [1, 2, 3, 4, 5]

summa = reduce(f_sum, arr)

Последовательность: (1, 2) (3, 3) (6, 4) (10, 5)

print summa # Результат выполнения: 15

summa = reduce(f_sum, arr, 10)

Последовательность: (10, 1) (11, 2) (13, 3) (16, 4) (20, 5)

print summa # Результат выполнения: 25

summa = reduce(f_sum, [], 10)

print summa # Результат выполнения: 10

8.7. Добавление и удаление

элементов списка

Для добавления и удаления элементов списка используются следующие методы:

 append(<Объект>) — добавляет один объект в конец списка. Метод изменяет

текущий список и ничего не возвращает. Пример:

>>> arr = [1, 2, 3]

>>> arr.append(4); arr # Добавляем число

[1, 2, 3, 4]

>>> arr.append([5, 6]); arr # Добавляем список

[1, 2, 3, 4, [5, 6]]

>>> arr.append((7, 8)); arr # Добавляем кортеж

[1, 2, 3, 4, [5, 6], (7, 8)]

 extend(<Последовательность>) — добавляет элементы последовательности в

конец списка. Метод изменяет текущий список и ничего не возвращает. При-

мер:

>>> arr = [1, 2, 3]

>>> arr.extend([4, 5, 6]) # Добавляем список

>>> arr.extend((7, 8, 9)) # Добавляем кортеж

>>> arr.extend("abc") # Добавляем буквы из строки

>>> arr

[1, 2, 3, 4, 5, 6, 7, 8, 9, 'a', 'b', 'c']

Добавить несколько элементов можно с помощью операции конкатенации:

>>> arr = [1, 2, 3]

>>> arr + [4, 5, 6] # Возвращает новый список

[1, 2, 3, 4, 5, 6]

Списки, кортежи и множества

129

Кроме того, можно воспользоваться операцией присваивания значения срезу:

>>> arr = [1, 2, 3]

>>> arr[len(arr):] = [4, 5, 6] # Изменяет текущий список

>>> arr

[1, 2, 3, 4, 5, 6]

 insert(<Индекс>, <Объект>) — добавляет один объект в указанную позицию.

Остальные элементы смещаются. Метод изменяет текущий список и ничего не

возвращает. Примеры:

>>> arr = [1, 2, 3]

>>> arr.insert(0, 0); arr # Вставляем 0 в начало списка

[0, 1, 2, 3]

>>> arr.insert(-1, 20); arr # Можно указать отрицательные числа

[0, 1, 2, 20, 3]

>>> arr.insert(2, 100); arr # Вставляем 100 в позицию 2

[0, 1, 100, 2, 20, 3]

>>> arr.insert(10, [4, 5]); arr # Добавляем список

[0, 1, 100, 2, 20, 3, [4, 5]]

Метод insert() позволяет добавить только один объект. Чтобы добавить не-

сколько объектов, можно воспользоваться операцией присваивания значения

срезу. Добавим несколько элементов в начало списка:

>>> arr = [1, 2, 3]

>>> arr[:0] = [-2, -1, 0]

>>> arr

[-2, -1, 0, 1, 2, 3]

 pop([<Индекс>]) — удаляет элемент, расположенный по указанному индексу,

и возвращает его. Если индекс не указан, то удаляет и возвращает последний

элемент списка. Примеры:

>>> arr = [1, 2, 3, 4, 5]

>>> arr.pop() # Удаляем последний элемент списка

5

>>> arr # Список изменился

[1, 2, 3, 4]

>>> arr.pop(0) # Удаляем первый элемент списка

1

>>> arr # Список изменился

[2, 3, 4]

Удалить элемент списка позволяет также оператор del:

>>> arr = [1, 2, 3, 4, 5]

>>> del arr[4]; arr # Удаляем последний элемент списка

[1, 2, 3, 4]

>>> del arr[:2]; arr # Удаляем первый и второй элементы

[3, 4]

Глава 8

130

 remove(<Значение>) — удаляет первый элемент, содержащий указанное значе-

ние. Если элемент не найден, возбуждается исключение ValueError. Метод из-

меняет текущий список и ничего не возвращает. Примеры:

>>> arr = [1, 2, 3, 1, 1]

>>> arr.remove(1) # Удаляет только первый элемент

>>> arr

[2, 3, 1, 1]

>>> arr.remove(5) # Такого элемента нет

Traceback (most recent call last):

 File "<pyshell#36>", line 1, in <module>

 arr.remove(5) # Такого элемента нет

ValueError: list.remove(x): x not in list

Если необходимо удалить все повторяющиеся элементы списка, то можно спи-

сок преобразовать во множество, а затем множество обратно преобразовать в спи-

сок. Обратите внимание на то, что список должен содержать только числа или

строки. В противном случае возбуждается исключение TypeError. Пример:

>>> arr = [1, 2, 3, 1, 1, 2, 2, 3, 3]

>>> s = set(arr) # Преобразуем список во множество

>>> s

set([1, 2, 3])

>>> arr = list(s) # Преобразуем множество в список

>>> arr # Все повторы были удалены

[1, 2, 3]

8.8. Поиск элемента в списке

Как вы уже знаете, выполнить проверку на вхождение элемента в список по-

зволяет оператор in. Если элемент входит в список, то возвращается значение True,

в противном случае — False. Пример:

>>> 2 in [1, 2, 3, 4, 5], 6 in [1, 2, 3, 4, 5] # Проверка на вхождение

(True, False)

Тем не менее, оператор in не дает никакой информации о местонахождении

элемента внутри списка. Чтобы узнать индекс элемента внутри списка, следует

воспользоваться методом index(). Формат метода:

index(<Значение>[, <Начало>[, <Конец>]])

Метод index() возвращает индекс элемента, имеющего указанное значение.

Если значение не входит в список, то возбуждается исключение ValueError. Если

второй и третий параметры не указаны, то поиск будет производиться с начала

списка. Пример:

>>> arr = [1, 2, 1, 2, 1]

>>> arr.index(1), arr.index(2)

(0, 1)

Списки, кортежи и множества

131

>>> arr.index(1, 1), arr.index(1, 3, 5)

(2, 4)

>>> arr.index(3)

Traceback (most recent call last):

 File "<pyshell#14>", line 1, in <module>

 arr.index(3)

ValueError: list.index(x): x not in list

Узнать общее количество элементов с указанным значением позволяет метод

count(<Значение>). Если элемент не входит в список, то возвращается значение 0.

Пример:

>>> arr = [1, 2, 1, 2, 1]

>>> arr.count(1), arr.count(2)

(3, 2)

>>> arr.count(3) # Элемент не входит в список

0

С помощью функций max() и min() можно узнать максимальное и минималь-

ное значение списка соответственно. Пример:

>>> arr = [1, 2, 3, 4, 5]

>>> max(arr), min(arr)

(5, 1)

Функция any(<Последовательность>) возвращает значение True, если в после-

довательности существует хоть один элемент, который в логическом контексте

возвращает значение True. Если последовательность не содержит элементов, воз-

вращается значение False. Пример:

>>> any([0, None]), any([0, None, 1]), any([])

(False, True, False)

Функция all(<Последовательность>) возвращает значение True, если все эле-

менты последовательности в логическом контексте возвращают значение True или

последовательность не содержит элементов. Пример:

>>> all([0, None]), all([0, None, 1]), all([]), all(["str", 10])

(False, False, True, True)

8.9. Переворачивание

и перемешивание списка

Метод reverse() изменяет порядок следования элементов списка на противо-

положный. Метод изменяет текущий список и ничего не возвращает. Пример:

>>> arr = [1, 2, 3, 4, 5]

>>> arr.reverse() # Изменяется текущий список

>>> arr

[5, 4, 3, 2, 1]

Глава 8

132

Если необходимо изменить порядок следования и получить новый список, то

следует воспользоваться функцией reversed(<Последовательность>). Функция

возвращает итератор, который можно преобразовать в список с помощью функции

list() или генератора списков:

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> reversed(arr)

<listreverseiterator object at 0x0186DA70>

>>> list(reversed(arr)) # Использование функции list()

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> for i in reversed(arr): print i, # Вывод с помощью цикла

10 9 8 7 6 5 4 3 2 1

>>> [i for i in reversed(arr)] # Использование генератора списков

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Функция shuffle(<Список>[, <Число от 0.0 до 1.0>]) из модуля random

"перемешивает" список случайным образом. Функция перемешивает сам список и

ничего не возвращает. Если второй параметр не указан, то используется значение,

возвращаемое функцией random(). Пример:

>>> import random # Подключаем модуль random

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.shuffle(arr) # Перемешиваем список случайным образом

>>> arr

[2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

8.10. Выбор элементов случайным образом

Получить элементы из списка случайным образом позволяют следующие

функции из модуля random:

 choice(<Последовательность>) — возвращает случайный элемент из любой

последовательности (строки, списка, кортежа):

>>> import random # Подключаем модуль random

>>> random.choice(["s", "t", "r"]) # Список

's'

 sample(<Последовательность>, <Количество элементов>) — возвращает спи-

сок из указанного количества элементов. В этот список попадут элементы из

последовательности, выбранные случайным образом. В качестве последова-

тельности можно указать любые объекты, поддерживающие итерации. Пример:

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.sample(arr, 2)

[7, 10]

>>> arr # Сам список не изменяется

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Списки, кортежи и множества

133

8.11. Сортировка списка

Отсортировать список позволяет метод sort(). Метод имеет следующие фор-

маты:

sort([cmp=None][, key=None][, reverse=False])

sort([<Пользовательская функция>[, <Функция>[, <Порядок элементов>]]])

Все параметры являются необязательными. Метод изменяет текущий список и

ничего не возвращает. Отсортируем список по возрастанию с параметрами по

умолчанию:

>>> arr = [2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

>>> arr.sort() # Изменяет текущий список

>>> arr

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Чтобы отсортировать список по убыванию следует в параметре reverse указать

значение True:

>>> arr = [2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

>>> arr.sort(reverse=True) # Сортировка по убыванию

>>> arr

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> arr = [2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

>>> arr.sort(None, None, True) # Сортировка по убыванию

>>> arr

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Следует заметить, что стандартная сортировка зависит от регистра символов

(листинг 8.8).

Листинг 8.8. Стандартная сортировка

-*- coding: cp1251 -*-

arr = ["единица1", "Единый", "Единица2"]

arr.sort()

for i in arr:

 print i,

Результат выполнения: Единица2 Единый единица1

В результате мы получили неправильную сортировку, ведь Единый и Единица2

больше единица1. Чтобы регистр символов не учитывался, можно указать ссылку

на функцию для изменения регистра символов в параметре key (листинг 8.9).

Листинг 8.9. Пользовательская сортировка

-*- coding: cp1251 -*-

import locale # Настраиваем локаль

locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

Глава 8

134

arr = ["единица1", "Единый", "Единица2"]

arr.sort(key=str.lower) # Вариант 1

for i in arr:

 print i,

Результат выполнения: единица1 Единица2 Единый

print # Вставляем перевод строки

arr = ["единица1", "Единый", "Единица2"]

arr.sort(None, str.lower) # Вариант 2

for i in arr:

 print i,

Результат выполнения: единица1 Единица2 Единый

Кроме того, в параметре cmp можно указать ссылку на пользовательскую функ-

цию сортировки. Функция принимает две переменные и должна возвращать:

 1 — если первый больше второго;

 -1 — если второй больше первого;

 0 — если элементы равны.

Изменим стандартную сортировку на свою сортировку, не учитывающую ре-

гистр символов (листинг 8.10).

Листинг 8.10. Сортировка без учета регистра символов

-*- coding: cp1251 -*-

import locale

def f_sort(a, b):

 """ Функция для сортировки без учета регистра """

 a1 = a.lower() # Преобразуем к нижнему регистру

 b1 = b.lower() # Преобразуем к нижнему регистру

 if a1 > b1: return 1

 if a1 < b1: return -1

 return 0

Настраиваем локаль

locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

arr = ["единица1", "Единый", "Единица2"]

arr.sort(cmp=f_sort) # Функция указывается без скобок!

for i in arr:

 print i,

Результат выполнения: единица1 Единица2 Единый

print # Вставляем перевод строки

arr = ["единица1", "Единый", "Единица2"]

arr.sort(f_sort) # Можно указать только название функции

for i in arr:

 print i,

Результат выполнения: единица1 Единица2 Единый

Списки, кортежи и множества

135

Для получения правильной сортировки мы приводим две переменные к одному

регистру, а затем производим стандартное сравнение. Заметьте, что регистр самих

элементов списка не изменяется, т. к. мы работаем с их копиями.

Метод sort() сортирует сам список и не возвращает никакого значения. В не-

которых случаях необходимо получить отсортированный список, а текущий список

оставить без изменений. Для этого следует воспользоваться функцией sorted().

Функция имеет следующий формат:

sorted(<Последовательность>[, cmp=None][, key=None][, reverse=False])

В первом параметре указывается список, который необходимо отсортировать.

Остальные параметры эквивалентны параметрам метода sort(). Пример использо-

вания функции sorted() приведен в листинге 8.11.

Листинг 8.11. Пример использования функции sorted()

>>> arr = [2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

>>> sorted(arr) # Возвращает новый список!

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> sorted(arr, reverse=True) # Возвращает новый список!

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> arr = ["единица1", "Единый", "Единица2"]

>>> import locale # Настройка локали

>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> m = sorted(arr, key=str.lower)

>>> for i in m: print i,

единица1 Единица2 Единый

>>> m = sorted(arr, cmp=lambda a,b: cmp(a.lower(), b.lower()))

>>> for i in m: print i,

единица1 Единица2 Единый

8.12. Заполнение списка числами

Создать список, содержащий диапазон чисел, можно с помощью функции

range(). Функция имеет следующий формат:

range([<Начало>,]<Конец>[, <Шаг>])

Первый параметр задает начальное значение. Если параметр <Начало> не ука-

зан, то по умолчанию используется значение 0. Во втором параметре указывается

конечное значение. Следует заметить, что это значение не входит в возвращаемый

список значений. Если параметр <Шаг> не указан, то используется значение 1.

В качестве примера заполним список числами от 0 до 10:

>>> range(11)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Глава 8

136

Создадим список, состоящий из диапазона чисел от 1 до 15:
>>> range(1, 16)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Теперь изменим порядок следования чисел на противоположный:
>>> range(15, 0, -1)

[15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Кроме того, можно воспользоваться генераторами списков и функцией
xrange(), которая имеет такой же формат, как и функция range(), но возвращает
не список, а итератор. Примеры:
>>> [i for i in xrange(11)]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> [i for i in xrange(1, 16)]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

>>> [i for i in xrange(15, 0, -1)]

[15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Если необходимо получить список со случайными числами (или случайными
элементами из другого списка), то следует воспользоваться функцией
sample(<Последовательность>, <Количество элементов>) из модуля random.
Пример:
>>> import random

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.sample(arr, 3)

[1, 9, 5]

>>> random.sample(xrange(300), 5)

[259, 294, 142, 292, 245]

8.13. Преобразование списка в строку

Преобразовать список в строку позволяет метод join(). Элементы добавляются
через указанный разделитель. Формат метода:
<Строка> = <Разделитель>.join(<Последовательность>)

Пример:
>>> arr = ["word1", "word2", "word3"]

>>> " - ".join(arr)

'word1 - word2 - word3'

Обратите внимание на то, что элементы списка должны быть строками, иначе
возвращается исключение TypeError:
>>> arr = ["word1", "word2", "word3", 2]

>>> " - ".join(arr)

Traceback (most recent call last):

 File "<pyshell#40>", line 1, in <module>

 " - ".join(arr)

TypeError: sequence item 3: expected string, int found

Списки, кортежи и множества

137

Избежать этого исключения можно с помощью выражения-генератора, внутри

которого текущий элемент списка преобразуется в строку с помощью функции

str():

>>> arr = ["word1", "word2", "word3", 2]

>>> " - ".join((str(i) for i in arr))

'word1 - word2 - word3 - 2'

Кроме того, с помощью функции str() можно сразу получить строковое пред-

ставление списка:

>>> arr = ["word1", "word2", "word3", 2]

>>> str(arr)

"['word1', 'word2', 'word3', 2]"

8.14. Кортежи

Кортежи, так же как и списки, являются упорядоченными последовательностя-

ми элементов. Кортежи во многом аналогичны спискам, но имеют одно очень важ-

ное отличие — изменить кортеж нельзя. Можно сказать, что кортеж — это список,

доступный "только для чтения". Создать кортеж можно следующими способами:

 с помощью функции tuple([<Последовательность>]). Функция позволяет пре-

образовать любую последовательность в кортеж. Если параметр не указан, то

создается пустой кортеж. Примеры:

>>> tuple() # Создаем пустой кортеж

()

>>> tuple("String") # Преобразуем строку в кортеж

('S', 't', 'r', 'i', 'n', 'g')

>>> tuple([1, 2, 3, 4, 5]) # Преобразуем список в кортеж

(1, 2, 3, 4, 5)

 указав все элементы через запятую внутри круглых скобок (или без скобок):

>>> t1 = () # Создаем пустой кортеж

>>> t2 = (5,) # Создаем кортеж из одного элемента

>>> t3 = (1, "str", (3, 4)) # Кортеж из трех элементов

>>> t4 = 1, "str", (3, 4) # Кортеж из трех элементов

>>> t1, t2, t3, t4

((), (5,), (1, 'str', (3, 4)), (1, 'str', (3, 4)))

Обратите особое внимание на вторую строку примера. Чтобы создать кортеж из

одного элемента, необходимо в конце указать запятую. Именно запятые фор-

мируют кортеж, а не круглые скобки. Если внутри круглых скобок нет запятых,

то будет создан объект другого типа. Пример:

>>> t = (5); type(t) # Получили число, а не кортеж!

<type 'int'>

>>> t = ("str"); type(t) # Получили строку, а не кортеж!

<type 'str'>

Глава 8

138

Четвертая строка в предыдущем примере также доказывает, что не скобки

формируют кортеж, а запятые. Помните, что любое выражение в языке Python

можно заключить в круглые скобки, а чтобы получить кортеж, необходимо

указать запятые.

Позиция элемента в кортеже задается индексом. Обратите внимание на то, что

нумерация элементов кортежа (как и списка) начинается с 0, а не с 1. Как и все по-

следовательности, кортежи поддерживают обращение к элементу по индексу, по-

лучение среза, конкатенацию (оператор +), повторение (оператор *), проверку на

вхождение (оператор in). Примеры:

>>> t = (1, 2, 3, 4, 5, 6, 7, 8, 9)

>>> t[0] # Получаем значение первого элемента кортежа

1

>>> t[::-1] # Изменяем порядок следования элементов

(9, 8, 7, 6, 5, 4, 3, 2, 1)

>>> t[2:5] # Получаем срез

(3, 4, 5)

>>> 8 in t, 0 in t # Проверка на вхождение

(True, False)

>>> (1, 2, 3) * 3 # Повторение

(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> (1, 2, 3) + (4, 5, 6) # Конкатенация

(1, 2, 3, 4, 5, 6)

Кортежи относятся к неизменяемым типам данных. Иными словами, можно

получить элемент по индексу, но изменить его нельзя:
>>> t = (1, 2, 3) # Создаем кортеж

>>> t[0] # Получаем элемент по индексу

1

>>> t[0] = 50 # Изменить элемент по индексу нельзя!

Traceback (most recent call last):

 File "<pyshell#28>", line 1, in <module>

 t[0] = 50 # Изменить элемент по индексу нельзя!

TypeError: 'tuple' object does not support item assignment

Получить количество элементов кортежа позволяет функция len():
>>> t = (1, 2, 3) # Создаем кортеж

>>> len(t) # Получаем количество элементов

3

Начиная с Python 2.6, кортежи поддерживают два метода:

 index(<Значение>[, <Начало>[, <Конец>]]) — возвращает индекс элемента,

имеющего указанное значение. Если значение не входит в кортеж, возбуждает-

ся исключение ValueError. Если второй и третий параметры не указаны, то по-

иск будет производиться с начала кортежа. Пример:

>>> t = (1, 2, 1, 2, 1)

>>> t.index(1), t.index(2)

(0, 1)

Списки, кортежи и множества

139

>>> t.index(1, 1), t.index(1, 3, 5)

(2, 4)

>>> t.index(3)

... Фрагмент опущен ...

ValueError: tuple.index(x): x not in list

 count(<Значение>) — возвращает количество элементов с указанным значени-

ем. Если элемент не входит в кортеж, то возвращается значение 0. Пример:

>>> t = (1, 2, 1, 2, 1)

>>> t.count(1), t.count(2)

(3, 2)

>>> t.count(3) # Элемент не входит в кортеж

0

Других методов у кортежей нет. Чтобы произвести операции над кортежами,

следует воспользоваться встроенными функциями, предназначенными для работы

с последовательностями. Все эти функции мы уже рассматривали при изучении

списков.

8.15. Множества

Множество — это неупорядоченная последовательность уникальных элемен-

тов, с которой можно сравнивать другие элементы, чтобы определить, принадлежат

ли они этому множеству. Объявить множество можно с помощью функции set():

>>> s = set()

>>> s

set([])

Функция set() позволяет также преобразовать элементы последовательности

во множество:

>>> set("string") # Преобразуем строку

set(['g', 'i', 'n', 's', 'r', 't'])

>>> set([1, 2, 3, 4, 5]) # Преобразуем список

set([1, 2, 3, 4, 5])

>>> set((1, 2, 3, 4, 5)) # Преобразуем кортеж

set([1, 2, 3, 4, 5])

>>> set([1, 2, 3, 1, 2, 3]) # Остаются только уникальные элементы

set([1, 2, 3])

Перебрать элементы множества позволяет цикл for:

>>> for i in set([1, 2, 3]): print i,

1 2 3

Получить количество элементов множества позволяет функция len():

>>> len(set([1, 2, 3]))

3

Глава 8

140

Для работы с множествами предназначены следующие операторы и соответст-

вующие им методы:

 | и union() — объединение множеств:

>>> s = set([1, 2, 3])

>>> s.union(set([4, 5, 6])), s | set([4, 5, 6])

(set([1, 2, 3, 4, 5, 6]), set([1, 2, 3, 4, 5, 6]))

Если элемент уже содержится во множестве, то он повторно добавлен не будет:

>>> set([1, 2, 3]) | set([1, 2, 3])

set([1, 2, 3])

 a |= b и a.update(b) — добавляют элементы множества b во множество a:

>>> s = set([1, 2, 3])

>>> s.update(set([4, 5, 6]))

>>> s

set([1, 2, 3, 4, 5, 6])

>>> s |= set([7, 8, 9])

>>> s

set([1, 2, 3, 4, 5, 6, 7, 8, 9])

 - и difference() — разница множеств:

>>> set([1, 2, 3]) - set([1, 2, 4])

set([3])

>>> s = set([1, 2, 3])

>>> s.difference(set([1, 2, 4]))

set([3])

 a -= b и a.difference_update(b) — удаляют элементы из множества a, кото-

рые существуют и во множестве a, и во множестве b:

>>> s = set([1, 2, 3])

>>> s.difference_update(set([1, 2, 4]))

>>> s

set([3])

>>> s -= set([3, 4, 5])

>>> s

set([])

 & и intersection() — пересечение множеств. Позволяет получить элементы,

которые существуют в обоих множествах:

>>> set([1, 2, 3]) & set([1, 2, 4])

set([1, 2])

>>> s = set([1, 2, 3])

>>> s.intersection(set([1, 2, 4]))

set([1, 2])

 a &= b и a.intersection_update(b) — во множестве a останутся элементы,

которые существуют и во множестве a, и во множестве b:

>>> s = set([1, 2, 3])

>>> s.intersection_update(set([1, 2, 4]))

Списки, кортежи и множества

141

>>> s

set([1, 2])

>>> s &= set([1, 6, 7])

>>> s

set([1])

 ^ и symmetric_difference() — возвращают все элементы обоих множеств, ис-

ключая одинаковые элементы:

>>> s = set([1, 2, 3])

>>> s ^ set([1, 2, 4]), s.symmetric_difference(set([1, 2, 4]))

(set([3, 4]), set([3, 4]))

>>> s ^ set([1, 2, 3]), s.symmetric_difference(set([1, 2, 3]))

(set([]), set([]))

>>> s ^ set([4, 5, 6]), s.symmetric_difference(set([4, 5, 6]))

(set([1, 2, 3, 4, 5, 6]), set([1, 2, 3, 4, 5, 6]))

 a ^= b и a.symmetric_difference_update(b) — во множестве a будут все эле-

менты обоих множеств, исключая одинаковые элементы:

>>> s = set([1, 2, 3])

>>> s.symmetric_difference_update(set([1, 2, 4]))

>>> s

set([3, 4])

>>> s ^= set([3, 5, 6])

>>> s

set([4, 5, 6])

Операторы сравнения множеств:

 in — проверка наличия элемента во множестве:

>>> s = set([1, 2, 3, 4, 5])

>>> 1 in s, 12 in s, 12 not in s

(True, False, True)

 == — проверка на равенство:

>>> set([1, 2, 3]) == set([1, 2, 3])

True

>>> set([1, 2, 3]) == set([3, 2, 1])

True

>>> set([1, 2, 3]) == set([1, 2, 3, 4])

False

 a <= b и a.issubset(b) — проверяют, входят ли все элементы множества a во

множество b:

>>> s = set([1, 2, 3])

>>> s <= set([1, 2]), s <= set([1, 2, 3, 4])

(False, True)

>>> s.issubset(set([1, 2])), s.issubset(set([1, 2, 3, 4]))

(False, True)

Глава 8

142

 a < b — проверяет, входят ли все элементы множества a во множество b. При-

чем множество a не должно быть равно множеству b:

>>> s = set([1, 2, 3])

>>> s < set([1, 2, 3]), s < set([1, 2, 3, 4])

(False, True)

 a >= b и a.issuperset(b) — проверяют, входят ли все элементы множества b

во множество a:

>>> s = set([1, 2, 3])

>>> s >= set([1, 2]), s >= set([1, 2, 3, 4])

(True, False)

>>> s.issuperset(set([1, 2])), s.issuperset(set([1, 2, 3, 4]))

(True, False)

 a > b — проверяет, входят ли все элементы множества b во множество a. При-

чем множество a не должно быть равно множеству b:

>>> s = set([1, 2, 3])

>>> s > set([1, 2]), s > set([1, 2, 3])

(True, False)

Для работы с множествами предназначены следующие методы:

 copy() — создает копию множества. Обратите внимание на то, что оператор =

присваивает лишь ссылку на тот же объект, а не копирует его. Пример:

>>> s = set([1, 2, 3])

>>> c = s; s is c # С помощью = копию создать нельзя!

True

>>> c = s.copy() # Создаем копию объекта

>>> c

set([1, 2, 3])

>>> s is c # Теперь это разные объекты

False

 add(<Элемент>) — добавляет <Элемент> во множество:

>>> s = set([1, 2, 3])

>>> s.add(4); s

set([1, 2, 3, 4])

 remove(<Элемент>) — удаляет <Элемент> из множества. Если элемент не най-

ден, то возбуждается исключение KeyError:

>>> s = set([1, 2, 3])

>>> s.remove(3); s # Элемент существует

set([1, 2])

>>> s.remove(5) # Элемент НЕ существует

Traceback (most recent call last):

 File "<pyshell#78>", line 1, in <module>

 s.remove(5) # Элемент НЕ существует

KeyError: 5

Списки, кортежи и множества

143

 discard(<Элемент>) — удаляет <Элемент> из множества, если он присутствует:

>>> s = set([1, 2, 3])

>>> s.discard(3); s # Элемент существует

set([1, 2])

>>> s.discard(5); s # Элемент НЕ существует

set([1, 2])

 pop() — удаляет произвольный элемент из множества и возвращает его. Если

элементов нет, то возбуждается исключение KeyError:

>>> s = set([1, 2])

>>> s.pop(), s

(1, set([2]))

>>> s.pop(), s

(2, set([]))

>>> s.pop() # Если нет элементов, то будет ошибка

Traceback (most recent call last):

 File "<pyshell#89>", line 1, in <module>

 s.pop() # Если нет элементов, то будет ошибка

KeyError: 'pop from an empty set'

 clear() — удаляет все элементы из множества:

>>> s = set([1, 2, 3])

>>> s.clear(); s

set([])

В языке Python существует еще один тип множеств — frozenset. В отличие от

типа set, множество типа frozenset нельзя изменить. Объявить множество можно

с помощью функции frozenset():

>>> f = frozenset()

>>> f

frozenset([])

Функция frozenset() позволяет также преобразовать элементы последователь-

ности во множество:

>>> frozenset("string") # Преобразуем строку

frozenset(['g', 'i', 'n', 's', 'r', 't'])

>>> frozenset([1, 2, 3, 4, 4]) # Преобразуем список

frozenset([1, 2, 3, 4])

>>> frozenset((1, 2, 3, 4, 4)) # Преобразуем кортеж

frozenset([1, 2, 3, 4])

Множества frozenset поддерживают операторы, которые не изменяют само

множество, а также следующие методы: copy(), difference(), intersection(),

issubset(), issuperset(), symmetric_difference() и union().

ГЛАВА 9

Словари

Словари — это наборы объектов, доступ к которым осуществляется не по ин-

дексу, а по ключу. В качестве ключа можно указать неизменяемый объект, напри-

мер число, строку или кортеж. Элементы словаря могут содержать объекты произ-

вольного типа данных и иметь неограниченную степень вложенности. Следует

также заметить, что элементы в словарях располагаются в произвольном порядке.

Чтобы получить элемент, необходимо указать ключ, который использовался при

сохранении значения.

Словари относятся к отображениям, а не к последовательностям. По этой при-

чине функции, предназначенные для работы с последовательностями, а также опе-

рации извлечения среза, конкатенации, повторения и др. к словарям не применимы.

Также как и списки, словари относятся к изменяемым типам данных. Иными сло-

вами, мы можем не только получить значение по ключу, но и изменить его.

9.1. Создание словаря

Создать словарь можно следующими способами:

 с помощью функции dict(). Форматы функции:

dict(<Ключ1>=<Значение1>[, ..., <КлючN>=<ЗначениеN>])

dict(<Словарь>)

dict(<Список кортежей с двумя элементами (Ключ, Значение)>)

dict(<Список списков с двумя элементами [Ключ, Значение]>)

Если параметры не указаны, то создается пустой словарь. Примеры:

>>> d = dict(); d # Создаем пустой словарь

{}

>>> d = dict(a=1, b=2); d

{'a': 1, 'b': 2}

>>> d = dict({"a": 1, "b": 2}); d # Словарь

{'a': 1, 'b': 2}

Словари

145

>>> d = dict([("a", 1), ("b", 2)]); d # Список кортежей

{'a': 1, 'b': 2}

>>> d = dict([["a", 1], ["b", 2]]); d # Список списков

{'a': 1, 'b': 2}

Объединить два списка в список кортежей позволяет функция zip():

>>> k = ["a", "b"] # Список с ключами

>>> v = [1, 2] # Список со значениями

>>> zip(k, v) # Создание списка кортежей

[('a', 1), ('b', 2)]

>>> d = dict(zip(k, v)); d # Создание словаря

{'a': 1, 'b': 2}

 указав все элементы словаря внутри фигурных скобок. Это наиболее часто ис-

пользуемый способ создания словаря. Между ключом и значением указывается

двоеточие, а пары "ключ/значение" перечисляются через запятую. Пример:
>>> d = {}; d # Создание пустого словаря

{}

>>> d = { "a": 1, "b": 2 }; d

{'a': 1, 'b': 2}

 заполнив словарь поэлементно. В этом случае ключ указывается внутри квад-

ратных скобок:
>>> d = {} # Создаем пустой словарь

>>> d["a"] = 1 # Добавляем элемент1 (ключ "a")

>>> d["b"] = 2 # Добавляем элемент2 (ключ "b")

>>> d

{'a': 1, 'b': 2}

 с помощью метода dict.fromkeys(<Последовательность>[, <Значение>]).

Метод создает новый словарь, ключами которого будут элементы последова-

тельности. Если второй параметр не указан, то значением элементов словаря

будет значение None. Пример:
>>> d = dict.fromkeys(["a", "b", "c"])

>>> d

{'a': None, 'c': None, 'b': None}

>>> d = dict.fromkeys(["a", "b", "c"], 0) # Указан список

>>> d

{'a': 0, 'c': 0, 'b': 0}

>>> d = dict.fromkeys(("a", "b", "c"), 0) # Указан кортеж

>>> d

{'a': 0, 'c': 0, 'b': 0}

При создании словаря в переменной сохраняется ссылка на объект, а не сам

объект. Это обязательно следует учитывать при групповом присваивании. Группо-

вое присваивание можно использовать для чисел и строк, но для списков и слова-

рей этого делать нельзя. Рассмотрим пример:
>>> d1 = d2 = { "a": 1, "b": 2 } # Якобы создали два объекта

>>> d2["b"] = 10

Глава 9

146

>>> d1, d2 # Изменилось значение в двух переменных !!!

({'a': 1, 'b': 10}, {'a': 1, 'b': 10})

Как видно из примера, изменение значения в переменной d2 привело также к

изменению значения в переменной d1. Таким образом, обе переменные ссылаются

на один и тот же объект, а не на два разных объекта. Чтобы получить два объекта,

необходимо производить раздельное присваивание:

>>> d1, d2 = { "a": 1, "b": 2 }, { "a": 1, "b": 2 }

>>> d2["b"] = 10

>>> d1, d2

({'a': 1, 'b': 2}, {'a': 1, 'b': 10})

Создать поверхностную копию словаря позволяет функция dict() (лис-

тинг 9.1).

Листинг 9.1. Создание поверхностной копии словаря с помощью функции dict()

>>> d1 = { "a": 1, "b": 2 } # Создаем словарь

>>> d2 = dict(d1) # Создаем поверхностную копию

>>> d1 is d2 # Оператор показывает, что это разные объекты

False

>>> d2["b"] = 10

>>> d1, d2 # Изменилось только значение в переменной d2

({'a': 1, 'b': 2}, {'a': 1, 'b': 10})

Кроме того, для создания поверхностной копии можно воспользоваться мето-

дом copy() (листинг 9.2).

Листинг 9.2. Создание поверхностной копии словаря с помощью метода copy()

>>> d1 = { "a": 1, "b": 2 } # Создаем словарь

>>> d2 = d1.copy() # Создаем поверхностную копию

>>> d1 is d2 # Оператор показывает, что это разные объекты

False

>>> d2["b"] = 10

>>> d1, d2 # Изменилось только значение в переменной d2

({'a': 1, 'b': 2}, {'a': 1, 'b': 10})

Чтобы создать полную копию словаря, следует воспользоваться функцией

deepcopy() из модуля copy (листинг 9.3).

Листинг 9.3. Создание полной копии словаря

>>> d1 = { "a": 1, "b": [20, 30, 40] }

>>> d2 = dict(d1) # Создаем поверхностную копию

>>> d2["b"][0] = "test"

>>> d1, d2 # Изменились значения в двух переменных!!!

Словари

147

({'a': 1, 'b': ['test', 30, 40]}, {'a': 1, 'b': ['test', 30, 40]})

>>> import copy

>>> d3 = copy.deepcopy(d1) # Создаем полную копию

>>> d3["b"][1] = 800

>>> d1, d3 # Изменилось значение только в переменной d3

({'a': 1, 'b': ['test', 30, 40]}, {'a': 1, 'b': ['test', 800, 40]})

9.2. Операции над словарями

Обращение к элементам словаря осуществляется с помощью квадратных ско-

бок, в которых указывается ключ. В качестве ключа можно указать неизменяемый

объект, например, число, строку или кортеж. Выведем все элементы словаря:

>>> d = { 1: "int", "a": "str", (1, 2): "tuple" }

>>> d[1], d["a"], d[(1, 2)]

('int', 'str', 'tuple')

Если элемент, соответствующий указанному ключу, отсутствует в словаре, то

возбуждается исключение KeyError:

>>> d = { "a": 1, "b": 2 }

>>> d["c"] # Обращение к несуществующему элементу

Traceback (most recent call last):

 File "<pyshell#52>", line 1, in <module>

 d["c"] # Обращение к несуществующему элементу

KeyError: 'c'

Проверить существование ключа можно с помощью оператора in или метода

has_key(). Если ключ найден, то возвращается значение True, в противном слу-

чае — False. Пример:

>>> d = { "a": 1, "b": 2 }

>>> "a" in d, d.has_key("b") # Ключ существует

(True, True)

>>> "c" in d, d.has_key("c") # Ключ не существует

(False, False)

Метод get(<Ключ>[, <Значение по умолчанию>]) позволяет избежать вывода

сообщения об ошибке при отсутствии указанного ключа. Если ключ присутствует в

словаре, то метод возвращает значение, соответствующее этому ключу. Если ключ

отсутствует, то возвращается значение None или значение, указанное во втором па-

раметре. Пример:

>>> d = { "a": 1, "b": 2 }

>>> d.get("a"), d.get("c"), d.get("c", 800)

(1, None, 800)

Кроме того, можно воспользоваться методом setdefault(<Ключ>[, <Значение

по умолчанию>]). Если ключ присутствует в словаре, то метод возвращает значе-

ние, соответствующее этому ключу. Если ключ отсутствует, то вставляет новый

Глава 9

148

элемент со значением, указанным во втором параметре. Если второй параметр не

указан, значением нового элемента будет None. Пример:

>>> d = { "a": 1, "b": 2 }

>>> d.setdefault("a"), d.setdefault("c"), d.setdefault("d", 0)

(1, None, 0)

>>> d

{'a': 1, 'c': None, 'b': 2, 'd': 0}

Так как словари относятся к изменяемым типам данных, то мы можем изменить
элемент по ключу. Если элемент с указанным ключом отсутствует в словаре, то он
будет добавлен в словарь:
>>> d = { "a": 1, "b": 2 }

>>> d["a"] = 800 # Изменение элемента по ключу

>>> d["c"] = "string" # Будет добавлен новый элемент

>>> d

{'a': 800, 'c': 'string', 'b': 2}

Получить количество ключей в словаре позволяет функция len():
>>> d = { "a": 1, "b": 2 }

>>> len(d) # Получаем количество ключей в словаре

2

Удалить элемент из словаря можно с помощью оператора del:
>>> d = { "a": 1, "b": 2 }

>>> del d["b"]; d # Удаляем элемент с ключом "b" и выводим словарь

{'a': 1}

9.3. Перебор элементов словаря

Перебрать все элементы списка можно с помощью цикла for, хотя словари и не
являются последовательностями. В качестве примера выведем элементы словаря
двумя способами. Первый способ использует метод keys(), возвращающий список
всех ключей словаря. Второй способ доступен в последних версиях Python. В этом
случае мы просто указываем словарь в качестве параметра. На каждой итерации
цикла будет возвращаться ключ, с помощью которого внутри цикла можно полу-
чить значение, соответствующее этому ключу (листинг 9.4).

Листинг 9.4. Перебор элементов словаря

d = {"x": 1, "y": 2, "z": 3}

for key in d.keys(): # Использование метода keys()

 print "(%s => %s)" % (key, d[key]),

Выведет: (y => 2) (x => 1) (z => 3)

print # Вставляем символ перевода строки

for key in d: # Словари также поддерживают итерации

 print "(%s => %s)" % (key, d[key]),

Выведет: (y => 2) (x => 1) (z => 3)

Словари

149

Так как словари являются неупорядоченными структурами, элементы словаря вы-

водятся в произвольном порядке. Чтобы вывести элементы с сортировкой по ключам,

следует получить список ключей, а затем воспользоваться методом sort(). Пример:

d = {"x": 1, "y": 2, "z": 3}

k = d.keys() # Получаем список ключей

k.sort() # Сортируем список ключей

for key in k:

 print "(%s => %s)" % (key, d[key]),

Выведет: (x => 1) (y => 2) (z => 3)

Для сортировки ключей вместо метода sort() можно воспользоваться функци-

ей sorted(). Пример:

d = {"x": 1, "y": 2, "z": 3}

for key in sorted(d.keys()):

 print "(%s => %s)" % (key, d[key]),

Выведет: (x => 1) (y => 2) (z => 3)

9.4. Методы для работы со словарями

Для работы со словарями предназначены следующие методы:

 keys() и values() — позволяют получить список всех ключей и значений со-

ответственно:

>>> d = { "a": 1, "b": 2 }

>>> k = d.keys(); v = d.values()

>>> k, v

(['a', 'b'], [1, 2])

Можно также воспользоваться методами iterkeys() и itervalues(), которые

возвращают не список ключей и значений, а итератор. Пример:

>>> d = { "a": 1, "b": 2 }

>>> for i in d.iterkeys(): print i, # Ключи

a b

>>> for i in d.itervalues(): print i, # Значения

1 2

 items() — возвращает список кортежей. Каждый кортеж содержит ключ и

значение:

>>> d = { "a": 1, "b": 2 }

>>> d.items() # Получаем список кортежей

[('a', 1), ('b', 2)]

Можно также воспользоваться методом iteritems(), который возвращает ите-

ратор. Пример:

>>> d = { "a": 1, "b": 2 }

>>> for k, v in d.iteritems(): print "(%s => %s)" % (k, v),

(a => 1) (b => 2)

Глава 9

150

 has_key(<Ключ>) — проверяет существование указанного ключа в словаре. Ес-
ли ключ найден, то возвращается значение True, в противном случае — False.
Вместо метода has_key() можно воспользоваться оператором in. Пример:
>>> d = { "a": 1, "b": 2 }

>>> "a" in d, d.has_key("b") # Ключ существует

(True, True)

>>> "c" in d, d.has_key("c") # Ключ не существует

(False, False)

 get(<Ключ>[, <Значение по умолчанию>]) — если ключ присутствует в слова-
ре, то метод возвращает значение, соответствующее этому ключу. Если ключ
отсутствует, то возвращается значение None или значение, указанное во втором
параметре. Пример:
>>> d = { "a": 1, "b": 2 }

>>> d.get("a"), d.get("c"), d.get("c", 800)

(1, None, 800)

 setdefault(<Ключ>[, <Значение по умолчанию>]) — если ключ присутствует
в словаре, то метод возвращает значение, соответствующее этому ключу. Если
ключ отсутствует, то вставляет новый элемент со значением, указанным во вто-
ром параметре. Если второй параметр не указан, значением нового элемента
будет None. Пример:
>>> d = { "a": 1, "b": 2 }

>>> d.setdefault("a"),d.setdefault("c"),d.setdefault("d", 0)

(1, None, 0)

>>> d

{'a': 1, 'c': None, 'b': 2, 'd': 0}

 pop(<Ключ>[, <Значение по умолчанию>]) — удаляет элемент с указанным
ключом и возвращает его значение. Если ключ отсутствует, то возвращается
значение из второго параметра. Если ключ отсутствует и второй параметр не
указан, то возбуждается исключение KeyError. Пример:
>>> d = { "a": 1, "b": 2, "c": 3 }

>>> d.pop("a"), d.pop("n", 0)

(1, 0)

>>> d.pop("n") # Ключ отсутствует и нет второго параметра

Traceback (most recent call last):

 File "<pyshell#119>", line 1, in <module>

 d.pop("n") # Ключ отсутствует и нет второго параметра

KeyError: 'n'

>>> d

{'c': 3, 'b': 2}

 popitem() — удаляет произвольный элемент и возвращает кортеж из ключа и
значения. Если словарь пустой, возбуждается исключение KeyError. Пример:
>>> d = { "a": 1, "b": 2 }

>>> d.popitem() # Удаляем произвольный элемент

('a', 1)

>>> d.popitem() # Удаляем произвольный элемент

('b', 2)

Словари

151

>>> d.popitem() # Словарь пустой. Возбуждается исключение

Traceback (most recent call last):

 File "<pyshell#124>", line 1, in <module>

 d.popitem() # Словарь пустой. Возбуждается исключение

KeyError: 'popitem(): dictionary is empty'

 clear() — удаляет все элементы словаря. Метод ничего не возвращает в каче-
стве значения. Пример:
>>> d = { "a": 1, "b": 2 }

>>> d.clear() # Удаляем все элементы

>>> d # Словарь теперь пустой

{}

 update() — добавляет элементы в словарь. Метод изменяет текущий словарь и
ничего не возвращает. Форматы метода:
update(<Ключ1>=<Значение1>[, ..., <КлючN>=<ЗначениеN>])

update(<Словарь>)

update(<Список кортежей с двумя элементами>)

update(<Список списков с двумя элементами>)

Если элемент с указанным ключом уже присутствует в словаре, то его значение
будет перезаписано. Примеры:

>>> d = { "a": 1, "b": 2 }

>>> d.update(c=3, d=4)

>>> d

{'a': 1, 'c': 3, 'b': 2, 'd': 4}

>>> d.update({"c": 10, "d": 20}) # Словарь

>>> d # Значения элементов перезаписаны

{'a': 1, 'c': 10, 'b': 2, 'd': 20}

>>> d.update([("d", 80), ("e", 6)]) # Список кортежей

>>> d

{'a': 1, 'c': 10, 'b': 2, 'e': 6, 'd': 80}

>>> d.update([["a", "str"], ["i", "t"]]) # Список списков

>>> d

{'a': 'str', 'c': 10, 'b': 2, 'e': 6, 'd': 80, 'i': 't'}

 copy() — создает поверхностную копию словаря:
>>> d1 = { "a": 1, "b": [10, 20] }

>>> d2 = d1.copy() # Создаем поверхностную копию

>>> d1 is d2 # Это разные объекты

False

>>> d2["a"] = 800 # Изменяем значение

>>> d1, d2 # Изменилось значение только в d2

({'a': 1, 'b': [10, 20]}, {'a': 800, 'b': [10, 20]})

>>> d2["b"][0] = "new" # Изменяем значение вложенного списка

>>> d1, d2 # Изменились значения и в d1, и в d2!!!

({'a': 1, 'b': ['new', 20]}, {'a': 800, 'b': ['new', 20]})

Чтобы создать полную копию словаря, следует воспользоваться функцией
deepcopy() из модуля copy.

ГЛАВА 10

Работа с датой и временем

Для работы с датой и временем в языке Python предназначены следующие мо-

дули:

 time — позволяет получить текущую дату и время, а также произвести форма-

тированный вывод;

 datetime — позволяет производить манипуляции датой и временем. Например,

производить арифметические операции, сравнивать даты, выводить дату и вре-

мя в различных форматах и др.;

 calendar — позволяет вывести календарь в виде простого текста или в HTML-

формате;

 timeit — позволяет измерить время выполнения небольших фрагментов кода с

целью оптимизации программы.

10.1. Получение текущей даты и времени

Получить текущую дату и время позволяют следующие функции из модуля

time:

 time() — возвращает вещественное число, представляющее количество се-

кунд, прошедшее с начала эпохи (обычно с 1 января 1970 г.):

>>> import time # Подключаем модуль time

>>> time.time() # Получаем количество секунд

1275762391.3429999

 gmtime([<Количество секунд>]) — возвращает объект struct_time, представ-

ляющий универсальное время (UTC). Если параметр не указан, то возвращается

текущее время. Если параметр указан, то время будет не текущим, а соответст-

вующим количеству секунд, прошедших с начала эпохи. Пример:

>>> time.gmtime(0) # Начало эпохи

time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=0,

tm_min=0, tm_sec=0, tm_wday=3, tm_yday=1, tm_isdst=0)

Работа с датой и временем

153

>>> time.gmtime() # Текущая дата и время

time.struct_time(tm_year=2010, tm_mon=6, tm_mday=5, tm_hour=18,

tm_min=39, tm_sec=48, tm_wday=5, tm_yday=156, tm_isdst=0)

>>> time.gmtime(1283307823.0) # Дата 01-09-2010

time.struct_time(tm_year=2010, tm_mon=9, tm_mday=1, tm_hour=2,

tm_min=23, tm_sec=43, tm_wday=2, tm_yday=244, tm_isdst=0)

Получить значение конкретного атрибута можно, указав его название или ин-

декс внутри объекта:

>>> d = time.gmtime()

>>> d.tm_year, d[0]

(2010, 2010)

>>> tuple(d) # Преобразование в кортеж

(2010, 6, 5, 18, 43, 42, 5, 156, 0)

 localtime([<Количество секунд>]) — возвращает объект struct_time, пред-

ставляющий локальное время. Если параметр не указан, то возвращается теку-

щее время. Если параметр указан, то время будет не текущим, а соответствую-

щим количеству секунд, прошедших с начала эпохи. Пример:

>>> time.localtime() # Текущая дата и время

time.struct_time(tm_year=2010, tm_mon=6, tm_mday=5, tm_hour=22,

tm_min=46, tm_sec=31, tm_wday=5, tm_yday=156, tm_isdst=1)

>>> time.localtime(1233368623.0) # Дата 31-01-2009

time.struct_time(tm_year=2009, tm_mon=1, tm_mday=31, tm_hour=5,

tm_min=23, tm_sec=43, tm_wday=5, tm_yday=31, tm_isdst=0)

 mktime(<Объект struct_time>) — возвращает вещественное число, представ-

ляющее количество секунд, прошедших с начала эпохи. В качестве параметра

указывается объект struct_time или кортеж из девяти элементов. Если указан-

ная дата некорректна, возбуждается исключение OverflowError. Пример:

>>> tuple(time.localtime(1233368623.0))

(2009, 1, 31, 5, 23, 43, 5, 31, 0)

>>> time.mktime((2009, 1, 31, 5, 23, 43, 5, 31, 0))

1233368623.0

>>> time.mktime((1940, 0, 31, 5, 23, 43, 5, 31, 0))

... Фрагмент опущен ...

OverflowError: mktime argument out of range

Объект struct_time, возвращаемый функциями gmtime() и localtime(), со-

держит следующие атрибуты:

 tm_year — 0 — год;

 tm_mon — 1 — месяц (число от 1 до 12);

 tm_mday — 2 — день месяца (число от 1 до 31);

 tm_hour — 3 — час (число от 0 до 23);

 tm_min — 4 — минуты (число от 0 до 59);

 tm_sec — 5 — секунды (число от 0 до 59, изредка до 61);

Глава 10

154

 tm_wday — 6 — день недели (число от 0 (для понедельника) до 6 (для воскресе-

нья));

 tm_yday — 7 — количество дней, прошедшее с начала года (число от 1 до 366);

 tm_isdst — 8 — флаг коррекции летнего времени (значения 0, 1 или –1).

Выведем текущую дату и время таким образом, чтобы день недели и месяц бы-

ли написаны по-русски (листинг 10.1).

Листинг 10.1. Вывод текущей даты и времени

#-*- coding: cp1251 -*-

import time # Подключаем модуль time

d = ["понедельник", "вторник", "среда", "четверг",

 "пятница", "суббота", "воскресенье"]

m = ["", "января", "февраля", "марта", "апреля", "мая",

 "июня", "июля", "августа", "сентября", "октября",

 "ноября", "декабря"]

t = time.localtime() # Получаем текущее время

print ("Сегодня:\n%s %s %s %s %02d:%02d:%02d\n%02d.%02d.%02d" %

 (d[t[6]], t[2], m[t[1]], t[0], t[3], t[4], t[5],

 t[2], t[1], t[0]))

Результат выполнения:

Сегодня:

суббота 5 июня 2010 22:56:20

05.06.2010

10.2. Форматирование даты и времени

Получить форматированный вывод даты и времени позволяют следующие

функции из модуля time:

 strftime(<Строка формата>[, <Объект struct_time>]) — возвращает стро-

ковое представление даты в соответствии со строкой формата. Если второй па-

раметр не указан, будет использоваться текущая дата и время. Если во втором

параметре указан объект struct_time или кортеж из девяти элементов, то дата

будет соответствовать указанному значению. Функция зависит от настройки

локали. Пример:

>>> import time

>>> time.strftime("%d.%m.%Y") # Форматирование даты

'05.06.2010'

>>> time.strftime("%H:%M:%S") # Форматирование времени

'23:04:34'

>>> time.strftime("%d.%m.%Y", time.localtime(1233368623.0))

'31.01.2009'

Работа с датой и временем

155

 strptime(<Строка с датой>, <Строка формата>) — разбирает строку, указан-

ную в первом параметре, в соответствии со строкой формата. Возвращает объ-

ект struct_time. Если строка не соответствует формату, возбуждается исклю-

чение ValueError. Пример:

>>> time.strptime("05.06.2010", "%d.%m.%Y")

time.struct_time(tm_year=2010, tm_mon=6, tm_mday=5, tm_hour=0,

tm_min=0, tm_sec=0, tm_wday=5, tm_yday=156, tm_isdst=-1)

>>> time.strptime("05-06-2010", "%d.%m.%Y")

... Фрагмент опущен ...

ValueError: time data '05-06-2010'

does not match format '%d.%m.%Y'

 asctime([<Объект struct_time>]) — возвращает строку специального форма-

та. Если параметр не указан, будет использоваться текущая дата и время. Если

в параметре указан объект struct_time или кортеж из девяти элементов, то да-

та будет соответствовать указанному значению. Пример:

>>> time.asctime() # Текущая дата

'Sat Jun 05 23:08:06 2010'

>>> time.asctime(time.localtime(1233368623.0))

'Sat Jan 31 05:23:43 2009'

 ctime([<Количество секунд>]) — функция аналогична asctime(), но в каче-

стве параметра принимает не объект struct_time, а количество секунд, про-

шедших с начала эпохи. Пример:

>>> time.ctime() # Текущая дата

'Sat Jun 05 23:09:10 2010'

>>> time.ctime(1233368623.0) # Дата в прошлом

'Sat Jan 31 05:23:43 2009'

В параметре <Строка формата> в функциях strftime() и strptime() могут

быть использованы следующие комбинации специальных символов:

 %y — год из двух цифр (от "00" до "99");

 %Y — год из четырех цифр (например, "2010");

 %m — номер месяца с предваряющим нулем (от "01" до "12");

 %b — аббревиатура месяца в зависимости от настроек локали (например, "янв"

для января);

 %B — название месяца в зависимости от настроек локали (например, "Январь");

 %d — номер дня в месяце с предваряющим нулем (от "01" до "31");

 %j — день с начала года (от "001" до "366");

 %U — номер недели в году (от "00" до "53"). Неделя начинается с воскресенья.

Все дни с начала года до первого воскресенья относятся к неделе с номером 0;

 %W — номер недели в году (от "00" до "53"). Неделя начинается с понедельника.

Все дни с начала года до первого понедельника относятся к неделе с номером 0;

 %w — номер дня недели ("0" — для воскресенья, "6" — для субботы);

 %a — аббревиатура дня недели в зависимости от настроек локали (например,

"Пн" для понедельника);

Глава 10

156

 %A — название дня недели в зависимости от настроек локали (например, "поне-

дельник");

 %H — часы в 24-часовом формате (от "00" до "23");

 %I — часы в 12-часовом формате (от "01" до "12");

 %M — минуты (от "00" до "59");

 %S — секунды (от "00" до "59", изредка до "61");

 %p — эквивалент значениям AM и PM в текущей локали;

 %c — представление даты и времени в текущей локали;

 %x — представление даты в текущей локали;

 %X — представление времени в текущей локали. Пример:

>>> import locale

>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> print time.strftime("%x") # Представление даты

05.06.2010

>>> print time.strftime("%X") # Представление времени

23:10:57

>>> print time.strftime("%c") # Дата и время

05.06.2010 23:11:15

 %Z — название часового пояса или пустая строка (например, "Московское вре-

мя (зима)");

 %% — символ "%".

В качестве примера выведем текущую дату и время с помощью функции

strftime() (листинг 10.2).

Листинг 10.2. Форматирование даты и времени

#-*- coding: cp1251 -*-

import time

import locale

locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

s = "Сегодня:\n%A %d %b %Y %H:%M:%S\n%d.%m.%Y"

print time.strftime(s)

Результат выполнения:

Сегодня:

суббота 05 июн 2010 23:12:15

05.06.2010

10.3. "Засыпание" скрипта

Функция sleep() из модуля time прерывает выполнение скрипта на указанное

время. По истечении срока скрипт продолжит работу. Формат функции:

sleep(<Время в секундах>)

Работа с датой и временем

157

В качестве параметра можно указать целое или вещественное число. Прежде

чем использовать функцию, необходимо подключить модуль time с помощью ин-

струкции import time:

>>> import time # Подключаем модуль time

>>> time.sleep(5) # "Засыпаем" на 5 секунд

или инструкции from time import sleep:

>>> from time import sleep # Подключаем модуль time

>>> sleep(2.5) # "Засыпаем" на 2 с половиной секунды

10.4. Модуль datetime.

Манипуляции датой и временем

Модуль datetime позволяет производить манипуляции с датой и временем. На-

пример, производить арифметические операции, сравнивать даты, выводить дату и

время в различных форматах и др. Прежде чем использовать классы из этого моду-

ля, необходимо подключить модуль с помощью выражения:

import datetime

Модуль содержит пять классов:

 timedelta — дата в виде количества дней, секунд и микросекунд. Экземпляр

этого класса можно складывать с экземплярами классов date и datetime. Кро-

ме того, результат вычитания двух дат будет экземпляром класса timedelta;

 date — представление даты в виде объекта;

 time — представление времени в виде объекта;

 datetime — представление комбинации даты и времени в виде объекта;

 tzinfo — абстрактный класс, отвечающий за зону времени. За подробной ин-

формацией по этому классу обращайтесь к документации по модулю datetime.

10.4.1. Класс timedelta

Класс timedelta из модуля datetime позволяет производить операции над да-

тами, например, складывать, вычитать, сравнивать и др. Конструктор класса имеет

следующий формат:

timedelta([days[, seconds[, microseconds[, milliseconds[, minutes

 [, hours[, weeks]]]]]]])

Все параметры являются необязательными и по умолчанию имеют значение 0.

Первые три параметра являются основными:

 days — дни (диапазон -999999999 <= days <= 999999999);

 seconds — секунды (диапазон 0 <= seconds < 3600*24);

 microseconds — микросекунды (диапазон 0 <= microseconds < 1000000);

Глава 10

158

Все остальные параметры автоматически преобразуются в следующие зна-

чения:

 milliseconds — миллисекунды (одна миллисекунда преобразуется в 1000 микро-

секунд):

>>> import datetime

>>> datetime.timedelta(milliseconds=1)

datetime.timedelta(0, 0, 1000)

 minutes — минуты (одна минута преобразуется в 60 секунд):

>>> datetime.timedelta(minutes=1)

datetime.timedelta(0, 60)

 hours — часы (один час преобразуется в 3600 секунд):

>>> datetime.timedelta(hours=1)

datetime.timedelta(0, 3600)

 weeks — недели (одна неделя преобразуется в 7 дней):

>>> datetime.timedelta(weeks=1)

datetime.timedelta(7)

Значения можно указывать через запятую в порядке следования параметров

или присвоить значение названию параметра. В качестве примера укажем один час:

>>> datetime.timedelta(0, 0, 0, 0, 0, 1)

datetime.timedelta(0, 3600)

>>> datetime.timedelta(hours=1)

datetime.timedelta(0, 3600)

Получить результат можно с помощью следующих свойств:

 days — дни;

 seconds — секунды;

 microseconds — микросекунды.

Пример:

>>> d = datetime.timedelta(hours=1, days=2, milliseconds=1)

>>> d

datetime.timedelta(2, 3600, 1000)

>>> d.days, d.seconds, d.microseconds

(2, 3600, 1000)

>>> repr(d), str(d)

('datetime.timedelta(2, 3600, 1000)', '2 days, 1:00:00.001000')

Над экземплярами класса timedelta можно производить арифметические опе-

рации +, -, // и *, использовать унарные операторы + и -, а также получать абсо-

лютное значение с помощью функции abs(). Примеры:

>>> d1 = datetime.timedelta(days=2)

>>> d2 = datetime.timedelta(days=7)

>>> d1 + d2, d2 - d1 # Сложение и вычитание

(datetime.timedelta(9), datetime.timedelta(5))

>>> d1 // 2, d2 // 2 # Деление

Работа с датой и временем

159

(datetime.timedelta(1), datetime.timedelta(3, 43200))

>>> d1 * 2, d2 * 2 # Умножение

(datetime.timedelta(4), datetime.timedelta(14))

>>> 2 * d1, 2 * d2 # Умножение

(datetime.timedelta(4), datetime.timedelta(14))

>>> d3 = -d1

>>> d3, abs(d3)

(datetime.timedelta(-2), datetime.timedelta(2))

Кроме того, можно использовать операторы сравнения ==, !=, <, <=, > и >=.

Пример:

>>> d1 = datetime.timedelta(days=2)

>>> d2 = datetime.timedelta(days=7)

>>> d3 = datetime.timedelta(weeks=1)

>>> d1 == d2, d2 == d3 # Проверка на равенство

(False, True)

>>> d1 != d2, d2 != d3 # Проверка на неравенство

(True, False)

>>> d1 < d2, d2 <= d3 # Меньше, меньше или равно

(True, True)

>>> d1 > d2, d2 >= d3 # Больше, больше или равно

(False, True)

10.4.2. Класс date

Класс date из модуля datetime позволяет производить операции над датами.

Конструктор класса имеет следующий формат:

date(<Год>, <Месяц>, <День>)

Все параметры являются обязательными. В параметрах можно указать сле-

дующий диапазон значений:

 <Год> — от MINYEAR до MAXYEAR. Выведем значения этих констант:

>>> import datetime

>>> datetime.MINYEAR, datetime.MAXYEAR

(1, 9999)

 <Месяц> — от 1 до 12 включительно;

 <День> — от 1 до количества дней в месяце.

Если значения выходят за диапазон, возбуждается исключение ValueError.

Пример:

>>> datetime.date(2010, 1, 19)

datetime.date(2010, 1, 19)

>>> datetime.date(2010, 13, 19) # Неправильное значение для месяца

... Фрагмент опущен ...

ValueError: month must be in 1..12

>>> d = datetime.date(2010, 6, 5)

>>> repr(d), str(d)

Глава 10

160

('datetime.date(2010, 6, 5)', '2010-06-05')

Для создания экземпляра класса можно также воспользоваться следующими

методами:

 today() — возвращает текущую дату:

>>> datetime.date.today() # Получаем текущую дату

datetime.date(2010, 6, 5)

 fromtimestamp(<Количество секунд>) — возвращает дату, соответствующую

количеству секунд, прошедших с начала эпохи:

>>> import datetime, time

>>> datetime.date.fromtimestamp(time.time()) # Текущая дата

datetime.date(2010, 6, 5)

>>> datetime.date.fromtimestamp(1233368623.0) # Дата 31-01-2009

datetime.date(2009, 1, 31)

 fromordinal(<Количество дней с 1 года>) — возвращает дату, соответст-

вующую количеству дней, прошедших с 1 года. В качестве параметра указыва-

ется число от 1 до datetime.date.max.toordinal(). Пример:

>>> datetime.date.max.toordinal()

3652059

>>> datetime.date.fromordinal(3652059)

datetime.date(9999, 12, 31)

>>> datetime.date.fromordinal(1)

datetime.date(1, 1, 1)

Получить результат можно с помощью следующих свойств:

 year — год (число в диапазоне от MINYEAR до MAXYEAR);

 month — месяц (число от 1 до 12);

 day — день (число от 1 до количества дней в месяце).

Пример:

>>> d = datetime.date.today() # Текущая дата (05-06-2010)

>>> d.year, d.month, d.day

(2010, 6, 5)

Над экземплярами класса date можно производить следующие операции:

 date2 = date1 + timedelta — прибавляет к дате указанный период в днях.

Значения свойств timedelta.seconds и timedelta.microseconds игнорируются;

 date2 = date1 - timedelta — вычитает из даты указанный период в днях.

Значения свойств timedelta.seconds и timedelta.microseconds игнорируются;

 timedelta = date1 - date2 — возвращает разницу между датами (период в

днях). Свойства timedelta.seconds и timedelta.microseconds будут иметь

значение 0;

 можно также сравнивать две даты с помощью операторов сравнения.

Примеры:

>>> d1 = datetime.date(2010, 1, 19)

>>> d2 = datetime.date(2010, 1, 1)

>>> t = datetime.timedelta(days=10)

Работа с датой и временем

161

>>> d1 + t, d1 - t # Прибавляем и вычитаем 10 дней

(datetime.date(2010, 1, 29), datetime.date(2010, 1, 9))

>>> d1 - d2 # Разница между датами

datetime.timedelta(18)

>>> d1 < d2, d1 > d2, d1 <= d2, d1 >= d2

(False, True, False, True)

>>> d1 == d2, d1 != d2

(False, True)

Экземпляры класса date поддерживают следующие методы:

 replace([year[, month[, day]]]) — возвращает дату с обновленными значе-

ниями. Значения можно указывать через запятую в порядке следования пара-

метров или присвоить значение названию параметра. Примеры:

>>> d = datetime.date(2010, 6, 5)

>>> d.replace(2012, 3) # Заменяем год и месяц

datetime.date(2012, 3, 5)

>>> d.replace(year=2009, month=3, day=1)

datetime.date(2009, 3, 1)

>>> d.replace(day=7) # Заменяем только день

datetime.date(2010, 6, 7)

 strftime(<Строка формата>) — возвращает отформатированную строку. В строке

формата можно задавать комбинации специальных символов, которые исполь-

зуются в функции strftime() из модуля time. Пример:

>>> d = datetime.date(2010, 6, 5)

>>> d.strftime("%d.%m.%Y")

'05.06.2010'

 isoformat() — возвращает дату в формате ГГГГ-ММ-ДД:

>>> d = datetime.date(2010, 6, 5)

>>> d.isoformat()

'2010-06-05'

 ctime() — возвращает строку специального формата:

>>> d = datetime.date(2010, 6, 5)

>>> d.ctime()

'Sat Jun 5 00:00:00 2010'

 timetuple() — возвращает объект struct_time с датой и временем:

>>> d = datetime.date(2010, 6, 5)

>>> d.timetuple()

time.struct_time(tm_year=2010, tm_mon=6, tm_mday=5, tm_hour=0,

tm_min=0, tm_sec=0, tm_wday=5, tm_yday=156, tm_isdst=-1)

 toordinal() — возвращает количество дней, прошедших с 1 года:

>>> d = datetime.date(2010, 6, 5)

>>> d.toordinal()

733928

>>> datetime.date.fromordinal(733928)

Глава 10

162

datetime.date(2010, 6, 5)

 weekday() — возвращает порядковый номер дня в неделе (0 — для понедель-
ника, 6 — для воскресенья):
>>> d = datetime.date(2010, 6, 5)

>>> d.weekday() # 5 - это суббота

5

 isoweekday() — возвращает порядковый номер дня в неделе (1 — для поне-
дельника, 7 — для воскресенья):
>>> d = datetime.date(2010, 6, 5)

>>> d.isoweekday() # 6 - это суббота

6

 isocalendar() — возвращает кортеж из трех элементов (год, номер недели в
году и порядковый номер дня в неделе):
>>> d = datetime.date(2010, 6, 5)

>>> d.isocalendar()

(2010, 22, 6)

10.4.3. Класс time

Класс time из модуля datetime позволяет производить операции над временем.

Конструктор класса имеет следующий формат:

time([hour[, minute[, second[, microsecond[, tzinfo]]]]])

Все параметры являются необязательными. Значения можно указывать через

запятую в порядке следования параметров или присвоить значение названию пара-

метра. В параметрах можно указать следующий диапазон значений:

 hour — часы (число от 0 до 23);

 minute — минуты (число от 0 до 59);

 second — секунды (число от 0 до 59);

 microsecond — микросекунды (число от 0 до 999999);

 tzinfo — зона (экземпляр класса tzinfo или значение None).

Если значения выходят за диапазон, возбуждается исключение ValueError.

Пример:

>>> import datetime

>>> datetime.time(23, 12, 38, 375000)

datetime.time(23, 12, 38, 375000)

>>> t = datetime.time(hour=23, second=38, minute=12)

>>> repr(t), str(t)

('datetime.time(23, 12, 38)', '23:12:38')

>>> datetime.time(25, 12, 38, 375000)

... Фрагмент опущен ...

ValueError: hour must be in 0..23

Получить результат можно с помощью следующих свойств:

 hour — часы (число от 0 до 23);

Работа с датой и временем

163

 minute — минуты (число от 0 до 59);

 second — секунды (число от 0 до 59);

 microsecond — микросекунды (число от 0 до 999999);

 tzinfo — зона (экземпляр класса tzinfo или значение None).

Пример:

>>> t = datetime.time(23, 12, 38, 375000)

>>> t.hour, t.minute, t.second, t.microsecond

(23, 12, 38, 375000)

Над экземплярами класса time нельзя производить арифметические операции.

Можно только производить сравнения. Пример:

>>> t1 = datetime.time(23, 12, 38, 375000)

>>> t2 = datetime.time(12, 28, 17)

>>> t1 < t2, t1 > t2, t1 <= t2, t1 >= t2

(False, True, False, True)

>>> t1 == t2, t1 != t2

(False, True)

Экземпляры класса time поддерживают следующие методы:

 replace([hour[, minute[, second[, microsecond[, tzinfo]]]]]) — воз-

вращает время с обновленными значениями. Значения можно указывать через

запятую в порядке следования параметров или присвоить значение названию

параметра. Пример:

>>> t = datetime.time(23, 12, 38, 375000)

>>> t.replace(10, 52) # Заменяем часы и минуты

datetime.time(10, 52, 38, 375000)

>>> t.replace(second=21) # Заменяем только секунды

datetime.time(23, 12, 21, 375000)

 isoformat() — возвращает время в формате ISO 8601:

>>> t = datetime.time(23, 12, 38, 375000)

>>> t.isoformat()

'23:12:38.375000'

 strftime(<Строка формата>) — возвращает отформатированную строку. В строке

формата можно указывать комбинации специальных символов, которые ис-

пользуются в функции strftime() из модуля time. Пример:

>>> t = datetime.time(23, 12, 38, 375000)

>>> t.strftime("%H:%M:%S")

'23:12:38'

ПРИМЕЧАНИЕ

Экземпляры класса time поддерживают также методы dst(), utcoffset() и

tzname(). За подробной информацией по этим методам, а также по абстрактному клас-

су tzinfo обращайтесь к документации по модулю datetime.

Глава 10

164

10.4.4. Класс datetime

Класс datetime из модуля datetime позволяет производить операции над ком-

бинацией даты и времени. Конструктор класса имеет следующий формат:

datetime(<Год>, <Месяц>, <День>[, hour[, minute[, second

 [, microsecond[, tzinfo]]]]])

Первые три параметра являются обязательными. Остальные значения можно

указывать через запятую в порядке следования параметров или присвоить значение

названию параметра. В параметрах можно указать следующий диапазон значений:

 <Год> — число от MINYEAR (1) до MAXYEAR (9999);

 <Месяц> — число от 1 до 12 включительно;

 <День> — число от 1 до количества дней в месяце;

 hour — часы (число от 0 до 23);

 minute — минуты (число от 0 до 59);

 second — секунды (число от 0 до 59);

 microsecond — микросекунды (число от 0 до 999999);

 tzinfo — зона (экземпляр класса tzinfo или значение None).

Если значения выходят за диапазон, возбуждается исключение ValueError.

Пример:

>>> import datetime

>>> datetime.datetime(2010, 6, 5)

datetime.datetime(2010, 6, 5, 0, 0)

>>> datetime.datetime(2010, 6, 5, hour=12, minute=55)

datetime.datetime(2010, 6, 5, 12, 55)

>>> datetime.datetime(2010, 32, 20)

... Фрагмент опущен ...

ValueError: month must be in 1..12

>>> d = datetime.datetime(2010, 6, 5, 5, 19, 21)

>>> repr(d), str(d)

('datetime.datetime(2010, 6, 5, 5, 19, 21)', '2010-06-05 05:19:21')

Для создания экземпляра класса можно также воспользоваться следующими

методами:

 today() — возвращает текущую дату и время:

>>> datetime.datetime.today()

datetime.datetime(2010, 6, 5, 23, 52, 58, 531000)

 now([<Зона>]) — возвращает текущую дату и время. Если параметр не задан,

то метод аналогичен методу today(). Пример:

>>> datetime.datetime.now()

datetime.datetime(2010, 6, 5, 23, 53, 20, 250000)

 utcnow() — возвращает текущее универсальное время (UTC):

>>> datetime.datetime.utcnow()

datetime.datetime(2010, 6, 5, 19, 53, 41, 46000)

Работа с датой и временем

165

 fromtimestamp(<Количество секунд>[, <Зона>]) — возвращает дату, соот-

ветствующую количеству секунд, прошедших с начала эпохи:

>>> import datetime, time

>>> datetime.datetime.fromtimestamp(time.time())

datetime.datetime(2010, 6, 5, 23, 54, 21, 265000)

>>> datetime.datetime.fromtimestamp(1233368623.0)

datetime.datetime(2009, 1, 31, 5, 23, 43)

 utcfromtimestamp(<Количество секунд>) — возвращает дату, соответствую-

щую количеству секунд, прошедших с начала эпохи, в универсальном времени

(UTC). Пример:

>>> import datetime, time

>>> datetime.datetime.utcfromtimestamp(time.time())

datetime.datetime(2010, 6, 5, 19, 55, 12, 984000)

>>> datetime.datetime.utcfromtimestamp(1233368623.0)

datetime.datetime(2009, 1, 31, 2, 23, 43)

 fromordinal(<Количество дней с 1 года>) — возвращает дату, соответст-

вующую количеству дней, прошедших с 1 года. В качестве параметра указыва-

ется число от 1 до datetime.datetime.max.toordinal(). Пример:

>>> datetime.datetime.max.toordinal()

3652059

>>> datetime.datetime.fromordinal(3652059)

datetime.datetime(9999, 12, 31, 0, 0)

>>> datetime.datetime.fromordinal(1)

datetime.datetime(1, 1, 1, 0, 0)

 combine(<Экземпляр класса date>, <Экземпляр класса time>) — создает

экземпляр класса datetime в соответствии со значениями экземпляров классов

date и time:

>>> d = datetime.date(2010, 6, 5) # Экземпляр класса date

>>> t = datetime.time(9, 12, 35) # Экземпляр класса time

>>> datetime.datetime.combine(d, t)

datetime.datetime(2010, 6, 5, 9, 12, 35)

 strptime(<Строка с датой>, <Строка формата>) — разбирает строку, указан-

ную в первом параметре, в соответствии со строкой формата. Если строка не

соответствует формату, возбуждается исключение ValueError. Пример:

>>> datetime.datetime.strptime("05.06.2010", "%d.%m.%Y")

datetime.datetime(2010, 6, 5, 0, 0)

>>> datetime.datetime.strptime("05.06.2010", "%d-%m-%Y")

... Фрагмент опущен ...

ValueError: time data '05.06.2010'

does not match format '%d-%m-%Y'

Получить результат можно с помощью следующих свойств:

 year — год (число в диапазоне от MINYEAR до MAXYEAR);

 month — месяц (число от 1 до 12);

Глава 10

166

 day — день (число от 1 до количества дней в месяце);

 hour — часы (число от 0 до 23);

 minute — минуты (число от 0 до 59);

 second — секунды (число от 0 до 59);

 microsecond — микросекунды (число от 0 до 999999);

 tzinfo — зона (экземпляр класса tzinfo или значение None).

Пример:

>>> d = datetime.datetime(2010, 6, 5, 5, 19, 21)

>>> d.year, d.month, d.day

(2010, 6, 5)

>>> d.hour, d.minute, d.second, d.microsecond

(5, 19, 21, 0)

Над экземплярами класса datetime можно производить следующие операции:

 datetime2 = datetime1 + timedelta — прибавляет к дате указанный период;

 datetime2 = datetime1 - timedelta — вычитает из даты указанный период;

 timedelta = datetime1 - datetime2 — возвращает разницу между датами;

 можно также сравнивать две даты с помощью операторов сравнения.

Примеры:

>>> d1 = datetime.datetime(2010, 1, 20, 23, 48, 23)

>>> d2 = datetime.datetime(2010, 1, 1, 10, 15, 38)

>>> t = datetime.timedelta(days=10, minutes=10)

>>> d1 + t # Прибавляем 10 дней и 10 минут

datetime.datetime(2010, 1, 30, 23, 58, 23)

>>> d1 - t # Вычитаем 10 дней и 10 минут

datetime.datetime(2010, 1, 10, 23, 38, 23)

>>> d1 - d2 # Разница между датами

datetime.timedelta(19, 48765)

>>> d1 < d2, d1 > d2, d1 <= d2, d1 >= d2

(False, True, False, True)

>>> d1 == d2, d1 != d2

(False, True)

Экземпляры класса datetime поддерживают следующие методы:

 date() — возвращает экземпляр класса date:

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.date()

datetime.date(2010, 6, 5)

 time() — возвращает экземпляр класса time:

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.time()

datetime.time(23, 48, 23)

 timetz() — возвращает экземпляр класса time. Метод учитывает параметр

tzinfo;
 replace([year[, month[, day[, hour[, minute[, second[, microsecond[,

tzinfo]]]]]]]]) — возвращает дату с обновленными значениями. Значения

Работа с датой и временем

167

можно указывать через запятую в порядке следования параметров или присво-

ить значение названию параметра. Пример:

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.replace(2008, 12)

datetime.datetime(2008, 12, 5, 23, 48, 23)

>>> d.replace(hour=12, month=10)

datetime.datetime(2010, 10, 5, 12, 48, 23)

 timetuple() — возвращает объект struct_time с датой и временем:

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.timetuple()

time.struct_time(tm_year=2010, tm_mon=6, tm_mday=5, tm_hour=23,

tm_min=48, tm_sec=23, tm_wday=5, tm_yday=156, tm_isdst=-1)

 utctimetuple() — возвращает объект struct_time с датой в универсальном

времени (UTC):

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.utctimetuple()

time.struct_time(tm_year=2010, tm_mon=6, tm_mday=5, tm_hour=23,

tm_min=48, tm_sec=23, tm_wday=5, tm_yday=156, tm_isdst=0)

 toordinal() — возвращает количество дней, прошедшее с 1 года:

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.toordinal()

733928

 weekday() — возвращает порядковый номер дня в неделе (0 — для понедель-

ника, 6 — для воскресенья):

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.weekday() # 5 - это суббота

5

 isoweekday() — возвращает порядковый номер дня в неделе (1 — для поне-

дельника, 7 — для воскресенья):

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.isoweekday() # 6 - это суббота

6

 isocalendar() — возвращает кортеж из трех элементов (год, номер недели в

году и порядковый номер дня в неделе):

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.isocalendar()

(2010, 22, 6)

 isoformat([<Разделитель>]) — возвращает дату в формате ISO 8601:

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.isoformat() # Разделитель не указан

'2010-06-05T23:48:23'

>>> d.isoformat(" ") # Пробел в качестве разделителя

'2010-06-05 23:48:23'

Глава 10

168

 ctime() — возвращает строку специального формата:

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.ctime()

'Sat Jun 5 23:48:23 2010'

 strftime(<Строка формата>) — возвращает отформатированную строку. В стро-

ке формата можно указывать комбинации специальных символов, которые ис-

пользуются в функции strftime() из модуля time. Пример:

>>> d = datetime.datetime(2010, 6, 5, 23, 48, 23)

>>> d.strftime("%d.%m.%Y %H:%M:%S")

'05.06.2010 23:48:23'

ПРИМЕЧАНИЕ

Экземпляры класса datetime поддерживают также методы astimezone(), dst(), ut-

coffset() и tzname(). За подробной информацией по этим методам, а также по абст-

рактному классу tzinfo обращайтесь к документации по модулю datetime.

10.5. Модуль calendar.

Вывод календаря

Модуль calendar позволяет вывести календарь в виде простого текста или в

HTML-формате. Прежде чем использовать модуль, необходимо подключить его с

помощью выражения:

import calendar

Модуль предоставляет следующие классы:

 Calendar — базовый класс, который наследуют все остальные классы. Формат

конструктора:

Calendar([<Первый день недели>])

В качестве примера получим двумерный список всех дней в январе 2010 года,

распределенных по дням недели:

>>> import calendar

>>> c = calendar.Calendar(0)

>>> c.monthdayscalendar(2010, 1) # 1 — это январь

[[0, 0, 0, 0, 1, 2, 3], [4, 5, 6, 7, 8, 9, 10],

[11, 12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23, 24],

[25, 26, 27, 28, 29, 30, 31]]

 TextCalendar — позволяет вывести календарь в виде простого текста. Формат

конструктора:

TextCalendar([<Первый день недели>])

Выведем календарь на весь 2010 год:

>>> c = calendar.TextCalendar(0)

>>> print c.formatyear(2010) # Текстовый календарь на 2010 год

Работа с датой и временем

169

 LocaleTextCalendar — позволяет вывести календарь в виде простого текста.

Названия месяцев и дней недели выводятся в соответствии с указанной лока-

лью. Формат конструктора:

LocaleTextCalendar([<Первый день недели>[, <Название локали>]])

Выведем календарь на весь 2010 год на русском языке:

>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")

>>> print c.formatyear(2010)

 HTMLCalendar — позволяет вывести календарь в формате HTML. Формат кон-

структора:

HTMLCalendar([<Первый день недели>])

Выведем календарь на весь 2010 год:

>>> c = calendar.HTMLCalendar(0)

>>> print c.formatyear(2010)

 LocaleHTMLCalendar — позволяет вывести календарь в формате HTML. Назва-

ния месяцев и дней недели выводятся в соответствии с указанной локалью.

Формат конструктора:

LocaleHTMLCalendar([<Первый день недели>[, <Название локали>]])

Выведем календарь на весь 2010 год на русском языке в виде отдельной

XHTML-страницы:

>>> c = calendar.LocaleHTMLCalendar(0, "Russian_Russia.1251")

>>> print c.formatyearpage(2010, encoding="windows-1251")

В первом параметре всех конструкторов указывается число от 0 (для понедель-

ника) до 6 (для воскресенья). Если параметр не указан, то значение равно 0. Вместо

чисел можно использовать встроенные константы MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY или SUNDAY. Изменить значение параметра позволяет

метод setfirstweekday(<Первый день недели>). В качестве примера выведем тек-

стовый календарь на январь 2010 года, где первым днем недели является воскресе-

нье (листинг 10.3).

Листинг 10.3. Вывод текстового календаря

>>> c = calendar.TextCalendar() # Первый день понедельник

>>> c.setfirstweekday(calendar.SUNDAY) # Первый день теперь воскресенье

>>> print c.formatmonth(2010, 1) # Текстовый календарь на январь 2010 г.

10.5.1. Методы классов

TextCalendar и LocaleTextCalendar

Экземпляры классов TextCalendar и LocaleTextCalendar имеют следующие

методы:
 formatmonth(<Год>, <Месяц>[, <Ширина поля с днем>[, <Количество симво-

лов переноса строки>]]) — возвращает текстовый календарь на указанный

Глава 10

170

месяц в году. Третий параметр позволяет указать ширину поля с днем, а чет-

вертый параметр — количество символов переноса строки между строками.

Выведем календарь на январь 2010 года:

>>> import calendar

>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")

>>> print c.formatmonth(2010, 1)

 Январь 2010

Пн Вт Ср Чт Пт Сб Вс

 1 2 3

 4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

 prmonth(<Год>, <Месяц>[, <Ширина поля с днем>[, <Количество символов

переноса строки>]]) — метод аналогичен методу formatmonth(), но не воз-

вращает календарь в виде строки, а сразу выводит его. Выведем календарь на

январь 2010 года и укажем ширину поля с днем равной 4 символам:

>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")

>>> c.prmonth(2010, 1, 4)

 Январь 2010

 Пн Вт Ср Чт Пт Сб Вс

 1 2 3

 4 5 6 7 8 9 10

 11 12 13 14 15 16 17

 18 19 20 21 22 23 24

 25 26 27 28 29 30 31

 formatyear(<Год>[, w[, l[, c[, m]]]]) — возвращает текстовый календарь

на указанный год. Параметры имеют следующее предназначение:

 w — задает ширину поля с днем (по умолчанию 2);

 l — количество символов переноса строки между строками (по умолча-

нию 1);

 c — количество пробелов между месяцами (по умолчанию 6);

 m — количество месяцев на строке (по умолчанию 3).

Значения можно указывать через запятую в порядке следования параметров

или присвоить значение названию параметра. В качестве примера выведем ка-

лендарь на 2010 год. На одной строке выведем сразу четыре месяца и устано-

вим количество пробелов между месяцами:

>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")

>>> print c.formatyear(2010, m=4, c=2)

 pryear(<Год>[, w[, l[, c[, m]]]]) — метод аналогичен методу

formatyear(), но не возвращает календарь в виде строки, а сразу выводит его.

В качестве примера выведем календарь на 2011 год по два месяца на строке.

Работа с датой и временем

171

Расстояние между месяцами установим равным 4 символам, ширину поля с да-

той равной 2 символам, а строки разделим одним символом переноса строки:

>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")

>>> c.pryear(2011, 2, 1, 4, 2)

10.5.2. Методы классов HTMLCalendar

и LocaleHTMLCalendar

Экземпляры классов HTMLCalendar и LocaleHTMLCalendar имеют следующие

методы:

 formatmonth(<Год>, <Месяц>[, <True | False>]) — возвращает HTML-

календарь на указанный месяц в году. Если в третьем параметре указано значе-

ние True (значение по умолчанию), то в заголовке таблицы после названия ме-

сяца будет указан год. Календарь будет отформатирован с помощью HTML-

таблицы. Для каждой ячейки таблицы задается стилевой класс, с помощью ко-

торого можно управлять внешним видом календаря. Названия стилевых клас-

сов доступны через свойство cssclasses, которое содержит список названий

для каждого дня недели:

>>> import calendar

>>> c = calendar.HTMLCalendar(0)

>>> print c.cssclasses

['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun']

Выведем календарь на январь 2010 года. Для будних дней укажем класс

"workday", а для выходных дней — класс "week-end":

>>> c = calendar.LocaleHTMLCalendar(0, "Russian_Russia.1251")

>>> c.cssclasses = ["workday", "workday", "workday", "workday",

 "workday", "week-end", "week-end"]

>>> print c.formatmonth(2010, 1, False)

 formatyear(<Год>[, <Количество месяцев на строке>]) — возвращает

HTML-календарь на указанный год. Календарь будет отформатирован с помо-

щью нескольких HTML-таблиц. В качестве примера выведем календарь на

2010 год. На одной строке выведем сразу четыре месяца:

>>> c = calendar.LocaleHTMLCalendar(0, "Russian_Russia.1251")

>>> print c.formatyear(2010, 4)

 formatyearpage(<Год>[, width[, css[, encoding]]]) — возвращает HTML-

календарь на указанный год в виде отдельной XHTML-страницы. Параметры

имеют следующее предназначение:

 width — количество месяцев на строке (по умолчанию 3);

 css — название файла с таблицей стилей (по умолчанию "calendar.css");

 encoding — кодировка файла. Название кодировки будет указано в пара-

метре encoding XML-пролога, а также в теге <meta>.

Глава 10

172

Значения можно указывать через запятую в порядке следования параметров

или присвоить значение названию параметра. В качестве примера выведем ка-

лендарь на 2010 год. На одной строке выведем сразу четыре месяца и укажем

кодировку файла:

>>> c = calendar.LocaleHTMLCalendar(0, "Russian_Russia.1251")

>>> print c.formatyearpage(2010, 4, encoding="windows-1251")

10.5.3. Другие полезные функции

Модуль calendar предоставляет также несколько функций, которые позволяют

вывести текстовый календарь без создания экземпляра класса, а также возвращают

дополнительную информацию о дате:

 setfirstweekday(<Первый день недели>) — устанавливает первый день неде-

ли для календаря. В качестве параметра указывается число от 0 (для понедель-

ника) до 6 (для воскресенья). Вместо чисел можно использовать встроенные

константы MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY или SUNDAY.

Получить текущее значение параметра можно с помощью функции firstweek-

day(). Установим воскресенье первым днем недели:

>>> import calendar

>>> calendar.firstweekday() # По умолчанию 0

0

>>> calendar.setfirstweekday(6) # Изменяем значение

>>> calendar.firstweekday() # Проверяем установку

6

 month(<Год>, <Месяц>[, <Ширина поля с днем>[, <Количество символов

переноса строки>]]) — возвращает текстовый календарь на указанный месяц

в году. Третий параметр позволяет указать ширину поля с днем, а четвертый

параметр — количество символов переноса строки между строками. Выведем

календарь на январь 2010 года:

>>> calendar.setfirstweekday(0)

>>> print calendar.month(2010, 1) # Январь 2010 года

 January 2010

Mo Tu We Th Fr Sa Su

 1 2 3

 4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

 prmonth(<Год>, <Месяц>[, <Ширина поля с днем>[, <Количество символов

переноса строки>]]) — функция аналогична функции month(), но не возвра-

щает календарь в виде строки, а сразу выводит его. Выведем календарь на ян-

варь 2010 года:

>>> calendar.prmonth(2010, 1) # Январь 2010 года

Работа с датой и временем

173

 monthcalendar(<Год>, <Месяц>) — возвращает двумерный список всех дней в

указанном месяце, распределенных по дням недели. Дни, выходящие за преде-

лы месяца, будут представлены нулями. Выведем массив для января 2010 года:

>>> calendar.monthcalendar(2010, 1) # Январь 2010 года

[[0, 0, 0, 0, 1, 2, 3], [4, 5, 6, 7, 8, 9, 10],

 [11, 12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23, 24],

 [25, 26, 27, 28, 29, 30, 31]]

 monthrange(<Год>, <Месяц>) — возвращает кортеж из двух элементов: коли-

чество недель в месяце и число дней в месяце:

>>> print calendar.monthrange(2010, 1)

(4, 31)

>>> # В январе 2010 года 4 недели и 31 день

 calendar(<Год>[, w[, l[, c[, m]]]]) — возвращает текстовый календарь на

указанный год. Параметры имеют следующее предназначение:

 w — задает ширину поля с днем (по умолчанию 2);

 l — количество символов переноса строки между строками (по умолчанию 1);

 c — количество пробелов между месяцами (по умолчанию 6);

 m — количество месяцев на строке (по умолчанию 3).

Значения можно указывать через запятую в порядке следования параметров

или присвоить значение названию параметра. В качестве примера выведем ка-

лендарь на 2010 год. На одной строке выведем сразу четыре месяца и устано-

вим количество пробелов между месяцами:

>>> print calendar.calendar(2010, m=4, c=2)

 prcal(<Год>[, w[, l[, c[, m]]]]) — функция аналогична функции

calendar(), но не возвращает календарь в виде строки, а сразу выводит его.

В качестве примера выведем календарь на 2011 год по два месяца на строке.

Расстояние между месяцами установим равным 4 символам, ширину поля с да-

той равной 2 символам, а строки разделим одним символом переноса строки:

>>> calendar.prcal(2011, 2, 1, 4, 2)

 isleap(<Год>) — возвращает значение True, если указанный год является ви-

сокосным, в противном случае — False:

>>> calendar.isleap(2010), calendar.isleap(2012)

(False, True)

 leapdays(<Год1>, <Год2>) — возвращает количество високосных лет в диапа-

зоне от <Год1> до <Год2> (<Год2> не учитывается):

>>> calendar.leapdays(2010, 2012) # 2012 не учитывается

0

>>> calendar.leapdays(2010, 2013) # 2012 - високосный год

1

 weekday(<Год>, <Месяц>, <День>) — возвращает номер дня недели (0 — для

понедельника, 6 — для воскресенья):

>>> calendar.weekday(2010, 6, 4) # 4 — это пятница

4

Глава 10

174

 timegm(<Объект struct_time>) — возвращает число, представляющее количе-
ство секунд, прошедших с начала эпохи. В качестве параметра указывается
объект struct_time с датой и временем, возвращаемый функцией gmtime() из
модуля time. Пример:
>>> import calendar, time

>>> d = time.gmtime(1275762391.0) # Дата 05-06-2010

>>> d

time.struct_time(tm_year=2010, tm_mon=6, tm_mday=5, tm_hour=18,

tm_min=26, tm_sec=31, tm_wday=5, tm_yday=156, tm_isdst=0)

>>> tuple(d)

(2010, 6, 5, 18, 26, 31, 5, 156, 0)

>>> calendar.timegm(d)

1275762391

>>> calendar.timegm((2010, 6, 5, 18, 26, 31, 5, 156, 0))

1275762391

Модуль calendar предоставляет также несколько свойств:
 day_name — полные названия дней недели в текущей локали:

>>> [i for i in calendar.day_name]

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',

'Saturday', 'Sunday']

 day_abbr — аббревиатуры названий дней недели в текущей локали:
>>> [i for i in calendar.day_abbr]

['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

 month_name — полные названия месяцев в текущей локали:
>>> [i for i in calendar.month_name]

['', 'January', 'February', 'March', 'April', 'May', 'June',

'July', 'August', 'September', 'October', 'November', 'December']

 month_abbr — аббревиатуры названий месяцев в текущей локали:
>>> [i for i in calendar.month_abbr]

['', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',

'Sep', 'Oct', 'Nov', 'Dec']

>>> import locale # Настройка локали

>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> for i in calendar.month_abbr: print i,

янв фев мар апр май июн июл авг сен окт ноя дек

10.6. Измерение времени выполнения

фрагментов кода

Модуль timeit позволяет измерить время выполнения небольших фрагментов

кода с целью оптимизации программы. Прежде чем использовать модуль, необхо-

димо подключить его с помощью выражения:

from timeit import Timer

Работа с датой и временем

175

Измерения производятся с помощью класса Timer. Конструктор класса имеет

следующий формат:

Timer([stmt='pass'[, setup='pass'[, timer=<timer function>]]])

В параметре stmt указывается код (в виде строки), для которого измеряем вре-

мя выполнения. Параметр setup позволяет указать код, который будет выполнен

перед измерением времени выполнения кода в параметре stmt. Например, в пара-

метре setup можно подключить модуль.

Получить время выполнения можно с помощью метода

timeit([number=1000000]). В параметре number указывается количество повторе-

ний. Для примера просуммируем числа от 1 до 10001 тремя способами и выведем

время выполнения каждого способа (листинг 10.4).

Листинг 10.4. Измерение времени выполнения

-*- coding: cp1251 -*-

from timeit import Timer

code1 = """\

i, j = 1, 0

while i < 10001:

 j += i

 i += 1

"""

t1 = Timer(stmt=code1)

print "while:", t1.timeit(number=10000)

code2 = """\

j = 0

for i in xrange(1, 10001):

 j += i

"""

t2 = Timer(stmt=code2)

print "for:", t2.timeit(number=10000)

code3 = """\

j = sum(xrange(1, 10001))

"""

t3 = Timer(stmt=code3)

print "sum:", t3.timeit(number=10000)

Результат выполнения:

while: 11.9412368511

for: 4.86864243359

sum: 1.23282160686

Как видно из результата, цикл for работает в два раза быстрее цикла while, а

функция sum() в данном случае является самым оптимальным решением задачи.

Глава 10

176

Метод repeat([repeat=3[, number=1000000]]) вызывает метод timeit() ука-

занное количество раз (задается в параметре repeat) и возвращает список значе-

ний. Аргумент number передается в качестве параметра методу timeit(). Для при-

мера создадим список со строковыми представлениями чисел от 1 до 10000.

В первом случае для создания списка используем цикл for и метод append(), а во

втором — генератор списков (листинг 10.5).

Листинг 10.5. Использование метода repeat()

-*- coding: cp1251 -*-

from timeit import Timer

code1 = """\

arr1 = []

for i in xrange(1, 10001):

 arr1.append(str(i))

"""

t1 = Timer(stmt=code1)

print "append:", t1.repeat(repeat=3, number=2000)

code2 = """\

arr2 = [str(i) for i in xrange(1, 10001)]

"""

t2 = Timer(stmt=code2)

print "генератор:", t2.repeat(repeat=3, number=2000)

Результат выполнения:

append: [7.6997649829907004, 7.6997334811098881, 7.7073105405090701]

генератор: [6.3373980661542646, 6.3322780897085522, 6.3315509547333022]

Как видно из результата, генераторы списков работают быстрее.

ГЛАВА 11

Пользовательские функции

Функция — это фрагмент кода, который можно вызвать из любого места про-

граммы. В предыдущих главах мы уже не один раз использовали встроенные

функции языка Python, например, с помощью функции len() получали количество

элементов последовательности. В этой главе мы рассмотрим создание пользова-

тельских функций, которые позволят уменьшить избыточность программного кода

и повысить его структурированность.

11.1. Создание функции и ее вызов

Функция описывается с помощью ключевого слова def по следующей схеме:

def <Имя функции>([<Параметры>]):

 [""" Строка документирования """]

 <Тело функции>

 [return <Значение>]

Имя функции должно быть уникальным идентификатором, состоящим из ла-

тинских букв, цифр и знаков подчеркивания, причем имя функции не может начи-

наться с цифры. В качестве имени нельзя использовать ключевые слова; кроме то-

го, следует избегать совпадений с названиями встроенных идентификаторов.

Регистр символов в названии функции имеет значение. Для наглядности все назва-

ния пользовательских функций в этой книге будут начинаться с префикса "f_". Это

позволит вам отличать имена встроенных функций от названий, определенных на-

ми в программе.

После имени функции в круглых скобках можно указать один или несколько

параметров через запятую. Если функция не принимает параметры, то просто ука-

зываются круглые скобки. После круглых скобок ставится двоеточие.

Тело функции является составной конструкцией. Как и в любой составной кон-

струкции, выражения внутри функции выделяются одинаковым количеством про-

белов слева. Концом функции считается выражение, перед которым меньшее коли-

Глава 11

178

чество пробелов. Если тело функции не содержит выражений, то внутри необходи-

мо разместить оператор pass. Этот оператор удобно использовать на этапе отладки

программы, когда мы определили функцию, а тело будем дописывать позже. При-

мер функции, которая ничего не делает:

def f_pass():

 pass

Необязательная инструкция return позволяет вернуть значение из функции.

После исполнения этой инструкции выполнение функции будет остановлено. Это

означает, что выражения после оператора return никогда не будут выполнены.

Пример:

def f_test():

 print "Текст до инструкции return"

 return "Возвращаемое значение"

 print "Это выражение никогда не будет выполнено"

print f_test() # Вызываем функцию

Результат выполнения:

Текст до инструкции return

Возвращаемое значение

Инструкции return может не быть вообще. В этом случае выполняются все вы-

ражения внутри функции и возвращается значение None.

В качестве примера создадим три функции (листинг 11.1).

Листинг 11.1. Определения функций

def f_print_ok():

 """ Пример функции без параметров """

 print "Сообщение при удачно выполненной операции"

def f_print(m):

 """ Пример функции с параметром """

 print m

def f_sum(x, y):

 """ Пример функции с параметрами,

 возвращающей сумму двух переменных """

 return x + y

Вызвать эти функции можно способами, указанными в листинге 11.2.

Листинг 11.2. Вызов функций

f_print_ok() # Вызываем функцию без параметров

f_print("Сообщение") # Функция выведет сообщение

v1 = f_sum(5, 2) # Переменной v1 будет присвоено значение 7

a, b = 10, 50

v2 = f_sum(a, b) # Переменной v2 будет присвоено значение 60

Пользовательские функции

179

Как видно из последнего примера, имя переменной в вызове функции может не

совпадать с именем переменной в определении функции. Необходимо также заме-

тить, что количество параметров в определении функции должно совпадать с коли-

чеством параметров при вызове, иначе будет выведено сообщение об ошибке.

Оператор +, используемый в функции f_sum(), применяется не только для сло-

жения чисел, но и позволяет объединить последовательности. Таким образом,

функция f_sum() может использоваться не только для сложения чисел. В качестве

примера выполним конкатенацию строк и объединение списков:

def f_sum(x, y):

 return x + y

print f_sum("str", "ing") # Выведет: string

print f_sum([1, 2], [3, 4]) # Выведет: [1, 2, 3, 4]

Как вы уже знаете, все в языке Python является объектом, например, строки,

списки и даже сами типы данных. Функции не являются исключением. Инструкция

def создает объект, имеющий тип function, и сохраняет ссылку на него в иденти-

фикаторе, указанном после инструкции def. Таким образом, мы можем сохранить

ссылку на функцию в другой переменной. Для этого название функции указывается

без круглых скобок. Сохраним ссылку в переменной и вызовем функцию через нее

(листинг 11.3).

Листинг 11.3. Сохранение ссылки на функцию в переменной

def f_sum(x, y):

 return x + y

f = f_sum # Сохраняем ссылку в переменной f

v = f(10, 20) # Вызываем функцию через переменную f

Можно также передать ссылку на функцию в качестве параметра другой функ-

ции. Функции, передаваемые по ссылке, обычно называются функциями обратного

вызова (листинг 11.4).

Листинг 11.4. Функции обратного вызова

def f_sum(x, y):

 return x + y

def f_sum2(f, a, b):

 """ Через переменную f будет доступна ссылка на

 функцию f_sum() """

 return f(a, b) # Вызываем функцию f_sum()

Передаем ссылку на функцию в качестве параметра

v = f_sum2(f_sum, 10, 20)

Глава 11

180

11.2. Расположение определений функций

Все выражения в программе выполняются последовательно сверху вниз. Это

означает, что прежде чем использовать идентификатор в программе, его необходи-

мо предварительно объявить, присвоив ему значение. Поэтому определение функ-

ции должно быть расположено перед вызовом функции.

Правильно:

def f_sum(x, y):

 return x + y

v = f_sum(10, 20) # Вызываем после определения. Все нормально

Неправильно:

v = f_sum(10, 20) # Идентификатор еще не определен. Это ошибка!!!

def f_sum(x, y):

 return x + y

В последнем случае будет выведено сообщение об ошибке "NameError: name

'f_sum' is not defined". Чтобы избежать ошибки, определение функции разме-

щают в самом начале программы после подключения модулей или в отдельном

файле, который называется модулем.

С помощью оператора ветвления if можно изменить порядок выполнения про-

граммы. Таким образом, можно разместить внутри условия несколько определений

функций с одинаковым названием, но разной реализацией (листинг 11.5).

Листинг 11.5. Определение функции в зависимости от условия

-*- coding: cp1251 -*-

m = raw_input("Введите 1 для вызова первой функции: ")

if m == "1":

 def f_print():

 return "Вы ввели число 1"

else:

 def f_print():

 return "Альтернативная функция"

print f_print() # Вызываем функцию

При вводе числа 1 мы получим сообщение "Вы ввели число 1", в противном

случае — "Альтернативная функция".

Если определение одной функции встречается в программе несколько раз, то

будет использоваться функция, которая расположена последней. Пример:

def f_print():

 return "Вы ввели число 1"

def f_print():

 return "Альтернативная функция"

print f_print() # Всегда выводит "Альтернативная функция"

Пользовательские функции

181

11.3. Необязательные параметры

и сопоставление по ключам

Чтобы сделать некоторые параметры необязательными, следует в определении

функции присвоить этому параметру начальное значение. Переделаем функцию

суммирования двух чисел и сделаем второй параметр необязательным (лис-

тинг 11.6).

Листинг 11.6. Необязательные параметры

def f_sum(x, y=2): # y — необязательный параметр

 return x + y

v1 = f_sum(5) # Переменной v1 будет присвоено значение 7

v2 = f_sum(10, 50) # Переменной v2 будет присвоено значение 60

Таким образом, если второй параметр не задан, то его значение будет равно 2.

Обратите внимание на то, что необязательные параметры должны следовать после

обязательных параметров, иначе будет выведено сообщение об ошибке.

До сих пор мы использовали позиционную передачу параметров в функцию:

def f_sum(x, y):

 return x + y

print f_sum(10, 20) # Выведет: 30

Переменной x при сопоставлении будет присвоено значение 10, а переменной

y — значение 20. Язык Python позволяет также передать значения в функцию, ис-

пользуя сопоставление по ключам (листинг 11.7). Для этого при вызове функции

параметрам присваиваются значения. Последовательность указания параметров

может быть произвольной.

Листинг 11.7. Сопоставление по ключам

def f_sum(x, y):

 return x + y

print f_sum(y=20, x=10) # Сопоставление по ключам

Сопоставление по ключам очень удобно использовать, если функция имеет не-

сколько необязательных параметров. В этом случае не нужно перечислять все зна-

чения, а достаточно присвоить значение нужному параметру. Пример:

def f_sum(a=2, b=3, c=4): # Все параметры являются необязательными

 return a + b + c

print f_sum(2, 3, 20) # Позиционное присваивание

print f_sum(c=20) # Сопоставление по ключам

Глава 11

182

Если значения параметров, которые планируется передать в функцию, содер-

жатся в кортеже или списке, то перед объектом следует указать символ *. Пример

передачи значений из кортежа и списка приведен в листинге 11.8.

Листинг 11.8. Пример передачи значений из кортежа и списка

def f_sum(a, b, c):

 return a + b + c

t1, arr = (1, 2, 3), [1, 2, 3]

print f_sum(*t1) # Распаковываем кортеж

print f_sum(*arr) # Распаковываем список

t2 = (2, 3)

print f_sum(1, *t2) # Можно комбинировать значения

Если значения параметров содержатся в словаре, то распаковать словарь мож-

но, указав перед ним две звездочки (**) (листинг 11.9).

Листинг 11.9. Пример передачи значений из словаря

def f_sum(a, b, c):

 return a + b + c

d1 = {"a": 1, "b": 2, "c": 3}

print f_sum(**d1) # Распаковываем словарь

t, d2 = (1, 2), {"c": 3}

print f_sum(*t, **d2) # Можно комбинировать значения

Распаковать кортежи, списки и словари позволяет также функция apply().

Следует заметить, что функция apply() применялась в ранних версиях Python и,

начиная с версии 2.3, признана устаревшей. Функция имеет следующий формат:

apply(<Ссылка на функцию>[, <Кортеж или список>[, <Словарь>]])

Пример использования функции apply() приведен в листинге 11.10.

Листинг 11.10. Пример использования функции apply()

def f_sum(a, b, c):

 return a + b + c

t1 = (1, 2, 3)

print apply(f_sum, t1) # Распаковываем кортеж

d1 = {"a": 1, "b": 2, "c": 3}

print apply(f_sum, [], d1) # Распаковываем словарь

t2, d2 = (1, 2), {"c": 3}

print apply(f_sum, t2, d2) # Можно комбинировать значения

Пользовательские функции

183

Объекты в функцию передаются по ссылке. Если объект относится к неизме-

няемому типу, то изменение значения внутри функции не затронет значение пере-

менной вне функции:
def f_test(a, b):

 a, b = 20, "str"

x, s = 80, "test"

f_test(x, s) # Значения переменных x и s не изменяются

print x, s # Выведет: 80 test

В этом примере значения в переменных x и s не изменились. Однако, если объ-

ект относится к изменяемому типу, то ситуация будет другой:
def f_test(a, b):

 a[0], b["a"] = "str", 800

x = [1, 2, 3] # Список

y = {"a": 1, "b": 2} # Словарь

f_test(x, y) # Значения будут изменены!!!

print x, y # Выведет: ['str', 2, 3] {'a': 800, 'b': 2}

Как видно из примера, значения в переменных x и y изменились, т. к. список и

словарь относятся к изменяемым типам. Чтобы избежать изменения значений,

внутри функции, следует создать копию объекта:

def f_test(a, b):

 a = a[:] # Создаем поверхностную копию списка

 b = b.copy() # Создаем поверхностную копию словаря

 a[0], b["a"] = "str", 800

x = [1, 2, 3] # Список

y = {"a": 1, "b": 2} # Словарь

f_test(x, y) # Значения останутся прежними

print x, y # Выведет: [1, 2, 3] {'a': 1, 'b': 2}

Можно также сразу передавать копию объекта в вызове функции:
f_test(x[:], y.copy())

Если указать объект, имеющий изменяемый тип, в качестве значения по умол-

чанию, то этот объект будет сохраняться между вызовами функции. Пример:
def f_test(a=[]):

 a.append(2)

 return a

print f_test() # Выведет: [2]

print f_test() # Выведет: [2, 2]

print f_test() # Выведет: [2, 2, 2]

Как видно из примера, значения накапливаются внутри списка. Обойти эту

проблему можно, например, следующим образом:
def f_test(a=None):

 # Создаем новый список, если значение равно None

 if a is None: a = []

 a.append(2)

 return a

Глава 11

184

print f_test() # Выведет: [2]

print f_test() # Выведет: [2]

print f_test([1]) # Выведет: [1, 2]

11.4. Переменное число параметров

в функции

Если перед параметром в определении функции указать символ *, то функции

можно будет передать произвольное количество параметров. Все переданные па-

раметры сохраняются в кортеже. В качестве примера напишем функцию суммиро-

вания произвольного количества чисел (листинг 11.11).

Листинг 11.11. Сохранение переданных данных в кортеже

def f_sum(*t):

 """ Функция принимает произвольное количество параметров """

 res = 0

 for i in t: # Перебираем кортеж с переданными параметрами

 res += i

 return res

print f_sum(10, 20) # Выведет: 30

print f_sum(10, 20, 30, 40, 50, 60) # Выведет: 210

Можно также вначале указать несколько обязательных параметров и парамет-

ров, имеющих значения по умолчанию:

def f_sum(x, y=5, *t): # Комбинация параметров

 res = x + y

 for i in t: # Перебираем кортеж с переданными параметрами

 res += i

 return res

print f_sum(10) # Выведет: 15

print f_sum(10, 20, 30, 40, 50, 60) # Выведет: 210

Если перед параметром в определении функции указать две звездочки (**), то

все именованные параметры будут сохранены в словаре (листинг 11.12).

Листинг 11.12. Сохранение переданных данных в словаре

def f_test(**d):

 for i in d: # Перебираем словарь с переданными параметрами

 print "%s => %s" % (i, d[i]),

f_test(a=1, b=2, c=3) # Выведет: a => 1 c => 3 b => 2

Пользовательские функции

185

При комбинировании параметров параметр с двумя звездочками указывается

самым последним. Если в определении функции указывается комбинация парамет-

ров с одной звездочкой и двумя звездочками, то функция примет любые передан-

ные ей параметры (листинг 11.13).

Листинг 11.13. Комбинирование параметров

def f_test(*t, **d):

 """ Функция примет любые параметры """

 for i in t:

 print i,

 for i in d: # Перебираем словарь с переданными параметрами

 print "%s => %s" % (i, d[i]),

f_test(35, 10, a=1, b=2, c=3) # Выведет: 35 10 a => 1 c => 3 b => 2

f_test(10) # Выведет: 10

f_test(a=1, b=2) # Выведет: a => 1 b => 2

11.5. Анонимные функции

Помимо обычных функций язык Python позволяет использовать анонимные

функции, которые называются лямбда-функциями. Анонимная функция описыва-

ется с помощью ключевого слова lambda по следующей схеме:

lambda [<Параметр1>[, ..., <ПараметрN>]]: <Возвращаемое значение>

После ключевого слова lambda можно указать передаваемые параметры. В ка-

честве параметра <Возвращаемое значение> указывается выражение, результат вы-

полнения которого будет возвращен функцией. Как видно из схемы, у лямбда-

функций нет имени. По этой причине их и называют анонимными функциями.

В качестве значения лямбда-функция возвращает ссылку на объект-функцию,

которую можно сохранить в переменной или передать в качестве параметра в дру-

гую функцию. Вызвать лямбда-функцию можно, как и обычную, с помощью круг-

лых скобок, внутри которых расположены передаваемые параметры. Пример ис-

пользования лямбда-функций приведен в листинге 11.14.

Листинг 11.14. Пример использования лямбда-функций

f1 = lambda: 10 + 20 # Функция без параметров

f2 = lambda x, y: x + y # Функция с двумя параметрами

f3 = lambda x, y, z: x + y + z # Функция с тремя параметрами

print f1() # Выведет: 30

print f2(5, 10) # Выведет: 15

print f3(5, 10, 30) # Выведет: 45

Глава 11

186

Как и в обычных функциях, некоторые параметры лямбда-функций могут быть

необязательными. Для этого параметрам в определении функции присваивается

значение по умолчанию (листинг 11.15).

Листинг 11.15. Необязательные параметры в лямбда-функциях

f = lambda x, y=2: x + y

print f(5) # Выведет: 7

print f(5, 6) # Выведет: 11

Наиболее часто не сохраняют ссылку в переменной, а сразу передают в качест-

ве параметра в другую функцию. Например, метод списков sort() позволяет ука-

зать пользовательскую функцию сортировки. Отсортируем список без учета реги-

стра символов, указав в качестве параметра лямбда-функцию (листинг 11.16).

Листинг 11.16. Сортировка без учета регистра символов

-*- coding: cp1251 -*-

import locale # Настройка локали

locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

arr = ["единица1", "Единый", "Единица2"]

arr.sort(cmp=lambda a, b: cmp(a.lower(), b.lower()))

for i in arr: print i,

Выведет: единица1 Единица2 Единый

11.6. Функции-генераторы

Функцией-генератором называется функция, которая может возвращать одно

значение из нескольких значений на каждой итерации. Приостановить выполнение

функции и превратить функцию в генератор позволяет ключевое слово yield.

В качестве примера напишем функцию, которая возводит элементы последова-

тельности в указанную степень (листинг 11.17).

Листинг 11.17. Пример использования функций-генераторов

def f_test(x, y):

 for i in xrange(1, x+1):

 yield i ** y

for n in f_test(10, 2):

 print n, # Выведет: 1 4 9 16 25 36 49 64 81 100

print # Вставляем пустую строку

for n in f_test(10, 3):

 print n, # Выведет: 1 8 27 64 125 216 343 512 729 1000

Пользовательские функции

187

Функции-генераторы поддерживают метод next(), который позволяет полу-

чить следующее значение. Когда значения заканчиваются, метод возбуждает ис-

ключение StopIteration. Вызов метода next() в цикле for производится незамет-

но для нас. В качестве примера перепишем предыдущую программу и используем

метод next() вместо цикла for (листинг 11.18).

Листинг 11.18. Использование метода next()

def f_test(x, y):

 for i in xrange(1, x+1):

 yield i ** y

r = f_test(3, 3)

print r.next() # Выведет: 1 (1 ** 3)

print r.next() # Выведет: 8 (2 ** 3)

print r.next() # Выведет: 27 (3 ** 3)

print r.next() # Исключение StopIteration

Таким образом, с помощью обычных функций мы можем вернуть все значения

сразу в виде списка, а с помощью функций-генераторов только одно значение за

раз. Эта особенность очень полезна при обработке большого количества значений.

11.7. Декораторы функций

Декораторы позволяют изменить поведение обычных функций. Например, вы-

полнить какие-либо действия перед выполнением функции. Рассмотрим это на

примере (листинг 11.19).

Листинг 11.19. Декораторы функций

def f_deco(f): # Функция-декоратор

 print "Вызвана функция f_test()"

 return f # Возвращаем ссылку на функцию

@f_deco

def f_test(x):

 return "x = %s" % x

print f_test(10)

Выведет:

Вызвана функция f_test()

x = 10

Глава 11

188

В этом примере перед определением функции f_test() указывается название

функции f_deco() с предваряющим символом @:

@f_deco

Таким образом, функция f_deco() становится декоратором функции f_test().

В качестве параметра функция-декоратор принимает ссылку на функцию, пове-

дение которой необходимо изменить, и должна возвращать ссылку на ту же

функцию или какую-либо другую. Наш предыдущий пример эквивалентен сле-

дующему коду:

def f_deco(f):

 print "Вызвана функция f_test()"

 return f

def f_test(x):

 return "x = %s" % x

Вызываем функцию f_test() через функцию f_deco()

print f_deco(f_test)(10)

Перед определением функции можно указать сразу несколько функций-

декораторов. В качестве примера обернем функцию f_test() в два декоратора:

f_deco1() и f_deco2() (листинг 11.20).

Листинг 11.20. Указание нескольких декораторов

def f_deco1(f):

 print "Вызвана функция f_deco1()"

 return f

def f_deco2(f):

 print "Вызвана функция f_deco2()"

 return f

@f_deco1

@f_deco2

def f_test(x):

 return "x = %s" % x

print f_test(10)

Выведет:

Вызвана функция f_deco2()

Вызвана функция f_deco1()

x = 10

Использование двух декораторов эквивалентно следующему коду:

f_test = f_deco1(f_deco2(f_test))

Сначала будет вызвана функция f_deco2(), а затем функция f_deco1(). Ре-

зультат выполнения будет присвоен идентификатору f_test.

В качестве еще одного примера использования декораторов рассмотрим вы-

полнение функции только при правильно введенном пароле (листинг 11.21).

Пользовательские функции

189

Листинг 11.21. Ограничение доступа с помощью декоратора

passw = raw_input("Введите пароль: ")

def f_test_passw(p):

 def f_deco(f):

 if p == "10": return f

 else: return lambda: "Доступ закрыт"

 return f_deco # Возвращаем функцию-декоратор

@f_test_passw(passw)

def f_print():

 return "Доступ открыт"

print f_print() # Вызываем функцию

В этом примере после символа @ указана не ссылка на функцию, а выражение,

которое возвращает декоратор. Иными словами, декоратором является не функция

f_test_passw(), а результат ее выполнения (функция f_deco()). Если введенный

пароль является правильным, то будет выполнена функция f_print(), в противном

случае будет выведена надпись "Доступ закрыт", которую возвращает анонимная

функция.

11.8. Рекурсия.

Вычисление факториала

Рекурсия — это возможность функции вызывать саму себя. Рекурсию удобно

использовать для перебора объекта, имеющего заранее неизвестную структуру, или

выполнения неопределенного количества операций. В качестве примера рассмот-

рим вычисление факториала (листинг 11.22).

Листинг 11.22. Вычисление факториала

-*- coding: cp1251 -*-

def factorial(n):

 if n == 0 or n == 1: return 1

 else:

 return n * factorial(n - 1)

while True:

 x = raw_input("Введите число: ")

 if x.isdigit(): # Если строка содержит только цифры

 x = int(x) # Преобразуем строку в число

 break # Выходим из цикла

 else:

 print "Вы ввели не число!"

print "Факториал числа %s = %s" % (x, factorial(x))

Глава 11

190

Начиная с версии 2.6, для вычисления факториала можно воспользоваться

функцией factorial() из модуля math. Пример:

>>> import math

>>> math.factorial(5), math.factorial(6)

(120, 720)

11.9. Глобальные и локальные

переменные

Глобальные переменные — это переменные, объявленные в программе вне

функции. В Python глобальные переменные видны в любой части модуля, включая

функции (листинг 11.23).

Листинг 11.23. Глобальные переменные

def f_test(glob2):

 print "Значение глобальной переменной glob1 = %s" % glob1

 glob2 += 10

 print "Значение локальной переменной glob2 = %s" % glob2

glob1, glob2 = 10, 5

f_test(77) # Вызываем функцию

print "Значение глобальной переменной glob2 = %s" % glob2

Результат выполнения:

Значение глобальной переменной glob1 = 10

Значение локальной переменной glob2 = 87

Значение глобальной переменной glob2 = 5

Переменной glob2 внутри функции присваивается значение параметра. По этой

причине создается новое имя glob2, которое является локальным. Все изменения

этой переменной внутри функции не затронут значение одноименной глобальной

переменной.

Локальные переменные — это переменные, которым внутри функции присваи-

вается значение. Если имя локальной переменной совпадает с именем глобальной

переменной, то все операции внутри функции осуществляются с локальной пере-

менной, а значение глобальной не изменяется. Локальные переменные видны толь-

ко внутри тела функции (листинг 11.24).

Листинг 11.24. Локальные переменные

def f_test():

 local1 = 77 # Локальная переменная

 glob1 = 25 # Локальная переменная

 print "Значение glob1 внутри функции = %s" % glob1

Пользовательские функции

191

glob1 = 10 # Глобальная переменная

f_test() # Вызываем функцию

print "Значение glob1 вне функции = %s" % glob1

try:

 print local1 # Вызовет исключение NameError

except NameError: # Обрабатываем исключение

 print "Переменная local1 не видна вне функции"

Результат выполнения:

Значение glob1 внутри функции = 25

Значение glob1 вне функции = 10

Переменная local1 не видна вне функции

Как видно из примера, переменная local1, объявленная внутри функции

f_test(), недоступна вне функции. Объявление внутри функции локальной пере-

менной glob1 не изменило значения одноименной глобальной переменной.

Если обращение к переменной производится до присваивания значения (даже

если существует одноименная глобальная переменная), то будет возбуждено ис-

ключение UnboundLocalError (листинг 11.25).

Листинг 11.25. Ошибка при обращении к переменной до присваивания значения

def f_test():

 # Локальная переменная еще не определена

 print glob1 # Эта строка вызовет ошибку!!!

 glob1 = 25 # Локальная переменная

glob1 = 10 # Глобальная переменная

f_test() # Вызываем функцию

Результат выполнения:

UnboundLocalError: local variable 'glob1' referenced before assignment

Для того чтобы значение глобальной переменной можно было изменить внутри

функции, необходимо объявить переменную глобальной с помощью ключевого

слова global. Продемонстрируем это на примере (листинг 11.26).

Листинг 11.26. Использование ключевого слова global

def f_test():

 # Объявляем переменную glob1 глобальной

 global glob1

 glob1 = 25 # Изменяем значение глобальной переменной

 print "Значение glob1 внутри функции = %s" % glob1

glob1 = 10 # Глобальная переменная

print "Значение glob1 вне функции = %s" % glob1

f_test() # Вызываем функцию

print "Значение glob1 после функции = %s" % glob1

Глава 11

192

Результат выполнения:
Значение glob1 вне функции = 10

Значение glob1 внутри функции = 25

Значение glob1 после функции = 25

Таким образом, поиск идентификатора, используемого внутри функции, будет
производиться в следующем порядке:
1. Поиск объявления идентификатора внутри функции (в локальной области ви-

димости).
2. Поиск объявления идентификатора в глобальной области.
3. Поиск во встроенной области видимости (встроенные функции, операторы,

ключевые слова и т. д.).
При использовании анонимных функций следует учитывать, что при указании

внутри функции глобальной переменной будет сохранена ссылка на эту перемен-
ную, а не ее значение в момент определения функции:
x = 5

Сохраняется ссылка, а не значение переменной x!!!

f_test = lambda: x

x = 80 # Изменили значение

print f_test() # Выведет: 80, а не 5

Если необходимо сохранить именно текущее значение переменной, то можно
воспользоваться способом, приведенным в листинге 11.27.

Листинг 11.27. Сохранение значения переменной

x = 5

Сохраняется значение переменной x

f_test = (lambda y: lambda: y)(x)

x = 80 # Изменили значение

print f_test() # Выведет: 5

Обратите внимание на третью строку примера. В ней мы определили аноним-
ную функцию с одним параметром, возвращающую ссылку на вложенную аноним-
ную функцию. Далее мы вызываем первую функцию с помощью круглых скобок и
передаем ей значение переменной x. В результате сохраняется текущее значение
переменной, а не ссылка на нее.

Сохранить текущее значение переменной можно так же, указав глобальную пе-
ременную в качестве значения параметра по умолчанию в определении функции
(листинг 11.28).

Листинг 11.28. Сохранение значения с помощью параметра по умолчанию

x = 5

Сохраняется значение переменной x

f_test = lambda x=x: x

x = 80 # Изменили значение

print f_test() # Выведет: 5

Пользовательские функции

193

Получить все идентификаторы и их значения позволяют следующие функции:

 globals() — возвращает словарь с глобальными идентификаторами;

 locals() — возвращает словарь с локальными идентификаторами. Пример:

def f_test():

 local1 = 54

 glob2 = 25

 print "Глобальные идентификаторы внутри функции"

 print sorted(globals().keys())

 print "Локальные идентификаторы внутри функции"

 print sorted(locals().keys())

glob1, glob2 = 10, 88

f_test()

print "Глобальные идентификаторы вне функции"

print sorted(globals().keys())

Результат выполнения:

Глобальные идентификаторы внутри функции

['__builtins__', '__doc__', '__file__', '__name__',

'__package__', 'f_test', 'glob1', 'glob2', 'idlelib']

Локальные идентификаторы внутри функции

['glob2', 'local1']

Глобальные идентификаторы вне функции

['__builtins__', '__doc__', '__file__', '__name__',

'__package__', 'f_test', 'glob1', 'glob2', 'idlelib']

 vars([<Объект>]) — если вызывается без параметра внутри функции, то воз-

вращает словарь с локальными идентификаторами. Если вызывается без пара-

метра вне функции, то возвращает словарь с глобальными идентификаторами.

При указании объекта в качестве параметра возвращает идентификаторы этого

объекта (эквивалентно вызову <Объект>.__dict__). Пример:

def f_test():

 local1 = 54

 glob2 = 25

 print "Локальные идентификаторы внутри функции"

 print sorted(vars().keys())

glob1, glob2 = 10, 88

f_test()

print "Глобальные идентификаторы вне функции"

print sorted(vars().keys())

print "Указание объекта в качестве параметра"

print sorted(vars(__builtins__.dict).keys())

print "Альтернативный вызов"

print sorted(__builtins__.dict.__dict__.keys())

ГЛАВА 12

Модули и пакеты

Модулем в языке Python называется любой файл с программой. Каждый модуль

может импортировать другой модуль, получая, таким образом, доступ к идентифи-

каторам внутри импортированного модуля. Следует заметить, что импортируемый

модуль может содержать программу не только на языке Python. Например, можно

импортировать скомпилированный модуль, написанный на языке C.

Все программы, которые мы запускали ранее, были расположены в модуле с

названием "__main__". Получить имя модуля позволяет предопределенный атрибут

__name__. Атрибут __name__ для запускаемого модуля содержит значение

"__main__", а для импортируемого модуля — его имя. Выведем название модуля:

print __name__ # Выведет: __main__

Проверить, является модуль главной программой или импортированным моду-

лем, позволяет код, приведенный в листинге 12.1.

Листинг 12.1. Проверка способа запуска модуля

if __name__ == "__main__":

 print "Это главная программа"

else:

 print "Импортированный модуль"

12.1. Инструкция import

Импортировать модуль позволяет инструкция import. Мы уже не раз использо-

вали эту инструкцию для подключения встроенных модулей. Например, подключа-

ли модуль time для получения текущей даты с помощью функции strftime():

import time # Импортируем модуль time

print time.strftime("%d.%m.%Y") # Выводим текущую дату

Модули и пакеты

195

Инструкция import имеет следующий формат:

import <Название модуля 1> [as <Псевдоним 1>][, ...,

 <Название модуля N> [as <Псевдоним N>]]

После ключевого слова import указывается название модуля. Обратите внима-

ние на то, что название не должно содержать расширения и пути к файлу. При

именовании модулей необходимо учитывать, что операция импорта создает одно-

именный идентификатор. Это означает, что название модуля должно полностью

соответствовать правилам именований переменных. Можно создать модуль с име-

нем, начинающимся с цифры, но подключить такой модуль будет нельзя. Кроме

того, следует избегать совпадения с ключевыми словами, встроенными идентифи-

каторами и названиями модулей, входящих в стандартную библиотеку.

За один раз можно импортировать сразу несколько модулей, перечислив их че-

рез запятую. В качестве примера подключим модули time и math (листинг 12.2).

Листинг 12.2. Подключение нескольких модулей сразу

import time, math # Импортируем несколько модулей сразу

print time.strftime("%d.%m.%Y") # Текущая дата

print math.pi # Число pi

После импортирования модуля его название становится идентификатором, че-

рез который можно получить доступ к атрибутам, определенным внутри модуля.

Доступ к атрибутам модуля осуществляется с помощью точечной нотации. Напри-

мер, обратиться к константе pi, расположенной внутри модуля math, можно так:

math.pi

Функция getattr() позволяет получить значение атрибута модуля по его назва-

нию, заданному в виде строки. С помощью этой функции можно сформировать на-

звание атрибута динамически во время выполнения программы. Формат функции:

getattr(<Объект модуля>, <Атрибут>[, <Значение по умолчанию>])

Если указанный атрибут не найден, возбуждается исключение AttributeError.

Чтобы избежать вывода сообщения об ошибке, можно в третьем параметре указать

значение, которое будет возвращаться, если атрибут не существует. Пример ис-

пользования функции приведен в листинге 12.3.

Листинг 12.3. Пример использования функции getattr()

import math

print getattr(math, "pi") # Число pi

print getattr(math, "x", 50) # Число 50, т. к. x не существует

Проверить существование атрибута позволяет функция hasattr(<Объект>,

<Название атрибута>). Если атрибут существует, функция возвращает значение

True. Напишем функцию проверки существования атрибута в модуле math (лис-

тинг 12.4).

Глава 12

196

Листинг 12.4. Проверка существования атрибута

import math

def f_hasattr_math(attr):

 if hasattr(math, attr):

 return "Атрибут существует"

 else:

 return "Атрибут не существует"

print f_hasattr_math("pi") # Атрибут существует

print f_hasattr_math("x") # Атрибут не существует

Если название модуля является слишком длинным и его неудобно указывать

каждый раз для доступа к идентификаторам внутри модуля, то можно создать

псевдоним. Псевдоним задается после ключевого слова as. Создадим псевдоним

для модуля math (листинг 12.5).

Листинг 12.5. Использование псевдонимов

import math as m # Создание псевдонима

print m.pi # Число pi

Теперь доступ к атрибутам модуля math может осуществляться только с помо-

щью идентификатора m. Идентификатор math в этом случае использовать уже нельзя.

Все идентификаторы внутри импортированного модуля доступны только через

идентификатор, указанный в инструкции import. Это означает, что любая глобаль-

ная переменная на самом деле является глобальной переменной модуля. По этой

причине модули часто используются как пространства имен. В качестве примера

создадим модуль под названием tests.py, в котором определим переменную x (лис-

тинг 12.6).

Листинг 12.6. Содержимое модуля tests.py

-*- coding: cp866 -*-

x = 50

В основной программе также определим переменную x, но с другим значением.

Затем подключим файл tests.py и выведем значения переменных (листинг 12.7).

Листинг 12.7. Содержимое основной программы

-*- coding: cp866 -*-

import tests # Подключаем файл tests.py

x = 22

print tests.x # Значение переменной x внутри модуля

print x # Значение переменной x в основной программе

raw_input()

Модули и пакеты

197

Оба файла размещаем в одной папке, а затем запускаем файл с основной про-

граммой с помощью двойного щелчка на значке файла. Как видно из результата,

никакого конфликта имен нет, т. к. одноименные переменные расположены в раз-

ных пространствах имен.

Обратите внимание на содержимое папки с файлами после подключения моду-

ля tests.py. Внутри папки автоматически был создан файл tests.pyc. Этот файл со-

держит скомпилированный байт-код одноименного модуля. Байт-код создается при

первом импортировании модуля и изменяется только после изменения кода внутри

модуля. При всех последующих подключениях модуля tests.py будет исполняться

код из файла tests.pyc. Следует заметить, что для импортирования модуля доста-

точно иметь только файл tests.pyc. Для примера переименуйте файл tests.py (на-

пример, в tests1.py) и запустите основную программу. Программа будет нормально

выполняться. Таким образом, чтобы скрыть исходный код модулей, можно постав-

лять программу клиентам только с файлами, имеющими расширение pyc.

Существует еще одно обстоятельство, на которое следует обратить особое вни-

мание. Импортирование модуля выполняется только при первом вызове инструк-

ции import. При каждом вызове инструкции import проверяется наличие объекта

модуля в словаре modules из модуля sys. Если ссылка на модуль находится в этом

словаре, то модуль повторно импортироваться не будет. В качестве примера выве-

дем ключи словаря modules, предварительно отсортировав их (листинг 12.8).

Листинг 12.8. Вывод ключей словаря modules

-*- coding: cp866 -*-

import tests, sys # Подключаем модули tests и sys

print sorted(sys.modules.keys())

raw_input()

Инструкция import требует явного указания объекта модуля. Например, пере-

дать название модуля в виде строки нельзя. Чтобы подключить модуль, название

которого создается динамически в зависимости от определенных условий, следует

воспользоваться функцией __import__(). В качестве примера подключим модуль

tests.py с помощью функции __import__() (листинг 12.9).

Листинг 12.9. Использование функции __import__()

-*- coding: cp866 -*-

s = "test" + "s" # Динамическое создание названия модуля

m = __import__(s) # Подключение модуля tests

print m.x # Вывод значения атрибута x

raw_input()

Получить список всех идентификаторов внутри модуля позволяет функция

dir(). Кроме того, можно воспользоваться словарем __dict__, который содержит

все идентификаторы и их значения (листинг 12.10).

Глава 12

198

Листинг 12.10. Вывод списка всех идентификаторов

-*- coding: cp866 -*-

import tests

print dir(tests)

print sorted(tests.__dict__.keys())

raw_input()

12.2. Инструкция from

Для импортирования определенных идентификаторов из модуля можно вос-

пользоваться инструкцией from. Инструкция имеет несколько форматов:
from <Название модуля> import <Идентификатор 1> [as <Псевдоним 1>]

 [, ..., <Идентификатор N> [as <Псевдоним N>]]

from <Название модуля> import (<Идентификатор 1> [as <Псевдоним 1>],

 [..., <Идентификатор N> [as <Псевдоним N>]])

from <Название модуля> import *

Первые два формата позволяют импортировать модуль и сделать доступными

только указанные идентификаторы. Для длинных имен можно назначить псевдо-

ним, указав его после ключевого слова as. В качестве примера сделаем доступны-

ми константу pi и функцию floor() из модуля math, а для названия функции соз-

дадим псевдоним (листинг 12.11).

Листинг 12.11. Инструкция from

-*- coding: cp866 -*-

from math import pi, floor as f

print pi # Вывод числа pi

Вызываем функцию floor() через идентификатор f

print f(5.49) # Выведет: 5.0

raw_input()

Идентификаторы можно разместить на нескольких строках, указав их названия

через запятую внутри круглых скобок:
from math import (pi, floor,

 sin, cos)

Третий формат инструкции from позволяет импортировать все идентификаторы

из модуля. Для примера импортируем все идентификаторы из модуля math (лис-

тинг 12.12).

Листинг 12.12. Импорт всех идентификаторов из модуля

-*- coding: cp866 -*-

from math import * # Импортируем все идентификаторы из модуля math

Модули и пакеты

199

print pi # Вывод числа pi

print floor(5.49) # Вызываем функцию floor()

raw_input()

Следует заметить, что идентификаторы, названия которых начинаются с сим-

вола подчеркивания, импортированы не будут. Кроме того, необходимо учитывать,

что импортирование всех идентификаторов из модуля может нарушить простран-

ство имен главной программы, т. к. идентификаторы, имеющие одинаковые имена,

будут перезаписаны. Создадим два модуля и подключим их с помощью инструкций

from и import. Содержимое файла module1.py приведено в листинге 12.13.

Листинг 12.13. Содержимое файла module1.py

-*- coding: cp866 -*-

s = "Значение из модуля module1"

Содержимое файла module2.py приведено в листинге 12.14.

Листинг 12.14. Содержимое файла module2.py

-*- coding: cp866 -*-

s = "Значение из модуля module2"

Исходный код основной программы приведен в листинге 12.15.

Листинг 12.15. Содержимое основной программы

-*- coding: cp866 -*-

from module1 import *

from module2 import *

import module1, module2

print s # Выведет: "Значение из модуля module2"

print module1.s # Выведет: "Значение из модуля module1"

print module2.s # Выведет: "Значение из модуля module2"

raw_input()

Размещаем все файлы в одной папке, а затем запускаем основную программу с

помощью двойного щелчка на значке файла. Итак, в обоих модулях определена

переменная с именем s. При импортировании всех идентификаторов значением

переменной s будет значение из модуля, который был импортирован последним.

В нашем случае это значение из модуля module2.py. Получить доступ к обеим пе-

ременным можно только при использовании инструкции import. Благодаря точеч-

ной нотации пространство имен не нарушается.

В атрибуте __all__ можно указать список идентификаторов, которые будут

импортироваться с помощью выражения from module import *. Идентификато-

Глава 12

200

ры внутри списка указываются в виде строки. Создадим файл module1.py (лис-

тинг 12.16).

Листинг 12.16. Использование атрибута __all__

-*- coding: cp866 -*-

x, y, z, _s = 10, 80, 22, "Строка"

__all__ = ["x", "_s"]

Затем подключим его к основной программе (листинг 12.17).

Листинг 12.17. Содержимое основной программы

-*- coding: cp866 -*-

from module1 import *

print sorted(vars().keys()) # Получаем список всех идентификаторов

raw_input()

После запуска основной программы (с помощью двойного щелчка на значке

файла) получим следующий результат:

['__builtins__', '__doc__', '__file__', '__name__', '__package__',

 '_s', 'x']

Как видно из примера, были импортированы только переменные _s и x. Если

бы мы не указали идентификаторы внутри списка __all__, то результат был бы

другим:

['__builtins__', '__doc__', '__file__', '__name__', '__package__',

'x', 'y', 'z']

Обратите внимание на то, что переменная _s в этом случае не копируется из

модуля, т. к. ее имя начинается с символа подчеркивания.

12.3. Пути поиска модулей

До сих пор мы размещали модули в одной папке с исполняемым файлом.

В этом случае нет необходимости настраивать пути поиска модулей, т. к. папка с

исполняемым файлом автоматически добавляется в начало списка путей. Получить

полный список путей поиска позволяет следующий код:

>>> import sys # Подключаем модуль sys

>>> sys.path # path содержит список путей поиска модулей

Список sys.path содержит пути поиска, получаемые из следующих источников:

 путь к текущему каталогу с исполняемым файлом;

 значение переменной окружения PYTHONPATH. Для добавления переменной в

меню Пуск выбираем пункт Панель управления (или Настройка | Панель

управления). В открывшемся окне выбираем пункт Система. Переходим на

Модули и пакеты

201

вкладку Дополнительно и нажимаем кнопку Переменные среды. В разделе

Переменные среды пользователя нажимаем кнопку Создать. В поле Имя

переменной вводим "PYTHONPATH", а в поле Значение переменной задаем

пути к папкам с модулями через точку с запятой, например "C:\folder1;C:\folder2".

После этого изменения перезагружать компьютер не нужно, достаточно заново

запустить программу;

 пути поиска стандартных модулей;

 содержимое файлов с расширением pth, расположенных в каталогах поиска

стандартных модулей, например, в каталоге C:\Python26\Lib\site-packages. На-

звание файла может быть произвольным, главное, чтобы расширение файла

было pth. Каждый путь (абсолютный или относительный) должен быть распо-

ложен на отдельной строке. В качестве примера создайте файл mypath.pth в ка-

талоге C:\Python26\Lib\site-packages со следующим содержимым:

Это комментарий

C:\folder1

C:\folder2

Обратите внимание на то, что каталоги должны существовать, в противном

случае они не будут добавлены в список sys.path.

При поиске модуля список sys.path просматривается слева направо. Поиск

прекращается после первого найденного модуля. Таким образом, если в каталогах

C:\folder1 и C:\folder2 существуют одноименные модули, то будет использоваться

модуль из папки C:\folder1, т. к. он расположен первым в списке путей поиска.

Список sys.path можно изменять из программы с помощью списковых мето-

дов. Например, добавить каталог в конец списка можно с помощью метода

append(), а в начало списка — с помощью метода insert() (листинг 12.18).

Листинг 12.18. Изменение списка путей поиска модулей

-*- coding: cp866 -*-

import sys

sys.path.append(r"C:\folder1") # Добавляем в конец списка

sys.path.insert(0, r"C:\folder2") # Добавляем в начало списка

print sys.path

raw_input()

В этом примере мы добавили папку C:\folder2 в начало списка. Теперь, если в

каталогах C:\folder1 и C:\folder2 существуют одноименные модули, то будет ис-

пользоваться модуль из папки C:\folder2, а не в C:\folder1, как в предыдущем при-

мере.

Обратите внимание на символ r перед открывающей кавычкой. В этом режиме

специальные последовательности символов не интерпретируются. Если использу-

ются обычные строки, то необходимо удвоить каждый слеш в пути:

sys.path.append("C:\\folder1\\folder2\\folder3")

Глава 12

202

12.4. Повторная загрузка модулей

Как вы уже знаете, модуль загружается только один раз при первой операции им-

порта. Все последующие операции импортирования этого модуля будут возвращать

уже загруженный объект модуля, даже если сам модуль был изменен. Чтобы повтор-

но загрузить модуль, следует воспользоваться функцией reload(). Формат функции:

reload(<Объект модуля>)

В качестве примера создадим модуль tests.py со следующим содержимым:

-*- coding: cp1251 -*-

x = 150

Подключим этот модуль в окне Python Shell редактора IDLE и выведем теку-

щее значение переменной x:

>>> import tests # Подключаем модуль tests.py

>>> print tests.x # Выводим текущее значение

150

Не закрывая окно Python Shell, изменим значение переменной x на 800, а затем

попробуем заново импортировать модуль и вывести текущее значение переменной:

>>> # Изменяем значение в модуле на 800

>>> import tests

>>> print tests.x # Значение не изменилось

150

Как видно из примера, значение переменной x не изменилось. Теперь переза-

грузим модуль с помощью функции reload() (листинг 12.19).

Листинг 12.19. Повторная загрузка модуля

>>> reload(tests) # Перезагружаем модуль

<module 'tests' from 'C:\book\tests.py'>

>>> print tests.x # Значение изменилось

800

При использовании функции reload() следует учитывать, что идентификато-

ры, импортированные с помощью инструкции from, перезагружены не будут. Кро-

ме того, повторно не загружаются скомпилированные модули, написанные на дру-

гих языках программирования, например, C.

12.5. Пакеты

Пакетом называется каталог с модулями, в котором расположен файл инициа-

лизации __init__.py. Файл инициализации может быть пустым или содержать код,

который будет выполнен при первом обращении к пакету. В любом случае он обя-

зательно должен присутствовать внутри каталога с модулями.

Модули и пакеты

203

В качестве примера создадим следующую структуру файлов и каталогов:

main.py # Основной файл с программой

folder1\ # Папка на одном уровне вложенности с main.py

 __init__.py # Файл инициализации

 module1.py # Модуль folder1\module1.py

 folder2\ # Вложенная папка

 __init__.py # Файл инициализации

 module2.py # Модуль folder1\folder2\module2.py

 module3.py # Модуль folder1\folder2\module3.py

Содержимое файлов __init__.py приведено в листинге 12.20.

Листинг 12.20. Содержимое файлов __init__.py

-*- coding: cp866 -*-

print "__init__ из", __name__

Содержимое модулей module1.py, module2.py и module3.py приведено в листин-

ге 12.21.

Листинг 12.21. Содержимое модулей module1.py, module2.py и module3.py

-*- coding: cp866 -*-

msg = "Модуль %s" % __name__

Теперь импортируем эти модули в основном файле main.py и получим значение

переменной msg разными способами. Файл main.py будем запускать с помощью

двойного щелчка на значке файла. Содержимое файла main.py приведено в листин-

ге 12.22.

Листинг 12.22. Содержимое файла main.py

-*- coding: cp866 -*-

Доступ к модулю folder1\module1.py

import folder1.module1 as m1

 # Выведет: __init__ из folder1

print m1.msg # Выведет: Модуль folder1.module1

from folder1 import module1 as m2

print m2.msg # Выведет: Модуль folder1.module1

from folder1.module1 import msg

print msg # Выведет: Модуль folder1.module1

Доступ к модулю folder1\folder2\module2.py

import folder1.folder2.module2 as m3

 # Выведет: __init__ из folder1.folder2

print m3.msg # Выведет: Модуль folder1.folder2.module2

Глава 12

204

from folder1.folder2 import module2 as m4

print m4.msg # Выведет: Модуль folder1.folder2.module2

from folder1.folder2.module2 import msg

print msg # Выведет: Модуль folder1.folder2.module2

raw_input()

Как видно из примера, пакеты позволяют распределить модули по каталогам.

Чтобы импортировать модуль, расположенный во вложенном каталоге, необходи-

мо указать путь к нему, перечислив имена каталогов через точку. Если модуль рас-

положен в каталоге C:\folder1\folder2\, то путь к нему из C:\ будет выглядеть так:

folder1.folder2. При использовании инструкции import путь к модулю должен

включать не только названия каталогов, но и название модуля без расширения:

import folder1.folder2.module2

Получить доступ к идентификаторам внутри импортированного модуля можно

следующим образом:

print folder1.folder2.module2.msg

Так как постоянно указывать такой длинный идентификатор очень неудобно,

можно создать псевдоним, указав его после ключевого слова as, и обращаться к

идентификаторам модуля через него:

import folder1.folder2.module2 as m

print m.msg

При использовании инструкции from можно импортировать как объект модуля,

так и определенные идентификаторы из модуля. Чтобы импортировать объект мо-

дуля, его название следует указать после ключевого слова import:

from folder1.folder2 import module2

print module2.msg

Для импортирования только определенных идентификаторов название модуля

указывается в составе пути, а после ключевого слова import через запятую пере-

числяются идентификаторы:

from folder1.folder2.module2 import msg

print msg

Если необходимо импортировать все идентификаторы из модуля, то после

ключевого слова import указывается символ *:

from folder1.folder2.module2 import *

print msg

Инструкция from позволяет также импортировать сразу несколько модулей из

пакета. Для этого внутри файла инициализации __init__.py в атрибуте __all__ не-

обходимо указать список модулей, которые будут импортироваться с помощью

выражения from пакет import *. В качестве примера изменим содержимое файла

__init__.py из каталога C:\folder1\folder2\:

-*- coding: cp866 -*-

__all__ = ["module2", "module3"]

Модули и пакеты

205

Теперь изменим содержимое основного файла main.py (листинг 12.23) и запус-

тим его.

Листинг 12.23. Содержимое файла main.py

-*- coding: cp866 -*-

from folder1.folder2 import *

print module2.msg # Выведет: Модуль folder1.folder2.module2

print module3.msg # Выведет: Модуль folder1.folder2.module3

raw_input()

Как видно из примера, после ключевого слова from указывается лишь путь к

каталогу без имени модуля. В результате выполнения инструкции from все модули,

указанные в списке __all__, будут импортированы в пространство имен модуля

main.py.

До сих пор мы рассматривали импортирование модулей из основной програм-

мы. Теперь рассмотрим импорт модулей внутри пакета. В этом случае инструкция

from поддерживает относительный импорт модулей. Чтобы импортировать модуль,

расположенный в том же каталоге, перед названием модуля указывается точка:

from .module import *

Чтобы импортировать модуль, расположенный в родительском каталоге, перед

названием модуля указываются две точки:

from ..module import *

Если необходимо обратиться еще уровнем выше, то указываются три точки:

from ...module import *

Чем выше уровень, тем больше точек необходимо указать. После ключевого

слова from можно ставить только точки. В этом случае имя модуля вводится после

ключевого слова import. Пример:

from .. import module

Рассмотрим относительный импорт на примере. Для этого изменим содержи-

мое модуля module3.py, как показано в листинге 12.24.

Листинг 12.24. Содержимое модуля module3.py

-*- coding: cp866 -*-

Импорт модуля module2.py из текущего каталога

from . import module2 as m1

var1 = "Значение из: %s" % m1.msg

from .module2 import msg as m2

var2 = "Значение из: %s" % m2

Импорт модуля module1.py из родительского каталога

from .. import module1 as m3

Глава 12

206

var3 = "Значение из: %s" % m3.msg

from ..module1 import msg as m4

var4 = "Значение из: %s" % m4

Теперь изменим содержимое основного файла main.py (листинг 12.25) и запус-

тим его с помощью двойного щелчка на значке файла.

Листинг 12.25. Содержимое файла main.py

-*- coding: cp866 -*-

from folder1.folder2 import module3 as m

print m.var1 # Значение из: Модуль folder1.folder2.module2

print m.var2 # Значение из: Модуль folder1.folder2.module2

print m.var3 # Значение из: Модуль folder1.module1

print m.var4 # Значение из: Модуль folder1.module1

raw_input()

ГЛАВА 13

Объектно-ориентированное
программирование

Объектно-ориентированное программирование (ООП) — это способ организа-

ции программы, позволяющий использовать один и тот же код многократно. В от-

личие от функций и модулей ООП позволяет не только разделить программу на

фрагменты, но и описать предметы реального мира в виде объектов, а также орга-

низовать связи между этими объектами.

Основным "кирпичиком" ООП является класс. Класс — это объект, включаю-

щий набор переменных и функций для управления этими переменными. Перемен-

ные называют атрибутами, а функции — методами. Класс является фабрикой

объектов, т. е. позволяет создать неограниченное количество объектов, основанных

на этом классе.

13.1. Определение класса

и создание экземпляра класса

Класс описывается с помощью ключевого слова class по следующей схеме:

class <Название класса>[(<Класс1>[, ..., <КлассN>])]:

 [""" Строка документирования """]

 <Описание атрибутов и методов>

Инструкция создает новый объект и присваивает ссылку на него идентифика-

тору, указанному после ключевого слова class. Это означает, что название класса

должно полностью соответствовать правилам именований переменных. После на-

звания класса в круглых скобках можно указать один или несколько базовых клас-

сов через запятую. Если класс не наследует базовые классы, то круглые скобки

можно не указывать. Следует заметить, что все выражения внутри инструкции

class выполняются при создании объекта, а не при создании экземпляра класса.

Глава 13

208

В качестве примера создадим класс, внутри которого просто выводится сообщение

(листинг 13.1).

Листинг 13.1. Создание определения класса

-*- coding: cp866 -*-

class Class1:

 """ Это строка документирования """

 print "Инструкции выполняются сразу"

raw_input()

Этот пример содержит только определение класса Class1 и не создает экземп-

ляр класса. Как только поток выполнения достигнет инструкции class, сообщение,

указанное в операторе print, будет сразу выведено.

Создание переменной (атрибута) внутри класса аналогично созданию обычной

переменной. Метод внутри класса создается так же, как и обычная функция, с по-

мощью инструкции def. Методам класса в первом параметре автоматически пере-

дается ссылка на экземпляр класса. Общепринято этот параметр называть именем

self, хотя это и не обязательно. Доступ к атрибутам и методам класса производит-

ся через переменную self с помощью точечной нотации. Например, к атрибуту

var1 из метода класса можно обратиться так: self.var1.

Чтобы использовать атрибуты и методы класса, необходимо создать экземпляр

класса. Для этого используется следующий синтаксис:

<Экземпляр класса> = <Название класса>([<Параметры>])

Определим класс Class1 с атрибутом var1 и методом f_print(), выводящим

значение этого атрибута, а затем создадим экземпляр класса и вызовем метод (лис-

тинг 13.2).

Листинг 13.2. Создание атрибута и метода

class Class1:

 var1 = 10 # Переменная внутри класса

 def f_print(self): # self - это ссылка на экземпляр класса

 print self.var1 # Выводим значение переменной

c1 = Class1() # Создание экземпляра класса

 # Вызываем метод f_print()

c1.f_print() # self не указывается при вызове метода

print c1.var1 # К атрибуту можно обратиться непосредственно

При обращении к методам класса используется следующий формат:

<Экземпляр класса>.<Имя метода>([<Параметры>])

Обратите внимание на то, что при вызове метода не нужно передавать ссылку

на экземпляр класса в качестве параметра, как это делается в определении метода

внутри класса. Ссылку на экземпляр класса интерпретатор передает автоматически.

Объектно-ориентированное программирование

209

Обращение к атрибутам класса осуществляется аналогично:

<Экземпляр класса>.<Имя атрибута>

Для доступа к атрибутам и методам можно также использовать следующие

функции:

 getattr() — возвращает значение атрибута по его названию, заданному в виде

строки. С помощью этой функции можно сформировать название атрибута ди-

намически во время выполнения программы. Формат функции:

getattr(<Объект>, <Атрибут>[, <Значение по умолчанию>])

Если указанный атрибут не найден, возбуждается исключение AttributeError.

Чтобы избежать вывода сообщения об ошибке, можно в третьем параметре ука-

зать значение, которое будет возвращаться, если атрибут не существует;

 setattr() — задает значение атрибута. Название атрибута указывается в виде

строки. Формат функции:

setattr(<Объект>, <Атрибут>, <Значение>)

 delattr(<Объект>, <Атрибут>) — удаляет указанный атрибут. Название атри-

бута указывается в виде строки;

 hasattr(<Объект>, <Атрибут>) — проверяет наличие указанного атрибута.

Если атрибут существует, функция возвращает значение True.

Продемонстрируем работу функций на примере (листинг 13.3).

Листинг 13.3. Функции getattr(), setattr() и hasattr()

class Class1:

 var1 = 10

 def f_test(self):

 return self.var1

c1 = Class1() # Создаем экземпляр класса

print getattr(c1, "var1") # Выведет: 10

print getattr(c1, "f_test")() # Выведет: 10

print getattr(c1, "var2", 0) # Выведет: 0, т. к. атрибут не найден

setattr(c1, "var2", 20) # Создаем атрибут var2

print getattr(c1, "var2", 0) # Выведет: 20

delattr(c1, "var2") # Удаляем атрибут var2

print getattr(c1, "var2", 0) # Выведет: 0, т. к. атрибут не найден

print hasattr(c1, "var1") # Выведет: True

print hasattr(c1, "var2") # Выведет: False

Все атрибуты класса в языке Python являются открытыми (public), т. е. дос-

тупны для непосредственного изменения. Кроме того, атрибуты можно создавать

динамически после создания класса. Можно создать как атрибут объекта класса,

так и атрибут экземпляра класса. Рассмотрим это на примере (листинг 13.4).

Глава 13

210

Листинг 13.4. Атрибуты объкта класса и экземпляра класса

class Class1: # Определяем пустой класс

 pass

Class1.var1 = 50 # Создаем атрибут объекта класса

c1, c2 = Class1(), Class1() # Создаем два экземпляра класса

c1.var2 = 10 # Создаем атрибут экземпляра класса

c2.var2 = 20 # Создаем атрибут экземпляра класса

print c1.var1, c1.var2 # Выведет: 50, 10

print c2.var1, c2.var2 # Выведет: 50, 20

В этом примере мы определяем пустой класс, разместив в нем инструкцию

pass. Далее создаем атрибут объекта класса (var1). Этот атрибут будет доступен

всем создаваемым экземплярам класса. Затем создаем два экземпляра класса и до-

бавляем одноименные атрибуты (var2). Значение этого атрибута будет разным в

каждом экземпляре класса. Если создать новый экземпляр (например, c3), то атри-

бут var2 в нем определен не будет. Таким образом, с помощью классов можно

имитировать типы данных, определенные в других языках программирования, на-

пример, тип struct в языке C++.

13.2. Методы __init__() и __del__()

При создании экземпляра класса интерпретатор автоматически вызывает метод

инициализации __init__(). В других языках программирования такой метод при-

нято называть конструктором класса. Формат метода:
def __init__(self[, <Значение1>[, ..., <ЗначениеN>]]):

 <Выражения>

С помощью метода __init__() можно присвоить начальные значения атрибу-

там класса. При создании экземпляра класса начальные значения указываются по-

сле имени класса в круглых скобках:
<Экземпляр класса> = <Имя класса>([<Значение1>[, ..., <ЗначениеN>]])

Пример использования метода __init__() приведен в листинге 13.5.

Листинг 13.5. Метод __init__()

class Class1:

 def __init__(self, value1, value2): # Конструктор

 self.var1 = value1

 self.var2 = value2

c1 = Class1(100, 300) # Создаем экземпляр класса

print c1.var1, c1.var2 # Выведет: 100 300

Если конструктор вызывается при создании объекта, то перед уничтожением

объекта автоматически вызывается метод, называемый деструктором. В языке

Объектно-ориентированное программирование

211

Python деструктор реализуется в виде предопределенного метода __del__() (лис-

тинг 13.6). Следует заметить, что метод не будет вызван, если на экземпляр класса

существует хотя бы одна ссылка. Кроме того, т. к. интерпретатор самостоятельно

заботится об удалении объектов, использование деструктора в языке Python не

имеет особого смысла.

Листинг 13.6. Метод __del__()

class Class1:

 def __init__(self): # Конструктор класса

 print "Вызван метод __init__()"

 def __del__(self): # Деструктор класса

 print "Вызван метод __del__()"

c1 = Class1() # Выведет: Вызван метод __init__()

del c1 # Выведет: Вызван метод __del__()

c2 = Class1() # Выведет: Вызван метод __init__()

c3 = c2 # Создаем ссылку на экземпляр класса

del c2 # Ничего не выведет, т. к. существует ссылка

del c3 # Выведет: Вызван метод __del__()

13.3. Наследование

Наследование является, пожалуй, самым главным понятием ООП. Предполо-

жим, у нас есть класс (например, Сlass1). При помощи наследования мы можем соз-

дать новый класс (например, Сlass2), в котором будет доступ ко всем атрибутам и

методам класса Сlass1, а также к некоторым новым атрибутам и методам (лис-

тинг 13.7).

Листинг 13.7. Наследование

class Class1: # Базовый класс

 def f_func1(self):

 print "Метод f_func1() класса Class1"

 def f_func2(self):

 print "Метод f_func2() класса Class1"

class Class2(Class1): # Класс Class2 наследует класс Class1

 def f_func3(self):

 print "Метод f_func3() класса Class2"

c1 = Class2() # Создаем экземпляр класса Class2

c1.f_func1() # Выведет: Метод f_func1() класса Class1

c1.f_func2() # Выведет: Метод f_func2() класса Class1

c1.f_func3() # Выведет: Метод f_func3() класса Class2

Глава 13

212

Как видно из примера, класс Class1 указывается внутри круглых скобок в оп-

ределении класса Class2. Таким образом, класс Class2 наследует все атрибуты и

методы класса Class1. Класс Class1 называется базовым классом или суперклас-

сом, а класс Class2 — производным классом или подклассом.

Если имя метода в классе Class2 совпадает с именем метода класса Class1, то

будет использоваться метод из класса Class2. Чтобы вызвать одноименный метод

из базового класса, следует указать перед методом название базового класса. Кро-

ме того, в первом параметре метода необходимо явно указать ссылку на экземпляр

класса. Рассмотрим это на примере (листинг 13.8).

Листинг 13.8. Переопределение методов

class Class1: # Базовый класс

 def __init__(self):

 print "Конструктор базового класса"

 def f_func1(self):

 print "Метод f_func1() класса Class1"

class Class2(Class1): # Класс Class2 наследует класс Class1

 def __init__(self):

 print "Конструктор производного класса"

 Class1.__init__(self) # Вызываем конструктор базового класса

 def f_func1(self):

 print "Метод f_func1() класса Class2"

 Class1.f_func1(self) # Вызываем метод базового класса

c1 = Class2() # Создаем экземпляр класса Class2

c1.f_func1() # Вызываем метод f_func1()

Выведет:

Конструктор производного класса

Конструктор базового класса

Метод f_func1() класса Class2

Метод f_func1() класса Class1

ВНИМАНИЕ!

Конструктор базового класса автоматически не вызывается.

13.4. Множественное наследование

В определении класса в круглых скобках можно указать сразу несколько базо-

вых классов через запятую. В этом случае поиск идентификаторов производится

вначале в производном классе, затем в базовом классе, расположенном первым в

Объектно-ориентированное программирование

213

списке, далее просматриваются все базовые классы базового класса. Только после

этого просматривается базовый класс, расположенный в списке правее, и все его

базовые классы. Список базовых классов просматривается слева направо. Резуль-

татом поиска будет первый найденный идентификатор. Рассмотрим множественное

наследование на примере (листинг 13.9).

Листинг 13.9. Множественное наследование

class Class1: # Базовый класс для класса Class2

 def f_func1(self):

 print "Метод f_func1() класса Class1"

class Class2(Class1): # Класс Class2 наследует класс Class1

 def f_func2(self):

 print "Метод f_func2() класса Class2"

class Class3(Class1): # Класс Class3 наследует класс Class1

 def f_func1(self):

 print "Метод f_func1() класса Class3"

 def f_func2(self):

 print "Метод f_func2() класса Class3"

 def f_func3(self):

 print "Метод f_func3() класса Class3"

 def f_func4(self):

 print "Метод f_func4() класса Class3"

class Class4(Class2, Class3): # Множественное наследование

 def f_func4(self):

 print "Метод f_func4() класса Class4"

c1 = Class4() # Создаем экземпляр класса Class4

c1.f_func1() # Выведет: Метод f_func1() класса Class1

c1.f_func2() # Выведет: Метод f_func2() класса Class2

c1.f_func3() # Выведет: Метод f_func3() класса Class3

c1.f_func4() # Выведет: Метод f_func4() класса Class4

Итак, метод f_func1() определен в двух классах — Class1 и Class3. Так как

класс Class2 стоит первым в списке базовых классов, вначале просматривается

этот класс, а затем все его базовые классы. Поэтому метод f_func1() будет найден

в классе Class1, а не в классе Class3.

Метод f_func2() также определен в двух классах — Class2 и Class3. Так как

класс Class2 стоит первым в списке базовых классов, то метод будет найден имен-

но в этом классе. Чтобы наследовать метод из класса Class3, следует указать это

явным образом. Переделаем определение класса Class4 из предыдущего примера и

наследуем метод f_func2()из класса Class3 (листинг 13.10).

Листинг 13.10. Указание класса при наследовании метода

class Class4(Class2, Class3): # Множественное наследование

 # Наследуем f_func2() из класса Class3, а не из класса Class2

Глава 13

214

 f_func2 = Class3.f_func2

 def f_func4(self):

 print "Метод f_func4() класса Class4"

Метод f_func3() определен только в классе Class3, поэтому метод наследует-

ся от этого класса. Метод f_func4(), определенный в классе Class3, переопределя-

ется в производном классе. Если метод найден в производном классе, то вся иерар-

хия наследования просматриваться не будет.

Если необходимо получить перечень базовых классов, то можно воспользо-

ваться атрибутом __bases__. В качестве значения атрибут возвращает кортеж.

В качестве примера выведем базовые классы для класса Class4 из предыдущего

примера:

print Class4.__bases__

Выведет:

(<class __main__.Class2 at 0x00A7DE10>, <class __main__.Class3

at 0x00A7DE40>)

13.5. Классы нового стиля

Начиная с Python 2.2, помимо классических классов (рассмотренных нами в

предыдущих разделах) существуют классы так называемого нового стиля. Классом

нового стиля называется класс, у которого базовым классом является встроенный

объект (например, list или dict) или объект object. Для классов старого и нового

стилей отличается результат выполнения функции type(), а также вывод атрибутов

__class__ и __bases__ для экземпляров классов (листинг 13.11).

Листинг 13.11. Классы нового стиля

class Class1: # Классический класс

 pass

class Class2(object): # Класс нового стиля

 pass

class Class3(list): # Класс нового стиля

 pass

print type(Class1) # Выведет: <type 'classobj'>

print type(Class2) # Выведет: <type 'type'>

print type(Class3) # Выведет: <type 'type'>

__bases__ содержит кортеж с базовыми классами

print Class1.__bases__ # Выведет: ()

print Class2.__bases__ # Выведет: (<type 'object'>,)

print Class3.__bases__ # Выведет: (<type 'list'>,)

c1, c2, c3 = Class1(), Class2(), Class3()

print c1.__class__ # Выведет: __main__.Class1

Объектно-ориентированное программирование

215

print c2.__class__ # Выведет: <class '__main__.Class2'>

print c3.__class__ # Выведет: <class '__main__.Class3'>

print type(c1) # Выведет: <type 'instance'>

print type(c2) # Выведет: <class '__main__.Class2'>

print type(c3) # Выведет: <class '__main__.Class3'>

Кроме того, в классах нового стиля другой порядок поиска идентификаторов

при множественном наследовании. Рассмотрим это на примере (листинг 13.12).

Листинг 13.12. Поиск идентификаторов при множественном наследовании

class Class1(object): # Класс нового стиля

#class Class1: # Классический класс

 var1 = "Это значение в классических классах"

class Class2(Class1): pass

class Class3(Class2): pass

class Class4(Class3): pass

class Class5(Class2):

 var1 = "Это значение в классах нового стиля"

class Class6(Class5): pass

class Class7(Class4, Class6): pass

c1 = Class7()

print c1.var1

Если используются классические классы, то атрибут var1 будет найден в клас-

се Class1, т. к. просматривается вся ветка наследования для класса Class4. Если

используются классы нового стиля, то атрибут var1 будет найден в классе Class5,

т. к. при достижении класса Class2 поиск будет производиться в ветке класса

Class6, стоящего в списке наследования вторым. Класс Class2 для классов Class4

и Class6 является общим предком.

Последовательность поиска в классических классах будет такой:

Class7 -> Class4 -> Class3 -> Class2 -> Class1 - > Class6 -> Class5

Последовательность поиска в классах нового стиля:

Class7 -> Class4 -> Class3 - > Class6 -> Class5 -> Class2 -> Class1

13.6. Специальные методы

Классы старого и нового стилей поддерживают следующие специальные ме-

тоды:

 __call__() — позволяет обработать вызов экземпляра класса как вызов функ-

ции. Формат метода:

__call__(self[, <Параметр1>[, ..., <ПараметрN>]])

Глава 13

216

Пример:

class Class1(object):

 def __init__(self, m):

 self.msg = m

 def __call__(self):

 print self.msg

c1 = Class1("Значение1") # Создание экземпляра класса

c2 = Class1("Значение2") # Создание экземпляра класса

c1() # Выведет: Значение1

c2() # Выведет: Значение2

 __setitem__(self, <Ключ>, <Значение>) — вызывается в случае присваива-

ния значения по ключу;

 __getitem__(self, <Ключ>) — вызывается при доступе к значению по ключу.

Метод автоматически вызывается при использовании цикла for, а также при

других операциях, применимых к последовательностям. Пример:

class Class1(object):

 def __init__(self, a):

 self.arr = a

 def __getitem__(self, index):

 return self.arr[index]

 def __setitem__(self, index, value):

 self.arr[index] = value

c1 = Class1([1, 2, 3, 4, 5])

print c1[0] # Выведет: 1

c1[0] = 0 # Присваивание по индексу

print c1[0] # Выведет: 0

for i in c1: # for автоматически вызывает __getitem__()

 print i,

Выведет: 0 2 3 4 5

print list(c1) # Выведет: [0, 2, 3, 4, 5]

print "Есть" if 0 in c1 else "Нет" # Выведет: Есть

 __delitem__(self, <Ключ>) — вызывается в случае удаления элемента по

ключу с помощью выражения del <Экземпляр класса>[<Ключ>];

 __getattr__(self, <Атрибут>) — вызывается при обращении к несущест-

вующему атрибуту класса. Пример:

class Class1(object):

 def __init__(self):

 self.i = 20

 def __getattr__(self, attr):

 print "Вызван метод __getattr__()"

 return 0

c1 = Class1()

Атрибут i существует

print c1.i # Выведет: 20. Метод __getattr__() не вызывается

Объектно-ориентированное программирование

217

Атрибут s не существует

print c1.s # Выведет: Вызван метод __getattr__() 0

 __setattr__(self, <Атрибут>, <Значение>) — вызывается при попытке при-

сваивания значения атрибуту экземпляра класса. Если внутри метода необхо-

димо присвоить значение атрибуту, то следует использовать словарь __dict__,

иначе при точечной нотации метод __setattr__() будет вызван повторно, и

это приведет к зацикливанию. Пример:
class Class1(object):

 def __setattr__(self, attr, value):

 print "Вызван метод __setattr__()"

 self.__dict__[attr] = value # Только так!!!

c1 = Class1()

c1.i = 10 # Выведет: Вызван метод __setattr__()

print c1.i # Выведет: 10

 __delattr__(self, <Атрибут>) — вызывается при удалении атрибута с помо-

щью выражения del <Экземпляр класса>.<Атрибут>;

 __iter__(self) — если метод определен, то считается, что объект поддержи-

вает итерационный протокол. Если в классе одновременно определены методы

__iter__() и __getitem__(), то предпочтение отдается методу __iter__().

Помимо метода __iter__() в классе должен быть определен метод next(), ко-

торый будет вызываться на каждой итерации. Метод next() должен возвра-

щать текущее значение или возбуждать исключение StopIteration, которое

сообщает об окончании итераций. Пример:
class Class1(object):

 def __init__(self, a):

 self.arr = a

 self.i = 0 # Текущий индекс

 def __iter__(self):

 return self

 def next(self):

 if self.i >= len(self.arr):

 self.i = 0 # Устанавливаем в нач. состояние

 raise StopIteration # Возбуждаем исключение

 else:

 elem = self.arr[self.i]

 self.i += 1

 # Возвращаем элемент по текущему индексу

 return elem

c1 = Class1([1, 2, 3, 4, 5])

for i in c1:

 print i, # Выведет: 1 2 3 4 5

print c1.next() # Выведет: 1

print c1.next() # Выведет: 2

for i in c1:

 print i, # Выведет: 3 4 5

Глава 13

218

 __len__(self) — вызывается при использовании функции len(). Метод дол-

жен возвращать положительное целое число. Пример:

class Class1(object):

 def __len__(self):

 return 50

c1 = Class1()

print len(c1) # Выведет: 50

 __nonzero__(self) — вызывается при использовании функции bool();

 __int__(self) — вызывается при преобразовании объекта в целое число с по-

мощью функции int();

 __long__(self) — вызывается при преобразовании объекта в длинное целое

число с помощью функции long();

 __float__(self) — вызывается при преобразовании объекта в вещественное

число с помощью функции float();

 __complex__(self) — вызывается при использовании функции complex();

 __repr__(self) и __str__(self) — служат для преобразования объекта в

строку. Метод __repr__() вызывается при выводе в интерактивной оболочке, а

также при использовании функции repr(). Метод __str__() вызывается при

выводе с помощью оператора print, а также при использовании функции

str(). Если метод __str__() отсутствует, то будет вызван метод __repr__().

В качестве значения методы __repr__() и __str__() должны возвращать стро-

ку. Пример:

class Class1(object):

 def __init__(self, m):

 self.msg = m

 def __repr__(self):

 return "Вызван метод __repr__() %s" % self.msg

 def __str__(self):

 return "Вызван метод __str__() %s" % self.msg

c1 = Class1("Значение")

print repr(c1) # Выведет: Вызван метод __repr__() Значение

print str(c1) # Выведет: Вызван метод __str__() Значение

print c1 # Выведет: Вызван метод __str__() Значение

 __unicode__(self) — вызывается при использовании функции unicode().

13.7. Перегрузка операторов

Перегрузка операторов позволяет экземплярам классов участвовать в обычных

операциях. Чтобы перегрузить оператор, необходимо в классе определить метод со

специальным названием.

Объектно-ориентированное программирование

219

Для перегрузки математических операторов используются следующие методы:

 x + y — сложение — x.__add__(y);

 y + x — сложение (экземпляр класса справа) — x.__radd__(y);

 x += y — сложение и присваивание — x.__iadd__(y);

 x - y — вычитание — x.__sub__(y);

 y - x — вычитание (экземпляр класса справа) — x.__rsub__(y);

 x -= y — вычитание и присваивание — x.__isub__(y);

 x * y — умножение — x.__mul__(y);

 y * x — умножение (экземпляр класса справа) — x.__rmul__(y);

 x *= y — умножение и присваивание — x.__imul__(y);

 x / y — деление — x.__div__(y);

 y / x — деление (экземпляр класса справа) — x.__rdiv__(y);

 x /= y — деление и присваивание — x.__idiv__(y);

 x // y — деление с округлением вниз — x.__floordiv__(y);

 y // x — деление с округлением вниз (экземпляр класса справа) —

x.__rfloordiv__(y);

 x //= y — деление с округлением вниз и присваивание —

x.__ifloordiv__(y);

 x % y — остаток от деления — x.__mod__(y);

 y % x — остаток от деления (экземпляр класса справа) — x.__rmod__(y);

 x %= y — остаток от деления и присваивание — x.__imod__(y);

 x ** y — возведение в степень — x.__pow__(y);

 y ** x — возведение в степень (экземпляр класса справа) — x.__rpow__(y);

 x **= y — возведение в степень и присваивание — x.__ipow__(y);

 -x — унарный – (минус) — x.__neg__();

 +x — унарный + (плюс) — x.__pos__();

 abs(x) — абсолютное значение — x.__abs__().

Пример перегрузки математических операторов приведен в листинге 13.13.

Листинг 13.13. Пример перегрузки математических операторов

class Class1(object):

 def __init__(self):

 self.x = 50

 def __add__(self, y): # Перегрузка оператора +

 print "Экземпляр слева"

 return self.x + y

 def __radd__(self, y): # Перегрузка оператора +

 print "Экземпляр справа"

 return self.x + y

 def __iadd__(self, y): # Перегрузка оператора +=

 print "Сложение с присваиванием"

 return self.x + y

Глава 13

220

c1 = Class1()

print c1 + 10 # Выведет: Экземпляр слева 60

print 20 + c1 # Выведет: Экземпляр справа 70

c1 += 30 # Выведет: Сложение с присваиванием

print c1 # Выведет: 80

Методы перегрузки двоичных операторов:

 ~x — двоичная инверсия — x.__invert__();

 x & y — двоичное И — x.__and__(y);

 y & x — двоичное И (экземпляр класса справа) — x.__rand__(y);

 x &= y — двоичное И и присваивание — x.__iand__(y);

 x | y — двоичное ИЛИ — x.__or__(y);

 y | x — двоичное ИЛИ (экземпляр класса справа) — x.__ror__(y);

 x |= y — двоичное ИЛИ и присваивание — x.__ior__(y);

 x ^ y — двоичное исключающее ИЛИ — x.__xor__(y);

 y ^ x — двоичное исключающее ИЛИ (экземпляр класса справа) —

x.__rxor__(y);

 x ^= y — двоичное исключающее ИЛИ и присваивание — x.__ixor__(y);

 x << y — сдвиг влево — x.__lshift__(y);

 y << x — сдвиг влево (экземпляр класса справа) — x.__rlshift__(y);

 x <<= y — сдвиг влево и присваивание — x.__ilshift__(y);

 x >> y — сдвиг вправо — x.__rshift__(y);

 y >> x — сдвиг вправо (экземпляр класса справа) — x.__rrshift__(y);

 x >>= y — сдвиг вправо и присваивание — x.__irshift__(y).

Перегрузка операторов сравнения производится с помощью следующих методов:

 x == y — равно — x.__eq__(y);

 x != y и x <> y — не равно — x.__ne__(y);

 x < y — меньше — x.__lt__(y);

 x > y — больше — x.__gt__(y);

 x <= y — меньше или равно — x.__le__(y);

 x >= y — больше или равно — x.__ge__(y);

 cmp(x, y) — сравнивает два объекта — x.__cmp__(y);

 y in x — проверка на вхождение — x.__contains__(y).

Пример перегрузки операторов сравнения приведен в листинге 13.14.

Листинг 13.14. Пример перегрузки операторов сравнения

class Class1(object):

 def __init__(self):

 self.x = 50

 self.arr = [1, 2, 3, 4, 5]

 def __eq__(self, y): # Перегрузка оператора ==

 return self.x == y

Объектно-ориентированное программирование

221

 def __contains__(self, y): # Перегрузка оператора in

 return y in self.arr

 def __cmp__(self, y): # Перегрузка функции cmp()

 if self.x > y: return 1

 elif self.x < y: return -1

 else: return 0

c1 = Class1()

print "Равно" if c1 == 50 else "Не равно" # Выведет: Равно

print "Равно" if c1 == 51 else "Не равно" # Выведет: Не равно

print "Есть" if 5 in c1 else "Нет" # Выведет: Есть

print cmp(c1, 51) # Выведет: -1

print cmp(50, c1) # Выведет: 0

13.8. Статические методы

и методы класса

Внутри класса можно создать метод, который будет доступен без создания эк-

земпляра класса. Для этого перед определением метода внутри класса следует ука-

зать декоратор @staticmethod. Вызов статического метода без создания экземпляра

класса осуществляется следующим образом:

<Название класса>.<Название метода>(<Параметры>)

Кроме того, можно вызвать статический метод через экземпляр класса:

<Экземпляр класса>.<Название метода>(<Параметры>)

Пример использования статических методов приведен в листинге 13.15.

Листинг 13.15. Статические методы

class Class1(object):

 @staticmethod

 def sum1(x, y): # Статический метод

 return x + y

 def sum2(self, x, y): # Обычный метод в классе

 return x + y

 def sum3(self, x, y):

 return Class1.sum1(x, y) # Вызов из метода класса

print Class1.sum1(10, 20) # Вызываем статический метод

c1 = Class1()

print c1.sum2(15, 6) # Вызываем метод класса

print c1.sum1(50, 12) # Вызываем статический метод

 # через экземпляр класса

print c1.sum3(23, 5) # Вызываем статический метод

 # внутри класса

Глава 13

222

Обратите внимание на то, что в определении статического метода нет парамет-

ра self. Это означает, что внутри статического метода нет доступа к атрибутам и

методам экземпляра класса.

Методы класса создаются с помощью декоратора @classmethod. В качестве

первого параметра в метод класса передается ссылка на класс, а не на экземпляр

класса. Вызов метода класса осуществляется следующим образом:

<Название класса>.<Название метода>(<Параметры>)

Кроме того, можно вызвать метод класса через экземпляр класса:

<Экземпляр класса>.<Название метода>(<Параметры>)

Пример использования методов класса приведен в листинге 13.16.

Листинг 13.16. Методы класса

class Class1(object):

 @classmethod

 def test(cls, x): # Метод класса

 print cls, x

Class1.test(10) # Вызываем метод через название класса

c1 = Class1()

c1.test(50) # Вызываем метод класса через экземпляр

13.9. Абстрактные методы

Абстрактные методы содержат только определение метода без реализации.

Предполагается, что класс-потомок должен переопределить метод и реализовать

его функциональность. Чтобы такое предположение сделать более очевидным, час-

то внутри абстрактного метода возбуждают исключение (листинг 13.17).

Листинг 13.17. Абстрактные методы

class Class1(object):

 def test(self, x): # Абстрактный метод

 # Возбуждаем исключение с помощью raise

 raise NotImplementedError("Необходимо переопределить метод")

class Class2(Class1): # Наследуем абстрактный метод

 def test(self, x): # Переопределяем метод

 print x

class Class3(Class1): # Класс не переопределяет метод

 pass

c2 = Class2()

c2.test(50) # Выведет: 50

c3 = Class3()

Объектно-ориентированное программирование

223

try: # Перехватываем исключения

 c3.test(50) # Ошибка. Метод test() не переопределен

except NotImplementedError, msg:

 print msg # Выведет: Необходимо переопределить метод

Начиная с версии Python 2.6, в состав стандартной библиотеки входит модуль

abc. В этом модуле определен декоратор @abstractmethod, который позволяет ука-

зать, что метод, перед которым расположен декоратор, является абстрактным. При

попытке создать экземпляр класса-потомка, в котором не переопределен абстракт-

ный метод, возбуждается исключение TypeError. Рассмотрим использование деко-

ратора @abstractmethod на примере (листинг 13.18).

Листинг 13.18. Использование декоратора @abstractmethod

from abc import ABCMeta, abstractmethod

class Class1(object):

 __metaclass__ = ABCMeta

 @abstractmethod

 def test(self, x): # Абстрактный метод

 pass

class Class2(Class1): # Наследуем абстрактный метод

 def test(self, x): # Переопределяем метод

 print x

class Class3(Class1): # Класс не переопределяет метод

 pass

c2 = Class2()

c2.test(50) # Выведет: 50

try:

 c3 = Class3() # Ошибка. Метод test() не переопределен

 c3.test(50)

except TypeError, msg:

 print msg # Can't instantiate abstract class Class3

 # with abstract methods test

13.10. Ограничение доступа

к идентификаторам внутри класса

Все идентификаторы внутри класса в языке Python являются открытыми, т. е.

доступны для непосредственного изменения. Для имитации частных идентифика-

торов можно воспользоваться методами __getattr__(), __getattribute__() и

__setattr__(), которые перехватывают обращения к атрибутам класса. Кроме то-

го, можно воспользоваться идентификаторами, названия которых начинаются с

Глава 13

224

двух символов подчеркивания. Такие идентификаторы называются псевдочастны-

ми. Псевдочастные идентификаторы доступны внутри класса, но не доступны по

имени через экземпляр класса. Тем не менее, изменить идентификатор через эк-

земпляр класса все равно можно, зная, каким образом искажается название иден-

тификатора. Например, идентификатор __privateVar внутри класса Class1 будет

доступен по имени _Class1__privateVar. Как видно из примера, перед идентифи-

катором добавляется название класса с предваряющим символом подчеркивания.

Приведем пример использования псевдочастных идентификаторов (листинг 13.19).

Листинг 13.19. Псевдочастные идентификаторы

class Class1(object):

 def __init__(self, x):

 self.__privateVar = x

 def setVar(self, x): # Изменение значения

 self.__privateVar = x

 def getVar(self): # Получение значения

 return self.__privateVar

c1 = Class1(10) # Создаем экземпляр класса

print c1.getVar() # Выведет: 10

c1.setVar(20) # Изменяем значение

print c1.getVar() # Выведет: 20

try: # Перехватываем ошибки

 print c1.__privateVar # Ошибка!!!

except AttributeError, msg:

 print msg # Выведет: 'Class1' object has

 # no attribute '__privateVar'

c1._Class1__privateVar = 50 # Значение псевдочастных атрибутов

 # все равно можно изменить

print c1.getVar() # Выведет: 50

В классах нового стиля можно ограничить перечень атрибутов, разрешенных

для экземпляров класса. Для этого разрешенные атрибуты перечисляются внутри

класса в атрибуте __slots__. В качестве значения атрибуту можно присвоить стро-

ку или список строк с названиями идентификаторов. Если производится попытка

обращения к атрибуту, не перечисленному в __slots__, то возбуждается исключе-

ние AttributeError (листинг 13.20).

Листинг 13.20. Атрибут __slots__

class Class1(object):

 __slots__ = ["x", "y"]

 def __init__(self, a, b):

 self.x, self.y = a, b

c1 = Class1(1, 2)

Объектно-ориентированное программирование

225

print c1.x, c1.y # Выведет: 1 2

c1.x, c1.y = 10, 20 # Изменяем значения атрибутов

print c1.x, c1.y # Выведет: 10 20

try: # Перехватываем исключения

 c1.z = 50 # Атрибут z не указан в __slots__

 # поэтому возбуждается исключение

except AttributeError, msg:

 print msg # 'Class1' object has no attribute 'z'

13.11. Свойства класса

Классы нового стиля позволяют создать идентификатор, через который можно

получить, изменить или удалить значение атрибута класса. Создается такой иден-

тификатор с помощью функции property(). Формат функции:

<Свойство> = property(<Чтение>[, <Запись>[, <Удаление>

 [, <Строка документирования>]]])

В первых трех параметрах указывается ссылка на соответствующий метод

класса. При попытке получить значение будет вызван метод, указанный в первом

параметре. При операции присваивания значения будет вызван метод, указанный

во втором параметре. Этот метод должен принимать один параметр. В случае уда-

ления атрибута вызывается метод, указанный в третьем параметре. Если в качестве

какого-либо параметра задано значение None, то это означает, что соответствую-

щий метод не поддерживается. Рассмотрим свойства класса на примере (лис-

тинг 13.21).

Листинг 13.21. Свойства класса

class Class1(object):

 def __init__(self, value):

 self.__var = value

 def getVar(self): # Чтение

 return self.__var

 def setVar(self, value): # Запись

 self.__var = value

 def delVar(self): # Удаление

 del self.__var

 v = property(getVar, setVar, delVar, "Строка документирования")

c1 = Class1(5)

c1.v = 35 # Вызывается метод setVar()

print c1.v # Вызывается метод getVar()

del c1.v # Вызывается метод delVar()

Глава 13

226

В Python 2.6 были добавлены методы getter(), setter() и deleter(), позво-

ляющие создавать свойства классов с помощью декораторов функций. Пример ис-

пользования декораторов приведен в листинге 13.22.

Листинг 13.22. Методы getter(), setter() и deleter()

class Class1(object): # Работает, начиная с версии Python 2.6

 def __init__(self, value):

 self.__var = value

 @property

 def v(self): # Чтение

 return self.__var

 @v.setter

 def v(self, value): # Запись

 self.__var = value

 @v.deleter

 def v(self): # Удаление

 del self.__var

c1 = Class1(5)

c1.v = 35 # Запись

print c1.v # Чтение

del c1.v # Удаление

ГЛАВА 14

Обработка исключений

Исключения — это извещения интерпретатора, возбуждаемые в случае возник-

новения ошибки в программном коде или при наступлении какого-либо события.

Если в коде не предусмотрена обработка исключения, то программа прерывается и

выводится сообщение об ошибке.

Существуют три типа ошибок в программе:

 синтаксические — это ошибки в имени оператора или функции, отсутствие

закрывающей или открывающей кавычек и т. д., т. е. ошибки в синтаксисе язы-

ка. Как правило, интерпретатор предупредит о наличии ошибки, а программа

не будет выполняться совсем. Пример синтаксической ошибки:

>>> print "Нет завершающей кавычки!

SyntaxError: EOL while scanning string literal

 логические — это ошибки в логике работы программы, которые можно выявить

только по результатам работы скрипта. Как правило, интерпретатор не преду-

преждает о наличии ошибки. А программа будет выполняться, т. к. не содержит

синтаксических ошибок. Такие ошибки достаточно трудно выявить и испра-

вить;

 ошибки времени выполнения — это ошибки, которые возникают во время рабо-

ты скрипта. Причиной являются события, не предусмотренные программистом.

Классическим примером служит деление на ноль:

>>> def test(x, y): return x / y

>>> test(4, 2) # Нормально

2

>>> test(4, 0) # Ошибка

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 test(4, 0) # Ошибка

 File "<pyshell#2>", line 1, in test

 def test(x, y): return x / y

ZeroDivisionError: integer division or modulo by zero

Глава 14

228

Необходимо заметить, что в языке Python исключения возбуждаются не только

при ошибке, но и как уведомление о наступлении каких-либо событий. Например,

метод index() возбуждает исключение ValueError, если искомый фрагмент не

входит в строку:

>>> "Строка".index("текст")

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 "Строка".index("текст")

ValueError: substring not found

14.1. Инструкция try...except...else...finally

Для обработки исключений предназначена инструкция try. Формат инструк-

ции:

try:

 <Блок, в котором перехватываются исключения>

[except [<Исключение1>[, <Объект исключения>]]:

 <Блок, выполняемый при возникновении исключения>

[...

except [<ИсключениеN>[, <Объект исключения>]]:

 <Блок, выполняемый при возникновении исключения>]]

[else:

 <Блок, выполняемый, если исключение не возникло>]

[finally:

 <Блок, выполняемый в любом случае>]

Инструкции, в которых перехватываются исключения, должны быть располо-

жены внутри блока try. В блоке except в параметре <Исключение1> указывается

класс обрабатываемого исключения. Например, обработать исключение, возни-

кающее при делении на ноль, можно так, как показано в листинге 14.1.

Листинг 14.1. Обработка деления на ноль

try: # Перехватываем исключения

 x = 1 / 0 # Ошибка: деление на 0

except ZeroDivisionError: # Указываем класс исключения

 print "Обработали деление на 0"

 x = 0

print x # Выведет: 0

Если в блоке try возникло исключение, то управление передается блоку

except. В случае, если исключение не соответствует указанному классу, управле-

ние передается следующему блоку except. Если ни один блок except не соответст-

вует исключению, то исключение "всплывает" к обработчику более высокого уров-

Обработка исключений

229

ня. Если исключение нигде не обрабатывается в программе, то управление переда-

ется обработчику по умолчанию, который останавливает выполнение программы и

выводит стандартную информацию об ошибке. Таким образом, в обработчике мо-

жет быть несколько блоков except с разными классами исключений. Кроме того,

один обработчик можно вложить в другой (листинг 14.2).

Листинг 14.2. Вложенные обработчики

try: # Обрабатываем исключения

 try: # Вложенный обработчик

 x = 1 / 0 # Ошибка: деление на 0

 except NameError:

 print "Неопределенный идентификатор"

 except IndexError:

 print "Несуществующий индекс"

 print "Выражение после вложенного обработчика"

except ZeroDivisionError:

 print "Обработка деления на 0"

 x = 0

print x # Выведет: 0

В этом примере во вложенном обработчике не указано исключение
ZeroDivisionError, поэтому исключение "всплывает" к обработчику более высо-
кого уровня. После обработки исключения управление передается выражению,
расположенному сразу после обработчика. В нашем примере управление будет пе-
редано выражению, выводящему значение переменной x (print x). Обратите вни-
мание на то, что выражение print "Выражение после вложенного обработчика"
выполнено не будет.

В инструкции except можно указать сразу несколько исключений, перечислив
их через запятую внутри круглых скобок (листинг 14.3).

Листинг 14.3. Обработка нескольких исключений

try:

 x = 1 / 0

except (NameError, IndexError, ZeroDivisionError):

 # Обработка сразу нескольких исключений

 x = 0

print x # Выведет: 0

Получить информацию об обрабатываемом исключении можно через второй
параметр в инструкции except (листинг 14.4).

Листинг 14.4. Получение информации об исключении

try:

 x = 1 / 0 # Ошибка деления на 0

Глава 14

230

except (NameError, IndexError, ZeroDivisionError), err:

 print err.__class__.__name__ # Название класса исключения

 print err # Текст сообщения об ошибке

Результат выполнения:

ZeroDivisionError

integer division or modulo by zero

Начиная с версии Python 2.6, для разделения параметров в инструкции except

вместо запятой можно использовать ключевое слово as (листинг 14.5).

Листинг 14.5. Использование ключевого слова as

try:

 x = 1 / 0

except NameError as err:

 print err

except (IndexError, ZeroDivisionError) as err:

 print err

Для получения информации об исключении можно воспользоваться функцией

exc_info() из модуля sys, которая возвращает кортеж из трех элементов: типа ис-

ключения, значения и объекта с трассировочной информацией. Преобразовать эти

значения в удобочитаемый вид позволяет модуль traceback. Пример использова-

ния функции exc_info() и модуля traceback приведен в листинге 14.6.

Листинг 14.6. Пример использования функции exc_info()

import sys, traceback

try:

 x = 1 / 0

except ZeroDivisionError:

 Type, Value, Trace = sys.exc_info()

 print "Type: ", Type

 print "Value:", Value

 print "Trace:", Trace

 print "\n", "print_exception()".center(40, "-")

 traceback.print_exception(Type, Value, Trace, limit=5,

 file=sys.stdout)

 print "\n", "print_tb()".center(40, "-")

 traceback.print_tb(Trace, limit=1, file=sys.stdout)

 print "\n", "format_exception()".center(40, "-")

 print traceback.format_exception(Type, Value, Trace, limit=5)

 print "\n", "format_exception_only()".center(40, "-")

 print traceback.format_exception_only(Type, Value)

Обработка исключений

231

Результат выполнения:
Type: <type 'exceptions.ZeroDivisionError'>

Value: integer division or modulo by zero

Trace: <traceback object at 0x00A934E0>

-----------print_exception()------------

Traceback (most recent call last):

 File "C:\book\tests.py", line 4, in <module>

 x = 1 / 0

ZeroDivisionError: integer division or modulo by zero

---------------print_tb()---------------

 File "C:\book\tests.py", line 4, in <module>

 x = 1 / 0

-----------format_exception()-----------

['Traceback (most recent call last):\n', ' File "C:\\book\\tests.py",

line 4, in <module>\n x = 1 / 0\n', 'ZeroDivisionError: integer

division or modulo by zero\n']

--------format_exception_only()---------

['ZeroDivisionError: integer division or modulo by zero\n']

Если в инструкции except не указан класс исключения, то такой блок перехва-
тывает все исключения. На практике следует избегать пустых инструкций except,
т. к. можно перехватить исключение, которое является лишь сигналом системе, а
не ошибкой. Пример пустой инструкции except приведен в листинге 14.7.

Листинг 14.7. Пример перехвата всех исключений

try:

 x = 1 / 0 # Ошибка деления на 0

except: # Обработка всех исключений

 x = 0

print x # Выведет: 0

Если в обработчике присутствует блок else, то выражения внутри этого блока
будут выполнены только при отсутствии ошибок. При необходимости выполнить
какие-либо завершающие действия вне зависимости от того, возникло исключение
или нет, следует воспользоваться блоком finally. В качестве примера выведем
последовательность выполнения блоков (листинг 14.8).

Листинг 14.8. Блоки else и finally

try:

 x = 10 / 2 # Нет ошибки

 #x = 10 / 0 # Ошибка деления на 0

Глава 14

232

except ZeroDivisionError:

 print "Деление на 0"

else:

 print "Блок else"

finally:

 print "Блок finally"

Результат выполнения при отсутствии исключения:

Блок else

Блок finally

Последовательность выполнения блоков при наличии исключения будет другой:

Деление на 0

Блок finally

Необходимо заметить, что при наличии исключения и отсутствии блока except

выражения внутри блока finally будут выполнены, но исключение не будет обра-

ботано. Оно продолжит "всплывание" к обработчику более высокого уровня. Если

пользовательский обработчик отсутствует, то управление передается обработчику

по умолчанию, который прерывает выполнение программы и выводит сообщение

об ошибке. Пример:

>>> try:

 x = 10 / 0

finally: print "Блок finally"

Блок finally

Traceback (most recent call last):

 File "<pyshell#3>", line 2, in <module>

 x = 10 / 0

ZeroDivisionError: integer division or modulo by zero

В качестве примера переделаем нашу программу (листинг 4.16) суммирования

произвольного количества целых чисел, введенных пользователем, таким образом,

чтобы при вводе строки вместо числа программа не завершалась с фатальной

ошибкой (листинг 14.9).

Листинг 14.9. Суммирование неопределенного количества чисел

-*- coding: cp1251 -*-

print "Введите слово 'stop' для получения результата"

summa = 0

while True:

 x = raw_input("Введите число: ")

 if x == "stop":

 break # Выход из цикла

 try:

 x = int(x) # Преобразуем строку в число

Обработка исключений

233

 except ValueError:

 print "Необходимо ввести целое число!"

 else:

 summa += x

print "Сумма чисел равна:", summa

Процесс ввода значений и получения результата выглядит так:

Введите слово 'stop' для получения результата

Введите число: 10

Введите число: str

Необходимо ввести целое число!

Введите число: -5

Введите число:

Необходимо ввести целое число!

Введите число: stop

Сумма чисел равна: 5

Значения, введенные пользователем, выделены полужирным шрифтом.

14.2. Инструкция with...as

Начиная с версии 2.6, язык Python поддерживает протокол менеджеров контек-

ста. Этот протокол гарантирует выполнение завершающих действий (например,

закрытие файла) вне зависимости от того, произошло исключение внутри блока

кода или нет. Необходимо заметить, что в Python 2.5 также можно использовать

протокол, предварительно указав выражение (в Python 2.6 и выше это выражение

указывать не нужно):

from __future__ import with_statement

Для работы с протоколом предназначена инструкция with...as. Инструкция

имеет следующий формат:

with <Выражение>[as <Переменная>]:

 <Блок, в котором перехватываем исключения>

Вначале вычисляется <Выражение>, которое должно возвращать объект, под-

держивающий протокол. Этот объект должен иметь два метода: __enter__() и

__exit__(). Метод __enter__() вызывается после создания объекта. Значение,

возвращаемое этим методом, присваивается переменной, указанной после ключе-

вого слова as. Если переменная не указана, возвращаемое значение игнорируется.

Формат метода __enter__():

__enter__(self)

Далее выполняются выражения внутри тела инструкции with. Если при выпол-

нении возникло исключение, то управление передается методу __exit__(). Метод

имеет следующий формат:

__exit__(self, <Тип исключения>, <Значение>, <Объект traceback>)

Глава 14

234

Значения, доступные через последние три параметра, полностью эквивалентны

значениям, возвращаемым функцией exc_info() из модуля sys. Если исключение

обработано, метод должен вернуть значение True, в противном случае — False.

Если метод возвращает False, то исключение передается вышестоящему обработ-

чику.

Если при выполнении выражений, расположенных внутри тела инструкции with,

исключение не возникло, то управление все равно передается методу __exit__().

В этом случае последние три параметра будут содержать значение None.

Рассмотрим последовательность выполнения протокола на примере (лис-

тинг 14.10).

Листинг 14.10. Протокол менеджеров контекста

#from __future__ import with_statement # Для Python 2.5

class Class1(object):

 def __enter__(self):

 print "Вызван метод __enter__()"

 return self

 def __exit__(self, Type, Value, Trace):

 print "Вызван метод __exit__()"

 if Type is None: # Если исключение не возникло

 print "Исключение не возникло"

 else: # Если возникло исключение

 print "Value =", Value

 return False # False - исключение не обработано

 # True - исключение обработано

print "Последовательность при отсутствии исключения:"

with Class1():

 print "Блок внутри with"

print "\nПоследовательность при наличии исключения:"

with Class1() as obj:

 print "Блок внутри with"

 raise TypeError("Исключение TypeError")

Результат выполнения:

Последовательность при отсутствии исключения:

Вызван метод __enter__()

Блок внутри with

Вызван метод __exit__()

Исключение не возникло

Последовательность при наличии исключения:

Вызван метод __enter__()

Блок внутри with

Вызван метод __exit__()

Обработка исключений

235

Value = Исключение TypeError

Traceback (most recent call last):

 File "C:\test.py", line 21, in <module>

 raise TypeError("Исключение TypeError")

TypeError: Исключение TypeError

Некоторые встроенные объекты по умолчанию поддерживают протокол, на-

пример, файлы. Если в инструкции with указана функция open(), то после выпол-

нения инструкций внутри блока файл автоматически будет закрыт. Пример исполь-

зования инструкции with приведен в листинге 14.11.

Листинг 14.11. Инструкция with...as

#from __future__ import with_statement # Для Python 2.5

with open("test.txt", "a") as f:

 f.write("Строка\n") # Записываем строку в конец файла

В этом примере файл test.txt открывается на дозапись в конец файла. После вы-

полнения функции open() переменной f будет присвоена ссылка на объект файла.

С помощью этой переменной мы можем работать с файлом внутри тела инструк-

ции with. После выхода из блока, вне зависимости от наличия исключения, файл

будет закрыт.

14.3. Классы встроенных исключений

Все встроенные исключения в языке Python представлены в виде классов.

Иерархия встроенных классов исключений показана в листинге 14.12.

Листинг 14.12. Иерархия встроенных классов исключений

BaseException

 GeneratorExit (в Python 2.6 и выше)

 KeyboardInterrupt

 SystemExit

 Exception

 GeneratorExit (в Python 2.5)

 StopIteration

 Warning

 BytesWarning (в Python 2.6 и выше)

 DeprecationWarning, FutureWarning, ImportWarning

 PendingDeprecationWarning, RuntimeWarning, SyntaxWarning

 UnicodeWarning, UserWarning

 StandardError

 ArithmeticError

 FloatingPointError, OverflowError, ZeroDivisionError

Глава 14

236

 AssertionError

 AttributeError

 BufferError (в Python 2.6)

 EnvironmentError

 IOError

 OSError

 WindowsError

 EOFError

 ImportError

 LookupError

 IndexError, KeyError

 MemoryError

 NameError

 UnboundLocalError

 ReferenceError

 RuntimeError

 NotImplementedError

 SyntaxError

 IndentationError

 TabError

 SystemError

 TypeError

 ValueError

 UnicodeError

 UnicodeDecodeError, UnicodeEncodeError

 UnicodeTranslateError

Основное преимущество использования классов для обработки исключений

заключается в возможности указания базового класса для перехвата всех исклю-

чений соответствующих классов-потомков. Например, для перехвата деления на

ноль мы использовали класс ZeroDivisionError. Если вместо этого класса ука-

зать базовый класс ArithmeticError, то будут перехватываться исключения

классов FloatingPointError, OverflowError и ZeroDivisionError. Пример:

try:

 x = 1 / 0 # Ошибка: деление на 0

except ArithmeticError: # Указываем базовый класс

 print "Обработали деление на 0"

Рассмотрим основные классы встроенных исключений:

 BaseException — начиная с Python 2.5, является классом самого верхнего уровня;

 Exception — именно этот класс, а не BaseException, необходимо наследовать

при создании пользовательских классов исключений;

 AssertionError — возбуждается инструкцией assert;

 AttributeError — попытка обращения к несуществующему атрибуту объекта;

Обработка исключений

237

 EOFError — возбуждается функциями input() и raw_input() при достижении

конца файла;

 IOError — ошибка доступа к файлу;

 ImportError — невозможно подключить модуль или пакет;

 IndentationError — неправильно расставлены отступы в программе;

 IndexError — указанный индекс не существует в последовательности;

 KeyError — указанный ключ не существует в словаре;

 KeyboardInterrupt — нажата комбинация клавиш <Ctrl>+<C>;

 NameError — попытка обращения к идентификатору до его определения;

 StopIteration — возбуждается методом next() как сигнал об окончании ите-

раций;

 SyntaxError — синтаксическая ошибка;

 TypeError — тип объекта не соответствует ожидаемому;

 UnboundLocalError — внутри функции переменной присваивается значение

после обращения к одноименной глобальной переменной;

 UnicodeDecodeError — ошибка преобразования обычной строки в Unicode-

строку;

 UnicodeEncodeError — ошибка преобразования Unicode-строки в обычную строку;

 ValueError — переданный параметр не соответствует ожидаемому значению;

 ZeroDivisionError — попытка деления на ноль.

14.4. Пользовательские исключения

Для возбуждения пользовательских исключений предназначены две инструкции:

 raise — возбуждает указанное исключение. Инструкция имеет несколько фор-

матов:

raise <Экземпляр класса>

raise <Название класса>[, <Данные>]

raise <Название класса>, <Экземпляр класса>

raise

В первом формате инструкции raise указывается экземпляр класса возбуждае-

мого исключения. При создании экземпляра можно передать данные конструк-

тору класса. Эти данные будут доступны через второй параметр в инструкции

except. Пример возбуждения встроенного исключения ValueError:

>>> raise ValueError("Описание исключения")

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 raise ValueError("Описание исключения")

ValueError: Описание исключения

Глава 14

238

Пример обработки этого исключения:

try:

 raise ValueError("Описание исключения")

except ValueError, msg:

 print msg # Выведет: Описание исключения

В качестве исключения можно указать экземпляр пользовательского класса:

class MyError(Exception):

 def __init__(self, value):

 self.msg = value

 def __str__(self):

 return self.msg

Обработка пользовательского исключения

try:

 raise MyError("Описание исключения")

except MyError, err:

 print err # Вызывается метод __str__()

 print err.msg # Обращение к атрибуту класса

Повторно возбуждаем исключение

raise MyError("Описание исключения")

Результат выполнения:

Описание исключения

Описание исключения

Traceback (most recent call last):

 File "C:\test.py", line 14, in <module>

 raise MyError("Описание исключения")

MyError: Описание исключения

Класс Exception содержит все необходимые методы для вывода сообщения об

ошибке. Поэтому в большинстве случаев достаточно создать пустой класс, ко-

торый наследует класс Exception:

class MyError(Exception): pass

try:

 raise MyError("Описание исключения")

except MyError, err:

 print err # Выведет: Описание исключения

Во втором формате инструкции raise в первом параметре задается объект

класса, а не экземпляр. Значения, указанные в параметре <Данные>, передаются

конструктору класса. Если необходимо передать несколько значений, то они

указываются внутри кортежа. Пример:

try:

 raise ValueError # Эквивалентно: raise ValueError()

except ValueError:

 print "Сообщение об ошибке"

Обработка исключений

239

try:

 raise ValueError, "Сообщение об ошибке"

 # Эквивалентно: raise ValueError("Сообщение об ошибке")

except ValueError, err:

 print err # Выведет: Сообщение об ошибке

class MyError(Exception):

 def __init__(self, value1, value2):

 self.arg1 = value1

 self.arg2 = value2

try:

 raise MyError, ("Значение1", "Значение2")

 # Эквивалентно: raise MyError("Значение1", "Значение2")

except MyError, err:

 print err.arg1 # Выведет: Значение1

 print err.arg2 # Выведет: Значение2

В третьем формате инструкции raise в первом параметре задается объект клас-

са, а во втором параметре указывается экземпляр этого или производного от не-

го класса. В этом случае экземпляр класса используется для возбуждения ис-

ключения. Пример:

try:

 raise ValueError, ValueError("Сообщение об ошибке")

except ValueError, err:

 print err # Выведет: Сообщение об ошибке

Четвертый формат инструкции raise позволяет повторно возбудить последнее

исключение. Пример:

class MyError(Exception): pass

try:

 raise MyError("Сообщение об ошибке")

except MyError, err:

 print err

 raise # Повторно возбуждаем исключение

Результат выполнения:

Сообщение об ошибке

Traceback (most recent call last):

 File "C:\test.py", line 4, in <module>

 raise MyError("Сообщение об ошибке")

MyError: Сообщение об ошибке

 assert — возбуждает исключение AssertionError, если логическое выражение

возвращает значение False. Инструкция имеет следующий формат:

assert <Логическое выражение>[, <Данные>]

Глава 14

240

Инструкция assert эквивалентна следующему коду:

if __debug__:

 if not <Логическое выражение>:

 raise AssertionError, <Данные>

Если при запуске программы используется флаг -O, то переменная __debug__

будет иметь ложное значение. Таким образом можно удалить все инструкции

assert из байт-кода. Пример использования инструкции assert:

try:

 x = -3

 assert x >= 0, "Сообщение об ошибке"

except AssertionError, err:

 print err # Выведет: Сообщение об ошибке

ГЛАВА 15

Работа с файлами и каталогами

Очень часто нужно сохранить какие-либо данные. Для этого существуют два

способа: сохранение в файл и сохранение в базу данных. Первый способ использу-

ется при сохранении информации небольшого объема. Если объем велик, то лучше

(и удобнее) воспользоваться базой данных.

15.1. Открытие файла

Прежде чем работать с файлом, необходимо создать объект файла с помощью

функции open() или функции file(), которая является конструктором класса. Из

этих двух функций предпочтительнее использовать функцию open(). Функции

имеют следующий формат:

open(<Путь к файлу>[, <Режим>[, <Размер буфера>]])

file(<Путь к файлу>[, <Режим>[, <Размер буфера>]])

В первом параметре указывается путь к файлу. Путь может быть абсолютным

или относительным. При указании абсолютного пути в Windows следует учиты-

вать, что слеш является специальным символом. По этой причине слеш необходи-

мо удваивать или вместо обычных строк использовать неформатированные строки.

Пример:

>>> "C:\\temp\\new\\file.txt" # Правильно

'C:\\temp\\new\\file.txt'

>>> r"C:\temp\new\file.txt" # Правильно

'C:\\temp\\new\\file.txt'

>>> "C:\temp\new\file.txt" # Неправильно!!!

'C:\temp\new\x0cile.txt'

Обратите внимание на последний пример. В этом пути присутствуют сразу три

специальных символа: \t, \n и \f. После преобразования специальных символов

путь будет выглядеть следующим образом:

C:<Табуляция>emp<Перевод строки>ew<Перевод формата>ile.txt

Глава 15

242

Если такую строку передать в функцию open(), то это приведет к исключению

IOError:

>>> open("C:\temp\new\file.txt")

Traceback (most recent call last):

 File "<pyshell#3>", line 1, in <module>

 open("C:\temp\new\file.txt")

IOError: [Errno 22] invalid mode ('r') or filename:

'C:\temp\new\x0cile.txt'

Вместо абсолютного пути к файлу можно указать относительный путь. В этом

случае путь определяется с учетом местоположения текущего рабочего каталога.

Относительный путь будет автоматически преобразован в абсолютный путь с помощью

функции abspath() из модуля os.path. Возможны следующие варианты:

 если открываемый файл находится в текущем рабочем каталоге, то можно ука-

зать только название файла. Пример:

>>> import os.path # Подключаем модуль

>>> # Файл в текущем рабочем каталоге (C:\book\)

>>> os.path.abspath(r"file.txt")

'C:\\book\\file.txt'

 если открываемый файл расположен во вложенной папке, то перед названием

файла перечисляются названия вложенных папок через слеш. Пример:

>>> # Открываемый файл в C:\book\folder1\

>>> os.path.abspath(r"folder1/file.txt")

'C:\\book\\folder1\\file.txt'

>>> # Открываемый файл в C:\book\folder1\folder2\

>>> os.path.abspath(r"folder1/folder2/file.txt")

'C:\\book\\folder1\\folder2\\file.txt'

 если папка с файлом расположена ниже уровнем, то перед названием файла

указываются две точки и слеш ("../"). Пример:

>>> # Открываемый файл в C:\

>>> os.path.abspath(r"../file.txt")

'C:\\file.txt'

 если в начале пути расположен слеш, то путь отсчитывается от корня диска.

В этом случае местоположение текущего рабочего каталога не имеет значения.

Пример:

>>> # Открываемый файл в C:\book\folder1\

>>> os.path.abspath(r"/book/folder1/file.txt")

'C:\\book\\folder1\\file.txt'

>>> # Открываемый файл в C:\book\folder1\folder2\

>>> os.path.abspath(r"/book/folder1/folder2/file.txt")

'C:\\book\\folder1\\folder2\\file.txt'

В абсолютном и относительном пути можно указать как прямые, так и обрат-

ные слеши. Все слеши будут автоматически преобразованы с учетом значения ат-

Работа с файлами и каталогами

243

рибута sep из модуля os.path. Значение этого атрибута зависит от используемой

операционной системы. Выведем значение в операционной системе Windows:

>>> os.path.sep

'\\'

>>> os.path.abspath(r"C:/book/folder1/file.txt")

'C:\\book\\folder1\\file.txt'

При использовании относительного пути необходимо учитывать местоположе-

ние текущего рабочего каталога, т. к. рабочий каталог не всегда совпадает с ката-

логом, в котором находится исполняемый файл. Если файл запускается с помощью

двойного щелчка на его значке, то каталоги будут совпадать. Если же файл запус-

кается из командной строки, то текущим рабочим каталогом будет каталог, из ко-

торого запускается файл. Рассмотрим все на примере. В каталоге C:\book создадим

следующую структуру файлов:

C:\book\

 test.py

 folder1\

 __init__.py

 module1.py

Содержимое файла C:\book\test.py приведено в листинге 15.1.

Листинг 15.1. Содержимое файла C:\book\test.py

-*- coding: cp866 -*-

import os, sys

print "%-25s%s" % ("Файл:", __file__)

print "%-25s%s" % ("Текущий рабочий каталог:", os.getcwd())

print "%-25s%s" % ("Каталог для импорта:", sys.path[0])

print "%-25s%s" % ("Путь к файлу:", os.path.abspath("file.txt"))

print "-" * 40

import folder1.module1 as m

m.f_getcwd()

Файл C:\book\folder1__init__.py создаем пустым. Как вы уже знаете, этот файл

позволяет преобразовать каталог в пакет с модулями. Содержимое файла

C:\book\folder1\module1.py приведено в листинге 15.2.

Листинг 15.2. Содержимое файла C:\book\folder1\module1.py

-*- coding: cp866 -*-

import os, sys

def f_getcwd():

 print "%-25s%s" % ("Файл:", __file__)

 print "%-25s%s" % ("Текущий рабочий каталог:", os.getcwd())

 print "%-25s%s" % ("Каталог для импорта:", sys.path[0])

 print "%-25s%s" % ("Путь к файлу:", os.path.abspath("file.txt"))

Глава 15

244

Запускаем командную строку, переходим в каталог C:\book и запускаем файл

test.py:

C:\>cd C:\book

C:\book>test.py

Файл: C:\book\test.py

Текущий рабочий каталог: C:\book

Каталог для импорта: C:\book

Путь к файлу: C:\book\file.txt

--

Файл: C:\book\folder1\module1.py

Текущий рабочий каталог: C:\book

Каталог для импорта: C:\book

Путь к файлу: C:\book\file.txt

В этом примере текущий рабочий каталог совпадает с каталогом, в котором

расположен файл test.py. Однако обратите внимание на текущий рабочий каталог

внутри модуля module1.py. Если внутри этого модуля в функции open() указать

название файла без пути, то поиск файла будет произведен в каталоге C:\book, а не

C:\book\folder1.

Теперь перейдем в корень диска C: и опять запустим файл test.py:

C:\book>cd C:\

C:\>C:\book\test.py

Файл: C:\book\test.py

Текущий рабочий каталог: C:\

Каталог для импорта: C:\book

Путь к файлу: C:\file.txt

--

Файл: C:\book\folder1\module1.py

Текущий рабочий каталог: C:\

Каталог для импорта: C:\book

Путь к файлу: C:\file.txt

В этом случае текущий рабочий каталог не совпадает с каталогом, в котором

расположен файл test.py. Если внутри файлов test.py и module1.py в функции

open() указать название файла без пути, то поиск файла будет производиться в

корне диска C:, а не в каталогах с этими файлами.

Чтобы поиск файла всегда производился в каталоге с исполняемым файлом,

необходимо этот каталог сделать текущим с помощью функции chdir() из модуля

os. В качестве примера изменим содержимое файла test.py (листинг 15.3).

Листинг 15.3. Пример использования функции chdir()

-*- coding: cp866 -*-

import os, sys

Делаем каталог с исполняемым файлом текущим

os.chdir(os.path.dirname(__file__))

Работа с файлами и каталогами

245

print "%-25s%s" % ("Файл:", __file__)

print "%-25s%s" % ("Текущий рабочий каталог:", os.getcwd())

print "%-25s%s" % ("Каталог для импорта:", sys.path[0])

print "%-25s%s" % ("Путь к файлу:", os.path.abspath("file.txt"))

Обратите внимание на четвертую строку. С помощью атрибута __file__ мы

получаем полный путь к исполняемому файлу, вместе с названием файла. Далее

извлекаем путь (без названия файла) с помощью функции dirname() и передаем

его функции chdir(). Теперь, если в функции open() указать название файла без

пути, то поиск будет производиться в каталоге с этим файлом. Запустим файл

test.py с помощью командной строки:

C:\>C:\book\test.py

Файл: C:\book\test.py

Текущий рабочий каталог: C:\book

Каталог для импорта: C:\book

Путь к файлу: C:\book\file.txt

Функции, предназначенные для работы с каталогами, мы еще рассмотрим под-

робно в следующих разделах. Сейчас важно запомнить, что текущим рабочим ка-

талогом будет каталог, из которого запускается файл, а не каталог, в котором рас-

положен исполняемый файл. Кроме того, пути поиска файлов не имеют никакого

отношения к путям поиска модулей.

Необязательный параметр <Режим> в функции open() может принимать сле-

дующие значения:

 r — только чтение (значение по умолчанию). После открытия файла указатель

устанавливается на начало файла. Если файл не существует, то возбуждается

исключение IOError;

 r+ — чтение и запись. После открытия файла указатель устанавливается на на-

чало файла. Если файл не существует, то возбуждается исключение IOError;

 w — запись. Если файл не существует, то он будет создан. Если файл существу-

ет, то он будет перезаписан. После открытия файла указатель устанавливается

на начало файла;

 w+ — чтение и запись. Если файл не существует, то он будет создан. Если файл

существует, то он будет перезаписан. После открытия файла указатель устанав-

ливается на начало файла;

 a — запись. Если файл не существует, то он будет создан. Запись осуществля-

ется в конец файла. Содержимое файла не удаляется;

 a+ — чтение и запись. Если файл не существует, то он будет создан. Запись

осуществляется в конец файла. Содержимое файла не удаляется.

Кроме того, после режима может следовать модификатор:

 b — файл будет открыт в бинарном режиме;

 t — файл будет открыт в текстовом режиме (значение по умолчанию в Win-

dows). В этом режиме в Windows при чтении символ \r будет удален, а при за-

писи, наоборот, добавлен.

Глава 15

246

В качестве примера создадим файл file.txt и запишем в него две строки:

>>> f = open(r"file.txt", "w") # Открываем файл на запись

>>> f.write("String1\nString2") # Записываем две строки в файл

>>> f.close() # Закрываем файл

Так как мы указали режим w, если файл не существует, то он будет создан, а ес-

ли существует, то файл будет перезаписан. Теперь выведем содержимое файла

в бинарном и текстовом режимах:

>>> # Бинарный режим (символ \r остается)

>>> for line in open(r"file.txt", "rb"): print repr(line)

'String1\r\n'

'String2'

>>> # Текстовый режим (символ \r удаляется)

>>> for line in open(r"file.txt", "r"): print repr(line)

'String1\n'

'String2'

Для ускорения работы производится буферизация записываемых данных. Ин-

формация из буфера записывается в файл полностью только в момент закрытия

файла. В необязательном параметре <Размер буфера> можно указать размер буфе-

ра. Если в качестве значения указан 0, то данные будут сразу записываться в файл.

Значение 1 используется при построчной записи в файл, другое положительное

число задает примерный размер буфера, а отрицательное значение (или отсутствие

значения) означает установку размера, применяемого в системе по умолчанию.

15.2. Методы для работы с файлами

После открытия файла функция open() возвращает объект, с помощью которо-

го производится дальнейшая работа с файлом. Этот объект поддерживает следую-

щие методы:

 close() — закрывает файл. Так как интерпретатор автоматически удаляет объ-

ект, когда отсутствуют ссылки на него, можно явно не закрывать файл в не-

больших программах. Тем не менее, явное закрытие файла является признаком

хорошего стиля программирования. Если ссылку на файл нигде не сохранять,

то объект будет удален сразу. Таким образом, записать строку в файл и сразу

неявно закрыть его можно так:
>>> open(r"file.txt", "w").write("Строка")

Начиная с версии 2.6, язык Python поддерживает протокол менеджеров контек-

ста. Этот протокол гарантирует закрытие файла вне зависимости от того, про-

изошло исключение внутри блока кода или нет. Пример:

#from __future__ import with_statement # Для Python 2.5

with open(r"file.txt", "w") as f:

 f.write("Строка") # Записываем строку в файл

Работа с файлами и каталогами

247

 write(<Строка>) — записывает обычную строку в файл. Если в качестве пара-

метра указана Unicode-строка, то производится попытка преобразовать ее в

обычную строку. Так как по умолчанию используется кодировка ASCII, попыт-

ка преобразовать Unicode-строку (содержащую русские буквы) в обычную

строку приведет к исключению UnicodeEncodeError. Пример записи в файл:

>>> f = open(r"file.txt", "w") # Открываем файл на запись

>>> f.write("Строка1\nСтрока2") # Записываем строку в файл

>>> f.close() # Закрываем файл

 writelines(<Последовательность>) — записывает последовательность в файл.

Все элементы последовательности должны быть строками. Пример записи эле-

ментов списка и кортежа:

>>> f = open(r"file.txt", "w")

>>> f.writelines(["String1\n", "String2\n"]) # Список

>>> f.writelines(("String3\n", "String4")) # Кортеж

>>> f.close()

 read([<Количество байт>]) — считывает данные из файла. Если параметр не

указан, то возвращается содержимое файла от текущей позиции указателя до

конца файла:

>>> open(r"file.txt", "r").read()

'String1\nString2\nString3\nString4'

Если в качестве параметра указать число, то за каждый вызов будет возвра-

щаться указанное количество байтов. Когда достигается конец файла, метод

возвращает пустую строку. Пример:

>>> f = open(r"file.txt", "r")

>>> f.read(20) # Считываем 20 байт

'String1\nString2\nStri'

>>> f.read(20) # Считываем 20 байт

'ng3\nString4'

>>> f.read(20) # Достигнут конец файла

''

>>> f.close()

 readline([<Количество байт>]) — считывает из файла одну строку при каж-

дом вызове. Возвращаемая строка включает символ перевода строки. Исключе-

нием является последняя строка. Если она не завершается символом перевода

строки, то символ перевода строки добавлен не будет. При достижении конца

файла возвращается пустая строка. Пример:

>>> f = open(r"file.txt", "r")

>>> f.readline(), f.readline(), f.readline(), f.readline()

('String1\n', 'String2\n', 'String3\n', 'String4')

>>> f.readline() # Достигнут конец файла

''

>>> f.close()

Глава 15

248

Если в необязательном параметре указано число, то считывание будет выпол-
няться до тех пор, пока не встретится символ новой строки (\n), символ конца
файла или из файла не будет прочитано указанное количество байтов. Иными
словами, если количество символов в строке меньше значения параметра, то
будет считана одна строка, а не указанное количество байтов. Если количество
символов в строке больше, то возвращается указанное количество байтов. Пример:

>>> f = open(r"file.txt", "r")

>>> f.readline(5), f.readline(5)

('Strin', 'g1\n')

>>> f.readline(100) # Возвращается одна строка, а не 100 байт

'String2\n'

>>> f.close()

 readlines() — считывает все содержимое файла в список. Каждый элемент
списка будет содержать одну строку, включая символ перевода строки. Исклю-
чением является последняя строка. Если она не завершается символом перевода
строки, то символ перевода строки добавлен не будет. Пример:
>>> open(r"file.txt", "r").readlines()

['String1\n', 'String2\n', 'String3\n', 'String4']

 xreadlines() — возвращает итератор, с помощью которого можно построчно
считывать файл. При достижении конца файла возбуждается исключение Sto-
pIteration. Пример:
>>> f = open(r"file.txt", "r")

>>> i = f.xreadlines()

>>> i.next(), i.next(), i.next(), i.next()

('String1\n', 'String2\n', 'String3\n', 'String4')

>>> i.next() # Достигнут конец файла

Traceback (most recent call last):

 File "<pyshell#23>", line 1, in <module>

 i.next() # Достигнут конец файла

StopIteration

>>> f.close()

В современных версиях Python файлы напрямую поддерживают итерационный
протокол, поэтому вместо метода xreadlines() лучше использовать файловый
метод next();

 next() — считывает одну строку при каждом вызове. При достижении конца
файла возбуждается исключение StopIteration. Пример:
>>> f = open(r"file.txt", "r")

>>> f.next(), f.next(), f.next(), f.next()

('String1\n', 'String2\n', 'String3\n', 'String4')

>>> f.next() # Достигнут конец файла

Traceback (most recent call last):

 File "<pyshell#87>", line 1, in <module>

 f.next() # Достигнут конец файла

StopIteration

>>> f.close()

Работа с файлами и каталогами

249

Благодаря методу next() мы можем перебирать файл построчно с помощью

цикла for. Цикл for на каждой итерации будет автоматически вызывать метод

next(). В качестве примера выведем все строки, предварительно удалив сим-

вол перевода строки:

>>> f = open(r"file.txt", "r")

>>> for line in f: print line.rstrip(),

String1 String2 String3 String4

>>> f.close()

Если после перебора файла он больше не нужен, то функцию open() можно

указать в цикле for. В этом случае файл будет закрыт автоматически после вы-

хода из цикла. Пример:

>>> for line in open(r"file.txt", "r"): print line.rstrip(),

String1 String2 String3 String4

 flush() — записывает данные из буфера на диск;

 fileno() — возвращает целочисленный дескриптор файла. Возвращаемое зна-

чение всегда будет больше числа 2, т. к. число 0 закреплено за стандартным

вводом stdin, 1 — за стандартным выводом stdout, а 2 — за стандартным вы-

водом сообщений об ошибках stderr. Пример:

>>> f = open(r"file.txt", "r")

>>> f.fileno() # Дескриптор файла

3

>>> f.close()

 truncate([<Количество байт>]) — обрезает файл до указанного количества

байтов. Пример:

>>> f = open(r"file.txt", "r+")

>>> f.read()

'String1\nString2\nString3\nString4'

>>> f.truncate(25)

>>> f.close()

>>> open(r"file.txt", "r").read()

'String1\nString2\nString3'

Если параметр не указан, то файл обрезается до текущей позиции указателя

файла:

>>> f = open(r"file.txt", "r+")

>>> f.readline(), f.readline()

('String1\n', 'String2\n')

>>> f.truncate()

>>> f.close()

>>> open(r"file.txt", "r").read()

'String1\nString2\n'

Глава 15

250

 tell() — возвращает позицию указателя относительно начала файла в виде

длинного целого числа. Обратите внимание на то, что в Windows метод tell()

считает символ \r как дополнительный байт, хотя этот символ удаляется при

открытии файла в текстовом режиме. Пример:

>>> f = open(r"file.txt", "r")

>>> f.tell() # Указатель расположен в начале файла

0L

>>> f.readline() # Перемещаем указатель

'String1\n'

>>> f.tell() # Возвращает 9 (8 + '\r'), а не 8 !!!

9L

>>> f.close()

Чтобы избежать этого несоответствия, следует открывать файл в бинарном ре-

жиме, а не текстовом:

>>> f = open(r"file.txt", "rb")

>>> f.readline() # Перемещаем указатель

'String1\r\n'

>>> f.tell() # Теперь значение соответствует

9L

>>> f.close()

 seek(<Смещение>[, <Позиция>]) — устанавливает указатель в позицию,

имеющую смещение <Смещение> относительно позиции <Позиция>. В параметре

<Позиция> могут быть указаны следующие атрибуты из модуля os или соответ-

ствующие им значения:

 os.SEEK_SET или 0 — начало файла (значение по умолчанию);

 os.SEEK_CUR или 1 — текущая позиция указателя;

 os.SEEK_END или 2 — конец файла.

Выведем значения этих атрибутов:

>>> import os

>>> os.SEEK_SET, os.SEEK_CUR, os.SEEK_END

(0, 1, 2)

Пример использования метода seek():

>>> import os

>>> f = open(r"file.txt", "rb")

>>> f.seek(9, os.SEEK_CUR) # 9 байт от указателя

>>> f.tell()

9L

>>> f.seek(0, os.SEEK_SET) # Перемещаем указатель в начало

>>> f.tell()

0L

>>> f.seek(-9, os.SEEK_END) # -9 байт от конца файла

>>> f.tell()

9L

>>> f.close()

Работа с файлами и каталогами

251

Помимо методов объекты файлов поддерживают несколько атрибутов:

 name — содержит название файла;

 mode — режим, в котором был открыт файл;

 closed — возвращает True, если файл был закрыт, и False в противном случае.

Пример:

>>> f = open(r"file.txt", "r+b")

>>> f.name, f.mode, f.closed

('file.txt', 'r+b', False)

>>> f.close()

>>> f.closed

True

 encoding — название кодировки, которая будет использоваться для преобразо-

вания Unicode-строк перед записью в файл. Если атрибут содержит значение

None, то будет использована кодировка, заданная в настройках системы. Так

как значение в настройках системы равно "ascii", попытка записи Unicode-

строки с русскими буквами приведет к исключению UnicodeEncodeError. Об-

ратите внимание на то, что изменить значение атрибута нельзя, т. к. атрибут

доступен только для чтения. Перед записью в файл лучше явно преобразовы-

вать Unicode-строку в обычную строку. Пример:

>>> f = open(r"file.txt", "a")

>>> print f.encoding

None

>>> f.write(unicode("Строка", "cp1251"))

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 f.write(unicode("Строка", "cp1251"))

UnicodeEncodeError: 'ascii' codec can't encode characters in

position 0-5: ordinal not in range(128)

>>> f.close()

Стандартный вывод stdout также является файловым объектом. Атрибут

encoding этого объекта всегда содержит кодировку устройства вывода, поэтому

Unicode-строка преобразуется в обычную строку в правильной кодировке. На-

пример, при запуске с помощью двойного щелчка на значке файла атрибут

encoding будет иметь значение "cp866", а при запуске в окне Python Shell ре-

дактора IDLE — значение "cp1251". Пример:

>>> import sys

>>> sys.stdout.encoding

'cp1251'

>>> sys.stdout.write(unicode("Строка", "cp1251"))

Строка

Глава 15

252

15.3. Доступ к файлам

с помощью модуля os

Модуль os содержит дополнительные низкоуровневые функции, позволяющие

работать с файлами. Функциональность этого модуля зависит от используемой

операционной системы. Получить название используемой версии модуля можно с

помощью атрибута name. В операционной системе Windows XP атрибут имеет зна-

чение "nt":

>>> import os

>>> os.name # Значение в ОС Windows XP

'nt'

Для доступа к файлам предназначены следующие функции из модуля os:

 open(<Путь к файлу>, <Режим>[, mode=0777]) — открывает файл и возвращает

целочисленный дескриптор, с помощью которого производится дальнейшая

работа с файлом. Если файл открыть не удалось, возбуждается исключение

OSError. В параметре <Режим> в операционной системе Windows могут быть

указаны следующие флаги (или их комбинация через символ |):

 os.O_RDONLY — чтение;

 os.O_WRONLY — запись;

 os.O_RDWR — чтение и запись;

 os.O_APPEND — добавление в конец файла;

 os.O_CREAT — создать файл, если он не существует;

 os.O_TRUNC — очистить содержимое файла;

 os.O_BINARY — файл будет открыт в бинарном режиме;

 os.O_TEXT — файл будет открыт в текстовом режиме. В Windows файлы по

умолчанию открываются в текстовом режиме.

Рассмотрим несколько примеров. Откроем файл на запись и запишем в него

одну строку. Если файл не существует, то создадим его. Если файл существует,

то очистим его:

>>> import os # Подключаем модуль

>>> mode = os.O_WRONLY | os.O_CREAT | os.O_TRUNC

>>> f = os.open(r"file.txt", mode)

>>> os.write(f, "String1\n") # Записываем строку

8

>>> os.close(f) # Закрываем файл

Добавим еще одну строку в конец файла:

>>> mode = os.O_WRONLY | os.O_CREAT | os.O_APPEND

>>> f = os.open(r"file.txt", mode)

>>> os.write(f, "String2\n") # Записываем строку

8

>>> os.close(f) # Закрываем файл

Работа с файлами и каталогами

253

Прочитаем содержимое файла в текстовом режиме:

>>> f = os.open(r"file.txt", os.O_RDONLY)

>>> os.read(f, 50) # Читаем 50 байт

'String1\nString2\n'

>>> os.close(f) # Закрываем файл

Теперь прочитаем содержимое файла в бинарном режиме:

>>> f = os.open(r"file.txt", os.O_RDONLY | os.O_BINARY)

>>> os.read(f, 50) # Читаем 50 байт

'String1\r\nString2\r\n'

>>> os.close(f) # Закрываем файл

 read(<Дескриптор>, <Количество байтов>) — читает из файла указанное ко-

личество байтов. При достижении конца файла возвращается пустая строка.

Пример:

>>> f = os.open(r"file.txt", os.O_RDONLY)

>>> os.read(f, 5), os.read(f, 5), os.read(f, 5), os.read(f, 5)

('Strin', 'g1\nS', 'tring', '2\n')

>>> os.read(f, 5) # Достигнут конец файла

''

>>> os.close(f) # Закрываем файл

 write(<Дескриптор>, <Строка>) — записывает строку в файл. Возвращает ко-

личество записанных байтов;

 close(<Дескриптор>) — закрывает файл;

 lseek(<Дескриптор>, <Смещение>, <Позиция>) — устанавливает указатель в

позицию, имеющую смещение <Смещение> относительно позиции <Позиция>.

В качестве значения функция возвращает новую позицию указателя. В пара-

метре <Позиция> могут быть указаны следующие атрибуты или соответствую-

щие им значения:

 os.SEEK_SET или 0 — начало файла;

 os.SEEK_CUR или 1 — текущая позиция указателя;

 os.SEEK_END или 2 — конец файла.

Пример:

>>> f = os.open(r"file.txt", os.O_RDONLY | os.O_BINARY)

>>> os.lseek(f, 0, os.SEEK_END) # Перемещение в конец файла

18L

>>> os.lseek(f, 0, os.SEEK_SET) # Перемещение в начало файла

0L

>>> os.lseek(f, 9, os.SEEK_CUR) # Относительно указателя

9L

>>> os.lseek(f, 0, os.SEEK_CUR) # Текущее положение указателя

9L

>>> os.close(f) # Закрываем файл

 dup(<Дескриптор>) — возвращает дубликат файлового дескриптора;

Глава 15

254

 fdopen(<Дескриптор>[, <Режим>[, <Размер буфера>]]) — возвращает файло-

вый объект по указанному дескриптору. Параметры <Режим> и <Размер буфера>

имеют тот же смысл, что и в функции open(). Пример:

>>> fd = os.open(r"file.txt", os.O_RDONLY)

>>> fd

3

>>> f = os.fdopen(fd, "r")

>>> f.fileno() # Объект имеет тот же дескриптор

3

>>> f.read()

'String1\nString2\n'

>>> f.close()

В этом примере мы воспользовались методом fileno(), который возвращает

целочисленный дескриптор файла. Это значение можно передать функциям

модуля os и манипулировать файловым объектом средствами этого модуля.

Создадим файловый объект, запишем строку в файл, а затем закроем его с по-

мощью функций модуля os:

>>> f = open(r"file.txt", "a")

>>> os.write(f.fileno(), "String3\n")

8

>>> os.close(f.fileno())

>>> open(r"file.txt").read()

'String1\nString2\nString3\n'

15.4. Модуль StringIO

Модуль StringIO позволяет работать со строкой как с файловым объектом. Все

операции с файловым объектом производятся в оперативной памяти. Для создания

нового объекта предназначен класс StringIO. Формат конструктора класса:

StringIO([<Начальное значение>])

Если параметр не указан, то начальным значением будет пустая строка. После

создания объекта указатель текущей позиции устанавливается на начало "файла".

Объект, возвращаемый конструктором класса, имеет следующие методы:

 close() — закрывает "файл". Проверить, открыт "файл" или закрыт, позволяет

атрибут closed. Атрибут возвращает True, если "файл" был закрыт, и False в

противном случае;

 getvalue() — возвращает содержимое "файла" в виде строки:

>>> import StringIO # Подключаем модуль

>>> f = StringIO.StringIO("String1\n")

>>> f.getvalue() # Получаем содержимое файла

'String1\n'

>>> f.close() # Закрываем файл

Работа с файлами и каталогами

255

 tell() — возвращает текущую позицию указателя относительно начала "файла";

 seek(<Смещение>[, <Позиция>]) — устанавливает указатель в позицию,

имеющую смещение <Смещение> относительно позиции <Позиция>. В парамет-

ре <Позиция> могут быть указаны следующие значения:

 0 — начало "файла" (значение по умолчанию);

 1 — текущая позиция указателя;

 2 — конец "файла".

Пример использования методов seek() и tell():

>>> f = StringIO.StringIO("String1\n")

>>> f.tell() # Позиция указателя

0

>>> f.seek(0, 2) # Перемещаем указатель в конец файла

>>> f.tell() # Позиция указателя

8

>>> f.seek(0) # Перемещаем указатель в начало файла

>>> f.tell() # Позиция указателя

0

>>> f.close() # Закрываем файл

 write(<Строка>) — записывает строку в "файл":

>>> f = StringIO.StringIO("String1\n")

>>> f.seek(0, 2) # Перемещаем указатель в конец файла

>>> f.write("String2\n") # Записываем строку в файл

>>> f.getvalue() # Получаем содержимое файла

'String1\nString2\n'

>>> f.close() # Закрываем файл

 writelines(<Последовательность>) — записывает последовательность в "файл":

>>> f = StringIO.StringIO()

>>> f.writelines(["String1\n", "String2\n"])

>>> f.getvalue() # Получаем содержимое файла

'String1\nString2\n'

>>> f.close() # Закрываем файл

 read([<Количество байтов>]) — считывает данные из "файла". Если параметр

не указан, то возвращается содержимое "файла" от текущей позиции указателя

до конца "файла". Если в качестве параметра указать число, то за каждый вызов

будет возвращаться указанное количество байтов. Когда достигается конец

"файла", метод возвращает пустую строку. Пример:

>>> f = StringIO.StringIO("String1\nString2\n")

>>> f.read()

'String1\nString2\n'

>>> f.seek(0) # Перемещаем указатель в начало файла

>>> f.read(5), f.read(5), f.read(5), f.read(5), f.read(5)

('Strin', 'g1\nSt', 'ring2', '\n', '')

>>> f.close() # Закрываем файл

Глава 15

256

 readline([<Количество байтов>]) — считывает из "файла" одну строку при

каждом вызове. Возвращаемая строка включает символ перевода строки. Ис-

ключением является последняя строка. Если она не завершается символом пе-

ревода строки, то символ перевода строки добавлен не будет. При достижении

конца "файла" возвращается пустая строка. Пример:

>>> f = StringIO.StringIO("String1\nString2")

>>> f.readline(), f.readline(), f.readline()

('String1\n', 'String2', '')

>>> f.close() # Закрываем файл

Если в необязательном параметре указано число, то считывание будет выпол-

няться до тех пор, пока не встретится символ новой строки (\n), символ конца

"файла" или из "файла" не будет прочитано указанное количество байтов.

Иными словами, если количество символов в строке меньше значения парамет-

ра, то будет считана одна строка, а не указанное количество байтов. Если коли-

чество символов в строке больше, то возвращается указанное количество бай-

тов. Пример:

>>> f = StringIO.StringIO("String1\nString2\nString3\n")

>>> f.readline(5), f.readline(5)

('Strin', 'g1\n')

>>> f.readline(100) # Возвращается одна строка, а не 100 байт

'String2\n'

>>> f.close() # Закрываем файл

 readlines([<Примерное количество байтов>]) — считывает все содержимое

"файла" в список. Каждый элемент списка будет содержать одну строку, вклю-

чая символ перевода строки. Исключением является последняя строка. Если

она не завершается символом перевода строки, то символ перевода строки до-

бавлен не будет. Пример:

>>> f = StringIO.StringIO("String1\nString2\nString3")

>>> f.readlines()

['String1\n', 'String2\n', 'String3']

>>> f.close() # Закрываем файл

Если в необязательном параметре указано число, то считывается указанное ко-

личество байтов плюс фрагмент до символа конца строки \n. Затем эта строка

разбивается и добавляется построчно в список. Пример:

>>> f = StringIO.StringIO("String1\nString2\nString3")

>>> f.readlines(16)

['String1\n', 'String2\n']

>>> f.seek(0) # Перемещаем указатель в начало файла

>>> f.readlines(17)

['String1\n', 'String2\n', 'String3']

>>> f.close() # Закрываем файл

Работа с файлами и каталогами

257

 next() — считывает одну строку при каждом вызове. При достижении конца

"файла" возбуждается исключение StopIteration. Пример:
>>> f = StringIO.StringIO("String1\nString2")

>>> f.next(), f.next()

('String1\n', 'String2')

>>> f.next()

Traceback (most recent call last):

... Фрагмент опущен ...

StopIteration

>>> f.close() # Закрываем файл

Благодаря методу next() мы можем перебирать файл построчно с помощью
цикла for. Цикл for на каждой итерации будет автоматически вызывать метод
next(). Пример:

>>> f = StringIO.StringIO("String1\nString2")

>>> for line in f: print line.rstrip()

String1

String2

>>> f.close() # Закрываем файл

 flush() — сбрасывает данные из буфера в "файл";
 truncate([<Количество байтов>]) — обрезает "файл" до указанного количе-

ства байтов. Пример:
>>> f = StringIO.StringIO("String1\nString2\nString3")

>>> f.truncate(15) # Обрезаем файл

>>> f.getvalue() # Получаем содержимое файла

'String1\nString2'

>>> f.close() # Закрываем файл

Если параметр не указан, то "файл" обрезается до текущей позиции указателя:

>>> f = StringIO.StringIO("String1\nString2\nString3")

>>> f.seek(15) # Перемещаем указатель

>>> f.truncate() # Обрезаем файл до указателя

>>> f.getvalue() # Получаем содержимое файла

'String1\nString2'

>>> f.close() # Закрываем файл

15.5. Права доступа к файлам и каталогам

В операционной системе семейства UNIX для каждого объекта (файла или ка-

талога) назначаются права доступа для каждой разновидности пользователей —

владельца, группы и прочих. Могут быть назначены следующие права доступа:

 чтение;

 запись;

 выполнение.

Глава 15

258

Права доступа обозначаются буквами:

 r — файл можно читать, а содержимое каталога можно просматривать;

 w — файл можно модифицировать, удалять и переименовывать, а в каталоге

можно создавать или удалять файлы. Каталог можно переименовать или уда-

лить;

 x — файл можно выполнять, а в каталоге можно выполнять операции над фай-

лами, в том числе производить поиск файлов в нем.

Права доступа к файлу определяются записью типа:

-rw-r--r--

Первый символ - означает, что это файл, и не задает никаких прав доступа.

Далее три символа (rw-) задают права доступа для владельца (чтение и запись). Сим-

вол - означает, что права доступа на выполнение нет. Следующие три символа

задают права доступа для группы (r--) — только чтение. Ну и последние три

символа (r--) задают права для всех остальных пользователей (только чтение).

Права доступа к каталогу определяются такой строкой:

drwxr-xr-x

Первая буква (d) означает, что это каталог. Владелец может выполнять в ката-

логе любые действия (rwx), а группа и все остальные пользователи — только чи-

тать и выполнять поиск (r-x). Для того чтобы каталог можно было просматривать,

должны быть установлены права на выполнение (x).

Кроме того, права доступа обозначаются числом. Такие числа называются мас-

кой прав доступа. Число состоит из трех цифр от 0 до 7. Первая цифра задает права

для владельца, вторая — для группы, а третья — для всех остальных пользовате-

лей. Например, права доступа -rw-r--r-- соответствуют числу 644. Сопоставим

числам, входящим в маску прав доступа, двоичную и буквенную записи

(табл. 15.1).

Таблица 15.1. Права доступа в разных записях

Восьмерич-

ная цифра

Двоичная

запись

Буквенная

запись

Восьмерич-

ная цифра

Двоичная

запись

Буквенная

запись

0 000 --- 4 100 r--

1 001 --x 5 101 r-x

2 010 -w- 6 110 rw-

3 011 -wx 7 111 rwx

Например, права доступа rw-r--r-- можно записать так: 110 100 100, что пе-

реводится в число 6 4 4. Таким образом, если право предоставлено, то в соответст-

вующей позиции стоит 1, а если нет — то 0.

Работа с файлами и каталогами

259

Для определения прав доступа к файлу или каталогу предназначена функция

access() из модуля os. Функция имеет следующий формат:

access(<Путь>, <Режим>)

Функция возвращает True, если проверка прошла успешно, или False в про-

тивном случае. В параметре <Режим> могут быть указаны следующие константы,

определяющие тип проверки:

 os.F_OK — проверка наличия пути или файла:
>>> import os # Подключаем модуль os

>>> os.access(r"file.txt", os.F_OK) # Файл существует

True

>>> os.access(r"C:\book", os.F_OK) # Каталог существует

True

>>> os.access(r"C:\book2", os.F_OK) # Каталог не существует

False

 os.R_OK — проверка на возможность чтения файла или каталога;

 os.W_OK — проверка на возможность записи в файл или каталог;

 os.X_OK — определение, является ли файл или каталог выполняемым.

Чтобы изменить права доступа из программы, необходимо воспользоваться

функцией chmod() из модуля os. Функция имеет следующий формат:

chmod(<Путь>, <Права доступа>)

Права доступа задаются в виде числа, перед которым следует указать 0 (это со-

ответствует восьмеричной записи числа):

>>> os.chmod(r"file.txt", 0777) # Полный доступ к файлу

Вместо числа можно указать комбинацию констант из модуля stat. За допол-

нительной информацией обращайтесь к документации по модулю.

15.6. Функции

для манипулирования файлами

Для копирования и перемещения файлов предназначены следующие функции

из модуля shutil:

 copyfile(<Копируемый файл>, <Куда копируем>) — позволяет скопировать

содержимое файла в другой файл. Никакие метаданные (например, права дос-

тупа) не копируются. Если файл существует, то он будет перезаписан. Если

файл не удалось скопировать, возбуждается исключение IOError. Пример:

>>> import shutil # Подключаем модуль

>>> shutil.copyfile(r"file.txt", r"file2.txt")

>>> # Путь не существует:

>>> shutil.copyfile(r"file.txt", r"C:\book2\file2.txt")

... Фрагмент опущен ...

IOError: [Errno 2] No such file or directory:

'C:\\book2\\file2.txt'

Глава 15

260

 copy(<Копируемый файл>, <Куда копируем>) — позволяет скопировать файл.

Копируются также права доступа. Если файл существует, то он будет перезапи-

сан. Если файл не удалось скопировать, возбуждается исключение IOError.

Пример:

>>> shutil.copy(r"file.txt", r"file3.txt")

 copy2(<Копируемый файл>, <Куда копируем>) — позволяет скопировать файл

вместе с метаданными. Если файл существует, то он будет перезаписан. Если

файл не удалось скопировать, возбуждается исключение IOError. Пример:

>>> shutil.copy2(r"file.txt", r"file4.txt")

 move(<Путь к файлу>, <Куда перемещаем>) — копирует файл в указанное ме-

сто, а затем удаляет исходный файл. Если файл существует, то он будет переза-

писан. Если файл не удалось переместить, возбуждается исключение IOError.

Если файл удалить нельзя, то в операционной системе Windows возбуждается

исключение WindowsError. Пример перемещения файла file4.txt в каталог

C:\book\test:

>>> shutil.move(r"file4.txt", r"C:\book\test")

Для переименования и удаления файлов предназначены следующие функции из

модуля os:

 rename(<Старое имя>, <Новое имя>) — переименовывает файл. Если исход-

ный файл отсутствует или новое имя файла уже существует, то в операционной

системе Windows возбуждается исключение WindowsError. Пример переимено-

вания файла с обработкой исключений:

import os # Подключаем модуль

try:

 os.rename(r"file3.txt", "file4.txt")

except OSError: # WindowsError наследует OSError

 print "Файл не удалось переименовать"

else:

 print "Файл успешно переименован"

 remove(<Путь к файлу>) и unlink(<Путь к файлу>) — позволяют удалить

файл. Если файл удалить нельзя, то в операционной системе Windows возбуж-

дается исключение WindowsError. Пример:

>>> os.remove(r"file2.txt")

>>> os.unlink(r"file4.txt")

Модуль os.path содержит дополнительные функции, позволяющие проверить

наличие файла, получить размер файла и др. Перечислим эти функции:

 exists(<Путь>) — проверяет указанный путь на существование. Значением

функции будет True, если путь существует, и False в противном случае:

>>> import os.path

>>> os.path.exists(r"file.txt"), os.path.exists(r"file2.txt")

(True, False)

>>> os.path.exists(r"C:\book"), os.path.exists(r"C:\book2")

(True, False)

Работа с файлами и каталогами

261

 getsize(<Путь к файлу>) — возвращает размер файла. Если файл не сущест-

вует, то в Windows возбуждается исключение WindowsError:

>>> os.path.getsize(r"file.txt") # Файл существует

27L

>>> os.path.getsize(r"file2.txt") # Файл не существует

... Фрагмент опущен ...

WindowsError: [Error 2] : 'file2.txt'

 getatime(<Путь к файлу>) — служит для определения времени последнего

доступа к файлу. В качестве значения функция возвращает количество секунд,

прошедших с начала эпохи. Если файл не существует, то в Windows возбужда-

ется исключение WindowsError. Пример:

>>> import time # Подключаем модуль time

>>> t = os.path.getatime(r"file.txt")

>>> t

1275860670.765625

>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'07.06.2010 01:44:30'

 getctime(<Путь к файлу>) — позволяет узнать дату создания файла. В качест-

ве значения функция возвращает количество секунд, прошедших с начала эпо-

хи. Если файл не существует, то в Windows возбуждается исключение Window-

sError. Пример:

>>> t = os.path.getctime(r"file.txt")

>>> t

1275146194.0

>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'29.05.2010 19:16:34'

 getmtime(<Путь к файлу>) — возвращает время последнего изменения файла.

В качестве значения функция возвращает количество секунд, прошедших с на-

чала эпохи. Если файл не существует, то в Windows возбуждается исключение

WindowsError. Пример:

>>> t = os.path.getmtime(r"file.txt")

>>> t

1275859256.53125

>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'07.06.2010 01:20:56'

Получить размер файла и время создания, изменения и доступа к файлу, а так-

же значения других метаданных позволяет функция stat() из модуля os. В качест-

ве значения функция возвращает объект stat_result, содержащий десять атрибу-

тов: st_mode, st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime,

st_mtime и st_ctime. Пример использования функции stat() приведен в листин-

ге 15.4.

Глава 15

262

Листинг 15.4. Пример использования функции stat()

>>> import os, time

>>> s = os.stat(r"file.txt")

>>> s

nt.stat_result(st_mode=33206, st_ino=0L, st_dev=0, st_nlink=0, st_uid=0,

st_gid=0, st_size=27L, st_atime=1275860670L, st_mtime=1275859256L,

st_ctime=1275146194L)

>>> s.st_size # Размер файла

27L

>>> t = s.st_atime # Последний доступ

>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'07.06.2010 01:44:30'

>>> t = s.st_ctime # Создание файла

>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'29.05.2010 19:16:34'

>>> t = s.st_mtime # Изменение файла

>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'07.06.2010 01:20:56'

Обновить время последнего доступа и время изменения файла позволяет функ-

ция utime() из модуля os. Функция имеет два формата:

utime(<Путь к файлу>, None)

utime(<Путь к файлу>, (<Последний доступ>, <Изменение файла>))

Если в качестве второго параметра указано значение None, то время доступа и

изменения файла будет текущим. Во втором формате функции utime() указывается

кортеж из новых значений в виде количества секунд, прошедших с начала эпохи.

Если файл не существует, то в Windows возбуждается исключение WindowsError.

Пример использования функции utime() приведен в листинге 15.5.

Листинг 15.5. Пример использования функции utime()

>>> import os, time

>>> os.stat(r"file.txt") # Первоначальные значения

nt.stat_result(st_mode=33206, st_ino=0L, st_dev=0, st_nlink=0, st_uid=0,

st_gid=0, st_size=27L, st_atime=1275860670L, st_mtime=1275859256L,

st_ctime=1275146194L)

>>> t = time.time() - 600

>>> os.utime(r"file.txt", (t, t)) # Текущее время минус 600 сек

>>> os.stat(r"file.txt")

nt.stat_result(st_mode=33206, st_ino=0L, st_dev=0, st_nlink=0, st_uid=0,

st_gid=0, st_size=27L, st_atime=1275860811L, st_mtime=1275860811L,

st_ctime=1275146194L)

Работа с файлами и каталогами

263

>>> os.utime(r"file.txt", None) # Текущее время

>>> os.stat(r"file.txt")

nt.stat_result(st_mode=33206, st_ino=0L, st_dev=0, st_nlink=0, st_uid=0,

st_gid=0, st_size=27L, st_atime=1275861469L, st_mtime=1275861469L,

st_ctime=1275146194L)

15.7. Преобразование пути к файлу

или каталогу

Преобразовать путь к файлу или каталогу позволяют следующие функции из

модуля os.path:

 abspath(<Относительный путь>) — преобразует относительный путь в абсо-

лютный, учитывая местоположение текущего рабочего каталога. Пример:

>>> import os.path

>>> os.path.abspath(r"file.txt")

'C:\\book\\file.txt'

>>> os.path.abspath(r"folder1/file.txt")

'C:\\book\\folder1\\file.txt'

>>> os.path.abspath(r"../file.txt")

'C:\\file.txt'

В относительном пути можно указать как прямые, так и обратные слеши. Все

слеши будут автоматически преобразованы с учетом значения атрибута sep из

модуля os.path. Значение этого атрибута зависит от используемой операцион-

ной системы. Выведем значение в операционной системе Windows:

>>> os.path.sep

'\\'

При указании пути в Windows следует учитывать, что слеш является специаль-

ным символом. По этой причине слеш необходимо удваивать или вместо обыч-

ных строк использовать неформатированные строки. Пример:

>>> "C:\\temp\\new\\file.txt" # Правильно

'C:\\temp\\new\\file.txt'

>>> r"C:\temp\new\file.txt" # Правильно

'C:\\temp\\new\\file.txt'

>>> "C:\temp\new\file.txt" # Неправильно!!!

'C:\temp\new\x0cile.txt'

Кроме того, если слеш расположен в конце строки, то его необходимо удваи-

вать даже при использовании неформатированных строк:

>>> r"C:\temp\new\" # Неправильно!!!

SyntaxError: EOL while scanning string literal

>>> r"C:\temp\new\\"

'C:\\temp\\new\\\\'

Глава 15

264

В первом случае последний слеш экранирует закрывающую кавычку, что при-
водит к синтаксической ошибке. Решить эту проблему можно, удвоив послед-
ний слеш. Однако посмотрите на результат. Два слеша превратились в четыре.
От одной проблемы ушли, а к другой пришли. Поэтому в этом случае лучше
использовать обычные строки:

>>> "C:\\temp\\new\\" # Правильно

'C:\\temp\\new\\'

 isabs(<Путь>) — возвращает True, если путь является абсолютным, и False в
противном случае:
>>> os.path.isabs("file.txt")

False

>>> os.path.isabs(r"C:\book\file.txt")

True

 basename(<Путь>) — возвращает имя файла без пути к нему:
>>> os.path.basename(r"C:\book\folder1\file.txt")

'file.txt'

>>> os.path.basename(r"C:\book\folder")

'folder'

>>> os.path.basename("C:\\book\\folder\\")

''

 dirname(<Путь>) — возвращает путь к каталогу:
>>> os.path.dirname(r"C:\book\folder\file.txt")

'C:\\book\\folder'

>>> os.path.dirname(r"C:\book\folder")

'C:\\book'

>>> os.path.dirname("C:\\book\\folder\\")

'C:\\book\\folder'

 split(<Путь>) — возвращает кортеж из двух элементов: пути к каталогу и на-
звания файла:
>>> os.path.split(r"C:\book\folder\file.txt")

('C:\\book\\folder', 'file.txt')

>>> os.path.split(r"C:\book\folder")

('C:\\book', 'folder')

>>> os.path.split("C:\\book\\folder\\")

('C:\\book\\folder', '')

 splitdrive(<Путь>) — разделяет путь на имя диска и остальную часть пути.
В качестве значения возвращается кортеж из двух элементов:
>>> os.path.splitdrive(r"C:\book\folder\file.txt")

('C:', '\\book\\folder\\file.txt')

 splitext(<Путь>) — возвращает кортеж из двух элементов: пути с названием
файла, но без расширения, и расширения файла (фрагмент после последней
точки):

>>> os.path.splitext(r"C:\book\folder\file.tar.gz")

('C:\\book\\folder\\file.tar', '.gz')

Работа с файлами и каталогами

265

 join(<Путь1>[, ... <ПутьN>]) — соединяет указанные элементы пути:

>>> os.path.join("C:\\", "book\\folder", "file.txt")

'C:\\book\\folder\\file.txt'

>>> os.path.join(r"C:\\", "book/folder/", "file.txt")

'C:\\\\book/folder/file.txt'

Обратите внимание на последний пример. В пути используются разные слеши

и в результате получен некорректный путь. Чтобы этот путь сделать коррект-

ным, необходимо воспользоваться функцией normpath():

>>> p = os.path.join(r"C:\\", "book/folder/", "file.txt")

>>> os.path.normpath(p)

'C:\\book\\folder\\file.txt'

15.8. Перенаправление ввода/вывода

При рассмотрении методов для работы с файлами говорилось, что значение,

возвращаемое методом fileno(), всегда будет больше числа 2, т. к. число 0 закре-

плено за стандартным вводом stdin, 1 — за стандартным выводом stdout, а 2 — за

стандартным выводом сообщений об ошибках stderr. Все эти потоки имеют неко-

торое сходство с файловыми объектами. Например, потоки stdout и stderr имеют

метод write(), предназначенный для вывода сообщений, а поток stdin имеет ме-

тод readline(), предназначенный для получения входящих данных. Если этим

объектам присвоить ссылку на объект, поддерживающий файловые методы, то

можно перенаправить стандартные потоки в другое место. В качестве примера пе-

ренаправим вывод в файл (листинг 15.6).

Листинг 15.6. Перенаправление вывода в файл

>>> import sys # Подключаем модуль sys

>>> tmp_out = sys.stdout # Сохраняем ссылку на sys.stdout

>>> f = open(r"file.txt", "a") # Открываем файл на дозапись

>>> sys.stdout = f # Перенаправляем вывод в файл

>>> print "Пишем строку в файл"

>>> sys.stdout = tmp_out # Восстанавливаем стандартный вывод

>>> print "Пишем строку в стандартный вывод"

Пишем строку в стандартный вывод

>>> f.close() # Закрываем файл

В этом примере мы вначале сохранили ссылку на стандартный вывод в пере-

менной tmp_out. С помощью этой переменной можно в дальнейшем восстановить

вывод в стандартный поток.

Оператор print напрямую поддерживает перенаправление вывода. Для этого

используется следующий формат:

print >> <Куда пишем>, <Что пишем>

Глава 15

266

Например, записать строку в файл можно так:

>>> f = open(r"file.txt", "a")

>>> print >> f, "Пишем строку в файл"

>>> f.close()

Стандартный ввод stdin также можно перенаправить. В этом случае функция

raw_input() будет читать одну строку из файла при каждом вызове. При достиже-

нии конца файла возбуждается исключение EOFError. В качестве примера выведем

содержимое файла с помощью перенаправления потока ввода (листинг 15.7).

Листинг 15.7. Перенаправление потока ввода

import sys

tmp_in = sys.stdin # Сохраняем ссылку на sys.stdin

f = open(r"file.txt", "r") # Открываем файл на чтение

sys.stdin = f # Перенаправляем ввод

while True:

 try:

 line = raw_input() # Считываем строку из файла

 print line # Выводим строку

 except EOFError: # Если достигнут конец файла

 break # выходим из цикла

sys.stdin = tmp_in # Восстанавливаем стандартный ввод

f.close() # Закрываем файл

Если необходимо узнать, ссылается ли стандартный ввод на терминал или нет,

можно воспользоваться методом isatty(). Метод возвращает True, если объект

ссылается на терминал, и False в противном случае. Пример:

>>> tmp_in = sys.stdin # Сохраняем ссылку на sys.stdin

>>> f = open(r"file.txt", "r")

>>> sys.stdin = f # Перенаправляем ввод

>>> sys.stdin.isatty() # Не ссылается на терминал

False

>>> sys.stdin = tmp_in # Восстанавливаем стандартный ввод

>>> sys.stdin.isatty() # Ссылается на терминал

True

>>> f.close() # Закрываем файл

Перенаправить стандартный ввод/вывод можно также с помощью командной

строки. В качестве примера создадим файл tests.py в папке C:\book с кодом, приве-

денным в листинге 15.8.

Листинг 15.8. Содержимое файла tests.py

-*- coding: cp866 -*-

while True:

Работа с файлами и каталогами

267

 try:

 line = raw_input()

 print line

 except EOFError:

 break

Запускаем командную строку и переходим в папку со скриптом, выполнив ко-

манду cd C:\book. Теперь выведем содержимое файла file.txt, выполнив команду:

C:\Python26\python.exe tests.py < file.txt

Перенаправить стандартный вывод в файл можно аналогичным образом. Толь-

ко в этом случае символ < необходимо заменить на >. Изменим файл tests.py сле-

дующим образом:

-*- coding: cp866 -*-

print "String" # Эта строка будет записана в файл

Теперь перенаправим вывод в файл file.txt, выполнив команду:

C:\Python26\python.exe tests.py > file.txt

В этом режиме файл file.txt будет перезаписан. Если необходимо добавить ре-

зультат в конец файла, следует использовать символ >>. Пример дозаписи в файл:

C:\Python26\python.exe tests.py >> file.txt

С помощью стандартного вывода stdout можно создать индикатор выполнения

процесса в окне консоли. Чтобы реализовать такой индикатор, нужно вспомнить,

что символ перевода строки в Windows состоит из двух символов: \r (перевод ка-

ретки) и \n (перевод строки). Таким образом, используя только символ перевода

каретки \r, можно перемещаться в начало строки и перезаписывать ранее выве-

денную информацию. Рассмотрим вывод индикатора процесса на примере (лис-

тинг 15.9).

Листинг 15.9. Индикатор выполнения процесса

-*- coding: cp866 -*-

import sys, time

for i in xrange(5, 101, 5):

 sys.stdout.write("\r ... %s%%" % i) # Обновляем индикатор

 sys.stdout.flush() # Сбрасываем содержимое буфера

 time.sleep(1) # Засыпаем на 1 секунду

sys.stdout.write("\rПроцесс завершен\n")

raw_input()

Сохраняем код в файл и запускаем с помощью двойного щелчка на ярлыке

файла. В окне консоли записи будут заменять друг друга на одной строке каждую

секунду. Так как данные перед выводом могут помещаться в буфер, мы сбрасываем

их явным образом с помощью метода flush().

Глава 15

268

15.9. Сохранение объектов в файл

Сохранить объекты в файл и в дальнейшем восстановить объекты из файла позво-

ляют модули pickle и shelve. Модуль pickle предоставляет следующие функции:

 dump(<Объект>, <Файл>[, <Протокол>]) — производит сериализацию объекта

и записывает данные в указанный файл. В параметре <Файл> указывается фай-

ловый объект, открытый на запись. Пример сохранения объекта в файл:

>>> import pickle

>>> f = open(r"file.txt", "wb")

>>> obj = ["Строка", (2, 3)]

>>> pickle.dump(obj, f)

>>> f.close()

 load(<Файл>) — читает данные из файла и преобразует их в объект. В парамет-

ре <Файл> указывается файловый объект, открытый на чтение. Пример восста-

новления объекта из файла:

>>> f = open(r"file.txt", "rb")

>>> obj = pickle.load(f)

>>> obj

['\xd1\xf2\xf0\xee\xea\xe0', (2, 3)]

>>> f.close()

В один файл можно сохранить сразу несколько объектов, последовательно вы-

зывая функцию dump(). Пример сохранения нескольких объектов приведен в лис-

тинге 15.10.

Листинг 15.10. Сохранение нескольких объектов

>>> obj1 = ["Строка", (2, 3)]

>>> obj2 = (1, 2)

>>> f = open(r"file.txt", "wb")

>>> pickle.dump(obj1, f) # Сохраняем первый объект

>>> pickle.dump(obj2, f) # Сохраняем второй объект

>>> f.close()

Для восстановления объектов необходимо несколько раз вызвать функцию

load() (листинг 15.11).

Листинг 15.11. Восстановление нескольких объектов

>>> f = open(r"file.txt", "rb")

>>> obj1 = pickle.load(f) # Восстанавливаем первый объект

>>> obj2 = pickle.load(f) # Восстанавливаем второй объект

>>> obj1, obj2

(['\xd1\xf2\xf0\xee\xea\xe0', (2, 3)], (1, 2))

>>> f.close()

Работа с файлами и каталогами

269

Сохранить объект в файл можно также с помощью метода dump(<Объект>)

класса Pickler. Конструктор класса имеет следующий формат:

Pickler(<Файл>[, <Протокол>])

Пример сохранения объекта в файл:

>>> f = open(r"file.txt", "wb")

>>> obj = ["Строка", (2, 3)]

>>> pkl = pickle.Pickler(f)

>>> pkl.dump(obj)

>>> f.close()

Восстановить объект из файла позволяет метод load() из класса Unpickler.

Формат конструктора класса:

Unpickler(<Файл>)

Пример восстановления объекта из файла:

>>> f = open(r"file.txt", "rb")

>>> obj = pickle.Unpickler(f).load()

>>> obj

['\xd1\xf2\xf0\xee\xea\xe0', (2, 3)]

>>> f.close()

Модуль pickle позволяет также преобразовать объект в строку и восстановить

объект из строки. Для этого предназначены две функции:

 dumps(<Объект>[, <Протокол>]) — производит сериализацию объекта и воз-

вращает строку специального формата. Формат этой строки зависит от указан-

ного протокола (число от 0 до 2). В качестве примера выведем результат преоб-

разования в различных протоколах:

>>> obj = ["Строка", (2, 3)]

>>> pickle.dumps(obj) # Без указания протокола

"(lp0\nS'\\xd1\\xf2\\xf0\\xee\\xea\\xe0'\np1\na(I2\nI3\ntp2\na."

>>> pickle.dumps(obj, 0) # Протокол 0

"(lp0\nS'\\xd1\\xf2\\xf0\\xee\\xea\\xe0'\np1\na(I2\nI3\ntp2\na."

>>> pickle.dumps(obj, 1) # Протокол 1

']q\x00(U\x06\xd1\xf2\xf0\xee\xea\xe0q\x01(K\x02K\x03tq\x02e.'

>>> pickle.dumps(obj, 2) # Протокол 2

'\x80\x02]q\x00(U\x06\xd1\xf2\xf0\xee\xea\xe0q\x01K\x02K\x03

\x86q\x02e.'

 loads(<Строка>) — преобразует строку специального формата обратно в объ-

ект. Пример восстановления объекта из строки:

>>> obj = ["Строка", (2, 3)]

>>> pkl = pickle.dumps(obj)

>>> obj = pickle.loads(pkl)

>>> obj

['\xd1\xf2\xf0\xee\xea\xe0', (2, 3)]

Модуль shelve позволяет сохранять объекты под определенным ключом (зада-

ется в виде строки) и предоставляет интерфейс доступа, сходный со словарями.

Глава 15

270

Для сериализации объекта используются возможности модуля pickle, а чтобы за-

писать получившуюся строку по ключу в файл, применяется модуль anydbm. Все

эти действия модуль shelve производит незаметно для нас.

Чтобы открыть файл с базой объектов, используется функция open(). Функция

имеет следующий формат:

open(<Путь к файлу>[, flag="c"[, protocol=None[, writeback=False]]])

В необязательном параметре flag можно указать один из режимов открытия файла:

 r — только чтение;

 w — чтение и запись;

 c — чтение и запись (значение по умолчанию). Если файл не существует, он

будет создан;

 n — чтение и запись. Если файл не существует, он будет создан. Если файл су-

ществует, он будет перезаписан.

Функция open() возвращает объект, с помощью которого производится даль-

нейшая работа с базой данных. Этот объект имеет следующие методы:

 close() — закрывает файл с базой данных. В качестве примера создадим файл

и сохраним в нем список и кортеж:

>>> import shelve # Подключаем модуль

>>> db = shelve.open("file2.txt") # Открываем файл

>>> db["obj1"] = [1, 2, 3, 4, 5] # Сохраняем список

>>> db["obj2"] = (6, 7, 8, 9, 10) # Сохраняем кортеж

>>> db["obj1"], db["obj2"] # Вывод значений

([1, 2, 3, 4, 5], (6, 7, 8, 9, 10))

>>> db.close() # Закрываем файл

 keys() и values() — позволяют получить список всех ключей и значений со-

ответственно. Можно также воспользоваться методами iterkeys() и iterva-

lues(), которые возвращают не список ключей и значений, а итератор;

 items() — возвращает список кортежей. Каждый кортеж содержит ключ и

значение. Можно также воспользоваться методом iteritems(), который воз-

вращает итератор;

 has_key(<Ключ>) — проверяет существование указанного ключа. Если ключ

найден, то возвращается значение True, в противном случае — False. Пример:

>>> db = shelve.open("file2.txt")

>>> db.keys(), db.values()

(['obj1', 'obj2'], [[1, 2, 3, 4, 5], (6, 7, 8, 9, 10)])

>>> db.items()

[('obj1', [1, 2, 3, 4, 5]), ('obj2', (6, 7, 8, 9, 10))]

>>> db.has_key("obj1"), db.has_key("obj3")

(True, False)

>>> db.close()

 get(<Ключ>[, <Значение по умолчанию>]) — если ключ присутствует, то метод

возвращает значение, соответствующее этому ключу. Если ключ отсутствует, то

возвращается значение None или значение, указанное во втором параметре;

Работа с файлами и каталогами

271

 setdefault(<Ключ>[, <Значение по умолчанию>]) — если ключ присутствует,

то метод возвращает значение, соответствующее этому ключу. Если ключ от-

сутствует, то вставляет новый элемент со значением, указанным во втором па-

раметре, и возвращает это значение. Если второй параметр не указан, значени-

ем нового элемента будет None;

 pop(<Ключ>[, <Значение по умолчанию>]) — удаляет элемент с указанным

ключом и возвращает его значение. Если ключ отсутствует, то возвращается

значение из второго параметра. Если ключ отсутствует и второй параметр не

указан, то возбуждается исключение KeyError;

 popitem() — удаляет произвольный элемент и возвращает кортеж из ключа и

значения. Если файл пустой, возбуждается исключение KeyError;

 clear() — удаляет все элементы. Метод ничего не возвращает в качестве зна-

чения;

 update() — добавляет элементы. Метод изменяет текущий объект и ничего не

возвращает. Если элемент с указанным ключом уже присутствует, то его значе-

ние будет перезаписано. Форматы метода:
update(<Ключ1>=<Значение1>[, ..., <КлючN>=<ЗначениеN>])

update(<Словарь>)

update(<Список кортежей с двумя элементами>)

update(<Список списков с двумя элементами>)

Помимо этих методов можно воспользоваться функцией len() для получения

количества элементов и оператором del для удаления определенного элемента.

Пример:
>>> db = shelve.open("file2.txt")

>>> len(db) # Количество элементов

2

>>> del db["obj1"] # Удаление элемента

>>> db.close()

15.10. Функции для работы с каталогами

Для работы с каталогами используются следующие функции из модуля os:

 getcwd() — возвращает текущий рабочий каталог. От значения, возвращаемого

этой функцией, зависит преобразование относительного пути в абсолютный.

Кроме того, важно помнить, что текущим рабочим каталогом будет каталог, из

которого запускается файл, а не каталог с исполняемым файлом. Пример:
>>> import os

>>> os.getcwd() # Текущий рабочий каталог

'C:\\book'

 chdir(<Имя каталога>) — делает указанный каталог текущим:
>>> os.chdir("C:\\book\\folder1\\")

>>> os.getcwd() # Текущий рабочий каталог

'C:\\book\\folder1'

Глава 15

272

 mkdir(<Имя каталога>[, <Права доступа>]) — создает новый каталог с права-

ми доступа, указанными во втором параметре. Права доступа задаются трехзнач-

ным числом, перед которым указывается 0 (значение второго параметра по умол-

чанию 0777). Пример создания нового каталога в текущем рабочем каталоге:

>>> os.mkdir("newfolder") # Создание каталога

 rmdir(<Имя каталога>) — удаляет пустой каталог. Если в каталоге есть файлы

или указанный каталог не существует, то в Windows возбуждается исключение

WindowsError. Удалим каталог newfolder:

>>> os.rmdir("newfolder") # Удаление каталога

 listdir(<Путь>) — возвращает список объектов в указанном каталоге:

>>> os.listdir("C:\\book\\folder1\\")

['file1.txt', 'file2.txt', 'file3.txt', 'folder1', 'folder2']

 walk() — позволяет обойти дерево каталогов. Формат функции:

walk(<Начальный каталог>[, topdown=True[, onerror=None

 [, followlinks=False]]])

В качестве значения функция walk() возвращает объект-генератор. На каждой

итерации через этот объект доступен кортеж из трех элементов: текущий ката-

лог, список каталогов и список файлов. Если произвести изменения в списке

каталогов во время выполнения, то это позволит изменить порядок обхода вло-

женных каталогов.

Необязательный параметр topdown задает последовательность обхода катало-

гов. Если в качестве значения указано True (значение по умолчанию), то после-

довательность обхода будет такой:

>>> for (p, d, f) in os.walk("C:\\book\\folder1\\"): print p

C:\book\folder1\

C:\book\folder1\folder1_1

C:\book\folder1\folder1_1\folder1_1_1

C:\book\folder1\folder1_1\folder1_1_2

C:\book\folder1\folder1_2

Если в качестве значения указано False, то последовательность обхода будет

другой:

>>> for (p, d, f) in os.walk("C:\\book\\folder1\\", False):

 print p

C:\book\folder1\folder1_1\folder1_1_1

C:\book\folder1\folder1_1\folder1_1_2

C:\book\folder1\folder1_1

C:\book\folder1\folder1_2

C:\book\folder1\

Благодаря такой последовательности обхода каталогов можно удалить все вло-

женные файлы и каталоги. Это особенно важно при удалении каталога, т. к.

Работа с файлами и каталогами

273

функция rmdir() позволяет удалить только пустой каталог. Пример очистки

дерева каталогов:

import os

for (p, d, f) in os.walk("C:\\book\\folder1\\", False):

 for file_name in f: # Удаляем все файлы

 os.remove(os.path.join(p, file_name))

 for dir_name in d: # Удаляем все каталоги

 os.rmdir(os.path.join(p, dir_name))

ВНИМАНИЕ!

Очень осторожно используйте этот код. Если в качестве первого параметра в функции
walk() указать корневой каталог диска, то все файлы и каталоги будут удалены.

Удалить дерево каталогов позволяет также функция rmtree() из модуля

shutil. Функция имеет следующий формат:

rmtree(<Путь>[, <Обработка ошибок>[, <Обработчик ошибок>]])

Если в параметре <Обработка ошибок> указано значение True, то ошибки будут

проигнорированы. Если указано значение False (значение по умолчанию), то в

третьем параметре можно указать ссылку на функцию-обработчик. Эта функ-

ция будет вызываться при возникновении исключения. Пример удаления дере-

ва каталогов вместе с начальным каталогом:

import shutil

shutil.rmtree("C:\\book\\folder1\\")

Как вы уже знаете, функция listdir() возвращает список объектов в указан-

ном каталоге. Проверить, на какой тип объекта ссылается элемент этого списка,

можно с помощью следующих функций из модуля os.path:

 isdir(<Объект>) — возвращает True, если объект является каталогом, и False

в противном случае:

>>> import os.path

>>> os.path.isdir(r"C:\book\file.txt")

False

>>> os.path.isdir("C:\\book\\")

True

 isfile(<Объект>) — возвращает True, если объект является файлом, и False в

противном случае:

>>> os.path.isfile(r"C:\book\file.txt")

True

>>> os.path.isfile("C:\\book\\")

False

 islink(<Объект>) — возвращает True, если объект является символической

ссылкой, и False в противном случае. Если символические ссылки не поддер-

живаются, функция возвращает False.

Глава 15

274

Функция listdir() возвращает список всех объектов в указанном каталоге.

Если необходимо ограничить список определенными критериями, то следует вос-

пользоваться функцией glob(<Путь>) из модуля glob. Функция glob() позволяет

указать в пути следующие специальные символы:

 ? — любой одиночный символ;

 * — любое количество символов;

 [<Символы>] — позволяет указать символы, которые должны быть на этом мес-

те в пути. Можно перечислить символы или указать диапазон через тире.

В качестве значения функция возвращает список путей к объектам, совпадаю-

щим с шаблоном. Пример использования функции glob() приведен в листин-

ге 15.12.

Листинг 15.12. Пример использования функции glob()

>>> import os, glob

>>> os.listdir("C:\\book\\folder1\\")

['file.txt', 'file1.txt', 'file2.txt', 'folder1_1', 'folder1_2',

'index.html']

>>> glob.glob("C:\\book\\folder1*.txt")

['C:\\book\\folder1\\file.txt', 'C:\\book\\folder1\\file1.txt',

'C:\\book\\folder1\\file2.txt']

>>> glob.glob("C:\\book\\folder1*.html") # Абсолютный путь

['C:\\book\\folder1\\index.html']

>>> glob.glob("folder1/*.html") # Относительный путь

['folder1\\index.html']

>>> glob.glob("C:\\book\\folder1*[0-9].txt")

['C:\\book\\folder1\\file1.txt', 'C:\\book\\folder1\\file2.txt']

>>> glob.glob("C:\\book\\folder1**.html")

['C:\\book\\folder1\\folder1_1\\index.html',

'C:\\book\\folder1\\folder1_2\\test.html']

Обратите внимание на последний пример. Специальные символы могут быть

указаны не только в названии файла, но и в именах каталогов в пути. Это позволяет

просматривать сразу несколько каталогов в поисках объектов, соответствующих

шаблону.

ГЛАВА 16

Основы SQLite

В предыдущей главе мы рассмотрели работу с файлами и научились сохранять

объекты с доступом по ключу с помощью модуля shelve. При сохранении объек-

тов этот модуль использует возможности модуля pickle, для сериализации объекта

и модуль anydbm для записи получившейся строки по ключу в файл. Если необхо-

димо сохранять в файл просто строки, то можно сразу воспользоваться модулем

anydbm. Однако если объем сохраняемых данных велик и требуется удобный дос-

туп к ним, то вместо этого модуля лучше использовать базы данных.

Начиная с версии 2.5, в состав стандартной библиотеки Python входит модуль

sqlite3, позволяющий работать с базой данных SQLite. Для использования этой

базы данных нет необходимости устанавливать сервер, ожидающий запросы на

каком-либо порту, т. к. SQLite напрямую работает с файлом базы данных. Все что

нужно для работы с SQLite, это библиотека sqlite3.dll (расположена в папке

C:\Python26\DLLs) и язык программирования, позволяющий использовать эту биб-

лиотеку (например, Python). Необходимо заметить, что база данных SQLite не

предназначена для проектов, предъявляющих требования к защите данных и раз-

граничению прав доступа для нескольких пользователей. Тем не менее, для не-

больших проектов SQLite является хорошей заменой полноценных баз данных.

Так как SQLite входит в состав стандартной библиотеки Python, мы на некото-

рое время отвлечемся от изучения языка Python и рассмотрим особенности исполь-

зования языка SQL (Structured Query Language — структурированный язык запро-

сов) применительно к базе данных SQLite. Для выполнения SQL-запросов мы

воспользуемся программой sqlite3.exe, позволяющей работать с SQLite из команд-

ной строки. Со страницы http://www.sqlite.org/download.html загружаем архив

sqlite-3_6_23.zip, а затем распаковываем его в текущую папку. Далее копируем

файл sqlite3.exe в каталог, с которым будем в дальнейшем работать (например,

C:\book).

Глава 16

276

16.1. Создание базы данных

Попробуем создать новую базу данных. Запускаем командную строку. Для это-

го в меню Пуск выбираем пункт Выполнить. В открывшемся окне набираем ко-

манду cmd и нажимаем кнопку OK. Откроется черное окно, в котором будет при-

глашение для ввода команд. Переходим в папку C:\book, выполнив команду:

cd C:\book

В командной строке должно быть приглашение:

C:\book>

По умолчанию в консоли используется кодировка cp866. Чтобы сменить коди-

ровку на cp1251, в командной строке вводим команду:

chcp 1251

Теперь необходимо изменить название шрифта, т. к. точечные шрифты не под-

держивают кодировку Windows-1251. Щелкаем правой кнопкой мыши на заголовке

окна и из контекстного меню выбираем пункт Свойства. В открывшемся окне пе-

реходим на вкладку Шрифт и в списке выделяем пункт Lucida Console. На этой же

вкладке можно также установить размер шрифта. Нажимаем кнопку OK, чтобы

изменения вступили в силу. Для проверки правильности установки кодировки вво-

дим команду chcp. Результат выполнения должен выглядеть так:

C:\book>chcp

Текущая кодовая страница: 1251

Для создания новой базы данных вводим команду:

C:\book>sqlite3.exe testdb.db

Если файл testdb.db не существует, то будет создана новая база данных и от-

крыта для дальнейшей работы. Если база данных уже существует, то она просто

открывается без удаления содержимого. Результат выполнения команды будет вы-

глядеть так:

SQLite version 3.6.23

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

ПРИМЕЧАНИЕ

В примерах следующих разделов предполагается, что база данных была открыта ука-
занным способом. Поэтому запомните способ изменения кодировки в консоли и способ
создания (или открытия) базы данных.

Фрагмент "sqlite> " является приглашением для ввода SQL-команд. Каждая

SQL-команда должна завершаться точкой с запятой. Если точку с запятой не ука-

зать и нажать клавишу <Enter>, то приглашение примет вид " ...> ". В качестве

примера получим версию SQLite:

sqlite> SELECT sqlite_version();

3.6.23

Основы SQLite

277

sqlite> SELECT sqlite_version()

 ...> ;

3.6.23

SQLite позволяет использовать комментарии. Однострочный комментарий на-

чинается с двух тире и оканчивается в конце строки. В этом случае после коммен-

тария точку с запятой указывать не нужно. Многострочный комментарий начина-

ется с комбинации символов /* и заканчивается комбинацией */. Допускается

отсутствие завершающей комбинации символов. В этом случае комментируется

фрагмент до конца файла. Многострочные комментарии не могут быть вложенны-

ми. Если внутри многострочного комментария расположен однострочный коммен-

тарий, то он игнорируется. Пример использования комментариев:

sqlite> -- Это однострочный комментарий

sqlite> /* Это многострочный комментарий */

sqlite> SELECT sqlite_version(); -- Комментарий после SQL-команды

3.6.23

sqlite> SELECT sqlite_version(); /* Комментарий после SQL-команды */

3.6.23

Чтобы завершить работу с SQLite и закрыть базу данных, следует нажать ком-

бинацию клавиш <Ctrl>+<C>.

16.2. Создание таблицы

Создать таблицу в базе данных позволяет следующая SQL-команда:

CREATE [TEMP | TEMPORARY] TABLE [IF NOT EXISTS]

[<Название базы данных>.]<Название таблицы> (

 <Название поля1> [<Тип данных>] [<Опции>],

 [...,

 <Название поляN> [<Тип данных>] [<Опции>],]

 [<Дополнительные опции>]

);

Если после ключевого слова CREATE указано слово TEMP или TEMPORARY, то будет

создана временная таблица. После закрытия базы данных временные таблицы ав-

томатически удаляются. Пример создания временных таблиц:

sqlite> CREATE TEMP TABLE tmp1 (pole1);

sqlite> CREATE TEMPORARY TABLE tmp2 (pole1);

sqlite> .tables

tmp1 tmp2

Обратите внимание на предпоследнюю строку. С помощью команды .tables

мы получаем список всех таблиц в базе данных. Эта команда работает только в

утилите sqlite3.exe и является сокращенной записью следующего SQL-запроса:

sqlite> SELECT name FROM sqlite_master

 ...> WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%'

Глава 16

278

 ...> UNION ALL

 ...> SELECT name FROM sqlite_temp_master

 ...> WHERE type IN ('table','view')

 ...> ORDER BY 1;

tmp1

tmp2

Необязательные ключевые слова IF NOT EXISTS означают, что если таблица

уже существует, то создавать таблицу заново не нужно. Если таблица уже сущест-

вует и ключевые слова IF NOT EXISTS не указаны, то будет выведено сообщение об

ошибке. Пример:

sqlite> CREATE TEMP TABLE tmp1 (pole3);

Error: table tmp1 already exists

sqlite> CREATE TEMP TABLE IF NOT EXISTS tmp1 (pole3);

sqlite> PRAGMA table_info(tmp1);

0|pole1||0||0

В этом примере мы использовали SQL-команду PRAGMA table_info(<Название

таблицы>), позволяющую получить информацию о полях таблицы (название поля,

тип данных, значение по умолчанию и др.). Как видно из результата, структура

временной таблицы tmp1 не изменилась после выполнения запроса на создание

таблицы с таким же названием.

В параметрах <Название таблицы> и <Название поля> указывается идентифи-

катор или строка. В идентификаторах лучше использовать только буквы латинско-

го алфавита, цифры и символ подчеркивания. Имена, начинающиеся с префикса

"sqlite_", зарезервированы для служебного использования. Если в этих парамет-

рах указывается идентификатор, то название не должно содержать пробелов и не

должно совпадать с ключевыми словами SQL. Например, при попытке назвать таб-

лицу именем table будет выведено сообщение об ошибке:

sqlite> CREATE TEMP TABLE table (pole1);

Error: near "table": syntax error

Если вместо идентификатора указать строку, то сообщения об ошибке не воз-

никнет:

sqlite> CREATE TEMP TABLE "table" (pole1);

sqlite> .tables

table tmp1 tmp2

Кроме того, идентификатор можно разместить внутри квадратных скобок:

sqlite> DROP TABLE "table";

sqlite> CREATE TEMP TABLE [table] (pole1);

sqlite> .tables

table tmp1 tmp2

ПРИМЕЧАНИЕ

Хотя ошибки и удается избежать, на практике не стоит использовать ключевые слова
SQL в качестве названия таблицы или поля.

Основы SQLite

279

Обратите внимание на первую строку примера. С помощью SQL-команды DROP
TABLE <Название таблицы> мы удаляем таблицу table из базы данных. Если этого
не сделать, то попытка создать таблицу, при наличии уже существующей одно-
именной таблицы, приведет к выводу сообщения об ошибке. SQL-команда DROP
TABLE позволяет удалить как обычную таблицу, так и временную таблицу.

В целях совместимости с другими базами данных значение, указанное в пара-
метре <Тип данных>, преобразуется в один из пяти классов родства:
 INTEGER — класс будет назначен, если значение содержит фрагмент "INT" в

любом месте. Этому классу родства соответствуют типы данных INT, INTEGER,
TINYINT, SMALLINT, MEDIUMINT, BIGINT и др.;

 TEXT — если значение содержит фрагменты "CHAR", "CLOB" или "TEXT".
Например, TEXT, CHARACTER(30), VARCHAR(250), VARYING CHARACTER(100), CLOB
и др. Все значения внутри круглых скобок игнорируются;

 NONE — если значение содержит фрагмент "BLOB" или тип данных не указан;
 REAL — если значение содержит фрагменты "REAL", "FLOA" или "DOUB".

Например, REAL, DOUBLE, DOUBLE PRECISION, FLOAT;
 NUMERIC — если все предыдущие условия не выполняются, то назначается этот

класс родства.

ВНИМАНИЕ!

Все классы указаны в порядке уменьшения приоритета определения родства. Напри-
мер, если значение соответствует сразу двум классам INTEGER и TEXT, то будет назна-
чен класс INTEGER, т. к. его приоритет выше.

Классы родства являются лишь обозначением предполагаемого типа данных, а
не строго определенным значением. Иными словами, SQLite использует не стати-
ческую типизацию (как в большинстве баз данных), а динамическую типизацию.
Например, если для поля указан класс INTEGER, то при вставке значения произво-
дится попытка преобразовать введенные данные в целое число. Если преобразовать
не получилось, то производится попытка преобразовать введенные данные в веще-
ственное число. Если данные нельзя преобразовать в целое или вещественное чис-
ло, то будет произведена попытка преобразовать в строку и т. д. Пример:
sqlite> CREATE TEMP TABLE tmp3 (p1 INTEGER, p2 INTEGER,

 ...> p3 INTEGER, p4 INTEGER, p5 INTEGER);

sqlite> INSERT INTO tmp3 VALUES (10, "00547", 5.45, "Строка", NULL);

sqlite> SELECT * FROM tmp3;

10|547|5.45|Строка|

sqlite> SELECT typeof(p1), typeof(p2), typeof(p3), typeof(p4),

 ...> typeof(p5) FROM tmp3;

integer|integer|real|text|null

sqlite> DROP TABLE tmp3;

В этом примере мы воспользовались встроенной функцией typeof() для опре-
деления типа данных, хранящихся в ячейке таблицы. SQLite поддерживает сле-
дующие типы данных:

 NULL — значение NULL;

 INTEGER — целые числа;

Глава 16

280

 REAL — вещественные числа;

 TEXT — строки;

 BLOB — бинарные данные.

Если после INTEGER указаны ключевые слова PRIMARY KEY (т. е. поле является

первичным ключом), то в это поле можно вставить только целые числа или значе-

ние NULL. При указании значения NULL будет вставлено число, на единицу большее

максимального числа в столбце. Пример:

sqlite> CREATE TEMP TABLE tmp3 (p1 INTEGER PRIMARY KEY);

sqlite> INSERT INTO tmp3 VALUES (10); -- Нормально

sqlite> INSERT INTO tmp3 VALUES (5.78); -- Ошибка

Error: datatype mismatch

sqlite> INSERT INTO tmp3 VALUES ("Строка"); -- Ошибка

Error: datatype mismatch

sqlite> INSERT INTO tmp3 VALUES (NULL);

sqlite> SELECT * FROM tmp3;

10

11

sqlite> DROP TABLE tmp3;

Класс NUMERIC аналогичен классу INTEGER. Различие между этими классами

проявляется только при явном преобразовании типов с помощью инструкции CAST.

Если строку, содержащую вещественное число, преобразовать в класс INTEGER, то

дробная часть будет отброшена. Если строку, содержащую вещественное число,

преобразовать в класс NUMERIC, то возможны два варианта:

 если преобразование в целое число возможно без потерь, то данные будут

иметь тип INTEGER;

 в противном случае — тип REAL.

Пример:

sqlite> CREATE TEMP TABLE tmp3 (p1 TEXT);

sqlite> INSERT INTO tmp3 VALUES ("00012.86");

sqlite> INSERT INTO tmp3 VALUES ("52.0");

sqlite> SELECT p1, typeof(p1) FROM tmp3;

00012.86|text

52.0|text

sqlite> SELECT CAST (p1 AS INTEGER) FROM tmp3;

12

52

sqlite> SELECT CAST (p1 AS NUMERIC) FROM tmp3;

12.86

52

sqlite> DROP TABLE tmp3;

В параметре <Опции> могут быть указаны следующие конструкции:

 NOT NULL [<Обработка ошибок>] — означает, что поле обязательно должно

иметь значение при вставке новой записи. Если опция не указана, то поле мо-

жет содержать значение NULL;

Основы SQLite

281

 DEFAULT <Значение> — задает для поля значение по умолчанию, которое будет

использовано, если при вставке записи для этого поля не было явно указано

значение. Пример:
sqlite> CREATE TEMP TABLE tmp3 (p1, p2 INTEGER DEFAULT 0);

sqlite> INSERT INTO tmp3 (p1) VALUES (800);

sqlite> INSERT INTO tmp3 VALUES (5, 1204);

sqlite> SELECT * FROM tmp3;

800|0

5|1204

sqlite> DROP TABLE tmp3;

В параметре <Значение> можно указать специальные значения:

 CURRENT_TIME — текущее время UTC в формате ЧЧ:ММ:СС;

 CURRENT_DATE — текущая дата UTC в формате ГГГГ-ММ-ДД;

 CURRENT_TIMESTAMP — текущая дата и время UTC в формате ГГГГ-ММ-ДД

ЧЧ:ММ:СС.

Пример указания специальных значений:

sqlite> CREATE TEMP TABLE tmp3 (id INTEGER,

 ...> t TEXT DEFAULT CURRENT_TIME,

 ...> d TEXT DEFAULT CURRENT_DATE,

 ...> dt TEXT DEFAULT CURRENT_TIMESTAMP);

sqlite> INSERT INTO tmp3 (id) VALUES (1);

sqlite> SELECT * FROM tmp3;

1|17:04:01|2010-06-07|2010-06-07 17:04:01

sqlite> /* Текущая дата на компьютере: 2010-06-07 21:04:01 */

sqlite> DROP TABLE tmp3;

 COLLATE <Функция> — задает функцию сравнения для класса TEXT. Могут быть

указаны функции BINARY (значение по умолчанию), NOCASE (без учета регистра)

и RTRIM. Пример:
sqlite> CREATE TEMP TABLE tmp3 (p1, p2 TEXT COLLATE NOCASE);

sqlite> INSERT INTO tmp3 VALUES ("abcd", "abcd");

sqlite> SELECT p1 = "ABCD" FROM tmp3; -- Не найдено

0

sqlite> SELECT p2 = "ABCD" FROM tmp3; -- Найдено

1

sqlite> DROP TABLE tmp3;

ПРИМЕЧАНИЕ

При использовании NOCASE возможны проблемы с регистром русских букв.

 UNIQUE [<Обработка ошибок>] — указывает, что поле может содержать только

уникальные значения;

 CHECK(<Условие>) — значение, вставляемое в поле, должно удовлетворять ука-

занному условию. В качестве примера ограничим значения числами 10 и 20:
sqlite> CREATE TEMP TABLE tmp3 (

 ...> p1 INTEGER CHECK(p1 IN (10, 20)));

Глава 16

282

sqlite> INSERT INTO tmp3 VALUES (10); -- OK

sqlite> INSERT INTO tmp3 VALUES (30); -- Ошибка

Error: constraint failed

sqlite> DROP TABLE tmp3;

 PRIMARY KEY [ASC | DESC] [<Обработка ошибок>] [AUTOINCREMENT] — указы-

вает, что поле является первичным ключом таблицы. Записи в таком поле

должны быть уникальными. Если полю назначен класс INTEGER, то в это поле

можно вставить только целые числа или значение NULL. При указании значения

NULL будет вставлено число, на единицу большее максимального числа в

столбце. Пример:

sqlite> CREATE TEMP TABLE tmp3 (id INTEGER PRIMARY KEY, t TEXT);

sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка1");

sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка2");

sqlite> SELECT * FROM tmp3;

1|Строка1

2|Строка2

sqlite> DELETE FROM tmp3 WHERE id=2;

sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка3");

sqlite> SELECT * FROM tmp3;

1|Строка1

2|Строка3

sqlite> DROP TABLE tmp3;

В этом примере мы вставили две записи. Так как при вставке для первого поля

указано значение NULL, новая запись всегда будет иметь значение на единицу

больше максимального числа в поле. Если удалить последнюю запись, а затем

вставить новую запись, то запись будет иметь такой же индекс, что и удален-

ная. Чтобы индекс всегда был уникальным, необходимо дополнительно указать

ключевое слово AUTOINCREMENT. Пример:

sqlite> CREATE TEMP TABLE tmp3 (

 ...> id INTEGER PRIMARY KEY AUTOINCREMENT,

 ...> t TEXT);

sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка1");

sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка2");

sqlite> SELECT * FROM tmp3;

1|Строка1

2|Строка2

sqlite> DELETE FROM tmp3 WHERE id=2;

sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка3");

sqlite> SELECT * FROM tmp3;

1|Строка1

3|Строка3

sqlite> DROP TABLE tmp3;

Основы SQLite

283

Обратите внимание на индекс последней вставленной записи. Индекс имеет

значение 3, а не 2, как это было в предыдущем примере. Таким образом, индекс

новой записи всегда будет уникальным.

Если в таблице не существует поля с первичным ключом, то получить индекс

записи можно с помощью специальных названий полей: ROWID, OID или

ROWID. Пример:

sqlite> CREATE TEMP TABLE tmp3 (t TEXT);

sqlite> INSERT INTO tmp3 VALUES ("Строка1");

sqlite> INSERT INTO tmp3 VALUES ("Строка2");

sqlite> SELECT ROWID, OID, _ROWID_, t FROM tmp3;

1|1|1|Строка1

2|2|2|Строка2

sqlite> DELETE FROM tmp3 WHERE OID=2;

sqlite> INSERT INTO tmp3 VALUES ("Строка3");

sqlite> SELECT ROWID, OID, _ROWID_, t FROM tmp3;

1|1|1|Строка1

2|2|2|Строка3

sqlite> DROP TABLE tmp3;

В необязательном параметре <Дополнительные опции> могут быть указаны сле-

дующие конструкции:

 PRIMARY KEY (<Список полей через запятую>) [<Обработка ошибок>] — по-

зволяет задать первичный ключ для нескольких полей таблицы;

 UNIQUE (<Список полей через запятую>) [<Обработка ошибок>] — указыва-

ет, что заданные поля могут содержать только уникальные значения;

 CHECK(<Условие>) — значение должно удовлетворять указанному условию.

Необязательный параметр <Обработка ошибок> во всех рассмотренных в этом

разделе конструкциях задает способ разрешения конфликтных ситуаций. Формат

конструкции:

ON CONFLICT <Алгоритм>

В параметре <Алгоритм> указываются следующие значения:

 ROLLBACK — при ошибке транзакция завершается с откатом всех измененных

ранее записей, дальнейшее выполнение прерывается и выводится сообщение об

ошибке. Если активной транзакции нет, то используется алгоритм ABORT;

 ABORT — при возникновении ошибки аннулируются все изменения, произве-

денные текущей командой, и выводится сообщение об ошибке. Все изменения,

сделанные предыдущими командами в транзакции, сохраняются. Алгоритм

ABORT используется по умолчанию;

 FAIL — при возникновении ошибки все изменения, произведенные текущей

командой, сохраняются, а не аннулируются как в алгоритме ABORT. Дальнейшее

выполнение команды прерывается и выводится сообщение об ошибке. Все из-

менения, сделанные предыдущими командами в транзакции, сохраняются;

 IGNORE — проигнорировать ошибку и продолжить выполнение без вывода со-

общения об ошибке;

Глава 16

284

 REPLACE — при нарушении условия UNIQUE существующая запись удаляется, а

новая вставляется. Сообщение об ошибке не выводится. При нарушении усло-

вия NOT NULL значение NULL заменяется значением по умолчанию. Если значе-

ние по умолчанию не задано для поля, то используется алгоритм ABORT. Если

нарушено условие CHECK, применяется алгоритм IGNORE. Пример обработки ус-

ловия UNIQUE:

sqlite> CREATE TEMP TABLE tmp3 (

 ...> id UNIQUE ON CONFLICT REPLACE, t TEXT);

sqlite> INSERT INTO tmp3 VALUES (10, "s1");

sqlite> INSERT INTO tmp3 VALUES (10, "s2");

sqlite> SELECT * FROM tmp3;

10|s2

sqlite> DROP TABLE tmp3;

16.3. Вставка записей

Для добавления записей в таблицу используется инструкция INSERT. Формат

инструкции:

INSERT [OR <Алгоритм>] INTO [<Название базы данных>.]<Название таблицы>

[(<Поле1>, <Поле2>, ...)] VALUES (<Значение1>, <Значение2>, ...);

Необязательный параметр OR <Алгоритм> задает алгоритм обработки ошибок

(ROLLBACK, ABORT, FAIL, IGNORE или REPLACE). Все эти алгоритмы мы уже рассмат-

ривали в предыдущем разделе. После названия таблицы внутри круглых скобок

могут быть перечислены поля, которым будут присваиваться значения, указанные в

круглых скобках после ключевого слова VALUES. Количество параметров должно

совпадать. Если в таблице существуют поля, которым в инструкции INSERT не при-

сваивается значение, то они получат значения по умолчанию. Если список полей не

указан, то значения задаются в том порядке, в котором поля перечислены в инст-

рукции CREATE TABLE.

Создадим три таблицы user (данные о пользователе), rubr (название рубрики)

и site (описание сайта):

sqlite> CREATE TABLE user (

 ...> id_user INTEGER PRIMARY KEY AUTOINCREMENT,

 ...> email TEXT,

 ...> passw TEXT);

sqlite> CREATE TABLE rubr (

 ...> id_rubr INTEGER PRIMARY KEY AUTOINCREMENT,

 ...> name_rubr TEXT);

sqlite> CREATE TABLE site (

 ...> id_site INTEGER PRIMARY KEY AUTOINCREMENT,

 ...> id_user INTEGER,

 ...> id_rubr INTEGER,

Основы SQLite

285

 ...> url TEXT,

 ...> title TEXT,

 ...> msg TEXT);

Такая структура таблиц характерна для реляционных баз данных и позволяет

избежать дублирования данных в таблицах, ведь одному пользователю может при-

надлежать несколько сайтов, а в одной рубрике можно зарегистрировать множест-

во сайтов. Если в таблице site каждый раз указывать название рубрики, то при не-

обходимости переименовать рубрику придется изменять названия во всех записях,

где встречается старое название. Если же название рубрик расположено в отдель-

ной таблице, то изменить название можно будет только в одном месте. Все осталь-

ные записи будут связаны целочисленным идентификатором. Как получить данные

сразу из нескольких таблиц мы рассмотрим по мере изучения SQLite.

Теперь заполним таблицы связанными данными:

sqlite> INSERT INTO user (email, passw)

 ...> VALUES ('unicross@mail.ru', 'password1');

sqlite> INSERT INTO rubr VALUES (NULL, 'Программирование');

sqlite> SELECT * FROM user;

1|unicross@mail.ru|password1

sqlite> SELECT * FROM rubr;

1|Программирование

sqlite> INSERT INTO site (id_user, id_rubr, url, title, msg)

 ...> VALUES (1, 1, 'http://wwwadmin.ru', 'Название', 'Описание');

В первом примере перечислены только поля email и passw. Так как поле

id_user не указано, то ему присваивается значение по умолчанию. В таблице user

поле id_user объявлено как первичный ключ, поэтому будет вставлено значение на

единицу большее максимального значения в поле. Такого же эффекта можно до-

стичь, если в качестве значения передать NULL. Это демонстрируется во втором

примере. В третьем примере вставляется запись в таблицу site. Поля id_user и

id_rubr в этой таблице должны содержать идентификаторы соответствующих

записей из таблиц user и rubr. Поэтому вначале мы делаем запросы на выборку

данных и смотрим, какой идентификатор был присвоен вставленным записям в

таблицы user и rubr. Обратите внимание на то, что мы опять указываем названия

полей явным образом. Хотя перечислять поля и необязательно, но лучше всегда так

делать. В этом случае в дальнейшем можно будет изменить структуру таблицы

(например, добавить поле) без необходимости изменять все SQL-запросы. Доста-

точно для нового поля указать значение по умолчанию и все старые запросы будут

по-прежнему рабочими.

Во всех этих примерах строковые значения указываются внутри одинарных ка-

вычек. Однако бывают ситуации, когда внутри строки уже содержится одинарная

кавычка. Попытка вставить такую строку приведет к ошибке:

sqlite> INSERT INTO rubr VALUES (NULL, 'Название 'в кавычках'');

Error: near "в": syntax error

Глава 16

286

Чтобы избежать этой ошибки, можно заключить строку в двойные кавычки или

удвоить каждую одинарную кавычку внутри строки:

sqlite> INSERT INTO rubr VALUES (NULL, "Название 'в кавычках'");

sqlite> INSERT INTO rubr VALUES (NULL, 'Название ''в кавычках''');

sqlite> SELECT * FROM rubr;

1|Программирование

2|Название 'в кавычках'

3|Название 'в кавычках'

Если предпринимается попытка вставить запись, а в таблице уже есть запись с

таким же значением первичного ключа (или значение индекса UNIQUE не уникаль-

но), то такая SQL-команда приводит к ошибке. Если необходимо, чтобы такие не-

уникальные записи обновлялись без вывода сообщения об ошибке, можно указать

алгоритм обработки ошибок REPLACE после ключевого слова OR. Заменим название

рубрики с идентификатором 2:

sqlite> INSERT OR REPLACE INTO rubr

 ...> VALUES (2, 'Музыка');

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Название 'в кавычках'

Вместо алгоритма REPLACE можно использовать инструкцию REPLACE INTO. Ин-

струкция имеет следующий формат:

REPLACE INTO [<Название базы данных>.]<Название таблицы>

[(<Поле1>, <Поле2>, ...)] VALUES (<Значение1>, <Значение2>, ...);

Заменим название рубрики с идентификатором 3:

sqlite> REPLACE INTO rubr VALUES (3, 'Игры');

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Игры

16.4. Обновление и удаление записей

Обновление записи осуществляется с помощью инструкции UPDATE. Формат

инструкции:

UPDATE [OR <Алгоритм>] [<Название базы данных>.]<Название таблицы>

SET <Поле1>='<Значение>', <Поле2>='<Значение2>', ...

[WHERE <Условие>];

Необязательный параметр OR <Алгоритм> задает алгоритм обработки ошибок

(ROLLBACK, ABORT, FAIL, IGNORE или REPLACE). Все эти алгоритмы мы уже рассмат-

ривали при изучении создания таблицы. После ключевого слова SET указываются

названия полей и их новые значения после знака равенства. Чтобы ограничить на-

Основы SQLite

287

бор изменяемых записей применяется инструкция WHERE. Обратите внимание на то,

что если не указано <Условие>, то будут обновлены все записи в таблице. Какие

выражения можно указать в параметре <Условие> мы рассмотрим немного позже.

В качестве примера изменим название рубрики с идентификатором 3:

sqlite> UPDATE rubr SET name_rubr='Кино' WHERE id_rubr=3;

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Кино

Удаление записи осуществляется с помощью инструкции DELETE. Формат инст-
рукции:
DELETE FROM [<Название базы данных>.]<Название таблицы>

[WHERE <Условие>];

Если условие не указано, то будут удалены все записи из таблицы. В противном
случае удаляются только записи, соответствующие условию. В качестве примера
удалим рубрику с идентификатором 3:
sqlite> DELETE FROM rubr WHERE id_rubr=3;

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

Частое обновление и удаление записей приводит к дефрагментации таблицы.
Чтобы освободить неиспользуемое пространство, можно воспользоваться SQL-
командой VACUUM. Обратите внимание на то, что SQL-команда может изменить по-
рядок нумерации в специальных полях (ROWID, OID и _ROWID_).

16.5. Изменение свойств таблицы

В некоторых случаях необходимо изменить структуру уже созданной таблицы.
Для этого используется инструкция ALTER TABLE. В SQLite инструкция ALTER
TABLE позволяет выполнить лишь ограниченное количество операций. Например,
нельзя изменить свойство поля или удалить его из таблицы. Формат инструкции:
ALTER TABLE [<Название базы данных>.]<Название таблицы>

<Преобразование>;

В параметре <Преобразование> могут быть указаны следующие конструкции:
 RENAME TO <Новое имя таблицы> — переименовывает таблицу. Изменим на-

звание таблицы user на users:
sqlite> .tables

rubr sqlite_sequence tmp1 user

site table tmp2

sqlite> ALTER TABLE user RENAME TO users;

sqlite> .tables

rubr sqlite_sequence tmp1 users

site table tmp2

Глава 16

288

 ADD [COLUMN] <Имя нового поля> [<Тип данных>] [<Опции>] — добавляет

новое поле после всех имеющихся полей. Обратите внимание на то, в новом

поле нужно задать значение по умолчанию или значение NULL должно быть

допустимым, т. к. в таблице уже есть записи. Кроме того, поле не может быть

объявлено как PRIMARY KEY или UNIQUE. Добавим поле iq в таблицу site:

sqlite> ALTER TABLE site ADD COLUMN iq INTEGER DEFAULT 0;

sqlite> PRAGMA table_info(site);

0|id_site|INTEGER|0||1

1|id_user|INTEGER|0||0

2|id_rubr|INTEGER|0||0

3|url|TEXT|0||0

4|title|TEXT|0||0

5|msg|TEXT|0||0

6|iq|INTEGER|0|0|0

sqlite> SELECT * FROM site;

1|1|1|http://wwwadmin.ru|Название|Описание|0

ВНИМАНИЕ!

При использовании SQLite версии 3.1.3 и ниже после добавления нового поля необхо-

димо выполнить инструкцию VACUUM.

16.6. Выбор записей

Для извлечения данных из таблицы предназначена инструкция SELECT. Инст-

рукция имеет следующий формат:

SELECT [ALL | DISTINCT]

[<Название таблицы>.]<Поле>[, ...]

[FROM <Название таблицы> [AS <Псевдоним>][, ...]]

[WHERE <Условие>]

[[GROUP BY <Название поля>] [HAVING <Условие>]]

[ORDER BY <Название поля> [COLLATE BINARY | NOCASE] [ASC | DESC][, ...]]

[LIMIT <Ограничение>]

SQL-команда SELECT ищет все записи в указанной таблице, которые удовлетво-

ряют условию в инструкции WHERE. Если инструкция WHERE не указана, то будут

возвращены все записи из таблицы. Получим все записи из таблицы rubr:

sqlite> SELECT id_rubr, name_rubr FROM rubr;

1|Программирование

2|Музыка

Теперь выведем только запись с идентификатором 1:

sqlite> SELECT id_rubr, name_rubr FROM rubr WHERE id_rubr=1;

1|Программирование

Основы SQLite

289

Вместо перечисления полей можно указать символ *. В этом случае будут воз-

вращены значения всех полей. Получим все записи из таблицы rubr:

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

SQL-команда SELECT позволяет вместо перечисления полей указать выражение.

Это выражение будет вычислено, и возвращен результат:

sqlite> SELECT 10 + 5;

15

Чтобы из программы было легче обратиться к результату выполнения выраже-

ния, можно назначить псевдоним, указав его после выражения через ключевое сло-

во AS:

sqlite> SELECT (10 + 5) AS expr1, (70 * 2) AS expr2;

15|140

Псевдоним можно назначить также таблицам. Это особенно полезно при вы-

борке из нескольких таблиц сразу. В качестве примера заменим индекс рубрики в

таблице site на соответствующее название из таблицы rubr:

sqlite> SELECT s.url, r.name_rubr FROM site AS s, rubr AS r

 ...> WHERE s.id_rubr = r.id_rubr;

http://wwwadmin.ru|Программирование

В этом примере мы назначили псевдонимы сразу двум таблицам. Теперь при

указании списка полей достаточно задать псевдоним перед названием поля через

точку, а не указывать полные названия таблиц. Более подробно выбор записей сра-

зу из нескольких таблиц мы рассмотрим в следующем разделе.

После ключевого слова SELECT можно указать слово ALL или DISTINCT. Слово

ALL является значением по умолчанию и означает, что возвращаются все записи.

Если указано слово DISTINCT, то в результат попадут только уникальные значения.

Инструкция GROUP BY позволяет сгруппировать несколько записей. Эта инст-

рукция особенно полезна при использовании агрегатных функций. В качестве при-

мера добавим одну рубрику и два сайта:

sqlite> INSERT INTO rubr VALUES (3, 'Поисковые порталы');

sqlite> INSERT INTO site (id_user, id_rubr, url, title, msg, iq)

 ...> VALUES (1, 1, 'http://python.org', 'Python', '', 1000);

sqlite> INSERT INTO site (id_user, id_rubr, url, title, msg, iq)

 ...> VALUES (1, 3, 'http://google.ru', 'Гугль', '', 3000);

Теперь выведем количество сайтов в каждой рубрике:

sqlite> SELECT id_rubr, COUNT(id_rubr) FROM site

 ...> GROUP BY id_rubr;

1|2

3|1

Если необходимо ограничить сгруппированный набор записей, то следует вос-

пользоваться инструкцией HAVING. Эта инструкция выполняет те же функции, что и

Глава 16

290

инструкция WHERE, но только для сгруппированного набора. В качестве примера

выведем номера рубрик, в которых зарегистрировано более одного сайта:

sqlite> SELECT id_rubr FROM site

 ...> GROUP BY id_rubr HAVING COUNT(id_rubr)>1;

1

В этих примерах мы воспользовались агрегатной функцией COUNT(), которая

возвращает количество записей. Перечислим агрегатные функции, используемые

наиболее часто:

 COUNT(<Поле> | *) — количество записей в указанном поле. Выведем количе-

ство зарегистрированных сайтов:

sqlite> SELECT COUNT(*) FROM site;

3

 MIN(<Поле>) — минимальное значение в указанном поле. Выведем минималь-

ный коэффициент релевантности:

sqlite> SELECT MIN(iq) FROM site;

0

 MAX(<Поле>) — максимальное значение в указанном поле. Выведем макси-

мальный коэффициент релевантности:

sqlite> SELECT MAX(iq) FROM site;

3000

 AVG(<Поле>) — средняя величина значений в указанном поле. Выведем среднее

значение коэффициента релевантности:

sqlite> SELECT AVG(iq) FROM site;

1333.33333333333

 SUM(<Поле>) — сумма значений в указанном поле. Выведем сумму значений

коэффициентов релевантности:

sqlite> SELECT SUM(iq) FROM site;

4000

Найденные записи можно отсортировать с помощью инструкции ORDER BY.

Допустимо производить сортировку сразу по нескольким полям. По умолчанию

записи сортируются по возрастанию (значение ASC). Если в конце указано слово

DESC, то записи будут отсортированы в обратном порядке. После ключевого слова

COLLATE может быть указана функция сравнения (BINARY или NOCASE). Выведем на-

звания рубрик по возрастанию и убыванию:

sqlite> SELECT * FROM rubr ORDER BY name_rubr;

2|Музыка

3|Поисковые порталы

1|Программирование

sqlite> SELECT * FROM rubr ORDER BY name_rubr DESC;

1|Программирование

3|Поисковые порталы

2|Музыка

Основы SQLite

291

Если требуется, чтобы при поиске выводились не все найденные записи, а лишь

их часть, то следует использовать инструкцию LIMIT. Например, если таблица site

содержит много описаний сайтов, то вместо того чтобы выводить все сайты за один

раз, можно выводить их частями, скажем, по 10 сайтов за раз. Инструкция имеет

следующие форматы:

LIMIT <Количество записей>

LIMIT <Начальная позиция>, <Количество записей>

LIMIT <Количество записей> OFFSET <Начальная позиция>

Первый формат задает количество записей от начальной позиции. Обратите

внимание на то, что начальная позиция имеет индекс 0. Второй и третий форматы

позволяют явно указать начальную позицию и количество записей. Пример:

sqlite> CREATE TEMP TABLE tmp3 (id INTEGER);

sqlite> INSERT INTO tmp3 VALUES(1);

sqlite> INSERT INTO tmp3 VALUES(2);

sqlite> INSERT INTO tmp3 VALUES(3);

sqlite> INSERT INTO tmp3 VALUES(4);

sqlite> INSERT INTO tmp3 VALUES(5);

sqlite> SELECT * FROM tmp3 LIMIT 3; -- Эквивалентно LIMIT 0, 3

1

2

3

sqlite> SELECT * FROM tmp3 LIMIT 2, 3;

3

4

5

sqlite> SELECT * FROM tmp3 LIMIT 3 OFFSET 2;

3

4

5

sqlite> DROP TABLE tmp3;

16.7. Выбор записей из нескольких таблиц

SQL-команда SELECT позволяет выбирать записи сразу из нескольких таблиц

одновременно. Для этого используются следующие форматы инструкции FROM:

FROM <Название таблицы1> [AS <Псевдоним>]

, | [NATURAL] [LEFT] [OUTER | INNER | CROSS] JOIN

<Название таблицы2> [AS <Псевдоним>]

[ON <Выражение>] [USING (<Поле>)]

В первом формате таблицы перечисляются через запятую в инструкции FROM, а

в инструкции WHERE через запятую указываются пары полей, являющиеся связуе-

мыми для таблиц. Причем в условии и перечислении полей вначале указывается

Глава 16

292

название таблицы (или псевдоним), а затем через точку название поля. В качестве

примера выведем сайты из таблицы site, но вместо индекса пользователя укажем

его e-mail, а вместо индекса рубрики ее название:

sqlite> SELECT site.url, rubr.name_rubr, users.email

 ...> FROM rubr, users, site

 ...> WHERE site.id_rubr=rubr.id_rubr AND

 ...> site.id_user=users.id_user;

http://wwwadmin.ru|Программирование|unicross@mail.ru

http://python.org|Программирование|unicross@mail.ru

http://google.ru|Поисковые порталы|unicross@mail.ru

Вместо названия таблиц можно использовать псевдоним. Кроме того, если поля

в таблицах имеют разные названия, то название таблицы можно не указывать:

sqlite> SELECT url, name_rubr, email

 ...> FROM rubr AS r, users AS u, site AS s

 ...> WHERE s.id_rubr=r.id_rubr AND

 ...> s.id_user=u.id_user;

Объединить таблицы позволяет также оператор JOIN, который имеет два сино-

нима: CROSS JOIN и INNER JOIN. Переделаем наш предыдущий пример и использу-

ем оператор JOIN:

sqlite> SELECT url, name_rubr, email

 ...> FROM rubr JOIN users JOIN site

 ...> WHERE site.id_rubr=rubr.id_rubr AND

 ...> site.id_user=users.id_user;

Инструкцию WHERE можно заменить инструкцией ON, а в инструкции WHERE ука-

зать дополнительное условие. В качестве примера выведем сайты, зарегистриро-

ванные в рубрике с идентификатором 1:

sqlite> SELECT url, name_rubr, email

 ...> FROM rubr JOIN users JOIN site

 ...> ON site.id_rubr=rubr.id_rubr AND

 ...> site.id_user=users.id_user

 ...> WHERE site.id_rubr=1;

Если названия связующих полей в таблицах являются одинаковыми, то вместо

инструкции ON можно использовать инструкцию USING:

sqlite> SELECT url, name_rubr, email

 ...> FROM rubr JOIN site USING (id_rubr) JOIN users USING (id_user);

Оператор JOIN объединяет все записи, которые существуют во всех связующих

полях. Например, если попробовать вывести количество сайтов в каждой рубрике,

то мы не получим рубрики без зарегистрированных сайтов:

sqlite> SELECT name_rubr, COUNT(id_site)

 ...> FROM rubr JOIN site USING (id_rubr)

 ...> GROUP BY rubr.id_rubr;

Программирование|2

Поисковые порталы|1

Основы SQLite

293

В этом примере мы не получили количество сайтов в рубрике "Музыка", т. к. в

этой рубрике нет сайтов. Чтобы получить количество сайтов во всех рубриках, не-

обходимо использовать левостороннее объединение. Формат левостороннего объе-

динения:

<Таблица1> LEFT [OUTER] JOIN <Таблица2>

ON <Таблица1>.<Поле1>=<Таблица2>.<Поле2> | USING (<Поле>)

При левостороннем объединении возвращаются записи, соответствующие ус-

ловию, а также записи из таблицы <Таблица1>, которым нет соответствия в таблице

<Таблица2> (при этом поля из таблицы <Таблица2> будут иметь значение NULL).

Выведем количество сайтов в рубриках и отсортируем по названию рубрики:

sqlite> SELECT name_rubr, COUNT(id_site)

 ...> FROM rubr LEFT JOIN site USING (id_rubr)

 ...> GROUP BY rubr.id_rubr

 ...> ORDER BY rubr.name_rubr;

Музыка|0

Поисковые порталы|1

Программирование|2

16.8. Условия в инструкции WHERE

В предыдущих разделах мы оставили без внимания рассмотрение выражений в

инструкциях WHERE и HAVING. Эти инструкции позволяют ограничить набор выво-

димых, изменяемых или удаляемых записей с помощью некоторого условия. Внут-

ри условий можно использовать следующие операторы сравнения:

 = или == — проверка на равенство. Пример:

sqlite> SELECT * FROM rubr WHERE id_rubr=1;

1|Программирование

sqlite> SELECT 10 = 10, 5 = 10, 10 == 10, 5 == 10;

1|0|1|0

Как видно из примера, выражения можно разместить не только в инструкциях

WHERE и HAVING, но и после ключевого слова SELECT. В этом случае результатом

операции сравнения являются следующие значения:

 0 — ложь;

 1 — истина;

 NULL.

Результат сравнения двух строк зависит от используемой функции сравнения.

Задать функцию можно при создании таблицы с помощью инструкции COLLATE

<Функция>. В параметре <Функция> указывается функция BINARY (значение по

умолчанию), NOCASE (без учета регистра) или RTRIM. Пример:

sqlite> CREATE TEMP TABLE tmp3 (p1, p2 TEXT COLLATE NOCASE);

sqlite> INSERT INTO tmp3 VALUES ("abcd", "abcd");

Глава 16

294

sqlite> SELECT p1 = "ABCD" FROM tmp3; -- Не найдено

0

sqlite> SELECT p2 = "ABCD" FROM tmp3; -- Найдено

1

sqlite> DROP TABLE tmp3;

Указать функцию сравнения можно также после выражения:

sqlite> SELECT 's' = 'S', 's' = 'S' COLLATE NOCASE;

0|1

Функция NOCASE не учитывает регистр только латинских букв. При использова-

нии русских букв возможны проблемы с регистром. Пример:

sqlite> SELECT 'ы' = 'Ы', 'ы' = 'Ы' COLLATE NOCASE;

0|0

 != или <> — не равно:

sqlite> SELECT 10 != 10, 5 != 10, 10 <> 10, 5 <> 10;

0|1|0|1

 < — меньше;

 > — больше;

 <= — меньше или равно;

 >= — больше или равно;

 IS NOT NULL, NOT NULL или NOTNULL — проверка на наличие значения;

 IS NULL или ISNULL — проверка на отсутствие значения;

 BETWEEN <Начало> AND <Конец> — проверка на вхождение в диапазон значе-

ний. Пример:

sqlite> SELECT 100 BETWEEN 1 AND 100;

1

sqlite> SELECT 101 BETWEEN 1 AND 100;

0

 IN (<Список значений>) — проверка на наличие значения в определенном на-

боре. Сравнение зависит от регистра букв. Пример:

sqlite> SELECT 'один' IN ('один', 'два', 'три');

1

sqlite> SELECT 'Один' IN ('один', 'два', 'три');

0

 LIKE <Шаблон> [ESCAPE <Символ>] — проверка на соответствие шаблону.

В шаблоне используются следующие специальные символы:

 % — любое количество символов;

 _ — любой одиночный символ.

Специальные символы могут быть расположены в любом месте шаблона. На-

пример, чтобы найти все вхождения, необходимо указать символ % в начале и в

конце шаблона:

sqlite> SELECT 'test word test' LIKE '%word%';

1

Основы SQLite

295

Можно установить привязку или только к началу строки, или только к концу:

sqlite> SELECT 'test word test' LIKE 'test%';

1

sqlite> SELECT 'test word test' LIKE 'word%';

0

Кроме того, шаблон для поиска может иметь очень сложную структуру:

sqlite> SELECT 'test word test' LIKE '%es_%wo_d%';

1

sqlite> SELECT 'test word test' LIKE '%wor%d%';

1

Обратите внимание на последнюю строку поиска. Этот пример демонстрирует,

что специальный символ % соответствует не только любому количеству симво-

лов, но и полному их отсутствию.

Что же делать, если необходимо найти символы % и _? Ведь они являются спе-

циальными. В этом случае специальные символы необходимо экранировать с

помощью символа, указанного в инструкции ESCAPE <Символ>:

sqlite> SELECT '10$' LIKE '10%';

1

sqlite> SELECT '10$' LIKE '10\%' ESCAPE '\';

0

sqlite> SELECT '10%' LIKE '10\%' ESCAPE '\';

1

Следует учитывать, что сравнение с шаблоном для латинских букв производит-

ся без учета регистра символов. Чтобы учитывался регистр, необходимо при-

своить значение true (или 1, yes, on) параметру case_sensitive_like в SQL-

команде PRAGMA. Пример:

sqlite> PRAGMA case_sensitive_like = true;

sqlite> SELECT 's' LIKE 'S';

0

sqlite> PRAGMA case_sensitive_like = false;

sqlite> SELECT 's' LIKE 'S';

1

Теперь посмотрим, учитывается ли регистр русских букв при поиске по шаб-

лону:

sqlite> SELECT 'ы' LIKE 'Ы', 'ы' LIKE 'ы';

1|1

Результат выполнения примера показывает, что поиск производится без учета

регистра. Однако это далеко не так. Попробуем сравнить две разные буквы и

два разных слова:

sqlite> SELECT 'г' LIKE 'Ы', 'слово' LIKE 'текст';

1|1

Глава 16

296

Этот пример показывает, что буква "г" равна букве "Ы", а "слово" равно

"текст". Иными словами, производится сравнение длины строк, а не символов в

строке. Такой странный результат был получен при использовании кодировки

Windows-1251. Если изменить кодировку на cp866, то результат выполнения

примера будет другим:

C:\book>chcp 866

Текущая кодовая страница: 866

C:\book>sqlite3.exe testdb.db

SQLite version 3.6.23

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> SELECT 'г' LIKE 'Ы', 'слово' LIKE 'текст';

0|0

sqlite> SELECT 'ы' LIKE 'Ы', 'ы' LIKE 'ы';

0|1

Результат выполнения становится более логичным. Таким образом, поиск рус-

ских букв зависит от кодировки. По умолчанию в SQLite используется коди-

ровка UTF-8. С помощью инструкции PRAGMA encoding = <Кодировка> можно

указать другую кодировку. Поддерживаются кодировки UTF-8, UTF-16, UTF-

16le и UTF-16be. В этот список не входят кодировки cp866 и Windows-1251, по-

этому результат сравнения строк может быть некорректным. С кодировкой

UTF-8 мы еще поработаем в следующей главе, а на данный момент следует за-

помнить, что результат сравнения русских букв зависит от регистра символов.

Кроме того, если поиск сравнивает только длину строк, то необходимо прове-

рить кодировку данных. В рабочих проектах данные должны быть в кодировке

UTF-8.

Результат логического выражения можно изменить на противоположный. Для

этого необходимо перед выражением разместить оператор NOT. Пример:

sqlite> SELECT 's' = 'S', NOT ('s' = 'S');

0|1

sqlite> SELECT NOT 'один' IN ('один', 'два', 'три');

0

Кроме того, допустимо проверять сразу несколько условий, указав между вы-

ражениями следующие операторы:

 AND — логическое И;

 OR — логическое ИЛИ.

16.9. Индексы

Все записи в полях таблицы расположены в произвольном порядке. Чтобы най-

ти какие-либо данные, необходимо каждый раз просматривать все записи. Для ус-

Основы SQLite

297

корения выполнения запросов применяются индексы (ключи). Индексированные

поля всегда поддерживаются в отсортированном состоянии, что позволяет быстро

найти необходимую запись, не просматривая все записи. Надо сразу заметить, что

применение индексов приводит к увеличению размера базы данных, а также к за-

тратам времени на поддержание индекса в отсортированном состоянии при каждом

добавлении данных. По этой причине индексировать следует поля, которые очень

часто используются в запросах типа:

SELECT <Список полей> FROM <Таблица> WHERE <Поле>=<Значение>;

В SQLite существуют следующие виды индексов:

 первичный ключ;

 уникальный индекс;

 обычный индекс.

Первичный ключ служит для однозначной идентификации каждой записи в

таблице. Для создания индекса в инструкции CREATE TABLE используется ключевое

слово PRIMARY KEY. Ключевое слово можно указать после описания поля или после

перечисления всех полей. Второй вариант позволяет указать сразу несколько полей

в качестве первичного ключа.

Посмотреть, каким образом будет выполняться запрос и какие индексы будут

использоваться, позволяет SQL-команда EXPLAIN. Формат SQL-команды:

EXPLAIN [QUERY PLAN] <SQL-запрос>

Если ключевые слова QUERY PLAN не указаны, то выводится полный список па-

раметров и их значений. Если ключевые слова указаны, то выводится информация

об используемых индексах. В качестве примера попробуем выполнить запрос на

извлечение записей из таблицы site. В первом случае поиск произведем в поле,

являющемся первичным ключом, а во втором случае — в обычном поле:

sqlite> EXPLAIN QUERY PLAN SELECT * FROM site WHERE id_site=1;

0|0|TABLE site USING PRIMARY KEY

sqlite> EXPLAIN QUERY PLAN SELECT * FROM site WHERE id_rubr=1;

0|0|TABLE site

В первом случае фраза "USING PRIMARY KEY" означает, что при поиске бу-

дет использован первичный ключ, а во втором случае никакие индексы не исполь-

зуются.

В одной таблице не может быть более одного первичного ключа. А вот обыч-

ных и уникальных индексов допускается создать несколько. Для создания индекса

применяется SQL-команда CREATE INDEX. Формат команды:

CREATE [UNIQUE] INDEX [IF NOT EXISTS]

[<Название базы данных>.]<Название индекса>

ON <Название таблицы>

(<Название поля> [COLLATE <Функция сравнения>] [ASC | DESC][, ...])

Если между ключевыми словами CREATE и INDEX указано слово UNIQUE, то соз-

дается уникальный индекс. В этом случае дублирование данных в поле не допуска-

ется. Если слово UNIQUE не указано, то создается обычный индекс.

Глава 16

298

Все сайты в нашем каталоге распределяются по рубрикам. Это означает, что

при выводе сайтов, зарегистрированных в определенной рубрике, в инструкции

WHERE будет постоянно выполняться условие:

WHERE id_rubr=<Номер рубрики>

Чтобы ускорить выборку сайтов по номеру рубрики, создадим обычный индекс

для этого поля и проверим с помощью SQL-команды EXPLAIN, задействуется ли

этот индекс:

sqlite> EXPLAIN QUERY PLAN SELECT * FROM site WHERE id_rubr=1;

0|0|TABLE site

sqlite> CREATE INDEX index_rubr ON site (id_rubr);

sqlite> EXPLAIN QUERY PLAN SELECT * FROM site WHERE id_rubr=1;

0|0|TABLE site WITH INDEX index_rubr

Обратите внимание на то, что после создания индекса добавилась фраза "WITH

INDEX index_rubr". Это означает, что теперь при поиске будет задействован ин-

декс и поиск будет выполняться быстрее. При выполнении запроса название ин-

декса явным образом указывать нет необходимости. Использовать индекс или нет,

SQLite решает самостоятельно. Таким образом, SQL-запрос будет выглядеть обыч-

ным образом:

sqlite> SELECT * FROM site WHERE id_rubr=1;

1|1|1|http://wwwadmin.ru|Название|Описание|0

2|1|1|http://python.org|Python||1000

В некоторых случаях необходимо пересоздать индексы. Для этого применяется

SQL-команда REINDEX. Формат команды:

REINDEX [<Название базы данных>.]<Название таблицы или индекса>

Если указано название таблицы, то пересоздаются все существующие индексы

в таблице. При задании названия индекса пересоздается только указанный индекс.

Удалить обычный и уникальный индексы позволяет SQL-команда DROP INDEX.

Формат команды:

DROP INDEX [IF EXISTS] [<Название базы данных>.]<Название индекса>

Удаление индекса приводит к дефрагментации файла с базой данных. Чтобы

освободить неиспользуемое свободное пространство, можно воспользоваться SQL-

командой VACUUM.

Вся статистическая информация об индексах хранится в специальной таблице

sqlite_stat1. В данный момент в таблице нет никакой информации. Чтобы со-

брать статистическую информацию и поместить ее в эту таблицу, предназначена

SQL-команда ANALYZE. Формат команды:

ANALYZE [[<Название базы данных>.]<Название таблицы>];

Выполним SQL-команду ANALYZE и выведем содержимое таблицы sqlite_stat1:

sqlite> SELECT * FROM sqlite_stat1; -- Нет записей

Error: no such table: sqlite_stat1

sqlite> ANALYZE;

sqlite> SELECT * FROM sqlite_stat1;

site|index_rubr|3 2

Основы SQLite

299

16.10. Вложенные запросы

Результаты выполнения инструкции SELECT можно использовать в других ин-

струкциях, создавая вложенные запросы. Для создания таблицы с помощью вло-

женного запроса используется следующий формат:

CREATE [TEMP | TEMPORARY] TABLE [IF NOT EXISTS]

[<Название базы данных>.]<Название таблицы> AS <Запрос SELECT>;

В качестве примера создадим временную копию таблицы rubr и выведем ее

содержимое:

sqlite> CREATE TEMP TABLE tmp_rubr AS SELECT * FROM rubr;

sqlite> SELECT * FROM tmp_rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

В результате выполнения вложенного запроса создается таблица с полями, пе-

речисленными после ключевого слова SELECT, и сразу заполняется данными.

Использовать вложенные запросы можно и в инструкции INSERT. Для этого

предназначен следующий формат:

INSERT [OR <Алгоритм>] INTO [<Название базы данных>.]<Название таблицы>

[(<Поле1>, <Поле2>, ...)] <Запрос SELECT>;

Очистим временную таблицу tmp_rubr, а затем опять заполним ее с помощью

вложенного запроса:

sqlite> DELETE FROM tmp_rubr;

sqlite> INSERT INTO tmp_rubr SELECT * FROM rubr WHERE id_rubr<3;

sqlite> SELECT * FROM tmp_rubr;

1|Программирование

2|Музыка

Если производится попытка вставить повторяющееся значение и не указан <Ал-

горитм>, то это приведет к ошибке. С помощью алгоритмов ROLLBACK, ABORT, FAIL,

IGNORE или REPLACE можно указать, как следует обрабатывать записи с дублирован-

ными значениями. При использовании алгоритма IGNORE повторяющиеся записи

отбрасываются, а при использовании REPLACE — новые записи заменяют сущест-

вующие.

Использовать вложенные запросы можно также в инструкции WHERE. В этом

случае вложенный запрос размещается в операторе IN. Для примера выведем сай-

ты, зарегистрированные в рубрике с названием "Программирование":

sqlite> SELECT * FROM site WHERE id_rubr IN (

 ...> SELECT id_rubr FROM rubr

 ...> WHERE name_rubr='Программирование');

1|1|1|http://wwwadmin.ru|Название|Описание|0

2|1|1|http://python.org|Python||1000

Глава 16

300

16.11. Транзакции

Очень часто несколько инструкций выполняются последовательно. Например,

при совершении покупки деньги списываются со счета клиента и сразу добавляют-

ся на счет магазина. Если во время добавления денег на счет магазина произойдет

ошибка, то деньги будут списаны со счета клиента, но не попадут на счет магазина.

Чтобы гарантировать успешное выполнение группы инструкций, предназначены

транзакции. После запуска транзакции группа инструкций выполняется как единое

целое. Если во время транзакции произойдет ошибка, например, отключится ком-

пьютер, все операции с начала транзакции будут отменены.

В SQLite каждая инструкция, производящая изменения в базе данных, автома-

тически запускает транзакцию, если транзакция не была запущена ранее. После

завершения выполнения инструкции транзакция автоматически завершается. Для

явного запуска транзакции предназначена инструкция BEGIN. Формат инструкции:

BEGIN [DEFERRED | IMMEDIATE | EXCLUSIVE] [TRANSACTION];

Для нормального завершения транзакции предназначены инструкции COMMIT и

END. Эти инструкции сохраняют все изменения и завершают транзакцию. Инструк-

ции имеют следующий формат:

COMMIT [TRANSACTION];

END [TRANSACTION];

Чтобы отменить изменения, выполненные с начала транзакции, используется

инструкция ROLLBACK. Формат инструкции:

ROLLBACK [TRANSACTION] [TO [SAVEPOINT] <Название метки>];

В качестве примера запустим транзакцию, вставим две записи, а затем отменим

все произведенные изменения и выведем содержимое таблицы:

sqlite> BEGIN TRANSACTION;

sqlite> INSERT INTO rubr VALUES (NULL, 'Кино');

sqlite> INSERT INTO rubr VALUES (NULL, 'Разное');

sqlite> ROLLBACK TRANSACTION; -- Отменяем вставку

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

Как видно из результата, новые записи не были вставлены в таблицу. Анало-

гичные действия будут выполнены автоматически, если соединение с базой данных

будет закрыто или отключится компьютер.

Если ошибка возникает в одной из инструкций внутри транзакции, то исполь-

зуется алгоритм обработки ошибок, указанный в конструкции ON CONFLICT <Алго-

ритм> при создании таблицы, или в конструкции OR <Алгоритм> при вставке или

обновлении записей. По умолчанию используется алгоритм ABORT. Согласно этому

алгоритму при возникновении ошибки аннулируются все изменения, произведен-

ные текущей командой, и выводится сообщение об ошибке. Все изменения, сде-

Основы SQLite

301

ланные предыдущими командами в транзакции, сохраняются. Запустим транзак-

цию и попробуем вставить две записи. При вставке второй записи укажем индекс,

который уже существует в таблице:

sqlite> BEGIN TRANSACTION;

sqlite> INSERT INTO rubr VALUES (NULL, 'Кино');

sqlite> INSERT INTO rubr VALUES (3, 'Разное'); -- Ошибка

Error: PRIMARY KEY must be unique

sqlite> COMMIT TRANSACTION;

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

4|Кино

Как видно из примера, первая запись успешно добавлена в таблицу. Если необ-

ходимо отменить все изменения внутри транзакции, то при вставке следует указать

алгоритм ROLLBACK. Согласно этому алгоритму при ошибке транзакция завершается

с откатом всех измененных ранее записей, дальнейшее выполнение прерывается и

выводится сообщение об ошибке. Рассмотрим это на примере:

sqlite> BEGIN TRANSACTION;

sqlite> INSERT OR ROLLBACK INTO rubr VALUES (NULL, 'Мода');

sqlite> INSERT OR ROLLBACK INTO rubr VALUES (3, 'Разное');

Error: PRIMARY KEY must be unique

sqlite> COMMIT TRANSACTION; -- Транзакция уже завершена!

Error: cannot commit - no transaction is active

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

4|Кино

Вместо запуска транзакции с помощью инструкции BEGIN можно создать име-

нованную метку. Метка создается с помощью инструкции SAVEPOINT. Формат ин-

струкции:

SAVEPOINT <Название метки>;

Для нормального завершения транзакции и сохранения всех изменений предна-

значена инструкция RELEASE. Формат инструкции:

RELEASE [SAVEPOINT] <Название метки>;

Чтобы отменить изменения, выполненные после метки, используется инструк-

ция ROLLBACK. В качестве примера запустим транзакцию, вставим две записи, а за-

тем отменим все произведенные изменения и выведем содержимое таблицы:

sqlite> SAVEPOINT metka1;

sqlite> INSERT INTO rubr VALUES (NULL, 'Мода');

sqlite> INSERT INTO rubr VALUES (NULL, 'Разное');

sqlite> ROLLBACK TO SAVEPOINT metka1;

Глава 16

302

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

4|Кино

16.12. Удаление таблицы

и базы данных

Удалить таблицу позволяет инструкция DROP TABLE. Удалить можно как обыч-

ную таблицу, так и временную. Все индексы и триггеры, связанные с таблицей,

также удаляются. Формат инструкции:

DROP TABLE [IF EXISTS] [<Название базы данных>.]<Название таблицы>;

Так как SQLite напрямую работает с файлом, не существует инструкции для

удаления базы данных. Чтобы удалить базу, достаточно просто удалить файл.

В этой главе мы рассмотрели лишь основные возможности SQLite. Остались не

рассмотренными триггеры, представления, виртуальные таблицы, внешние ключи,

операторы, встроенные функции и некоторые другие возможности. За подробной

информацией обращайтесь к документации по SQLite.

ГЛАВА 17

Доступ к базе данных SQLite
из Python

Итак, изучение основ SQLite закончено, и мы возвращаемся к изучению языка

Python. В этой главе мы рассмотрим возможности модуля sqlite3, позволяющего

работать с базой данных SQLite. Модуль sqlite3 входит в состав стандартной биб-

лиотеки Python, начиная с версии 2.5, и в дополнительной установке не нуждается.

Если необходимо получить доступ к SQLite в предыдущих версиях Python, то сле-

дует воспользоваться модулем pysqlite. Этот модуль не входит в состав стандарт-

ной библиотеки, поэтому его придется устанавливать отдельно.

Для работы с базами данных в языке Python существует единый интерфейс дос-

тупа. Все разработчики модулей, осуществляющих связь базы данных с Python,

должны придерживаться спецификации DB-API (DataBase Application Program In-

terface). Эта спецификация более интересна для разработчиков модулей, чем для

прикладных программистов, поэтому мы не будем ее подробно рассматривать. По-

лучить полное описание спецификации DB-API 2.0 можно в документе PEP 249,

расположенном по адресу http://www.python.org/dev/peps/pep-0249.

Модуль sqlite3 поддерживает спецификацию DB-API 2.0, а также предостав-

ляет некоторые нестандартные возможности. Поэтому, изучив методы и атрибуты

этого модуля, вы получите достаточно полное представление о спецификации DB-

API 2.0 и сможете в дальнейшем работать с другой базой данных. Получить номер

спецификации, поддерживаемой модулем, можно с помощью атрибута apilevel:

>>> import sqlite3 # Подключаем модуль

>>> sqlite3.apilevel # Получаем номер спецификации

'2.0'

Получить номер версии используемого модуля sqlite3 можно с помощью ат-

рибутов sqlite_version и sqlite_version_info. Атрибут sqlite_version возвра-

щает номер версии в виде строки, а атрибут sqlite_version_info в виде кортежа

из трех чисел. Пример:

>>> sqlite3.sqlite_version

'3.5.9'

Глава 17

304

>>> sqlite3.sqlite_version_info

(3, 5, 9)

Согласно спецификации DB-API 2.0 последовательность работы с базой дан-

ных выглядит следующим образом:

1. Производится подключение к базе данных с помощью функции connect().

Функция возвращает объект соединения, с помощью которого осуществляется

дальнейшая работа с базой данных.

2. Создается объект-курсор.

3. Выполняются SQL-запросы и обрабатываются результаты. Перед выполнением

первого запроса, который изменяет записи (INSERT, REPLACE, UPDATE и DELETE),

автоматически запускается транзакция.

4. Завершается транзакция или отменяются все изменения в рамках транзакции.

5. Закрывается объект-курсор.

6. Закрывается соединение с базой данных.

17.1. Создание и открытие базы данных

Для создания и открытия базы данных используется функция connect(). Функ-

ция имеет следующий формат:

connect(database[, timeout][, isolation_level][, detect_types]

 [, factory])

В параметре database указывается абсолютный или относительный путь к базе

данных. Если база данных не существует, то она будет создана и открыта для рабо-

ты. Если база данных уже существует, то она просто открывается без удаления

имеющихся данных. Вместо пути к базе данных можно указать значение :memory:,

которое означает, что база данных будет создана в оперативной памяти. После за-

крытия такой базы все данные будут удалены.

Все остальные параметры являются необязательными и могут быть указаны в

произвольном порядке путем присвоения значения названию параметра. Необяза-

тельный параметр timeout задает время ожидания снятия блокировки с открывае-

мой базы данных. По умолчанию значение параметра timeout равно пяти секун-

дам. Предназначение остальных параметров мы рассмотрим немного позже.

Функция connect() возвращает объект соединения, с помощью которого осу-

ществляется вся дальнейшая работа с базой данных. Если открыть базу данных не

удалось, то возбуждается исключение. Соединение закрывается, когда вызывается

метод close() объекта соединения. В качестве примера откроем и сразу закроем

базу данных testdb.db, расположенную в текущем рабочем каталоге:

>>> import sqlite3 # Подключаем модуль sqlite3

>>> con = sqlite3.connect("testdb.db") # Открываем базу данных

>>> # Работаем с базой данных

>>> con.close() # Закрываем базу данных

Доступ к базе данных SQLite из Python

305

17.2. Выполнение запроса

Согласно спецификации DB-API 2.0 после создания объекта соединения необ-

ходимо создать объект-курсор. Все дальнейшие запросы должны производиться

через этот объект. Создание объекта-курсора производится с помощью метода

cursor(). Для выполнения запроса к базе данных предназначены следующие мето-

ды объекта-курсора:

 close() — закрывает объект-курсор;

 executescript(<SQL-запросы через точку с запятой>) — выполняет

несколько SQL-запросов за один раз. Если в процессе выполнения запросов

возникает ошибка, то метод возбуждает исключение. В качестве примера

создадим базу данных и три таблицы в ней:
-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect("catalog.db")

cur = con.cursor() # Создаем объект-курсор

sql = """\

CREATE TABLE user (

 id_user INTEGER PRIMARY KEY AUTOINCREMENT,

 email TEXT,

 passw TEXT

);

CREATE TABLE rubr (

 id_rubr INTEGER PRIMARY KEY AUTOINCREMENT,

 name_rubr TEXT

);

CREATE TABLE site (

 id_site INTEGER PRIMARY KEY AUTOINCREMENT,

 id_user INTEGER,

 id_rubr INTEGER,

 url TEXT,

 title TEXT,

 msg TEXT,

 iq INTEGER

);

"""

try: # Обрабатываем исключения

 cur.executescript(sql) # Выполняем SQL-запросы

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

raw_input()

Глава 17

306

Сохраняем код в файл, а затем запускаем его с помощью двойного щелчка на

значке файла. Обратите внимание на то, что мы работаем с кодировкой UTF-8.

Эта кодировка по умолчанию используется в SQLite;

 execute(<SQL-запрос>[, <Значения>]) — выполняет один SQL-запрос. Если в

процессе выполнения запроса возникает ошибка, то метод возбуждает исклю-

чение. Добавим пользователя в таблицу user:

-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect("catalog.db")

cur = con.cursor() # Создаем объект-курсор

sql = """\

INSERT INTO user (email, passw)

VALUES ('unicross@mail.ru', 'password1')

"""

try:

 cur.execute(sql) # Выполняем SQL-запрос

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

 con.commit() # Завершаем транзакцию

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

raw_input()

В этом примере мы использовали метод commit() объекта соединения. Метод

commit() позволяет завершить транзакцию, которая запускается автоматически.

Если метод не вызвать и при этом закрыть соединение с базой данных, то все

произведенные изменения будут автоматически отменены. Более подробно

управление транзакциями мы рассмотрим далее в этой главе, а сейчас следует

запомнить, что запросы, изменяющие записи (INSERT, REPLACE, UPDATE и

DELETE), необходимо завершать вызовом метода commit().

В некоторых случаях в SQL-запрос необходимо подставлять данные, получен-

ные от пользователя. Если данные не обработать и подставить в SQL-запрос, то

пользователь получает возможность видоизменить запрос и, например, зайти в

закрытый раздел без ввода пароля. Чтобы значения были правильно подставле-

ны, необходимо их передавать в виде кортежа или словаря во втором параметре

метода execute(). В этом случае в SQL-запросе указываются следующие спе-

циальные заполнители:

 ? — при указании значения в виде кортежа;

 :<Ключ> — при указании значения в виде словаря.

В качестве примера заполним таблицу с рубриками этими способами:

-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect("catalog.db")

Доступ к базе данных SQLite из Python

307

cur = con.cursor() # Создаем объект-курсор

t1 = (u"Программирование",)

t2 = (2, u"Музыка")

d = {"id": 3, "name": u"""Поисковые ' " порталы"""}

sql_t1 = "INSERT INTO rubr (name_rubr) VALUES (?)"

sql_t2 = "INSERT INTO rubr VALUES (?, ?)"

sql_d = "INSERT INTO rubr VALUES (:id, :name)"

try:

 cur.execute(sql_t1, t1) # Кортеж из 1-го элемента

 cur.execute(sql_t2, t2) # Кортеж из 2-х элементов

 cur.execute(sql_d, d) # Словарь

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

 con.commit() # Завершаем транзакцию

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

raw_input()

Обратите внимание на значение переменной t1. Перед закрывающей круглой

скобкой запятая указана не по ошибке. Если запятую убрать, то вместо кортежа

мы получим строку. Не скобки создают кортеж, а запятые. Поэтому при созда-

нии кортежа из одного элемента в конце необходимо добавить запятую. Как

показывает практика, новички постоянно забывают указать запятую и при этом

получают сообщение об ошибке.

В значении ключа name переменной d апостроф и двойная кавычка также ука-

заны не случайно. Это значение показывает, что при подстановке все специаль-

ные символы экранируются, поэтому никакой ошибки при вставке значения в

таблицу не будет.

ВНИМАНИЕ!

Никогда напрямую не передавайте в SQL-запрос данные, полученные от пользователя.
Это потенциальная угроза безопасности. Данные следует передавать через второй па-
раметр методов execute() и executemany().

 executemany(<SQL-запрос>, <Последовательность>) — выполняет SQL-запрос

несколько раз, при этом подставляя значения из последовательности. Каждый

элемент последовательности должен быть кортежем (при использовании за-

полнителя "?") или словарем (при использовании заполнителя ":<Ключ>").

Вместо последовательности можно указать объект-итератор или объект-

генератор. Если в процессе выполнения запроса возникает ошибка, то метод

возбуждает исключение. Заполним таблицу site с помощью метода execute-

many():

-*- coding: utf-8 -*-

import sqlite3

Глава 17

308

con = sqlite3.connect("catalog.db")

cur = con.cursor() # Создаем объект-курсор

arr = [

 (1, 1, u"http://wwwadmin.ru", u"Название", u"", 100),

 (1, 1, u"http://python.org", u"Python", u"", 1000),

 (1, 3, u"http://google.ru", u"Гугль", u"", 3000)

]

sql = """\

INSERT INTO site (id_user, id_rubr, url, title, msg, iq)

VALUES (?, ?, ?, ?, ?, ?)

"""

try:

 cur.executemany(sql, arr)

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

 con.commit() # Завершаем транзакцию

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

raw_input()

Модуль sqlite3 содержит также методы execute(), executemany() и execute-

script() объекта соединения, которые позволяют выполнить запрос без создания

объекта-курсора. Эти методы не входят в спецификацию DB-API 2.0. В качестве

примера изменим название рубрики с идентификатором 3 (листинг 17.1).

Листинг 17.1. Использование метода execute()

-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect("catalog.db")

try:

 con.execute("""UPDATE rubr SET name_rubr='Поисковые порталы'

 WHERE id_rubr=3""")

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 con.commit() # Завершаем транзакцию

 print u"Запрос успешно выполнен"

con.close() # Закрываем соединение

raw_input()

Объект-курсор поддерживает несколько атрибутов:

 lastrowid — индекс последней добавленной записи с помощью инструкции

INSERT и метода execute(). Если индекс не определен, то атрибут будет содер-

Доступ к базе данных SQLite из Python

309

жать значение None. В качестве примера добавим новую рубрику и выведем ее

индекс:

-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect("catalog.db")

cur = con.cursor() # Создаем объект-курсор

try:

 cur.execute("""INSERT INTO rubr (name_rubr)

 VALUES ('Кино')""")

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 con.commit() # Завершаем транзакцию

 print u"Запрос успешно выполнен"

 print u"Индекс:", cur.lastrowid

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

raw_input()

 rowcount — количество измененных или удаленных записей. Если количество
не определено, то атрибут имеет значение –1;

 description — содержит кортеж кортежей с именами полей в результате
выполнения инструкции SELECT. Каждый внутренний кортеж состоит из семи
элементов. Первый элемент содержит название поля, а остальные элементы
всегда имеют значение None. Например, если выполнить SQL-запрос SELECT *
FROM rubr, то атрибут будет содержать следующее значение:
(('id_rubr', None, None, None, None, None, None),

 ('name_rubr', None, None, None, None, None, None))

17.3. Обработка результата запроса

Для обработки результата запроса применяются следующие методы объекта-
курсора:
 fetchone() — при каждом вызове возвращает одну запись из результата запро-

са в виде кортежа, а затем перемещает указатель текущей позиции. Если запи-
сей больше нет, метод возвращает значение None. Выведем все записи из таб-
лицы user:
>>> import sqlite3

>>> con = sqlite3.connect("catalog.db")

>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM user")

<sqlite3.Cursor object at 0x0150E3B0>

>>> cur.fetchone()

(1, u'unicross@mail.ru', u'password1')

>>> print cur.fetchone()

None

Глава 17

310

 next() — при каждом вызове возвращает одну запись из результата запроса в

виде кортежа, а затем перемещает указатель текущей позиции. Если записей

больше нет, метод возбуждает исключение StopIteration. Выведем все записи

из таблицы user с помощью метода next():

>>> cur.execute("SELECT * FROM user")

<sqlite3.Cursor object at 0x0150E3B0>

>>> cur.next()

(1, u'unicross@mail.ru', u'password1')

>>> cur.next()

Traceback (most recent call last):

 File "<pyshell#28>", line 1, in <module>

 cur.next()

StopIteration

Цикл for на каждой итерации вызывает метод next() автоматически. Поэтому

для перебора записей достаточно указать объект-курсор в качестве параметра

цикла. Выведем все записи из таблицы rubr:

>>> cur.execute("SELECT * FROM rubr")

<sqlite3.Cursor object at 0x0150E2F0>

>>> for id_rubr, name in cur: print "%s|%s" % (id_rubr, name)

1|Программирование

2|Музыка

3|Поисковые порталы

4|Кино

 fetchmany([size=cursor.arraysize]) — при каждом вызове возвращает спи-

сок записей из результата запроса, а затем перемещает указатель текущей пози-

ции. Каждый элемент списка является кортежем. Количество элементов, выби-

раемых за один раз, задается с помощью необязательного параметра или

значения атрибута arraysize объекта-курсора. Если количество записей в ре-

зультате запроса меньше указанного количества элементов списка, то количе-

ство элементов списка будет соответствовать оставшемуся количеству записей.

Если записей больше нет, метод возвращает пустой список. Пример:

>>> cur.execute("SELECT * FROM rubr")

<sqlite3.Cursor object at 0x0150E3B0>

>>> cur.arraysize

1

>>> cur.fetchmany()

[(1, u'\u041f\u0440\u043e\u0433\u0440\u0430\u043c\u043c

\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435')]

>>> cur.fetchmany(2)

[(2, u'\u041c\u0443\u0437\u044b\u043a\u0430'), (3,

u'\u041f\u043e\u0438\u0441\u043a\u043e\u0432\u044b\u0435

\u043f\u043e\u0440\u0442\u0430\u043b\u044b')]

>>> cur.fetchmany(3)

Доступ к базе данных SQLite из Python

311

[(4, u'\u041a\u0438\u043d\u043e')]

>>> cur.fetchmany()

[]

 fetchall() — возвращает список всех (или всех оставшихся) записей из ре-

зультата запроса. Каждый элемент списка является кортежем. Если записей

больше нет, метод возвращает пустой список. Пример:

>>> cur.execute("SELECT * FROM rubr")

<sqlite3.Cursor object at 0x0150E3B0>

>>> cur.fetchall()

[(1, u'\u041f\u0440\u043e\u0433\u0440\u0430\u043c\u043c

\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435'), (2,

u'\u041c\u0443\u0437\u044b\u043a\u0430'), (3,

u'\u041f\u043e\u0438\u0441\u043a\u043e\u0432\u044b\u0435

\u043f\u043e\u0440\u0442\u0430\u043b\u044b'), (4,

u'\u041a\u0438\u043d\u043e')]

>>> cur.fetchall()

[]

Все рассмотренные методы возвращают запись в виде кортежа. Если необхо-

димо изменить такое поведение и, например, получить записи в виде словаря, то

следует воспользоваться атрибутом row_factory объекта соединения. В качестве

значения атрибут принимает ссылку на функцию обратного вызова, имеющую сле-

дующий формат:

def <Название функции>(<Объект-курсор>, <Запись>)

 # Обработка записи

 return <Новый объект>

В качестве примера выведем записи из таблицы user в виде словаря (лис-

тинг 17.2).

Листинг 17.2. Атрибут row_factory

-*- coding: utf-8 -*-

import sqlite3

def my_factory(c, r):

 d = {}

 for i, name in enumerate(c.description):

 d[name[0]] = r[i] # Ключи в виде названий полей

 d[i] = r[i] # Ключи в виде индексов полей

 return d

con = sqlite3.connect("catalog.db")

con.row_factory = my_factory

cur = con.cursor() # Создаем объект-курсор

cur.execute("SELECT * FROM user")

arr = cur.fetchall()

print arr # Результат:

"""[{0: 1, 1: u'unicross@mail.ru', 2: u'password1', 'id_user': 1,

Глава 17

312

'passw': u'password1', 'email': u'unicross@mail.ru'}]"""

print arr[0][1] # Доступ по индексу

print arr[0]["email"] # Доступ но названию поля

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

raw_input()

Функция my_factory() будет вызываться для каждой записи. Обратите внима-

ние на то, что название функции в операции присваивания атрибуту row_factory

указывается без круглых скобок. Если скобки указать, то смысл операции будет

совсем иным.

Атрибуту row_factory можно присвоить ссылку на объект Row из модуля

sqlite3. Этот объект позволяет получить доступ к значению поля как по индексу,

так и по названию поля. Причем название не зависит от регистра символов. Начи-

ная с Python 2.6, объект Row поддерживает итерации и метод keys(), который воз-

вращает список с названиями полей. Переделаем наш предыдущий пример и ис-

пользуем объект Row (листинг 17.3).

Листинг 17.3. Объект Row

-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect("catalog.db")

con.row_factory = sqlite3.Row

cur = con.cursor()

cur.execute("SELECT * FROM user")

arr = cur.fetchall()

print type(arr[0]) # <type 'sqlite3.Row'>

print len(arr[0]) # 3

print arr[0][1] # Доступ по индексу

print arr[0]["email"] # Доступ по названию поля

print arr[0]["EMAIL"] # Не зависит от регистра символов

for elem in arr[0]:

 print elem

print arr[0].keys() # ['id_user', 'email', 'passw']

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

raw_input()

Как видно из результатов предыдущих примеров, все данные, имеющие в

SQLite тип TEXT, возвращаются в виде Unicode-строк. В предыдущей главе мы соз-

дали базу данных testdb.db и сохраняли данные в полях таблицы в кодировке Win-

dows-1251. Попробуем отобразить записи из таблицы с рубриками:

>>> con = sqlite3.connect("testdb.db")

>>> cur = con.cursor()

Доступ к базе данных SQLite из Python

313

>>> cur.execute("SELECT * FROM rubr")

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 cur.execute("SELECT * FROM rubr")

OperationalError: Could not decode to UTF-8 column 'name_rubr' with

text 'Программирование'

При осуществлении преобразования обычной строки в Unicode-строку предпо-

лагается, что строка хранится в кодировке UTF-8. Так как в нашем примере мы ис-

пользуем другую кодировку, то при преобразовании возникает ошибка и возбужда-

ется исключение OperationalError. Обойти это исключение позволяет атрибут

text_factory объекта соединения. В качестве значения атрибута указывается

ссылка на функцию, которая будет использоваться для осуществления преобразо-

вания значения текстовых полей. Например, чтобы вернуть обычную строку следу-

ет указать ссылку на функцию str() (листинг 17.4).

Листинг 17.4. Атрибут text_factory

>>> con = sqlite3.connect("testdb.db")

>>> con.text_factory = str # Название функции без круглых скобок!

>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM rubr")

<sqlite3.Cursor object at 0x014FE380>

>>> cur.fetchone()

(1, '\xcf\xf0\xee\xe3\xf0\xe0\xec\xec\xe8\xf0\xee\xe2\xe0\xed\xe8\xe5')

Если необходимо вернуть Unicode-строку, то внутри функции обратного вызова

следует вызвать функцию unicode() и явно указать кодировку данных. Функция

обратного вызова должна принимать один параметр и возвращать преобразован-

ную строку. Выведем текстовые данные в виде Unicode-строк (листинг 17.5).

Листинг 17.5. Указание пользовательской функции преобразования

>>> con.text_factory = lambda s: unicode(s, "cp1251")

>>> cur.execute("SELECT * FROM rubr")

<sqlite3.Cursor object at 0x014FE380>

>>> cur.fetchone()

(1, u'\u041f\u0440\u043e\u0433\u0440\u0430\u043c\u043c\u0438

\u0440\u043e\u0432\u0430\u043d\u0438\u0435')

Атрибуту text_factory можно также присвоить значение

sqlite3.OptimizedUnicode (листинг 17.6). В этом случае, если строка состоит

только из ASCII-символов, то возвращается обычная строка, в противном случае

возвращается Unicode-строка.

Глава 17

314

Листинг 17.6. Указание объекта sqlite3.OptimizedUnicode

>>> con = sqlite3.connect("catalog.db")

>>> con.text_factory = sqlite3.OptimizedUnicode

>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM rubr")

<sqlite3.Cursor object at 0x01508AD0>

>>> type(cur.fetchone()[1])

<type 'unicode'>

>>> cur.execute("SELECT * FROM user")

<sqlite3.Cursor object at 0x01508AD0>

>>> type(cur.fetchone()[1])

<type 'str'>

>>> con.close()

17.4. Управление транзакциями

Перед выполнением первого запроса автоматически запускается транзакция.

Поэтому все запросы, изменяющие записи (INSERT, REPLACE, UPDATE и DELETE), не-

обходимо завершать вызовом метода commit() объекта соединения. Если метод не

вызвать и при этом закрыть соединение с базой данных, то все произведенные из-

менения будут отменены. Транзакция может автоматически завершаться при вы-

полнении запросов CREATE TABLE, VACUUM и некоторых других. После выполнения

этих запросов транзакция запускается снова.

Если необходимо отменить изменения, то следует вызвать метод rollback()

объекта соединения. В качестве примера добавим нового пользователя, а затем от-

меним транзакцию и выведем содержимое таблицы (листинг 17.7).

Листинг 17.7. Отмена изменений с помощью метода rollback()

>>> con = sqlite3.connect("catalog.db")

>>> cur = con.cursor()

>>> cur.execute("INSERT INTO user VALUES (Null, 'user@mail.ru', '')")

<sqlite3.Cursor object at 0x01508CB0>

>>> con.rollback() # Отмена изменений

>>> cur.execute("SELECT * FROM user")

<sqlite3.Cursor object at 0x01508CB0>

>>> cur.fetchall()

[(1, u'unicross@mail.ru', u'password1')]

>>> con.close()

Управлять транзакцией можно с помощью параметра isolation_level в функ-

ции connect(), а также с помощью атрибута isolation_level объекта соединения.

Допустимые значения: "DEFERRED", "IMMEDIATE", "EXCLUSIVE", пустая строка и

Доступ к базе данных SQLite из Python

315

None. Первые три значения передаются в инструкцию BEGIN. Если в качестве зна-

чения указать None, то транзакция запускаться не будет. В этом случае нет необхо-

димости вызывать метод commit(). Все изменения будут сразу сохраняться в базе

данных. Отключим автоматический запуск транзакции с помощью параметра

isolation_level, добавим нового пользователя, а затем подключимся заново и вы-

ведем все записи из таблицы (листинг 17.8).

Листинг 17.8. Управление транзакциями

>>> con = sqlite3.connect("catalog.db", isolation_level=None)

>>> cur = con.cursor()

>>> cur.execute("INSERT INTO user VALUES (Null, 'user@mail.ru', '')")

<sqlite3.Cursor object at 0x01508CE0>

>>> con.close()

>>> con = sqlite3.connect("catalog.db")

>>> con.isolation_level = None # Отключение запуска транзакции

>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM user")

<sqlite3.Cursor object at 0x01508530>

>>> cur.fetchall()

[(1, u'unicross@mail.ru', u'password1'), (2, u'user@mail.ru', u'')]

>>> con.close()

17.5. Создание пользовательской

сортировки

По умолчанию сортировка с помощью инструкции ORDER BY зависит от регист-

ра символов. Например, если сортировать слова "единица1", "Единица2" и "Еди-

ный", то в результате мы получим неправильную сортировку ("Единица2", "Еди-

ный" и лишь затем "единица1"). Модуль sqlite3 позволяет создать

пользовательскую функцию сортировки и связать ее с названием функции в SQL-

запросе. В дальнейшем это название можно указать в инструкции ORDER BY после

ключевого слова COLLATE.

Связать название функции в SQL-запросе с пользовательской функцией в про-

грамме позволяет метод create_collation() объекта соединения. Формат метода:

create_collation(<Название функции в SQL-запросе в виде строки>,

 <Ссылка на функцию сортировки>)

Функция сортировки принимает две строки (обычно в кодировке UTF-8) и

должна возвращать:

 1 — если первая строка больше второй;

 -1 — если вторая больше первой;

 0 — если строки равны.

Глава 17

316

Обратите внимание на то, что функция сортировки будет вызываться только при
сравнении текстовых значений. При сравнении чисел функция вызвана не будет.

В качестве примера создадим новую таблицу с одним полем, вставим три запи-
си, а затем произведем сортировку стандартным методом и с помощью пользова-
тельской функции (листинг 17.9).

Листинг 17.9. Сортировка записей

-*- coding: utf-8 -*-

import sqlite3

def myfunc(s1, s2): # Пользовательская функция сортировки

 s1 = s1.decode("utf-8").lower()

 s2 = s2.decode("utf-8").lower()

 return cmp(s1, s2)

con = sqlite3.connect("catalog.db", isolation_level=None)

Связываем имя "myfunc" с функцией myfunc()

con.create_collation("myfunc", myfunc)

cur = con.cursor()

cur.execute("CREATE TABLE words (word TEXT)")

cur.execute("INSERT INTO words VALUES('единица1')")

cur.execute("INSERT INTO words VALUES('Единый')")

cur.execute("INSERT INTO words VALUES('Единица2')")

Стандартная сортировка

cur.execute("SELECT * FROM words ORDER BY word")

for line in cur:

 print line[0], # Результат: Единица2 Единый единица1

print

Пользовательская сортировка

cur.execute("""SELECT * FROM words

 ORDER BY word COLLATE myfunc""")

for line in cur:

 print line[0], # Результат: единица1 Единица2 Единый

cur.close()

con.close()

raw_input()

17.6. Поиск без учета регистра символов

Как уже говорилось в предыдущей главе, сравнение строк и поиск с помощью
оператора LIKE для русских букв производятся с учетом регистра символов. По-
этому следующие выражения вернут значение 0:
cur.execute("SELECT 'строка' = 'Строка'")

print cur.fetchone()[0] # Результат: 0 (не равно)

cur.execute("SELECT 'строка' LIKE 'Строка'")

print cur.fetchone()[0] # Результат: 0 (не найдено)

Доступ к базе данных SQLite из Python

317

Одним из вариантов решения проблемы является преобразование символов

обоих строк к верхнему или нижнему регистру. Но встроенные функции SQLite

UPPER() и LOWER() с русскими буквами опять работают некорректно. Модуль

sqlite3 позволяет создать пользовательскую функцию и связать ее с названием

функции в SQL-запросе. Таким образом, можно создать пользовательскую функ-

цию преобразования регистра символов, а затем указать связанное с ней имя в

SQL-запросе.

Связать название функции в SQL-запросе с пользовательской функцией в про-

грамме позволяет метод create_function() объекта соединения. Формат метода:

create_function(<Название функции в SQL-запросе в виде строки>,

 <Количество параметров>, <Ссылка на функцию>)

В первом параметре указывается название функции в виде строки. Количество

параметров, принимаемых функцией, задается во втором параметре. Параметры

могут быть любого типа. Если функция принимает строку, то ее типом данных бу-

дет unicode. В третьем параметре указывается ссылка на пользовательскую функ-

цию в программе. Для примера произведем поиск рубрики без учета регистра сим-

волов (листинг 17.10).

Листинг 17.10. Поиск без учета регистра символов

-*- coding: utf-8 -*-

import sqlite3

Пользовательская функция изменения регистра

def myfunc(s):

 return s.lower()

con = sqlite3.connect("catalog.db")

Связываем имя "mylower" с функцией myfunc()

con.create_function("mylower", 1, myfunc)

cur = con.cursor()

string = u"%МуЗЫка%" # Строка для поиска

Поиск без учета регистра символов

sql = """SELECT * FROM rubr

 WHERE mylower(name_rubr) LIKE ?"""

cur.execute(sql, (string.lower(),))

print cur.fetchone()[1] # Результат: Музыка

cur.close()

con.close()

raw_input()

В этом примере предполагается, что значение переменной string получено от

пользователя. Обратите внимание на то, что строку для поиска в метод execute()

мы передаем в нижнем регистре. Если этого не сделать и указать преобразование в

SQL-запросе, то будет производиться лишнее преобразование регистра при каждом

сравнении.

Глава 17

318

Метод create_function() используется не только для создания функции изме-

нения регистра символов, но и для других целей. Например, в SQLite нет специаль-

ного типа данных для хранения даты и времени. Дату и время можно хранить раз-

ными способами, например, как количество секунд, прошедших с начала эпохи, в

числовом поле. Для преобразования количества секунд в другой формат следует

создать пользовательскую функцию форматирования (листинг 17.11).

Листинг 17.11. Преобразование даты и времени

-*- coding: utf-8 -*-

import sqlite3

import time

def myfunc(d):

 return time.strftime("%d.%m.%Y", time.localtime(d))

con = sqlite3.connect(":memory:")

Связываем имя "mytime" с функцией myfunc()

con.create_function("mytime", 1, myfunc)

cur = con.cursor()

cur.execute("SELECT mytime(1275762391)")

print cur.fetchone()[0] # Результат: 05.06.2010

cur.close()

con.close()

raw_input()

17.7. Создание агрегатных функций

При изучении SQLite мы рассматривали встроенные агрегатные функции

COUNT(), MIN(), MAX(), AVG() и SUM(). Если возможностей этих функций окажется

недостаточно, то можно определить пользовательскую агрегатную функцию. Свя-

зать название функции в SQL-запросе с пользовательским классом в программе

позволяет метод create_aggregate() объекта соединения. Формат метода:

create_aggregate(<Название функции в SQL-запросе в виде строки>,

 <Количество параметров>, <Ссылка на класс>)

В первом параметре указывается название агрегатной функции в виде строки.

В третьем параметре передается ссылка на класс (название класса без круглых ско-

бок). Этот класс должен иметь два метода step() и finalize(). Метод step() вы-

зывается несколько раз и ему передаются параметры. Количество параметров зада-

ется во втором параметре метода create_aggregate(). Если метод принимает

строку, то ее типом данных будет unicode. Метод finalize() должен возвращать

результат выполнения. В качестве примера выведем все названия рубрик в алфа-

витном порядке через разделитель (листинг 17.12).

Доступ к базе данных SQLite из Python

319

Листинг 17.12. Создание агрегатной функции

-*- coding: utf-8 -*-

import sqlite3

class MyClass:

 def __init__(self):

 self.result = []

 def step(self, value):

 self.result.append(value)

 def finalize(self):

 self.result.sort()

 return " - ".join(self.result)

con = sqlite3.connect("catalog.db")

Связываем имя "myfunc" с классом MyClass

con.create_aggregate("myfunc", 1, MyClass)

cur = con.cursor()

cur.execute("SELECT myfunc(name_rubr) FROM rubr")

print cur.fetchone()[0]

Результат: Кино - Музыка - Поисковые порталы - Программирование

cur.close()

con.close()

raw_input()

17.8. Преобразование типов данных

SQLite поддерживает пять типов данных. Для каждого типа SQLite в модуле

sqlite3 определено соответствие с типом данных в языке Python:

 NULL — значение NULL. Значение соответствует типу None в Python;

 INTEGER — целые числа. Соответствует типу int. Если число превышает

максимально допустимое для int значение, то преобразуется в тип long;

 REAL — вещественные числа. Соответствует типу float;

 TEXT — строки. По умолчанию преобразуется в тип unicode. Предполагается,

что строка в базе данных хранится в кодировке UTF-8. Соответствие можно

изменить с помощью атрибута text_factory;

 BLOB — бинарные данные. Соответствует типу buffer.

Если необходимо сохранить в таблице данные, которые имеют тип, не поддер-

живаемый SQLite, то следует преобразовать тип самостоятельно. Для этого с по-

мощью функции register_adapter() можно зарегистрировать пользовательскую

функцию, которая будет вызываться при попытке вставки объекта в SQL-запрос.

Функция имеет следующий формат:

register_adapter(<Тип данных или класс>, <Ссылка на функцию>)

В первом параметре указывается тип данных или ссылка на класс нового стиля.

Во втором параметре задается ссылка на функцию, которая будет вызываться для

Глава 17

320

преобразования типа. Функция принимает один параметр и должна возвращать

значение, имеющее тип данных, поддерживаемый SQLite. В качестве примера соз-

дадим новую таблицу и сохраним в ней значения атрибутов класса нового стиля

(листинг 17.13).

Листинг 17.13. Сохранение в базе атрибутов класса

-*- coding: utf-8 -*-

import sqlite3

class Car(object):

 def __init__(self, model, color):

 self.model, self.color = model, color

def my_adapter(car):

 return u"%s|%s" % (car.model, car.color)

Регистрируем функцию для преобразования типа

sqlite3.register_adapter(Car, my_adapter)

Создаем экземпляр класса Car

car = Car(u"ВАЗ-2109", u"красный")

con = sqlite3.connect("catalog.db")

cur = con.cursor()

try:

 cur.execute("CREATE TABLE cars1 (model TEXT)")

 cur.execute("INSERT INTO cars1 VALUES (?)", (car,))

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

 con.commit()

cur.close()

con.close()

raw_input()

Вместо регистрации функции преобразования типа можно внутри класса ново-

го стиля определить метод __conform__(). Формат метода:

__conform__(self, <Протокол>)

Параметр <Протокол> будет соответствовать PrepareProtocol. Более подробно

о протоколе можно прочитать в документе PEP 246. Метод должен возвращать

значение, имеющее тип данных, поддерживаемый SQLite. Создадим таблицу cars2

и сохраним в ней значения атрибутов, используя метод __conform__() (лис-

тинг 17.14).

Листинг 17.14. Использование метода __conform__()

-*- coding: utf-8 -*-

import sqlite3

Доступ к базе данных SQLite из Python

321

class Car(object):

 def __init__(self, model, color):

 self.model, self.color = model, color

 def __conform__(self, protocol):

 if protocol is sqlite3.PrepareProtocol:

 return u"%s|%s" % (self.model, self.color)

Создаем экземпляр класса Car

car = Car(u"Москвич-412", u"синий")

con = sqlite3.connect("catalog.db")

cur = con.cursor()

try:

 cur.execute("CREATE TABLE cars2 (model mycar)")

 cur.execute("INSERT INTO cars2 VALUES (?)", (car,))

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

 con.commit()

cur.close()

con.close()

raw_input()

Чтобы восстановить объект, следует зарегистрировать функцию преобразова-

ния типа данных SQLite в тип данных Python с помощью функции regis-

ter_converter(). Функция имеет следующий формат:

register_converter(<Тип данных>, <Ссылка на функцию>)

В первом параметре указывается преобразуемый тип данных в виде строки, а

во втором параметре задается ссылка на функцию, которая будет использоваться

для преобразования типа данных. Функция должна принимать один параметр и

возвращать преобразованное значение.

Чтобы интерпретатор смог определить, какую функцию необходимо вызвать

для преобразования типа данных, следует явно указать местоположение метки с

помощью параметра detect_types функции connect(). Параметр может прини-

мать следующие значения (или их комбинацию через символ |):

 sqlite3.PARSE_COLNAMES — тип данных указывается в SQL-запросе в псевдо-

ниме поля внутри квадратных скобок. Пример указания типа mycar для поля

model:

SELECT model as "c [mycar]" FROM cars1

 sqlite3.PARSE_DECLTYPES — тип данных определяется по значению, указанно-

му после названия поля в инструкции CREATE TABLE. Пример указания типа my-

car для поля model:

CREATE TABLE cars2 (model mycar)

Выведем сохраненное значение из таблицы cars1 (листинг 17.15).

Глава 17

322

Листинг 17.15. Использование значения sqlite3.PARSE_COLNAMES

-*- coding: utf-8 -*-

import sqlite3, sys

class Car(object):

 def __init__(self, model, color):

 self.model, self.color = model, color

 def __repr__(self):

 s = u"Модель: %s, цвет: %s" % (self.model, self.color)

 enc = sys.stdout.encoding # Кодировка терминала

 return s.encode(enc)

def my_converter(value):

 value = unicode(value, "utf-8")

 model, color = value.split("|")

 return Car(model, color)

Регистрируем функцию для преобразования типа

sqlite3.register_converter("mycar", my_converter)

con = sqlite3.connect("catalog.db",

 detect_types=sqlite3.PARSE_COLNAMES)

cur = con.cursor()

cur.execute("""SELECT model as "c [mycar]" FROM cars1""")

print cur.fetchone()[0]

Результат: Модель: ВАЗ-2109, цвет: красный

con.close()

raw_input()

Теперь выведем значение из таблицы cars2 (листинг 17.16).

Листинг 17.16. Использование значения sqlite3.PARSE_DECLTYPES

-*- coding: utf-8 -*-

import sqlite3, sys

class Car(object):

 def __init__(self, model, color):

 self.model, self.color = model, color

 def __repr__(self):

 s = u"Модель: %s, цвет: %s" % (self.model, self.color)

 enc = sys.stdout.encoding # Кодировка терминала

 return s.encode(enc)

def my_converter(value):

 value = unicode(value, "utf-8")

 model, color = value.split("|")

 return Car(model, color)

Регистрируем функцию для преобразования типа

sqlite3.register_converter("mycar", my_converter)

Доступ к базе данных SQLite из Python

323

con = sqlite3.connect("catalog.db",

 detect_types=sqlite3.PARSE_DECLTYPES)

cur = con.cursor()

cur.execute("SELECT model FROM cars2")

print cur.fetchone()[0]

Результат: Модель: Москвич-412, цвет: синий

con.close()

raw_input()

17.9. Сохранение в таблице

даты и времени

В SQLite нет специальных типов данных для представления даты и времени.

Поэтому обычно дату преобразовывают в строку или число (количество секунд,

прошедших с начала эпохи) и сохраняют в соответствующих полях. При выводе

данные необходимо опять преобразовывать. Используя знания, полученные в пре-

дыдущем разделе, можно зарегистрировать две функции преобразования (лис-

тинг 17.17).

Листинг 17.17. Сохранение в таблице даты и времени

-*- coding: utf-8 -*-

import sqlite3, datetime, time

Преобразование даты в число

def my_adapter(t):

 return time.mktime(t.timetuple())

Преобразование в дату

def my_converter(t):

 return datetime.datetime.fromtimestamp(float(t))

Регистрируем обработчики

sqlite3.register_adapter(datetime.datetime, my_adapter)

sqlite3.register_converter("mytime", my_converter)

Получаем текущую дату и время

dt = datetime.datetime.today()

con = sqlite3.connect(":memory:", isolation_level=None,

 detect_types=sqlite3.PARSE_COLNAMES)

cur = con.cursor()

cur.execute("CREATE TABLE times (time)")

cur.execute("INSERT INTO times VALUES (?)", (dt,))

cur.execute("""SELECT time as "t [mytime]" FROM times""")

print cur.fetchone()[0] # 2010-06-08 10:35:18

con.close()

raw_input()

Глава 17

324

Модуль sqlite3 для типов date и datetime из модуля datetime содержит

встроенные функции для преобразования типов. Для datetime.date зарегистриро-

ван тип date, а для datetime.datetime — тип timestamp. Таким образом, создавать

пользовательские функции преобразования не нужно. Пример сохранения в табли-

це даты и времени приведен в листинге 17.18.

Листинг 17.18. Встроенные функции для преобразования типов

-*- coding: utf-8 -*-

import sqlite3, datetime

Получаем текущую дату и время

d = datetime.date.today()

dt = datetime.datetime.today()

con = sqlite3.connect(":memory:", isolation_level=None,

 detect_types=sqlite3.PARSE_DECLTYPES)

cur = con.cursor()

cur.execute("CREATE TABLE times (d date, dt timestamp)")

cur.execute("INSERT INTO times VALUES (?, ?)", (d, dt))

cur.execute("SELECT d, dt FROM times")

res = cur.fetchone()

print res[0] # 2010-06-08

print res[1] # 2010-06-08 10:37:04.453000

con.close()

raw_input()

17.10. Обработка исключений

Модуль sqlite3 поддерживает следующую иерархию исключений:

StandardError

 Warning

 Error

 InterfaceError

 DatabaseError

 DataError

 OperationalError

 IntegrityError

 InternalError

 ProgrammingError

 NotSupportedError

Базовым классом самого верхнего уровня является класс StandardError. Все

остальные исключения определены в модуле sqlite3. Поэтому при указании ис-

ключения в инструкции except следует предварительно указать название модуля

(например, sqlite3.DatabaseError).

Доступ к базе данных SQLite из Python

325

Исключения возбуждаются в следующих случаях:

 Warning — при наличии важных предупреждений;

 Error — базовый класс для всех остальных исключений, возбуждаемых в

случае ошибки. Если указать этот класс в инструкции except, то будут

перехватываться все ошибки;

 InterfaceError — при ошибках, которые связаны с интерфейсом базы данных,

а не с самой базой данных;

 DatabaseError — базовый класс для исключений, которые связаны с базой данных;

 DataError — при ошибках, возникающих при обработке данных;

 OperationalError — вызывается при ошибках, которые связаны с операциями

в базе данных, например, при синтаксической ошибке в SQL-запросе,

несоответствии количества полей в инструкции INSERT, отсутствии поля с

указанным именем и т. д. Иногда не зависит от правильности SQL-запроса;

 IntegrityError — при наличии проблем с внешними ключами или индексами;

 InternalError — при внутренней ошибке в базе данных;

 ProgrammingError — возникает при ошибках программирования. Например,

количество переменных, указанных во втором параметре метода execute(), не

совпадает с количеством специальных символов в SQL-запросе;

 NotSupportedError — при использовании методов, не поддерживаемых базой

данных.

В качестве примера обработки исключений напишем программу, которая по-

зволяет пользователям вводить название базы данных и SQL-команды в консоли

(листинг 17.19).

Листинг 17.19. Выполнение SQL-команд, введенных в консоли

-*- coding: utf-8 -*-

import sqlite3, sys, re

def db_connect(db_name):

 try:

 db = sqlite3.connect(db_name, isolation_level=None)

 except (sqlite3.Error, sqlite3.Warning), err:

 print u"Не удалось подключиться к БД"

 raw_input()

 sys.exit(0)

 return db

enc = sys.stdin.encoding # Кодировка терминала

print u"Введите название базы данных:",

db_name = raw_input()

con = db_connect(db_name) # Подключаемся к базе

cur = con.cursor()

sql = ""

print u"Чтобы закончить выполнение программы введите <Q>+<Enter>"

while True:

 tmp = raw_input()

Глава 17

326

 if tmp in ["q", "Q"]:

 break

 if tmp.strip() == "":

 continue

 tmp = tmp.decode(enc).encode("utf-8")

 sql = "%s %s" % (sql, tmp)

 if sqlite3.complete_statement(sql):

 try:

 sql = sql.strip()

 cur.execute(sql)

 if re.match("SELECT ", sql, re.I):

 print cur.fetchall()

 except (sqlite3.Error, sqlite3.Warning), err:

 print u"Ошибка:", err

 else:

 print u"Запрос успешно выполнен"

 sql = ""

cur.close()

con.close()

В консоли Windows по умолчанию используется кодировка cp866. С помощью

команды chcp <Кодовая таблица> можно изменить кодировку. Чтобы сделать про-

грамму более универсальной, мы получаем кодировку консоли с помощью атрибу-

та encoding объекта sys.stdin, а затем указываем ее при преобразовании SQL-

запроса в кодировку UTF-8, которая используется в базе данных SQLite. Таким об-

разом, русские буквы будут обрабатываться правильно независимо от кодировки

консоли.

Чтобы SQL-запрос можно было разместить на нескольких строках, мы производим

проверку завершенности запроса с помощью функции complete_statement(<SQL-

запрос>). Функция возвращает True, если параметр содержит один или более пол-

ных SQL-запросов. Признаком завершенности запроса является точка с запятой.

Никакой проверки правильности SQL-запроса не производится. Пример использо-

вания функции:

>>> sql = "SELECT 10 > 5;"

>>> sqlite3.complete_statement(sql)

True

>>> sql = "SELECT 10 > 5"

>>> sqlite3.complete_statement(sql)

False

>>> sql = "SELECT 10 > 5; SELECT 20 + 2;"

>>> sqlite3.complete_statement(sql)

True

Начиная с версии 2.6, язык Python поддерживает протокол менеджеров контек-

ста. Этот протокол гарантирует выполнение завершающих действий вне зависимо-

Доступ к базе данных SQLite из Python

327

сти от того, произошло исключение внутри блока кода или нет. В модуле sqlite3

объект соединения поддерживает этот протокол. Если внутри блока with не про-

изошло исключение, то автоматически вызывается метод commit(). В противном

случае все изменения отменяются с помощью метода rollback(). Для примера до-

бавим три рубрики в таблицу rubr. В первом случае запрос будет без ошибок, а во

втором случае выполним два запроса, последний из которых будет добавлять руб-

рику с уже существующим идентификатором (листинг 17.20).

Листинг 17.20. Инструкция with...as

-*- coding: utf-8 -*-

Работает только в версиях >= 2.6

import sqlite3

con = sqlite3.connect(r"C:\book\catalog.db")

try:

 with con:

 # Добавление новой рубрики

 con.execute("""INSERT INTO rubr VALUES (NULL, 'Мода')""")

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

try:

 with con:

 # Добавление новой рубрики

 con.execute("""INSERT INTO rubr VALUES (NULL, 'Спорт')""")

 # Рубрика с идентификатором 1 уже существует !!!

 con.execute("""INSERT INTO rubr VALUES (1, 'Казино')""")

except sqlite3.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

con.close()

raw_input()

Итак, в первом случае запрос не содержит ошибок и рубрика "Мода" будет ус-

пешно добавлена в таблицу. Во втором случае возникнет исключение IntegrityError.

Поэтому ни рубрика "Спорт", ни рубрика "Казино" в таблицу добавлены не будут,

т. к. все изменения автоматически отменяются с помощью вызова метода rollback().

ГЛАВА 18

Доступ к базе данных MySQL

MySQL является наиболее популярной системой управления базами данных

среди СУБД, не требующих вносить денежные отчисления за лицензию. Особен-

ную популярность MySQL получила в Web-программировании. На сегодняшний

день очень трудно найти платный хостинг, на котором нельзя было бы использо-

вать MySQL. И это не удивительно. MySQL обладает простым синтаксисом, имеет

высокую скорость работы и предоставляет функциональность, доступную ранее

только в коммерческих базах данных.

В отличие от SQLite, работающей с файлом базы непосредственно, MySQL под-

держивает архитектуру "клиент/сервер". Это означает, что MySQL запускается на оп-

ределенном порту (обычно 3306) и ожидает запросы. Клиент подключается к серверу,

посылает запрос, а в ответ получает результат. Сервер MySQL может быть запущен как

на локальном компьютере, так и на отдельном компьютере в сети, специально предна-

значенном для обслуживания запросов к базам данных. MySQL обеспечивает доступ к

данным одновременно сразу нескольким пользователям. При этом доступ к данным

предоставляется только пользователям, имеющим на это право.

MySQL не поставляется вместе с Python. Кроме того, в состав стандартной

библиотеки не входят модули, предназначенные для работы с MySQL. Все эти

компоненты необходимо устанавливать отдельно. Загрузить дистрибутив MySQL

можно со страницы http://dev.mysql.com/downloads/mysql/. Описание процесса

установки и рассмотрение функциональных возможностей MySQL выходит за

рамки этой книги. В дальнейшем предполагается, что сервер MySQL уже установ-

лен на компьютере и вы умеете работать с этой базой данных. Если это не так, то

вначале следует изучить специальную литературу по MySQL и лишь затем вер-

нуться к изучению материала, описываемого в этой главе. Описание MySQL можно

также найти в моих книгах "HTML, JavaScript, PHP и MySQL. Джентльменский

набор Web-мастера"
1
 и "Разработка Web-сайтов с помощью Perl и MySQL"

2
.

1
 Прохоренок Н. HTML, JavaScript, PHP и MySQL. Джентльменский набор Web-мастера. (+ Ви-

деокурс на CD). — 3-е изд. — СПб.: БХВ-Петербург, 2010.
2
 Прохоренок Н. Разработка Web-сайтов с помощью Perl и MySQL. — СПб.: БХВ-Петербург, 2009.

Доступ к базе данных MySQL

329

Для доступа к базе данных MySQL существует большое количество модулей

сторонних разработчиков. Получить полный список модулей можно на странице

http://wiki.python.org/moin/MySQL. В этой главе мы рассмотрим функциональные

возможности модулей MySQLdb и PyODBC.

18.1. Модуль MySQLdb

Модуль MySQLdb используется наиболее часто. Для установки модуля со стра-

ницы http://www.codegood.com/archives/4 скачиваем файл MySQL-python-

1.2.3c1.win32-py2.6.exe, а затем запускаем его с помощью двойного щелчка на

значке файла. Процесс установки предельно прост и в комментариях не нуждается.

ПРИМЕЧАНИЕ

На официальной странице модуля (http://sourceforge.net/projects/mysql-python/) мож-

но найти программы установки под Windows для Python 2.5 и более ранних версий.
К сожалению, для Python 2.6 официальной программы установки под Windows нет.
Вполне возможно, в будущем ситуация изменится.

Чтобы проверить работоспособность модуля, в окне Python Shell редактора

IDLE набираем следующий код:

>>> import MySQLdb

>>> MySQLdb.__version__

'1.2.3c1'

Модуль MySQLdb является оберткой над модулем _mysql и предоставляет ин-

терфейс доступа, совместимый со спецификацией DB-API. Получить номер под-

держиваемой версии спецификации можно с помощью атрибута apilevel:

>>> MySQLdb.apilevel

'2.0'

18.1.1. Подключение к базе данных

Для подключения к базе данных используется функция connect(). Функция

имеет следующий формат:

connect(<Параметры>)

Функция connect() возвращает объект соединения, с помощью которого осу-

ществляется вся дальнейшая работа с базой данных. Если подключиться не уда-

лось, возбуждается исключение. Соединение закрывается, когда вызывается метод

close() объекта соединения. Рассмотрим наиболее важные параметры функции

connect():

 host — имя хоста. По умолчанию используется локальный хост;

 user — имя пользователя;

 passwd — пароль для авторизации пользователя. По умолчанию пустой пароль;

Глава 18

330

 db — название базы данных, которую необходимо выбрать для работы. По

умолчанию никакая база данных не выбирается. Указать название базы данных

можно также после подключения с помощью метода select_db() объекта со-

единения;

 port — номер порта, на котором запущен сервер MySQL. Значение по умолча-

нию 3306;

 unix_socket — местоположение сокета UNIX;

 conv — словарь преобразования типов.

По умолчанию MySQLdb.converters.conversions;

 compress — включение протокола сжатия. По умолчанию нет сжатия;

 connect_timeout — ограничение времени соединения. По умолчанию ограни-

чения нет;

 named_pipe — использовать именованный канал (применяется только в Win-

dows). По умолчанию не используется;

 init_command — команда, передаваемая на сервер при подключении;

 cursorclass — класс курсора. По умолчанию MySQLdb.cursors.Cursor;

 sql_mode — режим SQL;

 use_unicode — если параметр имеет значение True, то значения, хранящиеся в

полях CHAR, VARCHAR и TEXT, будут возвращаться в виде Unicode-строк;

 read_default_file — местоположение конфигурационного файла MySQL;

 read_default_group — название секции в конфигурационном файле, из кото-

рой будут считываться параметры. По умолчанию [client];

 charset — название кодовой таблицы, которая будет использоваться при пре-

образовании значений в Unicode-строку.

Последние три параметра необходимо рассмотреть более подробно. Если коди-

ровка не указана, то в большинстве случаев сервер MySQL настроен на кодировку

соединения latin1. Получить настройки кодировки позволяет метод

get_character_set_info() (листинг 18.1).

Листинг 18.1. Получение настроек кодировки

>>> import MySQLdb # Подключаем модуль MySQLdb

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456")

>>> con.get_character_set_info()

{'collation': 'latin1_swedish_ci', 'comment': '', 'mbminlen': 1,

'name': 'latin1', 'mbmaxlen': 1}

>>> con.close()

В MySQL-python-1.2.2 под Python 2.5 (в MySQL-python-1.2.3c1 под Python 2.6

подобной ошибки не возникает) по умолчанию поиск файлов с кодовыми таблица-

ми производился в папке C:\mysql\share\charsets\. Поэтому попытка задать коди-

Доступ к базе данных MySQL

331

ровку в параметре charset без указания значения в параметре read_default_file

приводила к ошибке:

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="cp1251")

Traceback (most recent call last):

... Фрагмент опущен ...

OperationalError: (2019, "Can't initialize character set cp1251

(path: C:\\mysql\\\\share\\charsets\\)")

Исключением является кодировка UTF-8, которая используется в MySQL по

умолчанию и не требует наличия файла с кодовой таблицей:

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8")

>>> con.get_character_set_info()

{'collation': 'utf8_general_ci', 'comment': '', 'mbminlen': 1,

'name': 'utf8', 'mbmaxlen': 3}

>>> con.close()

Чтобы избежать ошибки, необходимо в параметре read_default_file указать

путь к конфигурационному файлу MySQL. Причем в этом файле должен быть за-

дан путь к файлам с кодовыми таблицами в директиве character-sets-dir внутри

секции [client]:

character-sets-dir="C:\\Program Files\\MySQL\\MySQL Server

5.1\\share\\charsets\\"

Если ранее производились попытки подключения в окне Python Shell редакто-

ра IDLE, то прежде чем выполнить дальнейшие примеры, следует закрыть, а затем

снова открыть IDLE. В противном случае даже при указании пути к файлам с кодо-

выми таблицами все равно произойдет ошибка. Пример указания пути к конфигу-

рационному файлу приведен в листинге 18.2.

Листинг 18.2. Указание пути к конфигурационному файлу

>>> import MySQLdb # Подключаем модуль MySQLdb

>>> ini = r"C:\Program Files\MySQL\MySQL Server 5.1\my.ini"

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", read_default_file=ini, charset="cp1251")

>>> con.get_character_set_info()

{'comment': 'Windows Cyrillic', 'name': 'cp1251', 'mbmaxlen': 1,

'mbminlen': 1, 'collation': 'cp1251_general_ci', 'dir':

'C:\\Program Files\\MySQL\\MySQL Server 5.1\\share\\charsets\\'}

>>> con.close()

В конфигурационном файле my.ini можно сразу указать кодировку соединения

с помощью директивы default-character-set. В этом случае задавать кодировку с

помощью параметра charset нет необходимости.

Глава 18

332

Указать кодировку позволяет также метод set_character_set(<Кодировка>)

объекта соединения (листинг 18.3).

Листинг 18.3. Указание кодировки соединения

>>> ini = r"C:\Program Files\MySQL\MySQL Server 5.1\my.ini"

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", read_default_file=ini)

>>> con.set_character_set("cp1251")

>>> con.get_character_set_info()

{'comment': 'Windows Cyrillic', 'name': 'cp1251', 'mbmaxlen': 1,

'mbminlen': 1, 'collation': 'cp1251_general_ci', 'dir':

'C:\\Program Files\\MySQL\\MySQL Server 5.1\\share\\charsets\\'}

>>> con.close()

18.1.2. Выполнение запроса

Согласно спецификации DB-API 2.0 после создания объекта соединения необ-

ходимо создать объект-курсор. Все дальнейшие запросы должны производиться

через этот объект. Создание объекта-курсора осуществляется с помощью метода

cursor([<Класс курсора>]). Для выполнения запроса к базе данных предназначе-

ны следующие методы курсора MySQLdb.cursors.Cursor:

 close() — закрывает объект-курсор;

 execute(<SQL-запрос>[, <Значения>]) — выполняет один SQL-запрос. Если в

процессе выполнения запроса возникает ошибка, то метод возбуждает исклю-

чение. Создадим новую базу данных:

-*- coding: utf-8 -*-

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456")

cur = con.cursor() # Создаем объект-курсор

sql = """CREATE DATABASE `python`

DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci"""

try: # Обрабатываем исключения

 cur.execute(sql) # Выполняем SQL-запрос

except MySQLdb.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

raw_input()

Теперь подключимся к новой базе данных, создадим таблицу и добавим запись:

-*- coding: utf-8 -*-

import MySQLdb

Доступ к базе данных MySQL

333

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", db="python")

cur = con.cursor()

sql_1 = """\

CREATE TABLE `city` (

 `id_city` INT NOT NULL AUTO_INCREMENT,

 `name_city` CHAR(255) NOT NULL,

 PRIMARY KEY (`id_city`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8"""

sql_2 = "INSERT INTO `city` VALUES (NULL, 'Санкт-Петербург')"

try:

 cur.execute("SET NAMES utf8") # Кодировка соединения

 cur.execute(sql_1)

 cur.execute(sql_2)

except MySQLdb.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

 con.commit()

cur.close()

con.close()

raw_input()

В этом примере мы использовали метод commit() объекта соединения. Метод

commit() позволяет завершить транзакцию, которая запускается автоматически.

При использовании транзакций в MySQL существуют нюансы. Таблица типа

MyISAM, которую мы использовали в этом примере, не поддерживает транзак-

ции. Поэтому вызов метода commit() можно опустить. Как видно из примера,

указание метода не приводит в ошибке. Попытка отменить изменения с помо-

щью метода rollback() не приведет к желаемому результату. В некоторых

случаях использование этого метода может возбудить исключение

NotSupportedError. Таблицы типа InnoDB транзакции поддерживают, поэтому

все запросы, изменяющие записи (INSERT, REPLACE, UPDATE и DELETE), необхо-

димо завершать вызовом метода commit(). Отменить изменения можно с по-

мощью метода rollback(). Чтобы транзакции завершались без вызова метода

commit(), следует указать значение True в методе autocommit() объекта соеди-

нения:

con.autocommit(True) # Автоматическое завершение транзакции

В некоторых случаях в SQL-запрос необходимо подставлять данные, получен-

ные от пользователя. Если данные не обработать и подставить в SQL-запрос, то

пользователь получает возможность видоизменить запрос и, например, зайти в

закрытый раздел без ввода пароля. Чтобы значения были правильно подставле-

ны, необходимо их передавать в виде кортежа или словаря во втором параметре

метода execute().

Глава 18

334

В этом случае в SQL-запросе указываются следующие специальные заполнители:

 %s — при указании значения в виде кортежа;

 %(<Ключ>)s — при указании значения в виде словаря.

В качестве примера заполним таблицу с городами этими способами:

-*- coding: utf-8 -*-

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", db="python")

con.autocommit(True) # Автоматическое завершение транзакции

cur = con.cursor()

t1 = ("Москва",) # Запятая в конце обязательна!

t2 = (3, "Новгород")

d = {"id": 4, "name": """Новый ' " город"""}

sql_t1 = "INSERT INTO `city` (`name_city`) VALUES (%s)"

sql_t2 = "INSERT INTO `city` VALUES (%s, %s)"

sql_d = "INSERT INTO `city` VALUES (%(id)s, %(name)s)"

try:

 cur.execute("SET NAMES utf8") # Кодировка соединения

 cur.execute(sql_t1, t1) # Кортеж из 1-го элемента

 cur.execute(sql_t2, t2) # Кортеж из 2-х элементов

 cur.execute(sql_d, d) # Словарь

except MySQLdb.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

cur.close()

con.close()

raw_input()

Обратите внимание на значение переменной t1. Перед закрывающей круглой

скобкой запятая указана не по ошибке. Если запятую убрать, то вместо кортежа

мы получим строку. В значении ключа name переменной d апостроф и двойная

кавычка также указаны не случайно. Это значение показывает, что при подста-

новке все специальные символы экранируются, поэтому никакой ошибки при

вставке значения в таблицу не будет.

ВНИМАНИЕ!

Никогда напрямую не передавайте в SQL-запрос данные, полученные от пользователя.
Это потенциальная угроза безопасности. Данные следует передавать через второй па-
раметр метода execute().

 executemany(<SQL-запрос>, <Последовательность>) — выполняет SQL-запрос

несколько раз, при этом подставляя значения из последовательности. Каждый

элемент последовательности должен быть кортежем (используется заполнитель

"%s"). Если в процессе выполнения запроса возникает ошибка, то метод возбу-

ждает исключение.

Доступ к базе данных MySQL

335

 Добавим два города с помощью метода executemany():

-*- coding: utf-8 -*-

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", db="python")

con.autocommit(True) # Автоматическое завершение транзакции

cur = con.cursor()

arr = [("Пермь",), ("Самара",)]

sql = "INSERT INTO `city` (`name_city`) VALUES (%s)"

try:

 cur.execute("SET NAMES utf8") # Кодировка соединения

 cur.executemany(sql, arr) # Выполняем запрос

except MySQLdb.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

cur.close()

con.close()

raw_input()

Объект-курсор поддерживает несколько атрибутов:

 lastrowid — индекс последней добавленной записи с помощью инструкции

INSERT и метода execute(). Вместо атрибута lastrowid можно воспользоваться

методом insert_id() объекта соединения. В качестве примера добавим новый

город и выведем его индекс двумя способами:
-*- coding: utf-8 -*-

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", db="python")

con.autocommit(True) # Автоматическое завершение транзакции

cur = con.cursor()

sql = "INSERT INTO `city` (`name_city`) VALUES ('Омск')"

try:

 cur.execute("SET NAMES utf8") # Кодировка соединения

 cur.execute(sql)

except MySQLdb.DatabaseError, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

 print u"Индекс:", cur.lastrowid

 print u"Индекс:", con.insert_id()

cur.close()

con.close()

raw_input()

 rowcount — количество измененных или удаленных записей, а также количест-

во записей, возвращаемых инструкцией SELECT;

Глава 18

336

 description — содержит кортеж кортежей с опциями полей в результате вы-

полнения инструкции SELECT. Каждый внутренний кортеж состоит из семи

элементов. Первый элемент содержит название поля. Например, если выпол-

нить SQL-запрос SELECT * FROM `city`, то атрибут будет содержать следую-

щее значение:

(('id_city', 3, 1, 11, 11, 0, 0),

('name_city', 254, 29, 765, 765, 0, 0))

18.1.3. Обработка результата запроса

Для обработки результата запроса применяются следующие методы курсора

MySQLdb.cursors.Cursor:

 fetchone() — при каждом вызове возвращает одну запись из результата запро-

са в виде кортежа, а затем перемещает указатель текущей позиции. Если запи-

сей больше нет, метод возвращает значение None. Выведем две первые записи

из таблицы с городами:

>>> import MySQLdb

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", db="python")

>>> cur = con.cursor()

>>> cur.execute("SET NAMES utf8")

0L

>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`<3"

>>> cur.execute(sql)

2L

>>> cur.rowcount # Количество записей

2L

>>> con.field_count() # Количество полей

1

>>> cur.fetchone()

('\xd0\xa1\xd0\xb0\xd0\xbd\xd0\xba\xd1\x82-

\xd0\x9f\xd0\xb5\xd1\x82\xd0\xb5\xd1\x80\xd0\xb1\xd1\x83\xd1

\x80\xd0\xb3',)

>>> cur.fetchone()

('\xd0\x9c\xd0\xbe\xd1\x81\xd0\xba\xd0\xb2\xd0\xb0',)

>>> print cur.fetchone()

None

Как видно из примера, метод execute() при выполнении запроса SELECT воз-

вращает количество записей в виде длинного целого числа. Получить количе-

ство записей можно также с помощью атрибута rowcount объекта-курсора. Уз-

нать количество полей в результате запроса позволяет метод field_count()

объекта соединения;

Доступ к базе данных MySQL

337

 fetchmany([size=cursor.arraysize]) — при каждом вызове возвращает кор-

теж записей из результата запроса, а затем перемещает указатель текущей по-

зиции. Каждый элемент кортежа также является кортежем. Количество элемен-

тов, выбираемых за один раз, задается с помощью необязательного параметра

или значения атрибута arraysize объекта-курсора. Если количество записей в

результате запроса меньше указанного количества элементов, то количество

элементов кортежа будет соответствовать оставшемуся количеству записей.

Если записей больше нет, метод возвращает пустой кортеж. Пример:

>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`>3"

>>> cur.execute(sql)

4L

>>> cur.arraysize

1

>>> cur.fetchmany()

(('\xd0\x9d\xd0\xbe\xd0\xb2\xd1\x8b\xd0\xb9 \' "

\xd0\xb3\xd0\xbe\xd1\x80\xd0\xbe\xd0\xb4',),)

>>> cur.fetchmany(2)

(('\xd0\x9f\xd0\xb5\xd1\x80\xd0\xbc\xd1\x8c',),

('\xd0\xa1\xd0\xb0\xd0\xbc\xd0\xb0\xd1\x80\xd0\xb0',))

>>> cur.fetchmany(3)

(('\xd0\x9e\xd0\xbc\xd1\x81\xd0\xba',),)

>>> cur.fetchmany()

()

 fetchall() — возвращает кортеж всех (или всех оставшихся) записей из ре-

зультата запроса. Каждый элемент кортежа также является кортежем. Если

записей больше нет, метод возвращает пустой кортеж. Пример:

>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`>4"

>>> cur.execute(sql)

3L

>>> cur.fetchall()

(('\xd0\x9f\xd0\xb5\xd1\x80\xd0\xbc\xd1\x8c',),

('\xd0\xa1\xd0\xb0\xd0\xbc\xd0\xb0\xd1\x80\xd0\xb0',),

('\xd0\x9e\xd0\xbc\xd1\x81\xd0\xba',))

>>> cur.fetchall()

()

Все рассмотренные методы после возвращения результата перемещают указа-

тель текущей позиции. Если необходимо вернуться в начало или переместить ука-

затель к произвольной записи, то следует воспользоваться методом

scroll(<Смещение>, <Точка отсчета>). Во втором параметре могут быть указаны

значения "absolute" (абсолютное положение) или "relative" (относительно те-

кущей позиции указателя). Если указанное смещение выходит за диапазон, то воз-

буждается исключение IndexError. В качестве примера переместим указатель в

начало, выведем все записи, а затем вернемся на одну запись назад (листинг 18.4).

Глава 18

338

Листинг 18.4. Перемещение указателя текущей позиции

>>> cur.scroll(0, "absolute")

>>> res = cur.fetchall()

>>> for name in res: print name[0].decode("utf-8").encode("cp1251")

Пермь

Самара

Омск

>>> cur.scroll(-1, "relative")

>>> res = cur.fetchall()

>>> for name in res: print name[0].decode("utf-8").encode("cp1251")

Омск

Объект-курсор поддерживает итерационный протокол. Поэтому можно пере-

брать записи с помощью цикла for, указав объект-курсор в качестве параметра:

>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`>5"

>>> cur.execute(sql)

2L

>>> for row in cur: print row[0].decode("utf-8").encode("cp1251")

Самара

Омск

Во всех предыдущих результатах названия городов выводились в виде обыч-

ных строк в кодировке соединения. Чтобы результатом была Unicode-строка, необ-

ходимо указать кодировку соединения с помощью параметра charset функции

connect() или метода set_character_set(<Кодировка>) объекта соединения.

В этом случае параметр use_unicode функции connect() автоматически получит

значение True, и значения, хранящиеся в полях CHAR, VARCHAR и TEXT, будут воз-

вращаться в виде Unicode-строк. Если кодировка соединения указана в конфигура-

ционном файле MySQL, то достаточно указать значение True в параметре

use_unicode. Пример указания кодировки соединения приведен в листинге 18.5.

Листинг 18.5. Указание кодировки соединения

>>> ini = r"C:\Program Files\MySQL\MySQL Server 5.1\my.ini"

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", read_default_file=ini, charset="utf8")

>>> con.select_db("python")

>>> cur = con.cursor()

>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`>5"

>>> cur.execute(sql)

2L

>>> cur.fetchone()

Доступ к базе данных MySQL

339

(u'\u0421\u0430\u043c\u0430\u0440\u0430',)

>>> print cur.fetchone()[0]

Омск

>>> con.close()

Обратите внимание на то, что задание кодировки требует указания пути к файлам

с кодовыми таблицами в директиве character-sets-dir в конфигурационном файле

MySQL. Путь к конфигурационному файлу задается в параметре read_default_file.

В этом примере мы используем кодировку UTF-8, поэтому путь к конфигурационно-

му файлу можно было и не указывать. Кодировка UTF-8 используется в MySQL по

умолчанию и не требует наличия файла с кодовой таблицей.

Все рассмотренные методы возвращают запись в виде кортежа. Если необхо-

димо изменить такое поведение и получить записи в виде словаря, то следует вос-

пользоваться курсором MySQLdb.cursors.DictCursor. Этот курсор аналогичен кур-

сору MySQLdb.cursors.Cursor, но возвращает записи в виде словаря, а не кортежа.

В качестве примера выведем запись с идентификатором 5 в виде словаря (лис-

тинг 18.6).

Листинг 18.6. Получение записей в виде словаря

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", db="python", charset="utf8")

>>> cur = con.cursor(MySQLdb.cursors.DictCursor)

>>> sql = "SELECT * FROM `city` WHERE `id_city`=5"

>>> cur.execute(sql)

1L

>>> cur.fetchone()

{'name_city': u'\u041f\u0435\u0440\u043c\u044c', 'id_city': 5L}

>>> con.close()

18.2. Модуль PyODBC

Модуль PyODBC позволяет работать с базами данных Access, SQL Server,

MySQL и с таблицами Excel. В этом разделе мы рассмотрим возможности модуля

применительно к базе данных MySQL. Для установки модуля PyODBC со страницы

http://code.google.com/p/pyodbc/downloads/list скачиваем файл pyodbc-2.1.7.win32-

py2.6.exe, а затем запускаем его с помощью двойного щелчка на значке файла.

Процесс установки предельно прост и в комментариях не нуждается. Чтобы прове-

рить работоспособность модуля в окне Python Shell редактора IDLE, набираем

следующий код:

>>> import pyodbc

>>> pyodbc.version

'2.1.7'

Глава 18

340

Модуль PyODBC предоставляет интерфейс доступа, совместимый со специфика-

цией DB-API. Получить номер поддерживаемой версии спецификации можно с по-

мощью атрибута apilevel:

>>> pyodbc.apilevel

'2.0'

Прежде чем использовать модуль PyODBC, необходимо установить на компьютер

драйвер ODBC для MySQL. Для этого переходим на страницу http://www.mysql.com/

downloads/connector/odbc/ и загружаем файл mysql-connector-odbc-5.1.6-win32.msi.

Затем запускаем программу установки с помощью двойного щелчка на значке фай-

ла. После установки драйвера можно подключиться к MySQL.

18.2.1. Подключение к базе данных

Для подключения к базе данных используется функция connect(). Функция

имеет следующий формат:

connect(<Строка подключения>[, autocommit=False]

 [, unicode_results=False])

Функция connect() возвращает объект соединения, с помощью которого осу-

ществляется вся дальнейшая работа с базой данных. Если подключиться не уда-

лось, то возбуждается исключение. Соединение закрывается, когда вызывается ме-

тод close() объекта соединения. Рассмотрим наиболее важные параметры,

указываемые в строке подключения:

 DRIVER — название драйвера. Для MySQL указывается значение "{MySQL ODBC

5.1 Driver}";

 SERVER — имя хоста. По умолчанию используется локальный хост;

 UID — имя пользователя;

 PWD — пароль для авторизации пользователя. По умолчанию пустой пароль;

 DATABASE — название базы данных, которую необходимо выбрать для работы;

 PORT — номер порта, на котором запущен сервер MySQL. Значение по умолча-

нию 3306;

 CHARSET — кодировка соединения.

ПРИМЕЧАНИЕ

Более подробную информацию о параметрах подключения можно получить на странице
http://dev.mysql.com/doc/refman/5.1/en/connector-odbc-configuration-connection-

parameters.html.

В качестве примера подключимся к базе данных python, которую мы создали

при изучении модуля MySQLdb:

>>> import pyodbc

>>> s = "DRIVER={MySQL ODBC 5.1 driver};SERVER=localhost;"

>>> s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

>>> con = pyodbc.connect(s, autocommit=True, unicode_results=True)

>>> con.close()

Доступ к базе данных MySQL

341

Если параметр autocommit имеет значение True, то транзакции будут завер-

шаться автоматически. Вместо параметра можно использовать метод autocommit()

объекта соединения. Если автоматическое завершение транзакции отключено, то

при использовании таблиц типа InnoDB все запросы, изменяющие записи (INSERT,

REPLACE, UPDATE и DELETE), необходимо завершать вызовом метода commit(). От-

менить изменения можно с помощью метода rollback().

При указании в параметре unicode_results значения True значения, хранящие-

ся в полях CHAR, VARCHAR и TEXT, будут возвращаться в виде Unicode-строк. По

умолчанию параметр имеет значение False.

18.2.2. Выполнение запроса

После подключения к базе данных необходимо создать объект-курсор с помо-

щью метода cursor(). Для выполнения запроса к базе данных предназначены сле-

дующие методы объекта-курсора:

 close() — закрывает объект-курсор;

 execute(<SQL-запрос>[, <Значения>]) — выполняет один SQL-запрос. Если в

процессе выполнения запроса возникает ошибка, то метод возбуждает исклю-

чение. Метод возвращает объект-курсор. Создадим три таблицы в базе данных

python:

-*- coding: utf-8 -*-

import pyodbc

s = "DRIVER={MySQL ODBC 5.1 driver};SERVER=localhost;"

s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

con = pyodbc.connect(s, autocommit=True, unicode_results=True)

cur = con.cursor()

sql_1 = """\

CREATE TABLE `user` (

 `id_user` INT AUTO_INCREMENT PRIMARY KEY,

 `email` VARCHAR(255),

 `passw` VARCHAR(255)

) ENGINE = MYISAM CHARACTER SET utf8 COLLATE utf8_general_ci

"""

sql_2 = """\

CREATE TABLE `rubr` (

 `id_rubr` INT AUTO_INCREMENT PRIMARY KEY,

 `name_rubr` VARCHAR(255)

) ENGINE = MYISAM CHARACTER SET utf8 COLLATE utf8_general_ci

"""

sql_3 = """\

CREATE TABLE `site` (

 `id_site` INT AUTO_INCREMENT PRIMARY KEY,

 `id_user` INT,

 `id_rubr` INT,

Глава 18

342

 `url` VARCHAR(255),

 `title` VARCHAR(255),

 `msg` TEXT,

 `iq` INT

) ENGINE = MYISAM CHARACTER SET utf8 COLLATE utf8_general_ci

"""

try:

 cur.execute(sql_1)

 cur.execute(sql_2)

 cur.execute(sql_3)

except pyodbc.Error, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

cur.close()

con.close()

raw_input()

Если данные получены от пользователя, то подставлять их в SQL-запрос необ-
ходимо через второй параметр метода execute(). В этом случае данные прохо-
дят обработку и все специальные символы экранируются. Если данные не об-
работать и подставить в SQL-запрос, то пользователь получает возможность
видоизменить запрос и, например, зайти в закрытый раздел без ввода пароля.
В SQL-запросе место вставки обработанных данных помечается с помощью
символа ?, а сами данные передаются в виде кортежа (или просто числа, строки
через запятую) во втором параметре метода execute(). В качестве примера за-
полним таблицу с рубриками и добавим нового пользователя:

-*- coding: utf-8 -*-

import pyodbc

s = "DRIVER={MySQL ODBC 5.1 driver};SERVER=localhost;"

s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

con = pyodbc.connect(s, autocommit=True, unicode_results=True)

cur = con.cursor()

sql_1 = "INSERT INTO `user` (`email`, `passw`) VALUES (?, ?)"

sql_2 = "INSERT INTO `rubr` (`name_rubr`) VALUES (?)"

sql_3 = "INSERT INTO `rubr` VALUES (NULL, ?)"

try:

 cur.execute(sql_1, ('unicross@mail.ru', 'password1'))

 cur.execute(sql_2, ("Программирование",))

 cur.execute(sql_3, """Поисковые ' " порталы""")

except pyodbc.Error, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

cur.close()

con.close()

raw_input()

Доступ к базе данных MySQL

343

 executemany(<SQL-запрос>, <Последовательность>) — выполняет SQL-запрос

несколько раз, при этом подставляя значения из последовательности. Если в

процессе выполнения запроса возникает ошибка, то метод возбуждает исклю-

чение. Заполним таблицу site с помощью метода executemany():

-*- coding: utf-8 -*-

import pyodbc

s = "DRIVER={MySQL ODBC 5.1 driver};SERVER=localhost;"

s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

con = pyodbc.connect(s, autocommit=True, unicode_results=True)

cur = con.cursor()

arr = [

 (1, 1, "http://wwwadmin.ru", "Название", "", 100),

 (1, 1, "http://python.org", "Python", "", 1000),

 (1, 2, "http://google.ru", "Гугль", "", 3000)

]

sql = """INSERT INTO `site` \

(`id_user`, `id_rubr`, `url`, `title`, `msg`, `iq`) \

VALUES (?, ?, ?, ?, ?, ?)"""

try:

 cur.executemany(sql, arr)

except pyodbc.Error, err:

 print u"Ошибка:", err

else:

 print u"Запрос успешно выполнен"

cur.close()

con.close()

raw_input()

18.2.3. Обработка результата запроса

Для обработки результата запроса применяются следующие методы объекта-

курсора:

 fetchone() — при каждом вызове возвращает одну запись из результата запро-

са в виде объекта Row, а затем перемещает указатель текущей позиции. Если

записей больше нет, метод возвращает значение None. Выведем записи из таб-

лицы с рубриками:

>>> import pyodbc

>>> s = "DRIVER={MySQL ODBC 5.1 driver};SERVER=localhost;"

>>> s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

>>> con = pyodbc.connect(s,autocommit=True,unicode_results=True)

>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> row = cur.fetchone()

Глава 18

344

>>> row.id_rubr # Доступ по названию поля

1

>>> print row.name_rubr # Доступ по названию поля

Программирование

>>> print row[1] # Доступ по индексу поля

Программирование

>>> cur.fetchone()

(2, u'\u041f\u043e\u0438\u0441\u043a\u043e\u0432\u044b\u0435

\' " \u043f\u043e\u0440\u0442\u0430\u043b\u044b')

>>> print cur.fetchone()

None

Как видно из примера, объект Row, возвращаемый методом fetchone(), позво-

ляет получить значение как по индексу, так и по названию поля, которое ука-

зывается через точку. Если вывести полностью содержимое объекта, то воз-

вращается кортеж со значениями. Так как при подключении мы указали

значение True в параметре unicode_results, все строковые значения возвра-

щаются в виде Unicode-строк;

 fetchmany([size=cursor.arraysize]) — при каждом вызове возвращает спи-

сок записей из результата запроса, а затем перемещает указатель текущей пози-

ции. Каждый элемент списка является объектом Row. Количество элементов,

выбираемых за один раз, задается с помощью необязательного параметра или

значения атрибута arraysize объекта-курсора. Если количество записей в ре-

зультате запроса меньше указанного количества элементов, то количество эле-

ментов списка будет соответствовать оставшемуся количеству записей. Если

записей больше нет, метод возвращает пустой список. Пример:

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> cur.arraysize

1

>>> row = cur.fetchmany()[0]

>>> print row.name_rubr

Программирование

>>> cur.fetchmany(2)

[(2, u'\u041f\u043e\u0438\u0441\u043a\u043e\u0432\u044b\u0435

\' " \u043f\u043e\u0440\u0442\u0430\u043b\u044b')]

>>> cur.fetchmany()

[]

 fetchall() — возвращает список всех (или всех оставшихся) записей из ре-

зультата запроса. Каждый элемент списка является объектом Row. Если записей

больше нет, метод возвращает пустой список. Пример:

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> rows = cur.fetchall()

>>> rows

Доступ к базе данных MySQL

345

[(1, u'\u041f\u0440\u043e\u0433\u0440\u0430\u043c\u043c

\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435'),

(2, u'\u041f\u043e\u0438\u0441\u043a\u043e\u0432\u044b\u0435

\' " \u043f\u043e\u0440\u0442\u0430\u043b\u044b')]

>>> print rows[0].name_rubr

Программирование

>>> cur.fetchall()

[]

Объект-курсор поддерживает итерационный протокол. Поэтому можно пере-

брать записи с помощью цикла for, указав объект-курсор в качестве параметра:

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> for row in cur: print row.name_rubr

Программирование

Поисковые ' " порталы

Объект-курсор поддерживает несколько атрибутов:

 rowcount — количество измененных или удаленных записей. Изменим назва-

ние рубрики с идентификатором 2 и выведем количество изменений:

>>> cur.execute("""UPDATE `rubr`

 SET `name_rubr`='Поисковые порталы'

 WHERE `id_rubr`=2""")

<pyodbc.Cursor object at 0x011C8CD0>

>>> cur.rowcount

1

>>> cur.execute("SELECT * FROM `rubr` WHERE `id_rubr`=2")

<pyodbc.Cursor object at 0x011C8CD0>

>>> print cur.fetchone().name_rubr

Поисковые порталы

 description — содержит кортеж кортежей с опциями полей в результате вы-

полнения инструкции SELECT. Каждый внутренний кортеж состоит из семи

элементов. Первый элемент содержит название поля. Пример:

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> cur.description

(('id_rubr', <type 'int'>, None, 10, 10, 0, True),

('name_rubr', <type 'unicode'>, None, 255, 255, 0, True))

Мы уже не раз говорили, что передавать значения, введенные пользователем,

необходимо через второй параметр метода execute(). Если данные не обработать и

подставить в SQL-запрос, то пользователь получает возможность видоизменить

запрос и, например, зайти в закрытый раздел без ввода пароля. В качестве примера

составим SQL-запрос с помощью форматирования и зайдем под учетной записью

пользователя без ввода пароля (листинг 18.7).

Глава 18

346

Листинг 18.7. Видоизменение SQL-запроса извне

>>> user = "unicross@mail.ru'/*"

>>> passw = "*/ '"

>>> sql = """SELECT * FROM `user`

 WHERE `email`='%s' AND `passw`='%s'""" % (user, passw)

>>> cur.execute(sql)

<pyodbc.Cursor object at 0x011C8CD0>

>>> cur.fetchone()

(1, u'unicross@mail.ru', u'password1')

Как видно из результата, мы получили доступ не зная пароля. После формати-

рования SQL-запрос будет выглядеть следующим образом:

SELECT * FROM `user` WHERE `email`='unicross@mail.ru'/*'

 AND `passw`='*/ ''

Все, что расположено между /* и */, является комментарием. В итоге SQL-

запрос будет выглядеть так:

SELECT * FROM `user` WHERE `email`='unicross@mail.ru' ''

Никакая проверка пароля в данном случае вообще не производится. Достаточно

знать логин пользователя, и можно войти без пароля. Если данные передавать че-

рез второй параметр метода execute(), то все специальные символы будут экрани-

рованы и пользователь не сможет видоизменить SQL-запрос (листинг 18.8).

Листинг 18.8. Правильная передача данных в SQL-запрос

>>> user = "unicross@mail.ru'/*"

>>> passw = "*/ '"

>>> sql = "SELECT * FROM `user` WHERE `email`=? AND `passw`=?"

>>> cur.execute(sql, (user, passw))

<pyodbc.Cursor object at 0x011C8CD0>

>>> print cur.fetchone()

None

После подстановки значений, SQL-запрос будет выглядеть следующим образом:

SELECT * FROM `user` WHERE `email`='unicross@mail.ru\'/*'

 AND `passw`='*/ \''

В результате все опасные символы были экранированы.

ГЛАВА 19

Библиотека PIL.
Работа с изображениями

Для работы с изображениями в Python наиболее часто используется библиотека

PIL (Python Imaging Library). В этой главе мы рассмотрим базовые возможности дан-

ной библиотеки, применяемые наиболее часто. Для установки библиотеки со страни-

цы http://effbot.org/downloads/#pil скачиваем файл PIL-1.1.6.win32-py2.6.exe, а затем

запускаем его с помощью двойного щелчка на значке файла. Процесс установки

очень прост и в комментариях не нуждается. Чтобы проверить работоспособность

библиотеки, в окне Python Shell редактора IDLE набираем следующий код:

>>> from PIL import Image

>>> Image.VERSION

'1.1.6'

ПРИМЕЧАНИЕ

При работе с версией PIL-1.1.7.win32-py2.6.exe под Windows XP возникли проблемы.
Поэтому в этой главе мы будем рассматривать версию 1.1.6, а не 1.1.7. Вполне возмож-
но, что в вашей версии библиотеки ошибки были исправлены.

19.1. Загрузка готового изображения

Для открытия файла с готовым изображением применяется функция open().

Функция возвращает объект, с помощью которого производится дальнейшая рабо-

та с изображением. Если открыть файл с изображением не удалось, возбуждается

исключение IOError. Формат функции:

open(<Путь или файловый объект>[, mode='r'])

В первом параметре можно указать абсолютный или относительный путь к

изображению. Откроем файл foto.gif, который расположен в текущем рабочем ка-

талоге (листинг 19.1).

Глава 19

348

Листинг 19.1. Загрузка готового изображения

>>> img = Image.open("foto.gif")

Вместо указания пути к файлу можно передать файловый объект, открытый в

бинарном режиме. Пример:

>>> f = open("foto.gif", "rb") # Открываем файл в бинарном режиме

>>> img = Image.open(f) # Передаем объект файла

>>> img.size # Получаем размер изображения

(800, 600)

>>> f.close() # Закрываем файл

Если изображение было загружено в какую-либо переменную, то можно соз-

дать файловый объект с помощью модуля StringIO и передать его в функцию

open() (листинг 19.2).

Листинг 19.2. Загрузка изображения из строки

>>> f = open("foto.gif", "rb") # Открываем файл в бинарном режиме

>>> i = f.read() # Сохраняем изображение в переменной

>>> f.close() # Закрываем файл

>>> import StringIO # Подключаем модуль StringIO

>>> img = Image.open(StringIO.StringIO(i)) # Передаем объект

>>> img.format # Выводим формат изображения

'GIF'

Как видно из примера, формат изображения определяется автоматически. Сле-

дует также заметить, что после открытия файла с помощью функции open() само

изображение не загружается сразу в память из файла. Загрузка изображения произ-

водится при первой операции с изображением. Загрузить изображение явным обра-

зом позволяет метод load(). Хотя в большинстве случаев это делать не нужно. На-

чиная с версии 1.1.6 метод load() возвращает объект, с помощью которого можно

получить доступ к отдельным пикселам изображения. Указав два значения внутри

квадратных скобок, можно получить или задать цвет пиксела (листинг 19.3).

Листинг 19.3. Получение и изменение цвета пиксела

>>> img = Image.open("foto.jpg")

>>> obj = img.load()

>>> obj[25, 45] # Получаем цвет пиксела

(122, 86, 62)

>>> obj[25, 45] = (255, 0, 0) # Задаем цвет пиксела (красный)

Для доступа к отдельному пикселу вместо метода load() можно использовать

методы getpixel() и putpixel(). Метод getpixel(<Координаты>) позволяет полу-

чить цвет указанного пиксела, а метод putpixel(<Координаты>, <Цвет>) изменяет

Библиотека PIL. Работа с изображениями

349

цвет пиксела. Координаты пиксела указываются в виде кортежа из двух элементов.

Необходимо заметить, что эти методы работают медленнее метода load(). Пример

использования методов getpixel() и putpixel() приведен в листинге 19.4.

Листинг 19.4. Использование методов getpixel() и putpixel()

>>> img = Image.open("foto.jpg")

>>> img.getpixel((25, 45)) # Получаем цвет пиксела

(122, 86, 62)

>>> img.putpixel((25, 45), (255, 0, 0)) # Изменяем цвет пиксела

>>> img.getpixel((25, 45)) # Получаем цвет пиксела

(255, 0, 0)

>>> img.show() # Просматриваем изображение

В этом примере для просмотра изображения мы воспользовались методом

show(). Метод show() создает временный файл в формате BMP и запускает про-

грамму для просмотра изображений, используемую в операционной системе по

умолчанию. Например, на моем компьютере запускается программа ACDSee.

Для сохранения изображения в файл предназначен метод save(). Формат ме-

тода:

save(<Путь или файловый объект>[, <Формат>[, <Опции>]])

В первом параметре указывается абсолютный или относительный путь. Вместо

пути можно передать файловый объект, открытый в бинарном режиме. Сохраним

изображение в форматах JPEG и BMP разными способами (листинг 19.5).

Листинг 19.5. Сохранение изображения

>>> img.save("tmp.jpg") # В формате JPEG

>>> img.save("tmp.bmp", "BMP") # В формате BMP

>>> f = open("tmp2.bmp", "wb")

>>> img.save(f, "BMP") # Передаем файловый объект

>>> f.close()

Обратите внимание на то, что мы открыли файл в формате JPEG, а сохранили

его в формате BMP. Таким образом, можно открывать изображения в одном фор-

мате и конвертировать его в другой формат. Если сохранить изображение не уда-

лось, возбуждается исключение IOError. Если параметр <Формат> не указан, то

формат изображения определяется по расширению файла.

В параметре <Опции> можно указать дополнительные опции. Поддерживаемые

опции зависят от формата изображения. Например, по умолчанию изображения в

формате JPEG сохраняются с качеством 75. С помощью опции quality можно ука-

зать другое значение в диапазоне от 1 до 100. Пример:

>>> img.save("tmp3.jpg", "JPEG", quality=100) # Указание качества

За дополнительной информацией по опциям обращайтесь к документации.

Глава 19

350

19.2. Создание нового изображения

Библиотека PIL позволяет работать не только с готовыми изображениями, но и
создавать изображения. Создать новое изображение позволяет функция new().
Функция имеет следующий формат:
new(<Режим>, <Размер>[, <Цвет фона>])

В параметре <Режим> указывается один из режимов:
 1 — 1 бит, черно-белое;
 L — 8 бит, черно-белое;
 P — 8 бит, цветное (256 цветов);
 RGB — 24 бита, цветное;
 RGBA — 32 бита, цветное с альфа-каналом;
 CMYK — 32 бита, цветное;
 YCbCr — 24 бита, цветное, видеоформат;
 I — 32 бита, целое число, цветное;
 F — 32 бита, вещественное число, цветное.

Во втором параметре необходимо передать размер холста в виде кортежа из
двух элементов (<Ширина>, <Высота>). В необязательном параметре <Цвет фона>
задается цвет фона. Если параметр не указан, то изображение будет черного цвета.
Для режима RGB цвет указывается в виде кортежа из трех цифр от 0 до 255 (<Доля
красного>, <Доля зеленого>, <Доля синего>). Кроме того, можно указать назва-
ние цвета на английском языке и строки в форматах "#RGB" и "#RRGGBB". Различ-
ные способы указания цвета приведены в листинге 19.6.

Листинг 19.6. Способы указания цвета

>>> img = Image.new("RGB", (100, 100))

>>> img.show() # Черный квадрат

>>> img = Image.new("RGB", (100, 100), (255, 0, 0))

>>> img.show() # Красный квадрат

>>> img = Image.new("RGB", (100, 100), "green")

>>> img.show() # Зеленый квадрат

>>> img = Image.new("RGB", (100, 100), "#f00")

>>> img.show() # Красный квадрат

>>> img = Image.new("RGB", (100, 100), "#ff0000")

>>> img.show() # Красный квадрат

19.3. Получение информации
об изображении

Получить информацию об изображении позволяют следующие атрибуты:

 size — размер изображения в виде кортежа из двух элементов (<Ширина>,

<Высота>);

Библиотека PIL. Работа с изображениями

351

 format — формат изображения (например, GIF, JPEG и т. д.);

 mode — режим (например, P, RGB, CMYK и т. д.);

 info — дополнительная информация об изображении в виде словаря.

В качестве примера выведем информацию об изображениях в форматах JPEG,
GIF, BMP, TIFF и PNG (листинг 19.7).

Листинг 19.7. Получение информации об изображении

>>> img = Image.open("foto.jpg")

>>> img.size, img.format, img.mode

((800, 600), 'JPEG', 'RGB')

>>> img.info

{'jfif': 258, 'jfif_unit': 0, 'adobe': 100, 'progression': 1,

'jfif_version': (1, 2), 'adobe_transform': 100,

'jfif_density': (100, 100)}

>>> img = Image.open("foto.gif")

>>> img.size, img.format, img.mode

((800, 600), 'GIF', 'P')

>>> img.info

{'version': 'GIF89a', 'background': 254}

>>> img = Image.open("foto.bmp")

>>> img.size, img.format, img.mode

((800, 600), 'BMP', 'RGB')

>>> img.info

{'compression': 0}

>>> img = Image.open("foto.tif")

>>> img.size, img.format, img.mode

((800, 600), 'TIFF', 'RGB')

>>> img.info

{'compression': 'raw'}

>>> img = Image.open("foto.png")

>>> img.size, img.format, img.mode

((800, 600), 'PNG', 'RGB')

>>> img.info

{'dpi': (72, 72)}

19.4. Манипулирование изображением

Произвести различные манипуляции с загруженным изображением позволяют
следующие методы:
 copy() — создает копию изображения:

>>> from PIL import Image # Подключаем модуль

>>> img = Image.open("foto.jpg") # Открываем файл

>>> img2 = img.copy() # Создаем копию

>>> img2.show() # Просматриваем копию

Глава 19

352

 thumbnail(<Размер>[, <Фильтр>]) — создает уменьшенную версию изобра-

жения указанного размера. Размер задается в виде кортежа из двух элементов

(<Ширина>, <Высота>). Обратите внимание на то, что изменение размера про-

изводится пропорционально. Иными словами, за основу берется минимальное

значение, а второе значение вычисляется пропорционально первому. В пара-

метре <Фильтр> могут быть указаны фильтры NEAREST, BILINEAR, BICUBIC или

ANTIALIAS. Метод изменяет само изображение и ничего не возвращает. Пример:

>>> img = Image.open("foto.jpg")

>>> img.size # Исходные размеры изображения

(800, 600)

>>> img.thumbnail((400, 300), Image.ANTIALIAS)

>>> img.size # Изменяется само изображение

(400, 300)

>>> img = Image.open("foto.jpg")

>>> img.thumbnail((400, 100), Image.ANTIALIAS)

>>> img.size # Размер изменяется пропорционально

(133, 100)

 resize(<Размер>[, <Фильтр>]) — изменяет размер изображения. В отличие от

метода thumbnail() возвращает новое изображение, а не изменяет исходное

изображение. Изменение размера производится не пропорционально. Иными

словами, если пропорции не соблюдены, то изображение будет искажено. В па-

раметре <Фильтр> могут быть указаны фильтры NEAREST, BILINEAR, BICUBIC или

ANTIALIAS. Пример:

>>> img = Image.open("foto.jpg")

>>> img.size # Исходные размеры изображения

(800, 600)

>>> img2 = img.resize((400, 300), Image.ANTIALIAS)

>>> img2.size # Пропорциональное уменьшение

(400, 300)

>>> img3 = img.resize((400, 100), Image.ANTIALIAS)

>>> img3.size # Изображение будет искажено

(400, 100)

 rotate(<Угол>[, <Фильтр>][, expand=0]) — поворачивает изображение на

указанное количество градусов против часовой стрелки. Метод возвращает но-

вое изображение. В параметре <Фильтр> могут быть указаны фильтры NEAREST,

BILINEAR или BICUBIC. Если параметр expand имеет значение True, то размер

изображения будет увеличен таким образом, чтобы оно полностью помести-

лось. По умолчанию размер изображения сохраняется. Если изображение не

помещается, то оно будет обрезано. Пример:

>>> img = Image.open("foto.jpg")

>>> img.size # Исходные размеры изображения

(800, 600)

>>> img2 = img.rotate(90) # Поворот на 90 градусов

Библиотека PIL. Работа с изображениями

353

>>> img2.size

(600, 800)

>>> img3 = img.rotate(45, Image.NEAREST)

>>> img3.size # Размеры сохранены, изображение обрезано

(800, 600)

>>> img4 = img.rotate(45, expand=True)

>>> img4.size # Размеры увеличены, изображение полное

(991, 990)

 transpose(<Преобразование>) — возвращает зеркальный образ или поворачи-

вает изображение. В качестве параметра можно указать значения

FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM, ROTATE_90, ROTATE_180 или ROTATE_270.

Метод возвращает новое изображение. Пример:

>>> img = Image.open("foto.jpg")

>>> img2 = img.transpose(Image.FLIP_LEFT_RIGHT)

>>> img2.show() # Горизонтальный зеркальный образ

>>> img3 = img.transpose(Image.FLIP_TOP_BOTTOM)

>>> img3.show() # Вертикальный зеркальный образ

>>> img4 = img.transpose(Image.ROTATE_90)

>>> img4.show() # Поворот на 90 гр. против часовой стрелки

>>> img5 = img.transpose(Image.ROTATE_180)

>>> img5.show() # Поворот на 180 градусов

>>> img6 = img.transpose(Image.ROTATE_270)

>>> img6.show() # Поворот на 270 градусов

 crop((<X1>, <Y1>, <X2>, <Y2>)) — считывает прямоугольную область из ис-

ходного изображения. В качестве параметра указывается кортеж из четырех

элементов. Первые два элемента задают координату левого верхнего угла пря-

моугольной области, а вторые два элемента задают координату правого нижне-

го угла. Предполагается, что начало координат располагается в левом верхнем

углу изображения. Положительная ось x направлена вправо, а положительная

ось y — вниз. В качестве значения метод возвращает новое изображение. Обра-

тите внимание на то, что считывание области из исходного изображения произ-

водится только при первой операции над новым изображением. Если после вы-

полнения метода crop() над исходным изображением были произведены

операции, то они отобразятся и на новом изображении. Чтобы явным образом

произвести считывание области, необходимо сразу после метода crop() вы-

звать метод load(). Пример:

>>> img = Image.open("foto.jpg")

>>> img2 = img.crop([0, 0, 100, 100]) # Помечаем область

>>> img2.load() # Считываем область в новое изображение

>>> img2.size

(100, 100)

 paste(<Цвет>, <Область>[, <Маска>]) — закрашивает прямоугольную об-

ласть определенным цветом. Координаты области указываются в виде кортежа

из четырех элементов. Первые два элемента задают координату левого верхне-

Глава 19

354

го угла прямоугольной области, а вторые два элемента — координату правого

нижнего угла. Закрасим область красным цветом:

>>> img = Image.open("foto.jpg")

>>> img.paste((255, 0, 0), (0, 0, 100, 100))

>>> img.show()

Теперь зальем все изображение зеленым цветом:

>>> img = Image.open("foto.jpg")

>>> img.paste((0, 128, 0), img.getbbox())

>>> img.show()

В этом примере мы использовали метод getbbox(), который возвращает коор-

динаты прямоугольной области, в которую вписывается все изображение:

>>> img.getbbox()

(0, 0, 800, 600)

 paste(<Изображение>, <Область>[, <Маска>]) — вставляет указанное изобра-

жение в прямоугольную область. Координаты области указываются в виде кор-

тежа из двух или четырех элементов. Если указан кортеж из двух элементов, то

он задает начальную точку. В качестве примера загрузим изображение, созда-

дим уменьшенную копию, а затем вставим ее в исходное изображение, причем

вокруг вставленного изображения отобразим рамку красного цвета:

>>> img = Image.open("foto.jpg")

>>> img2 = img.resize((200, 150)) # Создаем миниатюру

>>> img2.size

(200, 150)

>>> img.paste((255, 0, 0), (9, 9, 211, 161)) # Рамка

>>> img.paste(img2, (10, 10)) # Вставляем миниатюру

>>> img.show()

Необязательный параметр <Маска> позволяет задать степень прозрачности

вставляемого изображения или цвета. В качестве примера выведем белую по-

лупрозрачную горизонтальную полосу высотой 100 пикселов:

>>> img = Image.open("foto.jpg")

>>> white = Image.new("RGB", (img.size[0],100), (255,255,255))

>>> mask = Image.new("L", (img.size[0], 100), 64) # Маска

>>> img.paste(white, (0, 0), mask)

>>> img.show()

 split() — возвращает каналы изображения в виде кортежа. Например, для

изображения в режиме RGB возвращается кортеж из трех элементов (R, G, B).

Произвести обратную операцию (собрать изображение из каналов) позволяет

функция merge(<Режим>, <Каналы>). В качестве примера преобразуем изобра-

жение из режима RGB в режим RGBA:

>>> img = Image.open("foto.jpg")

>>> img.mode

'RGB'

>>> R, G, B = img.split()

Библиотека PIL. Работа с изображениями

355

>>> mask = Image.new("L", img.size, 128)

>>> img2 = Image.merge("RGBA", (R, G, B, mask))

>>> img2.mode

'RGBA'

>>> img2.show()

 convert(<Новый режим>[, <Матрица>]) — преобразует изображение в указан-

ный режим. Возвращает новое изображение. Преобразуем изображение из ре-

жима RGB в режим RGBA:
>>> img = Image.open("foto.jpg")

>>> img.mode

'RGB'

>>> img2 = img.convert("RGBA")

>>> img2.mode

'RGBA'

>>> img2.show()

 filter(<Фильтр>) — применяет к изображению указанный фильтр. Метод воз-

вращает новое изображение. В качестве параметра можно указать фильтры

BLUR, CONTOUR, DETAIL, EDGE_ENHANCE, EDGE_ENHANCE_MORE, EMBOSS, FIND_EDGES,

SHARPEN, SMOOTH и SMOOTH_MORE из модуля ImageFilter. Пример:
>>> import ImageFilter

>>> img = Image.open("foto.jpg")

>>> img2 = img.filter(ImageFilter.EMBOSS)

>>> img2.show()

19.5. Рисование линий и фигур

Чтобы на изображении можно было рисовать, необходимо создать экземпляр

класса Draw, передав в конструктор класса ссылку на изображение. Прежде чем ис-

пользовать класс, предварительно следует импортировать модуль ImageDraw. При-

мер создания экземпляра класса:
>>> from PIL import Image, ImageDraw # Подключаем модули

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img) # Создаем экземпляр класса

Класс Draw предоставляет следующие методы:

 point(<Координаты>, fill=<Цвет>) — рисует точку. Нарисуем красную гори-

зонтальную линию из нескольких точек:
>>> from PIL import Image, ImageDraw

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> for n in xrange(5, 31):

 draw.point((n, 5), fill=(255, 0, 0))

>>> img.show()

Глава 19

356

 line(<Координаты>, fill=<Цвет>[, width=<Ширина>]) — рисует линию

между двумя координатами. Пример:

>>> draw.line((0, 0, 0, 300), fill=(0, 128, 0))

>>> draw.line((297, 0, 297, 300), fill=(0, 128, 0), width=3)

>>> img.show()

 rectangle() — рисует прямоугольник. Формат метода:

rectangle(<Координаты>[, fill=<Цвет заливки>]

 [, outline=<Цвет линии>])

В параметре <Координаты> указываются координаты двух точек: левого верхне-

го угла и правого нижнего угла. Нарисуем три прямоугольника. Первый прямо-

угольник с рамкой и заливкой, второй — только с заливкой, а третий — только

с рамкой:

>>> draw.rectangle((10, 10, 30, 30), fill=(0, 0, 255),

 outline=(0, 0, 0))

>>> draw.rectangle((40, 10, 60, 30), fill=(0, 0, 128))

>>> draw.rectangle((0, 0, 299, 299), outline=(0, 0, 0))

>>> img.show()

 polygon() — рисует многоугольник. Формат метода:

polygon(<Координаты>[, fill=<Цвет заливки>]

 [, outline=<Цвет линии>])

В параметре <Координаты> указываются координаты трех и более точек. Ука-

занные точки соединяются линиями. Кроме того, проводится прямая линия ме-

жду первой и последней точками. Пример:

>>> draw.polygon((50, 50, 150, 150, 50, 150), outline=(0,0,0),

 fill=(255, 0, 0)) # Треугольник

>>> draw.polygon((200, 200, 250, 200, 275, 250, 250, 300,

 200, 300, 175, 250), fill=(255, 255, 0))

>>> img.show()

 ellipse() — рисует эллипс. Формат метода:

ellipse(<Координаты>[, fill=<Цвет заливки>]

 [, outline=<Цвет линии>])

В параметре <Координаты> указываются координаты прямоугольника, в кото-

рый необходимо вписать эллипс. Пример:

>>> draw.ellipse((100, 100, 200, 200), fill=(255, 255, 0))

>>> draw.ellipse((50, 170, 150, 300), outline=(0, 255, 255))

>>> img.show()

 arc() — рисует дугу. Формат метода:

arc(<Координаты>, <Начальный угол>, <Конечный угол>,

 fill=<Цвет линии>)

В параметре <Координаты> указываются координаты прямоугольника, в кото-

рый необходимо вписать окружность. Второй и третий параметры задают на-

Библиотека PIL. Работа с изображениями

357

чальный и конечный угол, между которыми будет отображена дуга. Угол, рав-

ный 0, расположен в крайней правой точке. Увеличение производится по часо-

вой стрелке от 0 до 360. Линия рисуется по часовой стрелке. Пример:

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> draw.arc((10, 10, 290, 290), 180, 0, fill=(255, 0, 0))

>>> img.show()

 chord() — рисует замкнутую дугу. Формат метода:

chord(<Координаты>, <Начальный угол>, <Конечный угол>,

 [, fill=<Цвет заливки>][, outline=<Цвет линии>])

Метод chord() аналогичен методу arc(), но замыкает крайние точки дуги пря-

мой линией. Пример:

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> draw.chord((10, 10, 290, 290), 180, 0, fill=(255, 0, 0))

>>> draw.chord((10, 10, 290, 290), -90, 0, fill=(255, 255, 0))

>>> img.show()

 pieslice() — рисует замкнутый сектор. Формат метода:

pieslice(<Координаты>, <Начальный угол>, <Конечный угол>,

 [, fill=<Цвет заливки>][, outline=<Цвет линии>])

Метод pieslice() аналогичен методу arc(), но замыкает крайние точки дуги с

центром окружности. Пример:

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> draw.pieslice((10, 10, 290, 290), -90, 0, fill="red")

>>> img.show()

19.6. Модуль aggdraw

Если приглядеться к контурам фигур, созданных с помощью класса ImageDraw

из библиотеки PIL, то можно заметить, что граница отображается в виде ступенек.

Сделать контуры более гладкими позволяет модуль aggdraw. Модуль aggdraw не

входит в состав стандартной библиотеки Python. Для установки модуля переходим

на страницу http://www.effbot.org/downloads/#aggdraw, загружаем файл aggdraw-

1.2a3-20060212.win32-py2.6.exe, а затем запускаем программу установки с помо-

щью двойного щелчка на значке файла. Установка предельно проста и в коммента-

риях не нуждается. Для проверки установки запускаем следующий код:

>>> import aggdraw

>>> aggdraw.VERSION

'1.2a3'

Глава 19

358

Чтобы увидеть разницу, нарисуем два круга. Первый круг с помощью метода

ellipse() класса ImageDraw, а второй круг с помощью метода ellipse() из модуля

aggdraw (листинг 19.8).

Листинг 19.8. Сравнение класса ImageDraw и модуля aggdraw

>>> import aggdraw

>>> from PIL import Image, ImageDraw

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> draw.ellipse((0, 0, 150, 150), fill="red", outline="red")

>>> pen = aggdraw.Pen("red", 0.5)

>>> brush = aggdraw.Brush("red")

>>> draw2 = aggdraw.Draw(img)

>>> draw2.ellipse((150, 150, 300, 300), pen, brush)

>>> draw2.flush()

<PIL.Image.Image instance at 0x01666350>

>>> img.show()

Методика создания первого круга должна быть уже вам знакома. Вначале соз-

даем экземпляр класса Draw и передаем в конструктор ссылку на изображение, а

затем выводим круг с помощью метода ellipse(), указывая размер области, цвет

границы и заливки.

При использовании модуля aggdraw методика немного другая. Вместо указания

конкретного цвета границы и заливки необходимо создать объекты "перо" и "кисть"

с помощью классов Pen и Brush соответственно. Перо используется для вывода

границы фигуры, а кисть применяется для заливки. Конструкторы классов имеют

следующий формат:

Pen(<Цвет>[, width=1][, opacity=255])

Brush(<Цвет>[, opacity=255])

Цвет может быть указан в виде кортежа, строки с названием цвета на англий-

ском языке или строки в форматах "#RGB" и "#RRGGBB". Параметр width задает ши-

рину линии, а параметр opacity — прозрачность.

Чтобы на изображении можно было рисовать, необходимо создать экземпляр

класса Draw. Конструктор класса имеет два формата:

Draw(<Объект изображения>)

Draw(<Режим>, <Размер>[, <Цвет>])

В первом формате указывается объект изображения из модуля PIL. Именно

этим форматом мы воспользовались в предыдущем примере. Второй формат по-

зволяет создать изображение. В параметре <Режим> могут быть указаны режимы L,

RGB, RGBA, BGR и BGRA. Во втором параметре передается размер холста в виде корте-

жа. Если третий параметр не указан, то изображение будет белого цвета. Для при-

мера создадим новое изображение, нарисуем круг, а затем преобразуем изображе-

ние в формат библиотеки PIL и просмотрим его (листинг 19.9).

Библиотека PIL. Работа с изображениями

359

Листинг 19.9. Создание нового изображения с помощью модуля aggdraw

>>> import aggdraw

>>> from PIL import Image

>>> draw = aggdraw.Draw("RGB", (300, 300), (255, 255, 255))

>>> pen = aggdraw.Pen("red", 0.5)

>>> brush = aggdraw.Brush("red")

>>> draw.ellipse((10, 10, 290, 290), pen, brush)

>>> img = draw.tostring()

>>> img2 = Image.fromstring("RGB", (300, 300), img)

>>> img2.show()

Получить созданное изображение в виде строки позволяет метод tostring().

Преобразовать эту строку в объект изображения библиотеки PIL можно с помощью

функции fromstring() из модуля Image.

Класс Draw из модуля aggdraw предоставляет следующие методы:

 flush() — обновляет изображение. Если изображение не обновить, то измене-

ния отображаться не будут;

 setantialias(<Флаг>) — если указано значение True, то контуры изображения

сглаживаются, а если False, то сглаживание не производится. Нарисуем два

круга с отключенным и включенным сглаживанием:

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = aggdraw.Draw(img)

>>> pen = aggdraw.Pen((255, 0, 0), 0.5)

>>> brush = aggdraw.Brush("#ff0000")

>>> draw.setantialias(False) # Сглаживание отключено

>>> draw.ellipse((0, 0, 150, 150), pen, brush)

>>> draw.setantialias(True) # Сглаживание включено

>>> draw.ellipse((150, 150, 300, 300), pen, brush)

>>> draw.flush() # Обновляем изображение

<PIL.Image.Image instance at 0x01317378>

>>> img.show()

 tostring() — возвращает изображение в виде строки;

 line(<Координаты>, <Перо>) — рисует линию между координатами. Пример:

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> pen = aggdraw.Pen((0, 128, 0), 1)

>>> draw = aggdraw.Draw(img)

>>> draw.line((10, 10, 150, 10), pen)

>>> pen = aggdraw.Pen("green", 3)

>>> draw.line((10, 30, 150, 30), pen)

>>> draw.flush()

<PIL.Image.Image instance at 0x011C6760>

>>> img.show()

Глава 19

360

В параметре <Координаты> можно указать координаты сразу нескольких точек.

В этом случае они соединяются линиями. Первая и последняя точки не соеди-

няются. Пример:

>>> draw.line((0, 0, 20, 100, 30, 50, 40, 100, 60, 0), pen)

>>> draw.flush()

<PIL.Image.Image instance at 0x011C6760>

>>> img.show()

 rectangle(<Координаты>, <Перо>, <Кисть>) — рисует прямоугольник. В па-

раметре <Координаты> указываются координаты двух точек: левого верхнего

угла и правого нижнего угла. Перо используется для рисования контура, а

кисть для заливки. Пример:

>>> pen = aggdraw.Pen("#000000")

>>> brush = aggdraw.Brush("orange")

>>> draw.rectangle((40, 10, 60, 30), pen, brush)

>>> draw.rectangle((0, 0, 299, 299), pen)

>>> draw.flush()

<PIL.Image.Image instance at 0x011C6760>

>>> img.show()

 polygon(<Координаты>, <Перо>, <Кисть>) — рисует многоугольник. В пара-

метре <Координаты> указываются координаты трех и более точек. Указанные

точки соединяются линиями. Кроме того, проводится прямая линия между пер-

вой и последней точками. Перо используется для рисования контура, а кисть

для заливки. Пример:

>>> pen = aggdraw.Pen("#000000")

>>> brush = aggdraw.Brush("green")

>>> draw.polygon((50, 50, 150, 150, 50, 150), pen, brush)

>>> draw.polygon((200, 200, 250, 200, 275, 250, 250, 300,

 200, 300, 175, 250), None, brush)

>>> draw.flush()

<PIL.Image.Image instance at 0x011C6760>

>>> img.show()

 ellipse(<Координаты>, <Перо>, <Кисть>) — рисует окружность. В параметре

<Координаты> указываются координаты прямоугольника, в который необходи-

мо вписать окружность. Перо используется для рисования контура, а кисть для

заливки. Пример:

>>> pen = aggdraw.Pen((0, 255, 255))

>>> brush = aggdraw.Brush((255, 255, 0))

>>> draw.ellipse((100, 100, 200, 200), None, brush)

>>> draw.ellipse((50, 170, 150, 300), pen)

>>> draw.flush()

<PIL.Image.Image instance at 0x011C6760>

>>> img.show()

Библиотека PIL. Работа с изображениями

361

 arc() — рисует дугу. Формат метода:

arc(<Координаты>, <Начальный угол>, <Конечный угол>, <Перо>)

В параметре <Координаты> указываются координаты прямоугольника, в кото-

рый необходимо вписать окружность. Второй и третий параметры задают на-

чальный и конечный углы, между которыми будет отображена дуга. Угол, рав-

ный 0, расположен в крайней правой точке. Линия рисуется против часовой

стрелки от начального угла до конечного угла. Перо используется для рисова-

ния линии. Пример:

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = aggdraw.Draw(img)

>>> pen = aggdraw.Pen((255, 0, 0))

>>> draw.arc((10, 10, 290, 290), 180, 0, pen)

>>> draw.flush()

<PIL.Image.Image instance at 0x01511B70>

>>> img.show()

 chord() — рисует замкнутую дугу. Формат метода:

chord(<Координаты>, <Начальный угол>, <Конечный угол>,

 <Перо>, <Кисть>)

Метод chord() аналогичен методу arc(), но замыкает крайние точки дуги пря-

мой линией. Перо используется для рисования контура, а кисть для заливки.

Пример:

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = aggdraw.Draw(img)

>>> brush = aggdraw.Brush((255, 0, 0))

>>> draw.chord((10, 10, 290, 290), 180, 0, None, brush)

>>> brush = aggdraw.Brush((255, 255, 0))

>>> draw.chord((10, 10, 290, 290), -90, 0, None, brush)

>>> draw.flush()

<PIL.Image.Image instance at 0x01511DC8>

>>> img.show()

 pieslice() — рисует замкнутый сектор. Формат метода:

pieslice(<Координаты>, <Начальный угол>, <Конечный угол>,

 <Перо>, <Кисть>)

Метод pieslice() аналогичен методу arc(), но замыкает крайние точки дуги с

центром окружности. Перо используется для рисования контура, а кисть для

заливки. Пример:

>>> brush = aggdraw.Brush("green")

>>> draw.pieslice((10, 10, 290, 290), 45, 90, None, brush)

>>> draw.flush()

<PIL.Image.Image instance at 0x01511DC8>

>>> img.show()

Глава 19

362

19.7. Вывод текста на изображение

Вывести текст на изображение позволяет метод text() из модуля ImageDraw.

Метод имеет следующий формат:

text(<Координаты>, <Строка>, fill=<Цвет>, font=<Объект шрифта>)

В первом параметре указывается кортеж из двух элементов, задающих коорди-

наты левого верхнего угла прямоугольной области, в которую вписан текст. Во

втором параметре задается текст надписи. Параметр fill определяет цвет текста, а

параметр font задает используемый шрифт. Для создания объекта шрифта предна-

значены следующие функции из модуля ImageFont:

 load_default() — шрифт по умолчанию. Вывести русские буквы таким шриф-

том нельзя. Пример:

>>> from PIL import Image, ImageDraw, ImageFont

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> font = ImageFont.load_default()

>>> draw.text((10, 10), "Hello", font=font, fill="red")

>>> img.show()

 load(<Путь к файлу>) — загружает шрифт из файла и возвращает объект

шрифта. Если файл не найден, возбуждается исключение IOError. Файлы со

шрифтами с расширением pil можно скачать с сайта http://effbot.org/. Пример:

>>> font = ImageFont.load("pilfonts/helvO12.pil")

>>> draw.text((10, 40), "Hello", font=font, fill="blue")

>>> img.show()

 load_path(<Путь к файлу>) — аналогичен методу load(), но дополнительно

производит поиск файла в каталогах, указанных в sys.path. Если файл не най-

ден, возбуждается исключение IOError;

 truetype(<Путь к файлу>, <Размер>[, encoding]) — загружает файл с Tru-

eType-шрифтом и возвращает объект шрифта. Если файл не найден, возбужда-

ется исключение IOError. В Windows поиск файла дополнительно производит-

ся в стандартном каталоге со шрифтами. Пример вывода надписи на русском

языке:

>>> txt = unicode("Привет мир", "cp1251")

>>> font_file = r"C:\WINDOWS\Fonts\arial.ttf"

>>> font = ImageFont.truetype(font_file, 24)

>>> draw.text((10, 80), txt, font=font, fill=(0, 0, 0))

>>> img.show()

Получить размеры прямоугольника, в который вписывается надпись, позволяет

метод textsize(). Формат метода:

textsize(<Строка>, font=<Объект шрифта>)

Библиотека PIL. Работа с изображениями

363

Метод возвращает кортеж из двух элементов (<Ширина>, <Высота>). Кроме то-

го, можно воспользоваться методом getsize(<Строка>) объекта шрифта.

Пример:

>>> txt = unicode("Привет мир", "cp1251")

>>> font_file = r"C:\WINDOWS\Fonts\arial.ttf"

>>> font = ImageFont.truetype(font_file, 24)

>>> draw.textsize(txt, font=font)

(133, 28)

>>> font.getsize(txt)

(133, 28)

Вывести текст на изображение позволяет также метод text() из модуля

aggdraw. Формат метода:

text(<Координаты>, <Строка>, <Объект шрифта>)

Для создания объекта шрифта предназначена функция Font():

Font(<Цвет>, <Путь к файлу>[, size=12[, opacity=255]])

Выведем текст на русском языке с помощью модуля aggdraw (листинг 19.10).

Листинг 19.10. Вывод текста на русском языке с помощью модуля aggdraw

>>> import aggdraw

>>> from PIL import Image

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = aggdraw.Draw(img)

>>> font_file = r"C:\WINDOWS\Fonts\arial.ttf"

>>> font = aggdraw.Font("red", font_file, size=24)

>>> txt = unicode("Привет мир", "cp1251")

>>> draw.text((10, 10), txt, font)

>>> draw.flush()

<PIL.Image.Image instance at 0x015101E8>

>>> img.show()

Получить размеры прямоугольника, в который вписывается надпись, позволяет

метод textsize(). Формат метода:

textsize(<Строка>, <Объект шрифта>)

Метод возвращает кортеж из двух элементов (<Ширина>, <Высота>). Пример:

>>> draw.textsize(txt, font)

(132.0, 28.0)

19.8. Создание скриншотов

Библиотека PIL в операционной системе Windows позволяет сделать снимок

экрана (скриншот). Можно получить как полную копию экрана, так и копию опре-

Глава 19

364

деленной прямоугольной области. Для получения копии экрана предназначена

функция grab() из модуля ImageGrab. Формат функции:

grab([<Координаты прямоугольной области>])

Если параметр не указан, то возвращается полная копия экрана в виде объекта

изображения в режиме RGB. Для получения только определенной области необхо-

димо указать координаты прямоугольника: левого верхнего угла и правого нижне-

го угла. Пример создания скриншотов приведен в листинге 19.11.

Листинг 19.11. Создание скриншотов

>>> from PIL import Image, ImageGrab

>>> img = ImageGrab.grab()

>>> img.save("screen.bmp", "BMP")

>>> img.mode

'RGB'

>>> img2 = ImageGrab.grab((100, 100, 300, 300))

>>> img2.save("screen2.bmp", "BMP")

>>> img2.size

(200, 200)

ГЛАВА 20

Взаимодействие
с Интернетом

Интернет прочно вошел в нашу жизнь. Очень часто необходимо передать дан-

ные на Web-сервер или, наоборот, получить данные. Например, нужно получить

котировки валют или прогноз погоды, проверить наличие писем в почтовом ящике

и т. д. В состав стандартной библиотеки Python входит множество модулей, позво-

ляющих работать практически со всеми протоколами Интернета. В этой главе мы

рассмотрим только наиболее часто встречающиеся задачи: разбор URL-адреса и

строки запроса на составляющие, преобразование гиперссылок, разбор HTML-

эквивалентов, определение кодировки документа, а также обмен данными по про-

токолу HTTP с помощью модулей httplib и urllib2.

20.1. Разбор URL-адреса

С помощью модуля urlparse можно манипулировать URL-адресом. Например,

разобрать его на составляющие или получить абсолютный URL-адрес, указав базо-

вый адрес и относительный. URL-адрес состоит из следующих элементов:

<Протокол>://<Домен>:<Порт>/<Путь>;<Параметры>?<Запрос>#<Якорь>

Схема URL-адреса для протокола FTP выглядит по-другому:

<Протокол>://<Пользователь>:<Пароль>@<Домен>

Разобрать URL-адрес на составляющие позволяет функция urlparse():

urlparse(<URL-адрес>[, <Схема>[, <Разбор якоря>]])

Функция возвращает объект ParseResult с результатами разбора URL-адреса.

Получить значения можно с помощью атрибутов или индексов. Объект можно пре-

образовать в кортеж из следующих элементов: (scheme, netloc, path, params,

query, fragment). Элементы соответствуют схеме URL-адреса:

<scheme>://<netloc>/<path>;<params>?<query>#<fragment>

Глава 20

366

Обратите внимание на то, что название домена будет содержать номер порта.

Кроме того, не ко всем атрибутам объекта можно получить доступ с помощью ин-

дексов. Результат разбора URL-адреса приведен в листинге 20.1.

Листинг 20.1. Разбор URL-адреса с помощью функции urlparse()

>>> from urlparse import urlparse

>>> url = urlparse("http://wwwadmin.ru:80/test.php;st?var=5#metka")

>>> url

ParseResult(scheme='http', netloc='wwwadmin.ru:80', path='/test.php',

params='st', query='var=5', fragment='metka')

>>> tuple(url) # Преобразование в кортеж

('http', 'wwwadmin.ru:80', '/test.php', 'st', 'var=5', 'metka')

Во втором параметре функции urlparse() можно указать название протокола,

которое будет использоваться, если протокола нет в составе URL-адреса. По умол-

чанию используется пустая строка. Пример:

>>> urlparse("//wwwadmin.ru/test.php")

ParseResult(scheme='', netloc='wwwadmin.ru', path='/test.php',

params='', query='', fragment='')

>>> urlparse("//wwwadmin.ru/test.php", "http")

ParseResult(scheme='http', netloc='wwwadmin.ru', path='/test.php',

params='', query='', fragment='')

Объект ParseResult, возвращаемый функцией urlparse(), содержит следую-

щие атрибуты:

 scheme — название протокола. Значение доступно также по индексу 0. По

умолчанию пустая строка. Пример:

>>> url.scheme, url[0]

('http', 'http')

 netloc — название домена вместе с номером порта. Значение доступно также

по индексу 1. По умолчанию пустая строка. Пример:

>>> url.netloc, url[1]

('wwwadmin.ru:80', 'wwwadmin.ru:80')

 hostname — название домена в нижнем регистре. Значение по умолчанию:

None;

 port — номер порта. Значение по умолчанию: None. Пример:

>>> url.hostname, url.port

('wwwadmin.ru', 80)

 path — путь. Значение доступно также по индексу 2. По умолчанию пустая

строка. Пример:

>>> url.path, url[2]

('/test.php', '/test.php')

Взаимодействие с Интернетом

367

 params — параметры. Значение доступно также по индексу 3. По умолчанию

пустая строка. Пример:

>>> url.params, url[3]

('st', 'st')

 query — строка запроса. Значение доступно также по индексу 4. По умолчанию

пустая строка. Пример:

>>> url.query, url[4]

('var=5', 'var=5')

 fragment — якорь. Значение доступно также по индексу 5. По умолчанию пус-

тая строка. Пример:

>>> url.fragment, url[5]

('metka', 'metka')

Если третий параметр в функции urlparse() имеет значение False, то

якорь будет входить в состав значения других атрибутов, а не fragment. По

умолчанию параметр имеет значение True. Пример:

>>> u = urlparse("http://site.ru/add.php?v=5#metka")

>>> u.query, u.fragment

('v=5', 'metka')

>>> u = urlparse("http://site.ru/add.php?v=5#metka","",False)

>>> u.query, u.fragment

('v=5#metka', '')

 username — имя пользователя. Значение по умолчанию: None;

 password — пароль. Значение по умолчанию: None. Пример:

>>> ftp = urlparse("ftp://user:123456@mysite.ru")

>>> ftp.scheme, ftp.hostname, ftp.username, ftp.password

('ftp', 'mysite.ru', 'user', '123456')

 geturl() — метод возвращает URL-адрес. Пример:

>>> url.geturl()

'http://wwwadmin.ru:80/test.php;st?var=5#metka'

Произвести обратную операцию (собрать URL-адрес из отдельных значений)

позволяет функция urlunparse(<Последовательность>) (листинг 20.2).

Листинг 20.2. Использование функции urlunparse()

>>> import urlparse

>>> t = ('http', 'wwwadmin.ru:80', '/test.php', '', 'var=5', 'metka')

>>> urlparse.urlunparse(t)

'http://wwwadmin.ru:80/test.php?var=5#metka'

>>> l = ['http', 'wwwadmin.ru:80', '/test.php', '', 'var=5', 'metka']

>>> urlparse.urlunparse(l)

'http://wwwadmin.ru:80/test.php?var=5#metka'

Глава 20

368

Вместо функции urlparse() можно воспользоваться функцией urlsplit(<URL-

адрес>[, <Схема>[, <Разбор якоря>]]). Функция возвращает объект SplitResult

с результатами разбора URL-адреса. Объект можно преобразовать в кортеж из сле-

дующих элементов: (scheme, netloc, path, query, fragment). Обратиться к

значениям можно как по индексу, так и названию атрибутов. Пример использова-

ния функции urlsplit() приведен в листинге 20.3.

Листинг 20.3. Разбор URL-адреса с помощью функции urlsplit()

>>> from urlparse import urlsplit

>>> url = urlsplit("http://wwwadmin.ru:80/test.php;st?var=5#metka")

>>> url

SplitResult(scheme='http', netloc='wwwadmin.ru:80',

path='/test.php;st', query='var=5', fragment='metka')

>>> url[0], url[1], url[2], url[3], url[4]

('http', 'wwwadmin.ru:80', '/test.php;st', 'var=5', 'metka')

>>> url.scheme, url.netloc, url.hostname, url.port

('http', 'wwwadmin.ru:80', 'wwwadmin.ru', 80)

>>> url.path, url.query, url.fragment

('/test.php;st', 'var=5', 'metka')

>>> ftp = urlsplit("ftp://user:123456@mysite.ru")

>>> ftp.scheme, ftp.hostname, ftp.username, ftp.password

('ftp', 'mysite.ru', 'user', '123456')

Выполнить обратную операцию (собрать URL-адрес из отдельных значений)

позволяет функция urlunsplit(<Последовательность>) (листинг 20.4).

Листинг 20.4. Использование функции urlunsplit()

>>> from urlparse import urlunsplit

>>> t = ('http', 'wwwadmin.ru:80', '/test.php;st', 'var=5', 'metka')

>>> urlunsplit(t)

'http://wwwadmin.ru:80/test.php;st?var=5#metka'

20.2. Кодирование и декодирование
строки запроса

В предыдущем разделе мы научились разбирать URL-адрес на составляющие.

Обратите внимание на то, что значение параметра <Запрос> возвращается в виде

строки. Строка запроса является составной конструкцией, содержащей пары пара-

метр=значение. Все специальные символы внутри названия параметра и значения

кодируются последовательностями %nn. Например, для параметра str, имеющего

значение "Строка" в кодировке Windows-1251, строка запроса будет выглядеть так:

str=%D1%F2%F0%EE%EA%E0

Взаимодействие с Интернетом

369

Если строка запроса содержит несколько пар параметр=значение, то они разде-

ляются символом &. Добавим параметр v со значением 10:

str=%D1%F2%F0%EE%EA%E0&v=10

В строке запроса может быть несколько параметров с одним названием, но раз-

ными значениями. Например, если передаются значения нескольких выбранных

переключателей, объединенных в группу:

str=%D1%F2%F0%EE%EA%E0&v=10&v=20

В версиях Python 2.6 и более поздних разобрать строку запроса на составляю-

щие и декодировать данные позволяют две функции из модуля urlparse:

 parse_qs() — разбирает строку запроса и возвращает словарь с ключами, со-

держащими названия параметров, и списком значений. Формат функции:

parse_qs(<Строка запроса>[, <Обработка пустых значений>

 [, <Обработка ошибок>]])

Если во втором параметре указано значение True, то параметры, не имею-

щие значений внутри строки запроса, также будут добавлены в результат.

По умолчанию пустые параметры игнорируются. Если в третьем параметре

указано значение True, то при наличии ошибки возбуждается исключение

ValueError. По умолчанию ошибки игнорируются. Пример разбора строки

запроса:

>>> import urlparse

>>> s = "str=%D1%F2%F0%EE%EA%E0&v=10&v=20&t="

>>> urlparse.parse_qs(s)

{'str': ['\xd1\xf2\xf0\xee\xea\xe0'], 'v': ['10', '20']}

>>> urlparse.parse_qs(s, True)

{'t': [''], 'str': ['\xd1\xf2\xf0\xee\xea\xe0'],

 'v': ['10', '20']}

 parse_qsl() — функция аналогична parse_qs(), но возвращает не словарь, а

список кортежей из двух элементов. Первый элемент кортежа содержит назва-

ние параметра, а второй элемент его значение. Если строка запроса содержит

несколько параметров с одинаковым значением, то они будут расположены в

разных кортежах. Формат функции:

parse_qsl(<Строка запроса>[, <Обработка пустых значений>

 [, <Обработка ошибок>]])

Пример разбора строки запроса:

>>> params = urlparse.parse_qsl(s)

>>> params

[('str', '\xd1\xf2\xf0\xee\xea\xe0'), ('v', '10'),

('v', '20')]

>>> print params[0][1]

Строка

>>> urlparse.parse_qsl(s, True)

[('str', '\xd1\xf2\xf0\xee\xea\xe0'), ('v', '10'),

 ('v', '20'), ('t', '')]

Глава 20

370

В версиях Python 2.5 и более ранних разобрать строку запроса на составляющие

и декодировать данные позволяют функции parse_qs() и parse_qsl() из модуля

cgi. Формат функций полностью аналогичен одноименным функциям из модуля

urlparse. Пример разбора строки запроса приведен в листинге 20.5.

Листинг 20.5. Пример разбора строки запроса

>>> import cgi

>>> s = "str=%D1%F2%F0%EE%EA%E0&v=10&v=20&t="

>>> cgi.parse_qs(s, True)

{'t': [''], 'str': ['\xd1\xf2\xf0\xee\xea\xe0'], 'v': ['10', '20']}

>>> cgi.parse_qsl(s, True)

[('str', '\xd1\xf2\xf0\xee\xea\xe0'), ('v', '10'), ('v', '20'),

 ('t', '')]

Выполнить обратную операцию, преобразовать отдельные составляющие в

строку запроса позволяет функция urlencode(<Объект>[, <Флаг>]) из модуля ur-

llib. В качестве параметра можно указать словарь с данными (или последователь-

ность), каждый элемент которого содержит кортеж из двух элементов. Первый

элемент кортежа становится параметром, а второй элемент его значением. Пара-

метры и значения автоматически обрабатываются с помощью функции

quote_plus() из модуля urllib. В случае указания последовательности параметры

внутри строки будут идти в том же порядке, что и внутри последовательности.

Пример указания словаря и последовательности приведен в листинге 20.6.

Листинг 20.6. Функция urlencode()

>>> import urllib

>>> params = {"str": "Строка 2", "var": 20} # Словарь

>>> urllib.urlencode(params)

'var=20&str=%D1%F2%F0%EE%EA%E0+2'

>>> params = [("str", "Строка 2"), ("var", 20)] # Список

>>> urllib.urlencode(params)

'str=%D1%F2%F0%EE%EA%E0+2&var=20'

Если необязательный параметр <Флаг> в функции urlencode() имеет значение

True, то можно указать последовательность из нескольких значений во втором па-

раметре кортежа. В этом случае в строку запроса добавляются несколько парамет-

ров со значениями из этой последовательности. Значение параметра <Флаг> по

умолчанию — False. В качестве примера укажем список из двух элементов (лис-

тинг 20.7).

Листинг 20.7. Составление строки запроса из элементов последовательности

>>> params = [("var", [10, 20])]

Взаимодействие с Интернетом

371

>>> urllib.urlencode(params, False)

'var=%5B10%2C+20%5D'

>>> urllib.urlencode(params, True)

'var=10&var=20'

Последовательность можно также указать в качестве значения в словаре:
>>> params = { "var": [10, 20] }

>>> urllib.urlencode(params, True)

'var=10&var=20'

Выполнить кодирование и декодирование отдельных элементов строки запроса

позволяют следующие функции из модуля urllib:

 quote(<Строка>[, <Символы>]) — заменяет все специальные символы после-

довательностями %nn. Цифры, английские буквы и символы подчеркивания (_),

точки (.) и дефиса (-) не кодируются. Пробелы преобразуются в последова-

тельность %20. Возвращаемое значение для русских букв зависит от кодировки

исходной строки. Во втором параметре можно указать символы, которые пре-

образовывать нельзя. По умолчанию параметр имеет значение /. Пример:
>>> import urllib

>>> urllib.quote("Строка") # Кодировка windows-1251

'%D1%F2%F0%EE%EA%E0'

>>> urllib.quote(unicode("Строка", "cp1251").encode("utf-8"))

'%D0%A1%D1%82%D1%80%D0%BE%D0%BA%D0%B0'

>>> urllib.quote("/~nik/"), urllib.quote("/~nik/", "")

('/%7Enik/', '%2F%7Enik%2F')

>>> urllib.quote("/~nik/", "/~")

'/~nik/'

 quote_plus(<Строка>[, <Символы>]) — функция аналогична quote(), но про-

белы заменяются на +, а не преобразуются в последовательность %20. Кроме то-

го, по умолчанию символ / преобразуется в последовательность %2F. Пример:
>>> urllib.quote("Строка 2")

'%D1%F2%F0%EE%EA%E0%202'

>>> urllib.quote_plus("Строка 2")

'%D1%F2%F0%EE%EA%E0+2'

>>> urllib.quote_plus("/~nik/")

'%2F%7Enik%2F'

>>> urllib.quote_plus("/~nik/", "/~")

'/~nik/'

 unquote(<Строка>) — заменяет последовательности %nn на соответствующие

символы. Символ + пробелом не заменяется. Пример:
>>> print urllib.unquote("%D1%F2%F0%EE%EA%E0")

Строка

>>> s = '%D0%A1%D1%82%D1%80%D0%BE%D0%BA%D0%B0'

>>> print urllib.unquote(s).decode("utf-8").encode("cp1251")

Строка

>>> print urllib.unquote('%D1%F2%F0%EE%EA%E0+2')

Глава 20

372

Строка+2

 unquote_plus(<Строка>) — функция аналогична unquote(), но дополнительно

заменяет символ + пробелом. Пример:

>>> print urllib.unquote_plus('%D1%F2%F0%EE%EA%E0+2')

Строка 2

>>> print urllib.unquote_plus('%D1%F2%F0%EE%EA%E0%202')

Строка 2

20.3. Преобразование относительной

ссылки в абсолютную

Очень часто в HTML-документах указываются не абсолютные ссылки, а отно-

сительные. При относительном URL-адресе путь определяется с учетом местопо-

ложения Web-страницы, на которой находится ссылка, или значения параметра

href тега <base>. Преобразовать относительную ссылку в абсолютный URL-адрес

позволяет функция urljoin() из модуля urlparse. Формат функции:

urljoin(<Базовый URL-адрес>, <Относительный или абсолютный URL-адрес>

 [, <Разбор якоря>])

В качестве примера рассмотрим преобразование различных относительных

ссылок (листинг 20.8).

Листинг 20.8. Варианты преобразования относительных ссылок

>>> from urlparse import urljoin

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', 'file.html')

'http://wwwadmin.ru/f1/f2/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', 'f3/file.html')

'http://wwwadmin.ru/f1/f2/f3/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', '/file.html')

'http://wwwadmin.ru/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', './file.html')

'http://wwwadmin.ru/f1/f2/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', '../file.html')

'http://wwwadmin.ru/f1/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', '../../file.html')

'http://wwwadmin.ru/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', '../../../file.html')

'http://wwwadmin.ru/../file.html'

В последнем случае мы специально указали уровень относительности больше,

чем нужно. Как видно из результата, в данном случае возникает ошибка.

Взаимодействие с Интернетом

373

20.4. Разбор HTML-эквивалентов

В HTML-документе некоторые символы являются специальными. Например,

знак "меньше" (<) и знак "больше" (>), кавычки и др. Для отображения специаль-

ных символов используются HTML-эквиваленты. Например, знак "меньше" заме-

няется последовательностью <, а знак больше — >. Манипулировать HTML-

эквивалентами позволяют следующие функции из модуля xml.sax.saxutils:

 escape(<Строка>[, <Словарь>]) — заменяет символы <, > и & соответствую-

щими HTML-эквивалентами. Необязательный параметр <Словарь> позволяет

указать словарь с дополнительными символами в качестве ключей и их HTML-

эквивалентами в качестве значений. Пример:

>>> from xml.sax.saxutils import escape

>>> s = """&<>" """

>>> escape(s)

'&<>" '

>>> escape(s, { '"': """, " ": " " })

'&<>" '

 quoteattr(<Строка>[, <Словарь>]) — функция аналогична escape(), но до-

полнительно заключает строку в кавычки или апострофы. Если внутри строки

встречаются только двойные кавычки, то строка заключается в апострофы. Ес-

ли внутри строки встречаются и кавычки, и апострофы, то двойные кавычки

заменяются HTML-эквивалентом, а строка заключается в двойные кавычки.

Если кавычки и апострофы не входят в строку, то строка заключается в двой-

ные кавычки. Пример:

>>> from xml.sax.saxutils import quoteattr

>>> print quoteattr("""&<>" """)

'&<>" '

>>> print quoteattr("""&<>"'""")

"&<>"'"

>>> print quoteattr("""&<>" """, { '"': """ })

"&<>" "

 unescape(<Строка>[, <Словарь>]) — заменяет HTML-эквиваленты &,

< и > обычными символами. Необязательный параметр <Словарь> позво-

ляет указать словарь с дополнительными HTML-эквивалентами в качестве

ключей и обычными символами в качестве значений. Пример:

>>> from xml.sax.saxutils import unescape

>>> s = '&<>" '

>>> unescape(s)

'&<>" '

>>> unescape(s, { """: '"', " ": " " })

'&<>" '

Для замены символов <, > и & HTML-эквивалентами можно также воспользо-

ваться функцией escape(<Строка>[, <Флаг>]) из модуля cgi. Если во втором па-

Глава 20

374

раметре указано значение True, то двойные кавычки также будут заменяться

HTML-эквивалентом (листинг 20.9).

Листинг 20.9. Замена спецсимволов HTML-эквивалентами

>>> import cgi

>>> cgi.escape("""&<>"' """)

'&<>"\' '

>>> cgi.escape("""&<>"' """, True)

"&<>"' "

20.5. Обмен данными по протоколу HTTP

Модуль httplib позволяет получить информацию из Интернета по протоколам

HTTP и HTTPS. Отправить запрос можно методами GET, POST и HEAD. Для создания

объекта соединения, использующего протокол HTTP, предназначен класс

HTTPConnection. Конструктор класса имеет следующий формат:

HTTPConnection(<Домен>[, <Порт>[, strict[,timeout]]])

В первом параметре указывается название домена без протокола. Во втором

параметре задается номер порта. Если порт не указан, то используется порт 80. Но-

мер порта можно также задать после названия домена через двоеточие. Пример

создания объекта соединения:

>>> import httplib

>>> con = httplib.HTTPConnection("wwwadmin.ru")

>>> con2 = httplib.HTTPConnection("wwwadmin.ru", 80)

>>> con3 = httplib.HTTPConnection("wwwadmin.ru:80")

После создания объекта соединения необходимо отправить параметры запроса

с помощью метода request(). Формат метода:

request(<Метод>, <Путь>[, <Данные>[, headers=<Заголовки>]])

В первом параметре указывается метод передачи данных (GET, POST или HEAD).

Второй параметр задает путь от корня сайта. Если для передачи данных использу-

ется метод GET, то после вопросительного знака можно указать передаваемые дан-

ные. В необязательном третьем параметре задаются данные, которые передаются

методом POST. Допустимо указать строку или файловый объект (начиная с

Python 2.6). Четвертый параметр задает HTTP-заголовки, отправляемые на сервер.

Заголовки указываются в виде словаря.

Получить объект результата запроса позволяет метод getresponse(). Прочи-

тать ответ сервера (без заголовков) можно с помощью метода read([<Количество

байт>]). Если параметр не указан, то метод read() возвращает все данные, а при

наличии значения — только указанное количество байтов при каждом вызове. Если

данных больше нет, метод возвращает пустую строку. Прежде чем выполнять дру-

гой запрос, данные должны быть получены полностью. Закрыть объект соединения

Взаимодействие с Интернетом

375

позволяет метод close(). В качестве примера отправим запрос методом GET и про-

читаем результат (листинг 20.10).

Листинг 20.10. Отправка данных методом GET

>>> import urllib, httplib

>>> data = urllib.urlencode({"color": "Красный", "var": 15})

>>> headers = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Referer": "/index.php" }

>>> con = httplib.HTTPConnection("wwwadmin.ru")

>>> con.request("GET", "/testrobots.php?%s" % data, headers=headers)

>>> result = con.getresponse() # Создаем объект результата

>>> print result.read() # Читаем данные полностью

... Фрагмент опущен ...

>>> con.close() # Закрываем объект соединения

Теперь отправим данные методом POST. В этом случае в первом параметре ме-

тода request() задается значение "POST", а данные передаются через третий па-

раметр. Размер строки запроса автоматически указывается в заголовке Content-

Length. Пример отправки данных методом POST приведен в листинге 20.11.

Листинг 20.11. Отправка данных методом POST

>>> import urllib, httplib

>>> data = urllib.urlencode({"color": "Красный", "var": 15})

>>> headers = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Content-Type": "application/x-www-form-urlencoded",

 "Referer": "/index.php" }

>>> con = httplib.HTTPConnection("wwwadmin.ru")

>>> con.request("POST", "/testrobots.php", data, headers=headers)

>>> result = con.getresponse() # Создаем объект результата

>>> print result.read() # Читаем данные полностью

... Фрагмент опущен ...

>>> con.close()

Обратите внимание на заголовок Content-Type. Если в этом заголовке указано

значение application/x-www-form-urlencoded, то это означает, что отправлены

данные формы. При наличии этого заголовка некоторые языки программирования

автоматически производят разбор строки запроса. Например, в PHP переданные

Глава 20

376

данные будут доступны через глобальный массив $_POST. Если заголовок не ука-

зать, то данные через массив $_POST доступны не будут.

Объект результата предоставляет следующие методы и атрибуты:

 getheader(<Заголовок>[, <Значение по умолчанию>]) — возвращает значе-

ние указанного заголовка. Если заголовок не найден, возвращается значение

None или значение из второго параметра. Пример:

>>> result.getheader("Content-Type")

'text/plain; charset=windows-1251'

>>> print result.getheader("Content-Types")

None

>>> result.getheader("Content-Types", 10)

10

 getheaders() — возвращает все заголовки ответа сервера в виде списка корте-

жей. Каждый кортеж состоит из двух элементов (<Заголовок>, <Значение>).

Пример получения заголовков ответа сервера:

>>> result.getheaders()

[('transfer-encoding', 'chunked'), ('keep-alive', 'timeout=20'),

('server', 'nginx/0.8.29'), ('connection', 'keep-alive'),

('date', 'Tue, 08 Jun 2010 19:16:40 GMT'),

('content-type', 'text/plain; charset=windows-1251')]

С помощью функции dict() такой список можно преобразовать в словарь:

>>> dict(result.getheaders())

{'transfer-encoding': 'chunked', 'keep-alive': 'timeout=20',

'server': 'nginx/0.8.29', 'connection': 'keep-alive',

'date': 'Tue, 08 Jun 2010 19:16:40 GMT',

'content-type': 'text/plain; charset=windows-1251'}

 status — код возврата в виде числа. Успешными считаются коды от 200 до 299

и код 304, означающий, что документ не был изменен со времени последнего

посещения. Коды 301 и 302 задают перенаправление. Код 401 означает необхо-

димость авторизации, 403 — доступ закрыт, 404 — документ не найден, а код

500 и коды выше информируют об ошибке сервера. Пример:

>>> result.status

200

 reason — текстовый статус возврата. Пример:

>>> result.reason # При коде 200

'OK'

>>> result.reason # При коде 302

'Moved Temporarily'

 version — версия протокола в виде числа. Число 10 для протокола HTTP/1.0 и

число 11 для протокола HTTP/1.1. Пример:

>>> result.version # Протокол HTTP/1.1

11

Взаимодействие с Интернетом

377

 msg — объект mimetools.Message. С его помощью можно получить дополни-

тельную информацию о заголовках ответа сервера.

Рассмотрим основные методы и атрибуты объекта mimetools.Message:

 headers — список всех заголовков ответа сервера. Пример:

>>> result.msg.headers

['Server: nginx/0.8.29\r\n', 'Date: Tue, 08 Jun 2010 19:16:40

GMT\r\n', 'Content-Type: text/plain; charset=windows-1251\r\n',

'Transfer-Encoding: chunked\r\n', 'Connection: keep-alive\r\n',

'Keep-Alive: timeout=20\r\n']

 getrawheader(<Заголовок>) — возвращает значение указанного заголовка в

виде необработанной строки или значение None. Пример:
>>> result.msg.getrawheader("Server")

' nginx/0.8.29\r\n'

 getheaders(<Заголовок>) — возвращает список значений указанного заголов-

ка или пустой список. Пример:
>>> result.msg.getheaders("Server")

['nginx/0.8.29']

 getheader(<Заголовок>[, <Значение по умолчанию>]) — возвращает значе-

ние указанного заголовка в виде строки. Если заголовок не найден, возвращает-

ся значение None или значение из второго параметра. Пример:
>>> result.msg.getheader("Server", "")

'nginx/0.8.29'

 gettype() — возвращает MIME-тип документа из заголовка Content-Type:
>>> result.msg.gettype()

'text/plain'

 getmaintype() — возвращает первую составляющую MIME-типа:
>>> result.msg.getmaintype()

'text'

 getsubtype() — возвращает вторую составляющую MIME-типа:
>>> result.msg.getsubtype()

'plain'

 getplist() — позволяет получить параметры из заголовка Content-Type:
>>> result.msg.getplist()

['charset=windows-1251']

 getparam(<Параметр>) — позволяет получить значение указанного параметра

из заголовка Content-Type. Получим кодировку документа:
>>> result.msg.getparam("charset")

'windows-1251'

 getdate(<Заголовок>) — возвращает значение указанного заголовка в виде

кортежа из элементов даты и времени. Пример:
>>> result.msg.getdate("Date")

(2010, 6, 8, 19, 16, 40, 0, 1, 0)

Глава 20

378

В качестве примера отправим запрос методом HEAD и выведем заголовки ответа

сервера (листинг 20.12).

Листинг 20.12. Отправка запроса методом HEAD

>>> import httplib

>>> headers = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Referer": "/index.php" }

>>> con = httplib.HTTPConnection("wwwadmin.ru")

>>> con.request("HEAD", "/", headers=headers)

>>> result = con.getresponse() # Создаем объект результата

>>> for line in result.msg.headers: print line.rstrip()

Server: nginx/0.8.29

Date: Tue, 08 Jun 2010 19:26:44 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=20

>>> print result.read() # Данные не передаются, только заголовки!

>>> con.close()

Перечислим основные HTTP-заголовки и их предназначение:

 GET — заголовок запроса при передаче данных методом GET;

 POST — заголовок запроса при передаче данных методом POST;

 Host — название домена;

 Accept — MIME-типы, поддерживаемые Web-браузером;

 Accept-Language — список поддерживаемых языков в порядке предпочтения;

 Accept-Charset — список поддерживаемых кодировок;

 Accept-Encoding — список поддерживаемых методов сжатия;

 Content-Type — тип передаваемых данных;

 Content-Length — длина передаваемых данных при методе POST;

 Cookie — информация об установленных cookies;

 Last-Modified — дата последней модификации файла;

 Location — перенаправление на другой URL-адрес;

 Pragma — заголовок, запрещающий кэширование документа в протоколе

HTTP/1.0;

 Cache-Control — заголовок, управляющий кэшированием документа в прото-

коле HTTP/1.1;

 Referer — URL-адрес, с которого пользователь перешел на наш сайт;

 Server — название и версия программного обеспечения сервера;

 User-Agent — информация об используемом Web-браузере.

Взаимодействие с Интернетом

379

Получить полное описание заголовков можно в спецификации RFC 2616, рас-

положенной по адресу http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

Чтобы "подсмотреть" заголовки, отправляемые Web-браузером и сервером, можно

воспользоваться модулем Firebug для Firefox. Для этого на вкладке Сеть следует

щелкнуть мышью на строке запроса. Кроме того, можно установить панель

ieHTTPHeaders в Web-браузере Internet Explorer.

20.6. Обмен данными

с помощью модуля urllib2

Модуль urllib2 предоставляет расширенные возможности для получения

информации из Интернета. Поддерживаются автоматические перенаправления

при получении заголовка Location, возможность аутентификации, обработка

cookies и др.

Для выполнения запроса предназначена функция urlopen(). Формат функции:

urlopen(<URL-адрес или объект запроса>[, <Данные>][, <Тайм-аут>])

В первом параметре задается полный URL-адрес или объект, возвращаемый

конструктором класса Request. Запрос выполняется методом GET, если данные не

указаны во втором параметре, и методом POST в противном случае. При передаче

данных методом POST автоматически добавляется заголовок Content-Type со зна-

чением application/x-www-form-urlencoded. Третий параметр задает максималь-

ное время выполнения запроса в секундах. Параметр доступен, начиная с версии

2.6. Объект, возвращаемый функцией urlopen(), содержит следующие методы и

атрибуты:

 read([<Количество байтов>]) — считывает данные. Если параметр не указан,

то возвращается содержимое результата от текущей позиции указателя до кон-

ца. Если в качестве параметра указать число, то за каждый вызов будет возвра-

щаться указанное количество байтов. Когда достигается конец, метод возвра-

щает пустую строку. Пример:

>>> import urllib2

>>> res = urllib2.urlopen("http://wwwadmin.ru/testrobots.php")

>>> print res.read(34)

Название робота: Python-urllib/2.6

>>> print res.read()

... Фрагмент опущен ...

>>> res.read()

''

 readline([<Количество байтов>]) — считывает одну строку при каждом вы-

зове. При достижении конца возвращается пустая строка. Если в необязатель-

ном параметре указано число, то считывание будет выполняться до тех пор, по-

ка не встретится символ новой строки (\n), символ конца или не будет

Глава 20

380

прочитано указанное количество байтов. Иными словами, если количество

символов в строке меньше значения параметра, то будет считана одна строка, а

не указанное количество байтов. Если количество символов в строке больше, то

возвращается указанное количество байтов. Пример:

>>> res = urllib2.urlopen("http://wwwadmin.ru/testrobots.php")

>>> print res.readline()

Название робота: Python-urllib/2.6

 readlines([<Количество байтов>]) — считывает весь результат в список. Ка-

ждый элемент списка будет содержать одну строку, включая символ перевода

строки. Если задан параметр, то считывается указанное количество байтов

плюс фрагмент до конца строки. При достижении конца возвращается пустой

список. Пример:

>>> res = urllib2.urlopen("http://wwwadmin.ru/testrobots.php")

>>> res.readlines(3)

['\xcd\xe0\xe7\xe2\xe0\xed\xe8\xe5 \xf0\xee\xe1\xee\xf2\xe0:

Python-urllib/2.6\n']

>>> res.readlines()

... Фрагмент опущен ...

>>> res.readlines()

[]

 next() — считывает одну строку при каждом вызове. При достижении конца

результата возбуждается исключение StopIteration. Благодаря методу next()

можно перебирать результат построчно с помощью цикла for. Цикл for на ка-

ждой итерации будет автоматически вызывать метод next(). Пример:

>>> res = urllib2.urlopen("http://wwwadmin.ru/testrobots.php")

>>> for line in res: print line,

 close() — закрывает объект результата;

 geturl() — возвращает URL-адрес полученного документа. Так как все пере-

направления автоматически обрабатываются, URL-адрес полученного доку-

мента может не совпадать с URL-адресом, заданным первоначально;

 info() — возвращает объект, с помощью которого можно получить информа-

цию о заголовках ответа сервера. Основные методы и атрибуты этого объекта

мы рассматривали при изучении модуля httplib (см. значение атрибута msg

объекта результата). Получить ссылку на тот же объект можно с помощью ат-

рибута headers. Пример:

>>> res = urllib2.urlopen("http://wwwadmin.ru/")

>>> info = res.info()

>>> info.headers

['Server: nginx/0.8.29\r\n', 'Date: Tue, 08 Jun 2010 19:38:15

GMT\r\n', 'Content-Type: text/html\r\n',

'Transfer-Encoding: chunked\r\n', 'Connection: close\r\n']

>>> info.getrawheader("Server")

' nginx/0.8.29\r\n'

>>> info.getheaders("Server")

Взаимодействие с Интернетом

381

['nginx/0.8.29']

>>> info.getheader("Server", "")

'nginx/0.8.29'

>>> info.gettype(), info.getmaintype(), info.getsubtype()

('text/html', 'text', 'html')

 code — содержит код возврата в виде числа;

 msg — содержит текстовый статус возврата. Пример:

>>> res.code, res.msg

(200, 'OK')

В качестве примера выполним запросы методами GET и POST (листинг 20.13).

Листинг 20.13. Отправка данных методами GET и POST

>>> import urllib, urllib2

>>> data = urllib.urlencode({"color": "Красный", "var": 15})

>>> # Отправка данных методом GET

>>> url = "http://wwwadmin.ru/testrobots.php?%s" % data

>>> res = urllib2.urlopen(url)

>>> print res.read()[:34]

Название робота: Python-urllib/2.6

>>> res.close()

>>> # Отправка данных методом POST

>>> url = "http://wwwadmin.ru/testrobots.php"

>>> res = urllib2.urlopen(url, data)

>>> print res.read()

... Фрагмент опущен ...

>>> res.close()

Как видно из результата, по умолчанию название робота — "Python-urllib/

<Версия Python>". Если необходимо задать свое название робота и передать до-

полнительные заголовки, то следует создать экземпляр класса Request и передать

его в функцию urlopen() вместо URL-адреса. Конструктор класса Request имеет

следующий формат:

Request(<URL-адрес>[, <Данные>][, headers=<Заголовки>]

 [, origin_req_host][, unverifiable])

В первом параметре указывается URL-адрес. Запрос выполняется методом GET,

если данные не указаны во втором параметре, и методом POST в противном случае.

При передаче данных методом POST автоматически добавляется заголовок

Content-Type со значением application/x-www-form-urlencoded. Третий параметр

задает заголовки запроса в виде словаря. Четвертый и пятый параметр используют-

ся для обработки cookies. За дополнительной информацией по этим параметрам

обращайтесь к документации. В качестве примера выполним запросы методами GET

и POST (листинг 20.14).

Глава 20

382

Листинг 20.14. Использование класса Request

>>> import urllib, urllib2

>>> headers = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Referer": "/index.php" }

>>> data = urllib.urlencode({"color": "Красный", "var": 15})

>>> # Отправка данных методом GET

>>> url = "http://wwwadmin.ru/testrobots.php?%s" % data

>>> request = urllib2.Request(url, headers=headers)

>>> res = urllib2.urlopen(request)

>>> print res.read()[:29]

Название робота: MySpider/1.0

>>> res.close()

>>> # Отправка данных методом POST

>>> url = "http://wwwadmin.ru/testrobots.php"

>>> request = urllib2.Request(url, data, headers=headers)

>>> res = urllib2.urlopen(request)

>>> print res.read()

... Фрагмент опущен ...

>>> res.close()

Как видно из результата, название нашего робота теперь "MySpider/1.0".

20.7. Определение кодировки

Документы в Интернете могут быть в различных кодировках. Чтобы документ

был правильно обработан, необходимо знать его кодировку. Определить кодировку

можно по заголовку Content-Type в заголовках ответа сервера:

Content-Type: text/html; charset=utf-8

Кодировку HTML-документа можно также определить по значению параметра

content тега <meta>, расположенного в разделе HEAD:

<meta http-equiv="Content-Type"

 content="text/html; charset=windows-1251">

Очень часто встречается ситуация, когда кодировка в ответе сервера не совпа-

дает с кодировкой, указанной в теге <meta>, или кодировка вообще не указана. Оп-

ределить кодировку документа в этом случае позволяет библиотека chardet. Для

установки библиотеки со страницы http://chardet.feedparser.org/download/ скачи-

ваем архив python2-chardet-2.0.1.tgz, а затем распаковываем его в текущую папку,

например, с помощью архиватора WinRAR. Запускаем командную строку и пере-

Взаимодействие с Интернетом

383

ходим в папку с библиотекой (в моем случае библиотека разархивирована в папку

C:\book), выполнив команду:

cd C:\book\python2-chardet-2.0.1

Затем запускаем программу установки, выполнив команду:

C:\Python26\python.exe setup.py install

Для проверки установки запускаем редактор IDLE и в окне Python Shell вы-

полняем следующий код:

>>> import chardet

>>> chardet.__version__

'2.0.1'

Определить кодировку строки позволяет функция detect(<Строка>). В качест-

ве значения функция возвращает словарь с двумя элементами. Ключ encoding

содержит название кодировки, а ключ confidence — коэффициент точности опре-

деления (вещественное число от 0 до 1). Пример определения кодировки приведен

в листинге 20.15.

Листинг 20.15. Пример определения кодировки

>>> import chardet

>>> chardet.detect("Строка")

{'confidence': 0.98999999999999999, 'encoding': 'windows-1251'}

>>> chardet.detect(unicode("Строка", "cp1251").encode("koi8-r"))

{'confidence': 0.98999999999999999, 'encoding': 'KOI8-R'}

>>> chardet.detect(unicode("Строка", "cp1251").encode("utf-8"))

{'confidence': 0.98999999999999999, 'encoding': 'utf-8'}

>>> chardet.detect(unicode("Строка", "cp1251").encode("utf-16"))

{'confidence': 1.0, 'encoding': 'UTF-16LE'}

Если файл имеет большой размер, то вместо считывания всего файла в строку и

использования функции detect() можно воспользоваться классом UniversalDe-

tector. В этом случае можно читать файл построчно и передавать текущую строку

методу feed(). Если определение кодировки прошло успешно, атрибут done будет

иметь значение True. Это условие можно использовать для выхода из цикла. После

окончания проверки следует вызвать метод close(). Получить результат определе-

ния кодировки позволяет атрибут result. Очистить результат и подготовить объект

к дальнейшему определению кодировки можно с помощью метода reset(). При-

мер использования класса UniversalDetector приведен в листинге 20.16.

Листинг 20.16. Пример использования класса UniversalDetector

-*- coding: cp1251 -*-

from chardet.universaldetector import UniversalDetector

ud = UniversalDetector() # Создаем объект

Глава 20

384

for line in open("file.txt"):

 ud.feed(line) # Передаем текущую строку

 if ud.done: break # Прерываем цикл, если done == True

ud.close() # Закрываем объект

print ud.result # Выводим результат

raw_input()

Как показали мои тесты, применение класса UniversalDetector оправдано

только при использовании кодировок UTF-8 с BOM
1
, UTF-16 и других многобайто-

вых кодировок. В этом случае кодировка определяется по первым байтам. При ис-

пользовании кодировки Windows-1251 файл все равно просматривается полностью.

Причем определение кодировки файла, содержащего 6500 строк, занимает почти

секунду. Если сменить кодировку файла на UTF-8 без BOM, то время определения

увеличивается до 5 секунд. Использовать класс UniversalDetector или нет — ре-

шать вам.

1
 Byte order mark — метка порядка байтов.

Заключение

Вот и закончилось наше путешествие в мир Python. Материал книги описывает

лишь базовые возможности этого универсального языка программирования. В этом

заключении мы рассмотрим, где найти дополнительную информацию и продол-

жить изучение языка Python.

Первым и самым важным источником информации является сайт

http://www.python.org/. На нем вы найдете последнюю версию интерпретатора,

новости, а также ссылки на все другие ресурсы в Интернете.

На сайте http://docs.python.org/ расположена документация по Python, которая

обновляется в режиме реального времени. Язык постоянно совершенствуется, по-

являются новые функции, изменяются параметры, добавляются модули и т. д. Ре-

гулярно посещайте этот сайт, и вы получите самую последнюю информацию. До-

кументация также устанавливается на компьютер в формате CHM и размещается

внутри модулей. Как отобразить эту документацию, мы уже рассматривали в

разд. 1.8.

В пакет установки Python входит большое количество модулей, позволяющих

решить наиболее часто встречающиеся задачи. Однако на этом возможности Py-

thon не заканчиваются. Мир Python включает множество самых разнообразных мо-

дулей и целых библиотек, созданных сторонними разработчиками и доступных для

свободного скачивания. На странице http://pypi.python.org/pypi?%3Aaction=index

и сайте http://sourceforge.net/ вы сможете найти довольно большой список раз-

личных модулей. Особенно необходимо отметить библиотеки для создания графи-

ческого интерфейса: PyQt (http://www.riverbankcomputing.co.uk/software/pyqt/

intro), wxPython (http://www.wxpython.org/), PyGTK (http://www.pygtk.org/), PyWin32

(http://sourceforge.net/projects/pywin32/) и pyFLTK (http://pyfltk.sourceforge.net/).

Кроме того, следует обратить внимание на библиотеку pygame

(http://www.pygame.org/), позволяющую разрабатывать игры, а также на фрейм-

ворк Django (http://www.djangoproject.com/), с помощью которого можно созда-

вать Web-приложения. При выборе модуля необходимо учитывать версию Python.

Обычно версия указывается в составе названия исполняемого файла.

Если в процессе изучения языка возникнут вопросы, то не следует забывать,

что сам Интернет предоставляет множество ответов на самые разнообразные во-

просы. Достаточно в строке запроса поискового портала (например, http://yandex.ru/

или http://www.google.com/) набрать свой вопрос. Наверняка уже кто-то сталки-

вался с подобным вопросом и описал решение на каком-либо сайте. Задать свой

вопрос можно также на различных форумах (например, советую регулярно посе-

щать http://python.su/forum/).

П Р И Л О Ж Е Н И Я

ПРИЛОЖЕНИЕ 1

Отличия Python 3 от Python 2

Через некоторое время Python 2 уйдет в прошлое и на смену ему придет

Python 3. Поэтому необходимо знать отличия этих двух версий, даже если вы ис-

пользуете вторую версию. В этом приложении мы рассмотрим основные отличия

версии 3.1 от 2.6, ограничиваясь рамками материала этой книги. За дополнитель-

ной информацией обращайтесь к документации по Python 3.

 Оператор print заменяется функцией print(). Это изменение полностью на-

рушает совместимость между Python 2 и Python 3. Функция print() имеет сле-

дующий формат:

print(<Объекты>[, sep=' '][, end='\n'][, file=sys.stdout])

В первом параметре через запятую указываются объекты, которые выводятся:

>>> print([1, 2, 3], (4, 5), {"x": 6})

[1, 2, 3] (4, 5) {'x': 6}

>>> print("Строка1", "Строка2")

Строка1 Строка2

Как видно из примера, между строками вставляется пробел. С помощью пара-

метра sep можно указать другой символ. Выведем строки без пробела между

ними:

>>> print("Строка1", "Строка2", sep="")

Строка1Строка2

После вывода объектов в конце добавляется символ перевода строки. Если не-

обходимо произвести дальнейший вывод на той же строке, то в параметре end

следует указать другой символ:

>>> for i in range(10): print(i, end=" ")

0 1 2 3 4 5 6 7 8 9

Параметр file позволяет произвести перенаправление вывода. По умолчанию

параметр ссылается на объект stdout. Для примера перенаправим вывод в файл:

>>> import sys

>>> f = open("file.txt", "w")

>>> print("Пишем строку в файл", file=f)

Приложения

390

>>> print("Выводим строку")

Выводим строку

>>> f.close()

 Функция raw_input() заменяется функцией input(). Теперь для получения

данных от пользователя необходимо применять функцию input(). Функция

raw_input() была удалена. Пример:
-*- coding: cp866 -*-

name = input("Введите свое имя: ") # Получаем данные

print("Привет, {0}".format(name)) # Выводим строку

input() # Ожидаем нажатия клавиши <Enter>

Чтобы вернуться к поведению функции input() в Python 2, необходимо пере-

дать значение в функцию eval() явным образом:

result = eval(input("Введите инструкцию: "))

ВНИМАНИЕ!

Функция eval() выполнит любую введенную инструкцию. Никогда не используйте этот
код, если не доверяете пользователю.

 Тип unicode заменяется типом str, а тип str типом bytes. Все строки по умол-

чанию теперь являются Unicode-строками. Тип unicode и модификатор u были

удалены. Пример:
>>> type("Строка")

<class 'str'>

Роль обычных строк заменяет тип bytes. Перед такими строками указывается

модификатор b. Преобразовать Unicode-строку в обычную строку позволяет

функция bytes(). Формат функции:

bytes([<Строка, имеющая тип str>[, <Кодировка>

 [, <Обработка ошибок>]]])

Пример создания обычной строки:

>>> s = bytes("Строка", "cp1251")

>>> s

b'\xd1\xf2\xf0\xee\xea\xe0'

>>> type(s)

<class 'bytes'>

Выполнить обратную операцию, т. е. преобразовать обычную строку в Unicode-

строку, позволяет функция str(), которая в Python 3 имеет такой же формат,

как и функция unicode() в Python 2:

str([<Строка, имеющая тип bytes>[, <Кодировка>

 [, <Обработка ошибок>]]])

Пример преобразования обычной строки в Unicode-строку:

>>> s = bytes("Строка", "cp1251")

>>> u = str(s, "cp1251")

>>> u

'Строка'

Приложение 1. Отличия Python 3 от Python 2

391

Выполнить преобразование Unicode-строки в обычную строку позволяет также

метод str.encode(), а для обратного преобразования можно воспользоваться

методом bytes.decode():

>>> s = "Строка".encode("cp1251") # Обычная строка

>>> s.decode("cp1251") # Unicode-строка

'Строка'

 Тип long больше не существует. В Python 3 для целых чисел существует только

тип int, который соответствует типу long в Python 2. Пример:

>>> type(2147483647), type(2147483648)

(<class 'int'>, <class 'int'>)

 Целочисленное деление возвращает вещественное число. Как вы уже знаете, в

Python 2 при делении целых чисел всегда возвращалось целое число, а не веще-

ственное. В Python 3 оператор / возвращает вещественное число, даже если

производится деление целых чисел. Пример:

>>> 10 / 5, 10.0 / 5, 10 / 5.0 # Оператор /

(2.0, 2.0, 2.0)

>>> 10 // 5, 10.0 // 5, 10 // 5.0 # Оператор //

(2, 2.0, 2.0)

 Изменена форма записи двоичных и восьмеричных значений. При указании

двоичного значения перед числом необходимо указать 0 и букву "b", а при ука-

зании восьмеричного значения — 0 и букву "o". Регистр букв значения не име-

ет. Пример:

>>> 0b100, 0B100, bin(4)

(4, 4, '0b100')

>>> 0o7, 0o12, 0o777, oct(511)

(7, 10, 511, '0o777')

 Оператор <> удален. Вместо него следует использовать оператор !=.

 Функция xrange() переименована в range(). В Python 3 функция range() воз-

вращает объект, поддерживающий итерации. Чтобы получить список чисел,

необходимо выполнить явное преобразование с помощью функции list().

Пример:

>>> range(10), type(range(10))

(range(0, 10), <class 'range'>)

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 Метод next() заменяется методом __next__() и добавляется функция next().

Объекты, поддерживающие итерации, должны иметь метод __next__(). Этот

метод будет автоматически вызываться при указании объекта внутри цикла.

Кроме того, в Python 3 вводится функция next(), которая вызывает метод

__next__(). Пример:

>>> i = enumerate([1, 2])

>>> i.__next__(), next(i)

((0, 1), (1, 2))

Приложения

392

 Функция unichr() переименована в chr().

 Функции map(), zip() и filter() возвращают объекты, а не списки. Чтобы по-

лучить список, необходимо использовать функцию list():

>>> map(lambda x, y, z: x + y + z, [1, 2], [4, 5], [6, 7])

<map object at 0x01360570>

>>> list(map(lambda x, y, z: x + y + z, [1, 2],[4, 5],[6, 7]))

[11, 14]

>>> zip([1, 2, 3], [4, 5, 6], [7, 8, 9])

<zip object at 0x0135F418>

>>> list(zip([1, 2, 3], [4, 5, 6], [7, 8, 9]))

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

>>> filter(None, [1, 0, None, [], 2])

<filter object at 0x01360570>

>>> list(filter(None, [1, 0, None, [], 2]))

[1, 2]

 Добавлен новый способ создания множества. Создать множество можно не

только с помощью функции set(), но и указав элементы через запятую внутри

фигурных скобок:
>>> set([1, 2, 3, 4, 5])

{1, 2, 3, 4, 5}

>>> {1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}

 Метод словаря has_key() удален. Чтобы проверить существование ключа в

словаре, следует использовать оператор in:
>>> "a" in { "a": 1, "b": 2 }

True

 Методы словаря keys(), values() и items() возвращают объекты, поддержи-

вающие итерации. Чтобы получить список, необходимо использовать функцию

list():
>>> d = { "a": 1, "b": 2 }

>>> d.keys(), d.values()

(dict_keys(['a', 'b']), dict_values([1, 2]))

>>> d.items()

dict_items([('a', 1), ('b', 2)])

>>> list(d.keys()), list(d.values())

(['a', 'b'], [1, 2])

>>> list(d.items())

[('a', 1), ('b', 2)]

Так как метод keys() возвращает объект, а не список, то для вывода отсорти-

рованного по ключам словаря следует использовать функцию sorted():

>>> d = { "a": 1, "b": 2 }

>>> for key in sorted(d.keys()): print(key, d[key])

a 1

b 2

Приложение 1. Отличия Python 3 от Python 2

393

 Методы словаря iterkeys(), itervalues() и iteritems() удалены.

 Функции cmp(), reduce(), apply() и file() удалены.

 Функция reload() перемещена в модуль imp. Чтобы повторно загрузить мо-

дуль, следует подключить модуль imp, а затем передать идентификатор функ-

ции imp.reload(). Пример повторной загрузки модуля math:
>>> import math

>>> import imp # Подключаем модуль imp

>>> imp.reload(math) # Повторно загружаем модуль math

<module 'math' (built-in)>

 Все классы нового стиля. Классы, называемые классическими в Python 2,

больше не поддерживаются. Наследовать объект object при создании класса

необязательно:
class Class1: # Класс нового стиля

 pass

class Class2(object): # и это класс нового стиля

 pass

print(type(Class1)) # Выведет: <class 'type'>

print(type(Class2)) # Выведет: <class 'type'>

 Параметры в инструкции except должны разделяться оператором as. В

Python 2.6 для разделения параметров можно было использовать запятую и

оператор as. В Python 3 допустимо использовать только оператор as:
try:

 x = 1 / 0

except NameError as err:

 print(err)

except (IndexError, ZeroDivisionError) as err:

 print(err)

 Файловые методы xreadlines() и next() удалены.

 Класс StringIO перемещен в модуль io.
>>> from io import StringIO

>>> f = StringIO("String1\n")

>>> f.seek(0, 2) # Перемещаем указатель в конец

8

>>> f.write("String2\n") # Записываем строку

8

>>> f.writelines(["String3\n", "String4\n"])

>>> f.seek(0) # Перемещаем указатель в начало

0

>>> f.readline() # Считываем строку

'String1\n'

>>> f.read(8) # Считываем 8 байт

'String2\n'

>>> f.readlines() # Считываем строки в список

['String3\n', 'String4\n']

>>> f.close() # Закрываем "файл"

Приложения

394

 Функции urlparse(), urlunparse(), urlsplit(), urlunsplit(), parse_qs(),

parse_qsl(), urlencode(), quote(), quote_plus(), unquote(), unquote_plus()

и urljoin() перемещены в модуль urllib.parse.

>>> from urllib.parse import urlparse, urlunparse

>>> url = urlparse("http://site.ru:80/test.php;st?v=5#m")

>>> url.netloc, url.hostname, url.port, url.path

('site.ru:80', 'site.ru', 80, '/test.php')

>>> t = ('http', 'site.ru:80', '/test.php', '', 'v=5', 'm')

>>> urlunparse(t)

'http://site.ru:80/test.php?v=5#m'

 Класс HTTPConnection перемещен в модуль http.client.

>>> import http.client, urllib.parse

>>> d = urllib.parse.urlencode({"color": "red", "var": 15})

>>> h = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Referer": "/index.php" }

>>> con = http.client.HTTPConnection("wwwadmin.ru")

>>> con.request("GET", "/testrobots.php?%s" % d, headers=h)

>>> result = con.getresponse()

>>> print(result.read().decode("cp1251"))

... Фрагмент опущен ...

>>> con.close()

 Вместо модуля urllib2 следует использовать модуль urllib.request.

>>> import urllib.parse, urllib.request as u

>>> d = urllib.parse.urlencode({"color": "red", "var": 15})

>>> h = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Referer": "/index.php" }

>>> url = "http://wwwadmin.ru/testrobots.php?%s" % d

>>> request = u.Request(url, headers=h)

>>> res = u.urlopen(request)

>>> print(res.read().decode("cp1251"))

... Фрагмент опущен ...

>>> res.close()

ПРИЛОЖЕНИЕ 2

Описание DVD

Структура DVD, прилагаемого к книге, представлена в табл. П2.1.

Таблица П2.1. Описание DVD

Папка

или файл
Файл Описание

\Foto Папка с цветными иллюстрациями

\Video Папка с видеороликами

Start.avi

Способы создания и запуска программы:

 открываем и просматриваем документацию в
формате CHM;

 просматриваем документацию, расположенную
внутри модулей;

 рассматриваем способ поиска документации к
модулю;

 запускаем интерактивную оболочку и выполняем
несколько инструкций;

 создаем ярлык на рабочем столе для запуска IDLE;

 запускаем IDLE и выполняем несколько инструкций;

 создаем новый файл с программой;

 рассматриваем различные способы запуска
программы;

 изменяем настройки IDLE;

 запускаем программу из командной строки

Versions.avi

Запуск с помощью разных версий Python:

 запускаем интерактивную оболочку для разных
версий Python;

 запускаем редактор PythonWin для Python 2.5 и 3.1;

Приложения

396

Таблица П2.1 (продолжение)

Папка

или файл
Файл Описание

 запускаем IDLE для разных версий Python;

 запускаем программу проверки установки с
помощью разных версий;

 запускаем программу с помощью редактора
PythonWin;

 запускаем программу из командной строки

Print.avi

Вывод данных и перенаправление вывода.
В этом видеоролике рассматривается вывод данных с
помощью оператора print и метода write(), а также

перенаправление вывода в файл. Дополнительную
информацию см. в разд. 1.6 и 15.8

Input.avi

Ввод данных и перенаправление ввода.
В этом видеоролике рассматривается ввод данных с
помощью функции raw_input(), получение

параметров, переданных в командной строке, а также
перенаправление ввода. Дополнительную
информацию см. в разд. 1.7 и 15.8

Number.avi

Работа с числами. Рассматриваются основные
операции при работе с числами. Дополнительную
информацию см. в главе 5

String.avi

Работа со строками.
Рассматриваются основные операции при работе со
строками и регулярными выражениями.
Дополнительную информацию см. в главах 6 и 7

List.avi

Работа со списками, кортежами и множествами.
Рассматриваются основные операции при работе со
списками, кортежами и множествами. Дополнительную
информацию см. в главе 8

Dict.avi

Работа со словарями. Рассматриваются основные
операции при работе со словарями. Дополнительную
информацию см. в главе 9

Internet.avi

Обмен данными по протоколу HTTP.
Рассматривается обмен данными по протоколу HTTP с
помощью модулей httplib и urllib2. Дополнительную
информацию см. в разд. 20.5 и 20.6

Headers.avi

Способы просмотра HTTP-заголовков:

 открываем файл index.php с помощью Notepad++.
Файл содержит ссылку, при переходе по которой
данные будут отправлены методом GET, и форму,

данные которой будут отправлены методом POST;

Приложение 2. Описание DVD

397

Таблица П2.1 (продолжение)

Папка

или файл
Файл Описание

 открываем Web-браузер Firefox и запускаем файл
index.php;

 запускаем Firebug и переходим на вкладку Сеть;

 просматриваем HTTP-заголовки, отправляя данные
методами GET и POST;

 запускаем Web-браузер Internet Explorer и
открываем панель ieHTTPHeaders;

 просматриваем HTTP-заголовки, отправляя данные
методами GET и POST;

 сохраняем HTTP-заголовки в файл и просматриваем
результат

phpMyAdmin.avi

Обзор программы phpMyAdmin:

 запускаем серверы Apache и MySQL;

 с помощью Web-браузера открываем программу
phpMyAdmin;

 создаем новую базу данных, а затем таблицу;

 вставляем данные в таблицу;

 создаем индекс. Чтобы увидеть количество
элементов в индексе, производим оптимизацию
таблицы;

 удаляем индекс, данные, таблицу и базу данных;

 далее рассматриваем способы создания дампа всей
базы данных и отдельной таблицы;

 проверяем таблицу;

 производим восстановление таблицы

HeidiSQL.avi

Обзор программы HeidiSQL:

 запускаем серверы Apache и MySQL;

 открываем программу HeidiSQL и вводим параметры
подключения к MySQL;

 для установки соединения с сервером MySQL
выбираем сохраненное соединение из списка

Description и нажимаем кнопку Connect;

 отображаем содержимое базы данных, а затем
таблицы;

 выполняем SQL-запрос на вкладке Query;

 ограничиваем набор данных с помощью создания
фильтра, а также указания количества строк;

 добавляем новую запись и удаляем существующую;

Приложения

398

Таблица П2.1 (окончание)

Папка

или файл
Файл Описание

 создаем новую базу данных и таблицу в ней;

 далее рассматриваем способ создания дампа

таблицы;

 удаляем таблицу и базу данных

\Setup.html Иллюстрированное описание установки Python

\Listings.doc

Все листинги из книги (если нет программы Word, то

прочитать можно с помощью OpenOffice)

\Readme.txt,

\Readme.doc

Описание DVD

Предметный указатель

@
@abstractmethod 223

@classmethod 222

@staticmethod 221

_
__abs__() 219

__add__() 219

__all__ 199, 200, 204, 205

__and__() 220

__bases__ 214

__builtin__ 22

__call__() 215

__class__ 214

__cmp__() 220

__complex__() 218

__conform__() 320

__contains__() 220

__debug__ 240

__del__() 211

__delattr__() 217

__delitem__() 216

__dict__ 193, 197, 217

__div__() 219

__doc__ 22, 23, 64

__enter__() 233

__eq__() 220

__exit__() 233, 234

__file__ 245

__float__() 218

__floordiv__() 219

__ge__() 220

__getattr__() 216, 223

__getattribute__() 223

__getitem__() 216

__gt__() 220

__iadd__() 219

__iand__() 220

__idiv__() 219

__ifloordiv__() 219

__ilshift__() 220

__imod__() 219

__import__() 197

__imul__() 219

__init__() 210

__int__() 218

__invert__() 220

__ior__() 220

__ipow__() 219

__irshift__() 220

__isub__() 219

__iter__() 217

__ixor__() 220

__le__() 220

__len__() 218

__long__() 218

__lshift__() 220

__lt__() 220

__mod__() 219

__mul__() 219

__name__ 194

__ne__() 220

__neg__() 219

__next__() 391

__nonzero__() 218

__or__() 220

__pos__() 219

__pow__() 219

__radd__() 219

__rand__() 220

__rdiv__() 219

__repr__() 218

__rfloordiv__() 219

__rlshift__() 220

__rmod__() 219

__rmul__() 219

__ror__() 220

__rpow__() 219

__rrshift__() 220

__rshift__() 220

__rsub__() 219

__rxor__() 220

__setattr__() 217, 223

__setitem__() 216

__slots__ 224

__str__() 218

__sub__() 219

__unicode__() 218

__xor__() 220

_mysql 329

A
abs() 56, 158, 219

abspath() 242, 263

Accept 378

Accept-Charset 378

Accept-Encoding 378

Accept-Language 378

access() 259

acos() 58

ActivePython 7

add() 142

aggdraw 357—359, 363

all() 131

and 43

ANTIALIAS 352

any() 131

anydbm 270, 275

apilevel 303, 329, 340

append() 116, 128, 176, 201

apply() 182, 393

arc() 356, 357, 361

argv 20

ArithmeticError 236

arraysize 310, 337, 344

as 196, 198, 204, 230, 233, 393

asctime() 155

asin() 58

assert 236, 239, 240

AssertionError 236, 239

astimezone() 168

atan() 58

AttributeError 195, 209, 224, 236

autocommit 341

autocommit() 333, 341

Предметный указатель 400

B
BaseException 236

basename() 264

BGR 358

BGRA 358

BICUBIC 352

BILINEAR 352

BLUR 355

bool 26

bool() 32, 40, 218

break 47, 51—53

Brush 358

buffer 319

bytes 390

bytes() 390

C
Cache-Control 378

calendar 152, 168, 172, 174

Calendar 168

calendar() 173

capitalize() 85

ceil() 58

center() 76

cgi 370, 373

character-sets-dir 331, 339

chardet 382

charset 330, 331, 338

CHARSET 340

chdir() 244, 245, 271

chmod() 259

choice() 60, 61, 132

chord() 357, 361

chr() 86, 392

class 207, 208

classobj 27

clear() 143, 151, 271

close() 246, 253, 254, 270,

304, 305, 329, 332, 340,

341, 375, 380, 383

closed 251, 254

cmath 58

cmp() 57, 81, 220, 393

CMYK 350

code 381

combine() 165

commit() 306, 314, 315, 327,

333, 341

compile() 96, 106, 110, 111

complete_statement() 326

complex 26, 54

complex() 218

compress 330

confidence 383

connect() 304, 314, 321, 329,

338, 340

connect_timeout 330

Content-Length 375, 378

Content-Type 375, 377—379

continue 52

CONTOUR 355

conv 330

convert() 355

Cookie 378

copy 118, 146, 151

copy() 142, 143, 146, 151,

260, 351

copy2() 260

copyfile() 259

cos() 58

count() 87, 131, 139

create_aggregate() 318

create_collation() 315

create_function() 317, 318

crop() 353

cssclasses() 171

ctime() 155, 161, 168

Cursor 332, 336, 339

cursor() 305, 332, 341

cursorclass 330

D
DATABASE 340

DatabaseError 324, 325

DataError 325

date 157, 159—161, 165,

166, 324

date() 166

datetime 152, 157, 159, 162,

164—166, 168, 324

day 160, 166

day_abbr 174

day_name 174

days 157, 158

db 330

decimal 36, 55

decode() 95, 391

deepcopy() 118, 146, 151

def 177, 179, 208

default-character-set 331

degrees() 58

del 33, 129, 148, 271

delattr() 209

deleter() 226

description 309, 336, 345

DETAIL 355

detect() 383

detect_types 321

dict 27

dict() 144, 146, 376

DictCursor 339

difference() 140, 143

difference_update() 140

digest() 94

dir() 23, 197

dirname() 245, 264

discard() 143

divmod() 57

done 383

DOTALL 97

Draw 355, 358, 359

DRIVER 340

dst() 163, 168

dump() 268, 269

dumps() 93, 269

dup() 253

E
Eclipse 2

EDGE_ENHANCE 355

EDGE_ENHANCE_MORE

355

elif 45

ellipse() 356, 358, 360

else 47, 51, 231

EMBOSS 355

encode() 95, 391

encoding 251, 326, 383

end() 109

endpos 107

endswith() 88

enumerate() 50, 123

env 12

EOFError 237, 266

Error 325

escape() 114, 373

eval() 20, 390

exc_info() 230, 234

except 228—232, 237, 393

Exception 236, 238

Предметный указатель 401

execute() 306, 308, 317, 332,

333, 335, 336, 341, 342,

345, 346

executemany() 307, 308,

334, 343

executescript() 305, 308

exists() 260

exp() 58

expand() 109

expandtabs() 75

extend() 128

F
F_OK 259

fabs() 58

factorial() 59

False 26, 40

fdopen() 254

feed() 383

fetchall() 311, 337, 344

fetchmany() 310, 337, 344

fetchone() 309, 336, 343, 344

field_count() 336

file 27

file() 241, 393

fileno() 249, 254, 265

filter() 127, 355, 392

finalize() 318

finally 231, 232

find() 86

FIND_EDGES 355

findall() 110

finditer() 111

Firebug 379

firstweekday() 172

FLIP_LEFT_RIGHT 353

FLIP_TOP_BOTTOM 353

float 26, 54

float() 32, 56, 218

floor() 58, 198

flush() 249, 257, 267, 359

fmod() 58

Font() 363

for 18, 28, 46, 47, 48, 50, 69,

122—124, 139, 148, 176,

187, 249, 257, 310, 338, 345

format 351

format() 77, 78

formatmonth() 169, 171

formatyear() 170, 171

formatyearpage() 171

fragment 367

FRIDAY 169

from 198, 202, 204, 205

fromkeys() 145

fromordinal() 160, 165

fromstring() 359

fromtimestamp() 160, 165

frozenset 27, 143

frozenset() 143

function 27, 179

G
GET 374, 375, 378, 381

get() 147, 150, 270

get_character_set_info() 330

getatime() 261

getattr() 195, 209

getbbox() 354

getctime() 261

getcwd() 271

getdate() 377

getheader() 376, 377

getheaders() 376, 377

getlocale() 84

getmaintype() 377

getmtime() 261

getparam() 377

getpixel() 348, 349

getplist() 377

getrawheader() 377

getrefcount() 30

getresponse() 374

getsize() 261, 362

getsubtype() 377

getter() 226

gettype() 377

geturl() 367, 380

getvalue() 254

glob 274

glob() 274

global 191

globals() 193

gmtime() 152, 153, 174

grab() 363

group() 108

groupdict() 108

groupindex 107

groups 107

groups() 108

H
has_key() 147, 150, 270, 392

hasattr() 195, 209

hashlib 94

HEAD 374, 378

headers 377, 380

help() 21—23, 25

hex() 56

hexdigest() 94

host 329

Host 378

hostname 366

hour 162, 164, 166

hours 158

HTMLCalendar 169, 171

http.client 394

HTTPConnection 374, 394

httplib 365, 374, 380

HTTP-заголовки 378

I
IDLE 2, 6, 10, 16

ieHTTPHeaders 379

if…else 43, 45, 46

IGNORECASE 96

Image 359

ImageDraw 355, 357, 358, 362

ImageFilter 355

ImageFont 362

ImageGrab 363

imp 393

import 12, 19, 194—197, 199,

204, 205

ImportError 237

in 37, 41, 62, 70, 130, 138,

141, 147, 150, 220, 392

IndentationError 11, 237

index() 86, 130, 138, 228

IndexError 67, 108, 119, 237,

337

info 351

info() 380

init_command 330

InnoDB 333, 341

input() 20, 25, 237, 390

insert() 129, 201

insert_id() 335

instance 27

int 26, 54, 55, 391

int() 31, 55, 218

Предметный указатель 402

IntegrityError 325, 327

InterfaceError 325

InternalError 325

intersection() 140, 143

intersection_update() 140

io 393

IOError 237, 242, 245, 259,

260, 347, 349, 362

is 29, 42, 117, 118

is, оператор 117

isabs() 264

isalnum() 90

isalpha() 90

isatty() 266

isdecimal() 92

isdigit() 90

isdir() 273

isfile() 273

isinstance() 31

isleap() 173

islink() 273

islower() 91

isnumeric() 92

isocalendar() 162, 167

isoformat() 161, 163, 167

isolation_level 314, 315

isoweekday() 162, 167

isspace() 90

issubset() 141, 143

issuperset() 142, 143

istitle() 91

isupper() 91

items() 149, 270, 392

iter() 28

iteritems() 149, 270, 393

iterkeys() 149, 270, 393

itervalues() 149, 270, 393

J
join() 83, 84, 136, 265

K
KeyboardInterrupt 51, 237

KeyError 142, 143, 147, 150,

237, 271

keys() 48, 148, 149, 270,

312, 392

L
lambda 185

lastgroup 107

lastindex 107

Last-Modified 378

lastrowid 308, 335

LC_ALL 84

LC_COLLATE 84

LC_CTYPE 84

LC_MONETARY 84

LC_NUMERIC 84

LC_TIME 84

leapdays() 173

len() 49, 69, 80, 119, 138, 139,

148, 218, 271

line() 356, 359

list 26

list() 32, 84, 116—118, 132,

391, 392

listdir() 272—274

ljust() 76

load() 268, 269, 348, 353, 362

load_default() 362

load_path() 362

loads() 93, 269

locale 84

LOCALE 96, 101

LocaleHTMLCalendar 169, 171

LocaleTextCalendar 169

locals() 193

localtime() 153

Location 378, 379

log() 58

long 26, 54, 55, 391

long() 56, 218

lower() 85

lseek() 253

lstrip() 81

M
maketrans() 89

map() 125, 126, 392

match() 105—107

math 57, 195, 196, 198

max() 57, 131

MAXYEAR 159, 160,

164, 165

md5() 94

merge() 354

microsecond 162—164, 166

microseconds 157, 158

milliseconds 158

mimetools.Message 377

min() 57, 131

minute 162—164, 166

minutes 158

MINYEAR 159, 160, 164, 165

mkdir() 272

mktime() 153

mode 251, 351

module 27

modules 197

MONDAY 169

month 160, 165

month() 172

month_abbr 174

month_name 174

monthcalendar() 173

monthrange() 173

move() 260

msg 377, 380, 381

MULTILINE 96, 98

MyISAM 333

MySQL 328, 340

MySQLdb 329, 340

N
name 251, 252

named_pipe 330

NameError 237

NEAREST 352

Netbeans 2

netloc 366

new() 350

next() 28, 50, 187, 217, 237,

248, 249, 257, 310, 380,

391, 393

None 27, 41

NoneType 27

normpath() 265

not 42

Notepad++ 2, 11

NotSupportedError 325, 333

now() 164

O
O_APPEND 252

O_BINARY 252

O_CREAT 252

Предметный указатель 403

O_RDONLY 252

O_RDWR 252

O_TEXT 252

O_TRUNC 252

O_WRONLY 252

object 214, 393

oct() 56

ODBC 340

open() 235, 241, 242, 244—

246, 249, 252, 254, 270,

347, 348

OperationalError 313, 325

OptimizedUnicode 313

or 43

ord() 86

os 244, 250, 252, 254, 259—

262, 271

os.path 242, 243, 260, 263, 273

OSError 252

OverflowError 153

P
P 350

params 367

PARSE_COLNAMES 321

PARSE_DECLTYPES 321

parse_qs() 369, 370, 394

parse_qsl() 369, 370, 394

ParseResult 365, 366

partition() 83

pass 178, 210

passwd 329

password 367

paste() 353, 354

path 366

Pen 358

PEP-8 2

pi 58, 195, 198

pickle 93, 268—270, 275

Pickler 269

pieslice() 357, 361

PIL 347

point() 355

polygon() 356, 360

pop() 129, 143, 150, 271

popitem() 150, 271

port 330, 366

PORT 340

pos 107

POST 374, 375, 378, 381

pow() 56, 58

Pragma 378

prcal() 173

PrepareProtocol 320

print 16, 17, 18, 19, 218,

265, 389

print() 389

prmonth() 170, 172

ProgrammingError 325

property() 225

pryear() 170

putpixel() 348, 349

PWD 340

PyDev 2

pydoc 21

PyODBC 339

PyScripter 2, 11

pysqlite 303

Python Imaging Library 347

Python Shell 10

python.exe 3

PYTHONPATH 200

pythonw.exe 3

PythonWin 2

Q
query 367

quote() 371, 394

quote_plus() 370, 371, 394

quoteattr() 373

R
R_OK 259

radians() 58

raise 237, 238, 239

randint() 60

random 59, 132, 136

random() 59, 60, 132

randrange() 60

range() 48, 49, 60, 122, 135,

136, 391

raw_input() 10, 19, 21, 23, 33,

237, 266, 390

re 96, 107

read() 247, 253, 255, 374, 379

read_default_file 330, 331, 339

read_default_group 330

readline() 247, 256, 379

readlines() 248, 256, 380

reason 376

rectangle() 356, 360

reduce() 127, 393

Referer 378

register_adapter() 319

register_converter() 321

reload() 202, 393

remove() 130, 142, 260

rename() 260

repeat() 176

replace() 89, 161, 163, 166

repr() 19, 78, 80, 218

Request 379, 381

request() 374, 375

reset() 383

resize() 352

result 383

return 178

reverse() 131

reversed() 132

RFC 2616 379

rfind() 87

RGB 350, 354, 355, 358, 364

RGBA 350, 354, 355, 358

rindex() 87

rjust() 76

rmdir() 272, 273

rmtree() 273

rollback() 314, 327, 333, 341

rotate() 352

ROTATE_180 353

ROTATE_270 353

ROTATE_90 353

round() 56

Row 312, 343, 344

row_factory 311, 312

rowcount 309, 335, 336, 345

rpartition() 83

rsplit() 82

rstrip() 81

S
sample() 60, 132, 136

SATURDAY 169

save() 349

scheme 366

scroll() 337

search() 106, 107, 109

second 162—164, 166

seconds 157, 158

seed() 59

seek() 250, 255

Предметный указатель 404

SEEK_CUR 250, 253

SEEK_END 250, 253

SEEK_SET 250, 253

self 208

sep 243, 263

Server 378

SERVER 340

set 27, 143

set() 139, 392

set_character_set() 332, 338

setantialias() 359

setattr() 209

setdefault() 147, 150, 271

setfirstweekday() 169, 172

setlocale() 84

setter() 226

sha1() 94

sha224() 94

sha256() 94

sha384() 94

sha512() 94

SHARPEN 355

shelve 268—270, 275

show() 349

shuffle() 60, 132

shutil 259, 273

sin() 58

size 350

sleep() 156

SMOOTH 355

SMOOTH_MORE 355

sort() 133, 135, 149, 186

sorted() 135, 149, 392

span() 109

split() 81, 113, 114, 264, 354

splitdrive() 264

splitext() 264

splitlines() 82

SplitResult 368

SQL 275

sql_mode 330

SQLite 275

типы данных 279

sqlite_version 303

sqlite_version_info 303

sqlite3 275, 303

sqrt() 58

StandardError 324

start() 109

startswith() 88

stat 259

stat() 261

stat_result 261

status 376

stderr 249, 265

stdin 19, 20, 249, 265, 266

stdout 18, 249, 251, 265,

267, 389

step() 318

StopIteration 50, 187, 217,

237, 248, 257, 310, 380

str 26, 62, 390

str() 32, 63, 70, 78, 80, 137,

218, 313, 390

strftime() 154, 155, 156, 161,

163, 168, 194

string 89, 107

StringIO 254, 348, 393

strip() 81

strptime() 155, 165

struct_time 152—155, 161,

167, 174

sub() 111, 112

subn() 113

sum() 57, 176

SUNDAY 169

swapcase() 85

symmetric_difference() 141, 143

symmetric_difference_

update() 141

SyntaxError 237

sys 19, 30, 197, 230, 234

sys.argv 20

sys.path 200, 201, 362

sys.stdin 19, 20, 326

sys.stdout 19

T
tan() 58

tell() 250, 255

text() 362, 363

text_factory 313, 319

TextCalendar 168, 169

textsize() 362, 363

thumbnail() 352

THURSDAY 169

time 152, 154, 156, 157, 161—

163, 165, 166, 168, 174,

194, 195

time() 152, 166

timedelta 157, 158

timegm() 174

timeit 152, 174

timeit() 175, 176

Timer 175

timetuple() 161, 167

timetz() 166

title() 85

today() 160, 164

toordinal() 160, 161, 165, 167

tostring() 359

traceback 230

translate() 89

transpose() 353

True 26, 40

truetype() 362

truncate() 249, 257

try 228

TUESDAY 169

tuple 26

tuple() 32, 137

type 27

type() 31, 214

TypeError 83, 130, 136, 237

tzinfo 157, 162—164, 166

tzname() 163, 168

U
UID 340

UliPad 2

UnboundLocalError 191, 237

unescape() 373

unichr() 86, 392

unicode 26, 63, 390

UNICODE 97, 101

unicode() 11, 32, 65, 94, 218,

313, 390

unicode_results 341, 344

UnicodeDecodeError 74,

75, 237

UnicodeEncodeError 237,

247, 251

Unicode-строка 11, 63

uniform() 59

union() 140, 143

UniversalDetector 383, 384

unix_socket 330

unlink() 260

Unpickler 269

unquote() 371, 394

unquote_plus() 372, 394

update() 94, 140, 151, 271

Предметный указатель 405

upper() 85

urlencode() 370, 394

urljoin() 372, 394

urllib 370, 371

urllib.parse 394

urllib.request 394

urllib2 365, 379, 394

urlopen() 379, 381

urlparse 365, 369, 370, 372

urlparse() 365—368, 394

urlsplit() 368, 394

urlunparse() 367, 394

urlunsplit() 368, 394

URL-адрес 365

use_unicode 330, 338

user 329

User-Agent 378

username 367

utcfromtimestamp() 165

utcnow() 164

utcoffset() 163, 168

utctimetuple() 167

utime() 262

V
ValueError 86, 87, 130, 138,

155, 159, 162, 164, 165,
228, 237, 369

values() 149, 270, 392
vars() 193
VERBOSE 97
version 376

W
W_OK 259
walk() 272, 273
Warning 325
WEDNESDAY 169
weekday() 162, 167, 173
weeks 158
while 13, 50, 51, 53, 123, 176
WindowsError 260, 261, 262
with 233—235, 327
write() 19, 247, 253, 255

writelines() 247, 255

X
X_OK 259

xml.sax.saxutils 373

xrange() 49, 50, 122, 136, 391

xreadlines() 248, 393

Y
YCbCr 350

year 160, 165

yield 186

Z
ZeroDivisionError 229, 236,

237

zfill() 77

zip() 126, 145, 392

Б
Безопасность 307, 334, 345

В
Ввод 19

перенаправление 265

Время 152

Вывод 17

перенаправление 265

Выделение блоков 14

Выражения-генераторы 124

Д
Дата 152

текущая 152

форматирование 154

Деструктор 210

Динамическая типизация

29, 31

Добавление записей в

таблицы 284

Документация 21

З
Записи базы данных:

вставка 284

добавление 284

извлечение 288

из нескольких таблиц 291

количество 290

максимальное значение 290

минимальное значение 290

обновление 286

ограничение при выводе 291

сортировка 290

средняя величина 290

сумма значений 290

удаление 287

Запуск программы 10, 20

Засыпание скрипта 156

И
Извлечение записей 288

Изменение структуры

таблицы 287

Изображение 347

вращение 353

вставка 354
вывод текста 362
загрузка готового 347
зеркальный образ 353
изменение размера 352
поворот 352
получение фрагмента 353
преобразование

формата 355
просмотр 349
размер 350
режим 350, 351
рисование:

дуги 356
круга 356
линии 356
многоугольника 356
прямоугольника 356
точки 355
эллипса 356

создание:
копии 351
нового 350
скриншота 363

сохранение 349

фильтры 355

формат 351

Предметный указатель 406

Именование переменных 24

Индекс 115, 138, 297

Индикатор выполнения

процесса 267

Исключения 227

возбуждение 237

иерархия классов 235

перехват всех

исключений 231

пользовательские 237

К
Календарь 168

HTML 171

текстовый 169

Каталог 271

обход дерева 272

очистка дерева

каталогов 273

права доступа 257

преобразование пути 263

создание 272

список объектов 272

текущий рабочий 243, 271

удаление 272

Квантификатор 101

Класс 207

нового стиля 214

Ключ 297

Ключевые слова 24

Кодировка 10, 12

определение 382

преобразование 94

Комментарии 15

Конструктор 210

Кортеж 115, 137

количество элементов 138

объединение 138

повторение 138

поиск элементов 138

проверка на вхождение 138

создание 137

срез 138

Л
Локаль 84

М
Маска прав доступа 258

Множества 139

frozenset 143

set 139

Модуль 180, 194

импорт 194

модулей внутри

пакета 205

относительный 205

инструкция:

from 198

import 194

повторная загрузка 202

получение значения

атрибута 195

проверка существования

атрибута 195

пути поиска 200

список всех

идентификаторов 197

Н
Наследование 211, 212

О
Обновление записей 286

Объектно-ориентированное

программирование

(ООП) 207

атрибут:

класса, создание 208

псевдочастный 223

деструктор 210

класс 207

классический 207

методы 222

нового стиля 214

определение 207

свойства 225

конструктор 210

множественное

наследование 212

метод 222

абстрактный 222

класса, создание 208

специальный 215

статический 221

наследование 211

перегрузка операторов 218

экземпляр класса,

создание 208

Операторы 34

break 52

continue 52

for 47

if…else 43, 45, 46

in 41

is 42

pass 178

while 50

двоичные 36

для работы с последова-

тельностями 37

логические 43

математические 34

перегрузка 218

приоритет выполнения 38

присваивания 37

сравнения 41

условные 40

Отображения 28

Ошибка:

времени выполнения 227

логическая 227

синтаксическая 227

П
Пакет 202

Переменная 24

глобальная 190

локальная 190

удаление 33

Перенаправление

ввода/вывода 265

Перенос строк 14

Последовательности 28

количество элементов 119

объединение 121

операторы 37

перебор элементов 122

повторение 121

преобразование:

в кортеж 137

в список 116

проверка на вхождение 121

сортировка 135

срез 120

Права доступа 257

Предметный указатель 407

Присваивание 29

групповое 29

позиционное 30

Путь к интерпретатору 12

Р
Регулярные выражения 96

группировка 102

замена 111

квантификаторы 101

классы 101

метасимволы 98

обратная ссылка 103

поиск:

всех совпадений 110

первого совпадения 105

разбиение строки 113

специальные символы 97

флаги 96

экранирование

спецсимволов 114

Редактирование файла 11

Рекурсия 189

С
Словарь 144

добавление элементов 151

количество элементов 148

перебор элементов 148

поверхностная копия 146

полная копия 146

проверка существования

ключа 147, 150

создание 144

список:

значений 149

ключей 149

удаление элементов 148,

150

Создание файла

с программой 10

Специальный символ 66

Список 115

выбор элементов

случайным образом 132

генераторы 123

добавление элементов 128

заполнение числами 135

количество элементов 119

максимальное значение 131

минимальное значение 131

многомерный 121

перебор элементов 122

без цикла 125

переворачивание 131

перемешивание 132

поверхностная копия 118

поиск элемента 130

полная копия 118

преобразование

в строку 136

соединение двух

списков 121

создание 116

сортировка 133

срез 120

удаление элементов 129

Срез 68, 120

Строки 62

Unicode 63, 65

неформатированные 66

длина 69, 80

документирования 15,

22, 64

замена в строке 89

изменение регистра 85

код символа 86

кодирование 94

конкатенация 69

неявная 69

методы 81

неформатированные 65

обычная 62

операции 67

перебор символов 69

повторение 70

поиск в строке 86

преобразование:

кодировки 94

объекта в строку 93

проверка:

на вхождение 70

типа содержимого 90

разбиение 81

соединение 69

создание 63

специальные символы 66

сравнение 81

срез 68

тип данных 62

удаление пробельных

символов 81

форматирование 70, 77

функции 80

шифрование 94

экранирование

спецсимволов 63

Структура программы 11

Т
Таблица базы данных:

изменение структуры 287

создание 277

удаление 302

Текущий рабочий каталог 243

Тип данных 26

преобразование 31

проверка 31

У
Удаление записей 287

Установка Python 3

Ф
Файл 241

абсолютный путь 241

время последнего

доступа 261

время последнего

изменения 261

дата создания 261

дескриптор 249

закрытие 246, 253

запись 247, 253

копирование 259

обрезание 249

открытие 241, 252

относительный путь 242

переименование 260

перемещение 260

указателя 250

позиция указателя 250

права доступа 257

преобразование пути 263

проверка существования 260

размер 261

режим открытия 245

Предметный указатель 408

создание 241

сохранение объектов 268

удаление 260

чтение 247, 253

Факториал 189

Функция 177

анонимная 185, 192

вызов 178

генератор 186

декораторы 187

значения параметров по

умолчанию 183

лямбда 185

необязательные

параметры 181

обратного вызова 179

переменное число

параметров 184

расположение

определений 180

рекурсия 189

создание 177

сопоставление

по ключам 181

Ц
Цикл:

for 46

while 50

переход на следующую

итерацию 52

прерывание 51, 52

Ч
Числа 54

абсолютное значение 56, 58

вещественные 54, 55

точность вычислений 55

возведение в степень 56, 58

восьмеричные 54

десятичные 54

длинные целые 54, 55

квадратный корень 58

комплексные 54, 55

логарифм 58

модуль:

math 57

random 59

округление 56, 58

преобразование 55

случайные 59

факториал 59

функции 55

целые 54

шестнадцатеричные 55

экспонента 58

Я
Язык 84

Язык SQL:

ABORT 283

ALL 289

ALTER TABLE 287

ANALYZE 298

AUTOINCREMENT 282

AVG() 290

BEGIN 300, 301

CHECK 281, 283

COLLATE 281

COMMIT 300

COUNT() 290

CREATE INDEX 297

CREATE TABLE 277

CROSS JOIN 292

DEFAULT 281

DELETE FROM 287

DISTINCT 289

DROP INDEX 298

DROP TABLE 279, 302

END 300

ESCAPE 295

EXPLAIN 297

FAIL 283

FROM 291

GROUP BY 289

HAVING 289, 293

IGNORE 283

INNER JOIN 292

INSERT 299

INSERT INTO 284

JOIN 292

LEFT JOIN 293

LIKE 294

LIMIT 291

MAX() 290

MIN() 290

ON CONFLICT 283

ORDER BY 290

PRAGMA 278

PRIMARY KEY 282,

283, 297

REINDEX 298

RELEASE 301

REPLACE 284, 286

ROLLBACK 283, 300

SAVEPOINT 301

SELECT 288, 291, 299

SUM() 290

UNIQUE 281, 283

UPDATE 286

USING 292

VACUUM 287, 298

WHERE 288, 291, 293

агрегатные функции 290

вложенные запросы 299

вставка записей 284

выбор записей 288

из нескольких таблиц 291

изменение свойств

таблицы 287

индексы 296

обновление записей 286

создание:

базы данных 276

таблицы 277

транзакции 300

удаление:

базы данных 302

записей 287

таблицы 302

	Введение
	01
	Глава 1
	Первые шаги
	1.1. Установка Python
	1.2. Первая программа на Python
	1.3. Структура программы
	1.4. Комментарии
	1.5. Скрытые возможности IDLE
	1.6. Вывод результатов работы программы
	1.7. Ввод данных
	1.8. Доступ к документации

	02
	Глава 2
	Переменные
	2.1. Именование переменных
	2.2. Типы данных
	2.3. Инициализация переменных
	2.4. Проверка типа данных
	2.5. Преобразование типов данных
	2.6. Удаление переменной

	03
	Глава 3
	Операторы Python
	3.1. Математические операторы
	3.2. Двоичные операторы
	3.3. Операторы для работы с последовательностями
	3.4. Операторы присваивания
	3.5. Приоритет выполнения операторов

	04
	Глава 4
	Условные операторы и циклы
	4.1. Операторы сравнения
	4.2. Оператор ветвления if...else
	4.3. Цикл for
	4.4. Функции range(), xrange() и enumerate()
	4.5. Цикл while
	4.6. Оператор continue. Переход на следующую итерацию цикла
	4.7. Оператор break. Прерывание цикла

	05
	Глава 5
	Числа
	5.1. Встроенные функции для работы с числами
	5.2. Модуль math. Математические функции
	5.3. Модуль random. Генерация случайных чисел

	06
	Глава 6
	Строки
	6.1. Создание строки
	6.2. Специальные символы
	6.3. Операции над строками
	6.4. Форматирование строк
	6.5. Метод format()
	6.6. Функции и методы для работы со строками
	6.7. Настройка локали и изменение регистра символов
	6.8. Функции для работы с символами
	6.9. Поиск и замена в строке
	6.10. Проверка типа содержимого строки
	6.11. Преобразование объекта в строку
	6.12. Шифрование строк
	6.13. Преобразование кодировок

	07
	Глава 7
	Регулярные выражения
	7.1. Синтаксис регулярных выражений
	7.2. Поиск первого совпадения с шаблоном
	7.3. Поиск всех совпадений с шаблоном
	7.4. Замена в строке
	7.5. Прочие функции и методы

	08
	Глава 8
	Списки, кортежи и множества
	8.1. Создание списка
	8.2. Операции над списками
	8.3. Многомерные списки
	8.4. Перебор элементов списка
	8.5. Генераторы списков и выражения-генераторы
	8.6. Перебор элементов списка без циклов
	8.7. Добавление и удаление элементов списка
	8.8. Поиск элемента в списке
	8.9. Переворачивание и перемешивание списка
	8.10. Выбор элементов случайным образом
	8.11. Сортировка списка
	8.12. Заполнение списка числами
	8.13. Преобразование списка в строку
	8.14. Кортежи
	8.15. Множества

	09
	Глава 9
	Словари
	9.1. Создание словаря
	9.2. Операции над словарями
	9.3. Перебор элементов словаря
	9.4. Методы для работы со словарями

	10
	Глава 10
	Работа с датой и временем
	10.1. Получение текущей даты и времени
	10.2. Форматирование даты и времени
	10.3. "Засыпание" скрипта
	10.4. Модуль datetime. Манипуляции датой и временем
	10.4.1. Класс timedelta
	10.4.2. Класс date
	10.4.3. Класс time
	10.4.4. Класс datetime

	10.5. Модуль calendar. Вывод календаря
	10.5.1. Методы классов TextCalendar и LocaleTextCalendar
	10.5.2. Методы классов HTMLCalendar и LocaleHTMLCalendar
	10.5.3. Другие полезные функции

	10.6. Измерение времени выполнения фрагментов кода

	11
	Глава 11
	Пользовательские функции
	11.1. Создание функции и ее вызов
	11.2. Расположение определений функций
	11.3. Необязательные параметры и сопоставление по ключам
	11.4. Переменное число параметров в функции
	11.5. Анонимные функции
	11.6. Функции-генераторы
	11.7. Декораторы функций
	11.8. Рекурсия. Вычисление факториала
	11.9. Глобальные и локальные переменные

	12
	Глава 12
	Модули и пакеты
	12.1. Инструкция import
	12.2. Инструкция from
	12.3. Пути поиска модулей
	12.4. Повторная загрузка модулей
	12.5. Пакеты

	13
	Глава 13
	Объектно-ориентированное программирование
	13.1. Определение класса и создание экземпляра класса
	13.2. Методы __init__() и __del__()
	13.3. Наследование
	13.4. Множественное наследование
	13.5. Классы нового стиля
	13.6. Специальные методы
	13.7. Перегрузка операторов
	13.8. Статические методы и методы класса
	13.9. Абстрактные методы
	13.10. Ограничение доступа к идентификаторам внутри класса
	13.11. Свойства класса

	14
	Глава 14
	Обработка исключений
	14.1. Инструкция try...except...else...finally
	14.2. Инструкция with...as
	14.3. Классы встроенных исключений
	14.4. Пользовательские исключения

	15
	Глава 15
	Работа с файлами и каталогами
	15.1. Открытие файла
	15.2. Методы для работы с файлами
	15.3. Доступ к файлам с помощью модуля os
	15.4. Модуль StringIO
	15.5. Права доступа к файлам и каталогам
	15.6. Функции для манипулирования файлами
	15.7. Преобразование пути к файлу или каталогу
	15.8. Перенаправление ввода/вывода
	15.9. Сохранение объектов в файл
	15.10. Функции для работы с каталогами

	16
	Глава 16
	Основы SQLite
	16.1. Создание базы данных
	16.2. Создание таблицы
	16.3. Вставка записей
	16.4. Обновление и удаление записей
	16.5. Изменение свойств таблицы
	16.6. Выбор записей
	16.7. Выбор записей из нескольких таблиц
	16.8. Условия в инструкции WHERE
	16.9. Индексы
	16.10. Вложенные запросы
	16.11. Транзакции
	16.12. Удаление таблицы и базы данных

	17
	Глава 17
	Доступ к базе данных SQLite из Python
	17.1. Создание и открытие базы данных
	17.2. Выполнение запроса
	17.3. Обработка результата запроса
	17.4. Управление транзакциями
	17.5. Создание пользовательской сортировки
	17.6. Поиск без учета регистра символов
	17.7. Создание агрегатных функций
	17.8. Преобразование типов данных
	17.9. Сохранение в таблице даты и времени
	17.10. Обработка исключений

	18
	Глава 18
	Доступ к базе данных MySQL
	18.1. Модуль MySQLdb
	18.1.1. Подключение к базе данных
	18.1.2. Выполнение запроса
	18.1.3. Обработка результата запроса

	18.2. Модуль PyODBC
	18.2.1. Подключение к базе данных
	18.2.2. Выполнение запроса
	18.2.3. Обработка результата запроса

	19
	Глава 19
	Библиотека PIL. Работа с изображениями
	19.1. Загрузка готового изображения
	19.2. Создание нового изображения
	19.3. Получение информации об изображении
	19.4. Манипулирование изображением
	19.5. Рисование линий и фигур
	19.6. Модуль aggdraw
	19.7. Вывод текста на изображение
	19.8. Создание скриншотов

	20
	Глава 20
	Взаимодействие с Интернетом
	20.1. Разбор URL-адреса
	20.2. Кодирование и декодирование строки запроса
	20.3. Преобразование относительной ссылки в абсолютную
	20.4. Разбор HTML-эквивалентов
	20.5. Обмен данными по протоколу HTTP
	20.6. Обмен данными с помощью модуля urllib2
	20.7. Определение кодировки

	21
	Заключение

	ПРИЛОЖЕНИЯ
	Приложение 1
	Отличия Python 3 от Python 2

	Приложение 2
	Описание DVD

	Предметный указатель
	Предметный указатель

	Без имени

